WorldWideScience

Sample records for proton extrusion ferricyanide

  1. Hemin reconstitutes proton extrusion in an H+-ATPase-negative mutant of Lactococcus lactis

    DEFF Research Database (Denmark)

    Blank, L.M.; Købmann, Brian Jensen; Michelsen, Ole

    2001-01-01

    H+-ATPase is considered essential for growth of Lactococcus lactis. However, media containing hemin restored the aerobic growth of an H+-ATPase-negative mutant, suggesting that hemin complements proton extrusion. We show that inverted membrane vesicles prepared from hemin-grown L. lactis cells...

  2. Lansoprazole induces apoptosis of breast cancer cells through inhibition of intracellular proton extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shangrong; Wang, Yifan; Li, Shu Jie, E-mail: shujieli@nankai.edu.cn

    2014-06-13

    Highlights: • Lansoprazole (LPZ) induces cell apoptosis in breast cancer cells. • LPZ markedly inhibits intracellular proton extrusion. • LPZ induces an increase in intracellular ATP level, lysosomal alkalinization and ROS accumulation. - Abstract: The increased glycolysis and proton secretion in tumors is proposed to contribute to the proliferation and invasion of cancer cells during the process of tumorigenesis and metastasis. Here, treatment of human breast cancer cells with proton pump inhibitor (PPI) lansoprazole (LPZ) induces cell apoptosis in a dose-dependent manner. In the implantation of the MDA-MB-231 xenografts in nude mice, administration of LPZ significantly inhibits tumorigenesis and induces large-scale apopotosis of tumor cells. LPZ markedly inhibits intracellular proton extrusion, induces an increase in intracellular ATP level, lysosomal alkalinization and accumulation of reactive oxygen species (ROS) in breast cancer cells. The ROS scavenger N-acetyl-L-cysteine (NAC) and diphenyleneiodonium (DPI), a specific pharmacological inhibitor of NADPH oxidases (NOX), significantly abolish LPZ-induced ROS accumulation in breast cancer cells. Our results suggested that LPZ may be used as a new therapeutic drug for breast tumor.

  3. Lansoprazole induces apoptosis of breast cancer cells through inhibition of intracellular proton extrusion

    International Nuclear Information System (INIS)

    Zhang, Shangrong; Wang, Yifan; Li, Shu Jie

    2014-01-01

    Highlights: • Lansoprazole (LPZ) induces cell apoptosis in breast cancer cells. • LPZ markedly inhibits intracellular proton extrusion. • LPZ induces an increase in intracellular ATP level, lysosomal alkalinization and ROS accumulation. - Abstract: The increased glycolysis and proton secretion in tumors is proposed to contribute to the proliferation and invasion of cancer cells during the process of tumorigenesis and metastasis. Here, treatment of human breast cancer cells with proton pump inhibitor (PPI) lansoprazole (LPZ) induces cell apoptosis in a dose-dependent manner. In the implantation of the MDA-MB-231 xenografts in nude mice, administration of LPZ significantly inhibits tumorigenesis and induces large-scale apopotosis of tumor cells. LPZ markedly inhibits intracellular proton extrusion, induces an increase in intracellular ATP level, lysosomal alkalinization and accumulation of reactive oxygen species (ROS) in breast cancer cells. The ROS scavenger N-acetyl-L-cysteine (NAC) and diphenyleneiodonium (DPI), a specific pharmacological inhibitor of NADPH oxidases (NOX), significantly abolish LPZ-induced ROS accumulation in breast cancer cells. Our results suggested that LPZ may be used as a new therapeutic drug for breast tumor

  4. Proton extrusion is an essential signalling component in the HR of epidermal single cells in the barley-powdery mildew interaction

    DEFF Research Database (Denmark)

    Zhou, F.S.; Andersen, C.H.; Burhenne, K.

    2000-01-01

    We propose a model for activation of the epidermal cell hypersensitive response (HR) in the barley/powdery mildew interaction. The model suggests that the plasma membrane proton pump (H+-ATPase) of epidermal cells is activated following penetration by an avirulent powdery mildew fungus...... in the incompatible interaction; (4) race-specific proton extrusion is observed underneath epidermal tissue detached from leaves inoculated 15 h earlier; and (5) treatment of leaves with fusicoccin, an activator of the plasma membrane H+-ATPase, increases the number of HR-cells in the compatible interaction........ This will cause an acidification of the apoplast towards the mesophyll cells, thereby activating generation of H2O2 from the mesophyll, which subsequently triggers the epidermal cell to undergo HR. The model is supported by the following data: (1) the earliest HR-related H2O2 is found in the attachment zones...

  5. Uptake, accumulation and metabolic response of ferricyanide in weeping willows.

    Science.gov (United States)

    Yu, Xiao-Zhang; Gu, Ji-Dong

    2009-01-01

    The remediation potential and metabolic responses of plants to ferricyanide were investigated using pre-rooted weeping willows (Salix babylonica L.) grown hydroponically in growth chambers and treated with potassium ferricyanide. Positive responses were observed for the plants exposed to cyanide recovered in plant biomass was constant in all treatments, indicating that transport is a major limiting step for the uptake of ferricyanide by plants. The majority of the ferricyanide taken up from the growth media was possibly assimilated during transport through plants. The velocity of the removal processes can be described by Michaelis-Menten kinetics, and the half-saturation constant (K(M)) and the maximum removal capacity (v(max)) were estimated to be 228.1 mg CN L(-1) and 36.43 mg CN kg(-1) d(-1), respectively, using non-linear regression methods. These results suggest that weeping willows can take up, transport and assimilate ferricyanide; and phytoremediation is an option for cleaning up the environmental sites contaminated with cyanide complexes.

  6. Ferricyanide-based analysis of aqueous lignin suspension revealed sequestration of water-soluble lignin moieties

    OpenAIRE

    Joshua, CJ; Simmons, BA; Singer, SW

    2016-01-01

    © 2016 The Royal Society of Chemistry. This study describes the application of a ferricyanide-based assay as a simple and inexpensive assay for rapid analysis of aqueous lignin samples. The assay measures the formation of Prussian blue from the redox reaction between a mixture of potassium ferricyanide and ferric chloride, and phenolic hydroxyl groups of lignin or lignin-derived phenolic moieties. This study revealed that soluble lignin moieties exhibited stronger ferricyanide reactivity than...

  7. A high effective NADH-ferricyanide dehydrogenase coupled with laccase for NAD(+) regeneration.

    Science.gov (United States)

    Wang, Jizhong; Yang, Chengli; Chen, Xing; Bao, Bingxin; Zhang, Xuan; Li, Dali; Du, Xingfan; Shi, Ruofu; Yang, Junfang; Zhu, Ronghui

    2016-08-01

    To find an efficient and cheap system for NAD(+) regeneration A NADH-ferricyanide dehydrogenase was obtained from an isolate of Escherichia coli. Optimal activity of the NADH dehydrogenase was at 45 °C and pH 7.5, with a K m value for NADH of 10 μM. By combining the NADH dehydrogenase, potassium ferricyanide and laccase, a bi-enzyme system for NAD(+) regeneration was established. The system is attractive in that the O2 consumed by laccase is from air and the sole byproduct of the reaction is water. During the reaction process, 10 mM NAD(+) was transformed from NADH in less than 2 h under the condition of 0.5 U NADH dehydrogenase, 0.5 U laccase, 0.1 mM potassium ferricyanide at pH 5.6, 30 °C CONCLUSION: The bi-enzyme system employed the NADH-ferricyanide dehydrogenase and laccase as catalysts, and potassium ferricyanide as redox mediator, is a promising alternative for NAD(+) regeneration.

  8. Electrocatalytic reduction of nitrite using ferricyanide; Application for its simple and selective determination

    International Nuclear Information System (INIS)

    Ojani, Reza; Raoof, Jahan-Bakhsh; Zarei, Ebrahim

    2006-01-01

    The electrocatalytic reduction of nitrite has been studied by ferricyanide at the surface of carbon paste electrode. Cyclic voltammetry and chronoamperometry techniques were used to investigate the suitability of ferricyanide as a mediator for the electrocatalytic nitrite reduction in aqueous solution with various pH. Results showed that pH 0.00 is the most suitable for this purpose. In the optimum pH, the electrocatalytic ability about 700 mV can be seen and the homogeneous second-order rate constant (k s ) for nitrite coupled catalytically to ferricyanide was calculated 2.75 x 10 3 M -1 s -1 by Nicholson-Shain method. Also, electron transfer coefficients (α) for ferricyanide was determined by using various electrochemical approaches such as Tafel plot in the absence and presence of nitrite 0.556 and 0.760, respectively. The catalytic reduction peak current was linearly dependent on the nitrite concentration and the linearity range obtained was 5.00 x 10 -5 to 1.00 x 10 -3 M. Detection limit has been found to be 2.63 x 10 -5 M (2σ). This method has been applied as a selective, simple and precise method for determination of nitrite in real sample

  9. Towards Extrusion of Ionomers to Process Fuel Cell Membranes

    Directory of Open Access Journals (Sweden)

    Jean-Yves Sanchez

    2011-07-01

    Full Text Available While Proton Exchange Membrane Fuel Cell (PEMFC membranes are currently prepared by film casting, this paper demonstrates the feasibility of extrusion, a solvent-free alternative process. Thanks to water-soluble process-aid plasticizers, duly selected, it was possible to extrude acidic and alkaline polysulfone ionomers. Additionally, the feasibility to extrude composites was demonstrated. The impact of the plasticizers on the melt viscosity was investigated. Following the extrusion, the plasticizers were fully removed in water. The extrusion was found to impact neither on the ionomer chains, nor on the performances of the membrane. This environmentally friendly process was successfully validated for a variety of high performance ionomers.

  10. Effects of pH on the degradation of aqueous ferricyanide by photolysis and photocatalysis under solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Arellano, Carlos Antonio Pineda [Posgrado en Ingenieria y Ciencias Aplicadas, FCQI-CIICAp, Universidad Autonoma del Estado de Morelos (Mexico); Martinez, Susana Silva [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos 62209 (Mexico)

    2010-02-15

    Results of voltammetry and spectrophotometry analyses revealed that upon sunlight exposure, the conversion of ferricyanide to ferrocyanide, and the reverse reaction, in the absence and in the presence of TiO{sub 2} catalyst depends strongly on pH. Thus, the pH of the solution dictates whether the redox reactions will proceed under illumination. In addition, the extent of the heterogeneous photocatalytic degradation of ferricyanide was influenced by pH. The initial concentration of ferricyanide did not affect its degradation. (author)

  11. Selective cation-exchange separation of cesium(I) on chromium ferricyanide gel

    International Nuclear Information System (INIS)

    Jain, A.K.; Agrawal, S.; Singh, R.P.

