WorldWideScience

Sample records for proton extrusion ferricyanide

  1. Lansoprazole induces apoptosis of breast cancer cells through inhibition of intracellular proton extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shangrong; Wang, Yifan; Li, Shu Jie, E-mail: shujieli@nankai.edu.cn

    2014-06-13

    Highlights: • Lansoprazole (LPZ) induces cell apoptosis in breast cancer cells. • LPZ markedly inhibits intracellular proton extrusion. • LPZ induces an increase in intracellular ATP level, lysosomal alkalinization and ROS accumulation. - Abstract: The increased glycolysis and proton secretion in tumors is proposed to contribute to the proliferation and invasion of cancer cells during the process of tumorigenesis and metastasis. Here, treatment of human breast cancer cells with proton pump inhibitor (PPI) lansoprazole (LPZ) induces cell apoptosis in a dose-dependent manner. In the implantation of the MDA-MB-231 xenografts in nude mice, administration of LPZ significantly inhibits tumorigenesis and induces large-scale apopotosis of tumor cells. LPZ markedly inhibits intracellular proton extrusion, induces an increase in intracellular ATP level, lysosomal alkalinization and accumulation of reactive oxygen species (ROS) in breast cancer cells. The ROS scavenger N-acetyl-L-cysteine (NAC) and diphenyleneiodonium (DPI), a specific pharmacological inhibitor of NADPH oxidases (NOX), significantly abolish LPZ-induced ROS accumulation in breast cancer cells. Our results suggested that LPZ may be used as a new therapeutic drug for breast tumor.

  2. Lansoprazole induces apoptosis of breast cancer cells through inhibition of intracellular proton extrusion

    International Nuclear Information System (INIS)

    Zhang, Shangrong; Wang, Yifan; Li, Shu Jie

    2014-01-01

    Highlights: • Lansoprazole (LPZ) induces cell apoptosis in breast cancer cells. • LPZ markedly inhibits intracellular proton extrusion. • LPZ induces an increase in intracellular ATP level, lysosomal alkalinization and ROS accumulation. - Abstract: The increased glycolysis and proton secretion in tumors is proposed to contribute to the proliferation and invasion of cancer cells during the process of tumorigenesis and metastasis. Here, treatment of human breast cancer cells with proton pump inhibitor (PPI) lansoprazole (LPZ) induces cell apoptosis in a dose-dependent manner. In the implantation of the MDA-MB-231 xenografts in nude mice, administration of LPZ significantly inhibits tumorigenesis and induces large-scale apopotosis of tumor cells. LPZ markedly inhibits intracellular proton extrusion, induces an increase in intracellular ATP level, lysosomal alkalinization and accumulation of reactive oxygen species (ROS) in breast cancer cells. The ROS scavenger N-acetyl-L-cysteine (NAC) and diphenyleneiodonium (DPI), a specific pharmacological inhibitor of NADPH oxidases (NOX), significantly abolish LPZ-induced ROS accumulation in breast cancer cells. Our results suggested that LPZ may be used as a new therapeutic drug for breast tumor

  3. Hemin reconstitutes proton extrusion in an H+-ATPase-negative mutant of Lactococcus lactis

    DEFF Research Database (Denmark)

    Blank, L.M.; Købmann, Brian Jensen; Michelsen, Ole

    2001-01-01

    H+-ATPase is considered essential for growth of Lactococcus lactis. However, media containing hemin restored the aerobic growth of an H+-ATPase-negative mutant, suggesting that hemin complements proton extrusion. We show that inverted membrane vesicles prepared from hemin-grown L. lactis cells...

  4. Uptake, accumulation and metabolic response of ferricyanide in weeping willows.

    Science.gov (United States)

    Yu, Xiao-Zhang; Gu, Ji-Dong

    2009-01-01

    The remediation potential and metabolic responses of plants to ferricyanide were investigated using pre-rooted weeping willows (Salix babylonica L.) grown hydroponically in growth chambers and treated with potassium ferricyanide. Positive responses were observed for the plants exposed to cyanide recovered in plant biomass was constant in all treatments, indicating that transport is a major limiting step for the uptake of ferricyanide by plants. The majority of the ferricyanide taken up from the growth media was possibly assimilated during transport through plants. The velocity of the removal processes can be described by Michaelis-Menten kinetics, and the half-saturation constant (K(M)) and the maximum removal capacity (v(max)) were estimated to be 228.1 mg CN L(-1) and 36.43 mg CN kg(-1) d(-1), respectively, using non-linear regression methods. These results suggest that weeping willows can take up, transport and assimilate ferricyanide; and phytoremediation is an option for cleaning up the environmental sites contaminated with cyanide complexes.

  5. A high effective NADH-ferricyanide dehydrogenase coupled with laccase for NAD(+) regeneration.

    Science.gov (United States)

    Wang, Jizhong; Yang, Chengli; Chen, Xing; Bao, Bingxin; Zhang, Xuan; Li, Dali; Du, Xingfan; Shi, Ruofu; Yang, Junfang; Zhu, Ronghui

    2016-08-01

    To find an efficient and cheap system for NAD(+) regeneration A NADH-ferricyanide dehydrogenase was obtained from an isolate of Escherichia coli. Optimal activity of the NADH dehydrogenase was at 45 °C and pH 7.5, with a K m value for NADH of 10 μM. By combining the NADH dehydrogenase, potassium ferricyanide and laccase, a bi-enzyme system for NAD(+) regeneration was established. The system is attractive in that the O2 consumed by laccase is from air and the sole byproduct of the reaction is water. During the reaction process, 10 mM NAD(+) was transformed from NADH in less than 2 h under the condition of 0.5 U NADH dehydrogenase, 0.5 U laccase, 0.1 mM potassium ferricyanide at pH 5.6, 30 °C CONCLUSION: The bi-enzyme system employed the NADH-ferricyanide dehydrogenase and laccase as catalysts, and potassium ferricyanide as redox mediator, is a promising alternative for NAD(+) regeneration.

  6. Ferricyanide-based analysis of aqueous lignin suspension revealed sequestration of water-soluble lignin moieties

    OpenAIRE

    Joshua, CJ; Simmons, BA; Singer, SW

    2016-01-01

    © 2016 The Royal Society of Chemistry. This study describes the application of a ferricyanide-based assay as a simple and inexpensive assay for rapid analysis of aqueous lignin samples. The assay measures the formation of Prussian blue from the redox reaction between a mixture of potassium ferricyanide and ferric chloride, and phenolic hydroxyl groups of lignin or lignin-derived phenolic moieties. This study revealed that soluble lignin moieties exhibited stronger ferricyanide reactivity than...

  7. Electrocatalytic reduction of nitrite using ferricyanide; Application for its simple and selective determination

    International Nuclear Information System (INIS)

    Ojani, Reza; Raoof, Jahan-Bakhsh; Zarei, Ebrahim

    2006-01-01

    The electrocatalytic reduction of nitrite has been studied by ferricyanide at the surface of carbon paste electrode. Cyclic voltammetry and chronoamperometry techniques were used to investigate the suitability of ferricyanide as a mediator for the electrocatalytic nitrite reduction in aqueous solution with various pH. Results showed that pH 0.00 is the most suitable for this purpose. In the optimum pH, the electrocatalytic ability about 700 mV can be seen and the homogeneous second-order rate constant (k s ) for nitrite coupled catalytically to ferricyanide was calculated 2.75 x 10 3 M -1 s -1 by Nicholson-Shain method. Also, electron transfer coefficients (α) for ferricyanide was determined by using various electrochemical approaches such as Tafel plot in the absence and presence of nitrite 0.556 and 0.760, respectively. The catalytic reduction peak current was linearly dependent on the nitrite concentration and the linearity range obtained was 5.00 x 10 -5 to 1.00 x 10 -3 M. Detection limit has been found to be 2.63 x 10 -5 M (2σ). This method has been applied as a selective, simple and precise method for determination of nitrite in real sample

  8. Effects of pH on the degradation of aqueous ferricyanide by photolysis and photocatalysis under solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Arellano, Carlos Antonio Pineda [Posgrado en Ingenieria y Ciencias Aplicadas, FCQI-CIICAp, Universidad Autonoma del Estado de Morelos (Mexico); Martinez, Susana Silva [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos 62209 (Mexico)

    2010-02-15

    Results of voltammetry and spectrophotometry analyses revealed that upon sunlight exposure, the conversion of ferricyanide to ferrocyanide, and the reverse reaction, in the absence and in the presence of TiO{sub 2} catalyst depends strongly on pH. Thus, the pH of the solution dictates whether the redox reactions will proceed under illumination. In addition, the extent of the heterogeneous photocatalytic degradation of ferricyanide was influenced by pH. The initial concentration of ferricyanide did not affect its degradation. (author)

  9. Study of dynamics of glucose-glucose oxidase-ferricyanide reaction

    Science.gov (United States)

    Nováková, A.; Schreiberová, L.; Schreiber, I.

    2011-12-01

    This work is focused on dynamics of the glucose-glucose oxidase-ferricyanide enzymatic reaction with or without sodium hydroxide in a continuous-flow stirred tank reactor (CSTR) and in a batch reactor. This reaction exhibits pH-variations having autocatalytic character and is reported to provide nonlinear dynamic behavior (bistability, excitability). The dynamical behavior of the reaction was examined within a wide range of inlet parameters. The main inlet parameters were the ratio of concentrations of sodium hydroxide and ferricyanide and the flow rate. In a batch reactor we observed an autocatalytic drop of pH from slightly basic to medium acidic values. In a CSTR our aim was to find bistability in the presence of sodium hydroxide. However, only a basic steady state was found. In order to reach an acidic steady state, we investigated the system in the absence of sodium hydroxide. Under these conditions the transition from the basic to the acidic steady state was observed when inlet glucose concentration was increased.

  10. Towards Extrusion of Ionomers to Process Fuel Cell Membranes

    Directory of Open Access Journals (Sweden)

    Jean-Yves Sanchez

    2011-07-01

    Full Text Available While Proton Exchange Membrane Fuel Cell (PEMFC membranes are currently prepared by film casting, this paper demonstrates the feasibility of extrusion, a solvent-free alternative process. Thanks to water-soluble process-aid plasticizers, duly selected, it was possible to extrude acidic and alkaline polysulfone ionomers. Additionally, the feasibility to extrude composites was demonstrated. The impact of the plasticizers on the melt viscosity was investigated. Following the extrusion, the plasticizers were fully removed in water. The extrusion was found to impact neither on the ionomer chains, nor on the performances of the membrane. This environmentally friendly process was successfully validated for a variety of high performance ionomers.

  11. Proton extrusion is an essential signalling component in the HR of epidermal single cells in the barley-powdery mildew interaction

    DEFF Research Database (Denmark)

    Zhou, F.S.; Andersen, C.H.; Burhenne, K.

    2000-01-01

    We propose a model for activation of the epidermal cell hypersensitive response (HR) in the barley/powdery mildew interaction. The model suggests that the plasma membrane proton pump (H+-ATPase) of epidermal cells is activated following penetration by an avirulent powdery mildew fungus...... in the incompatible interaction; (4) race-specific proton extrusion is observed underneath epidermal tissue detached from leaves inoculated 15 h earlier; and (5) treatment of leaves with fusicoccin, an activator of the plasma membrane H+-ATPase, increases the number of HR-cells in the compatible interaction........ This will cause an acidification of the apoplast towards the mesophyll cells, thereby activating generation of H2O2 from the mesophyll, which subsequently triggers the epidermal cell to undergo HR. The model is supported by the following data: (1) the earliest HR-related H2O2 is found in the attachment zones...

  12. Confinement effect of protonation/deprotonation of carboxylic group modified in nanochannel

    International Nuclear Information System (INIS)

    Gao, Hong-Li; Zhang, Hui; Li, Cheng-Yong; Xia, Xing-Hua

    2013-01-01

    Protonation and deprotonation processes are the key step of acid–base reaction and occur in many biological processes. Study on the deprotonation process of molecules and/or functional groups in confined conditions would help us understand the acid–base theory and confinement effect of biomolecules. In this paper, we use a recently established approach to the study of protonation and deprotonation processes of functional groups in porous anodic alumina array nanochannels by measuring the flux of electrochemical active probes (ferricyanide ions) using an Au film electrochemical detector sputtered at the end of nanochannels. The protonation and deprotonation processes of surface functional groups in nanochannels will change the surface charges and in turn modulate the transportation of charged electroactive probes through nanochannels. The titration curve for the deprotonation of carboxylic groups in nanochannel confined conditions is obtained by measuring the current signal of ferricyanide probe flowing through an carboxylic-anchored PAA nanochannels array at different solution pH. Results show that the deprotonation of carboxylic group in nanochannel occurs in one step with a pK 1/2 = 6.2. The present method provides an effective tool to study the deprotonation processes of various functional groups and biomolecules under confined conditions

  13. Selective cation-exchange separation of cesium(I) on chromium ferricyanide gel

    International Nuclear Information System (INIS)

    Jain, A.K.; Agrawal, S.; Singh, R.P.

    1980-01-01

    The removal of 137 Cs from liquid streams of nuclear power plants and from processed radioactive waste of nuclear fission has received increasing attention from ion-exchange chemists. A desirable exchanger (adsorbent) for 137 Cs removal is one which can adsorb it significantly and selectively in the presence of appreciable amounts (approx. 2molL -1 ) of Na + , NH 4 + , and H + . This paper deals with the exchange properties of the inorganic exchanger, chromium ferricyanide gel (CFiC). The stability of the gel in both acid and salt solutions and its high specificity for cesium are responsible for its good scavanger properties in removing long lived 137 Cs from radioactive waste. The chromium ferricyanide exchanger is highly selective for monovalent cations, the order being Ag + >Tl + >Cs + >Rb + >K + >Na + . It does not adsorb any bivalent, trivalent, and tetravalent ions even when present in trace amounts. (2 figures, 3 tables)

  14. An amperometric biosensor for glucose detection from glucose oxidase immobilized in polyaniline-polyvinylsulfonate-potassium ferricyanide film.

    Science.gov (United States)

    Arslan, Fatma; Beskan, Umut

    2014-08-01

    In this study, a novel amperometric glucose biosensor with immobilization of glucose oxidase on electrochemically polymerized polyaniline-polyvinylsulphonate-potassium ferricyanide (Pani-Pvs-Fc) films has been accomplished via the entrapment technique. Potassium ferricyanide was used as the mediator. Determination of glucose was carried out by the oxidation of potassium ferrocyanide at 0.3 V vs. Ag/AgCl. The effects of pH and temperature were investigated, and the optimum pH value was found to be 7.5. The storage stability and the operational stability of the enzyme electrode were also studied.

  15. Application and equivalence assessment for determining ethamsylate by using potassium ferricyanide as spectroscopic probe reagent.

    Science.gov (United States)

    Liu, Litao; Li, Jing; Li, Quanmin

    2010-01-01

    In this paper, a novel method has been established to determine ethamsylate using potassium ferricyanide as a spectroscopic probe reagent. It has been demonstrated that Fe(III) is reduced to Fe(II) by ethamsylate, and that the formed Fe(II) reacts with potassium ferricyanide to form soluble prussian blue (KFe(III)[Fe(II)(CN)(6)]). Beer's law is obeyed in the range of 0.16 - 24.00 µg mL(-1) with the molar absorption coefficient of 2.1 × 10(4) L mol(-1) cm(-1). The detection limit (3 σ/k) is 0.11 µg mL(-1). This method has been successfully applied to determine ethamsylate in pharmaceutical and serum samples with satisfactory results, and presented quite satisfactory credibility during method equivalence assessment.

  16. Effect of extrusion stem speed on extrusion process for a hollow aluminum profile

    International Nuclear Information System (INIS)

    Zhang, Cunsheng; Zhao, Guoqun; Chen, Zhiren; Chen, Hao; Kou, Fujun

    2012-01-01

    Highlights: ► Extrusion stem speed has significant effects on extrusion process. ► An optimum value of stem speed exists for uniform metal flow distribution. ► A higher stem speed leads to a higher required extrusion force. ► A high stem speed leads to an improved welding quality of aluminum profile. - Abstract: Extrusion stem speed is one of important process parameters during aluminum profile extrusion, which directly influences the profile quality and choice of extrusion equipments. In this paper, the extrusion process of a thin-walled hollow aluminum profile was simulated by means of the HyperXtrude commercial software. Through a serial of numerical simulation, the effects of stem speed on extrusion process, such as metal flow behavior at die exit, temperature distribution, extrusion force, and welding pressure, have been investigated. The numerical results showed that there existed an optimum value of stem speed for flow velocity distribution. With the increasing stem speed, the temperature of the extrudate and required extrusion force increased, and the welding quality of extrudate would be improved. Through comprehensive comparison and analysis, the appropriate stem speed could be determined for practical extrusion production. Thus, the research results could give effective guideline for determining initial billet and die temperature and choosing the proper extrusion press in aluminum profile industry.

  17. Aqueous dye-sensitized solar cell electrolytes based on the ferricyanide-ferrocyanide redox couple

    Energy Technology Data Exchange (ETDEWEB)

    Daeneke, Torben; Spiccia, Leone [School of Chemistry and ARC Centre of Excellence for Electromaterials Science, Monash University, Victoria (Australia); Uemura, Yu.; Koumura, Nagatoshi [Research Institute for Photovoltaic Technology, National Institute of Advanced Industrial Science and Technology AIST, Ibaraki (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki (Japan); Duffy, Noel W. [CSIRO Energy Technology, Clayton, VIC (Australia); Mozer, Attila J. [School of Chemistry and ARC Centre of Excellence for Electromaterials Science, University of Wollongong, NSW (Australia); Bach, Udo [Department of Materials Engineering, Monash University, Victoria (Australia)

    2012-03-02

    Solar energy conversion efficiencies of over 4% have been achieved in DSCs constructed with aqueous electrolytes based on the ferricyanide-ferrocyanide redox couple, thereby avoiding the use of expensive, flammable and toxic solvents. This paradigm shift was made possible by the use of a hydrophobic organic carbazole dye. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Determination of the Michaelis-Menten kinetics and the genes expression involved in phyto-degradation of cyanide and ferri-cyanide.

    Science.gov (United States)

    Yu, Xiao-Zhang; Zhang, Xue-Hong

    2016-07-01

    Hydroponic experiments were conducted with different species of plants (rice, maize, soybean and willow) exposed to ferri-cyanide to investigate the half-saturation constant (K M ) and the maximal metabolic capacity (v max ) involved in phyto-assimilation. Three varieties for each testing species were collected from different origins. Measured concentrations show that the uptake rates responded biphasically to ferri-cyanide treatments by showing increases linearly at low and almost constant at high concentrations from all treatments, indicating that phyto-assimilation of ferri-cyanide followed the Michaelis-Menten kinetics. Using non-linear regression, the highest v max was by rice, followed by willows. The lowest v max was found for soybean. All plants, except maize (DY26) and rice (XJ12), had a similar K M value, suggesting the same enzyme was active in phyto-assimilation of ferri-cyanide. Transcript level, by real-time quantitative PCR, of enzymes involved in degradation of cyanides showed that the analyzed genes were differently expressed during different cyanides exposure. The expression of CAS and ST genes responded positively to KCN exposure, suggesting that β-CAS and ST pathways were two possible pathways for cyanide detoxification in rice. The transcript level of NIT and ASPNASE genes also showed a remarkable up-regulation to KCN, implying the contribution to the pool of amino acid aspartate, which is an end product of CN metabolism. Up-regulation of GS genes suggests that acquisition of ammonium released from cyanide degradation may be an additional nitrogen source for plant nutrition. Results also revealed that the expressions of these genes, except for GS, were relatively constant during iron cyanide exposure, suggesting that they are likely metabolized by plants through a non-defined pathway rather than the β-CAS pathway.

  19. Redox Titration of Ferricyanide to Ferrocyanide with Ascorbic Acid: Illustrating the Nernst Equation and Beer-Lambert Law

    Science.gov (United States)

    Huang, Tina H.; Salter, Gail; Kahn, Sarah L.; Gindt, Yvonne M.

    2007-01-01

    We have developed a simple, resilient experiment that illustrates the Nernst equation and Beer-Lambert law for our second-semester general chemistry students. In the experiment, the students monitor the reduction of ferricyanide ion, [Fe(CN)[subscript 6

  20. Metal extrusion using hydrostatic pressures

    International Nuclear Information System (INIS)

    Sauve, Ch.

    1965-01-01

    The main problems connected with the deformation of metals due to extrusion are described. A method is put forward for calculating the rational rate of percentage deformation in the case of bar extrusion using a cylindrical container; reference is made to previous work on extrusion using a hydrostatic pressure with or without back-pressure. An extrusion process is described using hydrostatic pressure, without back-pressure, and using the lubricant for transmitting the thrust. This process has been used for eight years by the C.E.A. for the extrusion of a very wide range of metals, from beryllium to uranium and including steels; it leads to excellent surface textures. A very fine crystallization can be obtained on extruded products when the rate of extrusion is very low. There appears to be nothing against the use of high extrusion rates using this method. (author) [fr

  1. Spectrophotometric determination of dopamine hydrochloride in pharmaceutical, banana, urine and serum samples by potassium ferricyanide-Fe(III).

    Science.gov (United States)

    Guo, Li; Zhang, Yan; Li, Quanmin

    2009-12-01

    In the present work, we developed a simple, sensitive and inexpensive method to determine dopamine hydrochloride using potassium ferricyanide-Fe(III) by spectrophotometry. The results show that Fe(III) is deoxidized to Fe(II) by dopamine hydrochloride at pH 4.0, and then Fe(II) reacts with potassium ferricyanide to form a soluble prussian blue (KFe(III)[Fe(II)(CN)6]). The absorbance of this product was monitored over time using a spectrophotometer at an absorption maximum of 735 nm, and the amount of dopamine hydrochloride could be calculated based on the absorbance. A good linear relationship of the concentration of dopamine hydrochloride versus absorbance was observed, and a linear regression equation of A = 0.022 + 0.16921C (microg mL(-1)) was obtained. Moreover, the apparent molar absorption coefficient for the indirect determination of dopamine hydrochloride was 3.2 x 10(4) L mol(-1) cm(-1). This described method has been used to determine dopamine hydrochloride in pharmaceutical, banana, urine and serum samples with satisfactory results.

  2. Glycerophosphate-dependent hydrogen peroxide production by brown adipose tissue mitochondria and its activation by ferricyanide

    Czech Academy of Sciences Publication Activity Database

    Drahota, Zdeněk; Chowdhury, Subir; Floryk, Daniel; Mráček, Tomáš; Wilhelm, J.; Rauchová, Hana; Lenaz, G.; Houštěk, Josef

    2002-01-01

    Roč. 34, č. 2 (2002), s. 105-113 ISSN 0145-479X R&D Projects: GA MŠk(CZ) OC 918.50; GA ČR(CZ) GA303/00/1658; GA MŠk(CZ) LN00A079 Grant - others:GA UK(CZ) 70/99 Institutional research plan: CEZ:AV0Z5011922 Keywords : ferricyanide * brown adipose tissue * mitochondrial glycerophosphate dehydrogenase Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 2.920, year: 2002

  3. Etching Behavior of Aluminum Alloy Extrusions

    Science.gov (United States)

    Zhu, Hanliang

    2014-11-01

    The etching treatment is an important process step in influencing the surface quality of anodized aluminum alloy extrusions. The aim of etching is to produce a homogeneously matte surface. However, in the etching process, further surface imperfections can be generated on the extrusion surface due to uneven materials loss from different microstructural components. These surface imperfections formed prior to anodizing can significantly influence the surface quality of the final anodized extrusion products. In this article, various factors that influence the materials loss during alkaline etching of aluminum alloy extrusions are investigated. The influencing variables considered include etching process parameters, Fe-rich particles, Mg-Si precipitates, and extrusion profiles. This study provides a basis for improving the surface quality in industrial extrusion products by optimizing various process parameters.

  4. Electroless oxidation of diamond surfaces in ceric and ferricyanide solutions: An easy way to produce 'C-O' functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Simon, N., E-mail: nathalie.simon@uvsq.f [Institut Lavoisier de Versailles, UMR 8180, Universite de Versailles-St-Quentin en Yvelines, 45 avenue des Etats Unis, 78000 Versailles (France); Charrier, G.; Etcheberry, A. [Institut Lavoisier de Versailles, UMR 8180, Universite de Versailles-St-Quentin en Yvelines, 45 avenue des Etats Unis, 78000 Versailles (France)

    2010-08-01

    Despite many works are devoted to oxidation of diamond surfaces, it is still a challenge, to successfully produce well defined 'C-O' functions, particularly for functionalization purposes. In this paper we describe and compare, for the first time, the 'electroless' oxidation of as-deposited polycrystalline boron-doped diamond (BDD) films in ceric and ferricyanide solutions at room temperature. Both reactions efficiently generate oxygen functionalities on BDD surface. While a higher amount of 'C-O' moieties is produced with Ce{sup 4+} as oxidizing agent, the use of ferricyanide specie seems the most interesting to specifically generate hydroxyl groups. Additionally, this easy to perform oxidative method appears not damaging for diamond surfaces and adapted to conductive or non-conductive materials. The resulting surfaces were characterized using X-ray photoelectron spectroscopy, contact angle and capacitance-voltage analysis.

  5. The reactive extrusion of thermoplastic polyurethane

    NARCIS (Netherlands)

    Verhoeven, Vincent Wilhelmus Andreas

    2006-01-01

    The objective of this thesis was to increase the understanding of the reactive extrusion of thermoplastic polyurethane. Overall, several issues were identified: • Using a relative simple extrusion model, the reactive extrusion process can be described. This model can be used to further investigate

  6. Paper-based chromatic toxicity bioassay by analysis of bacterial ferricyanide reduction.

    Science.gov (United States)

    Pujol-Vila, F; Vigués, N; Guerrero-Navarro, A; Jiménez, S; Gómez, D; Fernández, M; Bori, J; Vallès, B; Riva, M C; Muñoz-Berbel, X; Mas, J

    2016-03-03

    Water quality assessment requires a continuous and strict analysis of samples to guarantee compliance with established standards. Nowadays, the increasing number of pollutants and their synergistic effects lead to the development general toxicity bioassays capable to analyse water pollution as a whole. Current general toxicity methods, e.g. Microtox(®), rely on long operation protocols, the use of complex and expensive instrumentation and sample pre-treatment, which should be transported to the laboratory for analysis. These requirements delay sample analysis and hence, the response to avoid an environmental catastrophe. In an attempt to solve it, a fast (15 min) and low-cost toxicity bioassay based on the chromatic changes associated to bacterial ferricyanide reduction is here presented. E. coli cells (used as model bacteria) were stably trapped on low-cost paper matrices (cellulose-based paper discs, PDs) and remained viable for long times (1 month at -20 °C). Apart from bacterial carrier, paper matrices also acted as a fluidic element, allowing fluid management without the need of external pumps. Bioassay evaluation was performed using copper as model toxic agent. Chromatic changes associated to bacterial ferricyanide reduction were determined by three different transduction methods, i.e. (i) optical reflectometry (as reference method), (ii) image analysis and (iii) visual inspection. In all cases, bioassay results (in terms of half maximal effective concentrations, EC50) were in agreement with already reported data, confirming the good performance of the bioassay. The validation of the bioassay was performed by analysis of real samples from natural sources, which were analysed and compared with a reference method (i.e. Microtox). Obtained results showed agreement for about 70% of toxic samples and 80% of non-toxic samples, which may validate the use of this simple and quick protocol in the determination of general toxicity. The minimum instrumentation

  7. Extrusion and Extruded Products: Changes in Quality Attributes as Affected by Extrusion Process Parameters: A Review.

    Science.gov (United States)

    Alam, M S; Kaur, Jasmeen; Khaira, Harjot; Gupta, Kalika

    2016-01-01

    Extrusion of foods is an emerging technology for the food industries to process and market a large number of products of varying size, shape, texture, and taste. Extrusion cooking technology has led to production of wide variety of products like pasta, breakfast cereals, bread crumbs, biscuits, crackers, croutons, baby foods, snack foods, confectionery items, chewing gum, texturized vegetable protein (TVP), modified starch, pet foods, dried soups, dry beverage mixes etc. The functional properties of extruded foods plays an important role for their acceptability which include water absorption, water solubility, oil absorption indexes, expansion index, bulk density and viscosity of the dough. The aim of this review is to give the detailed outlines about the potential of extrusion technology in development of different types of products and the role of extrusion-operating conditions and their effect on product development resulting in quality changes i.e physical, chemical, and nutritional, experienced during the extrusion process.

  8. 75 FR 80527 - Aluminum Extrusions From China

    Science.gov (United States)

    2010-12-22

    ...)] Aluminum Extrusions From China AGENCY: United States International Trade Commission. ACTION: Scheduling of... of subsidized and less-than-fair-value imports from China of aluminum extrusions, primarily provided... contained in Aluminum Extrusions From the People's Republic of China: Notice of Preliminary Determination of...

  9. Hydrostatic extrusion of magnesium alloys

    NARCIS (Netherlands)

    Sillekens, W.H.; Bohlen, J.

    2012-01-01

    This chapter deals with the capabilities and limitations of the hydrostatic extrusion process for the manufacturing of magnesium alloy sections. Firstly, the process basics for the hydrostatic extrusion of materials in general and of magnesium in particular are introduced. Next, some recent research

  10. How extrusion shapes food processing

    Science.gov (United States)

    This month's column will explore food extrusion. Extrusion is one of the most commonly used food manufacturing processes. Its versatility enables production of a diverse array of food products. This column will review the basic principles and provide an overview of applications. I would like to ...

  11. Microstructure development and texture evolution of aluminum multi-port extrusion tube during the porthole die extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Fan, X.H. [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240 (China); School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Tang, D., E-mail: tangding@sjtu.edu.cn [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240 (China); School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Fang, W.L.; Li, D.Y.; Peng, Y.H. [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240 (China); School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2016-08-15

    Aluminum multi-port extrusion tube is processed by the porthole die extrusion and the internal tube walls are welded through the solid state metallurgical bonding. In order to observe the development of grains and their orientations under severe plastic deformation and solid state welding, the extrusion butt together with the die is quenched immediately after extrusion to preserve the grain structure in the processing. The forming histories of selected material points are obtained by analyzing the optical microscopy graph. The evolution of the microstructure along the forming path is characterized by electro backscattered diffraction. It is found that geometrical dynamic recrystallization happens in the process. Grains are elongated, scattered at the transition zone and shear intensive zone, and then pinched off when they are pushed out from the die orifice. The shear-type orientations are predominant at the surface layer on the longitudinal section of the tube web and have penetrated into the intermediate layer. The rolling-type orientations are formed at the central layer. Texture gradient through the thickness of the tube web is observed. And cube orientated grains are found at the seam weld region. - Highlights: •Microstructure of extrusion butt is preserved after the micro scale porthole die extrusion. •Grain morphology history along forming path is investigated. •Texture evolutions on three material flows are present. •Texture gradient exists on the longitudinal section of the internal wall of profile. •Rolling-type and cube textures are found at the solid state welding region.

  12. Friction measurement and modelling in forward rod extrusion

    DEFF Research Database (Denmark)

    Tan, Xincai; Bay, Niels; Zhang, Wenqi

    2003-01-01

    Forward extrusion is one of the important processes in bulk metal forming. Friction stress can be estimated from the slope of the load±displacement curve at the steady state after the maximum load in a forward extrusion test. In this paper, forward rod extrusion tests are carried out to determine...... as the lubricant. Friction stresses are obtained from measurements of slopes of extrusion pressure±punch travel curves at the steady state stage. Normal pressures are evaluated by using Mohr’s circle, in which shear ¯ow stresses are estimated at the maximum elastic deformation points from the same extrusion...... pressure±punch travel curves. It is found that the relationship between normal pressure and friction stress appears linear, and therefore Coulomb’s friction model ®ts the experimental data very well. Extrusion pressure±punch travel curves before the steady state can be divided into four stages: elastic...

  13. Evaluation of Extrusion Technique for Nanosizing Liposomes

    Directory of Open Access Journals (Sweden)

    Sandy Gim Ming Ong

    2016-12-01

    Full Text Available The aim of the present study was to study the efficiency of different techniques used for nanosizing liposomes. Further, the aim was also to evaluate the effect of process parameters of extrusion techniques used for nanosizing liposomes on the size and size distribution of the resultant liposomes. To compare the efficiency of different nanosizing techniques, the following techniques were used to nanosize the liposomes: extrusion, ultrasonication, freeze-thaw sonication (FTS, sonication and homogenization. The extrusion technique was found to be the most efficient, followed by FTS, ultrasonication, sonication and homogenization. The extruder used in the present study was fabricated using readily available and relatively inexpensive apparatus. Process parameters were varied in extrusion technique to study their effect on the size and size distribution of extruded liposomes. The results obtained indicated that increase in the flow rate of the extrusion process decreased the size of extruded liposomes however the size homogeneity was negatively impacted. Furthermore, the liposome size and distribution was found to decline with decreasing membrane pore size. It was found that by extruding through a filter with a pore size of 0.2 µm and above, the liposomes produced were smaller than the pore size, whereas, when they were extruded through a filter with a pore size of less than 0.2 µm the resultant liposomes were slightly bigger than the nominal pore size. Besides that, increment of extrusion temperature above transition temperature of the pro-liposome had no effect on the size and size distribution of the extruded liposomes. In conclusion, the extrusion technique was reproducible and effective among all the methods evaluated. Furthermore, processing parameters used in extrusion technique would affect the size and size distribution of liposomes. Therefore, the process parameters need to be optimized to obtain a desirable size range and homogeneity

  14. Towards structural and functional analysis of the plant plasma membrane proton pump

    DEFF Research Database (Denmark)

    Justesen, Bo Højen

    The plasma membrane H+-ATPase is a proton pump essential for several physiological important processes in plants. Through the extrusion of protons from the cell, the PM H+-ATPase establishes and maintains a proton gradient used by proton coupled transporters and secondary active transport...... of nutrients and metabolites across the plasma membrane. Additional processes involving the PM H+-ATPase includes plant growth, development, and response to biotic and abiotic stresses. Extensive efforts have been made in attempts to elucidate the detailed physiological role and biochemical characteristics...... of plasma membrane H+-ATPases. Studies on the plasma membrane H+-ATPases have involved both in vivo and in vitro approaches, with the latter employing either solubilisation by detergent micelles, or reconstitution into lipid vesicles. Despite resulting in a large body of information on structure, function...

  15. Aluminum extrusion with a deformable die

    NARCIS (Netherlands)

    Assaad, W.

    2010-01-01

    Aluminum extrusion process is one of metal forming processes. In aluminum extrusion, a work-piece (billet) is pressed through a die with an opening that closely resembles a desired shape of a profile. By this process, long profiles with an enormous variety of cross-sections can be produced to

  16. MODERNIZATION OF TECHNOLOGICAL LINE FOR CELLULAR EXTRUSION PROCESS

    Directory of Open Access Journals (Sweden)

    Tomasz Garbacz

    2014-06-01

    As part of the modernization of the cellular extrusion technology the extrusion head was designed and made. During the designing and modeling of the head the Auto CAD programe was used. After the prototyping the extrusion head was tested. In the article specification of cellular extrusion process of thermoplastics was presented. In the research, the endothermal chemical blowing agents in amount 1,0% by mass were used. The quantity of used blowing agent has a direct influence on density and structure of the extruded product of modified polymers. However, these properties have further influence on porosity, impact strength, hardness, tensile strength and another.

  17. Extrusion product defects: a statistical study

    International Nuclear Information System (INIS)

    Qamar, S.Z.; Arif, A.F.M.; Sheikh, A.K.

    2003-01-01

    In any manufacturing environment, defects resulting in rework or rejection are directly related to product cost and quality, and indirectly linked with process, tooling and product design. An analysis of product defects is therefore integral to any attempt at improving productivity, efficiency and quality. Commercial aluminum extrusion is generally a hot working process and consists of a series of different but integrated operations: billet preheating and sizing, die set and container preheating, billet loading and deformation, product sizing and stretching/roll-correction, age hardening, and painting/anodizing. Product defects can be traced back to problems in billet material and preparation, die and die set design and maintenance, process variable aberrations (ram speed, extrusion pressure, container temperature, etc), and post-extrusion treatment (age hardening, painting/anodizing, etc). The current paper attempts to analyze statistically the product defects commonly encountered in a commercial hot aluminum extrusion setup. Real-world rejection data, covering a period of nine years, has been researched and collected from a local structural aluminum extrusion facility. Rejection probabilities have been calculated for all the defects studied. The nine-year rejection data have been statistically analyzed on the basis of (i) an overall breakdown of defects, (ii) year-wise rejection behavior, (iii) breakdown of defects in each of three cost centers: press, anodizing, and painting. (author)

  18. Extrusion processing : effects on dry canine diets

    NARCIS (Netherlands)

    Tran, Q.D.

    2008-01-01

    Keywords: Extrusion, Canine diet, Protein, Lysine, Starch gelatinization, Palatability, Drying.

    Extrusion cooking is a useful and economical tool for processing animal feed. This high temperature, short time processing technology causes chemical and physical changes that alter the

  19. Zr Extrusion – Direct Input for Models & Validation

    Energy Technology Data Exchange (ETDEWEB)

    Cerreta, Ellen Kathleen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-07

    As we examine differences in the high strain rate, high strain tensile response of high purity, highly textured Zr as a function of loading direction, temperature and extrusion velocity with primarily post mortem characterization techniques, we have also developed a technique for characterizing the in-situ extrusion process. This particular measurement is useful for partitioning energy of the system during the extrusion process: friction, kinetic energy, and temperature

  20. Residence time modeling of hot melt extrusion processes.

    Science.gov (United States)

    Reitz, Elena; Podhaisky, Helmut; Ely, David; Thommes, Markus

    2013-11-01

    The hot melt extrusion process is a widespread technique to mix viscous melts. The residence time of material in the process frequently determines the product properties. An experimental setup and a corresponding mathematical model were developed to evaluate residence time and residence time distribution in twin screw extrusion processes. The extrusion process was modeled as the convolution of a mass transport process described by a Gaussian probability function, and a mixing process represented by an exponential function. The residence time of the extrusion process was determined by introducing a tracer at the extruder inlet and measuring the tracer concentration at the die. These concentrations were fitted to the residence time model, and an adequate correlation was found. Different parameters were derived to characterize the extrusion process including the dead time, the apparent mixing volume, and a transport related axial mixing. A 2(3) design of experiments was performed to evaluate the effect of powder feed rate, screw speed, and melt viscosity of the material on the residence time. All three parameters affect the residence time of material in the extruder. In conclusion, a residence time model was developed to interpret experimental data and to get insights into the hot melt extrusion process. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Material testing of copper by extrusion-cutting

    DEFF Research Database (Denmark)

    Segalina, F.; De Chiffre, Leonardo

    2017-01-01

    was developed and implemented on a CNC lathe. An investigation was carried out extrusion-cutting copper discs using high-speed-steel cutting tools at 100 m/min cutting speed. Flow stress values for copper under machining-relevant conditions were obtained from measurement of the extrusion-cutting force...

  2. Extrusion of the uranium-0.75 weight percent titanium alloy

    International Nuclear Information System (INIS)

    Jackson, R.J.; Lundberg, M.R.; Boland, J.F.

    1975-01-01

    Procedures are described for extruding the U--0.75 wt percent Ti alloy in the high alpha region (600 to 640 0 C) , and in the upper gamma region (900 to 1000 0 C). The casting of sound extrusion billets has importance in the production of sound extrusions, and procedures are given for casting sound billets up to 1,100 kilograms . Also important in producing sound extrusions is the use of glass lubricants. Reduction ratios of greater than 50 to 1 were achieved on reasonably sized billets. Extrusion constants of 48,000 pounds per square inch (psi) [296 megapascals (MPa)] for alpha phase (630 0 C) and 8,000 psi (56 MPa) for gamma phase (950 0 C) were achieved. Gamma-phase extrusion has preference over alpha-phase extrusion in that larger billets can be used and temperature control is not as critical. However alpha-phase extrusion offers better surface finish, less die wear, and fewer oxidation problems. Billets up to 14 inches in diameter have been successfully gamma-extruded and plans exist for extruding billets up to 20 inches (508 millimetres) in diameter. (U.S.)

  3. Towards predictive control of extrusion weld seams: an integrated approach

    NARCIS (Netherlands)

    Bakker, A.J. den; Werkhoven, R.J.; Sillekens, W.H.; Katgerman, L.

    2010-01-01

    Longitudinal weld seams are an intrinsic feature in hollow extrusions produced with porthole dies. The formation of longitudinal weld seams is a solid bonding process, controlled by the local conditions in the extrusion die. Being the weakest areas within the extrusion cross section, it is desirable

  4. Optimal design of an extrusion process for a hinge bracket

    International Nuclear Information System (INIS)

    Na, Geum Ju; Jang, Myung Geun; Kim, Jong Bong

    2016-01-01

    This study considers process design in forming a hinge bracket. A thin hinge bracket is typically produced by bending a sheet panel or welding a hollow bar into a sheet panel. However, the hinge bracket made by bending or welding does not have sufficient durability in severe operating conditions because of the stress concentration in the bended region or the low corrosion resistance of the welded region. Therefore, this study uses forming to produce the hinge bracket part of a foldable container and to ensure durability in difficult operating conditions. An extrusion process for a T-shaped hinge bracket is studied using finite element analysis. Preliminary analysis shows that a very high forging load is required to form the bracket by forging. Therefore, extrusion is considered as a candidate process. Producing the part through the extrusion process enables many brackets to be made in a single extrusion and through successive cutting of the extruded part, thereby reducing the manufacturing cost. The design focuses on reducing the extrusion load and on ensuring shape accuracy. An initial billet is designed to reduce the extrusion load and to obtain a geometrically accurate part. The extruded part is bent frequently because of uneven material flow. Thus, extrusion die geometries are designed to obtain straight parts.

  5. Optimal design of an extrusion process for a hinge bracket

    Energy Technology Data Exchange (ETDEWEB)

    Na, Geum Ju; Jang, Myung Geun; Kim, Jong Bong [Seoul National University, Seoul (Korea, Republic of)

    2016-05-15

    This study considers process design in forming a hinge bracket. A thin hinge bracket is typically produced by bending a sheet panel or welding a hollow bar into a sheet panel. However, the hinge bracket made by bending or welding does not have sufficient durability in severe operating conditions because of the stress concentration in the bended region or the low corrosion resistance of the welded region. Therefore, this study uses forming to produce the hinge bracket part of a foldable container and to ensure durability in difficult operating conditions. An extrusion process for a T-shaped hinge bracket is studied using finite element analysis. Preliminary analysis shows that a very high forging load is required to form the bracket by forging. Therefore, extrusion is considered as a candidate process. Producing the part through the extrusion process enables many brackets to be made in a single extrusion and through successive cutting of the extruded part, thereby reducing the manufacturing cost. The design focuses on reducing the extrusion load and on ensuring shape accuracy. An initial billet is designed to reduce the extrusion load and to obtain a geometrically accurate part. The extruded part is bent frequently because of uneven material flow. Thus, extrusion die geometries are designed to obtain straight parts.

  6. The friction influence on stress in micro extrusion

    Directory of Open Access Journals (Sweden)

    J. Piwnik

    2010-01-01

    Full Text Available Manufacturing of metallic parts by forming methods is industrially widespread due to high production rate, high accuracy, dimension’s and shape’s repeatability and good surface quality. The application of metal extrusion methods for the production of micro parts is possible, but there are some technological problems caused by small dimensions. Size effect is appearing. One of size effect symptom in micro extrusion, is a significant influence of rough contact between workpiece and tool while processing. In the case of rough contact without friction, material flows in the vicinity of the die surface. In order to explain more accurately a friction distribution in this area, the plastic wave friction model is proposed. This paper analyses specifications of a metal extrusion in micro scale. Using the friction model, a substitute friction shear factor mz and its influence on extrusion loading curves is determined in relationship to size of asperities.

  7. Experimental and numerical investigation of ram extrusion of bread dough

    Science.gov (United States)

    Mohammed, M. A. P.; Wanigasooriya, L.; Charalambides, M. N.

    2016-10-01

    An experimental and numerical study on ram extrusion of bread dough was conducted. A laboratory ram extrusion rig was designed and manufactured, where dies with different angles and exit radii were employed. Rate dependent behaviour was observed from tests conducted at different extrusion speeds, and higher extrusion pressure was reported for dies with decreasing exit radius. A finite element simulation of extrusion was performed using the adaptive meshing technique in Abaqus. Simulations using a frictionless contact between the billet and die wall showed that the model underestimates the response at high entry angles. On the other hand, when the coefficient of friction value was set to 0.09 as measured from friction experiments, the dough response was overestimated, i.e. the model extrusion pressure was much higher than the experimentally measured values. When a critical shear stress limit, τmax, was used, the accuracy of the model predictions improved. The results showed that higher die angles require higher τmax values for the model and the experiments to agree.

  8. Fabricating tungsten crucibles by drawing and extrusion spinning

    International Nuclear Information System (INIS)

    Edstrom, C.M.

    1981-01-01

    The fabrication of seamless tungsten crucibles 127-mm ID x 265-mm high x 6.25-mm wall thickness (5 in. x 10 1/2 in. x 1/4 in.) involved three drawing operations and extrusion spinning. The success of the drawing operations came from a combination of low draw reduction percentage, generous draw radii, large punch-to-die clearance, and attention to drawing temperature. The extrusion spinning success related to good drawn-cup-to-spinning-mandrel fit prior to making the extrusion passes, removal of stress risers in the part prior to spinning, and special attention to part and mandrel temperature

  9. Die Defects and Die Corrections in Metal Extrusion

    Directory of Open Access Journals (Sweden)

    Sayyad Zahid Qamar

    2018-05-01

    Full Text Available Extrusion is a very popular and multi-faceted manufacturing process. A large number of products for the automotive, aerospace, and construction sectors are produced through aluminum extrusion. Many defects in the extruded products occur because of the conditions of the dies and tooling. The problems in dies can be due to material issues, design and manufacturing, or severe usage. They can be avoided by maintaining the billet quality, by controlling the extrusion process parameters, and through routine maintenance. Die problems that occur on a day-to-day basis are mostly repairable and are rectified through various types of die correction operations. These defects and repair operations have not been reported in detail in the published literature. The current paper presents an in-depth description of repairable die defects and related die correction operations in metal extrusion. All major die defects are defined and classified, and their causes, preventive measures, and die correction operations are described. A brief frequency-based statistical study of die defects is also carried out to identify the most frequent die corrections. This work can be of direct benefit to plant engineers and operators and to researchers and academics in the field of metal extrusion.

  10. CHARACTERIZATION OF NEW TOOL STEEL FOR ALUMINUM EXTRUSION DIES

    OpenAIRE

    José Britti Bacalhau; Fernanda Moreno Rodrigues; Rafael Agnelli Mesquita

    2014-01-01

    Aluminum extrusion dies are an important segment of application on industrial tools steels, which are manufactured in steels based on AISI H13 steel. The main properties of steels applied to extrusion dies are: wear resistance, impact resistance and tempering resistance. The present work discusses the characteristics of a newly developed hot work steel to be used on aluminum extrusion dies. The effects of Cr and Mo contents with respect to tempering resistance and the Al addition ...

  11. Machine for extrusion under vacuum

    International Nuclear Information System (INIS)

    Gautier, A.

    1958-01-01

    In a study of the behaviour of easily oxidised metals during the extrusion process, it is first necessary to find an effective mean of fighting corrosion, since this, even when barely detectable, has an important influence on the validity of the results recorded. The neatest and also the most efficient of all the methods tried consists in creating a vacuum around the test piece. Working on this principle, and at the same time respecting the conventional rules for extrusion tests (loading the sample after stabilisation at the testing temperature, differential measurements of lengthening, etc.) we found it necessary to construct an original machine. (author) [fr

  12. FORMING TUBES AND RODS OF URANIUM METAL BY EXTRUSION

    Science.gov (United States)

    Creutz, E.C.

    1959-01-27

    A method and apparatus are presented for the extrusion of uranium metal. Since uranium is very brittle if worked in the beta phase, it is desirable to extrude it in the gamma phase. However, in the gamma temperature range thc uranium will alloy with the metal of the extrusion dic, and is readily oxidized to a great degree. According to this patent, uranium extrusion in thc ganmma phase may be safely carried out by preheating a billet of uranium in an inert atmosphere to a trmperature between 780 C and 1100 C. The heated billet is then placed in an extrusion apparatus having dies which have been maintained at an elevated temperature for a sufficient length of time to produce an oxide film, and placing a copper disc between the uranium billet and the die.

  13. Zinc oxide-potassium ferricyanide composite thin film matrix for biosensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Shibu [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Arya, Sunil K. [Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, New Delhi 110012 (India); Singh, S.P. [Department of Engineering Science and Materials, University of Puerto Rico, Mayaguez, PR 00680 (United States); Sreenivas, K. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Malhotra, B.D. [Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, New Delhi 110012 (India); Gupta, Vinay, E-mail: vgupta@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2009-10-27

    Thin film of zinc oxide-potassium ferricyanide (ZnO-KFCN) composite has been deposited on indium tin oxide (ITO) coated corning glass using pulsed laser deposition (PLD). The composite thin film electrode has been exploited for amperometric biosensing in a mediator-free electrolyte. The composite matrix has the advantages of high iso-electric point of ZnO along with enhanced electron communication due to the presence of a redox species in the matrix itself. Glucose oxidase (GOx) has been chosen as the model enzyme for studying the application of the developed matrix to biosensing. The sensing response of the bio-electrode, GOx/ZnO-KFCN/ITO/glass, towards glucose was studied using cylic voltammetry (CV) and photometric assay. The bio-electrode exhibits good linearity from 2.78 mM to 11.11 mM glucose concentration. The low value of Michaelis-Menten constant (1.69 mM) indicates an enhanced affinity of the immobilized enzyme towards its substrate. A quassireversible system is obtained with the composite matrix. The results confirm promising application of the ZnO-KFCN composite matrix for amperometric biosensing applications in a mediator-less electrolyte that could lead to the realization of an integrated lab-on-chip device.

  14. Zinc oxide-potassium ferricyanide composite thin film matrix for biosensing applications

    International Nuclear Information System (INIS)

    Saha, Shibu; Arya, Sunil K.; Singh, S.P.; Sreenivas, K.; Malhotra, B.D.; Gupta, Vinay

    2009-01-01

    Thin film of zinc oxide-potassium ferricyanide (ZnO-KFCN) composite has been deposited on indium tin oxide (ITO) coated corning glass using pulsed laser deposition (PLD). The composite thin film electrode has been exploited for amperometric biosensing in a mediator-free electrolyte. The composite matrix has the advantages of high iso-electric point of ZnO along with enhanced electron communication due to the presence of a redox species in the matrix itself. Glucose oxidase (GOx) has been chosen as the model enzyme for studying the application of the developed matrix to biosensing. The sensing response of the bio-electrode, GOx/ZnO-KFCN/ITO/glass, towards glucose was studied using cylic voltammetry (CV) and photometric assay. The bio-electrode exhibits good linearity from 2.78 mM to 11.11 mM glucose concentration. The low value of Michaelis-Menten constant (1.69 mM) indicates an enhanced affinity of the immobilized enzyme towards its substrate. A quassireversible system is obtained with the composite matrix. The results confirm promising application of the ZnO-KFCN composite matrix for amperometric biosensing applications in a mediator-less electrolyte that could lead to the realization of an integrated lab-on-chip device.

  15. Functionality of extrusion--texturized whey proteins.

    Science.gov (United States)

    Onwulata, C I; Konstance, R P; Cooke, P H; Farrell, H M

    2003-11-01

    Whey, a byproduct of the cheesemaking process, is concentrated by processors to make whey protein concentrates (WPC) and isolates (WPI). Only 50% of whey proteins are used in foods. In order to increase their usage, texturizing WPC, WPI, and whey albumin is proposed to create ingredients with new functionality. Extrusion processing texturizes globular proteins by shearing and stretching them into aligned or entangled fibrous bundles. In this study, WPC, WPI, and whey albumin were extruded in a twin screw extruder at approximately 38% moisture content (15.2 ml/min, feed rate 25 g/min) and, at different extrusion cook temperatures, at the same temperature for the last four zones before the die (35, 50, 75, and 100 degrees C, respectively). Protein solubility, gelation, foaming, and digestibility were determined in extrudates. Degree of extrusion-induced insolubility (denaturation) or texturization, determined by lack of solubility at pH 7 for WPI, increased from 30 to 60, 85, and 95% for the four temperature conditions 35, 50, 75, and 100 degrees C, respectively. Gel strength of extruded isolates increased initially 115% (35 degrees C) and 145% (50 degrees C), but gel strength was lost at 75 and 100 degrees C. Denaturation at these melt temperatures had minimal effect on foaming and digestibility. Varying extrusion cook temperature allowed a new controlled rate of denaturation, indicating that a texturized ingredient with a predetermined functionality based on degree of denaturation can be created.

  16. Orthodontic extrusion in the transitional dentition: a simple technique.

    LENUS (Irish Health Repository)

    Darby, Laura J

    2009-11-01

    Extrusion of teeth may be necessary in cases of delayed eruption, primary retention, traumatically intruded teeth, or subgingivally fractured teeth. Removable appliances are advantageous, as anchorage is not as tooth-dependant as in the case of fixed appliances. They are cost-effective, operator friendly, and a valuable treatment option to consider in cases where extrusion of anterior teeth in the transitional dentition is necessary. The purpose of this paper was to describe a simple, cost-effective technique using a removable appliance for extrusion of incisors in the transitional dentition.

  17. Properties and DEFC tests of nafion added functionalized titanate nanotubes prepared by extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Matos, B.R.; Goulart, C.A.; Isidoro, R.A.; Silva, J.S. da; Santiago, E.I.; Fonseca, F.C.; Tavares, A.C. [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2016-07-01

    Full text: Composite electrolyte membranes based on the incorporation of a second inorganic phase into ionomer matrices such as Nafion revealed to possess enhanced properties such as increased mechanical resistance and reduced permeability of solvents. It has been reported that surface functionalized titanate nanotubes (H2Ti3O7.nH2O) display a proton conductivity of ∼ 10-2 Scm-1, which is attractive for the use of such composites in direct ethanol fuel cells (DEFC). Herein, composite membranes based on the addition of sulfonic acid groups functionalized titanate nanotubes into Nafion matrix were prepared by grafting followed by extrusion. These membranes were characterized by infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), acid-base titration, proton conductivity measurements and DEFC tests. FTIR measurements confirmed both the grafting of the titanate nanotubes. BET measurements showed that the functionalized titanate nanotubes possess a high surface specific area. Acid-base titration evidenced that additional sulfonic acid groups are present in the composite membranes compared to the pristine ionomer. The conductivity measurements show that the increase in the titanate nanotube volume fraction into the ionomers has not resulted in a decrease of the proton conductivity. The results show that the addition of functionalized titanate nanotubes into Nafion polymer matrix resulted in an improvement of the electric transport properties, reduction of the fuel crossover and, consequently, a higher DEFC performance for the composites were observed with respect to the pristine Nafion. (author)

  18. Properties and DEFC tests of nafion added functionalized titanate nanotubes prepared by extrusion

    International Nuclear Information System (INIS)

    Matos, B.R.; Goulart, C.A.; Isidoro, R.A.; Silva, J.S. da; Santiago, E.I.; Fonseca, F.C.; Tavares, A.C.

    2016-01-01

    Full text: Composite electrolyte membranes based on the incorporation of a second inorganic phase into ionomer matrices such as Nafion revealed to possess enhanced properties such as increased mechanical resistance and reduced permeability of solvents. It has been reported that surface functionalized titanate nanotubes (H2Ti3O7.nH2O) display a proton conductivity of ∼ 10-2 Scm-1, which is attractive for the use of such composites in direct ethanol fuel cells (DEFC). Herein, composite membranes based on the addition of sulfonic acid groups functionalized titanate nanotubes into Nafion matrix were prepared by grafting followed by extrusion. These membranes were characterized by infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), acid-base titration, proton conductivity measurements and DEFC tests. FTIR measurements confirmed both the grafting of the titanate nanotubes. BET measurements showed that the functionalized titanate nanotubes possess a high surface specific area. Acid-base titration evidenced that additional sulfonic acid groups are present in the composite membranes compared to the pristine ionomer. The conductivity measurements show that the increase in the titanate nanotube volume fraction into the ionomers has not resulted in a decrease of the proton conductivity. The results show that the addition of functionalized titanate nanotubes into Nafion polymer matrix resulted in an improvement of the electric transport properties, reduction of the fuel crossover and, consequently, a higher DEFC performance for the composites were observed with respect to the pristine Nafion. (author)

  19. Use of a high temperature hydrostatic extrusion technique for powders strengthening

    International Nuclear Information System (INIS)

    Decours, J.; Gavinet, J.; Weisz, M.

    1975-01-01

    A conventional 575 tonnes extrusion press has been modified by a device permitting the extrusion process by hydrostatic pression through a leakless mechanical set (13,000 bars maximum), from room temperature to 1,200 deg C. This new device allows: the high temperature hydrostatic extrusion for strengthening of powders, the isostatic compression of powders. Examples of realisations obtained by this process are described, including the influence of different parameters: pressure, temperature, extrusion ratio and for different materials: pure metals (iron, nickel, niobium, etc...) and alloys (stainless steel, molybdenum, niobium nickel alloys, etc...). Then, the advantages of the process are emphasized [fr

  20. Embedded Multimaterial Extrusion Bioprinting

    NARCIS (Netherlands)

    Rocca, Marco; Fragasso, Alessio; Liu, Wanjun; Heinrich, Marcel A.; Zhang, Yu Shrike

    Embedded extrusion bioprinting allows for the generation of complex structures that otherwise cannot be achieved with conventional layer-by-layer deposition from the bottom, by overcoming the limits imposed by gravitational force. By taking advantage of a hydrogel bath, serving as a sacrificial

  1. Solid hydrogen target for laser driven proton acceleration

    Science.gov (United States)

    Perin, J. P.; Garcia, S.; Chatain, D.; Margarone, D.

    2015-05-01

    The development of very high power lasers opens up new horizons in various fields, such as laser plasma acceleration in Physics and innovative approaches for proton therapy in Medicine. Laser driven proton acceleration is commonly based on the so-called Target Normal Sheath Acceleration (TNSA) mechanisms: a high power laser is focused onto a solid target (thin metallic or plastic foil) and interact with matter at very high intensity, thus generating a plasma; as a consequence "hot" electrons are produced and move into the forward direction through the target. Protons are generated at the target rear side, electrons try to escape from the target and an ultra-strong quasi-electrostatic field (~1TV/m) is generated. Such a field can accelerate protons with a wide energy spectrum (1-200 MeV) in a few tens of micrometers. The proton beam characteristics depend on the laser parameters and on the target geometry and nature. This technique has been validated experimentally in several high power laser facilities by accelerating protons coming from hydrogenated contaminant (mainly water) at the rear of metallic target, however, several research groups are investigating the possibility to perform experiments by using "pure" hydrogen targets. In this context, the low temperature laboratory at CEA-Grenoble has developed a cryostat able to continuously produce a thin hydrogen ribbon (from 40 to 100 microns thick). A new extrusion concept, without any moving part has been carried out, using only the thermodynamic properties of the fluid. First results and perspectives are presented in this paper.

  2. CHARACTERIZATION OF NEW TOOL STEEL FOR ALUMINUM EXTRUSION DIES

    Directory of Open Access Journals (Sweden)

    José Britti Bacalhau

    2014-06-01

    Full Text Available Aluminum extrusion dies are an important segment of application on industrial tools steels, which are manufactured in steels based on AISI H13 steel. The main properties of steels applied to extrusion dies are: wear resistance, impact resistance and tempering resistance. The present work discusses the characteristics of a newly developed hot work steel to be used on aluminum extrusion dies. The effects of Cr and Mo contents with respect to tempering resistance and the Al addition on the nitriding response have been evaluated. From forged steel bars, Charpy impact test and characterization via EPMA have been conducted. The proposed contents of Cr, Mo, and Al have attributed to the new VEX grade a much better tempering resistance than H13, as well as a deeper and harder nitrided layer. Due to the unique characteristics, this new steel provides an interesting alternative to the aluminum extrusion companies to increase their competitiveness.

  3. Finite element analysis of the combined fine blanking and extrusion process

    Science.gov (United States)

    Zheng, Peng-Fei

    The combined fine blanking and extrusion process is such a metal forming process that fine blanking and forward extrusion are carried out on sheet metal material at the same time. There are two typical characteristics in this process, one is the fine blanking whose deformation mechanism is different from conventional blanking; the other is the sheet metal extrusion, which is different from the conventional extrusion. Even though fine blanking has been used in industry for many years, only limited literature can be found which deals with the theoretical analysis of it. On the other hand, no publications on the theoretical analysis of the sheet metal extrusion have been found. Intensive work should be carried out to reveal the mechanism of both fine blanking process and sheet metal extrusion process, and further the combined fine blanking and extrusion process. The scope of this thesis is to study the mechanics of fine blanking, sheet metal extrusion, and combined fine blanking and extrusion process one by one with the rigid-plastic finite element method. All of above processes are typical unsteady ones, especially the fine blanking process in which extremely severe and localized deformation occurs. Therefore, commercial programs can not be used to solve these problems up till now. Owing to this reason, a rigid-plastic finite element program was developed for simulating these processes where remeshing and mesh tracing techniques as well as the golden section method were adopted according to the characteristics of these processes in this thesis. Moreover, a permissible kinematic velocity field was adopted as the initial velocity field for simulating extrusion process successfully. Results from the simulation included the distorted mesh, the field of material flow, the stress and the strain distributions at various moments of deformation. Results under different deformation conditions such as different blanking clearances, different diameters of the extrusion punch and

  4. IMPORTANT DEGRADATIONS IN POLYETHYLENE TERAPHTALATE EXTRUSION PROCESS

    Directory of Open Access Journals (Sweden)

    Şule ALTUN

    2003-01-01

    Full Text Available Polyethylene terephthalate (PET is one of the most used thermo-plastic polymers. The total consumption of PET has been about 30 million tons in the year 2000. Polyester fibers constitute about 60 % of total synthetic fibers consumption. During extrusion, PET polymer is faced to thermal, thermo-oxidative and hydrolytic degradation, which result in severe reduction in its molecular weight, thereby adversely affecting its subsequent melt processability. Therefore, it is essential to understand degradation processes of PET during melt extrusion.

  5. Extrusion: An environmentally friendly process for PEMFC membrane elaboration

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, J.-Y.; Iojoiu, C.; Marechal, M. [LEPMI, UMR 5631 CNRS-INPG-UJF, ENSEEG, BP 75, F-38402, Saint Martin d' Heres (France); Chabert, F.; El Kissi, N. [Rheologie, UMR 5520 CNRS-INPG-UJF, ENSHMG, BP 53, F-38041, Grenoble (France); Salomon, J.; Mercier, R. [LMOPS UMR CNRS 5041, BP 24, F-69390 Vernaison (France); Piffard, Y. [CNRS Universite de Nantes, Institut des Materiaux Jean Rouxel, UMR 6502, BP 32229, F-44322, Nantes Cedex 3 (France); Galiano, H. [CEA, Le Ripault Research Center, BP 16, F-37260, Monts (France)

    2007-12-31

    The paper deals with the use of extrusion to process PEMFC filled and unfilled membranes. Several routes including the sulfonation of filled and unfilled extruded membranes and the extrusion of filled and unfilled ionomers are reported. Thanks to the use of selected water-soluble aid process plasticizers, acid and alkaline forms of sulfonated polyethersulfone were, for the first time, successfully extruded. The extrusion process did not lead to any degradation of the ionomer performances. Decreasing the membrane cost while using environmentally friendly elaboration conditions, it should be helpful to an industrial production. In addition, avoiding filler sedimentation it should allow homogeneous composite membranes to be obtained. (author)

  6. Apical extrusion of debris: a literature review of an inherent occurrence during root canal treatment.

    Science.gov (United States)

    Tanalp, J; Güngör, T

    2014-03-01

    Extrusion of intracanal debris as well as irrigants is a common occurrence during root canal treatment, and no instrument or technique has thoroughly solved this problem. Because flare-ups may arise with any irritation directed towards periapical tissues, a shaping or irrigation technique should minimize the risk of apical extrusion, even though it may not be prevented. There has been a rapid evolution of root canal instruments and irrigation systems through the last decade, and many have been assessed for their debris extrusion potential. The purpose of this review was to identify publications regarding the evaluation of debris, bacteria and irrigant extrusion during root canal treatment. A PubMed, Ovid and MEDLINE search was conducted using the keywords "apical extrusion", "debris extrusion" and "endodontic treatment". The literature search extended over a period of more than 30 years up to 2012. Content of the review was limited to apical extrusion of debris and irrigants, extrusion of liquid by irrigation methods and bacterial extrusion. Issues relevant to apical extrusion were obtained by further search in the reference sections of the retrieved articles. The review provides an update on the current status of apical extrusion. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  7. A brief review of extrusion-based tissue scaffold bio-printing.

    Science.gov (United States)

    Ning, Liqun; Chen, Xiongbiao

    2017-08-01

    Extrusion-based bio-printing has great potential as a technique for manipulating biomaterials and living cells to create three-dimensional (3D) scaffolds for damaged tissue repair and function restoration. Over the last two decades, advances in both engineering techniques and life sciences have evolved extrusion-based bio-printing from a simple technique to one able to create diverse tissue scaffolds from a wide range of biomaterials and cell types. However, the complexities associated with synthesis of materials for bio-printing and manipulation of multiple materials and cells in bio-printing pose many challenges for scaffold fabrication. This paper presents an overview of extrusion-based bio-printing for scaffold fabrication, focusing on the prior-printing considerations (such as scaffold design and materials/cell synthesis), working principles, comparison to other techniques, and to-date achievements. This paper also briefly reviews the recent development of strategies with regard to hydrogel synthesis, multi-materials/cells manipulation, and process-induced cell damage in extrusion-based bio-printing. The key issue and challenges for extrusion-based bio-printing are also identified and discussed along with recommendations for future, aimed at developing novel biomaterials and bio-printing systems, creating patterned vascular networks within scaffolds, and preserving the cell viability and functions in scaffold bio-printing. The address of these challenges will significantly enhance the capability of extrusion-based bio-printing. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Comparisons of microstructures and texture and mechanical properties of magnesium alloy fabricated by compound extrusion and direct extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Hu, H.-J., E-mail: hhj@cqut.edu.cn [Chongqing University of Technology, Chongqing 400050 (China); PLA Chongqing Logistics Engineering College, 401311 (China); Ying, Y.-L. [Chongqing University of Technology, Chongqing 400050 (China); Ou, Z.-W. [PLA Chongqing Logistics Engineering College, 401311 (China); Wang, X.-Q. [The University of Alabama, Tuscaloosa, AL 35487 (United States)

    2017-05-17

    In this study, microstructure evolution, textures and mechanical properties of AZ61 magnesium alloy were investigated by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tensile tests. The samples were processed by a new compound extrusion (CE) which combines direct extrusion (DE) and two steps of equal channel anger extrusion (ECAE). The results show that CE process can refine the microstructure more effectively than the DE process. The CE-fabricated samples have a weaker texture (0002), and a more fine and homogeneous microstructures, which attributes to the additional two steps of ECAE in CE process. In CE process, twin dynamic recrystallization and rotational dynamic recrystallization occurred, which enhances the refinement of the grains and weakening of the texture. In addition, the samples fabricated by CE process display a higher tensile properties (yield strength, tensile strength and elongation) with an excellent balance of strength and tensile ductility. Based on this study, severe plastic deformation (SPD) techniques combining conventional DE and two steps ECAE into a single process are feasibility to improve the mechanical properties of AZ61 Mg alloy.

