WorldWideScience

Sample records for proton microprobe analyzer

  1. The Melbourne proton microprobe

    International Nuclear Information System (INIS)

    Legge, G.J.F.; McKenzie, C.D.; Mazzolini, A.P.

    1979-01-01

    A scanning proton microprobe is described which operates in ultra-high vacuum with a resolution of ten microns. The operating principles and main features of the design are discussed and the ability of such an instrument to detect trace elements down to a few ppm by mass is illustrated

  2. Beam optics on the Melbourne proton microprobe

    International Nuclear Information System (INIS)

    Jamieson, D.N.; Colman, R.A.; Allan, G.L.; Legge, G.J.F.

    1985-01-01

    This review paper summarises results of ion optics development work conducted on the Melbourne Proton Microprobe and the associated Pelletron accelerator. The properties of a field ionization ion source have been investigated with the aim of replacing the existing R.F. ion source in the accelerator in order to obtain a brighter beam for the microprobe. The electrostatic emitter lens in the terminal of the accelerator has also been investigated with the aim of improving the focus of the accelerated beam. Finally, the aberrations of the probe forming lens system have been studied and it is shown how some of these may be corrected with an octupole lens

  3. Proton microprobe analysis of pancreatic. beta. cells

    Energy Technology Data Exchange (ETDEWEB)

    Lindh, U [Uppsala Univ. (Sweden). Gustaf Werner Inst.; Juntti-Berggren, L; Berggren, P O; Hellman, B [Uppsala Univ. (Sweden)

    1985-01-01

    Freeze-dried pancreas sections from obese hyperglycemic mice were subjected to proton bombardment and the elemental contents in the ..beta.. cells and the exocrine part were obtained from the characteristic X-rays emitted. Quantitative data were provided for 18 different elements. The mole ratio between K and Na exceeded 10, implying that neither the sample preparation nor the irradiation had induced significant diffuse changes. With the demonstration of this high K/Na ratio it seems likely that also the ..beta.. cells are equipped with an efficient Na/sup +//K/sup +/ pump. The ..beta.. cells contained about 70 mmoles Cl per litre cell water. Observed amounts of Ca and Mg were equivalent to those previously recorded by electrothermal atomic absorption spectroscopy. The significant role of Zn for the storage of insulin was emphasized by the demonstration of 3 times as much of this element in the ..beta.. cells as compared with the exocrine pancreas. In addition, the sensitivity of the proton microprobe enabled measurements of various trace elements such as Rb, Cr, Cu, Al and Pb not previously demonstrated in the pancreatic ..beta.. cells.

  4. Elemental microanalysis of botanical specimens using the Melbourne Proton Microprobe

    International Nuclear Information System (INIS)

    Mazzolini, A.P.J.; Legge, G.J.F.

    1978-01-01

    A proton microprobe has been used to obtain the distribution of elements of various botanical specimens. This paper presents preliminary results obtained by the irradiation of certain organs of the wheat plant

  5. Proton microprobe analysis of zinc in skeletal tissues

    Science.gov (United States)

    Doty, S. B.; Jones, K. W.; Kraner, H. W.; Shroy, R. E.; Hanson, A. L.

    1981-03-01

    A proton microprobe with windowless exit port has been used to study zinc distributions in various types of skeletal tissues. The use of an external beam facilitated positioning of the targets for examination of particular points of interest. The proton microprobe is uniquely suited to this work since it combines high sensitivity for zinc determination in thick samples with good spatial resolution. Our measurements on rat and rabbit Achilles tendon showed a significant increase in zinc concentrations as the beam moved from the unmineralized collagen into the mineralized attachment site. Cartilage gave a similar result, with calcified cartilage having a greater zinc level than the articular surface on unmineralized epiphyseal cartilage.

  6. Proton microprobe analysis of zinc in skeletal tissues

    International Nuclear Information System (INIS)

    Doty, S.B.; Jones, K.W.; Kraner, H.W.; Shroy, R.E.; Hanson, A.L.

    1980-06-01

    A proton microprobe with windowless exit port was used to study zinc distributions in various types of skeletal tissues. The use of an external beam facilitated positioning of the targets for examination of particular points of interest. The proton microprobe is uniquely suited to this work since it combines high sensitivity for zinc determinations in thick samples with good spatial resolution. Measurements on rat and rabbit Achilles tendon showed a significant increase in zinc concentrations as the beam moved from the unmineralized collagen into the mineralized attachment site. Cartilage gave a similar result, with calcified cartilage having a greater zinc level than the articular surface on unmineralized epiphyseal cartilage

  7. Installation and performance of the Budapest-Hamburg proton microprobe

    International Nuclear Information System (INIS)

    Kovacs, I.; Kocsonya, A.; Kostka, P.; Szokefalvi-Nagy, Z.; Schrang, K.; Krueger, A.; Niecke, M.

    2005-01-01

    A new scanning proton microprobe has been installed at the 5 MV Van de Graaff accelerator of the KFKI Research Institute for Particle and Nuclear Physics. It is the energy-upgraded version of the Hamburg proton microprobe dismantled in 2001. The probe forming system includes a pair of focusing quadrupoles and an additional quadrupole pair in front of it, which is applied to increase the proton beam divergence. The average probe size at 2.5 MeV proton energy is 2.2 μm x 1.1 μm. The test results on stability and the preliminary experiments on cement corrosion and fish otoliths are also presented

  8. A study of VMS ore deposits by the proton microprobe

    International Nuclear Information System (INIS)

    Huston, D.L.; Large, R.R.; Bottril, R.S.; Sie, S.H.; Ryan, C.G.

    1991-01-01

    As part of studies into the mineralogical distribution of gold in volcanogenic massive sulfide (VMS) ore deposits PIXE analysis by the proton microprobe has been used to determine the gold content of pyrite and arsenopyrite from the Rosebery, Mt. Chalmers and Mt. Lyell deposits. In addition, the concentrations of Co, Ni, Cu, Zn, As, Sr, Y, Zr, Mo, Ag, Sb, Te, Au, Tl, Pb and Bi were also determined. 4 refs., 1 tab

  9. Proton microprobe analysis of zinc in skeletal tissues

    International Nuclear Information System (INIS)

    Doty, S.B.; Jones, K.W.; Kraner, H.W.; Shroy, R.E.; Hanson, A.L.

    1981-01-01

    A proton microprobe with windowless exit port has been used to study zinc distributions in various types of skeletal tissues. The use of an external beam facilitated positioning of the targets for examination of particular points of interest. The proton micorprobe is uniquely suited to this work since it combines high sensitivity for zinc determinations in thick samples with good spatial resolution. Our measurements on rat and rabbit Achilles tendon showed a significant increase in zinc concentrations as the beam moved from the unmineralized collagen into the mineralized attachment site. Cartilage gave a similar result, with calcified cartilage having a greater zinc level than the articular surface on unmineralized epiphyseal cartilage. (orig.)

  10. Enhancements to the analytical facilities at the GNS proton microprobe

    International Nuclear Information System (INIS)

    Barry, B.J.; Markwitz, A.; Kennedy, V.J.; Trompetter, W.J.

    2005-01-01

    In recent years a number of detection systems have been added to the proton microprobe facility at GNS Science. Particular additions have been a large area HPGe detector and a system for scanning transmission imaging microscopy. The HPGe detector has improved detection sensitivity, particularly for higher energy K x-rays where energy resolution is of lesser importance. The scanning microscopy system has enabled mapping of areal densities in biological samples to give accurate elemental maps. Examples are given of these applications. (author). 22 refs., 7 figs

  11. Proton microprobe analysis of zinc in skeletal tissues. [Proton induced x-ray emission analysis

    Energy Technology Data Exchange (ETDEWEB)

    Doty, S B; Jones, K W; Kraner, H W; Shroy, R E; Hanson, A L

    1980-06-01

    A proton microprobe with windowless exit port was used to study zinc distributions in various types of skeletal tissues. The use of an external beam facilitated positioning of the targets for examination of particular points of interest. The proton microprobe is uniquely suited to this work since it combines high sensitivity for zinc determinations in thick samples with good spatial resolution. Measurements on rat and rabbit Achilles tendon showed a significant increase in zinc concentrations as the beam moved from the unmineralized collagen into the mineralized attachment site. Cartilage gave a similar result, with calcified cartilage having a greater zinc level than the articular surface on unmineralized epiphyseal cartilage.

  12. A new scanning proton microprobe with long focus

    International Nuclear Information System (INIS)

    Zhu Jieqing; Li Minqian; Mao Yu; Chen Hanmin; Gu Yingmei; Yang Changyi; Sheng Kanglong

    1991-01-01

    A new scanning proton microprobe equipped with a long focus Russian magnetic quadruplet is set up. With excellent performances of ion optics, it can be used to do experiments of PIXE, RBS, RFS, NRA and channelling simultaneously within a micron-region. The power supplies for quadruplet and scanning coils are controlled by an IBM-PC computer and a scanning graphical monitor based on an Apple IIe microcomputer provides convenience of searching for an interesting area to scan. The advanced modes of the fast random scan and the event-by-event data collection make it possible to treat the multi-parameter and multi-detector data by means of the strategy of TQSA (Total quantitative scanning analysis). There are three types of graphical display including the innovation of three dimensional contour mapping

  13. Proton microprobe study of tin-polymetallic deposits

    Energy Technology Data Exchange (ETDEWEB)

    Murao, S. [Geological Survey of Japan, Tsukuba, Ibaraki (Japan); Sie, S.H.; Suter, G.F. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1996-12-31

    Tin-polymetallic vein type deposits are a complex mixture of cassiterite and sulfides and they are the main source of technologically important rare metals such as indium and bismuth. Constituent minerals are usually fine grained having wide range of chemical composition and often the elements of interest occur as trace elements not amenable to electron microprobe analysis. PIXE with a proton microprobe can be an effective tool to study such deposits by delineating the distribution of trace elements among carrier minerals. Two representative indium-bearing deposits of tin- polymetallic type, Tosham of India (Cu-ln-Bi-Sn-W-Ag), and Mount Pleasant of Canada (Zn-Cu-In-Bi-Sn-W), were studied to delineate the distribution of medical/high-tech rare metals and to examine the effectiveness of the proton probe analysis of such ore. One of the results of the study indicated that indium and bismuth are present in chalcopyrite in the deposits. In addition to these important rare metals, zinc, copper, arsenic, antimony, selenium, and tin are common in chalcopyrite and pyrite. Arsenopyrite contains nickel, copper, zinc, silver, tin, antimony and bismuth. In chalcopyrite and pyrite, zinc, arsenic, indium, bismuth and lead are richer in Mount Pleasant ore, but silver is higher at Tosham. Also thallium and gold were found only in Tosham pyrite. The Tosham deposit is related to S-type granite, while Mount Pleasant to A-type. It appears that petrographic character of the source magma is one of the factors to determine the trace element distribution in tin-polymetallic deposit. 6 refs., 2 figs.

  14. Proton microprobe study of tin-polymetallic deposits

    Energy Technology Data Exchange (ETDEWEB)

    Murao, S [Geological Survey of Japan, Tsukuba, Ibaraki (Japan); Sie, S H; Suter, G F [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1997-12-31

    Tin-polymetallic vein type deposits are a complex mixture of cassiterite and sulfides and they are the main source of technologically important rare metals such as indium and bismuth. Constituent minerals are usually fine grained having wide range of chemical composition and often the elements of interest occur as trace elements not amenable to electron microprobe analysis. PIXE with a proton microprobe can be an effective tool to study such deposits by delineating the distribution of trace elements among carrier minerals. Two representative indium-bearing deposits of tin- polymetallic type, Tosham of India (Cu-ln-Bi-Sn-W-Ag), and Mount Pleasant of Canada (Zn-Cu-In-Bi-Sn-W), were studied to delineate the distribution of medical/high-tech rare metals and to examine the effectiveness of the proton probe analysis of such ore. One of the results of the study indicated that indium and bismuth are present in chalcopyrite in the deposits. In addition to these important rare metals, zinc, copper, arsenic, antimony, selenium, and tin are common in chalcopyrite and pyrite. Arsenopyrite contains nickel, copper, zinc, silver, tin, antimony and bismuth. In chalcopyrite and pyrite, zinc, arsenic, indium, bismuth and lead are richer in Mount Pleasant ore, but silver is higher at Tosham. Also thallium and gold were found only in Tosham pyrite. The Tosham deposit is related to S-type granite, while Mount Pleasant to A-type. It appears that petrographic character of the source magma is one of the factors to determine the trace element distribution in tin-polymetallic deposit. 6 refs., 2 figs.

  15. Proton microprobe study of tin-polymetallic deposits

    International Nuclear Information System (INIS)

    Murao, S.; Sie, S.H.; Suter, G.F.

    1996-01-01

    Tin-polymetallic vein type deposits are a complex mixture of cassiterite and sulfides and they are the main source of technologically important rare metals such as indium and bismuth. Constituent minerals are usually fine grained having wide range of chemical composition and often the elements of interest occur as trace elements not amenable to electron microprobe analysis. PIXE with a proton microprobe can be an effective tool to study such deposits by delineating the distribution of trace elements among carrier minerals. Two representative indium-bearing deposits of tin- polymetallic type, Tosham of India (Cu-ln-Bi-Sn-W-Ag), and Mount Pleasant of Canada (Zn-Cu-In-Bi-Sn-W), were studied to delineate the distribution of medical/high-tech rare metals and to examine the effectiveness of the proton probe analysis of such ore. One of the results of the study indicated that indium and bismuth are present in chalcopyrite in the deposits. In addition to these important rare metals, zinc, copper, arsenic, antimony, selenium, and tin are common in chalcopyrite and pyrite. Arsenopyrite contains nickel, copper, zinc, silver, tin, antimony and bismuth. In chalcopyrite and pyrite, zinc, arsenic, indium, bismuth and lead are richer in Mount Pleasant ore, but silver is higher at Tosham. Also thallium and gold were found only in Tosham pyrite. The Tosham deposit is related to S-type granite, while Mount Pleasant to A-type. It appears that petrographic character of the source magma is one of the factors to determine the trace element distribution in tin-polymetallic deposit. 6 refs., 2 figs

  16. Deep PIXE: finding diamonds with the proton microprobe

    International Nuclear Information System (INIS)

    Griffin, W.L.; Ryan, C.G.

    1991-01-01

    Since 1987 the CSIRO Div. of Exploration Geoscience has carried out a program of proton-microprobe (PIXE) analysis aimed at using trace-element data on indicator minerals to discriminate between those from diamondiferous and barren source rocks. The results have provided both important new tools for the exploration industry, and significant new information on the conditions and processes of diamond growth. Cr-pyrope garnet has been used as Ni thermometer while chromites, in partcular their Zn content, has allowed correlation of chromite composition with temperature. The two techniques described provide a significant increase in exploration efficiency, through early recognition and rejection of barren targets and concentration of resources on more promising targets. They also provide direct cost savings in evaluation of ore bodies once they are found. It is estimated that evaluation of a prospect by conventional bulk testing is expensive ($100-500K) and time-consuming; an evaluation by PIXE methods is done quickly for a tiny fraction of that cost. 1 refs., 4 figs

  17. PROTON MICROPROBE ANALYSIS OF TRACE-ELEMENT VARIATIONS IN VITRINITES IN THE SAME AND DIFFERENT COAL BEDS.

    Science.gov (United States)

    Minkin, J.A.; Chao, E.C.T.; Blank, Herma; Dulong, F.T.

    1987-01-01

    The PIXE (proton-induced X-ray emission) microprobe can be used for nondestructive, in-situ analyses of areas as small as those analyzed by the electron microprobe, and has a sensitivity of detection as much as two orders of magnitude better than the electron microprobe. Preliminary studies demonstrated that PIXE provides a capability for quantitative determination of elemental concentrations in individual coal maceral grains with a detection limit of 1-10 ppm for most elements analyzed. Encouraged by the earlier results, we carried out the analyses reported below to examine trace element variations laterally (over a km range) as well as vertically (cm to m) in the I and J coal beds in the Upper Cretaceous Ferron Sandstone Member of the Mancos Shale in central Utah, and to compare the data with the data from two samples of eastern coals of Pennsylvanian age.

  18. High resolution techniques using scanning proton microprobe (SPM)

    International Nuclear Information System (INIS)

    Cholewa, M.; Saint, A.; Prawer, S.; Laird, J.S.; Legge, G.J.F.; Bardos, R.A.; Moorhead, G.F.; Taylor, G.N.; Stuart, S.A.; Howard, J.

    1994-01-01

    The very high resolution (down to 50 nm) achieved with low beam currents (fA) in a scanning ion microprobe have lead to many nondestructive techniques of microanalysis. This paper discusses recent developments and applications in the use of 3-D STIM (scanning transmission ion microscopy) Tomography, channeling STIM and IBIC (ion beam induced charge). (orig.)

  19. Elemental microanalysis of biological and medical specimens with a scanning proton microprobe

    International Nuclear Information System (INIS)

    Legge, G.J.F.; Mazzolini, A.P.

    1979-01-01

    The scanning proton microprobe is shown to be a sensitive instrument for elemental microanalysis of cells and tissues in biological and medical specimens. The preparation of specimens and their behaviour under irradiation are crucial and the application of quantitative scanning analysis to the monitoring of such problems is illustrated

  20. Proton-beam energy analyzer

    International Nuclear Information System (INIS)

    Belan, V.N.; Bolotin, L.I.; Kiselev, V.A.; Linnik, A.F.; Uskov, V.V.

    1989-01-01

    The authors describe a magnetic analyzer for measurement of proton-beam energy in the range from 100 keV to 25 MeV. The beam is deflected in a uniform transverse magnetic field and is registered by photographing a scintillation screen. The energy spectrum of the beam is constructed by microphotometry of the photographic film

  1. Charge collection control using retrograde well tested by proton microprobe irradiation

    International Nuclear Information System (INIS)

    Sayama, Hirokazu; Takai, Mikio; Kimura, Hiroshi; Ohno, Yoshikazu; Satoh, Shinichi; Sonoda, Kenichirou; Katani, Norihiko.

    1993-01-01

    Soft error reduction by high-energy ion-implanted layers has been investigated by novel evaluation techniques using high-energy proton microprobes. A retrograde well formed by 160 and 700 keV boron ion implantation could completely suppress soft errors induced by the proton microprobes at 400 keV. The proton-induced current revealed the charge collection efficiency for the retrograde well structure. The collected charge for the retrograde well in the soft-error mapping was proved to be lower than the critical charge of the measured DRAMs(dynamic random-access memories). Complementary use of soft-error mapping and ion-induced-current measurement could clarify well structures immune against soft errors. (author)

  2. Data acquisition and analysis system for the ion microprobe mass analyzer

    International Nuclear Information System (INIS)

    Darby, D.M.; Cristy, S.S.

    1979-02-01

    A computer was interfaced to an ion microprobe mass analyzer for more rapid data acquisition and analysis. The interface is designed to allow data acquisition, independent of the computer. A large data analysis package was developed and implemented. Performance of the computerized system was evaluated and compared to manual operation

  3. Distribution of copper and other elements in ryegrass roots, determined with a scanning proton microprobe

    International Nuclear Information System (INIS)

    Mazzolini, A.P.; Legge, G.J.F.

    1982-01-01

    A scanning proton microprobe has been used to determine the distribution of Cu and other elements in Wimmera ryegrass roots grown in solution cultures. Cu was found to be localized on or near the surface of the roots in randomly distributed discrete zones. The distribution of Cu was partially correlated with those of Fe, P and Ca and possibly indicates some form of association; co-precipitation in a precipitate of ferric phosphate or hydroxy-oxide is favoured

  4. Trace elemental analysis of bituminous coals using the Heidelberg proton microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J R; Kneis, H; Martin, B; Nobiling, R; Traxel, K [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany, F.R.); Heidelberg Univ. (Germany, F.R.). Physikalisches Inst.); Chao, E C.T.; Minkin, J A [Geological Survey, Reston, VA (USA)

    1981-03-01

    Trace elements in coal can occur as components of either the organic constituents (macerals) or the inorganic constituents (minerals). Studies of the concentrations and distribution of the trace elements are vital to understanding the geochemical milieu in which the coal was formed and in evaluating the attempts to recover rare but technologically valuable metals. In addition, information on the trace element concentrations is important in predicting the environmental impact of burning particular coals, as many countries move toward greater utilization of coal reserves for energy production. Traditionally, the optical and the electron microscopes and more recently the electron microprobe have been used in studying the components of coal. The proton-induced X-ray emission (PIXE) microprobe offers a new complementary approach with an order of magnitude or more better minimum detection limit. We present the first measurements with a PIXE microprobe of the trace element concentrations of bituminous coal samples. Elemental analyses of the coal macerals-vitrinite, exinite, and inertinite - are discussed for three coal samples from the Eastern U.S.A., three samples from the Western U.S.A., and one sample from the Peoples Republic of China.

  5. Development of a scanning proton microprobe - computer-control, elemental mapping and applications

    International Nuclear Information System (INIS)

    Loevestam, Goeran.

    1989-08-01

    A scanning proton microprobe set-up has been developed at the Pelletron accelerator in Lund. A magnetic beam scanning system and a computer-control system for beam scanning and data aquisition is described. The computer system consists of a VMEbus front-end computer and a μVax-II host-computer, interfaced by means of a high-speed data link. The VMEbus computer controls data acquisition, beam charge monitoring and beam scanning while the more sophisticated work of elemental mapping and spectrum evaluations is left to the μVax-II. The calibration of the set-up is described as well as several applications. Elemental micro patterns in tree rings and bark has been investigated by means of elemental mapping and quantitative analysis. Large variations of elemental concentrations have been found for several elements within a single tree ring. An external beam set-up has been developed in addition to the proton microprobe set-up. The external beam has been used for the analysis of antique papyrus documents. Using a scanning sample procedure and particle induced X-ray emission (PIXE) analysis, damaged and missing characters of the text could be made visible by means of multivariate statistical data evaluation and elemental mapping. Also aspects of elemental mapping by means of scanning μPIXE analysis are discussed. Spectrum background, target thickness variations and pile-up are shown to influence the structure of elemental maps considerably. In addition, a semi-quantification procedure has been developed. (author)

  6. The non-destructive analysis of fluid inclusions in minerals using the proton microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, C.G.; Van Achterbergy, E. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience; Heinrich, C.A. [ETH Zentrum, Zurich, (Switzerland). Department Erdwissenschaften; Mernagh, T.P. [Max-Planck-Institut fuer Chemie (Otto-Hahn-Institut), Mainz (Germany); Zaw, K. [Tasmania Univ., Sandy Bay, TAS (Australia)

    1996-12-31

    The study of ore forming fluids trapped as fluid inclusions in minerals is the key to understanding fluid flow paths at the time of ore formation and to predicting the location of ore bodies within large-scale magmatic hydrothermal systems. The large penetration depths and the predictable nature of MeV proton trajectories and X-ray absorption enables reliable modelling of PIXE yields and the development of standardless quantitative analytical methods. This permits quantitative microanalysis of minerals at ppm levels, and more recently has enabled the development of methods for quantitative trace-element imaging and the quantitative, non-destructive analysis of individual fluid inclusions. This paper reports on recent developments in Proton Microprobe techniques with special emphasis on ore systems and fluid inclusion analysis. 6 refs., 2 figs.

  7. The non-destructive analysis of fluid inclusions in minerals using the proton microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, C G; Van Achterbergy, E [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience; Heinrich, C A [ETH Zentrum, Zurich, (Switzerland). Department Erdwissenschaften; Mernagh, T P [Max-Planck-Institut fuer Chemie (Otto-Hahn-Institut), Mainz (Germany); Zaw, K [Tasmania Univ., Sandy Bay, TAS (Australia)

    1997-12-31

    The study of ore forming fluids trapped as fluid inclusions in minerals is the key to understanding fluid flow paths at the time of ore formation and to predicting the location of ore bodies within large-scale magmatic hydrothermal systems. The large penetration depths and the predictable nature of MeV proton trajectories and X-ray absorption enables reliable modelling of PIXE yields and the development of standardless quantitative analytical methods. This permits quantitative microanalysis of minerals at ppm levels, and more recently has enabled the development of methods for quantitative trace-element imaging and the quantitative, non-destructive analysis of individual fluid inclusions. This paper reports on recent developments in Proton Microprobe techniques with special emphasis on ore systems and fluid inclusion analysis. 6 refs., 2 figs.

  8. Development of a shielded ion microprobe analyzer (SIMA) and its application to fast reactor fuel elements

    International Nuclear Information System (INIS)

    Yuji, E.; Junji, K.; Sadamu, Y.; Toshiyuki, I.

    1983-01-01

    A shielded ion microprobe analyzer for elemental and isotopic analyses of irradiated fast reactor fuel and fuel component has been developed and installed in an alpha-gamma hot cell. Radiation shielding of the equipment ensures the radiation dose of -7 C/kg) for 5 Ci (1.85 x 10 11 Bq) of a 60 Co source. Hot samples can be automatically transferred from the cell to the sample chamber of the analyzer. Contamination inside the equipment through sputtering of the radioactive materials can be reduced with a special device. Distribution and migration of fission products, such as 137 Cs, 138 Ba, and 90 Sr, and of fissile materials, such as 235 U and 239 Pu in irradiated mixed-oxide fuel, and isotopic ratios of the elements can be obtained very precisely and quickly

  9. Development of a shielded ion microprobe analyzer (SIMA) and its application to fast reactor fuel elements

    International Nuclear Information System (INIS)

    Enokido, Y.; Itaki, T.; Komatsu, J.; Yamanouchi, S.

    1983-01-01

    A shielded ion microprobe analyzer for elemental and isotopic analyses of irradiated fast reactor fuel and fuel component has been developed and installed in an alpha-gamma hot cell. Radiation shielding of the equipment ensures the radiation dose of -7 C/kg) for 5 Ci (1.85 X 10 11 Bq) of a 60 Co source. Hot samples can be automatically transferred from the cell to the sample chamber of the analyzer. Contamination inside the equipment through sputtering of the radioactive materials can be reduced with a special device. Distribution and migration of fission products, such as 137 Cs, 138 Ba, and 90 Sr, and of fissile materials, such as 235 U and 239 Pu in irradiated mixed-oxide fuel, and isotopic ratios of the elements can be obtained very precisely and quickly

  10. Data smoothing techniques applied to proton microprobe scans of teleost hard parts

    International Nuclear Information System (INIS)

    West, I.F.; Gauldie, R.W.; Coote, G.E.

    1992-01-01

    We use a proton microprobe to examine the distribution of elements in otoliths and scales of teleost (bony) fish. The elements of principal interest are calcium and strontium in otoliths and calcium and fluorine in scales. Changes in the distribution of these elements across hard structures may allow inferences about the life histories of fish. Otoliths and scales of interest are up to a centimeter in linear dimension and to reveal the structures of interest up to 200 sampling points are required in each dimension. The time needed to accumulate high X-ray counts at each sampling point can be large, particularly for strontium. To reduce microprobe usage we use data smoothing techniques to reveal changing patterns with modest X-ray count accumulations at individual data points. In this paper we review performance for revealing pattern at modest levels of X-ray count accumulations of a selection of digital filters (moving average smoothers), running median filters, robust locally weighted regression filters and adaptive spline filters. (author)

  11. Trace element partitioning between aqueous fluids and silicate melts measured with a proton microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Adam, J.; Green, T.H. [Macquarie Univ., North Ryde, NSW (Australia). School of Earth Sciences; Sie, S.H. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1996-12-31

    A series of experiments were performed to examine the capacity of H{sub 2}O-fluids to concentrate and transport incompatible elements through peridotitic mantle and metamorphosed (eclogitic) ocean crust. Two naturally occurring rock compositions, trondhjemitic and basanitic, were used in experiments. The proton microprobe was used to determine the trace element concentrations in the solutes from H{sub 2}O-fluids equilibrated at 900-1100 degree C, 2.0 GPa with water saturated melts of trondhjemitic and basanitic compositions. Partitioning data for H{sub 2}O-fluids and silicate melts show that H{sub 2}O-fluids equilibrated with mantle peridotites will not be strongly enriched in trace elements relative to their wallrocks, and thus they melts do not strongly concentrate alkaline earths Th and U, relative to high-field strength elements. 3 refs., 1 tab., 2 figs.

  12. A new method for true quantitative elemental imaging using PIXE and the proton microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, C G [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience; Jamieson, D N [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Churms, C L; Pilcher, J V [National Accelerator Centre, Faure (South Africa)

    1994-12-31

    Traditional methods for X-ray imaging using PIXE and the Proton Microprobe have used a simple gate set on an X-ray peak in a spectrum from a Si(Li) detector to provide an image of the distribution of an element. This method can produce artefacts in images, due to overlapping X-ray lines from interfering elements, charge collection tails on peaks, background variation, Si escape peaks and pileup, all of which can render images misleading or qualitative at best. To address this problem, a matrix transform method has been developed at the CSIRO which not only eliminates most artefacts, but can be implemented on-line. The method has been applied to study trace gold distribution in a complex gold bearing ore from Fiji , and more recently has been installed for direct on-line elemental imaging at the NAC in South Africa. 4 refs., 2 figs.

  13. A new method for true quantitative elemental imaging using PIXE and the proton microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, C.G. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Churms, C.L.; Pilcher, J.V. [National Accelerator Centre, Faure (South Africa)

    1993-12-31

    Traditional methods for X-ray imaging using PIXE and the Proton Microprobe have used a simple gate set on an X-ray peak in a spectrum from a Si(Li) detector to provide an image of the distribution of an element. This method can produce artefacts in images, due to overlapping X-ray lines from interfering elements, charge collection tails on peaks, background variation, Si escape peaks and pileup, all of which can render images misleading or qualitative at best. To address this problem, a matrix transform method has been developed at the CSIRO which not only eliminates most artefacts, but can be implemented on-line. The method has been applied to study trace gold distribution in a complex gold bearing ore from Fiji , and more recently has been installed for direct on-line elemental imaging at the NAC in South Africa. 4 refs., 2 figs.

  14. Trace element partitioning between aqueous fluids and silicate melts measured with a proton microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Adam, J; Green, T H [Macquarie Univ., North Ryde, NSW (Australia). School of Earth Sciences; Sie, S H [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1997-12-31

    A series of experiments were performed to examine the capacity of H{sub 2}O-fluids to concentrate and transport incompatible elements through peridotitic mantle and metamorphosed (eclogitic) ocean crust. Two naturally occurring rock compositions, trondhjemitic and basanitic, were used in experiments. The proton microprobe was used to determine the trace element concentrations in the solutes from H{sub 2}O-fluids equilibrated at 900-1100 degree C, 2.0 GPa with water saturated melts of trondhjemitic and basanitic compositions. Partitioning data for H{sub 2}O-fluids and silicate melts show that H{sub 2}O-fluids equilibrated with mantle peridotites will not be strongly enriched in trace elements relative to their wallrocks, and thus they melts do not strongly concentrate alkaline earths Th and U, relative to high-field strength elements. 3 refs., 1 tab., 2 figs.

  15. Trace element composition and distribution in micron area of dinosaur eggshell fossils determined by proton microprobe

    International Nuclear Information System (INIS)

    Chen Youhong; Zhu Jieqing; Wang Xiaohong; Wang Yimin

    1997-01-01

    The scanning proton microprobe and micro-PIXE quantitative analysis technique have been used to determine composition and distribution of the trace elements in micron areas of dinosaur eggshell fossils from the stratum of Upper Cretaceous system at Nanxiong Basin in Guangdong Province, China. The study shows that the trace elements mainly include Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Rb, Sr, Y, Zr, Sb, Ba and Pb in the micron area, but they present different distributions. While the element Sr is mainly enriched in the near surface layer, others mainly reside in the near inner layer. A preliminary discussion on the reason of the dinosaur extinction is given based on the above study

  16. Trace element composition and distribution in micron area of dinosaur eggshell fossils determined by proton microprobe

    International Nuclear Information System (INIS)

    Chen Youhong; Zhu Jieqing; Wang Xiaohong; Wang Yimin

    1997-01-01

    The scanning proton microprobe and micro-PIXE quantitative analysis technique have been used to determine composition and distribution of the trace elements in micron areas of dinosaur eggshell fossils from the stratum of Upper Cretaceous system at Nanxiong Basin in Guangdong Province, China. The study shows that the trace elements mainly include Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Rb, Sr, Y, Zr, Sb, Ba and Pb in the micron area, but they present different distributions. While the elements Sr is mainly enriched in the near surface layer, others mainly reside in the near inner layer. A preliminary discussion on the reason of the dinosaur extinction is given based on the above study

  17. Measurements of impurity migration in graphite at high temperatures using a proton microprobe

    International Nuclear Information System (INIS)

    Shroy, R.E.; Soo, P.; Sastre, C.A.; Schweiter, D.G.; Kraner, H.W.; Jones, K.W.

    1978-01-01

    The migration of fission products and other impurities through the graphite core of a High Temperature Gas Cooled Reactor is of prime importance in studies of reactor safety. Work in this area is being carried out in which graphite specimens are heated to temperatures up to 3800 0 C to induce migration of trace elements whose local concentrations are then measured with a proton microprobe. This instrument is a powerful device for such work because of its ability to determine concentrations at a part per million (ppm) level in a circular area as small as 10 μm while operating in an air environment. Studies show that Si, Ca, Cl, and Fe impurities in graphite migrate from hotter to cooler regions. Also Si, S, Cl, Ca, Fe, Mn, and Cr are observed to escape from the graphite and be deposited on cooler surfaces

  18. A study of aluminium-exposed fish using a scanning proton microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Cholewa, M; Legge, G L.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Eeckhaoudt, S; Van Grieken, R [Universitaire Instelling Antwerpen, Antwerp (Belgium)

    1994-12-31

    A major problem has arisen in Europe with the depopulation of fresh water fish in lakes and streams collecting acid rain. The sensitivity to acidification is species specific and appears to be associated with metal levels. The Scanning Proton Microprobe (SPMP) at the Micro Analytical Research Centre of the University of Melbourne was used to study the subcellular distribution of aluminium and other elements in the gills of fish exposed to acidified water with elevated Al-levels. Experiments were performed on thin sections taken from fish exposed to media with different pH and aluminium concentration. Aluminium was found on the surface of the gill lamellae, but also inside the tissue. Bulk analysis of the gills showed much higher concentrations in the aluminium-exposed fish, compared to the control ones, but no information regarding the actual accumulation sites can be inferred. Extensive study of damage done to the sample by intense proton beams during elemental analysis was performed with scanning transmission ion microscopy. 3 refs., 3 figs.

  19. A study of aluminium-exposed fish using a scanning proton microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Cholewa, M.; Legge, G.L.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Eeckhaoudt, S.; Van Grieken, R. [Universitaire Instelling Antwerpen, Antwerp (Belgium)

    1993-12-31

    A major problem has arisen in Europe with the depopulation of fresh water fish in lakes and streams collecting acid rain. The sensitivity to acidification is species specific and appears to be associated with metal levels. The Scanning Proton Microprobe (SPMP) at the Micro Analytical Research Centre of the University of Melbourne was used to study the subcellular distribution of aluminium and other elements in the gills of fish exposed to acidified water with elevated Al-levels. Experiments were performed on thin sections taken from fish exposed to media with different pH and aluminium concentration. Aluminium was found on the surface of the gill lamellae, but also inside the tissue. Bulk analysis of the gills showed much higher concentrations in the aluminium-exposed fish, compared to the control ones, but no information regarding the actual accumulation sites can be inferred. Extensive study of damage done to the sample by intense proton beams during elemental analysis was performed with scanning transmission ion microscopy. 3 refs., 3 figs.

  20. A study of aluminium-exposed fish using a scanning proton microprobe

    International Nuclear Information System (INIS)

    Cholewa, M.; Legge, G.L.F.

    1993-01-01

    A major problem has arisen in Europe with the depopulation of fresh water fish in lakes and streams collecting acid rain. The sensitivity to acidification is species specific and appears to be associated with metal levels. The Scanning Proton Microprobe (SPMP) at the Micro Analytical Research Centre of the University of Melbourne was used to study the subcellular distribution of aluminium and other elements in the gills of fish exposed to acidified water with elevated Al-levels. Experiments were performed on thin sections taken from fish exposed to media with different pH and aluminium concentration. Aluminium was found on the surface of the gill lamellae, but also inside the tissue. Bulk analysis of the gills showed much higher concentrations in the aluminium-exposed fish, compared to the control ones, but no information regarding the actual accumulation sites can be inferred. Extensive study of damage done to the sample by intense proton beams during elemental analysis was performed with scanning transmission ion microscopy. 3 refs., 3 figs

  1. The bio-PIXE setup on the Debrecen scanning proton microprobe

    International Nuclear Information System (INIS)

    Kertesz, Zs.; Szikszai, Z.; Uzonyi, I.; Simon, A.; Kiss, A.Z.

    2004-01-01

    Complete text of publication follows. Besides the ongoing applications in archeometry, geology, material science and atmospheric aerosol study, in recent years the IBA Group in Debrecen has joined several biological and biomedical research projects. Such studies require the knowledge of accurate quantitative elemental concentrations and distributions in organic, inhomogeneous thin samples on a microscopic scale. In most cases, to carry out quantitative investigations on biomedical samples down to the cell level, the combination of proton induced X-ray emission (PIXE), Rutherford backscattering (RBS) spectrometry and scanning transmission ion microscopy (STIM) analytical methods are used simultaneously. STIM provides information on the density and structure of the sample, PIXE measures the concentration of the inorganic major and trace elements, and finally RBS serves to characterize the organic matrix, to determine the beam dose, and sometimes the sample thickness. The drawback of this combined method is that to evaluate the RBS data the hydrogen to carbon ratio in the sample must be known. The setup developed at the Debrecen microprobe facility [1] is based on the combined application of on-axis STIM and simultaneous PIXE-PIXE analytical techniques. In the PIXE-PIXE method the sample matrix is determined directly by measuring X-rays from all elements in the sample including the light elements such as carbon and oxygen, using two Si(Li) X-ray detectors. In this arrangement an ultra thin windowed Si(Li) X-ray detector serves to characterize the matrix by measuring low energy X-ray lines (0.2-9 keV) while a large area Be-windowed detector is used to detect the medium and high energy X-ray lines (>4 keV). In this way elements with atomic number higher than 5 can be detected simultaneously, reducing both radiation damage of the sample and measurement time. In addition, the knowledge of the hydrogen content of the sample is not needed, since it influences the

  2. Deposition of corrosion products from dowels on human dental root surfaces measured with proton microprobe technique

    International Nuclear Information System (INIS)

    Brune, D.; Brunell, G.; Lindh, U.

    1982-01-01

    Distribution of copper, mercury and zinc on human teeth root surfaces adjacent to dowels of gold alloy or brass as well as dowels of brass in conjunction with an amalgam crown has been measured with a proton microprobe using PIXE techniques. Upper limits of the contents of gold and silver on the root surfaces were established. Pronounced concentration profiles of copper and zinc were observed on the root surfaces of teeth prepared with dowels of brass. The dowel of gold alloy revealed only zinc deposition. The major part of copper on the root surfaces is assumed to arise from corrosion of the dowels, and has been transported to the surface by diffusion through the dential tubuli. Zinc in the volume analysed is a constituent of dentin tissue as well as a corrosion product of the brass dowel. Part of the zinc level could also be ascribed to erosion of the zinc phosphate cement matrix. The volumes analysed were (25 x 25 x 25)μm 3 . The levels of copper, mercury and zinc on the tooth root surfaces attained values up to about 200, 20 and 600 ppm, respectively. (orig.)

  3. Deposition of corrosion products from dowels on human dental root surfaces measured with proton microprobe technique

    Science.gov (United States)

    Brune, D.; Brunell, G.; Lindh, U.

    1982-06-01

    Distribution of copper, mercury and zinc on human teeth root surfaces adjacent to dowels of gold alloy or brass as well as dowels of brass in conjunction with an amalgam crown has been measured with a proton microprobe using PIXE techniques. Upper limits of the contents of gold and silver on the root surfaces were established. Pronounced concentration profiles of copper and zinc were observed on the root surfaces of teeth prepared with dowels of brass. The dowel of gold alloy revealed only zinc deposition. The major part of copper on the root surfaces is assumed to arise from corrosion of the dowels, and has been transported to the surface by diffusion through the dential tubuli. Zinc in the volume analysed is a constituent of dentin tissue as well as a corrosion product of the brass dowel. Part of the zinc level could also be ascribed to erosion of the zinc phosphate cement matrix. The volumes analysed were (25×25×25)μm 3. The levels of copper, mercury and zinc on the tooth root surfaces attained values up to about 200, 20 and 600 ppm, respectively.

  4. Rapid rock analysis and microprobe scanning of dermatological material using proton-induced x-ray and γ-ray emission

    International Nuclear Information System (INIS)

    Carlsson, L.E.

    1983-01-01

    The dissertation report comprises 6 articles that have or will appear in open literature. The use of PIXE and PIGE analysis techniques on geological materials, and also on drill cores, is discussed. The accuracy of the methods have been tested on standards. The effect of sample thickness has been studied. A proton microprobe has been compared with an electron microprobe on human skin sections. Both probes give highly reproducible results, but a small systematic deviation between the probes is found. (author)

  5. Preliminary study of Tl and Cd uptake in the heavy metal accumulating Brassica napus using the Debrecen proton microprobe

    International Nuclear Information System (INIS)

    Kertesz, Zs.; Haag-Kerwer, A.; Povh, B.

    2003-01-01

    The high biomass producing crop plants, Brassica juncea L. and Brassica napus are very promising plant species for phytoremediation. The aim of further research is to help a better understanding of the transport mechanism within roots and roots to shoots of heavy metals, and to find out their distribution and translocation among different cell types in the root of these species. The distribution and concentration of major and trace elements was determined along the roots of Cd and Tl treated as well as control plants of Brassica napus on the ATOMKI proton microprobe. (R.P.)

  6. A scanning proton microprobe study of stinging emergences from the leaf of the common stinging nettle urtica dioica l.

    Science.gov (United States)

    Hughes, N. P.; Perry, C. C.; Williams, R. J. P.; Watt, F.; Grime, G. W.

    1988-03-01

    Proton-induced X-ray emission (PIXE) combined with the Oxford scanning proton microprobe (SPM) was used to investigate the abundance and spatial distribution of inorganic elements in mineralising stinging emergences from the leaf of the Common Stinging Nettle, Urtica dioica L. Elemental maps and point analytical data were collected for emergences at two stages of maturity. In all emergences calcium and silicon were spatially organised and present at high concentration. The inorganic elements K, P, S and Mn were also spatially organised during mineralisation, but at maturity these elements were present only at background levels and then showed no specific localisation. The observed changes in the inorganic content of the emergences are obviously related to the mineralisation processes. The possible biochemical significance of the distribution of the elements is discussed.

  7. Development of a new measurement method for fast breeder reactor fuel burnup using a shielded ion microprobe analyzer

    International Nuclear Information System (INIS)

    Mizuno, M.; Enokido, Y.; Itaki, T.; Kono, K.; Unno, I.; Yamanouchi, S.

    1985-01-01

    A new method of burnup measurement using a shielded ion microprobe analyzer (SIMA) has been developed. The method is based on the isotope analysis of uranium, plutonium, and fission products in irradiated mixed oxide fuel by means of secondary ion mass spectrometry (SIMS). Fourteen samples irradiated in the Japanese experimental fast reactor JOYO were examined. The maximum local burnup of JOYO MK-I core fuels was about5.1 at. %. The axial burnup distribution of the fuel pin was in good agreement with that of the sibling pin in the same subassembly, measured by surface ionization mass spectrometry, which requires the chemical separation of fission products and heavy metals. The new method facilitates the rapid and accurate measurement of fast breeder reactor fuel burnup without human radiation exposure during sample preparation and analysis

  8. Pb, U, Ti, Hf and Zr distributions in zircons determined by proton microprobe and fission track techniques

    International Nuclear Information System (INIS)

    Clark, G.J.; Gulson, B.L.; Cookson, J.A.

    1979-01-01

    A proton microprobe has been used to determine Pb, Tl, Hf and Zr distributions across four single zircon crystals separated from a 'rapakivi' granite. The Pb and Zr data are quantitative: Pb and Tl concentrations were below the measurable limits for determinations in situ by most other techniques. The distribution of U in the same crystals was determined by the fission track technique. Limits on precision of U allow only a qualitative correlation of U and Pb, whereas the Tl and Pb correlation is more exactly determined. Zircons with distinct cores and overgrowths exhibited uniform Zr and Hf concentrations across the crystals, whereas the high U rims and 'inclusions' (domains) also had high Tl and Pb contents. Since almost all the Pb in these zircons is derived by radioactive decay of U, the Tl substitution has paralleled that of U. The results indicate that the high U domains are 'hot spots' rather than a separate mineral phase. The strong positive correlation of U and Pb indicates that there is little U daughter product migration relative to U, within the crystal. However, for the zircon population investigated here, the data are equivocal on the question of whether U addition to zircon crystals is associated with new zircon growth or not. In either case, the heterogeneous U and Pb distributions complicate any interpretations of U-Pb isotopic analysis for such zircon populations. (author)

  9. Free neutron-proton analyzing power at medium energies

    International Nuclear Information System (INIS)

    Newsom, C.R.

    1980-01-01

    In recent years, increasing efforts have been made to measure the nucleon-nucleon polarization parameters. To date, no free neutron-proton spin correlated parameters have been published in the energy range 500 to 800 MeV. Existing analyzing power data is of low precision and in most cases was obtained by quasi-free proton scattering. As a first step in determining the neutron-proton scattering matrix, the free neutron-proton analyzing power has been measured at the Los Alamos Physics Facility as a function of energy and angle. The experiment was performed by scattering a neutron beam from a polarized proton target. The neutron beam was generated by scattering 800 MeV protons from a Beryllium target and using the neutrons produced at 0 degrees. The incident energy ranged from 300 MeV to 800 MeV. The energy spread of the neutron beam made it possible to measure the analyzing power at different energies simultaneously. Angular distributions were taken from 60 to 170 degrees in the center of mass system (c.m.)

  10. Electron Microprobe

    Data.gov (United States)

    Federal Laboratory Consortium — The JEOL JXA-8600 is a conventional hairpin filament thermal emission electron microprobe that is more than 20 years old. It is capable of performing qualitative and...

  11. A method for improving the efficiency of proton microprobe profiling of strontium in otoliths using a vacuum compatible NaI detector

    International Nuclear Information System (INIS)

    Barry, B.; Markwitz, A.

    2004-01-01

    The precision of proton microprobe measurements of Sr in otoliths by proton induced X-ray emission (PIXE) has been improved significantly by use of a large area low resolution NaI(Tl) detector. This is achieved by scanning the sample simultaneously with a high resolution Si(Li) detector to measure the main constituent Ca and to confirm the absence of other elements in the counting window used by the large area detector. In our experimental setup the count rate for Sr was improved by a factor of 30. We took advantage of this to improve precision and achieve higher sample throughput in studies of diadromous fish, i.e. those whose life cycles may include both marine and freshwater stages

  12. Vector analyzing power in elastic electron-proton scattering

    International Nuclear Information System (INIS)

    Diaconescu, L.; Ramsey-Musolf, M.J.

    2004-01-01

    We compute the vector analyzing power (VAP) for the elastic scattering of transversely polarized electrons from protons at low energies using an effective theory of electrons, protons, and photons. We study all contributions through second order in E/M, where E and M are the electron energy and nucleon mass, respectively. The leading-order VAP arises from the imaginary part of the interference of one- and two-photon exchange amplitudes. Subleading contributions are generated by the nucleon magnetic moment and charge radius as well as recoil corrections to the leading-order amplitude. Working to O(E/M) 2 , we obtain a prediction for A n that is free of unknown parameters and that agrees with the recent measurement of the VAP in backward angle ep scattering

  13. Proton-proton elastic scattering excitation functions at intermediate energies: Cross sections and analyzing powers

    CERN Document Server

    Hinterberger, F; Altmeier, M; Bauer, F; Bisplinghoff, J; Büsser, K; Busch, M; Colberg, T; Diehl, O; Dohrmann, F; Engelhardt, H P; Eversheim, P D; Felden, O; Gebel, R; Glende, M; Greiff, J; Gross-Hardt, R; Hinterberger, F; Jahn, R; Jonas, E; Krause, H; Langkau, R; Lindemann, T; Lindlein, J; Maier, R; Maschuw, R; Mayer-Kuckuk, T; Meinerzhagen, A; Naehle, O; Prasuhn, D; Rohdjess, H; Rosendaal, D; Von Rossen, P; Schirm, N; Schulz-Rojahn, M; Schwarz, V; Scobel, W; Trelle, H J; Weise, E; Wellinghausen, A; Woller, K; Ziegler, R

    2000-01-01

    The EDDA experiment at the cooler synchrotron COSY measures proton-proton elastic scattering excitation functions in the momentum range 0.8 - 3.4 GeV/c. In phase 1 of the experiment, spin-averaged differential cross sections were measured continuously during acceleration with an internal polypropylene (CH sub 2) fiber target, taking particular care to monitor luminosity as a function of beam momentum. In phase 2, excitation functions of the analyzing power A sub N and the polarization correlation parameters A sub N sub N , A sub S sub S and A sub S sub L are measured using a polarized proton beam and a polarized atomic hydrogen beam target. The paper presents recent d sigma/d OMEGA and A sub N data. The results provide excitation functions and angular distributions of high precision and internal consistency. No evidence for narrow structures was found. The data are compared to recent phase shift solutions.

  14. Iron distribution in cancer cells following doxorubicin exposure using proton and X-ray synchrotron radiation microprobes

    International Nuclear Information System (INIS)

    Ortega, R.; Deves, G.; Bohic, S.; Simionovici, A.; Menez, B.; Bonnin-Mosbah, M.

    2001-01-01

    Chemical studies have shown that doxorubicin, a well-established anticancer agent, is a powerful iron chelator and the resultant iron-drug complex is an efficient catalyst of the conversion of hydrogen peroxide to the highly reactive hydroxyl radical. However, the intracellular complexation of doxorubicin with iron is still debated. Using nuclear microprobe analysis (NMPA), we previously observed in human ovarian cancer cells exposed to 20 μM iodo-doxorubicin (IDX) that iodine and iron cellular distributions were spatially correlated, suggesting a mechanism of intracellular iron chelation by the anthracycline compound. Because maximal plasma drug concentrations in patients are expected to be around 5 μM, NMPA and X-ray absorption near edge spectroscopy (XANES) experiments for iron speciation analysis were performed on cultured cells exposed to pharmacological doses of 2 μM IDX or doxorubicin

  15. Proton--proton analyzing power measurements at 16 MeV

    International Nuclear Information System (INIS)

    Lovoi, P.A.

    1975-01-01

    Few attempts have been made to measure accurately the proton--proton analyzing powers at low energies. With the advent of polarized particle beams the measurement can now be made with high accuracy. Analyzing powers were measured at nine scattering angles from 10 0 to 35 0 in the laboratory system. As a check on systematic errors, analyzing power measurements were also made by scattering protons from 4 He. In the p vector-p case the measured values are in very good agreement with the phase shift predictions. The p vector- 4 He measurements, while giving the same form and sign as the phase shift predictions, differ from the predictions by as much as 11 standard deviations. The p vector-p analyzing powers had a maximum value of -0.0043 +- 0.0004 at 10 0 (laboratory) and decreased to zero near 25 0 . A new technique to measure analyzing powers without symmetric detectors is explained. This technique preserves the advantages of the symmetric arm method in that current integration, target density, detector efficiencies, and geometry are cancelled from the final expressions. A new scattering chamber, named the Supercube, is described. The Supercube was designed primarily to perform scattering experiments with a polarized beam. It contains both left-right and up-down detectors for use with both spin- 1 / 2 and spin-1 measurements. The Supercube was designed to make analyzing power measurements to an accuracy of 0.001 routine. The Supercube has proved to have low systematic errors and to perform as expected. The systematic errors were found to be equal to or less than 0.0002

  16. Proton--proton analyzing power measurements at 16 MeV

    International Nuclear Information System (INIS)

    Lovoi, P.A.

    1975-07-01

    Few attempts have been made to measure accurately the proton-proton analyzing powers at low energies. With the advent of polarized particle beams the measurement can now be made with high accuracy. Analyzing powers were measured at nine scattering angles from 10 0 to 35 0 in the laboratory system. As a check on systematic errors, analyzing power measurements were also made by scattering protons from 4 He. In the p Vector-p case the measured values are in very good agreement with the phase shift predictions. The p Vector- 4 He measurements, while giving the same form and sign as the phase shift predictions, differ from the predictions by as much as 11 standard deviations. The p Vector-p analyzing powers had a maximum value of -0.0043 +- 0.0004 at 10 0 (laboratory) and decreased to zero near 25 0 . A new technique to measure analyzing powers without symmetric detectors is explained. This technique preserves the advantages of the symmetric arm method in that current integration, target density, detector efficiencies, and geometry are cancelled from the final expressions. A new scattering chamber, named the Supercube, is described. The Supercube was designed primarily to perform scattering experiments with a polarized beam. It contains both left-right and up-down detectors for use with both spin-1/2 and spin-1 measurements. The Supercube was designed to make analyzing power measurements to an accuracy of 0.001 routine. The Supercube has proved to have low systematic errors and to perform as expected. The systematic errors were found to be equal to or less than 0.0002. (23 figures, 14 tables) (auth)

  17. Microprobe analysis of human fibroblasts

    International Nuclear Information System (INIS)

    Allan, G.L.; Zhu, J.; Legge, G.J.F.

    1985-01-01

    The Melbourne Proton Microprobe has been used to study the copper content in human skin fibroblast cells derived from patients with the genetic disease Menkes Syndrome. Both normal and diseased cells have been studied to investigate any elemental differences occurring between the two cell types. This paper details the preparatory techniques necessary for individual cell analysis and presents the elemental information with a new three dimensional contour mapping technique. These maps are used to highlight elemental differences between normal and mutant fibroblasts. The work also confirms the expected copper excess found in the Menkes cell and indicates that the microprobe can be used for rapid identification of a Menkes carrier

  18. Corrosion phenomena in electron, proton and synchrotron X-ray microprobe analysis of Roman glass from Qumran, Jordan

    Science.gov (United States)

    Janssens, K.; Aerts, A.; Vincze, L.; Adams, F.; Yang, C.; Utui, R.; Malmqvist, K.; Jones, K. W.; Radtke, M.; Garbe, S.; Lechtenberg, F.; Knöchel, A.; Wouters, H.

    1996-04-01

    A series of 89 glass fragments of Roman glass are studied using electron, proton and synchrotron radiation induced X-ray emission from microscopic areas on the sample surface. The glass originates from Qumran, Jordan and was buried for 1900 years. The weathering layers that result from the extended contact with ground water have been studied, next to the trace composition of the original glass of these pieces. The latter information indicates that at Qumran, large quantities of glass objects were being used in Ancient times. Cross-sectional profiles of the glass show a complex migration behaviour of various groups of major and trace elements.

  19. Ion microprobes

    International Nuclear Information System (INIS)

    Coles, J.N.; Long, J.V.P.

    1977-01-01

    An ion microprobe is described that has an ion extraction arrangement comprising two separate paths for ions and electrons diverging from a common point. A cone shaped or pyramidal guard electrode surrounds each path the apex angles being equal and coinciding with the said point. The guard electrodes are positioned to lie tangentially to each other and to a planar surface including the said point. An aperture is provided for the two paths at the apexes of both guard electrodes, and electrical connections between the guard electrodes enable the same potential to be applied to both guard electrodes. Means are provided for generating oppositely polarised electric fields within the guard electrodes, together with means for causing a focused ion beam to strike the common point without suffering astigmatism. The means for causing a focused ion beam to strike the said point includes an ion gun for directing an ion beam along one of the paths and means to provide an axial accelerating field there along. Optical viewing means are also provided. Existing designs enable only ions or electrons, but not both, to be extracted at any one time. (U.K.)

  20. Analysis of corrosions-products in tissue samples near surgical implants by means of LAMMA (Laser Microprobe Mass Analyzer) and ICP-MS (Inductively Coupled Plasma Mass Spectrometer)

    International Nuclear Information System (INIS)

    Schlagenhaufen, C.

    1996-08-01

    In this work corrosion products of surgical implants in tissue samples were identified. For the characterization of the corrosion products the LAMMA 500 (Laser Microprobe Mass Analyzer) was used. Additional analysis were made with the ICP-MS (Inductively Coupled Plasma Mass Spectrometer) to determine the concentration of chromium, cobalt, nickel, and molybdenum in the tissues. In the first part several synthetic chromium- and molybdenum compounds were investigated with LAMMA. With the anionic mass spectra of the chromium-compounds it is possible to the oxidation state of chromium. The mass spectra of the synthetic compounds were used to identify, the compounds in the corrosion products. In the second part thin sections prepared from the tissue samples from the surrounding of the implants were analyzed. Several embedding and cutting methods were tested. Histological staining methods and LAMMA spectra were used to characterize the deposits in the tissue. Three different deposits were found in the tissue. In all tissues metal splinters from the implant were found. In most of the tissues iron-rich deposits were found, that were identified as iron-phosphate. As definitive corrosion products of the implant mixtures of chromium(III)phosphate, calcium molybdate, calcium phosphate and chromium(III) molybdate were identified. The ICP-MS results show in comparison to normal values, very high concentrations for chromium, nickel, cobalt and molybdenum. These results support the conclusions based on LAMMA results. The results of these investigations clearly indicate, that stainless steel implants, are not corrosion-resistant in the body. Relatively high amounts of the constituents, of the implant dissolved, and are deposited as solid compounds in the tissue next to the implant. (author)

  1. Spectrum Analyzer Application for the Proton Synchrotron Wall Current Monitors

    CERN Document Server

    Limpens, Rik

    The Proton Synchrotron (PS) is a key component in CERN's accelerator complex, where it usually accelerates either protons or heavy ions. The new acquisition system for the PS ring wall current monitors has been installed to be able to perform higher frequency measurements of a beam bunch. This is an important improvement, since the oscillating signals are related to losses of a beam bunch. The main goal of this project is to develop a LabVIEW application running on a Real-Time target to perform continuous and triggered spectral acquisition of a PS beam bunch and to provide a data visualization and analysis tool for the operators and users of the machine.

  2. Angle-averaged effective proton-carbon analyzing powers at intermediate energies

    International Nuclear Information System (INIS)

    Amir-Ahmadi, H.R.; Berg, A.M. van den; Hunyadi, M.; Kalantar-Nayestanaki, N.; Kis, M.; Mahjour-Shafiei, M.; Messchendorp, J.G.; Woertche, H.J.

    2006-01-01

    The angle-averaged effective analyzing powers, A-bar c , for proton-carbon inclusive scattering were measured as a function of the kinetic energy of protons in a double scattering experiment. The measurements were performed in the kinetic energy range of 44.8-136.5MeV at the center of 1-5cm thick graphite analyzers using a polarized proton beam on a CH 2 film or liquid hydrogen serving as target for the primary scattering. These data can be used for measuring the polarization of protons emerging from other reactions such as H(d-bar ,p-bar )d

  3. Positron annihilation microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Canter, K F [Brandeis Univ., Waltham, MA (United States)

    1997-03-01

    Advances in positron annihilation microprobe development are reviewed. The present resolution achievable is 3 {mu}m. The ultimate resolution is expected to be 0.1 {mu}m which will enable the positron microprobe to be a valuable tool in the development of 0.1 {mu}m scale electronic devices in the future. (author)

  4. Analyzing power for proton elastic scattering from the neutron-rich 6He nucleus

    International Nuclear Information System (INIS)

    Uesaka, T.; Sakaguchi, S.; Kawabata, T.; Sasamoto, Y.; Iseri, Y.; Amos, K.; Aoi, N.; Hiyama, E.; Sekiguchi, K.; Yamaguchi, M.; Hashimoto, Y.; Satou, Y.; Shinohara, M.; Ichikawa, M.; Itoh, M.; Matsuo, R.; Wakui, T.; Ichikawa, Y.; Iwasaki, H.; Kuboki, H.

    2010-01-01

    Vector analyzing power for the proton- 6 He elastic scattering at 71 MeV/nucleon has been measured for the first time, with a newly developed polarized proton solid target, which works at a low magnetic field of 0.09 T. The results are found to be incompatible with a t-matrix folding model prediction. Comparisons of the data with g-matrix folding analyses clearly show that the vector analyzing power is sensitive to the nuclear structure model used in the reaction analysis. The α-core distribution in 6 He is suggested to be a possible key for understanding the nuclear structure sensitivity.

  5. PIXE macro and microprobe techniques in archaeometry

    International Nuclear Information System (INIS)

    Brissaud, I.; Lagarde, G.; Houdayer, A.

    1987-01-01

    PIXE analysis method is applied to archaeometry problems. Advantages and disadvantages are emphasized. Some examples are presented which show the difficulties: especially important heterogeneities of ceramics, old coins and metals restrain from the use of this technique. Other analysis systems, less expensive, like electron microbrobe or x-ray fluorescence spectrometry, are compared with conventional PIXE method. The importance of proton microprobe is explained. (author) 40 refs.; 7 figs.; 5 tabs

  6. Biomedical application of the nuclear microprobe

    International Nuclear Information System (INIS)

    Lindh, U.

    1987-01-01

    The Studsvik Nuclear Microprobe (SMP) has mainly been devoted to applications in the biomedical field. Its ultimate resolution is reached at 2.9x2.9 μm 2 with a proton current of 100 pA. With this performance the SMP has been used in a wide range of disciplines covering environmental hygiene, toxicology, various aspects of internal medicine and trace element physiology. Examples of recent applications in these fields are described. (orig.)

  7. Dedicated accelerator and microprobe line

    International Nuclear Information System (INIS)

    Malmqvist, K.G.; Hylten, G.; Hult, M.; Haakansson, K.; Knox, J.M.; Larsson, N.P.O.; Nilsson, C.; Pallon, J.; Schofield, R.; Swietlicki, E.; Tapper, U.A.S.; Yang Changyi

    1993-01-01

    The development of a dedicated facility for nuclear microprobe analysis and the experiences from using it are discussed. The general properties of the present Lund nuclear microprobe will be described and the advantages of using a dedicated accelerator discussed. (orig.)

  8. Electron microprobe analysis of tantalum--nitride thin films

    International Nuclear Information System (INIS)

    Stoltz, D.L.; Starkey, J.P.