    1980-01-01

    The removal of 137 Cs from liquid streams of nuclear power plants and from processed radioactive waste of nuclear fission has received increasing attention from ion-exchange chemists. A desirable exchanger (adsorbent) for 137 Cs removal is one which can adsorb it significantly and selectively in the presence of appreciable amounts (approx. 2molL -1 ) of Na + , NH 4 + , and H + . This paper deals with the exchange properties of the inorganic exchanger, chromium ferricyanide gel (CFiC). The stability of the gel in both acid and salt solutions and its high specificity for cesium are responsible for its good scavanger properties in removing long lived 137 Cs from radioactive waste. The chromium ferricyanide exchanger is highly selective for monovalent cations, the order being Ag + >Tl + >Cs + >Rb + >K + >Na + . It does not adsorb any bivalent, trivalent, and tetravalent ions even when present in trace amounts. (2 figures, 3 tables)

  12. Application and equivalence assessment for determining ethamsylate by using potassium ferricyanide as spectroscopic probe reagent.

    Science.gov (United States)

    Liu, Litao; Li, Jing; Li, Quanmin

    2010-01-01

    In this paper, a novel method has been established to determine ethamsylate using potassium ferricyanide as a spectroscopic probe reagent. It has been demonstrated that Fe(III) is reduced to Fe(II) by ethamsylate, and that the formed Fe(II) reacts with potassium ferricyanide to form soluble prussian blue (KFe(III)[Fe(II)(CN)(6)]). Beer's law is obeyed in the range of 0.16 - 24.00 µg mL(-1) with the molar absorption coefficient of 2.1 × 10(4) L mol(-1) cm(-1). The detection limit (3 σ/k) is 0.11 µg mL(-1). This method has been successfully applied to determine ethamsylate in pharmaceutical and serum samples with satisfactory results, and presented quite satisfactory credibility during method equivalence assessment.

  13. Aqueous dye-sensitized solar cell electrolytes based on the ferricyanide-ferrocyanide redox couple

    Energy Technology Data Exchange (ETDEWEB)

    Daeneke, Torben; Spiccia, Leone [School of Chemistry and ARC Centre of Excellence for Electromaterials Science, Monash University, Victoria (Australia); Uemura, Yu.; Koumura, Nagatoshi [Research Institute for Photovoltaic Technology, National Institute of Advanced Industrial Science and Technology AIST, Ibaraki (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki (Japan); Duffy, Noel W. [CSIRO Energy Technology, Clayton, VIC (Australia); Mozer, Attila J. [School of Chemistry and ARC Centre of Excellence for Electromaterials Science, University of Wollongong, NSW (Australia); Bach, Udo [Department of Materials Engineering, Monash University, Victoria (Australia)

    2012-03-02

    Solar energy conversion efficiencies of over 4% have been achieved in DSCs constructed with aqueous electrolytes based on the ferricyanide-ferrocyanide redox couple, thereby avoiding the use of expensive, flammable and toxic solvents. This paradigm shift was made possible by the use of a hydrophobic organic carbazole dye. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Embedded Multimaterial Extrusion Bioprinting

    NARCIS (Netherlands)

    Rocca, Marco; Fragasso, Alessio; Liu, Wanjun; Heinrich, Marcel A.; Zhang, Yu Shrike

    Embedded extrusion bioprinting allows for the generation of complex structures that otherwise cannot be achieved with conventional layer-by-layer deposition from the bottom, by overcoming the limits imposed by gravitational force. By taking advantage of a hydrogel bath, serving as a sacrificial

  15. Metal extrusion using hydrostatic pressures

    International Nuclear Information System (INIS)

    Sauve, Ch.

    1965-01-01

    The main problems connected with the deformation of metals due to extrusion are described. A method is put forward for calculating the rational rate of percentage deformation in the case of bar extrusion using a cylindrical container; reference is made to previous work on extrusion using a hydrostatic pressure with or without back-pressure. An extrusion process is described using hydrostatic pressure, without back-pressure, and using the lubricant for transmitting the thrust. This process has been used for eight years by the C.E.A. for the extrusion of a very wide range of metals, from beryllium to uranium and including steels; it leads to excellent surface textures. A very fine crystallization can be obtained on extruded products when the rate of extrusion is very low. There appears to be nothing against the use of high extrusion rates using this method. (author) [fr

  16. Glycerophosphate-dependent hydrogen peroxide production by brown adipose tissue mitochondria and its activation by ferricyanide

    Czech Academy of Sciences Publication Activity Database

    Drahota, Zdeněk; Chowdhury, Subir; Floryk, Daniel; Mráček, Tomáš; Wilhelm, J.; Rauchová, Hana; Lenaz, G.; Houštěk, Josef

    2002-01-01

    Roč. 34, č. 2 (2002), s. 105-113 ISSN 0145-479X R&D Projects: GA MŠk(CZ) OC 918.50; GA ČR(CZ) GA303/00/1658; GA MŠk(CZ) LN00A079 Grant - others:GA UK(CZ) 70/99 Institutional research plan: CEZ:AV0Z5011922 Keywords : ferricyanide * brown adipose tissue * mitochondrial glycerophosphate dehydrogenase Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 2.920, year: 2002

  17. Study of dynamics of glucose-glucose oxidase-ferricyanide reaction

    Science.gov (United States)

    Nováková, A.; Schreiberová, L.; Schreiber, I.

    2011-12-01

    This work is focused on dynamics of the glucose-glucose oxidase-ferricyanide enzymatic reaction with or without sodium hydroxide in a continuous-flow stirred tank reactor (CSTR) and in a batch reactor. This reaction exhibits pH-variations having autocatalytic character and is reported to provide nonlinear dynamic behavior (bistability, excitability). The dynamical behavior of the reaction was examined within a wide range of inlet parameters. The main inlet parameters were the ratio of concentrations of sodium hydroxide and ferricyanide and the flow rate. In a batch reactor we observed an autocatalytic drop of pH from slightly basic to medium acidic values. In a CSTR our aim was to find bistability in the presence of sodium hydroxide. However, only a basic steady state was found. In order to reach an acidic steady state, we investigated the system in the absence of sodium hydroxide. Under these conditions the transition from the basic to the acidic steady state was observed when inlet glucose concentration was increased.

  18. An amperometric biosensor for glucose detection from glucose oxidase immobilized in polyaniline-polyvinylsulfonate-potassium ferricyanide film.

    Science.gov (United States)

    Arslan, Fatma; Beskan, Umut

    2014-08-01

    In this study, a novel amperometric glucose biosensor with immobilization of glucose oxidase on electrochemically polymerized polyaniline-polyvinylsulphonate-potassium ferricyanide (Pani-Pvs-Fc) films has been accomplished via the entrapment technique. Potassium ferricyanide was used as the mediator. Determination of glucose was carried out by the oxidation of potassium ferrocyanide at 0.3 V vs. Ag/AgCl. The effects of pH and temperature were investigated, and the optimum pH value was found to be 7.5. The storage stability and the operational stability of the enzyme electrode were also studied.

  19. Embedded Multimaterial Extrusion Bioprinting.

    Science.gov (United States)

    Rocca, Marco; Fragasso, Alessio; Liu, Wanjun; Heinrich, Marcel A; Zhang, Yu Shrike

    2018-04-01

    Embedded extrusion bioprinting allows for the generation of complex structures that otherwise cannot be achieved with conventional layer-by-layer deposition from the bottom, by overcoming the limits imposed by gravitational force. By taking advantage of a hydrogel bath, serving as a sacrificial printing environment, it is feasible to extrude a bioink in freeform until the entire structure is deposited and crosslinked. The bioprinted structure can be subsequently released from the supporting hydrogel and used for further applications. Combining this advanced three-dimensional (3D) bioprinting technique with a multimaterial extrusion printhead setup enables the fabrication of complex volumetric structures built from multiple bioinks. The work described in this paper focuses on the optimization of the experimental setup and proposes a workflow to automate the bioprinting process, resulting in a fast and efficient conversion of a virtual 3D model into a physical, extruded structure in freeform using the multimaterial embedded bioprinting system. It is anticipated that further development of this technology will likely lead to widespread applications in areas such as tissue engineering, pharmaceutical testing, and organs-on-chips.

  20. How extrusion shapes food processing

    Science.gov (United States)

    This month's column will explore food extrusion. Extrusion is one of the most commonly used food manufacturing processes. Its versatility enables production of a diverse array of food products. This column will review the basic principles and provide an overview of applications. I would like to ...

  1. Hydrostatic extrusion of magnesium alloys

    NARCIS (Netherlands)

    Sillekens, W.H.; Bohlen, J.

    2012-01-01

    This chapter deals with the capabilities and limitations of the hydrostatic extrusion process for the manufacturing of magnesium alloy sections. Firstly, the process basics for the hydrostatic extrusion of materials in general and of magnesium in particular are introduced. Next, some recent research

  2. Redox Titration of Ferricyanide to Ferrocyanide with Ascorbic Acid: Illustrating the Nernst Equation and Beer-Lambert Law

    Science.gov (United States)

    Huang, Tina H.; Salter, Gail; Kahn, Sarah L.; Gindt, Yvonne M.