  9. Identification of an HV 1 voltage-gated proton channel in insects.

    Science.gov (United States)

    Chaves, Gustavo; Derst, Christian; Franzen, Arne; Mashimo, Yuta; Machida, Ryuichiro; Musset, Boris

    2016-04-01

    The voltage-gated proton channel 1 (HV 1) is an important component of the cellular proton extrusion machinery and is essential for charge compensation during the respiratory burst of phagocytes. HV 1 has been identified in a wide range of eukaryotes throughout the animal kingdom, with the exception of insects. Therefore, it has been proposed that insects do not possess an HV 1 channel. In the present study, we report the existence of an HV 1-type proton channel in insects. We searched insect transcriptome shotgun assembly (TSA) sequence databases and found putative HV 1 orthologues in various polyneopteran insects. To confirm that these putative HV 1 orthologues were functional channels, we studied the HV 1 channel of Nicoletia phytophila (NpHV 1), an insect of the Zygentoma order, in more detail. NpHV 1 comprises 239 amino acids and is 33% identical to the human voltage-gated proton channel 1. Patch clamp measurements in a heterologous expression system showed proton selectivity, as well as pH- and voltage-dependent gating. Interestingly, NpHV 1 shows slightly enhanced pH-dependent gating compared to the human channel. Mutations in the first transmembrane segment at position 66 (Asp66), the presumed selectivity filter, lead to a loss of proton-selective conduction, confirming the importance of this aspartate residue in voltage-gated proton channels. Nucleotide sequence data have been deposited in the GenBank database under accession number KT780722. © 2016 Federation of European Biochemical Societies.

  10. Cell Extrusion: A Stress-Responsive Force for Good or Evil in Epithelial Homeostasis.

    Science.gov (United States)

    Ohsawa, Shizue; Vaughen, John; Igaki, Tatsushi

    2018-02-05

    Epithelial tissues robustly respond to internal and external stressors via dynamic cellular rearrangements. Cell extrusion acts as a key regulator of epithelial homeostasis by removing apoptotic cells, orchestrating morphogenesis, and mediating competitive cellular battles during tumorigenesis. Here, we delineate the diverse functions of cell extrusion during development and disease. We emphasize the expanding role for apoptotic cell extrusion in exerting morphogenetic forces, as well as the strong intersection of cell extrusion with cell competition, a homeostatic mechanism that eliminates aberrant or unfit cells. While cell competition and extrusion can exert potent, tumor-suppressive effects, dysregulation of either critical homeostatic program can fuel cancer progression. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Receptor kinase-mediated control of primary active proton pumping at the plasma membrane

    DEFF Research Database (Denmark)

    Fuglsang, Anja Thoe; Kristensen, Astrid; Cuin, Tracey A.

    2014-01-01

    Acidification of the cell wall space outside the plasma membrane is required for plant growth and is the result of proton extrusion by the plasma membrane-localized H+-ATPases. Here we show that the major plasma membrane proton pumps in Arabidopsis, AHA1 and AHA2, interact directly in vitro...... and in planta with PSY1R, a receptor kinase of the plasma membrane that serves as a receptor for the peptide growth hormone PSY1. The intracellular protein kinase domain of PSY1R phosphorylates AHA2/AHA1 at Thr-881, situated in the autoinhibitory region I of the C-terminal domain. When expressed in a yeast...... heterologous expression system, the introduction of a negative charge at this position caused pump activation. Application of PSY1 to plant seedlings induced rapid in planta phosphorylation at Thr-881, concomitant with an instantaneous increase in proton efflux from roots. The direct interaction between AHA2...

  12. Instant blend from cassava derivatives produced by extrusion

    OpenAIRE

    Trombini, Fernanda Rossi Moretti; Mischan, Martha Maria; Leonel, Magali

    2016-01-01

    ABSTRACT: The current research aimed to evaluate the effects of extrusion parameters on the physical characteristics of extruded blends of cassava leaf flour and starch. A factorial central composite design with four independent variables and the response surface methodology were used to evaluate the results of color parameters (L*, a*, b*), water absorption index, water solubility index and paste properties, according to the variations in the leaf flour percentage (1.5 to 7.5%), extrusion te...

  13. Rapid Continuous Multimaterial Extrusion Bioprinting

    NARCIS (Netherlands)

    Liu, Wanjun; Zhang, Yu Shrike; Heinrich, Marcel A.; De Ferrari, F; Jang, HL; Bakht, SM; Alvarez, MM; Yang, J; Li, YC; Trujillo-de Stantiago, G; Miri, AK; Zhu, K; Khoshakhlagh, P; Prakash, G; Cheng, H; Guan, X; Zhong, Z; Ju, J; Zhu, GH; Jin, X; Ryon Shin, Su; Dokmeci, M.R.; Khademhosseini, Ali

    The development of a multimaterial extrusion bioprinting platform is reported. This platform is capable of depositing multiple coded bioinks in a continuous manner with fast and smooth switching among different reservoirs for rapid fabrication of complex constructs, through digitally controlled

  14. Embedded Multimaterial Extrusion Bioprinting.

    Science.gov (United States)

    Rocca, Marco; Fragasso, Alessio; Liu, Wanjun; Heinrich, Marcel A; Zhang, Yu Shrike

    2018-04-01

    Embedded extrusion bioprinting allows for the generation of complex structures that otherwise cannot be achieved with conventional layer-by-layer deposition from the bottom, by overcoming the limits imposed by gravitational force. By taking advantage of a hydrogel bath, serving as a sacrificial printing environment, it is feasible to extrude a bioink in freeform until the entire structure is deposited and crosslinked. The bioprinted structure can be subsequently released from the supporting hydrogel and used for further applications. Combining this advanced three-dimensional (3D) bioprinting technique with a multimaterial extrusion printhead setup enables the fabrication of complex volumetric structures built from multiple bioinks. The work described in this paper focuses on the optimization of the experimental setup and proposes a workflow to automate the bioprinting process, resulting in a fast and efficient conversion of a virtual 3D model into a physical, extruded structure in freeform using the multimaterial embedded bioprinting system. It is anticipated that further development of this technology will likely lead to widespread applications in areas such as tissue engineering, pharmaceutical testing, and organs-on-chips.

  15. REFINEMENT OF THE REVERSE EXTRUSION TEST TO DETERMINE THE TWO CONSISTENCY LIMITS

    Directory of Open Access Journals (Sweden)

    Kamil KAYABALI

    2015-11-01

    Full Text Available Liquid limit (LL and plastic limit (PL are the two most commonly used index proper- ties of fine-grained soils. They have been used in not only classification of soils but also in correlation with certain engineering properties. Therefore, they have been subjected to numerous researches since they were first introduced by Atterberg in 1911. While their me- chanisms were well defined in many codes and they have been in use for decades, criticisms often arose pertinent to the uncertainties inherent to them. Incredible amount of effort has been exerted to invent more rational testing methods in place of both the Casagrande’s cup and bead rolling methods. Part of those efforts has been on devicing a single tool to measure the two relative index properties together. Recently, the reverse extrusion test was brought into the use of geotechnical engineers. It was shown that this tool has a potential of measu- ring LL, PL, and even the shrinkage limit (SL. The aim of this investigation is to reassess the ability of the reverse extrusion test to determine LL and PL with further refinement. In this regard 70 fine-grained soils covering a large range of plasticity were employed. Fall-cone method and rolling-device method were employed to determine LL and PL, res- pectively. The reverse extrusion tests were carried out at least five different water contents per soil sample. Extrusion pressures were plotted against water content and a curve fitting was applied to data pairs, from which the y-intercept (the coefficient a and the slope (the coefficieent b of the curve were determined. Those reverse extrusion coefficients were utilized to determine the representative extrusion pressures corresponding to LL and PL, as was done by the earlier researchers; however, the degree of success for the prediction of LL and PL using the representative extrusion pressures was not encouraging. Different from the previously proposed approaches, the reverse extrusion

  16. 75 FR 69403 - Aluminum Extrusions From the People's Republic of China: Notice of Preliminary Determination of...

    Science.gov (United States)

    2010-11-12

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-967] Aluminum Extrusions From the... Commerce (``Department'') preliminarily determines that aluminum extrusions from the People's Republic of... of aluminum extrusions from the PRC filed in proper form by the Aluminum Extrusions Fair Trade...

  17. 75 FR 57441 - Aluminum Extrusions From the People's Republic of China: Alignment of Final Countervailing Duty...

    Science.gov (United States)

    2010-09-21

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-968] Aluminum Extrusions From the... countervailing duty investigation of aluminum extrusions from the People's Republic of China (PRC) with the final... antidumping duty investigations on aluminum extrusions from the PRC. See Aluminum Extrusions from the People's...

  18. Numerical studies of temperature effect on the extrusion fracture and swell of plastic micro-pipe

    Science.gov (United States)

    Ren, Zhong; Huang, Xingyuan; Xiong, Zhihua

    2018-03-01

    Temperature is a key factor that impacts extrusion forming quality of plastic micro-pipe. In this study, the effect of temperature on extrusion fracture and swell of plastic micro-pipe was investigated by numerical method. Under a certain of the melt’s flow volume, the extrusion pattern, extrusion swelling ratio of melt are obtained under different temperatures. Results show that the extrusion swelling ratio of plastic micro-pipe decreases with increasing of temperature. In order to study the reason of temperature effect, the physical distributions of plastic micro-pipe are gotten. Numerical results show that the viscosity, pressure, stress value of melt are all decreased with the increasing of temperature, which leads to decrease the extrusion swell and fracture phenomenon for the plastic micro-pipe.

  19. 76 FR 30650 - Aluminum Extrusions from the People's Republic of China: Antidumping Duty Order

    Science.gov (United States)

    2011-05-26

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-967] Aluminum Extrusions from the...''), the Department is issuing an antidumping duty order on aluminum extrusions from the People's Republic... of material injury by reason of imports of certain aluminum extrusions from the PRC, and its negative...

  20. Extrusion conditions affect chemical composition and in vitro digestion of select food ingredients.

    Science.gov (United States)

    Dust, Jolene M; Gajda, Angela M; Flickinger, Elizabeth A; Burkhalter, Toni M; Merchen, Neal R; Fahey, George C

    2004-05-19

    An experiment was conducted to determine the effects of extrusion conditions on chemical composition and in vitro hydrolytic and fermentative digestion of barley grits, cornmeal, oat bran, soybean flour, soybean hulls, and wheat bran. Extrusion conditions altered crude protein, fiber, and starch concentrations of ingredients. Organic matter disappearance (OMD) increased for extruded versus unprocessed samples of barley grits, cornmeal, and soybean flour that had been hydrolytically digested. After 8 h of fermentative digestion, OMD decreased as extrusion conditions intensified for barley grits and cornmeal but increased for oat bran, soybean hulls, and wheat bran. Total short-chain fatty acid production decreased as extrusion conditions intensified for barley grits, soybean hulls, and soybean flour. These data suggest that the effects of extrusion conditions on ingredient composition and digestion are influenced by the unique chemical characteristics of individual substrates.

  1. Hot-melt extrusion of sugar-starch-pellets.

    Science.gov (United States)

    Yeung, Chi-Wah; Rein, Hubert

    2015-09-30

    Sugar-starch-pellets (syn. sugar spheres) are usually manufactured through fluidized bed granulation or wet extrusion techniques. This paper introduces hot-melt extrusion (HME) as an alternative method to manufacture sugar-starch-pellets. A twin-screw extruder coupled with a Leistritz Micro Pelletizer (LMP) cutting machine was utilized for the extrusion of different types (normal-, waxy-, and high-amlyose) of corn starch, blended with varying amounts of sucrose. Pellets were characterized for their physicochemical properties including crystallinity, particle size distribution, tensile strength, and swelling expansion. Furthermore, the influence of sugar content and humidity on the product was investigated. Both sucrose and water lowered the Tg of the starch system allowing a convenient extrusion process. Mechanical strength and swelling behavior could be associated with varying amylose and amylopectin. X-ray powder diffractometric (XRPD) peaks of increasing sucrose contents appeared above 30%. This signified the oversaturation of the extruded starch matrix system with sucrose. Otherwise, had the dissolved sucrose been embedded into the molten starch matrix, no crystalline peak could have been recognized. The replacement of starch with sucrose reduced the starch pellets' swelling effect, which resulted in less sectional expansion (SEI) and changed the surface appearance. Further, a nearly equal tensile strength could be detected for sugar spheres with more than 40% sucrose. This observation stands in good relation with the analyzed values of the commercial pellets. Both techniques (fluidized bed and HME) allowed a high yield of spherical pellets (less friability) for further layering processes. Thermal influence on the sugar-starch system is still an obstacle to be controlled. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. FEM analysis of hollow hub forming in rolling extrusion process

    Directory of Open Access Journals (Sweden)

    J. Bartnicki

    2014-10-01

    Full Text Available In this paper are presented the results of numerical calculations of rolling extrusion process of a hollow hub. As the flanges manufacturing at both sides of the product is required, in the analyzed process of rolling extrusion, a rear bumper was implemented as additional tool limiting axial metal flow. Numerical calculations of the hub forming process were conducted basing on finite element method, applying software Deform3D and Simufact in conditions of three dimensional state of strain. The obtained satisfactory results show that it is possible to conduct the further research works of experimental character, with the application of a modernized aggregate for the rolling extrusion process PO-2.

  3. Proton pump inhibitors as anti vacuolar-ATPases drugs: a novel anticancer strategy.

    Science.gov (United States)

    Spugnini, Enrico P; Citro, Gennaro; Fais, Stefano

    2010-05-08

    The vacuolar ATPases are ATP-dependent proton pumps whose functions include the acidification of intracellular compartments and the extrusion of protons through the cell cytoplasmic membrane. These pumps play a pivotal role in the regulation of cell pH in normal cells and, to a much greater extent, in tumor cells. In fact, the glucose metabolism in hypoxic conditions by the neoplasms leads to an intercellular pH drift towards acidity. The acid microenvironment is modulated through the over-expression of H+ transporters that are also involved in tumor progression, invasiveness, distant spread and chemoresistance. Several strategies to block/downmodulate the efficiency of these transporters are currently being investigated. Among them, proton pump inhibitors have shown to successfully block the H+ transporters in vitro and in vivo, leading to apoptotic death. Furthermore, their action seems to synergize with conventional chemotherapy protocols, leading to chemosensitization and reversal of chemoresistance. Aim of this article is to critically revise the current knowledge of this cellular machinery and to summarize the therapeutic strategies developed to counter this mechanism.

  4. Proton pump inhibitors as anti vacuolar-ATPases drugs: a novel anticancer strategy

    Directory of Open Access Journals (Sweden)

    Fais Stefano

    2010-05-01

    Full Text Available Abstract The vacuolar ATPases are ATP-dependent proton pumps whose functions include the acidification of intracellular compartments and the extrusion of protons through the cell cytoplasmic membrane. These pumps play a pivotal role in the regulation of cell pH in normal cells and, to a much greater extent, in tumor cells. In fact, the glucose metabolism in hypoxic conditions by the neoplasms leads to an intercellular pH drift towards acidity. The acid microenvironment is modulated through the over-expression of H+ transporters that are also involved in tumor progression, invasiveness, distant spread and chemoresistance. Several strategies to block/downmodulate the efficiency of these transporters are currently being investigated. Among them, proton pump inhibitors have shown to successfully block the H+ transporters in vitro and in vivo, leading to apoptotic death. Furthermore, their action seems to synergize with conventional chemotherapy protocols, leading to chemosensitization and reversal of chemoresistance. Aim of this article is to critically revise the current knowledge of this cellular machinery and to summarize the therapeutic strategies developed to counter this mechanism.

  5. High strength Al–Al2O3p composites: Optimization of extrusion parameters

    DEFF Research Database (Denmark)

    Luan, B.F.; Hansen, Niels; Godfrey, A.

    2011-01-01

    Composite aluminium alloys reinforced with Al2O3p particles have been produced by squeeze casting followed by hot extrusion and a precipitation hardening treatment. Good mechanical properties can be achieved, and in this paper we describe an optimization of the key processing parameters...... on an investigation of their mechanical properties and microstructure, as well as on the surface quality of the extruded samples. The evaluation shows that material with good strength, though with limited ductility, can be reliably obtained using a production route of squeeze casting, followed by hot extrusion....... The parameters investigated are the extrusion temperature, the extrusion rate and the extrusion ratio. The materials chosen are AA 2024 and AA 6061, each reinforced with 30vol.% Al2O3 particles of diameter typically in the range from 0.15 to 0.3μm. The extruded composites have been evaluated based...

  6. Friction conditions in the bearing area of an aluminium extrusion process

    NARCIS (Netherlands)

    Ma, X.; de Rooij, Matthias B.; Schipper, Dirk J.

    2012-01-01

    In aluminium extrusion processes, friction inside the bearing channel is important for controlling the surface quality of the extrusion products. The contact materials show a large hardness difference, one being hot aluminium, and the other being hardened tool steel. Further, the contact pressure is

  7. Factors affecting irrigant extrusion during root canal irrigation: a systematic review

    NARCIS (Netherlands)

    Boutsioukis, C.; Psimma, Z.; van der Sluis, L.W.M.

    2013-01-01

    The aim of the present study was to conduct a systematic review and critical analysis of published data on irrigant extrusion to identify factors causing, affecting or predisposing to irrigant extrusion during root canal irrigation of human mature permanent teeth. An electronic search was conducted

  8. A novel plastification agent for cemented carbides extrusion molding

    International Nuclear Information System (INIS)

    Ji-Cheng Zhou; Bai-Yun Huang

    2001-01-01

    A type of novel plastification agent for plasticizing powder extrusion molding of cemented carbides has been developed. By optimizing their formulation and fabrication method, the novel plastification agent, with excellent properties and uniform distribution characters, were manufactured. The thermal debinding mechanism has been studied, the extruding rheological characteristics and debinding behaviors have been investigated. Using the newly developed plastification agent, the cemented carbides extrusion rods, with diameter up to 25 mm, have been manufactured. (author)

  9. Extrusão de misturas de castanha do Brasil com mandioca Extrusion of Brazil nut and cassava flour mixtures

    Directory of Open Access Journals (Sweden)

    Maria Luzenira de Souza

    2008-06-01

    Full Text Available Considerando-se que a castanha do Brasil apresenta elevado potencial nutritivo, baixo consumo no Brasil, baixo valor agregado e é um produto orgânico, além da alta produtividade, do baixo custo da mandioca e da tecnologia de extrusão termoplástica apresentarem ampla aplicabilidade e vantagens, este trabalho teve como objetivo empregar estas três variáveis, para formular misturas com castanha do Brasil e farinha de mandioca e processá-las por extrusão, visando à obtenção de produtos extrusados ricos em proteína vegetal e prontos para o consumo. Foram utilizadas torta de amêndoa de castanha do Brasil semidesengordurada e farinha de mandioca para formulações das misturas para extrusão. Aplicou-se o delineamento fatorial completo composto central (2³, com 3 variáveis independentes e a metodologia de superfície de resposta foi usada para avaliar os resultados da composição centesimal e o valor calórico, frente às variações de castanha, umidade e temperatura. Os resultados indicam que as formulações com maiores quantidades de castanha apresentam quantidades de proteínas, lipídios e cinzas mais elevadas, já as formulações com menores teores de castanha apresentam maiores percentuais de carboidratos. Os coeficientes de regressão médios do modelo estatístico para as respostas são: umidade 7,40; carboidratos 51,09; proteínas 15,34; lipídios 11,77; fibra total 9,92 e kcal 371,65. Os ensaios com menores teores de castanha e maiores de farinha apresentam-se mais expandidos e de cor clara, enquanto que aqueles com maiores teores de castanha não se expandem e têm a cor acinzentada. Conclui-se que a adição de castanha semidesengordurada à farinha de mandioca pode ser submetida à extrusão, originando um produto extrusado fonte de proteína vegetal, pronto para o consumo e que pode atender à exigência de consumidores que não utilizam proteínas de origem animal.Considering that Brazil nut presents high nutritional

  10. Extrusion-cooking to improve the animal feed quality of broad beans

    NARCIS (Netherlands)

    Moscicki, L.; Wojcik, S.; Plaur, K.; Zuilichem, van D.J.

    1984-01-01

    Extrusion-cooking of broad beans with a single-screw extruder has been investigated. Attention was focused on process requirements as well as on the nutritional effects of extrusion-cooked broad beans in a chicken feed formulation. The optimal thermal process conditions required for a product of

  11. Chain heterogeneity as demonstrated by the ferricyanide oxidation of the one-site reduced bovine methemoglobin. Progress report, December 1, 1977--November 30, 1978

    International Nuclear Information System (INIS)

    Ilan, Y.A.; Czapski, G.

    1978-01-01

    With the pulse radiolysis technique, a single chain of tetrameric bovine methemoglobin (α 2 /sup III/β 2 /sup III/) is reduced, producing a mixture of valence hybrids consisting of α/sup III/α/sup II/β 2 /sup III/ and α 2 /sup III/β/sup III/β/sup II/. The oxidation of these partially reduced hemoglobins with ferricyanide was studied. It was found that the rate of oxidation of one of them proceeds 6 to 11 times faster than the other. It is suggested that the fast reacting valence hybrid contains reduced alpha chains

  12. Relationship Between Preoperative Extrusion of the Medial Meniscus and Surgical Outcomes After Partial Meniscectomy.

    Science.gov (United States)

    Kim, Sung-Jae; Choi, Chong Hyuk; Chun, Yong-Min; Kim, Sung-Hwan; Lee, Su-Keon; Jang, Jinyoung; Jeong, Howon; Jung, Min

    2017-07-01

    No previous study has examined arthritic change after meniscectomy with regard to extrusion of the medial meniscus. (1) To determine the factors related to preoperative meniscal extrusion; (2) to investigate the relationship between medial meniscal extrusion and postoperative outcomes of partial meniscectomy, and to identify a cutoff point of meniscal extrusion that contributes to arthritic change after partial meniscectomy in nonosteoarthritic knees. Cohort study; Level of evidence, 3. A total of 208 patients who underwent partial meniscectomy of the medial meniscus between January 2000 and September 2006 were retrospectively reviewed. The extent of extrusion and severity of degeneration of the medial meniscus as shown on preoperative MRI were evaluated. The minimum follow-up duration was 7 years. Clinical function was assessed with the Lysholm knee scoring scale, the International Knee Documentation Committee (IKDC) subjective knee evaluation form, and the Tapper and Hoover grading system. Radiological evaluation was conducted by use of the IKDC radiographic assessment scale. Regression analysis was performed to identify factors affecting preoperative extrusion of the medial meniscus and factors influencing follow-up results after partial meniscectomy. Receiver operating characteristic curve was used to identify a cutoff point for the extent of meniscal extrusion that was associated with arthritic change. The mean ± SD preoperative Lysholm knee score was 65.0 ± 6.3 and the mean IKDC subjective score was 60.1 ± 7.5. The mean follow-up functional scores were 93.2 ± 5.1 ( P meniscus showed a tendency to increase as the extent of intrameniscal degeneration increased, and the medial meniscus was extruded more in patients with horizontal, horizontal flap, and complex tears. The preoperative extent of meniscal extrusion had a statistically significant correlation with follow-up Lysholm knee score (coefficient = -0.10, P = .002), IKDC subjective score (coefficient

  13. The Energetics and Physiological Impact of Cohesin Extrusion.

    Science.gov (United States)

    Vian, Laura; Pękowska, Aleksandra; Rao, Suhas S P; Kieffer-Kwon, Kyong-Rim; Jung, Seolkyoung; Baranello, Laura; Huang, Su-Chen; El Khattabi, Laila; Dose, Marei; Pruett, Nathanael; Sanborn, Adrian L; Canela, Andres; Maman, Yaakov; Oksanen, Anna; Resch, Wolfgang; Li, Xingwang; Lee, Byoungkoo; Kovalchuk, Alexander L; Tang, Zhonghui; Nelson, Steevenson; Di Pierro, Michele; Cheng, Ryan R; Machol, Ido; St Hilaire, Brian Glenn; Durand, Neva C; Shamim, Muhammad S; Stamenova, Elena K; Onuchic, José N; Ruan, Yijun; Nussenzweig, Andre; Levens, David; Aiden, Erez Lieberman; Casellas, Rafael

    2018-05-17

    Cohesin extrusion is thought to play a central role in establishing the architecture of mammalian genomes. However, extrusion has not been visualized in vivo, and thus, its functional impact and energetics are unknown. Using ultra-deep Hi-C, we show that loop domains form by a process that requires cohesin ATPases. Once formed, however, loops and compartments are maintained for hours without energy input. Strikingly, without ATP, we observe the emergence of hundreds of CTCF-independent loops that link regulatory DNA. We also identify architectural "stripes," where a loop anchor interacts with entire domains at high frequency. Stripes often tether super-enhancers to cognate promoters, and in B cells, they facilitate Igh transcription and recombination. Stripe anchors represent major hotspots for topoisomerase-mediated lesions, which promote chromosomal translocations and cancer. In plasmacytomas, stripes can deregulate Igh-translocated oncogenes. We propose that higher organisms have coopted cohesin extrusion to enhance transcription and recombination, with implications for tumor development. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Influence of external extrusion on stability of hydrogen molecule and its chaotic behavior

    Science.gov (United States)

    Jarosik, M. W.; SzczÈ©śniak, R.; Durajski, A. P.; Kalaga, J. K.; Leoński, W.

    2018-01-01

    We have determined the stability conditions of the hydrogen molecule under the influence of an external force of harmonic-type explicitly dependent on the amplitude (A) and frequency (Ω). The ground state of the molecule has been determined in the framework of the Born-Oppenheimer approximation, whereas the energy of the electronic subsystem has been calculated using the Hubbard model including all two-site electron interactions. The diagram of RT0(A ,Ω) , where RT0 denotes the distance between protons after the fixed initial time T0, allowed us to visualize the area of the instability with the complicated structure. We have shown that the vibrations of the hydrogen molecule have a chaotic nature for some points of the instability region. In addition to the amplitude and frequency of the extrusion, the control parameter of the stability of the molecule is the external force associated with pressure. The increase in its value causes the disappearance of the area of the instability and chaotic vibrations.

  15. Metal extrusion using hydrostatic pressures; Le filage des metaux sous pression hydrostatique

    Energy Technology Data Exchange (ETDEWEB)

    Sauve, Ch [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    The main problems connected with the deformation of metals due to extrusion are described. A method is put forward for calculating the rational rate of percentage deformation in the case of bar extrusion using a cylindrical container; reference is made to previous work on extrusion using a hydrostatic pressure with or without back-pressure. An extrusion process is described using hydrostatic pressure, without back-pressure, and using the lubricant for transmitting the thrust. This process has been used for eight years by the C.E.A. for the extrusion of a very wide range of metals, from beryllium to uranium and including steels; it leads to excellent surface textures. A very fine crystallization can be obtained on extruded products when the rate of extrusion is very low. There appears to be nothing against the use of high extrusion rates using this method. (author) [French] On expose les problemes generaux lies a la deformation des metaux par filage. On propose un calcul de la vitesse rationnelle de deformation pour cent dans le cas du filage de barres a partir d'un conteneur cylindrique, et l'on cite les travaux anterieurs sur le filage par faction d'une pression hydrostatique sans ou avec une contre-pression. On decrit un procede de filage par l'action d'une pression hydrostatique, sans contre-pression, utilisant le lubrifiant pour transmettre la poussee. Ce procede employe depuis 8 ans au C.E.A. pour filer les metaux les plus divers, depuis le beryllium jusqu'a l'uranium en passant par les aciers, permet d'obtenir d'excellents etats de surface. Une cristallisation tres fine peut etre obtenue sur les produits files lorsque le filage est tres lent. Rien ne parait s'opposer a ce que des filages rapides soient effectues avec cette methode. (auteur)

  16. Optical Measurement Technology For Aluminium Extrusions

    International Nuclear Information System (INIS)

    Moe, Per Thomas; Willa-Hansen, Arnfinn; Stoeren, Sigurd

    2007-01-01

    Optical measurement techniques such as laser scanning, structured light scanning and photogrammetry can be used for accurate shape control for aluminum extrusion and downstream processes. The paper presents the fundamentals of optical shape measurement. Furthermore, it focuses on how full-field in- and off-line shape measurement during pure-bending of aluminum extrusions has been performed with stripe projection (structured light) using white light. Full field shape measurement is difficult to implement industrially, but is very useful as a laboratory tool. For example, it has been clearly shown how moderate internal air pressure (less than 5 bars) can significantly reduce undesirable cross-sectional shape distortions during pure bending, and how buckling of the compressive flange occurs at an early stage. Finally, a stretch-bending set-up with adaptive shape control using internal gas pressure and optical techniques is presented

  17. Study on reactive extrusion processes of block copolymer

    International Nuclear Information System (INIS)

    Wu Lili; Jia Yuxi; Sun Sheng; Zhang Guofang; Zhao Guoqun; An Lijia

    2007-01-01

    The anionic copolymerization process of styrene-butadiene (S/B) block copolymer in a closely intermeshing co-rotating twin screw extruder with butyl-lithium initiator was studied. According to the anionic copolymerization mechanism and the reactive extrusion characteristics, the mathematical models of monomer conversion, average molecular weight and fluid viscosity during the anionic copolymerization of S/B were constructed, and then the reactive extrusion process was simulated by means of the finite volume method and the uncoupled semi-implicit iterative algorithm. Finally, the influence of the feeding mixture composition on conversion was discussed. The simulated results were nearly in agreement with the experimental results

  18. Extrusion and properties of lead zirconate titanate piezoelectric ceramics

    DEFF Research Database (Denmark)

    Cai, S.; Millar, C.E.; Pedersen, L.

    1997-01-01

    The purpose of this work was to develop a procedure for fabricating electroceramic actuators with good piezoelectric properties. The preparation of lead zirconate titanate (PZT) piezoelectric ceramic rods and tubes by extrusion processing is described. The microstructure of extrudates was investi......The purpose of this work was to develop a procedure for fabricating electroceramic actuators with good piezoelectric properties. The preparation of lead zirconate titanate (PZT) piezoelectric ceramic rods and tubes by extrusion processing is described. The microstructure of extrudates...

  19. Improvement of mechanical properties and corrosion resistance of biodegradable Mg-Nd-Zn-Zr alloys by double extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaobo, E-mail: xbxbzhang2003@163.com [School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167 (China); Wang, Zhangzhong [School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167 (China); Yuan, Guangyin [National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, Shanghai, 200240 (China); Xue, Yajun [School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167 (China)

    2012-08-01

    Highlights: Black-Right-Pointing-Pointer Microstructure of Mg-Nd-Zn-Zr alloys was refined and homogenized by double extrusion process. Black-Right-Pointing-Pointer The mechanical properties of the alloys were significantly enhanced by double extrusion. Black-Right-Pointing-Pointer The biocorrosion resistance of the alloys was improved by double extrusion. - Abstract: Mg-Nd-Zn-Zr alloy is a novel and promising biodegradable magnesium alloy due to good biocompatibility, desired uniform corrosion mode and outstanding corrosion resistance in simulated body fluid (SBF). However, the corrosion resistance and mechanical properties should be improved to meet the requirement of the biodegradable implants, such as plates, screws and cardiovascular stents. In the present study, double extrusion process was adopted to refine microstructure and improve mechanical properties of Mg-2.25Nd-0.11Zn-0.43Zr and Mg-2.70Nd-0.20Zn-0.41Zr alloys. The corrosion resistance of the alloys after double extrusion was also studied. The results show that the microstructure of the alloys under double extrusion becomes much finer and more homogeneous than those under once extrusion. The yield strength, ultimate tensile strength and elongation of the alloys under double extrusion are over 270 MPa, 300 MPa and 32%, respectively, indicating that outstanding mechanical properties of Mg-Nd-Zn-Zr alloy can be obtained by double extrusion. The results of immersion experiment and electrochemical measurements in SBF show that the corrosion resistance of Alloy 1 and Alloy 2 under double extrusion was increased by 7% and 8% respectively compared with those under just once extrusion.

  20. Improvement of mechanical properties and corrosion resistance of biodegradable Mg–Nd–Zn–Zr alloys by double extrusion

    International Nuclear Information System (INIS)

    Zhang, Xiaobo; Wang, Zhangzhong; Yuan, Guangyin; Xue, Yajun

    2012-01-01

    Highlights: ► Microstructure of Mg–Nd–Zn–Zr alloys was refined and homogenized by double extrusion process. ► The mechanical properties of the alloys were significantly enhanced by double extrusion. ► The biocorrosion resistance of the alloys was improved by double extrusion. - Abstract: Mg–Nd–Zn–Zr alloy is a novel and promising biodegradable magnesium alloy due to good biocompatibility, desired uniform corrosion mode and outstanding corrosion resistance in simulated body fluid (SBF). However, the corrosion resistance and mechanical properties should be improved to meet the requirement of the biodegradable implants, such as plates, screws and cardiovascular stents. In the present study, double extrusion process was adopted to refine microstructure and improve mechanical properties of Mg–2.25Nd–0.11Zn–0.43Zr and Mg–2.70Nd–0.20Zn–0.41Zr alloys. The corrosion resistance of the alloys after double extrusion was also studied. The results show that the microstructure of the alloys under double extrusion becomes much finer and more homogeneous than those under once extrusion. The yield strength, ultimate tensile strength and elongation of the alloys under double extrusion are over 270 MPa, 300 MPa and 32%, respectively, indicating that outstanding mechanical properties of Mg–Nd–Zn–Zr alloy can be obtained by double extrusion. The results of immersion experiment and electrochemical measurements in SBF show that the corrosion resistance of Alloy 1 and Alloy 2 under double extrusion was increased by 7% and 8% respectively compared with those under just once extrusion.

  1. Suitability of the Yield Criterion in Numerical Simulation of Stretch Bending of Aluminum Extrusions

    International Nuclear Information System (INIS)

    Li, X.Q.; Zhou, X.B.; Wu, X.D.; Gao, H.Z.

    2005-01-01

    Stretch bending is commonly used to shape thin-walled extrusions in aerospace and automotive industries. The extrusions are pre-stretched and bent over rigid curved dies. Effective application of this process demands sufficient knowledge of how different parameters influence the final shape of the product. Numerical simulation is an effective approach to investigate these issues presently. However, the validity of simulation result depends strongly on a precise description of the mechanical behavior of the material. Due to crystallographic texture caused by the extrusion process, aluminium extrusions exhibit significant plastic anisotropy which need be described by advanced constitutive model. In this work stretch bending of aluminum extrusions is simulated by using different anisotropic criteria (Hill quadratic, Barlat three-parameter). The influence of two yield criteria on predicting maximum die force immediately before unloading, permanent sagging and vertical springback displacement in the middle section of extrusion are compared. Maximum die force and springback calculated by two yield criteria are found to be almost same. Permanent sagging is obviously underestimated by two yield criteria, however, prediction by Barlat three-parameter is closer to experiment than one of Hill quadratic yield criterion

  2. Current deformation rates and extrusion of the northwestern Okhotsk plate, northeast Russia

    Science.gov (United States)

    Hindle, D.; Fujita, K.; Mackey, K.

    2006-01-01

    Northeast Asia is a region of broad deformation resulting from the convergence of the Eurasian (EU) and North American (NA) plates. Part of this convergence has been suggested to be relieved by the extrusion and deformation of the Okhotsk plate (OK). Three models for the deformation of the seismically active northwestern corner of the Okhotsk plate, based on different modes of deformation partitioning, are calculated and compared to observations from GPS, seismicity, and geology. The results suggest that this region is being extruded southeastward and deforming internally by a mixture of pure contraction, ``smooth'' extrusion, and ``rigid'' extrusion. Calculated extrusion rates are ~3-5.5 mm/yr, comparable to estimates from geologic data, and internal deformation rates are ~3.0 × 10-9 yr -1. Internal deformation may be only partially accommodated by seismicity, but the short time span of seismic data leaves this subject to large uncertainty.

  3. Numerical investigations on the lateral angular co-extrusion of aluminium and steel

    Science.gov (United States)

    Behrens, B.-A.; Klose, C.; Chugreev, A.; Thürer, S. E.; Uhe, J.

    2018-05-01

    In order to save weight and costs, different materials can be combined within one component. In the novel process chain being developed within the Collaborative Research Centre (CRC) 1153, joined semi-finished workpieces are used to produce hybrid solid components with locally adapted properties. Different materials are joined in an initial step before the forming process takes place. Hereby, the quality of the joining zone is improved by means of the thermo-mechanical treatment during the forming and machining processes. The lateral angular co-extrusion (LACE) approach is used to produce semi-finished workpieces because it allows for the production of coaxial semi-finished products consisting of aluminium and steel. In the further process chain, these semi-finished products are processed into hybrid bearing bushings with locally adapted properties by die forging. In the scope of this work, numerical investigations of the co-extrusion of aluminium-steel compounds were carried out using finite element (FE) simulation in order to examine the influence of the process parameters on the co-extrusion process. For this purpose, the relevant material properties of the aluminium alloy EN AW-6082 were determined experimentally and subsequently implemented in the numerical model. The obtained numerical model was used to study the impact of different ram speeds, press ratios and billet temperatures on the resulting extrusion forces and the material flow. The numerical results have been validated using force-time curves obtained from experimental extrusion tests carried out on a 2.5 MN laboratory extrusion press.

  4. Prediction of extrusion die wear by use of an artificial neural network

    International Nuclear Information System (INIS)

    Naidim, O.; Epureanu, A.; Tabacaru, V.

    2000-01-01

    In its vision of designing a technology, the process of optimisation of a material extrusion is an on-line process. The tool life is an important factor in selecting the objective function that represents the cost of the extruded product. This work is intended to realise the prediction of die wear evolution within the extrusion process, based on information obtained from numerical modelling. In order to reduce the number of experiments and to realise a flexible process of designing the necessary tools for an extrusion process, finite element (FE) modelling was used to determine designing space against the shape of the extruded product, the work conditions, the material and wear conditions. The information generated using FE was then used to train a neural network using backpropagation algorithm. Parameters considered in constructing neural networks include error tolerance, the factor of estimation of the 'best solution', the number of training cycles and the number of hidden layers. A general formula of calculus applicable in any extrusion process can be determined by establishing a relation between the stress state obtained within the extrusion process, deformation speed and friction on one hand, and wear on the other hand. The (1/W) parameter, where W is the tool wear in the active zone of the extrusion die, is a measure taken into account in calculating the die life as written in (1); this is the reason why it is important to make prediction of W value for geometries used in designing process or to optimise the die shape in order to reduce wear. (author)

  5. Deformations in micro extrusion of metals

    Directory of Open Access Journals (Sweden)

    J. Piwnik

    2010-07-01

    Full Text Available Production technologies of small dimensions metallic elements are known for a long time. They are produced by machining methods:turning, milling, polishing. Recently, methods for manufacturing small details by forming are developed – microforming. This process ischaracterized by the high dimensions accuracy and the surface smoothness of received items and the high production rate. When a forming process is scaled down to micro dimensions, the microstructure of the workpiece, the surface topology of the workpiece and that of the tooling remain unchanged. Size effect is appearing. This paper analyses specifications of a metal extrusion in micro scale. To determine the impact of the tool surface roughness on deformation process the numerical model of roughness as triangle wave were developed. In paper the influence of the wave presence on the material flow is described. Impact of the forming conditions on extrusion forces there is also characterized.

  6. Extrusion and drawing of zircaloy 2. Production of pressure tubes for EL-4

    International Nuclear Information System (INIS)

    Thevenet, J.

    1964-01-01

    The authors give briefly the physical mechanical and chemical properties of zircaloy 2, as far as the transformation of this alloy is concerned. Extrusion: After a few general remarks concerning the extrusion and co-extrusion, including a comparison of the deformation resistance of canning metals and of zircaloy 2, the following points are considered: - the difficulties occurring because of the use of this alloy: - atmosphere protection - adjustment on to the machine tools - low thermal conductivity - economy of the metal (price) - the factors affecting the quality of the extruded products extrusion under a copper can and under lubricant glass - fine grain structure - temperature homogeneity - working temperature The transformation cycle - '550 kg ingot - preliminary shape 'for drawing of EL-4 tubes (112 x 120 L 12 m)' - is described in detail (extrusion or forging of the φ = 340 ingot into φ = 220 billets, cutting into lengths and hot drilling at φ = 125, fixing into a copper can and rough extrusion). Drawing: The main difficulties are due to seizing of the tools and to the necessity of protecting the alloy from the atmosphere during annealings. A brief description is given of drawing out on a short mandrel, on a long mandrel, of laminating on a reducing machine and of the carrying out of an annealing, as well as of the production of EL-4 tubes (φ =107 x 113 L 430 m) by drawing out shapes having a size of 112 x 120 on long mandrels. Conclusion: It is possible by extrusion and drawing to produce zircaloy 2 tubes similar to those which may be obtained normally using stainless steel. (authors) [fr

  7. Cervical artificial disc extrusion after a paragliding accident.

    Science.gov (United States)

    Niu, Tianyi; Hoffman, Haydn; Lu, Daniel C

    2017-01-01

    Cervical total disc replacement (TDR) is an established alternative to anterior cervical discectomy and fusion (ACDF) with excellent long-term outcomes and low failure rates. Cases of implant failure and migration are scarce and primarily limited to several years postoperatively. The authors report a case of anterior extrusion of a C4-C5 ProDisc-C (DePuy Synthes, West Chester, PA, USA) cervical artificial disc (CAD) 14 months after placement due to minor trauma. A 33-year-old female who had undergone C4-C5 CAD implantation presented with neck pain and spasm after experiencing a paragliding accident. A 4 mm anterior protrusion of the CAD was seen on x-ray. She underwent removal of the CAD followed by anterior fusion. Other cases of CAD extrusion in the literature are discussed and the device's durability and testing are considered. Overall, CAD extrusion is a rare event. This case is likely the result of insufficient osseous integration. Patients undergoing cervical TDR should avoid high-risk activities to prevent trauma that could compromise the disc's placement, and future design/research should focus on how to enhance osseous integration at the interface while minimizing excessive heterotopic ossification.

  8. Extrusion-mixing compared with hand-mixing of polyether impression materials?

    Science.gov (United States)

    McMahon, Caroline; Kinsella, Daniel; Fleming, Garry J P

    2010-12-01

    The hypotheses tested were two-fold (a) whether altering the base:catalyst ratio influences working time, elastic recovery and strain in compression properties of a hand-mixed polyether impression material and (b) whether an extrusion-mixed polyether impression material would have a significant advantage over a hand-mixed polyether impression material mixed to the optimum base:catalyst ratio. The polyether was hand-mixed at the optimum (manufacturers recommended) base:catalyst ratios (7:1) and further groups were made by increasing or decreasing the catalyst length by 25%. Additionally specimens were also made from an extrusion-mixed polyether impression material and compared with the optimum hand-mixed base:catalyst ratio. A penetrometer assembly was used to measure the working time (n=5). Five cylindrical specimens for each hand-mixed and extrusion mixed group investigated were employed for elastic recovery and strain in compression testing. Hand-mixing polyether impression materials with 25% more catalyst than that recommended significantly decreased the working time while hand-mixing with 25% less catalyst than that recommended significantly increased the strain in compression. The extrusion-mixed polyether impression material provided similar working time, elastic recovery and strain in compression to the hand-mixed polyether mixed at the optimum base:catalyst ratio.

  9. Statistical reliability analyses of two wood plastic composite extrusion processes

    International Nuclear Information System (INIS)

    Crookston, Kevin A.; Mark Young, Timothy; Harper, David; Guess, Frank M.

    2011-01-01

    Estimates of the reliability of wood plastic composites (WPC) are explored for two industrial extrusion lines. The goal of the paper is to use parametric and non-parametric analyses to examine potential differences in the WPC metrics of reliability for the two extrusion lines that may be helpful for use by the practitioner. A parametric analysis of the extrusion lines reveals some similarities and disparities in the best models; however, a non-parametric analysis reveals unique and insightful differences between Kaplan-Meier survival curves for the modulus of elasticity (MOE) and modulus of rupture (MOR) of the WPC industrial data. The distinctive non-parametric comparisons indicate the source of the differences in strength between the 10.2% and 48.0% fractiles [3,183-3,517 MPa] for MOE and for MOR between the 2.0% and 95.1% fractiles [18.9-25.7 MPa]. Distribution fitting as related to selection of the proper statistical methods is discussed with relevance to estimating the reliability of WPC. The ability to detect statistical differences in the product reliability of WPC between extrusion processes may benefit WPC producers in improving product reliability and safety of this widely used house-decking product. The approach can be applied to many other safety and complex system lifetime comparisons.

  10. Effect of rapid cooling and extrusion ratio on the mechanical property of Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taek-Soo, E-mail: tskim@kitech.re.k [Center for Echo Materials and Processing, Korea Institute of Industrial Technology, 7-47 Techno-park Songdo, Incheon 406-130 (Korea, Republic of)

    2010-08-15

    Mg{sub 95}Zn{sub 4.3}Y{sub 0.7} (at.%) alloy powders were prepared using an inert gas atomizer, followed by warm extrusion. The powders were almost spherical in shape, and the grain size, compared with the cast product, was fine being less than 5 {mu}m. The microstructure of bars extruded was examined as a function of the extrusion ratio using scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDS) and X-ray diffractometer (XRD). As the extrusion ratio increased from 10:1 to 20:1, the powders fully deformed with refining the grain size. Both the ultimate strength and elongation also showed a dependence on the extrusion ratio.

  11. Melting, casting, and alpha-phase extrusion of the uranium-2.4 weight percent niobium alloy

    International Nuclear Information System (INIS)

    Anderson, R.C.; Beck, D.E.; Kollie, T.G.; Zorinsky, E.J.; Jones, J.M.

    1981-10-01

    The experimental details of the melting, casting, homogenization, and alpha-phase extrusion process used to fabricate the uranium-2.4 wt % niobium alloy into 46-mm-diameter rods is described. Extrusion defects that were detected by an ultrasonic technique were eliminated by proper choice of extrusion parameters; namely, reduction ratio, ram speed, die angle, and billet preheat temperature

  12. 75 FR 73041 - Aluminum Extrusions From the People's Republic of China: Postponement of Final Determination of...

    Science.gov (United States)

    2010-11-29

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-967] Aluminum Extrusions From the... investigation of aluminum extrusions from the People's Republic of China (``PRC'') on April 27, 2010.\\1\\ On..., 2011. \\1\\ See Aluminum Extrusions from the People's Republic of China: Initiation of Antidumping Duty...

  13. 75 FR 34982 - Aluminum Extrusions from the People's Republic of China: Notice of Postponement of Preliminary...

    Science.gov (United States)

    2010-06-21

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-968] Aluminum Extrusions from the... in the Federal Register a notice of initiation of the countervailing duty investigation of aluminum extrusions from the People's Republic of China. See Aluminum Extrusions From the People's Republic of China...

  14. Osmotic mechanism of the loop extrusion process

    Science.gov (United States)

    Yamamoto, Tetsuya; Schiessel, Helmut

    2017-09-01

    The loop extrusion theory assumes that protein factors, such as cohesin rings, act as molecular motors that extrude chromatin loops. However, recent single molecule experiments have shown that cohesin does not show motor activity. To predict the physical mechanism involved in loop extrusion, we here theoretically analyze the dynamics of cohesin rings on a loop, where a cohesin loader is in the middle and unloaders at the ends. Cohesin monomers bind to the loader rather frequently and cohesin dimers bind to this site only occasionally. Our theory predicts that a cohesin dimer extrudes loops by the osmotic pressure of cohesin monomers on the chromatin fiber between the two connected rings. With this mechanism, the frequency of the interactions between chromatin segments depends on the loading and unloading rates of dimers at the corresponding sites.

  15. Apical extrusion of debris in four different endodontic instrumentation systems: A meta-analysis.

    Science.gov (United States)

    Western, J Sylvia; Dicksit, Daniel Devaprakash

    2017-01-01

    All endodontic instrumentation systems tested so far, promote apical extrusion of debris, which is one of the main causes of postoperative pain, flare ups, and delayed healing. Of this meta-analysis was to collect and analyze in vitro studies quantifying apically extruded debris while using Hand ProTaper (manual), ProTaper Universal (rotary), Wave One (reciprocating), and self-adjusting file (SAF; vibratory) endodontic instrumentation systems and to determine methods which produced lesser extrusion of debris apically. An extensive electronic database search was done in PubMed, Scopus, Cochrane, LILACS, and Google Scholar from inception until February 2016 using the key terms "Apical Debris Extrusion, extruded material, and manual/rotary/reciprocating/SAF systems." A systematic search strategy was followed to extract 12 potential articles from a total of 1352 articles. The overall effect size was calculated from the raw mean difference of weight of apically extruded debris. Statistically significant difference was seen in the following comparisons: SAF ProTaper. Apical extrusion of debris was invariably present in all the instrumentation systems analyzed. SAF system seemed to be periapical tissue friendly as it caused reduced apical extrusion compared to Rotary ProTaper and Wave One.

  16. The FEM simulation of continuous rotary extrusion (CRE) of aluminum alloy AA3003

    Science.gov (United States)

    Rajendran, Nijenthan; Valberg, Henry; Misiolek, Wojciech Z.

    2017-10-01

    Continuous Rotary Extrusion (CRE) process is also known in literature under Conform TM name and it is mainly used for the continuous extrusion of Aluminum and Copper alloys. CRE use a feedstock in the form of rod, powders and chips, which are fed into the groove of the rotating wheel. As the wheel rotates the feedstock moves along with it due to friction with the wheel. Once the feedstock reaches the abutment the material deforms plastically and it is extruded through the die. CRE has lot to offer when compared to other more conventional extrusion processes such as low energy input, no limit in billet length as it is a continuous process as well as improved material physical properties due to plastic deformation under constant parameters. In this work a FEM model has been developed using Deform TM 3D, to study the metal flow and state variables of AA3003 CRE extrusion. The effect of extrusion wheel velocity has been investigated. The results show that increase in wheel velocity will heat up the feedstock metal due to high shear deformation and higher friction, which significantly changes metal flow conditions at the die exit.

  17. Reduction of fumonisin B₁ in corn grits by twin-screw extrusion.

    Science.gov (United States)

    Jackson, Lauren S; Jablonski, Joseph; Bullerman, Lloyd B; Bianchini, Andreia; Hanna, Milford A; Voss, Kenneth A; Hollub, April D; Ryu, Dojin

    2011-08-01

    This study was designed to investigate the fate of fumonisins in flaking corn grits during twin-screw extrusion by measuring fumonisin B₁ (FB₁) and its analogs with a mass balance approach. Food grade corn grits and 2 batches of grits contaminated with FB₁ at 10 and 50 μg/g by Fusarium verticillioides M-2552 were processed with or without glucose supplementation (10%, w/w) with a twin-screw extruder. Extrusion reduced FB₁ in contaminated grits by 64% to 72% without glucose and 89% to 94% with added glucose. In addition, extrusion alone resulted in 26% to 73% reduction in the levels of fumonisin B₂ and fumonisin B₃, while levels of both mycotoxins were reduced by >89% in extruded corn grits containing 10% glucose. Mass balance analysis showed that 38% to 46% of the FB₁ species detected in corn extruded with glucose was N-(deoxy-D-fructos-1-yl)-FB₁, while 23% to 37% of FB₁ species detected in extruded corn grits with and without added glucose was bound to the matrix. It was also found that the hydrolyzed form of FB₁ was a minor species in extruded corn grits with or without added glucose, representing fumonisin analogues measured in this study. Research is needed to identify the reaction products resulting from extrusion processing of fumonisin-contaminated corn products. Twin-screw extrusion is widely used in food industry for its versatility. This technology may reduce the level of fumonisins in corn particularly with added glucose. Journal of Food Science © 2011 Institute of Food Technologists® No claim to original US government works.

  18. Coupled analysis of material flow and die deflection in direct aluminum extrusion

    NARCIS (Netherlands)

    Assaad, W.; Geijselaers, Hubertus J.M.

    2010-01-01

    The design of extrusion dies depends on the experience of the designer. After the die has been manufactured, it is tested during an extrusion trial and machined several times until it works properly. The die is designed by a trial and error method which is an expensive process in terms of time and

  19. Proton exchange membranes based on PVDF/SEBS blends

    Energy Technology Data Exchange (ETDEWEB)

    Mokrini, A.; Huneault, M.A. [Industrial Materials Institute, National Research Council of Canada, 75 de Mortagne Blvd., Boucherville, Que. (Canada J4B 6Y4)

    2006-03-09

    Proton-conductive polymer membranes are used as an electrolyte in the so-called proton exchange membrane fuel cells. Current commercially available membranes are perfluorosulfonic acid polymers, a class of high-cost ionomers. This paper examines the potential of polymer blends, namely those of styrene-(ethylene-butylene)-styrene block copolymer (SEBS) and polyvinylidene fluoride (PVDF), in the proton exchange membrane application. SEBS/PVDF blends were prepared by twin-screw extrusion and the membranes were formed by calendering. SEBS is a phase-segregated material where the polystyrene blocks can be selectively functionalized offering high ionic conductivity, while PVDF insures good dimensional stability and chemical resistance to the films. Proton conductivity of the films was obtained by solid-state grafting of sulfonic acid moieties. The obtained membranes were characterized in terms of conductivity, ionic exchange capacity and water uptake. In addition, the membranes were characterized in terms of morphology, microstructure and thermo-mechanical properties to establish the blends morphology-property relationships. Modification of interfacial properties between SEBS and PVDF was found to be a key to optimize the blends performance. Addition of a methyl methacrylate-butyl acrylate-methyl methacrylate block copolymer (MMA-BA-MMA) was found to compatibilize the blend by reducing the segregation scale and improving the blend homogeneity. Mechanical resistance of the membranes was also improved through the addition of this compatibilizer. As little as 2wt.% compatibilizer was sufficient for complete interfacial coverage and lead to improved mechanical properties. Compatibilized blend membranes also showed higher conductivities, 1.9x10{sup -2} to 5.5x10{sup -3}Scm{sup -1}, and improved water management. (author)

  20. THE IMPACT OF EXTRUSION ON THE BIOGAS AND BIOMETHANE YIELD OF PLANT SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Krzysztof Pilarski

    2016-09-01

    Full Text Available The objective of the present work was to determine the effect of pretreatment by extrusion on the biogas and biomethane yield of lignocellulosic substrates such as maize silage and maize straw silage. The biogas yields of the substrates before and after treatment were compared. Moreover, energy efficiency of pretreatment by extrusion was analyzed in order to assess the applicability of the process in an agricultural biogas plant. Extrusion tests were carried out in a short single-screw extruder KZM-2 in which the length-to-diameter ratio of the screw was 6:1 and rotational speed was 200 rpm. The biogas yield tests of the plant substrates after extrusion were carried out in a laboratory scale, using 15 biofermenters operated in a periodic manner, at a constant temperature of 39°C (mesophilic digestion and controlled pH conditions. The gas-emission analysis was performed using a certified gas analyzer from Geotech GA5000. Pretreatment by extrusion was observed to improve the quantity of methane generated: in terms of fresh matter for maize silage subjected to extrusion, the methane yield was 16.48% higher than that of the non-extruded silage. On the other hand, maize straw silage after extrusion gave 35.30% more methane than did the same, non-extruded, material. Differences in yields relative to dry organic matter are also described in this paper. Taking into account the amount of energy that is spent on pretreatment and the generated amount of methane, the energy balance for the process gives an idea of the economics of the operation. For maize silage, energy efficiency was lower by 13.21% (-553.2 kWh/Mg, in contrast to maize straw silage, where the increase in energy was 33.49% (678.4 kWh/Mg. The obtained results indicate that more studies on the pretreatment and digestion of maize silage are required in order to improve the efficiency of its use for making biogas. To fully utilize its potential, it is necessary to know thoroughly the effect of

  1. Equal Channel Angular Extrusion Simulation of High-Nb Containing β-γ TiAl Alloys

    Directory of Open Access Journals (Sweden)

    Lai-qi Zhang

    2015-01-01

    Full Text Available TiAl alloys containing high Nb are significantly promising for high-temperature structural applications in aerospace and automotive industries. Unfortunately the low plasticity at room temperature limits their extensive applications. To improve the plasticity, not only optimizing the opposition, but also refining grain size through equal channel angular extrusion (ECAE is necessary. The equal channel angular extrusion simulation of Ti-44Al-8Nb-(Cr,Mn,B,Y(at% alloy was investigated by using the Deform-3D software. The influences of friction coefficient, extrusion velocity, and different channel angles on effective strain, damage factor, and the load on the die were analyzed. The results indicate that, with the increasing of friction coefficient, effective strain is enhanced. The extrusion velocity has little effect on the uniformity of effective strain; in contrast it has large influence on the damage factor. Thus smaller extrusion rate is more appropriate. Under the condition of different channel angles, the larger one results in the lower effective strain magnitude and better strain distribution uniformity.

  2. Study on lead extrusion damper as a seismic support

    International Nuclear Information System (INIS)

    Nomura, T.; Kojima, N.; Fujita, K.; Ito, T.

    1989-01-01

    The fundamental characteristics of two types of lead extrusion dampers (cylinder type, rotary type) for use as the nuclear power plant piping support of the elasto-plastic of damper are clarified. As a result, these lead extrusion dampers are found to have the following dynamic characteristics: hysteresis loop is both rectangular shape and bi-linear shape; maximum reaction force is independent of velocity and frequency but it increases as displacement exceeds the specified value; and the dissipated energy is very large and is independent of velocity, frequency and initial displacement (i.e., thermal expansion of pipings) in the range of test

  3. Analysis of Material Flow in Screw Extrusion of Aluminum

    International Nuclear Information System (INIS)

    Haugen, Bjoern; Oernskar, Magnus; Welo, Torgeir; Wideroee, Fredrik

    2010-01-01

    Screw extrusion of aluminum is a new process for production of aluminum profiles. The commercial potential could be large. Little experimental and numerical work has been done with respect to this process.The material flow of hot aluminum in a screw extruder has been analyzed using finite element formulations for the non-Newtonian Navier-Stokes equations. Aluminum material properties are modeled using the Zener-Holloman material model. Effects of stick-slip conditions are investigated with respect to pressure build up and mixing quality of the extrusion process.The numerical results are compared with physical experiments using an experimental screw extruder.

  4. Oxidation reaction of ferrocytochrome C by ferricyanide as a probe to effects of alcohols on structure and reactivity of the protein. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Ilan, Y.; Shafferman, A.

    1977-05-01

    Results are reported on the effect of ethanol on the oxidation of ferrocytochrome c by ferricyanide and its cumulative effect with pH and temperature, on structure and spectra of cytochrome c. It is concluded that low concentrations of alcohols which do not change dramatically the structure and physical properties of cytochrome c, but produce changes in the structure of water, cause small changes in the structure of the protein. This is manifested by the shift in the pKa, and also in the retardation of the redox reactions. This indicates that water molecules participate in the reaction complex of cytochrome c with its redox substrates. (DLC)

  5. An osteophyte in the tibial plateau is a risk factor for allograft extrusion after meniscus allograft transplantation.

    Science.gov (United States)

    Jeon, Byeongsam; Kim, Jong-Min; Kim, Jong-Min; Lee, Chang-Rack; Kim, Kyung-Ah; Bin, Seong-Il

    2015-05-01

    Osteophytes can be observed on the tibial plateau during meniscus allograft transplantation (MAT). However, no studies to date have evaluated the effect of these osteophytes on meniscus allograft extrusion. Osteophyte excision in the tibial plateau could reduce extrusion of the transplanted meniscus and improve short-term clinical outcomes with meniscus allograft transplantation. Cohort study; Level of evidence, 3. Between October 2004 and July 2012, a total of 323 patients underwent MAT at a single institution. Of these, 88 patients had a peripheral osteophyte in their tibial plateau, and they were enrolled in the study retrospectively. The mean age of the patients was 35.3 years (range, 15-56 years); there were 57 male and 31 female patients. Forty-four patients underwent osteophyte excision concomitantly with MAT and 44 patients underwent MAT only. The 2 groups showed no difference in terms of age, body mass index, time after meniscectomy, and preoperative knee scores. A medial meniscus allograft was transplanted in 13 cases (15%) and a lateral meniscus in 75 (85%). The absolute extrusion and relative percentage of extrusion were measured to evaluate allograft extrusion 12 months after MAT. The modified Lysholm scoring system and the Hospital for Special Surgery score at 2 years after MAT were used to evaluate clinical outcomes. The mean absolute extrusions at 1 year postoperatively in the excision and nonexcision groups were 3.5±1.5 and 5.5±1.6 mm, respectively. The mean relative percentages of extrusion were 34.1%±15.9% and 54.7%±20.7%, respectively. The rates of allograft extrusion (>3 mm) were 28 of 44 (63.6%) and 41 of 44 (93.2%) in the excision and nonexcision groups, respectively. The intergroup differences in absolute extrusion, relative percentage of extrusion, and rate of allograft extrusion were statistically significant (P<.001 for all 3 parameters). There were no significant differences in the clinical outcomes (modified Lysholm or Hospital of

  6. Development of poloxamer gel formulations via hot-melt extrusion technology.

    Science.gov (United States)

    Mendonsa, Nicole S; Murthy, S Narasimha; Hashemnejad, Seyed Meysam; Kundu, Santanu; Zhang, Feng; Repka, Michael A

    2018-02-15

    Poloxamer gels are conventionally prepared by the "hot" or the "cold" process. But these techniques have some disadvantages such as high energy consumption, requires expensive equipment and often have scale up issues. Therefore, the objective of this work was to develop poloxamer gels by hot-melt extrusion technology. The model drug selected was ketoprofen. The formulations developed were 30% and 40% poloxamer gels. Of these formulations, the 30% poloxamer gels were selected as ideal gels. DSC and XRD studies showed an amorphous nature of the drug after extrusion. It was observed from the permeation studies that with increasing poloxamer concentration, a decrease in drug permeation was obtained. Other studies conducted for the formulations included in-vitro release studies, texture analysis, rheological studies and pH measurements. In conclusion, the hot-melt extrusion technology could be successfully employed to develop poloxamer gels by overcoming the drawbacks associated with the conventional techniques. Published by Elsevier B.V.

  7. Reduction of Fumonisin Toxicity by Extrusion and Nixtamalization (Alkaline Cooking).

    Science.gov (United States)

    Voss, Kenneth; Ryu, Dojin; Jackson, Lauren; Riley, Ronald; Gelineau-van Waes, Janee

    2017-08-23

    Fumonisins are mycotoxins found in corn. They are toxic to animals and cause cancer in rodents and neural tube defects in LM/Bc mice. Reducing their concentrations in corn-based foods is therefore desirable. Chemical analysis or in vitro bioassays of food extracts might not detect toxic fumonisin reaction products that are unknown or unextractable from food matrices, thus potentially underestimating in vivo toxicity. The effectiveness of two common cooking methods, extrusion and nixtamalization (alkaline cooking), to reduce the toxicity of fumonisin-contaminated corn grits (extrusion) and whole kernel corn (nixtamalization) was shown by means of rat feeding bioassays using fumonisin-specific kidney effects as indicators of potential toxicity. A third bioassay showed that in contrast to fumonisin B 1 (FB 1 ), hydrolyzed fumonisin B 1 (HFB 1 ; formed from FB 1 during nixtamalization) did not cause neural tube defects in LM/Bc mice. The findings indicate that extrusion and nixtamalization reduce the potential toxicity of FB 1 -contaminated corn.

  8. Inductive ingot heating for extrusion press applications; Induktive Bolzenerwaermung fuer Strangpressanwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Stefan [I.A.S. Induktions-Anlagen + Service GmbH und Co. KG, Iserlohn (Germany)

    2013-03-15

    Inductive heating of large-format aluminium ingots on modern extrusion press lines generates significant process-engineering benefits. In addition, the proportion of special alloys processed is continuously increasing, accompanied simultaneously by ever smaller production batches, both of which are factors necessitating improvement of and greater flexibility in process-cycle control. This report examines a system concept recently commissioned on one of the world's largest aluminium extrusion presses. (orig.)

  9. FEM simulation of friction testing method based on combined forward rod-backward can extrusion

    DEFF Research Database (Denmark)

    Nakamura, T; Bay, Niels; Zhang, Z. L

    1997-01-01

    A new friction testing method by combined forward rod-backward can extrusion is proposed in order to evaluate frictional characteristics of lubricants in forging processes. By this method the friction coefficient mu and the friction factor m can be estimated along the container wall and the conical...... curves are obtained by rigid-plastic FEM simulations in a combined forward rod-backward can extrusion process for a reduction in area R-b = 25, 50 and 70 percent in the backward can extrusion. It is confirmed that the friction factor m(p) on the punch nose in the backward cart extrusion has almost...... in a mechanical press with aluminium alloy A6061 as the workpiece material and different kinds of lubricants. They confirm the analysis resulting in reasonable values for the friction coefficient and the friction factor....

  10. Analysis and modeling of hot extrusion die for its service life enhancement

    Science.gov (United States)

    Akhtar, Syed Sohail

    Aluminum extrusion finds extensive application in the construction, automobile and aerospace industries. High pressures, elevated temperatures, complex and intricate section geometries lead to repeated mechanical and thermal stresses in the die and affiliated tooling. Product rework and rejects can be traced back to various defects spread over the die life cycle: die design, die manufacture and heat treatment, process parameters, inprocess die maintenance/correction and, billet type and quality. Therefore, improved and efficient service life of die and related tooling used in the extrusion press is one the most important factors in maximizing productivity and minimizing cost for ensuring the economical efficiency of an aluminum extrusion plant. How often a die has to be scrapped and replaced with a new one directly contributes to the commercial viability of producing a certain profile. The focus of the current work is on three distinct yet inter-related studies pertaining to the improvement of aluminum extrusion die. Study-A (Die Failure Analysis) is an investigation of various modes and critical failure types based on industrial data (Chapter-2 ), examination of failed dies and finite element simulation for identification of critical process parameters and design features in die fatigue-life (Chapter-3). In Study-B (Die Surface Hardening Treatment), two-stage controlled gas nitriding process for H13 steel is evaluated, both experimentally and numerically, in terms of nitrided case morphology and properties (Chapter-4) followed by experimental and numerical investigation of the effects of repeated nitriding (Chapter-5), pre-nitriding surface preparation (Chapter-6) and die profile geometry (Chapter-7) on nitriding performance in regard to die service life. In Study-C (Effect of Billet Quality on Die Life), the effect of billet quality and related influencing extrusion parameters on the die service life is investigated based on industrial data and some regression

  11. Hydrodynamic modelling of hydrostatic magnesium extrusion

    NARCIS (Netherlands)

    Moodij, Ellen; de Rooij, Matthias B.; Schipper, Dirk J.

    2006-01-01

    Wilson’s hydrodynamic model of the hydrostatic extrusion process is extended to meet the geometry found on residual billets. The transition from inlet to work zone of the process is not considered sharp as in the model of Wilson but as a rounded edge, modelled by a parabolic function. It is shown

  12. Extrusion Processing of Raw Food Materials and by-products: A Review.

    Science.gov (United States)

    Offiah, Vivian; Kontogiorgos, Vassilis; Falade, Kolawole O

    2018-05-22

    Extrusion technology has rapidly transformed the food industry with its numerous advantages over other processing methods. It offers a platform for processing different products from various food groups by modifying minor or major ingredients and processing conditions. Although cereals occupy a large portion of the extruded foods market, several other types of raw materials have been used. Extrusion processing of various food groups, including cereals and pseudo cereals, roots and tubers, pulses and oilseeds, fruits and vegetables, and animal products, as well as structural and nutritional changes in these food matrices are reviewed. Value addition by extrusion to food processing wastes and by-products from fruits and vegetables, dairy, meat and seafood, cereals and residues from starch, syrup and alcohol production, and oilseed processing are also discussed. Extrusion presents an economical technology for incorporating food processing residues and by-products back into the food stream. In contemporary scenarios, rising demand for extruded products with functional ingredients, attributed to evolving lifestyles and preferences, have led to innovations in the form, texture, color and content of extruded products. Information presented in this review would be of importance to processors and researchers as they seek to enhance nutritional quality and delivery of extruded products.