    1979-06-01

    Quantitative chemical analysis of 500- and 2000-angstrom tantalum--nitride films on glass substrates has been accomplished using an electron microprobe x-ray analyzer. In order to achieve this analysis, modifications to the microprobe were necessary. A description of the calibration procedure, the method of analysis, and the quantitative results are discussed

  9. Criteria for personal dosimetry in mixed radiation fields in space. [analyzing trapped protons, tissue disintegration stars, and neutrons

    Science.gov (United States)

    Schaefer, H. J.

    1974-01-01

    The complexity of direct reading and passive dosimeters for monitoring radiation is studied to strike the right balance of compromise to simplify the monitoring procedure. Trapped protons, tissue disintegration stars, and neutrons are analyzed.

  10. Electrochemical Approach for Analyzing Electrolyte Transport Properties and Their Effect on Protonic Ceramic Fuel Cell Performance.

    Science.gov (United States)

    Danilov, Nikolay; Lyagaeva, Julia; Vdovin, Gennady; Medvedev, Dmitry; Demin, Anatoly; Tsiakaras, Panagiotis

    2017-08-16

    The design and development of highly conductive materials with wide electrolytic domain boundaries are among the most promising means of enabling solid oxide fuel cells (SOFCs) to demonstrate outstanding performance across low- and intermediate-temperature ranges. While reducing the thickness of the electrolyte is an extensively studied means for diminishing the total resistance of SOFCs, approaches involving an improvement in the transport behavior of the electrolyte membranes have been less-investigated. In the present work, a strategy for analyzing the electrolyte properties and their effect on SOFC output characteristics is proposed. To this purpose, a SOFC based on a recently developed BaCe 0.5 Zr 0.3 Dy 0.2 O 3-δ proton-conducting ceramic material was fabricated and tested. The basis of the strategy consists of the use of traditional SOFC testing techniques combined with the current interruption method and electromotive force measurements with a modified polarization-correction assessment. This allows one to determine simultaneously such important parameters as maximal power density; ohmic and polarization resistances; average ion transport numbers; and total, ionic, and electronic film conductivities and their activation energies. The proposed experimental procedure is expected to expand both fundamental and applied basics that could be further adopted to improve the technology of electrochemical devices based on proton-conducting electrolytes.

  11. Quantitative microanalysis with a nuclear microprobe

    International Nuclear Information System (INIS)

    Themner, Klas.

    1989-01-01

    The analytical techniques of paticle induced X-ray emission (PIXE) and Rutherford backscattering (RBS), together with the nuclear microprobe, form a very powerful tool for performing quantitative microanalysis of biological material. Calibration of the X-ray detection system in the microprobe set-up has been performed and the accuracy of the quantitative procedure using RBS for determination of the areal mass density was investigated. The accuracy of the analysis can be affected by alteration in the elemental concentrations during irradiation due to the radiation damage induced by the very intense beams of ionixing radiation. Loss of matrix elements from freeze-dried tissue sections and polymer films have been studied during proton and photon irradiation and the effect on the accuracy discussed. Scanning the beam over an area of the target, with e.g. 32x32 pixels, in order to produce en elemental map, yields a lot of information and, to be able to make an accurate quantitatification, a fast algorithm using descriptions of the different spectral contributions is of need. The production of continuum X-rays by 2.55 MeV protons has been studied and absolute cross-sections for the bremsstrahlung production from thin carbon and some polymer films determined. For the determination of the bremsstrahlung background knowledge of the amounts of the matrix elements is important and a fast program for the evaluation of spectra of proton back- and forward scattering from biological samples has been developed. Quantitative microanalysis with the nuclear microprobe has been performed on brain tissue from rats subjected to different pathological conditions. Increase in calcium levels and decrease in potssium levels for animals subjected to crebral ischaemia and for animals suffering from epileptic seizures were observed coincidentally with or, in some cases before, visible signs of cell necrosis. (author)

  12. Automated electron microprobe

    International Nuclear Information System (INIS)

    Thompson, K.A.; Walker, L.R.

    1986-01-01

    The Plant Laboratory at the Oak Ridge Y-12 Plant has recently obtained a Cameca MBX electron microprobe with a Tracor Northern TN5500 automation system. This allows full stage and spectrometer automation and digital beam control. The capabilities of the system include qualitative and quantitative elemental microanalysis for all elements above and including boron in atomic number, high- and low-magnification imaging and processing, elemental mapping and enhancement, and particle size, shape, and composition analyses. Very low magnification, quantitative elemental mapping using stage control (which is of particular interest) has been accomplished along with automated size, shape, and composition analysis over a large relative area

  13. Elemental composition of paint cross sections by nuclear microprobe analysis

    International Nuclear Information System (INIS)

    Nens, B.; Trocellier, P.; Engelmann, C.; Lahanier, C.

    1982-09-01

    Physico-chemical characterization of pigments used in artistic painting give precious indications on age of paintings and sometimes on geographical origin of ores. After recalling the principle of protons microprobe, first results obtained by microanalysis of painting cross sections for non destructive microanalysis of impurities in white lead are given [fr

  14. Analyzing-power measurements of Coulomb-nuclear interference with the polarized-proton and -antiproton beams at 185 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Akchurin, N; Onel, Y [Iowa Univ., Iowa City, IA (USA). Dept. of Physics; Carey, D; Coleman, R; Cossairt, J D; Read, A L [Fermi National Accelerator Lab., Batavia, IL (USA); Corcoran, M D; Nessi-Tedaldi, F; Nessi, M; Nguyen, C; Phillips, G C; Roberts, J B; White, J L [Rice Univ., Houston, TX (USA). Bonner Nuclear Labs.; Derevschikov, A; Matulenko, Yu A; Meschanin, A P; Nurushev, S B; Solovyanov, V L; Vasiliev, A N [Institut Fiziki Vysokikh Ehnergij, Serpukhov (USSR); Gazzaly, M M [Minnesota Univ., Minneapolis (USA). Dept. of Physics; Grosnick, D P; Hill, D; Laghai, M; Lopiano, D; Ohashi, Y; Shima, T; Spinka, H; Stanek, R W; Underwood, D G; Yokosawa, A [Argonne National Lab., IL (USA); Imai, K; Makino, S; Masaike, A; Miyake, K; Nagamine, T; Takeutchi, F; Tamura, N; Yoshida, T [Kyoto Univ. (Japan); Kuroda, K; Michalowicz, A [Institut National de Physique Nucleaire et de Physique des Particules, 74 - Annecy-le-Vieux (France). Lab. de P; E-581/704 Collaboration

    1989-10-12

    The analyzing power A{sub N} of proton-proton, proton-hydrocarbon, and antiproton-hydrocarbon scattering in the Coulomb-nuclear interference region has been measured using the 185 GeV/c Fermilab polarized-proton and -antiproton beams. The results are found to be consistent with theoretical predictions within statistical uncertainties. (orig.).

  15. Analyzing power of polarized protons interactions with carbon nuclei at 0.71-3.61 GeV

    International Nuclear Information System (INIS)

    Anoshina, E.V.; Bodyagin, V.A.; Vardanyan, I.N.; Gribushin, A.M.; Ershov, A.A.; Kruglov, N.A.; Sarycheva, L.I.

    1997-01-01

    For the first time at JINR synchrophasotron an experiment in the polarized proton beam was carried out. Beams of polarized protons with energy T p = 0.71-3.61 GeV, polarization P p ≅ 0.5 and intensity I p ≅ 10 6 particles/spell have been formed, their characteristics were investigated, and a possibility to use those beams as initial for physical and methodical investigations has been shown. The proton-carbon interaction analyzing power at the energies of 1.46 and 3.61 GeV has been measured for two values of the scattering angle. 22 refs., 3 figs

  16. Tensor analyzing powers in deuteron--proton elastic scattering and the breakup reaction at 45.4 MeV

    International Nuclear Information System (INIS)

    Conzett, H.E.

    1978-08-01

    Recently the tensor analyzing powers in vector d + p elastic scattering and in the breakup reaction at E/sub d/ = 45.4 MeV were measured. The elastic results now establish a rather complete set of polarization data in nucleon--deuteron scattering at E/sub N/ = 22.7 MeV, which consists of the proton analyzing power, the deuteron vector and tensor analyzing powers, and vector polarization transfer measurements, as well. 8 references

  17. Forward angle quasi-free proton-neutron analyzing powers at 0.8 GeV

    International Nuclear Information System (INIS)

    Barlett, M.L.

    1981-01-01

    As the first step in determining the nucleon-nucleon scattering amplitudes at small momentum transfers at 0.8 GeV, quasi-free p vector + n and p vector + p analyzing powers were obtained at laboratory scattering angles from 6 0 to 32.9 0 by scattering 800-MeV polarized protons from a liquid deuterium target. Forward-scattered protons were detected by the High Resolution Spectrometer (HRS), while recoil neutrons and protons were detected in coincidence with the event detected with the HRS by a 5 x 5 array of scintillators. A thin scintillator placed between the target and the array enabled discrimination of recoil particle type and facilitated the simultaneous measurement of both p vector n and n vector p analyzing powers. A comparison of the results with previously measured free p vector p and n vector p analyzing powers shows excellent agreement between the free and quasi-free p vector p analyzing powers. Poorer agreement is seen for the p vector n analyzing powers. The results of phase-shift analyses are presented in order to study the effects of the quasi-free analyzing power measurements on the determination of the pn scattering amplitudes. Amplitudes obtained from the phase-shift analyses are then used in KMT calculations. The results indicate that further nucleon-nucleon measurements are necessary in order to determine the nucleon-nucleon amplitudes unambiguously at 800 MeV

  18. Proton and Copper Binding to Humic Acids Analyzed by XAFS Spectroscopy and Isothermal Titration Calorimetry

    NARCIS (Netherlands)

    Xu, Jinling; Koopal, Luuk K.; Fang, Linchuan; Xiong, Juan; Tan, Wenfeng

    2018-01-01

    Proton and copper (Cu) binding to soil and lignite-based humic acid (HA) was investigated by combining X-ray absorption fine structure (XAFS) spectroscopy, isothermal titration calorimetry (ITC), and nonideal-competitive-adsorption (NICA) modeling. NICA model calculations and XAFS results showed

  19. Beam electron microprobe

    CERN Document Server

    Stoller, D; Muterspaugh, M W; Pollock, R E

    1999-01-01

    A beam profile monitor based on the deflection of a probe electron beam by the electric field of a stored, electron-cooled proton beam is described and first results are presented. Electrons were transported parallel to the proton beam by a uniform longitudinal magnetic field. The probe beam may be slowly scanned across the stored beam to determine its intensity, position, and size. Alternatively, it may be scanned rapidly over a narrow range within the interior of the stored beam for continuous observation of the changing central density during cooling. Examples of a two dimensional charge density profile obtained from a raster scan and of a cooling alignment study illustrate the scope of measurements made possible by this device.

  20. Development of a reusable beam profile analyzer for laser accelerated proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Frydrych, Simon; Busold, Simon; Deppert, Oliver; Roth, Markus [Technische Univ. Darmstadt (Germany). Inst. fuer Kernphysik

    2013-07-01

    At the GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, proton beams are generated with the PHELIX laser system through target normal sheath acceleration (TNSA). Within 1 ps, 10{sup 13} protons are produced with an exponential energy spectrum up to 50 MeV. For characterisation, the spatial beam profile is currently detected by a stack of radiochromatic films (RCF). These are blued depending on the beam intensity. One disadvantage of RCFs is its one-time usability. Therefore, they shall be replaced by a scintillator array. To ensure the longest possible shelf life of this new detector, the scintillator material used must be very robust against radiation damage. Also a point of current research is the maximal amount of particles, which can be detected separately.

  1. Measurement of the analyzing power for pion-proton elastic scattering between 471 and 687 MeV/c

    International Nuclear Information System (INIS)

    Mokhtari-Amirmajdi, A.

    1984-01-01

    The analyzing power, A/sub N/, has been measured for π/sup +/-/p → π/sup +/-/p at 471, 547, 625, and 687 MeV/c in an angular range corresponding to -0.9 less than or equal to cos(theta)/sub cm/ less than or equal to 0.8. A polarized proton target with polarization axis normal to the scattering plane was used. The scattered pion and recoil proton were detected in coincidence, using a magnetic spectrometer and a wire chamber/scintillator array, except in cases where one of the particles was kinematically inaccessible. Statistical uncertainties in the data are as low as 0.02; systematic uncertainties are estimated to be less than 5%. The π - p data are characterized by large values of analyzing power, and rapid variations in the angular distribution with incident momentum. The measurements are compared with the results of existing partical wave analysis

  2. The new scanning nuclear microprobe in Uppsala

    International Nuclear Information System (INIS)

    Sunde, T.; Nystroem, J.; Lindh, U.

    1991-01-01

    During 1989/90 a scanning microprobe, developed for 2-4 MeV protons and submicron resolution, is being installed at the EN-tandem accelerator at the The Svedberg Laboratory, Uppsala University, Sweden. The probe-forming units (object diaphragm, aperture diaphragm and triplet of spark-eroded quadrupoles), the scanning unit of current-controlled ferrite cores and a current digitizer are of Oxford design. The other parts are commercial products or are constructed by ourselves. The latter includes the equipment for optical alignment by interference, a feedback-controlled magnetic beam steerer and stabiliser, a fast beam deflector, specially designed mechanical vibration reducers and dedicated AT expansion cards for scanning control and data acquisition. (orig.)

  3. Microprobe analysis in human pathology

    International Nuclear Information System (INIS)

    Baker, D.; Kupke, K.G.; Ingram, P.; Roggli, V.L.; Shelburne, J.D.

    1985-01-01

    This tutorial paper reviews the literature on the application of microprobe analysis to practical problems in diagnostic human pathology. The goal is to allow the reader ready access to the literature on specific clinical problems. Specimen preparation and commonly encountered artifacts are also considered. It is concluded that energy dispersive x-ray microanalysis and back-scattered electron imaging are at present the most generally useful microprobe techniques for clinical work, and are no longer solely research tools. The findings often have diagnostic, therapeutic, and/or legal implications. 332 references

  4. Measurement of the free neutron-proton analyzing power and spin transfer parameters in the charge exchange region at 790 MeV

    International Nuclear Information System (INIS)

    Ransome, R.D.

    1981-07-01

    The free neutron-proton analyzing power and the spin transfer parameters (K/sub NN/, K/sub SS/, K/sub SL/, and K/sub LL/) were measured at the Los Alamos Meson Physics Facility at 790 MeV between 165 0 and 180 0 center of mass. A 40% polarized neutron beam incident on a liquid hydrogen target was used. The recoil protons were momentum analyzed with a magnetic spectrometer to isolate elastic scatters. A large solid angle carbon polarimeter was used to measure the proton polarization. The measurements are the first at this energy and are in basic agreement with pre-existing phase shift solutions. The proton-carbon analyzing power was measured between 500 and 750 MeV. An empirical fit to the proton-carbon analyzing power between 100 and 750 MeV was done

  5. Neutron-proton analyzing power at 12 MeV and inconsistencies in parametrizations of nucleon-nucleon data

    OpenAIRE

    Braun, R. T.; Tornow, W.; Howell, C. R.; Trotter, D. E. Gonzalez; Roper, C. D.; Salinas, F.; Setze, H. R.; Walter, R. L.; Weisel, G. J.

    2008-01-01

    We present the most accurate and complete data set for the analyzing power Ay(theta) in neutron-proton scattering. The experimental data were corrected for the effects of multiple scattering, both in the center detector and in the neutron detectors. The final data at En = 12.0 MeV deviate considerably from the predictions of nucleon-nucleon phase-shift analyses and potential models. The impact of the new data on the value of the charged pion-nucleon coupling constant is discussed in a model s...

  6. Neutron-proton analyzing power at 12 MeV and inconsistencies in parametrizations of nucleon-nucleon data

    Energy Technology Data Exchange (ETDEWEB)

    Braun, R.T. [Department of Physics, Duke University, Durham, NC 27708-0308 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Tornow, W. [Department of Physics, Duke University, Durham, NC 27708-0308 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)], E-mail: tornow@tunl.duke.edu; Howell, C.R.; Gonzalez Trotter, D.E.; Roper, C.D.; Salinas, F.; Setze, H.R.; Walter, R.L. [Department of Physics, Duke University, Durham, NC 27708-0308 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Weisel, G.J. [Department of Physics, Penn State Altoona, Altoona, PA 16601 (United States)

    2008-02-21

    We present the most accurate and complete data set for the analyzing power A{sub y}({theta}) in neutron-proton scattering. The experimental data were corrected for the effects of multiple scattering, both in the center detector and in the neutron detectors. The final data at E{sub n}=12.0 MeV deviate considerably from the predictions of nucleon-nucleon phase-shift analyses and potential models. The impact of the new data on the value of the charged pion-nucleon coupling constant is discussed in a model study.

  7. Neutron-proton analyzing power at 12 MeV and inconsistencies in parametrizations of nucleon-nucleon data

    International Nuclear Information System (INIS)

    Braun, R.T.; Tornow, W.; Howell, C.R.; Gonzalez Trotter, D.E.; Roper, C.D.; Salinas, F.; Setze, H.R.; Walter, R.L.; Weisel, G.J.

    2008-01-01

    We present the most accurate and complete data set for the analyzing power A y (θ) in neutron-proton scattering. The experimental data were corrected for the effects of multiple scattering, both in the center detector and in the neutron detectors. The final data at E n =12.0 MeV deviate considerably from the predictions of nucleon-nucleon phase-shift analyses and potential models. The impact of the new data on the value of the charged pion-nucleon coupling constant is discussed in a model study

  8. Multidimensional elemental analysis with the Sandia nuclear microprobe

    International Nuclear Information System (INIS)

    Doyle, B.L.

    1988-01-01

    It is well known that many of the ion beam analysis techniques such as Rutherford backscattering spectrometry, elastic recoil detection, resonant and nonresonant nuclear reaction analysis can be used to nondestructively obtain concentration depth profiles of elements in solids. When these techniques are combined with the small beam spot capabilities of a scanned nuclear microprobe, sample composition can be determined in up to three dimensions. This paper will review the various procedures used to collect and analyze multidimensional data using the Sandia nuclear microprobe. In addition, examples of how these data are being used in the study of materials will be shown. (author)

  9. The INS nuclear microprobe and its application

    International Nuclear Information System (INIS)

    Coote, G.E.

    1986-01-01

    The nuclear microprobe directs a well-focused beam of high-energy protons or deuterons at a solid specimen inside a vacuum chamber. Atomic and nuclear reactions are induced in those elements in a layer about 20 micro m thick, leading to the emission of characteristic x-rays, gamma rays, and charged particles as well as Rutherford scattering of the incident beam. These radiations impinge on several detectors near the specimen (NaI, Ge(Li), Si(Li) and Si surface barrier). Using proton-excited x-rays all elements above Na may be detected with sensitivities 10 or 100 times that of the electron probe, while elements which can be estimated from their gamma rays include C, N, O, F, Na and Al. In most of our projects the distribution of a trace or minor element (e.g. F, N) is compared to that of a major element (e.g. Ca or Fe). Recent areas of application include archaeometry (diffusion profiles of F in bones and teeth; depth profiles of sodium in obsidian), geology (F concentrations in mineral grains; studies of the Cretaceous-Tertiary boundary), metallurgy (C, O, N in steel and in welds; S, O, C in corrosion layers), fisheries management (Zn, Sr in otoliths; F in dogfish fin spines and vertebrae), biology (Fe, Sr, N in egg shells; trace elements in human hair), and dental research

  10. Low-energy neutron-proton analyzing power and the new Bonn potential and Paris potential predictions

    International Nuclear Information System (INIS)

    Tornow, W.; Howell, C.R.; Roberts, M.L.; Felsher, P.D.; Chen, Z.M.; Walter, R.L.; Mertens, G.; Slaus, I.

    1988-01-01

    Instrumental asymmetries recently observed by Haeberli and co-workers, limit the accuracy of neutron-proton analyzing power A/sub y/(θ) data. These instrumental effects are discussed and calculated for previously published n-p A/sub y/(θ) data at 16.9 MeV. To enable these calculations, the analyzing power for the 2 H(d-arrow-right,n) 3 He reaction was measured at small angles. Additional n-p A/sub y/(θ) data at extreme backward angles, obtained via proton recoil detection, are also reported for this energy in this paper. The composite data set is compared to calculations based on the new Bonn NN potential, the Paris NN potential, and to the recent NN phase-shift solution of Arndt. In addition, a detailed comparison between A/sub y/(θ) calculated from the new Bonn and the Paris potentials between 10 and 50 MeV is shown to reveal unexpectedly large relative differences. The experimental data in this energy range are better described by the Paris potential than by the new Bonn potential

  11. Microprobe PIXE analysis and EDX analysis on the brain of patients with Alzheimer's disease

    International Nuclear Information System (INIS)

    Yumoto, S.; Horino, Y.; Mokuno, Y.; Fujii, K.; Kakimi, S.; Mizutani, T.; Matsushima, H.; Ishikawa, A.

    1996-01-01

    To investigate the cause of Alzheimer's disease (senile dementia of Alzheimer's disease type), we examined aluminium (Al) in the brain (hippocampus) of patients with Alzheimer's disease using heavy ion (5 MeV Si 3+ ) microprobe particle-induced X-ray emission (PIXE) analysis. Heavy ion microprobes (3 MeV Si 2+ ) have several times higher sensitivity for Al detection than 2 MeV proton microprobes. We also examined Al in the brain of these patients by energy dispersive X-ray spectroscopy (EDX). (1) Al was detected in the cell nuclei isolated from the brain of patients with Alzheimer's disease using 5 MeV Si 3+ microprobe PIXE analysis, and EDX analysis. (2) EDX analysis demonstrated high levels of Al in the nucleolus of nerve cells in frozen sections prepared from the brain of these patients. Our results support the theory that Alzheimer's disease is caused by accumulation of Al in the nuclei of brain cells. (author)

  12. Neutron-proton analyzing power data between 7.6 and 18.5 MeV

    International Nuclear Information System (INIS)

    Weisel, G.J.; Tornow, W.; Howell, C.R.; Felsher, P.D.; AlOhali, M.; Chen, Z.P.; Walter, R.L.; Lambert, J.M.; Treado, P.A.; Slaus, I.

    1992-01-01

    Measurements of the analyzing power A y (θ) for neutron-proton scattering have been performed at 7.6, 12.0, 14.1, 16.0, and 18.5 MeV. The experimental setup is described as are the finite-geometry corrections applied to the data. One of these corrections, due to the presence of carbon in the scintillators used for neutron detection, is discussed in detail. The A y (θ) data are compared to the predictions of the Paris and Bonn nucleon-nucleon potentials and the predictions of two phase-shift analyses, one of which incorporates charge-independence breaking effects in the 3 P waves

  13. High current pulsed positron microprobe

    International Nuclear Information System (INIS)

    Howell, R.H.; Stoeffl, W.; Kumar, A.; Sterne, P.A.; Cowan, T.E.; Hartley, J.

    1997-01-01

    We are developing a low energy, microscopically focused, pulsed positron beam for defect analysis by positron lifetime spectroscopy to provide a new defect analysis capability at the 10 10 e + s -l beam at the Lawrence Livermore National Laboratory electron linac. When completed, the pulsed positron microprobe will enable defect specific, 3-dimensional maps of defect concentrations with sub-micron resolution of defect location. By coupling these data with first principles calculations of defect specific positron lifetimes and positron implantation profiles we will both map the identity and concentration of defect distributions

  14. Proton-proton bremsstrahlung

    International Nuclear Information System (INIS)

    Fearing, H.W.

    1990-01-01

    We summarize some of the information about the nucleon-nucleon force which has been obtained by comparing recent calculations of proton-proton bremsstrahlung with cross section and analyzing power data from the new TRIUMF bremsstrahlung experiment. Some comments are made as to how these results can be extended to neutron-proton bremsstrahlung. (Author) 17 refs., 6 figs

  15. The Fudan nuclear microprobe set-up and performance

    International Nuclear Information System (INIS)

    Zhong, L.; Zhuang, W.; Shen, H.; Mi, Y.; Wu, Y.; Liu, B.; Yang, M.; Cheng, H.

    2007-01-01

    A new scanning nuclear microprobe has been constructed at the Institute of Modern Physics in Fudan University, to replace the old microbeam system which had been running for more than ten years. The key parts were purchased from Oxford Microbeams Ltd., including triplet quadrupole lens (model OM-150), collimator slits, scanning system, target chamber, and data acquisition system. Ion beams are provided from a NEC 9SDH-2 Tandem accelerator. Three CCD cameras and multiple monitors were installed to assist beam adjust. The design of beam line and beam monitors is described. Beam optics calculations were carried out based on the specific Fudan microprobe system geometry, and the results regarding beam line performance and limitations of the spacial resolution are presented and discussed here. A comparison with experimental results is given as well. About 1.5 μm beam spot size could be achieved with a 3 MeV proton beam at a current of around 10 pA. Recently, the new microprobe is applied to obtain information of fly ash particle, algae cell and otoliths

  16. Ion microprobe analysis of metallic pigments

    International Nuclear Information System (INIS)

    Pelicon, P.; Simcic, J.; Budnar, M.; Klanjsek-Gunde, M.; Kunavaer, M.

    2001-01-01

    Full text: Metallic paints consist of metallic flakes dispersed m a resinous binder, i.e. a light-element polymer matrix. The spatial distribution and orientation of metallic flakes inside the matrix determines the covering efficiency of the paint, glossiness, and its angular-dependent properties such as lightness flop or color flop (two-tone). Such coatings are extensively used for a functional (i.e. security) as well as decorative purpose. The ion microbeam analysis of two types of silver paint with imbedded metallic flake has been performed to test the ability of the ion microbeam spectroscopic methods on this type of samples. The average sizes of the aluminium flakes were 23 (size distribution 10-37) and 49 (size distribution 34-75) micrometers, respectively. The proton beam with the size of 2x2 micrometers at Ljubljana ion microprobe has been used to scan the surface of the pigments. PIXE mapping of Al Kα map shows lateral distribution of the aluminum flakes, whereas the RBS slicing method reveals tomographic image of the flakes in uppermost 5 micrometers of the pigment layer. The flake distribution in the larger layer depths has been accessed by RBS analysis in a point mode. (author)

  17. The upgraded Amsterdam nuclear microprobe

    International Nuclear Information System (INIS)

    Vis, R.D.; Kramer, J.L.A.M.; Tros, G.H.J.; Langevelde, F. van; Mars, L.

    1993-01-01

    The improvement of the facilities at our University consists of three phases. In phase 1, a 1.7 MV NEC tandem-Pelletron accelerator has been installed. The accelerator serves as injector for two beam lines, subsequently for macro- and micro-analysis. Moreover, an interconnection has been made with a beam line from our 400 kV high voltage Van de Graaff accelerator in order to enable injection of these very intense low energy beams in these two lines. Apart from new vacuum equipment and conventional beam steering and focussing elements, the experimental facilities are replaced from the cyclotron experimental hall to the newly organised experimental hall. In the phases 2 and 3, which are not yet completed, a second ion source for the Pelletron and a new or extended focussing unit for the microprobe will complete the overall operation. (orig.)

  18. Analyzing power measurement of pp elastic scattering in the Coulomb-nuclear interference region with the 200-GeV/c polarized-proton beam at Fermilab

    International Nuclear Information System (INIS)

    Akchurin, N.; Langland, J.; Onel, Y.; Bonner, B.E.; Corcoran, M.D.; Cranshaw, J.; Nessi-Tedaldi, F.; Nessi, M.; Nguyen, C.; Roberts, J.B.; Skeens, J.; White, J.L.; Bravar, A.; Giacomich, R.; Penzo, A.; Schiavon, P.; Zanetti, A.; Bystricky, J.; Lehar, F.; de Lesquen, A.; van Rossum, L.; Cossairt, J.D.; Read, A.L.; Derevschikov, A.A.; Matulenko, Y.A.; Meschanin, A.P.; Nurushev, S.B.; Patalakha, D.I.; Rykov, V.L.; Solovyanov, V.L.; Vasiliev, A.N.; Grosnick, D.P.; Hill, D.A.; Laghai, M.; Lopiano, D.; Ohashi, Y.; Shima, T.; Spinka, H.; Stanek, R.W.; Underwood, D.G.; Yokosawa, A.; Funahashi, H.; Goto, Y.; Imai, K.; Itow, Y.; Makino, S.; Masaike, A.; Miyake, K.; Nagamine, T.; Saito, N.; Yamashita, S.; Iwatani, K.; Kuroda, K.; Michalowicz, A.; Luehring, F.C.; Miller, D.H.; Maki, T.; Pauletta, G.; Rappazzo, G.F.; Salvato, G.; Takashima, R.

    1993-01-01

    The analyzing power A N of proton-proton elastic scattering in the Coulomb-nuclear interference region has been measured using the 200-GeV/c Fermilab polarized proton beam. A theoretically predicted interference between the hadronic non-spin-flip amplitude and the electromagnetic spin-flip amplitude is shown for the first time to be present at high energies in the region of 1.5x10 -3 to 5.0x10 -2 (GeV/c) 2 four-momentum transfer squared, and our results are analyzed in connection with theoretical calculations. In addition, the role of possible contributions of the hadronic spin-flip amplitude is discussed

  19. Applications of the ion microprobe to geochemistry and cosmochemistry

    International Nuclear Information System (INIS)

    Shimizu, N.; Hart, S.R.

    1982-01-01

    When a solid surface is subjected to a bombardment of energetic ions, material is ejected from the surface in a process known as sputtering. A part of the sputtered material is ionized and these secondary ions can be analyzed with a mass spectrometer according to a technique known as secondary ion mass spectrometry (SIMS). A description is presented of the present status of geochemical and cosmochemical applications of the ion microprobe. Attention is given to the sputtering event, molecular ion interferences, aspects of isotopic fractionation, secondary ion intensities in polycomponent materials, and questions of trace element analysis. Geochemical applications of the ion microprobe are based on certain advantages over other analytical techniques. These advantages are related to high sensitivity, low background, and the capability of in situ analysis of isotopic composition. The distribution of trace elements in minerals is considered, along with isotope anomalies, isotope zoning, diffusion studies, and depth profiling

  20. Materials analysis with a nuclear microprobe

    International Nuclear Information System (INIS)

    Maggiore, C.J.

    1980-01-01

    The ability to produce focused beams of a few MeV light ions from Van de Graaff accelerators has resulted in the development of nuclear microprobes. Rutherford backscattering, nuclear reactions, and particle-induced x-ray emission are used to provide spatially resolved information from the near surface region of materials. Rutherford backscattering provides nondestructive depth and mass resolution. Nuclear reactions are sensitive to light elements (Z < 15). Particle-induced x-ray analysis is similar to electron microprobe analysis, but 2 orders of magnitude more sensitive. The focused beams are usually produced with specially designed multiplets of magnetic quadrupoles. The LASL microprobe uses a superconducting solenoid as a final lens. The data are acquired by a computer interfaced to the experiment with CAMAC. The characteristics of the information acquired with a nuclear microprobe are discussed; the means of producing the beams of nuclear particles are described; and the limitations and applications of such systems are given

  1. Biological analysis with a nuclear microprobe

    International Nuclear Information System (INIS)

    Cookson, J.A.; Legge, G.J.F.

    1975-01-01

    Most low-energy nuclear accelerators are now partly used on analytical studies in support of sciences other than nuclear physics. This paper gives a short review of such analytical techniques (X-ray analysis, elastic scattering analysis, nuclear reaction analysis, and the nuclear microprobe) with particular reference to biological applications and also emphasizes the role of the positional analysis that can be performed with a focused beam of ions - the nuclear microprobe. (author)

  2. New generation nuclear microprobe systems

    International Nuclear Information System (INIS)

    Jamieson, David N.

    2001-01-01

    Over the past 20 years, the minimum probe size for nuclear microscopy has stayed around 1 μm with only a few groups reporting a sub-micron probe size around 0.5 μm. No breakthroughs in nuclear microprobe design have been forthcoming to produce dramatic improvements in spatial resolution. The difficulties of breaking the constraints that are preventing reduction of the probe size have been well recognised in the past. Over the past 5 years it has become clear that some of these constraints may not be as limiting as first thought. For example, chromatic aberration clearly is not as significant as implied from first-order ion optics calculations. This paper reviews the constraints in view of the increased understanding of the past 5 years and looks at several new approaches, presently being evaluated in Melbourne and elsewhere, on how to make progress. These approaches include modified RF ion sources for improved beam brightness and exploitation of relaxed constraints on some lens aberrations allowing the use of high demagnification probe forming lens systems

  3. Improved proton-deuteron phase-shift analysis above the deuteron breakup threshold and the three-nucleon analyzing-power puzzle

    International Nuclear Information System (INIS)

    Tornow, W.; Kievsky, A.; Witala, H.

    2002-01-01

    Using the existing high-accuracy data for proton-deuteron and deuteron-proton elastic scattering, a phase-shift analysis has been performed in the laboratory proton energy range from E p = 4 to 10 MeV The AV 18-based proton-deuteron phase shifts were used as starting values in the phase-shift search procedure. The low-partial wave phase shifts, especially the 4 P j phase shifts have been determined very precisely, thus providing valuable guidance for theoretical approaches to tackle the quest for a successful description of three-nucleon bound-state and continuum observables in a more efficient and consistent way. Furthermore, it was found that the 4 P 1/2 phase shift and the mixing parameter ε 3/2 - determined in the present analysis cannot be generated by 3 P j nucleon-nucleon interactions which are consistent with two-nucleon analyzing power data. Therefore, three-nucleon forces must play an essential role in resolving the long-standing three-nucleon analyzing-power puzzle. Refs. 44 (author)

  4. Investigation of the tensor analyzing power Ayy in the reaction A(d polarized, p)X at large transverse momenta of proton

    International Nuclear Information System (INIS)

    Afanas'ev, S.V.; Arkhipov, V.V.; Azhgirej, L.S.

    1997-01-01

    An experiment on the studying of the tensor analyzing power A yy in the reaction A(d polarized, p)X at large transverse momenta of proton using a polarized deuteron beam of LHE accelerator complex has been proposed. These measurements could provide the valuable information on the spin structure of the deuteron at short distances. The estimation of the beam request for SPHERE set-up is performed

  5. Analyzing powers and proton spin transfer coefficients in the elastic scattering of 800 MeV polarized protons from an L-type polarized deuteron target at small momentum transfers

    International Nuclear Information System (INIS)

    Adams, D.L.

    1986-10-01

    Analyzing powers and spin transfer coefficients which describe the elastic scattering of polarized protons from a polarized deuteron target have been measured. The energy of the proton beam was 800 MeV and data were taken at laboratory scattering angles of 7, 11, 14, and 16.5 degrees. One analyzing power was also measured at 180 degrees. Three linearly independent orientations of the beam polarization were used and the target was polarized parallel and antiparallel to the direction of the beam momentum. The data were taken with the high resolution spectrometer at the Los Alamos Meson Physics Facility (experiment 685). The results are compared with multiple scattering predictions based on Dirac representations of the nucleon-nucleon scattering matrices. 27 refs., 28 figs., 4 tabs

  6. Environmental applications of the LANL nuclear microprobe

    International Nuclear Information System (INIS)

    Hickmott, D.D.; Herrin, J.M.; Abell, R.; George, M.; Gauerke, E.R.; Denniston, R.F.

    1997-01-01

    The LANL nuclear microprobe has been used to study the distributions of trace elements (TE) of environmental interest including: (1) metals in coal and fly ash, (2) Pb in the Bandelier Tuff (BT), (3) Ba in tree rings, (4) Mn, Fe, Sr and Y in Yucca Mountain calcites. Micro-PIXE (MP) analyses with 5-10 micrometer spatial resolution provide constraints on processes that redistribute contaminants in the environment, and hence may help answer environmental problems where fine-scale chemical records are important. MP analyses of particulates in coal and ash show that pyrite contains As, Se, Hg and Pb; macerals contain Cr, halogens and S; cenospheres contain As, Se and Ni; and hematite ash contains Ni and As. Understanding these elemental modes of occurrence allows prediction of metal behavior in boilers and may enhance compliance with the Clean Air Act Amendments. Fine-grained high-Pb minerals were identified using SEM and MP analyses of BT minerals. These minerals were from samples associated with deep-groundwater wells containing Pb at levels greater than regulatory limits. Pb is concentrated in Pb minerals (e.g. cerussite), smectite, and hematite formed during low-T alteration of tuff. Understanding mineralogic speciation of metals may provide insights into sources of groundwater pollution. Tree rings from ponderosa pines that grew in a Ba-contaminated drainage were analyzed using MP. Ba concentrations are typically higher in rings that formed after operations discharging Ba to the environment began. Such tree-ring analyses may ultimately provide information on rates of contaminant migration in the environment. TE in zoned calcites from Yucca Mountain were analyzed by MP. Calcites from the saturated zone (SZ) have distinct chemical signatures (high Fe, Mn and low Y). No calcites in the unsaturated zone with SZ chemical signatures were found using MP

  7. Improved proton-deuteron phase-shift analysis above the deuteron breakup threshold and the three-nucleon analyzing-power puzzle

    CERN Document Server

    Tornow, W; Witala, H

    2002-01-01

    Using the existing high-accuracy data for proton-deuteron and deuteron-proton elastic scattering, a phase-shift analysis has been performed in the laboratory proton energy range from E sub p = 4 to 10 MeV The AV 18-based proton-deuteron phase shifts were used as starting values in the phase-shift search procedure. The low-partial wave phase shifts, especially the sup 4 P sub j phase shifts have been determined very precisely, thus providing valuable guidance for theoretical approaches to tackle the quest for a successful description of three-nucleon bound-state and continuum observables in a more efficient and consistent way. Furthermore, it was found that the sup 4 P sub 1 sub / sub 2 phase shift and the mixing parameter epsilon sub 3 sub / sub 2 sub sup - determined in the present analysis cannot be generated by sup 3 P sub j nucleon-nucleon interactions which are consistent with two-nucleon analyzing power data. Therefore, three-nucleon forces must play an essential role in resolving the long-standing thre...

  8. Milliprobe and microprobe analysis of gold items of ancient jewellery

    International Nuclear Information System (INIS)

    Demortier, G.; Hackens, T.

    It has long been accepted that the presence of cadmium implies a condemnation of the authenticity of an ancient gold object, or at least, of the part of the object where the cadmium is detected. An analysis in Paris of a recently excavated object from Roman times has shown cadmium. Meanwhile, systematic observations were made at L.A.R.N. on objects dating from Hellenistic to Byzantine times with different given origins (objects from a museum and from private collections). By using PIXE with a 3 MeV proton milliprobe (700 μm beam diameter) in a non vacuum geometry, relative amounts of copper, silver, cadmium and gold at the surface of more than 30 gold objects expected to be ancient have been determined. Traces or significant concentrations of cadmium have been detected at several points on or in the neighbourhood of solders on many objects which seem to be from Roman to early Byzantine times. Cadmium concentrations range between 2 to 100 parts per thousand. This range of variations and the relative concentrations of Au, Ag, Cu and Cd at the surface of the objects studied are often different from the figures obtained during analyses of modern soldering alloys. Experiments with the L.A.R.N. proton microprobe (5 μm x 10 μm area) allow a still better topographical resolution and more significative comparison of the relative amounts of the elements of interest in modern soldering alloys and supposedly old solders. The usefulness of the microprobe is demonstrated. (author)

  9. Neutron-proton analyzing power data at 7. 6, 12. 0, 14. 1, 16. 0, 18. 5 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Weisel, G.J.; Tornow, W.; Howell, C.R.; Felsher, P.D.; Alohali, M.; Chen, Z.P.; Walter, R.L. (Duke Univ., Durham, NC (US) Triangle Universities Nuclear Lab., Durham, NC (US)); Lambert, J.M.; Treado, P.A. (Georgetown Univ., Washington, DC, (US))

    1990-11-15

    Neutron-Proton A{sub y} ({theta}) measurements have been made at 7.6, 12.0, 14.1, 16.0, and 18.5 MeV. A sensitivity study establishes the importance of A{sub y} ({theta}) in determining the {sup 3}P{sub 0,1,2} phase shifts in n-p scattering. The data are compared to the predictions of two phase-shift studies (one of which incorporates CIB effects), and the Paris and Bonn NN potentials.

  10. Analyzing power of inclusive production of π+,π-, and KS0 by polarized protons at 13.3 and 18.5 GeV/c

    International Nuclear Information System (INIS)

    Bonner, B.E.; Buchanan, J.A.; Clement, J.M.; Corcoran, M.D.; Krishna, N.M.; Kruk, J.W.; Miettinen, H.E.; Moss, R.M.; Mutchler, G.S.; Nessi-Tedaldi, F.; Nessi, M.; Phillips, G.C.; Roberts, J.B.; Stevenson, P.M.; Tonse, S.R.; Birman, A.; Chung, S.U.; Etkin, A.; Fernow, R.C.; Kirk, H.; Protopopescu, S.D.; Willutzki, H.; Hallman, T.; Madansky, L.; Bar-Yam, Z.; Dowd, J.; Kern, W.; King, E.; Mayes, B.W.; Pinsky, L.S.

    1990-01-01

    We have measured the analyzing power in π + , π - , and K S 0 production by a polarized proton beam at 13.3 and 18.5 GeV/c. The data cover the central and the beam fragmentation region, in the transverse-momentum range up to 2 GeV/c. The results indicate that sizable effects are present at high x F and also persist into the hard-scattering region for K S 0 and π + . A zero value of the analyzing power was observed for π - production

  11. Neutron-proton analyzing power at 12 MeV and charged πNN coupling constant

    International Nuclear Information System (INIS)

    Braun, R.T.; Tornow, W.; Gonzalez Trotter, D.E.; Howell, C.R.; Machleidt, R.; Roper, C.D.; Salinas, F.; Setze, H.R.; Walter, R.L.

    1995-01-01

    Recent reanalysis of scattering data by the Nijmegen group has led to new values for the πNN coupling constants, g 2 πdegree /4π and g 2 π± /4π, about 6% smaller than the previously accepted values. The impact of this finding is far reaching. Since the neutron-proton A y (θ) is dominated at low energies by the one-pion-exchange mechanism, accurate np data should provide unique information as to the magnitude of g 2 π± /4π. Using a new experimental setup consisting of a shielded neutron source, a five-pair neutron detector array, a n- 4 He polarimeter, and an intense polarized source with fast spin-flipping capability, we have measured a 15 point angular distribution of the neutron-proton A y (θ) at and incident neutron energy of 12 MeV to a statistical accuracy of 5x10 -4 . We will discuss the data taking procedures, the analysis, and the corrections applied to the data. Preliminary results will be presented

  12. Analyzing power in inclusive π+ and π- production at high xF with a 200 GeV polarized proton beam

    International Nuclear Information System (INIS)

    Adams, D.L.; Bonner, B.E.; Buchanan, J.A.; Clement, J.M.; Corcoran, M.D.; Cranshaw, J.; Nessi-Tedaldi, F.; Nessi, M.; Nguyen, C.; Phillips, G.C.; Roberts, J.B.; Skeens, J.; White, J.L.; Akchurin, N.; Langland, J.; Onel, Y.; Belikov, N.I.; Derevschikov, A.A.; Grachov, O.A.; Matulenko, Yu.A.; Meschanin, A.P.; Nurushev, S.B.; Patalakha, D.I.; Rykov, V.L.; Solovyanov, V.L.; Vasiliev, A.N.; Bystricky, J.; Lehar, F.; Lesquen, A. de; Cossairt, J.D.; Read, A.L.; En'yo, H.; Funahashi, H.; Goto, Y.; Imai, K.; Itow, Y.; Makino, S.; Masaike, A.; Miyake, K.; Nagamine, T.; Saito, N.; Yamashita, S.; Grosnick, D.P.; Hill, D.A.; Lopiano, D.; Ohashi, Y.; Spinka, H.; Stanek, R.W.; Underwood, D.G.; Yokosawa, A.; Iwatani, K.; Krueger, K.W.; Kuroda, K.; Michalowicz, A.; Luehring, F.C.; Miller, D.H.; Maki, T.; Pauletta, G.; Penzo, A.; Schiavon, P.; Zanetti, A.; Van Rossum, L.; Salvato, G.; Villari, A.; Takashima, R.; Takeutchi, F.; Tamura, N.; Tanaka, N.; Yoshida, T.

    1991-01-01

    The analyzing power in inclusive charged pion production has been measured using the 200 GeV Fermilab polarized proton beam. A striking dependence in χ F is observed in which A N increases from 0 to 0.42 with increasing χ F for the π + data and decreases from 0 to -0.38 with increasing χ F for π - data. The kinematic range covered is 0.2≤χ F ≤0.9 and 0.2≤p T ≤2.0 GeV/c. In a simple model our data indicate that at large χ F the transverse spin of the proton is correlated with that of its quark constituents. (orig.)

  13. Analyzing power in inclusive. pi. sup + and. pi. sup - production at high x sub F with a 200 GeV polarized proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D L; Bonner, B E; Buchanan, J A; Clement, J M; Corcoran, M D; Cranshaw, J; Nessi-Tedaldi, F; Nessi, M; Nguyen, C; Phillips, G C; Roberts, J B; Skeens, J; White, J L [T.W. Bonner Nuclear Lab., Rice Univ., Houston, TX (United States); Akchurin, N; Langland, J; Onel, Y [Dept. of Physics, Univ. of Iowa, Iowa City, IA (United States); Belikov, N I; Derevschikov, A A; Grachov, O A; Matulenko, Yu A; Meschanin, A P; Nurushev, S B; Patalakha, D I; Rykov, V L; Solovyanov, V L; Vasiliev, A N [Inst. of High Energy Physics, Serpukhov (USSR); Bystricky, J; Lehar, F; Lesquen, A de [CEN-Saclay, 91 - Gif-sur-Yvette (France); Cossairt, J D; Read, A L [Fermi National Accelerator Lab., Batavia, IL (United States); En' yo, H; Funahashi, H; Goto, Y; Imai, K; Itow, Y; Makino, S; Masaike, A; Miyake, K; Nagamine, T; Saito, N; Yamashita, S [Dept. of Physics, Kyoto Univ. (Japan); Grosnick, D P; Hill, D A; Lopiano, D; Ohashi, Y; Spinka, H; Stanek, R; FNAL E704 Collaboration

    1991-08-01

    The analyzing power in inclusive charged pion production has been measured using the 200 GeV Fermilab polarized proton beam. A striking dependence in {chi}{sub F} is observed in which A{sub N} increases from 0 to 0.42 with increasing {chi}{sub F} for the {pi}{sup +} data and decreases from 0 to -0.38 with increasing {chi}{sub F} for {pi}{sup -} data. The kinematic range covered is 0.2{<=}{chi}{sub F}{<=}0.9 and 0.2{<=}p{sub T}{<=}2.0 GeV/c. In a simple model our data indicate that at large {chi}{sub F} the transverse spin of the proton is correlated with that of its quark constituents. (orig.).

  14. A new Krakow scanning nuclear microprobe performance tests and early application experienc

    CERN Document Server

    Lebed, S; Polak, W; Potempa, A W; Stachura, Z; Paszkowski, M

    2001-01-01

    A new scanning nuclear microprobe (MP) with a short-length probe forming system was designed,installed and tested at the 3MV Van de Graaff accelerator in Krakow.The MP resolution of 3.3 mu m was reached for 2.4 MeV proton beam in the high-current mode (>= 100pA).The MP facility provides a local,non-destructive,quantitative elemental microanalysis using a Proton Induced X-ray Emission (PIXE) technique.As example of possible application an analysis of a geological sample containing monazite crystals investigated by PIXE method is presented.

  15. Microprobe PIXE analysis and EDX analysis on the brain of patients with Alzheimer`s disease

    Energy Technology Data Exchange (ETDEWEB)

    Yumoto, S. [Tokyo Univ. (Japan). Faculty of Medicine; Horino, Y.; Mokuno, Y.; Fujii, K.; Kakimi, S.; Mizutani, T.; Matsushima, H.; Ishikawa, A.

    1996-12-31

    To investigate the cause of Alzheimer`s disease (senile dementia of Alzheimer`s disease type), we examined aluminium (Al) in the brain (hippocampus) of patients with Alzheimer`s disease using heavy ion (5 MeV Si{sup 3+}) microprobe particle-induced X-ray emission (PIXE) analysis. Heavy ion microprobes (3 MeV Si{sup 2+}) have several times higher sensitivity for Al detection than 2 MeV proton microprobes. We also examined Al in the brain of these patients by energy dispersive X-ray spectroscopy (EDX). (1) Al was detected in the cell nuclei isolated from the brain of patients with Alzheimer`s disease using 5 MeV Si{sup 3+} microprobe PIXE analysis, and EDX analysis. (2) EDX analysis demonstrated high levels of Al in the nucleolus of nerve cells in frozen sections prepared from the brain of these patients. Our results support the theory that Alzheimer`s disease is caused by accumulation of Al in the nuclei of brain cells. (author)

  16. The use of a scanning proton microprobe in AIDS research

    Science.gov (United States)

    Cholewa, M.; Legge, G. J. F.; Weigold, H.; Holan, G.; Birch, C.

    1993-05-01

    A series of organometallic and inorganic drugs has been synthesized at the CSIRO Division of Chemicals and Polymers. The drugs, which are all polyanions of various size, shape and charge are being tested for their activity for the HIV virus in a continuous human T-lymphocyte line (MT2) and in peripheral blood lymphocytes (PBLs). Determinations of drug activity have been carried out at the Fairfield Hospital's Virology Department. It is important for the drug synthesis programme to develop an understanding of the relationship between polyanion properties and antiviral activity. For this it is essential to establish: (a) whether polyanions enter HIV infected cells, (b) their distribution within these cells, (c) whether this distribution is the same for all polyanions, (d) whether the drugs remain intact (do not dissociate) on entering the cell, (e) the differences between active and inactive drugs of similar structure. Answers to these questions and to others will facilitate the synthesis programme.

  17. Element analysis with a proton microprobe of early atherosclerotic lesions

    NARCIS (Netherlands)

    Roijers, R.B.

    2009-01-01

    Atherosclerosis is a progressive inflammatory vascular disease accompanied by a gradual build-up of cholesterol in the artery walls. The associated chronic inflammatory process leads to tissue damage in the vascular wall as a consequence of an excessive inflammatory response. Large calcified

  18. Mixed beams for the nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A.; Breese, M.B.H.; Legge, G.L.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Recently the Micro-Analytical Research Centre (MARC) at Melbourne University has developed a technique to provide mixed beams of ions for a magnetically focussed nuclear microprobe. Such a mixed beam is defined as two (or more) beams of different species ions that can quickly and easily be made to have the same magnetic rigidity R{sub m} = (mE/q{sup 2}) and therefore be transported, focused and scanned the same in a magnetic nuclear microprobe. The production of mixed beams in an electrostatically focussed micro- probe have already been demonstrated. This paper will show how mixed beams can be produced on a single-ended accelerator. Indications of how to produce them on a tandem will also be given. Applications of these mixed beams in micro-lithography, scanning transmission ion microscopy (STIM) imaging and ion beam induced charge (IBIC) imaging will also be presented. 3 refs., 3 figs.

  19. Mixed beams for the nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A; Breese, M B.H.; Legge, G L.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    Recently the Micro-Analytical Research Centre (MARC) at Melbourne University has developed a technique to provide mixed beams of ions for a magnetically focussed nuclear microprobe. Such a mixed beam is defined as two (or more) beams of different species ions that can quickly and easily be made to have the same magnetic rigidity R{sub m} = (mE/q{sup 2}) and therefore be transported, focused and scanned the same in a magnetic nuclear microprobe. The production of mixed beams in an electrostatically focussed micro- probe have already been demonstrated. This paper will show how mixed beams can be produced on a single-ended accelerator. Indications of how to produce them on a tandem will also be given. Applications of these mixed beams in micro-lithography, scanning transmission ion microscopy (STIM) imaging and ion beam induced charge (IBIC) imaging will also be presented. 3 refs., 3 figs.

  20. Development of a nuclear microprobe at IGCAR

    International Nuclear Information System (INIS)

    Ramesh, C.; Nair, K.G.M.; Thampi, N.S.; Saha, B.; Mathews, C.K.

    1988-01-01

    A nuclear microprobe is being developed at IGCAR. The system is being built to determine the profiles of light elements, specially carbon in clad and other structural materials of a fast breeder reactor. By scanning a focussed charged particle beam on the sample surface and by detecting the charged particle induced emissions, an elemental map of the surface is obtained. The paper gives the basic design considerations and present status. (author)

  1. Beam developments for the Harwell microprobe system

    International Nuclear Information System (INIS)

    Read, P.M.; Cookson, J.A.; Alton, G.D.

    1986-01-01

    A consequence of the rapid development of micron and submicron size electronic devices is the diminished applicability of high energy ion microprobes with their present resolution limitations to the study of such components. Although submicron beams have been reported the available beam current is barely sufficiently for PIXE and is not adequate for RBS. This lack of lateral resolution is due to low beam brightness at the microprobe object and aberrations in the focusing elements. As part of a program to address these problems the Harwell microprobe lens has been relocated on a new 5 MV Laddertron accelerator. The increased brightness and improved stability of this facility has so far led to a reduction in beam size from 3 x 3 μm 2 to about 2 x 2 μm 2 . The feasibility of using a liquid metal ion source has been examined with a view to achieving more substantial increases in brightness. While such sources have brightness approximately 10 5 times greater than conventional gaseous sources the highly divergent nature of the beam presents problems for the beam transport system. The use of a liquid metal source on the accelerator has been successfully demonstrated but it indicates the need for a special low aberration injection lens if brightness is to be maintained

  2. Chemical history with a nuclear microprobe

    International Nuclear Information System (INIS)

    Maggiore, C.J.; Benjamin, T.M.; Burnett, D.S.; Hyde, P.J.; Rogers, P.S.Z.; Srinivasan, S.; Tesmer, T.; Woolum, D.S.

    1983-01-01

    A nuclear microprobe cannot give direct information on the chemical state of an element, but the spatial distribution of elements in a specimen is often determined by the chemical history of the sample. Fuel cells and minerals are examples of complex systems whose elemental distributions are determined by past chemical history. The distribution of catalyst in used fuel cell electrodes provides direct information on the chemical stability of dispersed catalysts under operating conditions. The authors have used spatially resolved Rutherford backscattering to measure the migration of platinum and vanadium from intermetallic catalysts and to determine their suitability for use under the extreme operating conditions found in phosphoric acid fuel cells. Geologic materials are complex, heterogeneous samples with small mineral grains. The trace element distribution within the individual mineral grains and between different mineral phases is sensitive to the details of the mineral formation and history. The spatial resolution and sub-100-ppm sensitivity available with a nuclear microprobe open up several new classes of experiments to the geochemist. Geochemistry and electrochemistry are two areas proving particularly fruitful for application of the nuclear microprobe

  3. Determination of proton-nucleon analyzing powers and spin-rotation-depolarization parameters at 500 MeV

    International Nuclear Information System (INIS)

    Marshall, J.A.; Barlett, M.L.; Fergerson, R.W.; Hoffmann, G.W.; Milner, E.C.; Ray, L.; Amann, J.F.; Bonner, B.E.; McClelland, J.B.

    1986-01-01

    500 MeV p-arrow-right+p elastic and quasielastic, and p-arrow-right+n quasielastic, analyzing powers (A/sub y/) and spin-rotation-depolarization parameters (D/sub S//sub S/, D/sub S//sub L/, D/sub L//sub S/, D/sub L//sub L/, D/sub N//sub N/) were determined for center-of-momentum angular ranges 6.8 0 -55.4 0 (elastic) and 22.4 0 -55.4 0 (quasielastic); liquid hydrogen and deuterium targets were used. The p-arrow-right+p elastic and quasielastic results are in good agreement; both the p-arrow-right+p and p-arrow-right+n parameters are well described by current phase shift solutions

  4. Micro-PIXE on thin plant tissue samples in frozen hydrated state: A novel addition to JSI nuclear microprobe

    International Nuclear Information System (INIS)

    Vavpetič, P.; Pelicon, P.; Vogel-Mikuš, K.; Grlj, N.; Pongrac, P.; Jeromel, L.; Ogrinc, N.; Regvar, M.

    2013-01-01

    Recently we completed a construction of a cryostat at Jožef Stefan Institute (JSI) nuclear microprobe enabling us to analyze various types of biological samples in frozen hydrated state using micro-PIXE/STIM/RBS. Sample load-lock system was added to our existing setup to enable us to quickly insert a sample holder with frozen hydrated tissue samples onto a cold goniometer head cooled with liquid nitrogen inside the measuring chamber. Cryotome-cut slices of frozen hydrated plant samples were mounted between two thin silicon nitride foils and then attached to the sample holder. Sufficient thermal contact between silicon nitride foils and sample holder must be achieved, as well as between the sample holder and the cold goniometer head inside the measuring chamber to prevent melting of the samples. Matrix composition of frozen hydrated tissue is consisted mostly of ice. Thinning of the sample as well as water evaporation during high vacuum and proton beam exposure was inspected by the measurements with RBS and STIM method simultaneously with micro-PIXE. For first measuring attempts a standard micro-PIXE configuration for tissue mapping was used with proton beam cross section of 1.2 × 1.2 μm 2 and a beam current of 100 pA. The temperature of the cold goniometer head was kept below 130 K throughout the entire proton beam exposure. First measurements of thin plant tissue samples in frozen hydrated state show minute sample degradation during the 10 h period of micro-PIXE measurements

  5. Quantitative elemental imaging of octopus stylets using PIXE and the nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Doubleday, Zoe [Marine Research Laboratories, Tasmanian Aquaculture and Fisheries Institute, University of Tasmania, Private Bag 49, Tasmania 7001 (Australia)], E-mail: zoeanned@utas.edu.au; Belton, David [CSIRO Exploration and Mining, University of Melbourne (School of Physics), Melbourne 3010 (Australia); Pecl, Gretta; Semmens, Jayson [Marine Research Laboratories, Tasmanian Aquaculture and Fisheries Institute, University of Tasmania, Private Bag 49, Tasmania 7001 (Australia)

    2008-01-15

    By utilising targeted microprobe technology, the analysis of elements incorporated within the hard bio-mineralised structures of marine organisms has provided unique insights into the population biology of many species. As hard structures grow, elements from surrounding waters are incorporated effectively providing a natural 'tag' that is often unique to the animal's particular location or habitat. The spatial distribution of elements within octopus stylets was investigated, using the nuclear microprobe, to assess their potential for determining dispersal and population structure in octopus populations. Proton Induced X-ray Emission (PIXE) was conducted using the Dynamic Analysis method and GeoPIXE software package, which produced high resolution, quantitative elemental maps of whole stylet cross-sections. Ten elements were detected within the stylets which were heterogeneously distributed throughout the microstructure. Although Ca decreased towards the section edge, this trend was consistent between individuals and remained homogeneous in the inner region of the stylet, and thus appears a suitable internal standard for future microprobe analyses. Additional analyses used to investigate the general composition of the stylet structure suggested that they are amorphous and largely organic, however, there was some evidence of phosphatic mineralisation. In conclusion, this study indicates that stylets are suitable for targeted elemental analysis, although this is currently limited to the inner hatch region of the microstructure.

  6. Quantitative elemental imaging of octopus stylets using PIXE and the nuclear microprobe

    International Nuclear Information System (INIS)

    Doubleday, Zoe; Belton, David; Pecl, Gretta; Semmens, Jayson

    2008-01-01

    By utilising targeted microprobe technology, the analysis of elements incorporated within the hard bio-mineralised structures of marine organisms has provided unique insights into the population biology of many species. As hard structures grow, elements from surrounding waters are incorporated effectively providing a natural 'tag' that is often unique to the animal's particular location or habitat. The spatial distribution of elements within octopus stylets was investigated, using the nuclear microprobe, to assess their potential for determining dispersal and population structure in octopus populations. Proton Induced X-ray Emission (PIXE) was conducted using the Dynamic Analysis method and GeoPIXE software package, which produced high resolution, quantitative elemental maps of whole stylet cross-sections. Ten elements were detected within the stylets which were heterogeneously distributed throughout the microstructure. Although Ca decreased towards the section edge, this trend was consistent between individuals and remained homogeneous in the inner region of the stylet, and thus appears a suitable internal standard for future microprobe analyses. Additional analyses used to investigate the general composition of the stylet structure suggested that they are amorphous and largely organic, however, there was some evidence of phosphatic mineralisation. In conclusion, this study indicates that stylets are suitable for targeted elemental analysis, although this is currently limited to the inner hatch region of the microstructure

  7. Application of tomographic techniques to two-dimensional surface analysis using the Harwell nuclear microprobe

    International Nuclear Information System (INIS)

    Huddleston, J.; Hutchinson, I.G.; Pierce, T.B.

    1983-01-01

    Nuclear methods of surface analysis are discussed briefly, and the circumstances are described in which a two-dimensional analysis of the sample surface is desirable to enable the surface composition to be mapped accurately. Tomographic techniques of data manipulation are outlined. Data acquisition in the present case is performed by moving the sample in a defined sequence of positions, at each of which analytical data are gathered by the proton microprobe. The method and equipment are outlined. Data processing leading to the reconstruction of the image is summarised. (U.K.)

  8. Nuclear microprobe analysis of lead profile in crocodile bones

    Energy Technology Data Exchange (ETDEWEB)

    Orlic, I. E-mail: ivo@ansto.gov.au; Siegele, R.; Hammerton, K.; Jeffree, R.A.; Cohen, D.D

    2003-09-01

    Elevated concentrations of lead were found in Australian free ranging saltwater crocodile (Crocodylus porosus) bone and flesh. Lead shots were found as potential source of lead in these animals. ANSTO's heavy ion nuclear microprobe was used to measure the distribution of Pb in a number of bones and osteoderms. The aim was to find out if elevated Pb concentration remains in growth rings and if the concentration is correlated with the blood levels recorded at the time. Results of our study show a very distinct distribution of accumulated Pb in bones and osteoderms as well as good correlation with the level of lead concentration in blood. To investigate influence of ion species on detection limits measurements of the same sample were performed by using 3 MeV protons, 9 MeV He ions and 20 MeV carbon ions. Peak to background ratios, detection limits and the overall 'quality' of obtained spectra are compared and discussed.

  9. Nuclear micro-probe analysis of Arabidopsis thaliana leaves

    International Nuclear Information System (INIS)

    Ager, F.J.; Ynsa, M.D.; Dominguez-Solis, J.R.; Lopez-Martin, M.C.; Gotor, C.; Romero, L.C.