    2007-01-01

    We have developed a simple, resilient experiment that illustrates the Nernst equation and Beer-Lambert law for our second-semester general chemistry students. In the experiment, the students monitor the reduction of ferricyanide ion, [Fe(CN)[subscript 6

  3. Rapid Continuous Multimaterial Extrusion Bioprinting

    NARCIS (Netherlands)

    Liu, Wanjun; Zhang, Yu Shrike; Heinrich, Marcel A.; De Ferrari, F; Jang, HL; Bakht, SM; Alvarez, MM; Yang, J; Li, YC; Trujillo-de Stantiago, G; Miri, AK; Zhu, K; Khoshakhlagh, P; Prakash, G; Cheng, H; Guan, X; Zhong, Z; Ju, J; Zhu, GH; Jin, X; Ryon Shin, Su; Dokmeci, M.R.; Khademhosseini, Ali

    The development of a multimaterial extrusion bioprinting platform is reported. This platform is capable of depositing multiple coded bioinks in a continuous manner with fast and smooth switching among different reservoirs for rapid fabrication of complex constructs, through digitally controlled

  4. Paper-based chromatic toxicity bioassay by analysis of bacterial ferricyanide reduction.

    Science.gov (United States)

    Pujol-Vila, F; Vigués, N; Guerrero-Navarro, A; Jiménez, S; Gómez, D; Fernández, M; Bori, J; Vallès, B; Riva, M C; Muñoz-Berbel, X; Mas, J

    2016-03-03

    Water quality assessment requires a continuous and strict analysis of samples to guarantee compliance with established standards. Nowadays, the increasing number of pollutants and their synergistic effects lead to the development general toxicity bioassays capable to analyse water pollution as a whole. Current general toxicity methods, e.g. Microtox(®), rely on long operation protocols, the use of complex and expensive instrumentation and sample pre-treatment, which should be transported to the laboratory for analysis. These requirements delay sample analysis and hence, the response to avoid an environmental catastrophe. In an attempt to solve it, a fast (15 min) and low-cost toxicity bioassay based on the chromatic changes associated to bacterial ferricyanide reduction is here presented. E. coli cells (used as model bacteria) were stably trapped on low-cost paper matrices (cellulose-based paper discs, PDs) and remained viable for long times (1 month at -20 °C). Apart from bacterial carrier, paper matrices also acted as a fluidic element, allowing fluid management without the need of external pumps. Bioassay evaluation was performed using copper as model toxic agent. Chromatic changes associated to bacterial ferricyanide reduction were determined by three different transduction methods, i.e. (i) optical reflectometry (as reference method), (ii) image analysis and (iii) visual inspection. In all cases, bioassay results (in terms of half maximal effective concentrations, EC50) were in agreement with already reported data, confirming the good performance of the bioassay. The validation of the bioassay was performed by analysis of real samples from natural sources, which were analysed and compared with a reference method (i.e. Microtox). Obtained results showed agreement for about 70% of toxic samples and 80% of non-toxic samples, which may validate the use of this simple and quick protocol in the determination of general toxicity. The minimum instrumentation

  5. Zinc oxide-potassium ferricyanide composite thin film matrix for biosensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Shibu [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Arya, Sunil K. [Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, New Delhi 110012 (India); Singh, S.P. [Department of Engineering Science and Materials, University of Puerto Rico, Mayaguez, PR 00680 (United States); Sreenivas, K. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Malhotra, B.D. [Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, New Delhi 110012 (India); Gupta, Vinay, E-mail: vgupta@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2009-10-27

    Thin film of zinc oxide-potassium ferricyanide (ZnO-KFCN) composite has been deposited on indium tin oxide (ITO) coated corning glass using pulsed laser deposition (PLD). The composite thin film electrode has been exploited for amperometric biosensing in a mediator-free electrolyte. The composite matrix has the advantages of high iso-electric point of ZnO along with enhanced electron communication due to the presence of a redox species in the matrix itself. Glucose oxidase (GOx) has been chosen as the model enzyme for studying the application of the developed matrix to biosensing. The sensing response of the bio-electrode, GOx/ZnO-KFCN/ITO/glass, towards glucose was studied using cylic voltammetry (CV) and photometric assay. The bio-electrode exhibits good linearity from 2.78 mM to 11.11 mM glucose concentration. The low value of Michaelis-Menten constant (1.69 mM) indicates an enhanced affinity of the immobilized enzyme towards its substrate. A quassireversible system is obtained with the composite matrix. The results confirm promising application of the ZnO-KFCN composite matrix for amperometric biosensing applications in a mediator-less electrolyte that could lead to the realization of an integrated lab-on-chip device.

  6. Zinc oxide-potassium ferricyanide composite thin film matrix for biosensing applications

    International Nuclear Information System (INIS)

    Saha, Shibu; Arya, Sunil K.; Singh, S.P.; Sreenivas, K.; Malhotra, B.D.; Gupta, Vinay

    2009-01-01

    Thin film of zinc oxide-potassium ferricyanide (ZnO-KFCN) composite has been deposited on indium tin oxide (ITO) coated corning glass using pulsed laser deposition (PLD). The composite thin film electrode has been exploited for amperometric biosensing in a mediator-free electrolyte. The composite matrix has the advantages of high iso-electric point of ZnO along with enhanced electron communication due to the presence of a redox species in the matrix itself. Glucose oxidase (GOx) has been chosen as the model enzyme for studying the application of the developed matrix to biosensing. The sensing response of the bio-electrode, GOx/ZnO-KFCN/ITO/glass, towards glucose was studied using cylic voltammetry (CV) and photometric assay. The bio-electrode exhibits good linearity from 2.78 mM to 11.11 mM glucose concentration. The low value of Michaelis-Menten constant (1.69 mM) indicates an enhanced affinity of the immobilized enzyme towards its substrate. A quassireversible system is obtained with the composite matrix. The results confirm promising application of the ZnO-KFCN composite matrix for amperometric biosensing applications in a mediator-less electrolyte that could lead to the realization of an integrated lab-on-chip device.

  7. Machine for extrusion under vacuum

    International Nuclear Information System (INIS)

    Gautier, A.

    1958-01-01

    In a study of the behaviour of easily oxidised metals during the extrusion process, it is first necessary to find an effective mean of fighting corrosion, since this, even when barely detectable, has an important influence on the validity of the results recorded. The neatest and also the most efficient of all the methods tried consists in creating a vacuum around the test piece. Working on this principle, and at the same time respecting the conventional rules for extrusion tests (loading the sample after stabilisation at the testing temperature, differential measurements of lengthening, etc.) we found it necessary to construct an original machine. (author) [fr

  8. Extrusion processing : effects on dry canine diets

    NARCIS (Netherlands)

    Tran, Q.D.

    2008-01-01

    Keywords: Extrusion, Canine diet, Protein, Lysine, Starch gelatinization, Palatability, Drying.

    Extrusion cooking is a useful and economical tool for processing animal feed. This high temperature, short time processing technology causes chemical and physical changes that alter the

  9. The reactive extrusion of thermoplastic polyurethane

    NARCIS (Netherlands)

    Verhoeven, Vincent Wilhelmus Andreas

    2006-01-01

    The objective of this thesis was to increase the understanding of the reactive extrusion of thermoplastic polyurethane. Overall, several issues were identified: • Using a relative simple extrusion model, the reactive extrusion process can be described. This model can be used to further investigate

  10. 75 FR 80527 - Aluminum Extrusions From China

    Science.gov (United States)

    2010-12-22

    ...)] Aluminum Extrusions From China AGENCY: United States International Trade Commission. ACTION: Scheduling of... of subsidized and less-than-fair-value imports from China of aluminum extrusions, primarily provided... contained in Aluminum Extrusions From the People's Republic of China: Notice of Preliminary Determination of...

  11. Spectrophotometric determination of dopamine hydrochloride in pharmaceutical, banana, urine and serum samples by potassium ferricyanide-Fe(III).

    Science.gov (United States)

    Guo, Li; Zhang, Yan; Li, Quanmin

    2009-12-01

    In the present work, we developed a simple, sensitive and inexpensive method to determine dopamine hydrochloride using potassium ferricyanide-Fe(III) by spectrophotometry. The results show that Fe(III) is deoxidized to Fe(II) by dopamine hydrochloride at pH 4.0, and then Fe(II) reacts with potassium ferricyanide to form a soluble prussian blue (KFe(III)[Fe(II)(CN)6]). The absorbance of this product was monitored over time using a spectrophotometer at an absorption maximum of 735 nm, and the amount of dopamine hydrochloride could be calculated based on the absorbance. A good linear relationship of the concentration of dopamine hydrochloride versus absorbance was observed, and a linear regression equation of A = 0.022 + 0.16921C (microg mL(-1)) was obtained. Moreover, the apparent molar absorption coefficient for the indirect determination of dopamine hydrochloride was 3.2 x 10(4) L mol(-1) cm(-1). This described method has been used to determine dopamine hydrochloride in pharmaceutical, banana, urine and serum samples with satisfactory results.

  12. Etching Behavior of Aluminum Alloy Extrusions

    Science.gov (United States)

    Zhu, Hanliang

    2014-11-01

    The etching treatment is an important process step in influencing the surface quality of anodized aluminum alloy extrusions. The aim of etching is to produce a homogeneously matte surface. However, in the etching process, further surface imperfections can be generated on the extrusion surface due to uneven materials loss from different microstructural components. These surface imperfections formed prior to anodizing can significantly influence the surface quality of the final anodized extrusion products. In this article, various factors that influence the materials loss during alkaline etching of aluminum alloy extrusions are investigated. The influencing variables considered include etching process parameters, Fe-rich particles, Mg-Si precipitates, and extrusion profiles. This study provides a basis for improving the surface quality in industrial extrusion products by optimizing various process parameters.

  13. Effect of extrusion stem speed on extrusion process for a hollow aluminum profile

    International Nuclear Information System (INIS)

    Zhang, Cunsheng; Zhao, Guoqun; Chen, Zhiren; Chen, Hao; Kou, Fujun

    2012-01-01

    Highlights: ► Extrusion stem speed has significant effects on extrusion process. ► An optimum value of stem speed exists for uniform metal flow distribution. ► A higher stem speed leads to a higher required extrusion force. ► A high stem speed leads to an improved welding quality of aluminum profile. - Abstract: Extrusion stem speed is one of important process parameters during aluminum profile extrusion, which directly influences the profile quality and choice of extrusion equipments. In this paper, the extrusion process of a thin-walled hollow aluminum profile was simulated by means of the HyperXtrude commercial software. Through a serial of numerical simulation, the effects of stem speed on extrusion process, such as metal flow behavior at die exit, temperature distribution, extrusion force, and welding pressure, have been investigated. The numerical results showed that there existed an optimum value of stem speed for flow velocity distribution. With the increasing stem speed, the temperature of the extrudate and required extrusion force increased, and the welding quality of extrudate would be improved. Through comprehensive comparison and analysis, the appropriate stem speed could be determined for practical extrusion production. Thus, the research results could give effective guideline for determining initial billet and die temperature and choosing the proper extrusion press in aluminum profile industry.