  13. Characterisation of the wall-slip during extrusion of heavy-clay products

    Science.gov (United States)

    Kocserha, I.; Gömze, A. L.; Kulkov, S.; Kalatur, E.; Buyakova, S. P.; Géber, R.; Buzimov, A. Y.

    2017-01-01

    During extrusion through the extrusion die, heavy-clay compounds are usually show plug flow with extensive slip at the wall of the die. In this study, the viscosity and the thickness of the slip layer were investigated. For the examination a brick-clay from Malyi (Hungary) deposit was applied as a raw material. The clay was characterised by XRPD, BET, SEM and granulometry. As the slip layer consists of suspension of the fine clay fraction so the clay minerals content of the clay (dviscosity of suspension with different water content was measured by means of rotational viscosimeter. The thickness of the slip layer was calculated from the measured viscosity and other data obtained from an earlier study with capillary rheometer. The calculated thickness value showed a tendency to reach a limit value by increasing the extrusion speed.

  14. Microstructure and properties of ultrafine grain nickel 200 after hydrostatic extrusion processes

    Science.gov (United States)

    Sitek, R.; Krajewski, C.; Kamiński, J.; Spychalski, M.; Garbacz, H.; Pachla, W.; Kurzydłowski, K. J.

    2012-09-01

    This paper presents the results of the studies of the structure and properties of ultrafine grained nickel 200 obtained by hydrostatic extrusion processes. Microstructure was characterized by means of optical microscopy and electron transmission microscopy. Corrosion resistance was studied by impedance and potentiodynamic methods using an AutoLab PGSTAT 100 potentiostat in 0.1 M Na2SO4 solution and in acidified (by addition of H2SO4) 0.1 M NaCl solution at pH = 4.2 at room temperature. Microhardness tests were also performed. The results showed that hydrostatic extrusion produces a heterogeneous, ultrafine-grained microstructure in nickel 200. The corrosive resistance tests showed that the grain refinement by hydrostatic extrusion is accompanied by a decreased corrosive resistance of nickel 200.

  15. Experimental and finite element analyses of plastic deformation behavior in vortex extrusion

    International Nuclear Information System (INIS)

    Shahbaz, M.; Pardis, N.; Kim, J.G.; Ebrahimi, R.; Kim, H.S.

    2016-01-01

    Vortex extrusion (VE) is a single pass severe plastic deformation (SPD) technique which can impose high strain values with almost uniform distribution within cross section of the processed material. This technique needs no additional facilities for installation on any conventional extrusion equipment. In this study the deformation behavior of material during VE is investigated and the results are compared with those of conventional extrusion (CE). These investigations include finite element analysis, visioplasticity, and microstructural characterization of the processed samples. The results indicate that the VE process can accumulate a higher strain value by applying an additional torsional deformation. The role of this additional deformation mode on the microstructural evolution of the VE sample is discussed and compared with the results obtained on the CE samples.

  16. Extrusion Process by Finite Volume Method Using OpenFoam Software

    International Nuclear Information System (INIS)

    Matos Martins, Marcelo; Tonini Button, Sergio; Divo Bressan, Jose; Ivankovic, Alojz

    2011-01-01

    The computational codes are very important tools to solve engineering problems. In the analysis of metal forming process, such as extrusion, this is not different because the computational codes allow analyzing the process with reduced cost. Traditionally, the Finite Element Method is used to solve solid mechanic problems, however, the Finite Volume Method (FVM) have been gaining force in this field of applications. This paper presents the velocity field and friction coefficient variation results, obtained by numerical simulation using the OpenFoam Software and the FVM to solve an aluminum direct cold extrusion process.

  17. 75 FR 51243 - Aluminum Extrusions from the People's Republic of China: Postponement of Preliminary...

    Science.gov (United States)

    2010-08-19

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-967] Aluminum Extrusions from the... Department of Commerce (``the Department'') initiated an antidumping duty investigation on Aluminum... Aluminum Extrusions from the People's Republic of China: Initiation of Antidumping Duty Investigation, 75...

  18. Dimensional accuracy of aluminium extrusions in mechanical calibration

    Science.gov (United States)

    Raknes, Christian Arne; Welo, Torgeir; Paulsen, Frode

    2018-05-01

    Reducing dimensional variations in the extrusion process without increasing cost is challenging due to the nature of the process itself. An alternative approach—also from a cost perspective—is using extruded profiles with standard tolerances and utilize downstream processes, and thus calibrate the part within tolerance limits that are not achievable directly from the extrusion process. In this paper, two mechanical calibration strategies for the extruded product are investigated, utilizing the forming lines of the manufacturer. The first calibration strategy is based on global, longitudinal stretching in combination with local bending, while the second strategy utilizes the principle of transversal stretching and local bending of the cross-section. An extruded U-profile is used to make a comparison between the two methods using numerical analyses. To provide response surfaces with the FEA program, ABAQUS is used in combination with Design of Experiment (DOE). DOE is conducted with a two-level fractional factorial design to collect the appropriate data. The aim is to find the main factors affecting the dimension accuracy of the final part obtained by the two calibration methods. The results show that both calibration strategies have proven to reduce cross-sectional variations effectively form standard extrusion tolerances. It is concluded that mechanical calibration is a viable, low-cost alternative for aluminium parts that demand high dimensional accuracy, e.g. due to fit-up or welding requirements.

  19. 77 FR 74466 - Aluminum Extrusions From the People's Republic of China: Notice of Court Decision Not in Harmony...

    Science.gov (United States)

    2012-12-14

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-968] Aluminum Extrusions From the... countervailing duty (CVD) investigation of aluminum extrusions from the People's Republic of China (PRC) \\1... Aluminum Extrusions From the People's Republic of China: Final Affirmative Countervailing Duty...

  20. Friction phenomena in hydrostatic extrusion of magnesium

    NARCIS (Netherlands)

    Moodij, Ellen

    2014-01-01

    When magnesium is hydrostatically extruded an inconsistent and sometimes bad surface quality is encountered. In hydrostatic extrusion the billet is surrounded by a lubricant, usually castor oil. The required pressure to deform the material is applied onto this lubricant and not directly to the

  1. Debris extrusion by glide-path establishing endodontic instruments with different geometries

    Directory of Open Access Journals (Sweden)

    Jung-Hong Ha

    2016-06-01

    Conclusion: Creating the glide-path using nickel-titanium rotary files produced lower amounts of debris extrusion than using manual stainless-steel files. The progressive taper design of ProGlider, the center-off cross-section of One G, and the alternative-pitch design of ScoutRace may have increased the efficiencies of debris removal with minimal extrusion during glide-path preparation. Glide-path preparation using NiTi rotary files have better clinical efficiency than the manual stainless-steel file.

  2. Concept Feasibility Report for Using Co-Extrusion to Bond Metals to Complex Shapes of U-10Mo

    Energy Technology Data Exchange (ETDEWEB)

    Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Paxton, Dean M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Mark T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Soulami, Ayoub [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-12-01

    In support of the Convert Program of the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA) Global Threat Reduction Initiative (GTRI), Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum (U-10Mo) alloy plate fuel for the U.S. high-performance research reactors (USHPRR). This report documents the results of PNNL’s efforts to develop the extrusion process for this concept. The approach to the development of a co-extruded complex-shaped fuel has been described and an extrusion of DU-10Mo was made. The initial findings suggest that given the extrusion forces required for processing U-10Mo, the co-extrusion process can meet the production demands of the USHPRR fuel and may be a viable production method. The development activity is in the early stages and has just begun to identify technical challenges to address details such as dimensional tolerances and shape control. New extrusion dies and roll groove profiles have been developed and will be assessed by extrusion and rolling of U-10Mo during the next fiscal year. Progress on the development and demonstration of the co-extrusion process for flat and shaped fuel is reported in this document

  3. Effect of extrusion conditions on the physico-chemical properties and in vitro protein digestibility of canola meal.

    Science.gov (United States)

    Zhang, Bo; Liu, Guo; Ying, Danyang; Sanguansri, Luz; Augustin, Mary Ann

    2017-10-01

    Canola meal has potential as a high protein food ingredient. The extrusion-induced changes in color, pH, extractable protein and in vitro protein digestibility of canola meal under different extrusion conditions was assessed. The extrusion barrel moisture (24%, 30% or 36%) and screw kneading block length (0, 30 or 60mm) were used as independent process parameters. Extrusion at high barrel moisture (36%) favored protein aggregation resulting in lower extractable protein compared to extrusion at the lowest barrel moisture (24%). At lower barrel moisture contents (24% and 30%), a longer kneading block length increased extractable protein but this was not the case at 36% barrel moisture. Canola protein digestibility was improved upon extrusion at 30% barrel moisture but there was no significant change at lower (24%) or higher (36%) barrel moisture. The kneading block length of the screw had no significant effect on the canola protein digestibility within the same barrel moisture level. The relationship between the physico-chemical parameters and in vitro digestibility was examined. This study highlighted the complex interplay of extrusion processing variables that affect protein degradation and the interaction of components, with consequent effects on protein digestibility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Recent Advances in Extrusion-Based 3D Printing for Biomedical Applications.

    Science.gov (United States)

    Placone, Jesse K; Engler, Adam J

    2018-04-01

    Additive manufacturing, or 3D printing, has become significantly more commonplace in tissue engineering over the past decade, as a variety of new printing materials have been developed. In extrusion-based printing, materials are used for applications that range from cell free printing to cell-laden bioinks that mimic natural tissues. Beyond single tissue applications, multi-material extrusion based printing has recently been developed to manufacture scaffolds that mimic tissue interfaces. Despite these advances, some material limitations prevent wider adoption of the extrusion-based 3D printers currently available. This progress report provides an overview of this commonly used printing strategy, as well as insight into how this technique can be improved. As such, it is hoped that the prospective report guides the inclusion of more rigorous material characterization prior to printing, thereby facilitating cross-platform utilization and reproducibility. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Forward impact extrusion of surface textured steel blanks using coated tooling

    Science.gov (United States)

    Hild, Rafael; Feuerhack, Andreas; Trauth, Daniel; Arghavani, Mostafa; Kruppe, Nathan C.; Brögelmann, Tobias; Bobzin, Kirsten; Klocke, Fritz

    2017-10-01

    A method to enable dry metal forming by the means of a self-lubricating coating and surface textures was researched using an innovative Pin-On-Cylinder-Tribometer. The experimental analysis was complemented by a numerical model of the complex contact conditions between coated tools and the surface textured specimen at the micro-level. Based on the results, the explanation of the tribological interactions between surface textured specimens and the tool in dry full forward extrusion is the objective of this work. Therefore, experimental dry extrusion tests were performed using a tool system. The extruded specimens were evaluated regarding their geometry as well as by the required punch force. Thereby, the effectiveness and the feasibility of dry metal forming on the example of full forward extrusion was evaluated. Thus, one more step towards the technical realization of dry metal forming of low alloy steels under industrial conditions was realized.

  6. Investigation of the process energy demand in polymer extrusion: A brief review and an experimental study

    International Nuclear Information System (INIS)

    Abeykoon, Chamil; Kelly, Adrian L.; Brown, Elaine C.; Vera-Sorroche, Javier; Coates, Phil D.; Harkin-Jones, Eileen; Howell, Ken B.; Deng, Jing; Li, Kang; Price, Mark

    2014-01-01

    Highlights: • Energy consumption and losses in polymer extrusion are discussed. • This compares energy consumption in polymer extrusion at different conditions. • The role of power factor on energy efficiency in polymer extrusion is explored. • Empirical models on extruder energy consumption are provided. • Computer modelling of energy consumption of polymer extrusion is performed. - Abstract: Extrusion is one of the fundamental production methods in the polymer processing industry and is used in the production of a large number of commodities in a diverse industrial sector. Being an energy intensive production method, process energy efficiency is one of the major concerns and the selection of the most energy efficient processing conditions is a key to reducing operating costs. Usually, extruders consume energy through the drive motor, barrel heaters, cooling fans, cooling water pumps, gear pumps, etc. Typically the drive motor is the largest energy consuming device in an extruder while barrel/die heaters are responsible for the second largest energy demand. This study is focused on investigating the total energy demand of an extrusion plant under various processing conditions while identifying ways to optimise the energy efficiency. Initially, a review was carried out on the monitoring and modelling of the energy consumption in polymer extrusion. Also, the power factor, energy demand and losses of a typical extrusion plant were discussed in detail. The mass throughput, total energy consumption and power factor of an extruder were experimentally observed over different processing conditions and the total extruder energy demand was modelled empirically and also using a commercially available extrusion simulation software. The experimental results show that extruder energy demand is heavily coupled between the machine, material and process parameters. The total power predicted by the simulation software exhibits a lagging offset compared with the

  7. Shuttle Primary Reaction Control Subsystem Thruster Fuel Valve Pilot Seal Extrusion: A Failure Correlation

    Science.gov (United States)

    Waller, Jess; Saulsberry, Regor L.

    2003-01-01

    Pilot operated valves (POVs) are used to control the flow of hypergolic propellants monomethylhydrazine (fuel) and nitrogen tetroxide (oxidizer) to the Shuttle orbiter Primary Reaction Control Subsystem (PRCS) thrusters. The POV incorporates a two-stage design: a solenoid-actuated pilot stage, which in turn controls a pressure-actuated main stage. Isolation of propellant supply from the thruster chamber is accomplished in part by a captive polytetrafluoroethylene (PTFE) pilot seal retained inside a Custom 455.1 stainless steel cavity. Extrusion of the pilot seal restricts the flow of fuel around the pilot poppet, thus impeding or preventing the main valve stage from opening. It can also prevent the main stage from staying open with adequate force margin, particularly if there is gas in the main stage actuation cavity. During thruster operation on-orbit, fuel valve pilot seal extrusion is commonly indicated by low or erratic chamber pressure or failure of the thruster to fire upon command (Fail-Off). During ground turnaround, pilot seal extrusion is commonly indicated by slow gaseous nitrogen (GN2) main valve opening times (greater than 38 ms) or slow water main valve opening response times (greater than 33 ms). Poppet lift tests and visual inspection can also detect pilot seal extrusion during ground servicing; however, direct metrology on the pilot seat assembly provides the most quantitative and accurate means of identifying extrusion. Minimizing PRCS fuel valve pilot seal extrusion has become an important issue in the effort to improve PRCS reliability and reduce associated life cycle costs.

  8. Physical and mathematical modelling of extrusion processes

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Gronostajski, Z.; Niechajowics, A.

    2000-01-01

    The main objective of the work is to study the extrusion process using physical modelling and to compare the findings of the study with finite element predictions. The possibilities and advantages of the simultaneous application of both of these methods for the analysis of metal forming processes...

  9. Extrusion of ECC: Recent Developments and Applications

    DEFF Research Database (Denmark)

    Stang, Henrik; Fredslund-Hansen, Helge; Puclin, Tony

    2008-01-01

    process. Extrusion of cementitious (fiber reinforced) materials has proven particularly difficult due to the high inter-particle friction combined with the disastrous effect of static zones in the flow pattern, and to the ease of phase migration or separation. In order to deal with these conflicting...

  10. Hot melt extrusion versus spray drying: hot melt extrusion degrades albendazole.

    Science.gov (United States)

    Hengsawas Surasarang, Soraya; Keen, Justin M; Huang, Siyuan; Zhang, Feng; McGinity, James W; Williams, Robert O

    2017-05-01

    The purpose of this study was to enhance the dissolution properties of albendazole (ABZ) by the use of amorphous solid dispersions. Phase diagrams of ABZ-polymer binary mixtures generated from Flory-Huggins theory were used to assess miscibility and processability. Forced degradation studies showed that ABZ degraded upon exposure to hydrogen peroxide and 1 N NaOH at 80 °C for 5 min, and the degradants were albendazole sulfoxide (ABZSX), and ABZ impurity A, respectively. ABZ was chemically stable following exposure to 1 N HCl at 80 °C for one hour. Thermal degradation profiles show that ABZ, with and without Kollidon ® VA 64, degraded at 180 °C and 140 °C, respectively, which indicated that ABZ could likely be processed by thermal processing. Following hot melt extrusion, ABZ degraded up to 97.4%, while the amorphous ABZ solid dispersion was successfully prepared by spray drying. Spray-dried ABZ formulations using various types of acids (methanesulfonic acid, sulfuric acid and hydrochloric acid) and polymers (Kollidon ® VA 64, Soluplus ® and Eudragit ® E PO) were studied. The spray-dried ABZ with methanesulfonic acid and Kollidon ® VA 64 substantially improved non-sink dissolution in acidic media as compared to bulk ABZ (8-fold), physical mixture of ABZ:Kollidon ® VA 64 (5.6-fold) and ABZ mesylate salt (1.6-fold). No degradation was observed in the spray-dried product for up to six months and less than 5% after one-year storage. In conclusion, amorphous ABZ solid dispersions in combination with an acid and polymer can be prepared by spray drying to enhance dissolution and shelf-stability, whereas those made by melt extrusion are degraded.

  11. Study on Hot Deformation Behavior of 7085 Aluminum Alloy during Backward Extrusion Process

    Directory of Open Access Journals (Sweden)

    R. B. Mei

    2015-01-01

    Full Text Available Compression test was carried out and the true stress-strain curves were obtained from the hot compression of 7085 alloy. A numerical simulation on the deformation behavior of 7085 aluminum alloy during the backward extrusion was also performed by finite element method. The results show that dynamic recrystallization occurs in the hot compression of 7085 alloy and the peak stress reaches higher values as the strain rate increases and deformation temperature decreases. The backward extrusion processes include contact deformation, initial deformation, and steady deformation. Severe plastic deformation of shear and compression occurs when the metal flowed into the channel between fillet of punch and wall of die so that the grain size can be refined by backward extrusion. The deformation in the region of top of wall is too small to meet the mechanical properties of requirements and the metal usually needs to be trimmed. The experiments with the same parameters as simulation had been carried out and the experimental cup after extrusion has better quality.

  12. Plasticized chitosan/polyolefin films produced by extrusion.

    Science.gov (United States)

    Matet, Marie; Heuzey, Marie-Claude; Ajji, Abdellah; Sarazin, Pierre

    2015-03-06

    Plasticized chitosan and polyethylene blends were produced through a single-pass extrusion process. Using a twin-screw extruder, chitosan plasticization was achieved in the presence of an acetic acid solution and glycerol, and directly mixed with metallocene polyethylene, mPE, to produce a masterbatch. Different dilutions of the masterbatch (2, 5 and 10 wt% of plasticized chitosan), in the presence of ethylene vinyl acetate, EVA, were subsequently achieved in single screw film extrusion. Very small plasticized chitosan domains (number average diameter <5 μm) were visible in the polymeric matrix. The resulting films presented a brown color and increasing haze with chitosan plasticized content. Mechanical properties of the mPE films were affected by the presence of plasticized chitosan, but improvement was observed as a result of some compatibility between mPE and chitosan in the presence of EVA. Finally the incorporation of plasticized chitosan affected mPE water vapor permeability while oxygen permeability remained constant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Back extrusion of vocadlo-type fluids

    Czech Academy of Sciences Publication Activity Database

    David, Jiří; Filip, Petr; Kharlamov, Alexander

    2013-01-01

    Roč. 23, č. 4 (2013), , 45366-1-45366-8 ISSN 1430-6395 R&D Projects: GA ČR GA103/09/2066 Institutional support: RVO:67985874 Keywords : viscosity * back extrusion * annular pumping * vocadlo model * Robertson-stiff model Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.592, year: 2013 http://www.ar.ethz.ch/TMPPDF/23840225602.368/ApplRheol_23_45366.pdf

  14. Preparation and Evaluation of Pellets Using Acacia and Tragacanth by Extrusion-Spheronization

    OpenAIRE

    S. Pirmoradi; M R. Abbaspour; A. Akhgari

    2011-01-01

    Background and the purpose of the study: Extrusion-spheronization is an established technique for the production of pellets for pharmaceutical applications. In this study, the feasibility and influence of the incorporation of acacia, by itself and in combination with tragacanth, on the ability of formulations containing 2 model of drugs (ibuprofen and theophylline) to form spherical pellets by extrusion-spheronization was investigated.Material and Methods: Formulations containing different ra...

  15. Root resorption after orthodontic intrusion and extrusion:.

    NARCIS (Netherlands)

    Han, G.; Huang, S.; Hoff, J.W. Von den; Zeng, X.; Kuijpers-Jagtman, A.M.

    2005-01-01

    The aim of this investigation was to compare root resorption in the same individual after application of continuous intrusive and extrusive forces. In nine patients (mean age 15.3 years), the maxillary first premolars were randomly intruded or extruded with a continuous force of 100 cN for eight

  16. Lateral extrusion of Tunisia : Contribution of Jeffara Fault (southern branch) and Petroleum Implications

    Science.gov (United States)

    Ghedhoui, R.; Deffontaines, B.; Rabia, M. C.

    2012-04-01

    Contrasting to the northward African plate motion toward Eurasia and due to its geographic position in the North African margin, since early cretaceous, Tunisia seems to be submitted to an eastward migration. The aim of this work is to study the southern branch of this inferred tectonic splay that may guide the Tunisian extrusion characterised to the east by the Mediterranean sea as a free eastern boundary. The Jeffara Fault zone (southern Tunisia), represent a case example of such deformation faced by Tunisia. Helped by the results of previous researchers (Bouaziz, 1995 ; Rabiaa, 1998 ; Touati et Rodgers, 1998 ; Sokoutis D. et al., 2000 ; Bouaziz et al., 2002 ; Jallouli et al., 2005 ; Deffontaines et al., 2008…), and new evidences developed in this study, we propose a geodynamic Tunisian east extrusion model, due to such the northern African plate migration to the Eurasian one. In this subject, structural geomorphology is undertaken herein based on both geomorphometric drainage network analysis (Deffontaines et al., 1990), the Digital Terrain Model photo-interpretation (SRTM) combined with photo-interpretation of detailed optical images (Landsat ETM+), and confirmed by field work and numerous seismic profiles at depth. All these informations were then integrated within a GIS (Geodatabase) (Deffontaines 1990 ; Deffontaines et al. 1994 ; Deffontaines, 2000 ; Slama, 2008 ; Deffontaines, 2008) and are coherent with the eastern extrusion of the Sahel block. We infer that the NW-SE Gafsa-Tozeur, which continue to the Jeffara major fault zone acting as a transtensive right lateral motion since early cretaceous is the southern branch of the Sahel block extrusion. Our structural analyses prove the presence of NW-SE right lateral en-echelon tension gashes, NW-SE aligned salt diapirs, numerous folds offsets, en-echelon folds, and so on that parallel this major NW-SE transtensive extrusion fault zone.These evidences confirm the fact that the NW-SE Jeffara faults correspond

  17. Effects of extrusion variables on the properties of waxy hulless barley extrudates.

    Science.gov (United States)

    Köksel, Hamit; Ryu, Gy-Hyung; Başman, Arzu; Demiralp, Hande; Ng, Perry K W

    2004-02-01

    The objective of this research was to investigate the extrudability of waxy hulless barley flour under various extrusion conditions. Waxy hulless barley flour was processed in a laboratory-scale corotating twin-screw extruder with different levels of feed moisture content (22.3, 26.8, and 30.7%) and die temperature (130, 150, and 170 degrees C) to develop a snack food with high beta-glucan content. The effects of extrusion condition variables (screw configuration, moisture, and temperature) on the system variables (pressure and specific mechanical energy), the extrudate physical properties (sectional expansion index, bulk density), starch gelatinization, pasting properties (cold peak viscosity, trough viscosity, and final viscosity), and beta-glucan contents were determined. Results were evaluated by using response surface methodology. Increased extrusion temperature and feed moisture content resulted in decreases in exit die pressure and specific mechanical energy values. For extrudates extruded under low shear screw configuration (LS), increased barrel temperature decreased sectional expansion index (SEI) values at both low and high moisture contents. The feed moisture seems to have an inverse relationship with SEI over the range studied. Bulk density was higher at higher moisture contents, for both low and high barrel temperatures, for samples extruded under high shear screw configuration (HS) and LS. Cold peak viscosities (CV) were observed in all samples. The CV increased with the increase in extrusion temperature and feed moisture content. Although beta-glucan contents of the LS extrudates were comparable to that of barley flour sample, HS samples had generally lower beta-glucan contents. The extrusion cooking technique seems to be promising for the production of snack foods with high beta-glucan content, especially using LS conditions.

  18. Management of vaginal extrusion after tension-free vaginal tape procedure for urodynamic stress incontinence.

    Science.gov (United States)

    Giri, Subhasis K; Sil, Debasri; Narasimhulu, Girish; Flood, Hugh D; Skehan, Mark; Drumm, John

    2007-06-01

    To report our experience in the management of vaginal extrusion after the tension-free vaginal tape (TVT) procedure for urodynamic stress incontinence. Five patients diagnosed with vaginal extrusion after a TVT procedure performed at our institution were identified. We reviewed the patients' records retrospectively. The interval from TVT placement to diagnosis, presenting symptoms and signs, duration of symptoms, diagnostic test findings, treatment, and postoperative results were recorded. Patients were followed up for at least 12 months. From January 2001 to June 2004, a total of 166 patients underwent the TVT procedure. Of these, 5 patients (3%) were diagnosed with isolated vaginal extrusion 4 to 40 months postoperatively. No cases of urethral or bladder erosion occurred in this series. The symptoms included vaginal discharge, pain, bleeding, and dyspareunia. The eroded margin of the vaginal mucosa was trimmed, mobilized, and closed over the tape with interrupted vertical mattress sutures in a single layer using 2-0 polyglactin 910 to avoid mucosal inversion. All patients remained symptom free without any evidence of defective healing or additional extrusion at a minimal follow-up of 12 months. Primary reclosure of the vaginal mucosa over the TVT tape is an effective first-line treatment option for vaginal extrusion without compromising continence. Patients undergoing the TVT procedure should be adequately counseled about the possibility of this complication and the available treatment options.

  19. Adaptive Control of Freeze-Form Extrusion Fabrication Processes (Preprint)

    National Research Council Canada - National Science Library

    Zhao, Xiyue; Landers, Robert G; Leu, Ming C

    2008-01-01

    Freeze-form Extrusion Fabrication (FEF) is an additive manufacturing process that extrudes high solids loading aqueous ceramic pastes in a layer-by-layer fashion below the paste freezing temperature for component fabrication...

  20. [Effect of extrusion on protein and starch bioavailability in corn and lima bean flour blends].

    Science.gov (United States)

    Pérez-Navarrete, Cecilia; Betancur-Ancona, David; Casotto, Meris; Carmona, Andrés; Tovar, Juscelino

    2007-09-01

    Extrusion is used to produce crunchy expanded foods, such as snacks. The nutritional impact of this process has not been studied sufficiently. In this study, in vitro and in vivo protein and starch bioavailability was evaluated in both raw and extruded corn (Zea mays)(C) and lima bean (Phaseolus lunatus)(B) flour blends, prepared in 75C/25B and 50C/ 50B (p/p) proportions. These were processed with a Brabender extruder at 160 degrees C, 100 rpm and 15.5% moisture content. Proximate composition showed that in the extruded products protein and ash contents increased whereas the fat level decreased. In vitro protein digestibility was higher in the extrudates (82%) than in the raw flours (77%). Potentially available starch and resistant starch contents decreased with extrusion. The in vitro assays indicated that extrusion improved protein and starch availability in the studied blends. In vivo bioavailability was evaluated using the rice weevil (Sithophilus oryzae) as a biological model. The most descriptive biomarkers of the changes suggested by the in vivo tests were body protein content (increased by extrusion) and intestinal a-amylase activity (decreased by processing). Overall, results suggest that extrusion notably increases the nutritional quality of corn and lima bean flour blends.

  1. Design of an extrusion screw and solid fuel produced from coconut shell

    Directory of Open Access Journals (Sweden)

    Madhiyanon, T

    2006-03-01

    Full Text Available The objectives were to design an extrusion screw to produce biomass solid fuel in a cold extrusion process, and investigate the effects of molasses used as a selected adhesive on the physical properties of extruded products. The material employed consisted of crushed coconut shell char and coconut fiber char mixed at a ratio of 40:60. The ratios of molasses in the mixture were 10:100, 15:100 and 20:100 (by weight and the extrusion die angles were 1.0, 1.1, 1.2, and 1.3 degrees gradation per experiment. The experimental results showed that the newly designed screw could function properly in the output range 0.75-0.90 kg/min, which is close to the design value. Regarding the molasses's effect on solid fuel properties, increasing the share of molasses was positive for both output and strength of the resulting briquettes, whereas the results of increasing die angle showed decreases in both output and strength. The compressive strength varied between 2.49-2.87 MPa in all circumstances, which was considerably higher than acceptable industrial level. Furthermore, the extruded solid fuel showed excellent resistance to impact force. Regarding energy consumption, the amount of electrical energy used in the extrusion process was insignificant, ranging between 0.040-0.079 kWh/kg.

  2. Fate of Fusarium mycotoxins in maize flour and grits during extrusion cooking.

    Science.gov (United States)

    Scudamore, Keith A; Guy, Robin C E; Kelleher, Brian; MacDonald, Susan J

    2008-11-01

    Extrusion technology is used widely in the manufacture of a range of breakfast cereals and snacks for human consumption and animal feeds. To minimise consumer exposure to mycotoxins, the levels of deoxynivalenol (DON) and zearalenone (ZON) in cereals/cereal products and fumonisins B(1) and B(2) (FB(1) and FB(2)) in maize are controlled by European Union legislation. Relatively few studies, however, have examined the loss of Fusarium mycotoxins during processing. The behaviour of FB(1), FB(2) and fumonisin B(3) (FB(3)), DON and ZON during extrusion of naturally contaminated maize flour and maize grits is examined using pilot-scale equipment. DON and ZON are relatively stable during extrusion cooking but the fumonisins are lost to varying degrees. There is some loss of ZON when present in low concentrations and extruded at higher moisture contents. The presence of additives, such as reducing sugars and sodium chloride, can also affect mycotoxin levels. Moisture content of the cereal feed during extrusion is important and has a greater effect than temperature, particularly on the loss of fumonisins at the lower moistures. The effects are complex and not easy to explain, although more energy input to the extruder is required for drier materials. However, on the basis of these studies, the relationship between the concentration of Fusarium toxins in the raw and finished product is toxin- and process-dependent.

  3. A Comparison of Apical Bacterial Extrusion in Manual, ProTaper Rotary, and One Shape Rotary Instrumentation Techniques.

    Science.gov (United States)

    Mittal, Rakesh; Singla, Meenu G; Garg, Ashima; Dhawan, Anu

    2015-12-01

    Apical extrusion of irrigants and debris is an inherent limitation associated with cleaning and shaping of root canals and has been studied extensively because of its clinical relevance as a cause of flare-ups. Many factors affect the amount of extruded intracanal materials. The purpose of this study was to assess the bacterial extrusion by using manual, multiple-file continuous rotary system (ProTaper) and single-file continuous rotary system (One Shape). Forty-two human mandibular premolars were inoculated with Enterococcus faecalis by using a bacterial extrusion model. The teeth were divided into 3 experimental groups (n = 12) and 1 control group (n = 6). The root canals of experimental groups were instrumented according to the manufacturers' instructions by using manual technique, ProTaper rotary system, or One Shape rotary system. Sterilized saline was used as an irrigant, and bacterial extrusion was quantified as colony-forming units/milliliter. The results obtained were statistically analyzed by using one-way analysis of variance for intergroup comparison and post hoc Tukey test for pair-wise comparison. The level for accepting statistical significance was set at P step-back technique exhibiting significantly more bacterial extrusion than the engine-driven systems. Of the 2 engine-driven systems, ProTaper rotary extruded significantly more bacteria than One Shape rotary system (P engine-driven nickel-titanium systems were associated with less apical extrusion. The instrument design may play a role in amount of extrusion. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. MM98.36 Strain Paths in Extrusion

    DEFF Research Database (Denmark)

    Lindegren, Maria; Wiwe, Birgitte; Wanheim, Tarras

    1998-01-01

    The extrusion process has been investigated for different geometries, in order to study the strain path of different material elements during their movements through the plastic zone. This is done by using the FEM code DEFORM and physical simulation with wax togehter with the coefficient method. ....... Calculations of strain paths have also been performed by ABAQUS....

  5. Generation and use of process maps for hot extrusion of seamless tubes for nuclear applications

    International Nuclear Information System (INIS)

    Vaibhaw, Kumar; Jha, S.K.; Saibaba, N.; Jayaraj, R.N.

    2009-01-01

    Full text: Hot extrusion is known as significant bulk deformation step in manufacturing of seamless tube production. Elevated temperature deformation carried out above the recrystallization temperature would enable imposition of large strains in single step. This deformation causes a significant change in the microstructure of the material and depends on extrusion process parameters such as temperature and strain rate (Ram speed). Basic microstructure developed at this deformation stage has significant bearing on the final properties of the material fabricated with subsequent cold working steps. Zirconium alloys and special nuclear grade austenitic stainless steels are two important groups of materials used as structural and core components in thermal and fast reactors world wide respectively. The properties of former alloy are very sensitive to the thermo mechanical fabrication steps initiated with hot extrusion due to their anisotropic deformation behaviour. However, nuclear grade austenitic stainless steels have many variants from their commercial grades in terms of micro and macro alloy chemistry. Factors such as these significantly affect the workability of the materials and require proper selection of extrusion parameters especially working temperature and extrusion speed plays a key role in the quality of the product. Modern developments in processing technology envisage the application of processing maps based on dynamic material model for selection of hot extrusion parameters. The present paper is aimed at bringing out significance of the map in selection of working domain with respect to the industrial process conditions for both groups of nuclear materials mentioned earlier. Developed process maps of certain alloys suggest use of extremely slow strain rate and low temperature extrusion which can not be achieved during bulk processing due to design of equipment and heat transfer constraints in industrial scale production. Attempts are made to highlight

  6. Pellet manufacturing by extrusion-spheronization using process analytical technology

    DEFF Research Database (Denmark)

    Sandler, Niklas; Rantanen, Jukka; Heinämäki, Jyrki

    2005-01-01

    The aim of this study was to investigate the phase transitions occurring in nitrofurantoin and theophylline formulations during pelletization by extrusion-spheronization. An at-line process analytical technology (PAT) approach was used to increase the understanding of the solid-state behavior...... of the active pharmaceutical ingredients (APIs) during pelletization. Raman spectroscopy, near-infrared (NIR) spectroscopy, and X-ray powder diffraction (XRPD) were used in the characterization of polymorphic changes during the process. Samples were collected at the end of each processing stage (blending......, granulation, extrusion, spheronization, and drying). Batches were dried at 3 temperature levels (60 degrees C, 100 degrees C, and 135 degrees C). Water induced a hydrate formation in both model formulations during processing. NIR spectroscopy gave valuable real-time data about the state of water in the system...

  7. Optimized manufacture of nuclear fuel cladding tubes by FEA of hot extrusion and cold pilgering processes

    Science.gov (United States)

    Gaillac, Alexis; Ly, Céline

    2018-05-01

    Within the forming route of Zirconium alloy cladding tubes, hot extrusion is used to deform the forged billets into tube hollows, which are then cold rolled to produce the final tubes with the suitable properties for in-reactor use. The hot extrusion goals are to give the appropriate geometry for cold pilgering, without creating surface defects and microstructural heterogeneities which are detrimental for subsequent rolling. In order to ensure a good quality of the tube hollows, hot extrusion parameters have to be carefully chosen. For this purpose, finite element models are used in addition to experimental tests. These models can take into account the thermo-mechanical coupling conditions obtained in the tube and the tools during extrusion, and provide a good prediction of the extrusion load and the thermo-mechanical history of the extruded product. This last result can be used to calculate the fragmentation of the microstructure in the die and the meta-dynamic recrystallization after extrusion. To further optimize the manufacturing route, a numerical model of the cold pilgering process is also applied, taking into account the complex geometry of the tools and the pseudo-steady state rolling sequence of this incremental forming process. The strain and stress history of the tube during rolling can then be used to assess the damage risk thanks to the use of ductile damage models. Once validated vs. experimental data, both numerical models were used to optimize the manufacturing route and the quality of zirconium cladding tubes. This goal was achieved by selecting hot extrusion parameters giving better recrystallized microstructure that improves the subsequent formability. Cold pilgering parameters were also optimized in order to reduce the potential ductile damage in the cold rolled tubes.

  8. Preparation and investigation of novel gastro-floating tablets with 3D extrusion-based printing.

    Science.gov (United States)

    Li, Qijun; Guan, Xiaoying; Cui, Mengsuo; Zhu, Zhihong; Chen, Kai; Wen, Haoyang; Jia, Danyang; Hou, Jian; Xu, Wenting; Yang, Xinggang; Pan, Weisan

    2018-01-15

    Three dimensional (3D) extrusion-based printing is a paste-based rapid prototyping process, which is capable of building complex 3D structures. The aim of this study was to explore the feasibility of 3D extrusion-based printing as a pharmaceutical manufacture technique for the fabrication of gastro-floating tablets. Novel low-density lattice internal structure gastro-floating tablets of dipyridamole were developed to prolong the gastric residence time in order to improve drug release rate and consequently, improve bioavailability and therapeutic efficacy. Excipients commonly employed in the pharmaceutical study could be efficiently applied in the room temperature 3D extrusion-based printing process. The tablets were designed with three kinds of infill percentage and prepared by hydroxypropyl methylcellulose (HPMC K4M) and hydroxypropyl methylcellulose (HPMC E15) as hydrophilic matrices and microcrystalline cellulose (MCC PH101) as extrusion molding agent. In vitro evaluation of the 3D printed gastro-floating tablets was performed by determining mechanical properties, content uniformity, and weight variation. Furthermore, re-floating ability, floating duration time, and drug release behavior were also evaluated. Dissolution profiles revealed the relationship between infill percentage and drug release behavior. The results of this study revealed the potential of 3D extrusion-based printing to fabricate gastro-floating tablets with more than 8h floating process with traditional pharmaceutical excipients and lattice internal structure design. Copyright © 2017. Published by Elsevier B.V.

  9. A Novel Continuous Extrusion Process to Fabricate Wedge-Shaped Light Guide Plates

    Directory of Open Access Journals (Sweden)

    Wen-Tse Hsiao

    2013-01-01

    Full Text Available Backlight modules are key components in thin-film transistor liquid crystal displays (TFT-LCD. Among the components of a backlight module, the light guide plate (LGP plays the most important role controlling the light projected to the eyes of users. A wedge-shaped LGP, with its asymmetrical structure, is usually fabricated by an injection proces, but the fabrication time of this process is long. This study proposes a continuous extrusion process to fabricate wedge-shaped LGPs. This continuous process has advantages for mass production. Besides a T-die and rollers, this system also has an in situ monitor of the melt-bank that forms during the extrusion process, helping control the plate thickness. Results show that the melt bank has a close relationship with the plate thickness. The temperature of the bottom heater and roller was adjusted to reduce the surface deformation of the wedge-shaped plate. This continuous extrusion system can successfully manufacture wedge-shaped LGPs for mass production.

  10. 75 FR 22109 - Aluminum Extrusions from the People's Republic of China: Initiation of Antidumping Duty...

    Science.gov (United States)

    2010-04-27

    ... Aluminium, Ltd., a producer of aluminum extrusions, for the 2008 2009 fiscal year. See Volume II of the..., produced by an extrusion process, made from aluminum alloys having metallic elements corresponding to the alloy series designations published by The Aluminum Association commencing with the numbers 1, 3, and 6...

  11. The Development and Numerical Analysis of the Conical Radiator Extrusion Process

    Directory of Open Access Journals (Sweden)

    Michalczyk J.

    2017-12-01

    Full Text Available The article presents a newly developed method for single-operation extrusion of conical radiators. This is the author’s radiator manufacturing method being the subject of a patent application. The proposed method enables the manufacture of radiators either with or without an inner opening and with an integral plate. Selected results of numerical computations made within Forge®3D, a finite element method (FEM-based software program, were presented during the analysis of the process. A comparative analysis of the proposed manufacturing method using the double-sided extrusion method was also made.

  12. Numerical Studies of Low Cycle Fatigue in Forward Extrusion Dies

    DEFF Research Database (Denmark)

    Pedersen, Thomas Ø

    2000-01-01

    of describing the elastic-plastic material behaviour under cyclic loadings is used to study the effects of different pre-stressing concepts on the accumulation of plastic strain and the development of fatigue damage. The results show, that the accumulation of plastic strain in the critical region can......Forward extrusion dies typically fail due to transverse fatigue cracks or wear. Fatigue cracks are initiated in regions where the material is subjected to repeated plastic deformations, e.g. the transition radius in a forward extrusion die, in the present work, a material model capable...... be controlled by means of the pre-stressing system or the geometry of the die insert. (C) 2000 Elsevier Science B.V. All rights reserved....

  13. The effect of grain size on dynamic tensile extrusion behaviour

    Directory of Open Access Journals (Sweden)

    Park Leeju

    2015-01-01

    Full Text Available Dynamic tensile extrusion (DTE tests were conducted on coarse grained and ultrafine grained (UFG OFHC Cu, Interstitial free (IF Steel, and pure Ta. Equal channel angular pressing (ECAP of 16passes with Bc for Cu, IF Steel and 4 passes for Ta was employed to fabricated UFG materials. DTE tests were carried out by launching the sphere samples (Dia. 7.62 mm to the conical extrusion die at a speed of ∼500 m/sec. The fragmentation behavior of the soft-recovered fragments were examined and compared with each other. The DTE fragmentation behavior of CG and UFG was numerically simulated by the LS-DYNA FEM code.

  14. Chemical, physical and nutritional changes in soybean meal as a result of toasting and extrusion cooking

    NARCIS (Netherlands)

    Marsman, G.J.P.

    1998-01-01

    The effect of soybean meal extrusion and the development of shear forces during single-screw extrusion was compared with the toasting process of soybean meal. Attention was focused on chemical, physical and nutritional changes during these thermo-mechanical

  15. Complex deformation routes for direct recycling aluminium alloy scrap via industrial hot extrusion

    Science.gov (United States)

    Paraskevas, Dimos; Kellens, Karel; Kampen, Carlos; Mohammadi, Amirahmad; Duflou, Joost R.

    2018-05-01

    This paper presents the final results of an industrial project, aiming for direct hot extrusion of wrought aluminium alloy scrap at an industrial scale. Two types of complex deformation/extrusion routes were tested for the production of the same profile, starting from AA6060 scrap in form of machining chips. More specifically scrap-based billets were extruded through: a 2-porthole and a 4-porthole die-set, modified for enhanced scrap consolidation and grain refinement. For comparison reasons, cast billets of the same alloy were extruded through the modified 2-porthole die set. The tensile testing results as well as microstructural investigations show that the 4-porthole extrusion route further improves scrap consolidation compared to the 2-porthole die output. The successful implementation of solid state recycling, directly at industrial level, indicates the technological readiness level of this research.

  16. Bibliography of ceramic extrusion and plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Janney, M.A.; Vance, M.C.; Jordan, A.C.; Kertesz, M.P.

    1987-03-01

    A comprehensive bibliography of ceramic extrusion and plasticity has been compiled. Over 670 abstracts are included covering the period 1932 to 1984. Citations cover a wide range of interests from basic science investigations to engineering ''tips'' and include references to brick and tile, whitewares, technical ceramics, theoretical models, engineering analyses, forming, drying, and raw materials. In addition to the citations, there are numerous indices to make the bibliography easy to use.

  17. Preventing Silicone Tube Extrusion after Nasolacrimal Duct Intubation in Children

    Directory of Open Access Journals (Sweden)

    Ali-Akbar Sabermoghaddam

    2010-01-01

    Full Text Available Herein we report our experience with a simple technique for reducing the rate of silicone tube extrusion after nasolacrimal duct (NLD intubation for congenital NLD obstruction. Medical records of children older than 2 years, with or without history of failed probing, who had undergone NLD intubation with a Crawford silicone tube over a period of 4 years were reviewed. In all subjects, one end of the Crawford tube was passed through a piece of scalp vein tubing followed by applying one or two knots. All Crawford tubes were removed after 3 months. Main outcome measures included complications such as tube extrusion, nasal discharge, crust formation and pyogenic granuloma formation. Fifty-seven patients, including 49 unilateral and 8 bilateral cases with mean age of 3.8΁1.6 (range, 2 to 11.5 years were operated. No complications such as tube dislodgement, significant nasal discharge, crust or pyogenic granuloma formation occurred prior to Crawford tube removal. All silicone tubes were successfully removed from the nasal cavity. In conclusion, passing one end of the Crawford tube through a small piece of scalp vein tubing before knotting it in the nasal cavity seems to decrease the rate of tube extrusion which is the most common complication following NLD intubation in children.

  18. Multidrug and toxin extrusion proteins as transporters of antimicrobial drugs.

    Science.gov (United States)

    Nies, Anne T; Damme, Katja; Schaeffeler, Elke; Schwab, Matthias

    2012-12-01

    Antimicrobial drugs are essential in the treatment of infectious diseases. A better understanding of transport processes involved in drug disposition will improve the predictability of drug-drug interactions with consequences for drug response. Multidrug And Toxin Extrusion (MATE; SLC47A) proteins are efflux transporters mediating the excretion of several antimicrobial drugs as well as other organic compounds into bile and urine, thereby contributing to drug disposition. This review summarizes current knowledge of the structural and molecular features of human MATE transporters including their functional role in drug transport with a specific focus on antimicrobial drugs. The PubMed database was searched using the terms "MATE1," "MATE-2K," "MATE2," "SLC47A1," "SLC47A2," and "toxin extrusion protein" (up to June 2012). MATE proteins have been recognized as important transporters mediating the final excretion step of cationic drugs into bile and urine. These include the antiviral drugs acyclovir, amprenavir, and ganciclovir, the antibiotics cephalexin, cephradine and levofloxacin, as well as the antimalarial agents chloroquine and quinine. It is therefore important to enhance our understanding of the role of MATEs in drug extrusion with particular emphasis on the functional consequences of genetic variants on disposition of these antimicrobial drugs.

  19. Structure-Property Correlations in Al-Li Alloy Integrally Stiffened Extrusions

    Science.gov (United States)

    Hales, Stephen J.; Hafley, Robert A.

    2001-01-01

    The objective of this investigation was to establish the relationship between mechanical property anisotropy, microstructure and crystallographic texture in integrally 'T'-stiffened extruded panels fabricated from the Al-Li alloys 2195, 2098 and 2096. In-plane properties were measured as a function of orientation at two locations in the panels, namely mid-way between (Skin), and directly beneath (Base), the integral 'T' stiffeners. The 2195 extrusion exhibited the best combination of strength and toughness, but was the most anisotropic. The 2098 extrusion exhibited lower strength and comparable toughness, but was more isotropic than 2195. The 2096 extrusion exhibited the lowest strength and poor toughness, but was the most isotropic. All three alloys exhibited highly elongated grain structures and similar location-dependent variations in grain morphology. The textural characteristics comprised a beta + fiber texture, similar to rolled product, in the Skin regions and alpha + fiber texture, comparable to axisymmetric extruded product, in the Base regions. In an attempt to quantitatively correlate texture with yield strength anisotropy, the original 'full constraint' Taylor model and a variant of the 'relaxed constraint' model, explored by Wert et al., were applied to the data. A comparison of the results revealed that the Wert model was consistently more accurate than the Taylor model.

  20. Textures and mechanical properties in rare-earth free quasicrystal reinforced Mg-Zn-Zr alloys prepared by extrusion

    International Nuclear Information System (INIS)

    Ohhashi, S.; Kato, A.; Demura, M.; Tsai, A.P.

    2011-01-01

    Highlights: → Powder-metallurgical warm extrusion made quasicrystal dispersing Mg alloys. → Mg extrusions containing quasicrystals showed randomized textures. → These extrusion showed the enhancement of mechanical properties at 150 deg. C. - Abstract: Microstructure and mechanical properties of quasicrystals dispersed Mg alloys prepared by warm extrusion of the mixtures of Mg and Zn-Mg-Zr quasicrystalline (Qc) powders have been studied. Strong texture oriented along a [101-bar 0] direction observed in pure Mg was reduced in Qc-dispersed samples, as verified by pole figure method and electron back scattering diffraction. The ultimate tensile strengths at 150 deg. C for Qc-dispersed extrusions were much higher than 110 MPa for pure Mg, which drastically reached 156 MPa for 15 wt.% Qc by preventing the motion of dislocations. Elongation was improved by the randomization of grain orientation: from 5.7% for pure Mg to 12.9% for 10 wt.% Qc at room temperature; from 15% for pure Mg to 37.1% for 5 wt.% Qc at 150 deg. C.

  1. Physical properties, molecular structures and protein quality of texturized whey protein isolate: effect of extrusion temperature

    Science.gov (United States)

    Extrusion is a powerful food processing operation, which utilizes high temperature and high shear force to produce a product with unique physical and chemical characteristics. Texturization of whey protein isolate (WPI) through extrusion for the production of protein fortified snack foods has provid...

  2. 78 FR 67115 - Aluminum Extrusions From the People's Republic of China: Intent To Rescind 2012 Countervailing...

    Science.gov (United States)

    2013-11-08

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-968] Aluminum Extrusions From the People's Republic of China: Intent To Rescind 2012 Countervailing Duty Administrative Review, in Part... administrative review of the countervailing duty (CVD) order on aluminum extrusions from the People's Republic of...

  3. Extrusion of Debris from Primary Molar Root Canals following Instrumentation with Traditional and New File Systems.

    Science.gov (United States)

    Thakur, Bhagyashree; Pawar, Ajinkya M; Kfir, Anda; Neelakantan, Prasanna

    2017-11-01

    To assess the amount of debris extruded apically during instrumentation of distal canals of extracted primary molars by three instrument systems [ProTaper Universal (PTU), ProTaper NEXT (PTN), and self-adjusting file (SAF)] compared with conventional stainless steel hand K-files (HF, control). Primary mandibular molars (n = 120) with a single distal canal were selected and randomly divided into four groups (n = 30) for root canal instrumentation using group I, HF (to size 0.30/0.02 taper), group II, PTU (to size F3), group III, PTN (to size X3), and group IV, SAF. Debris extruded during instrumentation was collected in preweighed Eppendorf tubes, stored in an incubator at 70°C for 5 days and then weighed. Statistical analysis was performed by one-way analysis of variance (ANOVA), followed by Turkey's post hoc test (p = 0.05). All the groups resulted in extrusion of debris. There was statistically significant difference (p < 0.001) in the debris extrusion between the three groups: HF (0.00133 ± 0.00012), PTU (0.00109 ± 0.00005), PTN (0.00052 ± 0.00008), and SAF (0.00026 ± 0.00004). Instrumentation with SAF resulted in the least debris extrusion when used for shaping root canals of primary molar teeth. Debris extrusion in primary teeth poses an adverse effect on the stem cells and may also alter the permanent dental germ. Debris extrusion is rarely reported for primary teeth and it is important for the clinician to know which endodontic instrumentation leads to less extrusion of debris.

  4. Functionalization of whey proteins by reactive supercritical fluid extrusion

    Directory of Open Access Journals (Sweden)

    Khanitta Ruttarattanamongkol

    2012-09-01

    Full Text Available Whey protein, a by-product from cheese-making, is often used in a variety of food formulations due to its unsurpassednutritional quality and inherent functional properties. However, the possibilities for the improvement and upgrading of wheyprotein utilization still need to be explored. Reactive supercritical fluid extrusion (SCFX is a novel technique that has beenrecently reported to successfully functionalize commercially available whey proteins into a product with enhanced functionalproperties. The specific goal of this review is to provide fundamental understanding of the reinforcement mechanism andprocessing of protein functionalization by reactive SCFX process. The superimposed extrusion variables and their interactionmechanism affect the physico-chemical properties of whey proteins. By understanding the structure, functional properties andprocessing relationships of such materials, the rational design criteria for novel functionalized proteins could be developedand effectively utilized in food systems.

  5. Effect of Multiple Extrusions on the Impact Properties of Polypropylene/Clay Nanocomposites

    DEFF Research Database (Denmark)

    Klitkou, Rasmus; Jensen, Erik Appel; Christiansen, Jesper de Claville

    2012-01-01

    Polypropylene (PP)-based polymer nanocomposites containing organically modified montmorillonite (OMMT) with and without maleic anhydride grafted PP, were compounded by twin-screw extrusion. The extrusion process was repeated various numbers of times to increase the extruder residence time (TR) and......) increased monotonically with increased TR by 70% from least dispersed to best dispersed, which was still 20% below the level for neat PP. Both the fracture initiation energy and propagation energy increased with TR, but the primary effect on ri came from the fracture propagation energy, which delivered 80...

  6. Physical simulation method for the investigation of weld seam formation during the extrusion of aluminum alloys

    NARCIS (Netherlands)

    Fang, G; Zhou, J.

    2017-01-01

    Extrusion through the porthole die is a predominant forming process used in the production of hollow aluminum alloy profiles across the aluminum extrusion industry. Longitudinal weld seams formed during the process may negatively influence the quality of extruded profiles. It is therefore of

  7. Modelling the Thermo-Mechanical Behavior of Magnesium Alloys during Indirect Extrusion

    International Nuclear Information System (INIS)

    Steglich, D.; Ertuerk, S.; Bohlen, J.; Letzig, D.; Brocks, W.

    2010-01-01

    One of the basic metal forming process for semi-finished products is extrusion. Since extrusion involves complex thermo-mechanical and multiaxial loading conditions resulting in large strains, high strain rates and an increase in temperature due to deformation, a proper yield criterion and hardening law should be used in the numerical modelling of the process. A phenomenological model based on a plastic potential has been proposed that takes strain, strain rate and temperature dependency on flow behaviour into consideration. A hybrid methodology of experiment and finite element simulation has been adopted in order to obtain necessary model parameters. The anisotropy/asymmetry in yielding was quantified by tensile and compression tests of specimens prepared from different directions. The identification of the corresponding model parameters was performed by a genetic algorithm. A fully coupled thermo-mechanical analysis has been used in extrusion simulations for calculation of the temperature field by considering heat fluxes and heat generated due to plastic deformation. The results of the approach adopted in this study appeared to be successful showing promising predictions of the experiments and thus may be extended to be applicable to other magnesium alloys or even other hcp metals.

  8. Effect of materials and temperature on the forward extrusion of magnesium alloys

    International Nuclear Information System (INIS)

    Chandrasekaran, Margam; John, Yong Ming Shyan

    2004-01-01

    Magnesium alloys are being extensively used in weight-saving applications and as a potential replacement for plastics in electronic and computer applications. However, processing of magnesium has always been a challenge for manufacturing industries owing to their high brittleness despite their good EMI shielding property and high specific strength. Despite these advantages, they are limited by their processability. The present work aims to evaluate lower temperature formability of magnesium alloys. Three different materials were selected for axisymmetric extrusion tests, namely AZ31, AZ61 and the forging alloy, ZK 60. To establish the size and capacity of the press required to perform these forming trials and to know the formability, simulation using finite element analysis was carried on a representative material AZ31 using the properties established based on earlier work. A die set with a die shoe was designed to perform the forward extrusion trials. The area reduction ratio for forward extrusion was fixed at 41% for the die design and simulation. The maximum strain is given as ln(A o /A f ) ∼ 0.88 in the case of forward extrusion. The temperature was varied with a temperature controller built in-house from room temperature (RT) to 300 deg.C. However, the results provided below only include the tests carried out at RT, 100, 150, 175 and 200 deg.C. Although the forming trials were successful above 200 deg.C, there was difficulty in removing the specimens from the die cavity. Secondly, the process of removing the samples in the case of AZ31 and ZK 60 resulted in cracking, so it was difficult to evaluate the samples and the process. However, AZ61 samples did not show any evidence of crack formation during ejection of the formed sample. Simulation results and experimental trials showed that magnesium (AZ31) could be easily formed at elevated temperatures of 300 deg.C. Though there was a good correlation on the yield point prediction between simulation and

  9. 75 FR 17436 - Certain Aluminum Extrusions From China

    Science.gov (United States)

    2010-04-06

    ... States at less than fair value and alleged to be subsidized by the Government of China. Unless the... response to a petition filed on March 31, 2010, by the Aluminum Extrusions Fair Trade Committee... presentation at the conference. A nonparty who has testimony that may aid the Commission's deliberations may...

  10. Acid-extrusion from tissue: the interplay between membrane transporters and pH buffers.

    Science.gov (United States)

    Hulikova, Alzbeta; Harris, Adrian L; Vaughan-Jones, Richard D; Swietach, Pawel

    2012-01-01

    The acid-base balance of cells is related to the concentration of free H⁺ ions. These are highly reactive, and their intracellular concentration must be regulated to avoid detrimental effects to the cell. H⁺ ion dynamics are influenced by binding to chelator substances ('buffering'), and by the production, diffusion and membrane-transport of free H⁺ ions or of the H⁺-bound chelators. Intracellular pH (pHi) regulation aims to balance this system of diffusion-reaction-transport processes at a favourable steady-state pHi. The ability of cells to regulate pHi may set a limit to tissue growth and can be subject to selection pressures. Cancer cells have been postulated to respond favourably to such selection pressures by evolving a better means of pHi regulation. A particularly important feature of tumour pHi regulation is acid-extrusion, which involves H⁺-extrusion and HCO₃⁻-uptake by membrane-bound transporter-proteins. Extracellular CO₂/HCO₃⁻ buffer facilitates these membrane-transport processes. As a mobile pH-buffer, CO₂/HCO₃⁻ protects the extracellular space from excessive acidification that could otherwise inhibit further acid-extrusion. CO₂/HCO₃⁻ also provides substrate for HCO₃⁻-transporters. However, the inherently slow reaction kinetics of CO₂/HCO₃⁻ can be rate-limiting for acid-extrusion. To circumvent this, cells can express extracellular-facing carbonic anhydrase enzymes to accelerate the attainment of equilibrium between CO₂, HCO₃⁻ and H⁺. The acid-extrusion apparatus has been proposed as a target for anti-cancer therapy. The major targets include H⁺ pumps, Na⁺/H⁺ exchangers and carbonic anhydrases. The effectiveness of such therapy will depend on the correct identification of rate-limiting steps in pHi regulation in a specific type of cancer.

  11. Consensus Control Design for 360 MN Extrusion Machine Producing Process

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2014-01-01

    Full Text Available This paper mainly addresses the issue of 360 MN extrusion machine and focuses on the stabilization control of main table attitude. We will first introduce the problem and then model the extrusion machine. As the machine is a multi-input multioutput (MIMO and strong coupling system, it is challenging to apply existing control theory to design a controller to stabilize the main table attitude. Motivated by recent research in the field of multiagent systems, we design a consensus control protocol for our system and derive our convergence conditions based directly on Routh stability criterion. The advantages of the design are also demonstrated by numerical simulation.

  12. Anomalous growth of whisker-like bismuth-tin extrusions from tin-enriched tin-Bi deposits

    International Nuclear Information System (INIS)

    Hu, C.-C.; Tsai, Y.-D.; Lin, C.-C.; Lee, G.-L.; Chen, S.-W.; Lee, T.-C.; Wen, T.-C.

    2009-01-01

    This article shows the first finding that the anomalous growth of Bi-Sn extrusions from tin-enriched alloys (Sn-xBi with x between 20 and 10 wt.%) can be induced by post-plating annealing in N 2 between 145 and 260 deg. C for 10 min although metal whiskers were commonly formed on the surface of pure metals or alloys of the enriched component. From SEM observations, very similar to Sn whiskers, Bi-Sn extrusions vary in size, shape, length, and diameter with changing the annealing temperature, which are highly important in regarding the potential for failure of electronic products. Annealing resulting in thermal expansion of Sn grains is believed to squeeze the Bi-Sn alloys with relatively low melting points to form whisker-like extrusions although the exact mechanism is unclear

  13. Main and interaction effects of extrusion temperature and usage ...

    African Journals Online (AJOL)

    ali

    2012-10-30

    Oct 30, 2012 ... The main and interaction effects of three extrusion ... oil extraction and allow the use of a homegrown protein supplement in the .... Statistical analysis. The main and .... acceptable level of antitrypsin factor is 4 mg/g; this level.

  14. Periodontal healing complications following extrusive and lateral luxation in the permanent dentition: a longitudinal cohort study

    DEFF Research Database (Denmark)

    Hermann, Nuno Vibe; Lauridsen, Eva Fejerskov; Christensen, Søren Steno Ahrensburg

    2012-01-01

    To analyze the risk of tooth loss and complications in periodontal ligament (PDL) healing following extrusive and lateral luxation in the permanent dentition.......To analyze the risk of tooth loss and complications in periodontal ligament (PDL) healing following extrusive and lateral luxation in the permanent dentition....

  15. Microstructure of titanium deformed by warm extrusion with forward- backward rotating die

    International Nuclear Information System (INIS)

    Sztwiertnia, K; Morawiec, A; Bieda, M; Kawałko, J

    2014-01-01

    The principal KoBo device is a press with a forward-backward rotating die, enabling the extrusion of ingots under conditions of constant destabilization of their substructure. Polycrystalline grade 2 titanium was subjected to warm KoBo type extrusion. Microstructure of the material was investigated by means of Electron Backscatter Diffraction (EBSD) in the scanning electron microscope. It clearly shows deformation-induced grain fragmentation. The EBSD maps reveal heterogeneous microstructure built of ribbons curled about the extrusion direction (ED) and some equiaxed or cigar-like grains. Sizes of grains vary in the range 70 – 1500 nm for the minor axis and 350 – 20000 nm for the major axis. The material has a relatively sharp nearly axial texture with the <0001> axis perpendicular to ED. In misorientation angle distribution, besides the peak at low angle boundaries, there are three other peaks at about: 29.7deg, 89.7deg and 93.2deg. They do not correspond to any twin boundaries or low Σ coincidence site lattice misorientations

  16. Growth of extrusions in localized cyclic plastic straining

    Czech Academy of Sciences Publication Activity Database

    Polák, Jaroslav; Sauzay, M.

    2009-01-01

    Roč. 500, č. 1-2 (2009), s. 122-129 ISSN 0921-5093 R&D Projects: GA ČR GA101/07/1500 Institutional research plan: CEZ:AV0Z20410507 Keywords : extrusion * strain localization * persistent slip band * vacancy Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.901, year: 2009

  17. Microstructural modelling and lubrication study during zirconium alloy hot extrusion

    International Nuclear Information System (INIS)

    Gaudout, B.

    2009-01-01

    Using torsion tests (with strain rate jumps) and an experimental hot mini-extrusion apparatus, several samples zirconium alloy have been deformed: Zircaloy-4 (high α range) and Zr-1Nb (α + β domain). The fragmentation of the microstructure and post-dynamic grain growth have been examined. The main difference between these two alloys is that Zr-1Nb does not show grain growth during a heat treatment within the α + β domain after hot deformation. The recrystallization volume fraction has been measured on extruded samples with or without heat treatment. These rheological and microstructural data have been used to determine the parameters of a microstructural model including: a work-hardening model (Laaasraoui/Jonas), a continuous dynamic recrystallization model (Gourdet/Montheillet) and a grain growth model. This model leads to a good prediction of recrystallization volume fraction for Zircaloy-4 extrusion. However, the Zr-1Nb model cannot be validated because of the difficulty to observe deformed microstructures. Extrusion process is lubricated with a solid film. Trapping tests show that this lubricant is thermoviscoplastic. Friction along the container and several observations show the lubrication is not realized by a continuous film. Indeed, the heterogeneousness of deformation of these alloys causes a rupture of the lubricant film. Experiments and numerical simulations show that the radial gradient of axial displacement is affected by friction but also by stress softening of the alloys. (author)

  18. Proton-air and proton-proton cross sections

    Directory of Open Access Journals (Sweden)

    Ulrich Ralf

    2013-06-01

    Full Text Available Different attempts to measure hadronic cross sections with cosmic ray data are reviewed. The major results are compared to each other and the differences in the corresponding analyses are discussed. Besides some important differences, it is crucial to see that all analyses are based on the same fundamental relation of longitudinal air shower development to the observed fluctuation of experimental observables. Furthermore, the relation of the measured proton-air to the more fundamental proton-proton cross section is discussed. The current global picture combines hadronic proton-proton cross section data from accelerator and cosmic ray measurements and indicates a good consistency with predictions of models up to the highest energies.

  19. Effect of extrusion processing on the microstructure, mechanical properties, biocorrosion properties and antibacterial properties of Ti-Cu sintered alloys

    International Nuclear Information System (INIS)

    Zhang, Erlin; Li, Shengyi; Ren, Jing; Zhang, Lan; Han, Yong

    2016-01-01

    Ti-Cu sintered alloys, Ti-Cu(S) alloy, have exhibited good anticorrosion resistance and strong antibacterial properties, but low ductility in previous study. In this paper, Ti-Cu(S) alloys were subjected to extrusion processing in order to improve the comprehensive property. The phase constitute, microstructure, mechanical property, biocorrosion property and antibacterial activity of the extruded alloys, Ti-Cu(E), were investigated in comparison with Ti-Cu(S) by X-ray diffraction (XRD), optical microscopy (OM), scanning electronic microscopy (SEM) with energy disperse spectroscopy (EDS), mechanical testing, electrochemical testing and plate-count method in order to reveal the effect of the extrusion process. XRD, OM and SEM results showed that the extrusion process did not change the phase constitute but refined the grain size and Ti 2 Cu particle significantly. Ti-Cu(E) alloys exhibited higher hardness and compressive yield strength than Ti-Cu(S) alloys due to the fine grain and Ti 2 Cu particles. With the consideration of the total compressive strain, it was suggested that the extrusion process could improve the ductility of Ti-Cu alloy(S) alloys. Electrochemical results have indicated that the extrusion process improved the corrosion resistance of Ti-Cu(S) alloys. Plate-count method displayed that both Ti-Cu(S) and Ti-Cu(E) exhibited strong antibacterial activity (> 99%) against S. aureus. All these results demonstrated that hot forming processing, such as the extrusion in this study, refined the microstructure and densified the alloy, in turn improved the ductility and strength as well as anticorrosion properties without reduction in antibacterial properties. - Highlights: • Hot extrusion refined the grain size and Ti 2 Cu phase significantly. • Hot extrusion increased the mechanical properties and the corrosion resistance. • The antibacterial properties was not affected by the hot process.

  20. Procyanidin content of grape seed and pomace, and total anthocyanin content of grape pomace as affected by extrusion processing.

    Science.gov (United States)

    Khanal, R C; Howard, L R; Prior, R L

    2009-08-01

    Grape juice processing by-products, grape seed and pomace are a rich source of procyanidins, compounds that may afford protection against chronic disease. This study was undertaken to identify optimal extrusion conditions to enhance the contents of monomers and dimers at the expense of large molecular weight procyanidin oligomers and polymers in grape seed and pomace. Extrusion variables, temperature (160, 170, and 180 degrees C in grape seed, and 160, 170, 180, and 190 degrees C in pomace) and screw speed (100, 150, and 200 rpm in both) were tested using mixtures of grape seed as well as pomace with decorticated white sorghum flour at a ratio of 30 : 70 and moisture content of 45%. Samples of grape seed and pomace were analyzed for procyanidin composition before and after extrusion, and total anthocyanins were determined in pomace. Additionally, chromatograms from diol and normal phase high-performance liquid chromatography were compared for the separation of procyanidins. Extrusion of both grape by-products increased the biologically important monomer and dimers considerably across all temperature and screw speeds. Highest monomer content resulted when extruded at a temperature of 170 degrees C and screw speed of 200 rpm, which were 120% and 80% higher than the unextruded grape seed and pomace, respectively. Increases in monomer and dimer contents were apparently the result of reduced polymer contents, which declined by 27% to 54%, or enhanced extraction facilitated by disruption of the food matrix during extrusion. Extrusion processing reduced total anthocyanins in pomace by 18% to 53%. Extrusion processing can be used to increase procyanidin monomer and dimer contents in grape seed and pomace. Procyanidins in grape by-products have many health benefits, but most are present as large molecular weight compounds, which are poorly absorbed. Extrusion processing appears to be a promising technology to increase levels of the bioactive low molecular weight

  1. Role of lipids in the extrusion cooking processes

    Directory of Open Access Journals (Sweden)

    Berghofe, E.