    2003-01-01

    Phytoremediation is a cost-effective plant-based approach for remediation of soils and waters which takes advantage of the remarkable ability of some plants to concentrate elements and compounds from the environment and to metabolize various molecules in their tissues, such as toxic heavy metals and organic pollutants. Nowadays, phytoremediation technology is becoming of paramount importance when environmental decontamination is concerned, due to the emerging knowledge of its physiological and molecular mechanisms and the new biological and engineering strategies designed to optimize and improve it. In addition, the feasibility of using plants for environmental cleanup has been confirmed by many different trials around the world. Arabidopsis thaliana plants can be used for basic studies to improve the technology on phytoremediation. Making use of nuclear microscopy techniques, in this paper we study leaves of wild type and transgenic A. thaliana plants grown in a cadmium-rich environment under different conditions. Micro-PIXE, RBS and SEM analyses, performed on the scanning proton micro-probe at the CNA in Seville (Spain), prove that cadmium is preferentially sequestered in the central region of epidermal trichome and allow comparing the effects of genetic modifications

  10. Analysis of biological materials using a nuclear microprobe

    Science.gov (United States)

    Mulware, Stephen Juma

    The use of nuclear microprobe techniques including: Particle induced x-ray emission (PIXE) and Rutherford backscattering spectrometry (RBS) for elemental analysis and quantitative elemental imaging of biological samples is especially useful in biological and biomedical research because of its high sensitivity for physiologically important trace elements or toxic heavy metals. The nuclear microprobe of the Ion Beam Modification and Analysis Laboratory (IBMAL) has been used to study the enhancement in metal uptake of two different plants. The roots of corn (Zea mays) have been analyzed to study the enhancement of iron uptake by adding Fe (II) or Fe(III) of different concentrations to the germinating medium of the seeds. The Fe uptake enhancement effect produced by lacing the germinating medium with carbon nanotubes has also been investigated. The aim of this investigation is to ensure not only high crop yield but also Fe-rich food products especially from calcareous soil which covers 30% of world's agricultural land. The result will help reduce iron deficiency anemia, which has been identified as the leading nutritional disorder especially in developing countries by the World Health Organization. For the second plant, Mexican marigold (Tagetes erecta ), the effect of an arbuscular mycorrhizal fungi (Glomus intraradices ) for the improvement of lead phytoremediation of lead contaminated soil has been investigated. Phytoremediation provides an environmentally safe technique of removing toxic heavy metals (like lead), which can find their way into human food, from lands contaminated by human activities like mining or by natural disasters like earthquakes. The roots of Mexican marigold have been analyzed to study the role of arbuscular mycorrhizal fungi in enhancement of lead uptake from the contaminated rhizosphere.

  11. Microprobe channeling analysis of pyrite crystals

    International Nuclear Information System (INIS)

    Jamieson, D.N.; Ryan, C.G.

    1992-01-01

    Nuclear microprobe analysis has provided much useful information about the composition of microscopic inclusions in minerals, mainly through the use of Particle Induced X-ray Emission (PIXE). However this technique, while powerful, does not provide any direct information about the chemical state, in particular the lattice location, of the elements in the mineral. This information is often of crucial importance in understanding the ore genesis. The technique of ion channeling may be used to identify lattice location, but many minerals occur as microscopic crystals. Therefore it is necessary to utilize a nuclear microprobe with the technique of Channeling Contrast Microscopy (CCM). As many minerals contain interesting trace elements, it is necessary to measure both the yield of backscattered particles and the induced x-rays to get a clear picture of the lattice location of the elements in the crystal. CCM with PIXE was used to analyse natural pyrite crystals containing a variety of substitutional and non-substitutional elements and natural pyrite crystals from a gold bearing ore. In the latter case, evidence was obtained for two habits for Au in the 400 μm crystals: one as inclusions of Au rich minerals, the other substituted on the pyrite lattice sites. 31 refs., 3 tabs., 6 figs

  12. New electron microprobe for radioactive materials

    International Nuclear Information System (INIS)

    Perrot, M.; Geoffroy, G.; Trotabas, M.

    1989-01-01

    The latest model of CAMECA microprobe SX 50R has just been set up in the high activity laboratory of the Centre d'Etudes Nucleaires de SACLAY. It has been especially designed for the examination of nuclear fuel and irradiated materials. The spectrometers are protected from the radioactivity by an armour plate and the entire equipment has been installed into a special cell in order to protect the operators. The special sample holder allows to examine specimens as large as 80 mm in diameter. One of the interesting uses concerns the quantitative determination of the oxygen content in zircaloy oxidized by steam at high temperature. This analysis was made possible by using the new type of crystals (multilayer)

  13. Proton minibeam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Girst, Stefanie

    2016-03-08

    The risk of developing adverse side effects in the normal tissue after radiotherapy is often limiting for the dose that can be applied to the tumor. Proton minibeam radiotherapy, a spatially fractionated radiotherapy method using sub-millimeter proton beams, similar to grid therapy or microbeam radiation radiotherapy (MRT) using X-rays, has recently been invented at the ion microprobe SNAKE in Munich. The aim of this new concept is to minimize normal tissue injuries in the entrance channel and especially in the skin by irradiating only a small percentage of the cells in the total irradiation field, while maintaining tumor control via a homogeneous dose in the tumor, just like in conventional broad beam radiotherapy. This can be achieved by optimizing minibeam sizes and distances according to the prevailing tumor size and depth such that after widening of the minibeams due to proton interactions in the tissue, the overlapping minibeams produce a homogeneous dose distribution throughout the tumor. The aim of this work was to elucidate the prospects of minibeam radiation therapy compared to conventional homogeneous broad beam radiotherapy in theory and in experimental studies at the ion microprobe SNAKE. Treatment plans for model tumors of different sizes and depths were created using the planning software LAPCERR, to elaborate suitable minibeam sizes and distances for the individual tumors. Radiotherapy-relevant inter-beam distances required to obtain a homogeneous dose in the target volume were found to be in the millimeter range. First experiments using proton minibeams of only 10 μm and 50 μm size (termed microchannels in the corresponding publication Zlobinskaya et al. 2013) and therapy-conform larger dimensions of 100 μm and 180 μm were performed in the artificial human in-vitro skin model EpiDermFT trademark (MatTek). The corresponding inter-beam distances were 500 μm, 1mm and 1.8 mm, respectively, leading to irradiation of only a few percent of the cells

  14. Applications of nuclear microprobes in the semiconductor industry

    International Nuclear Information System (INIS)

    Takai, M.

    1996-01-01

    Possible nuclear microprobe applications in semiconductor industries are discussed. A unique technique using soft-error mapping and ion beam induced current measurements for reliability testing of dynamic random access memories such as soft-error immunity and noise carrier suppression has been developed for obtaining design parameters of future memory devices. Nano-probes and small installation areas are required for the use of microprobes in the semiconductor industry. Issues arising from microprobe applications such as damage induced by the probe beam are clarified. (orig.)

  15. Nuclear scanning microprobe: state of the art, applications and progress trends

    International Nuclear Information System (INIS)

    Ponomarev, A.G.

    2011-01-01

    The physical principles of nuclear scanning microprobe are considered. The analysis of state of the art of the microprobe setup from point of view of its spatial resolution and sensitivity of microanalysis techniques is given. The regions of nuclear microprobe applications are reviewed. The ways of spatial resolution and data acquisition system improvement under consideration of microprobe setup progress trends are considered. (authors)

  16. IMAP: A complete Ion Micro-Analysis Package for the nuclear microprobe

    International Nuclear Information System (INIS)

    Antolak, A.J.; Hildner, M.L.; Morse, D.H.; Bench, G.S.

    1993-01-01

    Microprobe techniques using scanned, focused MeV ions are routinely used in Livermore for materials characterization. Comprehensive data analysis with these techniques is accomplished with the computer software package IMAP, for Ion Micro-Analysis Package. IMAP consists of a set of command language procedures for data processing and quantitative spectral analysis. Deconvolution of the data is achieved by spawning sub-processes within IMAP which execute analysis codes for each specific microprobe technique. IMAP is structured to rapidly analyze individual spectra or multi-dimensional data blocks which classify individual events by the two scanning dimensions, the energy of the detected radiation and, when necessary, one sample rotation dimension. Several examples are presented to demonstrate the utility of the package

  17. Optimization of the electrostatic structure of the ion microprobe

    Directory of Open Access Journals (Sweden)

    I. G. Ignat'ev

    2012-03-01

    Full Text Available The paper presents optimization data obtained for an immersion probe-forming system of the ion microprobe to be used in 3 MeV H+ ion accelerator generating 0,4 μm beam spot for normalized acceptance of 7 μm2 · mrad2 · MeV. To achieve higher microprobe resolution it is intended to place an electrostatic lens between the collimators and the accelerating tube.

  18. Subgroup report on hard x-ray microprobes

    International Nuclear Information System (INIS)

    Ice, G.E.; Barbee, T.; Bionta, R.; Howells, M.; Thompson, A.C.; Yun, W.

    1994-01-01

    The increasing availability of synchrotron x-ray sources has stimulated the development of advanced hard x-ray (E≥5 keV) microprobes. New x-ray optics have been demonstrated which show promise for achieving intense submicron hard x-ray probes. These probes will be used for extraordinary elemental detection by x-ray fluorescence/absorption and for microdiffraction to identify phase and strain. The inherent elemental and crystallographic sensitivity of an x-ray microprobe and its inherently nondestructive and penetrating nature makes the development of an advanced hard x-ray microprobe an important national goal. In this workshop state-of-the-art hard x-ray microprobe optics were described and future directions were discussed. Gene Ice, Oak Ridge National Laboratory (ORNL), presented an overview of the current status of hard x-ray microprobe optics and described the use of crystal spectrometers to improve minimum detectable limits in fluorescent microprobe experiments. Al Thompson, Lawrence Berkeley Laboratory (LBL), described work at the Center for X-ray Optics to develop a hard x-ray microprobe based on Kirkpatrick-Baez (KB) optics. Al Thompson also showed the results of some experimental measurements with their KB optics. Malcolm Howells presented a method for bending elliptical mirrors and Troy Barbee commented on the use of graded d spacings to achieve highest efficiency in KB multilayer microfocusing. Richard Bionta, Lawrence Livermore National Laboratory (LLNL), described the development of the first hard x-ray zone plates and future promise of so called open-quotes jelly rollclose quotes or sputter slice zone plates. Wenbing Yun, Argonne National Laboratory (ANL), described characterization of jelly roll and lithographically produced zone plates and described the application of zone plates to focus extremely narrow bandwidths by nuclear resonance. This report summarizes the presentations of the workshop subgroup on hard x-ray microprobes

  19. The new nuclear microprobe at Livermore

    International Nuclear Information System (INIS)

    Roberts, M.L.; Bench, G.S.; Heikkinen, D.W.; Morse, D.H.; Bach, P.R.; Pontau, A.E.

    1994-10-01

    Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories/California have jointly constructed a new nuclear microprobe beamline. This beamline is located on the LLNL 10 MV tandem accelerator and can be used for multidisciplinary research using PIXE, PIGE, energy loss tomography, or IBS techniques. Distinctive features of the beamline include incorporation of magnet power supplies into the accelerator control system, computer controlled object and image slits, automated target positioning to sub-micron resolution, and video optics for beam positioning and observation. Mitigation of vibrations was accomplished with vibration isolators and a rigid beamline design while integral beamline shielding was used to shield from stray magnetic fields. Available detectors include a wavelength dispersive X-ray spectrometer, a High-Purity Germanium detector (HPGe), a Lithium-Drifted Silicon X-Ray detector (SiLi), and solid state surface barrier detectors. Along with beamline performance, results from recent measurements on determination of trace impurities in an International Thermonuclear Experimental Reactor (ITER) super conducting wire strand, determination of Ca/Sr ratios in seashells, and determination of minor and trace element concentrations in sperm cells are presented

  20. Deep Space 2: The Mars Microprobe Mission

    Science.gov (United States)

    Smrekar, Suzanne; Catling, David; Lorenz, Ralph; Magalhães, Julio; Moersch, Jeffrey; Morgan, Paul; Murray, Bruce; Presley-Holloway, Marsha; Yen, Albert; Zent, Aaron; Blaney, Diana

    The Mars Microprobe Mission will be the second of the New Millennium Program's technology development missions to planetary bodies. The mission consists of two penetrators that weigh 2.4 kg each and are being carried as a piggyback payload on the Mars Polar Lander cruise ring. The spacecraft arrive at Mars on December 3, 1999. The two identical penetrators will impact the surface at ~190 m/s and penetrate up to 0.6 m. They will land within 1 to 10 km of each other and ~50 km from the Polar Lander on the south polar layered terrain. The primary objective of the mission is to demonstrate technologies that will enable future science missions and, in particular, network science missions. A secondary goal is to acquire science data. A subsurface evolved water experiment and a thermal conductivity experiment will estimate the water content and thermal properties of the regolith. The atmospheric density, pressure, and temperature will be derived using descent deceleration data. Impact accelerometer data will be used to determine the depth of penetration, the hardness of the regolith, and the presence or absence of 10 cm scale layers.

  1. Novel imaging techniques for the nuclear microprobe

    International Nuclear Information System (INIS)

    Saint, A.

    1998-01-01

    Many of the developments of the scanning electron microscope (SEM) have been paralleled during the development of the scanning nuclear microprobe. Secondary electrons were used in the early development of both devices to provide specimen imaging due to the large numbers of secondaries produced per incident charged particle. Other imaging contrast techniques have also been developed on both machines. These include X-ray analysis, scattering contrast, transmission microscopy, channelling induced charge and others. The 'cross-section dependent' imaging techniques such as PIXE, RBS, NRA, etc., rely on the beam current on target for a given resolution. This has prompted research and development of brighter ion sources to maintain probe resolution at high beam current. Higher beam current bring problems with beam damage to the specimen. Low beam current techniques however rely on high countrate data collection systems, but this is only for spectroscopy. To produce an image we can increase beam currents to produce live-time images for specimen manipulation and observation. The work presented here will focus on some developments in live-time imaging with a nuclear micro probe that have taken place recently at the School of Physics, Microanalytical Research Centre (MARC), University of Melbourne

  2. U/Th dating by SHRIMP RG ion-microprobe mass spectrometry using single ion-exchange beads

    Science.gov (United States)

    Bischoff, J.L.; Wooden, J.; Murphy, F.; Williams, Ross W.

    2005-01-01

    We present a new analytical method for U-series isotopes using the SHRIMP RG (Sensitive High mass Resolution Ion MicroProbe) mass spectrometer that utilizes the preconcentration of the U-series isotopes from a sample onto a single ion-exchange bead. Ion-microprobe mass spectrometry is capable of producing Th ionization efficiencies in excess of 2%. Analytical precision is typically better than alpha spectroscopy, but not as good as thermal ionization mass spectroscopy (TIMS) and inductively coupled plasma multicollector mass spectrometry (ICP-MS). Like TIMS and ICP-MS the method allows analysis of small samples sizes, but also adds the advantage of rapidity of analysis. A major advantage of ion-microprobe analysis is that U and Th isotopes are analyzed in the same bead, simplifying the process of chemical separation. Analytical time on the instrument is ???60 min per sample, and a single instrument-loading can accommodate 15-20 samples to be analyzed in a 24-h day. An additional advantage is that the method allows multiple reanalyses of the same bead and that samples can be archived for reanalysis at a later time. Because the ion beam excavates a pit only a few ??m deep, the mount can later be repolished and reanalyzed numerous times. The method described of preconcentrating a low concentration sample onto a small conductive substrate to allow ion-microprobe mass spectrometry is potentially applicable to many other systems. Copyright ?? 2005 Elsevier Ltd.

  3. NEUTRON-PROTON ANALYZING POWER DATA AT 7.6, 12.0, 14.1, 16.0, 18.5 MeV

    OpenAIRE

    Weisel , G.; Tornow , W.; Howell , C.; Felsher , P.; Alohali , M.; Chen , Z.; Walter , R.; Lambert , J.; Treado , P.

    1990-01-01

    Neutron-Proton Ay(θ) measurements have been made at 7.6, 12.0, 14.1, 16.0, and 18.5 MeV. A sensitivity study establishes the importance of Ay(θ) in determining the 3P0, 1, 2 phase shifts in n-p scattering. The data are compared to the predictions of two phase-shift studies (one of which incorporates CIB effects), and the Paris and Bonn NN potenials.

  4. Neutron-proton analyzing power data at 7.6, 12.0, 14.1, 16.0, 18.5 MeV

    International Nuclear Information System (INIS)

    Weisel, G.J.; Tornow, W.; Howell, C.R.; Felsher, P.D.; Alohali, M.; Chen, Z.P.; Walter, R.L.; Lambert, J.M.; Treado, P.A.

    1990-01-01

    Neutron-Proton A y (θ) measurements have been made at 7.6, 12.0, 14.1, 16.0, and 18.5 MeV. A sensitivity study establishes the importance of A y (θ) in determining the 3 P 0,1,2 phase shifts in n-p scattering. The data are compared to the predictions of two phase-shift studies (one of which incorporates CIB effects), and the Paris and Bonn NN potentials

  5. Application of the nuclear microprobe to the study of organic and inorganic composition of teeth irradiated by a laser beam

    International Nuclear Information System (INIS)

    Sommer, F.; Engelmann, Ch.; Couble, Ml.; Magloire, H.; Bonnin, P.

    1986-01-01

    The nuclear microprobe uses both direct observation of nuclear reactions induced by deuterons and X ray emission induced by protons or deuterons. Thanks to these techniques, concentration profiles of the main elements (C, N, P, Ca...) contained in different parts of healthy teeth (enamel, dentine and cementum) are drawn in control zones and laser irradiated zones. The results obtained show that important perturbations appear during the irradiation by the laser beam; we observe successively, depleted zones in carbon and nitrogen which contain calcium and phosphorus and hypomineralized zones which contain organic material. 10 refs [fr

  6. Elemental analysis of single phytoplankton cells using the Lund nuclear microprobe

    International Nuclear Information System (INIS)

    Pallon, Jan; Elfman, Mikael; Kristiansson, Per; Malmqvist, Klas; Graneli, Edna; Sellborn, Anders; Karlsson, Chatarina

    1999-01-01

    The occurrence of annual marine phytoplankton blooms is becoming a global problem. In Europe, the NUTOX project supported by the EC investigates if unbalanced nutrient compositions in the water promote the dominance of harmful phytoplankton species. One of the tasks is the determination of the elemental composition of single phytoplankton cells. This is carried out using the Lund Nuclear Microprobe with a special focus on C, N, P and K. The overall aim is to understand the mechanism leading to toxin production, model it and eventually propose a counteracting method. The preparative method, used to isolate single living cells while reducing their salt environment, is an important part of the analytical procedure. A comparison of light element detection using backscattering from protons and nuclear reaction analysis using deuterons is made

  7. Progress of the new CSIRO-GEMOC nuclear microprobe: first results, performance and recent applications

    International Nuclear Information System (INIS)

    Ryan, C.G.; Cripps, G.; Sie, S.H.; Suter, G.F.; Jamieson, D.N.; Griffin, W.L.; Commonwealth Scientific and Industrial Research Organisation

    1999-01-01

    The new CSIRO-GEMOC Nuclear Microprobe (NMP) features a number of technical advances for high resolution, high sensitivity microanalysis. It was designed at the CSIRO and developed as collaboration between the CSlRO, the GEMOC key-centre at Macquarie University and the MARC group of the University of Melbourne. For imaging applications, it also features a software system using a powerful algorithm called Dynamic Analysis, developed at the CSIRO for unmixing elemental signatures in proton induced X-ray emission (PIXE) data, to provide a tool for rapid quantitative imaging of trace and major element spatial distribution in minerals. This paper reports on the performance of the NMP and examples of its application over the past 6 months since completion

  8. The mutual diffusion coefficient for (meth)acrylate monomers as determined with a nuclear microprobe

    International Nuclear Information System (INIS)

    Leewis, Christian M.; Mutsaers, Peter H.A.; Jong, Arthur M. de; Ijzendoorn, Leo J. van; Voigt, Martien J.A. de; Ren, Min Q.; Watt, Frank; Broer, Dirk J.

    2004-01-01

    The value of the mutual diffusion coefficient D V of two acrylic monomers is determined with nuclear microprobe measurements on a set of polymer films. These films have been prepared by allowing the monomers to diffuse into each other for a certain time and subsequently applying fast ultraviolet photo-polymerization, which freezes the concentration profile. The monomer diffusion profiles are studied with a scanning 2.1 MeV proton microprobe. Each monomer contains a marker element, e.g., Cl and Si, which are easily detected with proton induced x-ray emission. From the diffusion profiles, it is possible to determine the mutual diffusion coefficient. The mutual diffusion coefficient is dependent of concentration, which is concluded from the asymmetry in the Cl- and Si-profiles. A linear dependence of the mutual diffusion coefficient on the composition is used as a first order approximation. The best fits are obtained for a value of b=(0.38±0.15), which is the ratio of the diffusion coefficient of 1,3-bis(3-methacryloxypropyl)-1, 1,3,3-tetramethyldisiloxane in pure 2-chloroethyl acrylate and the diffusion coefficient of 2-chloroethyl acrylate in pure 1,3-bis(3-methacryloxypropyl)-1,1,3,3-tetramethyldisiloxane. Under the assumption of a linear dependence of the mutual diffusion coefficient D V on monomer composition, it follows that D V =(2.9±0.6)·10 -10 m 2 /s at a 1:1 monomer ratio. With Flory-Huggins expressions for the monomer chemical potentials, one can derive approximate values for the individual monomer diffusion coefficients

  9. The CEA nuclear microprobe. Description, possibilities, application examples

    International Nuclear Information System (INIS)

    Engelmann, C.; Bardy, J.

    1986-05-01

    The nuclear microprobe installed on one of the beam lines of a 4 MV Van de Graaff located in the Research Center of Bruyeres-le-Chatel is described. The various possibilities, particularly the imaging system, and the performances of the instrument are exposed. Two typical application examples concerning, the first, the determination of the deuterium and tritium in glass microballons, the second, the detection and the localization of carbon and oxygen in the superficial layer of lithium hydride pellets, are given. Preliminary results of some other application examples are also presented. The advantages of the nuclear microprobe over the other ponctual analysis techniques are emphasized. 7 refs, 19 figs [fr

  10. The remote control of nuclear microprobes over the Internet

    International Nuclear Information System (INIS)

    Churms, C.L.; Prozesky, V.M.; Springhorn, K.A.

    1999-01-01

    Whereas the concept of remote control is not new, the required equipment and data link have typically been costly and specialized. With the growing availability of reliable Internet connection, it has however become possible and increasingly attractive to be able to control complex equipment remotely over the Internet. Some methods of Internet Remote control are discussed, bearing in mind the specific needs of nuclear microprobe control. One such system has been implemented at the NAC nuclear microprobe, and even though improvements are envisaged, it is already functioning satisfactorily

  11. Extraterrestrial materials examined by mean of nuclear microprobe

    Science.gov (United States)

    Khodja, H.; Smith, T.; Engrand, C.; Herzog, G.; Raepsaet, C.

    2013-07-01

    Comet fragments, micrometeorites, and Interplanetary Dust Particles (IDPs) are small objects (purpose, we need instruments and methods that provide both microanalysis and detailed imaging. In these respects, the nuclear microprobe offers many potential advantages: (i) the spatial resolution, ∼1 μm is well-matched to the typical object dimensions, (ii) with some reservations, it is non-destructive when carefully conducted, (iii) it is quantitative, and especially sensitive for light elements. At the Saclay nuclear microprobe, we have been performing analyses of extraterrestrial objects for many years. We review some of these studies, emphasizing the specific requirements for successful analyses. We also discuss the potential pitfalls that may be encountered.

  12. Synchrotron radiation XRF microprobe study of human bone tumor slice

    International Nuclear Information System (INIS)

    Huang Yuying; Zhao Limin; Wang Zhouguang; Shao Hanru; Li Guangcheng; Wu Yingrong; He Wei; Lu Jianxin; He Rongguo

    1999-01-01

    The experimental apparatus of X-ray fluorescence (XRF) microprobe analysis at Beijing Synchrotron Radiation Facility (BSRF) is described. Using the bovine liver as the standard reference, the minimum detection limit (MDL) of trace element was measured to determine the capability of biological sample analysis by synchrotron radiation XRF microprobe. The relative change of the content of the major or trace element in the normal and tumor part of human bone tissue slice was investigated. The experimental result relation to the clinical medicine was also discussed. (author)

  13. Combining density functional theory (DFT) and collision cross-section (CCS) calculations to analyze the gas-phase behaviour of small molecules and their protonation site isomers.

    Science.gov (United States)

    Boschmans, Jasper; Jacobs, Sam; Williams, Jonathan P; Palmer, Martin; Richardson, Keith; Giles, Kevin; Lapthorn, Cris; Herrebout, Wouter A; Lemière, Filip; Sobott, Frank

    2016-06-20

    Electrospray ion mobility-mass spectrometry (IM-MS) data show that for some small molecules, two (or even more) ions with identical sum formula and mass, but distinct drift times are observed. In spite of showing their own unique and characteristic fragmentation spectra in MS/MS, no configurational or constitutional isomers are found to be present in solution. Instead the observation and separation of such ions appears to be inherent to their gas-phase behaviour during ion mobility experiments. The origin of multiple drift times is thought to be the result of protonation site isomers ('protomers'). Although some important properties of protomers have been highlighted by other studies, correlating the experimental collision cross-sections (CCSs) with calculated values has proven to be a major difficulty. As a model, this study uses the pharmaceutical compound melphalan and a number of related molecules with alternative (gas-phase) protonation sites. Our study combines density functional theory (DFT) calculations with modified MobCal methods (e.g. nitrogen-based Trajectory Method algorithm) for the calculation of theoretical CCS values. Calculated structures can be linked to experimentally observed signals, and a strong correlation is found between the difference of the calculated dipole moments of the protomer pairs and their experimental CCS separation.

  14. An SU-8-based microprobe with a nanostructured surface enhances neuronal cell attachment and growth

    Science.gov (United States)

    Kim, Eunhee; Kim, Jin-Young; Choi, Hongsoo

    2017-12-01

    Microprobes are used to repair neuronal injury by recording electrical signals from neuronal cells around the surface of the device. Following implantation into the brain, the immune response results in formation of scar tissue around the microprobe. However, neurons must be in close proximity to the microprobe to enable signal recording. A common reason for failure of microprobes is impaired signal recording due to scar tissue, which is not related to the microprobe itself. Therefore, the device-cell interface must be improved to increase the number of neurons in contact with the surface. In this study, we developed nanostructured SU-8 microprobes to support neuronal growth. Nanostructures of 200 nm diameter and depth were applied to the surface of microprobes, and the attachment and neurite outgrowth of PC12 cells on the microprobes were evaluated. Neuronal attachment and neurite outgrowth on the nanostructured microprobes were significantly greater than those on non-nanostructured microprobes. The enhanced neuronal attachment and neurite outgrowth on the nanostructured microprobes occurred in the absence of an adhesive coating, such as poly- l-lysine, and so may be useful for implantable devices for long-term use. Therefore, nanostructured microprobes can be implanted without adhesive coating, which can cause problems in vivo over the long term.

  15. The French AEC nuclear microprobe: description and first application examples

    International Nuclear Information System (INIS)

    Engelmann, C.; Bardy, J.

    1983-05-01

    The major components of the microprobe are briefly described. The performances and the varying possibilities authorized by the instrument are given. Some application examples concerning especially the determination of concentration profiles in an aqueous leached glass and the distribution of deuterium in a graphite sample exposed to plasma in a Tokamak device are presented

  16. Use of the ion microprobe in geological dating

    International Nuclear Information System (INIS)

    Compston, W.; Williams, I.S.; Black, L.P.

    1983-01-01

    SHRIMP, the Sensitive High Resolution Ion Microprobe with computerised control and data acquisition system, has recently been commissioned. It is used within the Research School of Earth Sciences, Australian National University, for the isotopic analysis of geological samples. Principles of operation and geological applications are outlined. One example described is the application to Pb-U dating of zircon

  17. Ion microprobe imaging of 44Ca-labeled mammalian chromosomes

    International Nuclear Information System (INIS)

    Levi-Setti, R.; Gavrilov, K.L.; Strissel, P.L.; Strick, R.

    2004-01-01

    In our previous investigation, we showed for the first time high-resolution analytical images of the cation composition of mammalian interphase and mitotic cells as well as of isolated metaphase chromosomes using the University of Chicago scanning ion microprobe (UC-SIM). In order to preserve the ionic integrity of the analyzed cells and prevent the well known occurrence of analytical artifacts due to the high diffusivity of cations in biological samples we used fast cryo-preservation methods (freeze-drying and freeze fracture), without any pre-fixations or washes. We identified the role of the cations in chromosome structure and maintenance using SIMS imaging and immunfluorescence methodologies. Importantly, we determined that the above cations are essential participants in chromosome condensation and maintenance of chromatin higher order structure, through their presumed function in DNA electrostatic neutralization and the direct interaction of Ca 2+ , in particular, with structural proteins. In addition, both Ca 2+ and Mg 2+ showed the same cell cycle regulation where during interphase both cations were enriched in the cytosol, particularly in organelles then at mitosis became specifically bound to chromatin. Our present research interest focuses on a more detailed analysis of the distribution of Ca 2+ throughout the different cell cycle stages, e.g. G1, G2 and mitosis. We have chosen the stable isotope 44 Ca as a tracer to follow Ca 2+ throughout the cell cycle. This nuclide occurs naturally in the ratio 44 Ca/ 40 Ca+ 44 Ca of 2.06%, so that incorporation at higher concentrations into chromatin or other cellular components should be easily detected by SIMS. Such incorporation can be obtained either by growing cells in a medium where ordinary Ca is replaced entirely by 44 Ca, or by replacing the cell culture medium with the 44 Ca medium for a gated time span (pulsing), after appropriate cell cycle stage synchronization. In this paper, we describe our

  18. Ion beam analysis - development and application of nuclear reaction analysis methods, in particular at a nuclear microprobe

    International Nuclear Information System (INIS)

    Sjoeland, K.A.

    1996-11-01

    This thesis treats the development of Ion Beam Analysis methods, principally for the analysis of light elements at a nuclear microprobe. The light elements in this context are defined as having an atomic number less than approx. 13. The work reported is to a large extent based on multiparameter methods. Several signals are recorded simultaneously, and the data can be effectively analyzed to reveal structures that can not be observed through one-parameter collection. The different techniques are combined in a new set-up at the Lund Nuclear Microprobe. The various detectors for reaction products are arranged in such a way that they can be used for the simultaneous analysis of hydrogen, lithium, boron and fluorine together with traditional PIXE analysis and Scanning Transmission Ion Microscopy as well as photon-tagged Nuclear Reaction Analysis. 48 refs

  19. Characterization of semiconductor and frontier materials by nuclear microprobe technology

    International Nuclear Information System (INIS)

    Zhu Jieqing; Li Xiaolin; Yang Changyi; Lu Rongrong; Wang Jiqing; Guo Panlin

    2002-01-01

    The nuclear microprobe technology is used to characterize the properties of semiconductor and other frontier materials at the stages of their synthesis, modification, integration and application. On the basis of the beam current being used, the analytical nuclear microprobe techniques being used in this project can be divided into two categories: high beam current (PIXE, RBS, PEB) or low beam current (IBIC, STIM) techniques. The material properties measured are the thickness and composition of a composite surface on a SiC ceramic, the sputtering-induced surface segregation and depth profile change in a Ag-Cu binary alloy, the irradiation effects on the CCE of CVD diamond, the CCE profile at a polycrystalline CVD diamond film and a GaAs diode at different voltage biases and finally, the characterization of individual sample on an integrated material chip. (author)

  20. Wavelength dispersive μPIXE setup for the ion microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Fazinić, S., E-mail: stjepko.fazinic@irb.hr [Laboratory for Ion Beam Interactions, Division of Experimental Physics, Rudjer Bošković Institute, Bijenicka cesta 54, 10000 Zagreb (Croatia); Božičević Mihalić, I.; Tadić, T.; Cosic, D.; Jakšić, M. [Laboratory for Ion Beam Interactions, Division of Experimental Physics, Rudjer Bošković Institute, Bijenicka cesta 54, 10000 Zagreb (Croatia); Mudronja, D. [Croatian Conservation Institute, Grškovićeva 23, 10000 Zagreb (Croatia)

    2015-11-15

    We have developed a small wavelength dispersive X-ray spectrometer to explore the possibility of performing chemical speciation on microscopic samples utilizing focused ion beams available at the Rudjer Boskovic Institute ion microprobe. Although PIXE spectra are in principle chemically invariant, small influence of chemical effects could be observed even with Si(Li) or SDD detectors. Such chemical effects can be clearly seen with high resolution crystal X-ray spectrometers having energy resolution of several eV. A dedicated vacuum chamber, housing the diffraction crystal, sample holder and CCD X-ray detector, was constructed and positioned behind the main ion microprobe vacuum chamber. Here we will briefly describe the spectrometer, and illustrate its capabilities on measured K X-ray spectra of selected sulfur compounds. We will also demonstrate its abilities to resolve K and M X-ray lines irresolvable by solid state ED detectors usually used in PIXE.

  1. Development of a nuclear microprobe and its application to neurobiology

    International Nuclear Information System (INIS)

    Tapper, Staffan.

    1989-01-01

    A nuclear microprobe has been developed at the Pelletron accelerator in Lund. The design of the achromatic beam focusing system as well as of the beam scanning system is described. The focusing system consists of three magnetic- and three electrostatic quadrupole lenses together forming an chromatic quadrupole triplet with symmetric focusing properties. The beam quality from the accelerator has been improved by use of ultrathin stripper foils. The nuclear microprobe set-up has been applied to investigation of brain tissue specimens. The elemantal disorder following epileptic seizures has been studied by micro-PIXE analysis. A combination of macro- and micro-PIXE analysis have been utilized in an investigaiton of elemental differences between normal human brain and human brain tumours. In the context of the quantification procedure in micro-PIXE analysis, callibration and X-ray detector response function are discussed. (author)

  2. Raman microprobe study of heat-treated pitches

    Energy Technology Data Exchange (ETDEWEB)

    Cottinet, D.; Couderc, P.; Saint Romain, J.L.; Dhamelincourt, P.

    1988-01-01

    A series of heat-treated pitches from the same coal-tar precursor is investigated by means of a Raman microprobe. Separated Raman spectra are obtained for the isotropic phase and the mesophase. The evolutions observed are characteristic of the structural rearrangement change in the two phases. They correlate well with the observations reported in literature and obtained by using different methods of structural investigations.

  3. Design considerations for an x-ray microprobe

    International Nuclear Information System (INIS)

    Howells, M.R.; Hastings, J.B.

    1982-01-01

    The optical design of a fluorescent microprobe covering the x-ray region from 2 to 16 keV is considered for the NSLS x-ray ring. The limit on detectability is from total flux (photons/μm 2 ) and several design choices are considered to match the optical system to the storage ring to maximize throughput. The tradeoffs in image quality and energy resolution of these designs have been considered and within these constraints two firm proposals are presented

  4. 7th international conference on Nuclear microprobe technology and applications

    International Nuclear Information System (INIS)

    2000-01-01

    This colloquium gives an up-to-date report on the continuously advancing applications and development of microbeam technology. It presents abstracts and oral contributions in the following domains: microprobes facilities, analysis techniques, imaging techniques, micro-ion beam modification of materials, microelectronics, applications in Material Sciences in Biology in Medicine in earth and planetary Sciences in environment in art in archaeology, alternative techniques. (A.L.B.)

  5. Applications of heavy ion microprobe for single event effects analysis

    International Nuclear Information System (INIS)

    Reed, Robert A.; Vizkelethy, Gyorgy; Pellish, Jonathan A.; Sierawski, Brian; Warren, Kevin M.; Porter, Mark; Wilkinson, Jeff; Marshall, Paul W.; Niu, Guofu; Cressler, John D.; Schrimpf, Ronald D.; Tipton, Alan; Weller, Robert A.

    2007-01-01

    The motion of ionizing-radiation-induced rogue charge carriers in a semiconductor can create unwanted voltage and current conditions within a microelectronic circuit. If sufficient unwanted charge or current occurs on a sensitive node, a variety of single event effects (SEEs) can occur with consequences ranging from trivial to catastrophic. This paper describes the application of heavy ion microprobes to assist with calibration and validation of SEE modeling approaches

  6. Digital pulse processor for ion beam microprobe imaging

    International Nuclear Information System (INIS)

    Bogovac, M.; Jaksic, M.; Wegrzynek, D.; Markowicz, A.

    2009-01-01

    Capabilities of spectroscopic ion beam analysis (IBA) techniques that are available in ion microprobe facilities can be greatly improved by the use of digital pulse processing. We report here development of a digital multi parameter data acquisition system suitable for IBA imaging applications. Input signals from charge sensitive preamplifier are conditioned by using a simple circuit and digitized with fast ADCs. The digitally converted signals are processed in real time using FPGA. Implementation of several components of the system is presented.

  7. The nuclear microprobe of the CENBG: the choices

    International Nuclear Information System (INIS)

    Llabador, Y.

    1987-04-01

    A microbeam line with a spatial resolution of the micrometer order has been set on the Van de Graaf of the Bordeaux-Gradignan nuclear center. This report presents the different stages of the microprobe design: the experimental device which has been chosen, the reason of the different choices, the traps to keep out of during the construction (for instance, the accuracy of the mechanical standards) [fr

  8. Ion microprobe mass analysis of plagioclase from 'non-mare' lunar samples

    Science.gov (United States)

    Meyer, C., Jr.; Anderson, D. H.; Bradley, J. G.

    1974-01-01

    The ion microprobe was used to measure the composition and distribution of trace elements in lunar plagioclase, and these analyses are used as criteria in determining the possible origins of some nonmare lunar samples. The Apollo 16 samples with metaclastic texture and high-bulk trace-element contents contain plagioclase clasts with extremely low trace-element contents. These plagioclase inclusions represent unequilibrated relicts of anorthositic, noritic, or troctolitic rocks that have been intermixed as a rock flour into the KREEP-rich matrix of these samples. All of the plagioclase-rich inclusions which were analyzed in the KREEP-rich Apollo 14 breccias were found to be rich in trace elements. This does not seem to be consistent with the interpretation that the Apollo 14 samples represent a pre-Imbrium regolith, because such an ancient regolith should have contained many plagioclase clasts with low trace-element contents more typical of plagioclase from the pre-Imbrium crust. Ion-microprobe analyses for Ba and Sr in large plagioclase phenocrysts in 14310 and 68415 are consistent with the bulk compositions of these rocks and with the known distribution coefficients for these elements. The distribution coefficient for Li (basaltic liquid/plagioclase) was measured to be about 2.

  9. Application of PIXE analysis to environmental samples stable element distribution in sea algae by scanning microprobe analysis

    International Nuclear Information System (INIS)

    Ishikawa, M.; Kitao, K.; Imaseki, H.; Ishii, T.; Uchida, S.

    1984-01-01

    The resolution of a 33+-3 μm microprobe focussed with quadrupole doublet installed at the 3 MV Van de Graaff of the National Institute of Radiological Sciences, Japan, was used for the present analysis. Brown algae, Hizikia fusiforme was the sample target bombarded with a 2 MeV proton beam collimated mechanically into a rectangular image of 100 μm x 700 μm. Scanning across the sample target prepared into a longitudinal section from the caulis of the algae provided the following observations. More than 12 elements such as Al, Si, P, Cl, Ca, Mn, Fe, Cu, Zn, As, Br and Sr were determined simultaneously, together with their distributional information across the diameter. In the medullary layer, Mn and Zn were specific in their accumulation, while the deposition of Fe, Cu, As and Br were observed to be high in the epithelial layer, especially Fe and Cu which were found on the surface, where they contacted ambient sea water, but no significant change in pattern was indicated for such elements as Al, P and Cl. The PIXE microprobe analysis was, therefore, effective in its detectability for elements below a few ppm level, resultantly providing further possibilities for collecting information from bio-medical and environmental samples on trace characterization of elements. (author)

  10. Nuclear microprobe analysis of the standard reference materials

    International Nuclear Information System (INIS)

    Jaksic, M.; Fazinic, S.; Bogdanovic, I.; Tadic, T.

    2002-01-01

    Most of the presently existing Standard Reference Materials (SRM) for nuclear analytical methods are certified for the analyzed mass of the order of few hundred mg. Typical mass of sample which is analyzed by PIXE or XRF methods is very often below 1 mg. By the development of focused proton or x-ray beams, masses which can be typically analyzed go down to μg or even ng level. It is difficult to make biological or environmental SRMs which can give desired homogeneity at such low scale. However, use of fundamental parameter quantitative evaluation procedures (absolute method), minimize needs for SRMs. In PIXE and micro PIXE setup at our Institute, fundamental parameter approach is used. For exact calibration of the quantitative analysis procedure just one standard sample is needed. In our case glass standards which showed homogeneity down to micron scale were used. Of course, it is desirable to use SRMs for quality assurance, and therefore need for homogenous materials can be justified even for micro PIXE method. In this presentation, brief overview of PIXE setup calibration is given, along with some recent results of tests of several SRMs

  11. A tunable x-ray microprobe using synchrotron radiation

    International Nuclear Information System (INIS)

    Wu, Y.; Thompson, A.C.; Underwood, J.H.; Giauque, R.D.; Chapman, K.; Rivers, M.L.; Jones, K.W.

    1989-08-01

    We describe an x-ray microprobe using multilayer mirrors. Previously, we had demonstrated a Kirkpatrick-Baez type focusing system working at both 8 and 10 keV and successfully applied it to a variety of applications, including the determination of elemental contents in fluid inclusions. In this paper, we show that the usable excitation energy for this microprobe is not restricted to between 8 and 10 keV, and furthermore, it can be simply tuned in operation. A 10-keV x-ray fluorescence microprobe can be used to measure the concentration of the elements form potassium (Z = 19) to zinc (Z = 30) using K x-ray lines, and from cadmium (Z = 48) to erbium (Z = 68) using L x-ray lines. There are a number of geologically important elements in the gap between gallium (Z = 31) and silver(Z = 47) and also with Z > 68. In order to cover this range, a higher excitation energy is required. On the other hand, for samples that contain major elements with absorption edges lower than the excitation energy, it would be hard to detect other mirror elements because of the strong signal from the major elements and the background they produce. In this case, a tunable x-ray source can be used to avoid the excitation of the major elements. We demonstrate that, with the existing setup, it is possible to tune the excitation energy from 6 keV to 14 keV, in this range, the intensity does not decrease by more than one order of magnitude. As an illustration, a geological sample was examined by using two different excitation energy range as well as the possibility of improving the intensity. 11 refs., 5 figs

  12. X-ray microprobe for the microcharacterization of materials

    International Nuclear Information System (INIS)

    Sparks, C.J.; Ice, G.E.

    1988-01-01

    The unique properties of x rays offer many advantages over those of electrons and other charged particles for the microcharacterization of materials. X rays are more efficient in exciting characteristic x-ray fluorescence and produce higher fluorescent signal-to-background ratios than obtained with electrons. Such x-ray microprobes will also produce unprecedentedly low levels of detection in diffraction, EXAFS, Auger, and photoelectron spectroscopies for structural and chemical characterization and elemental identification. These major improvements in microcharacterization capabilities will have wide-ranging ramifications not only in materials science but also in physics, chemistry, geochemistry, biology, and medicine. 24 refs., 6 figs., 2 tabs

  13. X-ray Microprobe for Fluorescence and Diffraction Analysis

    International Nuclear Information System (INIS)

    Ice, G.E.

    2005-01-01

    X-ray diffraction (see unit 1.1) and x-ray excited fluorescence analysis are powerful techniques for the nondestructive measurement of crystal structure and chemical composition. X-ray fluorescence analysis is inherently nondestructive with orders of magnitude lower power deposited for the same detectable limit as with fluorescence excited by charged particle probes (Sparks, 1980). X-ray diffraction analysis is sensitive to crystal structure with orders-of-magnitude greater sensitivity to crystallographic strain than electron probes (Rebonato, et al. 1989). When a small-area x-ray microbeam is used as the probe, chemical composition (Z>14), crystal structure, crystalline texture, and crystalline strain distributions can be determined. These distributions can be studied both at the surface of the sample and deep within the sample (Fig. 1). Current state-of-the-art can achieve an ∼1 mm-D x-ray microprobe and an ∼0.1 mm-D x-ray microprobe has been demonstrated (Bilderback, et al., 1994). Despite their great chemical and crystallographic sensitivities, x-ray microprobe techniques have until recently been restricted by inefficient x-ray focusing optics and weak x-ray sources; x-ray microbeam analysis was largely superseded by electron techniques in the 50's. However, interest in x-ray microprobe techniques has now been revived (Howells, et al., 1983; Ice and Sparks, 1984; Chevallier, et al., 1997; Riekel 1992; Thompson, el al., 1992; and Making and Using... 1997) by the development of efficient x-ray focusing optics and ultra-high intensity synchrotron x-ray sources (Buras and Tazzari, 1984; Shenoy, et al., 1988). These advances have increased the achievable microbeam flux by more than 11 orders of magnitude (Fig. 2) (Ice, 1997); the flux in a tunable 1 mm-D beam on a 'so called' 3rd-generation synchrotron source such as the APS can exceed the flux in a fixed-energy mm2 beam on a conventional source. These advances make x-ray microfluorescence and x

  14. Operation and acquisition automation of a nuclear microprobe

    International Nuclear Information System (INIS)

    Simond, Isabelle

    1990-01-01

    The purpose of this work was to design the hardware and the software parts of data acquisition and its graphical analyses of a nuclear microprobe. Our realisation was built from a microprocessor 68020 and specialized co-processors on a VME bus. The more important demand was the amount of time required to collect the data and to perform the graphical analyses during the acquisition. To overcome this problem, we adapted a real time operating system and its kernel to our need, and built special graphical processes. (author) [fr

  15. Cryosystem for cathodoluminescence investigations by means of electron microprobe analysis

    International Nuclear Information System (INIS)

    Schreiber, J.

    1982-01-01

    A cryosystem is presented which has been designed as auxiliary equipment for electron beam microprobes used in cathodoluminescence studies. The sample holder temperature is adjustable down to 66 K with an accuracy of 0.5 K. Finally, experimental results (transmission spectra and cathodoluminescence spectra of N-doped GaP epitaxial layers at 80 K; changes in microscopic cathodoluminescence distribution at small angle grain boundaries at the (0001) plane of CdS during temperature decrease from 300 to 80 K) obtained by means of the described measuring equipment are given for illustration

  16. Elemental characterization of individual glia and glioma cells in the nuclear microprobe

    International Nuclear Information System (INIS)

    Lindh, U.

    1982-01-01

    To investigate whether variations in levels of microelements are reflected at the cellular level, a study of cultured cells was undertaken. For elemental characterization were chosen human glia and glioma cell lines. The cells were freeze-dried and about 1000 cells of each line were analyzed in the nuclear microprobe with a probe diameter of 10 μm. Scanning of the specimens under the beam made possible heat reduction and the X-ray spectrum induced was continuously recorded and subsequently processed in the computer. Elemental maps of the cells were then generated and the information from each member of the cell populations could be considered as well as the population statistics. Mass determination was accomplished by means of the bremsstrahlung continuum intensity. The main feature resulting from the characterization was that the glioma cells in average held appreciably higher contents of copper and zinc than did the glia cells. (orig.)

  17. Nuclear microprobe studies of elemental distributions in dormant seeds of Burkea africana

    Science.gov (United States)

    Witkowski, E. T. F.; Weiersbye-Witkowski, I. M.; Przybyłowicz, W. J.; Mesjasz-Przybyłowicz, J.

    1997-07-01

    Seed nutrient stores are vital post-germination for the establishment of seedlings in harsh and unpredictable environments. Plants of nutrient-poor environments allocate a substantial proportion of total acquired nutrients to reproduction (i.e. seeds). We propose that differential allocation of mineral resources to specific seed tissues is an indication of a species germination and establishment strategy. Burkea africana Hook is a leguminous tree typical of broad-leaved nutrient-poor savannas in southern Africa. Elemental distributions in dormant B. africana seed structures were obtained using the true elemental imaging system (Dynamic Analysis) of the NAC Van de Graaff nuclear microprobe. Raster scans of 3.0 MeV protons were complemented by simultaneous BS and PIXE point analyses. Mineral nutrient concentrations varied greatly between seed tissues. Elevated levels of metals known to play an important role as plant enzyme co-factors were found in the seed lens and embryonic axis. Distributions of most of these metals (Ca, Mn, Fe and Zn, but not K or Cu) were positively correlated with embryonic P distribution, and probably represent phytin deposits. The distribution of metals within seed structures is 'patchy' due to their complexation with P as electron-dense globoid phytin crystals, which constrains the interpretation of PIXE point analyses.

  18. The use of the RBI nuclear microprobe in conservation process studies of a church portal

    Energy Technology Data Exchange (ETDEWEB)

    Pastuovic, Z. [Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb (Croatia)]. E-mail: pastu@irb.hr; Fazinic, S. [Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb (Croatia); Jaksic, M. [Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb (Croatia); Krstic, D. [Croatian Conservation Institute, Nike Grskovica 23, 10000 Zagreb (Croatia); Mudronja, D. [Croatian Conservation Institute, Nike Grskovica 23, 10000 Zagreb (Croatia)

    2005-04-01

    The southern portal of the St. Marko church in Zagreb, Croatia, is currently under the process of conservation. The conservation treatments on calcareous sandstone consist of (i) removal of harmful sulfates (gypsum) from the surface of the material by saturated solution of ammonium carbonate; and (ii) treatment of the material surface with a 10% solution of barium hydroxide in order to convert the remaining dissolvable sulfates into non-dissolvable compounds and to strengthen the material surface. The nuclear microprobe has been used to measure the level of gypsum induced damage, and quality of conservation. More specifically, the surface quantity and depth concentration profiles of sulfur have been determined in several samples taken from the portal before and after the treatment with the solution of ammonium carbonate. To test the quality of treatment by the barium hydroxide solution, the depth concentration of barium in the samples has been determined after the treatment. Both sulfur and barium concentration levels have been determined by scanning the focused proton beam over the samples, detecting PIXE spectra and creating elemental distribution maps. Beside portal samples, the efficiency of the barium hydroxide treatment was tested on sandstone samples from nearby stone pit assumed to be the origin of material used for portal construction.

  19. Development of an external beam nuclear microprobe on the Aglae facility of the Louvre museum

    Energy Technology Data Exchange (ETDEWEB)

    Calligaro, T.; Dran, J.-C. E-mail: dran@culture.fr; Ioannidou, E.; Moignard, B.; Pichon, L.; Salomon, J

    2000-03-01

    The external beam line of our facility has been recently equipped with the focusing system previously mounted on a classical nuclear microprobe. When using a 0.1 {mu}m thick Si{sub 3}N{sub 4} foil for the exit window and flowing helium on the sample under analysis, a beam spot as small as 10 {mu}m is attainable at a distance of 3 mm from the window. Elemental micromapping is performed by mechanical scanning. An electronic device has been designed which allows XY scanning by moving the sample under the beam by steps down to 0.1 {mu}m. Beam monitoring is carried out by means of the weak X-ray signal emitted by the exit foil and detected by a specially designed Si(Li) detector cooled by Peltier effect. The characteristics of external beams of protons and alpha particles are evaluated by means of resonance scanning and elemental mapping of a grid. An example of application is presented, dealing with elemental micro-mapping of inclusions in gemstones.

  20. The use of the RBI nuclear microprobe in conservation process studies of a church portal

    International Nuclear Information System (INIS)

    Pastuovic, Z.; Fazinic, S.; Jaksic, M.; Krstic, D.; Mudronja, D.

    2005-01-01

    The southern portal of the St. Marko church in Zagreb, Croatia, is currently under the process of conservation. The conservation treatments on calcareous sandstone consist of (i) removal of harmful sulfates (gypsum) from the surface of the material by saturated solution of ammonium carbonate; and (ii) treatment of the material surface with a 10% solution of barium hydroxide in order to convert the remaining dissolvable sulfates into non-dissolvable compounds and to strengthen the material surface. The nuclear microprobe has been used to measure the level of gypsum induced damage, and quality of conservation. More specifically, the surface quantity and depth concentration profiles of sulfur have been determined in several samples taken from the portal before and after the treatment with the solution of ammonium carbonate. To test the quality of treatment by the barium hydroxide solution, the depth concentration of barium in the samples has been determined after the treatment. Both sulfur and barium concentration levels have been determined by scanning the focused proton beam over the samples, detecting PIXE spectra and creating elemental distribution maps. Beside portal samples, the efficiency of the barium hydroxide treatment was tested on sandstone samples from nearby stone pit assumed to be the origin of material used for portal construction

  1. Realtime control system for microprobe beamline at PLS

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, J.C.; Lee, J.W.; Kim, K.H.; Ko, I.S. [Pohang Accelerator Laboratory, POSTECH, Pohang (Korea)

    1998-11-01

    The microprobe beamline of the Pohang Light Source (PLS) consists of main and second slits, a microprobe system, two ion chambers, a video-microscope, and a Si(Li) detector. These machine components must be controlled remodely through the computer system to make user's experiments precise and speedy. A real-time computer control system was developed to control and monitor these components. A VMEbus computer with an OS-9 real-time operating system was used for the low-level data acquisition and control. VME I/O modules were used for the step motor control and the scalar control. The software has a modular structure for the maximum performance and the easy maintenance. We developed the database, the I/O driver, and the control software. We used PC/Windows 95 for the data logging and the operator interface. Visual C{sup ++} was used for the graphical user interface programming. RS232C was used for the communication between the VME and the PC. (author)

  2. Microprobe analysis of teeth by synchrotron radiation: environmental contamination

    International Nuclear Information System (INIS)

    Pinheiro, T.; Carvalho, M.L.; Casaca, C.; Barreiros, M.A.; Cunha, A.S.; Chevallier, P.

    1999-01-01

    An X-ray fluorescence set-up with microprobe capabilities, installed at the Laboratoire pour l'Utilisation du Rayonnement Electromagnetique (LURE) synchrotron (France) was used for elemental determination in teeth. To evaluate the influence of living habits in dental elemental composition nine teeth collected post-mortem were analysed, five from a miner and four from a fisherman. All teeth from the fisherman were healthy. From the miner some teeth were carious and one of them was filled with metallic amalgam. Teeth were sliced under the vertical plane and each slice was scanned from the root to the enamel for elemental profile determination. The synchrotron microprobe resolution was of 100 μm and incident photons of 18 keV energy were used. The elemental concentration values found suggest heterogeneity of the teeth material. Moreover, the distinct profiles for Mn, Sr, Br and Pb were found when teeth from the miner and from the fisherman are compared which can be associated with dietary habits and environmental influence. Higher concentrations of Mn and Sr were found for the fisherman teeth. In addition, Br was only observed in this group of teeth. Pb levels are higher for the miner teeth in particular for dentine regions. The influence of amalgam, such as, increase of Zn and Hg contents in the teeth material, is only noticed for the immediate surroundings of the treated cavity

  3. Stained glasses under the nuclear microprobe: A window into history

    Energy Technology Data Exchange (ETDEWEB)

    Vilarigues, M. [Dep. de Conservacao e Restauro and R and D Unit Vidro e da Ceramica Para as Artes, FCT-UNL, Quinta da Torre, 2829-516 Caparica (Portugal)], E-mail: mgv@fct.unl.pt; Fernandes, P. [Dep. de Conservacao e Restauro and R and D Unit Vidro e da Ceramica Para as Artes, FCT-UNL, Quinta da Torre, 2829-516 Caparica (Portugal); Alves, L.C.; Silva, R.C. da [Dep. Fisica, LFI, ITN, E.N.10, 2686-953 Sacavem (Portugal)

    2009-06-15

    Stained glass fragments from the 15th, 16th and 20th centuries, belonging to Mosteiro de Santa Maria da Vitoria, Batalha (Portugal), were characterised non-destructively in a nuclear microprobe. The work aimed at finding the composition of the glasses and glass paintings and relating these with the corresponding production periods. The elemental compositions of the glass fragments were obtained by means of scanning micro-beam Particle Induced X-ray Emission ({mu}-PIXE) spectrometry in selected cross-sections. These were complemented by micro X-Ray fluorescence spectrometry. Characterisation of colour was performed by optical absorption spectroscopy in the UV-vis range, while the corrosion products were identified by optical microscopy and {mu}-FTIR (Fourier Transform Infra Red) spectroscopy in combination with the data generated by {mu}-PIXE. Nuclear microprobe analysis allowed unveiling the compositions and structures, in particular of glass paintings and corrosion products. While it is not surprising that Fe, Cu and Pb were the main elements identified in the grisaille paintings of all studied periods, as well as Ag and Cu found in the glasses decorated with yellow silver painting, their distribution gave important clues on the materials and techniques used to manufacture these stained glasses. Furthermore, it allowed establishing a definite relation between the compositions found and the periods of production, with the added bonus of correctly reassigning the manufacturing period of some samples.

  4. General theory of three-dimensional radiance measurements with optical microprobes RID A-1977-2009

    DEFF Research Database (Denmark)

    FukshanskyKazarinova, N.; Fukshansky, L.; Kuhl, M.

    1997-01-01

    Measurements of the radiance distribution and fluence rate within turbid samples with fiber-optic radiance microprobes contain a large variable instrumental error caused by the nonuniform directional sensitivity of the microprobes. A general theory of three-dimensional radiance measurements...

  5. Characterization of PE-g-HEMA films prepared by gamma irradiation through nuclear microprobe techniques

    International Nuclear Information System (INIS)

    Ferreira, L.M.; Rodrigues, P.A.; Falcao, A.N.; Leal, J.P.

    2011-01-01

    Complete text of publication follows. The functional success of a copolymer as biomaterial depends fundamentally on their mechanical properties (stemming from the material matrix) and on the characteristics of its surface. For biomedical applications, among all the other important properties, the biocompatibility of the surface acquires extreme importance and can dictate its rejection. One of the issues regarding biocompatibility is cytotoxicity which strongly depends on the contamination level at surface. Ion beam analysis techniques associated to Nuclear Microprobe (PIXE, RBS and STIM) allows a rigorous and precise analysis of the concentration (ppm) and distribution of elements contamination, and may also provide information on its near-surface structure. In this work PE-g-HEMA films with different grafting yields were prepared by mutual gamma irradiation at a 60 Co source and were analyzed through nuclear microprobe. Data collected allowed the qualitative and quantitative evaluation of contaminants distribution observed in the different samples as well as the clarification of some processes occurred during the copolymerization reaction. Qualitative analysis showed a random and no homogeneous distribution of the contaminant elements, independent of the grafting degree, suggesting the existence of several sources of contamination at different stages of their preparation. Results also suggest that this 'phased' contamination occurs simultaneously with mechanisms of agglomeration/entrapment of impurities during the gamma induced copolymerization reaction. Moreover, quantitative data showed that all contaminants found in the copolymeric films are natural contaminants of their reagents of preparation, although at concentrations without toxicological hazard, which points to a low cytotoxic potential. The combined analysis of these data with data from SEM and AFM allowed a better understanding of the surface structure and other properties already observed in these

  6. The application of a scanning proton microprobe to biological and medial research

    International Nuclear Information System (INIS)

    Mazzolini, A.P.; O'Brien, P.M.; Legge, G.J.F.

    1985-01-01

    This paper briefly summarizes the need for trace elemental microanalysis in the biological and medical sciences. It discusses some of the specific problems associated with the preparation, handling and irradiation of fragile soft tissues and isolated cells, and how these problems can be solved. The advantages of total, quantitative data collection and analysis are also discussed

  7. The composition of pyrite in volcanogenic massive sulfide deposits as determined with the proton microprobe

    International Nuclear Information System (INIS)

    Huston, D.L.; Sie, S.H.; Suter, G.F.; Ryan, C.G.

    1993-01-01

    Pixeprobe analysis of pyrite from Australian volcanogenic massive sulfide (VMS) deposits indicate significant levels of Cu, Zn, Pb, Ba, Ag, Sb, Bi (from inclusions), As, Tl, Mo, Au, In, Cd (from nonstoichiometric substitution), Co, Ni, Se and Te (from stoichiometric substitution). Pyrite in massive sulfide lenses is enriched in trace elements compared to that in the stringer zone owing to hydrothermal recrystallization. Metamorphic recrystallization also 'cleans' pyrite of trace elements. High Au values occur in pyrite with high As content. Pyrite in stringer zones is enriched in Se relative to the overlying massive sulfide lenses and the surrounding alteration zones. (orig.)

  8. A study of experimental simulation of mantle metasomatism by the proton microprobe

    International Nuclear Information System (INIS)

    Sie, S.H.; Suter, G.F.; Sweeney, R.J.; Green, D.H.

    1991-01-01

    The chemistry of melts and fluids in the Earth's mantle is essential to understand the processes that generate them and the source areas from which they derive. The characterisation of these phases is particularly relevant with regard to the geochemical changes which would occur in a mantle subjected to the percolation of fluids (for example fluids that derive from a hydrated subducting slab to influence basic geochemistry in subduction zones) and small degree melts which percolate into a relatively cool mantle beneath continents. The development of a technique in the Geology Department of University of Tasmania, of trapping and isolating these small degree melts and fluids in pre-stressed (fractured) olivine disks inserted into run capsules is described. Little success is reported with the analysis of subsurface inclusions in olivine containing trace amounts (e.g. up to 1000 ppm) of elements of interest. This is primarily due to the fact that olivine is a heavy absorber of secondary X-rays principally a function of its higher Fe content. However, some success was achieved in the analysis of small surface melt inclusions where corrections had to be made for the overlap of the beam on the encapsulating olivine. The results carry large uncertainties (20%), primarily due to the smallness of the sample hence the large contribution of underlying olivine, and also of surrounding olivine when the beam is larger than the sample or when the beam drifts off the sample. An example of such measurements is described. Garnets in the peridotite were also analysed and this enabled the calculation of melt-garnet partition coefficients. 5 refs., 2 tabs

  9. Implementation of ionoluminescence in the AGLAE scanning external microprobe

    International Nuclear Information System (INIS)

    Pichon, L.; Calligaro, T.; Gonzalez, V.; Lemasson, Q.; Moignard, B.; Pacheco, C.