  14. Aluminum extrusion with a deformable die

    NARCIS (Netherlands)

    Assaad, W.

    2010-01-01

    Aluminum extrusion process is one of metal forming processes. In aluminum extrusion, a work-piece (billet) is pressed through a die with an opening that closely resembles a desired shape of a profile. By this process, long profiles with an enormous variety of cross-sections can be produced to

  15. Proton-proton bremsstrahlung

    International Nuclear Information System (INIS)

    Fearing, H.W.

    1990-01-01

    We summarize some of the information about the nucleon-nucleon force which has been obtained by comparing recent calculations of proton-proton bremsstrahlung with cross section and analyzing power data from the new TRIUMF bremsstrahlung experiment. Some comments are made as to how these results can be extended to neutron-proton bremsstrahlung. (Author) 17 refs., 6 figs

  16. Electroless oxidation of diamond surfaces in ceric and ferricyanide solutions: An easy way to produce 'C-O' functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Simon, N., E-mail: nathalie.simon@uvsq.f [Institut Lavoisier de Versailles, UMR 8180, Universite de Versailles-St-Quentin en Yvelines, 45 avenue des Etats Unis, 78000 Versailles (France); Charrier, G.; Etcheberry, A. [Institut Lavoisier de Versailles, UMR 8180, Universite de Versailles-St-Quentin en Yvelines, 45 avenue des Etats Unis, 78000 Versailles (France)

    2010-08-01

    Despite many works are devoted to oxidation of diamond surfaces, it is still a challenge, to successfully produce well defined 'C-O' functions, particularly for functionalization purposes. In this paper we describe and compare, for the first time, the 'electroless' oxidation of as-deposited polycrystalline boron-doped diamond (BDD) films in ceric and ferricyanide solutions at room temperature. Both reactions efficiently generate oxygen functionalities on BDD surface. While a higher amount of 'C-O' moieties is produced with Ce{sup 4+} as oxidizing agent, the use of ferricyanide specie seems the most interesting to specifically generate hydroxyl groups. Additionally, this easy to perform oxidative method appears not damaging for diamond surfaces and adapted to conductive or non-conductive materials. The resulting surfaces were characterized using X-ray photoelectron spectroscopy, contact angle and capacitance-voltage analysis.

  17. Determination of the Michaelis-Menten kinetics and the genes expression involved in phyto-degradation of cyanide and ferri-cyanide.

    Science.gov (United States)

    Yu, Xiao-Zhang; Zhang, Xue-Hong

    2016-07-01

    Hydroponic experiments were conducted with different species of plants (rice, maize, soybean and willow) exposed to ferri-cyanide to investigate the half-saturation constant (K M ) and the maximal metabolic capacity (v max ) involved in phyto-assimilation. Three varieties for each testing species were collected from different origins. Measured concentrations show that the uptake rates responded biphasically to ferri-cyanide treatments by showing increases linearly at low and almost constant at high concentrations from all treatments, indicating that phyto-assimilation of ferri-cyanide followed the Michaelis-Menten kinetics. Using non-linear regression, the highest v max was by rice, followed by willows. The lowest v max was found for soybean. All plants, except maize (DY26) and rice (XJ12), had a similar K M value, suggesting the same enzyme was active in phyto-assimilation of ferri-cyanide. Transcript level, by real-time quantitative PCR, of enzymes involved in degradation of cyanides showed that the analyzed genes were differently expressed during different cyanides exposure. The expression of CAS and ST genes responded positively to KCN exposure, suggesting that β-CAS and ST pathways were two possible pathways for cyanide detoxification in rice. The transcript level of NIT and ASPNASE genes also showed a remarkable up-regulation to KCN, implying the contribution to the pool of amino acid aspartate, which is an end product of CN metabolism. Up-regulation of GS genes suggests that acquisition of ammonium released from cyanide degradation may be an additional nitrogen source for plant nutrition. Results also revealed that the expressions of these genes, except for GS, were relatively constant during iron cyanide exposure, suggesting that they are likely metabolized by plants through a non-defined pathway rather than the β-CAS pathway.

  18. Evaluation of Extrusion Technique for Nanosizing Liposomes

    Directory of Open Access Journals (Sweden)

    Sandy Gim Ming Ong

    2016-12-01

    Full Text Available The aim of the present study was to study the efficiency of different techniques used for nanosizing liposomes. Further, the aim was also to evaluate the effect of process parameters of extrusion techniques used for nanosizing liposomes on the size and size distribution of the resultant liposomes. To compare the efficiency of different nanosizing techniques, the following techniques were used to nanosize the liposomes: extrusion, ultrasonication, freeze-thaw sonication (FTS, sonication and homogenization. The extrusion technique was found to be the most efficient, followed by FTS, ultrasonication, sonication and homogenization. The extruder used in the present study was fabricated using readily available and relatively inexpensive apparatus. Process parameters were varied in extrusion technique to study their effect on the size and size distribution of extruded liposomes. The results obtained indicated that increase in the flow rate of the extrusion process decreased the size of extruded liposomes however the size homogeneity was negatively impacted. Furthermore, the liposome size and distribution was found to decline with decreasing membrane pore size. It was found that by extruding through a filter with a pore size of 0.2 µm and above, the liposomes produced were smaller than the pore size, whereas, when they were extruded through a filter with a pore size of less than 0.2 µm the resultant liposomes were slightly bigger than the nominal pore size. Besides that, increment of extrusion temperature above transition temperature of the pro-liposome had no effect on the size and size distribution of the extruded liposomes. In conclusion, the extrusion technique was reproducible and effective among all the methods evaluated. Furthermore, processing parameters used in extrusion technique would affect the size and size distribution of liposomes. Therefore, the process parameters need to be optimized to obtain a desirable size range and homogeneity

  19. Extrusion and Extruded Products: Changes in Quality Attributes as Affected by Extrusion Process Parameters: A Review.

    Science.gov (United States)

    Alam, M S; Kaur, Jasmeen; Khaira, Harjot; Gupta, Kalika

    2016-01-01

    Extrusion of foods is an emerging technology for the food industries to process and market a large number of products of varying size, shape, texture, and taste. Extrusion cooking technology has led to production of wide variety of products like pasta, breakfast cereals, bread crumbs, biscuits, crackers, croutons, baby foods, snack foods, confectionery items, chewing gum, texturized vegetable protein (TVP), modified starch, pet foods, dried soups, dry beverage mixes etc. The functional properties of extruded foods plays an important role for their acceptability which include water absorption, water solubility, oil absorption indexes, expansion index, bulk density and viscosity of the dough. The aim of this review is to give the detailed outlines about the potential of extrusion technology in development of different types of products and the role of extrusion-operating conditions and their effect on product development resulting in quality changes i.e physical, chemical, and nutritional, experienced during the extrusion process.

  20. Extrusion product defects: a statistical study

    International Nuclear Information System (INIS)

    Qamar, S.Z.; Arif, A.F.M.; Sheikh, A.K.

    2003-01-01

    In any manufacturing environment, defects resulting in rework or rejection are directly related to product cost and quality, and indirectly linked with process, tooling and product design. An analysis of product defects is therefore integral to any attempt at improving productivity, efficiency and quality. Commercial aluminum extrusion is generally a hot working process and consists of a series of different but integrated operations: billet preheating and sizing, die set and container preheating, billet loading and deformation, product sizing and stretching/roll-correction, age hardening, and painting/anodizing. Product defects can be traced back to problems in billet material and preparation, die and die set design and maintenance, process variable aberrations (ram speed, extrusion pressure, container temperature, etc), and post-extrusion treatment (age hardening, painting/anodizing, etc). The current paper attempts to analyze statistically the product defects commonly encountered in a commercial hot aluminum extrusion setup. Real-world rejection data, covering a period of nine years, has been researched and collected from a local structural aluminum extrusion facility. Rejection probabilities have been calculated for all the defects studied. The nine-year rejection data have been statistically analyzed on the basis of (i) an overall breakdown of defects, (ii) year-wise rejection behavior, (iii) breakdown of defects in each of three cost centers: press, anodizing, and painting. (author)

  1. Spectrophotometric determination of ethionamide in pharmaceuticals using Folin–Ciocalteu reagent and iron(III-ferricyanide as chromogenic agents

    Directory of Open Access Journals (Sweden)

    Nagib A.S. Qarah

    2017-09-01

    Full Text Available Two simple and sensitive spectrophotometric methods are described for the determination of ethionamide (ETM in pure drug and tablets. The first method is based on the reduction of Folin–Ciocalteu (F–C reagent by ETM in sodium carbonate medium to form a blue coloured complex, which was measured at 760 nm (Molybdenum–tungsten blue method. In the second method (Prussian blue method, iron(III was reduced to iron(II by ETM in HCl medium, in which iron(II was complexed with ferricyanide, and the resulting Prussian blue was also measured at 760 nm. The absorbance measured in each case was related to the ETM concentration. The experimental conditions were carefully studied and optimised. Beer's law was obeyed in concentration ranges of 1–40 μg/ml and 0.2–4.0 μg/ml with the Molybdenum-tungsten blue method and the Prussian blue method, respectively, with corresponding molar absorptivity values of 5.72 × 103 and 3.18 × 104 l/(mol·cm. The limits of detection (LOD and quantification (LOQ were 0.09 and 0.27 μg/ml for the Molybdenum-tungsten blue method and 0.01 and 0.04 μg/ml for the Prussian blue method. Within-day and between-day relative standard deviations (%RSD at three different concentration levels were <3%, and the respective relative errors (%RE were ≤2%, implying good accuracy and precision of the methods. The proposed methods were successfully applied to the determination of ETM in bulk powder and tablets, and the results demonstrated that the methods were as accurate and precise as the official method.