    2000-04-01

    Full Text Available Extrusion is a versatile and very efficient technology that is widely used in food and feed processing. The cooking extruders have found many applications, which include: breakfast cereals, snack foods, other cereal based products, pet food and aquatic foods, texturized vegetable proteins, confectionery products, chemical and biochemical reactions, and oil extraction. Lipids are components that play an important role in most of the extrusion cooking processes. They can act as plastificizers or emulsifiers, and affect more significantly texture and stickiness of the extrudate. This paper reviews effect of oils and other lipids reactions during extrusion cooking as well as the effects of amylase-lipid complexation on extrudate quality.La extrusión es, en general, una tecnología versátil y muy eficiente, que se aplica ampliamente en la elaboración de alimentos y piensos. Los equipos de cocción-extrusión tienen numerosas aplicaciones, entre las que pueden incluirse: los cereales de desayuno listos para comer, los aperitivos, diferentes productos basados en cereales, los piensos para animales domésticos y peces, proteínas vegetales texturizadas, productos de pastelería, reacciones químicas y bioquímicas, y la extracción de aceites. Los lípidos son componentes que juegan un papel importante en la mayoría de los procesos de cocción-extrusión. Pueden actuar como plastificantes o como emulsionantes, suministrando lubricación. En este artículo se revisan con detalle los efectos de las reacciones de los aceites y otros lípidos durante el proceso de cocción-extrucción así como el efecto de la formación de complejos amilasa-lípidos sobre la calidad de los extrudados.

  2. Modelling of anisotropy for Al-Li 2099 T83 extrusions and effect of precipitate density

    International Nuclear Information System (INIS)

    Bois-Brochu, Alexandre; Blais, Carl; Tchitembo Goma, Franck Armel; Larouche, Daniel

    2016-01-01

    The development of aluminum-lithium alloys for aerospace applications requires a thorough understanding of how processing and product geometry impact their microstructure, texture and mechanical properties. The anisotropy of the mechanical properties is in part related to the deformation texture formed during thermo-mechanical processing. In this study, two different extrusions of Al-Li 2099 T83 were characterized, a cylindrical extrusion and an integrally stiffened panel (ISP). A model is proposed to predict mechanical properties and their anisotropy as a function of the <111> fiber texture. Furthermore, the volume fraction of precipitates was measured in zones of high anisotropy (cylindrical extrusion) and low anisotropy (ISP). Results show that there is no significant difference between the two parts concerning volume fraction of precipitates.

  3. Modelling of anisotropy for Al-Li 2099 T83 extrusions and effect of precipitate density

    Energy Technology Data Exchange (ETDEWEB)

    Bois-Brochu, Alexandre, E-mail: Alexandre.Bois-Brochu.1@ulaval.ca; Blais, Carl, E-mail: Carl.Blais@gmn.ulaval.ca; Tchitembo Goma, Franck Armel, E-mail: Franck-Armel.Tchitembo-Goma.1@ulaval.ca; Larouche, Daniel, E-mail: Daniel.Larouche@gmn.ulaval.ca

    2016-09-15

    The development of aluminum-lithium alloys for aerospace applications requires a thorough understanding of how processing and product geometry impact their microstructure, texture and mechanical properties. The anisotropy of the mechanical properties is in part related to the deformation texture formed during thermo-mechanical processing. In this study, two different extrusions of Al-Li 2099 T83 were characterized, a cylindrical extrusion and an integrally stiffened panel (ISP). A model is proposed to predict mechanical properties and their anisotropy as a function of the <111> fiber texture. Furthermore, the volume fraction of precipitates was measured in zones of high anisotropy (cylindrical extrusion) and low anisotropy (ISP). Results show that there is no significant difference between the two parts concerning volume fraction of precipitates.

  4. Incorporation of ladle furnace slag in ceramic formulations: study of extrusion zones

    International Nuclear Information System (INIS)

    Feitosa, E.F.; Santana, C.M.; Luna, D.S.; Santos, D.M.S.; Silva, G.S.; Noleto, L.T.; Almeida, N.C.; Rabelo, A.A.; Fagury Neto, E.

    2016-01-01

    This study aimed to investigate the effect of incorporation of ladle furnace slag (LFS) in two clays with higher and lower plasticity, used for the manufacture of structural ceramics. The LFS from a local steel making plant was added to ceramic compositions in proportions of 8 %, 14 % and 16 %. The formulations were tested in appropriate equipment that measures the liquid limit and plastic limit. The property examined was the plasticity index, in order to make a study of the extrusion zones. Results showed that the addition of slag into clay mixtures alters the plasticity; however, the extrusion process was not hampered. (author)

  5. High-temperature extrusion behavior of a superplastic zirconia-based ceramic

    International Nuclear Information System (INIS)

    Kellett, B.J.; Carry, C.; Mocellin, A.

    1990-01-01

    Workability of 3-mol%-yttria-stabilized tetragonal ZrO 2 has been gauged through a series of extrusion experiments performed under vacuum with graphite dies at 1500 degrees C and 35 MPa piston stress. It is shown that dense and smooth extrustions can be obtained from solid billets when graphite paper is used as a lubricant. Sigmoidal dies and conical dies with cone angles of 18.4 degrees, 26.6 degrees, and 45 degrees and diameter ratios of 1.5, 2, and 3 were used to explore extrusion behavior. Observed piston velocities correspond to what may be predicted from the experimental uniaxial constitutive creep equation and a simple slab analysis. A precise analysis, however, is not attempted because of lack of steady-state behavior of the material itself

  6. Apical Extrusion of Debris Produced during Continuous Rotating and Reciprocating Motion

    Directory of Open Access Journals (Sweden)

    Giselle Nevares

    2015-01-01

    Full Text Available This study aimed to analyse and compare apical extrusion of debris in canals instrumented with systems used in reciprocating and continuous motion. Sixty mandibular premolars were randomly divided into 3 groups (n=20: the Reciproc (REC, WaveOne (WO, and HyFlex CM (HYF groups. One Eppendorf tube per tooth was weighed in advance on an analytical balance. The root canals were instrumented according to the manufacturer’s instructions, and standardised irrigation with 2.5% sodium hypochlorite was performed to a total volume of 9 mL. After instrumentation, the teeth were removed from the Eppendorf tubes and incubated at 37°C for 15 days to evaporate the liquid. The tubes were weighed again, and the difference between the initial and final weight was calculated to determine the weight of the debris. The data were statistically analysed using the Shapiro-Wilk, Wilcoxon, and Mann-Whitney tests (α=5%. All systems resulted in the apical extrusion of debris. Reciproc produced significantly more debris than WaveOne (p<0.05, and both systems produced a greater apical extrusion of debris than HyFlex CM (p<0.001. Cross section and motion influenced the results, despite tip standardization.

  7. Inline monitoring and a PAT strategy for pharmaceutical hot melt extrusion.

    Science.gov (United States)

    Wahl, Patrick R; Treffer, Daniel; Mohr, Stefan; Roblegg, Eva; Koscher, Gerold; Khinast, Johannes G

    2013-10-15

    Implementation of continuous manufacturing in the pharmaceutical industry requires tight process control. This study focuses on a PAT strategy for hot melt extrusion of vegetable calcium stearate (CaSt) as matrix carrier and paracetamol as active pharmaceutical ingredient (API). The extrusion was monitored using in-line near-infrared (NIR) spectroscopy. A NIR probe was located in the section between the extrusion screws and the die, using a novel design of the die channel. A chemometric model was developed based on premixes at defined concentrations and was implemented in SIPAT for real time API concentration monitoring. Subsequently, step experiments were performed for different API concentrations, screw speeds and screw designs. The predicted API concentration was in good agreement with the pre-set concentrations. The transition from one API plateau to another was a smooth curve due to the mixing behaviour of the extruder. The accuracy of the model was confirmed via offline HPLC analysis. The screw design was determined as the main influential factor on content uniformity (CU). Additionally the influence of multiple feeders had a significant impact on CU. The results demonstrate that in-line NIR measurements is a powerful tool for process development (e.g., mixing characterization), monitoring and further control strategies. Copyright © 2013. Published by Elsevier B.V.

  8. The extrusion test and sensory perception revisited: Some comments on generality and the effect of measurement temperature.

    Science.gov (United States)

    Brenner, Tom; Tomczyńska-Mleko, Marta; Mleko, Stanisław; Nishinari, Katsuyoshi

    2017-12-01

    Relations between sensory perception, extrusion and fracture in shear, extension and compression are examined. Gelatin-based gels are perceived as less firm and less hard than expected based on their mechanical properties compared to polysaccharide gels that have the same mechanical properties at room temperature but melt well above body temperature, underlying the importance of the measurement temperature for gels that melt during mastication. Correlations between parameters from extrusion and compression, extension and shear are verified using mixed polysaccharide gels. We previously reported a high correlation between several sensory attributes and parameters from an extrusion test. The extrusion test showed the most robust correlation, and could be used to assess samples at both extremes of the texture range with respect to elasticity, for example, both samples that could not be extended as their very low elasticity led to their fracture during handling, as well as samples that could not be fractured in compression. Here, we reexamine the validity of the relations reported. We demonstrate the generality of the relations between large deformation tests and extrusion, but the findings underscore the need to take into account the measurement temperature for samples that melt during mastication when correlating instrumental parameters with sensory perception. © 2017 Wiley Periodicals, Inc.

  9. Influence of Extrusion Temperature on the Aging Behavior and Mechanical Properties of an AA6060 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Nadja Berndt

    2018-01-01

    Full Text Available Processing of AA6060 aluminum alloys for semi-products usually includes hot extrusion with subsequent artificial aging for several hours. Processing below the recrystallization temperature allows for an increased strength at a significantly reduced annealing time by combining strain hardening and precipitation hardening. In this study, we investigate the potential of cold and warm extrusion as alternative processing routes for high strength aluminum semi-products. Cast billets of the age hardening aluminum alloy AA6060 were solution annealed and then extruded at room temperature, 120 or 170 °C, followed by an aging treatment. Electron microscopy and mechanical testing were performed on the as-extruded as well as the annealed materials to characterize the resulting microstructural features and mechanical properties. All of the extruded profiles exhibit similar, strongly graded microstructures. The strain gradients and the varying extrusion temperatures lead to different stages of dynamic precipitation in the as-extruded materials, which significantly alter the subsequent aging behavior and mechanical properties. The experimental results demonstrate that extrusion below recrystallization temperature allows for high strength at a massively reduced aging time due to dynamic precipitation and/or accelerated precipitation kinetics. The highest strength and ductility were achieved by extrusion at 120 °C and subsequent short-time aging.

  10. effectof extrusion conditions on aflatoxin content of corn–peanut flakes

    African Journals Online (AJOL)

    Aynadis

    metabolites which can be observed on food stuffs or ... Extrusion cooking technologies are used to ..... effective interaction to reduce aflatoxin B1in the ..... Drug. Administration, “Guidance for industry: Action levels for poisonous or deleterious.

  11. Proton-proton bremsstrahlung

    International Nuclear Information System (INIS)

    Fearing, H.W.

    1990-01-01

    We summarize some of the information about the nucleon-nucleon force which has been obtained by comparing recent calculations of proton-proton bremsstrahlung with cross section and analyzing power data from the new TRIUMF bremsstrahlung experiment. Some comments are made as to how these results can be extended to neutron-proton bremsstrahlung. (Author) 17 refs., 6 figs

  12. Oriented Structure of Pentablock Copolymers Induced by Solution Extrusion

    Science.gov (United States)

    Harada, Tamotsu; Bates, Frank S.; Lodge, Timothy P.

    2002-03-01

    Highly oriented structure of a poly(styrene-co-butadiene) pentablock copolymer (Mw; 104,700 g/mol, weight percentage of polybutadiene blocks; 29 wt of concentrated solutions. The pentablock copolymer was dissolved into mixtures of toluene and heptane, and the polymer concentration ranged from 40 wt extrusion, the pentablock copolymer was solidified either by coagulation in methanol or by evaporation of the solvent. Interestingly, a highly oriented lamellar structure was confirmed through the small angle X-ray scattering over a specific range of heptane composition, which is a good solvent for polybutadiene, although the hexagonal cylinder morphology was identified for the melt sample. The transition from the oriented lamellar to highly oriented cylinder structure was observed by annealing the samples at temperatures above the glass transition temperature of polystyrene. Moreover, a transition from parallel to perpendicular orientation in the lamellar state was observed with an increase of the extrusion shear rate. A comparison between pentablock and triblock copolymers will be also discussed.

  13. Efeito de parâmetros de extrusão na cor E propriedades de pasta da farinha de mandioquinha-salsa (Arracacia xanthorrhiza Effect of extrusion parameters on color and pasting properties of peruvian carrot flour (Arracacia xanthorrhiza

    Directory of Open Access Journals (Sweden)

    Bruna Menegassi

    2007-12-01

    Full Text Available Processou-se neste trabalho a farinha de mandioquinha-salsa (Arracacia xanthorrhiza Bancr. em uma linha de extrusão (mono rosca variando as condições operacionais: umidade da farinha (11-19%, temperatura de extrusão (86-154ºC e taxa de rotação da rosca (136-272rpm. Os parâmetros de cor analisados foram luminosidade (L* e os componentes de cromaticidade a* e b*. Os parâmetros de propriedade de pasta analisados foram viscosidade inicial, pico de viscosidade, quebra de viscosidade, tendência a retrogradação e viscosidade final. Os resultados obtidos mostraram que a umidade da matéria-prima interferiu nos componentes de cor das farinhas com efeito significativo sobre a luminosidade e croma a*, e a temperatura interferiu no croma b* . Quanto ao efeito dos parâmetros de processo sobre as propriedades de pasta, a umidade interferiu nas viscosidades inicial e final dos produtos, pico e quebra de viscosidade, enquanto a temperatura de extrusão e a rotação da rosca tiveram influência sobre a tendência a retrogradação e viscosidade final dos produtos.In this work peruvian carrot flour (Arracacia xanthorrhiza Bancr. was processed in a single screw extruder at different moisture contents (11-19%, extrusion temperature (86-154ºC and screw speed (136-272rpm. The parameters L*, a* and b* of color were analyzed in extruded flours. The viscosity related parameters determined include initial viscosity, viscosity peak, breakdown, setback and final viscosity. The results showed effect of feed moisture on flour color (L* and a* and the extrusion temperature influenced b*. Moisture content of the feed had effect on initial and final viscosity, viscosity peak and breakdown. Extrusion temperature and screw speed had effect on final viscosity and setback.

  14. Dental extrusion with orthodontic miniscrew anchorage: a case report describing a modified method.

    Science.gov (United States)

    Horliana, Ricardo Fidos; Horliana, Anna Carolina Ratto Tempestini; Wuo, Alexandre do Vale; Perez, Flávio Eduardo Guillin; Abrão, Jorge

    2015-01-01

    In recent years, the skeletal anchorage through miniscrews has expanded the treatment options in orthodontics (Yamaguchi et al., 2012). We hereby present a modified method for tooth extrusion for cases where crown-lengthening surgery is contraindicated for aesthetic reasons. This modified method uses three orthodontic appliances: a mini-implant, an orthodontic wire, and a bracket. The aim of this case report was to increase the length of the clinical crown of a fractured tooth (tooth 23) by means of an orthodontic extrusion with the modified method of Roth and Diedrich.

  15. Novel fiber-rich lentil flours as snack-type functional foods: an extrusion cooking effect on bioactive compounds.

    Science.gov (United States)

    Morales, P; Berrios, J De J; Varela, A; Burbano, C; Cuadrado, C; Muzquiz, M; Pedrosa, M M

    2015-09-01

    Novel snack-type functional foods based on extruded lentil flours could convey the related health benefit of their bioactive compounds, provide a gluten-free alternative to consumers, and potentially increase the consumption of pulses. Extrusion treatment promoted an increase in galactopinitol, ciceritol, raffinose, stachyose and total α-galactoside content, in most lentil flours. As α-galactosides may act as prebiotics, they could convey beneficial effects to human and monogastric animals. Conversely, extrusion significantly (p < 0.05) reduced the inositol hexaphosphate content to less phosphorylated phytates (inositol pentaphosphate and inositol tetraphosphate), which provide health effects. The gluten-free formulation (control formulation #3) presented the highest significant (p < 0.05) drop in the inositol hexaphosphate of 14.7-fold decrease, but had a large increase in inositol pentaphosphate, due to extrusion processing. These two results are desirable in the finished product. Extrusion also caused a significant (p < 0.05) reduction in the trypsin content and completely inactivated lectin, in all processed samples.

  16. Reduction of Ochratoxin A in Oat Flakes by Twin-Screw Extrusion Processing.

    Science.gov (United States)

    Lee, Hyun Jung; Dahal, Samjhana; Perez, Enrique Garcia; Kowalski, Ryan Joseph; Ganjyal, Girish M; Ryu, Dojin

    2017-10-01

    Ochratoxin A (OTA) is one of the most important mycotoxins owing to its widespread occurrence and toxicity, including nephrotoxicity and potential carcinogenicity to humans. OTA has been detected in a wide range of agricultural commodities, including cereal grains and their processed products. In particular, oat-based products show a higher incidence and level of contamination. Extrusion cooking is widely used in the manufacturing of breakfast cereals and snacks and may reduce mycotoxins to varying degrees. Hence, the effects of extrusion cooking on the stability of OTA in spiked (100 μg/kg) oat flake was investigated by using a laboratory-scale twin-screw extruder with a central composite design. Factors examined were moisture content (20, 25, and 30% dry weight basis), temperature (140, 160, and 180°C), screw speed (150, 200, and 250 rpm), and die size (1.5, 2, and 3 mm). Both nonextruded and extruded samples were analyzed for reductions of OTA by high-performance liquid chromatography, coupled with fluorescence detection. The percentage of reductions in OTA in the contaminated oat flakes upon extrusion processing were in the range of 0 to 28%. OTA was partially stable during extrusion, with only screw speed and die size having significant effect on reduction (P < 0.005). The highest reduction of 28% was achieved at 180°C, 20% moisture, 250 rpm screw speed, and a 3-mm die with 193 kJ/kg specific mechanical energy. According to the central composite design analyses, up to 28% of OTA can be reduced by a combination of 162°C, 30% moisture, and 221 rpm, with a 3-mm die.

  17. Rapid production of hollow SS316 profiles by extrusion based additive manufacturing

    Science.gov (United States)

    Rane, Kedarnath; Cataldo, Salvatore; Parenti, Paolo; Sbaglia, Luca; Mussi, Valerio; Annoni, Massimiliano; Giberti, Hermes; Strano, Matteo

    2018-05-01

    Complex shaped stainless steel tubes are often required for special purpose biomedical equipment. Nevertheless, traditional manufacturing technologies, such as extrusion, lack the ability to compete in a market of customized complex components because of associated expenses towards tooling and extrusion presses. To rapid manufacture few of such components with low cost and high precision, a new Extrusion based Additive Manufacturing (EAM) process, is proposed in this paper, and as an example, short stainless steel 316L complex shaped and sectioned tubes were prepared by EAM. Several sample parts were produced using this process; the dimensional stability, surface roughness and chemical composition of sintered samples were investigated to prove process competence. The results indicate that feedstock with a 316L particle content of 92.5 wt. % can be prepared with a sigma blade mixing, whose rheological behavior is fit for EAM. The green samples have sufficient strength to handle them for subsequent treatments. The sintered samples considerably shrunk to designed dimensions and have a homogeneous microstructure to impart mechanical strength. Whereas, maintaining comparable dimensional accuracy and chemical composition which are required for biomedical equipment still need iterations, a kinematic correction and modification in debinding cycle was proposed.

  18. Characterization of ultra-fine grained aluminum produced by accumulative back extrusion (ABE)

    International Nuclear Information System (INIS)

    Alihosseini, H.; Faraji, G.; Dizaji, A.F.; Dehghani, K.

    2012-01-01

    In the present work, the microstructural evolutions and microhardness of AA1050 subjected to one, two and three passes of accumulative back extrusion (ABE) were investigated. The microstructural evolutions were characterized using transmission electron microscopy. The results revealed that applying three passes of accumulative back extrusion led to significant grain refinement. The initial grain size of 47 μm was refined to the grains of 500 nm after three passes of ABE. Increasing the number of passes resulted in more decrease in grain size, better microstructure homogeneity and increase in the microhardness. The cross-section of ABEed specimen consisted of two different zones: (i) shear deformation zone, and (ii) normal deformation zone. The microhardness measurements indicated that the hardness increased from the initial value of 31 Hv to 67 Hv, verifying the significant microstructural refinement via accumulative back extrusion. - Highlights: ► A significant grain refinement can be achieved in AA1050, Al alloy by applying ABE. ► Microstructural homogeneity of ABEed samples increased by increasing the number of ABE cycles. ► A substantial increase in the hardness, from 31 Hv to 67 Hv, was recorded.

  19. Effect of Thermo-extrusion Process Parameters on Selected Quality ...

    African Journals Online (AJOL)

    Effect of Thermo-extrusion Process Parameters on Selected Quality Attributes of Meat Analogue from Mucuna Bean Seed Flour. ... Nigerian Food Journal ... The product functional responses with coefficients of determination (R2) ranging between 0.658 and 0.894 were most affected by changes in barrel temperature and ...

  20. Extrusion Cooking Systems and Textured Vegetable Proteins

    Directory of Open Access Journals (Sweden)

    2015-02-01

    Full Text Available Many fabricated foods are cooked industrially and are given desired textures, shapes, density and rehydration characteristics by an extrusion cooking process. This relatively new process is used in the preparation of “engineered” convenience foods: textured vegetable proteins, breakfast cereals, snacks, infant foods, dry soup mixes, breading, poultry stuffing, croutons, pasta products, beverage powders, hot breakfast gruels, and in the gelatinization of starch or the starchy component of foods.

  1. Main and interaction effects of extrusion temperature and usage ...

    African Journals Online (AJOL)

    The extruded full fat soybean (EFFSB) may be used in diet to satisfy the energy and protein requirements of fast growing broiler chickens. The main and interaction effects of three extrusion temperatures and two dietary levels of FFSB were studied on the performance, physiological enzymes and blood metabolites of broiler ...

  2. Rheology and extrusion of low-grade paper and sludge

    Science.gov (United States)

    C. Tim Scott; Stefan Zauscher; Daniel J. Klingenberg

    1999-01-01

    This paper discusses efforts to characterize the rheological properties of pulps that include low-grade wastepapers and papermill sludges to determine their potential for extrusion and conversion into useful products. We investigated apparent changes in viscosity associated with the addition of typical inorganic paper fillers (calcium carbonate, kaolin clay, and...

  3. Protein proton-proton dynamics from amide proton spin flip rates

    International Nuclear Information System (INIS)

    Weaver, Daniel S.; Zuiderweg, Erik R. P.

    2009-01-01

    Residue-specific amide proton spin-flip rates K were measured for peptide-free and peptide-bound calmodulin. K approximates the sum of NOE build-up rates between the amide proton and all other protons. This work outlines the theory of multi-proton relaxation, cross relaxation and cross correlation, and how to approximate it with a simple model based on a variable number of equidistant protons. This model is used to extract the sums of K-rates from the experimental data. Error in K is estimated using bootstrap methodology. We define a parameter Q as the ratio of experimental K-rates to theoretical K-rates, where the theoretical K-rates are computed from atomic coordinates. Q is 1 in the case of no local motion, but decreases to values as low as 0.5 with increasing domination of sidechain protons of the same residue to the amide proton flips. This establishes Q as a monotonous measure of local dynamics of the proton network surrounding the amide protons. The method is applied to the study of proton dynamics in Ca 2+ -saturated calmodulin, both free in solution and bound to smMLCK peptide. The mean Q is 0.81 ± 0.02 for free calmodulin and 0.88 ± 0.02 for peptide-bound calmodulin. This novel methodology thus reveals the presence of significant interproton disorder in this protein, while the increase in Q indicates rigidification of the proton network upon peptide binding, confirming the known high entropic cost of this process

  4. Influence of material and solution composition on the extrusion/erosion behaviour of compacted bentonite

    International Nuclear Information System (INIS)

    Schatz, Timothy; Martikainen, Jari; Koskinen, Kari

    2010-01-01

    Document available in extended abstract form only. In principle, in a KBS-3 type repository, the volume of a deposition hole is fixed and the bentonite buffer mass accordingly balanced to lead to the development of a suitable swelling pressure upon saturation. However, fractures intersecting the deposition holes give rise to the possibility that volume constrained conditions do not universally exist. Such fractures may provide pathways for the continued, localised, free swelling of bentonite buffer material. Loss of mass from the deposition hole by extrusion into intersecting fractures may compromise the long-term safety and performance of the buffer component of the engineered barrier system. Furthermore, the continued hydration and expansion of extruded bentonite in these fracture environments could lead to the separation of colloid-sized (or larger) particles by diffusion or shear which may have to be accounted for in possible radionuclide migration scenarios. Geochemical conditions, with respect to both solution and material composition, are considered to play important roles regarding the fracture extrusion/erosion of bentonite buffer material. For example, calcium-montmorillonite exhibits limited free swelling relative to sodium-montmorillonite and the colloidal and rheological properties of montmorillonite dispersions are sensitive to the presence of electrolytes. Insofar as both the buffer material composition (due to ion exchange) and groundwater composition (dilution resulting from infiltration of glacial melt water) are expected to evolve with time, so too might the potential for fracture extrusion/erosion of buffer material vary over time. The hydraulic characteristics of the intersecting fracture are expected to influence the extrusion/erosion process as well. To evaluate the effect of material and solution composition on the potential for extrusion of buffer mass into intersecting fractures, a series of batch experiments were performed. In these

  5. Microstructure evolution and mechanical properties of nano-SiCp/AZ91 composite processed by extrusion and equal channel angular pressing (ECAP)

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, X.G.; Ying, T. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zheng, M.Y., E-mail: zhenghe@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wei, E.D.; Wu, K.; Hu, X.S. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Gan, W.M.; Brokmeier, H.G. [Institute of Materials Research, Helmholtz-Centre Geesthacht, D-21502 Geesthacht (Germany); Golovin, I.S. [Department of Physical Metallurgy of Non-Ferrous Metals, National University of Science and Technology “MISiS”, Leninsky ave. 4, 119049 Moscow (Russian Federation)

    2016-11-15

    Nano-SiCp/AZ91 magnesium matrix composite was fabricated by stir casting. The as-cast ingots were extruded at 350 °C, then processed by equal channel angular pressing (ECAP) at various temperatures (250 °C, 300 °C and 350 °C). Grains are significantly refined after the extrusion and the ECAP. A basal fibre texture was detected by neutron diffraction after the extrusion, which inclines about 45° to the extrusion direction (ED) after the ECAP. Nano-scaled SiC particles agglomerate in the as-cast composite. After the extrusion, the agglomeration tends to form continuous or discontinuous strips along the extrusion direction. By application of the ECAP, the agglomerated SiC particles are partly dispersed and the strips formed during the extrusion tend to be thinner and broken with the increasing pass number. The yield tensile strength (YTS) and the ultimate tensile strength (UTS) of the composite are dramatically increased after the extrusion. ECAP for one pass at various temperatures further increases the strength, however, the YTS decreases with the increasing ECAP temperature and the pass number. The Orowan equations predict the maximum YTS of the composite may be up to 400 MPa providing SiC particles are homogenously distributed in the matrix. - Highlights: •Nano-scaled SiC particles were successfully added into AZ91 by stirring casting. •Agglomeration of nano-particles were improved by extrusion and ECAP. •Yield strength of the composite is 328 MPa after one pass of ECAP. •Further ECAP process with optimized parameters may fully disperse nano-particles. •Yield strength is predicted to up to 400 MPa when particles are fully dispersed.

  6. An upper bound solution for the spread extrusion of elliptical sections

    International Nuclear Information System (INIS)

    Abrinia, K.; Makaremi, M.

    2007-01-01

    The three dimensional problem of extrusion of elliptical sections with side material flow or spread has been formulated using the upper bound theory. The shape of the die for such a process is such that it could allow the material to flow sideways as well as in the forward direction. When flat faced dies are used a deforming region is developed with dead metal zones. Therefore this deforming region has been represented in the formulation based on the definitions of streamlines and stream surfaces. A generalized kinematically admissible velocity field was then derived for this formulation and strain rate components obtained for the upper bound solution. The general formulation for the deforming region and the velocity and strain rate fields allow for the optimization of the upper bound solution so that the nearest geometry of the deforming region and dead metal zone to the actual one was obtained.Using this geometry a die with similar surfaces to those of the dead metal zone is designed having converging and diverging surfaces to lead the material flow. The analysis was also carried out for this die and results were obtained showing a reduction in the extrusion pressure compared to the flat faced die. Effects of reduction of area, shape complexity, spread ratio and friction on the extrusion process were also investigated

  7. 78 FR 34984 - Aluminum Extrusions From the People's Republic of China: Notice of Court Decision Not in Harmony...

    Science.gov (United States)

    2013-06-11

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-967; C-570-968] Aluminum... (AD) and countervailing duty (CVD) orders on aluminum extrusions,\\1\\ pursuant to the CIT's remand... Rail Kits \\2\\ and is amending its final scope ruling. \\1\\ See Aluminum Extrusions from the People's...

  8. Load beam unit replaceable inserts for dry coal extrusion pumps

    Science.gov (United States)

    Saunders, Timothy; Brady, John D.

    2012-11-13

    A track assembly for a particulate material extrusion pump according to an exemplary aspect of the present disclosure includes a link assembly with a roller bearing. An insert mounted to a load beam located such that the roller bearing contacts the insert.

  9. Track with overlapping links for dry coal extrusion pumps

    Science.gov (United States)

    Saunders, Timothy; Brady, John D

    2014-01-21

    A chain for a particulate material extrusion pump includes a plurality of links, each of the plurality of links having a link body and a link ledge, wherein each link ledge of the plurality of links at least partially overlaps the link body of an adjacent one of the plurality of links.

  10. Effects of fermentation and extrusion on the proximate composition ...

    African Journals Online (AJOL)

    The effect of extrusion and fermentation on the proximate composition and organoleptic properties of six combinations (100:0, 90:10, 80:20, 70:30, 60:40 and 50:50) of sorghum - soya blend were investigated. A total number of 19 microorganisms were isolated during the fermentation of sorghum-soya extrudates; these ...

  11. Density and superconducting properties of metal-sheathed YBa2Cu3Oy ceramic processed by hydrostatic extrusion

    International Nuclear Information System (INIS)

    Karpov, M.I.; Korzhov, V.P.; Artamoshin, A.V.; Prokopenko, V.M.

    1994-01-01

    Brittle materials can be deformed without cracking and rupturing using hydrostatic extrusion, which provides the greatest pore annihilation in powder-processed materials and allows large degrees of one-step deformation, which is favorable for texturing. Earlier, a casting slip prepared by mixing a starting powder of Y-based ceramic with an organic binder was conventionally extruded to produce a wire 150 μm in diameter. After special sintering, the critical-current density in the material attained a few hundred amperes per square centimeter at 77 K, and the wire could be rolled into a winding ≥0.3 m in diameter. Hydrostatic extrusion of an assembly composed of Y-based ceramic in a bimetallic Nb/Cu tube 30 mm in diameter was used to produce rods 6 mm in diameter; drawing of these rods yielded samples of wire 2 to 3 mm in diameter. It was shown that the extrusion pressure and strain substantially influence the yield of the rupture-free wire. No signs of rupturing, cracking, or necking were observed in wire extruded at pressures ≤700 MPa and degrees of deformation ≤50%. A pronounced instability of the hydrostatic extrusion, the appearance of defects, and even the rupture of the rods were caused by an increase in the pressure up to 2000 MPa and in the degree of one-step deformation up to 80%. In this work, the authors focus on the possibility of producing thin YBa 2 Cu 3 O y superconductors using only hydrostatic extrusion. They determined the parameters for the hydrostatic extrusion of the metal-sheathed YBa 2 Cu 3 O y ceramic to a diameter of 3 mm or to a rectangular cross section. Effects of the ceramic core, and of the reduction coefficient on superconducting-transition parameters and the critical-current density of the ceramic were examined

  12. Microemulsion extrusion technique: a new method to produce lipid nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, Marcelo Bispo de, E-mail: dejesusmb@gmail.com; Radaic, Allan [University of Campinas-UNICAMP, Department of Biochemistry, Institute of Biology (Brazil); Zuhorn, Inge S. [University of Groningen, Department of Membrane Cell Biology, University Medical Center (Netherlands); Paula, Eneida de [University of Campinas-UNICAMP, Department of Biochemistry, Institute of Biology (Brazil)

    2013-10-15

    Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) have been intensively investigated for different applications, including their use as drug and gene delivery systems. Different techniques have been employed to produce lipid nanoparticles, of which high pressure homogenization is the standard technique that is adopted nowadays. Although this method has a high efficiency, does not require the use of organic solvents, and allows large-scale production, some limitations impede its application at laboratory scale: the equipment is expensive, there is a need of huge amounts of surfactants and co-surfactants during the preparation, and the operating conditions are energy intensive. Here, we present the microemulsion extrusion technique as an alternative method to prepare lipid nanoparticles. The parameters to produce lipid nanoparticles using microemulsion extrusion were established, and the lipid particles produced (SLN, NLC, and liposomes) were characterized with regard to size (from 130 to 190 nm), zeta potential, and drug (mitoxantrone) and gene (pDNA) delivery properties. In addition, the particles' in vitro co-delivery capacity (to carry mitoxantrone plus pDNA encoding the phosphatase and tensin homologue, PTEN) was tested in normal (BALB 3T3 fibroblast) and cancer (PC3 prostate and MCF-7 breast) cell lines. The results show that the microemulsion extrusion technique is fast, inexpensive, reproducible, free of organic solvents, and suitable for small volume preparations of lipid nanoparticles. Its application is particularly interesting when using rare and/or costly drugs or ingredients (e.g., cationic lipids for gene delivery or labeled lipids for nanoparticle tracking/diagnosis)

  13. Microemulsion extrusion technique: a new method to produce lipid nanoparticles

    International Nuclear Information System (INIS)

    Jesus, Marcelo Bispo de; Radaic, Allan; Zuhorn, Inge S.; Paula, Eneida de

    2013-01-01

    Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) have been intensively investigated for different applications, including their use as drug and gene delivery systems. Different techniques have been employed to produce lipid nanoparticles, of which high pressure homogenization is the standard technique that is adopted nowadays. Although this method has a high efficiency, does not require the use of organic solvents, and allows large-scale production, some limitations impede its application at laboratory scale: the equipment is expensive, there is a need of huge amounts of surfactants and co-surfactants during the preparation, and the operating conditions are energy intensive. Here, we present the microemulsion extrusion technique as an alternative method to prepare lipid nanoparticles. The parameters to produce lipid nanoparticles using microemulsion extrusion were established, and the lipid particles produced (SLN, NLC, and liposomes) were characterized with regard to size (from 130 to 190 nm), zeta potential, and drug (mitoxantrone) and gene (pDNA) delivery properties. In addition, the particles’ in vitro co-delivery capacity (to carry mitoxantrone plus pDNA encoding the phosphatase and tensin homologue, PTEN) was tested in normal (BALB 3T3 fibroblast) and cancer (PC3 prostate and MCF-7 breast) cell lines. The results show that the microemulsion extrusion technique is fast, inexpensive, reproducible, free of organic solvents, and suitable for small volume preparations of lipid nanoparticles. Its application is particularly interesting when using rare and/or costly drugs or ingredients (e.g., cationic lipids for gene delivery or labeled lipids for nanoparticle tracking/diagnosis)

  14. Effect of Different Extrusion Parameters on Dietary Fiber in Wheat Bran and Rye Bran.

    Science.gov (United States)

    Andersson, Annica A M; Andersson, R; Jonsäll, Anette; Andersson, Jörgen; Fredriksson, Helena

    2017-06-01

    Wheat bran and rye bran are mostly used as animal feed today, but their high content of dietary fiber and bioactive components are beneficial to human health. Increased use of bran as food raw material could therefore be desirable. However, bran mainly contains unextractable dietary fiber and deteriorates the sensory properties of products. Processing by extrusion could increase the extractability of dietary fiber and increase the sensory qualities of bran products. Wheat bran and rye bran were therefore extruded at different levels of moisture content, screw speed and temperature, in order to find the optimal setting for increased extractability of dietary fiber and positive sensory properties. A water content of 24% for wheat bran and 30% for rye bran, a screw speed of 400 rpm, and a temperature of 130 °C resulted in the highest extractability of total dietary fiber and arabinoxylan. Arabinoxylan extractability increased from 5.8% in wheat bran to 9.0% in extruded wheat bran at those settings, and from 14.6% to 19.2% for rye bran. Total contents of dietary fiber and arabinoxylan were not affected by extrusion. Content of β-glucan was also maintained during extrusion, while its molecular weight decreased slightly and extractability increased slightly. Extrusion at these settings is therefore a suitable process for increasing the use of wheat bran and rye bran as a food raw material. © 2017 Institute of Food Technologists®.

  15. LATE TRIASSIC OBLIQUE EXTRUSION OF UHP/HP COMPLEXES IN THE ATBASHI ACCRETIONARY COMPLEX OF SOUTH TIANSHAN, KYRGYZSTAN

    Directory of Open Access Journals (Sweden)

    Wenjiao Xiao

    2017-01-01

    Full Text Available The exhumation and tectonic emplacement of eclogites and blueschists take place in forearc accretionary complexes by either forearc- or backarc-directed extrusion, but few examples have been well analysed in detail. Here we present an example of oblique wedge extrusion of UHP/HP rocks in the Atbashi accretionary complex of the Kyrgyz South Tianshan.

  16. Hot-melt extrusion microencapsulation of quercetin for taste-masking.

    Science.gov (United States)

    Khor, Chia Miang; Ng, Wai Kiong; Kanaujia, Parijat; Chan, Kok Ping; Dong, Yuancai

    2017-02-01

    Besides its poor dissolution rate, the bitterness of quercetin also poses a challenge for further development. Using carnauba wax, shellac or zein as the shell-forming excipient, this work aimed to microencapsulate quercetin by hot-melt extrusion for taste-masking. In comparison with non-encapsulated quercetin, the microencapsulated powders exhibited significantly reduced dissolution in the simulated salivary pH 6.8 medium indicative of their potentially good taste-masking efficiency in the order of zein > carnauba wax > shellac. In vitro bitterness analysis by electronic tongue confirmed the good taste-masking efficiency of the microencapsulated powders. In vitro digestion results showed that carnauba wax and shellac-microencapsulated powders presented comparable dissolution rate with the pure quercetin in pH 1.0 (gastric) and 6.8 (intestine) medium; while zein-microencapsulated powders exhibited a remarkably slower dissolution rate. Crystallinity of quercetin was slightly reduced after microencapsulation while its chemical structure remained unchanged. Hot-melt extrusion microencapsulation could thus be an attractive technique to produce taste-masked bioactive powders.

  17. Strain transformation between tectonic extrusion and crustal thickening in the growth of the Tibetan Plateau

    Science.gov (United States)

    Liu, M.; Li, Y.; Sun, Y.; Shen, X.

    2017-12-01

    The Indo-Eurasian continental collision since 50 Ma has thickened the crust to raise the Himalayan-Tibetan Plateau and driven lateral extrusion of Asian lithospheric blocks to affect Cenozoic tectonics in central and east Asia. The relative roles of crustal thickening and tectonic extrusion, and the strain partitioning between them over time and space, remain controversial. We have analyzed the strain rates using GPS velocities, and correlated the results with vertical motion derived from precise leveling. We found that tectonic extrusion largely transforms to crustal thickening near the margins of the Tibetan Plateau. Near the NW margin of the Tibetan Plateau, the shear stain transforms to compressive strain, consistent with neotectonic studies that indicate crustal shortening and uplift. Around the SE margin, shear stain largely terminates in the southern Yunnan province of China. The present-day crustal motion in SE Tibetan Plateau can be well explained by gravitational spreading without invoking plate-edge push as envisioned in the tectonic extrusion model. Using data collected from local seismic arrays, we derived receiver functions to image the lithospheric structures across the Tibetan Plateau and the Alashan block to its north and the Ordos block to its east. Our results indicate that the mantle lithosphere of these bounding Asian blocks has not been reworked by Tibetan tectonics; instead they have acted as restrictive walls to the growing Tibetan Plateau. Our finite element modeling shows that crustal deformation along the margins of the Tibetan Plateau are consistent with the notion that the east- and southeastward extrusion of the Tibetan lithosphere is largely confined to the Tibetan Plateau because of the restrictive bounding blocks of the Asian lithosphere. Thus the tectonic impact of the Indo-Eurasian collision on the Cenozoic Asian tectonics may not be as extensive as previously thought.

  18. Oscillatory Shear Rheology in Examining the Drug-Polymer Interactions Relevant in Hot Melt Extrusion

    DEFF Research Database (Denmark)

    Aho, Johanna; Edinger, Magnus; Botker, Johan

    2016-01-01

    The flow properties of drug-polymer mixtures have a significant influence on their processability when using techniques such as hot melt extrusion (HME). Suitable extrusion temperature and screw speed to be used in laboratory scale HME were evaluated for mixtures containing 30% of paracetamol (PRC...... of the drug substances. Consecutively, the mixtures were extruded, and the maximum plasticizing weight fraction of each drug was determined by means of rheological measurements. IBU was found to have an efficient plasticizing functionality, decreasing the viscosity of the mixtures even above its apparent...

  19. Effect of extrusion temperature and moisture content of corn flour on crystallinity and hardness of rice analogues

    Science.gov (United States)

    Budi, Faleh Setia; Hariyadi, Purwiyatno; Budijanto, Slamet; Syah, Dahrul

    2015-12-01

    Rice analogues are food products made of broken rice and/or any other carbohydrate sources to have similar texture and shape as rice. They are usually made by hot extrusion processing. The hot extrusion process may change the crystallinity of starch and influence the characteristic of rice analogues. Therefore, this research aimed to study the effect of moisture content of incoming dough and temperature of extrusion process on the crystallinity and hardness of resulting rice analogues. The dough's were prepared by mixing of corn starch-flour with ratio 10/90 (w/w) and moisture content of 35%, 40% and 45% (w/w) and extrusion process were done at temperature of 70, 80, 90°C by using of twin screw extruder BEX-DS-2256 Berto. The analyses were done to determine the type of crystal, degree of crystallinity, and hardness of the resulting rice analogues. Our result showed that the enhancement of extrusion temperature from 70 - 90°C increased degree of crystallinity from 5.86 - 15.00% to 10.70 - 18.87% and hardness from 1.71 - 4.36 kg to 2.05 - 5.70 kg. The raising of dough moisture content from 35 - 45% decreased degree of crystallinity from 15.00 - 18.87% to 5.86 - 10.70% and hardness from 4.36 - 5.70 kg to 1.71 - 2.05 kg. The increase of degree of crystallinity correlated positively with the increase of hardness of rice analogues (r = 0.746, p = 0.05).

  20. Crucial role of Asp408 in the proton translocation pathway of multidrug transporter AcrB: evidence from site-directed mutagenesis and carbodiimide labeling.

    Science.gov (United States)

    Seeger, Markus A; von Ballmoos, Christoph; Verrey, François; Pos, Klaas M

    2009-06-30

    The three-component AcrA/AcrB/TolC efflux system of Escherichia coli catalyzes the proton motive force-driven extrusion of a variety of cytotoxic compounds. The inner membrane pump component AcrB belongs to the resistance nodulation and cell division (RND) superfamily and is responsible for drug specificity and energy transduction of the entire tripartite efflux system. Systematic mutational analysis of titratable and polar membrane-located amino acids revealed four residues, D407, D408, K940, and, R971, to be of prime importance for AcrB function. Using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry, D408 was shown to specifically react with dicyclohexylcarbodiimide (DCCD) in a pH-dependent manner. The apparent pK(a) of D408 of 7.4 would enable binding and release of protons under physiological conditions. In contrast to other secondary transporters, D408 was not protected from carbodiimide modification in the presence of drugs, which supports the notion of spatially separated transport pathways for drugs and protons. This study provides evidence for a substantial role of membrane-located carboxylates as a central element of the proton translocation pathway in AcrB and other members of the RND superfamily.

  1. Desenvolvimento de misturas instantâneas de mandioca e caseína: efeito do teor de proteína e parâmetros de extrusão sobre a viscosidade Development of instant blends of cassava flour and casein: effect of protein contents and extrusion parameters on viscosity

    Directory of Open Access Journals (Sweden)

    Beatriz Helena Borges Lustosa

    2010-09-01

    Full Text Available O interesse da indústria de alimentos por produtos desenvolvidos a partir de farinhas acrescidas de proteína não se deve somente às suas características nutricionais, senão também às suas propriedades funcionais e reológicas, as quais definem as suas aplicações comerciais. Este trabalho teve por objetivo avaliar o efeito de parâmetros operacionais do processo de extrusão sobre as propriedades de pasta de misturas de farinha de mandioca e caseína. O processo de extrusão seguiu o delineamento 'central composto rotacional' para três fatores: teor de proteína (2,5 a 9,5%, umidade (14,5 a 19,5% e temperatura de extrusão (65 a 135 ºC. As misturas antes e após a extrusão foram analisadas no Rapid Visco Analyser (RVA quanto a: viscosidade inicial, pico de viscosidade, quebra de viscosidade, viscosidade final e tendência à retrogradação. Os resultados obtidos nas misturas antes da extrusão mostraram aumento dos valores de viscosidade com o aumento da concentração de proteína até o ponto central (6% e, nos teores mais elevados de proteína, ocorreu redução destes. Após a extrusão, observou-se que o teor de proteína foi a variável de maior efeito sobre as propriedades de pasta, seguida pela umidade das misturas.The interest of the food industry in products developed from flours added with protein is not due only to their nutritional characteristics, but also due to their functional and rheological properties, which define their commercial applications. This study aimed to evaluate the effect of operational parameters of the extrusion process on the paste properties of cassava flour and casein blends. The process of extrusion followed the central composed rotational design with three factors: protein content (2.5 to 9.5%, moisture (14.5 to 19.5%, and extrusion temperature (65 to 135 ºC. Before and after extrusion, the blends were analyzed on a Rapid Visco Analyser using the following parameters: initial viscosity, peak

  2. Aluminum-graphite composite produced by mechanical milling and hot extrusion

    International Nuclear Information System (INIS)

    Flores-Zamora, M.I.; Estrada-Guel, I.; Gonzalez-Hernandez, J.; Miki-Yoshida, M.; Martinez-Sanchez, R.

    2007-01-01

    Aluminum-graphite composites were produced by mechanical milling followed by hot extrusion. Graphite content was varied between 0 and 1 wt.%. Al-graphite mixtures were initially mixed in a shaker mill without ball, followed by mechanical milling in a High-energy simoloyer mill for 2 h under argon atmosphere. Milled powders were subsequently pressed at ∼950 MPa for 2 min, and next sintered under vacuum for 3 h at 823 K. Finally, sintered products were held for 0.5 h at 823 K and hot extruded using indirect extrusion. Tension and compression tests were carried out to determine the yield stress and maximum stress of the materials. We found that the mechanical resistance increased as the graphite content increased. Microstructural characterization was done by transmission electron microscopy. Al-O-C nanofibers and graphite nanoparticles were observed in extruded samples by transmission electron microscopy. These nanoparticles and nanofibers seemed to be responsible of the reinforcement phenomenon

  3. Efeitos de parâmetros de extrusão nas propriedades físicas de produtos expandidos de inhame Effect of extrusion parameters in the physical properties of expanded yam snacks

    Directory of Open Access Journals (Sweden)

    Magali Leonel

    2006-06-01

    Full Text Available Neste trabalho, estudou-se o efeito de parâmetros de extrusão sobre o índice de expansão (IE, volume específico (VE, índice de absorção de água (IAA e índice de solubilidade em água (ISA de extrusados de inhame. O processamento foi executado em extrusor mono rosca. Para analisar o efeito combinado das variáveis independentes nas características tecnológicas dos extrusados de farinha de inhame, utilizou-se o delineamento 'central composto rotacional' para três fatores. O desenho experimental foi elaborado para verificar o efeito de três níveis de temperatura na última zona de extrusão (100, 115 e 130ºC, rotação da rosca (163, 204 e 245 rpm e umidade das farinhas (12, 15 e 18%. Os resultados obtidos mostraram que a umidade e a temperatura influenciaram os parâmetros de expansão (IE e VE. O índice de solubilidade em água (ISA foi dependente dos três parâmetros do processo. Temperatura elevada e alta rotação da rosca promoveram maiores valores de ISA. Nas condições estudadas, os parâmetros de extrusão não influenciaram o índice de absorção de água (IAA.Effect of extrusion parameters was studied on the expansion index, specific volume, water absorption index (WAI and water solubility index (WSI of expanded yam snacks. The central composite design was used to study the parameters effect. It was verified three levels of temperature in the barrel (100, 115 and 130ºC, three levels of screw speed (163, 204 and 245 rpm and three levels of flour moisture (12, 15 and 18%. The results showed that expansion properties (expansion index and specific volume depend on flour moisture and extrusion temperature. The WSI was dependant of three parameters. Higher levels of temperature and screw speed increase the water solubility index (WSI. The studied parameters did not influence the water absorption index (WAI.

  4. Apical extrusion of debris after hand, engine-driven reciprocating and continuous preparation = Extrusão apical de “debris” após o preparo manual e mecanizado oscilatório e contínuo

    Directory of Open Access Journals (Sweden)

    Luisi, Simone Bonato

    2010-01-01

    Conclusão: A técnica rotatória contínua com Pro-taper produziu maior quantidade de extrusão apical do que as técnicas coroa-ápice manual e mecanizada com sistema de rotação oscilatória. A direção da instrumentação, se cérvico-apical ou ápico-cervical, parece ser o fator mais determinante na extrusão de “debris” independente desta ser realizada manual ou mecanizada

  5. A new arthroscopic classification of degenerative medial meniscus root tear that correlates with meniscus extrusion on magnetic resonance imaging.

    Science.gov (United States)

    Bin, Seong-Il; Jeong, Tae-Wan; Kim, Su-Jin; Lee, Dae-Hee

    2016-03-01

    To determine a new classification system for medial meniscus root tears (MMRT) based on arthroscopic findings. 24 knees (55%) belonged to the nondisplaced or overlapped group, and 20 knees (45%) to the widely displaced group. Absolute meniscal extrusion was defined as distance between outer edge of the articular cartilage of tibial plateau and meniscal outer edge. Relative extrusion was defined as extruded meniscus width divided by entire meniscal width, multiplied by 100. The proportion of knees with major (>3 mm) extrusion were compared in two groups, as were the severity of chondral wear and osteoarthritic change. Absolute (4.6 mm vs. 3.7 mm, P=0.006) and relative (46% vs. 39%, P=0.042) extrusion of the medial meniscus were greater in widely displaced than in nondisplaced or overlapped group. Medial joint space width was significantly narrower in the widely displaced than in the nondisplaced or overlapped group (3.0 mm vs. 4.0 mm, P=0.007). The widely displaced group had a 4° greater varus deformity, and higher rates of major extrusion (>3 mm), grade III or IV chondral wear in the medial femoral condyle (60% vs. 29%, P=0.039) and medial compartment osteoarthritis (75% vs. 21%, P=0.001) than did the nondisplaced or overlapped group. Widely displaced MMRT had greater meniscal extrusion and more severe chondral wear and osteoarthritis than did nondisplaced or overlapped MMRT. In this novel classification system, the stage of MMRT severity was associated with tear site displacement. Case series (level IV). Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Effect of combined extrusion parameters on mechanical properties of basalt fiber-reinforced plastics based on polypropylene

    Science.gov (United States)

    Bashtannik, P. I.; Ovcharenko, V. G.; Boot, Yu. A.

    1997-11-01

    Basalt fibers are efficient reinforcing fillers for polypropylene because they increase both the mechanical and the tribotechnical properties of composites. Basalt fibers can compete with traditional fillers (glass and asbestos fibers) of polypropylene with respect to technological, economic, and toxic properties. The effect of technological parameters of producing polypropylene-based basalt fiber-reinforced plastics (BFRPs) by combined extrusion on their mechanical properties has been investigated. The extrusion temperature was found to be the main parameter determining the mechanical properties of the BFRPs. With temperature growth from 180 to 240°C, the residual length of the basalt fibers in the composite, as well as the adhesive strength of the polymer-fiber system, increased, while the composite defectiveness decreased. The tensile strength and elastic modulus increased from 35 to 42 MPa and 3.2 to 4.2 GPa, respectively. At the same time, the growth in composite solidity led to its higher brittleness. Thus, a higher temperature of extrusion allows us to produce materials which can be subjected to tensile and bending loads, while the materials produced at a lower temperature of extrusion are impact stable. The effect of the gap size between the extruder body and moving disks on the mechanical properties of the BFRPs is less significant than that of temperature. An increase of the gap size from 2 to 8 mm improves the impregnation quality of the fibers, but the extruder productivity diminishes. The possibility of controling the properties of reinforced polypropylene by varying the technological parameters of combined extrusion is shown. The polypropylene-based BFRPs produced by the proposed method surpass the properties of glass and asbestos fiber-reinforced plastics.

  7. Extrusion cooking technology: Principal mechanism and effect on direct expanded snacks – An overview

    Directory of Open Access Journals (Sweden)

    Ajita Tiwari

    2017-04-01

    Full Text Available The snack industry is one of the fastest growing food sectors and is an important contributor within the global convenience food market. Nowadays snacks and convenience foods are also consumed regularly in India. Properly designed convenience foods can make an important contribution to nutrition in societies where social changes are altering traditional patterns of food preparation. Extrusion cooking as a popular means of preparing snack foods based on cereals and plant protein foodstuff has elicited considerable interest and attention over the past 30 years. Several studies on the extrusion of cereals and pulses, using various proportions, have been conducted because blends of cereals and pulses produce protein enriched products. Special importance is placed on the physicochemical and chemical modifications of protein, starch and dietary fibre. Extruded products can be categorized for a particular application based on their functional properties such as water absorption and water solubility index, expansion ratio, bulk density and viscosity of the dough.Therefore, the literature was reviewed for effect of extrusion processing on product parameters, and nutritional and anti-nutritional properties of extruded products.

  8. Liposome Model Systems to Study the Endosomal Escape of Cell-Penetrating Peptides: Transport across Phospholipid Membranes Induced by a Proton Gradient

    Directory of Open Access Journals (Sweden)

    Fatemeh Madani

    2011-01-01

    Full Text Available Detergent-mediated reconstitution of bacteriorhodopsin (BR into large unilamellar vesicles (LUVs was investigated, and the effects were carefully characterized for every step of the procedure. LUVs were prepared by the extrusion method, and their size and stability were examined by dynamic light scattering. BR was incorporated into the LUVs using the detergent-mediated reconstitution method and octyl glucoside (OG as detergent. The result of measuring pH outside the LUVs suggested that in the presence of light, BR pumps protons from the outside to the inside of the LUVs, creating acidic pH inside the vesicles. LUVs with 20% negatively charged headgroups were used to model endosomes with BR incorporated into the membrane. The fluorescein-labeled cell-penetrating peptide penetratin was entrapped inside these BR-containing LUVs. The light-induced proton pumping activity of BR has allowed us to observe the translocation of fluorescein-labeled penetratin across the vesicle membrane.

  9. Efeito do tipo de elemento de rosca na degradação de polipropileno durante múltiplas extrusões Effect of screw element on the polypropylene degradation during multiple extrusions

    Directory of Open Access Journals (Sweden)

    Ana Clélia Babetto

    2000-06-01

    Full Text Available A configuração da rosca de uma extrusora de dupla rosca modular pode ser projetada com vários tipos de elementos de condução e mistura, produzindo diferentes níveis de degradação no polímero fundido. Neste trabalho determinou-se o nível de degradação do polipropileno durante múltiplas extrusões em várias configurações de rosca, através de cromatografia por exclusão de tamanho e espectroscopia de infravermelho. Houve decréscimo do peso molecular e estreitamento da sua distribuição em função do número de extrusões e do aumento da agressividade da rosca, assim como, aumento da concentração de carbonilas e insaturações na cadeia polimérica. O elemento de mistura EM90 causou o maior nível de degradação e a adição de elementos de condução esquerdos ECE reduziram o nível de degradação.The screw configuration of a double screw extruder can be designed to contain kneading and conveying elements inducing different levels of degradation in the polymer melt. In this work the level of degradation in polypropylene have been measured after multiple extrusions for various screw configurations using Size Exclusion Chromatography and Infra-Red Spectroscopy. The average molecular weight and the polydispersity are reduced and the carbonyl and unsaturation indices increase as the number of extrusions and the agressiveness of the screw increase. The kneading element with 90 degrees caused the greater level of degradation and the addition of left hand elements have reduced the level of degradation.

  10. Reprocessability of PHB in extrusion: ATR-FTIR, tensile tests and thermal studies

    Directory of Open Access Journals (Sweden)

    Leonardo Fábio Rivas

    Full Text Available Abstract Mechanical recycling of biodegradable plastics has to be encouraged, since the consumption of energy and raw materials can be reduced towards a sustainable development in plastics materials. In this study, the evolution of thermal and mechanical properties, as well as structural changes of poly(hydroxybutyrate (PHB up to three extrusion cycles were investigated. Results indicated a significant reduction in mechanical properties already at the second extrusion cycle, with a reduction above 50% in the third cycle. An increase in the crystallinity index was observed due to chemicrystallization process during degradation by chain scission. On the other hand, significant changes in the chemical structure or in thermal stability of PHB cannot be detected by Fourier transform infrared spectroscopy (FTIR and thermogravimetric analyses (TGA, respectively.

  11. Finite Element Analysis and Die Design of Non-specific Engineering Structure of Aluminum Alloy during Extrusion

    International Nuclear Information System (INIS)

    Chen, D.-C.; Lu, Y.-Y.

    2010-01-01

    Aluminum extension applies to industrial structure, light load, framework rolls and conveyer system platform. Many factors must be controlled in processing the non-specific engineering structure (hollow shape) of the aluminum alloy during extrusion, to obtain the required plastic strain and desired tolerance values. The major factors include the forming angle of the die and temperature of billet and various materials. This paper employs rigid-plastic finite element (FE) DEFORM 3D software to investigate the plastic deformation behavior of an aluminum alloy (A6061, A5052, A3003) workpiece during extrusion for the engineering structure of the aluminum alloy. This work analyzes effective strain, effective stress, damage and die radius load distribution of the billet under various conditions. The analytical results confirm the suitability of the current finite element software for the non-specific engineering structure of aluminum alloy extrusion.

  12. Optimization of extrusion process for production of nutritious pellets Otimização do processo de extrusão para a produção de pellets nutricional

    Directory of Open Access Journals (Sweden)

    Ernesto Aguilar-Palazuelos

    2012-03-01

    Full Text Available A blend of 50% Potato Starch (PS, 35% Quality Protein Maize (QPM, and 15% Soybean Meal (SM were used in the preparation of expanded pellets utilizing a laboratory extruder with a 1.5 × 20.0 × 100.0 mm die-nozzle. The independent variables analyzed were Barrel Temperature (BT (75-140 °C and Feed Moisture (FM (16-30%. The effect of extrusion variables was investigated in terms of Expansion Index (EI, apparent density (ApD, Penetration Force (PF and Specific Mechanical Energy (SME, viscosity profiles, DSC, crystallinity by X-ray diffraction, and Scanning Electronic Microscopy (SEM. The PF decreased from 30 to 4 kgf with the increase of both independent variables (BT and FM. SME was affected only by FM, and decreased with the increase in this variable. The optimal region showed that the maximum EI was found for BT in the range of 123-140 °C and 27-31% for FM, respectively. The extruded pellets obtained from the optimal processing region were probably not completely degraded, as shown in the structural characterization. Acceptable expanded pellets could be produced using a blend of PS, QPM, and SM by extrusion cooking.Neste trabalho foram elaborados pellets expandidos a partir da mistura de 50% de Amido de Batata (AB, 35% de Milho de Qualidade Protéica (MQP e 15% de Farelo de Soja (FS, utilizando extrusor de laboratório com matriz de 1,5 × 20,0 × 100,0 mm. As variáveis independentes analisadas foram: Temperatura de Extrusão (TE (75-140 °C e Umidade da Mistura (UM (16-30%. O efeito das variáveis de extrusão foram estudadas quanto ao Índice de Expansão (IE, a densidade aparente (DA, força de penetração (FP, Energia Mecânica Específica (EME, perfil de viscosidade, DSC, cristalinidade através de difração de raio X e Microscopia Eletrônica de Varredura (MEV. A PF diminuiu de 30 para 4 kgf com o aumento de ambas as variáveis independentes (TE e UM. EME foi afetada somente pela UM, diminuindo com o aumento desta variável. A regi

  13. Effect of conventional and extrusion pelleting on in situ ruminal degradability of starch, protein, and fibre in cattle

    DEFF Research Database (Denmark)

    Razzaghi, Ali; Larsen, Mogens; Lund, Peter

    2016-01-01

    +50% sugar beet pulp (SBP), or 50% maize+50% SBP. Meals were pelleted by either conventional pelleting, or by cooking extrusion using two distinct settings giving pellets with either high density (HD) or low density (LD). Ruminal degradation of starch, crude protein (CP) and NDF, and intestinal...... affected ruminal degradability of starch, protein, and NDF differently depending on both type of cereal and composition of the concentrate mixture.......>Pelleting>Meal). In contradiction, ESD for pure wheat and wheat mixtures was reduced, though differences were minor. Conventional pelleting reduced the effective protein degradability (EPD) for pure wheat, but extrusion did not further affect the EPD. In contrast, the most intense processing with extrusion LD increased EPD...

  14. Effects of Hot-Hydrostatic Canned Extrusion on the Stock Utilization, Microstructure and Mechanical Properties of TiBw/TC4 Composites with Quasi-Continuous Network.

    Science.gov (United States)

    Feng, Yangju; Li, Bing; Cui, Guorong; Zhang, Wencong

    2017-10-25

    In-situ TiB whisker-reinforced Ti-6Al-4V (TC4) titanium matrix composites (TiBw/TC4) with quasi-continuous networks were successfully fabricated by vacuum hot-pressing sintering. The effects of the hot-hydrostatic canned extrusion on stock utilization, microstructure and mechanical properties of the TiBw/TC4 composites were investigated. It was satisfactory that the utilization of composites could be obviously improved by canned extrusion compared to that extruded without canned extrusion. The microstructure results showed that after canned extrusion the grain was refined and the TiB whiskers were distributed from a random array state to a state in which the whiskers were distributed along the extrusion direction. The properties testing results revealed that the tensile strength, the hardness and the ductility of the composites all significantly improved after extrusion due to the grain refinement and orientation of the TiB whisker caused by extrusion. Tensile fracture results showed that when the TiB whiskers were randomly distributed only part of them played a role in strengthening the matrix during the deformation process (as-sintered composites), while when the TiB whiskers were oriented all whiskers could strengthen the matrix during the tensile testing process (as-extruded composites).

  15. Intra-continental subduction and contemporaneous lateral extrusion of the upper plate: insights into Alps-Adria interactions

    Science.gov (United States)

    van Gelder, Inge; Willingshofer, Ernst; Sokoutis, Dimitrios; Cloetingh, Sierd

    2017-04-01

    A series of physical analogue experiments were performed to simulate intra-continental subduction contemporaneous with lateral extrusion of the upper plate to study the interferences between these two processes at crustal levels and in the lithospheric mantle. The lithospheric-scale models are specifically designed to represent the collision of the Adriatic microplate with the Eastern Alps, simulated by an intra-continental weak zone to initiate subduction and a weak confined margin perpendicular to the direction of convergence in order to allow for extrusion of the lithosphere. The weak confined margin is the analog for the opening of the Pannonian back-arc basin adjacent to the Eastern Alps with the direction of extension perpendicular to the strike of the orogen. The models show that intra-continental subduction and coeval lateral extrusion of the upper plate are compatible processes. The obtained deformation structures within the extruding region are similar compared to the classical setup where lateral extrusion is provoked by lithosphere-scale indentation. In the models a strong coupling across the subduction boundary allows for the transfer of abundant stresses to the upper plate, leading to laterally varying strain regimes that are characterized by crustal thickening near a confined margin and dominated by lateral displacement of material near a weak lateral confinement. During ongoing convergence the strain regimes propagate laterally, thereby creating an area of overlap characterized by transpression. In models with oblique subduction, with respect to the convergence direction, less deformation of the upper plate is observed and as a consequence the amount of lateral extrusion decreases. Additionally, strain is partitioned along the oblique plate boundary leading to less subduction in expense of right lateral displacement close to the weak lateral confinement. Both oblique and orthogonal subduction models have a strong resemblance to lateral extrusion

  16. Development of an electrochemical ascorbic acid sensor based on the incorporation of a ferricyanide mediator with a polyelectrolyte-calcium carbonate microsphere

    International Nuclear Information System (INIS)

    Li Feng; Tang Chenfei; Liu Shufeng; Ma Guangran

    2010-01-01

    A novel electro-active material was successfully prepared with Fe(CN) 6 3- ions loaded by electrostatic interaction onto the layer of poly(allylamine) hydrochloride (PAH), which was first assembled on prepared poly(sodium 4-styrenesulfonate) (PSS)-doped porous calcium carbonate (CaCO 3 ) microspheres. Further, an electrochemical sensor for use in ascorbic acid (AA) detection was constructed with the use of the above electro-active materials embedded into a chitosan (CS) sol-gel matrix as an electron mediator. The electrocatalytic oxidation of AA by ferricyanide was observed at the potential of 0.27 V, which was negative-shifted compared with that by direct electrochemical oxidation of AA on a glassy carbon electrode. The experimental parameters, including the pH value of testing solution and the applied potential for detection of AA, were optimized. The current electrochemical sensor not only exhibited a good reproducibility and storage stability, but also showed a fast amperometric response to AA in a linear range (1.0 x 10 -6 to 2.143 x 10 -3 M), a low detection limit (7.0 x 10 -7 M), a fast response time ( -1 ).

  17. Disc extrusions and bulges in nonspecific low back pain and sciatica: Exploratory randomised controlled trial comparing yoga therapy and normal medical treatment.

    Science.gov (United States)

    Monro, Robin; Bhardwaj, Abhishek Kumar; Gupta, Ram Kumar; Telles, Shirley; Allen, Beth; Little, Paul

    2015-01-01

    Previous trials of yoga therapy for nonspecific low back pain (nsLBP) (without sciatica) showed beneficial effects. To test effects of yoga therapy on pain and disability associated with lumbar disc extrusions and bulges. Parallel-group, randomised, controlled trial. Sixty-one adults from rural population, aged 20-45, with nsLBP or sciatica, and disc extrusions or bulges. Randomised to yoga (n=30) and control (n=31). Yoga: 3-month yoga course of group classes and home practice, designed to ensure safety for disc extrusions. normal medical care. OUTCOME MEASURES (3-4 months) Primary: Roland Morris Disability Questionnaire (RMDQ); worst pain in past two weeks. Secondary: Aberdeen Low Back Pain Scale; straight leg raise test; structural changes. Disc projections per case ranged from one bulge or one extrusion to three bulges plus two extrusions. Sixty-two percent had sciatica. Intention-to-treat analysis of the RMDQ data, adjusted for age, sex and baseline RMDQ scores, gave a Yoga Group score 3.29 points lower than Control Group (0.98, 5.61; p=0.006) at 3 months. No other significant differences in the endpoints occurred. No adverse effects of yoga were reported. Yoga therapy can be safe and beneficial for patients with nsLBP or sciatica, accompanied by disc extrusions and bulges.