    2015-01-01

    The scope of this work is to present the implementation of an IBIL imaging system in the scanning external microprobe of the AGLAE facility so as to correlate luminescence and composition maps provided by PIXE, RBS and PIGE. The challenging integration of the optical spectrometer, due to incompatibility of acquisition timings and data formats with the other IBA channels has motivated the development of a specific acquisition system. This article details the IBIL setup and explains the technical solutions retained for the coupling of IBIL with IBA techniques in order to produce fast and large IBIL-IBA maps. The IBIL maps stored in the same format as the PIXE, RBS and PIGE ones can be visualised and compared using the dedicated AGLAEmap program or the PyMCA processing package. An example of such a coupled mapping on Mesoamerican jade is presented to emphasise the interest of performing simultaneously IBA and IBIL large mappings

  10. Wireless cardiac action potential transmission with ultrasonically inserted silicon microprobes

    International Nuclear Information System (INIS)

    Shen, C J; Ramkumar, A; Lal, A; Gilmour, R F Jr

    2011-01-01

    This paper reports on the integration of ultrasonically inserted horn-shaped cardiac probes with wireless transmission of 3D cardiac action potential measurement for applications in ex vivo preparations such as monitoring the onset of ventricular fibrillation. Ultrasonically inserted silicon horn probes permit reduced penetration force during insertion, allowing silicon, a brittle material, to penetrate cardiac tissue. The probes also allow recording from multiple sites that are lithographically defined. An application-specific integrated circuit has been designed with a 40 dB amplifying stage and a frequency modulating oscillator at 95 MHz to wirelessly transmit the recorded action potentials. This ultrasonically inserted microprobe wireless system demonstrates the initial results in wireless monitoring of 3D action potential propagation, and the extraction of parameters of interest including the action potential duration and diastolic interval

  11. Nuclear microprobe imaging of gallium nitrate in cancer cells

    Science.gov (United States)

    Ortega, Richard; Suda, Asami; Devès, Guillaume

    2003-09-01

    Gallium nitrate is used in clinical oncology as treatment for hypercalcemia and for cancer that has spread to the bone. Its mechanism of antitumor action has not been fully elucidated yet. The knowledge of the intracellular distribution of anticancer drugs is of particular interest in oncology to better understand their cellular pharmacology. In addition, most metal-based anticancer compounds interact with endogenous trace elements in cells, altering their metabolism. The purpose of this experiment was to examine, by use of nuclear microprobe analysis, the cellular distribution of gallium and endogenous trace elements within cancer cells exposed to gallium nitrate. In a majority of cellular analyses, gallium was found homogeneously distributed in cells following the distribution of carbon. In a smaller number of cells, however, gallium appeared concentrated together with P, Ca and Fe within round structures of about 2-5 μm diameter located in the perinuclear region. These intracellular structures are typical of lysosomial material.

  12. Nuclear microprobe imaging of gallium nitrate in cancer cells

    International Nuclear Information System (INIS)

    Ortega, Richard; Suda, Asami; Deves, Guillaume

    2003-01-01

    Gallium nitrate is used in clinical oncology as treatment for hypercalcemia and for cancer that has spread to the bone. Its mechanism of antitumor action has not been fully elucidated yet. The knowledge of the intracellular distribution of anticancer drugs is of particular interest in oncology to better understand their cellular pharmacology. In addition, most metal-based anticancer compounds interact with endogenous trace elements in cells, altering their metabolism. The purpose of this experiment was to examine, by use of nuclear microprobe analysis, the cellular distribution of gallium and endogenous trace elements within cancer cells exposed to gallium nitrate. In a majority of cellular analyses, gallium was found homogeneously distributed in cells following the distribution of carbon. In a smaller number of cells, however, gallium appeared concentrated together with P, Ca and Fe within round structures of about 2-5 μm diameter located in the perinuclear region. These intracellular structures are typical of lysosomial material

  13. Data acquisition for X ray microprobe. User's manual

    International Nuclear Information System (INIS)

    2002-01-01

    A modified data acquisition software for X ray microprobe was developed by the Physics Group, Instrumentation Unit, IAEA Laboratories at Seibersdorf, with assistance from M. Bogovac, Croatia. The software consists of data acquisition (scanning and calibration), automatic positioning and micro-movement of sample, data reduction and evaluation. The acquisition software was designed in order to support different measurement set-ups which are applied in low-energy nuclear physics. The modification was done in 1999-2000 under the projects Nuclear Spectrometry and Utilization of Particle Accelerators. The manual supersedes the first version entitled Microanalysis Data Acquisition and Control Program published under Computer Manual Series, No. 9 in 1996. The software described in this manual is freely available from the IAEA upon request

  14. Ion microprobe U-Pb dating of a dinosaur tooth

    International Nuclear Information System (INIS)

    Sano, Yuji; Terada, Kentaro; Ly, Chi V.; Park, Eun Ju

    2006-01-01

    Ion microprobe U-Pb dating of apatite is applied to a fossil tooth of a Allosaurid derived from the Hasandong Formation in the Gyeongsang basin, southeastern Korea. Twelve spots on a single fragment of the fossil dentine yield a Tera-Wasserburg concordia intercept age of 115±10 Ma (2σ, MSWD=0.59) on a 238 U/ 206 Pb- 207 Pb/ 206 Pb- 204 Pb/ 206 Pb diagram. The age provides a constraint on the depositional age of the fossil in its host Hassandong Formation as Early Aptian. The success of the ion microprobe dating depends on the heterogeneities of diagenetically incorporated U and Pb at the few hundred μm scale, the consequent variations in Pb isotopic compositions due to radioactive decay and the closed-system behavior of U and Pb. There are at least three end-members to explain the variations of minor chemical components such as FeO, SiO 2 and Al 2 O 3 , and trace elements as Th, U and rare earth elements (REE) in the sample by a simple mixing model. They are (1) very low minor and REE, very high common Pb with variable U abundances, (2) low common Pb, high minor, REE, and U abundances, and (3) low minor, common Pb, and U with intermediate REE abundances, even though groups (2) and (3) may consist of a larger group. Various contributions of the three (and/or two) end-members during diagenetic processes may cause the elemental fractionation of U and Pb in a fossil tooth. (author)

  15. Proton Beam Writing

    International Nuclear Information System (INIS)

    Rajta, I.; Szilasi, S.Z.; Csige, I.; Baradacs, E.

    2005-01-01

    that of not-treated samples was enough to fully develop the radiation damaged structures. Proton beam micromachined channels in negative tone resist materials Tilted structures are very interesting for various applications, such as photonic crystals and gas/liquid handling on chips. The fabrication of thick tilted structures is a challenging task for the conventional (optical and electron beam) lithographic technologies. X-ray lithography has been proved capable to produce tilted structures of very fine resolution but at a very high cost due to the required delicate mask. The use of proton beam irradiation has already been proved very successful to the patterning of thick resist films with very high aspect ratio and vertical sidewalls [6]. Proton Beam Writing (PBW) is promising for the fabrication of tilted structures due to the fact that the proton beam does not broaden significantly (e.g. a 2MeV proton beam allows the patterning of 50 μm thick resist films). PBW is a direct write method, i.e. it is a maskless process which is an obvious advantage for research applications. In the present work the Atomki microprobe facility has been used to write long tilted structures by 2MeV protons. For the formation of the structures, two exposures have been carried out at +20 deg and -20 deg using a goniometer stage sample holder. The tilted structures were resolved in the negative tone resist materials SU-8 and ADEPR (an aqueous base developable chemically amplified resist). The length of the microchannels was varied between 100 μm and 1000 μm, the wall thickness was 10 μm. By applying the developed methodology it was possible to resolve the desired layout through the whole length of the channel. (author)

  16. Proton therapy

    International Nuclear Information System (INIS)

    Smith, Alfred R

    2006-01-01

    Proton therapy has become a subject of considerable interest in the radiation oncology community and it is expected that there will be a substantial growth in proton treatment facilities during the next decade. I was asked to write a historical review of proton therapy based on my personal experiences, which have all occurred in the United States, so therefore I have a somewhat parochial point of view. Space requirements did not permit me to mention all of the existing proton therapy facilities or the names of all of those who have contributed to proton therapy. (review)

  17. Proton-beam writing channel based on an electrostatic accelerator

    Science.gov (United States)

    Lapin, A. S.; Rebrov, V. A.; Kolin'ko, S. V.; Salivon, V. F.; Ponomarev, A. G.

    2016-09-01

    We have described the structure of the proton-beam writing channel as a continuation of a nuclear scanning microprobe channel. The problem of the accuracy of positioning a probe by constructing a new high-frequency electrostatic scanning system has been solved. Special attention has been paid to designing the probe-forming system and its various configurations have been considered. The probe-forming system that best corresponds to the conditions of the lithographic process has been found based on solving the problem of optimizing proton beam formation. A system for controlling beam scanning using multifunctional module of integrated programmable logic systems has been developed.

  18. Nuclear microprobe analysis and source apportionment of individual atmospheric aerosol particles

    International Nuclear Information System (INIS)

    Artaxo, P.; Rabello, M.L.C.; Watt, F.; Grime, G.; Swietlicki, E.

    1993-01-01

    In atmospheric aerosol reserach, one key issue is to determine the sources of the airborne particles. Bulk PIXE analysis coupled with receptor modeling provides a useful, but limited view of the aerosol sources influencing one particular site or sample. The scanning nuclear microprobe (SNM) technique is a microanalytical technique that gives unique information on individual aerosol particles. In the SNM analyses a 1.0 μm size 2.4 MeV proton beam from the Oxford SNM was used. The trace elements with Z>11 were measured by the particle induced X-ray emission (PIXE) method with detection limits in the 1-10 ppm range. Carbon, nitrogen and oxygen are measured simultaneously using Rutherford backscattering spectrometry (RBS). Atmospheric aerosol particles were collected at the Brazilian Antarctic Station and at biomass burning sites in the Amazon basin tropical rain forest in Brazil. In the Antarctic samples, the sea-salt aerosol particles were clearly predominating, with NaCl and CaSO 4 as major compounds with several trace elements as Al, Si, P, K, Mn, Fe, Ni, Cu, Zn, Br, Sr, and Pb. Factor analysis of the elemental data showed the presence of four components: 1) Soil dust particles; 2) NaCl particles; 3) CaSO 4 with Sr; and 4) Br and Mg. Strontium, observed at 20-100 ppm levels, was always present in the CaSO 4 particles. The hierarchical cluster procedure gave results similar to the ones obtained through factor analysis. For the tropical rain forest biomass burning aerosol emissions, biogenic particles with a high organic content dominate the particle population, while K, P, Ca, Mg, Zn, and Si are the dominant elements. Zinc at 10-200 ppm is present in biogenic particles rich in P and K. The quantitative aspects and excellent detection limits make SNM analysis of individual aerosol particles a very powerful analytical tool. (orig.)

  19. Examination of Laser Microprobe Vacuum Ultraviolet Ionization Mass Spectrometry with Application to Mapping Mars Returned Samples

    Science.gov (United States)

    Burton, A. S.; Berger, E. L.; Locke, D. R.; Lewis, E. K.; Moore, J. F.

    2018-04-01

    Laser microprobe of surfaces utilizing a two laser setup whereby the desorption laser threshold is lowered below ionization, and the resulting neutral plume is examined using 157nm Vacuum Ultraviolet laser light for mass spec surface mapping.

  20. Laser microprobe for the study of noble gases and nitrogen in single ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Planetary and Geosciences Division, Physical Research Laboratory, Ahmedabad 380 009, India. ∗e-mail: murty@prl.ernet.in. A laser microprobe capable of analysing nitrogen and noble gases in .... tion properties for light radiation, with some.

  1. Synchrotron radiation microprobe quantitative analysis method for biomedical specimens

    International Nuclear Information System (INIS)

    Xu Qing; Shao Hanru

    1994-01-01

    Relative changes of trace elemental content in biomedical specimens are obtained easily by means of synchrotron radiation X-ray fluorescence microprobe analysis (SXRFM). However, the accurate assignment of concentration on a g/g basis is difficult. Because it is necessary to know both the trace elemental content and the specimen mass in the irradiated volume simultaneously. the specimen mass is a function of the spatial position and can not be weighed. It is possible to measure the specimen mass indirectly by measuring the intensity of Compton scattered peak for normal XRF analysis using a X-ray tube with Mo anode, if the matrix was consisted of light elements and the specimen was a thin sample. The Compton peak is not presented in fluorescence spectrum for white light SXRFM analysis. The continuous background in the spectrum was resulted from the Compton scattering with a linear polarization X-ray source. Biomedical specimens for SXRFM analysis, for example biological section and human hair, are always a thin sample for high energy X-ray, and they consist of H,C,N and O etc. light elements, which implies a linear relationship between the specimen mass and the Compton scattering background in the high energy region of spectrum. By this way , it is possible to carry out measurement of concentration for SXRFM analysis

  2. Raman microprobe measurements of stress in ion implanted materials

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, K W; Prawer, S; Weiser, P S; Dooley, S P [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1994-12-31

    Raman microprobe measurements of ion implanted diamond and silicon have shown significant shifts in the Raman line due to stresses in the materials. The Raman line shifts to higher energy if the stress is compressive and to lower energy for tensile stress{sup 1}. The silicon sample was implanted in a 60 {mu}m square with 2.56 x 10{sup 17} ions per square centimeter of 2 MeV Helium. This led to the formation of raised squares with the top 370mm above the original surface. In Raman studies of silicon using visible light, the depth of penetration of the laser beam into the sample is much less than one micron. It was found that the Raman line is due to the silicon overlying the damage region. The diamond sample was implanted with 2 x 10{sup 15} ions per square centimeter of 2.8 MeV carbon. It was concluded that the Raman spectrum could provide information concerning both the magnitude and the direction of stress in an ion implanted sample. It was possible in some cases to determine whether the stress direction is parallel or perpendicular to the sample surface. 1 refs., 2 figs.

  3. Using the ion microprobe mass analyser for trace element analysis

    International Nuclear Information System (INIS)

    Schilling, J.H.

    1978-01-01

    Most techniques for the analysis of trace elements are capable of determining the concentrations in a bulk sample or solution, but without reflecting their distribution. In a bulk analysis therefore elements which occur in high concentration in a few precipitates would still be considered trace elements even though their local concentration greatly exceed the normally accepted trace elements concentration limit. Anomalous distribution is also shown by an oxide layer, a few hundred Angstrom thick, on an aluminium sample. A low oxide concentration would be reported if it were included in the bulk analysis, which contradicts the high surface concentration. The importance of a knowledge of the trace element distribution is therefore demonstrated. Distributional trace element analysis can be carried out using the ion microprobe mass analyser (IMMA). Since the analytical technique used in this instrument, namely secondary ion mass spectrometry (SIMS), is not universally appreciated, the instrument and its features will be described briefly followed by a discussion of quantitative analysis and the related subjects of detection limit and sample consumption. Finally, a few examples of the use of the instrument are given

  4. Raman microprobe measurements of stress in ion implanted materials

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, K.W.; Prawer, S.; Weiser, P.S.; Dooley, S.P. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1993-12-31

    Raman microprobe measurements of ion implanted diamond and silicon have shown significant shifts in the Raman line due to stresses in the materials. The Raman line shifts to higher energy if the stress is compressive and to lower energy for tensile stress{sup 1}. The silicon sample was implanted in a 60 {mu}m square with 2.56 x 10{sup 17} ions per square centimeter of 2 MeV Helium. This led to the formation of raised squares with the top 370mm above the original surface. In Raman studies of silicon using visible light, the depth of penetration of the laser beam into the sample is much less than one micron. It was found that the Raman line is due to the silicon overlying the damage region. The diamond sample was implanted with 2 x 10{sup 15} ions per square centimeter of 2.8 MeV carbon. It was concluded that the Raman spectrum could provide information concerning both the magnitude and the direction of stress in an ion implanted sample. It was possible in some cases to determine whether the stress direction is parallel or perpendicular to the sample surface. 1 refs., 2 figs.

  5. Optically continuous silcrete quartz cements of the St. Peter Sandstone: High precision oxygen isotope analysis by ion microprobe

    Science.gov (United States)

    Kelly, Jacque L.; Fu, Bin; Kita, Noriko T.; Valley, John W.

    2007-08-01

    A detailed oxygen isotope study of detrital quartz and authigenic quartz overgrowths from shallowly buried (ratio by laser fluorination, resulting in an average δ 18O of 10.0 ± 0.2‰ (1SD, n = 109). Twelve thin sections were analyzed by CAMECA-1280 ion microprobe (6-10 μm spot size, analytical precision better than ±0.2‰, 1SD). Detrital quartz grains have an average δ 18O of 10.0 ± 1.4‰ (1SD, n = 91) identical to the data obtained by laser fluorination. The ion microprobe data reveal true variability that is otherwise lost by homogenization of powdered samples necessary for laser fluorination. Laser fluorination uses samples that are one million times larger than the ion microprobe. Whole rock (WR) samples from the 53 rocks were analyzed by laser fluorination, giving δ 18O between 9.8‰ and 16.7‰ ( n = 110). Quartz overgrowths in thin sections from 10 rocks were analyzed by ion microprobe and average δ 18O = 29.3 ± 1.0‰ (1SD, n = 161). Given the similarity, on average, of δ 18O for all detrital quartz grains and for all quartz overgrowths, samples with higher δ 18O(WR) values can be shown to have more cement. The quartz cement in the 53 rocks, calculated by mass balance, varies from outlier at 33 vol.% cement. Eolian samples have an average of 11% cement compared to marine samples, which average 4% cement. Two models for quartz cementation have been investigated: high temperature (50-110 °C) formation from ore-forming brines related to Mississippi Valley Type (MVT) mineralization and formation as silcretes at low temperature (10-30 °C). The homogeneity of δ 18O for quartz overgrowths determined by ion microprobe rules out a systematic regional variation of temperature as predicted for MVT brines and there are no other known heating events in these sediments that were never buried to depths >1 km. The data in this study suggest that quartz overgrowths formed as silcretes in the St. Peter Sandstone from meteoric water with δ 18O values of -10

  6. Elemental distribution and sample integrity comparison of freeze-dried and frozen-hydrated biological tissue samples with nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Vavpetič, P., E-mail: primoz.vavpetic@ijs.si [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Vogel-Mikuš, K. [Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana (Slovenia); Jeromel, L. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Ogrinc Potočnik, N. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); FOM-Institute AMOLF, Science Park 104, 1098 XG Amsterdam (Netherlands); Pongrac, P. [Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana (Slovenia); Department of Plant Physiology, University of Bayreuth, Universitätstr. 30, 95447 Bayreuth (Germany); Drobne, D.; Pipan Tkalec, Ž.; Novak, S.; Kos, M.; Koren, Š.; Regvar, M. [Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana (Slovenia); Pelicon, P. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2015-04-01

    The analysis of biological samples in frozen-hydrated state with micro-PIXE technique at Jožef Stefan Institute (JSI) nuclear microprobe has matured to a point that enables us to measure and examine frozen tissue samples routinely as a standard research method. Cryotome-cut slice of frozen-hydrated biological sample is mounted between two thin foils and positioned on the sample holder. The temperature of the cold stage in the measuring chamber is kept below 130 K throughout the insertion of the samples and the proton beam exposure. Matrix composition of frozen-hydrated tissue is consisted mostly of ice. Sample deterioration during proton beam exposure is monitored during the experiment, as both Elastic Backscattering Spectrometry (EBS) and Scanning Transmission Ion Microscopy (STIM) in on–off axis geometry are recorded together with the events in two PIXE detectors and backscattered ions from the chopper in a single list-mode file. The aim of this experiment was to determine differences and similarities between two kinds of biological sample preparation techniques for micro-PIXE analysis, namely freeze-drying and frozen-hydrated sample preparation in order to evaluate the improvements in the elemental localisation of the latter technique if any. In the presented work, a standard micro-PIXE configuration for tissue mapping at JSI was used with five detection systems operating in parallel, with proton beam cross section of 1.0 × 1.0 μm{sup 2} and a beam current of 100 pA. The comparison of the resulting elemental distributions measured at the biological tissue prepared in the frozen-hydrated and in the freeze-dried state revealed differences in elemental distribution of particular elements at the cellular level due to the morphology alteration in particular tissue compartments induced either by water removal in the lyophilisation process or by unsatisfactory preparation of samples for cutting and mounting during the shock-freezing phase of sample preparation.

  7. Practical aspects of quantitative laser Raman microprobe spectroscopy for the study of fluid inclusions

    International Nuclear Information System (INIS)

    Pasteris, J.D.; Wopenka, B.; Seitz, J.C.

    1988-01-01

    This paper is addressed to both geologists who use laser Raman microprobe (LRM) spectroscopy to analyze fluid inclusions and to those who want to evaluate analyses done by this technique. Emphasis is on how to obtain quantitative analyses of fluid inclusions. The authors discuss the basic method of fluid inclusion analysis by LRM spectroscopy and the levels of accuracy and precision attainable with this technique. They evaluate which kinds of fluid inclusions and host mineral matrices will yield the most reliable compositional data. Necessary sample preparations, detection limits, problems with fluorescence, dependence of Raman scattering efficiencies on density, and many other questions asked at the workshop on Raman spectroscopy during the 1987 ACROFI meeting also are addressed. The complementary nature, advantages, and disadvantages of both LRM spectroscopy and microthermometry, the two techniques most frequently used for the analysis of individual fluid inclusions, are emphasized. Some discussions are intended to held LRM users calibrate, and evaluate the optical characteristics of, their particular instruments. It is hoped that this paper will further LRM users in finding a common ground on which to discuss the differences and similarities among different LRM instruments, and that it will encourage a future consensus on efficient means of calibration and on interlaboratory standards

  8. Nuclear microprobe study of heavy metal uptake and transport in aquatic plant species

    International Nuclear Information System (INIS)

    Kertesz, Zs.; Kocsar, I.; Szikszai, Z.; Lakatos, Gy.

    2005-01-01

    samples were freeze-dried. A proton beam of 2MeV energy and of 100 pA current focused down to 2.5 μm x 2.5 μm was used for the nuclear microprobe measurement. O axis STIM and PIXE-PIXE ion beam analytical methods were used simultaneously to determine quantitative elemental concentrations and distributions. The essential macro-elements like P, K, S, Cl, Si, Na, Ca, Mg were found to be equally distributed along and within the roots, while most of the metals (Fe, Mn, Cu, Zn, Al, Ni, As, Ti, Sc, Hg and Cr) were found in much higher concentrations in the epidermis than in the inner tissues. Furthermore the concentration of metals showed strong positive correlation with the concentration of iron. Iron plaques were observed on the roots of the bulrush and sea club-rush, while on the root of the examined reed there were no such plaque. In accordance with this observation the iron content of the reed root was 20 times lower than of the other two species, and the concentrations of the non essential elements were an order of magnitude lower in the reed roots too. Such plaque formation is a known phenomenon. Field observations have shown that wetland plants which can survive in metal-contaminated soils frequently have iron plaque on their root. The uptake of the non-essential and the potentially toxic elements seems to be bound to the presence of these iron plaques. Although neither of the investigated species is hyperaccumulator, they show high capability to accumulate trace metals in the roots, thus appear to be good monitor of lake contamination. Ion microscopy study, providing elemental concentrations in a micrometer scale, is proved to be a useful complementation to the bulk analytical techniques in understanding the elemental uptake and transport processes, and heavy metal resistance of these plant species. (author)

  9. Transient analyzer

    International Nuclear Information System (INIS)

    Muir, M.D.

    1975-01-01

    The design and design philosophy of a high performance, extremely versatile transient analyzer is described. This sub-system was designed to be controlled through the data acquisition computer system which allows hands off operation. Thus it may be placed on the experiment side of the high voltage safety break between the experimental device and the control room. This analyzer provides control features which are extremely useful for data acquisition from PPPL diagnostics. These include dynamic sample rate changing, which may be intermixed with multiple post trigger operations with variable length blocks using normal, peak to peak or integrate modes. Included in the discussion are general remarks on the advantages of adding intelligence to transient analyzers, a detailed description of the characteristics of the PPPL transient analyzer, a description of the hardware, firmware, control language and operation of the PPPL transient analyzer, and general remarks on future trends in this type of instrumentation both at PPPL and in general

  10. Measurement of the differential cross section, vector and tensor analyzing powers of the 4.5 GeV/c deuteron breakup on 9Be with the proton emission at 80 mrad

    International Nuclear Information System (INIS)

    Azhgirej, L.S.; Afanas'ev, S.V.; Arkhipov, V.V.

    2001-01-01

    The differential cross section, vector A y and tensor A yy analysing powers of the 9 Be(d,p)X reaction have been measured at the initial deuteron momentum of 4.5GeV/c and proton detection angle of ∼80 mrad. The obtained differential cross section data are in agreement with the measurements at 3.5 and 5.78 GeV/c and proton emission angle of 2.5 deg. The data on A yy are in conformity with the similar data obtained before on the C target at different initial deuteron momenta with the proton emission at 0 deg. Whereas the data on the differential cross section of the 9 Be(d,p)X reaction are in satisfactory agreement with the calculations in the relativistic impulse approximation with standard deuteron wave functions, this approximation is inadequate to describe the A yy data. The results obtained are indicative of the need to go beyond the scope of impulse approximation just as by taking account of additional mechanisms, so through qualitatively new methods of description. (author)

  11. PIXE and light element analysis (C,N) in glass inclusions trapped in meteorites with the nuclear microprobe

    International Nuclear Information System (INIS)

    Varela, M.E.; Mosbah, M.; Metrich, N.; Duraud, J.P.; Kurat, G.

    1999-01-01

    Proton-induced X-ray emission (PIXE) and light element analysis have been performed with the nuclear microprobe at the Laboratoire Pierre Suee (Saclay-France) in glass inclusions of the carbonaceous chondrites: Allende, Kaba and Renazzo, and in the achondrite meteorite: Chassigny. Carbon contents in olivine of chondrules are below the nuclear reactions analysis (NRA) detection limit, however, glasses from glass inclusions hosted by these grains, contain an appreciable and highly variable quantities of carbon (200-1600 ppm). This could indicate variable amounts of C trapped during glass inclusion formation. On the other hand, nitrogen is present in highly variable amounts in glasses of both, chondrites and achondrites minerals. Its abundance, correlated with depth from the section surface which suggests loss of N during analyses and therefore the possible existence of a very mobile (volatile?) species. A chondritic Rb/Sr and K/Rb ratio obtained by PIXE analyses in the glass-bearing inclusions of the Chassigny meteorite points towards a primitive source for the glass precursor of Chassigny inclusions

  12. Radiometric analyzer

    International Nuclear Information System (INIS)

    Arima, S.; Oda, M.; Miyashita, K.; Takada, M.

    1977-01-01

    A radiometric analyzer for measuring the characteristic values of a sample by radiation includes a humer of radiation measuring subsystems having different ratios of sensitivities to the elements of the sample and linearizing circuits having inverse function characteristics of calibration functions which correspond to the radiation measuring subsystems. A weighing adder operates a desirable linear combination of the outputs of the linearizing circuits. Operators for operating between two or more different linear combinations are included

  13. Core Community Specifications for Electron Microprobe Operating Systems: Software, Quality Control, and Data Management Issues

    Science.gov (United States)

    Fournelle, John; Carpenter, Paul

    2006-01-01

    Modem electron microprobe systems have become increasingly sophisticated. These systems utilize either UNIX or PC computer systems for measurement, automation, and data reduction. These systems have undergone major improvements in processing, storage, display, and communications, due to increased capabilities of hardware and software. Instrument specifications are typically utilized at the time of purchase and concentrate on hardware performance. The microanalysis community includes analysts, researchers, software developers, and manufacturers, who could benefit from exchange of ideas and the ultimate development of core community specifications (CCS) for hardware and software components of microprobe instrumentation and operating systems.

  14. Mapping of trace elements with photon microprobes: x-ray fluorescence with focussed synchrotron radiation

    International Nuclear Information System (INIS)

    Hanson, A.L.; Jones, K.W.; Gordon, B.M.; Pounds, J.G.; Rivers, M.L.; Schidlovsky, G.

    1985-04-01

    High energy electron synchrotron storage rings provide copious quantities of polarized photons that make possible the mapping of many trace elements with sensitivities at the parts per billion (ppB) level with spatial resolutions in the micrometer range. The brightness of the x-ray ring of the National Synchrotron Light Source (NSLS), presently being commissioned, will be five orders of magnitude larger than that of the bremsstrahlung spectrum of state-of-the-art rotating anode tubes. We will discuss mapping trace elements with a photon microprobe presently being constructed for use at the NSLS. This microprobe will have micrometer spatial resolution

  15. An x-ray microprobe using focussing optics with a synchrotron radiation source

    International Nuclear Information System (INIS)

    Thompson, A.C.; Underwood, J.H.; Wu, Y.; Giauque, R.D.

    1989-01-01

    An x-ray microprobe can be used to produce maps of the concentration of elements in a sample. Synchrotron radiation provides x-ray beams with enough intensity and collimation to make possible elemental images with femtogram sensitivity. The use of focussing x-ray mirrors made from synthetic multilayers with a synchrotron x-ray beam allows beam spot sizes of less than 10 μm /times/ 10 μm to be produced. Since minimal sample preparation is required and a vacuum environment is not necessary, there will be a wide variety of applications for such microprobes. 8 refs., 6 figs

  16. The PNC/XOR x-ray microprobe station at APS sector 20

    International Nuclear Information System (INIS)

    Heald, S. M.; Cross, J. O.; Brewe, D. L.; Gordon, R. A.

    2007-01-01

    The X-ray microprobe is the most popular experimental setup at the PNC/XOR insertion device beamline located at sector 20 at the Advanced Photon Source. To satisfy user demand and to simplify the setup, we have developed a dedicated station with multiple detection options. This paper will describe the setup in detail and demonstrate the capabilities with some example imaging, micro-XAS and microdiffraction data. In the future, an improved version of the microprobe will be installed on a dedicated undulator. The improvements planned for this station are based on our operational experience and will also be discussed

  17. Polymer SU-8 Based Microprobes for Neural Recording and Drug Delivery

    Science.gov (United States)

    Altuna, Ane; Fernandez, Luis; Berganzo, Javier

    2015-06-01

    This manuscript makes a reflection about SU-8 based microprobes for neural activity recording and drug delivery. By taking advantage of improvements in microfabrication technologies and using polymer SU-8 as the only structural material, we developed several microprobe prototypes aimed to: a) minimize injury in neural tissue, b) obtain high-quality electrical signals and c) deliver drugs at a micrometer precision scale. Dedicated packaging tools have been developed in parallel to fulfill requirements concerning electric and fluidic connections, size and handling. After these advances have been experimentally proven in brain using in vivo preparation, the technological concepts developed during consecutive prototypes are discussed in depth now.

  18. POLYMER SU-8 BASED MICROPROBES FOR NEURAL RECORDING AND DRUG DELIVERY

    Directory of Open Access Journals (Sweden)

    Ane eAltuna

    2015-06-01

    Full Text Available This manuscript makes a reflection about SU-8 based microprobes for neural activity recording and drug delivery. By taking advantage of improvements in microfabrication technologies and using polymer SU-8 as the only structural material, we developed several microprobe prototypes aimed to: a minimize injury in neural tissue, b obtain high-quality electrical signals and c deliver drugs at a micrometer precision scale. Dedicated packaging tools have been developed in parallel to fulfill requirements concerning electric and fluidic connections, size and handling. After these advances have been experimentally proven in brain using in vivo preparation, the technological concepts developed during consecutive prototypes are discussed in depth now.

  19. The new Schonland PIXE microprobe and applications to geological and archaeological samples

    Energy Technology Data Exchange (ETDEWEB)

    Przybylowicz, W J; Watterson, J I.W.; Annegarn, H J; Connell, S H; Fearick, R W; Andeweg, A H; Sellschop, J P.F. [Schonland Research Centre for Nuclear Sciences, Univ. of the Witwatersrand, Johannesburg (South Africa)

    1993-04-01

    The new positive ion microprobe at the Schonland Centre is described and details are given of its configuration, its imaging system and software. In a unique configuration, the microprobe has access to two accelerators, a 6 MV EN tandem and a 2.5 MV single-ended machine. The imaging system uses a CAMAC based system and runs on a personal computer under OS/2. The implementation of PIXE and treatment of thick-target data are presented. Applications discussed are analysis of tin artifacts from the prehistory of metallurgy in South Africa; a diamond-containing rock; carbonado, gold contained in pyrite and cogenetic minerals included in diamond. (orig.).

  20. The new Schonland PIXE microprobe and applications to geological and archaeological samples

    International Nuclear Information System (INIS)

    Przybylowicz, W.J.; Watterson, J.I.W.; Annegarn, H.J.; Connell, S.H.; Fearick, R.W.; Andeweg, A.H.; Sellschop, J.P.F.

    1993-01-01

    The new positive ion microprobe at the Schonland Centre is described and details are given of its configuration, its imaging system and software. In a unique configuration, the microprobe has access to two accelerators, a 6 MV EN tandem and a 2.5 MV single-ended machine. The imaging system uses a CAMAC based system and runs on a personal computer under OS/2. The implementation of PIXE and treatment of thick-target data are presented. Applications discussed are analysis of tin artifacts from the prehistory of metallurgy in South Africa; a diamond-containing rock; carbonado, gold contained in pyrite and cogenetic minerals included in diamond. (orig.)

  1. Theory of equidistant three-dimensional radiance measurements with optical microprobes RID A-1977-2009

    DEFF Research Database (Denmark)

    FukshanskyKazarinova, N.; Fukshansky, L.; Kuhl, Morten

    1996-01-01

    Fiber-optic radiance microprobes, increasingly applied for measurements of internal light fields in living tissues, provide three-dimensional radiance distribution solids and radiant energy fluence rates at different depths of turbid samples. These data are, however, distorted because of an inher...... of application is presented. The limitations of this theory and the prospects for this approach are discussed....... of an inherent feature of optical fibers: nonuniform angular sensitivity. Because of this property a radiance microprobe during a single measurement partly underestimates light from the envisaged direction and partly senses light from other directions. A theory of three-dimensional equidistant radiance...

  2. Combination of synchrotron radiation X-ray microprobe and nuclear microprobe for chromium and chromium oxidation states quantitative mapping in single cells

    International Nuclear Information System (INIS)

    Ortega, Richard; Deves, Guillaume; Fayard, Barbara; Salome, Murielle; Susini, Jean

    2003-01-01

    Hexavalent chromium compounds are established carcinogens but their mechanism of cell transformation has not been elucidated yet. In this study, chromium oxidation state distribution maps in cells exposed to soluble (Na 2 CrO 4 ), or insoluble (PbCrO 4 ), Cr(VI) compounds have been obtained by use of the ESRF ID-21 X-ray microscope. In addition, the quantitative maps of element distributions in cells have been determined using the nuclear microprobe of Bordeaux-Gradignan. Nuclear microprobe quantitative analysis revealed interesting features on chromium, and lead, cellular uptake. It is suggested that cells can enhance PbCrO 4 solubility, resulting in chromium, but not lead uptake. The differential carcinogenic potential of soluble and insoluble Cr(VI) compounds is discussed with regard to chromium intracellular quantitative distribution

  3. Contamination Analyzer

    Science.gov (United States)

    1994-01-01

    Measurement of the total organic carbon content in water is important in assessing contamination levels in high purity water for power generation, pharmaceutical production and electronics manufacture. Even trace levels of organic compounds can cause defects in manufactured products. The Sievers Model 800 Total Organic Carbon (TOC) Analyzer, based on technology developed for the Space Station, uses a strong chemical oxidizing agent and ultraviolet light to convert organic compounds in water to carbon dioxide. After ionizing the carbon dioxide, the amount of ions is determined by measuring the conductivity of the deionized water. The new technique is highly sensitive, does not require compressed gas, and maintenance is minimal.

  4. Assessment of dye distribution in sensitized solar cells by microprobe techniques

    Energy Technology Data Exchange (ETDEWEB)

    Barreiros, M.A., E-mail: alexandra.barreiros@lneg.pt [Laboratório Nacional de Energia e Geologia, LEN/UES, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa (Portugal); Corregidor, V. [IPFN, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10, 2686-953 Sacavém (Portugal); Alves, L.C. [C2TN, Campus Tecnológico e Nuclear, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10, 2686-953 Sacavém (Portugal); Guimarães, F. [Laboratório Nacional de Energia e Geologia, LGM/UCTM, Rua da Amieira, Apartado 1089, 4466-901 S. Mamede de Infesta (Portugal); Mascarenhas, J.; Torres, E.; Brites, M.J. [Laboratório Nacional de Energia e Geologia, LEN/UES, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa (Portugal)

    2015-04-01

    Dye sensitized solar cells (DSCs) have received considerable attention once this technology offers economic and environmental advantages over conventional photovoltaic (PV) devices. The PV performance of a DSC relies on the characteristics of its photoanode, which typically consists of a nanocrystalline porous TiO{sub 2} film, enabled with a large adsorptive surface area. Dye molecules that capture photons from light during device operation are attached to the film nanoparticles. The effective loading of the dye in the TiO{sub 2} electrode is of paramount relevance for controlling and optimizing solar cell parameters. Relatively few methods are known today for quantitative evaluation of the total dye adsorbed on the film. In this context, microprobe techniques come out as suitable tools to evaluate the dye surface distribution and depth profile in sensitized films. Electron Probe Microanalysis (EPMA) and Ion Beam Analytical (IBA) techniques using a micro-ion beam were used to quantify and to study the distribution of the Ru organometallic dye in TiO{sub 2} films, making use of the different penetration depth and beam sizes of each technique. Different 1D nanostructured TiO{sub 2} films were prepared, morphologically characterized by SEM, sensitized and analyzed by the referred techniques. Dye load evaluation in different TiO{sub 2} films by three different techniques (PIXE, RBS and EPMA/WDS) provided similar results of Ru/Ti mass fraction ratio. Moreover, it was possible to assess dye surface distribution and its depth profile, by means of Ru signal, and to visualize the dye distribution in sample cross-section through X-ray mapping by EPMA/EDS. PIXE maps of Ru and Ti indicated an homogeneous surface distribution. The assessment of Ru depth profile by RBS showed that some films have homogeneous Ru depth distribution while others present different Ru concentration in the top layer (2 μm thickness). These results are consistent with the EPMA/EDS maps obtained.

  5. San Francisco Estuary Striped Bass Migration History Determined by Electron-microprobe Analysis of Otolith Sr/Ca Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Ostrach, D J; Phillis, C C; Weber, P K; Ingram, B L; Zinkl, J G

    2004-09-17

    Habitat use has been shown to be an important factor in the bioaccumulation of contaminants in striped bass. This study examines migration in striped bass as part of a larger study investigating bioaccumulation and maternal transfer of xenobiotics to progeny in the San Francisco Estuary system. Habitat use, residence time and spawning migration over the life of females (n = 23) was studied. Female striped bass were collected between Knights Landing and Colusa on the Sacramento River during the spawning runs of 1999 and 2001. Otoliths were removed, processed and aged via otolith microstructure. Subsequently, otoliths were analyzed for strontium/calcium (Sr/Ca) ratio using an electron-microprobe to measure salinity exposure and to distinguish freshwater, estuary, and marine habitat use. Salinity exposure during the last year before capture was examined more closely for comparison of habitat use by the maternal parent to contaminant burden transferred to progeny. Results were selectively confirmed by ion microprobe analyses for habitat use. The Sr/Ca data demonstrate a wide range of migratory patterns. Age of initial ocean entry differs among individuals before returning to freshwater, presumably to spawn. Some fish reside in freshwater year-round, while others return to more saline habitats and make periodic migrations to freshwater. Frequency of habitat shifts and residence times differs among fish, as well as over the lifetime of individual fish. While at least one fish spent its final year in freshwater, the majority of spawning fish spent their final year in elevated salinity. However, not all fish migrated to freshwater to spawn in the previous year. Results from this investigation concerning migration history in striped bass can be combined with contaminant and histological developmental analyses to better understand the bioaccumulation of contaminants and the subsequent effects they and habitat use have on fish populations in the San Francisco Estuary system.

  6. Planktonic foraminiferal oxygen isotope analysis by ion microprobe technique suggests warm tropical sea surface temperatures during the Early Paleogene

    Science.gov (United States)

    Kozdon, Reinhard; Kelly, D. Clay; Kita, Noriko T.; Fournelle, John H.; Valley, John W.

    2011-09-01

    Cool tropical sea surface temperatures (SSTs) are reported for warm Paleogene greenhouse climates based on the δ18O of planktonic foraminiferal tests. These results are difficult to reconcile with models of greenhouse gas-forced climate. It has been suggested that this "cool tropics paradox" arises from postdepositional alteration of foraminiferal calcite, yielding erroneously high δ18O values. Recrystallization of foraminiferal tests is cryptic and difficult to quantify, and the compilation of robust δ18O records from moderately altered material remains challenging. Scanning electron microscopy of planktonic foraminiferal chamber-wall cross sections reveals that the basal area of muricae, pustular outgrowths on the chamber walls of species belonging to the genus Morozovella, contain no mural pores and may be less susceptible to postdepositional alteration. We analyzed the δ18O in muricae bases of morozovellids from the central Pacific (Ocean Drilling Program Site 865) by ion microprobe using 10 μm pits with an analytical reproducibility of ±0.34‰ (2 standard deviations). In situ measurements of δ18O in these domains yield consistently lower values than those published for conventional multispecimen analyses. Assuming that the original δ18O is largely preserved in the basal areas of muricae, this new δ18O record indicates Early Paleogene (˜49-56 Ma) tropical SSTs in the central Pacific were 4°-8°C higher than inferred from the previously published δ18O record and that SSTs reached at least ˜33°C during the Paleocene-Eocene thermal maximum. This study demonstrates the utility of ion microprobe analysis for generating more reliable paleoclimate records from moderately altered foraminiferal tests preserved in deep-sea sediments.

  7. Round robin: Quantitative lateral resolution of PHI XPS microprobes Quantum 2000/Quantera SXM

    International Nuclear Information System (INIS)

    Scheithauer, Uwe; Kolb, Max; Kip, Gerard A.M.; Naburgh, Emile; Snijders, J.H.M.

    2016-01-01

    Highlights: • The quantitative lateral resolution of 7 PHI XPS microprobes has been estimated in a round robin. • An ellipsoidally shaped quartz crystal monochromatizes the Alkα radiation and refocuses it from the Al anode to the sample surface. • The long tail contributions of the X-ray beam intensity distribution were measured using a new and innovative approach. • This quantitative lateral resolution has a significantly larger value than the nominal X-ray beam diameter. • The quantitative lateral resolution follows a trend in time: The newer the monochromator so much the better the quantitative lateral resolution. - Abstract: The quantitative lateral resolution is a reliable measure for the quality of an XPS microprobe equipped with a focused X-ray beam. It describes the long tail contributions of the X-ray beam intensity distribution. The knowledge of these long tail contributions is essential when judging on the origin of signals of XPS spectra recorded on small-sized features. In this round robin test the quantitative lateral resolution of 7 PHI XPS microprobes has been estimated. As expected, the quantitative lateral resolution has significantly larger values than the nominal X-ray beam diameter. The estimated values of the quantitative lateral resolution follow a trend in time: the newer the monochromator of an XPS microprobe so much the better the quantitative lateral resolution.

  8. Round robin: Quantitative lateral resolution of PHI XPS microprobes Quantum 2000/Quantera SXM

    Energy Technology Data Exchange (ETDEWEB)

    Scheithauer, Uwe, E-mail: scht.uhg@googlemail.com [82008 Unterhaching (Germany); Kolb, Max, E-mail: max.kolb@airbus.com [Airbus Group Innovations, TX2, 81663 Munich (Germany); Kip, Gerard A.M., E-mail: G.A.M.Kip@utwente.nl [Universiteit Twente, MESA+ Nanolab, Postbus 217, 7500AE Enschede (Netherlands); Naburgh, Emile, E-mail: e.p.naburgh@philips.com [Materials Analysis, Philips Innovation Services, High Tech Campus 11, 5656 AE Eindhoven (Netherlands); Snijders, J.H.M., E-mail: j.h.m.snijders@philips.com [Materials Analysis, Philips Innovation Services, High Tech Campus 11, 5656 AE Eindhoven (Netherlands)

    2016-07-15

    Highlights: • The quantitative lateral resolution of 7 PHI XPS microprobes has been estimated in a round robin. • An ellipsoidally shaped quartz crystal monochromatizes the Alkα radiation and refocuses it from the Al anode to the sample surface. • The long tail contributions of the X-ray beam intensity distribution were measured using a new and innovative approach. • This quantitative lateral resolution has a significantly larger value than the nominal X-ray beam diameter. • The quantitative lateral resolution follows a trend in time: The newer the monochromator so much the better the quantitative lateral resolution. - Abstract: The quantitative lateral resolution is a reliable measure for the quality of an XPS microprobe equipped with a focused X-ray beam. It describes the long tail contributions of the X-ray beam intensity distribution. The knowledge of these long tail contributions is essential when judging on the origin of signals of XPS spectra recorded on small-sized features. In this round robin test the quantitative lateral resolution of 7 PHI XPS microprobes has been estimated. As expected, the quantitative lateral resolution has significantly larger values than the nominal X-ray beam diameter. The estimated values of the quantitative lateral resolution follow a trend in time: the newer the monochromator of an XPS microprobe so much the better the quantitative lateral resolution.

  9. Characterization of Alq3 thin films by a near-field microwave microprobe.

    Science.gov (United States)

    Hovsepyan, Artur; Lee, Huneung; Sargsyan, Tigran; Melikyan, Harutyun; Yoon, Youngwoon; Babajanyan, Arsen; Friedman, Barry; Lee, Kiejin

    2008-09-01

    We observed tris-8-hydroxyquinoline aluminum (Alq3) thin films dependence on substrate heating temperatures by using a near-field microwave microprobe (NFMM) and by optical absorption at wavelengths between 200 and 900 nm. The changes of absorption intensity at different substrate heating temperatures are correlated to the changes in the sheet resistance of Alq3 thin films.

  10. Microprobe investigation of brittle segregates in aluminum MIG and TIG welds

    Science.gov (United States)

    Larssen, P. A.; Miller, E. L.

    1968-01-01

    Quantitative microprobe analysis of segregated particles in aluminum MIG /Metal Inert Gas/ and TIG /Tungsten Inert Gas/ welds indicated that there were about ten different kinds of particles, corresponding to ten different intermetallic compounds. Differences between MIG and TIG welds related to the individual cooling rates of these welds.

  11. Scanning deep level transient spectroscopy using an MeV ion microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Laird, J S; Bardos, R A; Saint, A; Moloney, G M; Legge, G F.J. [Melbourne Univ., Parkville, VIC (Australia)

    1994-12-31

    Traditionally the scanning ion microprobe has given little or no information regarding the electronic structure of materials in particular semiconductors. A new imaging technique called Scanning Ion Deep Level Transient Spectroscopy (SIDLTS) is presented which is able to spatially map alterations in the band gap structure of materials by lattice defects or impurities. 3 refs., 2 figs.

  12. Evaluation of an x-ray microprobe technique as a possible aid to detect salmonellae

    International Nuclear Information System (INIS)

    Richter, E.R.; Banwart, G.J.

    1982-01-01

    Specific bacterial antigen (Salmonella) increased in phosphorus and sqlfur after reaction with the flukrescain isothiocyanate-tagged anti-Salmonella antibody, while nonspecific antigen (Escherichia coli) did not. X-ray microprobe analysis may be useful in detecting salmonellae or other bacteria by determining increases in the elemental constituents of bacterial cells when reacted with elemental-tagged antibodies

  13. Scanning deep level transient spectroscopy using an MeV ion microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Laird, J.S.; Bardos, R.A.; Saint, A.; Moloney, G.M.; Legge, G.F.J. [Melbourne Univ., Parkville, VIC (Australia)

    1993-12-31

    Traditionally the scanning ion microprobe has given little or no information regarding the electronic structure of materials in particular semiconductors. A new imaging technique called Scanning Ion Deep Level Transient Spectroscopy (SIDLTS) is presented which is able to spatially map alterations in the band gap structure of materials by lattice defects or impurities. 3 refs., 2 figs.

  14. Developments of new generation nuclear microprobe systems at the University of Melbourne

    International Nuclear Information System (INIS)

    Rout, B.; Jamieson, D.N.; Hopt, R.; Hearne, S.; Szymaski, R.

    2002-01-01

    Full text: A review of the recent developments in fabricating a new generation nuclear microprobe systems at University of Melbourne, Melbourne, will be presented. These new generation systems present high spatial resolution (less than 1 micrometer) with increasing current density (in excess of 100 pA/micrometer 2 ) of the probing ion beam. Detectors with large solid angles and high brightness of the ion source of the accelerator increase the capabilities of these microprobes many fold. Some of the key ingredients of these microprobes are (i) novel magnetic quadrupole lens quintuplet probe forming system (ii) integrated fast data acquisition system to handle high count rates (excess of 100 KHz) due to increasing current density as well as large detector solid angles up to 4 detector stations. Full dead time corrected and charge normalised maps are also implemented to counter the problems normally associated with such high count rate systems. First version of these systems is presently under operation at CSIRO, Sydney. Another similar system is currently being installed at Dutch Institute for Nuclear and High Energy Physics, Amsterdam, Netherlands. A further optimised version of the CSIRO/MARC quintuplet probe forming systems is currently being fabricated at University of Melbourne. Some of the applications involve microelectronic materials, superconductors and geological samples. We will be presenting exciting results arising out of investigations into these materials. We will be demonstrating ultimate spatial resolution of the new microprobe being fabricated at Melbourne

  15. Proton decay theory

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1983-01-01

    Topics include minimal SU(5) predictions, gauge boson mediated proton decay, uncertainties in tau/sub p/, Higgs scalar effects, proton decay via Higgs scalars, supersymmetric SU(5), dimension 5 operators and proton decay, and Higgs scalars and proton decay

  16. Proton therapy

    International Nuclear Information System (INIS)

    Jongen, Y.

    1995-01-01

    Ideal radiotherapy deposits a large amount of energy in the tumour volume, and none in the surrounding healthy tissues. Proton therapy comes closer to this goal because of a greater concentration of dose, well defined proton ranges and points of energy release which are precisely known - the Bragg peak1. In the past, the development of clinical proton therapy has been hampered by complexity, size, and cost. To be clinically effective, energies of several hundred MeV are required; these were previously unavailable for hospital installations, and pioneering institutions had to work with complex, inadequate equipment originally intended for nuclear physics research. Recently a number of specialist organizations and commercial companies have been working on dedicated systems for proton therapy. One, IBA of Belgium, has equipment for inhouse hospital operation which encompasses a complete therapy centre, delivered as a turnkey package and incorporating a compact, automated, higher energy cyclotron with isocentric gantries. Their system will be installed at Massachusetts General Hospital, Boston. The proton therapy system comprises: - a 235 MeV isochronous cyclotron to deliver beams of up to 1.5 microamps, but with a hardware limitation to restrict the maximum possible dose; - variable energy beam (235 to 70 MeV ) with energy spread and emittance verification; - a beam transport and switching system to connect the exit of the energy selection system to the entrances of a number of gantries and fixed beamlines. Along the beam transport system, the beam characteristics are monitored with non-interceptive multiwire ionization chambers for automatic tuning; - gantries fitted with nozzles and beamline elements for beam control; both beam scattering and beam wobbling techniques are available for shaping the beam;

  17. A novel technique for producing antibody-coated microprobes using a thiol-terminal silane and a heterobifunctional crosslinker.

    Science.gov (United States)

    Routh, V H; Helke, C J

    1997-02-01

    Antibody-coated microprobes are used to measure neuropeptide release in the central nervous system. Although they are not quantitative, they provide the most precise spatial resolution of the location of in vivo release of any currently available method. Previous methods of coating antibody microprobes are difficult and time-consuming. Moreover, using these methods we were unable to produce evenly coated antibody microprobes. This paper describes a novel method for the production of antibody microprobes using thiol-terminal silanes and the heterobifunctional crosslinker, 4-(4-N-maleimidophenyl)butyric acid hydrazide HCl 1/2 dioxane (MPBH). Following silation, glass micropipettes are incubated with antibody to substance P (SP) that has been conjugated to MPBH. This method results in a dense, even coating of antibody without decreasing the biological activity of the antibody. Additionally, this method takes considerably less time than previously described methods without sacrificing the use of antibody microprobes as micropipettes. The sensitivity of the microprobes for SP is in the picomolar range, and there is a linear correlation between the log of SP concentration (M) and B/B0 (r2 = 0.98). The microprobes are stable for up to 3 weeks when stored in 0.1 M sodium phosphate buffer with 50 mM NaCl (pH 7.4) at 5 degrees C. Finally, insertion into the exposed spinal cord of an anesthetized rat for 15 min produces no damage to the antibody coating.

  18. Proton radiography to improve proton therapy treatment

    NARCIS (Netherlands)

    Takatsu, J.; van der Graaf, E. R.; van Goethem, Marc-Jan; van Beuzekom, M.; Klaver, T.; Visser, Jan; Brandenburg, S.; Biegun, A. K.

    The quality of cancer treatment with protons critically depends on an accurate prediction of the proton stopping powers for the tissues traversed by the protons. Today, treatment planning in proton radiotherapy is based on stopping power calculations from densities of X-ray Computed Tomography (CT)

  19. The new confocal heavy ion microprobe beamline at ANSTO: The first microprobe resolution tests and applications for elemental imaging and analysis

    Science.gov (United States)

    Pastuovic, Z.; Siegele, R.; Cohen, D. D.; Mann, M.; Ionescu, M.; Button, D.; Long, S.

    2017-08-01

    The Centre for Accelerator Science facility at ANSTO has been expanded with the new NEC 6 MV ;SIRIUS; accelerator system in 2015. In this paper we present a detailed description of the new nuclear microprobe-Confocal Heavy Ion Micro-Probe (CHIMP) together with results of the microprobe resolution testing and the elemental analysis performed on typical samples of mineral ore deposits and hyper-accumulating plants regularly measured at ANSTO. The CHIMP focusing and scanning systems are based on the OM-150 Oxford quadrupole triplet and the OM-26 separated scan-coil doublet configurations. A maximum ion rigidity of 38.9 amu-MeV was determined for the following nuclear microprobe configuration: the distance from object aperture to collimating slits of 5890 mm, the working distance of 165 mm and the lens bore diameter of 11 mm. The overall distance from the object to the image plane is 7138 mm. The CHIMP beamline has been tested with the 3 MeV H+ and 6 MeV He2+ ion beams. The settings of the object and collimating apertures have been optimized using the WinTRAX simulation code for calculation of the optimum acceptance settings in order to obtain the highest possible ion current for beam spot sizes of 1 μm and 5 μm. For optimized aperture settings of the CHIMP the beam brightness was measured to be ∼0.9 pA μm-2 mrad-2 for 3 MeV H+ ions, while the brightness of ∼0.4 pA μm-2 mrad-2 was measured for 6 MeV He2+ ions. The smallest beam sizes were achieved using a microbeam with reduced particle rate of 1000 Hz passing through the object slit apertures several micrometers wide. Under these conditions a spatial resolution of ∼0.6 μm × 1.5 μm for 3 MeV H+ and ∼1.8 μm × 1.8 μm for 6 MeV He2+ microbeams in horizontal (and vertical) dimension has been achieved. The beam sizes were verified using STIM imaging on 2000 and 1000 mesh Cu electron microscope grids.

  20. Proton-proton elastic scattering measurements at COSY

    Energy Technology Data Exchange (ETDEWEB)

    Bagdasarian, Zara [Forschungszentrum Juelich, Juelich (Germany); Tbilisi State University, Tbilisi (Georgia); Collaboration: ANKE-Collaboration

    2014-07-01

    To construct the reliable phase shift analysis (PSA) that can successfully describe the nucleon-nucleon (NN) interaction it is necessary to measure variety of experimental observables for both proton-proton (pp) and neutron-proton (np) elastic scattering. The polarized beams and targets at COSY-ANKE facility allow a substantial contribution to the existing database. The experiment was carried out in April 2013 at ANKE using a transversely polarized proton beam incident on an unpolarized hydrogen cluster target. Six beam energies of T{sub p}=0.8,1.6,1.8,2.0,2.2,2.4 GeV were used. The aim of this talk is to present the preliminary results for the analyzing power (A{sub y}) for the pp elastic scattering in the so-far unexplored 5 <θ{sub cm}<30 angular range. Our measurements are also compared to the world data and current partial wave solutions.

  1. False colour backscatter electron images and their application during electron microprobe analysis of ores and host rocks

    International Nuclear Information System (INIS)

    Cousens, D.R.; French, D.H.; Ramsden, A.R.

    1989-01-01

    The limited contrast range of conventional black and white imaging does not enable full use to be made of the dynamic range of the video signal obtained from a scanning electron microscope or microprobe. The use of false colour substantially increases the information that can be derived from such images enabling relationships to be displayed that cannot be observed in black and white. This capability is now used extensively in combination with quantitative electron microprobe analysis as a research tool for ore characterization and host rocks studies related to minerals exploration in the CSIRO Div.sion of Exploration Geoscience. Thus the CAMEBAX scanning electron microprobe has been modified to allow digital images acquisition and software (IMAGE) developed which allows false colour backscatter electron (BSE) images to be obtained during the course of routine electron microprobe analysis. 1 fig

  2. Combining Raman Microprobe and XPS to Study High Temperature Oxidation of Metals

    International Nuclear Information System (INIS)

    Windisch, Charles F.; Henager, Charles H.; Engelhard, Mark H.; Bennett, Wendy D.

    2011-01-01

    Raman microprobe spectroscopy was applied in studies of high-temperature air oxidation of a ferritic alloy (HT-9) in the absence and presence of zirconia coatings with the objective of evaluating the technique as a way to quickly screen candidate cladding materials and actinide-based mixed oxide fuel mixtures for advanced nuclear reactors. When oxidation was relatively uniform, Raman spectra collected using microscope optics with low spatial resolution were found to be similar to those collected with conventional Raman spectroscopy. These spectra could be used to identify major oxide corrosion products and follow changes in the composition of the oxides due to heating. However, when the oxidation films were comprised of multiple layers of varying composition, or with layers containing metallic phases, techniques with higher depth resolution and sensitivity to zero-valence metals were necessary. The requirements were met by combining Raman microprobe using different optical configurations and x-ray photoelectron spectroscopy.

  3. CONCH: A Visual Basic program for interactive processing of ion-microprobe analytical data

    Science.gov (United States)

    Nelson, David R.

    2006-11-01

    A Visual Basic program for flexible, interactive processing of ion-microprobe data acquired for quantitative trace element, 26Al- 26Mg, 53Mn- 53Cr, 60Fe- 60Ni and U-Th-Pb geochronology applications is described. Default but editable run-tables enable software identification of secondary ion species analyzed and for characterization of the standard used. Counts obtained for each species may be displayed in plots against analysis time and edited interactively. Count outliers can be automatically identified via a set of editable count-rejection criteria and displayed for assessment. Standard analyses are distinguished from Unknowns by matching of the analysis label with a string specified in the Set-up dialog, and processed separately. A generalized routine writes background-corrected count rates, ratios and uncertainties, plus weighted means and uncertainties for Standards and Unknowns, to a spreadsheet that may be saved as a text-delimited file. Specialized routines process trace-element concentration, 26Al- 26Mg, 53Mn- 53Cr, 60Fe- 60Ni, and Th-U disequilibrium analysis types, and U-Th-Pb isotopic data obtained for zircon, titanite, perovskite, monazite, xenotime and baddeleyite. Correction to measured Pb-isotopic, Pb/U and Pb/Th ratios for the presence of common Pb may be made using measured 204Pb counts, or the 207Pb or 208Pb counts following subtraction from these of the radiogenic component. Common-Pb corrections may be made automatically, using a (user-specified) common-Pb isotopic composition appropriate for that on the sample surface, or for that incorporated within the mineral at the time of its crystallization, depending on whether the 204Pb count rate determined for the Unknown is substantially higher than the average 204Pb count rate for all session standards. Pb/U inter-element fractionation corrections are determined using an interactive log e-log e plot of common-Pb corrected 206Pb/ 238U ratios against any nominated fractionation-sensitive species pair

  4. Study of ion tracks by micro-probe ion energy loss spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Vacík, Jiří; Havránek, Vladimír; Hnatowicz, Vladimír; Horák, Pavel; Fink, Dietmar; Apel, P. Yu.

    2014-01-01

    Roč. 332, AUG (2014), s. 308-311 ISSN 0168-583X. [21st International Conference on Ion Beam Analysis (IBA). Seattle, 23.06.2013-28.06.2013] R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk(XE) LM2011019 Institutional support: RVO:61389005 Keywords : ion energy loss spectrometry * single ion track * microprobe * tomography Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.124, year: 2014

  5. Lateral diffusion study of the Pt-Al system using the NAC nuclear microprobe.

    Science.gov (United States)

    de Waal, H.; Pretorius, R.

    1999-10-01

    In this study a nuclear microprobe (NMP) was used to analyse phase formation during reaction in Pt-Al lateral diffusion couples. Phase identification was done by Rutherford backscattering spectroscopy. These results were compared with phase formation during conventional thin film Pt-Al interactions. The co-existence of multiple phases in lateral diffusion couples is discussed with reference to the effective heat of formation (EHF) model.

  6. Lateral diffusion study of the Pt-Al system using the NAC nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Waal, H. de E-mail: dewalla@nac.ac.za; Pretorius, R

    1999-09-02

    In this study a nuclear microprobe (NMP) was used to analyse phase formation during reaction in Pt-Al lateral diffusion couples. Phase identification was done by Rutherford backscattering spectroscopy. These results were compared with phase formation during conventional thin film Pt-Al interactions. The co-existence of multiple phases in lateral diffusion couples is discussed with reference to the effective heat of formation (EHF) model.

  7. U and Pb isotope analysis of uraninite and galena by ion microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Evins, L.Z.; Sunde, T.; Schoeberg, H. [Swedish Museum of Natural History, Stockholm (Sweden). Laboratory for Isotope Geology; Fayek, M. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Geological Sciences

    2001-10-01

    Accurate isotopic analysis of minerals by ion microprobe, or SIMS (Secondary Ion Mass Spectrometry) usually requires a standard to correct for instrumental mass bias effects that occur during analysis. We have calibrated two uraninite crystals and one galena crystal to be used as ion probe standards. As part of this study we describe the analytical procedures and problems encountered while trying to establish fractionation factors for U and Pb isotopes measured in galena and uraninite. Only the intra-element isotopic mass fractionation is considered and not the interelement fractionation. Galena and uraninite were analysed with TIMS (Thermal Ionisation Mass Spectrometry) prior to SIMS. One uraninite crystal (P88) comes from Sweden and is ca 900 Ma old, the other from Maine, USA (LAMNH-30222) and is ca 350 Ma old. The galena sample comes from the Paleoproterozoic ore district Bergslagen in Sweden. SIMS analyses were performed at two different laboratories: the NORDSM facility in Stockholm, which has a high resolution Cameca IMS 1270 ion microprobe, and the Oak Ridge National Laboratory (ORNL) in Tennessee, which has a Cameca IMS 4f ion microprobe. The results show that during the analysis of galena, Pb isotopes fractionate in favour of the lighter isotope by as much as 0.5%/amu. A Pb isotope fractionation factor for uraninite was more difficult to calculate, probably due to the formation of hydride interferences encountered during analysis with the Cameca IMS 1270 ion microprobe. However, drying the sample in vacuum prior to analysis, and using high-energy filtering and a cold trap during analysis can minimise these hydride interferences. A large fractionation of U isotopes of ca 1.4%/amu in favour of the lighter isotope was calculated for uraninite.