  2. IMPORTANT DEGRADATIONS IN POLYETHYLENE TERAPHTALATE EXTRUSION PROCESS

    Directory of Open Access Journals (Sweden)

    Şule ALTUN

    2003-01-01

    Full Text Available Polyethylene terephthalate (PET is one of the most used thermo-plastic polymers. The total consumption of PET has been about 30 million tons in the year 2000. Polyester fibers constitute about 60 % of total synthetic fibers consumption. During extrusion, PET polymer is faced to thermal, thermo-oxidative and hydrolytic degradation, which result in severe reduction in its molecular weight, thereby adversely affecting its subsequent melt processability. Therefore, it is essential to understand degradation processes of PET during melt extrusion.

  3. Towards predictive control of extrusion weld seams: an integrated approach

    NARCIS (Netherlands)

    Bakker, A.J. den; Werkhoven, R.J.; Sillekens, W.H.; Katgerman, L.

    2010-01-01

    Longitudinal weld seams are an intrinsic feature in hollow extrusions produced with porthole dies. The formation of longitudinal weld seams is a solid bonding process, controlled by the local conditions in the extrusion die. Being the weakest areas within the extrusion cross section, it is desirable

  4. Chain heterogeneity as demonstrated by the ferricyanide oxidation of the one-site reduced bovine methemoglobin. Progress report, December 1, 1977--November 30, 1978

    International Nuclear Information System (INIS)

    Ilan, Y.A.; Czapski, G.

    1978-01-01

    With the pulse radiolysis technique, a single chain of tetrameric bovine methemoglobin (α 2 /sup III/β 2 /sup III/) is reduced, producing a mixture of valence hybrids consisting of α/sup III/α/sup II/β 2 /sup III/ and α 2 /sup III/β/sup III/β/sup II/. The oxidation of these partially reduced hemoglobins with ferricyanide was studied. It was found that the rate of oxidation of one of them proceeds 6 to 11 times faster than the other. It is suggested that the fast reacting valence hybrid contains reduced alpha chains

  5. Oxidation reaction of ferrocytochrome C by ferricyanide as a probe to effects of alcohols on structure and reactivity of the protein. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Ilan, Y.; Shafferman, A.

    1977-05-01

    Results are reported on the effect of ethanol on the oxidation of ferrocytochrome c by ferricyanide and its cumulative effect with pH and temperature, on structure and spectra of cytochrome c. It is concluded that low concentrations of alcohols which do not change dramatically the structure and physical properties of cytochrome c, but produce changes in the structure of water, cause small changes in the structure of the protein. This is manifested by the shift in the pKa, and also in the retardation of the redox reactions. This indicates that water molecules participate in the reaction complex of cytochrome c with its redox substrates. (DLC)

  6. Friction phenomena in hydrostatic extrusion of magnesium

    NARCIS (Netherlands)

    Moodij, Ellen

    2014-01-01

    When magnesium is hydrostatically extruded an inconsistent and sometimes bad surface quality is encountered. In hydrostatic extrusion the billet is surrounded by a lubricant, usually castor oil. The required pressure to deform the material is applied onto this lubricant and not directly to the

  7. Functionality of extrusion--texturized whey proteins.

    Science.gov (United States)

    Onwulata, C I; Konstance, R P; Cooke, P H; Farrell, H M

    2003-11-01

    Whey, a byproduct of the cheesemaking process, is concentrated by processors to make whey protein concentrates (WPC) and isolates (WPI). Only 50% of whey proteins are used in foods. In order to increase their usage, texturizing WPC, WPI, and whey albumin is proposed to create ingredients with new functionality. Extrusion processing texturizes globular proteins by shearing and stretching them into aligned or entangled fibrous bundles. In this study, WPC, WPI, and whey albumin were extruded in a twin screw extruder at approximately 38% moisture content (15.2 ml/min, feed rate 25 g/min) and, at different extrusion cook temperatures, at the same temperature for the last four zones before the die (35, 50, 75, and 100 degrees C, respectively). Protein solubility, gelation, foaming, and digestibility were determined in extrudates. Degree of extrusion-induced insolubility (denaturation) or texturization, determined by lack of solubility at pH 7 for WPI, increased from 30 to 60, 85, and 95% for the four temperature conditions 35, 50, 75, and 100 degrees C, respectively. Gel strength of extruded isolates increased initially 115% (35 degrees C) and 145% (50 degrees C), but gel strength was lost at 75 and 100 degrees C. Denaturation at these melt temperatures had minimal effect on foaming and digestibility. Varying extrusion cook temperature allowed a new controlled rate of denaturation, indicating that a texturized ingredient with a predetermined functionality based on degree of denaturation can be created.

  8. Root resorption after orthodontic intrusion and extrusion:.

    NARCIS (Netherlands)

    Han, G.; Huang, S.; Hoff, J.W. Von den; Zeng, X.; Kuijpers-Jagtman, A.M.

    2005-01-01

    The aim of this investigation was to compare root resorption in the same individual after application of continuous intrusive and extrusive forces. In nine patients (mean age 15.3 years), the maxillary first premolars were randomly intruded or extruded with a continuous force of 100 cN for eight

  9. Hydrodynamic modelling of hydrostatic magnesium extrusion

    NARCIS (Netherlands)

    Moodij, Ellen; de Rooij, Matthias B.; Schipper, Dirk J.

    2006-01-01

    Wilson’s hydrodynamic model of the hydrostatic extrusion process is extended to meet the geometry found on residual billets. The transition from inlet to work zone of the process is not considered sharp as in the model of Wilson but as a rounded edge, modelled by a parabolic function. It is shown

  10. Extrusion of ECC: Recent Developments and Applications

    DEFF Research Database (Denmark)

    Stang, Henrik; Fredslund-Hansen, Helge; Puclin, Tony

    2008-01-01

    process. Extrusion of cementitious (fiber reinforced) materials has proven particularly difficult due to the high inter-particle friction combined with the disastrous effect of static zones in the flow pattern, and to the ease of phase migration or separation. In order to deal with these conflicting...

  11. Physical and mathematical modelling of extrusion processes

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Gronostajski, Z.; Niechajowics, A.

    2000-01-01

    The main objective of the work is to study the extrusion process using physical modelling and to compare the findings of the study with finite element predictions. The possibilities and advantages of the simultaneous application of both of these methods for the analysis of metal forming processes...

  12. Confinement effect of protonation/deprotonation of carboxylic group modified in nanochannel

    International Nuclear Information System (INIS)

    Gao, Hong-Li; Zhang, Hui; Li, Cheng-Yong; Xia, Xing-Hua

    2013-01-01

    Protonation and deprotonation processes are the key step of acid–base reaction and occur in many biological processes. Study on the deprotonation process of molecules and/or functional groups in confined conditions would help us understand the acid–base theory and confinement effect of biomolecules. In this paper, we use a recently established approach to the study of protonation and deprotonation processes of functional groups in porous anodic alumina array nanochannels by measuring the flux of electrochemical active probes (ferricyanide ions) using an Au film electrochemical detector sputtered at the end of nanochannels. The protonation and deprotonation processes of surface functional groups in nanochannels will change the surface charges and in turn modulate the transportation of charged electroactive probes through nanochannels. The titration curve for the deprotonation of carboxylic groups in nanochannel confined conditions is obtained by measuring the current signal of ferricyanide probe flowing through an carboxylic-anchored PAA nanochannels array at different solution pH. Results show that the deprotonation of carboxylic group in nanochannel occurs in one step with a pK 1/2 = 6.2. The present method provides an effective tool to study the deprotonation processes of various functional groups and biomolecules under confined conditions

  13. Optical Measurement Technology For Aluminium Extrusions

    International Nuclear Information System (INIS)

    Moe, Per Thomas; Willa-Hansen, Arnfinn; Stoeren, Sigurd

    2007-01-01

    Optical measurement techniques such as laser scanning, structured light scanning and photogrammetry can be used for accurate shape control for aluminum extrusion and downstream processes. The paper presents the fundamentals of optical shape measurement. Furthermore, it focuses on how full-field in- and off-line shape measurement during pure-bending of aluminum extrusions has been performed with stripe projection (structured light) using white light. Full field shape measurement is difficult to implement industrially, but is very useful as a laboratory tool. For example, it has been clearly shown how moderate internal air pressure (less than 5 bars) can significantly reduce undesirable cross-sectional shape distortions during pure bending, and how buckling of the compressive flange occurs at an early stage. Finally, a stretch-bending set-up with adaptive shape control using internal gas pressure and optical techniques is presented

  14. Osmotic mechanism of the loop extrusion process

    Science.gov (United States)

    Yamamoto, Tetsuya; Schiessel, Helmut

    2017-09-01

    The loop extrusion theory assumes that protein factors, such as cohesin rings, act as molecular motors that extrude chromatin loops. However, recent single molecule experiments have shown that cohesin does not show motor activity. To predict the physical mechanism involved in loop extrusion, we here theoretically analyze the dynamics of cohesin rings on a loop, where a cohesin loader is in the middle and unloaders at the ends. Cohesin monomers bind to the loader rather frequently and cohesin dimers bind to this site only occasionally. Our theory predicts that a cohesin dimer extrudes loops by the osmotic pressure of cohesin monomers on the chromatin fiber between the two connected rings. With this mechanism, the frequency of the interactions between chromatin segments depends on the loading and unloading rates of dimers at the corresponding sites.

  15. Deformations in micro extrusion of metals

    Directory of Open Access Journals (Sweden)

    J. Piwnik

    2010-07-01

    Full Text Available Production technologies of small dimensions metallic elements are known for a long time. They are produced by machining methods:turning, milling, polishing. Recently, methods for manufacturing small details by forming are developed – microforming. This process ischaracterized by the high dimensions accuracy and the surface smoothness of received items and the high production rate. When a forming process is scaled down to micro dimensions, the microstructure of the workpiece, the surface topology of the workpiece and that of the tooling remain unchanged. Size effect is appearing. This paper analyses specifications of a metal extrusion in micro scale. To determine the impact of the tool surface roughness on deformation process the numerical model of roughness as triangle wave were developed. In paper the influence of the wave presence on the material flow is described. Impact of the forming conditions on extrusion forces there is also characterized.

  16. Extrusion Cooking Systems and Textured Vegetable Proteins

    Directory of Open Access Journals (Sweden)

    2015-02-01

    Full Text Available Many fabricated foods are cooked industrially and are given desired textures, shapes, density and rehydration characteristics by an extrusion cooking process. This relatively new process is used in the preparation of “engineered” convenience foods: textured vegetable proteins, breakfast cereals, snacks, infant foods, dry soup mixes, breading, poultry stuffing, croutons, pasta products, beverage powders, hot breakfast gruels, and in the gelatinization of starch or the starchy component of foods.