  18. Effect of extrusion processing on the microstructure, mechanical properties, biocorrosion properties and antibacterial properties of Ti-Cu sintered alloys.

    Science.gov (United States)

    Zhang, Erlin; Li, Shengyi; Ren, Jing; Zhang, Lan; Han, Yong

    2016-12-01

    Ti-Cu sintered alloys, Ti-Cu(S) alloy, have exhibited good anticorrosion resistance and strong antibacterial properties, but low ductility in previous study. In this paper, Ti-Cu(S) alloys were subjected to extrusion processing in order to improve the comprehensive property. The phase constitute, microstructure, mechanical property, biocorrosion property and antibacterial activity of the extruded alloys, Ti-Cu(E), were investigated in comparison with Ti-Cu(S) by X-ray diffraction (XRD), optical microscopy (OM), scanning electronic microscopy (SEM) with energy disperse spectroscopy (EDS), mechanical testing, electrochemical testing and plate-count method in order to reveal the effect of the extrusion process. XRD, OM and SEM results showed that the extrusion process did not change the phase constitute but refined the grain size and Ti2Cu particle significantly. Ti-Cu(E) alloys exhibited higher hardness and compressive yield strength than Ti-Cu(S) alloys due to the fine grain and Ti2Cu particles. With the consideration of the total compressive strain, it was suggested that the extrusion process could improve the ductility of Ti-Cu alloy(S) alloys. Electrochemical results have indicated that the extrusion process improved the corrosion resistance of Ti-Cu(S) alloys. Plate-count method displayed that both Ti-Cu(S) and Ti-Cu(E) exhibited strong antibacterial activity (>99%) against S. aureus. All these results demonstrated that hot forming processing, such as the extrusion in this study, refined the microstructure and densified the alloy, in turn improved the ductility and strength as well as anticorrosion properties without reduction in antibacterial properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Kit ligand promotes first polar body extrusion of mouse preovulatory oocytes

    Directory of Open Access Journals (Sweden)

    Ye Yinghui

    2009-04-01

    Full Text Available Abstract Background Shortly after stimulation by the preovulatory surge of luteinizing hormone (LH, oocytes arrested at the late prophase I resume meiosis characterized by germinal vesicle breakdown (GVBD, chromosome condensation, and extrusion of the first polar body in preparation for fertilization and early embryonic development. However, oocytes express few or no LH receptors and are insensitive to direct LH stimulation. Thus, factors released by granulosa or theca cells expect to convey the LH stimuli to oocytes. To identify candidate ligand-receptor pairs potentially involved in the process of oocyte maturation, we performed DNA microarray analyses of ovarian transcripts in mice and identified Kit ligand (Kitl as an ovarian factor stimulated by the LH/hCG surge. The purpose of this study is to investigate the roles of KITL in the nuclear and cytoplasmic maturation of preovulatory mouse oocytes. Methods The levels of Kitl and c-kit transcripts in mouse ovaries and isolated ovarian cells were determined by real-time RT-PCR, while expression of KITL protein was examined by immunohistochemistry. Follicle culture, cumulus-oocyte complexes (COC and denuded oocytes culture were used to evaluate the effect of KITL on mouse oocyte nuclear maturation. To assess the effect of KITL treatment on the cytoplasmic maturation of preovulatory oocytes, we performed in vitro maturation of oocytes followed by in vitro fertilization. Results Major increase of Kitl transcripts in granulosa cells and mouse ovaries, and predominant expression of c-kit in preovulatory oocytes were identified by real-time RT-PCR. Predominant expression of KITL protein was found in granulosa cells of preovulatory and small antral follicles at 4 h after hCG treatment. In vitro cultures demonstrated that treatment with KITL enhanced first polar body extrusion in a dose-dependent manner. Moreover, treatment of COC with KITL enhanced first polar body extrusion with increase in cyclin B1

  20. Expansion of the whole wheat flour extrusion

    DEFF Research Database (Denmark)

    Cheng, Hongyuan; Friis, Alan

    2008-01-01

    A new model framework is proposed to describe the expansion of extrudates with extruder operating conditions based on dimensional analysis principle. The Buckingham pi dimensional analysis method is applied to form the basic structure of the model from extrusion process operational parameters. Us....... Using the Central Composite Design (CCD) method, whole wheat flour was processed in a twin-screw extruder with 16 trials. The proposed model can well correlate the expansion of the 16 trials using 3 regression parameters. The average deviation of the correlation is 5.9%....

  1. Proton radiography to improve proton therapy treatment

    NARCIS (Netherlands)

    Takatsu, J.; van der Graaf, E. R.; van Goethem, Marc-Jan; van Beuzekom, M.; Klaver, T.; Visser, Jan; Brandenburg, S.; Biegun, A. K.

    The quality of cancer treatment with protons critically depends on an accurate prediction of the proton stopping powers for the tissues traversed by the protons. Today, treatment planning in proton radiotherapy is based on stopping power calculations from densities of X-ray Computed Tomography (CT)

  2. Optimization of extrusion process for production of nutritious pellets

    Directory of Open Access Journals (Sweden)

    Ernesto Aguilar-Palazuelos

    2012-03-01

    Full Text Available A blend of 50% Potato Starch (PS, 35% Quality Protein Maize (QPM, and 15% Soybean Meal (SM were used in the preparation of expanded pellets utilizing a laboratory extruder with a 1.5 × 20.0 × 100.0 mm die-nozzle. The independent variables analyzed were Barrel Temperature (BT (75-140 °C and Feed Moisture (FM (16-30%. The effect of extrusion variables was investigated in terms of Expansion Index (EI, apparent density (ApD, Penetration Force (PF and Specific Mechanical Energy (SME, viscosity profiles, DSC, crystallinity by X-ray diffraction, and Scanning Electronic Microscopy (SEM. The PF decreased from 30 to 4 kgf with the increase of both independent variables (BT and FM. SME was affected only by FM, and decreased with the increase in this variable. The optimal region showed that the maximum EI was found for BT in the range of 123-140 °C and 27-31% for FM, respectively. The extruded pellets obtained from the optimal processing region were probably not completely degraded, as shown in the structural characterization. Acceptable expanded pellets could be produced using a blend of PS, QPM, and SM by extrusion cooking.

  3. Proton radioactivity from proton-rich nuclei

    International Nuclear Information System (INIS)

    Guzman, F.; Goncalves, M.; Tavares, O.A.P.; Duarte, S.B.; Garcia, F.; Rodriguez, O.

    1999-03-01

    Half-lives for proton emission from proton-rich nuclei have been calculated by using the effective liquid drop model of heavy-particle decay of nuclei. It is shown that this model is able to offer results or spontaneous proton-emission half-life-values in excellent agreement with the existing experimental data. Predictions of half-life-values for other possible proton-emission cases are present for null orbital angular momentum. (author)

  4. Managing sub-gingival fracture by multi-disciplinary approach: Endodontics-forced orthodontic extrusion and prosthetic rehabilitation

    Directory of Open Access Journals (Sweden)

    Rakesh Mittal

    2013-01-01

    Full Text Available Traumatized anterior teeth with sub-gingival crown fractures are a challenge to treat. The management of sub-gingival fractures includes exposing the cervical margin followed by appropriate coronal restoration. The treatment modalities, which involve exposing the cervical margin, are surgical crown lengthening and orthodontic extrusion. This paper reports a case of fractured maxillary anterior tooth at the sub-gingival level that was managed by forced orthodontic extrusion after endodontic treatment followed by esthetic rehabilitation, a much forgotten technique not utilized routinely yet conservative and cost-effective.

  5. 3D FEM Geometry and Material Flow Optimization of Porthole-Die Extrusion

    International Nuclear Information System (INIS)

    Ceretti, Elisabetta; Mazzoni, Luca; Giardini, Claudio

    2007-01-01

    The aim of this work is to design and to improve the geometry of a porthole-die for the production of aluminum components by means of 3D FEM simulations. In fact, the use of finite element models will allow to investigate the effects of the die geometry (webs, extrusion cavity) on the material flow and on the stresses acting on the die so to reduce the die wear and to improve the tool life. The software used to perform the simulations was a commercial FEM code, Deform 3D. The technological data introduced in the FE model have been furnished by METRA S.p.A. Company, partner in this research. The results obtained have been considered valid and helpful by the Company for building a new optimized extrusion porthole-die

  6. Dual-Extrusion 3D Printing of Anatomical Models for Education

    Science.gov (United States)

    Smith, Michelle L.; Jones, James F. X.

    2018-01-01

    Two material 3D printing is becoming increasingly popular, inexpensive and accessible. In this paper, freely available printable files and dual extrusion fused deposition modelling were combined to create a number of functional anatomical models. To represent muscle and bone FilaFlex[superscript 3D] flexible filament and polylactic acid (PLA)…

  7. Study to elucidate formation pathways of selected roast-smelling odorants upon extrusion cooking.

    Science.gov (United States)

    Davidek, Tomas; Festring, Daniel; Dufossé, Thierry; Novotny, Ondrej; Blank, Imre

    2013-10-30

    The formation pathways of the N-containing roast-smelling compounds 2-acetyl-1-pyrroline, 2-acetyl-1(or 3),4,5,6-tetrahydropyridine, and their structural analogues 2-propionyl-1-pyrroline and 2-propionyl-1(or 3),4,5,6-tetrahydropyridine were studied upon extrusion cooking using the CAMOLA approach. The samples were produced under moderate extrusion conditions (135 °C, 20% moisture, 400 rpm) employing a rice-based model recipe enriched with flavor precursors ([U-(13)C6]-D-glucose, D-glucose, glycine, L-proline, and L-ornithine). The obtained data indicate that the formation of these compounds upon extrusion follows pathways similar to those reported for nonsheared model systems containing D-glucose and L-proline. 2-Acetyl-1-pyrroline is formed (i) by acylation of 1-pyrroline via C2 sugar fragments (major pathway) and (ii) via ring-opening of 1-pyrroline incorporating C3 sugar fragments (minor pathway), whereas 2-propionyl-1-pyrroline incorporates exclusively C3 sugar fragments. 2-Acetyl-1(or 3),4,5,6-tetrahydropyridine and the corresponding propionyl analogue incorporate C3 and C4 sugar fragments, respectively. In addition, it has been shown that the formation of 2-acetyl-1-pyrroline in low-moisture systems depends on the pH value of the reaction mixture.

  8. Effects of raw material extrusion and steam conditioning on feed pellet quality and nutrient digestibility of growing meat rabbits.

    Science.gov (United States)

    Liao, Kuoyao; Cai, Jingyi; Shi, Zhujun; Tian, Gang; Yan, Dong; Chen, Delin

    2017-06-01

    This study was conducted to investigate the effects of raw material extrusion and steam conditioning on feed pellet quality and nutrient digestibility of growing meat rabbits, in order to determine appropriate rabbit feed processing methods and processing parameters. In Exp. 1, an orthogonal design was adopted. Barrel temperature, material moisture content and feed rate were selected as test factors, and acid detergent fiber (ADF) content was selected as an evaluation index to research the optimum extrusion parameters. In Exp. 2, a two-factor design was adopted. Four kinds of rabbit feeds were processed and raw material extrusion adopted optimum extrusion parameters of Exp. 1. A total of 40 healthy and 42-day-old rabbits with similar weight were used in a randomized design, which consisted of 4 groups and 10 replicates in each group (1 rabbits in each replicate). The adaptation period lasted for 7 d, and the digestion trial lasted for 4 d. The results showed as follows: 1) ADF was significantly affected by barrel temperature ( P  digestibility of dry matter and total energy ( P  digestibility of crude fiber (CF), ADF and NDF ( P  digestibility of rabbit feed. Thus, using extrusion and steam conditioning technology at the same time in the weaning rabbits feed processing can improve the pellet quality and nutrient apparent digestibility of rabbit feed.

  9. Characterization of Al–Li 2099 extrusions and the influence of fiber texture on the anisotropy of static mechanical properties

    International Nuclear Information System (INIS)

    Bois-Brochu, Alexandre; Blais, Carl; Goma, Franck Armel Tchitembo; Larouche, Daniel; Boselli, Julien; Brochu, Mathieu

    2014-01-01

    The development of aluminum–lithium alloys for aerospace applications requires a thorough understanding of how processing and product geometry impact their microstructure, texture and mechanical properties. The anisotropy of the mechanical properties is in part related to the deformation texture formed during thermo-mechanical processing. In this study, two different extrusions of Al–Li 2099 T83 were characterized, a cylindrical extrusion and an integrally stiffened panel (ISP). A decrease of tensile properties was observed from the longitudinal direction to the transverse direction with a minimum in the 45° direction, the magnitude of which depends on the location in the extrusions. The 〈111〉 fiber texture is prominent in most locations of the extrusion with a smaller intensity of the 〈100〉 component. Rolling textures were observed in two locations of the ISP that have a larger cross sectional aspect ratio. Variations of strength and anisotropy as a function of location in the extrusion correlate well with the intensity of the 〈111〉 fiber texture. On the other hand, our findings show an absence of correlation between the Taylor factor and the anisotropy. These results suggest that strength anisotropy may be controlled by the volume fraction of T 1 precipitates that could itself be related to the intensity of the 〈111〉 fiber texture

  10. Characterization of Al–Li 2099 extrusions and the influence of fiber texture on the anisotropy of static mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Bois-Brochu, Alexandre, E-mail: Alexandre.Bois-Brochu.1@ulaval.ca [Department of Mining and Metallurgy, Adrien-Pouliot Building, Université Laval, 1065 Rue de la medicine, Québec, Québec G1V 0A6 (Canada); Blais, Carl, E-mail: Carl.Blais@gmn.ulaval.ca [Department of Mining and Metallurgy, Adrien-Pouliot Building, Université Laval, 1065 Rue de la medicine, Québec, Québec G1V 0A6 (Canada); Goma, Franck Armel Tchitembo, E-mail: Franck-Armel.Tchitembo-Goma.1@ulaval.ca [Department of Mining and Metallurgy, Adrien-Pouliot Building, Université Laval, 1065 Rue de la medicine, Québec, Québec G1V 0A6 (Canada); Larouche, Daniel, E-mail: Daniel.Larouche@gmn.ulaval.ca [Department of Mining and Metallurgy, Adrien-Pouliot Building, Université Laval, 1065 Rue de la medicine, Québec, Québec G1V 0A6 (Canada); Boselli, Julien, E-mail: Julien.Boselli@alcoa.com [Alcoa Technical Center, Alcoa, PA 15069 (United States); Brochu, Mathieu, E-mail: Mathieu.Brochu@mcgill.ca [Department of Mining and Materials Engineering, Wong Building, McGill University, 3610 University Street, Montréal, Québec H3A 2B2 (Canada)

    2014-03-01

    The development of aluminum–lithium alloys for aerospace applications requires a thorough understanding of how processing and product geometry impact their microstructure, texture and mechanical properties. The anisotropy of the mechanical properties is in part related to the deformation texture formed during thermo-mechanical processing. In this study, two different extrusions of Al–Li 2099 T83 were characterized, a cylindrical extrusion and an integrally stiffened panel (ISP). A decrease of tensile properties was observed from the longitudinal direction to the transverse direction with a minimum in the 45° direction, the magnitude of which depends on the location in the extrusions. The 〈111〉 fiber texture is prominent in most locations of the extrusion with a smaller intensity of the 〈100〉 component. Rolling textures were observed in two locations of the ISP that have a larger cross sectional aspect ratio. Variations of strength and anisotropy as a function of location in the extrusion correlate well with the intensity of the 〈111〉 fiber texture. On the other hand, our findings show an absence of correlation between the Taylor factor and the anisotropy. These results suggest that strength anisotropy may be controlled by the volume fraction of T{sub 1} precipitates that could itself be related to the intensity of the 〈111〉 fiber texture.

  11. Process Parameter Optimization of Extrusion-Based 3D Metal Printing Utilizing PW-LDPE-SA Binder System.

    Science.gov (United States)

    Ren, Luquan; Zhou, Xueli; Song, Zhengyi; Zhao, Che; Liu, Qingping; Xue, Jingze; Li, Xiujuan

    2017-03-16

    Recently, with a broadening range of available materials and alteration of feeding processes, several extrusion-based 3D printing processes for metal materials have been developed. An emerging process is applicable for the fabrication of metal parts into electronics and composites. In this paper, some critical parameters of extrusion-based 3D printing processes were optimized by a series of experiments with a melting extrusion printer. The raw materials were copper powder and a thermoplastic organic binder system and the system included paraffin wax, low density polyethylene, and stearic acid (PW-LDPE-SA). The homogeneity and rheological behaviour of the raw materials, the strength of the green samples, and the hardness of the sintered samples were investigated. Moreover, the printing and sintering parameters were optimized with an orthogonal design method. The influence factors in regard to the ultimate tensile strength of the green samples can be described as follows: infill degree > raster angle > layer thickness. As for the sintering process, the major factor on hardness is sintering temperature, followed by holding time and heating rate. The highest hardness of the sintered samples was very close to the average hardness of commercially pure copper material. Generally, the extrusion-based printing process for producing metal materials is a promising strategy because it has some advantages over traditional approaches for cost, efficiency, and simplicity.

  12. Effect of extrusion, espansion and toasting on the nutritional value of peas, faba beans and lupins

    Directory of Open Access Journals (Sweden)

    Filippo Rossi

    2010-01-01

    Full Text Available An assessment was made of the effect that different treatments (toasting, expansion, extrusion have on the nutritionalvalue of protein plants (pea, faba bean, lupin. In a randomized block design, feeds were screened for enzymaticdigestibility of starch and protein, N solubility and in vitro protein degradability. Expansion and extrusion cause increasedstarch enzymatic degradability while toasting produced virtually no effects. In peas this value increased from 11.80% inmeal to 39.70% in the extruded product; 85.37% is the percentage for the expanded product, while 10.90% is the starchdigestibility value for toasted peas. In faba beans the extrusion process increased starch digestibility from 11.39% to85.05%, while in extruded lupins a complete starch hydrolysis was obtained, while in the meal the polysaccharide digestionwas 54.48%.The expansion and extrusion processes significantly decreased rumen degradability during the first 8 hours of incubation.Toasted peas had lower degradability if compared with controls but not with the other treatments. The onlypotentially alternative source to soybean is the extruded faba bean. In spite of its lower protein content, this feed ischaracterized by a considerably lower in vitro protein degradability than soybean. This implies that the digestible foodprotein content is comparable (124.90 g/kg DM to that of soybean (109.78 g/kg DM and definitely higher than thatof all other protein plants.

  13. Process Parameter Optimization of Extrusion-Based 3D Metal Printing Utilizing PW–LDPE–SA Binder System

    Directory of Open Access Journals (Sweden)

    Luquan Ren

    2017-03-01

    Full Text Available Recently, with a broadening range of available materials and alteration of feeding processes, several extrusion-based 3D printing processes for metal materials have been developed. An emerging process is applicable for the fabrication of metal parts into electronics and composites. In this paper, some critical parameters of extrusion-based 3D printing processes were optimized by a series of experiments with a melting extrusion printer. The raw materials were copper powder and a thermoplastic organic binder system and the system included paraffin wax, low density polyethylene, and stearic acid (PW–LDPE–SA. The homogeneity and rheological behaviour of the raw materials, the strength of the green samples, and the hardness of the sintered samples were investigated. Moreover, the printing and sintering parameters were optimized with an orthogonal design method. The influence factors in regard to the ultimate tensile strength of the green samples can be described as follows: infill degree > raster angle > layer thickness. As for the sintering process, the major factor on hardness is sintering temperature, followed by holding time and heating rate. The highest hardness of the sintered samples was very close to the average hardness of commercially pure copper material. Generally, the extrusion-based printing process for producing metal materials is a promising strategy because it has some advantages over traditional approaches for cost, efficiency, and simplicity.

  14. Process Parameter Optimization of Extrusion-Based 3D Metal Printing Utilizing PW–LDPE–SA Binder System

    Science.gov (United States)

    Ren, Luquan; Zhou, Xueli; Song, Zhengyi; Zhao, Che; Liu, Qingping; Xue, Jingze; Li, Xiujuan

    2017-01-01

    Recently, with a broadening range of available materials and alteration of feeding processes, several extrusion-based 3D printing processes for metal materials have been developed. An emerging process is applicable for the fabrication of metal parts into electronics and composites. In this paper, some critical parameters of extrusion-based 3D printing processes were optimized by a series of experiments with a melting extrusion printer. The raw materials were copper powder and a thermoplastic organic binder system and the system included paraffin wax, low density polyethylene, and stearic acid (PW–LDPE–SA). The homogeneity and rheological behaviour of the raw materials, the strength of the green samples, and the hardness of the sintered samples were investigated. Moreover, the printing and sintering parameters were optimized with an orthogonal design method. The influence factors in regard to the ultimate tensile strength of the green samples can be described as follows: infill degree > raster angle > layer thickness. As for the sintering process, the major factor on hardness is sintering temperature, followed by holding time and heating rate. The highest hardness of the sintered samples was very close to the average hardness of commercially pure copper material. Generally, the extrusion-based printing process for producing metal materials is a promising strategy because it has some advantages over traditional approaches for cost, efficiency, and simplicity. PMID:28772665

  15. Cervical artificial disc extrusion after a paragliding accident

    OpenAIRE

    Niu, Tianyi; Hoffman, Haydn; Lu, Daniel C.

    2017-01-01

    Background: Cervical total disc replacement (TDR) is an established alternative to anterior cervical discectomy and fusion (ACDF) with excellent long-term outcomes and low failure rates. Cases of implant failure and migration are scarce and primarily limited to several years postoperatively. The authors report a case of anterior extrusion of a C4-C5 ProDisc-C (DePuy Synthes, West Chester, PA, USA) cervical artificial disc (CAD) 14 months after placement due to minor trauma. Case Description: ...

  16. Proton Radiography to Improve Proton Radiotherapy : Simulation Study at Different Proton Beam Energies

    NARCIS (Netherlands)

    Biegun, Aleksandra; Takatsu, Jun; van Goethem, Marc-Jan; van der Graaf, Emiel; van Beuzekom, Martin; Visser, Jan; Brandenburg, Sijtze

    To improve the quality of cancer treatment with protons, a translation of X-ray Computed Tomography (CT) images into a map of the proton stopping powers needs to be more accurate. Proton stopping powers determined from CT images have systematic uncertainties in the calculated proton range in a

  17. Distal corporoplasty for distal cylinders extrusion after penile prosthesis implantation.

    Science.gov (United States)

    Carrino, Maurizio; Chiancone, Francesco; Battaglia, Gaetano; Pucci, Luigi; Fedelini, Paolo

    2017-02-03

    Distal extrusion of cylinders is a potential complication of the penile prosthesis implantation. Several methods have been proposed for repairing a distal penile erosion. We present our preliminary experience in "Distal corporoplasty" technique. We enrolled 18 consecutive patients whose underwent a distal corporoplasty with simultaneous reimplantation of an "AMS 700 inflatable penile prosthesis (LGX)" from January 2013 to November 2015 at our hospital. All procedures were performed by a single surgical team. Intraoperative and postoperative complications have been classified and reported according to Satava6 and Clavien-Dindo (CD) system.7 Mean values with standard deviations (±SD) were computed and reported for all items. Mean age of the patients was 53.61 (±11.90) years. Mean body max index (BMI) was 24.22 (±2.51). Mean operative time was 85.2 (±13.1) minutes. Blood losses were minimal. No intraoperative complications are reported according to Satava classification. Four out of 18 patients (22.22%) experienced postoperative complications according to CD system. All patients had sexual intercourse for the first time postsurgery after a mean of 59.11 ± 2.08 days. Mean follow-up was 22.11 (±9.95). Distal extrusion of cylinders is a potential complication of the penile prosthesis implantation. Distal corporoplasty was first described by Mulcahy. He reported a series of 14 patients with a follow-up of about 2 years with optimal functional outcomes. Moreover, distal corporoplasty resulted in shorter operative time, better function, less pain, and fewer recurrences than Gortex windsock repair.10 In our experience, distal corporoplasty is a simple and safe procedure in the treatment of distal cylinders extrusion when the prosthetic material is not exposed to the exterior.

  18. Application of extrusion-cooking technique for foamed starch-based materials

    Directory of Open Access Journals (Sweden)

    Combrzyński Maciej

    2018-01-01

    Full Text Available Foamed materials are widely used, mainly as a protection objects during transport of various products. Traditionally foams are produced from plastics so they are very difficult for waste management. It is the challenge for many scientific centres to develop a technology for the production of bio-based materials which can be rapidly decomposed. The task for the researcher is to obtain a relatively cheap, easy to use and completely biodegradable materials. The aim of this work was the selection of the main raw materials, functional additives and process parameters to obtain the most effective parameters of extrusion-cooking process for foamed starch-based materials. Properties of the products and processing costs were taken into account. During the study, the extrusion-cooking process was performed under various conditions: temperature, humidity, type of the die, screw rotational speed, various raw materials and additives blends. The best results were obtained for mixtures based on potato starch and with addition the foaming agent Plastron foam PDE and poly(vinyl alcohol PVA.

  19. Study on the combustion behavior of high impact polystyrene nanocomposites produced by different extrusion processes

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available The combustion behavior of a blend made of high impact polystyrene (HIPS with sodium montmorillonite (MMT-Na+ and triphenyl phosphite (TPP, as a halogen-free flame retardant, is analyzed in detail in this work. The blend is processed through various extrusion methods aimed to improve clay dispersion. The UL94 method in vertical position, oxygen index and cone calorimetric measurements assess HIPS blend behavior in combustion. TGA, FTIR, SEM and X-ray measurements, together with mechanical and rheological tests evaluate the thermal degradation, morphology, intercalation and degree of dispersion of particles. The use of a static-mixing die placed at the extreme of a single screw extruder improves clay platelets distribution and reduces the peak heat release rate better than employing a twin screw extrusion process. In addition, mechanical and rheological properties are affected substantially by changing the extrusion process. A correlation between clay dispersion and HIPS fire retardant properties is found, as the peak heat release rate decreases with good clay dispersion in cone calorimetric tests.

  20. Extrusion enhances metabolizable energy and ileal amino acids digestibility of canola meal for broiler chickens

    Directory of Open Access Journals (Sweden)

    Aljuobori Ahmed

    2014-01-01

    Full Text Available The aim of the current study was to determine the effect of extrusion process on apparent metabolizable energy (AME, crude protein (CP and amino acid (AA digestibility of canola meal (CM in broiler chickens. A total of 36, 42-day-old broilers were randomly assigned into adaptation diets (no CM or 30% CM with six replicates. After 4 days of adaptation period, on day 47, birds were allowed to consume the assay diets that contain CM or extruded canola meal (ECM as the sole source of energy and protein. Following 4 h after feeding, the birds were killed and ileal contents were collected. The results showed that ECM had greater (P<0.001 AME (10.87 vs 9.39 MJ/kg compared to CM. The extrusion also significantly enhanced apparent ileal digestibility of CP and some of AA such as Asp, Glu, Ser, Thr and Trp. In conclusion, the extrusion treatment appeared to be a practical and effective approach in enhancing the digestibility of AME, CP and some AA of CM in broiler chickens.

  1. Investigation of cold extrusion process using coupled thermo-mechanical FEM analysis and adaptive friction modeling

    Science.gov (United States)

    Görtan, Mehmet Okan

    2017-10-01

    Cold extrusion processes are known for their excellent material usage as well as high efficiency in the production of large batches. Although the process starts at room temperature, workpiece temperatures may rise above 200°C. Moreover, contact normal stresses can exceed 2500 MPa, whereas surface enlargement values can reach up to 30. These changes affects friction coefficients in cold extrusion processes. In the current study, friction coefficients between a plain carbon steel C4C (1.0303) and a tool steel (1.2379) are determined dependent on temperature and contact pressure using the sliding compression test (SCT). In order to represent contact normal stress and temperature effects on friction coefficients, an empirical adaptive friction model has been proposed. The validity of the model has been tested with experiments and finite element simulations for a cold forward extrusion process. By using the proposed adaptive friction model together with thermo-mechanical analysis, the deviation in the process loads between numerical simulations and model experiments could be reduced from 18.6% to 3.3%.

  2. Regulation of H+ Extrusion and Cytoplasmic pH in Maize Root Tips Acclimated to a Low-Oxygen Environment.

    Science.gov (United States)

    Xia, J. H.; Roberts, JKM.

    1996-05-01

    We tested the hypothesis that H+ extrusion contributes to cytoplasmic pH regulation and tolerance of anoxia in maize (Zea mays) root tips. We studied root tips of whole seedlings that were acclimated to a low-oxygen environment by pretreatment in 3% (v/v) O2. Acclimated root tips characteristically regulate cytoplasmic pH near neutrality and survive prolonged anoxia, whereas nonacclimated tips undergo severe cytoplasmic acidosis and die much more quickly. We show that the plasma membrane H+-ATPase can operate under anoxia and that net H+ extrusion increases when cytoplasmic pH falls. However, at an external pH near 6.0, H+ extrusion contributes little to cytoplasmic pH regulation. At more acidic external pH values, net H+ flux into root tips increases dramatically, leading to a decrease in cytoplasmic pH and reduced tolerance of anoxia. We present evidence that, under these conditions, H+ pumps are activated to partly offset acidosis due to H+ influx and, thereby, contribute to cytoplasmic pH regulation and tolerance of anoxia. The regulation of H+ extrusion under anoxia is discussed with respect to the acclimation response and mechanisms of intracellular pH regulation in aerobic plant cells.

  3. Influence of processing conditions on apparent viscosity and system parameters during extrusion of distiller's dried grains-based snacks.

    Science.gov (United States)

    Singha, Poonam; Muthukumarappan, Kasiviswanathan; Krishnan, Padmanaban

    2018-01-01

    A combination of different levels of distillers dried grains processed for food application (FDDG), garbanzo flour and corn grits were chosen as a source of high-protein and high-fiber extruded snacks. A four-factor central composite rotatable design was adopted to study the effect of FDDG level, moisture content of blends, extrusion temperature, and screw speed on the apparent viscosity, mass flow rate or MFR, torque, and specific mechanical energy or SME during the extrusion process. With increase in the extrusion temperature from 100 to 140°C, apparent viscosity, specific mechanical energy, and torque value decreased. Increase in FDDG level resulted in increase in apparent viscosity, SME and torque. FDDG had no significant effect (p > .5) on mass flow rate. SME also increased with increase in the screw speed which could be due to the higher shear rates at higher screw speeds. Screw speed and moisture content had significant negative effect ( p  extruder and the system parameters were affected by the processing conditions. This study will be useful for control of extrusion process of blends containing these ingredients for the development of high-protein high-fiber extruded snacks.

  4. Proton solvation and proton transfer in chemical and electrochemical processes

    International Nuclear Information System (INIS)

    Lengyel, S.; Conway, B.E.

    1983-01-01

    This chapter examines the proton solvation and characterization of the H 3 O + ion, proton transfer in chemical ionization processes in solution, continuous proton transfer in conductance processes, and proton transfer in electrode processes. Topics considered include the condition of the proton in solution, the molecular structure of the H 3 O + ion, thermodynamics of proton solvation, overall hydration energy of the proton, hydration of H 3 O + , deuteron solvation, partial molal entropy and volume and the entropy of proton hydration, proton solvation in alcoholic solutions, analogies to electrons in semiconductors, continuous proton transfer in conductance, definition and phenomenology of the unusual mobility of the proton in solution, solvent structure changes in relation to anomalous proton mobility, the kinetics of the proton-transfer event, theories of abnormal proton conductance, and the general theory of the contribution of transfer reactions to overall transport processes

  5. Protons and how they are transported by proton pumps

    DEFF Research Database (Denmark)

    Buch-Pedersen, Morten Jeppe; Pedersen, Bjørn Panyella; Nissen, Poul

    2008-01-01

    molecular components that allow the plasma membrane proton H(+)-ATPase to carry out proton transport against large membrane potentials. When divergent proton pumps such as the plasma membrane H(+)-ATPase, bacteriorhodopsin, and F(O)F(1) ATP synthase are compared, unifying mechanistic premises for biological...... proton pumps emerge. Most notably, the minimal pumping apparatus of all pumps consists of a central proton acceptor/donor, a positively charged residue to control pK (a) changes of the proton acceptor/donor, and bound water molecules to facilitate rapid proton transport along proton wires....

  6. Cisão de cadeia na degradação termo-mecânica do poliestireno sob múltiplas extrusões Scission in the thermo mechanical degradation of polystyrene under multiple extrusions

    Directory of Open Access Journals (Sweden)

    Carlos A. Cáceres

    2008-01-01

    Full Text Available Determinou-se o número de cisões de cadeia gerado pela degradação termo-mecânica do poliestireno quando submetido a múltiplas extrusões. A degradação foi acompanhada pelas mudanças nas curvas de distribuição de massa molar. Seguindo-se o significado físico das massas molares médias de uma curva de MWD mostrou-se que a massa molar numérica media Mn é a única que pode ser relacionada diretamente com o número de moléculas do sistema. A partir desta calculou-se o número de cadeias clivadas (ns como uma relação entre a Mn da amostra degradada e a virgem. A função de distribuição de cisão de cadeia (CSDF mostra que o processo de degradação termo-mecânica do poliestireno submetido a múltiplas extrusões à 240 °C é do tipo aleatório, independente da massa molar inicial.The number of chain scissions during thermo-degradation of polystyrene under multiple extrusions was calculated. The degradation produces changes in the molecular weight distribution MWD curves. Following the physical meaning of the average molecular weights of a MWD curve it was shown that the number average molecular weight Mn is the only average that can be directly related to the number of molecules in the system. From that it was calculated the number of sectioned chains (ns as a ratio between the number of chains in the degraded and original polymers. The chain scission distribution function (CSDF shows that the thermo-mechanical degradation process of polystyrene under multiple extrusions at 240 °C is of a random type, independent of the initial molecular weight.

  7. Effect of ECAP and extrusion on particle distribution in Al-nano ...

    Indian Academy of Sciences (India)

    Administrator

    Al-nano–Al2O3 composite. R DERAKHSHANDEH HAGHIGHI. Department of Materials Science and Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran. MS received 24 January 2014; accepted 23 April 2015. Abstract. In this study equal channel angular pressing (ECAP) and conventional extrusion were used ...

  8. Características tecnológicas de farinhas de arroz pré-gelatinizadas obtidas por extrusão termoplástica Technological properties of pre-gelatinized rice flour obtained by thermoplastic extrusion

    Directory of Open Access Journals (Sweden)

    Maria Teresa Pedrosa Silva Clerici

    2008-10-01

    Full Text Available A farinha de arroz tem sido um ingrediente atrativo para a indústria de extrusados, devido à suas qualidades como sabor suave, cor branca e hipoalergenicidade. Objetivou-se, neste trabalho, produzir e analisar farinha de arroz pré-gelatinizada (FPG por extrusão termoplástica. As FPG foram produzidas num extrusor termoplástico monorosca Brabender, variando-se a umidade (19,2 a 24,8% e a temperatura de extrusão (108 a 192ºC. As características de torque, índice de expansão, propriedades viscoamilográficas, índice de absorção em água (IAA e índice de solubilidade em água (ISA das FPG foram analisadas por metodologia de superfície de resposta (MRS e análise de componentes principais (ACP. Os resultados analisados por MRS e ACP indicaram que o torque e o índice de expansão dos extrusados apresentaram os maiores valores quando foram usados os menores teores de umidade. As FPG apresentaram, dentro das propriedades viscoamilográficas, a viscosidade inicial de pasta maior em temperaturas mais altas, já a viscosidade a 95ºC e a 50ºC foram maiores quando temperatura e umidade estavam em extremos opostos. O IAA foi menor quando se usaram baixas temperaturas e maiores teores de umidades; no entanto, o ISA, quando analisado pela MRS, não apresentou influência da temperatura e umidade, mas quando analisado pela ACP, foi maior quando as temperaturas estavam entre 120 - 150ºC e os teores de umidade entre 19,2 e 22%. Concluindo, as análises de MRS e de ACP mostraram que a variação das propriedades tecnológicas das FPG foram relacionadas aos extremos de temperatura e/ou umidade utilizados durante o processo de extrusão, e a ACP foi capaz de complementar a análise feita através da MRS.The rice flour has become an attractive ingredient in the extrusion industry due to its unique attributes such as bland taste, white color and hypoallergenicity. The purpose of this research was to produce and analyze pre-gelatinized rice flour (GRF

  9. Extrusion of the medial meniscus in knee osteoarthritis assessed with a rotating clino-orthostatic permanent-magnet MRI scanner.

    Science.gov (United States)

    Paparo, Francesco; Revelli, Matteo; Piccazzo, Riccardo; Astengo, Davide; Camellino, Dario; Puntoni, Matteo; Muda, Alessandro; Rollandi, Gian Andrea; Garlaschi, Giacomo; Cimmino, Marco Amedeo

    2015-04-01

    The objectives of this study were to assess the influence of weight-bearing on tibiofemoral osteoarthritis, including medial meniscal extrusion, by using a low-field (0.25 T) rotating clino-orthostatic permanent-magnet magnetic resonance (MR) scanner, and to analyse correlations of medial meniscal extrusion with the patient's Kellgren-Lawrence score, body mass index, and all the osteoarthritis features of the WORMS scoring system. Twenty-six patients (69.2% women and 30.8% men; mean age 67 ± 9.7 years) with medial tibiofemoral knee osteoarthritis were prospectively enrolled and MR sequences were acquired in both clino- and orthostatic position. MR images were assessed by two independent radiologists, according to the WORMS scale. Medial meniscal extrusion was measured and its clino-orthostatic difference (∆MME) was calculated. Intra- and inter-observer agreement of the WORMS Global Score readings was high by Cohen's K test (>0.81). No significant clino-orthostatic changes in the scoring parameters of the medial tibiofemoral joint were shown by Wilcoxon's test. Medial meniscal extrusion measured on orthostatic images was significantly higher than that measured in clinostatic position (p < 0.0001). At univariate analysis, the Kellgren-Lawrence score, WORMS Global Score, cartilage loss, meniscal damage, and osteophytes were significantly correlated to ∆MME (p < 0.005). Using a multiple regression model, tibiofemoral cartilage loss was found to correlate independently with ∆MME (p = 0.0499). Medial meniscal extrusion, evaluated with an open-configuration, rotating MR scanner, increased from the clinostatic to the orthostatic position. ∆MME, a new meniscal parameter, correlated with several important features of medial tibiofemoral osteoarthritis.

  10. Tribological investigations of the applicability of surface functionalization for dry extrusion processes

    Science.gov (United States)

    Teller, Marco; Prünte, Stephan; Ross, Ingo; Temmler, André; Schneider, Jochen M.; Hirt, Gerhard

    2017-10-01

    Cold extrusion processes are characterized by large relative contact stresses combined with a severe surface enlargement of the workpiece. Under these process conditions a high risk for galling of workpiece material to the tool steel occurs especially in processing of aluminum and aluminum alloys. In order to reduce adhesive wear lubricants for separation of workpiece and tool surfaces are used. As a consequence additional process steps (e.g. preparation and cleaning of workpieces) are necessary. Thus, the realization of a dry forming process is aspired from an environmental and economic perspective. In this paper a surface functionalization with self-assembled-monolayers (SAM) of the tool steels AISI D2 (DIN 1.2379) and AISI H11 (DIN 1.2343) is evaluated by a process-oriented tribological test. The tribological experiment is able to resemble and scale the process conditions of cold extrusion related to relative contact stress and surface enlargement for the forming of pure aluminum (Al99.5). The effect of reduced relative contact stress, surface enlargement and relative velocity on adhesive wear and tool lifetime is evaluated. Similar process conditions are achievable by different die designs with decreased extrusion ratios and adjusted die angles. The effect of surface functionalization critically depends on the substrate material. The different microstructure and the resulting differences in surface chemistry of the two tested tool steels appear to affect the performance of the tool surface functionalization with SAM.

  11. Rational analysis and index of plasticity of clays for extrusion evaluation

    International Nuclear Information System (INIS)

    Silva, A.R.; Guimaraes Filho, M.A.S.; Santos, C.V.P.; Fagury Neto, E.; Rabelo, A.A.

    2011-01-01

    In the microregion Maraba, in the southeast paraense, there's a important industrial park in the area of red ceramic due to the quality of the extracted clays in the proximities of their rivers. With the intention of collaborating for the production of tiles and structural blocks of quality, in this work the rational analysis of clays was accomplished, through the relationship of the qualitative X-ray diffraction and X-ray fluorescence results. Was possible to quantify the present phases in the collected clays and these results were correlated to the Atterberg's limits - plasticity and liquidity limitsand the respective plasticity indexes - making possible to classify the clays in areas of great and acceptable extrusion. The results of the rational analysis demonstrated that the analyzed clays are plastic kaolinites and don't present quantitative differences very accentuated among the present phases detected besides they possess an area of acceptable extrusion naturally. (author)

  12. Extrusion of blends of cassava leaves and cassava flour: physical characteristics of extrudates

    Directory of Open Access Journals (Sweden)

    Cristiane da Cunha Salata

    2014-09-01

    Full Text Available A cassava-based puffed snack was produced using a single screw extruder to determine the effect of the raw material composition (cassava leaf flour and moisture and the process parameters (extrusion temperature and screw speed on the physical characteristics of an extruded-expanded snack. A central composite rotational design, including four factors with 30 treatments, was used with the following as dependent variables: expansion index, specific volume, water solubility index, water absorption index, color (L*, a*, b*, and hardness. Under conditions of low moisture content (12 to 14%, low percentage of cassava leaf flour (2 to 4%, and intermediate conditions of extrusion temperature (100°C and screw speed (230rpm, it was possible to obtain puffed snack products with desirable characteristics.

  13. [Technique for removing donor sclera by eyeball extrusion].

    Science.gov (United States)

    González Del Valle, F; Álvarez Portela, M; Lara Medina, J; Celis Sánchez, J; Barrajón Rodríguez, A

    2012-09-01

    To describe a surgery technique for removing donor sclera tissue after corneo-scleral button excision. The extrusion technique is easy to perform. It allows the complete scleral extraction its total clean up to be performed, as well as making easier to isolate the retina and uveal tissue. This technique could have an important role in the anatomical and morphological study of ocular structures. Copyright © 2011 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  14. The voltage-gated proton channel Hv1 is expressed in pancreatic islet β-cells and regulates insulin secretion

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qing [Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071 (China); Che, Yongzhe [School of Medicine, Nankai University, Tianjin 300071 (China); Li, Qiang; Zhang, Shangrong [Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071 (China); Gao, Ying-Tang [Key Laboratory of Artificial Cell, Third Central Clinical College of Tianjin Medical University, Tianjin 300170 (China); Wang, Yifan; Wang, Xudong; Xi, Wang; Zuo, Weiyan [Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071 (China); Li, Shu Jie, E-mail: shujieli@nankai.edu.cn [Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071 (China)

    2015-12-25

    The voltage-gated proton channel Hv1 is a potent acid extruder that participates in the extrusion of the intracellular acid. Here, we showed for the first time, Hv1 is highly expressed in mouse and human pancreatic islet β-cells, as well as β-cell lines. Imaging studies demonstrated that Hv1 resides in insulin-containing granules in β-cells. Knockdown of Hv1 with RNA interference significantly reduces glucose- and K{sup +}-induced insulin secretion in isolated islets and INS-1 (832/13) β-cells and has an impairment on glucose- and K{sup +}-induced intracellular Ca{sup 2+} homeostasis. Our data demonstrated that the expression of Hv1 in pancreatic islet β-cells regulates insulin secretion through regulating Ca{sup 2+} homeostasis.

  15. Antioxidant activity and polyphenolic compound stability of lentil-orange peel powder blend in an extrusion process.

    Science.gov (United States)

    Rathod, Rahul P; Annapure, Uday S

    2017-03-01

    Lentil contains substantial amount of protein, carbohydrate, fibre and other nutrients and orange peels powder rich in carbohydrate and fiber content The present study was aimed to investigate the effects of extrusion processing parameter on the level of total phenolic content (TPC), total flavonoid content (TFC), total tannin content and antioxidant activity of lentil-orange peel powder blend, also to investigate the possibility of blend as a candidate for production of protein rich extruded product by using response surface methodology. It was observed that, the physicochemical properties and sensory characteristics of lentil-orange peel based extrudate were highly dependent on process variables. The blend of lentil and orange peel powder has a huge potential for extrusion to produce ready-to-eat extruded with good acceptance. The overall best quality product was optimized and obtained at 16% moisture, 150 °C die temperature and 200 rpm screw speed. Extrusion process increased nutritional value of extruded product with TPC and TFC of 70.4 and 67.62% respectively and antioxidant activity of 60.6%. It showed higher stability at 150 °C with intermediate feed moisture content and despite the use of high temperatures in the extrusion-cooking is possible to minimize the loss of bioactive compounds to achieve products. Thus, results indicated that blend of lentil and orange peel may be used as raw material for the production of extruded snacks with great nutritional value.

  16. Hot Melt Extrusion and Spray Drying of Co-amorphous Indomethacin-Arginine With Polymers.

    Science.gov (United States)

    Lenz, Elisabeth; Löbmann, Korbinian; Rades, Thomas; Knop, Klaus; Kleinebudde, Peter

    2017-01-01

    Co-amorphous drug-amino acid systems have gained growing interest as an alternative to common amorphous formulations which contain polymers as stabilizers. Several preparation methods have recently been investigated, including vibrational ball milling on a laboratory scale or spray drying in a larger scale. In this study, the feasibility of hot melt extrusion for continuous manufacturing of co-amorphous drug-amino acid formulations was examined, challenging the fact that amino acids melt with degradation at high temperatures. Furthermore, the need for an addition of a polymer in this process was evaluated. After a polymer screening via the solvent evaporation method, co-amorphous indomethacin-arginine was prepared by a melting-solvent extrusion process without and with copovidone. The obtained products were characterized with respect to their solid-state properties, non-sink dissolution behavior, and stability. Results were compared to those of spray-dried formulations with the same compositions and to spray-dried indomethacin-copovidone. Overall, stable co-amorphous systems could be prepared by extrusion without or with copovidone, which exhibited comparable molecular interaction properties to the respective spray-dried products, while phase separation was detected by differential scanning calorimetry in several cases. The formulations containing indomethacin in combination with arginine and copovidone showed enhanced dissolution behavior over the formulations with only copovidone or arginine. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. Influence of extrusion parameters on sic distribution and properties of AA6061/SiC composites produced by kobo method

    Energy Technology Data Exchange (ETDEWEB)

    WoĨniak, Jarosáaw; Kostecki, Marek; Broniszewski, Kamil; Olszyna, Andrzej [Faculty of Material Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Bochniak, Wáodzimierz [Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Cracow (Poland)

    2013-07-01

    The influence of extrusion parameters on reinforcements distribution and properties of AA6061+x% vol. SiC p (x=0; 2.5; 5; 7.5; 10) composites was discussed in this paper The averages size of AA6061 and SiC particles were 10.6 μ m and 0.42 μ m, respectively. The composites were consolidated via powder metallurgy processing (without the sintering) and extruded by KoBo method. The microstructure was examined on each steps of production. High values of density for all produced composites were achieved. Additionally, hardness and Young’s modulus were investigated. The best reinforcement distribution and mechanical properties were obtained for composites extruded with the highest extrusion ratio. Key words: aluminum alloy, extrusion, aged hardening, metal matrix composites, microstructure.

  18. Microstructure Evolution in Mg-Zn-Zr-Gd Biodegradable Alloy: The Decisive Bridge Between Extrusion Temperature and Performance.

    Science.gov (United States)

    Yao, Huai; Wen, Jiu-Ba; Xiong, Yi; Lu, Yan; Huttula, Marko

    2018-01-01

    Being a biocompatible metal with similar mechanical properties as bones, magnesium bears both biodegradability suitable for bone substitution and chemical reactivity detrimental in bio-ambiences. To benefit its biomaterial applications, we developed Mg-2.0Zn-0.5Zr-3.0Gd (wt%) alloy through hot extrusion and tailored its biodegradability by just varying the extrusion temperatures during alloy preparations. The as-cast alloy is composed of the α-Mg matrix, a network of the fish-bone shaped and ellipsoidal (Mg, Zn) 3 Gd phase, and a lamellar long period stacking ordered phase. Surface content of dynamically recrystallized (DRXed) and large deformed grains increases within 330-350°C of the extrusion temperature, and decreases within 350-370°C. Sample second phase contains the (Mg, Zn) 3 Gd nano-rods parallel to the extrusion direction, and Mg 2 Zn 11 nanoprecipitation when temperature tuned above 350°C. Refining microstructures leads to different anticorrosive ability of the alloys as given by immersion and electrochemical corrosion tests in the simulated body fluids. The sample extruded at 350°C owns the best anticorrosive ability thanks to structural impacts where large DRXed portions and uniform nanosized grains reduce chemical potentials among composites, and passivate the extruded surfaces. Besides materials applications, the in vitro mechanism revealed here is hoped to inspire similar researches in biometal developments.

  19. Microstructure evolution in Mg-Zn-Zr-Gd biodegradable alloy: the decisive bridge between extrusion temperature and performance

    Science.gov (United States)

    Yao, Huai; Wen, Jiu-Ba; Xiong, Yi; Lu, Yan; Huttula, Marko

    2018-03-01

    Being a biocompatible metal with similar mechanical properties as bones, magnesium bears both biodegradability suitable for bone substitution and chemical reactivity detrimental in bio-ambiences. To benefit its biomaterial applications, we developed Mg-2.0Zn-0.5Zr-3.0Gd (wt%) alloy through hot extrusion and tailored its biodegradability by just varying the extrusion temperatures during alloy preparations. The as-cast alloy is composed of the α-Mg matrix, a network of the fish-bone shaped and ellipsoidal (Mg, Zn)3Gd phase, and a lamellar long period stacking ordered phase. Surface content of dynamically recrystallized (DRXed) and large deformed grains increases within 330-350 C of the extrusion temperature, and decreases within 350-370 C. Sample second phase contains the (Mg, Zn)3Gd nano-rods parallel to the extrusion direction, and Mg2Zn11 nanoprecipitation when temperature tuned above 350 C. Refining microstructures leads to different anticorrosive ability of the alloys as given by immersion and electrochemical corrosion tests in the simulated body fluids. The sample extruded at 350 C owns the best anticorrosive ability thanks to structural impacts where large DRXed portions and uniform nanosized grains reduce chemical potentials among composites, and passivate the extruded surfaces. Besides materials applications, the in vitro mechanism revealed here is hoped to inspire similar researches in biometal developments.

  20. Microstructure Evolution in Mg-Zn-Zr-Gd Biodegradable Alloy: The Decisive Bridge Between Extrusion Temperature and Performance

    Directory of Open Access Journals (Sweden)

    Huai Yao

    2018-03-01

    Full Text Available Being a biocompatible metal with similar mechanical properties as bones, magnesium bears both biodegradability suitable for bone substitution and chemical reactivity detrimental in bio-ambiences. To benefit its biomaterial applications, we developed Mg-2.0Zn-0.5Zr-3.0Gd (wt% alloy through hot extrusion and tailored its biodegradability by just varying the extrusion temperatures during alloy preparations. The as-cast alloy is composed of the α-Mg matrix, a network of the fish-bone shaped and ellipsoidal (Mg, Zn3Gd phase, and a lamellar long period stacking ordered phase. Surface content of dynamically recrystallized (DRXed and large deformed grains increases within 330–350°C of the extrusion temperature, and decreases within 350–370°C. Sample second phase contains the (Mg, Zn3Gd nano-rods parallel to the extrusion direction, and Mg2Zn11 nanoprecipitation when temperature tuned above 350°C. Refining microstructures leads to different anticorrosive ability of the alloys as given by immersion and electrochemical corrosion tests in the simulated body fluids. The sample extruded at 350°C owns the best anticorrosive ability thanks to structural impacts where large DRXed portions and uniform nanosized grains reduce chemical potentials among composites, and passivate the extruded surfaces. Besides materials applications, the in vitro mechanism revealed here is hoped to inspire similar researches in biometal developments.

  1. Condensed tannins in traditional wet-cooked and modern extrusion-cooked sorghum porridges

    CSIR Research Space (South Africa)

    Dlamini, NR

    2009-07-01

    Full Text Available the quantity and profile of condensed tannins in traditional wet-cooked and modern ready-to-eat extrusion-cooked sorghum porridges. CT were analyzed using normal-phase HPLC with fluorescence detection and their content was compared to CT and total phenols...

  2. Deformation behavior of commercial Mg-Al-Zn-Mn type alloys under a hydrostatic extrusion process at elevated temperatures

    International Nuclear Information System (INIS)

    Yoon, Duk Jae; Lee, Sang Mok; Lim, Seong Joo; Kim, Eung Zu

    2010-01-01

    This paper presents the deformation behavior of commercial Mg-Al-Zn-Mn type alloys during hydrostatic extrusion process at elevated temperatures. In the current study commercial Mg-Al-Zn-Mn type alloys with different Al contents were subjected to hydrostatic extrusion process at a range of temperatures and at ram speeds of 4.5, 10 and 17 mm/sec. Under the hydrostatic condition at 518K, the alloy with Al contents of 2.9 wt% was successfully extruded at all applied speeds. The alloys with Al content of 5.89 and 7.86 wt% were successful up to 10mm/sec, and finally extrusion of alloy with Al content 8.46wt% was successful only at 4.5 mm/sec. These results show that the deformation limit in the Mg alloys in terms of extrusion speed greatly extended to higher value in the proximity of lower Al content. It is presumed that deformation becomes harder as Al content increases because of strengthening mechanism by solute drag to increase of supersaturated Mg 17 Al 12 precipitates. Also, microstructures of cast and extruded Mg alloys were compared. Defect-wide microstructure of cast alloy completely evolved into dense and homogeneous microstructure with equiaxed grains

  3. Mechanical properties of copper-lithium alloys produced by mechanic alloyed and hot extrusion

    International Nuclear Information System (INIS)

    Castillo B, Ricardo; Gorziglia S, Ezio; Penaloza V, Augusto

    2004-01-01

    In this work are presented the progress carried out on the characterization of some physical and mechanical properties, together with the determination of the micro mechanism of fracture of the Cu-2% wt Li, that was obtained by mechanical alloying followed hot extrusion at 500 o C and 700 o C. Hardness and tensile mechanical tests were performed together with metallographic and fractographic analysis. The experimental results obtained with powders of the Cu-Li alloy studied are compared with powder of pure copper, under similar test conditions. The results show that by hot extrusion was allowed to obtain very high densification levels for the materials under study. Moreover, it was found that lithium reduce both the tensile strength and elongation, of copper by a mechanism of embrittlement. The results are compares with the literature (au)

  4. Crystal Structure of a Plant Multidrug and Toxic Compound Extrusion Family Protein.

    Science.gov (United States)

    Tanaka, Yoshiki; Iwaki, Shigehiro; Tsukazaki, Tomoya

    2017-09-05

    The multidrug and toxic compound extrusion (MATE) family of proteins consists of transporters responsible for multidrug resistance in prokaryotes. In plants, a number of MATE proteins were identified by recent genomic and functional studies, which imply that the proteins have substrate-specific transport functions instead of multidrug extrusion. The three-dimensional structure of eukaryotic MATE proteins, including those of plants, has not been reported, preventing a better understanding of the molecular mechanism of these proteins. Here, we describe the crystal structure of a MATE protein from the plant Camelina sativa at 2.9 Å resolution. Two sets of six transmembrane α helices, assembled pseudo-symmetrically, possess a negatively charged internal pocket with an outward-facing shape. The crystal structure provides insight into the diversity of plant MATE proteins and their substrate recognition and transport through the membrane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Comparison of apical debris extrusion using a conventional and two rotary techniques.

    Science.gov (United States)

    Adl, Alireza; Sahebi, Safoora; Moazami, Fariborz; Niknam, Mahnaz

    2009-01-01

    Preparation techniques and instruments produce and push debris out of canals. This can induce inflammation within the periapical area. Therefore, instrumentation that causes less extrusion of debris is more desirable. The purpose of this in vitro study was to evaluate the quantity of debris extruded from the apical foramen during root canal preparation by using one hand, and two rotary instrumentation techniques. Three different groups each with 12 mesiobuccal roots of human maxillary first molar were instrumented using either step-back technique with hand instruments, FlexMaster or Mtwo rotary system. Debris extruded from the apical foramen during canal preparation was collected. The mean dry weights of debris were compared using one-way ANOVA. Step-back group had a significantly greater mean weight of debris compared to the other two groups (Pengine driven techniques were associated with less apical debris extrusion. [Iranian Endodontic Journal 2009;4(4):135-8].

  6. Proton decay: spectroscopic probe beyond the proton drip line

    International Nuclear Information System (INIS)

    Seweryniak, D; Davids, C N; Robinson, A; Woods, P J; Blank, B; Carpenter, M P; Davinson, T; Freeman, S J; Hammond, N; Hoteling, N; Janssens, R V F; Khoo, T L; Liu, Z; Mukherjee, G; Shergur, J; Sinha, S; Sonzogni, A A; Walters, W B; Woehr, A

    2005-01-01

    Proton decay has been transformed in recent years from an exotic phenomenon into a powerful spectroscopic tool. The frontiers of experimental and theoretical proton-decay studies will be reviewed. Different aspects of proton decay will be illustrated with recent results on the deformed proton emitter 135 Tb, the odd-odd deformed proton emitter 130 Eu, the complex fine structure in the odd-odd 146 Tm nucleus and on excited states in the transitional proton emitter 145 Tm

  7. Accidental injury of the inferior alveolar nerve due to the extrusion of calcium hydroxide in endodontic treatment: a case report

    Directory of Open Access Journals (Sweden)

    Yooseok Shin

    2016-02-01

    Full Text Available During clinical endodontic treatment, we often find radiopaque filling material beyond the root apex. Accidental extrusion of calcium hydroxide could cause the injury of inferior alveolar nerve, such as paresthesia or continuous inflammatory response. This case report presents the extrusion of calcium hydroxide and treatment procedures including surgical intervention. A 48 yr old female patient experienced Calcipex II extrusion in to the inferior alveolar canal on left mandibular area during endodontic treatment. After completion of endodontic treatment on left mandibular first molar, surgical intervention was planned under general anesthesia. After cortical bone osteotomy and debridement, neuroma resection and neurorrhaphy was performed, and prognosis was observed. But no improvement in sensory nerve was seen following surgical intervention after 20 mon. A clinician should be aware of extrusion of intracanal medicaments and the possibility of damage on inferior alveolar canal. Injectable type of calcium hydroxide should be applied with care for preventing nerve injury. The alternative delivery method such as lentulo spiral was suggested on the posterior mandibular molar.

  8. Quantitative measures of meniscus extrusion predict incident radiographic knee osteoarthritis--data from the Osteoarthritis Initiative.

    Science.gov (United States)

    Emmanuel, K; Quinn, E; Niu, J; Guermazi, A; Roemer, F; Wirth, W; Eckstein, F; Felson, D

    2016-02-01

    To test the hypothesis that quantitative measures of meniscus extrusion predict incident radiographic knee osteoarthritis (KOA), prior to the advent of radiographic disease. 206 knees with incident radiographic KOA (Kellgren Lawrence Grade (KLG) 0 or 1 at baseline, developing KLG 2 or greater with a definite osteophyte and joint space narrowing (JSN) grade ≥1 by year 4) were matched to 232 control knees not developing incident KOA. Manual segmentation of the central five slices of the medial and lateral meniscus was performed on coronal 3T DESS MRI and quantitative meniscus position was determined. Cases and controls were compared using conditional logistic regression adjusting for age, sex, BMI, race and clinical site. Sensitivity analyses of early (year [Y] 1/2) and late (Y3/4) incidence was performed. Mean medial extrusion distance was significantly greater for incident compared to non-incident knees (1.56 mean ± 1.12 mm SD vs 1.29 ± 0.99 mm; +21%, P meniscus (25.8 ± 15.8% vs 22.0 ± 13.5%; +17%, P meniscus in incident medial KOA, or for the tibial plateau coverage between incident and non-incident knees. Restricting the analysis to medial incident KOA at Y1/2 differences were attenuated, but reached significance for extrusion distance, whereas no significant differences were observed at incident KOA in Y3/4. Greater medial meniscus extrusion predicts incident radiographic KOA. Early onset KOA showed greater differences for meniscus position between incident and non-incident knees than late onset KOA. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  9. Graphite and PMMA as pore formers for thermoplastic extrusion of porous 3Y-TZP oxygen transport membrane supports

    DEFF Research Database (Denmark)

    Bjørnetun Haugen, Astri; Gurauskis, Jonas; Kaiser, Andreas

    2016-01-01

    A gas permeable porous support is a crucial part of an asymmetric oxygen transport membrane (OTM). Here, we develop feedstocks for thermoplastic extrusion of tubular, porous 3Y-TZP (partially stabilized zirconia polycrystals, (Y2O3)0.03(ZrO2)0.97)) ceramics, using graphite and/or polymethyl....... This demonstrates the suitability of thermoplastic extrusion for fabrication of porous 3Y-TZP OTM supports, or for other technologies requiring porous ceramics....

  10. Loaded versus unloaded magnetic resonance imaging (MRI of the knee: Effect on meniscus extrusion in healthy volunteers and patients with osteoarthritis

    Directory of Open Access Journals (Sweden)

    Rina Patel

    2016-01-01

    Conclusion: Our study demonstrated that medial meniscal extrusion significantly increased during loading, specifically in those low KL scores (0 and 1 and in KL score of 3. Loaded MRI may more accurately determine the extent of medial meniscal extrusion in particular in those with no to minimal OA.

  11. Extrusion Bioprinting of Shear-Thinning Gelatin Methacryloyl Bioinks.

    Science.gov (United States)

    Liu, Wanjun; Heinrich, Marcel A; Zhou, Yixiao; Akpek, Ali; Hu, Ning; Liu, Xiao; Guan, Xiaofei; Zhong, Zhe; Jin, Xiangyu; Khademhosseini, Ali; Zhang, Yu Shrike

    2017-06-01

    Bioprinting is an emerging technique for the fabrication of 3D cell-laden constructs. However, the progress for generating a 3D complex physiological microenvironment has been hampered by a lack of advanced cell-responsive bioinks that enable bioprinting with high structural fidelity, particularly in the case of extrusion-based bioprinting. Herein, this paper reports a novel strategy to directly bioprint cell-laden gelatin methacryloyl (GelMA) constructs using bioinks of GelMA physical gels (GPGs) achieved through a simple cooling process. Attributed to their shear-thinning and self-healing properties, the GPG bioinks can retain the shape and form integral structures after deposition, allowing for subsequent UV crosslinking for permanent stabilization. This paper shows the structural fidelity by bioprinting various 3D structures that are typically challenging to fabricate using conventional bioinks under extrusion modes. Moreover, the use of the GPG bioinks enables direct bioprinting of highly porous and soft constructs at relatively low concentrations (down to 3%) of GelMA. It is also demonstrated that the bioprinted constructs not only permit cell survival but also enhance cell proliferation as well as spreading at lower concentrations of the GPG bioinks. It is believed that such a strategy of bioprinting will provide many opportunities in convenient fabrication of 3D cell-laden constructs for applications in tissue engineering, regenerative medicine, and pharmaceutical screening. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Proton imaging apparatus for proton therapy application

    International Nuclear Information System (INIS)

    Sipala, V.; Lo Presti, D.; Brianzi, M.; Civinini, C.; Bruzzi, M.; Scaringella, M.; Talamonti, C.; Bucciolini, M.; Cirrone, G.A.P.; Cuttone, G.; Randazzo, N.; Stancampiano, C.; Tesi, M.

    2011-01-01

    Radiotherapy with protons, due to the physical properties of these particles, offers several advantages for cancer therapy as compared to the traditional radiotherapy and photons. In the clinical use of proton beams, a p CT (Proton Computer Tomography) apparatus can contribute to improve the accuracy of the patient positioning and dose distribution calculation. In this paper a p CT apparatus built by the Prima (Proton Imaging) Italian Collaboration will be presented and the preliminary results will be discussed.

  13. Protons and how they are transported by proton pumps

    DEFF Research Database (Denmark)

    Buch-Pedersen, Morten Jeppe; Pedersen, Bjørn Panyella; Veierskov, Bjarke

    2008-01-01

    The very high mobility of protons in aqueous solutions demands special features of membrane proton transporters to sustain efficient yet regulated proton transport across biological membranes. By the use of the chemical energy of ATP, plasma-membrane-embedded ATPases extrude protons from cells...... of plants and fungi to generate electrochemical proton gradients. The recently published crystal structure of a plasma membrane H(+)-ATPase contributes to our knowledge about the mechanism of these essential enzymes. Taking the biochemical and structural data together, we are now able to describe the basic...... molecular components that allow the plasma membrane proton H(+)-ATPase to carry out proton transport against large membrane potentials. When divergent proton pumps such as the plasma membrane H(+)-ATPase, bacteriorhodopsin, and F(O)F(1) ATP synthase are compared, unifying mechanistic premises for biological...

  14. Analysis on dynamic tensile extrusion behavior of UFG OFHC Cu

    Science.gov (United States)

    Park, Kyung-Tae; Park, Leeju; Kim, Hak Jun; Kim, Seok Bong; Lee, Chong Soo

    2014-08-01

    Dynamic tensile extrusion (DTE) tests with the strain rate order of ~105 s-1 were conducted on coarse grained (CG) Cu and ultrafine grained (UFG) Cu. ECAP of 16 passes with route Bc was employed to fabricate UFG Cu. DTE tests were carried out by launching the sphere samples to the conical extrusion die at a speed of ~475 m/sec in a vacuumed gas gun system. UFG Cu was fragmented into 3 pieces and showed a DTE elongation of ~340%. CG Cu exhibited a larger DTE elongation of ~490% with fragmentation of 4 pieces. During DTE tests, dynamic recrystallization occurred in UFG Cu, but not in CG Cu. In order to examine the DTE behavior of CG Cu and UFG Cu under very high strain rates, a numerical analysis was undertaken by using a commercial finite element code (LS-DYNA 2D axis-symmetric model) with the Johnson - Cook model. The numerical analysis correctly predicted fragmentation and DTE elongation of CG Cu. But, the experimental DTE elongation of UFG Cu was much smaller than that predicted by the numerical analysis. This difference is discussed in terms of microstructural evolution of UFG Cu during DTE tests.

  15. Measurement of small-angle antiproton-proton and proton-proton elastic scattering at the CERN intersecting storage rings

    NARCIS (Netherlands)

    Amos, N.; Block, M.M.; Bobbink, G.J.; Botje, M.A.J.; Favart, D.; Leroy, C.; Linde, F.; Lipnik, P.; Matheys, J-P.; Miller, D.