  8. Total quantitative recording of elemental maps and spectra with a scanning microprobe

    International Nuclear Information System (INIS)

    Legge, G.J.F.; Hammond, I.

    1979-01-01

    A system of data recording and analysis has been developed by means of which simultaneously all data from a scanning instrument such as a microprobe can be quantitatively recorded and permanently stored, including spectral outputs from several detectors. Only one scanning operation is required on the specimen. Analysis is then performed on the stored data, which contain quantitative information on distributions of all elements and spectra of all regions

  9. Application of the microprobe dredging operation in the treatment of the meibomian gland dysfunction(MGD

    Directory of Open Access Journals (Sweden)

    Qing-Qiang Wang

    2014-07-01

    Full Text Available AIM: To evaluate the function of the microprobe dredging technology in the treatment of meibomian gland dysfunction(MGDand to provide fast, efficient, economical and practical method of treatment for meibomian gland dysfunction(MGD. METHODS:The 100μm diameter stainless steel wire was made as the microprobe with the total length of 3cm, which the needle was about 5mm and hand shank was about 2.5cm. Selected 140 cases with dry eyes of meibomian gland dysfunction(MGD, patients were divided into two groups and made them have comparability. Observation group(n=70used microprobe to dredge meibomian gland pipe accompanied with drugs, hot compress and meibomian gland massage treatment. The control group(n=70was given conventional drugs, hot compress and meibomian massage treatment. To compare the tear break-up time(BUT, efficient rate and the cure rate of the two groups after treatment of 1d, 1wk, 2wk, 1 mo, 2mo and 3mo.RESULTS: BUT were significantly prolonged in observation group and control group after treatment, and the observation group improved more obviously; the efficient rate and cure rate of the observation group were significantly higher than that of the control group after 1d, 1wk, 2wk, 1mo, 2mo and 3mo treatment. CONCLUSION:Using microprobe to unclog the meibomian gland tube can provide the fast and efficient, economical and practical treatment for meibomian gland dysfunction(MGD, which can be promoted in the clinical practice.

  10. U and Pb isotope analysis of uraninite and galena by ion microprobe

    International Nuclear Information System (INIS)

    Evins, L.Z.; Sunde, T.; Schoeberg, H.; Fayek, M.

    2001-10-01

    Accurate isotopic analysis of minerals by ion microprobe, or SIMS (Secondary Ion Mass Spectrometry) usually requires a standard to correct for instrumental mass bias effects that occur during analysis. We have calibrated two uraninite crystals and one galena crystal to be used as ion probe standards. As part of this study we describe the analytical procedures and problems encountered while trying to establish fractionation factors for U and Pb isotopes measured in galena and uraninite. Only the intra-element isotopic mass fractionation is considered and not the interelement fractionation. Galena and uraninite were analysed with TIMS (Thermal Ionisation Mass Spectrometry) prior to SIMS. One uraninite crystal (P88) comes from Sweden and is ca 900 Ma old, the other from Maine, USA (LAMNH-30222) and is ca 350 Ma old. The galena sample comes from the Paleoproterozoic ore district Bergslagen in Sweden. SIMS analyses were performed at two different laboratories: the NORDSM facility in Stockholm, which has a high resolution Cameca IMS 1270 ion microprobe, and the Oak Ridge National Laboratory (ORNL) in Tennessee, which has a Cameca IMS 4f ion microprobe. The results show that during the analysis of galena, Pb isotopes fractionate in favour of the lighter isotope by as much as 0.5%/amu. A Pb isotope fractionation factor for uraninite was more difficult to calculate, probably due to the formation of hydride interferences encountered during analysis with the Cameca IMS 1270 ion microprobe. However, drying the sample in vacuum prior to analysis, and using high-energy filtering and a cold trap during analysis can minimise these hydride interferences. A large fractionation of U isotopes of ca 1.4%/amu in favour of the lighter isotope was calculated for uraninite

  11. The study of voids in the AuAl thin-film system using the nuclear microprobe

    Science.gov (United States)

    de Waal, H. S.; Pretorius, R.; Prozesky, V. M.; Churms, C. L.

    1997-07-01

    A Nuclear Microprobe (NMP) was used to study void formation in thin film gold-aluminium systems. Microprobe Rutherford Backscattering Spectrometry (μRBS) was utilised to effectively obtain a three-dimensional picture of the void structure on the scale of a few nanometers in the depth dimension and a few microns in the in-plane dimension. This study illustrates the usefulness of the NMP in the study of materials and specifically thin-film structures.

  12. The Mars Microprobe Mission: Advanced Micro-Avionics for Exploration Surface

    Science.gov (United States)

    Blue, Randel

    2000-01-01

    The Mars Microprobe Mission is the second spacecraft developed as part of the New Millennium Program deep space missions. The objective of the Microprobe Project is to demonstrate the applicability of key technologies for future planetary missions by developing two probes for deployment on Mars. The probes are designed with a single stage entry, descent, and landing system and impact the Martian surface at speeds of approximately 200 meters per second. The microprobes are composed of two main sections, a forebody section that penetrates to a depth below the Martian surface of 0.5 to 2 meters, and an aftbody section that remains on the surface. Each probe system consists of a number of advanced technology components developed specifically for this mission. These include a non-erosive aeroshell for entry into. the atmosphere, a set of low temperature batteries to supply probe power, an advanced microcontroller to execute the mission sequence, collect the science data, and react to possible system fault conditions, a telecommunications subsystem implemented on a set of custom integrated circuits, and instruments designed to provide science measurements from above and below the Martian surface. All of the electronic components have been designed and fabricated to withstand the severe impact shock environment and to operate correctly at predicted temperatures below -100 C.

  13. A photomultiplier-based secondary electron imaging system for a nuclear microprobe

    International Nuclear Information System (INIS)

    Alves, L.C.; Breese, M.B.H.; Silva, M.F. da; Soares, J.C.

    2002-01-01

    The ability to define, or recognise particular regions of interest or surface features is vital to the analysis and interpretation of spatially-resolved images collected with a nuclear microprobe. However, good topographic image contrast is difficult to accomplish using PIXE or RBS images due to their inherent insensitivity to topography, lack of elemental variation or poor statistics. Topographic image contrast is commonly obtained in scanning electron microscopy (SEM) by detecting a large flux of secondary electrons produced by the focused keV electron beam. Similar systems have not been widely used on nuclear microprobes due to ion beam intensity fluctuations, which limit the minimum resolvable contrast and present a major limitation for this technique. This paper describes a secondary electron imaging system which has been developed on the Lisbon microprobe. It is based on a scintillator, a photomultiplier operated in a pulsed mode, a pulse shaping electronic chain and ADC, and requires no changes to the existing data acquisition system. Examples of the images obtained from materials such as patterned SiGe wafers and hydrogen-implanted silicon are given, and compared with SEM or optical images

  14. Laser Compton polarimetry of proton beams

    International Nuclear Information System (INIS)

    Stillman, A.

    1995-01-01

    A need exists for non-destructive polarization measurements of the polarized proton beams in the AGS and, in the future, in RHIC. One way to make such measurements is to scatter photons from the polarized beams. Until now, such measurements were impossible because of the extremely low Compton scattering cross section from protons. Modern lasers now can provide enough photons per laser pulse not only to scatter from proton beams but also, at least in RHIC, to analyze their polarization

  15. Proton diffraction

    International Nuclear Information System (INIS)

    Den Besten, J.L.; Jamieson, D.N.; Allen, L.J.

    1998-01-01

    The Lindhard theory on ion channeling in crystals has been widely accepted throughout ion beam analysis for use in simulating such experiments. The simulations use a Monte Carlo method developed by Barret, which utilises the classical 'billiard ball' theory of ions 'bouncing' between planes or tubes of atoms in the crystal. This theory is not valid for 'thin' crystals where the planes or strings of atoms can no longer be assumed to be of infinite proportions. We propose that a theory similar to that used for high energy electron diffraction can be applied to MeV ions, especially protons, in thin crystals to simulate the intensities of transmission channeling and of RBS spectra. The diffraction theory is based on a Bloch wave solution of the Schroedinger equation for an ion passing through the periodic crystal potential. The widely used universal potential for proton-nucleus scattering is used to construct the crystal potential. Absorption due to thermal diffuse scattering is included. Experimental parameters such as convergence angle, beam tilt and scanning directions are considered in our calculations. Comparison between theory and experiment is encouraging and suggests that further work is justified. (authors)

  16. Proton-proton Scattering Above 3 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    A. Sibirtsev, J. Haidenbauer, H.-W. Hammer S. Krewald ,Ulf-G. Meissner

    2010-01-01

    A large set of data on proton-proton differential cross sections, analyzing powers and the double-polarization parameter A{sub NN} is analyzed employing the Regge formalism. We find that the data available at proton beam momenta from 3 GeV/c to 50 GeV/c exhibit features that are very well in line with the general characteristics of Regge phenomenology and can be described with a model that includes the {rho}, {omega}, f{sub 2}, and a{sub 2} trajectories and single-Pomeron exchange. Additional data, specifically for spin-dependent observables at forward angles, would be very helpful for testing and refining our Regge model.

  17. Use of electron microprobe x-ray analysis for determination of low calcium concentrations across leaves deficient in calcium

    Science.gov (United States)

    Barta, D. J.; Tibbitts, T. W.

    1991-01-01

    An electron microprobe with wavelength-dispersive x-ray spectrometry (WDS) was found to be useful for the determination of Ca concentrations in leaf tissue deficient in Ca. WDS effectively detected Ca concentrations as low as 0.2 mg/g dry wt in the presence of high levels of K and Mg (120 and 50 mg/g dry wt, respectively). Leaf specimens were prepared for analysis by quick-freezing in liquid nitrogen and freeze-drying at -20 degrees C to maintain elemental integrity within the tissue. Because dry material was analyzed, sample preparation was simple and samples could be stored for long periods before analysis. A large beam diameter of 50 gm was used to minimize tissue damage under the beam and analyze mineral concentrations within several cells at one time. Beam penetration was between 50 and 55 microns, approximately one-third of the thickness of the leaf. For analysis of concentrations in interveinal areas, analyses directed into the abaxial epidermis were found most useful. However, because of limited beam penetration, analyses of veinal areas would require use of cross sections [correction of crosssections]. Solid mineral standards were used for instrument standardization. To prevent measurement errors resulting from differences between the matrix of the mineral standards and the analyzed tissue, concentrations in leaves were corrected using gelatin standards prepared and analyzed under the same conditions. WDS was found to be useful for documenting that very low Ca levels occur in specific areas of lettuce leaves exhibiting the Ca deficiency injury termed tipburn.

  18. Distribution of elements in rat peripheral axons and nerve cell bodies determined by x-ray microprobe analysis

    Energy Technology Data Exchange (ETDEWEB)

    LoPachin, R.M. Jr.; Lowery, J.; Eichberg, J.; Kirkpatrick, J.B.; Cartwright, J. Jr.; Saubermann, A.J.

    1988-09-01

    X-ray microprobe analysis was used to determine concentrations (millimoles of element per kilogram dry weight) of Na, P, Cl, K, and Ca in cellular compartments of frozen, unfixed sections of rat sciatic and tibial nerves and dorsal root ganglion (DRG). Five compartments were examined in peripheral nerve (axoplasm, mitochondria, myelin, extraaxonal space, and Schwann cell cytoplasm), and four were analyzed in DRG nerve cell bodies (cytoplasm, mitochondria, nucleus, and nucleolus). Each morphological compartment exhibited characteristic concentrations of elements. The extraaxonal space contained high concentrations of Na, Cl, and Ca, whereas intraaxonal compartments exhibited lower concentrations of these elements but relatively high K contents. Nerve axoplasm and axonal mitochondria had similar elemental profiles, and both compartments displayed proximodistal gradients of decreasing levels of K, Cl, and, to some extent, Na. Myelin had a selectively high P concentration with low levels of other elements. The elemental concentrations of Schwann cell cytoplasm and DRG were similar, but both were different from that of axoplasm, in that K and Cl were markedly lower whereas P was higher. DRG cell nuclei contained substantially higher K levels than cytoplasm. The subcellular distribution of elements was clearly shown by color-coded images generated by computer-directed digital x-ray imaging. The results of this study demonstrate characteristic elemental distributions for each anatomical compartment, which doubtless reflect nerve cell structure and function.

  19. Proton imaging apparatus for proton therapy application

    International Nuclear Information System (INIS)

    Sipala, V.; Lo Presti, D.; Brianzi, M.; Civinini, C.; Bruzzi, M.; Scaringella, M.; Talamonti, C.; Bucciolini, M.; Cirrone, G.A.P.; Cuttone, G.; Randazzo, N.; Stancampiano, C.; Tesi, M.

    2011-01-01

    Radiotherapy with protons, due to the physical properties of these particles, offers several advantages for cancer therapy as compared to the traditional radiotherapy and photons. In the clinical use of proton beams, a p CT (Proton Computer Tomography) apparatus can contribute to improve the accuracy of the patient positioning and dose distribution calculation. In this paper a p CT apparatus built by the Prima (Proton Imaging) Italian Collaboration will be presented and the preliminary results will be discussed.

  20. Proton radioactivity from proton-rich nuclei

    International Nuclear Information System (INIS)

    Guzman, F.; Goncalves, M.; Tavares, O.A.P.; Duarte, S.B.; Garcia, F.; Rodriguez, O.

    1999-03-01

    Half-lives for proton emission from proton-rich nuclei have been calculated by using the effective liquid drop model of heavy-particle decay of nuclei. It is shown that this model is able to offer results or spontaneous proton-emission half-life-values in excellent agreement with the existing experimental data. Predictions of half-life-values for other possible proton-emission cases are present for null orbital angular momentum. (author)

  1. Proton induced X-ray emission analysis

    International Nuclear Information System (INIS)

    Khan, Rashiduzzman

    1976-09-01

    The developments in proton induced X-ray emission analysis are reviewed. Techniques for analyzing thick and thin samples of different origin are described. Discussions on the application of proton induced X-ray emission analysis in different fields, comparison of the sensitivity of this method with other analytical techniques, its limitations and possible improvements are presented

  2. Does proton decay follow the exponential law

    International Nuclear Information System (INIS)

    Sanchez-Gomez, J.L.; Alvarez-Estrada, R.F.; Fernandez, L.A.

    1984-01-01

    In this paper, we discuss the exponential law for proton decay. By using a simple model based upon SU(5)GUT and the current theories of hadron structure, we explicitely show that the corrections to the Wigner-Weisskopf approximation are quite negligible for present day protons, so that their eventual decay should follow the exponential law. Previous works are critically analyzed. (orig.)

  3. Use of X-ray microprobe to diagnose bone tissue demineralization after caffeine administration Use of X-ray microprobe to diagnose bone tissue demineralization after caffeine administration

    Directory of Open Access Journals (Sweden)

    Marek Tomaszewski

    2012-10-01

    Full Text Available Caffeine is a methylxanthine which permeates the placenta. In studies on animals, it has been
    shown to produce teratogenic and embryotoxic effects in large doses. The objective of this study was to
    assess the influence of caffeine on the development of bone tissue, with particular reference to elemental
    bone composition using an X-ray microprobe. The research was conducted on rats. The fertilized females
    were randomly divided into an experimental and a control group. The experimental group was
    given caffeine orally in 30 mg/day doses from the 8th to the 21st day of pregnancy, while the control group
    was given water. The fetuses were used to assess the growth and mineralization of the skeleton. On the
    basis of double dyeing, a qualitative analysis of the bone morphology and mineralization was conducted.
    For calcium and potassium analysis, an X-ray microprobe was used. In 67 fetuses from the experimental
    group, changes in skeleton staining with the alcian-alizarin method were noticed. The frequency of the
    development of variants in the experimental group was statistically higher. In the experimental group,
    a significant decrease in the calcium level, as well as an increase in the potassium level, was observed.
    The X-ray microprobe’s undoubted advantage is that is offers a quick qualitative and quantitative analysis
    of the elemental composition of the examined samples. Employing this new technique may furnish us
    with new capabilities when investigating the essence of the pathology process.Caffeine is a methylxanthine which permeates the placenta. In studies on animals, it has been
    shown to produce teratogenic and embryotoxic effects in large doses. The objective of this study was to
    assess the influence of caffeine on the development of bone tissue, with particular reference to elemental
    bone composition using an X-ray microprobe. The research was conducted on

  4. New improvements in the characterization of refractory gold in pyrites: an electron microprobe, Moessbauer spectrometry and ion microprobe study

    International Nuclear Information System (INIS)

    Marion, P.; Holliger, P.; Boiron, M.C.; Cathelineau, M.; Wagner, F.E.

    1991-01-01

    Studies of pyrites by Moessbauer spectroscopy have shown the presence of gold in a combined state probably inserted within the lattice. In order to enhance detection limits for in-situ quantitative gold analyses, new SIMS investigations have been made thanks to a Resistive Anode Encorder record of the ion emissions, which provides digital images or scans of any part of the analyzed volume. Quantitative analysis of gold have been carried out thanks to 2 MeV ion implantation of gold in reference sulfide crystals, and the bulk composition of a pyrite grain has been determined. Some strong enrichments in gold and arsenic at the crystal margin attest fluctuations in the fluid chemistry and may be interpreted as a final growth zone, which is similar to that observed on arsenopyrite crystals. This multidisciplinary approach constitutes a powerful tool for the investigation of the insertion and distribution of trace elements within crystals, especially gold in sulfides at low contents down to a few ppm. (author)

  5. Proton exciting X ray analysis

    International Nuclear Information System (INIS)

    Ma Xinpei

    1986-04-01

    The analyzing capability of proton exciting X ray analysis for different elements in organisms was discussed, and dealing with examples of trace element analysis in the human body and animal organisms, such as blood serum, urine, and hair. The sensitivity, accuracy, and capability of multielement analysis were discussed. Its strong points for the trace element analysis in biomedicine were explained

  6. Non-Rutherford backscattering microscopy using 25 MeV protons

    Energy Technology Data Exchange (ETDEWEB)

    Peeper, Katrin, E-mail: katrin.peeper@unibw.de [Universitaet der Bundeswehr, Angewandte Physik und Messtechnik, Werner-Heisenberg-Weg 39, 85577 Neubiberg (Germany); Moser, Marcus; Reichart, Patrick; Dollinger, Guenther [Universitaet der Bundeswehr, Angewandte Physik und Messtechnik, Werner-Heisenberg-Weg 39, 85577 Neubiberg (Germany)

    2012-02-15

    Protons at energies between 10 and 25 MeV are a very sensitive probe for hydrogen using coincident proton-proton scattering with the possibility for depth profiling samples up to several 100 {mu}m thickness. At the Munich microprobe SNAKE we have developed this method for sensitive 3D hydrogen microscopy . In parallel to sensitive 3D hydrogen microscopy by proton-proton scattering we introduce a non-Rutherford backscattering analysis utilizing 25 MeV protons in order to obtain 3D depth profiles of all major elements. We present energy spectra of backscattered protons at various thin and thick film samples of pure elements which we use as fingerprints to analyse more complex materials like minerals or metals. It is due to the low stopping power of the high energy protons that the depth profiles of several elements do not or do only partially overlap when analysing freestanding samples with thicknesses in the 100 {mu}m range. The merit of our method is that signals of the light elements may not be affected by heavier matrix elements. Analysing thin films smaller than 5 {mu}m we have achieved a mass resolution of {Delta}A/A{<=}1/28 for non-overlapping mass signals utilizing a 5 mm thick Si(Li)-detector.

  7. Proton movies

    CERN Multimedia

    2009-01-01

    A humorous short film made by three secondary school students received an award at a Geneva film festival. Even without millions of dollars or Hollywood stars at your disposal, it is still possible to make a good science fiction film about CERN. That is what three students from the Collège Madame de Staël in Carouge, near Geneva, demonstrated. For their amateur short film on the LHC, they were commended by the jury of the video and multimedia festival for schools organised by the "Media in education" service of the Canton of Geneva’s Public Education Department. The film is a spoof of a television news report on the LHC start-up. In sequences full of humour and imagination, the reporter conducts interviews with a very serious "Professor Sairne", some protons preparing for their voyage and even the neutrons that were rejected by the LHC. "We got the idea of making a film about CERN at the end of the summer," explains Lucinda Päsche, one of the three students. "We did o...

  8. New 2-stage ion microprobes and a move to higher energies

    Energy Technology Data Exchange (ETDEWEB)

    Legge, G.J.F.; Dymnikov, A.; Moloney, G.; Saint, A. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Cohen, D. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    Recent moves in Ion Beam Microanalysis towards the use of a rapidly growing number of very high resolution, low current and single ion techniques has led to the need for high demagnification and greatly improved beam quality. There is also a move to apply Microbeams at higher energies and with heavier ions. This also puts demands on the focusing system and beam control. This paper describes the recent development of 2-stage lens systems to be applied here and overseas, both at very high resolution and at high energies with heavy ions. It looks at new ion beam analysis applications of such ion microprobes. 8 refs., 1 tab., 1 fig.

  9. New 2-stage ion microprobes and a move to higher energies

    Energy Technology Data Exchange (ETDEWEB)

    Legge, G J.F.; Dymnikov, A; Moloney, G; Saint, A [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Cohen, D [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1997-12-31

    Recent moves in Ion Beam Microanalysis towards the use of a rapidly growing number of very high resolution, low current and single ion techniques has led to the need for high demagnification and greatly improved beam quality. There is also a move to apply Microbeams at higher energies and with heavier ions. This also puts demands on the focusing system and beam control. This paper describes the recent development of 2-stage lens systems to be applied here and overseas, both at very high resolution and at high energies with heavy ions. It looks at new ion beam analysis applications of such ion microprobes. 8 refs., 1 tab., 1 fig.

  10. Characterisation of candidate reference materials by PIXE analysis and nuclear microprobe PIXE imaging

    International Nuclear Information System (INIS)

    Jaksic, M.; Pastuovic, Z.; Bogdanovic, I.; Tadic, T.

    2002-01-01

    In order to test whether some candidate reference materials show homogeneity that can satisfy quality control of the PIXE technique, six bottles of each of the two Candidate RM's - Lichen (IAEA 338) and Algae (IAEA 413) were tested. Four different tests were performed. First, two pellets from each bottle were prepared and analysed using broad beam (φ = 5 mm) PIXE. Second and third was analysis of homogeneity using scanning focussed beam at the nuclear microprobe. Scans of 50x50 μm 2 and 240x260 μm 2 were performed. Finally, individual grains with composition differing from the rest of the sample, were analysed using PIXE and RBS. (author)

  11. Cometary and interstellar dust grains - Analysis by ion microprobe mass spectrometry and other techniques

    Science.gov (United States)

    Zinner, Ernst

    1991-01-01

    A survey of microanalytical measurements on interplanetary dust particles (IDPs) and interstellar dust grains from primitive meteorites is presented. Ion-microprobe mass spectrometry with its capability to determine isotopic compositions of many elements on a micron spatial scale has played a special role. Examples are measurements of H, N, and O isotopes and refractory trace elements in IDPs; C, N, Mg, and Si isotopes in interstellar SiC grains; and C and N isotopes and H, N, Al, and Si concentrations in interstellar graphite grains.

  12. CMB v. 1.1 Data Acquisition and Evaluation System of the Cracow Nuclear Microprobe

    International Nuclear Information System (INIS)

    Lekki, J.; Hajduk, R.; Potempa, A.; Pieprzyca, T.; Stachura, Z.; Zieblinski, M.; Styczen, J.; Lebed, S.

    2000-11-01

    An overview of the Cracow nuclear microprobe together with its data acquisition and control system is presented. Magnetic deflection was applied for beam scanning, while detector signals acquisition is performed by the NIM/CAMAC modules under supervision of a Windows operating system running on a PC equipped with the GPIB controller card. Total spectra from every detector are accessible on-line during the measurement, while full information about detected energy and beam position is stored to a disk file in the list mode to allow off-line data analysis. System hardware and software setups together with software operations and data formats used for information storing are described. (author)

  13. A digital squarer system for positive mass identification on the ARL ion microprobe mass analyser

    International Nuclear Information System (INIS)

    Woods, K.N.; Grant, L.D.V.; Rawsthorne, E.D.; Strydom, H.J.; Gries, W.H.

    1984-01-01

    The original analogue squarer for mass scale linearisation in the Ion Microprobe Mass Analyser (IMMA) has been replaced by a programmable digital squarer system which permits reliable mass number identification throughout the tested range 1 to 240. The digital squarer provides signals to both a digital direct reading mass number display and to an X-Y recorder where it provides a linear mass scale correct to within 0,3 mass units. An additional output to a computer can provide binary or BCD mass number data

  14. X-ray microprobe measurements of the chemical compositions of ALH84001 carbonate globules

    International Nuclear Information System (INIS)

    Flynn, G.J.; Sutton, S.R.; Keller, L.P.

    2004-01-01

    We measured minor element contents of carbonate from ALH84001 and report trends in tbe Ca, V, Mn and Sr in carbonate and the associated magnetite bands. McKay et al. suggested that carbonate globules in the ALH84001 meteorite from Mars contained evidence consistent with the development of bacterial life early in the history of Mars. This result provoked an extensive study of the ALH84001 meteorite. More recently Thomas-Keprta et al. have published a study showing that the magnetite associated with carbonate rims are of the size and shape produced by terrestrial bacteria. This paper has revived interest in ALH84001. The typical ALH84001 carbonate globule consists of four regions: a core of Fe-rich carbonate, a thin magnetite-rich band, a rim of Mn-rich carbonate, and another thin magnetite-rich band. Trace element analysis of each of these phases may allow us to address several important questions about these carbonates: (1) The origin of the magnetite-rich bands in the ALH84001 carbonate globules. If the magnetites are derived from the underlying carbonate through thermal decomposition (as proposed by Golden et al.), then we expect to see 'inherited' trace elements in these magnetite bands. (2) The origin of the rim carbonate, by determining whether the carbonate in the core has the same trace elements as the rim carbonates. (3) The age of the rim carbonate. Borg et al. dated the formation of the rim carbonate using the Rb/Sr chronometer. Borg et al. performed their measurements on an aliquot of what they called a high-Rb, low-Sr carbonate separate from the rim. We previously measured the trace element contents of chips from core and rim carbonates from an ALH84001 carbonate globule using an X-Ray Microprobe on Beamline X26A at the National Synchrotron Light Source. These measurements showed the rim carbonate had a very low Rb content, with Sr>>Rb, inconsistent with the ∼5 ppm Rb reported by Borg et al. in the sample they dated by the Rb/Sr chronometer. The large

  15. Individual precipitates in Al alloys probed by the Bonn positron microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Balarisi, Osman; Eich, Patrick; Haaks, Matz; Klobes, Benedikt; Korff, Bjoern; Maier, Karl; Sottong, Reinhard [Helmholtz-Institut fuer Strahlen- und Kernphysik, Nussallee 14-16, 53115 Bonn (Germany); Huehne, Sven-Martin; Mader, Werner [Institut fuer Anorganische Chemie, Roemerstrasse 164, 53117 Bonn (Germany); Staab, Torsten [Fraunhofer ISC, Neunerplatz 2, 97082 Wuerzburg (Germany)

    2010-07-01

    Positron annihilation spectroscopy (PAS) is a unique tool for the characterization of open-volume defects such as vacancies. Therefore, age hardenable Al alloys, whose decomposition is mainly driven by the vacancy mechanism of diffusion, are often characterized by PAS techniques. Nevertheless, probing the defect state of individual precipitates grown in Al alloys requires a focused positron beam and has not been carried out up to now. In this respect we present the first investigations of the defect state of individual precipitates utilizing the Bonn Positron Microprobe (BPM). Furthermore, the analysis of the experimental data has to be facilitated by theoretical calculations of the observables of positron annihilation spectroscopy.

  16. $ANBA; a rapid, combined data acquisition and correction program for the SEMQ electron microprobe

    Science.gov (United States)

    McGee, James J.

    1983-01-01

    $ANBA is a program developed for rapid data acquisition and correction on an automated SEMQ electron microprobe. The program provides increased analytical speed and reduced disk read/write operations compared with the manufacturer's software, resulting in a doubling of analytical throughput. In addition, the program provides enhanced analytical features such as averaging, rapid and compact data storage, and on-line plotting. The program is described with design philosophy, flow charts, variable names, a complete program listing, and system requirements. A complete operating example and notes to assist in running the program are included.

  17. Applications of petrography and electron microprobe analysis to the study of Indian stone sculpture

    International Nuclear Information System (INIS)

    Newman, R.

    1992-01-01

    Examples of research on ancient Indian stone artefacts utilizing petrographic examination coupled with qualitative and quantitative electron beam microprobe analysis of specific minerals are described. Types of artefacts discussed include Gandharan schist sculptures, Pala dynasty phyllite and schist objects from eastern India. Hoysala sculptures from Karnataka state (southern India), and sandstone objects from northern India. In spite of the rich history of stone sculpture in the Indian subcontinent, characterization studies to date have been limited in scope, typically involving unprovenanced artefacts. The examples described point to areas in which more extensive research could produce useful information for the provenancing of artefacts. (author)

  18. Microprobe analysis of PuO2--UO2 nuclear fuel

    International Nuclear Information System (INIS)

    Clark, W.I.; Rasmussen, D.E.; Carlson, R.L.; Highley, D.M.

    1977-01-01

    For the preirradiation characterization of FFTF UO 2 --PuO 2 fuel, a program was developed to determine the preirradiation porosity, grain structure, and microcomposition of the fuel. Two computer programs, MITRAN and MERIT, were developed to evaluate the homogeneity of the fuel. These programs use elemental composition data generated by the electron microprobe. MITRAN determines information on the size and frequency of individual regions, whereas MERIT provides an index of the thermal performance of the fuel and calculated statistical data for comparison to other fuel batches

  19. Effect of magnetic quadrupole lens alignment on a nuclear microprobe resolution

    International Nuclear Information System (INIS)

    Kolinko, S.V.; Ponomarev, A.G.

    2016-01-01

    The paper reports the research trends in developing probe-forming systems with high demagnification and analysis factors that limit a nuclear microprobe resolution. Parasitic aberrations caused by tilts and offsets of magnetic quadrupoles are studied in terms of their effect on probe parameters on a target. The most common arrangements of probe-forming systems such as a triplet and “Russian quadruplet” with separated geometry are considered. The accuracy prerequisites for the positioning of the quadrupoles are defined, and practical guidelines for alignment of probe-forming systems with high demagnification factors are suggested.

  20. A hard X-ray scanning microprobe for fluorescence imaging and microdiffraction at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Cai, L.; Lai, B.; Yun, W.; Ilinski, P.; Legnini, D.; Maser, J.; Rodrigues, W.

    1999-01-01

    A hard x-ray scanning microprobe based on zone plate optics and undulator radiation, in the energy region from 6 to 20 keV, has reached a focal spot size (FWHM) of 0.15 microm (v) x 0.6 microm (h), and a photon flux of 4 x 10 9 photons/sec/0.01%BW. Using a slit 44 meters upstream to create a virtual source, a circular beam spot of 0.15 microm in diameter can be obtained with a photon flux of one order of magnitude less. During fluorescence mapping of trace elements in a single human ovarian cell, the microprobe exhibited an imaging sensitivity for Pt (L a line) of 80 attograms/microm 2 for a count rate of 10 counts per second. The x-ray microprobe has been used to map crystallographic strain and multiquantum well thickness in micro-optoelectronic devices produced with the selective area growth technique

  1. In situ titanium dioxide nanoparticles quantitative microscopy in cells and in C. elegans using nuclear microprobe analysis

    Energy Technology Data Exchange (ETDEWEB)

    Le Trequesser, Quentin [Université de Bordeaux, CENBG, Chemin du solarium, 33175 Gradignan (France); CNRS, UMR 5797, CENBG, Chemin du solarium, 33175 Gradignan (France); CNRS, Université de Bordeaux, ICMCB, 87 avenue du Dr. A. Schweitzer, Pessac F-33608 (France); Saez, Gladys; Devès, Guillaume; Michelet, Claire; Barberet, Philippe [Université de Bordeaux, CENBG, Chemin du solarium, 33175 Gradignan (France); CNRS, UMR 5797, CENBG, Chemin du solarium, 33175 Gradignan (France); Delville, Marie-Hélène [CNRS, Université de Bordeaux, ICMCB, 87 avenue du Dr. A. Schweitzer, Pessac F-33608 (France); Seznec, Hervé, E-mail: herve.seznec@cenbg.in2p3.fr [Université de Bordeaux, CENBG, Chemin du solarium, 33175 Gradignan (France); CNRS, UMR 5797, CENBG, Chemin du solarium, 33175 Gradignan (France)

    2014-12-15

    Detecting and tracking nanomaterials in biological systems is challenging and essential to understand the possible interactions with the living. In this context, in situ analyses were conducted on human skin cells and a multicellular organism (Caenorhabditiselegans) exposed to titanium dioxide nanoparticles (TiO{sub 2} NPs) using nuclear microprobe. Coupled to conventional methods, nuclear microprobe was found to be suitable for accurate description of chemical structure of biological systems and also for detection of native TiO{sub 2} NPs. The method presented herein opens the field to NPs exposure effects analyses and more generally to toxicological analyses assisted by nuclear microprobe. This method will show applications in key research areas where in situ imaging of chemical elements is essential.

  2. Proton-air and proton-proton cross sections

    Directory of Open Access Journals (Sweden)

    Ulrich Ralf

    2013-06-01

    Full Text Available Different attempts to measure hadronic cross sections with cosmic ray data are reviewed. The major results are compared to each other and the differences in the corresponding analyses are discussed. Besides some important differences, it is crucial to see that all analyses are based on the same fundamental relation of longitudinal air shower development to the observed fluctuation of experimental observables. Furthermore, the relation of the measured proton-air to the more fundamental proton-proton cross section is discussed. The current global picture combines hadronic proton-proton cross section data from accelerator and cosmic ray measurements and indicates a good consistency with predictions of models up to the highest energies.

  3. Fast probing of glucose and fructose in plant tissues via plasmonic affinity sandwich assay with molecularly-imprinted extraction microprobes.

    Science.gov (United States)

    Muhammad, Pir; Liu, Jia; Xing, Rongrong; Wen, Yanrong; Wang, Yijia; Liu, Zhen

    2017-12-01

    Determination of specific target compounds in agriculture food and natural plant products is essential for many purposes; however, it is often challenging due to the complexity of the sample matrices. Herein we present a new approach called plasmonic affinity sandwich assay for the facile and rapid probing of glucose and fructose in plant tissues. The approach mainly relies on molecularly imprinted plasmonic extraction microprobes, which were prepared on gold-coated acupuncture needles via boronate affinity controllable oriented surface imprinting with the target monosaccharide as the template molecules. An extraction microprobe was inserted into plant tissues under investigation, which allowed for the specific extraction of glucose or fructose from the tissues. The glucose or fructose molecules extracted on the microprobe were labeled with boronic acid-functionalized Raman-active silver nanoparticles, and thus affinity sandwich complexes were formed on the microprobes. After excess Raman nanotags were washed away, the microprobe was subjected to Raman detection. Upon being irradiated with a laser beam, surface plasmon on the gold-coated microprobes was generated, which further produced plasmon-enhanced Raman scattering of the silver-based nanotags and thereby provided sensitive detection. Apple fruits, which contain abundant glucose and fructose, were used as a model of plant tissues. The approach exhibited high specificity, good sensitivity (limit of detection, 1 μg mL -1 ), and fast speed (the whole procedure required only 20 min). The spatial distribution profiles of glucose and fructose within an apple were investigated by the developed approach. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. X-ray microprobe characterization of materials: the case for undulators on advanced storage rings

    International Nuclear Information System (INIS)

    Sparks, C.J. Jr.

    1984-01-01

    The unique properties of X rays offer many advantages over electrons and other charged particles for the microcharacterization of materials. X rays are more efficient in exciting characteristic X-ray fluorescence and produce higher fluorescent signals to backgrounds than obtained with electrons. Detectable limits for X rays are a few parts per billion and are 10 -3 to 10 -5 less than for electrons. Energy deposition in the sample by X rays is 10 -3 to 10 -4 less than for electrons for the same detectable concentration. High-brightness storage rings, especially in the 6 GeV class with undulators, will be approximately 10 3 brighter in the X-ray energy range from 5 keV to 35 keV than existing storage rings and provide for X-ray microprobes that are as bright as the most advanced electron probes. Such X-ray microprobes will produce unprecedented low levels of detection in diffraction, EXAFS, Auger, and photoelectron spectroscopies for both chemical characterization and elemental identification. These major improvements in microcharacterization capabilities will have wide-ranging ramifications not only in materials science but also in physics, chemistry, geochemistry, biology, and medicine

  5. Millimeter length micromachining using a heavy ion nuclear microprobe with standard magnetic scanning

    International Nuclear Information System (INIS)

    Nesprías, F.; Debray, M.E.; Davidson, J.; Kreiner, A.J.

    2013-01-01

    In order to increase the scanning length of our microprobe, we have developed an irradiation procedure suitable for use in any nuclear microprobe, extending at least up to 400% the length of our heavy ion direct writing facility using standard magnetic exploration. Although this method is limited to patterns of a few millimeters in only one direction, it is useful for the manufacture of curved waveguides, optical devices such Mach–Zehnder modulators, directional couplers as well as channels for micro-fluidic applications. As an example, this technique was applied to the fabrication of 3 mm 3D-Mach–Zehnder modulators in lithium niobate with short Y input/output branches and long shaped parallel-capacitor control electrodes. To extend and improve the quality of the machined structures we developed new scanning control software in LabView™ platform. The new code supports an external dose normalization, electrostatic beam blanking and is capable of scanning figures at 16 bit resolution using a National Instruments™ PCI-6731 High-Speed I/O card. A deep and vertical micromachining process using swift 35 Cl ions 70 MeV bombarding energy and direct write patterning was performed on LiNbO 3 , a material which exhibits a strong natural anisotropy to conventional etching. The micromachined structures show the feasibility of this method for manufacturing micro-fluidic channels as well

  6. Millimeter length micromachining using a heavy ion nuclear microprobe with standard magnetic scanning

    Energy Technology Data Exchange (ETDEWEB)

    Nesprías, F. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. Gral Paz 1499 (1650), San Martín, Buenos Aires (Argentina); Debray, M.E., E-mail: debray@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. Gral Paz 1499 (1650), San Martín, Buenos Aires (Argentina); Escuela de Ciencia y Tecnología. Universidad Nacional de Gral. San Martín, M. De Irigoyen 3100 (1650), San Martín, Buenos Aires (Argentina); Davidson, J. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. Gral Paz 1499 (1650), San Martín, Buenos Aires (Argentina); CONICET, Avda. Rivadavia 1917 (C1033AAJ), Ciudad Autónoma de Buenos Aires (Argentina); Kreiner, A.J. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. Gral Paz 1499 (1650), San Martín, Buenos Aires (Argentina); Escuela de Ciencia y Tecnología. Universidad Nacional de Gral. San Martín, M. De Irigoyen 3100 (1650), San Martín, Buenos Aires (Argentina); CONICET, Avda. Rivadavia 1917 (C1033AAJ), Ciudad Autónoma de Buenos Aires (Argentina); and others

    2013-04-01

    In order to increase the scanning length of our microprobe, we have developed an irradiation procedure suitable for use in any nuclear microprobe, extending at least up to 400% the length of our heavy ion direct writing facility using standard magnetic exploration. Although this method is limited to patterns of a few millimeters in only one direction, it is useful for the manufacture of curved waveguides, optical devices such Mach–Zehnder modulators, directional couplers as well as channels for micro-fluidic applications. As an example, this technique was applied to the fabrication of 3 mm 3D-Mach–Zehnder modulators in lithium niobate with short Y input/output branches and long shaped parallel-capacitor control electrodes. To extend and improve the quality of the machined structures we developed new scanning control software in LabView™ platform. The new code supports an external dose normalization, electrostatic beam blanking and is capable of scanning figures at 16 bit resolution using a National Instruments™ PCI-6731 High-Speed I/O card. A deep and vertical micromachining process using swift {sup 35}Cl ions 70 MeV bombarding energy and direct write patterning was performed on LiNbO{sub 3}, a material which exhibits a strong natural anisotropy to conventional etching. The micromachined structures show the feasibility of this method for manufacturing micro-fluidic channels as well.

  7. Nuclear microprobe studies of elemental distribution in the seagrass Thalassodendron ciliatum

    Energy Technology Data Exchange (ETDEWEB)

    Barnabas, A.D. E-mail: alban@pixie.udw.ac.za; Przybylowicz, W.J.; Mesjasz-Przybylowicz, J.; Pineda, C.A

    1999-09-02

    Elemental levels and distributions in various organs (leaves, upright stems, rhizomes and roots) of the seagrass Thalassodendron ciliatum were determined using the NAC nuclear microprobe. Elemental distributions were obtained using the true elemental imaging system Dynamic Analysis (DA). Cl was the most abundant element present in the organs, occurring in all tissues, but present in relatively low concentrations in epidermal cells of leaves and roots. Na, K, S and Mg were also abundant and occurred in all organ tissues. Ca concentration was highest in the leaves, especially in the epidermis. Low concentrations of P were found and its tissue distribution was limited. Although Fe, Cu, Zn, Mn, Br, Ti and Si were present in relatively small amounts, enrichment of the epidermis with Fe, Ti and Si in all organs, was observed. Fe concentration was the highest in rhizomes while Si concentration was highest in upright stems. The significance of these elemental distribution patterns and the value of the nuclear microprobe in elemental analysis of seagrasses are discussed.

  8. Single ion hit detection set-up for the Zagreb ion microprobe

    Science.gov (United States)

    Smith, R. W.; Karlušić, M.; Jakšić, M.

    2012-04-01

    Irradiation of materials by heavy ions accelerated in MV tandem accelerators may lead to the production of latent ion tracks in many insulators and semiconductors. If irradiation is performed in a high resolution microprobe facility, ion tracks can be ordered by submicrometer positioning precision. However, full control of the ion track positioning can only be achieved by a reliable ion hit detection system that should provide a trigger signal irrespectively of the type and thickness of the material being irradiated. The most useful process that can be utilised for this purpose is emission of secondary electrons from the sample surface that follows the ion impact. The status report of the set-up presented here is based on the use of a channel electron multiplier (CEM) detector mounted on an interchangable sample holder that is inserted into the chamber in a close geometry along with the sample to be irradiated. The set-up has been tested at the Zagreb ion microprobe for different ions and energies, as well as different geometrical arrangements. For energies of heavy ions below 1 MeV/amu, results show that efficient (100%) control of ion impact can be achieved only for ions heavier than silicon. The successful use of the set-up is demonstrated by production of ordered single ion tracks in a polycarbonate film and by monitoring fluence during ion microbeam patterning of Foturan glass.

  9. Color electron microprobe cathodoluminescence of Bishunpur meteorite compared with the traditional optical microscopy method

    Directory of Open Access Journals (Sweden)

    Amanda Araujo Tosi

    Full Text Available Abstract Cathodoluminescence (CL imaging is an outstanding method for sub classification of Unequilibrated Ordinary Chondrites (UOC - petrological type 3. CL can be obtained by several electron beam apparatuses. The traditional method uses an electron gun coupled to an optical microscope (OM. Although many scanning electron microscopes (SEM and electron microprobes (EPMA have been equipped with a cathodoluminescence, this technique was not fully explored. Images obtained by the two methods differ due to a different kind of signal acquisition. While in the CL-OM optical photography true colors are obtained, in the CL-EPMA the results are grayscale monochromatic electronic signals. L-RGB filters were used in the CL-EPMA analysis in order to obtain color data. The aim of this work is to compare cathodoluminescence data obtained from both techniques, optical microscope and electron microprobe, on the Bishunpur meteorite classified as LL 3.1 chondrite. The present study allows concluding that 20 KeV and 7 nA is the best analytical condition at EPMA in order to test the equivalence between CL-EPMA and CL-OM colour results. Moreover, the color index revealed to be a method for aiding the study of the thermal metamorphism, but it is not definitive for the meteorite classification.

  10. An extended magnetic quadrupole lens for a high-resolution nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Breese, M.B.H. E-mail: m.breese@surrey.ac.uk; Grime, G.W.; Linford, W.; Harold, M

    1999-09-02

    This paper describes the design requirements and initial performance of a new style of magnetic quadrupole lens for use in a high-resolution nuclear microprobe, which is presently being constructed in Oxford. Such a microprobe necessitates the use of a small image distance from the exit face of the final quadrupole lens to the image plane in order to produce a large demagnification. This means that the final lens should be as close to the sample chamber as possible. However, with conventional magnetic quadrupoles the current-carrying coils protrude by a typical distance of 10-20 mm beyond the pole face, thereby significantly limiting the minimum image distance. The approach taken here is to recess the coils into the body of the lens, so that they are almost flush with the pole pieces and lens yoke, enabling an image distance of 55 mm. Three-dimensional magnetic field calculations within this lens structure predict that the field in the extended pole piece 'nose' region is only slightly less than that in the main lens body. Experimental field profiles, measured using a Hall probe, are used to confirm these calculations.

  11. An extended magnetic quadrupole lens for a high-resolution nuclear microprobe

    International Nuclear Information System (INIS)

    Breese, M.B.H.; Grime, G.W.; Linford, W.; Harold, M.

    1999-01-01

    This paper describes the design requirements and initial performance of a new style of magnetic quadrupole lens for use in a high-resolution nuclear microprobe, which is presently being constructed in Oxford. Such a microprobe necessitates the use of a small image distance from the exit face of the final quadrupole lens to the image plane in order to produce a large demagnification. This means that the final lens should be as close to the sample chamber as possible. However, with conventional magnetic quadrupoles the current-carrying coils protrude by a typical distance of 10-20 mm beyond the pole face, thereby significantly limiting the minimum image distance. The approach taken here is to recess the coils into the body of the lens, so that they are almost flush with the pole pieces and lens yoke, enabling an image distance of 55 mm. Three-dimensional magnetic field calculations within this lens structure predict that the field in the extended pole piece 'nose' region is only slightly less than that in the main lens body. Experimental field profiles, measured using a Hall probe, are used to confirm these calculations

  12. Structural and electrical characterisation of semiconductor materials using a nuclear microprobe

    International Nuclear Information System (INIS)

    Jamieson, D.N.

    1998-01-01

    The domain of high-resolution imaging techniques (sub-micron) traditionally belongs to low-energy ion beams (ke V ion microprobe), electrons (transmission or scanning electron microscopy), light (near field microscopy), or all variants of scanning probe microscopies. Now, nuclear techniques of analysis, with a nuclear microprobe, have entered this domain, bringing a range of unique techniques for making images. In addition to-conventional techniques like Rutherford (and non-Rutherford) backscattering spectrometry and particle induced x-ray emission for structural characterisation, new ion beam analysis techniques have been developed for electrical characterisation as well. Foremost of these new techniques is ion beam induced charge (IBIC) which has seen an explosion of applications in the last five years to the study of charge transport properties of a variety of materials including polycrystalline diamond and silicon. An additional novel technique is ionoluminescence, which may be used to image various electronic properties of the material. Presented here are some examples of these imaging techniques in a variety of semiconductor materials. In all these examples, the specimens display structural inhomogeneities on the scale of 10 micrometres, making it essential to employ a focused beam. (author)

  13. Structural and electrical characterisation of semiconductor materials using a nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics, Microanalytical Centre

    1998-06-01

    The domain of high-resolution imaging techniques (sub-micron) traditionally belongs to low-energy ion beams (ke V ion microprobe), electrons (transmission or scanning electron microscopy), light (near field microscopy), or all variants of scanning probe microscopies. Now, nuclear techniques of analysis, with a nuclear microprobe, have entered this domain, bringing a range of unique techniques for making images. In addition to-conventional techniques like Rutherford (and non-Rutherford) backscattering spectrometry and particle induced x-ray emission for structural characterisation, new ion beam analysis techniques have been developed for electrical characterisation as well. Foremost of these new techniques is ion beam induced charge (IBIC) which has seen an explosion of applications in the last five years to the study of charge transport properties of a variety of materials including polycrystalline diamond and silicon. An additional novel technique is ionoluminescence, which may be used to image various electronic properties of the material. Presented here are some examples of these imaging techniques in a variety of semiconductor materials. In all these examples, the specimens display structural inhomogeneities on the scale of 10 micrometres, making it essential to employ a focused beam. (author). Extended abstract. 18 refs. 4 figs.

  14. Study of the toughening mechanisms in bone and biomimetic hydroxyapatite materials using Raman microprobe spectroscopy.

    Science.gov (United States)

    Pezzotti, Giuseppe; Sakakura, Seiji

    2003-05-01

    A Raman microprobe spectroscopy characterization of microscopic fracture mechanisms is presented for a natural hydroxyapatite material (cortical bovine femur) and two synthetic hydroxyapatite-based materials with biomimetic structures-a hydroxyapatite skeleton interpenetrated with a metallic (silver) or a polymeric (nylon-6) phase. In both the natural and synthetic materials, a conspicuous amount of toughening arose from a microscopic crack-bridging mechanism operated by elasto-plastic stretching of unbroken second-phase ligaments along the crack wake. This mechanism led to a rising R-curve behavior. An additional micromechanism, responsible for stress relaxation at the crack tip, was recognized in the natural bone material and was partly mimicked in the hydroxyapatite/silver composite. This crack-tip mechanism conspicuously enhanced the cortical bone material resistance to fracture initiation. A piezo-spectroscopic technique, based on a microprobe measurement of 980 cm(-1) Raman line of hydroxyapatite, enabled us to quantitatively assess in situ the microscopic stress fields developed during fracture both at the crack tip and along the crack wake. Using the Raman piezo-spectroscopy technique, toughening mechanisms were assessed quantitatively and rationally related to the macroscopic fracture characteristics of hydroxyapatite-based materials. Copyright 2003 Wiley Periodicals, Inc.

  15. Optical system optimization of the microprobe beamline of the Ion Implantation Laboratory (IF-UFRGS), Brazil

    International Nuclear Information System (INIS)

    Bauer, Deiverti de Vila

    2015-01-01

    The aim of the present work is to optimize the microprobe beamline of the Ion Implantation Laboratory (IF-UFRGS). In short, an ion microprobe consists of charged particles focused to the dimensions of a few micrometers. The focusing system is made of two slits for demagnification, a set of magnetic lenses with scanning capability and a reaction chamber. By changing the parameters related to this system, one can optimize the features of the beam. To that end, samples of poly(tereftalate etylene) were irradiated with 2.2 MeV H+ ions and etched, yielding 2D microstructures with high aspect ratio. The analysis of the structures with Scanning Electron Microscopy proved to be an important tool in order to establish a correlation between the size of the microstructures and the parameters of the focusing system. In this work, the causes leading to a beam enlargement are discussed, as well as the aberrations which affect the system. Finally, the advantages of using ions for lithography purposes is pointed out. (author)

  16. Proton radiography using highpower femtosecond laser

    International Nuclear Information System (INIS)

    Choi, Chang Il

    2010-08-01

    A femtosecond laser emits pulses whose width is between few and few hundreds femtoseconds (10 -15 s). The production mechanism of the high energy protons generated by the femtosecond laser is not clear so far, but the technologies have been improving. The applications using the generated protons are the proton therapy, proton radiography, nuclear physics, security inspection, and so on. Especially in the radiography, the laser-generated protons are very useful to obtain high quality images of thin objects, because protons are able to penetrate an object following an almost straight path and give a depth distribution information of various elements in a subject. Since the laser-driven protons require lower cost and smaller facility than accelerator-based protons, the radiography using laser-driven protons have been of interest. In this research, we have performed the radiography experiments by using protons generated by the 100 TW titanium sapphire femtosecond laser facility of Advanced Photonics Research Institute (APRI) of Gwangju Institute of Science Technology (GIST). A CR-39 Solid State Nuclear Track Detector (SSNTD) has been used as radiography screen. The radiography digital images have been obtained by using an optical microscope and a CCD camera. Modulation Transfer Function (MTF) has been derived from analyzing the obtained images, and the spatial resolution of the images have been evaluated. And, we have performed the radiography experiments of monoenergetic proton from the Tandem Van de Graaff accelerator of Korea Institute of Geoscience and Mineral Resources (KIGAM). We have obtained and compared the radiography images from other proton production methods which are the laser and the accelerator, respectively. And also, we have found out the optimized chemical etching condition, in order to improve the spatial resolution of the radiography images. Finally, the evaluated maximum spatial resolution of the images are 2.09 μm

  17. Depth Probing Soft X-ray Microprobe (DPSXRM) for High Resolution Probing of Earth's Microstructural Samples

    Science.gov (United States)

    Dikedi, P. N.

    2015-12-01

    The Cambrian explosion; occurrence of landslides in very dry weather conditions; rockslides; dead, shriveled-up and crumbled leaves possessing fossil records with the semblance of well preserved, flat leaves; abundance of trilobite tracks in lower and higher rock layers; and sailing stones are enigmas demanding demystifications. These enigmas could be elucidated when data on soil structure, texture and strength are provided by some device with submicrometre accuracy; for these and other reasons, the design of a Depth Probing Soft X-ray Microprobe (DPSXRM), is being proposed; it is expected to deliver soft X-rays, at spatial resolution, ϛ≥600nm and to probe at the depth of 0.5m in 17s. The microprobe is portable compared to a synchrotron radiation facility (Diamond Light Source has land size of 43,300m2); spatial resolution,ϛ , of the DPSXRM surpasses those of the X-ray Fluorescence microanalysis (10µm), electron microprobe (1-3µm) and ion microprobe (5->30µm); the DPSXRM has allowance for multiple targets. Vanadium and Manganese membranes are proposed owing to respective 4.952KeV VKα1 and 5.899KeV MnKα1 X-rays emitted, which best suits micro-probing of Earth's microstructural samples. Compound systems like the Kirk-Patrick and Baez and Wolter optics, aspheric mirrors like elliptical and parabolic optics, small apertures and Abbe sine condition are employed to reduce or remove astigmatism, obliquity, comatic and spherical aberrations—leading to good image quality. Results show that 5.899KeV MnKα1 and 4.952KeV VKα1 soft X-rays will travel a distance of 2.75mm to form circular patches of radii 2.2mm and 2.95mm respectively. Zone plate with nth zone radius of 1.5mm must be positioned 1.5mm and 2mm from the electron gun if circular patches must be formed from 4.952KeV VKα1 and 5.899KeV MnKα1 soft X-rays respectively. The focal lengths of 0.25μm≤ƒ≤1.50μm and 0.04μm≤ƒ≤0.2μm covered by 4.952KeV VKα1 and 5.899KeV Mn Kα1 soft X-Rays, will

  18. Determination of trace element mineral/liquid partition coefficients in melilite and diopside by ion and electron microprobe techniques

    Science.gov (United States)

    Kuehner, S. M.; Laughlin, J. R.; Grossman, L.; Johnson, M. L.; Burnett, D. S.

    1989-01-01

    The applicability of ion microprobe (IMP) for quantitative analysis of minor elements (Sr, Y, Zr, La, Sm, and Yb) in the major phases present in natural Ca-, Al-rich inclusions (CAIs) was investigated by comparing IMP results with those of an electron microprobe (EMP). Results on three trace-element-doped glasses indicated that it is not possible to obtain precise quantitative analysis by using IMP if there are large differences in SiO2 content between the standards used to derive the ion yields and the unknowns.

  19. Sparse-view proton computed tomography using modulated proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jiseoc; Kim, Changhwan; Cho, Seungryong, E-mail: scho@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejon 305-701 (Korea, Republic of); Min, Byungjun [Department of Radiation Oncology, Kangbuk Samsung Hospital, 110–746 (Korea, Republic of); Kwak, Jungwon [Department of Radiation Oncology, Asan Medical Center, 138–736 (Korea, Republic of); Park, Seyjoon; Lee, Se Byeong [Proton Therapy Center, National Cancer Center, 410–769 (Korea, Republic of); Park, Sungyong [Proton Therapy Center, McLaren Cancer Institute, Flint, Michigan 48532 (United States)

    2015-02-15

    Purpose: Proton imaging that uses a modulated proton beam and an intensity detector allows a relatively fast image acquisition compared to the imaging approach based on a trajectory tracking detector. In addition, it requires a relatively simple implementation in a conventional proton therapy equipment. The model of geometric straight ray assumed in conventional computed tomography (CT) image reconstruction is however challenged by multiple-Coulomb scattering and energy straggling in the proton imaging. Radiation dose to the patient is another important issue that has to be taken care of for practical applications. In this work, the authors have investigated iterative image reconstructions after a deconvolution of the sparsely view-sampled data to address these issues in proton CT. Methods: Proton projection images were acquired using the modulated proton beams and the EBT2 film as an intensity detector. Four electron-density cylinders representing normal soft tissues and bone were used as imaged object and scanned at 40 views that are equally separated over 360°. Digitized film images were converted to water-equivalent thickness by use of an empirically derived conversion curve. For improving the image quality, a deconvolution-based image deblurring with an empirically acquired point spread function was employed. They have implemented iterative image reconstruction algorithms such as adaptive steepest descent-projection onto convex sets (ASD-POCS), superiorization method–projection onto convex sets (SM-POCS), superiorization method–expectation maximization (SM-EM), and expectation maximization-total variation minimization (EM-TV). Performance of the four image reconstruction algorithms was analyzed and compared quantitatively via contrast-to-noise ratio (CNR) and root-mean-square-error (RMSE). Results: Objects of higher electron density have been reconstructed more accurately than those of lower density objects. The bone, for example, has been reconstructed

  20. Proton therapy device

    International Nuclear Information System (INIS)

    Tronc, D.

    1994-01-01

    The invention concerns a proton therapy device using a proton linear accelerator which produces a proton beam with high energies and intensities. The invention lies in actual fact that the proton beam which is produced by the linear accelerator is deflected from 270 deg in its plan by a deflecting magnetic device towards a patient support including a bed the longitudinal axis of which is parallel to the proton beam leaving the linear accelerator. The patient support and the deflecting device turn together around the proton beam axis while the bed stays in an horizontal position. The invention applies to radiotherapy. 6 refs., 5 figs

  1. Quality verification for respiratory gated proton therapy

    International Nuclear Information System (INIS)

    Kim, Eun Sook; Jang, Yo Jong; Park, Ji Yeon; Kang, Dong Yun; Yeom, Doo Seok

    2013-01-01

    To verify accuracy of respiratory gated proton therapy by measuring and analyzing proton beam delivered when respiratory gated proton therapy is being performed in our institute. The plan data of 3 patients who took respiratory gated proton therapy were used to deliver proton beam from proton therapy system. The manufactured moving phantom was used to apply respiratory gating system to reproduce proton beam which was partially irradiated. The key characteristics of proton beam, range, spreat-out Bragg peak (SOBP) and output factor were measured 5 times and the same categories were measured in the continuous proton beam which was not performed with respiratory gating system. Multi-layer ionization chamber was used to measure range and SOBP, and Scanditronix Wellhofer and farmer chamber was used to measure output factor. The average ranges of 3 patients (A, B, C), who had taken respiratory gated proton therapy or not, were (A) 7.226, 7.230, (B) 12.216, 12.220 and (C) 19.918, 19.920 g/cm 2 and average SOBP were (A) 4.950, 4.940, (B) 6.496, 6.512 and (C) 8.486, 8.490 g/cm 2 . And average output factor were (A) 0.985, 0.984 (B) 1.026, 1.027 and (C) 1.138, 1.136 cGy/MU. The differences of average range were -0.004, -0.004, -0.002 g/cm 2 , that of SOBP were 0.010, -0.016, -0.004 g/cm 2 and that of output factor were 0.001, -0.001, 0.002 cGy/MU. It is observed that the range, SOBP and output factor of proton beam delivered when respiratory gated proton therapy is being performed have the same beam quality with no significant difference compared to the proton beam which was continuously irradiated. Therefore, this study verified the quality of proton beam delivered when respiratory gated proton therapy and confirmed the accuracy of proton therapy using this

  2. Proton multiplicity distributions in high-energy hadron-nuclei collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1979-01-01

    The fast proton emission process is analyzed in high-energy hadron-nuclei collisions. The formula describing the proton multiplicity distributions is derived. It describes well enough the proton multiplicity distribution of pion-nuclei and proton-nuclei collisions at 200 and 400 GeV

  3. Elastic proton-proton scattering at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Yip, K.

    2011-09-03

    Here we describe elastic proton+proton (p+p) scattering measurements at RHIC in p+p collisions with a special optics run of {beta}* {approx} 21 m at STAR, at the center-of-mass energy {radical}s = 200 GeV during the last week of the RHIC 2009 run. We present preliminary results of single and double spin asymmetries.

  4. Baryon production in proton-proton collisions

    International Nuclear Information System (INIS)

    Liu, F.M.; Werner, K.

    2002-01-01

    Motivated by the recent rapidity spectra of baryons and antibaryons in pp collisions at 158 GeV and the Ω-bar/Ω ratio discussion, we reviewed string formation mechanism and some string models. This investigation told us how color strings are formed in ultrarelativistic proton-proton collisions

  5. Proton: the particle.

    Science.gov (United States)

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10(80). Protons were created at 10(-6) -1 second after the Big Bang at ≈1.37 × 10(10) years beforethe present. Proton life span has been experimentally determined to be ≥10(34) years; that is, the age of the universe is 10(-24)th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W(+), W(-), Z(0), and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter. Copyright © 2013 Elsevier Inc. All

  6. Proton: The Particle

    Energy Technology Data Exchange (ETDEWEB)

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10{sup 80}. Protons were created at 10{sup −6} –1 second after the Big Bang at ≈1.37 × 10{sup 10} years beforethe present. Proton life span has been experimentally determined to be ≥10{sup 34} years; that is, the age of the universe is 10{sup −24}th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W{sup +}, W{sup −}, Z{sup 0}, and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter.