  17. Back extrusion of vocadlo-type fluids

    Czech Academy of Sciences Publication Activity Database

    David, Jiří; Filip, Petr; Kharlamov, Alexander

    2013-01-01

    Roč. 23, č. 4 (2013), , 45366-1-45366-8 ISSN 1430-6395 R&D Projects: GA ČR GA103/09/2066 Institutional support: RVO:67985874 Keywords : viscosity * back extrusion * annular pumping * vocadlo model * Robertson-stiff model Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.592, year: 2013 http://www.ar.ethz.ch/TMPPDF/23840225602.368/ApplRheol_23_45366.pdf

  18. Bibliography of ceramic extrusion and plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Janney, M.A.; Vance, M.C.; Jordan, A.C.; Kertesz, M.P.

    1987-03-01

    A comprehensive bibliography of ceramic extrusion and plasticity has been compiled. Over 670 abstracts are included covering the period 1932 to 1984. Citations cover a wide range of interests from basic science investigations to engineering ''tips'' and include references to brick and tile, whitewares, technical ceramics, theoretical models, engineering analyses, forming, drying, and raw materials. In addition to the citations, there are numerous indices to make the bibliography easy to use.

  19. Friction measurement and modelling in forward rod extrusion

    DEFF Research Database (Denmark)

    Tan, Xincai; Bay, Niels; Zhang, Wenqi

    2003-01-01

    Forward extrusion is one of the important processes in bulk metal forming. Friction stress can be estimated from the slope of the load±displacement curve at the steady state after the maximum load in a forward extrusion test. In this paper, forward rod extrusion tests are carried out to determine...... as the lubricant. Friction stresses are obtained from measurements of slopes of extrusion pressure±punch travel curves at the steady state stage. Normal pressures are evaluated by using Mohr’s circle, in which shear ¯ow stresses are estimated at the maximum elastic deformation points from the same extrusion...... pressure±punch travel curves. It is found that the relationship between normal pressure and friction stress appears linear, and therefore Coulomb’s friction model ®ts the experimental data very well. Extrusion pressure±punch travel curves before the steady state can be divided into four stages: elastic...

  20. Zr Extrusion – Direct Input for Models & Validation

    Energy Technology Data Exchange (ETDEWEB)

    Cerreta, Ellen Kathleen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-07

    As we examine differences in the high strain rate, high strain tensile response of high purity, highly textured Zr as a function of loading direction, temperature and extrusion velocity with primarily post mortem characterization techniques, we have also developed a technique for characterizing the in-situ extrusion process. This particular measurement is useful for partitioning energy of the system during the extrusion process: friction, kinetic energy, and temperature

  1. CHARACTERIZATION OF NEW TOOL STEEL FOR ALUMINUM EXTRUSION DIES

    OpenAIRE

    José Britti Bacalhau; Fernanda Moreno Rodrigues; Rafael Agnelli Mesquita

    2014-01-01

    Aluminum extrusion dies are an important segment of application on industrial tools steels, which are manufactured in steels based on AISI H13 steel. The main properties of steels applied to extrusion dies are: wear resistance, impact resistance and tempering resistance. The present work discusses the characteristics of a newly developed hot work steel to be used on aluminum extrusion dies. The effects of Cr and Mo contents with respect to tempering resistance and the Al addition ...

  2. MODERNIZATION OF TECHNOLOGICAL LINE FOR CELLULAR EXTRUSION PROCESS

    Directory of Open Access Journals (Sweden)

    Tomasz Garbacz

    2014-06-01

    As part of the modernization of the cellular extrusion technology the extrusion head was designed and made. During the designing and modeling of the head the Auto CAD programe was used. After the prototyping the extrusion head was tested. In the article specification of cellular extrusion process of thermoplastics was presented. In the research, the endothermal chemical blowing agents in amount 1,0% by mass were used. The quantity of used blowing agent has a direct influence on density and structure of the extruded product of modified polymers. However, these properties have further influence on porosity, impact strength, hardness, tensile strength and another.

  3. Proton therapy

    International Nuclear Information System (INIS)

    Smith, Alfred R

    2006-01-01

    Proton therapy has become a subject of considerable interest in the radiation oncology community and it is expected that there will be a substantial growth in proton treatment facilities during the next decade. I was asked to write a historical review of proton therapy based on my personal experiences, which have all occurred in the United States, so therefore I have a somewhat parochial point of view. Space requirements did not permit me to mention all of the existing proton therapy facilities or the names of all of those who have contributed to proton therapy. (review)

  4. Expansion of the whole wheat flour extrusion

    DEFF Research Database (Denmark)

    Cheng, Hongyuan; Friis, Alan

    2008-01-01

    A new model framework is proposed to describe the expansion of extrudates with extruder operating conditions based on dimensional analysis principle. The Buckingham pi dimensional analysis method is applied to form the basic structure of the model from extrusion process operational parameters. Us....... Using the Central Composite Design (CCD) method, whole wheat flour was processed in a twin-screw extruder with 16 trials. The proposed model can well correlate the expansion of the 16 trials using 3 regression parameters. The average deviation of the correlation is 5.9%....

  5. Limits of Lubrication in Backward Can Extrusion

    DEFF Research Database (Denmark)

    Bennani, B; Bay, Niels

    1996-01-01

    The increasing demand in industry to produce cans at low reduction by the backward extrusion process involves better understanding of this process. To analyse the process, numerical simulations by the finite-element method and experimental simulations by physical modelling using wax as a model...... on the reduction, the punch geometry, the workpiece material and the friction factor, in order to avoid the risk of damage caused by stiction of the workpiece material to the punch face. The influence of these different parameters on the distribution of the surface expansion along the inner can wall and bottom...... is determined. The numerical and experimental simulations showed good accordance....

  6. Material testing of copper by extrusion-cutting

    DEFF Research Database (Denmark)

    Segalina, F.; De Chiffre, Leonardo

    2017-01-01

    was developed and implemented on a CNC lathe. An investigation was carried out extrusion-cutting copper discs using high-speed-steel cutting tools at 100 m/min cutting speed. Flow stress values for copper under machining-relevant conditions were obtained from measurement of the extrusion-cutting force...

  7. Extrusion Pretreatment of Lignocellulosic Biomass: A Review

    Directory of Open Access Journals (Sweden)

    Jun Zheng

    2014-10-01

    Full Text Available Bioconversion of lignocellulosic biomass to bioethanol has shown environmental, economic and energetic advantages in comparison to bioethanol produced from sugar or starch. However, the pretreatment process for increasing the enzymatic accessibility and improving the digestibility of cellulose is hindered by many physical-chemical, structural and compositional factors, which make these materials difficult to be used as feedstocks for ethanol production. A wide range of pretreatment methods has been developed to alter or remove structural and compositional impediments to (enzymatic hydrolysis over the last few decades; however, only a few of them can be used at commercial scale due to economic feasibility. This paper will give an overview of extrusion pretreatment for bioethanol production with a special focus on twin-screw extruders. An economic assessment of this pretreatment is also discussed to determine its feasibility for future industrial cellulosic ethanol plant designs.

  8. Turbine airfoil fabricated from tapered extrusions

    Science.gov (United States)

    Marra, John J

    2013-07-16

    An airfoil (30) and fabrication process for turbine blades with cooling channels (26). Tapered tubes (32A-32D) are bonded together in a parallel sequence, forming a leading edge (21), a trailing edge (22), and pressure and suction side walls (23, 24) connected by internal ribs (25). The tapered tubes may be extruded without camber to simplify the extrusion process, then bonded along matching surfaces (34), forming a non-cambered airfoil (28), which may be cambered in a hot forming process and cut (48) to length. The tubes may have tapered walls that are thinner at the blade tip (T1) than at the base (T2), reducing mass. A cap (50) may be attached to the blade tip. A mounting lug (58) may be forged (60) on the airfoil base and then machined, completing the blade for mounting in a turbine rotor disk.

  9. Optimal design of an extrusion process for a hinge bracket

    International Nuclear Information System (INIS)

    Na, Geum Ju; Jang, Myung Geun; Kim, Jong Bong

    2016-01-01

    This study considers process design in forming a hinge bracket. A thin hinge bracket is typically produced by bending a sheet panel or welding a hollow bar into a sheet panel. However, the hinge bracket made by bending or welding does not have sufficient durability in severe operating conditions because of the stress concentration in the bended region or the low corrosion resistance of the welded region. Therefore, this study uses forming to produce the hinge bracket part of a foldable container and to ensure durability in difficult operating conditions. An extrusion process for a T-shaped hinge bracket is studied using finite element analysis. Preliminary analysis shows that a very high forging load is required to form the bracket by forging. Therefore, extrusion is considered as a candidate process. Producing the part through the extrusion process enables many brackets to be made in a single extrusion and through successive cutting of the extruded part, thereby reducing the manufacturing cost. The design focuses on reducing the extrusion load and on ensuring shape accuracy. An initial billet is designed to reduce the extrusion load and to obtain a geometrically accurate part. The extruded part is bent frequently because of uneven material flow. Thus, extrusion die geometries are designed to obtain straight parts.

  10. Optimal design of an extrusion process for a hinge bracket

    Energy Technology Data Exchange (ETDEWEB)

    Na, Geum Ju; Jang, Myung Geun; Kim, Jong Bong [Seoul National University, Seoul (Korea, Republic of)

    2016-05-15

    This study considers process design in forming a hinge bracket. A thin hinge bracket is typically produced by bending a sheet panel or welding a hollow bar into a sheet panel. However, the hinge bracket made by bending or welding does not have sufficient durability in severe operating conditions because of the stress concentration in the bended region or the low corrosion resistance of the welded region. Therefore, this study uses forming to produce the hinge bracket part of a foldable container and to ensure durability in difficult operating conditions. An extrusion process for a T-shaped hinge bracket is studied using finite element analysis. Preliminary analysis shows that a very high forging load is required to form the bracket by forging. Therefore, extrusion is considered as a candidate process. Producing the part through the extrusion process enables many brackets to be made in a single extrusion and through successive cutting of the extruded part, thereby reducing the manufacturing cost. The design focuses on reducing the extrusion load and on ensuring shape accuracy. An initial billet is designed to reduce the extrusion load and to obtain a geometrically accurate part. The extruded part is bent frequently because of uneven material flow. Thus, extrusion die geometries are designed to obtain straight parts.