    1985-01-01

    Antiproton-proton and proton-proton small-angle elastic scattering was measured for centre-of-mass energies at the CERN Intersectung Storage Rings. In addition, proton-proton elastic scattering was measured at . Using the optical theorem, total cross sections are obtained with an accuracy of about

  16. Earthquake induced variations in extrusion rate: A numerical modeling approach to the 2006 eruption of Merapi Volcano (Indonesia)

    Science.gov (United States)

    Carr, Brett B.; Clarke, Amanda B.; de'Michieli Vitturi, Mattia

    2018-01-01

    Extrusion rates during lava dome-building eruptions are variable and eruption sequences at these volcanoes generally have multiple phases. Merapi Volcano, Java, Indonesia, exemplifies this common style of activity. Merapi is one of Indonesia's most active volcanoes and during the 20th and early 21st centuries effusive activity has been characterized by long periods of very slow (work has suggested that the peak extrusion rates observed in early June were triggered by the earthquake through either dynamic stress-induced overpressure or the addition of CO2 due to decarbonation and gas escape from new fractures in the bedrock. We use the numerical model to test the feasibility of these proposed hypotheses and show that, in order to explain the observed change in extrusion rate, an increase of approximately 5-7 MPa in magma storage zone overpressure is required. We also find that the addition of ∼1000 ppm CO2 to some portion of the magma in the storage zone following the earthquake reduces water solubility such that gas exsolution is sufficient to generate the required overpressure. Thus, the proposed mechanism of CO2 addition is a viable explanation for the peak phase of the Merapi 2006 eruption. A time-series of extrusion rate shows a sudden increase three days following the earthquake. We explain this three-day delay by the combined time required for the effects of the earthquake and corresponding CO2 increase to develop in the magma storage system (1-2 days), and the time we calculate for the affected magma to ascend from storage zone to surface (40 h). The increased extrusion rate was sustained for 2-7 days before dissipating and returning to pre-earthquake levels. During this phase, we estimate that 3.5 million m3 DRE of magma was erupted along with 11 ktons of CO2. The final phase of the 2006 eruption was characterized by highly variable extrusion rates. We demonstrate that those changes were likely controlled by failure of the edifice that had been confining

  17. Quantitative measures of meniscus extrusion predict incident radiographic knee osteoarthritis – data from the Osteoarthritis Initiative

    Science.gov (United States)

    Emmanuel, K.; Quinn, E.; Niu, J.; Guermazi, A.; Roemer, F.; Wirth, W.; Eckstein, F.; Felson, D.

    2017-01-01

    SUMMARY Objective To test the hypothesis that quantitative measures of meniscus extrusion predict incident radiographic knee osteoarthritis (KOA), prior to the advent of radiographic disease. Methods 206 knees with incident radiographic KOA (Kellgren Lawrence Grade (KLG) 0 or 1 at baseline, developing KLG 2 or greater with a definite osteophyte and joint space narrowing (JSN) grade ≥1 by year 4) were matched to 232 control knees not developing incident KOA. Manual segmentation of the central five slices of the medial and lateral meniscus was performed on coronal 3T DESS MRI and quantitative meniscus position was determined. Cases and controls were compared using conditional logistic regression adjusting for age, sex, BMI, race and clinical site. Sensitivity analyses of early (year [Y] 1/2) and late (Y3/4) incidence was performed. Results Mean medial extrusion distance was significantly greater for incident compared to non-incident knees (1.56 mean ± 1.12 mm SD vs 1.29 ± 0.99 mm; +21%, P meniscus (25.8 ± 15.8% vs 22.0 ± 13.5%; +17%, P meniscus in incident medial KOA, or for the tibial plateau coverage between incident and non-incident knees. Restricting the analysis to medial incident KOA at Y1/2 differences were attenuated, but reached significance for extrusion distance, whereas no significant differences were observed at incident KOA in Y3/4. Conclusion Greater medial meniscus extrusion predicts incident radiographic KOA. Early onset KOA showed greater differences for meniscus position between incident and non-incident knees than late onset KOA. PMID:26318658

  18. Limits of Lubrication in Backward Can Extrusion

    DEFF Research Database (Denmark)

    Bennani, B; Bay, Niels

    1996-01-01

    The increasing demand in industry to produce cans at low reduction by the backward extrusion process involves better understanding of this process. To analyse the process, numerical simulations by the finite-element method and experimental simulations by physical modelling using wax as a model...... on the reduction, the punch geometry, the workpiece material and the friction factor, in order to avoid the risk of damage caused by stiction of the workpiece material to the punch face. The influence of these different parameters on the distribution of the surface expansion along the inner can wall and bottom...... is determined. The numerical and experimental simulations showed good accordance....

  19. On proton CT reconstruction using MVCT-converted virtual proton projections

    Energy Technology Data Exchange (ETDEWEB)

    Wang Dongxu; Mackie, T. Rockwell; Tome, Wolfgang A. [Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705 and Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242 (United States); Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705 and Morgridge Institute of Research, University of Wisconsin, Madison, Wisconsin 53715 (United States); Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705 and Oncophysics Institute, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461 (United States)

    2012-06-15

    Purpose: To describe a novel methodology of converting megavoltage x-ray projections into virtual proton projections that are otherwise missing due to the proton range limit. These converted virtual proton projections can be used in the reconstruction of proton computed tomography (pCT). Methods: Relations exist between proton projections and multispectral megavoltage x-ray projections for human tissue. Based on these relations, these tissues can be categorized into: (a) adipose tissue; (b) nonadipose soft tissues; and (c) bone. These three tissue categories can be visibly identified on a regular megavoltage x-ray computed tomography (MVCT) image. With an MVCT image and its projection data available, the x-ray projections through heterogeneous anatomy can be converted to the corresponding proton projections using predetermined calibration curves for individual materials, aided by a coarse segmentation on the x-ray CT image. To show the feasibility of this approach, mathematical simulations were carried out. The converted proton projections, plotted on a proton sinogram, were compared to the simulated ground truth. Proton stopping power images were reconstructed using either the virtual proton projections only or a blend of physically available proton projections and virtual proton projections that make up for those missing due to the range limit. These images were compared to a reference image reconstructed from theoretically calculated proton projections. Results: The converted virtual projections had an uncertainty of {+-}0.8% compared to the calculated ground truth. Proton stopping power images reconstructed using a blend of converted virtual projections (48%) and physically available projections (52%) had an uncertainty of {+-}0.86% compared with that reconstructed from theoretically calculated projections. Reconstruction solely from converted virtual proton projections had an uncertainty of {+-}1.1% compared with that reconstructed from theoretical projections

  20. On proton CT reconstruction using MVCT-converted virtual proton projections

    International Nuclear Information System (INIS)

    Wang Dongxu; Mackie, T. Rockwell; Tomé, Wolfgang A.

    2012-01-01

    Purpose: To describe a novel methodology of converting megavoltage x-ray projections into virtual proton projections that are otherwise missing due to the proton range limit. These converted virtual proton projections can be used in the reconstruction of proton computed tomography (pCT). Methods: Relations exist between proton projections and multispectral megavoltage x-ray projections for human tissue. Based on these relations, these tissues can be categorized into: (a) adipose tissue; (b) nonadipose soft tissues; and (c) bone. These three tissue categories can be visibly identified on a regular megavoltage x-ray computed tomography (MVCT) image. With an MVCT image and its projection data available, the x-ray projections through heterogeneous anatomy can be converted to the corresponding proton projections using predetermined calibration curves for individual materials, aided by a coarse segmentation on the x-ray CT image. To show the feasibility of this approach, mathematical simulations were carried out. The converted proton projections, plotted on a proton sinogram, were compared to the simulated ground truth. Proton stopping power images were reconstructed using either the virtual proton projections only or a blend of physically available proton projections and virtual proton projections that make up for those missing due to the range limit. These images were compared to a reference image reconstructed from theoretically calculated proton projections. Results: The converted virtual projections had an uncertainty of ±0.8% compared to the calculated ground truth. Proton stopping power images reconstructed using a blend of converted virtual projections (48%) and physically available projections (52%) had an uncertainty of ±0.86% compared with that reconstructed from theoretically calculated projections. Reconstruction solely from converted virtual proton projections had an uncertainty of ±1.1% compared with that reconstructed from theoretical projections. If

  1. A bandage contact lens prevents extrusion of ocular contents.

    Science.gov (United States)

    Ramjiani, Vipul; Fearnley, Thomas; Tan, Jennifer

    2016-02-01

    A 76 year old male presents with a corneal perforation in a phthisical eye. Definitive treatment in the form of an evisceration was delayed by 38 days. During this period a bandage contact lens prevented extrusion of ocular contents through an enlarging corneal perforation. This case demonstrates that a bandage contact lens can be effective in the immediate management of large corneal perforations whilst awaiting urgent definitive treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Metamorphic core complex formation by density inversion and lower-crust extrusion.

    Science.gov (United States)

    Martinez, F; Goodliffe, A M; Taylor, B

    2001-06-21

    Metamorphic core complexes are domal uplifts of metamorphic and plutonic rocks bounded by shear zones that separate them from unmetamorphosed cover rocks. Interpretations of how these features form are varied and controversial, and include models involving extension on low-angle normal faults, plutonic intrusions and flexural rotation of initially high-angle normal faults. The D'Entrecasteaux islands of Papua New Guinea are actively forming metamorphic core complexes located within a continental rift that laterally evolves to sea-floor spreading. The continental rifting is recent (since approximately 6 Myr ago), seismogenic and occurring at a rapid rate ( approximately 25 mm yr-1). Here we present evidence-based on isostatic modelling, geological data and heat-flow measurements-that the D'Entrecasteaux core complexes accommodate extension through the vertical extrusion of ductile lower-crust material, driven by a crustal density inversion. Although buoyant extrusion is accentuated in this region by the geological structure present-which consists of dense ophiolite overlaying less-dense continental crust-this mechanism may be generally applicable to regions where thermal expansion lowers crustal density with depth.

  3. Application of extrusion technology to prepare bread crumb, a comparison with oven method

    International Nuclear Information System (INIS)

    Pasha, I.; Asim, M.

    2015-01-01

    The current research project was designed to conclude the upshot of extrusion cooking temperature on the properties and acceptability of bread crumb. Bread crumbs were obtained by drying the bread, maintaining moisture up to 3-8% and then broken down using hammer mill or crusher which breaks the bread into bread crumbs. Significantly highest moisture contents 7.26% was observed in oven baked bread crumb as compared to 6.25% in bread crumb prepared by extrusion cooking method. The highest bulk density (28.13 g/100 L) was observed in extruded bread crumb whereas, the oven baked bread crumbs showed lower bulk density (7.03 g/100 L). The fat uptake of extruded and oven baked bread crumbs were found 0.516 mg/g and 0.493 mg/g, respectively. The extruded bread crumb showed higher water binding capacity as 34.76 g H/sub 2/O/kg as compared to oven baked bread crumb which showed 27.92 g H/sub 2/O/kg. Sensory evaluation of extruded and oven baked bread crumbs depicted that bread crumbs prepared from extrusion cooking methods got significantly higher scores for taste, flavour and over all acceptability as compared to those prepared by oven baked method. As far as crispiness is concerned oven baked bread crumbs got comparatively higher scores. Moreover, it was concluded that the treatment T2 of extruded bread crumbs got more sensory scores than oven baked bread crumbs. (author)

  4. Control of material flow in a combined backward can - forward rod extrusion

    DEFF Research Database (Denmark)

    Kuzman, K; Pfeifer, E; Bay, Niels

    1996-01-01

    of tool geometry, friction and lubrication as well as workpiece properties on balanced material flow in a combined extrusion process. The FEM analysis applying the DEFORM code has been used in order to predict the process parameters and to estimate its stability. The subsequent experimental verification...

  5. Apical extrusion of debris and irrigants using hand and three rotary instrumentation systems- An in vitro study

    Directory of Open Access Journals (Sweden)

    Koppolu Madhusudhana

    2010-01-01

    Full Text Available Introduction: Sterilization of the root canal is a prime aim of successful endodontics. The cleaning and shaping of the canal is directed as achieving this goal. The extrusion of apical debris has a deleterious effect on the prognosis of root canal treatment. Several instrument designs and instrumentation techniques have been developed to prevent this. Materials and Methods: Forty caries free single rooted human mandibular premolar teeth were divided in four groups of ten teeth each. Teeth in each group were instrumented until the working length with rotary ProTaper, K3, Mtwo systems, and hand K-type stainless steel files. Debris and irrigant extruded from the apical foramen were collected into vials and the amounts were quantitatively determined. The data obtained were analyzed using Kruskal-Wallis one-way analysis of variance and Mann-Whitney U tests. Results: The results show that all instrumentation techniques produced significant amount of extruded debris and irrigant. The engine-driven nickel-titanium systems showed less apical extrusion of debris and irrigant than manual technique. No statistically significant difference was found between the groups at [P > 0.05]. Maximum apical debris and irrigant extrusion was seen with K-file group and least in the Mtwo group. Conclusions: The use of rotary files and techniques to perform instrumentation does show less extrusion of the debris and irrigant from the apex. This can contribute to more successful endodontic therapy.

  6. Apical extrusion of debris and irrigants using hand and three rotary instrumentation systems– An in vitro study

    Science.gov (United States)

    Madhusudhana, Koppolu; Mathew, Vinod Babu; Reddy, Nelaturi Madhusudhan

    2010-01-01

    Introduction: Sterilization of the root canal is a prime aim of successful endodontics. The cleaning and shaping of the canal is directed as achieving this goal. The extrusion of apical debris has a deleterious effect on the prognosis of root canal treatment. Several instrument designs and instrumentation techniques have been developed to prevent this. Materials and Methods: Forty caries free single rooted human mandibular premolar teeth were divided in four groups of ten teeth each. Teeth in each group were instrumented until the working length with rotary ProTaper, K3, Mtwo systems, and hand K-type stainless steel files. Debris and irrigant extruded from the apical foramen were collected into vials and the amounts were quantitatively determined. The data obtained were analyzed using Kruskal-Wallis one-way analysis of variance and Mann-Whitney U tests. Results: The results show that all instrumentation techniques produced significant amount of extruded debris and irrigant. The engine-driven nickel-titanium systems showed less apical extrusion of debris and irrigant than manual technique. No statistically significant difference was found between the groups at [P > 0.05]. Maximum apical debris and irrigant extrusion was seen with K-file group and least in the Mtwo group. Conclusions: The use of rotary files and techniques to perform instrumentation does show less extrusion of the debris and irrigant from the apex. This can contribute to more successful endodontic therapy. PMID:22114427

  7. New device to measure dynamic intrusion/extrusion cycles of lyophobic heterogeneous systems.

    Science.gov (United States)

    Guillemot, Ludivine; Galarneau, Anne; Vigier, Gérard; Abensur, Thierry; Charlaix, Élisabeth

    2012-10-01

    Lyophobic heterogeneous systems (LHS) are made of mesoporous materials immersed in a non-wetting liquid. One application of LHS is the nonlinear damping of high frequency vibrations. The behaviour of LHS is characterized by P - ΔV cycles, where P is the pressure applied to the system, and ΔV its volume change due to the intrusion of the liquid into the pores of the material, or its extrusion out of the pores. Very few dynamic studies of LHS have been performed until now. We describe here a new apparatus that allows us to carry out dynamic intrusion/extrusion cycles with various liquid/porous material systems, controlling the temperature from ambient to 120 °C and the frequency from 0.01 to 20 Hz. We show that for two LHS: water/MTS and Galinstan/CPG, the energy dissipated during one cycle depends very weakly on the cycle frequency, in strong contrast to conventional dampers.

  8. The extrusion of AZ-series magnesium alloys - extending the processing limits by hydrostatic extrusion; Erweiterung der Prozessgrenzen beim Strangpressen von Magnesiumknetlegierungen der AZ-Reihe durch das hydrostatische Strangpressverfahren

    Energy Technology Data Exchange (ETDEWEB)

    Swiostek, J. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    2008-12-04

    The present study is concerned with the analysis of the influence of hydrostatic extrusion on the microstructural development and mechanical properties of extruded profiles of the AZ-series magnesium alloys. This work also deals with the correlation between the microstructure and resulting mechanical properties for the case extruded profiles. (orig.)

  9. Fabrication of an eyeball-like spherical micro-lens array using extrusion for optical fiber coupling

    International Nuclear Information System (INIS)

    Shen, S C; Huang, J C; Pan, C T; Chao, C H; Liu, K H

    2009-01-01

    Batch fabrication of an eyeball-like spherical micro-lens array (ESMA) not only can reduce micro assembly cost, but also can replace conventional ball lenses or costly gradient refractive index without sacrificing performance. Compared to the conventional half-spherical micro-lenses, the ESMA is an eyeball-like spherical lens which can focus light in all directions, thus providing application flexibility for optical purposes. The current ESMA is made of photoresist SU-8 using the extrusion process instead of the traditional thermal reflow process. For the process of an ESMA, this research develops a new process at ambient temperature by spin-coating SU-8 on a surface of a silicon wafer which serves as an extrusion plate and extruding it through a nozzle to form an ESMA. This nozzle consists of a nozzle orifice and nozzle cavity. The nozzle orifice is defined and made of SU-8 photoresist using ultra-violet lithography, which exhibits good mechanical property. The fabrication process of a nozzle cavity employs bulk micromachining to fabricate the cavities. Next, viscous SU-8 spun on the extrusion plate is extruded through the nozzle orifice to form an ESMA. Based on the effect of surface tension, by varying the amount of SU-8 on the plate extruded through different nozzle orifices, various diameters of ESMA can be fabricated. In this paper, a 4 × 4 ESMA with a numerical aperture of about 0.38 and diameters ranging from 60 to 550 µm is fabricated. Optical measurements indicate a diameter variance within 3% and the maximum coupling efficiency is approximately 62% when the single mode fiber is placed at a distance of 10 µm from the ESMA. The research has proved that the extrusion fabrication process of an ESMA is capable of enhancing the coupling efficiency

  10. Apical extrusion of debris and irrigants using hand and three rotary instrumentation systems − An in vitro study.

    Science.gov (United States)

    Madhusudhana, Koppolu; Mathew, Vinod Babu; Reddy, Nelaturi Madhusudhan

    2010-10-01

    Sterilization of the root canal is a prime aim of successful endodontics. The cleaning and shaping of the canal is directed as achieving this goal. The extrusion of apical debris has a deleterious effect on the prognosis of root canal treatment. Several instrument designs and instrumentation techniques have been developed to prevent this. Forty caries free single rooted human mandibular premolar teeth were divided in four groups of ten teeth each. Teeth in each group were instrumented until the working length with rotary ProTaper, K3, Mtwo systems, and hand K-type stainless steel files. Debris and irrigant extruded from the apical foramen were collected into vials and the amounts were quantitatively determined. The data obtained were analyzed using Kruskal-Wallis one-way analysis of variance and Mann-Whitney U tests. The results show that all instrumentation techniques produced significant amount of extruded debris and irrigant. The engine-driven nickel-titanium systems showed less apical extrusion of debris and irrigant than manual technique. No statistically significant difference was found between the groups at [P > 0.05]. Maximum apical debris and irrigant extrusion was seen with K-file group and least in the Mtwo group. The use of rotary files and techniques to perform instrumentation does show less extrusion of the debris and irrigant from the apex. This can contribute to more successful endodontic therapy.

  11. Numerical modeling of the strand deposition flow in extrusion-based additive manufacturing

    DEFF Research Database (Denmark)

    Comminal, Raphaël; Serdeczny, Marcin P.; Pedersen, David B.

    2018-01-01

    -based additive manufacturing, as well as the surface roughness of the fabricated part. Under the assumptions of an isothermal Newtonian fluid and a creeping laminar flow, the deposition flow is controlled by two parameters: the gap distance between the extrusion nozzle and the substrate, and the velocity ratio...

  12. Raw material changes and their processing parameters in an extrusion cooking process

    DEFF Research Database (Denmark)

    Cheng, Hongyuan; Friis, Alan

    In this work, the effects of raw material and process parameters on product expansion in a fish feed extrusion process were investigated. Four different recipes were studied with a pilot-scale twin-screw co-rotating extruder according to a set of pre-defined processing conditions. In the four rec...

  13. A Mathematical Model on the Resolution of Extrusion Bioprinting for the Development of New Bioinks

    Directory of Open Access Journals (Sweden)

    Ratima Suntornnond

    2016-09-01

    Full Text Available Pneumatic extrusion-based bioprinting is a recent and interesting technology that is very useful for biomedical applications. However, many process parameters in the bioprinter need to be fully understood in order to print at an adequate resolution. In this paper, a simple yet accurate mathematical model to predict the printed width of a continuous hydrogel line is proposed, in which the resolution is expressed as a function of nozzle size, pressure, and printing speed. A thermo-responsive hydrogel, pluronic F127, is used to validate the model predictions. This model could provide a platform for future correlation studies on pneumatic extrusion-based bioprinting as well as for developing new bioink formulations.

  14. [Effect of high magnesium ion concentration on the electron transport rate and proton exchange in thylakoid membranes in higher plants].

    Science.gov (United States)

    Ignat'ev, A R; Khorobrykh, S A; Ivanov, B N

    2001-01-01

    The effects of magnesium ion concentration on the rate of electron transport in isolated pea thylakoids were investigated in the pH range from 4.0 up to 8.0. In the absence of magnesium ions in the medium and in the presence of 5 mM MgCl2 in the experiments not only without added artificial acceptors but also with ferricyanide or methylviologen as an acceptor, this rate had a well-expressed maximum at pH 5.0. It was shown that, after depression to minimal values at pH 5.5-6.5, it gradually rose with increasing pH. An increase in magnesium ion concentration up to 20 mM essentially affected the electron transfer rate: it decreased somewhat at pH 4.0-5.0 but increased at higher pH values. At this magnesium ion concentration, the maximum rate was at pH 6.0-6.5 and the minimum, at pH 7.0. Subsequent rise upon increasing pH to 8.0 was expressed more sharply. The influence of high magnesium ion concentration on the rate of electron transport was not observed in the presence of gramicidin D. It was found that without uncoupler, the changes in the electron transfer rate under the influence of magnesium ions correlated to the changes in the first-order rate constant of the proton efflux from thylakoids. It is supposed that the change in the ability of thylakoids to keep protons by the action of magnesium ions is the result of electrostatic interactions of these ions with the charges on the external surface of membranes. A possible role of regulation of the electron transport rate by magnesium ions in vivo is discussed.

  15. A Miniaturized Extruder to Prototype Amorphous Solid Dispersions: Selection of Plasticizers for Hot Melt Extrusion.

    Science.gov (United States)

    Lauer, Matthias E; Maurer, Reto; Paepe, Anne T De; Stillhart, Cordula; Jacob, Laurence; James, Rajesh; Kojima, Yuki; Rietmann, Rene; Kissling, Tom; van den Ende, Joost A; Schwarz, Sabine; Grassmann, Olaf; Page, Susanne

    2018-05-19

    Hot-melt extrusion is an option to fabricate amorphous solid dispersions and to enhance oral bioavailability of poorly soluble compounds. The selection of suitable polymer carriers and processing aids determines the dissolution, homogeneity and stability performance of this solid dosage form. A miniaturized extrusion device (MinEx) was developed and Hypromellose acetate succinate type L (HPMCAS-L) based extrudates containing the model drugs neurokinin-1 (NK1) and cholesterylester transfer protein (CETP) were manufactured, plasticizers were added and their impact on dissolution and solid-state properties were assessed. Similar mixtures were manufactured with a lab-scale extruder, for face to face comparison. The properties of MinEx extrudates widely translated to those manufactured with a lab-scale extruder. Plasticizers, Polyethyleneglycol 4000 (PEG4000) and Poloxamer 188, were homogenously distributed but decreased the storage stability of the extrudates. Stearic acid was found condensed in ultrathin nanoplatelets which did not impact the storage stability of the system. Depending on their distribution and physicochemical properties, plasticizers can modulate storage stability and dissolution performance of extrudates. MinEx is a valuable prototyping-screening method and enables rational selection of plasticizers in a time and material sparing manner. In eight out of eight cases the properties of the extrudates translated to products manufactured in lab-scale extrusion trials.

  16. Effects of Sintering and Extrusion on the Microstructures and Mechanical Properties of a SiC/Al-Cu Composite

    Science.gov (United States)

    Sun, Chao; Shen, Rujuan; Song, Min

    2012-03-01

    This article studied the effects of sintering and extrusion on the microstructures and mechanical properties of SiC particle reinforced Al-Cu alloy composite produced by powder metallurgy method. It has been shown that both extrusion and increasing sintering temperature can significantly improve the strength and plasticity of the composite. The extrusion and increase of the sintering temperature can break up the oxide coating on the matrix powder surfaces, decrease the number of pores, accelerate the elements' diffusion and increase the density and particle interfacial bonding strength, thus significantly improve the mechanical properties of the composite. The strength and hardness of the composite increase and the elongation decreases with increasing the aging time at under-aged stage, while the strength and hardness start to decrease and the elongation starts to increase with increasing the aging time at over-aged stage due to the formation and growth of the secondary strengthening precipitates in the Al-Cu matrix.

  17. Efeito do cozimento por extrusão na estabilidade oxidativa de produtos de moagem de aveia Extrusion cooking effects on oxidative stability of oat coarse milling product

    Directory of Open Access Journals (Sweden)

    Luiz Carlos Gutkoski

    1999-01-01

    Full Text Available O objetivo do presente trabalho foi estudar os efeitos de umidade e de temperatura de extrusão na estabilidade oxidativa de produtos de aveia (Avena sativa L.. Cariopses de aveia foram moídas em moinho de rolos Brabender e obtidas frações de granulometrias superior e inferior a 532 mim. A fração de granulometria superior a 532 mm, de alto teor de proteínas, lipídios e fibra alimentar, foi condicionada na umidade desejada (15,5-25,5% e extrusada em extrusor de laboratório Brabender monorosca. As condições usadas na extrusão foram taxa de compressão de 3:1, rotação de 100 rpm, matriz de 6 mm de diâmetro e temperaturas entre 77,6 e 162,4°C nas 2ª e 3ª zonas e de 80°C na 1ª zona. O material extrusado foi seco em estufa, moído, acondicionado em sacos de plástico e utilizado periodicamente nas determinações de peróxidos e de n-hexanal. O óleo da fração estudada apresentou quantidade relativamente alta de ácidos graxos insaturados (79,47%, sendo linoléico o principal representante. Independentemente do conteúdo inicial de umidade, todos os produtos extrusados em temperaturas inferiores a 120°C apresentaram baixa rancidez oxidativa, ou seja, essas temperaturas se mostraram adequadas ao processamento de aveia.The objective of the present research was to study the effects of extrusion cooking on oxidative stability of oat (Avena sativa L. milling product. The dehulled grains were ground in a Brabender Quadrumat Senior mill and separated in two fractions, coarse over 532 mm and fine less than 532 mum. The coarse fraction, with higher amount of crude protein, lipids and dietary fiber content was conditioned to moisture levels (15.5-25.5% and extruded in a Brabender single-screw laboratory extruder (C/D= 20:1. The extrusion conditions were compression ratio of 3:1, screw speed of 100 rpm, a die of 6 mm in diameter and temperatures between 77.6 and 162.4°C in the 2nd and 3rd zones while the 1st zone was maintained at 80

  18. Impacts of Scarification and Degermination on the Expansion Characteristics of Select Quinoa Varieties during Extrusion Processing.

    Science.gov (United States)

    Aluwi, Nicole A; Gu, Bon-Jae; Dhumal, Gaurav S; Medina-Meza, Ilce G; Murphy, Kevin M; Ganjyal, Girish M

    2016-12-01

    Extrusion of 2 quinoa varieties, Cherry Vanilla and Black (scarified and unscarified) and a mixed quinoa variety, Bolivian Royal (scarified and degermed) were studied for their extrusion characteristics. A corotating twin-screw extruder with a 3 mm round die was used. Feed moisture contents of 15%, 20%, and 25% (wet basis) were studied. The extruder barrel temperature was kept constant at 140 °C and screw speeds were varied from 100, 150, and 200 revolutions per minutes. Process responses (specific mechanical energy, back pressure, and torque) and product responses (expansion ratio, unit density, and water absorption index/water solubility index) were evaluated. The degermed Bolivian Royal showed the highest expansion in comparison to all other varieties, attributed to its significantly low levels of fat, fiber, and protein. The scarified Cherry Vanilla resulted in the lowest expansion ratio. This was attributed to the increase in the protein content from the removal of the outer layer. The results indicate that all the varieties performed differently in the extrusion process due to their modification processes as well as the individual variety characteristics. © 2016 Institute of Food Technologists®.

  19. Reduction of cyanogenic glycosides by extrusion - influence of temperature and moisture content of the processed material

    Directory of Open Access Journals (Sweden)

    Čolović Dušica S.

    2015-01-01

    Full Text Available Тhe paper presents results of the investigation of the influence of extrusion temperature and moisture content of treated material on the reduction of cyanogenic glycosides (CGs in linseed-based co-extrudate. CGs are the major limitation of the effective usage of linseed in animal nutrition. Hence, some technological process must be applied for detoxification of linseed before its application as a nutrient. Extrusion process has demonstrated several advantages in reducing the present CGs, since it combines the influences of heating, shearing, high pressure, mixing, etc. According to obtained results, the increase in both temperature and moisture content of the starting mixture decreased the content of CGs in the processed material. HCN content, as a measurement of GCs presence, ranged from 25.42 mg/kg, recorded at the moisture content of 11.5%, to 126 mg/kg, detected at the lowest moisture content of 7%. It seems that moisture content and temperature had the impact on HCN content of equal importance. However, the influence of extrusion parameters other than temperature and moisture content could not be neglected. Therefore, the impact of individual factors has to be tested together. [Projekat Ministarstva nauke Republike Srbije, br. III 46012

  20. The Effects of Fortification of Legumes and Extrusion on the Protein Digestibility of Wheat Based Snack.

    Science.gov (United States)

    Patil, Swapnil S; Brennan, Margaret A; Mason, Susan L; Brennan, Charles S

    2016-04-06

    Cereal food products are an important part of the human diet with wheat being the most commonly consumed cereal in many parts of the world. Extruded snack products are increasing in consumer interest due to their texture and ease of use. However, wheat based foods are rich in starch and are associated with high glycaemic impact products. Although legume materials are generally rich in fibre and protein and may be of high nutritive value, there is a paucity of research regarding their use in extruded snack food products. The aim of this study was to prepare wheat-based extrudates using four different legume flours: lentil, chickpea, green pea, and yellow pea flour. The effects of adding legumes to wheat-based snacks at different levels (0%, 5%, 10%, and 15%) during extrusion were investigated in terms of protein digestibility. It was observed that fortification of snacks with legumes caused a slight increase in the protein content by 1%-1.5% w/w, and the extrusion technique increased the protein digestibility by 37%-62% w/v. The product developed by extrusion was found to be low in fat and moisture content.

  1. The Effects of Fortification of Legumes and Extrusion on the Protein Digestibility of Wheat Based Snack

    Directory of Open Access Journals (Sweden)

    Swapnil S. Patil

    2016-04-01

    Full Text Available Cereal food products are an important part of the human diet with wheat being the most commonly consumed cereal in many parts of the world. Extruded snack products are increasing in consumer interest due to their texture and ease of use. However, wheat based foods are rich in starch and are associated with high glycaemic impact products. Although legume materials are generally rich in fibre and protein and may be of high nutritive value, there is a paucity of research regarding their use in extruded snack food products. The aim of this study was to prepare wheat-based extrudates using four different legume flours: lentil, chickpea, green pea, and yellow pea flour. The effects of adding legumes to wheat-based snacks at different levels (0%, 5%, 10%, and 15% during extrusion were investigated in terms of protein digestibility. It was observed that fortification of snacks with legumes caused a slight increase in the protein content by 1%–1.5% w/w, and the extrusion technique increased the protein digestibility by 37%–62% w/v. The product developed by extrusion was found to be low in fat and moisture content.

  2. Assessment of the Relationship between the Shape of the Lateral Meniscus and the Risk of Extrusion Based on MRI Examination of the Knee Joint.

    Directory of Open Access Journals (Sweden)

    Arkadiusz Szarmach

    Full Text Available Meniscus extrusion is a serious and relatively frequent clinical problem. For this reason the role of different risk factors for this pathology is still the subject of debate. The goal of this study was to verify the results of previous theoretical work, based on the mathematical models, regarding a relationship between the cross-section shape of the meniscus and the risk of its extrusion.Knee MRI examination was performed in 77 subjects (43 men and 34 women, mean age 34.99 years (range: 18-49 years, complaining of knee pain. Patients with osteoarthritic changes (grade 3 and 4 to Kellgren classification, varus or valgus deformity and past injuries of the knee were excluded from the study. A 3-Tesla MR device was used to study the relationship between the shape of the lateral meniscus (using slope angle, meniscus-cartilage height and meniscus-bone angle and the risk of extrusion.Analysis revealed that with values of slope angle and meniscus-bone angle increasing by one degree, the risk of meniscus extrusion raises by 1.157 and 1.078 respectively. Also, an increase in meniscus-cartilage height by 1 mm significantly elevates the risk of extrusion. At the same time it was demonstrated that for meniscus-bone angle values over 42 degrees and slope angle over 37 degrees the risk of extrusion increases significantly.This was the first study to demonstrate a tight correlation between slope angle, meniscus-bone angle and meniscus-cartilage height values in the assessment of the risk of lateral meniscus extrusion. Insertion of the above parameters to the radiological assessment of the knee joint allows identification of patients characterized by an elevated risk of development of this pathology.

  3. Assessment of the Relationship between the Shape of the Lateral Meniscus and the Risk of Extrusion Based on MRI Examination of the Knee Joint.

    Science.gov (United States)

    Szarmach, Arkadiusz; Luczkiewicz, Piotr; Skotarczak, Monika; Kaszubowski, Mariusz; Winklewski, Pawel J; Dzierzanowski, Jaroslaw; Piskunowicz, Maciej; Szurowska, Edyta; Baczkowski, Bogusław

    2016-01-01

    Meniscus extrusion is a serious and relatively frequent clinical problem. For this reason the role of different risk factors for this pathology is still the subject of debate. The goal of this study was to verify the results of previous theoretical work, based on the mathematical models, regarding a relationship between the cross-section shape of the meniscus and the risk of its extrusion. Knee MRI examination was performed in 77 subjects (43 men and 34 women), mean age 34.99 years (range: 18-49 years), complaining of knee pain. Patients with osteoarthritic changes (grade 3 and 4 to Kellgren classification), varus or valgus deformity and past injuries of the knee were excluded from the study. A 3-Tesla MR device was used to study the relationship between the shape of the lateral meniscus (using slope angle, meniscus-cartilage height and meniscus-bone angle) and the risk of extrusion. Analysis revealed that with values of slope angle and meniscus-bone angle increasing by one degree, the risk of meniscus extrusion raises by 1.157 and 1.078 respectively. Also, an increase in meniscus-cartilage height by 1 mm significantly elevates the risk of extrusion. At the same time it was demonstrated that for meniscus-bone angle values over 42 degrees and slope angle over 37 degrees the risk of extrusion increases significantly. This was the first study to demonstrate a tight correlation between slope angle, meniscus-bone angle and meniscus-cartilage height values in the assessment of the risk of lateral meniscus extrusion. Insertion of the above parameters to the radiological assessment of the knee joint allows identification of patients characterized by an elevated risk of development of this pathology.

  4. Integrated bottom up and top down approach to optimization of the extrusion process

    NARCIS (Netherlands)

    Vaneker, Thomas H.J.; Koenis, P.T.G.; van Ouwerkerk, Gijs; van Ouwerkerk, Gijs; Nilsen, K.E.; van Houten, Frederikus J.A.M.

    2008-01-01

    Boal BV and the University of Twente participate in research projects focused on improvement of die design methods for aluminum extrusion dies. Within this research empirical knowledge is combined with insights gained from numerical process simulations. Design rules for improvements to the geometry

  5. Machine for extrusion under vacuum; Machine de fluage sous vide

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    In a study of the behaviour of easily oxidised metals during the extrusion process, it is first necessary to find an effective mean of fighting corrosion, since this, even when barely detectable, has an important influence on the validity of the results recorded. The neatest and also the most efficient of all the methods tried consists in creating a vacuum around the test piece. Working on this principle, and at the same time respecting the conventional rules for extrusion tests (loading the sample after stabilisation at the testing temperature, differential measurements of lengthening, etc.) we found it necessary to construct an original machine. (author) [French] L'etude du comportement au fluage des materiaux facilement oxydables exige, en premier lieu, une lutte efficace contre la corrosion qui, meme a peine decelable, prend une part preponderante quant a la validite des resultats enregistres. La solution la plus elegante, et, a vrai dire, la plus energique parmi toutes les methodes essayees, consiste a realiser le vide autour de l'eprouvette d'essai. Partant de ce principe, et pour sauvegarder les regles classiques de l'essai de fluage (mise en charge de l'eprouvette apres stabilisation en temperature d'essai, mesures differentielles des allongements, etc.) nous nous sommes trouves dans la necessite de construire une machine inedite. (auteur)

  6. Pre-set extrusion bioprinting for multiscale heterogeneous tissue structure fabrication.

    Science.gov (United States)

    Kang, Donggu; Ahn, Geunseon; Kim, Donghwan; Kang, Hyun-Wook; Yun, Seokhwan; Yun, Won-Soo; Shim, Jin-Hyung; Jin, Songwan

    2018-06-06

    Recent advances in three-dimensional bioprinting technology have led to various attempts in fabricating human tissue-like structures. However, current bioprinting technologies have limitations for creating native tissue-like structures. To resolve these issues, we developed a new pre-set extrusion bioprinting technique that can create heterogeneous, multicellular, and multimaterial structures simultaneously. The key to this ability lies in the use of a precursor cartridge that can stably preserve a multimaterial with a pre-defined configuration that can be simply embedded in a syringe-based printer head. The multimaterial can be printed and miniaturized through a micro-nozzle without conspicuous deformation according to the pre-defined configuration of the precursor cartridge. Using this system, we fabricated heterogeneous tissue-like structures such as spinal cords, hepatic lobule, blood vessels, and capillaries. We further obtained a heterogeneous patterned model that embeds HepG2 cells with endothelial cells in a hepatic lobule-like structure. In comparison with homogeneous and heterogeneous cell printing, the heterogeneous patterned model showed a well-organized hepatic lobule structure and higher enzyme activity of CYP3A4. Therefore, this pre-set extrusion bioprinting method could be widely used in the fabrication of a variety of artificial and functional tissues or organs.

  7. Modeling And Simulation Of Combined Extrusion For Spark Plug Body Parts

    Science.gov (United States)

    Canta, T.; Noveanu, D.; Frunza, D.

    2004-06-01

    The paper presents the modeling and simulation for the extrusion technology of a new type of spark plug body for Dacia Supernova car. This technology was simulated using the finite elements modeling and analysis SuperForm software, designed for the simulation of plastic deformation processes. There is also presented a comparison between the results of the simulation and the industrial results.

  8. 78 FR 66895 - Aluminum Extrusions From the People's Republic of China: Preliminary Results of Changed...

    Science.gov (United States)

    2013-11-07

    ... frames, solar panels, curtain walls, or furniture. Such parts that otherwise meet the definition of..., and solar panels. The scope also excludes finished goods containing aluminum extrusions that are...

  9. 77 FR 39683 - Aluminum Extrusions From the People's Republic of China: Preliminary Results of Changed...

    Science.gov (United States)

    2012-07-05

    ... frames, door frames, solar panels, curtain walls, or furniture. Such parts that otherwise meet the..., and solar panels. The scope also excludes finished goods containing aluminum extrusions that are...

  10. Proton therapy

    International Nuclear Information System (INIS)

    Smith, Alfred R

    2006-01-01

    Proton therapy has become a subject of considerable interest in the radiation oncology community and it is expected that there will be a substantial growth in proton treatment facilities during the next decade. I was asked to write a historical review of proton therapy based on my personal experiences, which have all occurred in the United States, so therefore I have a somewhat parochial point of view. Space requirements did not permit me to mention all of the existing proton therapy facilities or the names of all of those who have contributed to proton therapy. (review)

  11. Proton-proton bremsstrahlung in a relativistic covariant model

    NARCIS (Netherlands)

    Martinus, Gerard Henk

    1998-01-01

    Proton-proton bremsstrahlung is one of the simplest processes involving the half off-shell NN interaction. Since protons are equally-charged particles with the same mass, electric-dipole radiation is suppressed and higher-order effects play an important role. Thus it is possible to get information

  12. Extrusão do anel intra-estromal corneano e vascularização do túnel Extrusion and vascularization of the intrastromal corneal ring tunnel

    Directory of Open Access Journals (Sweden)

    Larissa Casteluber

    2007-12-01

    Full Text Available O objetivo deste trabalho é relatar e discutir os aspectos de um caso clínico em que foi observada a formação de neovascularização no túnel do anel intra-estromal corneano. Trata-se de paciente com ectasia corneana 4 anos após LASIK, comprovada pela paquimetria e topografia, e submetido ao implante de anel intra-estromal corneano. No terceiro ano de acompanhamento após implante do anel intraestromal, com o paciente em uso de lente de contato gelatinosa, verificou-se extrusão de um segmento e neovascularização no túnel. Removeu-se o segmento afetado, realizou-se fotocoagulação vascular, observando-se regressão completa do quadro neovascular.The purpose of this paper is to describe the clinical aspects of one case with deep corneal vascularization after corneal ring implantation to treat corneal ectasia due to LASIK 4 years before. The corneal ectasia diagnostic was performed by corneal pachimetry and topography. Intrastromal corneal ring segment was implanted. On the third year of follow-up, extrusion of one segment was noted and deep corneal neovascularization was found. The segment was removed, laser photocoagulation was applied and complete vascular regression was observed.

  13. The interplay between subduction and lateral extrusion: A case study for the European Eastern Alps based on analogue models

    Science.gov (United States)

    van Gelder, I. E.; Willingshofer, E.; Sokoutis, D.; Cloetingh, S. A. P. L.

    2017-08-01

    A series of analogue experiments simulating intra-continental subduction contemporaneous with lateral extrusion of the upper plate are performed to study the interference between these two processes at crustal levels and in the lithospheric mantle. The models demonstrate that intra-continental subduction and coeval lateral extrusion of the upper plate are compatible processes leading to similar deformation structures within the extruding region as compared to the classical setup, lithosphere-scale indentation. Strong coupling across the subduction boundary allows for the transfer of stresses to the upper plate, where strain regimes are characterized by crustal thickening near a confined margin and dominated by lateral displacement of material near a weak lateral confinement. The strain regimes propagate laterally during ongoing convergence creating an area of overlap characterized by transpression. When subduction is oblique to the convergence direction, the upper plate is less deformed and as a consequence the amount of lateral extrusion decreases. In addition, strain is partitioned along the oblique plate boundary resulting in less subduction in expense of right lateral displacement close to the weak lateral confinement. Both oblique and orthogonal subduction models have a strong resemblance to lateral extrusion tectonics of the Eastern Alps (Europe), where subduction of the adjacent Adriatic plate beneath the Eastern Alps is debated. Our results imply that subduction of Adria is a valid mechanisms to induce extrusion-type deformation within the Eastern Alps lithosphere. Furthermore, our findings suggest that the Oligocene to Late Miocene structural evolution of the Eastern Alps reflects a phase of oblique subduction followed by a later stage of orthogonal subduction conform a Miocene shift in the plate motion of Adria. Oblique subduction also provides a viable mechanism to explain the rapid decrease in slab length of the Adriatic plate beneath the Eastern Alps

  14. The role of extrusions and intrusions in fatigue crack initiation

    Czech Academy of Sciences Publication Activity Database

    Polák, Jaroslav; Mazánová, Veronika; Heczko, Milan; Petráš, Roman; Kuběna, Ivo; Casalena, L.; Man, Jiří

    2017-01-01

    Roč. 185, NOV (2017), s. 46-60 ISSN 0013-7944 R&D Projects: GA MŠk(CZ) LQ1601; GA MŠk LM2015069; GA ČR(CZ) GA13-23652S; GA ČR GA15-08826S Institutional support: RVO:68081723 Keywords : Extrusion * Fatigue crack initiation * Intrusion * Persistent slip marking * Stainless steel Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 2.151, year: 2016

  15. Proton-Proton and Proton-Antiproton Colliders

    CERN Document Server

    Scandale, Walter

    2014-01-01

    In the last five decades, proton–proton and proton–antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion–ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.

  16. Dynamics of Anti-Proton -- Protons and Anti-Proton -- Nucleus Reactions

    CERN Document Server

    Galoyan, A; Uzhinsky, V

    2016-01-01

    A short review of simulation results of anti-proton-proton and anti-proton-nucleus interactions within the framework of Geant4 FTF (Fritiof) model is presented. The model uses the main assumptions of the Quark-Gluon-String Model or Dual Parton Model. The model assumes production and fragmentation of quark-anti-quark and diquark-anti-diquark strings in the mentioned interactions. Key ingredients of the model are cross sections of string creation processes and an usage of the LUND string fragmentation algorithm. They allow one to satisfactory describe a large set of experimental data, especially, a strange particle production, Lambda hyperons and K mesons.

  17. Spectrophotometric determination of ethionamide in pharmaceuticals using Folin–Ciocalteu reagent and iron(III-ferricyanide as chromogenic agents

    Directory of Open Access Journals (Sweden)

    Nagib A.S. Qarah

    2017-09-01

    Full Text Available Two simple and sensitive spectrophotometric methods are described for the determination of ethionamide (ETM in pure drug and tablets. The first method is based on the reduction of Folin–Ciocalteu (F–C reagent by ETM in sodium carbonate medium to form a blue coloured complex, which was measured at 760 nm (Molybdenum–tungsten blue method. In the second method (Prussian blue method, iron(III was reduced to iron(II by ETM in HCl medium, in which iron(II was complexed with ferricyanide, and the resulting Prussian blue was also measured at 760 nm. The absorbance measured in each case was related to the ETM concentration. The experimental conditions were carefully studied and optimised. Beer's law was obeyed in concentration ranges of 1–40 μg/ml and 0.2–4.0 μg/ml with the Molybdenum-tungsten blue method and the Prussian blue method, respectively, with corresponding molar absorptivity values of 5.72 × 103 and 3.18 × 104 l/(mol·cm. The limits of detection (LOD and quantification (LOQ were 0.09 and 0.27 μg/ml for the Molybdenum-tungsten blue method and 0.01 and 0.04 μg/ml for the Prussian blue method. Within-day and between-day relative standard deviations (%RSD at three different concentration levels were <3%, and the respective relative errors (%RE were ≤2%, implying good accuracy and precision of the methods. The proposed methods were successfully applied to the determination of ETM in bulk powder and tablets, and the results demonstrated that the methods were as accurate and precise as the official method.

  18. Vaginal extrusion of a ventriculo-peritoneal shunt catheter in an adult

    Directory of Open Access Journals (Sweden)

    Christopher M Bonfield

    2015-01-01

    Full Text Available Ventriculo-peritoneal shunts (VPS are commonly used in the treatment of various neurosurgical conditions, including hydrocephalus and pseudotumor cerebri. We report only the second case of vaginal extrusion of a VPS catheter in an adult, and the first case with a modern VPS silastic peritoneal catheter. A 45-year-old female with a history of VPS for pseudotumor cerebri, Behcet′s syndrome, and hysterectomy presented to our institution with the chief complaint of tubing protruding from her vagina after urination. On gynecologic examination, the patient was found to have approximately 15 cm of VPS catheter protruding from her vaginal apex. A computed tomography scan of the abdomen and shunt X-ray series demonstrated no breaks in the tubing, but also confirmed the finding of the VPS catheter extruding through the vaginal cuff into the vagina. The patient had the VPS removed and an external ventricular drain was placed for temporary cerebrospinal fluid diversion. Ventricular catheter cultures were positive for diphtheroids. After an appropriate course of antibiotics, a contralateral ventriculo-pleural shunt was placed one week later. Although vary rare, vaginal extrusion can occur in adults, even with modern VPS catheters.

  19. Exploring the potential of polacrilin potassium as a novel superdisintegrant in microcrystalline cellulose based pellets prepared by extrusion-spheronization

    Directory of Open Access Journals (Sweden)

    Amita K Joshi

    2011-01-01

    Full Text Available Polacrilin potassium (PP, an ion exchange resin, was used as a superdisintegrant to improve the dissolution of rifampicin, from microcrystalline cellulose (MCC based pellets prepared by extrusion-spheronization. Production of fast release pellets by extrusion-spheronization using MCC is a complicated process. In the present study, pellets were prepared containing 50% w/w rifampicin (BCS class II drug and 40% w/w MCC as extrusion-spheronization aid. Different levels of PP and lactose ratio investigated were 0:10, 2:8, 4:6, 6:4, 8:2, and 10:0. Pellets were evaluated for yield, size, size distribution, shape, porosity, friability, residual moisture, and dissolution efficiency (DE at 30 minutes. Incorporation of this novel superdisintegrant had no adverse effect on the mechanical and micromeritic characteristics of pellets. All the batches of pellets showed high yields′, ~90%; narrow particle size distribution; aspect ratio, 1.0-1.1; friability, <1%; and porosity, 45.51-49.84%. Dissolution profiles were compared using model-independent approaches; DE and similarity factor, f 2 . Addition of Polacrilin results in significant improvement in the DE of rifampicin. The dissolution profiles were significantly different from the dissolution profile of pellets formulated without PP. This preliminary study indicates that PP can serve as an effective superdisintegrant in MCC pellets prepared by extrusion-spheronization.

  20. Microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of as-extruded Mg-Nd-Zn-Zr alloy with different extrusion ratios.

    Science.gov (United States)

    Zhang, Xiaobo; Yuan, Guangyin; Niu, Jialin; Fu, Penghuai; Ding, Wenjiang

    2012-05-01

    Recently, commercial magnesium (Mg) alloys containing Al (such as AZ31 and AZ91) or Y (such as WE43) have been studied extensively for biomedical applications. However, these Mg alloys were developed as structural materials, not as biomaterials. In this study, a patented Mg-Nd-Zn-Zr (denoted as JDBM) alloy was investigated as a biomedical material. The microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of the alloy extruded at 320 °C with extrusion ratios of 8 and 25 were studied. The results show that the lower extrusion ratio results in finer grains and higher strength, but lower elongation, while the higher extrusion ratio results in coarser grains and lower strength, but higher elongation. The biocorrosion behavior of the alloy was investigated by hydrogen evolution and mass loss tests in simulated body fluid (SBF). The results show that the alloy extruded with lower extrusion ratio exhibits better corrosion resistance. The corrosion mode of the alloy is uniform corrosion, which is favorable for biomedical applications. Aging treatment on the as-extruded alloy improves the strength and decreases the elongation at room temperature, and has a small positive influence on the corrosion resistance in SBF. The cytotoxicity test indicates that the as-extruded JDBM alloy meets the requirement of cell toxicity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Theoretical Analysis of Proton Relays in Electrochemical Proton-Coupled Electron Transfer

    International Nuclear Information System (INIS)

    Auer, Benjamin; Fernandez, Laura; Hammes-Schiffer, Sharon

    2011-01-01

    The coupling of long-range electron transfer to proton transport over multiple sites plays a vital role in many biological and chemical processes. Recently a molecule with a hydrogen-bond relay inserted between the proton donor and acceptor sites in a proton-coupled electron transfer (PCET) system was studied electrochemically. The standard rate constants and kinetic isotope effects (KIEs) were measured experimentally for this system and a related single proton transfer system. In the present paper, these systems are studied theoretically using vibronically nonadiabatic rate constant expressions for electrochemical PCET. Application of this approach to proton relays requires the calculation of multidimensional proton vibrational wavefunctions and incorporation of multiple proton donor-acceptor motions. The calculated KIEs and relative standard rate constants for the single and double proton transfer systems are in agreement with the experimental data. The calculations indicate that the standard rate constant is lower for the double proton transfer system because of the smaller overlap integral between the ground state reduced and oxidized proton vibrational wavefunctions for this system, resulting in greater contributions from excited electron-proton vibronic states with higher free energy barriers. The decrease in proton donor-acceptor distances due to thermal fluctuations and the contributions from excited electron-proton vibronic states play important roles in proton relay systems. The theory suggests that the PCET rate constant may be increased by decreasing the equilibrium proton donor-acceptor distances or modifying the thermal motions of the molecule to facilitate the concurrent decrease of these distances. The submission of this journal article in ERIA is a requirement of the EFRC subcontract with Pennsylvania State University collaborators to get publications to OSTI.

  2. AFSC/RACE/SAP/Swiney: Primiparous and multiparous Tanner crab egg extrusion, embryo development and hatching

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study compares timing of egg extrusion, embryo development, timing and duration of eclosion, and incubation periods of Kodiak, Alaska primiparous and...

  3. Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg-Nd-Zn-Zr alloy.

    Science.gov (United States)

    Zhang, Xiaobo; Yuan, Guangyin; Mao, Lin; Niu, Jialin; Fu, Penghuai; Ding, Wenjiang

    2012-03-01

    Mechanical properties at room temperature and biocorrosion behaviors in simulated body fluid (SBF) at 37 °C of a new type of patented Mg-3Nd-0.2Zn-0.4Zr (hereafter, denoted as JDBM) alloy prepared at different extrusion temperatures, as well as heat treatment, were studied. The mechanical properties of this magnesium alloy at room temperature were improved significantly after extrusion and heat treatment compared to an as-cast alloy. The results of mechanical properties show that the yield strength (YS) decreases with increasing extrusion temperature. The tensile elongation decreases a little while the ultimate tensile strength (UTS) has no obvious difference. The yield strength and ultimate tensile strength were improved clearly after heat treatment at 200 °C for 10 h compared with that at the extrusion state, which can be mainly contributed to the precipitation strengthening. The biocorrosion behaviors of the JDBM alloy were studied using immersion tests and electrochemical tests. The results reveal that the extruded JDBM alloy and the aging treatment on the extruded alloy show much better biocorrosion resistance than that at solid solution state (T4 treatment), and the JDBM exhibited favorable uniform corrosion mode in SBF. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. The Coupling of Back-arc Extension, Extrusion and Subduction Dynamics in the Eastern Mediterranean

    Science.gov (United States)

    Capitanio, Fabio A.

    2017-04-01

    Extension in the Aegean Sea and lateral Anatolian extrusion are contrasting and seemingly unrelated examples of continental tectonics In the Eastern Mediterranean. It is acknowledged that these must reconcile with the dynamics of Tethys closure and following continental collision along the convergent margin, however the underlying mechanisms have been difficult to pinpoint, thus far. Three-dimensional numerical modelling of the dynamics of subduction and coupling with the mantle and upper plates allows probing the evolution of similar areas, supporting inferences on the ultimate causes for the continental tectonics. I will present models that reproduce the force balance of subducting slabs' buoyancy, mantle flow and upper plate interiors, and emphasise the role of perturbations in the force balance that may have followed slab breakoff, collision and trench land-locking reconstructed during the oceanic closure in the Eastern Mediterranean. These perturbations lead to a range of different margin motions and strain regimes in the upper plate, from rollback and back-arc spreading, to indentation and extrusion along the collisional margin. Different spatial and temporal fingerprints are illustrated for these processes, and while the trench rollback and back-arc spreading are rather stable features, extrusion is transient. When these regimes overlap, rapid and complex rearrangements of the tectonics in the upper plate are the result. The remarkable similarity between the models' and the Eastern Mediterranean tectonic regimes and geophysical observable allows proposing viable driving mechanisms and support inferences on the Miocene-to-Pliocene evolution of this puzzling area.

  5. Thermodynamic investigation of ferrocyanide/ferricyanide redox system on nitrogen-doped multi-walled carbon nanotubes decorated with gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tsierkezos, Nikos G., E-mail: nikos.tsierkezos@tu-ilmenau.de [Institut für Chemie und Biotechnik, Technische Universität Ilmenau, Weimarer Straße 25, 98693 Ilmenau (Germany); Knauer, Andrea [Institute of Chemistry and Biotechnology, Department of Physical Chemistry and Micro Reaction Technology, Ilmenau University of Technology, Gustav-Kirchhof Straße 1, 98693 Ilmenau (Germany); Ritter, Uwe [Institut für Chemie und Biotechnik, Technische Universität Ilmenau, Weimarer Straße 25, 98693 Ilmenau (Germany)

    2014-01-20

    Graphical abstract: - Highlights: • N-MWCNTs were fabricated and “decorated” with AuNPs. • N-MWCNTs/AuNPs were applied for study of [Fe(CN){sub 6}]{sup 3−/4−} in various temperatures. • The barrier for interfacial electron transfer decreases with temperature. • The kinetics of charge transfer enhances with temperature. • The AuNPs size affects the kinetic and thermodynamic parameters of [Fe(CN){sub 6}]{sup 3−/4−}. - Abstract: Films consisting of nitrogen-doped multi-walled carbon nanotubes (N-MWCNTs) were fabricated by means of chemical vapor deposition technique with decomposition of acetonitrile. The N-MWCNTs-based films were modified with gold nanoparticles (AuNPs) with diameter either 5 or 35 nm and applied for the electrochemical investigation of ferrocyanide/ferricyanide, [Fe(CN){sub 6}]{sup 3−/4−} redox system in the temperature range of 283.15–303.15 K. The findings demonstrate that on N-MWCNT films modified with AuNPs (further denoted as N-MWCNTs/AuNPs) the [Fe(CN){sub 6}]{sup 3−/4−} redox system is quasi-reversible and its reversibility is improved with increasing temperature. Namely, it was established that with the rise in temperature the barrier for interfacial electron transfer decreases leading to an enhancement of kinetics of charge transfer reaction. The Gibbs free energies display that the exergonic redox process occurring on N-MWCNTs/AuNPs is shifted toward formation of [Fe(CN){sub 6}]{sup 3−} with increasing temperature. With the increase of diameter of AuNPs a slight improvement of kinetics of redox process occurs.

  6. A FEM simulation study of the solid state hydrostatic extrusion of PMMA

    Science.gov (United States)

    Costa, André L. M.; Riffel, Douglas B.; Misiolek, Wojciech Z.; Valberg, Henry S.

    2018-05-01

    Solid state hydrostatic extrusion (SSHE) of polymers below glass transition temperature is used to obtain highly oriented structures. Experimental studies on the SSHE of polymethyl-methacrylate (PMMA) have been made since early eighties but there is no information on internal temperature, stress and strain distribution. In this work we have made 3D FEM simulations of SSHE of PMMA by using the commercial DEFORM package with experimental flow curves and thermal properties from literature. The initial temperature of tooling and workpiece was 90°C, ram speeds were 1.0 and 10.0 mm/min with extrusion ratio R = 3.0. For a comparative analysis, SSHE simulation of the AA7108 aluminum alloy at 400°C was also performed. These ranges of parameters were chosen in order to encompass the parameters found in previously mentioned experiments. The best correlation with experimental hydrostatic pressure was verified for a shear friction coefficient at the material-conical die interface m = 0.50. Force-displacement curve for PMMA presented a constitutive and thermal softening in contrast to a constant force curve for aluminum. The internal temperature in the deformation zone increased in a characteristic "owl's face" profile in contrast to quasi-constant profile of aluminum alloy. In both PMMA and aluminum the stress is hydrostatic inside the container, but the stress profiles are significantly different inside the deformation zone. As expected, the strain and strain-rate profiles are practically the same for the two materials, but the temperature profile has promoted slightly differences in material flow. The velocity gradient from center to surface is higher in PMMA than aluminum. It's supposed that during hydrostatic extrusion solid PMMA has a characteristic thermally-inducted mechanical behavior.

  7. Proton: the particle.

    Science.gov (United States)

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10(80). Protons were created at 10(-6) -1 second after the Big Bang at ≈1.37 × 10(10) years beforethe present. Proton life span has been experimentally determined to be ≥10(34) years; that is, the age of the universe is 10(-24)th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W(+), W(-), Z(0), and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter. Copyright © 2013 Elsevier Inc. All

  8. Proton: The Particle

    Energy Technology Data Exchange (ETDEWEB)

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10{sup 80}. Protons were created at 10{sup −6} –1 second after the Big Bang at ≈1.37 × 10{sup 10} years beforethe present. Proton life span has been experimentally determined to be ≥10{sup 34} years; that is, the age of the universe is 10{sup −24}th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W{sup +}, W{sup −}, Z{sup 0}, and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter.

  9. Efeito dos parâmetros de extrusão sobre as propriedades funcionais de extrusados da farinha de batata-doce Effect of extrusion parameters on sweet potato extrudates

    Directory of Open Access Journals (Sweden)

    Alexandra M. Borba

    2005-12-01

    Full Text Available Farinha de batata-doce (Ipomoea batatas foi extrusada em equipamento de rosca simples, mantendo-se fixas as temperaturas na 1ª e 2ª zonas de extrusão (20ºC e 60ºC, respectivamente. O efeito das variáveis umidade da farinha (15, 18 e 21%, temperatura na 3ª zona (100, 120 e 140ºC e rotação da rosca (180, 210 e 240 rpm sobre as características dos extrusados foi investigado utilizando-se metodologia de superfície de resposta. O teor de umidade e a temperatura de extrusão influenciaram significativamente a expansão dos extrusados. O índice de expansão apresentou valores crescentes com a temperatura sob baixos teores de umidade. A dureza dos extrusados e também o índice de absorção de água e o índice de solubilidade em água das farinhas extrusadas não mostraram modelo de regressão significativo com as condições de processo. Quanto à cor das farinhas, o componente L* (luminosidade apresentou valores crescentes e o parâmetro a*, valores decrescentes com a elevação do teor de umidade até 20-21%. O parâmetro b* e a diferença de cor entre farinhas extrusadas e não extrusadas mostraram valores decrescentes com o aumento da umidade.Sweet potato flour was processed using a single-screw extruder, with extrusion temperatures in zones 1 and 2 of 20ºC and 60ºC, respectively. The effect of flour moisture content (15, 18 and 21%, barrel temperature in zone 3 (100, 120 and 140ºC and screw speed (180, 210 and 240 rpm on extrudate attributes was investigated using response surface methodology. Moisture content and extrusion temperature had a significant (p<0.05 influence on extrudates expansion. The expansion ratio of the extrudates showed increasing values with temperature under conditions of low moisture content. The firmness of extrudates and also the water absorption index and water solubility index of the pre-gelatinized flours did not show significant regression models with the processing conditions. The flours color was

  10. An investigation into the effect of equal channel angular extrusion process on mechanical and microstructural properties of middle layer in copper clad aluminum composite

    International Nuclear Information System (INIS)

    Tolaminejad, B.; Karimi Taheri, A.; Arabi, H.; Shahmiri, M.

    2009-01-01

    Equal channel angular extrusion is a promising technique for production of ultra fine-grain materials of few hundred nanometers size. In this research, the grain refinement of aluminium strip is accelerated by sandwiching it between two copper strips and then subjecting the three strips to Equal channel angular extrusion process simultaneously. The loosely packed copper-aluminium-copper laminated billet was passed through Equal channel angular extrusion die up to 8 passes using the Bc route. Then, tensile properties and some microstructural characteristics of the aluminium layer were evaluated. The scanning and transmission electron microscopes, and X-ray diffraction were used to characterize the microstructure. The results show that the yield stress of middle layer (Al) is increased significantly by about four times after application of Equal channel angular extrusion throughout the four consecutive passes and then it is slightly decreased when more Equal channel angular extrusion passes are applied. An ultra fine grain within the range of 500 to 600 nm was obtained in the Al layer by increasing the thickness of the copper layers. lt was observed that the reduction of grain size in the aluminium layer is nearly 55% more than that of a equal channel angular-extruded single layer aluminium billet, i.e. extruding a single aluminium strip or a billet without any clad for the same amount of deformation. This behaviour was attributed to the higher rates of dislocations interaction and cell formation and texture development during the Equal channel angular extrusion of the laminated composite compared to those of a single billet.

  11. Comparison of Apical Extrusion of Debris by Using Single-File, Full-Sequence Rotary and Reciprocating Systems.

    Science.gov (United States)

    Ehsani, Maryam; Farhang, Robab; Harandi, Azadeh; Tavanafar, Saeid; Raoof, Maryam; Galledar, Saeedeh

    2016-11-01

    During root canal preparation, apical extrusion of debris can cause inflammation, flare-ups, and delayed healing. Therefore, instrumentation techniques that cause the least extrusion of debris are desirable. This study aimed to compare apical extrusion of debris by five single-file, full-sequence rotary and reciprocating systems. One hundred twenty human mandibular premolars with similar root lengths, apical diameters, and canal curvatures were selected and randomly assigned to six groups (n=20): Reciproc R25 (25, 0.08), WaveOne Primary (25, 0.08), OneShape (25, 0.06), F360 (25, 0.04), Neoniti A1 (25, 0.08), and ProTaper Universal. Instrumentation of the root canals was performed in accordance with the manufacturers' instructions. Each tooth's debris was collected in a pre-weighed vial. After drying the debris in an incubator, the mass was measured three times consecutively; the mean was then calculated. The preparation time by each system was also measured. For data analysis, one-way ANOVA and Games-Howell post hoc test were used. The mean masses (±standard deviation) of the apical debris were as follows: 2.071±1.38mg (ProTaper Universal), 1.702±1.306mg (Neoniti A1), 1.295±0.839mg (OneShape), 1.109±0.676mg (WaveOne), 0.976±0.478mg (Reciproc) and 0.797±0.531mg (F360). Compared to ProTaper Universal, F360 generated significantly less debris (P=0.02). The ProTaper system required the longest preparation time (mean=88.6 seconds); the Reciproc (P=0.008), OneShape (P=0.006), and F360 (P=0.001) required significantly less time (P<0.05). All instruments caused extrusion of debris through the apex. The F360 produced significantly less debris than did the ProTaper Universal.

  12. Surgical extrusion: A reliable technique for saving compromised teeth. A 5-years follow-up case report

    Directory of Open Access Journals (Sweden)

    Jenner Argueta

    2018-06-01

    Full Text Available Aim: To present a long term follow up clinical case in which a compromised anterior tooth was saved by a surgical extrusion procedure. Summary: Although different techniques have been suggested for clinical crown lengthening in the anterior zone, some of them have limitations in terms of aesthetics and procedural requirements. The current case report demonstrates how a simplified surgical extrusion procedure was successfully performed for saving a severely damaged anterior tooth; furthermore, it is possible to apply the technique described in this case using minimum and simple armamentarium like a scalpel, elevators, forceps and splinting flexible cord. Key-learning points: Saving severely compromised anterior teeth is possible by applying surgical extrusion techniques when crown-root ratio allows it. Risk of root resorption or ankylosis is minimum. Riassunto: Obiettivo: Presentare un caso clinico con controllo a 5 anni in cui un dente anteriore compromesso è stato recuperato con una procedura di estrusione chirurgica. Riassunto: Sebbene siano state suggerite diverse tecniche per l’allungamento della corona clinica nella zona anteriore, alcune di esse presentano limitazioni in termini di estetica e competenza nelle procedure. Il presente case report dimostra come una procedura di estrusione chirurgica semplificata sia stata eseguita con successo per salvare un dente anteriore gravemente danneggiato. Va sottolineato che la tecnica descritta in questo caso può essere portata a termine utilizzando un armamentario minimo e molto semplice come un bisturi, leve, pinze e uno splintaggio flessibile. Key learning points: E’ possibile salvare elementi dentari gravemente compromessi applicando tecniche di estrusione chirurgica quando il rapporto corona-radice lo consente. Il rischio di riassorbimento della radice o anchilosi è minimo. Keywords: Crown fracture, Crown lengthening, Surgical extrusion, Surgical repositioning, Biologic width, Parole

  13. Effect of extrusion on phytochemical profiles in milled fractions of black rice.

    Science.gov (United States)

    Ti, Huihui; Zhang, Ruifen; Zhang, Mingwei; Wei, Zhencheng; Chi, Jianwei; Deng, Yuanyuan; Zhang, Yan

    2015-07-01

    The phytochemical profile and antioxidant activities of unprocessed and extruded milled fractions of black rice were investigated. Extrusion increased the free phenolics, anthocyanins and oxygen radical absorbance capacity (ORAC) and decreased the bound forms. The total phenolics, anthocyanins and ORAC increased by 12.6%, 5.4% and 19.7%, respectively, in bran. Extrusion decreased both free and bound phenolics and anthocyanins while ORAC values decreased by 46.5%, 88.4% and 33.1%, respectively, in polished rice and by 71.2%, 87.9% and 14.7%, respectively, in brown rice. A total of seven phenolics, gallic, chlorogenic, vanillic, caffeic, syringic, p-coumaric and ferulic acids, were detected in both forms. Cyanidin 3-glucoside (Cy-3-G), cyanidin 3-rutinoside and peonidin 3-glucoside were also detected with Cy-3-G found in the highest amounts in unprocessed and extruded rice bran. These results provide the basis for the development of different milled fractions of extruded black rice with balanced nutritional characteristics for today's functional food markets. Copyright © 2015. Published by Elsevier Ltd.