  7. Microprobe analyses of uranium and thorium in uraninite from the Witwatersrand, South Africa, and Blind River, Ontario, Canada

    International Nuclear Information System (INIS)

    Grandstaff, D.E.

    1981-01-01

    Microprobe analyses of uranium and thorium in uraninite grains from the Witwatersrand, South Africa, and Blind River, Ontario, reveal that although individual grains are fairly homogeneous, the assemblage of grains is quite heterogeneous. This heterogeneity appears to favor genetic concepts advocating a detrital, placer origin for the uraninite

  8. Proton beam micromachined buried microchannels in negative tone resist materials

    International Nuclear Information System (INIS)

    Rajta, I.; Chatzichristidi, M.; Baradacs, E.; Cserhati, C.; Raptis, I.; Manoli, K.; Valamontes, E.S.

    2007-01-01

    In the present work the Atomki, Debrecen microprobe facility has been used to write long tilted structures by 2 MeV protons. For the formation of the structures, two exposures have been carried out at +20 o and -20 o using a goniometer stage sample holder. The tilted structures were resolved in the negative tone resist materials SU-8 and ADEPR (an aqueous base developable chemically amplified resist). The length of the microchannels was varied between 100 μm and 1000 μm, the wall thickness was less than 10 μm. By applying the developed methodology it was possible to resolve the desired layout through the whole length of the channel

  9. A Variable-Energy Soft X-Ray Microprobe to Investigate Mechanisms of the Radiation-Induced Bystander Effect

    International Nuclear Information System (INIS)

    Folkard, Melvyn; Vojnovic, Borivoj; Schettino, Giuseppe; Atkinson, Kirk; Prise, Kevin M.; Michael, Barry D.

    2007-01-01

    The Gray Cancer Institute has pioneered the use of X ray focusing techniques to develop systems for micro irradiating individual cells and sub cellular targets in vitro. Cellular micro irradiation is now recognized as a highly versatile technique for understanding how ionizing radiation interacts with living cells and tissues. The strength of the technique lies in its ability to deliver precise doses of radiation to selected individual cells (or sub cellular targets). The application of this technique in the field of radiation biology continues to be of great interest for investigating a number of phenomena currently of concern to the radiobiological community. One important phenomenon is the so called ''bystander effect'' where it is observed that unirradiated cells can also respond to signals transmitted by irradiated neighbors. Clearly, the ability of a microbeam to irradiate just a single cell or selected cells within a population is well suited to studying this effect. Our prototype ''tabletop'' X-ray microprobe was optimized for focusing 278 eV C-K X rays and has been used successfully for a number of years. However, we have sought to develop a new variable energy soft X-ray microprobe capable of delivering focused CK (0.28 keV), Al-K (1.48 keV) and notably, Ti-K (4.5 keV) X rays. Ti-K X rays are capable of penetrating several cell layers and are therefore much better suited to studies involving tissues and multi cellular layers. In our new design, X-rays are generated by the focused electron bombardment of a material whose characteristic-K radiation is required. The source is mounted on a 1.5 x 1.0 meter optical table. Electrons are generated by a custom built gun, designed to operate up to 15 kV. The electrons are focused using a permanent neodymium iron boron magnet assembly. Focusing is achieved by adjusting the accelerating voltage and by fine tuning the target position via a vacuum position feedthrough. To analyze the electron beam properties, a custom

  10. Proton radioactivity lifetimes using Skyrme interactions

    International Nuclear Information System (INIS)

    Routray, T.R.; Tripathy, S.K.; Mishra, Abhishek; Basu, D.N.

    2011-01-01

    The phenomena of proton radioactivity is recent and has been possible with the advent of the radioactive ion beams facilities. The neutron deficient nuclei lying above the proton drip line has positive Q values for protons and are spontaneous proton emitters. This limits the possibilities of the creation of ever more exotic nuclei in the proton rich side of the β stability valley. Limited number of works have been done in calculating the half lives of proton emitting nuclei using different models. But calculation of lifetimes of the proton emitting nuclei using Skyrme interaction has not yet been reported. More than 110 Skyrme sets are available, constructed for different purposes, all having the common feature of giving finite nuclei ground state properties and saturation conditions in nuclear matter. Skyrme sets constructed in the late 90's, particularly the construction of SLy sets and others Skyrme sets developed thereafter, have additional care in constraining the parameters for applications to nuclear matter under extreme conditions. Stone et al. have analyzed the Skyrme sets on the basis of available constraints and have sorted out finally 27 Skyrmes sets which can be admitted for calculation of isospin rich dense nuclear matter. The objective of the work is to examine the predictions of the Skyrme sets on the half lives of the proton emitters

  11. Microprobe monazite constraints for and early (ca. 790 Ma) Braziliano orogeny: The Embu Terrane, southeastern Brazil

    International Nuclear Information System (INIS)

    Vlach, Silvio R.F

    2001-01-01

    The evolution of the Mantiqueira Orogenetic System, Southeastern Brazil, comprises discrete episodes of tectonic collage and docking of remnants of Rodinia break-up in the borders of the Sao Francisco Craton. This system is related to the closure of the Adamastor ocean and assemblage of the western Gondwana super-continent during Neoproterozoic times (ca. 610-530 Ma, Brito Neves et al., 1999; Campos Neto, 2000). This report presents monazite microprobe dating results for metassediments from the Embu Complex, an important lithological unit from the Ribeira Belt, currently included in the Juiz de Fora terrane, a unit added to the Sao Francisco Craton at ca. 600-580 Ma. (Campos Neto, 2000). The age results unravel a main metamorphic episode and related orogeny at ca. 790 Ma and bring new insights concerning the agglutination of Gondwana in this region during the Neoproterozoic (au)

  12. Ion channelling analysis of pre-amorphised silicon diodes using a nuclear microprobe

    International Nuclear Information System (INIS)

    Thornton, J.; Paus, K.C.

    1988-01-01

    Aligned and random ion channelling analysis was performed on p + n diode structures in silicon, with the Surrey nuclear microprobe. Three different types of diode were investigated, each pre-amorphised by a different ion (Si + , Ge + or Sn + ) before the p + region was formed by BF 2 + implantation. The ion channelling measurements are presented and compared with previously published electrical measurements on these diodes. Relatively large residual disorder and junction leakage currents were found for the Si + pre-amorphised diodes; however, all the diodes were leaky. The results are consistent with dislocation loops within the depletion regions of the diodes causing both the residual disorder and the large leakage currents. Cross-sectional transmission electron microscopy studies support this model. (author)

  13. Laser microprobe mass spectrometry: Potential and limitations for inorganic and organic micro-analysis. Pt. 1

    International Nuclear Information System (INIS)

    Vaeck, I. van; Gijbels, R.

    1990-01-01

    Laser microprobe mass spectrometry (LMMS) employs a highly focused UV laser beam to ionise a microvolume in the order of 1 μm 3 . The ions produced are then mass-separated in a time-of-flight (TOF) or a Fourier Transform (FT) mass spectrometer. TOF LMMS allows element localisation, detailed speciation of inorganic substances and structural information of organic molecules. Quantitation is difficult. This paper focuses on instrumental aspects and inorganic analysis. Organic applications are treated in part II of this series. Selected examples illustrate that TOF LMMS is a valuable tool for the qualitative characterisation of micro-samples. Also, the applicability to the analysis with high spatial resolution is shown. The current technology and the prospects from the recent FTMS development are discussed. (orig.)

  14. Laser microprobe mass spectrometry: Potential and limitations for inorganic and organic micro-analysis. Pt. 2

    International Nuclear Information System (INIS)

    Vaeck, I. van; Gijbels, R.

    1990-01-01

    Laser microprobe mass spectrometry (LMMS) employs a highly focused UV laser beam to ionise a microvolume in the order of 1 μm 3 . The produced ions are then mass-separated in a time-of-flight (TOF) or a Fourier Transform (FT) mass spectrometer. The technique allows element localisation, detailed speciation of inorganic substances and structural information of organic molecules. Inorganic applications are treated in the preceding part. This paper will focus on the organic aspects. Selected examples illustrate that TOF LMMS can achieve structural characterisation of molecules, untractable by conventional mass spectrometric techniques. Applicability to the analysis with high spatial resolution is shown and the need for surface availability of organic target molecules is discussed. The recently developed FT LMMS may fulfil the need for better mass resolution. However, the comparability of FT LMMS results with TOF LMMS data is not yet obvious. (orig.)

  15. Electron microprobe investigations of ore minerals of the Altenberg tin deposit (Erzgebirge, GDR). 3

    International Nuclear Information System (INIS)

    Foerster, H.J.; Hunger, H.J.; Grimm, L.

    1987-01-01

    Members of the scheelite-powellite solid solution series filling thin fractures or mantling wolframite were found in association with fluorite within a small polymineralic quartz vein traversing a topaz-protolithionite-quartz greisen. The composition of the mixed-crystal series determined by means of an automated ARL SEMQ energy-dispersive electron microprobe is characterized by a great variability and heterogeneity which has not previously been reported from any specimen nor from this special mode of occurrence yet. With an amount of powellite component between 3.2 and 58 mole percent, the molybdoscheelites from Altenberg show the today known extent of complete miscibility in the natural scheelite-powellite series. Final remarks deal with the possibilities of using the mineral series, together with some other tungsten minerals, as an indicator of the physicochemical conditions of ore formation. (author)

  16. Laser ablation microprobe inductively coupled plasma mass spectrometry study on diffusion of uranium into cement materials

    International Nuclear Information System (INIS)

    Sugiyama, D.; Chida, T.; Cowper, M.

    2008-01-01

    The diffusion of uranium (U(VI)) in solid cement monoliths of ordinary portland cement (OPC) and low-heat portland cement containing 30 wt.% fly ash (FAC) was measured by an in-diffusion technique. Detailed sharp depth profiles of uranium in the solid cement matrices were successively and quantitatively measured using laser ablation microprobe inductively coupled plasma mass spectrometry (LAMP-ICP-MS), and the apparent (D a ) and effective (D e ) diffusion coefficient of uranium in cement matrix were calculated as: D a =∝ 4 x 10 -16 m 2 s -1 and D e =∝ 3 x 10 -11 m 2 s -1 for OPC, and D a =∝ 2 x 10 -17 m 2 s -1 and D e =∝ 6 x 10 -13 m 2 s -1 for FAC. (orig.)

  17. Experimental investigations into sample preparation of Alzheimer tissue specimens for nuclear microprobe analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, T [CEC-JRC, Central Bureau for Nuclear Measurements, Geel (Belgium); Tapper, U A.S. [Dept. of Nuclear Physics, Lund Inst. of Science and Tech. (Sweden); Sturesson, K; Brun, A [Div. of Neuropathology, Dept. of Pathology, Lund University Hospital (Sweden)

    1991-03-01

    Nuclear microprobe analysis was applied to the study of elemental distribution in brains sections of patients with a diagnosis of Alzheimer's disease. Stained and nonstained cryosections were studied. The work carried out shows that serious elemental losses follow the sample staining procedure. Major losses occurred in a simple rinse of the tissue section, probably reducing most of the in-vivo gradients, which show that generally very little information can be gained from stained sections. However, in many cases stained sections are compulsory because of the requirement to recognize the area which is to be studied. All the elemental maps obtained for the neurofibrillary deposits indicate a localized concentration for Si and probably also Al, associated with the senile plaque core. Neither of these elements were found in the staining solutions used. The validity of the results is discussed as well as the possible link of Al and/or Si in the development of Alzheimer's desease. (orig.).

  18. Microprobe and SEM Analysis of a Meteorite from the Campo del Cielo Fall

    International Nuclear Information System (INIS)

    Cabanillas, E. D.; Palacios, T. A.

    2003-01-01

    Full Text: Meteorites are unique pieces in nature having not only the enigmatic connotations of the unknown but also are the easier obtained samples of the exterior universe. Furthermore they are the unique alloys that suffered modifications done during enormous periods of time in space and in land The Campo del Cielo fall, occurred more than 5000 years ago, gave hundredths of pieces some of them well studied. We have studied one of the minor pieces from the fall and with microprobe and scanning electronic microscopy analysis we determined the composition of Schreibersite and Rhabdite phosphides of iron and nickel. This study was performed to establish relationships between the duration of alloys and the design of disposal of high level and long lived radioactive waste

  19. Physical aspects of quantitative particles analysis by X-ray fluorescence and electron microprobe techniques

    International Nuclear Information System (INIS)

    Markowicz, A.

    1986-01-01

    The aim of this work is to present both physical fundamentals and recent advances in quantitative particles analysis by X-ray fluorescence (XRF) and electron microprobe (EPXMA) techniques. A method of correction for the particle-size effect in XRF analysis is described and theoretically evaluated. New atomic number- and absorption correction procedures in EPXMA of individual particles are proposed. The applicability of these two correction methods is evaluated for a wide range of elemental composition, X-ray energy and sample thickness. Also, a theoretical model for composition and thickness dependence of Bremsstrahlung background generated in multielement bulk specimens as well as thin films and particles are presented and experimantally evaluated. Finally, the limitations and further possible improvements in quantitative particles analysis by XFR and EPXMA are discussed. 109 refs. (author)

  20. Ion beam induced luminescence from diamond using an MeV ion microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Bettiol, A A; Jamieson, D N; Prawer, S; Allen, M G [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1994-12-31

    Analysis of the luminescence induced by a MeV ion beam offers the potential to provide useful information about the chemical properties of atoms in crystals to complement the information provided by more traditional Ion Beam Analysis (IBA) such as Rutherford Backscattering Spectrometry (RBS), ion channeling and Particle Induced X-ray Emission (PIXE). Furthermore, the large penetration depth of the MeV ion beam offers several advantages over the relatively shallow penetration of keV electrons typically employed in cathodoluminescence. An Ion Beam Induced Luminescence (IBIL) detection system was developed for the Melbourne microprobe that allows the spatial mapping of the luminescence signal along with the signals from RBS and PIXE. Homoepitaxial diamond growth has been studied and remarkable shifts in the characteristic blue luminescence of diamond towards the green were observed in the overgrowth. This has been tentatively identified as being due to transition metal inclusions in the epitaxial layers. 8 refs., 2 refs.

  1. Hg diffusion in books of XVIII and XIX centuries by synchrotron microprobe

    International Nuclear Information System (INIS)

    Pessanha, S.; Carvalho, M.L.; Manso, M.; Guilherme, A.; Marques, A.F.; Perez, C.A.

    2009-01-01

    The pigment vermilion (HgS) was used to color the fore edge, tail and head of books. Dissemination and quantification of Hg present in the ink used to color books from XVIII and XIX centuries are reported. Mercury is a very toxic element for the human body, therefore it is extremely important to know whether Hg tends to disseminate throughout the paper or stays confined to the borders of the books with less danger for readers. Synchrotron X-ray microprobe was used to evaluate Hg dissemination from the border to the centre of the paper sheet. The diffusion pattern of Hg was compared with the results obtained by a portable X-ray fluorescence spectrometer and mean quantitative calculations were obtained by a stationary X-ray fluorescence system with triaxial geometry. The results showed high concentrations of Hg in the external regions, but no diffusion was observed for the inner parts of the paper.

  2. Study of ancient Islamic gilded pieces combining PIXE-RBS on external microprobe with sem images

    International Nuclear Information System (INIS)

    Ynsa, M.D.; Gutierrez, P.C.; Enguita, O.; Chamon, J.; Pardo, A.I.; Arroyo, M.; Barrio, J.; Gomez-Morilla, I.; Ferretti, M.; Climent-Font, A.

    2008-01-01

    Numerous metallic objects with very aesthetic and technological qualities have been recovered by archaeological excavations. Adequate processes of restoration and conservation treatments require the accurate determination of the elemental composition and distribution within the objects, as well as the identification of the nature and distribution of the corrosion products. Ideally the identification method should cause no alteration in the sample. In this work, different archaeological pieces with a gilded look have been characterized using simultaneously PIXE and RBS at the CMAM external microprobe in order to study the gilding metalworking done in the Iberian Peninsula during the Middle Ages. The gold layer thickness and its elemental concentrations of Ag, Au and Hg were determined by both techniques and compared with the scanning electron microscopy images obtained for some fragments of pieces. (orig.)

  3. Early works on the nuclear microprobe for microelectronics irradiation tests at the CEICI (Sevilla, Spain)

    International Nuclear Information System (INIS)

    Palomo, F.R.; Morilla, Y.; Mogollon, J.M.; Garcia-Lopez, J.; Labrador, J.A.; Aguirre, M.A.

    2011-01-01

    Particle radiation effects are a fundamental problem in the use of numerous electronic devices for space applications, which is aggravated with the technology shrinking towards smaller and smaller scales. The suitability of low-energy accelerators for irradiation testing is being considered nowadays. Moreover, the possibility to use a nuclear microprobe, with a lateral resolution of a few microns, allows us to evaluate the behavior under ion irradiation of specific elements in an electronic device. The CEICI is the new CEnter for Integrated Circuits Irradiation tests, created into the facilities at the Centro Nacional de Aceleradores (CNA) in Sevilla-Spain. We have verified that our 3 MV Tandem accelerator, typically used for ion beam characterization of materials, is also a valuable tool to perform irradiation experiments in the low LET (Linear Energy Transfer) region.

  4. Microprobe study of fission product behavior in high-burnup HTR fuels

    International Nuclear Information System (INIS)

    Kleykamp, H.

    Electron microprobe analysis of irradiated coated particles with high burnup (greater than 50 percent fima) gives detailed information on the chemical state and the transport behavior of the fission products in UO 2 and UC 2 kernels and in the coatings. In oxide fuel kernels, metallic inclusions and ceramic precipitations are observed. The solubility behavior of the fission products in the fuel matrix has been investigated. Fission product inclusions could not be detected in carbide fuel kernels; post irradiation annealed UC 2 kernels, however, give information on the element combinations of some fission product phases. Corresponding to the chemical state in the kernel, Cs, Sr, Ba, Pd, Te and the rare earths are released easily and diffuse through the entire pyrocarbon coating. These fission products can be retained by a silicon carbide layer. The initial stage of a corrosive attack of the SiC coating by the fission products is evidenced

  5. Ion beam induced luminescence from diamond using an MeV ion microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Bettiol, A.A.; Jamieson, D. N.; Prawer, S.; Allen, M.G. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1993-12-31

    Analysis of the luminescence induced by a MeV ion beam offers the potential to provide useful information about the chemical properties of atoms in crystals to complement the information provided by more traditional Ion Beam Analysis (IBA) such as Rutherford Backscattering Spectrometry (RBS), ion channeling and Particle Induced X-ray Emission (PIXE). Furthermore, the large penetration depth of the MeV ion beam offers several advantages over the relatively shallow penetration of keV electrons typically employed in cathodoluminescence. An Ion Beam Induced Luminescence (IBIL) detection system was developed for the Melbourne microprobe that allows the spatial mapping of the luminescence signal along with the signals from RBS and PIXE. Homoepitaxial diamond growth has been studied and remarkable shifts in the characteristic blue luminescence of diamond towards the green were observed in the overgrowth. This has been tentatively identified as being due to transition metal inclusions in the epitaxial layers. 8 refs., 2 refs.

  6. Nuclear microprobe analysis of muscle biopsies: Applications in pathology and clinic

    International Nuclear Information System (INIS)

    Moretto, Ph.; Coquet, M.; Gherardi, R.K.; Stoedzel, P.

    2000-01-01

    The nuclear microprobe analysis of muscle biopsy sections has been recently applied to investigate different muscle disorders. This technique, employed as a complementary examination in the frame of pathological studies, permitted to confirm the diagnosis for a first pathology and to elucidate the cause of a second. In skeletal muscles of a young patient suffering from a slow progressive myopathy, calcium accumulations have been demonstrated in histologically abnormal fibers. These findings have been compared to histopathological characteristics previously described. On the other hand, we have evaluated muscle sections from two patients who presented symptoms of an inflammatory myopathy, a rare pathology that recently emerged in France. The chemical analyses permitted us to highlight local aluminium infiltration in muscles. The hypothesis of an unusual reaction to intramuscular aluminium accumulation has been advanced. These studies demonstrate the capability for ion beam microanalytical techniques to address acute problems in pathology

  7. Present status of research and development on X-ray microprobe

    International Nuclear Information System (INIS)

    Koike, Masaki; Suzuki, I.H.

    1991-01-01

    X-ray beam micro-analysis has advanced rapidly in these years in conjunction with the development of powerful X-ray sources. Among a variety of methods being attempted, the method using a collimated narrow beam has been important because of high brightness, and of usability in both regions of soft and hard X-rays. In the soft X-ray region, the focused beam is formed by a fresnel zone plate or a Schwaltzschild mirror assembly, and can be used for scanning transmission microscope or scanning photoelectron microscope. In the hard X-ray region, the beam is formed by grazing incidence mirrors, and can be used for X-ray fluorescence micro-analysis for obtaining elemental mapping. In this report, the recent progress on the soft X-ray scanning microscopy and the X-ray microprobe has been surveyed, together with the improvement on the related optical elements. (author) 84 refs

  8. Fabrication of wear-resistant silicon microprobe tips for high-speed surface roughness scanning devices

    Science.gov (United States)

    Wasisto, Hutomo Suryo; Yu, Feng; Doering, Lutz; Völlmeke, Stefan; Brand, Uwe; Bakin, Andrey; Waag, Andreas; Peiner, Erwin

    2015-05-01

    Silicon microprobe tips are fabricated and integrated with piezoresistive cantilever sensors for high-speed surface roughness scanning systems. The fabrication steps of the high-aspect-ratio silicon microprobe tips were started with photolithography and wet etching of potassium hydroxide (KOH) resulting in crystal-dependent micropyramids. Subsequently, thin conformal wear-resistant layer coating of aluminum oxide (Al2O3) was demonstrated on the backside of the piezoresistive cantilever free end using atomic layer deposition (ALD) method in a binary reaction sequence with a low thermal process and precursors of trimethyl aluminum and water. The deposited Al2O3 layer had a thickness of 14 nm. The captured atomic force microscopy (AFM) image exhibits a root mean square deviation of 0.65 nm confirming the deposited Al2O3 surface quality. Furthermore, vacuum-evaporated 30-nm/200-nm-thick Au/Cr layers were patterned by lift-off and served as an etch mask for Al2O3 wet etching and in ICP cryogenic dry etching. By using SF6/O2 plasma during inductively coupled plasma (ICP) cryogenic dry etching, micropillar tips were obtained. From the preliminary friction and wear data, the developed silicon cantilever sensor has been successfully used in 100 fast measurements of 5- mm-long standard artifact surface with a speed of 15 mm/s and forces of 60-100 μN. Moreover, the results yielded by the fabricated silicon cantilever sensor are in very good agreement with those of calibrated profilometer. These tactile sensors are targeted for use in high-aspect-ratio microform metrology.

  9. Trans-Regional technologies and the Lapita problem: characterisation of volcanic glass inclusions by electron microprobe

    International Nuclear Information System (INIS)

    Grave, P.; Nockolds, C.; White, P.

    1997-01-01

    Full text: Analysis of pre-modern pottery of the Pacific has long attempted to formulate measures independent of style for constructing archaeologically meaningful groups. However, the variable character of fabrics and the longevity of production (Lapita and post-Lapita wares from 3000 years ago to the present) have tended to obscure differences due to changes in production practices and resources through time and differences relating to the exchange of ceramics between islands or regions. In this poster we outline a preliminary study that employs an economical and robust technique to distinguish both within- and between-region groups. This is achieved with electron microprobe analysis of small volcanic glass fragments present in wares tempered with volcanic sands, and interpretation based on Principal Components Analysis. The method builds on the chemical groupings for glass from different volcanic complexes in the Pacific established through high energy ion beam (PIXE-PIGME) analysis. The purpose of this study is to characterise a selection of samples of pottery from the Duke of York's peninsula using electron microprobe analysis of very small glass fragments in the sections that ranged in size from around 0.05 mm to 1 mm.. The study involved the identification and elemental characterisation of individual fragments of glass in a section. Principal Component Analysis was used to identify structure latent in the dataset. The results of the study show that clear characterisation is possible to enable the wider application of the technique to Lapita and post Lapita ceramics produced originating in volcanic areas of the Pacific

  10. Fabrication of an 8:1 ellipsoidal mirror for a synchrotron x-ray microprobe

    International Nuclear Information System (INIS)

    Jones, K.W.; Takacs, P.Z.; Hastings, J.B.; Casstevens, J.M.; Pionke, C.D.

    1987-01-01

    The fabrication of an 8:1 demagnifying ellipsoidal mirror to be used for an x-ray microprobe at the National Synchrotron Light Source X-26 beam port is described. The design aim was to produce a mirror that could be used over the photon energy range from about 3 to 17 keV. The 300-mm long mirror was required to operate at a grazing angle of 5 mr. The semimajor axis was 4500 mm and the semiminor axis 14.142 mm. Surface roughness of 1 nm or less and slope errors of 1 arc second parallel to the long axis and 200 arc seconds parallel to the short direction were specified. Production of the first electroless nickel-coated aluminum mirror using a diamond-turning technique has been completed. The mirror meets the 1 arc sec surface figure specification except for areas near the ends of the mirror. The reasons for these deviations arise from subtle details of the diamond-turning process which have not been fully incorporated in to the computer program that controls the diamond-turning machines. Further work in computer correction of repeatable errors of the diamond-turning machine can eliminate the waviness at the ends of the mirror. The diamond-turned mirror surface was not fully polished under this effort and therefore does not meet the roughness specification; however, surface smoothness of a fully polished cylindrical mirror manufactured using the same techniques does not meet the specification. It can be concluded that it is now technically feasible to meet the required specifications for the mirror and that the x-ray microprobe based on its use can be achieved

  11. Proton-90Zr interaction at sub-coulomb proton energies

    International Nuclear Information System (INIS)

    Laird, C.E.; Flynn, D.; Hershberger, R.L.; Gabbard, F.

    1985-01-01

    Measurements have been made of proton elastic scattering differential cross sections for proton scattering at 135 0 and 165 0 from 2 to 7 MeV, of inelastic scattering cross sections for proton scattering from 3.9 to 5.7 MeV, and of the radiative capture cross sections from 1.9 to 5.7 MeV detecting primary and cascade gamma rays. Optical potentials with Hauser-Feshbach and coupled-channel models have been used to analyze the data. This analysis yields an energy dependent absorptive potential of W = 2.63+.73 whose mean value of 5 MeV at E/sub p/ = 4 MeV is consistent with previously reported, but anomalously small values. The diffuseness of the real potential is .54 fm, which is consistent with values found for 92 Zr and 94 Zr. The adopted model values are used to deduce a total proton strength function which displays the features of both the 3s and the 3p single particle resonances

  12. Spherical proton emitters

    International Nuclear Information System (INIS)

    Berg, S.; Semmes, P.B.; Nazarewicz, W.

    1997-01-01

    Various theoretical approaches to proton emission from spherical nuclei are investigated, and it is found that all the methods employed give very similar results. The calculated decay widths are found to be qualitatively insensitive to the parameters of the proton-nucleus potential, i.e., changing the potential parameters over a fairly large range typically changes the decay width by no more than a factor of ∼3. Proton half-lives of observed heavy proton emitters are, in general, well reproduced by spherical calculations with the spectroscopic factors calculated in the independent quasiparticle approximation. The quantitative agreement with experimental data obtained in our study requires that the parameters of the proton-nucleus potential be chosen carefully. It also suggests that deformed proton emitters will provide invaluable spectroscopic information on the angular momentum decomposition of single-proton orbitals in deformed nuclei. copyright 1997 The American Physical Society

  13. Proton therapy physics

    CERN Document Server

    2012-01-01

    Proton Therapy Physics goes beyond current books on proton therapy to provide an in-depth overview of the physics aspects of this radiation therapy modality, eliminating the need to dig through information scattered in the medical physics literature. After tracing the history of proton therapy, the book summarizes the atomic and nuclear physics background necessary for understanding proton interactions with tissue. It describes the physics of proton accelerators, the parameters of clinical proton beams, and the mechanisms to generate a conformal dose distribution in a patient. The text then covers detector systems and measuring techniques for reference dosimetry, outlines basic quality assurance and commissioning guidelines, and gives examples of Monte Carlo simulations in proton therapy. The book moves on to discussions of treatment planning for single- and multiple-field uniform doses, dose calculation concepts and algorithms, and precision and uncertainties for nonmoving and moving targets. It also exami...

  14. Proton solvation and proton transfer in chemical and electrochemical processes

    International Nuclear Information System (INIS)

    Lengyel, S.; Conway, B.E.

    1983-01-01

    This chapter examines the proton solvation and characterization of the H 3 O + ion, proton transfer in chemical ionization processes in solution, continuous proton transfer in conductance processes, and proton transfer in electrode processes. Topics considered include the condition of the proton in solution, the molecular structure of the H 3 O + ion, thermodynamics of proton solvation, overall hydration energy of the proton, hydration of H 3 O + , deuteron solvation, partial molal entropy and volume and the entropy of proton hydration, proton solvation in alcoholic solutions, analogies to electrons in semiconductors, continuous proton transfer in conductance, definition and phenomenology of the unusual mobility of the proton in solution, solvent structure changes in relation to anomalous proton mobility, the kinetics of the proton-transfer event, theories of abnormal proton conductance, and the general theory of the contribution of transfer reactions to overall transport processes

  15. Study of proton radioactivities

    Energy Technology Data Exchange (ETDEWEB)

    Davids, C.N.; Back, B.B.; Henderson, D.J. [and others

    1995-08-01

    About a dozen nuclei are currently known to accomplish their radioactive decay by emitting a proton. These nuclei are situated far from the valley of stability, and mark the very limits of existence for proton-rich nuclei: the proton drip line. A new 39-ms proton radioactivity was observed following the bombardment of a {sup 96}Ru target by a beam of 420-MeV {sup 78}Kr. Using the double-sided Si strip detector implantation system at the FMA, a proton group having an energy of 1.05 MeV was observed, correlated with the implantation of ions having mass 167. The subsequent daughter decay was identified as {sup 166}Os by its characteristic alpha decay, and therefore the proton emitter is assigned to the {sup 167}Ir nucleus. Further analysis showed that a second weak proton group from the same nucleus is present, indicating an isomeric state. Two other proton emitters were discovered recently at the FMA: {sup 171}Au and {sup 185}Bi, which is the heaviest known proton radioactivity. The measured decay energies and half-lives will enable the angular momentum of the emitted protons to be determined, thus providing spectroscopic information on nuclei that are beyond the proton drip line. In addition, the decay energy yields the mass of the nucleus, providing a sensitive test of mass models in this extremely proton-rich region of the chart of the nuclides. Additional searches for proton emitters will be conducted in the future, in order to extend our knowledge of the location of the proton drip line.

  16. X-ray fluorescence analyzers for investigating postmediaeval pottery from Southern Moravia

    International Nuclear Information System (INIS)

    Trojek, Tomas; Hlozek, Matin; Cechak, Tomas; Musilek, Ladislav

    2010-01-01

    This paper deals with an investigation of ceramic archaeological finds with the use of in-situ X-ray fluorescence analysis. Firstly, three configurations of X-ray fluorescence analyzers constructed and used at the Czech Technical University in Prague are described and compared for use in a non-destructive survey of siliceous materials. Detection limits, depth of analysis, the relation of the analyzed area, the homogeneity of the samples, and variations in the element concentrations are discussed. Secondly, many shards of postmediaeval pottery from Southern Moravia are analyzed with X-ray fluorescence analysis and some of them also with electron microprobe analysis. Selected results are described.

  17. Proton-Proton and Proton-Antiproton Colliders

    CERN Document Server

    Scandale, Walter

    2014-01-01

    In the last five decades, proton–proton and proton–antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion–ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.

  18. NENIMF: Northeast National Ion Microprobe Facility - A Multi-User Facility for SIMS Microanalysis

    Science.gov (United States)

    Layne, G. D.; Shimizu, N.

    2002-12-01

    The MIT-Brown-Harvard Regional Ion Microprobe Facility was one of the earliest multi-user facilities enabled by Dan Weill's Instrumentation and Facilities Program - and began with the delivery of a Cameca IMS 3f ion microprobe to MIT in 1978. The Northeast National Ion Microprobe Facility (NENIMF) is the direct descendant of this original facility. Now housed at WHOI, the facility incorporates both the original IMS 3f, and a new generation, high transmission-high resolution instrument - the Cameca IMS 1270. Purchased with support from NSF, and from a consortium of academic institutions in the Northeast (The American Museum of Natural History, Brown University, The Lamont-Doherty Earth Observatory, MIT, Rensselaer Polytechnic Institute, WHOI) - this latest instrument was delivered and installed during 1996. NENIMF continues to be supported by NSF EAR I&F as a multi-user facility for geochemical research. Work at NENIMF has extended the original design strength of the IMS 1270 for microanalytical U-Pb zircon geochronology to a wide variety of novel and improved techniques for geochemical research. Isotope microanalysis for studies in volcanology and petrology is currently the largest single component of facility activity. This includes the direct measurement of Pb isotopes in melt inclusions, an application developed at NENIMF, which is making an increasingly significant contribution to our understanding of basalt petrogenesis. This same technique has also been extended to the determination of Pb isotopes in detrital feldspar grains, for the study of sedimentary provenance and tectonics of the Himalayas and other terrains. The determination of δ11B in volcanic melt inclusions has also proven to be a powerful tool in the modeling of subduction-related magmatism. The recent development of δ34S and δ37Cl determination in glasses is being applied to studies of the behavior of these volatile elements in both natural and experimental systems. Other recent undertakings

  19. Proton Fast Ignition

    International Nuclear Information System (INIS)

    Key, M H; Freeman, R R; Hatchett, S P; MacKinnon, A J; Patel, P K; Snavely, R A; Stephens, R B

    2006-04-01

    Fast ignition (FI) by a laser generated ballistically focused proton beam is a more recently proposed alternative to the original concept of FI by a laser generated beam of relativistic electrons. It has potential advantages in less complex energy transport into dense plasma. Recent successful target heating experiments motivate further investigation of the feasibility of proton fast ignition. The concept, the physics and characteristics of the proton beams, the recent experimental work on focusing of the beams and heating of solid targets and the overall prospects for proton FI are discussed

  20. Numerical studies of triplet and Russian quadruplet quadrupole lens systems with the given spot size on the target, for use in a microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Brazhnik, V A; Lebed, S A; Ponomarev, A G; Storizhko, V E [Ukrainian Academy of Sciences, Sumy (Ukraine). Applied Physics Institute; Dymnikov, A D [University of St Petersburg, Stary (Russian Federation). Institute of Computational Mathematics and Control Processes; Jamieson, D N; Legge, S A [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1994-12-31

    In a nuclear microprobe the focusing system is an essential component which determines the beam spot size, i.e. the microprobe resolution. A small beam cross section at the target is the most important of the many conflicting requirements imposed on the beam The second most important factor is the current of the beam which at the given brightness is proportional to the phase volume (or emittance) of the beam. Existing microprobes frequently use a triplet or a Russian quadruplet as the focusing systems. This paper describes the numerical studies of some optimal quadrupole lens systems consisting of three or four lenses suitable for use in a nuclear microprobe taking into account geometrical aberrations of third order. The maximum emittance of changed particle beams for these systems has been found. It is shown how the maximum emittance depends on the spot size. 2 refs., 2 figs.

  1. Numerical studies of triplet and Russian quadruplet quadrupole lens systems with the given spot size on the target, for use in a microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Brazhnik, V.A.; Lebed, S.A.; Ponomarev, A.G.; Storizhko, V.E. [Ukrainian Academy of Sciences, Sumy (Ukraine). Applied Physics Institute; Dymnikov, A.D. [University of St Petersburg, Stary (Russian Federation). Institute of Computational Mathematics and Control Processes; Jamieson, D.N.; Legge, S.A. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1993-12-31

    In a nuclear microprobe the focusing system is an essential component which determines the beam spot size, i.e. the microprobe resolution. A small beam cross section at the target is the most important of the many conflicting requirements imposed on the beam The second most important factor is the current of the beam which at the given brightness is proportional to the phase volume (or emittance) of the beam. Existing microprobes frequently use a triplet or a Russian quadruplet as the focusing systems. This paper describes the numerical studies of some optimal quadrupole lens systems consisting of three or four lenses suitable for use in a nuclear microprobe taking into account geometrical aberrations of third order. The maximum emittance of changed particle beams for these systems has been found. It is shown how the maximum emittance depends on the spot size. 2 refs., 2 figs.

  2. Numerical studies of triplet and Russian quadruplet quadrupole lens systems with the given spot size on the target, for use in a microprobe

    International Nuclear Information System (INIS)

    Brazhnik, V.A.; Lebed, S.A.; Ponomarev, A.G.; Storizhko, V.E.; Dymnikov, A.D.; Jamieson, D.N.; Legge, S.A.

    1993-01-01

    In a nuclear microprobe the focusing system is an essential component which determines the beam spot size, i.e. the microprobe resolution. A small beam cross section at the target is the most important of the many conflicting requirements imposed on the beam The second most important factor is the current of the beam which at the given brightness is proportional to the phase volume (or emittance) of the beam. Existing microprobes frequently use a triplet or a Russian quadruplet as the focusing systems. This paper describes the numerical studies of some optimal quadrupole lens systems consisting of three or four lenses suitable for use in a nuclear microprobe taking into account geometrical aberrations of third order. The maximum emittance of changed particle beams for these systems has been found. It is shown how the maximum emittance depends on the spot size. 2 refs., 2 figs

  3. U-Pb geochronology of zircons form lunar Breccia 73217 using a sensitive high mass-resolution ion microprobe

    International Nuclear Information System (INIS)

    Compston, W.; Williams, I.S.

    1984-01-01

    U-Pb age determinations on four lunar zircons from existing thin-sections of one highland breccia, 73217, using the recently constructed ion microprobe SHRIMP, are reported. The analytical reproducibility of SHRIMP is demonstrated, and procedures for measuring Pb/U, Th/U, and corecting for initial Pb are explained. Electron microprobe analyses for the zircons are also reported. The results show that the four zircons survived the lunar cataclysm without any identifiable effects on their U-Pb systematics. All four indicate a single age of 4356 +23 or -14 m.y. The zircons have experienced small variable amounts of Pb loss since crystallization, from almost zero up to about 10 percent. If this occurred during one later event, then age of the latter is between 1100 and 2300 m.y. 18 references

  4. Extended emission sources observed via two-proton correlations

    International Nuclear Information System (INIS)

    Awes, T.C.; Ferguson, R.L.; Obenshain, F.E.

    1988-01-01

    Two-proton correlations were measured as a function of the total energy and relative momentum of the proton. The correlation is analyzed for different orientations of the relative momentum, which allows information on the size and lifetime of the emission source to be extracted. The most energetic particles are emitted from a short- lived source of compound nucleus dimensions while the lower energy protons appear to be emitted from a source considerably larger than the compound nucleus. 9 refs., 3 figs

  5. Proton adsorption onto alumina: extension of multisite complexation (MUSIC) theory

    Energy Technology Data Exchange (ETDEWEB)

    Nagashima, K.; Blum, F.D.

    1999-09-01

    The adsorption isotherm of protons onto a commercial {gamma}-alumina sample was determined in aqueous nitric acid with sodium nitrate as a background electrolyte. Three discrete regions could be discerned in the log-log plots of the proton isotherm determined at the solution pH 5 to 2. The multisite complexation (MUSIC) model was modified to analyze the simultaneous adsorption of protons onto various kinds of surface species.

  6. Proton decay: spectroscopic probe beyond the proton drip line

    International Nuclear Information System (INIS)

    Seweryniak, D; Davids, C N; Robinson, A; Woods, P J; Blank, B; Carpenter, M P; Davinson, T; Freeman, S J; Hammond, N; Hoteling, N; Janssens, R V F; Khoo, T L; Liu, Z; Mukherjee, G; Shergur, J; Sinha, S; Sonzogni, A A; Walters, W B; Woehr, A

    2005-01-01

    Proton decay has been transformed in recent years from an exotic phenomenon into a powerful spectroscopic tool. The frontiers of experimental and theoretical proton-decay studies will be reviewed. Different aspects of proton decay will be illustrated with recent results on the deformed proton emitter 135 Tb, the odd-odd deformed proton emitter 130 Eu, the complex fine structure in the odd-odd 146 Tm nucleus and on excited states in the transitional proton emitter 145 Tm

  7. Review of inelastic proton-proton reactions

    CERN Document Server

    Morrison, Douglas Robert Ogston

    1973-01-01

    The most important new results on inelastic proton-proton scattering obtained with the new machines, I.S.R. and N.A.L., are: (1) The inelastic cross-section increases monotonically with energy from threshold to 1500 GeV/c. Above 6 GeV/c the energy variation has a s /sup +0.04/ behaviour. (2) Scaling is observed at I.S.R. energies in pion production. Confirmation is obtained of the hypothesis of limiting fragmentation. (3) The results are in general, consistent with the two-component model-one class of events being produced by diffraction dissociation and the other by a short-range-order process (e.g. the multiperipheral model). (4) There are indications that the protons have a granular structure; this from observation of secondaries of large transverse momenta. (33 refs).

  8. Evaluation of the odd-even effect in limits of detection for electron microprobe analysis of natural minerals

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Surendra P., E-mail: spv@cie.unam.mx [Departamento de Sistemas Energeticos, Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Priv. Xochicalco s/no., Col Centro, A.P. 34, Temixco, Mor. 62580 (Mexico); Pandarinath, Kailasa [Departamento de Sistemas Energeticos, Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Priv. Xochicalco s/no., Col Centro, A.P. 34, Temixco, Mor. 62580 (Mexico); Velasco-Tapia, Fernando [Facultad de Ciencias de la Tierra, Universidad Autonoma de Nuevo Leon, Carretera Linares-Cerro Prieto km. 8, Linares, N.L. 67700 (Mexico); Rodriguez-Rios, Rodolfo [Facultad de Ingenieria e Instituto de Geologia, Universidad Autonoma de San Luis Potosi, Av. Dr. Manuel Nava No. 8, Zona Universitaria, San Luis Potosi, S.L.P. 78240 (Mexico)

    2009-04-13

    Limit of detection (LOD), being a fundamental quality parameter for analytical techniques, has been recently investigated and a systematic behavior has been observed for most odd-even element pairs for many techniques. However, to the best of our knowledge very few LOD data are available in published literature for electron microprobe analysis; these consist of three papers, two being on rare-earth elements and the third covering a large number of elements of atomic number between 21 and 92. These data confirm the systematic behavior of LODs for many odd-even pairs. To initiate to full this gap, we determined LODs for several major rock-forming chemical elements from Na to Fe with atomic numbers between 11 and 26, during the microprobe analysis of common minerals (olivine, plagioclase, pyroxene, amphibole, quartz, and opaques) in volcanic rocks. The odd-even effect of nuclear stability seems to be present in LOD data for most odd-even pairs investigated. Nevertheless, the experimental strategy concerning the reference materials, calibration procedure, and blank measurements, should be substantially modified to better evaluate the systematic behavior of LOD values in microprobe analysis.

  9. Evaluation of the odd-even effect in limits of detection for electron microprobe analysis of natural minerals

    International Nuclear Information System (INIS)

    Verma, Surendra P.; Pandarinath, Kailasa; Velasco-Tapia, Fernando; Rodriguez-Rios, Rodolfo

    2009-01-01

    Limit of detection (LOD), being a fundamental quality parameter for analytical techniques, has been recently investigated and a systematic behavior has been observed for most odd-even element pairs for many techniques. However, to the best of our knowledge very few LOD data are available in published literature for electron microprobe analysis; these consist of three papers, two being on rare-earth elements and the third covering a large number of elements of atomic number between 21 and 92. These data confirm the systematic behavior of LODs for many odd-even pairs. To initiate to full this gap, we determined LODs for several major rock-forming chemical elements from Na to Fe with atomic numbers between 11 and 26, during the microprobe analysis of common minerals (olivine, plagioclase, pyroxene, amphibole, quartz, and opaques) in volcanic rocks. The odd-even effect of nuclear stability seems to be present in LOD data for most odd-even pairs investigated. Nevertheless, the experimental strategy concerning the reference materials, calibration procedure, and blank measurements, should be substantially modified to better evaluate the systematic behavior of LOD values in microprobe analysis.

  10. Nuclear microprobe analysis of serpentine from the mid-Atlantic ridge

    International Nuclear Information System (INIS)

    Orberger, Beate; Metrich, Nicole; Mosbah, Michelle; Mevel, Catherine; Fouquet, Yves

    1999-01-01

    At mid-ocean ridges, ultramafic rocks are serpentinized by interaction with seawater-derived fluids. Elements, dissolved in large quantities in seawater, e.g., Na, K, Cl, Br, Ca and Sr, can be, in small amounts, incorporated as traces into the crystal structure of the various serpentine minerals (Mg 3 Si 2 O 5 (OH) 4 ). These trace elements can be used to track the composition of the reacting fluids and to constrain physico-chemical conditions. This paper represents the first application of particle-induced X- and γ-ray emission (PIXE/PIGE) analysis to serpentine using the nuclear microprobe at the Laboratoire Pierre Suee (CEA-CNRS). Three types of serpentine, belonging to two different serpentinization generations, have been analysed in samples collected from the Mid-Atlantic Ridge (14 deg. 45'N/45 deg. W) that exposes serpentinized peridotites on which the Logachev black smoker is placed. The trace elements Cl, F, S, Cu, Zn, Ca, K, Ni, Cr and Mn were detected from several tens to several thousands of ppm. Bromine, As and Sr are close to the detection limit of about 5 ppm. The trace element concentrations and interelement relationships in serpentines vary (a) with the serpentine type and (b) with the geographic location to the black smoker. Chlorine and in part S originated from seawater, whereas Cu, Zn, Ca, K, Ni, Cr and Fe and the major amount of S were mobilized from the unaltered host rock and partitioned between the serpentine and the aqueous solution

  11. The use of field indentation microprobe in measuring mechanical properties of welds

    International Nuclear Information System (INIS)

    Haggag, F.M.; Wong, H.; Alexander, D.J.; Nanstad, R.K.

    1989-01-01

    A field indentation microprobe (FIM) was conceived for evaluating the structural integrity of metallic components (including base metal, welds, and heat-affected zones) in situ in a nondestructive manner. The FIM consists of an automated ball indentation (ABI) unit for determining the mechanical properties (yield strength, flow properties, estimates of fracture toughness, etc.) and a nondestructive evaluation (NDE) unit (consisting of ultrasonic transducers and a video camera) for determining the physical properties such as crack size, material pileup around indentation, and residual stress presence and orientation. The laboratory version used in this work performs only ABI testing. ABI tests were performed on stainless steel base metal (type 316L), heat-affected zone, and welds (type 308). Excellent agreement was obtained between yield strength and flow properties (true-stress/true-plastic-strain curve) measured by the ABI tests and those from uniaxial tensile tests conducted on 308 stainless steel welds, thermally aged at 343/degree/C for different times, and on the base material. 4 refs., 17 figs

  12. Ion microprobe analyses of aluminous lunar glasses - A test of the 'rock type' hypothesis

    Science.gov (United States)

    Meyer, C., Jr.

    1978-01-01

    Previous soil survey investigations found that there are natural groupings of glass compositions in lunar soils and that the average major element composition of some of these groupings is the same at widely separated lunar landing sites. This led soil survey enthusiasts to promote the hypothesis that the average composition of glass groupings represents the composition of primary lunar 'rock types'. In this investigation the trace element composition of numerous aluminous glass particles was determined by the ion microprobe method as a test of the above mentioned 'rock type' hypothesis. It was found that within any grouping of aluminous lunar glasses by major element content, there is considerable scatter in the refractory trace element content. In addition, aluminous glasses grouped by major elements were found to have different average trace element contents at different sites (Apollo 15, 16 and Luna 20). This evidence argues that natural groupings in glass compositions are determined by regolith processes and may not represent the composition of primary lunar 'rock types'.

  13. Raman and luminescence spectroscopy of zirconium oxide with the use of the MOLE microprobe

    International Nuclear Information System (INIS)

    Doyle, T.E.; Alvarez, J.L.

    1984-01-01

    Raman and luminescence spectroscopy with the use of the MOLE microprobe has been used to characterize ZrO 2 originating from oxidized fuel-rod cladding in nuclear accidents. Micro-Raman analysis of samples from Three Mile Island Unit 2 and the Power Burst Facility identified tetragonal and cubic ZrO 2 . The tetragonal and cubic phases are high-temperature polymorphs of ZrO 2 and provide information about temperatures and hydrogen formation in the TMI-2 core. The data suggest that the tetragonal ZrO 2 in TMI-2 samples was stabilized by a crystallite size effect, whereas cubic ZrO 2 in PBF debris samples was stabilized by impurities. Luminescence was used to differentiate yttria-stabilized ZrO 2 ceramics and oxidized fuel-rod cladding in PBF debris samples. The ZrO 2 ceramics produced strong, sharp luminescence peaks which indicated the presence of titanium and yttria in the ZrO 2 . Oxidized fuel-rod cladding displayed no luminescence

  14. Treatment of dentin with stannous fluoride - SEM and electron microprobe study

    International Nuclear Information System (INIS)

    Ellingsen, J.E.; Roella, G.

    1987-01-01

    The effect of SnF 2 -treatment of dentin surfaces was investigated by means of scanning electron microscopy (SEM) and electron microprobe analysis. Human dentin was treated with aqueous SnF 2 solutions of concentrations varying from 1 to 10%. The treatment periods lasted for 1, 5, 10 or 60 min. Both tin and fluoride were identified on the surfaces. The concentration varied depending on the extensiveness of the treatment. Immersion in 1 M KOH for 15 h removed both tin and fluoride from the surfaces. This reaction was not observed after immersion in H 2 O for the same time period. Examination of the SnF 2 -treated dentin surfaces showed a dense layer of globular particles and in addition some larger particles. The dentinal tubules were totally covered even after the treatment with the lowest concentration of SnF 2 . Deposition of tin- and fluoride-containing globules on dentin surfaces may be of clinical interest. This layer may have importance both for the caries resistance of dentin and for hypersensitivity reactions. (author)

  15. Application of a nuclear microprobe to the study of calcified tissues

    Science.gov (United States)

    Coote, Graeme E.; Vickridge, Ian C.

    1988-03-01

    The mineral fraction of calcified tissue is largely calcium hydroxyapatite (bones and teeth) or calcium carbonate (shells and fish otoliths). Apatite has such a strong affinity for fluoride ions that the F/Ca ratio can vary markedly with position in a bone or tooth, depending on the amount of fluoride present at the time of calcification or partial recrystallization. New biological information can be obtained by introducing extra fluoride into the diet of an animal and using a microprobe later to scan sections of bones or teeth. In suitable burial sites extra fluoride is introduced after death, and the new distribution may have applications in forensic science and archaeology. Fish otoliths are also of interest since a new carbonate layer is formed each day and the distribution of trace elements may record some aspects of the fish's life history. Results from the following studies are presented: fluorine distributions in the teeth of sheep which ingested extra fluoride for known periods; distributions of calcium and fluorine in femurs of rats which drank water high in fluoride for periods from 2 to 15 weeks; calcium and fluorine distributions in artificially-prepared lesions in tooth enamel; diffusion profiles in archaeological human teeth and animal bones; patterns in the strontium/calcium ratio in sectioned otoliths of several species of fish.

  16. Performance of a high-resolution x-ray microprobe at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Cai, Z.; Lai, B.; Yun, W.; McNulty, I.; Khounsary, A.; Maser, J.; Ilinski, P.; Legnini, D.; Trakhtenberg, E.; Xu, S.; Tieman, B.; Wiemerslage, G.; Gluskin, E.

    1999-01-01

    The authors have developed a x-ray microprobe in the energy region from 6 to 20 keV using undulator radiation and zone-plate optics for microfocusing-based techniques and applications at a beamline at the Advanced Photon Source (APS). The performance of the beamline was shown to meet the design objectives, including preservation of the source brilliance and coherence, selectable transverse coherence length and energy bandwidth, high angular stability, and harmonic suppression of the beam. These objectives were achieved by careful thermal management and use of a novel mirror and crystal monochromator cooling geometry. All beamline optical components are water cooled, and the x-ray beam in the experiment station is stable in beam intensity, energy, and position over many days with no active feedback. Using a double-crystal Si(111) monochromator, they have obtained a focal spot size (FWHM) of 0.15 (micro)m (v) x 1.0 (micro)m (h), and a photon flux of 4 x 10 9 photons/sec at the focal spot, and thus a photon flux density gain of 15,000. A circular beam spot of 0.15 (micro)m in diameter can be achieved by reducing the horizontal source size using a white beam slit located 43.5 meters upstream of the zone plate, with an order of magnitude less flux in the focal spot

  17. A novel ultra-short scanning nuclear microprobe: Design and preliminary results

    International Nuclear Information System (INIS)

    Lebed, S.; Butz, T.; Vogt, J.; Reinert, T.; Spemann, D.; Heitmann, J.; Stachura, Z.; Lekki, J.; Potempa, A.; Styczen, J.; Sulkio-Cleff, B.

    2001-01-01

    The paper describes an optimized scanning nuclear microprobe (MP) with a new ultra-short (total length of 1.85 m) probe forming system based on a divided Russian quadruplet (DRQ) of magnetic quadrupole lenses. Modern electrostatic accelerators have a comparatively high beam brightness of about 10-25 pA/μm 2 /mrad 2 /MeV. This allows the MP proposed to provide a high lateral resolution even with large (1%) parasitic (sextupole and octupole) pole tip field components in all lenses. The features of the design permit the MP operation in the high current and low current modes with a short working distance and inexpensive quadrupole lenses. A new quadrupole doublet design has been developed for the MP. In the present work the calculated features of the new MP are compared with preliminary experimental results obtained with a similar system (total length of 2.3 m) at the INP in Cracow. The new MP is promising for studies of solids or biological samples with high resolutions (0.08-2 μm) in both modes under ambient conditions. A vertical version of the ultra-short MP can be very useful for single ion bombardments of living cells

  18. Development of an optical fiber SERS microprobe for minimally invasive sensing applications

    Science.gov (United States)

    Mamun, Md Abdullah Al; Juodkazis, Saulius; Mahadevan-Jansen, Anita; Stoddart, Paul R.

    2018-02-01

    Numerous potential biomedical sensing applications of surface-enhanced Raman scattering (SERS) have been reported, but its practical use has been limited by the lack of a robust sensing platform. Optical fiber SERS probes show great promise, but are limited by the prominent silica Raman background, which requires the use of bulky optics for filtering the signal collection and excitation delivery paths. In the present study, a SERS microprobe has been designed and developed to eliminate the bottlenecks outlined above. For efficient excitation and delivery of the SERS signal, both hollow core photonic crystal fiber and double clad fiber have been investigated. While the hollow core fiber was still found to have excessive silica background, the double clad fiber allows efficient signal collection via the multi-mode inner cladding. A micro filtering mechanism has been designed, which can be integrated into the tip of the optical fiber SERS probe, providing filtering to suppress silica Raman background and thus avoiding the need for bulky optics. The design also assists in the efficient collection of SERS signal from the sample by rejecting Rayleigh scattered light from the sample. Optical fiber cleaving using ultra-short laser pulses was tested for improved control of the fiber tip geometry. With this miniaturized and integrated filtering mechanism, it is expected that the developed probe will promote the use of SERS for minimally invasive biomedical monitoring and sensing applications in future. The probe could potentially be placed inside a small gauge hypodermic needle and would be compatible with handheld portable spectrometers.

  19. Characterisation of Inorganic Pigments Used by Selected Painters by Using Ion Microprobe and Other Complementary Techniques

    International Nuclear Information System (INIS)

    Fazinic, S.; Pastuovic, Z.; Jaksic, M.; Kusijanovic, K.; Mudronja, D.; Braun, M.; Desnica, V.

    2011-01-01

    The aim of the presentation is to show results of the collaboration between the Croatian Conservation Institute (CCI) and the Laboratory for Ion Beam Interactions of the Rudjer Boskovic Institute (RBI) established within the present CRP. CCI is the central Croatian institution for conservation and restoration of cultural heritage objects. Prior to restoration/conservation CCI performs scientific analysis of an object, primarily to enable selection of the best strategy for its restoration/conservation. In many occasions such analysis is also helpful to resolve issues such as clarification of authenticity and/or authorship of an object. CCI has its analytical laboratory which is fully dedicated to the analysis of cultural heritage and art objects. CCI analytical laboratory is equipped with various microscopy techniques, photography methods, portable X-ray Fluorescence Spectrometer (XRF) and X-ray radiography instrumentation. Access to complementary microanalytical techniques like Raman Spectroscopy or Ion Beam Analytical (IBA) techniques is provided through already long and successful collaboration with RBI. The RBI Laboratory for Ion Beam Interactions provides complementary analysis of layered microsamples by using IBA techniques, such as Particle Induced X-ray Emission (PIXE) and Rutherford Back-scattering (RBS), and for the miniature samples by using ion microprobe. (author)

  20. Using Synchrotron X-ray Fluorescence Microprobes in the Study of Metal Homeostasis in Plants

    International Nuclear Information System (INIS)

    Punshon, T.; Guerinot, M.; Lanzirotti, A.

    2009-01-01

    Background and Aims: This Botanical Briefing reviews the application of synchrotron X-ray fluorescence (SXRF) microprobes to the plant sciences; how the technique has expanded our knowledge of metal(loid) homeostasis, and how it can be used in the future. Scope: The use of SXRF microspectroscopy and microtomography in research on metal homeostasis in plants is reviewed. The potential use of SXRF as part of the ionomics toolbox, where it is able to provide fundamental information on the way that plants control metal homeostasis, is recommended. Conclusions: SXRF is one of the few techniques capable of providing spatially resolved in-vivo metal abundance data on a sub-micrometre scale, without the need for chemical fixation, coating, drying or even sectioning of samples. This gives researchers the ability to uncover mechanisms of plant metal homeostasis that can potentially be obscured by the artefacts of sample preparation. Further, new generation synchrotrons with smaller beam sizes and more sensitive detection systems will allow for the imaging of metal distribution within single living plant cells. Even greater advances in our understanding of metal homeostasis in plants can be gained by overcoming some of the practical boundaries that exist in the use of SXRF analysis.

  1. Direct localised measurement of electrical resistivity profile in rat and embryonic chick retinas using a microprobe

    Directory of Open Access Journals (Sweden)

    Harald van Lintel

    2010-01-01

    Full Text Available We report an alternative technique to perform a direct and local measurement of electrical resistivities in a layered retinal tissue. Information on resistivity changes along the depth in a retina is important for modelling retinal stimulation by retinal prostheses. Existing techniques for resistivity-depth profiling have the drawbacks of a complicated experimental setup, a less localised resistivity probing and/or lower stability for measurements. We employed a flexible microprobe to measure local resistivity with bipolar impedance spectroscopy at various depths in isolated rat and chick embryo retinas for the first time. Small electrode spacing permitted high resolution measurements and the probe flexibility contributed to stable resistivity profiling. The resistivity was directly calculated based on the resistive part of the impedance measured with the Peak Resistance Frequency (PRF methodology. The resistivity-depth profiles for both rat and chick embryo models are in accordance with previous mammalian and avian studies in literature. We demonstrate that the measured resistivity at each depth has its own PRF signature. Resistivity profiles obtained with our setup provide the basis for the construction of an electric model of the retina. This model can be used to predict variations in parameters related to retinal stimulation and especially in the design and optimisation of efficient retinal implants.

  2. Metallographic study of ferrite → sigma transformation using ferromagnetic colloid, microprobe analysis, and color etching

    International Nuclear Information System (INIS)

    Gray, R.J.; Crouse, R.S.; Sikka, V.K.; King, R.T.

    1976-01-01

    The mechanical properties of ferrite-containing austenitic stainless steel base metal and weldments are usually adversely affected by prolonged exposure to temperatures in the 482-900 0 C (900-1652 0 F) range. One cause of the property alteration is related to the transformation of relatively ductile delta-ferrite to less ductile sigma-phase. Attempts to identify sigma and delta ferrite phases by color staining techniques alone are well documented; however, the results are often questionable due to the difficulty in maintaining consistent color identifications. This investigation is concerned with the microstructural responses of the ferromagnetic delta-ferrite phase and the paramagnetic sigma-phase to a ferromagnetic iron colloid in a magnetic field. Such positive or negative responses of the two phases to the colloid offer a more definitive identification. With this technique, the identification of small amounts of these phases in the microstructure is limited only by the highest magnification and resolution of the optical microscope. The procedure is substantiated in this metallographic study with microprobe analysis and color metallography. Several examples of the correlative use of these three techniques in identifying varying amounts of delta-ferrite yields sigma transformation are presented

  3. Microprobe PIXE study of Ni–Ge interactions in lateral diffusion couples

    Energy Technology Data Exchange (ETDEWEB)

    Chilukusha, D. [Department of Physics, University of Zambia, P.O. Box 32379, Lusaka 10101 (Zambia); Pineda-Vargas, C.A. [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa); Faculty of Health & Wellness Sciences, CPUT, Bellville (South Africa); Nemutudi, R. [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa); Habanyama, A. [Department of Physics, Copperbelt University, P.O. Box 21692, Jambo Drive, Riverside, Kitwe 10101 (Zambia); Comrie, C.M. [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa)

    2015-11-15

    Rutherford backscattering spectrometry on the nuclear microprobe (μRBS) is often used in studies of lateral diffusion couples. RBS requires that the positions of the interacting species on the periodic table are not too close in terms of atomic number and therefore do not produce excessive RBS peak overlap. In order to satisfactorily characterize systems that have atomic numbers which are close, it is necessary to find techniques which can complement μRBS. The aim of this study was to determine the extent to which particle induced X-ray emission (PIXE) could be applied in the lateral diffusion couple study of a system with relatively close atomic numbers. This was with a view that it may eventually be adopted to study systems where the atomic numbers are too close for RBS analysis. The system studied here was the Ni–Ge binary system. Since RBS is an established technique for studying lateral diffusion couples, we used it as a standard for comparison. The PIXE results showed a maximum error of 12% with reference to the RBS standard. In order to achieve the most effective use of PIXE in lateral diffusion couple studies we recommend the use of the technique in such a way as to obtain depth information and the use of relatively thick sample layers.

  4. Optimization of the working distance of an ion microprobe-forming system

    International Nuclear Information System (INIS)

    Melnik, K.I.; Magilin, D.V.; Ponomarev, A.G.