  11. Fabricating tungsten crucibles by drawing and extrusion spinning

    International Nuclear Information System (INIS)

    Edstrom, C.M.

    1981-01-01

    The fabrication of seamless tungsten crucibles 127-mm ID x 265-mm high x 6.25-mm wall thickness (5 in. x 10 1/2 in. x 1/4 in.) involved three drawing operations and extrusion spinning. The success of the drawing operations came from a combination of low draw reduction percentage, generous draw radii, large punch-to-die clearance, and attention to drawing temperature. The extrusion spinning success related to good drawn-cup-to-spinning-mandrel fit prior to making the extrusion passes, removal of stress risers in the part prior to spinning, and special attention to part and mandrel temperature

  12. Orthodontic extrusion in the transitional dentition: a simple technique.

    LENUS (Irish Health Repository)

    Darby, Laura J

    2009-11-01

    Extrusion of teeth may be necessary in cases of delayed eruption, primary retention, traumatically intruded teeth, or subgingivally fractured teeth. Removable appliances are advantageous, as anchorage is not as tooth-dependant as in the case of fixed appliances. They are cost-effective, operator friendly, and a valuable treatment option to consider in cases where extrusion of anterior teeth in the transitional dentition is necessary. The purpose of this paper was to describe a simple, cost-effective technique using a removable appliance for extrusion of incisors in the transitional dentition.

  13. FEM analysis of hollow hub forming in rolling extrusion process

    Directory of Open Access Journals (Sweden)

    J. Bartnicki

    2014-10-01

    Full Text Available In this paper are presented the results of numerical calculations of rolling extrusion process of a hollow hub. As the flanges manufacturing at both sides of the product is required, in the analyzed process of rolling extrusion, a rear bumper was implemented as additional tool limiting axial metal flow. Numerical calculations of the hub forming process were conducted basing on finite element method, applying software Deform3D and Simufact in conditions of three dimensional state of strain. The obtained satisfactory results show that it is possible to conduct the further research works of experimental character, with the application of a modernized aggregate for the rolling extrusion process PO-2.

  14. Extrusion: An environmentally friendly process for PEMFC membrane elaboration

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, J.-Y.; Iojoiu, C.; Marechal, M. [LEPMI, UMR 5631 CNRS-INPG-UJF, ENSEEG, BP 75, F-38402, Saint Martin d' Heres (France); Chabert, F.; El Kissi, N. [Rheologie, UMR 5520 CNRS-INPG-UJF, ENSHMG, BP 53, F-38041, Grenoble (France); Salomon, J.; Mercier, R. [LMOPS UMR CNRS 5041, BP 24, F-69390 Vernaison (France); Piffard, Y. [CNRS Universite de Nantes, Institut des Materiaux Jean Rouxel, UMR 6502, BP 32229, F-44322, Nantes Cedex 3 (France); Galiano, H. [CEA, Le Ripault Research Center, BP 16, F-37260, Monts (France)

    2007-12-31

    The paper deals with the use of extrusion to process PEMFC filled and unfilled membranes. Several routes including the sulfonation of filled and unfilled extruded membranes and the extrusion of filled and unfilled ionomers are reported. Thanks to the use of selected water-soluble aid process plasticizers, acid and alkaline forms of sulfonated polyethersulfone were, for the first time, successfully extruded. The extrusion process did not lead to any degradation of the ionomer performances. Decreasing the membrane cost while using environmentally friendly elaboration conditions, it should be helpful to an industrial production. In addition, avoiding filler sedimentation it should allow homogeneous composite membranes to be obtained. (author)

  15. 75 FR 57441 - Aluminum Extrusions From the People's Republic of China: Alignment of Final Countervailing Duty...

    Science.gov (United States)

    2010-09-21

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-968] Aluminum Extrusions From the... countervailing duty investigation of aluminum extrusions from the People's Republic of China (PRC) with the final... antidumping duty investigations on aluminum extrusions from the PRC. See Aluminum Extrusions from the People's...

  16. 75 FR 69403 - Aluminum Extrusions From the People's Republic of China: Notice of Preliminary Determination of...

    Science.gov (United States)

    2010-11-12

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-967] Aluminum Extrusions From the... Commerce (``Department'') preliminarily determines that aluminum extrusions from the People's Republic of... of aluminum extrusions from the PRC filed in proper form by the Aluminum Extrusions Fair Trade...

  17. Development of an electrochemical ascorbic acid sensor based on the incorporation of a ferricyanide mediator with a polyelectrolyte-calcium carbonate microsphere

    International Nuclear Information System (INIS)

    Li Feng; Tang Chenfei; Liu Shufeng; Ma Guangran

    2010-01-01

    A novel electro-active material was successfully prepared with Fe(CN) 6 3- ions loaded by electrostatic interaction onto the layer of poly(allylamine) hydrochloride (PAH), which was first assembled on prepared poly(sodium 4-styrenesulfonate) (PSS)-doped porous calcium carbonate (CaCO 3 ) microspheres. Further, an electrochemical sensor for use in ascorbic acid (AA) detection was constructed with the use of the above electro-active materials embedded into a chitosan (CS) sol-gel matrix as an electron mediator. The electrocatalytic oxidation of AA by ferricyanide was observed at the potential of 0.27 V, which was negative-shifted compared with that by direct electrochemical oxidation of AA on a glassy carbon electrode. The experimental parameters, including the pH value of testing solution and the applied potential for detection of AA, were optimized. The current electrochemical sensor not only exhibited a good reproducibility and storage stability, but also showed a fast amperometric response to AA in a linear range (1.0 x 10 -6 to 2.143 x 10 -3 M), a low detection limit (7.0 x 10 -7 M), a fast response time ( -1 ).

  18. Buoyancy Effect of Ionic Vacancy on the Change of the Partial Molar Volume in Ferricyanide-Ferrocyanide Redox Reaction under a Vertical Gravity Field

    Directory of Open Access Journals (Sweden)

    Yoshinobu Oshikiri

    2013-01-01

    Full Text Available With a gravity electrode (GE in a vertical gravity field, the buoyancy effect of ionic vacancy on the change of the partial molar volume in the redox reaction between ferricyanide (FERRI and ferrocyanide (FERRO ions was examined. The buoyancy force of ionic vacancy takes a positive or negative value, depending on whether the rate-determining step is the production or extinction of the vacancy. Though the upward convection over an upward electrode in the FERRO ion oxidation suggests the contribution of the positive buoyancy force arising from the vacancy production, the partial molar volume of the vacancy was not measured. On the other hand, for the downward convection under a downward electrode in the FERRI ion reduction, it was not completely but partly measured by the contribution of the negative buoyancy force from the vacancy extinction. Since the lifetime of the vacancy is decreased by the collision between ionic vacancies during the convection, the former result was ascribed to the shortened lifetime due to the increasing collision efficiency in the enhanced upward convection over an upward electrode, whereas the latter was thought to arise from the elongated lifetime due to the decreasing collision efficiency by the stagnation under the downward electrode.

  19. The friction influence on stress in micro extrusion

    Directory of Open Access Journals (Sweden)

    J. Piwnik

    2010-01-01

    Full Text Available Manufacturing of metallic parts by forming methods is industrially widespread due to high production rate, high accuracy, dimension’s and shape’s repeatability and good surface quality. The application of metal extrusion methods for the production of micro parts is possible, but there are some technological problems caused by small dimensions. Size effect is appearing. One of size effect symptom in micro extrusion, is a significant influence of rough contact between workpiece and tool while processing. In the case of rough contact without friction, material flows in the vicinity of the die surface. In order to explain more accurately a friction distribution in this area, the plastic wave friction model is proposed. This paper analyses specifications of a metal extrusion in micro scale. Using the friction model, a substitute friction shear factor mz and its influence on extrusion loading curves is determined in relationship to size of asperities.

  20. Adaptive Control of Freeze-Form Extrusion Fabrication Processes (Preprint)

    National Research Council Canada - National Science Library

    Zhao, Xiyue; Landers, Robert G; Leu, Ming C

    2008-01-01

    Freeze-form Extrusion Fabrication (FEF) is an additive manufacturing process that extrudes high solids loading aqueous ceramic pastes in a layer-by-layer fashion below the paste freezing temperature for component fabrication...

  1. FORMING TUBES AND RODS OF URANIUM METAL BY EXTRUSION

    Science.gov (United States)

    Creutz, E.C.

    1959-01-27

    A method and apparatus are presented for the extrusion of uranium metal. Since uranium is very brittle if worked in the beta phase, it is desirable to extrude it in the gamma phase. However, in the gamma temperature range thc uranium will alloy with the metal of the extrusion dic, and is readily oxidized to a great degree. According to this patent, uranium extrusion in thc ganmma phase may be safely carried out by preheating a billet of uranium in an inert atmosphere to a trmperature between 780 C and 1100 C. The heated billet is then placed in an extrusion apparatus having dies which have been maintained at an elevated temperature for a sufficient length of time to produce an oxide film, and placing a copper disc between the uranium billet and the die.

  2. CHARACTERIZATION OF NEW TOOL STEEL FOR ALUMINUM EXTRUSION DIES

    Directory of Open Access Journals (Sweden)

    José Britti Bacalhau

    2014-06-01

    Full Text Available Aluminum extrusion dies are an important segment of application on industrial tools steels, which are manufactured in steels based on AISI H13 steel. The main properties of steels applied to extrusion dies are: wear resistance, impact resistance and tempering resistance. The present work discusses the characteristics of a newly developed hot work steel to be used on aluminum extrusion dies. The effects of Cr and Mo contents with respect to tempering resistance and the Al addition on the nitriding response have been evaluated. From forged steel bars, Charpy impact test and characterization via EPMA have been conducted. The proposed contents of Cr, Mo, and Al have attributed to the new VEX grade a much better tempering resistance than H13, as well as a deeper and harder nitrided layer. Due to the unique characteristics, this new steel provides an interesting alternative to the aluminum extrusion companies to increase their competitiveness.