  14. Moisture content during extrusion of oats impacts the initial fermentation metabolites and probiotic bacteria during extended fermentation by human fecal microbiota.

    Science.gov (United States)

    Brahma, Sandrayee; Weier, Steven A; Rose, Devin J

    2017-07-01

    Extrusion exposes flour components to high pressure and shear during processing, which may affect the dietary fiber fermentability by human fecal microbiota. The objective of this study was to determine the effect of flour moisture content during extrusion on in vitro fermentation properties of whole grain oats. Extrudates were processed at three moisture levels (15%, 18%, and 21%) at fixed screw speed (300rpm) and temperature (130°C). The extrudates were then subjected to in vitro digestion and fermentation. Extrusion moisture significantly affected water-extractable β-glucan (WE-BG) in the extrudates, with samples processed at 15% moisture (lowest) and 21% moisture (highest) having the highest concentration of WE-BG. After the first 8h of fermentation, more WE-BG remained in fermentation media in samples processed at 15% moisture compared with the other conditions. Also, extrusion moisture significantly affected the production of acetate, butyrate, and total SCFA by the microbiota during the first 8h of fermentation. Microbiota grown on extrudates processed at 18% moisture had the highest production of acetate and total SCFA, whereas bacteria grown on extrudates processed at 15% and 18% moisture had the highest butyrate production. After 24h of fermentation, samples processed at 15% moisture supported lower Bifidobacterium counts than those produced at other conditions, but had among the highest Lactobacillus counts. Thus, moisture content during extrusion significantly affects production of fermentation metabolites by the gut microbiota during the initial stages of fermentation, while also affecting probiotic bacteria counts during extended fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A Covering Type Extrusion Die with Twin Cavities for Semi-Hollow Al-Profiles

    Science.gov (United States)

    Deng, Rurong; Huang, Xuemei

    2018-03-01

    A new structure named covering type with twin cavities in a die for the semi-hollow aluminum profiles was present. The determination of structure parameters was introduced in detail. Mainly including the selection of the machine, the arrangement of portholes, the structure design of chamber and the selection of bearing. The method of checking the die strength was introduced. According to the extrusion results, the structure of the traditional solid die, the porthole die with single cavity and the covering type structure with twin cavities were compared. The characteristics of the latter structure were simple and easy to process. The practical application shows that the new die structure can enhance the die life, improve the production efficiency and reduce the cost. The high precision and the surface brightness of the profiles were obtained. The structure is worth promoting. The aim is to provide reliable data and reference for the further research and development of this technology on the extrusion die with multi-cavities in a die.

  16. Genetic Architecture of Anther Extrusion in Spring and Winter Wheat

    Directory of Open Access Journals (Sweden)

    Quddoos H. Muqaddasi

    2017-05-01

    Full Text Available Hybrid wheat breeding is gaining prominence worldwide because it ensures higher and more static yield than conventionally bred varieties. The cleistogamous floral architecture of wheat (Triticum aestivum L. impedes anthers inside the floret, making it largely an inbreeder. For hybrid seed production, high anther extrusion is needed to promote cross pollination and to ensure a high level of pollen availability for the seed plant. This study, therefore, aimed at the genetic dissection of anther extrusion (AE in panels of spring (SP, and winter wheat (WP accessions by genome wide association studies (GWAS. We performed GWAS to identify the SNP markers potentially linked with AE in each panel separately. Phenotypic data were collected for 3 years for each panel. The average levels of Pearson's correlation (r among all years and their best linear unbiased estimates (BLUEs within both panels were high (r(SP = 0.75, P < 0.0001;r(WP = 0.72, P < 0.0001. Genotypic data (with minimum of 0.05 minor allele frequency applied included 12,066 and 12,191 SNP markers for SP and WP, respectively. Both genotypes and environment influenced the magnitude of AE. In total, 23 significant (|log10(P| > 3.0 marker trait associations (MTAs were detected (SP = 11; WP = 12. Anther extrusion behaved as a complex trait with significant markers having either favorable or unfavorable additive effects and imparting minor to moderate levels of phenotypic variance (R2(SP = 9.75−14.24%; R2 (WP = 9.44−16.98%. All mapped significant markers as well as the markers within their significant linkage disequilibrium (r2 ≥ 0.30 regions were blasted against wheat genome assembly (IWGSC1+popseq to find the corresponding genes and their high confidence descriptions were retrieved. These genes and their orthologs in Hordeum vulgare, Brachypodium distachyon, Oryza sativa, and Sorghum bicolor revealed syntenic genomic regions potentially involved in flowering-related traits. Moreover, the

  17. Marsupialization of a large dentigerous cyst in the mandible with orthodontic extrusion of three impacted teeth. A case report.

    Science.gov (United States)

    Abu-Mostafa, Nedal; Abbasi, Arshad

    2017-09-01

    The dentigerous cyst (DC) is the most common type of developmental odontogenic cyst. It is usually asymptomatic and associated with the crown of an unerupted or impacted tooth. However, after a long duration, it is likely to cause significant bone resorption, cortical expansion, and tooth displacement. This report presents a large infected DC in the mandible of a 12-year-old female patient. The DC was located inferior to badly decayed primary molars and surrounded three impacted permanent teeth: canine, first premolar, which had a dilacerated root, and second premolar. The DC was treated successfully by marsupialization and extrusion of the impacted teeth. In conclusion, the combination of marsupialization with orthodontic extrusion is a conservative, efficient protocol that stimulates bone healing and promotes the eruption of cyst-associated teeth even if they are deeply impacted, crowded, or have a dilacerated root. Key words: Dentigerous cyst, marsupialization, impacted teeth, orthodontic extrusion, dilacerated root.

  18. Application of Electrostatic Extrusion – Flavour Encapsulation and Controlled Release

    OpenAIRE

    Manojlovic, Verica; Rajic, Nevenka; Djonlagic, Jasna; Obradovic, Bojana; Nedovic, Viktor; Bugarski, Branko

    2008-01-01

    The subject of this study was the development of flavour alginate formulations aimed for thermally processed foods. Ethyl vanilline was used as the model flavour compound. Electrostatic extrusion was applied for the encapsulation of ethyl vanilline in alginate gel microbeads. The obtained microbeads with approx. 10 % w/w of ethyl vanilline encapsulated in about 2 % w/w alginate were uniformly sized spheres of about 450 ?m. Chemical characterization by H-NMR spectroscopy revealed that the algi...

  19. Antiproton-proton and proton-proton elastic scattering at 100 and 200 GeV/c

    International Nuclear Information System (INIS)

    Kaplan, D.H.; Karchin, P.; Orear, J.; Kalbach, R.M.; Krueger, K.W.; Pifer, A.E.; Baker, W.F.; Eartly, D.P.; Klinger, J.S.; Lennox, A.J.; Rubinstein, R.; McHugh, S.F.

    1982-01-01

    Antiproton-proton elastic scattering has been measured at 100 GeV/c for 0.5 2 and at 200 GeV/c for 0.9 2 . The data show that the -tapprox. =1.4 (GeV/c) 2 dip recently observed at 50 GeV/c persists to higher incident momenta. Proton-proton measurements made at the same beam momenta show similar structure

  20. Proton decay theory

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1983-01-01

    Topics include minimal SU(5) predictions, gauge boson mediated proton decay, uncertainties in tau/sub p/, Higgs scalar effects, proton decay via Higgs scalars, supersymmetric SU(5), dimension 5 operators and proton decay, and Higgs scalars and proton decay

  1. Co-extrusion as a processing technique to manufacture a dual sustained release fixed-dose combination product.

    Science.gov (United States)

    Vynckier, An-Katrien; Voorspoels, Jody; Remon, Jean Paul; Vervaet, Chris

    2016-05-01

    This study aimed to design a fixed-dose combination dosage form which provides a sustained release profile for both the freely water-soluble metformin HCl and the poorly soluble gliclazide, two antidiabetic compounds used to treat diabetes mellitus. Hot-melt co-extrusion was used as an innovative manufacturing technique for a pharmaceutical fixed-dose combination product. In this way, a matrix formulation that sustained metformin release could be developed, despite the high drug load in the formulation and the freely soluble nature of the drug. It was clear that co-extrusion was perfectly suited to produce a fixed-dose combination product with adequate properties for each of the incorporated APIs. A coat layer, containing at least 30% CAPA(®) 6506 as a hydrophobic polymer, was necessary to adequately sustain the release of the highly dosed freely soluble drug from the 70% metformin HCl-loaded CAPA(®) 6506 core of the co-extrudate. To obtain a complete gliclazide release over 24-h solubilization in Kollidon(®) VA, added as a second polymer to the CAPA(®) 6506 in the coat, was needed. Both active pharmaceutical ingredients (APIs), which have different physicochemical characteristics, were formulated in a single dosage form, using co-extrusion. © 2016 Royal Pharmaceutical Society, Journal of Pharmacy and Pharmacology.

  2. Effects of extrusion, infrared and microwave processing on Maillard reaction products and phenolic compounds in soybean.

    Science.gov (United States)

    Zilić, Slađana; Mogol, Burçe Ataç; Akıllıoğlu, Gül; Serpen, Arda; Delić, Nenad; Gökmen, Vural

    2014-01-15

    The Maillard reaction indicators furosine, hydroxymethylfurfural (HMF), acrylamide and color were determined to evaluate heat effects induced during extrusion, infrared and microwave heating of soybean. In addition, the present paper aimed to study changes in the phenolic compounds, as well as in the overall antioxidant properties of different soybean products in relation to heating at 45-140 °C during the processes. Soybean proteins were highly sensible to Maillard reaction and furosine was rapidly formed under slight heating conditions during extrusion and infrared heating. Microwave heating at lower temperatures for a longer time yielded lower acrylamide levels in the final soybean products, as a result of its partial degradation. However, during infrared heating, acrylamide formation greatly increased with decreasing moisture content. After a short time of extrusion and infrared heating at 140 °C and microwave heating at 135 °C for 5 min, concentrations of HMF increased to 11.34, 26.21 and 34.97 µg g(-1), respectively. The heating conditions caused formation of acrylamide, HMF and furosine in high concentration. The results indicate that the complex structure of soybeans provides protection of phenolic compounds from thermal degradation, and that Maillard reaction products improved the antioxidant properties of heat-treated soybean. © 2013 Society of Chemical Industry.

  3. Ultrasound-Assist Extrusion Methods for the Fabrication of Polymer Nanocomposites Based on Polypropylene/Multi-Wall Carbon Nanotubes

    Science.gov (United States)

    Ávila-Orta, Carlos A.; Quiñones-Jurado, Zoe V.; Waldo-Mendoza, Miguel A.; Rivera-Paz, Erika A.; Cruz-Delgado, Víctor J.; Mata-Padilla, José M.; González-Morones, Pablo; Ziolo, Ronald F.

    2015-01-01

    Isotactic polypropylenes (iPP) with different melt flow indexes (MFI) were used to fabricate nanocomposites (NCs) with 10 wt % loadings of multi-wall carbon nanotubes (MWCNTs) using ultrasound-assisted extrusion methods to determine their effect on the morphology, melt flow, and electrical properties of the NCs. Three different types of iPPs were used with MFIs of 2.5, 34 and 1200 g/10 min. Four different NC fabrication methods based on melt extrusion were used. In the first method melt extrusion fabrication without ultrasound assistance was used. In the second and third methods, an ultrasound probe attached to a hot chamber located at the exit of the die was used to subject the sample to fixed frequency and variable frequency, respectively. The fourth method is similar to the first method, with the difference being that the carbon nanotubes were treated in a fluidized air-bed with an ultrasound probe before being used in the fabrication of the NCs with no ultrasound assistance during extrusion. The samples were characterized by MFI, Optical microscopy (OM), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), electrical surface resistivity, and electric charge. MFI decreases in all cases with addition of MWCNTs with the largest decrease observed for samples with the highest MFI. The surface resistivity, which ranged from 1013 to 105 Ω/sq, and electric charge, were observed to depend on the ultrasound-assisted fabrication method as well as on the melt flow index of the iPP. A relationship between agglomerate size and area ratio with electric charge was found. Several trends in the overall data were identified and are discussed in terms of MFI and the different fabrication methods. PMID:28793686

  4. Hydrostatic extrusion of Cu-Ag melt spun ribbon

    Science.gov (United States)

    Hill, Mary Ann; Bingert, John F.; Bingert, Sherri A.; Thoma, Dan J.

    1998-01-01

    The present invention provides a method of producing high-strength and high-conductance copper and silver materials comprising the steps of combining a predetermined ratio of the copper with the silver to produce a composite material, and melt spinning the composite material to produce a ribbon of copper and silver. The ribbon of copper and silver is heated in a hydrogen atmosphere, and thereafter die pressed into a slug. The slug then is placed into a high-purity copper vessel and the vessel is sealed with an electron beam. The vessel and slug then are extruded into wire form using a cold hydrostatic extrusion process.

  5. Buoyancy Effect of Ionic Vacancy on the Change of the Partial Molar Volume in Ferricyanide-Ferrocyanide Redox Reaction under a Vertical Gravity Field

    Directory of Open Access Journals (Sweden)

    Yoshinobu Oshikiri

    2013-01-01

    Full Text Available With a gravity electrode (GE in a vertical gravity field, the buoyancy effect of ionic vacancy on the change of the partial molar volume in the redox reaction between ferricyanide (FERRI and ferrocyanide (FERRO ions was examined. The buoyancy force of ionic vacancy takes a positive or negative value, depending on whether the rate-determining step is the production or extinction of the vacancy. Though the upward convection over an upward electrode in the FERRO ion oxidation suggests the contribution of the positive buoyancy force arising from the vacancy production, the partial molar volume of the vacancy was not measured. On the other hand, for the downward convection under a downward electrode in the FERRI ion reduction, it was not completely but partly measured by the contribution of the negative buoyancy force from the vacancy extinction. Since the lifetime of the vacancy is decreased by the collision between ionic vacancies during the convection, the former result was ascribed to the shortened lifetime due to the increasing collision efficiency in the enhanced upward convection over an upward electrode, whereas the latter was thought to arise from the elongated lifetime due to the decreasing collision efficiency by the stagnation under the downward electrode.

  6. Baryon production in proton-proton collisions

    International Nuclear Information System (INIS)

    Liu, F.M.; Werner, K.

    2002-01-01

    Motivated by the recent rapidity spectra of baryons and antibaryons in pp collisions at 158 GeV and the Ω-bar/Ω ratio discussion, we reviewed string formation mechanism and some string models. This investigation told us how color strings are formed in ultrarelativistic proton-proton collisions

  7. Quarkonium production in high energy proton-proton and proton-nucleus collisions

    International Nuclear Information System (INIS)

    Conesa del Valle, Z.; Corcella, G.; Fleuret, F.; Ferreiro, E.G.; Kartvelishvili, V.; Kopeliovich, B.; Lansberg, J.P.; Lourenco, C.; Martinez, G.; Papadimitriou, V.; Satz, H.; Scomparin, E.; Ullrich, T.; Teryaev, O.; Vogt, R.; Wang, J.X.

    2011-01-01

    We present a brief overview of the most relevant current issues related to quarkonium production in high energy proton-proton and proton-nucleus collisions along with some perspectives. After reviewing recent experimental and theoretical results on quarkonium production in pp and pA collisions, we discuss the emerging field of polarisation studies. Afterwards, we report on issues related to heavy-quark production, both in pp and pA collisions, complemented by AA collisions. To put the work in broader perpectives, we emphasize the need for new observables to investigate the quarkonium production mechanisms and reiterate the qualities that make quarkonia a unique tool for many investigations in particle and nuclear physics.

  8. Study and automatic control of the ceramic tile extrusion operation; Estudio y control automatico de la operacion de extrusion de baldosas ceramicas

    Energy Technology Data Exchange (ETDEWEB)

    Aguilella, M.; Foucard, L.; Mallol, G.; Sanchez, M. J.; Lopez, M.; Benasges, R.

    2012-07-01

    The ever-larger tile sizes demanded by the market, the higher quality requirements, and the increasingly similar installation to that of pressed products make it necessary to narrow the tolerance limits of final extruded tile size in order to maintain the products competitiveness. The results of this study show that, though mixing water has a great influence on drying shrinkage, it hardly affects extruded tile firing shrinkage. This indicates that control of the water added in the extrusion process is indispensable in order avoid variations in drying shrinkage and, thus, to assure good dimensional stability of the end product. (Author)

  9. Analysis and Prediction of the Billet Butt and Transverse Weld in the Continuous Extrusion Process of a Hollow Aluminum Profile

    Science.gov (United States)

    Lou, Shumei; Wang, Yongxiao; Liu, Chuanxi; Lu, Shuai; Liu, Sujun; Su, Chunjian

    2017-08-01

    In continuous extrusions of aluminum profiles, the thickness of the billet butt and the length of the discarded extrudate containing the transverse weld play key roles in reducing material loss and improving product quality. The formation and final distribution of the billet butt and transverse weld depend entirely on the flow behavior of the billet skin material. This study examined the flow behavior of the billet skin material as well as the formation and evolution of the billet butt and the transverse weld in detail through numerical simulation and a series of experiments. In practical extrusions, even if the billet skin is removed by lathe turning shortly before extrusion, billet skin impurities are still distributed around the transverse weld and in the billet butt. The thickness of the scrap billet butt and the length of the discarded extrudate containing the transverse weld can be exactly predicted via simulation.

  10. Effect of extrusion conditions and lipoxygenase inactivation treatment on the physical and nutritional properties of corn/cowpea (Vigna unguiculata) blends.

    Science.gov (United States)

    Sosa-Moguel, Odri; Ruiz-Ruiz, Jorge; Martínez-Ayala, Alma; González, Rolando; Drago, Silvina; Betancur-Ancona, David; Chel-Guerrero, Luis

    2009-01-01

    The influence of lipoxygenase inactivation and extrusion cooking on the physical and nutritional properties of corn/cowpea (Vigna unguiculata) blends was studied. Corn was blended in an 80:15 proportion with cowpea flour treated to inactivate lipoxygenase (CI) or non-inactivated cowpea flour (CNI). Extrusion variables were temperature (150 degrees C, 165 degrees C and 180 degrees C) and moisture (15%, 17% and 19%). Based on their physical properties, the 165 degrees C/15% corn:CNI, and 165 degrees C/15% corn:CI, and 150 degrees C/15% corn:CI blends were chosen for nutritional quality analysis. Extrudate chemical composition indicated high crude protein levels compared with standard corn-based products. With the exception of lysine, essential amino acids content in the three treatments met FAO requirements. Extrusion and lipoxygenase inactivation are promising options for developing corn/cowpea extruded snack products with good physical properties and nutritional quality.

  11. Machine for extrusion under vacuum; Machine de fluage sous vide

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    In a study of the behaviour of easily oxidised metals during the extrusion process, it is first necessary to find an effective mean of fighting corrosion, since this, even when barely detectable, has an important influence on the validity of the results recorded. The neatest and also the most efficient of all the methods tried consists in creating a vacuum around the test piece. Working on this principle, and at the same time respecting the conventional rules for extrusion tests (loading the sample after stabilisation at the testing temperature, differential measurements of lengthening, etc.) we found it necessary to construct an original machine. (author) [French] L'etude du comportement au fluage des materiaux facilement oxydables exige, en premier lieu, une lutte efficace contre la corrosion qui, meme a peine decelable, prend une part preponderante quant a la validite des resultats enregistres. La solution la plus elegante, et, a vrai dire, la plus energique parmi toutes les methodes essayees, consiste a realiser le vide autour de l'eprouvette d'essai. Partant de ce principe, et pour sauvegarder les regles classiques de l'essai de fluage (mise en charge de l'eprouvette apres stabilisation en temperature d'essai, mesures differentielles des allongements, etc.) nous nous sommes trouves dans la necessite de construire une machine inedite. (auteur)

  12. 76 FR 323 - Aluminum Extrusions From the People's Republic of China: Notice of Amended Preliminary...

    Science.gov (United States)

    2011-01-04

    ... finished good. The scope also excludes aluminum alloy sheet or plates produced by other than the extrusion... calculation program by coding the decimal point in the wrong place. The Department agrees, and finds that this...

  13. Design of conveyor type machine with numerical control for manufacturing of extrusion thermoplastic thread

    Science.gov (United States)

    Gorbunova, T. N.; Koltunov, I. I.; Tumanova, M. B.

    2018-05-01

    The article is devoted to the development of a model and control program for a 3D printer working based on extrusion technology. The article contains descriptions of all components of the machine and blocks of the interface of the control program.

  14. 76 FR 80887 - Antidumping Order on Aluminum Extrusions from the People's Republic of China: Initiation of...

    Science.gov (United States)

    2011-12-27

    ... frames, solar panels, curtain walls, or furniture. Such parts that otherwise meet the definition of..., and solar panels. The scope also excludes finished goods containing aluminum extrusions that are...

  15. Microstructure and mechanical properties of 2.5 vol. % TiBw/Ti6Al4V composites plates fabricated by hot-hydrostatic canned extrusion

    Science.gov (United States)

    Zhang, Wencong; Zhang, Lingjia; Feng, Yangju; Cui, Guorong; Chen, Wenzhen

    2018-04-01

    Plates of 2.5 vol. % TiB whisker-reinforced Ti6Al4V titanium matrix composites (TiBw/Ti64) with network structure were successfully fabricated by hot-hydrostatic extrusion with steel cup at 1100 °C. The dimensions of plates were about 150mm in length, 27mm in width and 2mm in thickness. After extrusion, the original equiaxed-network structure formed by TiB whiskers still existed, but was compressed in cross-section and stretched in longitudinal section and then the TiB whiskers were directional distribution along the extrusion direction. Furthermore, the mechanical properties results showed that the strength, hardness and ductility of the plates were significantly improved compared to as-sintered composites.

  16. Turbine airfoil fabricated from tapered extrusions

    Science.gov (United States)

    Marra, John J

    2013-07-16

    An airfoil (30) and fabrication process for turbine blades with cooling channels (26). Tapered tubes (32A-32D) are bonded together in a parallel sequence, forming a leading edge (21), a trailing edge (22), and pressure and suction side walls (23, 24) connected by internal ribs (25). The tapered tubes may be extruded without camber to simplify the extrusion process, then bonded along matching surfaces (34), forming a non-cambered airfoil (28), which may be cambered in a hot forming process and cut (48) to length. The tubes may have tapered walls that are thinner at the blade tip (T1) than at the base (T2), reducing mass. A cap (50) may be attached to the blade tip. A mounting lug (58) may be forged (60) on the airfoil base and then machined, completing the blade for mounting in a turbine rotor disk.

  17. The underlying event in proton-proton collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel, F.

    2009-05-15

    In this thesis, studies of the underlying event in proton-proton collisions at a center-of-mass energy of {radical}(s) = 10 TeV are presented. Crucial ingredient to underlying event models are multiple parton-parton scatters in single proton-proton collisions. The feasibility of measuring the underlying event was investigated with the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) using charged particles and charged-particle jets. Systematic uncertainties of the underlying event measurement due to detector misalignment and imperfect track reconstruction are found to be negligible after {integral}Ldt=1 pb{sup -1} of data are available. Different model predictions are compared with each other using fully simulated Monte Carlo samples. It is found, that distinct models differ strongly enough to tell them apart with early data. (orig.)

  18. Evaluation of apical extrusion of debris and irrigant using two new reciprocating and one continuous rotation single file systems.

    Science.gov (United States)

    Nayak, Gurudutt; Singh, Inderpreet; Shetty, Shashit; Dahiya, Surya

    2014-05-01

    Apical extrusion of debris and irrigants during cleaning and shaping of the root canal is one of the main causes of periapical inflammation and postoperative flare-ups. The purpose of this study was to quantitatively measure the amount of debris and irrigants extruded apically in single rooted canals using two reciprocating and one rotary single file nickel-titanium instrumentation systems. Sixty human mandibular premolars, randomly assigned to three groups (n = 20) were instrumented using two reciprocating (Reciproc and Wave One) and one rotary (One Shape) single-file nickel-titanium systems. Bidistilled water was used as irrigant with traditional needle irrigation delivery system. Eppendorf tubes were used as test apparatus for collection of debris and irrigant. The volume of extruded irrigant was collected and quantified via 0.1-mL increment measure supplied on the disposable plastic insulin syringe. The liquid inside the tubes was dried and the mean weight of debris was assessed using an electronic microbalance. The data were statistically analysed using Kruskal-Wallis nonparametric test and Mann Whitney U test with Bonferroni adjustment. P-values less than 0.05 were considered significant. The Reciproc file system produced significantly more debris compared with OneShape file system (P0.05). Extrusion of irrigant was statistically insignificant irrespective of the instrument or instrumentation technique used (P >0.05). Although all systems caused apical extrusion of debris and irrigant, continuous rotary instrumentation was associated with less extrusion as compared with the use of reciprocating file systems.

  19. Development of instant blends of cassava flour and casein: effect of protein contents and extrusion parameters on viscosity

    OpenAIRE

    Lustosa, Beatriz Helena Borges; Leonel, Magali

    2010-01-01

    O interesse da indústria de alimentos por produtos desenvolvidos a partir de farinhas acrescidas de proteína não se deve somente às suas características nutricionais, senão também às suas propriedades funcionais e reológicas, as quais definem as suas aplicações comerciais. Este trabalho teve por objetivo avaliar o efeito de parâmetros operacionais do processo de extrusão sobre as propriedades de pasta de misturas de farinha de mandioca e caseína. O processo de extrusão seguiu o delineamento '...

  20. The impact of extrusion on the nutritional composition, dietary fiber and in vitro digestibility of gluten-free snacks based on rice, pea and carob flour blends.

    Science.gov (United States)

    Arribas, C; Cabellos, B; Sánchez, C; Cuadrado, C; Guillamón, E; Pedrosa, M M

    2017-10-18

    Consumers and the food industry are demanding healthier products. Expanded snacks with a high nutritional value were developed from different rice, pea and carob flour blends. The proximate composition, starch (total and resistant), amylose and amylopectin, dietary fiber (soluble and insoluble) contents, and the in vitro protein digestibility of different rice-legume formulations, were evaluated before and after the extrusion process. Compared with the corresponding non-extruded blends (control), the extrusion treatment did not change the total protein content, however, it reduced the soluble protein (61-86%), the fat (69-92%) and the resistant starch contents (100%). The total starch content of all studied blends increased (2-19%) after extrusion. The processing increased the in vitro protein digestibility, reaching values around 88-95% after extrusion. Total dietary fiber was reduced around 30%, and the insoluble fraction was affected to a larger extent than the soluble fraction by the extrusion process. Because of its balanced nutritional composition, high dietary fiber content, as well as low energy density, these novel gluten-free snack-like foods could be considered as functional foods and a healthier alternative to commercially available gluten-containing or gluten-free and low nutritional value snacks.

  1. MUSE: Measuring the proton radius with muon-proton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bernauer, Jan Christopher [Massachusetts Institute of Technology, Cambridge (United States)

    2014-07-01

    The proton radius has been measured so far using electron-proton scattering, electronic Hydrogen spectroscopy and muonic Hydrogen spectroscopy, the latter producing a much more accurate, but seven sigma different, result, leading to the now famous proton radius puzzle. The MUSE collaboration aims to complete the set of measurements by using muon scattering to determine the proton radius and to shed light on possible explanations of the discrepancy. The talk gives an overview of the experiment motivation and design and a status report on the progress.

  2. Proton therapy device

    International Nuclear Information System (INIS)

    Tronc, D.

    1994-01-01

    The invention concerns a proton therapy device using a proton linear accelerator which produces a proton beam with high energies and intensities. The invention lies in actual fact that the proton beam which is produced by the linear accelerator is deflected from 270 deg in its plan by a deflecting magnetic device towards a patient support including a bed the longitudinal axis of which is parallel to the proton beam leaving the linear accelerator. The patient support and the deflecting device turn together around the proton beam axis while the bed stays in an horizontal position. The invention applies to radiotherapy. 6 refs., 5 figs

  3. Single screw extrusion of apple pomace-enriched blends: Extrudate characteristics and determination of optimum processing conditions.

    Science.gov (United States)

    Singha, Poonam; Muthukumarappan, Kasiviswanathan

    2018-07-01

    Response surface methodology was used to investigate the single screw extrusion of apple pomace-defatted soy flour-corn grits blends and the product properties. Five different blends at a level of 0-20% w/w apple pomace were extrusion cooked with varied barrel and die temperature (100-140℃), screw speed (100-200 rpm), and feed moisture content (14-20% wet basis). Increasing apple pomace content in the blends significantly ( P extrudates. The expansion ratio increased with pomace inclusion level of 5% but decreased significantly ( P extruded snack products were at 140℃ barrel and die temperature, 20% feed moisture content, and 200 rpm screw speed. The results indicated active interaction between apple pomace and starch during expansion process.

  4. Lateral extrusion of a thermally weakened pluton overburden (Campiglia Marittima, Tuscany)

    Science.gov (United States)

    Vezzoni, Simone; Rocchi, Sergio; Dini, Andrea

    2017-10-01

    The ascent and emplacement of magmas in the upper crust modify the local pre-existing thermal and rheological settings. Such changes have important effects in producing anomalous structures, mass extrusion, rock fracturing, and in some conditions, hydrothermal mineralizations. In the Campiglia Marittima area, detailed field mapping led to the reconstruction of a local deformation history that overlaps, chronologically and spatially, with regional extension. This local deformation was triggered at the Miocene-Pliocene boundary by the intrusion of a monzogranitic pluton beneath a carbonate sedimentary sequence. The emplacement of the pluton produced a perturbation in the rheological behaviour of the carbonate host rocks, producing transient ductile conditions in the very shallow crust. The carbonate rocks were thermally weakened and flowed laterally, accumulating downslope of the pluton roof, mainly toward the east. As the thermal anomaly was decaying, the brittle-ductile boundary moved progressively back towards the pluton, and large tension gash-shaped volumes of fractured marble were generated. These fractured volumes were exploited by rising hydrothermal fluids generating sigmoidal skarn bodies and ore shoots. This work presents the Campiglia Marittima case study as a prime example of structural interference between regional extensional structures and local, lateral mass extrusion in a transient ductile rheological regime triggered by pluton emplacement.

  5. Delayed protons and properties of proton-rich nuclei

    International Nuclear Information System (INIS)

    Karnaukhov, V.A.

    1976-01-01

    The object of the investigation is to study the properties of proton-rich nuclei. The emphasis in the proposed survey is made on investigations in the range of Z > 50. Measurement of the total energy in emission of delayed protons (DP) enables one to determine the difference between the masses of initial and final isotopes. The statistical model of the DP emission is used for describing the proton spectrum. A comparison of the DP experimental and theoretical spectra shows that the presence of local resonances in the strength functions of the β dacay is rather a rule than an exception. Studies into the fine structure of the proton spectra supply information of the density of nuclei considerably removed from the β-stability line at the excitation energies of 3-7 MeV. The aproaches for retrieval of nuclear information with the aid of proton radiators developed so far can serve as a good basis for systematic investigation over a wide range of A and Z

  6. Ultrasound-Assist Extrusion Methods for the Fabrication of Polymer Nanocomposites Based on Polypropylene/Multi-Wall Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Carlos A. Ávila-Orta

    2015-11-01

    Full Text Available Isotactic polypropylenes (iPP with different melt flow indexes (MFI were used to fabricate nanocomposites (NCs with 10 wt % loadings of multi-wall carbon nanotubes (MWCNTs using ultrasound-assisted extrusion methods to determine their effect on the morphology, melt flow, and electrical properties of the NCs. Three different types of iPPs were used with MFIs of 2.5, 34 and 1200 g/10 min. Four different NC fabrication methods based on melt extrusion were used. In the first method melt extrusion fabrication without ultrasound assistance was used. In the second and third methods, an ultrasound probe attached to a hot chamber located at the exit of the die was used to subject the sample to fixed frequency and variable frequency, respectively. The fourth method is similar to the first method, with the difference being that the carbon nanotubes were treated in a fluidized air-bed with an ultrasound probe before being used in the fabrication of the NCs with no ultrasound assistance during extrusion. The samples were characterized by MFI, Optical microscopy (OM, Scanning electron microscopy (SEM, Transmission electron microscopy (TEM, electrical surface resistivity, and electric charge. MFI decreases in all cases with addition of MWCNTs with the largest decrease observed for samples with the highest MFI. The surface resistivity, which ranged from 1013 to 105 Ω/sq, and electric charge, were observed to depend on the ultrasound-assisted fabrication method as well as on the melt flow index of the iPP. A relationship between agglomerate size and area ratio with electric charge was found. Several trends in the overall data were identified and are discussed in terms of MFI and the different fabrication methods.

  7. Extrusion Conditions and Amylose Content Affect Physicochemical Properties of Extrudates Obtained from Brown Rice Grains

    Directory of Open Access Journals (Sweden)

    Rolando José González

    2013-01-01

    Full Text Available The utilization of whole grains in food formulations is nowadays recommended. Extrusion cooking allows obtaining precooked cereal products and a wide range of ready-to-eat foods. Two rice varieties having different amylose content (Fortuna 16% and Paso 144, 27% were extruded using a Brabender single screw extruder. Factorial experimental design was used to study the effects of extrusion temperature (160, 175, and 190°C and grits moisture content (14%, 16.5%, and 19% on extrudate properties. Specific mechanical energy consumption (SMEC, radial expansion (E, specific volume (SV, water absorption (WA, and solubility (S were determined on each extrudate sample. In general, Fortuna variety showed higher values of SMEC and S (703–409 versus 637–407 J/g; 33.0–21.0 versus 20.1–11.0%, resp. than those of Paso 144; on the contrary SV (8.64–3.47 versus 8.27–4.53 mL/g and WA tended to be lower (7.7–5.1 versus 8.4–6.6 mL/g. Both varieties showed similar values of expansion rate (3.60–2.18. Physical characteristics depended on extrusion conditions and rice variety used. The degree of cooking reached by Paso rice samples was lower than that obtained for Fortuna. It is suggested that the presence of germ and bran interfered with the cooking process, decreasing friction level and broadening residence time distribution.

  8. Improving the automated optimization of profile extrusion dies by applying appropriate optimization areas and strategies

    Science.gov (United States)

    Hopmann, Ch.; Windeck, C.; Kurth, K.; Behr, M.; Siegbert, R.; Elgeti, S.

    2014-05-01

    The rheological design of profile extrusion dies is one of the most challenging tasks in die design. As no analytical solution is available, the quality and the development time for a new design highly depend on the empirical knowledge of the die manufacturer. Usually, prior to start production several time-consuming, iterative running-in trials need to be performed to check the profile accuracy and the die geometry is reworked. An alternative are numerical flow simulations. These simulations enable to calculate the melt flow through a die so that the quality of the flow distribution can be analyzed. The objective of a current research project is to improve the automated optimization of profile extrusion dies. Special emphasis is put on choosing a convenient starting geometry and parameterization, which enable for possible deformations. In this work, three commonly used design features are examined with regard to their influence on the optimization results. Based on the results, a strategy is derived to select the most relevant areas of the flow channels for the optimization. For these characteristic areas recommendations are given concerning an efficient parameterization setup that still enables adequate deformations of the flow channel geometry. Exemplarily, this approach is applied to a L-shaped profile with different wall thicknesses. The die is optimized automatically and simulation results are qualitatively compared with experimental results. Furthermore, the strategy is applied to a complex extrusion die of a floor skirting profile to prove the universal adaptability.

  9. Predictions of diffractive cross sections in proton-proton collisions

    Energy Technology Data Exchange (ETDEWEB)

    Goulianos, Konstantin [Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States)

    2013-04-15

    We review our pre-LHC predictions of the total, elastic, total-inelastic, and diffractive components of proton-proton cross sections at high energies, expressed in the form of unitarized expressions based on a special parton-model approach to diffraction employing inclusive proton parton distribution functions and QCD color factors and compare with recent LHC results.

  10. Spherical proton emitters

    International Nuclear Information System (INIS)

    Berg, S.; Semmes, P.B.; Nazarewicz, W.

    1997-01-01

    Various theoretical approaches to proton emission from spherical nuclei are investigated, and it is found that all the methods employed give very similar results. The calculated decay widths are found to be qualitatively insensitive to the parameters of the proton-nucleus potential, i.e., changing the potential parameters over a fairly large range typically changes the decay width by no more than a factor of ∼3. Proton half-lives of observed heavy proton emitters are, in general, well reproduced by spherical calculations with the spectroscopic factors calculated in the independent quasiparticle approximation. The quantitative agreement with experimental data obtained in our study requires that the parameters of the proton-nucleus potential be chosen carefully. It also suggests that deformed proton emitters will provide invaluable spectroscopic information on the angular momentum decomposition of single-proton orbitals in deformed nuclei. copyright 1997 The American Physical Society

  11. Proton therapy physics

    CERN Document Server

    2012-01-01

    Proton Therapy Physics goes beyond current books on proton therapy to provide an in-depth overview of the physics aspects of this radiation therapy modality, eliminating the need to dig through information scattered in the medical physics literature. After tracing the history of proton therapy, the book summarizes the atomic and nuclear physics background necessary for understanding proton interactions with tissue. It describes the physics of proton accelerators, the parameters of clinical proton beams, and the mechanisms to generate a conformal dose distribution in a patient. The text then covers detector systems and measuring techniques for reference dosimetry, outlines basic quality assurance and commissioning guidelines, and gives examples of Monte Carlo simulations in proton therapy. The book moves on to discussions of treatment planning for single- and multiple-field uniform doses, dose calculation concepts and algorithms, and precision and uncertainties for nonmoving and moving targets. It also exami...

  12. The Influence of Segregation Phenomena on Quality of Product in Extrusion Process

    Directory of Open Access Journals (Sweden)

    G. Skorulski

    2010-07-01

    Full Text Available The segregation phenomena and formation of agglomerate have the basic influence on structure of the final product. The aim of this workis analyzing the phenomena of segregation in semi-solid extrusion process, using several kind of substitute materials, which can simulate the thixotrophic fluid behavior and displacement of solid particles. The experimental researches are made to investigation of segregation in the near-wall layers and the formation of agglomerate. Especially, the distribution of the solid particles at the end of extrusion process have been taken into consideration. Theoretical criteria describe the critical value of the energy liberated at the surfaces by the action of forces depends on the temperature, the pressure, the yield stress and the physical state and degree of intimacy of the contacting surfaces. The theory has been tested experimentally using a silicon polymer as a substitute material. Experimental stand with a Plexiglass die was prepared, such that the velocity fields at the surfaces could be observed and measured during plastic flow, allowing the empirical coefficients in the mathematical formulation to be estimated. On the basis of the theory and experiment an optimal die chamber was designed for a die with a complex shape.

  13. An analysis of extrusion of buffer material into fracture behavior by diffusion model

    International Nuclear Information System (INIS)

    Matsumoto, Kazuhiro; Tanai, Kenji; Kanno, Takeshi; Iwata, Yumiko

    2005-06-01

    The buffer that will be used as a component of the engineered barriers system swells when saturated by groundwater. As a result of this swelling, buffer may penetrate into the surrounding rock zone through open fractures. It sustained for extremely long periods of time, the buffer extrusion could lead to reduction of buffer density, which may in turn degrade the assumed performance. In this report, the viscosity of bentonite was measured as one of the parameter of diffusion model. In addition, the simulation analysis was carried out to confirm the applicability of diffusion model. Moreover, an analytical evaluation on extrusion behavior of buffer into rock fractures was performed to estimate the long-term stability of buffer as reduction of density. (1) Measurement of the viscosity of bentonite. The viscosity of bentonite is measured by the Rheometer. The viscosity of bentonite indicated tendency to non-Newton flow. The viscosity of bentonite at water contents of 400-1000% was estimated. The evaluated value of the viscosity was modified based on this measurement. (2) Simulation analysis of an experiment results. The simulation analysis of the experimental result using diffusion model was performed to confirm applicability of this model. The results of the simulation reasonably agreed with obtained experimental result. (3) Example analysis of a long-term stability of buffer. The analysis of a long-term stability of buffer as reduction of density was performed to compare with the results in H12 report. In this analysis, the density of the buffer material decreased earlier than the results in H12 report. In addition, a long-term change in the density of the buffer material under seawater condition was preliminary calculated. As a result, it is indicated that extrusion behavior is not significant under seawater condition. (author)

  14. Ceramic core–shell composites with modified mechanical properties prepared by thermoplastic co-extrusion

    Czech Academy of Sciences Publication Activity Database

    Kaštyl, J.; Chlup, Zdeněk; Clemens, F.; Trunec, M.

    2015-01-01

    Roč. 35, č. 10 (2015), s. 2873-2881 ISSN 0955-2219 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Alumina * Zirconia toughened alumina * Co-extrusion * Composite * Mechanical properties1 Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.933, year: 2015

  15. Elastic proton-proton scattering at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Yip, K.

    2011-09-03

    Here we describe elastic proton+proton (p+p) scattering measurements at RHIC in p+p collisions with a special optics run of {beta}* {approx} 21 m at STAR, at the center-of-mass energy {radical}s = 200 GeV during the last week of the RHIC 2009 run. We present preliminary results of single and double spin asymmetries.

  16. A CGC/saturation approach for angular correlations in proton-proton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gotsman, E. [Tel Aviv University, Department of Particle Physics, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv (Israel); Levin, E. [Tel Aviv University, Department of Particle Physics, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv (Israel); Universidad Tecnica Federico Santa Maria, Departamento de Fisica, Valparaiso (Chile); Centro Cientifico-Tecnologico de Valparaiso, Valparaiso (Chile); Potashnikova, I. [Universidad Tecnica Federico Santa Maria, Departamento de Fisica, Valparaiso (Chile); Centro Cientifico-Tecnologico de Valparaiso, Valparaiso (Chile)

    2017-09-15

    We generalized our model for the description of hard processes, and calculate the value of the azimuthal angular correlations (Fourier harmonics v{sub n}), for proton-proton scattering. The energy and multiplicity independence, as well as the value of v{sub n}, turns out to be in accord with the experimental data, or slightly larger. Therefore, before making extreme assumptions on proton-proton collisions, such as the production of a quark-gluon plasma in large multiplicity events, we need to understand how these affect the Bose-Einstein correlations, which have to be taken into account since the Bose-Einstein correlations are able to describe the angular correlations in proton-proton collisions, without including final state interactions. (orig.)

  17. Robotic extrusion processes for direct ink writing of 3D conductive polyaniline structures

    Science.gov (United States)

    Holness, F. Benjamin; Price, Aaron D.

    2016-04-01

    The intractable nature of intrinsically conductive polymers (ICP) leads to practical limitations in the fabrication of ICP-based transducers having complex three-dimensional geometries. Conventional ICP device fabrication processes have focused primarily on thin-film deposition techniques; therefore this study explores novel additive manufacturing processes specifically developed for ICP with the ultimate goal of increasing the functionality of ICP sensors and actuators. Herein we employ automated polymer paste extrusion processes for the direct ink writing of 3D conductive polyaniline (PANI) structures. Realization of these structures is enabled through a modified fused filament fabrication delta robot equipped with an integrated polymer paste extruder. This unique robot-controlled additive manufacturing platform is capable of fabricating high-resolution 3D conductive PANI and has been utilized to produce structures with a minimum feature size of 1.5 mm. The required processability of PANI is achieved by means of a counter-ion induced thermal doping method. Using this method, a viscous paste is formulated as the extrudate and a thermo-chemical treatment is applied post extrusion to finalize the complexation.

  18. Proton-proton elastic scattering measurements at COSY

    Energy Technology Data Exchange (ETDEWEB)

    Bagdasarian, Zara [Forschungszentrum Juelich, Juelich (Germany); Tbilisi State University, Tbilisi (Georgia); Collaboration: ANKE-Collaboration

    2014-07-01

    To construct the reliable phase shift analysis (PSA) that can successfully describe the nucleon-nucleon (NN) interaction it is necessary to measure variety of experimental observables for both proton-proton (pp) and neutron-proton (np) elastic scattering. The polarized beams and targets at COSY-ANKE facility allow a substantial contribution to the existing database. The experiment was carried out in April 2013 at ANKE using a transversely polarized proton beam incident on an unpolarized hydrogen cluster target. Six beam energies of T{sub p}=0.8,1.6,1.8,2.0,2.2,2.4 GeV were used. The aim of this talk is to present the preliminary results for the analyzing power (A{sub y}) for the pp elastic scattering in the so-far unexplored 5 <θ{sub cm}<30 angular range. Our measurements are also compared to the world data and current partial wave solutions.

  19. Extrusion-formed uranium-2.4 wt. % article with decreased linear thermal expansion and method for making the same

    International Nuclear Information System (INIS)

    Anderson, R.C.; Jones, J.M.; Kollie, T.G.

    1982-01-01

    The present invention is directed to the fabrication of an article of uranium-2.4 wt. % niobium alloy in which the linear thermal expansion in the direction transverse to the extrusion direction is less than about 0.98% between 22 0 C and 600 0 C which corresponds to a value greater than the 1.04% provided by previous extrusion operations over the same temperature range. The article with the improved thermal expansion possesses a yield strength at 0.2% offset of at least 400 mpa, an ultimate tensile strength of 1050 mpa, a compressive yield strength of at least 2% offset of at least 675 mpa, and an elongation of at lea 25% over 25.4 mm/sec. To provide this article with the improv thermal expansion, the uranium alloy billet is heated to 630 0 C and extruded in the alpha phase through a die with a reduction ratio of at least 8.4:1 at a ram speed no greater than 6.8 mm/sec. These critical extrusion parameters provide the article with the desired decrease in the linear thermal expansion while maintaining the selected mechanical properties without encountering crystal disruption in the article

  20. Correlations associated with small angle protons produced in proton- proton collisions at 31 GeV total energy

    CERN Document Server

    Albrow, M G; Barber, D P; Bogaerts, A; Bosnjakovic, B; Brooks, J R; Clegg, A B; Erné, F C; Gee, C N P; Locke, D H; Loebinger, F K; Murphy, P G; Rudge, A; Sens, Johannes C

    1973-01-01

    High energy inelastic protons with x=2 p/sub L//s/sup 1/2/>0.99 observed in 15.3/15.3 GeV proton-proton collisions at the CERN ISR are accompanied by particles whose angular distribution is confined to a narrow cone in the opposite direction. In contrast, lower energy protons (0.72

  1. Distribution of E-cadherin and ß-catenin in relation to cell maturation and cell extrusion in rat and mouse small intestines

    DEFF Research Database (Denmark)

    Larsson, Lars-Inge

    2006-01-01

    of programmed cell death (PCD) in mouse small intestinal epithelium. We have studied if this also occurs in the intact rodent small intestine. Our results confirm that extruded cells are negatie for E-cadherin. However, loss of the E-cadherin-interacting protein ß-cetenin preceded both extrusion and loss of E......-cadherin. Thus, all extruded cells as well as all cells in the process of extrusion lacked staining for ß-catenin. Moreover, almost 80% of all cells undergoing programmed cell death, as detected by the TUNEL reaction, lacked ß-catenin whereas over 70% of such cells were positive for E-cadherin. However, most...... ells lacking ß-catenin did not display signs of PCD as detected by the TUNEL method or by staining for active caspase-3. Therefore, these results suggest that loss of ß-catenin precedes the onset of programmed cell death, loss of E-cadherin and extrusion from the villi....

  2. Proton-proton reaction rates at extreme energies

    International Nuclear Information System (INIS)

    Nagano, Motohiko

    1993-01-01

    Results on proton-antiproton reaction rates (total cross-section) at collision energies of 1.8 TeV from experiments at Fermilab have suggested a lower rate of increase with energy compared to the extrapolation based on results previously obtained at CERN's proton-antiproton collider (CERN Courier, October 1991). Now an independent estimate of the values for the proton-proton total cross-section for collision energies from 5 to 30 TeV has been provided by the analysis of cosmic ray shower data collected over ten years at the Akeno Observatory operated by the Institute for Cosmic Ray Research of University of Tokyo. These results are based on the inelastic cross-section for collisions of cosmic ray protons with air nuclei at energies in the range10 16-18 eV. A new extensive air shower experiment was started at Akeno, 150 km west of Tokyo, in 1979 with a large array of detectors, both on the ground and under a 1-metre concrete absorber. This measured the total numbers of electrons and muons of energies above 1GeV for individual showers with much better accuracy than before. Data collection was almost continuous for ten years without any change in the triggering criteria for showers above10 16 eV. The mean free path for proton-air nuclei collisions has been determined from the zenith angle of the observed frequency of air showers which have the same effective path length for development in the atmosphere and the same primary energy

  3. Definition of a JA2 equivalent propellant to be produced by continuous solvent-less extrusion

    NARCIS (Netherlands)

    Manning, T.G.; Leone, J.; Zebregs, M.; Ramlal, D.R.; Driel, C.A. van

    2013-01-01

    The aim of this work is to demonstrate the manufacturing of a propellant by solvent-less continuous twin screw extrusion processing while maintaining gun performance characteristics of conventional JA-2 propellant. This is elucidated by explicitly researching the relationship between interior

  4. Comparison of Apical Extrusion of Debris by Using Single-File, Full-Sequence Rotary and Reciprocating Systems

    Directory of Open Access Journals (Sweden)

    Maryam Ehsani

    2017-01-01

    Full Text Available Objectives: During root canal preparation, apical extrusion of debris can cause inflammation, flare-ups, and delayed healing. Therefore, instrumentation techniques that cause the least extrusion of debris are desirable. This study aimed to compare apical extrusion of debris by five single-file, full-sequence rotary and reciprocating systems.Materials and Methods: One hundred twenty human mandibular premolars with similar root lengths, apical diameters, and canal curvatures were selected and randomly assigned to six groups (n=20: Reciproc R25 (25, 0.08, WaveOne Primary (25, 0.08, OneShape (25, 0.06, F360 (25, 0.04, Neoniti A1 (25, 0.08, and ProTaper Universal. Instrumentation of the root canals was performed in accordance with the manufacturers’ instructions. Each tooth's debris was collected in a pre-weighed vial. After drying the debris in an incubator, the mass was measured three times consecutively; the mean was then calculated. The preparation time by each system was also measured. For data analysis, one-way ANOVA and Games-Howell post hoc test were used.Results: The mean masses (±standard deviation of the apical debris were as follows: 2.071±1.38mg (ProTaper Universal, 1.702±1.306mg (Neoniti A1, 1.295±0.839mg (OneShape, 1.109±0.676mg (WaveOne, 0.976±0.478mg (Reciproc and 0.797±0.531mg (F360. Compared to ProTaper Universal, F360 generated significantly less debris (P=0.02. The ProTaper system required the longest preparation time (mean=88.6 seconds; the Reciproc (P=0.008, OneShape (P=0.006, and F360 (P=0.001 required significantly less time (P<0.05.Conclusions: All instruments caused extrusion of debris through the apex. The F360 produced significantly less debris than did the ProTaper Universal.Keywords: Dentistry; Endodontics; Root Canal Preparation; Instrumentation

  5. Evaluation of apical extrusion of debris and irrigant using two new reciprocating and one continuous rotation single file systems.

    Directory of Open Access Journals (Sweden)

    Gurudutt Nayak

    2014-06-01

    Full Text Available Apical extrusion of debris and irrigants during cleaning and shaping of the root canal is one of the main causes of periapical inflammation and postoperative flare-ups. The purpose of this study was to quantitatively measure the amount of debris and irrigants extruded apically in single rooted canals using two reciprocating and one rotary single file nickel-titanium instrumentation systems.Sixty human mandibular premolars, randomly assigned to three groups (n = 20 were instrumented using two reciprocating (Reciproc and Wave One and one rotary (One Shape single-file nickel-titanium systems. Bidistilled water was used as irrigant with traditional needle irrigation delivery system. Eppendorf tubes were used as test apparatus for collection of debris and irrigant. The volume of extruded irrigant was collected and quantified via 0.1-mL increment measure supplied on the disposable plastic insulin syringe. The liquid inside the tubes was dried and the mean weight of debris was assessed using an electronic microbalance. The data were statistically analysed using Kruskal-Wallis nonparametric test and Mann Whitney U test with Bonferroni adjustment. P-values less than 0.05 were considered significant.The Reciproc file system produced significantly more debris compared with OneShape file system (P0.05. Extrusion of irrigant was statistically insignificant irrespective of the instrument or instrumentation technique used (P >0.05.Although all systems caused apical extrusion of debris and irrigant, continuous rotary instrumentation was associated with less extrusion as compared with the use of reciprocating file systems.

  6. Evaluation of T2-weighted versus short-tau inversion recovery sagittal sequences in the identification and localization of canine intervertebral disc extrusion with low-field magnetic resonance imaging.

    Science.gov (United States)

    Housley, Daniel; Caine, Abby; Cherubini, Giunio; Taeymans, Olivier

    2017-07-01

    Sagittal T2-weighted sequences (T2-SAG) are the foundation of spinal protocols when screening for the presence of intervertebral disc extrusion. We often utilize sagittal short-tau inversion recovery sequences (STIR-SAG) as an adjunctive screening series, and experience suggests that this combined approach provides superior detection rates. We hypothesized that STIR-SAG would provide higher sensitivity than T2-SAG in the identification and localization of intervertebral disc extrusion. We further hypothesized that the parallel evaluation of paired T2-SAG and STIR-SAG series would provide a higher sensitivity than could be achieved with either independent sagittal series when viewed in isolation. This retrospective diagnostic accuracy study blindly reviewed T2-SAG and STIR-SAG sequences from dogs (n = 110) with surgically confirmed intervertebral disc extrusion. A consensus between two radiologists found no significant difference in sensitivity between T2-SAG and STIR-SAG during the identification of intervertebral disc extrusion (T2-SAG: 92.7%, STIR-SAG: 94.5%, P = 0.752). Nevertheless, STIR-SAG accurately identified intervertebral disc extrusion in 66.7% of cases where the evaluation of T2-SAG in isolation had provided a false negative diagnosis. Additionally, one radiologist found that the parallel evaluation of paired T2-SAG and STIR-SAG series provided a significantly higher sensitivity than T2-SAG in isolation, during the identification of intervertebral disc extrusion (T2-SAG: 78.2%, paired T2-SAG, and STIR-SAG: 90.9%, P = 0.017). A similar nonsignificant trend was observed when the consensus of both radiologists was taken into consideration (T2-SAG: 92.7%, paired T2-SAG, and STIR-SAG = 97.3%, P = 0.392). We therefore conclude that STIR-SAG is capable of identifying intervertebral disc extrusion that is inconspicuous in T2-SAG, and that STIR-SAG should be considered a useful adjunctive sequence during preliminary sagittal screening for intervertebral disc

  7. Study of proton radioactivities

    Energy Technology Data Exchange (ETDEWEB)

    Davids, C.N.; Back, B.B.; Henderson, D.J. [and others

    1995-08-01

    About a dozen nuclei are currently known to accomplish their radioactive decay by emitting a proton. These nuclei are situated far from the valley of stability, and mark the very limits of existence for proton-rich nuclei: the proton drip line. A new 39-ms proton radioactivity was observed following the bombardment of a {sup 96}Ru target by a beam of 420-MeV {sup 78}Kr. Using the double-sided Si strip detector implantation system at the FMA, a proton group having an energy of 1.05 MeV was observed, correlated with the implantation of ions having mass 167. The subsequent daughter decay was identified as {sup 166}Os by its characteristic alpha decay, and therefore the proton emitter is assigned to the {sup 167}Ir nucleus. Further analysis showed that a second weak proton group from the same nucleus is present, indicating an isomeric state. Two other proton emitters were discovered recently at the FMA: {sup 171}Au and {sup 185}Bi, which is the heaviest known proton radioactivity. The measured decay energies and half-lives will enable the angular momentum of the emitted protons to be determined, thus providing spectroscopic information on nuclei that are beyond the proton drip line. In addition, the decay energy yields the mass of the nucleus, providing a sensitive test of mass models in this extremely proton-rich region of the chart of the nuclides. Additional searches for proton emitters will be conducted in the future, in order to extend our knowledge of the location of the proton drip line.

  8. Hot-Melt Extrusion: from Theory to Application in Pharmaceutical Formulation.

    Science.gov (United States)

    Patil, Hemlata; Tiwari, Roshan V; Repka, Michael A

    2016-02-01

    Hot-melt extrusion (HME) is a promising technology for the production of new chemical entities in the developmental pipeline and for improving products already on the market. In drug discovery and development, industry estimates that more than 50% of active pharmaceutical ingredients currently used belong to the biopharmaceutical classification system II (BCS class II), which are characterized as poorly water-soluble compounds and result in formulations with low bioavailability. Therefore, there is a critical need for the pharmaceutical industry to develop formulations that will enhance the solubility and ultimately the bioavailability of these compounds. HME technology also offers an opportunity to earn intellectual property, which is evident from an increasing number of patents and publications that have included it as a novel pharmaceutical formulation technology over the past decades. This review had a threefold objective. First, it sought to provide an overview of HME principles and present detailed engineered extrusion equipment designs. Second, it included a number of published reports on the application of HME techniques that covered the fields of solid dispersions, microencapsulation, taste masking, targeted drug delivery systems, sustained release, films, nanotechnology, floating drug delivery systems, implants, and continuous manufacturing using the wet granulation process. Lastly, this review discussed the importance of using the quality by design approach in drug development, evaluated the process analytical technology used in pharmaceutical HME monitoring and control, discussed techniques used in HME, and emphasized the potential for monitoring and controlling hot-melt technology.

  9. The shape of extrusions and intrusions and initiation of stage I fatigue cracks

    Czech Academy of Sciences Publication Activity Database

    Polák, Jaroslav; Man, Jiří; Vystavěl, T.; Petrenec, Martin

    2009-01-01

    Roč. 517, 1-2 (2009), s. 204-211 ISSN 0921-5093 R&D Projects: GA ČR GA106/06/1096; GA ČR GA101/07/1500 Institutional research plan: CEZ:AV0Z20410507 Keywords : Extrusion * Intrusion * Fatigue crack initiation * Stainless steel Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.901, year: 2009

  10. Parametric Model for Astrophysical Proton-Proton Interactions and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Niklas [KTH Royal Institute of Technology, Stockholm (Sweden)

    2007-01-01

    Observations of gamma-rays have been made from celestial sources such as active galaxies, gamma-ray bursts and supernova remnants as well as the Galactic ridge. The study of gamma rays can provide information about production mechanisms and cosmic-ray acceleration. In the high-energy regime, one of the dominant mechanisms for gamma-ray production is the decay of neutral pions produced in interactions of ultra-relativistic cosmic-ray nuclei and interstellar matter. Presented here is a parametric model for calculations of inclusive cross sections and transverse momentum distributions for secondary particles--gamma rays, e±, ve, $\\bar{v}$e, vμ and $\\bar{μ}$e--produced in proton-proton interactions. This parametric model is derived on the proton-proton interaction model proposed by Kamae et al.; it includes the diffraction dissociation process, Feynman-scaling violation and the logarithmically rising inelastic proton-proton cross section. To improve fidelity to experimental data for lower energies, two baryon resonance excitation processes were added; one representing the Δ(1232) and the other multiple resonances with masses around 1600 MeV/c2. The model predicts the power-law spectral index for all secondary particle to be about 0.05 lower in absolute value than that of the incident proton and their inclusive cross sections to be larger than those predicted by previous models based on the Feynman-scaling hypothesis. The applications of the presented model in astrophysics are plentiful. It has been implemented into the Galprop code to calculate the contribution due to pion decays in the Galactic plane. The model has also been used to estimate the cosmic-ray flux in the Large Magellanic Cloud based on HI, CO and gamma-ray observations. The transverse momentum distributions enable calculations when the proton distribution is anisotropic. It is shown that the gamma-ray spectrum and flux due to a

  11. Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device.

    Science.gov (United States)

    Hamid, Q; Snyder, J; Wang, C; Timmer, M; Hammer, J; Guceri, S; Sun, W

    2011-09-01

    In the field of biofabrication, tissue engineering and regenerative medicine, there are many methodologies to fabricate a building block (scaffold) which is unique to the target tissue or organ that facilitates cell growth, attachment, proliferation and/or differentiation. Currently, there are many techniques that fabricate three-dimensional scaffolds; however, there are advantages, limitations and specific tissue focuses of each fabrication technique. The focus of this initiative is to utilize an existing technique and expand the library of biomaterials which can be utilized to fabricate three-dimensional scaffolds rather than focusing on a new fabrication technique. An expanded library of biomaterials will enable the precision extrusion deposition (PED) device to construct three-dimensional scaffolds with enhanced biological, chemical and mechanical cues that will benefit tissue generation. Computer-aided motion and extrusion drive the PED to precisely fabricate micro-scaled scaffolds with biologically inspired, porosity, interconnectivity and internal and external architectures. The high printing resolution, precision and controllability of the PED allow for closer mimicry of tissues and organs. The PED expands its library of biopolymers by introducing an assisting cooling (AC) device which increases the working extrusion temperature from 120 to 250 °C. This paper investigates the PED with the integrated AC's capabilities to fabricate three-dimensional scaffolds that support cell growth, attachment and proliferation. Studies carried out in this paper utilized a biopolymer whose melting point is established to be 200 °C. This polymer was selected to illustrate the newly developed device's ability to fabricate three-dimensional scaffolds from a new library of biopolymers. Three-dimensional scaffolds fabricated with the integrated AC device should illustrate structural integrity and ability to support cell attachment and proliferation.

  12. Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device

    International Nuclear Information System (INIS)

    Hamid, Q; Snyder, J; Wang, C; Guceri, S; Sun, W; Timmer, M; Hammer, J

    2011-01-01

    In the field of biofabrication, tissue engineering and regenerative medicine, there are many methodologies to fabricate a building block (scaffold) which is unique to the target tissue or organ that facilitates cell growth, attachment, proliferation and/or differentiation. Currently, there are many techniques that fabricate three-dimensional scaffolds; however, there are advantages, limitations and specific tissue focuses of each fabrication technique. The focus of this initiative is to utilize an existing technique and expand the library of biomaterials which can be utilized to fabricate three-dimensional scaffolds rather than focusing on a new fabrication technique. An expanded library of biomaterials will enable the precision extrusion deposition (PED) device to construct three-dimensional scaffolds with enhanced biological, chemical and mechanical cues that will benefit tissue generation. Computer-aided motion and extrusion drive the PED to precisely fabricate micro-scaled scaffolds with biologically inspired, porosity, interconnectivity and internal and external architectures. The high printing resolution, precision and controllability of the PED allow for closer mimicry of tissues and organs. The PED expands its library of biopolymers by introducing an assisting cooling (AC) device which increases the working extrusion temperature from 120 to 250 deg. C. This paper investigates the PED with the integrated AC's capabilities to fabricate three-dimensional scaffolds that support cell growth, attachment and proliferation. Studies carried out in this paper utilized a biopolymer whose melting point is established to be 200 deg. C. This polymer was selected to illustrate the newly developed device's ability to fabricate three-dimensional scaffolds from a new library of biopolymers. Three-dimensional scaffolds fabricated with the integrated AC device should illustrate structural integrity and ability to support cell attachment and proliferation.

  13. Search for Sphalerons in Proton-Proton Collisions

    CERN Document Server

    Ellis, John

    2016-04-14

    In a recent paper, Tye and Wong (TW) have argued that sphaleron-induced transitions in high-energy proton-proton collisions should be enhanced compared to previous calculations, based on a construction of a Bloch wave function in the periodic sphaleron potential and the corresponding pass band structure. Here we convolute the calculations of TW with parton distribution functions and simulations of final states to explore the signatures of sphaleron transitions at the LHC and possible future colliders. We calculate the increase of sphaleron transition rates in proton-proton collisions at centre-of-mass energies of 13/14/33/100 TeV for different sphaleron barrier heights, while recognising that the rates have large overall uncertainties. We use a simulation to show that LHC searches for microscopic black holes should have good efficiency for detecting sphaleron-induced final states, and discuss their experimental signatures and observability in Run 2 of the LHC and beyond. We recast the early ATLAS Run-2 search...

  14. Modelling extrudate expansion in a twin-screw food extrusion cooking process through dimensional analysis methodology

    DEFF Research Database (Denmark)

    Cheng, Hongyuan; Friis, Alan

    2010-01-01

    A new phenomenological model is proposed to correlate extrudate expansion and extruder operation parameters in a twin-screw food extrusion cooking process. Buckingham's pi dimensional analysis method is applied to establish the model. Three dimensionless groups, i.e. pump efficiency, water content...

  15. From 2D to 3D: Proton Radiography and Proton CT in proton therapy: A simulation study

    NARCIS (Netherlands)

    Takatsu, J.; van der Graaf, E.R.; van Goethem, M.-J.; Brandenburg, S.; Biegun, Aleksandra

    (1) Purpose In order to reduce the uncertainty in translation of the X-ray Computed Tomography (CT) image into a map of proton stopping powers (3-4% and even up to 10% in regions containing bones [1-8]), proton radiography is being studied as an alternative imaging technique in proton therapy. We

  16. Vibrational spectroscopy on protons and deuterons in proton conducting perovskites

    DEFF Research Database (Denmark)

    Glerup, M.; Poulsen, F.W.; Berg, R.W.

    2002-01-01

    A short review of IR-spectroscopy on protons in perovskite structure oxides is given. The nature of possible proton sites, libration and combination tones and degree of hydrogen bonding is emphasised. Three new spectroscopic experiments and/or interpretations are presented. An IR-microscopy exper......A short review of IR-spectroscopy on protons in perovskite structure oxides is given. The nature of possible proton sites, libration and combination tones and degree of hydrogen bonding is emphasised. Three new spectroscopic experiments and/or interpretations are presented. An IR...

  17. Applying orthodontic tooth extrusion in a patient treated with bisphosphonate and irradiation: a case report.

    Science.gov (United States)

    Morita, Hiromitsu; Imai, Yuko; Yoneda, Masahiro; Hirofuji, Takao

    2017-01-01

    Bisphosphonates and irradiation are useful medical treatments, but can often cause oral complications such as medication-related oral necrosis of the jaw (MRONJ) and osteoradionecrosis (ORN) during oral surgery, including tooth extraction. Therefore, we should take all risks into consideration carefully before choosing dental treatment for patients with a medical history of such therapies. A 55-year-old woman who underwent cord blood transplantation to treat extranodal natural killer T (NK/T) cell lymphoma (nasal type IVB) had a medical history of bisphosphonate and irradiation treatments. We treated her residual tooth root by applying orthodontic extrusion to avoid extraction and successfully restored the tooth. Application of an orthodontic tooth extrusion technique for conservative treatment of a residual tooth is a useful means of avoiding MRONJ or ORN in patients who have a medical history of bisphosphonate and irradiation treatments. © 2016 Special Care Dentistry Association and Wiley Periodicals, Inc.