    2009-01-01

    A high-resolution ion microprobe necessitates the use of a small working distance (the distance from the final quadrupole lens of a probe-forming system to the specimen) in order to produce a large demagnification. But at the same time a small working distance is a source of a number of practical difficulties. We have presented an approach for determining a working distance that provides the best spatial resolution with the main practical limitations taken into account. We used a probe-forming system acceptance as a criterion of optimality. The calculations have revealed the existence of an optimal working distance in a set of common probe-forming systems, but it can be achieved only after changing of a design of a final quadrupole lens. We proposed a possible design of conic lens that allows solving the problem of detectors location and creating a short focus system. Three-dimensional calculations of magnetic field within this lens predicted a good quality of field structure.

  5. Fabrication and surface-modification of implantable microprobes for neuroscience studies

    International Nuclear Information System (INIS)

    Cao, H; Nguyen, C M; Chiao, J C

    2012-01-01

    In this work implantable micro-probes for central nervous system (CNS) studies were developed on silicon and polyimide substrates. The probes which contained micro-electrode arrays with different surface modifications were designed for implantation in the CNS. The electrode surfaces were modified with nano-scale structures that could greatly increase the active surface area in order to enhance the electrochemical current outputs while maintaining micro-scale dimensions of the electrodes and probes. The electrodes were made of gold or platinum, and designed with different sizes. The silicon probes were modified by silicon nanowires fabricated with the vapor–liquid–solid mechanism at high temperatures. With polyimide substrates, the nanostructure modification was carried out by applying concentrated gold or silver colloid solutions onto the micro-electrodes at room temperature. The surfaces of electrodes before and after modification were observed by scanning electron microscopy. The silicon nanowire-modified surface was characterized by cyclic voltammetry. Experiments were carried out to investigate the improvement in sensing performance. The modified electrodes were tested with H 2 O 2 , electrochemical L-glutamate and dopamine. Comparisons between electrodes with and without nanostructure modification were conducted showing that the modifications have enhanced the signal outputs of the electrochemical neurotransmitter sensors

  6. Fabrication and surface-modification of implantable microprobes for neuroscience studies

    Science.gov (United States)

    Cao, H.; Nguyen, C. M.; Chiao, J. C.

    2012-06-01

    In this work implantable micro-probes for central nervous system (CNS) studies were developed on silicon and polyimide substrates. The probes which contained micro-electrode arrays with different surface modifications were designed for implantation in the CNS. The electrode surfaces were modified with nano-scale structures that could greatly increase the active surface area in order to enhance the electrochemical current outputs while maintaining micro-scale dimensions of the electrodes and probes. The electrodes were made of gold or platinum, and designed with different sizes. The silicon probes were modified by silicon nanowires fabricated with the vapor-liquid-solid mechanism at high temperatures. With polyimide substrates, the nanostructure modification was carried out by applying concentrated gold or silver colloid solutions onto the micro-electrodes at room temperature. The surfaces of electrodes before and after modification were observed by scanning electron microscopy. The silicon nanowire-modified surface was characterized by cyclic voltammetry. Experiments were carried out to investigate the improvement in sensing performance. The modified electrodes were tested with H2O2, electrochemical L-glutamate and dopamine. Comparisons between electrodes with and without nanostructure modification were conducted showing that the modifications have enhanced the signal outputs of the electrochemical neurotransmitter sensors.

  7. Protons and how they are transported by proton pumps

    DEFF Research Database (Denmark)

    Buch-Pedersen, Morten Jeppe; Pedersen, Bjørn Panyella; Nissen, Poul

    2008-01-01

    molecular components that allow the plasma membrane proton H(+)-ATPase to carry out proton transport against large membrane potentials. When divergent proton pumps such as the plasma membrane H(+)-ATPase, bacteriorhodopsin, and F(O)F(1) ATP synthase are compared, unifying mechanistic premises for biological...... proton pumps emerge. Most notably, the minimal pumping apparatus of all pumps consists of a central proton acceptor/donor, a positively charged residue to control pK (a) changes of the proton acceptor/donor, and bound water molecules to facilitate rapid proton transport along proton wires....

  8. Proton and non-proton activation of ASIC channels.

    Directory of Open Access Journals (Sweden)

    Ivan Gautschi

    Full Text Available The Acid-Sensing Ion Channels (ASIC exhibit a fast desensitizing current when activated by pH values below 7.0. By contrast, non-proton ligands are able to trigger sustained ASIC currents at physiological pHs. To analyze the functional basis of the ASIC desensitizing and sustained currents, we have used ASIC1a and ASIC2a mutants with a cysteine in the pore vestibule for covalent binding of different sulfhydryl reagents. We found that ASIC1a and ASIC2a exhibit two distinct currents, a proton-induced desensitizing current and a sustained current triggered by sulfhydryl reagents. These currents differ in their pH dependency, their sensitivity to the sulfhydryl reagents, their ionic selectivity and their relative magnitude. We propose a model for ASIC1 and ASIC2 activity where the channels can function in two distinct modes, a desensitizing mode and a sustained mode depending on the activating ligands. The pore vestibule of the channel represents a functional site for binding non-proton ligands to activate ASIC1 and ASIC2 at neutral pH and to prevent channel desensitization.

  9. Proton and non-proton activation of ASIC channels.

    Science.gov (United States)

    Gautschi, Ivan; van Bemmelen, Miguel Xavier; Schild, Laurent

    2017-01-01

    The Acid-Sensing Ion Channels (ASIC) exhibit a fast desensitizing current when activated by pH values below 7.0. By contrast, non-proton ligands are able to trigger sustained ASIC currents at physiological pHs. To analyze the functional basis of the ASIC desensitizing and sustained currents, we have used ASIC1a and ASIC2a mutants with a cysteine in the pore vestibule for covalent binding of different sulfhydryl reagents. We found that ASIC1a and ASIC2a exhibit two distinct currents, a proton-induced desensitizing current and a sustained current triggered by sulfhydryl reagents. These currents differ in their pH dependency, their sensitivity to the sulfhydryl reagents, their ionic selectivity and their relative magnitude. We propose a model for ASIC1 and ASIC2 activity where the channels can function in two distinct modes, a desensitizing mode and a sustained mode depending on the activating ligands. The pore vestibule of the channel represents a functional site for binding non-proton ligands to activate ASIC1 and ASIC2 at neutral pH and to prevent channel desensitization.

  10. Giving Protons a Boost

    CERN Multimedia

    2004-01-01

    The first of LHC's superconducting radio-frequency cavity modules has passed its final test at full power in the test area of building SM18. These modules carry an oscillating electric field that will accelerate protons around the LHC ring and help maintain the stability of the proton beams.

  11. On the proton decay

    International Nuclear Information System (INIS)

    Fonda, L.; Ghirardi, G.C.; Weber, T.

    1983-07-01

    The problem of the proton decay is considered taking into account that in actual experiments there is an interaction of the proton with its environment which could imply an increase of its theoretical lifetime. It is seen that, by application of the time-energy uncertainty relation, no prolongation of the lifetime is obtained in this case. (author)

  12. Low LET protons focused to submicrometer shows enhanced radiobiological effectiveness

    International Nuclear Information System (INIS)

    Schmid, T E; Zlobinskaya, O; Michalski, D; Molls, M; Multhoff, G; Greubel, C; Hable, V; Girst, S; Siebenwirth, C; Dollinger, G; Schmid, E

    2012-01-01

    This study shows that enhanced radiobiological effectiveness (RBE) values can be generated focusing low linear energy transfer (LET) radiation and thus changing the microdose distribution. 20 MeV protons (LET = 2.65 keV µm −1 ) are focused to submicrometer diameter at the ion microprobe superconducting nanoprobe for applied nuclear (Kern) physics experiments of the Munich tandem accelerator. The RBE values, as determined by measuring micronuclei (RBE MN = 1.48 ± 0.07) and dicentrics (RBE D = 1.92 ± 0.15), in human–hamster hybrid (A L ) cells are significantly higher when 117 protons were focused to a submicrometer irradiation field within a 5.4 × 5.4 µm 2 matrix compared to quasi homogeneous in a 1 × 1 µm 2 matrix applied protons (RBE MN = 1.28 ± 0.07; RBE D = 1.41 ± 0.14) at the same average dose of 1.7 Gy. The RBE values are normalized to standard 70 kV (dicentrics) or 200 kV (micronuclei) x-ray irradiation. The 117 protons applied per point deposit the same amount of energy like a 12 C ion with 55 MeV total energy (4.48 MeV u −1 ). The enhancements are about half of that obtained for 12 C ions (RBE MN = 2.20 ± 0.06 and RBE D = 3.21 ± 0.10) and they are attributed to intertrack interactions of the induced damages. The measured RBE values show differences from predictions of the local effect model (LEM III) that is used to calculate RBE values for irradiation plans to treat tumors with high LET particles. (paper)

  13. Low LET protons focused to submicrometer shows enhanced radiobiological effectiveness

    Science.gov (United States)

    Schmid, T. E.; Greubel, C.; Hable, V.; Zlobinskaya, O.; Michalski, D.; Girst, S.; Siebenwirth, C.; Schmid, E.; Molls, M.; Multhoff, G.; Dollinger, G.

    2012-10-01

    This study shows that enhanced radiobiological effectiveness (RBE) values can be generated focusing low linear energy transfer (LET) radiation and thus changing the microdose distribution. 20 MeV protons (LET = 2.65 keV µm-1) are focused to submicrometer diameter at the ion microprobe superconducting nanoprobe for applied nuclear (Kern) physics experiments of the Munich tandem accelerator. The RBE values, as determined by measuring micronuclei (RBEMN = 1.48 ± 0.07) and dicentrics (RBED = 1.92 ± 0.15), in human-hamster hybrid (AL) cells are significantly higher when 117 protons were focused to a submicrometer irradiation field within a 5.4 × 5.4 µm2 matrix compared to quasi homogeneous in a 1 × 1 µm2 matrix applied protons (RBEMN = 1.28 ± 0.07; RBED = 1.41 ± 0.14) at the same average dose of 1.7 Gy. The RBE values are normalized to standard 70 kV (dicentrics) or 200 kV (micronuclei) x-ray irradiation. The 117 protons applied per point deposit the same amount of energy like a 12C ion with 55 MeV total energy (4.48 MeV u-1). The enhancements are about half of that obtained for 12C ions (RBEMN = 2.20 ± 0.06 and RBED = 3.21 ± 0.10) and they are attributed to intertrack interactions of the induced damages. The measured RBE values show differences from predictions of the local effect model (LEM III) that is used to calculate RBE values for irradiation plans to treat tumors with high LET particles.

  14. PS proton source

    CERN Multimedia

    1959-01-01

    The first proton source used at CERN's Proton Synchrotron (PS) which started operation in 1959. This is CERN's oldest accelerator still functioning today (2018). It is part of the accelerator chain that supplies proton beams to the Large Hadron Collider. The source is a Thonemann type. In order to extract and accelerate the protons at high energy, a high frequency electrical field is used (140Mhz). The field is transmitted by a coil around a discharge tube in order to maintain the gas hydrogen in an ionised state. An electrical field pulse, in the order of 15kV, is then applied via an impulse transformer between anode and cathode of the discharge tube. The electrons and protons of the plasma formed in the ionised gas in the tube, are then separated. Currents in the order of 200mA during 100 microseconds have benn obtained with this type of source.

  15. Proton-proton colliding beam facility ISABELLE

    International Nuclear Information System (INIS)

    Hahn, H.

    1980-01-01

    This paper attempts to present the status of the ISABELLE construction project, which has the objective of building a 400 + 400 GeV proton colliding beam facility. The major technical features of the superconducting accelerators with their projected performance are described. Progress made so far, difficulties encountered, and the program until completion in 1986 is briefly reviewed

  16. Microprobing the Molecular Spatial Distribution and Structural Architecture of Feed-type Sorghum Seed Tissue (Sorghum Bicolor L.) using the Synchrotron Radiation Infrared Microspectroscopy Technique

    International Nuclear Information System (INIS)

    Yu, P.

    2011-01-01

    Sorghum seed (Sorghum bicolor L.) has unique degradation and fermentation behaviours compared with other cereal grains such as wheat, barley and corn. This may be related to its cell and cell-wall architecture. The advanced synchrotron radiation infrared microspectroscopy (SR-IMS) technique enables the study of cell or living cell biochemistry within cellular dimensions. The objective of this study was to use the SR-IMS imaging technique to microprobe molecular spatial distribution and cell architecture of the sorghum seed tissue comprehensively. High-density mapping was carried out using SR-IMS on beamline U2B at the National Synchrotron Light Source (Brookhaven National Laboratory, NY, USA). Molecular images were systematically recorded from the outside to the inside of the seed tissue under various chemical functional groups and their ratios [peaks at ∼1725 (carbonyl C=O ester), 1650 (amide I), 1657 (protein secondary structure α-helix), 1628 (protein secondary structure β-sheet), 1550 (amide II), 1515 (aromatic compounds of lignin), 1428, 1371, 1245 (cellulosic compounds in plant seed tissue), 1025 (non-structural CHO, starch granules), 1246 (cellulosic material), 1160 (CHO), 1150 (CHO), 1080 (CHO), 930 (CHO), 860 (CHO), 3350 (OH and NH stretching), 2960 (CH 3 anti-symmetric), 2929 (CH 2 anti-symmetric), 2877 (CH 3 symmetric) and 2848 cm -1 (CH 2 asymmetric)]. The relative protein secondary structure α-helix to β-sheet ratio image, protein amide I to starch granule ratio image, and anti-symmetric CH 3 to CH 2 ratio image were also investigated within the intact sorghum seed tissue. The results showed unique cell architecture, and the molecular spatial distribution and intensity in the sorghum seed tissue (which were analyzed through microprobe molecular imaging) were generated using SR-IMS. This imaging technique and methodology has high potential and could be used for scientists to develop specific cereal grain varieties with targeted food and feed

  17. Study of Italian Renaissance sculptures using an external beam nuclear microprobe

    Science.gov (United States)

    Zucchiatti, A.; Bouquillon, A.; Moignard, B.; Salomon, J.; Gaborit, J. R.

    2000-03-01

    The use of an extracted proton micro-beam for the PIXE analysis of glazes is discussed in the context of the growing interest in the creation of an analytical database on Italian Renaissance glazed terracotta sculptures. Some results concerning the frieze of an altarpiece of the Louvre museum, featuring white angels and cherubs heads, are presented.

  18. Study of Italian Renaissance sculptures using an external beam nuclear microprobe

    International Nuclear Information System (INIS)

    Zucchiatti, A.; Bouquillon, A.; Moignard, B.; Salomon, J.; Gaborit, J.R.

    2000-01-01

    The use of an extracted proton micro-beam for the PIXE analysis of glazes is discussed in the context of the growing interest in the creation of an analytical database on Italian Renaissance glazed terracotta sculptures. Some results concerning the frieze of an altarpiece of the Louvre museum, featuring white angels and cherubs heads, are presented

  19. Impact of solar proton events on noctilucent clouds

    Energy Technology Data Exchange (ETDEWEB)

    Rahpoe, Nabiz; Savigny, Christian von; Robert, Charles E.; Burrows, John P. [IEP, University of Bremen (Germany); DeLand, M. [Science Systems and Applications, Inc. (SSAI), Maryland (United States)

    2010-07-01

    The impact of SPEs (solar proton events) on NLCs (noctilucent clouds) is studied using the 23-year NLC data set based on measurements with SBUV instruments on NIMBUS 7 and the NOAA 9-17 satellites. We analyzed the GOES proton flux and NLC time series in order to find significant anti-correlations between proton fluxes and NLC occurrence rates and albedo. We focused on the analysis of the years when SPEs occurred during the core NLC season. For several cases anti-correlations of NLC and proton fluxes were found. For an increase of the proton flux of several orders of magnitude (with proton energies E>5 MeV) during the NLC season we find a NLC reduction in NLC occurence rate or albedo of up to 50 % (relative to maximum).

  20. Nuclear microprobe analysis of serpentine from the mid-Atlantic ridge

    Energy Technology Data Exchange (ETDEWEB)

    Orberger, Beate E-mail: orberger@geol.u-psud.fr; Metrich, Nicole; Mosbah, Michelle E-mail: mosbah@drecam.cea.fr; Mevel, Catherine; Fouquet, Yves

    1999-09-02

    At mid-ocean ridges, ultramafic rocks are serpentinized by interaction with seawater-derived fluids. Elements, dissolved in large quantities in seawater, e.g., Na, K, Cl, Br, Ca and Sr, can be, in small amounts, incorporated as traces into the crystal structure of the various serpentine minerals (Mg{sub 3}Si{sub 2}O{sub 5}(OH){sub 4}). These trace elements can be used to track the composition of the reacting fluids and to constrain physico-chemical conditions. This paper represents the first application of particle-induced X- and {gamma}-ray emission (PIXE/PIGE) analysis to serpentine using the nuclear microprobe at the Laboratoire Pierre Suee (CEA-CNRS). Three types of serpentine, belonging to two different serpentinization generations, have been analysed in samples collected from the Mid-Atlantic Ridge (14 deg. 45'N/45 deg. W) that exposes serpentinized peridotites on which the Logachev black smoker is placed. The trace elements Cl, F, S, Cu, Zn, Ca, K, Ni, Cr and Mn were detected from several tens to several thousands of ppm. Bromine, As and Sr are close to the detection limit of about 5 ppm. The trace element concentrations and interelement relationships in serpentines vary (a) with the serpentine type and (b) with the geographic location to the black smoker. Chlorine and in part S originated from seawater, whereas Cu, Zn, Ca, K, Ni, Cr and Fe and the major amount of S were mobilized from the unaltered host rock and partitioned between the serpentine and the aqueous solution.

  1. CALCMIN - an EXCEL™ Visual Basic application for calculating mineral structural formulae from electron microprobe analyses

    Science.gov (United States)

    Brandelik, Andreas

    2009-07-01

    CALCMIN, an open source Visual Basic program, was implemented in EXCEL™. The program was primarily developed to support geoscientists in their routine task of calculating structural formulae of minerals on the basis of chemical analysis mainly obtained by electron microprobe (EMP) techniques. Calculation programs for various minerals are already included in the form of sub-routines. These routines are arranged in separate modules containing a minimum of code. The architecture of CALCMIN allows the user to easily develop new calculation routines or modify existing routines with little knowledge of programming techniques. By means of a simple mouse-click, the program automatically generates a rudimentary framework of code using the object model of the Visual Basic Editor (VBE). Within this framework simple commands and functions, which are provided by the program, can be used, for example, to perform various normalization procedures or to output the results of the computations. For the clarity of the code, element symbols are used as variables initialized by the program automatically. CALCMIN does not set any boundaries in complexity of the code used, resulting in a wide range of possible applications. Thus, matrix and optimization methods can be included, for instance, to determine end member contents for subsequent thermodynamic calculations. Diverse input procedures are provided, such as the automated read-in of output files created by the EMP. Furthermore, a subsequent filter routine enables the user to extract specific analyses in order to use them for a corresponding calculation routine. An event-driven, interactive operating mode was selected for easy application of the program. CALCMIN leads the user from the beginning to the end of the calculation process.

  2. Sulphur isotope variations in the mantle from ion microprobe analyses of micro-sulphide inclusions

    International Nuclear Information System (INIS)

    Chaussidon, M.; Albarede, F.; Sheppard, S.M.F.

    1989-01-01

    21 samples of sulphide trapped either as liquid globules or grains in various minerals (olivine, pyroxenes, ilmenite and garnet) or rocks (basalt glasses, peridotites, eclogites and kimberlites) of mantle origin, have been analysed for their sulphur isotope, and their Cu, Ni, Fe compositions by ion microprobe. The results show a wide range of δ 34 S values between -4.9±1 and +8±1per mille. Sulphides with high nickel contents (up to 40% pentlandite), corresponding mostly to residual peridotites, have δ 34 S values ranging from -3.2per mille to +3.6per mille with a mode of +3±1per mille, compared to low Ni content sulphides, mostly contained in pyroxenites, OIB and kimberlites, ranging from -3.6per mille to +8per mille with a mode of +1±1per mille. The δ 34 S of sulphides originating from within the mantle are variable. The sulphide globules with high Ni contents and δ 34 S values close to +3per mille, are probably produced by 10-20% partial melting of a mantle source containing 300 ppm sulphur as an upper limit and having a δ 34 S value of +0.5±0.5per mille. This difference in δ 34 S values suggests a high-temperature S-isotope fractionation of ≅+3per mille between liquid sulphide and the sulphur dissolved in the silicate liquid. The sulphur isotopes balance in the system upper mantle + oceanic crust + continental crust + seawater requires a mean δ 34 S value of the primitive upper mantle of +0.5per mille, slightly but significantly different from that of chondrites (+0.2±0.2per mille). (orig.)

  3. Quantifying trace elements in individual aquatic protist cells with a synchrotron x-ray fluorescence microprobe

    International Nuclear Information System (INIS)

    Twining, B.S.; Baines, S.B.; Fisher, N.S.; Maser, J.; Vogt, S.; Jacobsen, C.; Tovar-Sanchez, A.; Sanudo-Wihelmy, S.A.

    2003-01-01

    The study of trace metal cycling by aquatic protists is limited by current analytical techniques. Standard 'bulk' element analysis techniques that rely on physical separations to concentrate cells for analysis cannot separate cells from co-occurring detrital material or other cells of differing taxonomy or trophic function. Here we demonstrate the ability of a synchrotron-based X-ray fluorescence (SXRF) microprobe to quantify the elements Si, Mn, Fe, Ni, and Zn in individual aquatic protist cells. This technique distinguishes between different types of cells in an assemblage and between cells and other particulate matter. Under typical operating conditions, the minimum detection limits are 7.0 x 10 -16 mol μm -2 for Si and between 5.0 x 10 -20 and 3.9 x 10 -19 mol μm -2 for Mn, Fe, Ni, and Zn; this sensitivity is sufficient to detect these elements in cells from even the most pristine waters as demonstrated in phytoplankton cells collected from remote areas of the Southern Ocean. Replicate analyses of single cells produced variations of <5% for Si, Mn, Fe, and Zn and <10% for Ni. Comparative analyses of cultured phytoplankton cells generally show no significant differences in cellular metal concentrations measured with SXRF and standard bulk techniques (spectrophotometry and graphite furnace atomic absorption spectrometry). SXRF also produces two-dimensional maps of element distributions in cells, thereby providing information not available with other analytical approaches. This technique enables the accurate and precise measurement of trace metals in individual aquatic protists collected from natural environments.

  4. Proton storage rings

    International Nuclear Information System (INIS)

    Rau, R.R.

    1978-04-01

    A discussion is given of proton storage ring beam dynamic characteristics. Topics considered include: (1) beam energy; (2) beam luminosity; (3) limits on beam current; (4) beam site; (5) crossing angle; (6) beam--beam interaction; (7) longitudinal instability; (8) effects of scattering processes; (9) beam production; and (10) high magnetic fields. Much of the discussion is related to the design parameters of ISABELLE, a 400 x 400 GeV proton---proton intersecting storage accelerator to be built at Brookhaven National Laboratory

  5. ATLAS Forward Proton Detector

    CERN Document Server

    Grieco, Chiara; The ATLAS collaboration

    2018-01-01

    The aim of the ATLAS Forward Proton (AFP) detector system is the measurement of protons scattered diffractively or electromagnetically at very small angles. The full two-arm setup was installed during the 2016/2017 EYETS. This allows measurements of processes with two forward protons: central diffraction, exclusive production, and two-photon processes. In 2017, AFP participated in the ATLAS high-luminosity data taking on the day-by-day basis. In addition, several special runs with reduced luminosity were taken. The poster will present the AFP detectors and the lessons learned from the last year operation and some performance from 2016 and 2017.

  6. Comparison of dynamical aspects of nonadiabatic electron, proton, and proton-coupled electron transfer reactions

    International Nuclear Information System (INIS)

    Hatcher, Elizabeth; Soudackov, Alexander; Hammes-Schiffer, Sharon

    2005-01-01

    The dynamical aspects of a model proton-coupled electron transfer (PCET) reaction in solution are analyzed with molecular dynamics simulations. The rate for nonadiabatic PCET is expressed in terms of a time-dependent probability flux correlation function. The impact of the proton donor-acceptor and solvent dynamics on the probability flux is examined. The dynamical behavior of the probability flux correlation function is dominated by a solvent damping term that depends on the energy gap correlation function. The proton donor-acceptor motion does not impact the dynamical behavior of the probability flux correlation function but does influence the magnitude of the rate. The approximations previously invoked for the calculation of PCET rates are tested. The effects of solvent damping on the proton donor-acceptor vibrational motion are found to be negligible, and the short-time solvent approximation, in which only equilibrium fluctuations of the solvent are considered, is determined to be valid for these types of reactions. The analysis of PCET reactions is compared to previous analyses of single electron and proton transfer reactions. The dynamical behavior is qualitatively similar for all three types of reactions, but the time scale of the decay of the probability flux correlation function is significantly longer for single proton transfer than for PCET and single electron transfer due to a smaller solvent reorganization energy for proton transfer

  7. Web server attack analyzer

    OpenAIRE

    Mižišin, Michal

    2013-01-01

    Web server attack analyzer - Abstract The goal of this work was to create prototype of analyzer of injection flaws attacks on web server. Proposed solution combines capabilities of web application firewall and web server log analyzer. Analysis is based on configurable signatures defined by regular expressions. This paper begins with summary of web attacks, followed by detection techniques analysis on web servers, description and justification of selected implementation. In the end are charact...

  8. Electron attachment analyzer

    International Nuclear Information System (INIS)

    Popp, P.; Grosse, H.J.; Leonhardt, J.; Mothes, S.; Oppermann, G.

    1984-01-01

    The invention concerns an electron attachment analyzer for detecting traces of electroaffine substances in electronegative gases, especially in air. The analyzer can be used for monitoring working places, e. g., in operating theatres. The analyzer consists of two electrodes inserted in a base frame of insulating material (quartz or ceramics) and a high-temperature resistant radiation source ( 85 Kr, 3 H, or 63 Ni)

  9. Proton computed tomography

    International Nuclear Information System (INIS)

    Hanson, K.M.

    1978-01-01

    The use of protons or other heavy charged particles instead of x rays in computed tomography (CT) is explored. The results of an experimental implementation of proton CT are presented. High quality CT reconstructions are obtained at an average dose reduction factor compared with an EMI 5005 x-ray scanner of 10:1 for a 30-cm-diameter phantom and 3.5:1 for a 20-cm diameter. The spatial resolution is limited by multiple Coulomb scattering to about 3.7 mm FWHM. Further studies are planned in which proton and x-ray images of fresh human specimens will be compared. Design considerations indicate that a clinically useful proton CT scanner is eminently feasible

  10. Electron - proton colliders

    International Nuclear Information System (INIS)

    Wiik, B.H.

    1985-01-01

    Electron-proton storage rings allow us to study the interaction between the two basic constituents of matter, electrons and quarks at very short distances. Such machines were first discussed in connection with the ISR but the idea was abandoned because of the anticipated low counting rate. The interest in electron-proton storage rings was rekindeled by the discovery of large pointlike cross sections in lepton-hardon interactions and several/sup 2-15/ projects have been discussed during the past decade. However, despite a glorious past, which includes the discovery of quarks and neutral currents, and a multitude of proposals no electron-proton storage ring has ever been built. What we might learn by studying electron-proton collisions at high energies is discussed. After some brief comments on present proposals the proposed DESY ep project HERA is described as an example of how to realize such a machine

  11. Apparatus for proton radiography

    International Nuclear Information System (INIS)

    Martin, R.L.

    1976-01-01

    An apparatus for effecting diagnostic proton radiography of patients in hospitals comprises a source of negative hydrogen ions, a synchrotron for accelerating the negative hydrogen ions to a predetermined energy, a plurality of stations for stripping extraction of a radiography beam of protons, means for sweeping the extracted beam to cover a target, and means for measuring the residual range, residual energy, or percentage transmission of protons that pass through the target. The combination of information identifying the position of the beam with information about particles traversing the subject and the back absorber is performed with the aid of a computer to provide a proton radiograph of the subject. In an alternate embodiment of the invention, a back absorber comprises a plurality of scintillators which are coupled to detectors. 10 claims, 7 drawing figures

  12. Plant proton pumps

    DEFF Research Database (Denmark)

    Gaxiola, Roberto A.; Palmgren, Michael Gjedde; Schumacher, Karin

    2007-01-01

    Chemiosmotic circuits of plant cells are driven by proton (H+) gradients that mediate secondary active transport of compounds across plasma and endosomal membranes. Furthermore, regulation of endosomal acidification is critical for endocytic and secretory pathways. For plants to react...

  13. Inauguration of Proton Synchrotron

    CERN Multimedia

    1960-01-01

    On 5 February 1960, the Proton Synchrotron (PS) was formally inaugurated. The great Danish physicist, Niels Bohr, releases a bottle of champagne against a shielding block to launch the PS on its voyage in physics.

  14. Proton beam therapy facility

    International Nuclear Information System (INIS)

    1984-01-01

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs

  15. Proton beam therapy facility

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  16. PROTON MICROSCOPY AT FAIR

    International Nuclear Information System (INIS)

    Merrill, F. E.; Mariam, F. G.; Golubev, A. A.; Turtikov, V. I.; Varentsov, D.

    2009-01-01

    Proton radiography was invented in the 1990's at Los Alamos National Laboratory (LANL) as a diagnostic to study dynamic material properties under extreme pressures, strain and strain rate. Since this time hundreds of dynamic proton radiography experiments have been performed at LANL and a facility has been commissioned at the Institute for Theoretical and Experimental Physics (ITEP) in Russia for similar applications in dynamic material studies. Recently an international effort has investigated a new proton radiography capability for the study of dynamic material properties at the Facility for Anti-proton and Ion Research (FAIR) located in Darmstadt, Germany. This new Proton microscope for FAIR(PRIOR) will provide radiographic imaging of dynamic systems with unprecedented spatial, temporal and density resolution, resulting in a window for understanding dynamic material properties at new length scales. It is also proposed to install the PRIOR system at the GSI Helmholtzzentrum fuer Schwerionenforschung before installation at FAIR for dynamic experiments with different drivers including high explosives, pulsed power and lasers. The design of the proton microscope and expected radiographic performance is presented.

  17. Multicavity proton cyclotron accelerator

    Directory of Open Access Journals (Sweden)

    J. L. Hirshfield

    2002-08-01

    Full Text Available A mechanism for acceleration of protons is described, in which energy gain occurs near cyclotron resonance as protons drift through a sequence of rotating-mode TE_{111} cylindrical cavities in a strong nearly uniform axial magnetic field. Cavity resonance frequencies decrease in sequence from one another with a fixed frequency interval Δf between cavities, so that synchronism can be maintained between the rf fields and proton bunches injected at intervals of 1/Δf. An example is presented in which a 122 mA, 1 MeV proton beam is accelerated to 961 MeV using a cascade of eight cavities in an 8.1 T magnetic field, with the first cavity resonant at 120 MHz and with Δf=8 MHz. Average acceleration gradient exceeds 40 MV/m, average effective shunt impedance is 223 MΩ/m, but maximum surface field in the cavities does not exceed 7.2 MV/m. These features occur because protons make many orbital turns in each cavity and thus experience acceleration from each cavity field many times. Longitudinal and transverse stability appear to be intrinsic properties of the acceleration mechanism, and an example to illustrate this is presented. This acceleration concept could be developed into a proton accelerator for a high-power neutron spallation source, such as that required for transmutation of nuclear waste or driving a subcritical fission burner, provided a number of significant practical issues can be addressed.

  18. Nuclear power plant analyzer

    International Nuclear Information System (INIS)

    Stritar, A.

    1986-01-01

    The development of Nuclear Power Plant Analyzers in USA is described. There are two different types of Analyzers under development in USA, the forst in Idaho and Los Alamos national Lab, the second in brookhaven National lab. That one is described in detail. The computer hardware and the mathematical models of the reactor vessel thermalhydraulics are described. (author)

  19. Analyzing Peace Pedagogies

    Science.gov (United States)

    Haavelsrud, Magnus; Stenberg, Oddbjorn

    2012-01-01

    Eleven articles on peace education published in the first volume of the Journal of Peace Education are analyzed. This selection comprises peace education programs that have been planned or carried out in different contexts. In analyzing peace pedagogies as proposed in the 11 contributions, we have chosen network analysis as our method--enabling…

  20. Analyzing in the present

    DEFF Research Database (Denmark)

    Revsbæk, Line; Tanggaard, Lene

    2015-01-01

    The article presents a notion of “analyzing in the present” as a source of inspiration in analyzing qualitative research materials. The term emerged from extensive listening to interview recordings during everyday commuting to university campus. Paying attention to the way different parts of vari...

  1. Gearbox vibration diagnostic analyzer

    Science.gov (United States)

    1992-01-01

    This report describes the Gearbox Vibration Diagnostic Analyzer installed in the NASA Lewis Research Center's 500 HP Helicopter Transmission Test Stand to monitor gearbox testing. The vibration of the gearbox is analyzed using diagnostic algorithms to calculate a parameter indicating damaged components.

  2. High resolution, high sensitivity imaging and analysis of minerals and inclusions (fluid and melt) using the new CSIRO-GEMOC nuclear microprobe

    International Nuclear Information System (INIS)

    Ryan, C.G.; McInnes, B.M.; Van Achterbergh, E.; Williams, P.J.; Dong, G.; Zaw, K.

    1999-01-01

    Full text: The new CSIRO-GEMOC Nuclear Microprobe (NMP) The instrument was designed specifically for minerals analysis and imaging and to achieve ppm to sub-ppm sensitivity at a spatial resolution of 1-2 μm using X-rays and y-rays induced by MeV energy ion beams. The key feature of the design is a unique magnetic quadrupole quintuplet ion focussing system that combines high current with high spatial resolution (Ryan et al., 1999). These design goals have been achieved or exceeded. On the first day of operation, a spot-size of 1.3 μm was obtained at a beam current of 0.5 nA, suitable for fluid inclusion analysis and imaging. The spot-size grows to just 1.8 μm at 10 nA (3 MeV protons), ideal for mineralogical samples with detection limits down to 0.2 ppm achieved in quantitative, high resolution, trace element images. Applications of the NMP include: research into ore deposit processes through trace element geochemistry, mineralogy and fluid inclusion analysis of ancient deposits and active sea-floor environments, ore characterization, and fundamental studies of mantle processes and extraterrestrial material. Quantitative True Elemental Imaging Dynamic Analysis is a method for projecting quantitative major and trace element images from proton-induced X-ray emission (PIXE) data obtained using the NMP (Ryan et al., 1995). The method un-mixes full elemental spectral signatures to produce quantitative images that can be directly interrogated for the concentrations of all elements in selected areas or line projections, etc. Fluid Inclusion Analysis and Imaging The analysis of fluids trapped as fluid inclusions in minerals holds the key to understanding ore metal pathways and ore formation processes. PIXE analysis using the NMP provides a direct non-destructive method to determine the composition of these trapped fluids with detection limits down to 20 ppm. However, some PIXE results have been controversial, such as the strong partitioning of Cu into the vapour phase (e

  3. Integration of a silicon-based microprobe into a gear measuring instrument for accurate measurement of micro gears

    International Nuclear Information System (INIS)

    Ferreira, N; Krah, T; Jeong, D C; Kniel, K; Härtig, F; Metz, D; Dietzel, A; Büttgenbach, S

    2014-01-01

    The integration of silicon micro probing systems into conventional gear measuring instruments (GMIs) allows fully automated measurements of external involute micro spur gears of normal modules smaller than 1 mm. This system, based on a silicon microprobe, has been developed and manufactured at the Institute for Microtechnology of the Technische Universität Braunschweig. The microprobe consists of a silicon sensor element and a stylus which is oriented perpendicularly to the sensor. The sensor is fabricated by means of silicon bulk micromachining. Its small dimensions of 6.5 mm × 6.5 mm allow compact mounting in a cartridge to facilitate the integration into a GMI. In this way, tactile measurements of 3D microstructures can be realized. To enable three-dimensional measurements with marginal forces, four Wheatstone bridges are built with diffused piezoresistors on the membrane of the sensor. On the reverse of the membrane, the stylus is glued perpendicularly to the sensor on a boss to transmit the probing forces to the sensor element during measurements. Sphere diameters smaller than 300 µm and shaft lengths of 5 mm as well as measurement forces from 10 µN enable the measurements of 3D microstructures. Such micro probing systems can be integrated into universal coordinate measuring machines and also into GMIs to extend their field of application. Practical measurements were carried out at the Physikalisch-Technische Bundesanstalt by qualifying the microprobes on a calibrated reference sphere to determine their sensitivity and their physical dimensions in volume. Following that, profile and helix measurements were carried out on a gear measurement standard with a module of 1 mm. The comparison of the measurements shows good agreement between the measurement values and the calibrated values. This result is a promising basis for the realization of smaller probe diameters for the tactile measurement of micro gears with smaller modules. (paper)

  4. Novel Magnetic Microprobe with Benzoboroxole-Modified Flexible Multisite Arm for High-Efficiency cis-Diol Biomolecule Detection.

    Science.gov (United States)

    Chen, Guosheng; Huang, Siming; Kou, Xiaoxue; Zhang, Jin'ge; Wang, Fuxin; Zhu, Fang; Ouyang, Gangfeng

    2018-03-06

    With regard to regulating a variety of biological events, including molecular recognition, signal transduction, cell adhesion, and immune response, cis-diol biomolecules, such as saccharides and glycoproteins, play vital roles. However, saccharides and glycoproteins in living systems usually exist in very low abundance, along with abundant interfering components. High-efficiency detection of saccharides and glycoproteins is a challenging yet highly impactful area of research. Herein, we reported a novel magnetic microprobe with a benzoboroxole-modified flexible multisite arm (PEG 2000-grafted PAMAM dendrimers; the microprobe was denoted as BFMA-MNP) for high-efficiency saccharides detection. The extraction capacity was significantly improved by ∼2 orders of magnitude, because of the integration of the enhanced hydrophilicity and multivalency effects in benzoboroxoles and the enhanced accessibility of the binding sites within the PEG 2000-grafted PAMAM dendrimers. As a result, the proposed approach possessed several advantages, compared with previous boronic acid-based methods, including ultrahigh sensitivity (limit of detection was <1 ng/mL), wide linear range (ranged from 0.5 μM to 2000 μM), and applicable in physiological pH condition. Furthermore, we established a general BFMA-MNP/glycoproteins/AuNPs sandwich assay to realize the visual glycoprotein qualitative screening for the first time. The unique sandwich assay possessed the dual nature of the magnetic separation by BFMA-MNPs and specific coloration by citrate-coated AuNPs. This visual sandwich assay enabled fast differentiation of the existence of glycoproteins in complicated samples without any advanced instruments. We believe the proposed BFMA-MNP microprobe herein will advance the ideas to detect and identify trace saccharides and glycoproteins in important fields such as glycomics and glycoproteomics.

  5. Proton Radiography to Improve Proton Radiotherapy : Simulation Study at Different Proton Beam Energies

    NARCIS (Netherlands)

    Biegun, Aleksandra; Takatsu, Jun; van Goethem, Marc-Jan; van der Graaf, Emiel; van Beuzekom, Martin; Visser, Jan; Brandenburg, Sijtze

    To improve the quality of cancer treatment with protons, a translation of X-ray Computed Tomography (CT) images into a map of the proton stopping powers needs to be more accurate. Proton stopping powers determined from CT images have systematic uncertainties in the calculated proton range in a

  6. Redeposition of sputtered material in a glow-discharge lamp measured by means of an ion microprobe mass analyser

    International Nuclear Information System (INIS)

    Ferreira, N.P.; Bueger, P.A.

    1978-01-01

    The redeposition of sputtered material on the target in a Grimm-type glow-discharge lamp was studied by means of an ion microprobe mass analyser (IMMA) using 16 O 2 + ions as bombarding species. The target was an aluminium disc with a cylindrical copper insertion, one mm in diameter. The lamp was operated at currents of 50 mA and 100 mA and a voltage of 1200 V. It is estimated that 17% of the copper atoms sputtered are redeposited and may be resputtered. (orig.) [de

  7. Evolution of the Gondwanaland Archaean Shield: ion microprobe zircon dating and southwestern Australia/Wilkes Land, Antartica

    International Nuclear Information System (INIS)

    Lovering, J.F.; Comaford, D.J.

    1979-01-01

    The ion microprobe has been used to study 207 Pb/ 206 Pb ages on 20μm-sized sites on single zircon grains from coastal rocks on either side of the rift in the Gondwanaland Archaean Shield between southwestern Australia and Wilkes Land, Antarctica. The ages on individual sites on zircon grains from a variety of rock types from southwestern Australia show a range from 1600 m.y. to about 3400 m.y., with an inverse dependence on the uranium abundance at each site. Ages of zircons from rocks from the Antartic region show a range from 1600 m.y. to 3100 m.y

  8. Miniature mass analyzer

    CERN Document Server

    Cuna, C; Lupsa, N; Cuna, S; Tuzson, B

    2003-01-01

    The paper presents the concept of different mass analyzers that were specifically designed as small dimension instruments able to detect with great sensitivity and accuracy the main environmental pollutants. The mass spectrometers are very suited instrument for chemical and isotopic analysis, needed in environmental surveillance. Usually, this is done by sampling the soil, air or water followed by laboratory analysis. To avoid drawbacks caused by sample alteration during the sampling process and transport, the 'in situ' analysis is preferred. Theoretically, any type of mass analyzer can be miniaturized, but some are more appropriate than others. Quadrupole mass filter and trap, magnetic sector, time-of-flight and ion cyclotron mass analyzers can be successfully shrunk, for each of them some performances being sacrificed but we must know which parameters are necessary to be kept unchanged. To satisfy the miniaturization criteria of the analyzer, it is necessary to use asymmetrical geometries, with ion beam obl...

  9. Broad Beam and Ion Microprobe Studies of Single-Event Upsets in High Speed 0.18micron Silicon Germanium Heterojunction Bipolar Transistors and Circuits

    Science.gov (United States)

    Reed, Robert A.; Marshall, Paul W.; Pickel, Jim; Carts, Martin A.; Irwin, TIm; Niu, Guofu; Cressler, John; Krithivasan, Ramkumar; Fritz, Karl; Riggs, Pam

    2003-01-01

    SiGe based technology is widely recognized for its tremendous potential to impact the high speed microelectronic industry, and therefore the space industry, by monolithic incorporation of low power complementary logic with extremely high speed SiGe Heterojunction Bipolar Transistor (HBT) logic. A variety of studies have examined the ionizing dose, displacement damage and single event characteristics, and are reported. Accessibility to SiGe through an increasing number of manufacturers adds to the importance of understanding its intrinsic radiation characteristics, and in particular the single event effect (SEE) characteristics of the high bandwidth HBT based circuits. IBM is now manufacturing in its 3rd generation of their commercial SiGe processes, and access is currently available to the first two generations (known as and 6HP) through the MOSIS shared mask services with anticipated future release of the latest (7HP) process. The 5 HP process is described and is characterized by a emitter spacing of 0.5 micron and a cutoff frequency ff of 50 GHz, whereas the fully scaled 7HP HBT employs a 0.18 micron emitter and has an fT of 120 GHz. Previous investigations have the examined SEE response of 5 HP HBT circuits through both circuit testing and modeling. Charge collection modeling studies in the 5 H P process have also been conducted, but to date no measurements have been reported of charge collection in any SiGe HBT structures. Nor have circuit models for charge collection been developed in any version other than the 5 HP HBT structure. Our investigation reports the first indications of both charge collection and circuit response in IBM s 7HP-based SiGe process. We compare broad beam heavy ion SEU test results in a fully function Pseudo-Random Number (PRN) sequence generator up to frequencies of 12 Gbps versus effective LET, and also report proton test results in the same circuit. In addition, we examine the charge collection characteristics of individual 7HP HBT

  10. Proton therapy in Australia

    International Nuclear Information System (INIS)

    Jackson, M.

    2000-01-01

    Full text: Proton therapy has been in use since 1954 and over 25,000 patients have been treated worldwide. Until recently most patients were treated at physics research facilities but with the development of more compact and reliable accelerators it is now possible to realistically plan for proton therapy in an Australian hospital. The Australian National Proton Project has been formed to look at the feasibility of a facility which would be primarily for patient treatment but would also be suitable for research and commercial applications. A detailed report will be produced by the end of the year. The initial clinical experience was mainly with small tumours and other lesions close to critical organs. Large numbers of eye tumours have also been treated. Protons have a well-defined role in these situations and are now being used in the treatment of more common cancers. With the development of hospital-based facilities, over 2,500 patients with prostate cancer have been treated using a simple technique which gives results at least as good as radical surgery, external beam radiotherapy or brachytherapy. Importantly, the incidence of severe complications is very low. There are encouraging results in many disease sites including lung, liver, soft tissue sarcomas and oesophagus. As proton therapy becomes more widely available, randomised trials comparing it with conventional radiotherapy or Intensity Modulated Radiation Therapy (IMRT) will be possible. In most situations the use of protons will enable a higher dose to be given safely but in situations where local control rates are already satisfactory, protons are expected to produce less complications than conventional treatment. The initial costs of a proton facility are high but the recurrent costs are similar to other forms of high technology radiotherapy. . Simple treatment techniques with only a few fields are usually possible and proton therapy avoids the high integral doses associated with IMRT. This reduction in

  11. Time asymmetry: Polarization and analyzing power in the nuclear reactions

    International Nuclear Information System (INIS)

    Rioux, C.; Roy, R.; Slobodrian, R.J.; Conzett, H.E.

    1983-01-01

    Measurements of the proton polarization in the reactions 7 Li( 3 He, p vector) 9 Be and 9 Be( 3 He, p vector) 11 B and of the analyzing powers of the inverse reactions, initiated by polarized protons at the same c.m. energies, show significant differences which imply the failure of the polarization-analyzing-power theorem and, prima facie, of time-reversal invariance in these reactions. The reaction 2 H( 3 He, p vector) 4 He and its inverse have also been investigated and show some smaller differences. A discussion of the instrumental asymmetries is presented. (orig.)

  12. Proton dynamics in cancer.

    Science.gov (United States)

    Huber, Veronica; De Milito, Angelo; Harguindey, Salvador; Reshkin, Stephan J; Wahl, Miriam L; Rauch, Cyril; Chiesi, Antonio; Pouysségur, Jacques; Gatenby, Robert A; Rivoltini, Licia; Fais, Stefano

    2010-06-15

    Cancer remains a leading cause of death in the world today. Despite decades of research to identify novel therapeutic approaches, durable regressions of metastatic disease are still scanty and survival benefits often negligible. While the current strategy is mostly converging on target-therapies aimed at selectively affecting altered molecular pathways in tumor cells, evidences are in parallel pointing to cell metabolism as a potential Achilles' heel of cancer, to be disrupted for achieving therapeutic benefit. Critical differences in the metabolism of tumor versus normal cells, which include abnormal glycolysis, high lactic acid production, protons accumulation and reversed intra-extracellular pH gradients, make tumor site a hostile microenvironment where only cancer cells can proliferate and survive. Inhibiting these pathways by blocking proton pumps and transporters may deprive cancer cells of a key mechanism of detoxification and thus represent a novel strategy for a pleiotropic and multifaceted suppression of cancer cell growth.Research groups scattered all over the world have recently started to investigate various aspects of proton dynamics in cancer cells with quite encouraging preliminary results. The intent of unifying investigators involved in this research line led to the formation of the "International Society for Proton Dynamics in Cancer" (ISPDC) in January 2010. This is the manifesto of the newly formed society where both basic and clinical investigators are called to foster translational research and stimulate interdisciplinary collaboration for the development of more specific and less toxic therapeutic strategies based on proton dynamics in tumor cell biology.

  13. Proton dynamics in cancer

    Directory of Open Access Journals (Sweden)

    Pouysségur Jacques

    2010-06-01

    Full Text Available Abstract Cancer remains a leading cause of death in the world today. Despite decades of research to identify novel therapeutic approaches, durable regressions of metastatic disease are still scanty and survival benefits often negligible. While the current strategy is mostly converging on target-therapies aimed at selectively affecting altered molecular pathways in tumor cells, evidences are in parallel pointing to cell metabolism as a potential Achilles' heel of cancer, to be disrupted for achieving therapeutic benefit. Critical differences in the metabolism of tumor versus normal cells, which include abnormal glycolysis, high lactic acid production, protons accumulation and reversed intra-extracellular pH gradients, make tumor site a hostile microenvironment where only cancer cells can proliferate and survive. Inhibiting these pathways by blocking proton pumps and transporters may deprive cancer cells of a key mechanism of detoxification and thus represent a novel strategy for a pleiotropic and multifaceted suppression of cancer cell growth. Research groups scattered all over the world have recently started to investigate various aspects of proton dynamics in cancer cells with quite encouraging preliminary results. The intent of unifying investigators involved in this research line led to the formation of the "International Society for Proton Dynamics in Cancer" (ISPDC in January 2010. This is the manifesto of the newly formed society where both basic and clinical investigators are called to foster translational research and stimulate interdisciplinary collaboration for the development of more specific and less toxic therapeutic strategies based on proton dynamics in tumor cell biology.

  14. Polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized proton beams in circular accelerators is complicated by the presence of numerous depolarizing spin resonances. Careful and tedious minimization of polarization loss at each of these resonances allowed acceleration of polarized proton beams up to 22 GeV. It has been the hope that Siberian Snakes, which are local spin rotators inserted into ring accelerators, would eliminate these resonances and allow acceleration of polarized beams with the same ease and efficiency that is now routine for unpolarized beams. First tests at IUCF with a full Siberian Snake showed that the spin dynamics with a Snake can be understood in detail. The author now has results of the first tests of a partial Siberian Snake at the AGS, accelerating polarized protons to an energy of about 25 GeV. These successful tests of storage and acceleration of polarized proton beams open up new possibilities such as stored polarized beams for internal target experiments and high energy polarized proton colliders

  15. Journal of Proton Therapy

    Directory of Open Access Journals (Sweden)

    Editorial Office

    2015-01-01

    Full Text Available Journal of Proton Therapy (JPT is an international open access, peer-reviewed journal, which publishes original research, technical reports, reviews, case reports, editorials, and other materials on proton therapy with focus on radiation oncology, medical physics, medical dosimetry, and radiation therapy.No article processing/submission feeNo publication feePeer-review completion within 3-6 weeksImmediate publication after the completion of final author proofreadDOI assignment for each published articleFree access to published articles for all readers without any access barriers or subscriptionThe views and opinions expressed in articles are those of the author/s and do not necessarily reflect the policies of the Journal of Proton Therapy.Authors are encouraged to submit articles for publication in the inaugural issue of the Journal of Proton Therapy by online or email to editor@protonjournal.comOfficial Website of Journal of Proton Therapy: http://www.protonjournal.org/

  16. Medical Proton Accelerator Project

    International Nuclear Information System (INIS)

    Comsan, M.N.H.

    2008-01-01

    A project for a medical proton accelerator for cancer treatment is outlined. The project is motivated by the need for a precise modality for cancer curing especially in children. Proton therapy is known by its superior radiation and biological effectiveness as compared to photon or electron therapy. With 26 proton and 3 heavy-ion therapy complexes operating worldwide only one (p) exists in South Africa, and none in south Asia and the Middle East. The accelerator of choice should provide protons with energy 75 MeV for eye treatment and 250 MeV for body treatment. Four treatment rooms are suggested: two with isocentric gantries, one with fixed beams and one for development. Passive scanning is recommended. The project can serve Middle East and North Africa with ∼ 400 million populations. The annual capacity of the project is estimated as 1,100 to be compared with expected radiation cases eligible for proton cancer treatment of not less than 200,000

  17. Proton relativistic model; Modelo relativistico do proton

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Wilson Roberto Barbosa de

    1996-12-31

    In this dissertation, we present a model for the nucleon, which is composed by three relativistic quarks interacting through a contract force. The nucleon wave-function was obtained from the Faddeev equation in the null-plane. The covariance of the model under kinematical null-plane boots is discussed. The electric proton form-factor, calculated from the Faddeev wave-function, was in agreement with the data for low-momentum transfers and described qualitatively the asymptotic region for momentum transfers around 2 GeV. (author) 42 refs., 22 figs., 1 tab.

  18. Structural studies on proton/protonation of the protein molecule

    International Nuclear Information System (INIS)

    Morimoto, Yukio; Kida, Akiko; Chatake, Toshiyuki; Yamaguchi, Hiroshi; Hosokawa, Keiichi; Murakami, Takuto; Umino, Masaaki; Tanaka, Ichiro; Hisatome, Ichiro; Yanagisawa, Yasutake; Fujiwara, Satoshi; Hidaka, Yuji; Shimamoto, Shigeru; Fujiwara, Mitsutoshi; Nakanishi, Takeyoshi

    2015-01-01

    This paper reports three studies involved in the analysis of protons and protonation at physiologically active sites in protein molecules. (1) 'Elucidation of the higher-order structure formation and activity performing mechanism of yeast proteasome.' With an aim to apply to anti-cancer drugs, this study performed the shape analysis of the total structure of 26S proteasome using small-angle X-ray scattering to clarify the complex form where controlling elements bonded to the both ends of 20S catalyst body, and analyzed the complex structure between the active sites of 20S and inhibitor (drug). (2) 'Basic study on the neutron experiment of biomolecules such as physiologically active substances derived from Natto-bacteria.' This study conducted the purification, crystallization, and X-ray analysis experiment of nattokinase; high-grade purification and solution experiment of vitamin K2 (menaquinone-7); and Z-DNA crystal structure study related to the neutron crystal analysis of DNA as another biomolecule structure study. (3) 'Functional evaluation on digestive enzymes derived from Nephila clavata.' As an Alzheimer's disease-related amyloid fibril formation model, this study carried out elucidation on the fibrosis and fiber-forming mechanism of the traction fiber of Nephila clavata, and the functional analysis of its degrading enzyme. (A.O.)

  19. Contribution to the application of nuclear microprobe in geochemistry. Carbon and nitrogen microanalysis in glasses and minerals

    International Nuclear Information System (INIS)

    Mosbah, M.

    1988-01-01

    The morphological complexity of geological materials implies the use of microanalysis techniques utilization. Nuclear microprobe allows selective and no destructive light elements determination, through nuclear reactions. Nuclear microanalysis has been used to characterize carbon and nitrogen in volatile phase dissolved in magmatic samples. The application of some microanalysis techniques in geochemistry are discussed, nuclear microprobe theory and techniques are developed. Minerals, glasses and glassy inclusions are described, and more particularly, the interest of these investigations. Optimal conditions of carbon and nitrogen analysis ( 12 C(d.p) 13 C and 14 N(d,p) 15 N reaction respectively), as deuteron energy and observation angle are studied. A methodology has been established for this purpose. Several results are exposed: Punctual analysis, carbon concentration profile in depth surface scanning, surficial mapping in glassy inclusions. The carbon content interpretation in glassy inclusions measured conveniently for the first time agrees with data obtained through other techniques. In conclusion, degazing schedule improvements require more analysis. Perspective research axis are evocated [fr

  20. Use of a synchrotron radiation x-ray microprobe for elemental analysis at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Gordon, B.M.

    1980-01-01

    The National Synchrotron Light Source (NSLS) is a facility consisting of a 700 MeV and a 2.5 GeV electron storage ring and dedicated to providing synchrotron radiation in the energy range from the vacuum ultraviolet to high energy x rays. Some of the properties of synchrotron radiation that contribute to its usefulness for x-ray fluorescence are: a continuous, tunable energy spectrum, strong collimation in the horizontal plane, high polarization in the storage ring plane, and relatively low energy deposition. The highest priority is for the development of an x-ray microprobe beam line capable of trace analysis in the parts per million range with spatial resolution as low as one micrometer. An eventual capability for bulk sample analysis is also planned with sensitivities in the more favorable cases beings low as 50 parts per billion in dry biological tissue. The microprobe technique has application to a variety of fields including the geological, medical, materials and environmental sciences. Examples of investigations include multielemental trace analysis across grain boundaries for the study of diffusion and cooling processes in geological and materials sciences samples; in leukocytes and other types of individual cells for studying the relationship between trace element concentrations and disease or nutrition; and in individual particles in air pollution samples

  1. Quantification and localization of trace metals in natural plankton using a synchrotron x-ray fluorescence microprobe

    International Nuclear Information System (INIS)

    Twining, B. S.; Baines, S. B.; Fisher, N. S.; Jacobsen, C.; Maser, J.; State Univ. of New York at Stony Brook

    2003-01-01

    The accumulation of trace metals by planktonic protists influences the growth of primary producers, metal biogeochemical cycling, and metal bioaccumulation in aquatic food chains. Despite their importance, unequivocal measurements of trace element concentrations in individual plankton cells have not been possible to date. We have used the 2-ID-E side-branch hard x-ray microprobe at the Advanced Photon Source to measure trace elements in individual marine plankton cells. This microprobe employs zoneplate optics to produce the sub-micron spatial resolution and low background fluorescence required to produce trace element maps of planktonic protist cells ranging in size from 3 to >50 (micro)m. We have developed preservation, rinsing, and mounting protocols that remove most of the salt from our marine samples, thus simplifying the identification of unknown cells and reducing high Cl-related background fluorescence. We have also developed spectral modeling techniques that account for the frequent overlap of adjacent fluorescence peaks and non-uniform detector response. Finally, we have used parallel soft x-ray transmission and epifluorescence microscopy images to estimate C normalized trace element concentrations, identify functional cell types (e.g., photosynthetic vs. non-photosynthetic), and correlate cell structures with spatial patterns in trace element fluorescence

  2. Quantification and localization of trace metals in natural plancton using a synchrotron x-ray fluorescence microprobe.

    Energy Technology Data Exchange (ETDEWEB)

    Twining, B. S.; Baines, S. B.; Fisher, N. S.; Jacobsen, C.; Maser, J.; State Univ. of New York at Stony Brook

    2003-03-01

    The accumulation of trace metals by planktonic protists influences the growth of primary producers, metal biogeochemical cycling, and metal bioaccumulation in aquatic food chains. Despite their importance, unequivocal measurements of trace element concentrations in individual plankton cells have not been possible to date. We have used the 2-ID-E side-branch hard x-ray microprobe at the Advanced Photon Source to measure trace elements in individual marine plankton cells. This microprobe employs zoneplate optics to produce the sub-micron spatial resolution and low background fluorescence required to produce trace element maps of planktonic protist cells ranging in size from 3 to >50 {micro}m. We have developed preservation, rinsing, and mounting protocols that remove most of the salt from our marine samples, thus simplifying the identification of unknown cells and reducing high Cl-related background fluorescence. We have also developed spectral modeling techniques that account for the frequent overlap of adjacent fluorescence peaks and non-uniform detector response. Finally, we have used parallel soft x-ray transmission and epifluorescence microscopy images to estimate C normalized trace element concentrations, identify functional cell types (e.g., photosynthetic vs. non-photosynthetic), and correlate cell structures with spatial patterns in trace element fluorescence.

  3. Extraction spectrophotometric analyzer

    International Nuclear Information System (INIS)

    Batik, J.; Vitha, F.

    1985-01-01

    Automation is discussed of extraction spectrophotometric determination of uranium in a solution. Uranium is extracted from accompanying elements in an HCl medium with a solution of tributyl phosphate in benzene. The determination is performed by measuring absorbance at 655 nm in a single-phase ethanol-water-benzene-tributyl phosphate medium. The design is described of an analyzer consisting of an analytical unit and a control unit. The analyzer performance promises increased productivity of labour, improved operating and hygiene conditions, and mainly more accurate results of analyses. (J.C.)

  4. Synchrotron radiation from protons

    International Nuclear Information System (INIS)

    Dutt, S.K.

    1992-12-01

    Synchrotron radiation from protons, though described by the same equations as the radiation from electrons, exhibits a number of interesting features on account of the parameters reached in praxis. In this presentation, we shall point out some of the features relating to (i) normal synchrotron radiation from dipoles in proton machines such as the High Energy Booster and the Superconducting Super Collider; (ii) synchrotron radiation from short dipoles, and its application to light monitors for proton machines, and (iii) synchrotron radiation from undulators in the limit when, the deflection parameter is much smaller than unity. The material for this presentation is taken largely from the work of Hofmann, Coisson, Bossart, and their collaborators, and from a paper by Kim. We shall emphasize the qualitative aspects of synchrotron radiation in the cases mentioned above, making, when possible, simple arguments for estimating the spectral and angular properties of the radiation. Detailed analyses can be found in the literature

  5. Polarized proton colliders

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    High energy polarized beam collisions will open up the unique physics opportunities of studying spin effects in hard processes. This will allow the study of the spin structure of the proton and also the verification of the many well documented expectations of spin effects in perturbative QCD and parity violation in W and Z production. Proposals for polarized proton acceleration for several high energy colliders have been developed. A partial Siberian Snake in the AGS has recently been successfully tested and full Siberian Snakes, spin rotators, and polarimeters for RHIC are being developed to make the acceleration of polarized beams to 250 GeV possible. This allows for the unique possibility of colliding two 250 GeV polarized proton beams at luminosities of up to 2 x 10 32 cm -2 s -1

  6. Current-current interaction picture for proton-proton scattering

    International Nuclear Information System (INIS)

    Clarke, D.J.; Lo, S.Y.

    1979-01-01

    The authors propose that color current - color current interaction is reponsible for small angle elastic proton proton scattering at asymptotic energy. Excellent fits are obtained for all data above 12 GeV/c which covers twelve orders of magnitude

  7. Protons and how they are transported by proton pumps

    DEFF Research Database (Denmark)

    Buch-Pedersen, Morten Jeppe; Pedersen, Bjørn Panyella; Veierskov, Bjarke

    2008-01-01

    The very high mobility of protons in aqueous solutions demands special features of membrane proton transporters to sustain efficient yet regulated proton transport across biological membranes. By the use of the chemical energy of ATP, plasma-membrane-embedded ATPases extrude protons from cells...... of plants and fungi to generate electrochemical proton gradients. The recently published crystal structure of a plasma membrane H(+)-ATPase contributes to our knowledge about the mechanism of these essential enzymes. Taking the biochemical and structural data together, we are now able to describe the basic...... molecular components that allow the plasma membrane proton H(+)-ATPase to carry out proton transport against large membrane potentials. When divergent proton pumps such as the plasma membrane H(+)-ATPase, bacteriorhodopsin, and F(O)F(1) ATP synthase are compared, unifying mechanistic premises for biological...

  8. Americal options analyzed differently

    NARCIS (Netherlands)

    Nieuwenhuis, J.W.