  18. Stereochemistry-Dependent Proton Conduction in Proton Exchange Membrane Fuel Cells.

    Science.gov (United States)

    Thimmappa, Ravikumar; Devendrachari, Mruthyunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Tiwari, Omshanker; Gaikwad, Pramod; Paswan, Bhuneshwar; Thotiyl, Musthafa Ottakam

    2016-01-12

    Graphene oxide (GO) is impermeable to H2 and O2 fuels while permitting H(+) shuttling, making it a potential candidate for proton exchange membrane fuel cells (PEMFC), albeit with a large anisotropy in their proton transport having a dominant in plane (σIP) contribution over the through plane (σTP). If GO-based membranes are ever to succeed in PEMFC, it inevitably should have a dominant through-plane proton shuttling capability (σTP), as it is the direction in which proton gets transported in a real fuel-cell configuration. Here we show that anisotropy in proton conduction in GO-based fuel cell membranes can be brought down by selectively tuning the geometric arrangement of functional groups around the dopant molecules. The results show that cis isomer causes a selective amplification of through-plane proton transport, σTP, pointing to a very strong geometry angle in ionic conduction. Intercalation of cis isomer causes significant expansion of GO (001) planes involved in σTP transport due to their mutual H-bonding interaction and efficient bridging of individual GO planes, bringing down the activation energy required for σTP, suggesting the dominance of a Grotthuss-type mechanism. This isomer-governed amplification of through-plane proton shuttling resulted in the overall boosting of fuel-cell performance, and it underlines that geometrical factors should be given prime consideration while selecting dopant molecules for bringing down the anisotropy in proton conduction and enhancing the fuel-cell performance in GO-based PEMFC.

  19. The comparative study of pressing and extrusion like processes of construction ceramic products in the Metropolitan Area of Cucuta; Estudio comparativo de las tecnicas de extrusion y prensado como procesos de conformado de productos ceramicos de construccion en el Area Metropolitana de Cucuta

    Energy Technology Data Exchange (ETDEWEB)

    Gelves, J. F.; Monroy, R.; Sanchez, J.; Ramirez, R. P.

    2013-02-01

    The present work studies the principal variables of control in the manufacturing process of construction pieces of the Metropolitan Area of San Jose de Cucuta by extrusion and pressing techniques for its forming. The investigation was taken out using clayey samples of the two principal geological formations of the region where the raw material is taken for processing at an industrial level. The clayey samples milling was made by dry means as well as by moisture means and its particle size was measured. Subsequently the forming process was taken over by using an hydraulic press and extruder with vacuum system , both equipment s at laboratory scale, the pieces shaped were dry and firing between 980 degree centigrade and 1180 degree centigrade at the end of the process the tests were made to determine water absorption, contraction and mass loss at the pieces firing. The study results left to see that the extrusion technique allowed a faster vitrification for the region's clay in comparing with the pressing technique, the contractions of drying and firing are less marked on the pressing techniques with standard deviations much lower than in extrusion. (Author) 13 refs.

  20. Inline UV/Vis spectroscopy as PAT tool for hot-melt extrusion.

    Science.gov (United States)

    Wesholowski, Jens; Prill, Sebastian; Berghaus, Andreas; Thommes, Markus

    2018-01-11

    Hot-melt extrusion on co-rotating twin screw extruders is a focused technology for the production of pharmaceuticals in the context of Quality by Design. Since it is a continuous process, the potential for minimizing product quality fluctuation is enhanced. A typical application of hot-melt extrusion is the production of solid dispersions, where an active pharmaceutical ingredient (API) is distributed within a polymer matrix carrier. For this dosage form, the product quality is related amongst others to the drug content. This can be monitored on- or inline as critical quality attribute by a process analytical technology (PAT) in order to meet the specific requirements of Quality by Design. In this study, an inline UV/Vis spectrometer from ColVisTec was implemented in an early development twin screw extruder and the performance tested in accordance to the ICH Q2 guideline. Therefore, two API (carbamazepine and theophylline) and one polymer matrix (copovidone) were considered with the main focus on the quantification of the drug load. The obtained results revealed the suitability of the implemented PAT tool to quantify the drug load in a typical range for pharmaceutical applications. The effort for data evaluation was minimal due to univariate data analysis, and in combination with a measurement frequency of 1 Hz, the system is sufficient for real-time data acquisition.

  1. Nafion®/ODF-silica composite membranes for medium temperature proton exchange membrane fuel cells

    KAUST Repository

    Treekamol, Yaowapa

    2014-01-01

    A series of composite membranes were prepared by dispersing fluorinated polyoxadiazole oligomer (ODF)-functionalized silica nanoparticles in a Nafion matrix. Both melt-extrusion and solvent casting processes were explored. Ion exchange capacity, conductivity, water uptake and dimensional stability, thermal stability and morphology were characterized. The inclusion of functionalized nanoparticles proved advantageous, mainly due to a physical crosslinking effect and better water retention, with functionalized nanoparticles performing better than the pristine silica particles. For the same filler loading, better nanoparticle dispersion was achieved for solvent-cast membranes, resulting in higher proton conductivity. Filler agglomeration, however,was more severe for solvent-castmembranes at loadings beyond 5wt.%. The composite membranes showed excellent thermal stability, allowing for operation in medium temperature PEM fuel cells. Fuel cell performance of the compositemembranesdecreaseswithdecreasing relativehumidity, but goodperformance values are still obtained at 34% RHand 90 °C,with the best results obtained for solvent castmembranes loaded with 10 wt.% ODF-functionalized silica. Hydrogen crossover of the composite membranes is higher than that forpureNafion membranes,possiblydue toporosityresulting fromsuboptimalparticle- matrixcompatibility. © 2013 Crown Copyright and Elsevier BV. All rights reserved.

  2. Quantitative evaluation of apical extrusion of debris and irrigants using four rotary instrumentation systems: an in vitro study.

    Science.gov (United States)

    Nagaveni, S Aspalli; Balakoti, K Reddy; Smita, Karan; Ratnakar, P; Satish, S V; Aravind, T

    2013-11-01

    The apical extrusion of infected debris may have the potential to disrupt the balance between microbial aggression and host defense, resulting in incidents of acute inflammation. During preparation, irrigants and debris, such as bacteria, dentin filings and necrotic tissue may be extruded into the periradicular region leading to periapical inflammation and postoperative flare ups. Using an instrumentation technique that minimizes apical extrusion would be beneficial to both the practitioner and patient. The purpose of the study was to evaluate the weight of debris and volume of irrigant extruded apically from extracted teeth in vitro after endodontic instrumentation using four different rotary root canal instrumentation systems. Four groups of each 20 extracted mandibular premolars were instrumented using one of the four systems: ProTaper Universal (Dentsply Maillefer, Ballaigues, Switzerland)), Hero-shaper (MicroMega, Besancon, France), RaCe (FKG Dentaire, La-Chaux-de-Fonds, Switzerland) and K3 (SybronEndo, West Collins, CA). Debris and irrigant extruded from the apical foramen during instrumentation were collected in preweighed test tubes. Volume of irrigant extruded was noted. The containers were stored in incubator at 70° for two days to evaporate the moisture. Weight of dry debris was noted. Data was analyzed using Kruskall-Wallis and Mann-Whitney U test at a significance of 0.001. The results indicated that all of the instrumentation systems tested caused measurable apical extrusion of debris and irrigants. Higher extrusion was observed with Protaper system which was statistically significant with Hero-Shaper, RaCe and K3 systems. There were no statistical differences between Hero-shaper, K3 and RaCe systems (p < 0.05). All instrumentation techniques apically extruded debris and irrigant. However, Hero-shaper, K3 and RaCe systems produced less extruded debris and irrigant than the Protaper system.

  3. Review of inelastic proton-proton reactions

    CERN Document Server

    Morrison, Douglas Robert Ogston

    1973-01-01

    The most important new results on inelastic proton-proton scattering obtained with the new machines, I.S.R. and N.A.L., are: (1) The inelastic cross-section increases monotonically with energy from threshold to 1500 GeV/c. Above 6 GeV/c the energy variation has a s /sup +0.04/ behaviour. (2) Scaling is observed at I.S.R. energies in pion production. Confirmation is obtained of the hypothesis of limiting fragmentation. (3) The results are in general, consistent with the two-component model-one class of events being produced by diffraction dissociation and the other by a short-range-order process (e.g. the multiperipheral model). (4) There are indications that the protons have a granular structure; this from observation of secondaries of large transverse momenta. (33 refs).

  4. Jute fiber reinforced polypropylene produced by continuous extrusion compounding. Part 1. Processing and ageing properties

    NARCIS (Netherlands)

    Oever, van den M.J.A.; Snijder, M.H.B.

    2008-01-01

    This article addresses the processing and ageing properties of jute fiber reinforced polypropylene (PP) composites. The composite has been manufactured by a continuous extrusion process and results in free flowing composite granules, comprising up to 50 weight percent (wt %) jute fiber in PP. These

  5. Electron Cloud Simulations of a Proton Storage Ring Using Cold Proton Bunches

    International Nuclear Information System (INIS)

    Sato, Y.; Holmes, Jeffrey A.; Lee, S.Y.; Macek, R.

    2008-01-01

    Using the ORBIT code we study the sensitivity of electron cloud properties with respect to different proton beam profiles, the secondary electron yield (SEY) parameter, and the proton loss rate. Our model uses a cold proton bunch to generate primary electrons and electromagnetic field for electron cloud dynamics. We study the dependence of the prompt and swept electron signals vs the bunch charge and the recovery of electron clouds after sweeping on the beam loss rate and the SEY. The simulation results are compared with the experimental data measured at the proton storage ring at the Los Alamos National Laboratory. Our simulations indicate that the fractional proton loss rate in the field-free straight section may be an exponential function of proton beam charge and may also be lower than the averaged fractional proton loss rate over the whole ring.

  6. Current-current interaction picture for proton-proton scattering

    International Nuclear Information System (INIS)

    Clarke, D.J.; Lo, S.Y.

    1979-01-01

    The authors propose that color current - color current interaction is reponsible for small angle elastic proton proton scattering at asymptotic energy. Excellent fits are obtained for all data above 12 GeV/c which covers twelve orders of magnitude

  7. Development and experimental assessment of a numerical modelling code to aid the design of profile extrusion cooling tools

    Science.gov (United States)

    Carneiro, O. S.; Rajkumar, A.; Fernandes, C.; Ferrás, L. L.; Habla, F.; Nóbrega, J. M.

    2017-10-01

    On the extrusion of thermoplastic profiles, upon the forming stage that takes place in the extrusion die, the profile must be cooled in a metallic calibrator. This stage must be done at a high rate, to assure increased productivity, but avoiding the development of high temperature gradients, in order to minimize the level of induced thermal residual stresses. In this work, we present a new coupled numerical solver, developed in the framework of the OpenFOAM® computational library, that computes the temperature distribution in both domains simultaneously (metallic calibrator and plastic profile), whose implementation aimed the minimization of the computational time. The new solver was experimentally assessed with an industrial case study.

  8. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Yuki, E-mail: ynagao@jaist.ac.jp; Kubo, Takahiro

    2014-12-30

    Graphical abstract: - Highlights: • Proton transport of fully protonated poly(aspartic acid) thin film was investigated. • The thin film structure differed greatly from the partially protonated one. • Proton transport occurs on the surface, not inside of the thin film. • This result contributes to biological transport systems such as bacteriorhodopsin. - Abstract: Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120–670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system.

  9. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    International Nuclear Information System (INIS)

    Nagao, Yuki; Kubo, Takahiro

    2014-01-01

    Graphical abstract: - Highlights: • Proton transport of fully protonated poly(aspartic acid) thin film was investigated. • The thin film structure differed greatly from the partially protonated one. • Proton transport occurs on the surface, not inside of the thin film. • This result contributes to biological transport systems such as bacteriorhodopsin. - Abstract: Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120–670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system

  10. Magma extrusion during the Ubinas 2013-2014 eruptive crisis based on satellite thermal imaging (MIROVA) and ground-based monitoring

    Science.gov (United States)

    Coppola, Diego; Macedo, Orlando; Ramos, Domingo; Finizola, Anthony; Delle Donne, Dario; del Carpio, José; White, Randall; McCausland, Wendy; Centeno, Riky; Rivera, Marco; Apaza, Fredy; Ccallata, Beto; Chilo, Wilmer; Cigolini, Corrado; Laiolo, Marco; Lazarte, Ivonne; Machaca, Roger; Masias, Pablo; Ortega, Mayra; Puma, Nino; Taipe, Edú

    2015-09-01

    After 3 years of mild gases emissions, the Ubinas volcano entered in a new eruptive phase on September 2nd, 2013. The MIROVA system (a space-based volcanic hot-spot detection system), allowed us to detect in near real time the thermal emissions associated with the eruption and provided early evidence of magma extrusion within the deep summit crater. By combining IR data with plume height, sulfur emissions, hot spring temperatures and seismic activity, we interpret the thermal output detected over Ubinas in terms of extrusion rates associated to the eruption. We suggest that the 2013-2014 eruptive crisis can be subdivided into three main phases: (i) shallow magma intrusion inside the edifice, (ii) extrusion and growing of a lava plug at the bottom of the summit crater coupled with increasing explosive activity and finally, (iii) disruption of the lava plug and gradual decline of the explosive activity. The occurrence of the 8.2 Mw Iquique (Chile) earthquake (365 km away from Ubinas) on April 1st, 2014, may have perturbed most of the analyzed parameters, suggesting a prompt interaction with the ongoing volcanic activity. In particular, the analysis of thermal and seismic datasets shows that the earthquake may have promoted the most intense thermal and explosive phase that culminated in a major explosion on April 19th, 2014. These results reveal the efficiency of space-based thermal observations in detecting the extrusion of hot magma within deep volcanic craters and in tracking its evolution. We emphasize that, in combination with other geophysical and geochemical datasets, MIROVA is an essential tool for monitoring remote volcanoes with rather difficult accessibility, like those of the Andes that reach remarkably high altitudes.

  11. The comparative study of pressing and extrusion like processes of construction ceramic products in the Metropolitan Area of Cucuta

    International Nuclear Information System (INIS)

    Gelves, J. F.; Monroy, R.; Sanchez, J.; Ramirez, R. P.

    2013-01-01

    The present work studies the principal variables of control in the manufacturing process of construction pieces of the Metropolitan Area of San Jose de Cucuta by extrusion and pressing techniques for its forming. The investigation was taken out using clayey samples of the two principal geological formations of the region where the raw material is taken for processing at an industrial level. The clayey samples milling was made by dry means as well as by moisture means and its particle size was measured. Subsequently the forming process was taken over by using an hydraulic press and extruder with vacuum system , both equipment s at laboratory scale, the pieces shaped were dry and firing between 980 degree centigrade and 1180 degree centigrade at the end of the process the tests were made to determine water absorption, contraction and mass loss at the pieces firing. The study results left to see that the extrusion technique allowed a faster vitrification for the region's clay in comparing with the pressing technique, the contractions of drying and firing are less marked on the pressing techniques with standard deviations much lower than in extrusion. (Author) 13 refs.

  12. Using Flory-Huggins phase diagrams as a pre-formulation tool for the production of amorphous solid dispersions: a comparison between hot-melt extrusion and spray drying.

    Science.gov (United States)

    Tian, Yiwei; Caron, Vincent; Jones, David S; Healy, Anne-Marie; Andrews, Gavin P

    2014-02-01

    Amorphous drug forms provide a useful method of enhancing the dissolution performance of poorly water-soluble drugs; however, they are inherently unstable. In this article, we have used Flory-Huggins theory to predict drug solubility and miscibility in polymer candidates, and used this information to compare spray drying and melt extrusion as processes to manufacture solid dispersions. Solid dispersions were prepared using two different techniques (hot-melt extrusion and spray drying), and characterised using a combination of thermal (thermogravimetric analysis and differential scanning calorimetry), spectroscopic (Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction methods. Spray drying permitted generation of amorphous solid dispersions across a wider drug concentration than melt extrusion. Melt extrusion provided sufficient energy for more intimate mixing to be achieved between drug and polymer, which may improve physical stability. It was also confirmed that stronger drug-polymer interactions might be generated through melt extrusion. Remixing and dissolution of recrystallised felodipine into the polymeric matrices did occur during the modulated differential scanning calorimetry analysis, but the complementary information provided from FTIR confirms that all freshly prepared spray-dried samples were amorphous with the existence of amorphous drug domains within high drug-loaded samples. Using temperature-composition phase diagrams to probe the relevance of temperature and drug composition in specific polymer candidates facilitates polymer screening for the purpose of formulating solid dispersions. © 2013 Royal Pharmaceutical Society.

  13. Proton-proton bremsstrahlung towards the elastic limit

    Science.gov (United States)

    Mahjour-Shafiei, M.; Amir-Ahmadi, H. R.; Bacelar, J. C. S.; Castelijns, R.; Ermisch, K.; van Garderen, E.; Gašparić, I.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Kiš, M.; Löhner, H.

    2005-05-01

    In oder to study proton-proton bremsstrahlung moving towards the elastic limit, a detection system, consisting of Plastic-ball and SALAD, was set up and an experiment at 190 MeV incident beam energy was performed. Here, the experimental setup and the data analysis procedure along with some results obtained in the measurement are discussed.

  14. Proton-proton bremsstrahlung towards the elastic limit

    International Nuclear Information System (INIS)

    Mahjour-Shafiei, M.; Amir-Ahmadi, H.R.; Bacelar, J.C.S.; Castelijns, R.; Ermisch, K.; Garderen, E. van; Harakeh, M.N.; Kalantar-Nayestanaki, N.; Kis, M.; Loehner, H.; Gasparic, I.

    2005-01-01

    In oder to study proton-proton bremsstrahlung moving towards the elastic limit, a detection system, consisting of Plastic-ball and SALAD, was set up and an experiment at 190 MeV incident beam energy was performed. Here, the experimental setup and the data analysis procedure along with some results obtained in the measurement are discussed

  15. Proton-proton and deuteron-deuteron correlations in interactions of relativistic helium nuclei with protons

    International Nuclear Information System (INIS)

    Galazka-Friedman, J.; Sobczak, T.; Stepaniak, J.; Zielinski, I.P.; Bano, M.; Hlavacova, J.; Martinska, G.; Patocka, J.; Seman, M.; Sandor, L.; Urban, J.

    1993-01-01

    The reactions 4 Hep→pp+X, 3 Hep→pp+X and 4 Hep→ddp have been investigated and the correlation function has been measured for protons and deuterons with small relative momenta. Strong positive correlation has been observed for protons related mainly to the final state interactions in 1 S 0 state. The root mean square radius of the proton source calculated from the correlation function has been found to be equal to (1.7±0.3) fm and (2.1±0.3) fm for 4 He and 3 He respectively. It agrees with the known radii of these nuclei. (orig.)

  16. Microfluidics: A New Layer of Control for Extrusion-Based 3D Printing

    Directory of Open Access Journals (Sweden)

    Ludovic Serex

    2018-02-01

    Full Text Available Advances in 3D printing have enabled the use of this technology in a growing number of fields, and have started to spark the interest of biologists. Having the particularity of being cell friendly and allowing multimaterial deposition, extrusion-based 3D printing has been shown to be the method of choice for bioprinting. However as biologically relevant constructs often need to be of high resolution and high complexity, new methods are needed, to provide an improved level of control on the deposited biomaterials. In this paper, we demonstrate how microfluidics can be used to add functions to extrusion 3D printers, which widens their field of application. Micromixers can be added to print heads to perform the last-second mixing of multiple components just before resin dispensing, which can be used for the deposition of new polymeric or composite materials, as well as for bioprinting new materials with tailored properties. The integration of micro-concentrators in the print heads allows a significant increase in cell concentration in bioprinting. The addition of rapid microfluidic switching as well as resolution increase through flow focusing are also demonstrated. Those elementary implementations of microfluidic functions for 3D printing pave the way for more complex applications enabling new prospects in 3D printing.

  17. Development of Nutritious Snack from rice industry waste using twin screw extrusion

    Directory of Open Access Journals (Sweden)

    Sharma Renu

    2016-01-01

    Full Text Available Deoiled rice bran, a byproduct of rice milling industry was transformed into highly nutritious snack by the application of twin screw extrusion process. Response Surface Methodology (RSM with four- factor- five level central composite rotatable design (CCRD was employed to investigate the effects of extrusion conditions including moisture content of different raw flours, feed composition, barrel temperature and screw speed of extruder on properties of extrudates was studied. Second order quadratic regression model fitted adequately in the variation. The significance was established at P ≤ 0.05. The regression models can be used to interpret the effect of feed composition, moisture content, screw speed and barrel temperature on the properties of the final product. It was shown that higher rice bran in feed composition showed in minimum water absorption index and maximum water solubility index. Numerical optimization technique resulted in 123.83°C of barrel temperature, 294.68 rpm of screw speed, 13.94 % of feed moisture and 17.73 % of deoiled rice bran. The responses predicted for these optimum process conditions resulted water absorption index, 5.91468 g/g and water solubility index of 18.5553 % for the development of value added product with health benefits.

  18. Assessment of extrusion-sonication process on flame retardant polypropylene by rheological characterization

    Directory of Open Access Journals (Sweden)

    Guadalupe Sanchez-Olivares

    2016-05-01

    Full Text Available In this work, the rheological behavior of flame retardant polypropylene composites produced by two methods: 1 twin-screw extrusion and 2 ultrasound application combined with a static mixer die single-screw extrusion is analyzed in detail; results are related to the morphology of the composites. The flame retardant polymer composites are composed of a polypropylene matrix, an intumescent flame retardant system and functionalized clay. Scanning electron microscopy revealed that the combination of the static mixer die and on-line sonication reduced particle size and improved the dispersion and distribution of the intumescent additives in the polypropylene matrix at the micrometric level. From linear viscoelastic properties, the Han, Cole-Cole and van Gurp-Palmen diagrams characterized the improved particle dispersion of the flame retardant additives. Two well-defined rheological behaviors were observed in these diagrams. These behaviors are independent on clay presence and concentration. In fact, the ultrasound device generates a 3D highly interconnected structure similar to a co-continuous pattern observed in polymer blends as evidenced by rheological measurements. This improvement in the dispersion and distribution of the additives is attributed to the combined effect of the static mixer die and on-line sonication that allowed reducing the additive content while achieving the optimum classification UL94-V0.

  19. Moisture sorption characteristics of extrusion-cooked starch protective loose-fill cushioning foams

    Science.gov (United States)

    Combrzyński, Maciej; Mościcki, Leszek; Kwaśniewska, Anita; Oniszczuk, Tomasz; Wójtowicz, Agnieszka; Sołowiej, Bartosz; Gładyszewska, Bożena; Muszyński, Siemowit

    2017-10-01

    The aim of this work was to determine the water vapour sorption properties of thermoplastic starch filling foams processed by extrusion-cooking technique from various combinations of potato starch and two foaming agents: poly(vinyl) alcohol and Plastronfoam, in amount of 1, 2 and 3% each. Foams were processed with the single screw extruder-cooker at two different screw rotational speeds 100 and 130 r.p.m. The sorption isotherms of samples were determined and described using the Guggenheim-Anderson-de Boer model. Also, the kinetics of water vapour adsorption by foams, as a function of time, was measured and fitted with Peleg model. On the basis of the analysis the influence of the applied foaming agents, as well as the technological parameters of extrusion-cooking process in relation to water vapour adsorption by thermoplastic starch foams was demonstrated. There was no difference between the shapes of the isotherms for poly(vinyl) alcohol foams while for Plastronfoam foams a notable difference among foams extruded at 100 r.p.m. was observed in the regions of low and high humidity content. The analysis of the Guggenheim-Anderson-de Boer model parameters showed that the water molecules were less strongly bound with the foam surface when extruded at a lower screw speed.

  20. Preparation and evaluation of pellets using acacia and tragacanth by extrusion-spheronization.

    Science.gov (United States)

    Akhgari, A; Abbaspour, M R; Pirmoradi, S

    2011-01-01

    Extrusion-spheronization is an established technique for the production of pellets for pharmaceutical applications. In this study, the feasibility and influence of the incorporation of acacia, by itself and in combination with tragacanth, on the ability of formulations containing 2 model of drugs (ibuprofen and theophylline) to form spherical pellets by extrusion-spheronization was investigated. Formulations containing different ratios of acacia and tragacanth (8:2, 9:1, and 10:0) and different drug concentrations (20%, 40%, and 60%) were prepared, on the basis of a 3(2) full factorial design. Pellet properties, such as aspect ratio, sphericity (image analysis), crushing strength and elastic modulus (mechanical tests), mean dissolution time, and dissolution profiles were evaluated. The effect of particular factors on responses was determined by linear regression analysis. The sphericity, drug release rate, and the mechanical properties of the pellets were affected by the amounts and types of the drugs, and the ratio of the gums. Acacia, relative to tragacanth, produced pellets with higher mechanical strength and a faster drug release rate. Addition of small amounts of tragacanth to ibuprofen formulations resulted in matrix pellets with slow drug release. The results showed that acacia and tragacanth can be used successfully as 2 natural binders in the pellet formulations.

  1. Consumer acceptance and aroma characterization of navy bean (Phaseolus vulgaris) powders prepared by extrusion and conventional processing methods.

    Science.gov (United States)

    Szczygiel, Edward J; Harte, Janice B; Strasburg, Gale M; Cho, Sungeun

    2017-09-01

    Food products produced with bean ingredients are gaining in popularity among consumers due to the reported health benefits. Navy bean (Phaseolus vulgaris) powder produced through extrusion can be considered as a resource-efficient alternative to conventional methods, which often involve high water inputs. Therefore, navy bean powders produced with extrusion and conventional methods were assessed for the impact of processing on consumer liking in end-use products and odor-active compounds. Consumer acceptance results reveal significant differences in flavor, texture and overall acceptance scores of several products produced with navy bean powder. Crackers produced with extruded navy bean powder received higher hedonic flavor ratings than those produced with commercial navy bean powder (P < 0.001). GC-O data showed that the commercial powder produced through conventional processing had much greater contents of several aliphatic aldehydes commonly formed via lipid oxidation, such as hexanal, octanal and nonanal with descriptors of 'grassy', 'nutty', 'fruity', 'dusty', and 'cleaner', compared to the extruded powder. Extrusion processed navy bean powders were preferred over commercial powders for certain navy bean powder applications. This is best explained by substantial differences in aroma profiles of the two powders that may have been caused by lipid oxidation. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Antimicrobial Activity of Nisin and Natamycin Incorporated Sodium Caseinate Extrusion-Blown Films: A Comparative Study with Heat-Pressed/Solution Cast Films.

    Science.gov (United States)

    Colak, Basak Yilin; Peynichou, Pierre; Galland, Sophie; Oulahal, Nadia; Prochazka, Frédéric; Degraeve, Pascal

    2016-05-01

    Antimicrobial edible films based on sodium caseinate, glycerol, and 2 food preservatives (nisin or natamycin) were prepared by classical thermomechanical processes. Food preservatives were compounded (at 65 °C for 2.5 min) with sodium caseinate in a twin-screw extruder. Anti-Listeria activity assays revealed a partial inactivation of nisin following compounding. Thermoplastic pellets containing food preservatives were then used to manufacture films either by blown-film extrusion process or by heat-press. After 24 h of incubation on agar plates, the diameters of K. rhizophila growth inhibition zones around nisin-incorporated films prepared by solution casting (control), extrusion blowing or heat pressing at 80 °C for 7 min of nisin-containing pellets were 15.5 ± 0.9, 9.8 ± 0.2, and 8.6 ± 1.0 mm, respectively. Since heat-pressing for 7 min at 80 °C of nisin-incorporated pellets did not further inactivate nisin, this indicates that nisin inactivation during extrusion-blowing was limited. Moreover, the lower diameter of the K. rhizophila growth inhibition zone around films prepared with nisin-containing pellets compared to that observed around films directly prepared by solution casting confirms that nisin inactivation mainly occurred during the compounding step. Natamycin-containing thermoplastic films inhibited Aspergillus niger growth; however, by contrast with nisin-containing films, heat-pressed films had higher inhibition zone diameters than blown films, therefore suggesting a partial inactivation of natamycin during extrusion-blowing. © 2016 Institute of Food Technologists®

  3. Effects of extrusion cooking on the chemical composition and functional properties of dry bean powders

    Science.gov (United States)

    This study aimed to investigate the impacts of extrusion cooking on the chemical composition and functional properties of bean powders from four bean varieties. The raw bean powders were extruded under eight different conditions, and the extrudates were then dried and ground (particle size = 0.5 mm)...

  4. Esthetic rehabilitation of complicated crown fractures utilizing rapid orthodontic extrusion and two different restoration modalities.

    Science.gov (United States)

    Milardovic Ortolan, Sladana; Strujic, Mihovil; Aurer, Andrej; Viskic, Josko; Bergman, Lana; Mehulic, Ketij

    2012-01-01

    This case report describes the management of a crown-root fractured maxillary right central incisor and a crown fractured maxillary left central incisor using two different techniques. A complex procedure was designed to manage this case including orthodontic extrusion to move the fracture line above the alveolar bone and surgical recontouring of the altered gingival margin. Finally, the right incisor was restored prosthodontically. Prosthetic treatment was based on performing a post and core, and all-ceramic crown on the extruded tooth. The left, less-damaged incisor was restored directly using composite resin. The treatment resulted in good esthetics and secured periodontal health. This case report demonstrates that a multidisciplinary treatment approach is a reliable and predictable option to save a tooth. How to cite this article: Ortolan SM, Strujic M, Aurer A, Viskic J, Bergman L, Mehulic K. Esthetic Rehabilitation of Complicated Crown Fractures Utilizing Rapid Orthodontic Extrusion and Two Different Restoration Modalities. Int J Clin Pediatr Dent 2012;5(1):64-67.

  5. Inherent safety phenomenon of fission-gas induced axial extrusion in oxide and metal fueled LMFBRs

    International Nuclear Information System (INIS)

    Miles, K.J.; Kalimullah.

    1985-01-01

    The current emphasis in LMFBR design is to develop reactor systems that contain as many features as possible to limit the severity of hypothetical accidents and provide the maximum time before corrective action is required while maintaining low capital costs. One feature is the possibility of fission-gas induced axial extrusion of the fuel within the intact cladding. The potential exists for this phenomenon to enable the reactor to withstand most accidents of the TOP variety, or at least provide an extended time for corrective action to be taken. Under transient conditions which produce a heating of the fuel above its nominal operating temperature, thermal expansion of the material axially produces a negative reactivity effect. This effect is presently considered in most accident analysis codes. The phenomenon of fission-gas induced axial extrusion has received renewed interest because of the consideration of metal alloys of uranium and plutonium for the fuel in some current reactor designs

  6. Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, Q; Snyder, J; Wang, C; Guceri, S; Sun, W [Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA (United States); Timmer, M; Hammer, J, E-mail: sunwei@drexel.edu [Advanced Technologies and Regenerative Medicine, Somerville, NJ (United States)

    2011-09-15

    In the field of biofabrication, tissue engineering and regenerative medicine, there are many methodologies to fabricate a building block (scaffold) which is unique to the target tissue or organ that facilitates cell growth, attachment, proliferation and/or differentiation. Currently, there are many techniques that fabricate three-dimensional scaffolds; however, there are advantages, limitations and specific tissue focuses of each fabrication technique. The focus of this initiative is to utilize an existing technique and expand the library of biomaterials which can be utilized to fabricate three-dimensional scaffolds rather than focusing on a new fabrication technique. An expanded library of biomaterials will enable the precision extrusion deposition (PED) device to construct three-dimensional scaffolds with enhanced biological, chemical and mechanical cues that will benefit tissue generation. Computer-aided motion and extrusion drive the PED to precisely fabricate micro-scaled scaffolds with biologically inspired, porosity, interconnectivity and internal and external architectures. The high printing resolution, precision and controllability of the PED allow for closer mimicry of tissues and organs. The PED expands its library of biopolymers by introducing an assisting cooling (AC) device which increases the working extrusion temperature from 120 to 250 deg. C. This paper investigates the PED with the integrated AC's capabilities to fabricate three-dimensional scaffolds that support cell growth, attachment and proliferation. Studies carried out in this paper utilized a biopolymer whose melting point is established to be 200 deg. C. This polymer was selected to illustrate the newly developed device's ability to fabricate three-dimensional scaffolds from a new library of biopolymers. Three-dimensional scaffolds fabricated with the integrated AC device should illustrate structural integrity and ability to support cell attachment and proliferation.

  7. Pair angular correlations for pions, kaons and protons in proton-proton collisions in ALICE

    CERN Document Server

    Zaborowska, Anna

    2014-01-01

    This thesis presents the correlation functions in $\\Delta\\eta\\, \\Delta\\phi$ space for pairs of pions, kaons and protons. The studies were carried out on the set of proton-proton collisions at the centre-of-mass energy $\\sqrt{s}$ = 7 TeV, obtained in ALICE, A Large Ion Collider Experiment at CERN, the European Organization for Nuclear Research. The analysis was performed for two charge combinations (like-sign pairs and unlike-sign pairs) as well as for three multiplicity ranges. Angular correlations are a rich source of information about the elementary particles behaviour. They result in from the interplay of numerous effects, including resonances’ decays, Coulomb interactions and energy and momentum conservation. In case of identical particles quantum statistics needs to be taken into account. Moreover, particles differ in terms of quark content. Kaons, carrying the strange quark obey the strangeness conservation law. In the production of protons baryon number must be conserved. These features are reflected...

  8. Influence of twin-screw hot extrusion on linolenic acid retention in flaxseed meal

    International Nuclear Information System (INIS)

    Imran, M.

    2014-01-01

    flaxseed (linum usitatissimum l.) provides multiple nutritional benefits including high quality protein, dietary fiber and is the most abundant source of alpha-linolenic acid (c18:3). This study focuses on the effect of twin-screw hot extrusion on alpha-linolenic acid retention in full-fat flaxseed meal. the ranges of processing variables selected using box-behnken design were barrel exit temperature (bet) of 120-140 degree c; screw speed (ss) of 200-400 rpm; feed rate (fr) of 1-2 kg/h and feed moisture (fm) of 20-30%. The amount of alpha-linolenic acid retention in extruded samples ranged from 89.2% to 99.3%. Optimal operating conditions were stablished; bet (121degree c), ss (388 rpm), fr (1 kg/h) and fm (22.2%) for maximum (99.9%) retention of degree-linolenic acid. This effect was mainly dependent on bet and fm (p degree 0.01), whereas ss and fr imparted a lesser effect (p=0.05). The results of this study demonstrated that the twin-screw hot extrusion can be successfully explored to produce fatty meals with significant fatty acids retention for commercially food or feed purposes. (author)

  9. Extrusion Pretreatment of Lignocellulosic Biomass: A Review

    Directory of Open Access Journals (Sweden)

    Jun Zheng

    2014-10-01

    Full Text Available Bioconversion of lignocellulosic biomass to bioethanol has shown environmental, economic and energetic advantages in comparison to bioethanol produced from sugar or starch. However, the pretreatment process for increasing the enzymatic accessibility and improving the digestibility of cellulose is hindered by many physical-chemical, structural and compositional factors, which make these materials difficult to be used as feedstocks for ethanol production. A wide range of pretreatment methods has been developed to alter or remove structural and compositional impediments to (enzymatic hydrolysis over the last few decades; however, only a few of them can be used at commercial scale due to economic feasibility. This paper will give an overview of extrusion pretreatment for bioethanol production with a special focus on twin-screw extruders. An economic assessment of this pretreatment is also discussed to determine its feasibility for future industrial cellulosic ethanol plant designs.

  10. FEM simulation of a friction testing method based on combined forward conical can-backward straight can extrusion

    DEFF Research Database (Denmark)

    Nakamura, T; Bay, Niels

    1998-01-01

    A new friction testing method based on combined forward conical can-backward straight can extrusion is proposed in order to evaluate friction characteristics in severe metal forming operations. By this method the friction coefficient along the conical punch surface is determined knowing...... the friction coefficient along the die wall. The latter is determined by a combined forward and backward can extrusion of straight cans. Calibration curves determining the relationship between punch travel, can heights, and friction coefficient for the two rests are calculated based on a rigid-plastic FEM...... analysis. Experimental friction tests are carried out in a mechanical press with aluminium alloy A6061 as the workpiece material and different kinds of lubricants. They confirm that the theoretical analysis results irt reasonable values for the friction coefficient....

  11. Proton Fast Ignition

    International Nuclear Information System (INIS)

    Key, M H; Freeman, R R; Hatchett, S P; MacKinnon, A J; Patel, P K; Snavely, R A; Stephens, R B

    2006-04-01

    Fast ignition (FI) by a laser generated ballistically focused proton beam is a more recently proposed alternative to the original concept of FI by a laser generated beam of relativistic electrons. It has potential advantages in less complex energy transport into dense plasma. Recent successful target heating experiments motivate further investigation of the feasibility of proton fast ignition. The concept, the physics and characteristics of the proton beams, the recent experimental work on focusing of the beams and heating of solid targets and the overall prospects for proton FI are discussed

  12. Complications of grafts used in female pelvic floor reconstruction: Mesh erosion and extrusion

    Directory of Open Access Journals (Sweden)

    Tanya M Nazemi

    2007-01-01

    Full Text Available Introduction: Various grafts have been used in the treatment of urinary incontinence and pelvic prolapse. Autologous materials such as muscle and fascia were first utilized to provide additional anatomic support to the periurethral and pelvic tissues; however, attempts to minimize the invasiveness of the procedures have led to the use of synthetic materials. Complications such as infection and erosion or extrusion associated with these materials may be troublesome to manage. We review the literature and describe a brief overview of grafts used in pelvic floor reconstruction and focus on the management complications specifically related to synthetic materials. Materials and Methods: We performed a comprehensive review of the literature on grafts used in pelvic floor surgery using MEDLINE and resources cited in those peer-reviewed manuscripts. The results are presented. Results: Biologic materials provide adequate cure rates but have associated downfalls including potential complications from harvesting, variable tissue quality and cost. The use of synthetic materials as an alternative graft in pelvic floor repairs has become a popular option. Of all synthetic materials, the type I macroporous polypropylene meshes have demonstrated superiority in terms of efficacy and fewer complication rates due to their structure and composition. Erosion and extrusion of mesh are common and troublesome complications that may be managed conservatively with observation with or without local hormone therapy, with transvaginal debridement or with surgical exploration and total mesh excision, dependent upon the location of the mesh and the mesh type utilized. Conclusions: The ideal graft would provide structural integrity and durability with minimal adverse reaction by the host tissue. Biologic materials in general tend to have fewer associated complications, however, the risks of harvesting, variable integrity of allografts, availability and high cost has led to the

  13. Proton tracking in a high-granularity Digital Tracking Calorimeter for proton CT purposes

    Science.gov (United States)

    Pettersen, H. E. S.; Alme, J.; Biegun, A.; van den Brink, A.; Chaar, M.; Fehlker, D.; Meric, I.; Odland, O. H.; Peitzmann, T.; Rocco, E.; Ullaland, K.; Wang, H.; Yang, S.; Zhang, C.; Röhrich, D.

    2017-07-01

    Radiation therapy with protons as of today utilizes information from x-ray CT in order to estimate the proton stopping power of the traversed tissue in a patient. The conversion from x-ray attenuation to proton stopping power in tissue introduces range uncertainties of the order of 2-3% of the range, uncertainties that are contributing to an increase of the necessary planning margins added to the target volume in a patient. Imaging methods and modalities, such as Dual Energy CT and proton CT, have come into consideration in the pursuit of obtaining an as good as possible estimate of the proton stopping power. In this study, a Digital Tracking Calorimeter is benchmarked for proof-of-concept for proton CT purposes. The Digital Tracking Calorimeter was originally designed for the reconstruction of high-energy electromagnetic showers for the ALICE-FoCal project. The presented prototype forms the basis for a proton CT system using a single technology for tracking and calorimetry. This advantage simplifies the setup and reduces the cost of a proton CT system assembly, and it is a unique feature of the Digital Tracking Calorimeter concept. Data from the AGORFIRM beamline at KVI-CART in Groningen in the Netherlands and Monte Carlo simulation results are used to in order to develop a tracking algorithm for the estimation of the residual ranges of a high number of concurrent proton tracks. High energy protons traversing the detector leave a track through the sensor layers. These tracks are spread out through charge diffusion processes. A charge diffusion model is applied for acquisition of estimates of the deposited energy of the protons in each sensor layer by using the size of the charge diffused area. A model fit of the Bragg Curve is applied to each reconstructed track and through this, estimating the residual range of each proton. The range of the individual protons can at present be estimated with a resolution of 4%. The readout system for this prototype is able to

  14. Proton tracking in a high-granularity Digital Tracking Calorimeter for proton CT purposes

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, H.E.S., E-mail: helge.pettersen@helse-bergen.no [Department of Oncology and Medical Physics, Haukeland University Hospital, Postbox 1400, 5021 Bergen (Norway); Department of Physics and Technology, University of Bergen, Postbox 7803, 5020 Bergen (Norway); Alme, J. [Department of Physics and Technology, University of Bergen, Postbox 7803, 5020 Bergen (Norway); Biegun, A. [Kernfysisch Versneller Instituut, University of Groningen, NL-9747 AA Groningen (Netherlands); Brink, A. van den [Nikhef, Utrecht University, Postbox 41882, 1009 DB Amsterdam (Netherlands); Chaar, M.; Fehlker, D. [Department of Physics and Technology, University of Bergen, Postbox 7803, 5020 Bergen (Norway); Meric, I. [Department of Electrical Engineering, Bergen University College, Postbox 7030, 5020 Bergen (Norway); Odland, O.H. [Department of Oncology and Medical Physics, Haukeland University Hospital, Postbox 1400, 5021 Bergen (Norway); Peitzmann, T.; Rocco, E. [Nikhef, Utrecht University, Postbox 41882, 1009 DB Amsterdam (Netherlands); Ullaland, K. [Department of Physics and Technology, University of Bergen, Postbox 7803, 5020 Bergen (Norway); Wang, H. [Nikhef, Utrecht University, Postbox 41882, 1009 DB Amsterdam (Netherlands); Yang, S. [Department of Physics and Technology, University of Bergen, Postbox 7803, 5020 Bergen (Norway); Zhang, C. [Nikhef, Utrecht University, Postbox 41882, 1009 DB Amsterdam (Netherlands); Röhrich, D. [Department of Physics and Technology, University of Bergen, Postbox 7803, 5020 Bergen (Norway)

    2017-07-11

    Radiation therapy with protons as of today utilizes information from x-ray CT in order to estimate the proton stopping power of the traversed tissue in a patient. The conversion from x-ray attenuation to proton stopping power in tissue introduces range uncertainties of the order of 2–3% of the range, uncertainties that are contributing to an increase of the necessary planning margins added to the target volume in a patient. Imaging methods and modalities, such as Dual Energy CT and proton CT, have come into consideration in the pursuit of obtaining an as good as possible estimate of the proton stopping power. In this study, a Digital Tracking Calorimeter is benchmarked for proof-of-concept for proton CT purposes. The Digital Tracking Calorimeter was originally designed for the reconstruction of high-energy electromagnetic showers for the ALICE-FoCal project. The presented prototype forms the basis for a proton CT system using a single technology for tracking and calorimetry. This advantage simplifies the setup and reduces the cost of a proton CT system assembly, and it is a unique feature of the Digital Tracking Calorimeter concept. Data from the AGORFIRM beamline at KVI-CART in Groningen in the Netherlands and Monte Carlo simulation results are used to in order to develop a tracking algorithm for the estimation of the residual ranges of a high number of concurrent proton tracks. High energy protons traversing the detector leave a track through the sensor layers. These tracks are spread out through charge diffusion processes. A charge diffusion model is applied for acquisition of estimates of the deposited energy of the protons in each sensor layer by using the size of the charge diffused area. A model fit of the Bragg Curve is applied to each reconstructed track and through this, estimating the residual range of each proton. The range of the individual protons can at present be estimated with a resolution of 4%. The readout system for this prototype is able to

  15. Two-proton radioactivity in proton-rich fp shell nuclei at high spin

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Mamta [Nuclear Science Centre, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110067 (India)

    2006-07-15

    Two-proton radioactivity in extremely proton-rich fp shell nuclei at high spins is investigated in a theoretical framework. Separation energy and entropy fluctuate with spin and hence affect the location of the proton drip line.

  16. Two-proton radioactivity in proton-rich fp shell nuclei at high spin

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2006-01-01

    Two-proton radioactivity in extremely proton-rich fp shell nuclei at high spins is investigated in a theoretical framework. Separation energy and entropy fluctuate with spin and hence affect the location of the proton drip line

  17. Characterization of extrusion flow using particle image velocimetry

    Directory of Open Access Journals (Sweden)

    2009-09-01

    Full Text Available The aim of this study was the characterization of polymer flows within an extrusion die using particle image velocimetry (PIV in very constraining conditions (high temperature, pressure and velocity. Measurements were realized on semi-industrial equipments in order to have test conditions close to the industrial ones. Simple flows as well as disrupted ones were studied in order to determine the capabilities and the limits of the method. The analysis of the velocity profiles pointed out significant wall slip, which was confirmed by rheological measurements based on Mooney's method. Numerical simulations were used to connect the two sets of measurements and to simulate complex velocity profiles for comparison to the experimental ones. A good agreement was found between simulations and experiments providing wall slip is taken into account in the simulation.

  18. Replication of nanopits and nanopillars by roll-to-roll extrusion coating using a structured cooling roll

    DEFF Research Database (Denmark)

    Murthy, Swathi; Pranov, Henrik; Pedersen, Henrik Chresten

    2016-01-01

    This paper investigates a novel, very high throughput, roll-to-roll (R2R) process for nanostructuring of polymer foils, called R2R extrusion coating. It has the potential to accelerate the integration of nanostructured materials in consumer products for a variety of applications, including optical....../height of 100 nm. The best replication was achieved in polypropylene, by running at high roller line-speed of 60 m/min, and high cooling roller temperature of 70°C. Replication in other common polymers like polyethylene and polystyrene was not possible for the parameter range used for the investigation......., technical, and functional surfaces and devices. In roll-to-roll extrusion coating, a molten polymer film is extruded through a flat die forming a melt curtain, and then laminated onto a carrier foil. The lamination occurs as the melt curtain is pressed between a cooling roller and a counter roller...

  19. Hot Melt Extrusion as Solvent-Free Technique for a Continuous Manufacturing of Drug-Loaded Mesoporous Silica

    DEFF Research Database (Denmark)

    Genina, Natalja; Hadi, Batol; Löbmann, Korbinian

    2018-01-01

    The aim of this study is to explore hot melt extrusion (HME) as a solvent-free drug loading technique for preparation of stable amorphous solid dispersions using mesoporous silica (PSi). Ibuprofen and carvedilol were used as poorly soluble active pharmaceutical ingredients (APIs). Due to the high...... friction of an API:PSi mixture below the loading limit of the API, it was necessary to add the polymer Soluplus(®) (SOL) in order to enable the extrusion process. As a result, the APIs were distributed between the PSi and SOL phase after HME. Due to its higher affinity to PSi, ibuprofen was mainly adsorbed...... into the PSi, whereas carvedilol was mainly found in the SOL phase. Intrinsic dissolution rate was highest for HME formulations, containing PSi, compared to pure crystalline (amorphous) APIs and HME formulations without PSi. HME is a feasible solvent-free drug loading technique for preparation of PSi...

  20. Study on extrusion process of SiC ceramic matrix

    Science.gov (United States)

    Dai, Xiao-Yuan; Shen, Fan; Ji, Jia-You; Wang, Shu-Ling; Xu, Man

    2017-11-01

    In this thesis, the extrusion process of SiC ceramic matrix has been systematically studied.The effect of different cellulose content on the flexural strength and pore size distribution of SiC matrix was discussed.Reselts show that with the increase of cellulose content, the flexural strength decreased.The pore size distribution in the sample was 1um-4um, and the 1um-2um concentration was more concentrated. It is found that the cellulose content has little effect on the pore size distribution.When the cellulose content is 7%, the flexural strength of the sample is 40.9Mpa. At this time, the mechanical properties of the sample are the strongest.

  1. Binder extrusion of sliding wear of WC-Co alloys

    International Nuclear Information System (INIS)

    Larsen-Basse, J.

    1985-01-01

    It has previously been proposed that preferential removal of the cobalt binder is an important mechanism in the abrasive wear of cemented carbides in the WC-Co family. It is here demonstrated that binder extrusion occurs also in metal-to-metal sliding wear contacts. The wear scar generated by sliding a hardened steel ball repeatedly over a polished WC-Co surface was studied by SEM. The extruded cobalt fragments accumulate by surface defects, such as cracks caused by the sliding loaded ball, and gradual microfragmentation of the carbide grains follows. The energy required to extrude the cobalt and cause the gradual change in surface layer microstructure is provided by the frictional forces

  2. The influence of the Coulomb-distortion effect on proton-proton observables

    International Nuclear Information System (INIS)

    Plessas, W.; Mathelitsch, L.

    1980-01-01

    The effect of the Coulomb distortion of the strong interaction is studied on the basis of nucleon-nucleon observables. In particular, cross sections, polarizations, spin-correlation parameters, and spin-transfer coefficients are considered for proton-proton as well as neutron-neutron scattering at laboratory kinetic energies Esub(Lab) = 10, 20, and 50 MeV. The calculations are performed for the meson-theoretical PARIS potential, the nonlocal separable GRAZ potential and also using the Arndt-Hackman-Roper parametrization of proton-proton scattering phase shifts. Important conclusions are drawn with respect to phenomenological phase-shift analyses. (Auth.)

  3. Age, budget and dynamics of an active salt extrusion in Iran

    Science.gov (United States)

    Talbot, C. J.; Jarvis, R. J.

    The Hormuz salt of Kuh-e-Namak, Iran began rising through its Phanerozoic cover in Jurassic times and had surfaced by Cretaceous times. In Miocene times, the still-active Zagros folds began to develop and the salt is still extruding to feed a massive topographic dome and two surface flows of salt which have previously been called salt glaciers but are here called namakiers. Two crude but independent estimates for the rate of salt extrusion and loss are shown to balance the salt budget if the current salt dynamics are assumed to be in steady state. First, to replace the extrusive salt likely to be lost in solution in the annual rainfall, the salt must rise at an average velocity of about 11 cm a -1. Second, the foliation pattern shows that the extruding (and partially dissolved) salt column spreads under its own weight. The maximum height of the salt dome is consistent with a viscous fluid with a viscosity of 2.6 × 10 17 poises extruding from its orifice at a rate of almost 17 cm a -1. Both estimates are consistent in indicating that salt can extrude onto the surface 42-85 times faster than the average long term rate at which salt diapirs rise to the surface. The structure, fabrics, textures and deformation mechanisms of the impure halite all change along the path of the extrusive salt from the dome down the length of both namakiers. Such changes tend to occur when the flowing salt encounters changes in its boundary conditions, and the recognition of buried namakiers is discussed in the light of such observations. Episodes of salt flow at a rate of 0.5 m per day have been measured along the margin of the N namakier after significant rain showers. Such brief episodes of rapid flow alternate with long periods when the namakier is dry and stationary. The shape of the colour bands cropping out on the N namakier indicate that the flow over the surface of impure salt with a mylonitic texture obeys a power law with n ≈ 3. Although the reported annual rainfall has the

  4. Meniscal allograft transplantation. Part 1: systematic review of graft biology, graft shrinkage, graft extrusion, graft sizing, and graft fixation.

    Science.gov (United States)

    Samitier, Gonzalo; Alentorn-Geli, Eduard; Taylor, Dean C; Rill, Brian; Lock, Terrence; Moutzouros, Vasilius; Kolowich, Patricia

    2015-01-01

    To provide a systematic review of the literature regarding five topics in meniscal allograft transplantation: graft biology, shrinkage, extrusion, sizing, and fixation. A systematic literature search was conducted using the PubMed (MEDLINE), ScienceDirect, and EBSCO-CINAHL databases. Articles were classified only in one topic, but information contained could be reported into other topics. Information was classified according to type of study (animal, in vitro human, and in vivo human) and level of evidence (for in vivo human studies). Sixty-two studies were finally included: 30 biology, 3 graft shrinkage, 11 graft extrusion, 17 graft size, and 6 graft fixation (some studies were categorized in more than one topic). These studies corresponded to 22 animal studies, 22 in vitro human studies, and 23 in vivo human studies (7 level II, 10 level III, and 6 level IV). The principal conclusions were as follows: (a) Donor cells decrease after MAT and grafts are repopulated with host cells form synovium; (b) graft preservation alters collagen network (deep freezing) and causes cell apoptosis with loss of viable cells (cryopreservation); (c) graft shrinkage occurs mainly in lyophilized and gamma-irradiated grafts (less with cryopreservation); (d) graft extrusion is common but has no clinical/functional implications; (e) overall, MRI is not superior to plain radiograph for graft sizing; (f) graft width size matching is more important than length size matching; (g) height appears to be the most important factor influencing meniscal size; (h) bone fixation better restores contact mechanics than suture fixation, but there are no differences for pullout strength or functional results; and (i) suture fixation has more risk of graft extrusion compared to bone fixation. Systematic review of level II-IV studies, Level IV.

  5. Proton-proton Scattering Above 3 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    A. Sibirtsev, J. Haidenbauer, H.-W. Hammer S. Krewald ,Ulf-G. Meissner

    2010-01-01

    A large set of data on proton-proton differential cross sections, analyzing powers and the double-polarization parameter A{sub NN} is analyzed employing the Regge formalism. We find that the data available at proton beam momenta from 3 GeV/c to 50 GeV/c exhibit features that are very well in line with the general characteristics of Regge phenomenology and can be described with a model that includes the {rho}, {omega}, f{sub 2}, and a{sub 2} trajectories and single-Pomeron exchange. Additional data, specifically for spin-dependent observables at forward angles, would be very helpful for testing and refining our Regge model.

  6. Debris extrusion and foraminal deformation produced by reciprocating instruments made of thermally treated NiTi wires.

    Science.gov (United States)

    Frota, Myrna Maria Arcanjo; Bernardes, Ricardo Affonso; Vivan, Rodrigo Ricci; Vivacqua-Gomes, Nilton; Duarte, Marco Antonio Hungaro; Vasconcelos, Bruno Carvalho de

    2018-01-18

    To evaluate the amount of apically extruded debris, percentage of foraminal enlargement and apical foramen (AF) deformation that occurred during root canal preparation with different reciprocation systems: Reciproc, WaveOne (M-Wire), and ProDesign R (Shape Memory Technology Wire) at two different working lengths (WLs): 0.0 and 1.0 mm beyond the AF. The AF of 120 root canals in 60 mesial roots of mandibular molars were photographed with stereomicroscope and randomly assigned into four groups: manual, Reciproc (REC), WaveOne (WO), and ProDesign R (PDR); subsequently, they were further subdivided according to the WL (n=15). Teeth were instrumented, coupled to a dual collecting chamber, and then another photograph of each AF was captured. Extrusion was analysed by determining the weight of extruded debris. Each AF diameter was measured in pre- and post-instrumentation images to determine deformation, which was analysed, and afterwards the final format of AFs was classified (circular/oval/deformed). We found no significant differences when analysing each system at different WLs. When considering each WL, REC and WO showed highest extrusion values (P<.05); for AF enlargement, differences were observed only for WO, when it was used beyond the AF; differences were observed among M-Wire groups beyond the AF (P<.05). AF deformation was observed in all groups; PDR showed the lowest AF deformation values at both WLs; M-Wire groups showed 50% strain beyond the AF. Authors concluded that beyond the apical limit, the alloy and taper are important aspects when considering extrusion and deformation.

  7. High intensity proton accelerator and its application (Proton Engineering Center)

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi

    1995-01-01

    A plan called PROTON ENGINEERING CENTER has been proposed in JAERI. The center is a complex composed of research facilities and a beam shape and storage ring based on a proton linac with an energy of 1.5 GeV and an average current of 10 mA. The research facilities planned are OMEGA·Nuclear Energy Development Facility, Neutron Facility for Material Irradiation, Nuclear Data Experiment Facility, Neutron Factory, Meson Factory, Spallation Radioisotope Beam Facility, and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutrons, π-mesons, muons, and unstable isotopes originated from the protons are available for promoting the innovative research of nuclear energy and basic science and technology. (author)

  8. Inter- and intra-annular proton exchange in gaseous benzylbenzenium ions (protonated diphenylmethane)

    OpenAIRE

    Kuck, Dietmar; Bäther, Wolfgang

    1986-01-01

    Two distinct proton exchange reactions occur in metastable gaseous benzylbenzenium ions, generated by isobutane chemical ionization of diphenylmethane and four deuterium-labelled analogues. Whereas the proton ring-walk at the benzenium moiety is fast giving rise to a completely random intraannular proton exchange, the interannular proton exchange is surprisingly slow and competes with the elimination of benzene. A kinetic isotope effect of kH/kD= 5 has been determined for the interannular pro...

  9. Relativistic total and differential cross section proton--proton electron--positron pair production calculation

    International Nuclear Information System (INIS)

    Rubinstein, J.E.

    1976-01-01

    Circle Feynman diagrams for a specific permutation of variables along with their corresponding algebraic expressions are presented to evaluate [H] 2 for proton-proton electron-positron pair production. A Monte Carlo integration technique is introduced and is used to set up the multiple integral expression for the total pair production cross section. The technique is first applied to the Compton scattering problem and then to an arbitrary multiple integral. The relativistic total cross section for proton-proton electron-positron pair production was calculated for eight different values of incident proton energy. A variety of differential cross sections were calculated for the above energies. Angular differential cross section distributions are presented for the electron, positron, and proton. Invariant mass differential cross section distributions are done both with and without the presence of [H] 2 . Both WGHT and log 10 (TOTAL) distributions were also obtained. The general behavioral trends of the total and differential cross sections for proton-proton electron-positron pair production are presented. The range of validity for this calculation is from 0 to about 200 MeV

  10. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    Science.gov (United States)

    Nagao, Yuki; Kubo, Takahiro

    2014-12-01

    Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120-670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system.

  11. The microstructures and mechanical properties of Al-15Si-2.5Cu-0.5Mg/(wt%)B{sub 4}C composites produced through hot pressing technique and subjected to hot extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Ozer, Alpay, E-mail: alpiozer@gmail.com

    2016-11-01

    In this study, B{sub 4}C (5, 10, and 15 wt%) particle-reinforced Ecka Alumix 231{sup ®} aluminum matrix composites were produced through the hot pressing technique. Some of these samples were subjected to hot extrusion as a secondary treatment at 4:1 ratio at a temperature of 555 °C. The obtained samples were subjected to density measurement, hardness test, microstructure analysis, and three-point bending test, and their fracture surfaces were examined. A density of over 99% was found in the samples. Al-rich solid solution and primary Si, CuAl{sub 2}, Al{sub 2}CuMg, and Mg{sub 2}Si phases in the microstructure were determined through X-ray diffraction analysis. Grain sizes were found to be 20 μm and 2 μm in the microstructures of the samples produced through hot pressing technique and of those subjected to additional hot extrusion, respectively. High hardness values were obtained in the samples subjected to hot extrusion. In these samples, wt% B{sub 4}C particle ratio and transverse rupture strength increased considerably. Furthermore, the highest compressive strain value was obtained in the 10 wt% B{sub 4}C particle-reinforced composites subjected to hot extrusion. - Highlights: • Liquid phase formed at the temperature of hot pressing and hot extrusion. • In the samples, over 99.19% density was obtained. • Average matrix grain size was measured to be 2 μm through hot extrusion. • As wt% B{sub 4}C ratio increased, transverse rupture strength values increased. • High compressive strain values were obtained in the hot extrusion samples.

  12. Pellets de trigo e soja produzidos por extrusão Wheat and soybean pellets produced by extrusion-cooking

    Directory of Open Access Journals (Sweden)

    Sin Huei Wang

    2008-09-01

    Full Text Available A mistura de trigo e soja representa uma importante fonte calórico-protéica com proteínas de boa qualidade. Apesar disso, a utilização da soja como ingrediente tem sido limitada pelo seu sabor de feijão cru (beany flavor, o qual é melhorado pelo processo de extrusão. Foram estudados os efeitos de umidade da mistura, Temperatura de Barril (TB e Velocidade de Rotação de Parafuso (VRP, Nº 5 do extrusor no Índice de Expansão (IE, no Índice de Solubilidade em Água (ISA e nas características sensoriais de pellets produzidos com mistura de trigo e soja (90:10, objetivando a otimização deste processo para a obtenção de pellets fritos com melhores qualidades sensoriais. A farinha mista crua foi extrusada em 2 umidades (32 e 35%, 4 TB (60 a 90 °C e 4 VRP (60 a 150 rpm, totalizando 32 tratamentos. O pellet frito, preparado com a farinha mista com 32% de umidade e extrusada em 60 rpm a 80 °C, apresentou o maior IE e as melhores qualidades sensoriais (aparência, sabor e textura, sendo preferido pela equipe de provadores não treinados, tanto com sabor de bacon como com sabor de queijo.The mixture of wheat with soybean represents an important calorie-protein source with good protein quality. In spite of this, the use of soybeans as an ingredient has been limited by their beany flavor, which is improved by the extrusion process. Effects of mixture moisture, Barrel Temperature (BT and Screw-Speed (SS, Nº 5 on Expansion Index (EI, Water Solubility Index (WSI and sensory characteristics of pellets produced with a wheat-soybean (90:10 mixture were studied, in order to optimize this process for obtaining fried pellets with better sensory qualities. Raw mixed flour was extruded at two moisture contents (32 and 35%, four BT (60 to 90 °C and four SS (60 to 150 rpm, totalizing 32 treatments. The fried pellets, prepared with the mixed flour with 32% moisture and extruded at 60 rpm and 80 °C, presented the greatest EI and the best sensory

  13. Extrusion-formed uranium-2. 4 wt % article with decreased linear thermal expansion and method for making the same. [Patent application

    Science.gov (United States)

    Anderson, R.C.; Jones, J.M.; Kollie, T.G.

    1982-05-24

    The present invention is directed to the fabrication of an article of uranium-2.4 wt % niobium alloy in which the linear thermal expansion in the direction transverse to the extrusion direction is less than about 0.98% between 22 and 600/sup 0/C which corresponds to a value greater than the 1.04% provided by previous extrusion operations over the same temperature range. The article with the improved thermal expansion possesses a yield strength at 0.2% offset of at least 400 MPa, an ultimate tensile strength of 1050 MPa, a compressive yield strength of at least 0.2% offset of at least 675 MPa, and an elongation of at least 25% over 25.4 mm/s. To provide this article with the improved thermal expansion, the uranium alloy billet is heated to 630/sup 0/C and extruded in the alpha phase through a die with a reduction ratio of at least 8.4:1 at a ram speed no greater than 6.8 mm/s. These critical extrusion parameters provide the article with a desired decrease in the linear thermal expansion while maintaining the selected mechanical properties without encountering crystal disruption in the article.

  14. MM98.04 Measurement of temperature and determination of heat transfer coefficient in backward can extrusion

    DEFF Research Database (Denmark)

    Henningsen, Poul; Hattel, Jesper Henri; Wanheim, Tarras

    1998-01-01

    Temperature is measured during backward can extrusion of steel. The process is characterised by large deformations and very high surface pressure. In the experiments, a can in low carbon steel with a lubrication layer of phosphate soap is formed. The temperature is measured by thermocouples...

  15. The theoretical and experimental researches of Pb-Al composite materials extrusion

    Directory of Open Access Journals (Sweden)

    G. Ryzińska

    2012-07-01

    Full Text Available The work presents the analysis of the character of a simultaneous plastic flow of composite material of a hard core-soft sleeve structure. Experimental research work using model composite material Aluminium-Lead and theoretical analysis allowed to identify the initial cracking conditions, its character and localization, depending on geometrical parameters of the composite materials and the extrusion ratio value. It has been shown that the higher the parameters’ values are, the longer the flawless extruded product is (cracking appears in the further stages of the process.

  16. Efeito dos parâmetros de extrusão sobre as propriedades funcionais de extrusados da farinha de batata-doce

    OpenAIRE

    Borba,Alexandra M.; Sarmento,Silene B. S.; Leonel,Magali

    2005-01-01

    Farinha de batata-doce (Ipomoea batatas) foi extrusada em equipamento de rosca simples, mantendo-se fixas as temperaturas na 1ª e 2ª zonas de extrusão (20ºC e 60ºC, respectivamente). O efeito das variáveis umidade da farinha (15, 18 e 21%), temperatura na 3ª zona (100, 120 e 140ºC) e rotação da rosca (180, 210 e 240 rpm) sobre as características dos extrusados foi investigado utilizando-se metodologia de superfície de resposta. O teor de umidade e a temperatura de extrusão influenciaram signi...

  17. Application of heat treatment and hot extrusion processes to improve mechanical properties of the AZ91 alloy

    Directory of Open Access Journals (Sweden)

    T. Reguła

    2010-04-01

    Full Text Available The main aim of this paper is to evaluate the effects of hot working (extrusion and hest treatment on room temperature mechanical properties of magnesium-based AZ91 alloy. The results were compared with as-cast condition. The examined material had been obtained by gravity casting to permanent moulds and subsequently subjected to heat treatment and/or processed by extrusion at 648 K. Microstructural and mechanical properties of properly prepared specimens were studied. Rm, Rp02 and A5 were determined from tensile tests. Brinell hardness tests were also conducted. The research has shown that hot working of AZ91 alloy provides high mechanical properties unattainable by cast material subjected to heat-treatment. The investigated alloy subjected to hot working and subsequently heat-treated has doubled its strength and considerably improved the elongation - compared with the as-cast material.

  18. Preparation and Evaluation of Pellets Using Acacia and Tragacanth by Extrusion-Spheronization

    Directory of Open Access Journals (Sweden)

    S. Pirmoradi

    2011-12-01

    Full Text Available Background and the purpose of the study: Extrusion-spheronization is an established technique for the production of pellets for pharmaceutical applications. In this study, the feasibility and influence of the incorporation of acacia, by itself and in combination with tragacanth, on the ability of formulations containing 2 model of drugs (ibuprofen and theophylline to form spherical pellets by extrusion-spheronization was investigated.Material and Methods: Formulations containing different ratios of acacia and tragacanth (8:2, 9:1, and 10:0 and different drug concentrations (20%, 40%, and 60% were prepared, on the basis of a 32 full factorial design. Pellet properties, such as aspect ratio, sphericity (image analysis, crushing strength and elastic modulus (mechanical tests, mean dissolution time, and dissolution profiles were evaluated. The effect of particular factors on responses was determined by linear regression analysis.Results: The sphericity, drug release rate, and the mechanical properties of the pellets were affected by the amounts and types of the drugs, and the ratio of the gums. Acacia, relative to tragacanth, produced pellets with higher mechanical strength and a faster drug release rate. Addition of small amounts of tragacanth to ibuprofen formulations resulted in matrix pellets with slow drug release.Conclusion: The results showed that acacia and tragacanth can be used successfully as 2 natural binders in the pellet formulations.

  19. PS proton source

    CERN Multimedia

    1959-01-01

    The first proton source used at CERN's Proton Synchrotron (PS) which started operation in 1959. This is CERN's oldest accelerator still functioning today (2018). It is part of the accelerator chain that supplies proton beams to the Large Hadron Collider. The source is a Thonemann type. In order to extract and accelerate the protons at high energy, a high frequency electrical field is used (140Mhz). The field is transmitted by a coil around a discharge tube in order to maintain the gas hydrogen in an ionised state. An electrical field pulse, in the order of 15kV, is then applied via an impulse transformer between anode and cathode of the discharge tube. The electrons and protons of the plasma formed in the ionised gas in the tube, are then separated. Currents in the order of 200mA during 100 microseconds have benn obtained with this type of source.

  20. First Extraction of Transversity from a Global Analysis of Electron-Proton and Proton-Proton Data

    Science.gov (United States)

    Radici, Marco; Bacchetta, Alessandro

    2018-05-01

    We present the first extraction of the transversity distribution in the framework of collinear factorization based on the global analysis of pion-pair production in deep-inelastic scattering and in proton-proton collisions with a transversely polarized proton. The extraction relies on the knowledge of dihadron fragmentation functions, which are taken from the analysis of electron-positron annihilation data. For the first time, the transversity is extracted from a global analysis similar to what is usually done for the spin-averaged and helicity distributions. The knowledge of transversity is important for, among other things, detecting possible signals of new physics in high-precision low-energy experiments.