    2003-01-01

    In this note we analyze in a discrete-time context and with a finite outcome space American options starting with the idea that every tradable should be a martingale under a certain measure. We believe that in this way American options become more understandable to people with a good working

  9. Analyzing Political Television Advertisements.

    Science.gov (United States)

    Burson, George

    1992-01-01

    Presents a lesson plan to help students understand that political advertisements often mislead, lie, or appeal to emotion. Suggests that the lesson will enable students to examine political advertisements analytically. Includes a worksheet to be used by students to analyze individual political advertisements. (DK)

  10. Centrifugal analyzer development

    International Nuclear Information System (INIS)

    Burtis, C.A.; Bauer, M.L.; Bostick, W.D.

    1976-01-01

    The development of the centrifuge fast analyzer (CFA) is reviewed. The development of a miniature CFA with computer data analysis is reported and applications for automated diagnostic chemical and hematological assays are discussed. A portable CFA system with microprocessor was adapted for field assays of air and water samples for environmental pollutants, including ammonia, nitrates, nitrites, phosphates, sulfates, and silica. 83 references

  11. Proton tunneling in solids

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, J.

    1998-10-01

    The tunneling rate of the proton and its isotopes between interstitial sites in solids is studied theoretically. The phonons and/or the electrons in the solid have two effects on the tunneling phenomenon. First, they suppress the transfer integral between two neighbouring states. Second, they give rise to a finite lifetime of the proton state. Usually the second effect is large and the tunneling probability per unit time (tunneling rate) can be defined. In some cases, however, a coherent tunneling is expected and actually observed. (author)

  12. Proton irradiation and endometriosis

    International Nuclear Information System (INIS)

    Wood, D.H.; Yochmowitz, M.G.; Salmon, Y.L.; Eason, R.L.; Boster, R.A.

    1983-01-01

    It was found that female rhesus monkeys given single total-body exposures of protons of varying energies developed endometriosis at a frequency significantly higher than that of nonirradiated animals of the same age. The minimum latency period was determined to be 7 years after the proton exposure. The doses and energies of the radiation received by the experimental animals were within the range that could be received by an aircrew member in near-earth orbit during a random solar flare event. It is concluded that endometriosis should be a consideration in assessing the risk of delayed radiation effects in female crew members. 15 references

  13. Diagnosis by proton bombardment

    International Nuclear Information System (INIS)

    Steward, V.W.; Koehler, A.M.

    1976-01-01

    Beams of monoenergetic protons or other charged ions are passed through the living human body to detect abnormalities and obstructions in body tissue, which abnormalities and obstructions are visualized as density variations in the particle image emerging from the body part under investigation. The particles used are preferably protons having an energy of 100 to 300 MeV, more especially 200 to 300 MeV. The method is of use in detecting inter alia tumors, blood clots, infarcts, soft tissue lesions and multiple sclerosis in patients without exposure to high radiation dosages. 6 claims, 2 drawing figures

  14. Do protons decay

    International Nuclear Information System (INIS)

    Litchfield, P.J.

    1984-09-01

    The experimental status of proton decay is reviewed after the Leipzig International conference, July 1984. A brief comparative description of the currently active experiments is given. From the overall samples of contained events it can be concluded that the experiments are working well and broadly agree with each other. The candidates for proton decay from each experiment are examined. Although several experiments report candidates at a higher rate than expected from background calculations, the validity of these calculations is still open to doubt. (author)

  15. Proton tunneling in solids

    International Nuclear Information System (INIS)

    Kondo, J.

    1998-01-01

    The tunneling rate of the proton and its isotopes between interstitial sites in solids is studied theoretically. The phonons and/or the electrons in the solid have two effects on the tunneling phenomenon. First, they suppress the transfer integral between two neighbouring states. Second, they give rise to a finite lifetime of the proton state. Usually the second effect is large and the tunneling probability per unit time (tunneling rate) can be defined. In some cases, however, a coherent tunneling is expected and actually observed. (author)

  16. Experimental determination of the complete spin structure for anti-proton + proton -> anti-\\Lambda + \\Lambda at anti-proton beam momentum of 1.637 GeV/c

    CERN Document Server

    Paschke, K.D.; Berdoz, A.; Franklin, G.B.; Khaustov, P.; Meyer, C.A.; Bradtke, C.; Gehring, R.; Goertz, S.; Harmsen, J.; Meier, A.; Meyer, W.; Radtke, E.; Reicherz, G.; Dutz, H.; Pluckthun, M.; Schoch, B.; Dennert, H.; Eyrich, W.; Hauffe, J.; Metzger, A.; Moosburger, M.; Stinzing, F.; Wirth, St.; Fischer, H.; Franz, J.; Heinsius, F.H.; Kriegler, E.; Schmitt, H.; Bunker, B.; Hertzog, D.; Jones, T.; Tayloe, R.; Broders, R.; Geyer, R.; Kilian, K.; Oelert, W.; Rohrich, K.; Sachs, K.; Sefzick, T.; Bassalleck, B.; Eilerts, S.; Fields, D.E.; Kingsberry, P.; Lowe, J.; Stotzer, R.; Johansson, T.; Pomp, S.; Wirth, St.

    2006-01-01

    The reaction anti-proton + proton -> anti-\\Lambda + \\Lambda -> anti-proton + \\pi^+ + proton + \\pi^- has been measured with high statistics at anti-proton beam momentum of 1.637 GeV/c. The use of a transversely-polarized frozen-spin target combined with the self-analyzing property of \\Lambda/anti-\\Lambda decay allows access to unprecedented information on the spin structure of the interaction. The most general spin-scattering matrix can be written in terms of eleven real parameters for each bin of scattering angle, each of these parameters is determined with reasonable precision. From these results all conceivable spin-correlations are determined with inherent self-consistency. Good agreement is found with the few previously existing measurements of spin observables in anti-proton + proton -> anti-\\Lambda + \\Lambda near this energy. Existing theoretical models do not give good predictions for those spin-observables that had not been previously measured.

  17. Proton-proton bremsstrahlung in a relativistic covariant model

    NARCIS (Netherlands)

    Martinus, Gerard Henk

    1998-01-01

    Proton-proton bremsstrahlung is one of the simplest processes involving the half off-shell NN interaction. Since protons are equally-charged particles with the same mass, electric-dipole radiation is suppressed and higher-order effects play an important role. Thus it is possible to get information

  18. Predictions of diffractive cross sections in proton-proton collisions

    Energy Technology Data Exchange (ETDEWEB)

    Goulianos, Konstantin [Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States)

    2013-04-15

    We review our pre-LHC predictions of the total, elastic, total-inelastic, and diffractive components of proton-proton cross sections at high energies, expressed in the form of unitarized expressions based on a special parton-model approach to diffraction employing inclusive proton parton distribution functions and QCD color factors and compare with recent LHC results.

  19. Isotopic Investigations of Nebular and Parent Body Processes with a High Sensitivity Ion Microprobe

    Science.gov (United States)

    McKeegan, Kevin D.

    2005-01-01

    NASA supported the development of the CAMECA ims 1270 ion microprobe at UCLA for applications in cosmochemistry. The primary investigations centered on measuring the microscopic distributions of key isotopic abundances in primitive meteoritic materials as a means of constraining the nature of important thermal and chemical processes in the solar nebula and the timescales associated with those processes. Our prior work on oxygen isotope anomalies in a wide variety of meteoritic materials had led us to a view of a spatially heterogeneous nebula, and in particular, a restricted region for CAI formation that is characterized by O-16-rich gas. Because of its production of CAIs in the energetic local environment near the protosun, the existence of a natural transport mechanism via bipolar outflows, and a general astrophysical plausibility, we were attracted to the fluctuating X-wind model which had been put forward by Frank Shu, Typhoon Lee, and colleagues. With our collaborators, we undertook a series of investigations to test the viability of this hypothesis; this work led directly to the discovery of live Be in CAIs and a clear demonstration of the existence of 160-rich condensates, which necessarily implies an O-16-rich gaseous reservoir in the nebula. Both of these observations fit well within the context of X-wind type models, i.e. formation of CAIs (or condensation of their precursors) in the reconnection ring sunward of the inner edge of the accretion disk, however much work remains to be done to test whether the physical parameters of the model can quantitatively predict not only the thermal histories of CAIs but also their radioactivity. The issue of spatial heterogeneity in the nebula, central to the X-wind model, is also at the heart of any chronology based on short-lived radioisotopes. In this work, we followed up on strong hints for presence of exireme:j: (53 day) short-lived Be-7, and have prepared a manuscript (in revision). We also measured A1-Mg

  20. Progresses in proton radioactivity studies

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, L. S., E-mail: flidia@ist.utl.pt [Center of Physics and Engineering of Advanced Materials, CeFEMA and Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, P1049-001 Lisbon (Portugal); Maglione, E. [Dipartimento di Fisica e Astronomia “G. Galilei”, Via Marzolo 8, I-35131 Padova, Italy and Istituto Nazionale di Fisica Nucleare, Padova (Italy)

    2016-07-07

    In the present talk, we will discuss recent progresses in the theoretical study of proton radioactivity and their impact on the present understanding of nuclear structure at the extremes of proton stability.

  1. Proton Radiography (pRad)

    Data.gov (United States)

    Federal Laboratory Consortium — The proton radiography project has used 800 MeV protons provided by the LANSCE accelerator facility at LANL, to diagnose more than 300 dynamic experiments in support...

  2. Soft Decision Analyzer

    Science.gov (United States)

    Lansdowne, Chatwin; Steele, Glen; Zucha, Joan; Schlesinger, Adam

    2013-01-01

    We describe the benefit of using closed-loop measurements for a radio receiver paired with a counterpart transmitter. We show that real-time analysis of the soft decision output of a receiver can provide rich and relevant insight far beyond the traditional hard-decision bit error rate (BER) test statistic. We describe a Soft Decision Analyzer (SDA) implementation for closed-loop measurements on single- or dual- (orthogonal) channel serial data communication links. The analyzer has been used to identify, quantify, and prioritize contributors to implementation loss in live-time during the development of software defined radios. This test technique gains importance as modern receivers are providing soft decision symbol synchronization as radio links are challenged to push more data and more protocol overhead through noisier channels, and software-defined radios (SDRs) use error-correction codes that approach Shannon's theoretical limit of performance.

  3. KWU Nuclear Plant Analyzer

    International Nuclear Information System (INIS)

    Bennewitz, F.; Hummel, R.; Oelmann, K.

    1986-01-01

    The KWU Nuclear Plant Analyzer is a real time engineering simulator based on the KWU computer programs used in plant transient analysis and licensing. The primary goal is to promote the understanding of the technical and physical processes of a nuclear power plant at an on-site training facility. Thus the KWU Nuclear Plant Analyzer is available with comparable low costs right at the time when technical questions or training needs arise. This has been achieved by (1) application of the transient code NLOOP; (2) unrestricted operator interaction including all simulator functions; (3) using the mainframe computer Control Data Cyber 176 in the KWU computing center; (4) four color graphic displays controlled by a dedicated graphic computer, no control room equipment; and (5) coupling of computers by telecommunication via telephone

  4. Analyzed Using Statistical Moments

    International Nuclear Information System (INIS)

    Oltulu, O.

    2004-01-01

    Diffraction enhanced imaging (DEl) technique is a new x-ray imaging method derived from radiography. The method uses a monorheumetten x-ray beam and introduces an analyzer crystal between an object and a detector Narrow angular acceptance of the analyzer crystal generates an improved contrast over the evaluation radiography. While standart radiography can produce an 'absorption image', DEl produces 'apparent absorption' and 'apparent refraction' images with superior quality. Objects with similar absorption properties may not be distinguished with conventional techniques due to close absorption coefficients. This problem becomes more dominant when an object has scattering properties. A simple approach is introduced to utilize scattered radiation to obtain 'pure absorption' and 'pure refraction' images

  5. Emission spectrometric isotope analyzer

    International Nuclear Information System (INIS)

    Mauersberger, K.; Meier, G.; Nitschke, W.; Rose, W.; Schmidt, G.; Rahm, N.; Andrae, G.; Krieg, D.; Kuefner, W.; Tamme, G.; Wichlacz, D.

    1982-01-01

    An emission spectrometric isotope analyzer has been designed for determining relative abundances of stable isotopes in gaseous samples in discharge tubes, in liquid samples, and in flowing gaseous samples. It consists of a high-frequency generator, a device for defined positioning of discharge tubes, a grating monochromator with oscillating slit and signal converter, signal generator, window discriminator, AND connection, read-out display, oscillograph, gas dosing device and chemical conversion system with carrier gas source and vacuum pump

  6. Violent collisions of spinning protons

    Energy Technology Data Exchange (ETDEWEB)

    Krisch, A.D. [Michigan Univ., Spin Physics Center, Ann Arbor, MI (United States)

    2005-07-01

    The author draws the history of polarized proton beams that has relied on experiments that took place in different accelerators like ZGS (zero gradient synchrotron, Argonne), AGS (Brookhaven) and Fermilab from 1973 till today. The first studies of the behavior and spin-manipulation of polarized protons helped in developing polarized beams around the world: Brookhaven now has 200 GeV polarized protons in the RHIC collider, perhaps someday the 7 TeV LHC at CERN might have polarized protons.

  7. Neutron-proton scattering

    International Nuclear Information System (INIS)

    Doll, P.

    1990-02-01

    Neutron-proton scattering as fundamental interaction process below and above hundred MeV is discussed. Quark model inspired interactions and phenomenological potential models are described. The seminar also indicates the experimental improvements for achieving new precise scattering data. Concluding remarks indicate the relevance of nucleon-nucleon scattering results to finite nuclei. (orig.) [de

  8. Radiotherapy : proton therapy

    International Nuclear Information System (INIS)

    1991-01-01

    The first phase of proton therapy at the National Accelerator Centre will be the development of a 200 MeV small-field horizontal beam radioneurosurgical facility in the south treatment vault. A progressive expansion of this facility is planned. The patient support and positioning system has been designed and developed by the Departments of Mechanical Engineering and Surveying of the University of Cape Town to ensure the accurate positioning in the proton beam of the lesion to be treated. The basic components of the system are an adjustable chair, a series of video cameras and two computers. The specifications for the proton therapy interlock system require that the inputs to and the outputs from the system be similar to those of the neutron therapy system. Additional facilities such as a full diagnostic system which would assist the operators in the event of an error will also be provided. Dosimeters are required for beam monitoring, for monitor calibration and for determining dose distributions. Several designs of transmission ionization chambers for beam monitoring have been designed and tested, while several types of ionization chambers and diodes have been used for the dose distribution measurements. To facilitate the comparison of measured ranges and energy losses of proton beams in the various materials with tabled values, simple empirical approximations, which are sufficiently accurate for most applications, have been used. 10 refs., 10 fig., 4 tabs

  9. Proton Pulse Radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, H C; Nilsson, G; Reitberger, T; Thuomas, K A

    1973-03-15

    A 5 MeV proton accelerator (Van de Graaff) has been used for pulse radiolysis of a number of organic gases and the transient spectra obtained from the alkanes methane, ethane, propane, n-butane and neopentane have tentatively been assigned to alkyl radicals. Some methodological aspects of this new technique are discussed

  10. Proton microanalysis in plants

    International Nuclear Information System (INIS)

    Garrec, J.P.

    Micro-analyses by nuclear reactions and atomic excitation are used to determine the distribution of fluorine and calcium in the needles of Abies Alba. Fluorine is detected by the nuclear reaction 19 F(p,α) 16 O at the 1.35 MeV resonance. Calcium is measured by its characteristic X-rays due to proton excitation [fr

  11. Proton transfer events in GFP

    NARCIS (Netherlands)

    Di Donato, M.; van Wilderen, L.J.G.W.; van Stokkum, I.H.M.; Cohen Stuart, T.A.; Kennis, J.T.M.; Hellingwerf, K.J.; van Grondelle, R.; Groot, M.L.

    2011-01-01

    Proton transfer is one of the most important elementary processes in biology. Green fluorescent protein (GFP) serves as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. Illumination initiates proton

  12. Results from the nuclear microprobe PIXE analysis of selected rare earth fluor compounds

    International Nuclear Information System (INIS)

    Hollerman, William A.; Gates, Earl; Boudreaux, Philip; Glass, Gary A.

    2002-01-01

    Most previous research measures fluorescence properties over the macroscopic regime. Properties of individual microscopic grains could be significantly different than those measured over the macroscopic scale. Until recently, it was difficult to measure properties of individual fluor grains. Existing characterization techniques like scanning electron microscopy are not practical, since the resulting fluorescence masks the electron surface profile. Starting in September 2000, a research program was initiated at the Acadiana Research Laboratory to determine microscopic fluorescence properties for selected inorganic rare earth compounds. The initial phase of this program utilized microscopic proton induced X-ray emission (μPIXE) to characterize the elemental composition of individual fluor grains. Results show that both individual grains and small clusters of grains could be seen using μPIXE. Maps of this type can be used to estimate grain dimensions for the selected rare earth fluor. This technique is a new and innovative method to characterize a fluor material

  13. PhosphoSiteAnalyzer

    DEFF Research Database (Denmark)

    Bennetzen, Martin V; Cox, Jürgen; Mann, Matthias

    2012-01-01

    an algorithm to retrieve kinase predictions from the public NetworKIN webpage in a semiautomated way and applies hereafter advanced statistics to facilitate a user-tailored in-depth analysis of the phosphoproteomic data sets. The interface of the software provides a high degree of analytical flexibility......Phosphoproteomic experiments are routinely conducted in laboratories worldwide, and because of the fast development of mass spectrometric techniques and efficient phosphopeptide enrichment methods, researchers frequently end up having lists with tens of thousands of phosphorylation sites...... and is designed to be intuitive for most users. PhosphoSiteAnalyzer is a freeware program available at http://phosphosite.sourceforge.net ....

  14. Electrodynamic thermogravimetric analyzer

    International Nuclear Information System (INIS)

    Spjut, R.E.; Bar-Ziv, E.; Sarofim, A.F.; Longwell, J.P.

    1986-01-01

    The design and operation of a new device for studying single-aerosol-particle kinetics at elevated temperatures, the electrodynamic thermogravimetric analyzer (EDTGA), was examined theoretically and experimentally. The completed device consists of an electrodynamic balance modified to permit particle heating by a CO 2 laser, temperature measurement by a three-color infrared-pyrometry system, and continuous weighing by a position-control system. In this paper, the position-control, particle-weight-measurement, heating, and temperature-measurement systems are described and their limitations examined

  15. Analyzing Chinese Financial Reporting

    Institute of Scientific and Technical Information of China (English)

    SABRINA; ZHANG

    2008-01-01

    If the world’s capital markets could use a harmonized accounting framework it would not be necessary for a comparison between two or more sets of accounting standards. However,there is much to do before this becomes reality.This article aims to pres- ent a general overview of China’s General Accepted Accounting Principles(GAAP), U.S.General Accepted Accounting Principles and International Financial Reporting Standards(IFRS),and to analyze the differ- ences among IFRS,U.S.GAAP and China GAAP using fixed assets as an example.

  16. Inductive dielectric analyzer

    International Nuclear Information System (INIS)

    Agranovich, Daniel; Popov, Ivan; Ben Ishai, Paul; Feldman, Yuri; Polygalov, Eugene

    2017-01-01

    One of the approaches to bypass the problem of electrode polarization in dielectric measurements is the free electrode method. The advantage of this technique is that, the probing electric field in the material is not supplied by contact electrodes, but rather by electromagnetic induction. We have designed an inductive dielectric analyzer based on a sensor comprising two concentric toroidal coils. In this work, we present an analytic derivation of the relationship between the impedance measured by the sensor and the complex dielectric permittivity of the sample. The obtained relationship was successfully employed to measure the dielectric permittivity and conductivity of various alcohols and aqueous salt solutions. (paper)

  17. Plutonium solution analyzer

    International Nuclear Information System (INIS)

    Burns, D.A.

    1994-09-01

    A fully automated analyzer has been developed for plutonium solutions. It was assembled from several commercially available modules, is based upon segmented flow analysis, and exhibits precision about an order of magnitude better than commercial units (0.5%-O.05% RSD). The system was designed to accept unmeasured, untreated liquid samples in the concentration range 40-240 g/L and produce a report with sample identification, sample concentrations, and an abundance of statistics. Optional hydraulics can accommodate samples in the concentration range 0.4-4.0 g/L. Operating at a typical rate of 30 to 40 samples per hour, it consumes only 0.074 mL of each sample and standard, and generates waste at the rate of about 1.5 mL per minute. No radioactive material passes through its multichannel peristaltic pump (which remains outside the glovebox, uncontaminated) but rather is handled by a 6-port, 2-position chromatography-type loop valve. An accompanying computer is programmed in QuickBASIC 4.5 to provide both instrument control and data reduction. The program is truly user-friendly and communication between operator and instrument is via computer screen displays and keyboard. Two important issues which have been addressed are waste minimization and operator safety (the analyzer can run in the absence of an operator, once its autosampler has been loaded)

  18. Multiple capillary biochemical analyzer

    Science.gov (United States)

    Dovichi, N.J.; Zhang, J.Z.

    1995-08-08

    A multiple capillary analyzer allows detection of light from multiple capillaries with a reduced number of interfaces through which light must pass in detecting light emitted from a sample being analyzed, using a modified sheath flow cuvette. A linear or rectangular array of capillaries is introduced into a rectangular flow chamber. Sheath fluid draws individual sample streams through the cuvette. The capillaries are closely and evenly spaced and held by a transparent retainer in a fixed position in relation to an optical detection system. Collimated sample excitation radiation is applied simultaneously across the ends of the capillaries in the retainer. Light emitted from the excited sample is detected by the optical detection system. The retainer is provided by a transparent chamber having inward slanting end walls. The capillaries are wedged into the chamber. One sideways dimension of the chamber is equal to the diameter of the capillaries and one end to end dimension varies from, at the top of the chamber, slightly greater than the sum of the diameters of the capillaries to, at the bottom of the chamber, slightly smaller than the sum of the diameters of the capillaries. The optical system utilizes optic fibers to deliver light to individual photodetectors, one for each capillary tube. A filter or wavelength division demultiplexer may be used for isolating fluorescence at particular bands. 21 figs.

  19. Plutonium solution analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Burns, D.A.

    1994-09-01

    A fully automated analyzer has been developed for plutonium solutions. It was assembled from several commercially available modules, is based upon segmented flow analysis, and exhibits precision about an order of magnitude better than commercial units (0.5%-O.05% RSD). The system was designed to accept unmeasured, untreated liquid samples in the concentration range 40-240 g/L and produce a report with sample identification, sample concentrations, and an abundance of statistics. Optional hydraulics can accommodate samples in the concentration range 0.4-4.0 g/L. Operating at a typical rate of 30 to 40 samples per hour, it consumes only 0.074 mL of each sample and standard, and generates waste at the rate of about 1.5 mL per minute. No radioactive material passes through its multichannel peristaltic pump (which remains outside the glovebox, uncontaminated) but rather is handled by a 6-port, 2-position chromatography-type loop valve. An accompanying computer is programmed in QuickBASIC 4.5 to provide both instrument control and data reduction. The program is truly user-friendly and communication between operator and instrument is via computer screen displays and keyboard. Two important issues which have been addressed are waste minimization and operator safety (the analyzer can run in the absence of an operator, once its autosampler has been loaded).

  20. The role of nuclear microprobes in the study of technology, provenance and corrosion of cultural heritage: The case of gold and silver items

    International Nuclear Information System (INIS)

    Guerra, M.F.; Tissot, I.

    2013-01-01

    This work gives an overview of the main questions raised by gold and silver items kept in museum collections and of the role of nuclear microprobes in their study and conservation. The different approached questions are illustrated by examples; analytical data is given and discussed; and the advantages of IBA are considered: spatial resolution, penetration depth, limits of detection, mapping, etc

  1. Ion microprobe analyses of oxygen three-isotope ratios of chondrules from the Sayh al Uhaymir 290 CH chondrite using a multiple-hole disk

    Digital Repository Service at National Institute of Oceanography (India)

    Nakashima, D.; Ushikubo, T.; Gowda, R.N.; Kita, N.T.; Valley, J.W.; Naga, K.

    Author version: Meteorit. Planet. Sci., vol.46(6); 2011; 857-874 Ion microprobe analyses of oxygen three isotope ratios of chondrules from the Sayh al Uhaymir 290 CH chondrite using a multiple-hole disk Daisuke Nakashima 1,2,* , Takayuki Ushikubo...

  2. Australian national proton facility

    International Nuclear Information System (INIS)

    Jackson, M.

    2000-01-01

    Full text: Proton therapy has been in use since 1954 and over 25,000 patients have been treated worldwide. Until recently most patients were treated at physics research facilities and apart from the Harvard Cyclotron Laboratory and some low energy machines for eye treatment, only small numbers of patients were treated in each centre and conditions were less than optimal. Limited beam time and lack of support facilities restricted the type of patient treated and conventional fractionation could not be used. The initial clinical experience was mainly with small tumours and other lesions close to critical organs. Large numbers of eye tumours have also been treated. Protons have a well-defined role in these situations and are now being used in the treatment of more common cancers. Since the development of hospital-based facilities, such as the one in Loma Linda in California, over 2,500 patients with prostate cancer have been treated using a simple technique which gives results at least as good as radical surgery, external beam radiotherapy or brachytherapy. Importantly, the incidence of severe complications is very low. There are encouraging results in many disease sites including lung, liver, soft tissue sarcomas and oesophagus. As proton therapy becomes more widely available, randomised trials comparing it with conventional radiotherapy or intensity modulated radiotherapy (IMRT) will be possible. In most situations the use of protons will enable a higher dose to be given safely but in situations where local control rates are already satisfactory, protons are expected to produce less complications than conventional treatment. The initial costs of a proton facility are high but the recurrent costs are similar to other forms of high technology radiotherapy. Simple treatment techniques with only a few fields are usually possible and proton therapy avoids the high integral doses associated with IMRT. This reduction in the low dose volume is likely to be particularly

  3. A P + DEUTERON PROTON POLARIMETER AT 200 MEV.

    Energy Technology Data Exchange (ETDEWEB)

    HUANG,H.; ROSER,T.; ZELENSKI,A.; KURITA,K.; STEPHENSON,E.; TOOLE,R.

    2002-06-02

    There has been concern about the analyzing power of the p-Carbon polarimeter at the end of 200 MeV LINAC of BNL. A new polarimeter based on proton-deuteron scattering was installed and we have repeated the calibration of proton-Carbon scattering at 12 degrees and 200 MeV against proton-deuteron scattering. The result is consistent with the value of A=0.62 now used to measure the beam polarization at the end of the LINAC.

  4. Protonation of pyridine. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Zahran, N F; Ghoniem, H; Helal, A I [Physics Dept., Nuclear Research Center, AEA., Cairo, (Egypt); Rasheed, N [Nuclear Material Authority, Cairo, (Egypt)

    1996-03-01

    Field ionization mass spectra of pyridine is measured using 10{mu}m activated wire. protonation of pyridine, is observed as an intense peak in the mass spectra. Charge distribution of pyridine molecule is calculated using the modified neglect of diatomic overlap (MNDO) technique, and consequently proton attachment is proposed to be on the nitrogen atom. Temperature dependence of (M+H){sup +} ion is investigated and discussed. MNDO calculations of the protonated species are done, and the proton affinity of pyridine molecule is estimated. Time dependence of the field ionization process of pyridine and protonated ions are observed and discussed. 5 figs.

  5. Trace impurity analyzer

    International Nuclear Information System (INIS)

    Schneider, W.J.; Edwards, D. Jr.

    1979-01-01

    The desirability for long-term reliability of large scale helium refrigerator systems used on superconducting accelerator magnets has necessitated detection of impurities to levels of a few ppM. An analyzer that measures trace impurity levels of condensable contaminants in concentrations of less than a ppM in 15 atm of He is described. The instrument makes use of the desorption temperature at an indicated pressure of the various impurities to determine the type of contaminant. The pressure rise at that temperature yields a measure of the contaminant level of the impurity. A LN 2 cryogenic charcoal trap is also employed to measure air impurities (nitrogen and oxygen) to obtain the full range of contaminant possibilities. The results of this detector which will be in use on the research and development helium refrigerator of the ISABELLE First-Cell is described

  6. Analyzing Water's Optical Absorption

    Science.gov (United States)

    2002-01-01

    A cooperative agreement between World Precision Instruments (WPI), Inc., and Stennis Space Center has led the UltraPath(TM) device, which provides a more efficient method for analyzing the optical absorption of water samples at sea. UltraPath is a unique, high-performance absorbance spectrophotometer with user-selectable light path lengths. It is an ideal tool for any study requiring precise and highly sensitive spectroscopic determination of analytes, either in the laboratory or the field. As a low-cost, rugged, and portable system capable of high- sensitivity measurements in widely divergent waters, UltraPath will help scientists examine the role that coastal ocean environments play in the global carbon cycle. UltraPath(TM) is a trademark of World Precision Instruments, Inc. LWCC(TM) is a trademark of World Precision Instruments, Inc.

  7. PDA: Pooled DNA analyzer

    Directory of Open Access Journals (Sweden)

    Lin Chin-Yu

    2006-04-01

    Full Text Available Abstract Background Association mapping using abundant single nucleotide polymorphisms is a powerful tool for identifying disease susceptibility genes for complex traits and exploring possible genetic diversity. Genotyping large numbers of SNPs individually is performed routinely but is cost prohibitive for large-scale genetic studies. DNA pooling is a reliable and cost-saving alternative genotyping method. However, no software has been developed for complete pooled-DNA analyses, including data standardization, allele frequency estimation, and single/multipoint DNA pooling association tests. This motivated the development of the software, 'PDA' (Pooled DNA Analyzer, to analyze pooled DNA data. Results We develop the software, PDA, for the analysis of pooled-DNA data. PDA is originally implemented with the MATLAB® language, but it can also be executed on a Windows system without installing the MATLAB®. PDA provides estimates of the coefficient of preferential amplification and allele frequency. PDA considers an extended single-point association test, which can compare allele frequencies between two DNA pools constructed under different experimental conditions. Moreover, PDA also provides novel chromosome-wide multipoint association tests based on p-value combinations and a sliding-window concept. This new multipoint testing procedure overcomes a computational bottleneck of conventional haplotype-oriented multipoint methods in DNA pooling analyses and can handle data sets having a large pool size and/or large numbers of polymorphic markers. All of the PDA functions are illustrated in the four bona fide examples. Conclusion PDA is simple to operate and does not require that users have a strong statistical background. The software is available at http://www.ibms.sinica.edu.tw/%7Ecsjfann/first%20flow/pda.htm.

  8. Review on the application of electron microprobe chemical dating method in the age research of uranium/pitchblende

    International Nuclear Information System (INIS)

    Ge Xiangkun; Qin Mingkuan; Fan Guang

    2011-01-01

    Different micro dating methods have been developed in recent years, the advantages and disadvantages are simply introduced at first. The recent development of electron microprobe chemical dating method in the age research of uraninite/pitchblende and the used analytical conditions by the precurser are presented in detail by stages. Finally, the application foreground of this method in the age research of uraninite/pitchblende and the possible problems are systematically investigated and discussed. It is believed that this method will play a big role in the age research of uranium minerals, especially in the micro dating research of tiny uranium minerals (φ < 10 μm) and uranium micro-ores of multi-stage. (authors)

  9. Comparison of proton microbeam and gamma irradiation for the radiation hardness testing of silicon PIN diodes

    Science.gov (United States)

    Jakšić, M.; Grilj, V.; Skukan, N.; Majer, M.; Jung, H. K.; Kim, J. Y.; Lee, N. H.

    2013-09-01

    Simple and cost-effective solutions using Si PIN diodes as detectors are presently utilized in various radiation-related applications in which excessive exposure to radiation degrades their charge transport properties. One of the conventional methods for the radiation hardness testing of such devices is time-consuming irradiation with electron beam or gamma-ray irradiation facilities, high-energy proton accelerators, or with neutrons from research reactors. Recently, for the purpose of radiation hardness testing, a much faster nuclear microprobe based approach utilizing proton irradiation has been developed. To compare the two different irradiation techniques, silicon PIN diodes have been irradiated with a Co-60 gamma radiation source and with a 6 MeV proton microbeam. The signal degradation in the silicon PIN diodes for both irradiation conditions has been probed by the IBIC (ion beam induced charge) technique, which can precisely monitor changes in charge collection efficiency. The results presented are reviewed on the basis of displacement damage calculations and NIEL (non-ionizing energy loss) concept.

  10. Proton transfer events in GFP.

    Science.gov (United States)

    Di Donato, Mariangela; van Wilderen, Luuk J G W; Van Stokkum, Ivo H M; Stuart, Thomas Cohen; Kennis, John T M; Hellingwerf, Klaas J; van Grondelle, Rienk; Groot, Marie Louise

    2011-09-28

    Proton transfer is one of the most important elementary processes in biology. Green fluorescent protein (GFP) serves as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. Illumination initiates proton transfer through a 'proton-wire', formed by the chromophore (the proton donor), water molecule W22, Ser205 and Glu222 (the acceptor), on a picosecond time scale. To obtain a more refined view of this process, we have used a combined approach of time resolved mid-infrared spectroscopy and visible pump-dump-probe spectroscopy to resolve with atomic resolution how and how fast protons move through this wire. Our results indicate that absorption of light by GFP induces in 3 ps (10 ps in D(2)O) a shift of the equilibrium positions of all protons in the H-bonded network, leading to a partial protonation of Glu222 and to a so-called low barrier hydrogen bond (LBHB) for the chromophore's proton, giving rise to dual emission at 475 and 508 nm. This state is followed by a repositioning of the protons on the wire in 10 ps (80 ps in D(2)O), ultimately forming the fully deprotonated chromophore and protonated Glu222.

  11. Fast GaAs photoconductor responses to subnanosecond proton pulses

    International Nuclear Information System (INIS)

    Pochet, T.

    1993-01-01

    GaAs photoconductors have been tailored to detect ultrafast proton pulses having energies ranging between 4 and 9 MeV. The sensitivity, the linearity and the speed of response of the devices are analyzed as a function of their neutron pre-irradiation treatment. The dependence of the sensitivity on the proton energy and the applied polarization is also studied. Finally, the experimental results are compared with a simple theoretical model

  12. Proton location in metal hydrides using electron spin resonance

    International Nuclear Information System (INIS)

    Venturini, E.L.

    1979-01-01

    Electron spin resonance (ESR) of dilute paramagnetic ions establishes the site symmetry of these ions. In the case of metal hydrides the site symmetry is determined by the number and location of neighboring protons. Typical ESR spectra for trivalent erbium in scandium and yttrium hydrides are presented and analyzed, and this technique is shown to be a versatile microscopic probe of the location, net charge and occupation probability of nearby protons

  13. Solar proton fluxes since 1956

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1977-01-01

    The fluxes of protons emitted during solar flares since 1956 were evaluated. The depth-versus-activity profiles of 56 Co in several lunar rocks are consistent with the solar-proton fluxes detected by experiments on several satellites. Only about 20% of the solar-proton-induced activities of 22 Na and 55 Fe in lunar rocks from early Apollo missions were produced by protons emitted from the sun during solar cycle 20 (1965--1975). The depth-versus-activity data for these radionuclides in several lunar rocks were used to determine the fluxes of protons during solar cycle 19 (1954--1964). The average proton fluxes for cycle 19 are about five times those for both the last million years and for cycle 20. These solar-proton flux variations correlate with changes in sunspot activity

  14. On the identification of carbonaceous aerosols via 14C accelerator mass spectrometry, and laser microprobe mass spectrometry

    International Nuclear Information System (INIS)

    Currie, L.A.; Fletcher, R.A.; Klouda, G.A.

    1987-01-01

    Carbon isotopic measurements ( 12 C, 14 C), derived from chemical measurements of total carbon plus AMS measurements of 14 C/ 12 C have become an accepted means for estimating fossil and contemporary carbon source contributions to atmospheric carbon. Because of the limited sensitivity of these techniques, however, such measurements are restricted to 'bulk' samples comprising at least 10-100 μg of carbon. Laser microprobe mass spectrometry (LMMS) offers an important complementary opportunity to investigate the chemical nature of individual particles as small as 0.1 μm in diameter. Although there is little hope to measure 14 C/ 12 C in such small samples, the compositional and structural information available with the laser microprobe is of interest for possible source discrimination. Also, the analysis of individual particles, which may reflect individual sources, yields significant potential increases in spatial, temporal and source resolution, in comparison to bulk sample analysis. Results of our exploratory investigation of known sources of carbonaceous particles, using LMMS, are presented. By applying multivariate techniques to laser mass spectra of soot from the combustion of heptane and wood, we found striking differences in the alkali metals (notably potassium) in the positive ion mass spectra. For ambient particles, 14 C has proved to be a crucial adjunct for the development and validation of the LMMS approach to single particle source assignment via carbon cluster pattern recognition. The combined techniques offer great promise for objective modeling (number and types of carbon sources) and for extension of the dichotomous carbon apportionment (fossil, contemporary) to subclasses such as soot from wood and agricultural burning, and that from coal and petroleum combustion. (orig.)

  15. Proton mass decomposition

    Science.gov (United States)

    Yang, Yi-Bo; Chen, Ying; Draper, Terrence; Liang, Jian; Liu, Keh-Fei

    2018-03-01

    We report the results on the proton mass decomposition and also on the related quark and glue momentum fractions. The results are based on overlap valence fermions on four ensembles of Nf = 2 + 1 DWF configurations with three lattice spacings and volumes, and several pion masses including the physical pion mass. With 1-loop pertur-bative calculation and proper normalization of the glue operator, we find that the u, d, and s quark masses contribute 9(2)% to the proton mass. The quark energy and glue field energy contribute 31(5)% and 37(5)% respectively in the MS scheme at µ = 2 GeV. The trace anomaly gives the remaining 23(1)% contribution. The u, d, s and glue momentum fractions in the MS scheme are consistent with the global analysis at µ = 2 GeV.

  16. Proton solar flares

    International Nuclear Information System (INIS)

    Shaposhnikova, E.F.

    1979-01-01

    The observations of proton solar flares have been carried out in 1950-1958 using the extrablackout coronograph of the Crimea astrophysical observatory. The experiments permit to determine two characteristic features of flares: the directed motion of plasma injection flux from the solar depths and the appearance of a shock wave moving from the place of the injection along the solar surface. The appearance of the shock wave is accompanied by some phenomena occuring both in the sunspot zone and out of it. The consistent flash of proton flares in the other groups of spots, the disappearance of fibres and the appearance of eruptive prominences is accomplished in the sunspot zone. Beyond the sunspot zone the flares occur above spots, the fibres disintegrate partially or completely and the eruptive prominences appear in the regions close to the pole

  17. The Amsterdam proton microbeam

    International Nuclear Information System (INIS)

    Bos, A.J.J.

    1984-01-01

    The aim of the work presented in this thesis is to develop a microbeam setup such that small beam spot sizes can be produced routinely, and to investigate the capabilities of the setup for micro-PIXE analysis. The development and performance of the Amsterdam proton microbeam setup are described. The capabilities of the setup for micro-PIXE are shown with an investigation into the presence of trace elements in human hair. (Auth.)

  18. A neutron activation analyzer

    International Nuclear Information System (INIS)

    Westphal, G.P.; Lemmel, H.; Grass, F.; De Regge, P.P.; Burns, K.; Markowicz, A.

    2005-01-01

    Dubbed 'Analyzer' because of its simplicity, a neutron activation analysis facility for short-lived isomeric transitions is based on a low-cost rabbit system and an adaptive digital filter which are controlled by a software performing irradiation control, loss-free gamma-spectrometry, spectra evaluation, nuclide identification and calculation of concentrations in a fully automatic flow of operations. Designed for TRIGA reactors and constructed from inexpensive plastic tubing and an aluminum in-core part, the rabbit system features samples of 5 ml and 10 ml with sample separation at 150 ms and 200 ms transport time or 25 ml samples without separation at a transport time of 300 ms. By automatically adapting shaping times to pulse intervals the preloaded digital filter gives best throughput at best resolution up to input counting rates of 10 6 cps. Loss-free counting enables quantitative correction of counting losses of up to 99%. As a test of system reproducibility in sample separation geometry, K, Cl, Mn, Mg, Ca, Sc, and V have been determined in various reference materials at excellent agreement with consensus values. (author)

  19. Downhole Fluid Analyzer Development

    Energy Technology Data Exchange (ETDEWEB)

    Bill Turner

    2006-11-28

    A novel fiber optic downhole fluid analyzer has been developed for operation in production wells. This device will allow real-time determination of the oil, gas and water fractions of fluids from different zones in a multizone or multilateral completion environment. The device uses near infrared spectroscopy and induced fluorescence measurement to unambiguously determine the oil, water and gas concentrations at all but the highest water cuts. The only downhole components of the system are the fiber optic cable and windows. All of the active components--light sources, sensors, detection electronics and software--will be located at the surface, and will be able to operate multiple downhole probes. Laboratory testing has demonstrated that the sensor can accurately determine oil, water and gas fractions with a less than 5 percent standard error. Once installed in an intelligent completion, this sensor will give the operating company timely information about the fluids arising from various zones or multilaterals in a complex completion pattern, allowing informed decisions to be made on controlling production. The research and development tasks are discussed along with a market analysis.

  20. Climate Model Diagnostic Analyzer

    Science.gov (United States)

    Lee, Seungwon; Pan, Lei; Zhai, Chengxing; Tang, Benyang; Kubar, Terry; Zhang, Zia; Wang, Wei

    2015-01-01

    The comprehensive and innovative evaluation of climate models with newly available global observations is critically needed for the improvement of climate model current-state representation and future-state predictability. A climate model diagnostic evaluation process requires physics-based multi-variable analyses that typically involve large-volume and heterogeneous datasets, making them both computation- and data-intensive. With an exploratory nature of climate data analyses and an explosive growth of datasets and service tools, scientists are struggling to keep track of their datasets, tools, and execution/study history, let alone sharing them with others. In response, we have developed a cloud-enabled, provenance-supported, web-service system called Climate Model Diagnostic Analyzer (CMDA). CMDA enables the physics-based, multivariable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. At the same time, CMDA provides a crowd-sourcing space where scientists can organize their work efficiently and share their work with others. CMDA is empowered by many current state-of-the-art software packages in web service, provenance, and semantic search.

  1. Analyzing Visibility Configurations.

    Science.gov (United States)

    Dachsbacher, C

    2011-04-01

    Many algorithms, such as level of detail rendering and occlusion culling methods, make decisions based on the degree of visibility of an object, but do not analyze the distribution, or structure, of the visible and occluded regions across surfaces. We present an efficient method to classify different visibility configurations and show how this can be used on top of existing methods based on visibility determination. We adapt co-occurrence matrices for visibility analysis and generalize them to operate on clusters of triangular surfaces instead of pixels. We employ machine learning techniques to reliably classify the thus extracted feature vectors. Our method allows perceptually motivated level of detail methods for real-time rendering applications by detecting configurations with expected visual masking. We exemplify the versatility of our method with an analysis of area light visibility configurations in ray tracing and an area-to-area visibility analysis suitable for hierarchical radiosity refinement. Initial results demonstrate the robustness, simplicity, and performance of our method in synthetic scenes, as well as real applications.

  2. Proton Minibeam Radiation Therapy Reduces Side Effects in an In Vivo Mouse Ear Model

    Energy Technology Data Exchange (ETDEWEB)

    Girst, Stefanie, E-mail: stefanie.girst@unibw.de [Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, Neubiberg (Germany); Greubel, Christoph; Reindl, Judith [Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, Neubiberg (Germany); Siebenwirth, Christian [Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, Neubiberg (Germany); Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Zlobinskaya, Olga [Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Walsh, Dietrich W.M. [Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, Neubiberg (Germany); Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Ilicic, Katarina [Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Aichler, Michaela; Walch, Axel [Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Oberschleißheim (Germany); and others

    2016-05-01

    Purpose: Proton minibeam radiation therapy is a novel approach to minimize normal tissue damage in the entrance channel by spatial fractionation while keeping tumor control through a homogeneous tumor dose using beam widening with an increasing track length. In the present study, the dose distributions for homogeneous broad beam and minibeam irradiation sessions were simulated. Also, in an animal study, acute normal tissue side effects of proton minibeam irradiation were compared with homogeneous irradiation in a tumor-free mouse ear model to account for the complex effects on the immune system and vasculature in an in vivo normal tissue model. Methods and Materials: At the ion microprobe SNAKE, 20-MeV protons were administered to the central part (7.2 × 7.2 mm{sup 2}) of the ear of BALB/c mice, using either a homogeneous field with a dose of 60 Gy or 16 minibeams with a nominal 6000 Gy (4 × 4 minibeams, size 0.18 × 0.18 mm{sup 2}, with a distance of 1.8 mm). The same average dose was used over the irradiated area. Results: No ear swelling or other skin reactions were observed at any point after minibeam irradiation. In contrast, significant ear swelling (up to fourfold), erythema, and desquamation developed in homogeneously irradiated ears 3 to 4 weeks after irradiation. Hair loss and the disappearance of sebaceous glands were only detected in the homogeneously irradiated fields. Conclusions: These results show that proton minibeam radiation therapy results in reduced adverse effects compared with conventional homogeneous broad-beam irradiation and, therefore, might have the potential to decrease the incidence of side effects resulting from clinical proton and/or heavy ion therapy.

  3. The proton radius puzzle

    Science.gov (United States)

    Bonesini, Maurizio

    2017-12-01

    The FAMU (Fisica degli Atomi Muonici) experiment has the goal to measure precisely the proton Zemach radius, thus contributing to the solution of the so-called proton radius "puzzle". To this aim, it makes use of a high-intensity pulsed muon beam at RIKEN-RAL impinging on a cryogenic hydrogen target with an high-Z gas admixture and a tunable mid-IR high power laser, to measure the hyperfine (HFS) splitting of the 1S state of the muonic hydrogen. From the value of the exciting laser frequency, the energy of the HFS transition may be derived with high precision ( 10-5) and thus, via QED calculations, the Zemach radius of the proton. The experimental apparatus includes a precise fiber-SiPMT beam hodoscope and a crown of eight LaBr3 crystals and a few HPGe detectors for detection of the emitted characteristic X-rays. Preliminary runs to optimize the gas target filling and its operating conditions have been taken in 2014 and 2015-2016. The final run, with the pump laser to drive the HFS transition, is expected in 2018.

  4. Heavy quarks in proton

    CERN Document Server

    AUTHOR|(SzGeCERN)655637

    The measurement of prompt photon associated with a b jet in proton-proton interactions can provide us insight into the inner structure of proton. This is because precision of determination of parton distribution functions of b quark and gluon can be increased by such a measurement. The measurement of cross-section of prompt photon associated with a b jet (process $pp\\longrightarrow \\gamma + b + X$) at $\\sqrt{s}$= 8 TeV with the ATLAS detector is presented. Full 8 TeV dataset collected by ATLAS during the year 2012 was used in this analysis. Corresponding integrated luminosity is 20.3 $fb^{-1}$. Fiducial differential cross-section as a function of photon transverse momentum at particle level was extracted from data and compared with the prediction of leading order event generator Pythia 8. Cross-section extracted from data is normalised independently on the Monte Carlo prediction. Values of data distribution lie above Monte Carlo values. The difference can be explained by presence of higher order effects not ...

  5. Study of metal bioaccumulation by nuclear microprobe analysis of algae fossils and living algae cells

    International Nuclear Information System (INIS)

    Guo, P.; Wang, J.; Li, X.; Zhu, J.; Reinert, T.; Heitmann, J.; Spemann, D.; Vogt, J.; Flagmeyer, R.-H.; Butz, T.

    2000-01-01

    Microscopic ion-beam analysis of palaeo-algae fossils and living green algae cells have been performed to study the metal bioaccumulation processes. The algae fossils, both single cellular and multicellular, are from the late Neoproterozonic (570 million years ago) ocean and perfectly preserved within a phosphorite formation. The biosorption of the rare earth element ions Nd 3+ by the green algae species euglena gracilis was investigated with a comparison between the normal cells and immobilized ones. The new Leipzig Nanoprobe, LIPSION, was used to produce a proton beam with 2 μm size and 0.5 nA beam current for this study. PIXE and RBS techniques were used for analysis and imaging. The observation of small metal rich spores (<10 μm) surrounding both of the fossils and the living cells proved the existence of some specific receptor sites which bind metal carrier ligands at the microbic surface. The bioaccumulation efficiency of neodymium by the algae cells was 10 times higher for immobilized algae cells. It confirms the fact that the algae immobilization is an useful technique to improve its metal bioaccumulation

  6. Digital Microfluidics Sample Analyzer

    Science.gov (United States)

    Pollack, Michael G.; Srinivasan, Vijay; Eckhardt, Allen; Paik, Philip Y.; Sudarsan, Arjun; Shenderov, Alex; Hua, Zhishan; Pamula, Vamsee K.

    2010-01-01

    Three innovations address the needs of the medical world with regard to microfluidic manipulation and testing of physiological samples in ways that can benefit point-of-care needs for patients such as premature infants, for which drawing of blood for continuous tests can be life-threatening in their own right, and for expedited results. A chip with sample injection elements, reservoirs (and waste), droplet formation structures, fluidic pathways, mixing areas, and optical detection sites, was fabricated to test the various components of the microfluidic platform, both individually and in integrated fashion. The droplet control system permits a user to control droplet microactuator system functions, such as droplet operations and detector operations. Also, the programming system allows a user to develop software routines for controlling droplet microactuator system functions, such as droplet operations and detector operations. A chip is incorporated into the system with a controller, a detector, input and output devices, and software. A novel filler fluid formulation is used for the transport of droplets with high protein concentrations. Novel assemblies for detection of photons from an on-chip droplet are present, as well as novel systems for conducting various assays, such as immunoassays and PCR (polymerase chain reaction). The lab-on-a-chip (a.k.a., lab-on-a-printed-circuit board) processes physiological samples and comprises a system for automated, multi-analyte measurements using sub-microliter samples of human serum. The invention also relates to a diagnostic chip and system including the chip that performs many of the routine operations of a central labbased chemistry analyzer, integrating, for example, colorimetric assays (e.g., for proteins), chemiluminescence/fluorescence assays (e.g., for enzymes, electrolytes, and gases), and/or conductometric assays (e.g., for hematocrit on plasma and whole blood) on a single chip platform.

  7. [Why proton therapy? And how?

    Science.gov (United States)

    Thariat, Juliette; Habrand, Jean Louis; Lesueur, Paul; Chaikh, Abdulhamid; Kammerer, Emmanuel; Lecomte, Delphine; Batalla, Alain; Balosso, Jacques; Tessonnier, Thomas

    2018-03-01

    Proton therapy is a radiotherapy, based on the use of protons, charged subatomic particles that stop at a given depth depending on their initial energy (pristine Bragg peak), avoiding any output beam, unlike the photons used in most of the other modalities of radiotherapy. Proton therapy has been used for 60 years, but has only become ubiquitous in the last decade because of recent major advances in particle accelerator technology. This article reviews the history of clinical implementation of protons, the nature of the technological advances that now allows its expansion at a lower cost. It also addresses the technical and physical specificities of proton therapy and the clinical situations for which proton therapy may be relevant but requires evidence. Different proton therapy techniques are possible. These are explained in terms of their clinical potential by explaining the current terminology (such as cyclotrons, synchrotrons or synchrocyclotrons, using superconducting magnets, fixed line or arm rotary with passive diffusion delivery or active by scanning) in basic words. The requirements associated with proton therapy are increased due to the precision of the depth dose deposit. The learning curve of proton therapy requires that clinical indications be prioritized according to their associated uncertainties (such as range uncertainties and movement in lung tumors). Many clinical indications potentially fall under proton therapy ultimately. Clinical strategies are explained in a paralleled manuscript. Copyright © 2018 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  8. Proton permeation of lipid bilayers.

    Science.gov (United States)

    Deamer, D W

    1987-10-01

    Proton permeation of the lipid bilayer barrier has two unique features. First, permeability coefficients measured at neutral pH ranges are six to seven orders of magnitude greater than expected from knowledge of other monovalent cations. Second, proton conductance across planar lipid bilayers varies at most by a factor of 10 when pH is varied from near 1 to near 11. Two mechanisms have been proposed to account for this anomalous behavior: proton conductance related to contaminants of lipid bilayers, and proton translocation along transient hydrogen-bonded chains (tHBC) of associated water molecules in the membrane. The weight of evidence suggests that trace contaminants may contribute to proton conductance across planar lipid membranes at certain pH ranges, but cannot account for the anomalous proton flux in liposome systems. Two new results will be reported here which were designed to test the tHBC model. These include measurements of relative proton/potassium permeability in the gramicidin channel, and plots of proton flux against the magnitude of pH gradients. (1) The relative permeabilities of protons and potassium through the gramicidin channel, which contains a single strand of hydrogen-bonded water molecules, were found to differ by at least four orders of magnitude when measured at neutral pH ranges. This result demonstrates that a hydrogen-bonded chain of water molecules can provide substantial discrimination between protons and other cations. It was also possible to calculate that if approximately 7% of bilayer water was present in a transient configuration similar to that of the gramicidin channel, it could account for the measured proton flux. (2) The plot of proton conductance against pH gradient across liposome membranes was superlinear, a result that is consistent with one of three alternative tHBC models for proton conductance described by Nagle elsewhere in this volume.

  9. MUSE: Measuring the proton radius with muon-proton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bernauer, Jan Christopher [Massachusetts Institute of Technology, Cambridge (United States)

    2014-07-01

    The proton radius has been measured so far using electron-proton scattering, electronic Hydrogen spectroscopy and muonic Hydrogen spectroscopy, the latter producing a much more accurate, but seven sigma different, result, leading to the now famous proton radius puzzle. The MUSE collaboration aims to complete the set of measurements by using muon scattering to determine the proton radius and to shed light on possible explanations of the discrepancy. The talk gives an overview of the experiment motivation and design and a status report on the progress.

  10. Vibrational spectroscopy on protons and deuterons in proton conducting perovskites

    DEFF Research Database (Denmark)

    Glerup, M.; Poulsen, F.W.; Berg, R.W.

    2002-01-01

    A short review of IR-spectroscopy on protons in perovskite structure oxides is given. The nature of possible proton sites, libration and combination tones and degree of hydrogen bonding is emphasised. Three new spectroscopic experiments and/or interpretations are presented. An IR-microscopy exper......A short review of IR-spectroscopy on protons in perovskite structure oxides is given. The nature of possible proton sites, libration and combination tones and degree of hydrogen bonding is emphasised. Three new spectroscopic experiments and/or interpretations are presented. An IR...

  11. Fractal structure of hadrons in processes with polarized protons at SPD NICA (proposal for experiment)

    International Nuclear Information System (INIS)

    Tokarev, M.V.; Aparin, A.A.; Zborovsky, I.

    2014-01-01

    The concept of z-scaling previously developed for analysis of inclusive reactions in proton-proton collisions is applied for description of processes with polarized protons at the planned Spin Physics Detector NICA in Dubna. A hypothesis of self-similarity and fractality of the proton spin structure is discussed. The possibilities to extract information on spin-dependent fractal dimensions of hadrons and fragmentation process from asymmetries and coefficients of polarization transfer are justified. The double longitudinal spin asymmetry A LL of π 0 -meson production and the coefficient of the polarization transfer D LL of Λ hyperon production in proton-proton collisions measured at RHIC are analyzed in the framework of z-scaling. The spin-dependent fractal dimensions of proton and fragmentation process with polarized Λ hyperon are estimated. A study of the spin-dependent constituent energy loss as a function of transverse momentum of the inclusive hadron and collision energy is suggested.

  12. An online, energy-resolving beam profile detector for laser-driven proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Metzkes, J.; Rehwald, M.; Obst, L.; Schramm, U. [Helmholtz-Zentrum Dresden–Rossendorf (HZDR), Bautzner Landstr. 400, 01328 Dresden (Germany); Technische Universität Dresden, 01062 Dresden (Germany); Zeil, K.; Kraft, S. D.; Sobiella, M.; Schlenvoigt, H.-P. [Helmholtz-Zentrum Dresden–Rossendorf (HZDR), Bautzner Landstr. 400, 01328 Dresden (Germany); Karsch, L. [OncoRay-National Center for Radiation Research in Oncology, Technische Universität Dresden, 01307 Dresden (Germany)

    2016-08-15

    In this paper, a scintillator-based online beam profile detector for the characterization of laser-driven proton beams is presented. Using a pixelated matrix with varying absorber thicknesses, the proton beam is spatially resolved in two dimensions and simultaneously energy-resolved. A thin plastic scintillator placed behind the absorber and read out by a CCD camera is used as the active detector material. The spatial detector resolution reaches down to ∼4 mm and the detector can resolve proton beam profiles for up to 9 proton threshold energies. With these detector design parameters, the spatial characteristics of the proton distribution and its cut-off energy can be analyzed online and on-shot under vacuum conditions. The paper discusses the detector design, its characterization and calibration at a conventional proton source, as well as the first detector application at a laser-driven proton source.

  13. Measurement of small-angle antiproton-proton and proton-proton elastic scattering at the CERN intersecting storage rings

    NARCIS (Netherlands)

    Amos, N.; Block, M.M.; Bobbink, G.J.; Botje, M.A.J.; Favart, D.; Leroy, C.; Linde, F.; Lipnik, P.; Matheys, J-P.; Miller, D.

    1985-01-01

    Antiproton-proton and proton-proton small-angle elastic scattering was measured for centre-of-mass energies at the CERN Intersectung Storage Rings. In addition, proton-proton elastic scattering was measured at . Using the optical theorem, total cross sections are obtained with an accuracy of about

  14. Proton and carbon ion therapy

    CERN Document Server

    Lomax, Tony

    2013-01-01

    Proton and Carbon Ion Therapy is an up-to-date guide to using proton and carbon ion therapy in modern cancer treatment. The book covers the physics and radiobiology basics of proton and ion beams, dosimetry methods and radiation measurements, and treatment delivery systems. It gives practical guidance on patient setup, target localization, and treatment planning for clinical proton and carbon ion therapy. The text also offers detailed reports on the treatment of pediatric cancers, lymphomas, and various other cancers. After an overview, the book focuses on the fundamental aspects of proton and carbon ion therapy equipment, including accelerators, gantries, and delivery systems. It then discusses dosimetry, biology, imaging, and treatment planning basics and provides clinical guidelines on the use of proton and carbon ion therapy for the treatment of specific cancers. Suitable for anyone involved with medical physics and radiation therapy, this book offers a balanced and critical assessment of state-of-the-art...

  15. The PIREX proton irradiation facility

    International Nuclear Information System (INIS)

    Victoria, M.

    1995-01-01

    The proton Irradiation Experiment (PIREX) is a materials irradiation facility installed in a beam line of the 590 MeV proton accelerator at the Paul Scherrer Institute. Its main purpose is the testing of candidate materials for fusion reactor components. Protons of this energy produce simultaneously displacement damage and spallation products, amongst them helium and can therefore simulate any possible synergistic effects of damage and helium, that would be produced by the fusion neutrons

  16. The PIREX proton irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Victoria, M. [Association EURATOM, Villigen (Switzerland)

    1995-10-01

    The proton Irradiation Experiment (PIREX) is a materials irradiation facility installed in a beam line of the 590 MeV proton accelerator at the Paul Scherrer Institute. Its main purpose is the testing of candidate materials for fusion reactor components. Protons of this energy produce simultaneously displacement damage and spallation products, amongst them helium and can therefore simulate any possible synergistic effects of damage and helium, that would be produced by the fusion neutrons.

  17. Search for proton decay: introduction

    International Nuclear Information System (INIS)

    Goldhaber, M.

    1984-01-01

    In interpreting contained events observed in various proton decay detectors one can sometimes postulate, though usually not unambiguously, a potential decay mode of the proton, called a candidate. It is called a candidate, because for any individual event it is not possible to exclude the possibility that it is instead due to cosmic ray background, chiefly atmospheric neutrinos. Some consistency checks are proposed which could help establish proton decay, if it does occur in the presently accessible lifetime window

  18. Sea Quarks in the Proton

    Directory of Open Access Journals (Sweden)

    Reimer Paul E

    2016-01-01

    Full Text Available The proton is a composite particle in which the binding force is responsible for the majority of its mass. To understand this structure, the distributions and origins of the quark-antiquark pairs produced by the strong force must be measured. The SeaQuest collaboration is using the Drell-Yan process to elucidate antiquark distributions in the proton and to study their modification when the proton is held within a nucleus.

  19. Automated electron microprobe identification of minerals in stream sediments for the national uranium resources evaluation program

    International Nuclear Information System (INIS)

    Mosley, W.C. Jr.

    1979-01-01

    Over 500 stream sediment particles have been analyzed. About 96% have been identified as distinct minerals. Most of the others appeared to be mixtures. Only zinc-bearing gahnite had to be analyzed further for positive identification. Monazite and zircon were the only minerals with concentrations of uranium significantly above the detection limit. The Frantz Isodynamic Magnetic Separator isolated the monazite into the 1.0 fraction. Monazite particles in anomalous sediments contained up to 3.7 wt % uranium. This uranium concentration is unusually high for monazite, which normally has about 0.5 wt % uranium, and may be the cause of the anomaly

  20. Proton-conductive nanochannel membrane for fuel-cell applications.

    Science.gov (United States)

    Oleksandrov, Sergiy; Lee, Jeong-Woo; Jang, Joo-Hee; Haam, Seungjoo; Chung, Chan-Hwa

    2009-02-01

    Novel design of proton conductive membrane for direct methanol fuel cells is based on proton conductivity of nanochannels, which is acquired due to the electric double layer overlap. Proton conductivity and methanol permeability of an array of nanochannels were studied. Anodic aluminum oxide with pore diameter of 20 nm was used as nanochannel matrix. Channel surfaces of an AAO template were functionalized with sulfonic groups to increase proton conductivity of nanochannels. This was done in two steps; at first -SH groups were attached to walls of nanochannels using (3-Mercaptopropyl)-trimethyloxysilane and then they were converted to -SO3H groups using hydrogen peroxide. Treatment steps were analyzed by Fourier Transform Infrared spectroscopy and X-ray Photoelectron Spectroscopy. Proton conductivity and methanol permeability were measured. The data show methanol permeability of membrane to be an order of magnitude lower, than that measured of Nafion. Ion conductivity of functionalized AAO membrane was measured by an impedance analyzer at frequencies ranging from 1 Hz to 100 kHz and voltage 50 mV to be 0.15 Scm(-1). Measured ion conductivity of Nafion membrane was 0.05 Scm(-1). Obtained data show better results in comparison with commonly used commercial available proton conductive membrane Nafion, thus making nanochannel membrane very promising for use in fuel cell applications.