  3. Properties and DEFC tests of nafion added functionalized titanate nanotubes prepared by extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Matos, B.R.; Goulart, C.A.; Isidoro, R.A.; Silva, J.S. da; Santiago, E.I.; Fonseca, F.C.; Tavares, A.C. [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2016-07-01

    Full text: Composite electrolyte membranes based on the incorporation of a second inorganic phase into ionomer matrices such as Nafion revealed to possess enhanced properties such as increased mechanical resistance and reduced permeability of solvents. It has been reported that surface functionalized titanate nanotubes (H2Ti3O7.nH2O) display a proton conductivity of ∼ 10-2 Scm-1, which is attractive for the use of such composites in direct ethanol fuel cells (DEFC). Herein, composite membranes based on the addition of sulfonic acid groups functionalized titanate nanotubes into Nafion matrix were prepared by grafting followed by extrusion. These membranes were characterized by infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), acid-base titration, proton conductivity measurements and DEFC tests. FTIR measurements confirmed both the grafting of the titanate nanotubes. BET measurements showed that the functionalized titanate nanotubes possess a high surface specific area. Acid-base titration evidenced that additional sulfonic acid groups are present in the composite membranes compared to the pristine ionomer. The conductivity measurements show that the increase in the titanate nanotube volume fraction into the ionomers has not resulted in a decrease of the proton conductivity. The results show that the addition of functionalized titanate nanotubes into Nafion polymer matrix resulted in an improvement of the electric transport properties, reduction of the fuel crossover and, consequently, a higher DEFC performance for the composites were observed with respect to the pristine Nafion. (author)

  4. Properties and DEFC tests of nafion added functionalized titanate nanotubes prepared by extrusion

    International Nuclear Information System (INIS)

    Matos, B.R.; Goulart, C.A.; Isidoro, R.A.; Silva, J.S. da; Santiago, E.I.; Fonseca, F.C.; Tavares, A.C.

    2016-01-01

    Full text: Composite electrolyte membranes based on the incorporation of a second inorganic phase into ionomer matrices such as Nafion revealed to possess enhanced properties such as increased mechanical resistance and reduced permeability of solvents. It has been reported that surface functionalized titanate nanotubes (H2Ti3O7.nH2O) display a proton conductivity of ∼ 10-2 Scm-1, which is attractive for the use of such composites in direct ethanol fuel cells (DEFC). Herein, composite membranes based on the addition of sulfonic acid groups functionalized titanate nanotubes into Nafion matrix were prepared by grafting followed by extrusion. These membranes were characterized by infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), acid-base titration, proton conductivity measurements and DEFC tests. FTIR measurements confirmed both the grafting of the titanate nanotubes. BET measurements showed that the functionalized titanate nanotubes possess a high surface specific area. Acid-base titration evidenced that additional sulfonic acid groups are present in the composite membranes compared to the pristine ionomer. The conductivity measurements show that the increase in the titanate nanotube volume fraction into the ionomers has not resulted in a decrease of the proton conductivity. The results show that the addition of functionalized titanate nanotubes into Nafion polymer matrix resulted in an improvement of the electric transport properties, reduction of the fuel crossover and, consequently, a higher DEFC performance for the composites were observed with respect to the pristine Nafion. (author)

  5. Extrusion and properties of lead zirconate titanate piezoelectric ceramics

    DEFF Research Database (Denmark)

    Cai, S.; Millar, C.E.; Pedersen, L.

    1997-01-01

    The purpose of this work was to develop a procedure for fabricating electroceramic actuators with good piezoelectric properties. The preparation of lead zirconate titanate (PZT) piezoelectric ceramic rods and tubes by extrusion processing is described. The microstructure of extrudates was investi......The purpose of this work was to develop a procedure for fabricating electroceramic actuators with good piezoelectric properties. The preparation of lead zirconate titanate (PZT) piezoelectric ceramic rods and tubes by extrusion processing is described. The microstructure of extrudates...

  6. Instant blend from cassava derivatives produced by extrusion

    OpenAIRE

    Trombini, Fernanda Rossi Moretti; Mischan, Martha Maria; Leonel, Magali

    2016-01-01

    ABSTRACT: The current research aimed to evaluate the effects of extrusion parameters on the physical characteristics of extruded blends of cassava leaf flour and starch. A factorial central composite design with four independent variables and the response surface methodology were used to evaluate the results of color parameters (L*, a*, b*), water absorption index, water solubility index and paste properties, according to the variations in the leaf flour percentage (1.5 to 7.5%), extrusion te...

  7. A novel plastification agent for cemented carbides extrusion molding

    International Nuclear Information System (INIS)

    Ji-Cheng Zhou; Bai-Yun Huang

    2001-01-01

    A type of novel plastification agent for plasticizing powder extrusion molding of cemented carbides has been developed. By optimizing their formulation and fabrication method, the novel plastification agent, with excellent properties and uniform distribution characters, were manufactured. The thermal debinding mechanism has been studied, the extruding rheological characteristics and debinding behaviors have been investigated. Using the newly developed plastification agent, the cemented carbides extrusion rods, with diameter up to 25 mm, have been manufactured. (author)

  8. Experimental and numerical investigation of ram extrusion of bread dough

    Science.gov (United States)

    Mohammed, M. A. P.; Wanigasooriya, L.; Charalambides, M. N.

    2016-10-01

    An experimental and numerical study on ram extrusion of bread dough was conducted. A laboratory ram extrusion rig was designed and manufactured, where dies with different angles and exit radii were employed. Rate dependent behaviour was observed from tests conducted at different extrusion speeds, and higher extrusion pressure was reported for dies with decreasing exit radius. A finite element simulation of extrusion was performed using the adaptive meshing technique in Abaqus. Simulations using a frictionless contact between the billet and die wall showed that the model underestimates the response at high entry angles. On the other hand, when the coefficient of friction value was set to 0.09 as measured from friction experiments, the dough response was overestimated, i.e. the model extrusion pressure was much higher than the experimentally measured values. When a critical shear stress limit, τmax, was used, the accuracy of the model predictions improved. The results showed that higher die angles require higher τmax values for the model and the experiments to agree.

  9. Residence time modeling of hot melt extrusion processes.

    Science.gov (United States)

    Reitz, Elena; Podhaisky, Helmut; Ely, David; Thommes, Markus

    2013-11-01

    The hot melt extrusion process is a widespread technique to mix viscous melts. The residence time of material in the process frequently determines the product properties. An experimental setup and a corresponding mathematical model were developed to evaluate residence time and residence time distribution in twin screw extrusion processes. The extrusion process was modeled as the convolution of a mass transport process described by a Gaussian probability function, and a mixing process represented by an exponential function. The residence time of the extrusion process was determined by introducing a tracer at the extruder inlet and measuring the tracer concentration at the die. These concentrations were fitted to the residence time model, and an adequate correlation was found. Different parameters were derived to characterize the extrusion process including the dead time, the apparent mixing volume, and a transport related axial mixing. A 2(3) design of experiments was performed to evaluate the effect of powder feed rate, screw speed, and melt viscosity of the material on the residence time. All three parameters affect the residence time of material in the extruder. In conclusion, a residence time model was developed to interpret experimental data and to get insights into the hot melt extrusion process. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Microstructure development and texture evolution of aluminum multi-port extrusion tube during the porthole die extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Fan, X.H. [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240 (China); School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Tang, D., E-mail: tangding@sjtu.edu.cn [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240 (China); School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Fang, W.L.; Li, D.Y.; Peng, Y.H. [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240 (China); School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2016-08-15

    Aluminum multi-port extrusion tube is processed by the porthole die extrusion and the internal tube walls are welded through the solid state metallurgical bonding. In order to observe the development of grains and their orientations under severe plastic deformation and solid state welding, the extrusion butt together with the die is quenched immediately after extrusion to preserve the grain structure in the processing. The forming histories of selected material points are obtained by analyzing the optical microscopy graph. The evolution of the microstructure along the forming path is characterized by electro backscattered diffraction. It is found that geometrical dynamic recrystallization happens in the process. Grains are elongated, scattered at the transition zone and shear intensive zone, and then pinched off when they are pushed out from the die orifice. The shear-type orientations are predominant at the surface layer on the longitudinal section of the tube web and have penetrated into the intermediate layer. The rolling-type orientations are formed at the central layer. Texture gradient through the thickness of the tube web is observed. And cube orientated grains are found at the seam weld region. - Highlights: •Microstructure of extrusion butt is preserved after the micro scale porthole die extrusion. •Grain morphology history along forming path is investigated. •Texture evolutions on three material flows are present. •Texture gradient exists on the longitudinal section of the internal wall of profile. •Rolling-type and cube textures are found at the solid state welding region.

  11. Thermodynamic investigation of ferrocyanide/ferricyanide redox system on nitrogen-doped multi-walled carbon nanotubes decorated with gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tsierkezos, Nikos G., E-mail: nikos.tsierkezos@tu-ilmenau.de [Institut für Chemie und Biotechnik, Technische Universität Ilmenau, Weimarer Straße 25, 98693 Ilmenau (Germany); Knauer, Andrea [Institute of Chemistry and Biotechnology, Department of Physical Chemistry and Micro Reaction Technology, Ilmenau University of Technology, Gustav-Kirchhof Straße 1, 98693 Ilmenau (Germany); Ritter, Uwe [Institut für Chemie und Biotechnik, Technische Universität Ilmenau, Weimarer Straße 25, 98693 Ilmenau (Germany)

    2014-01-20

    Graphical abstract: - Highlights: • N-MWCNTs were fabricated and “decorated” with AuNPs. • N-MWCNTs/AuNPs were applied for study of [Fe(CN){sub 6}]{sup 3−/4−} in various temperatures. • The barrier for interfacial electron transfer decreases with temperature. • The kinetics of charge transfer enhances with temperature. • The AuNPs size affects the kinetic and thermodynamic parameters of [Fe(CN){sub 6}]{sup 3−/4−}. - Abstract: Films consisting of nitrogen-doped multi-walled carbon nanotubes (N-MWCNTs) were fabricated by means of chemical vapor deposition technique with decomposition of acetonitrile. The N-MWCNTs-based films were modified with gold nanoparticles (AuNPs) with diameter either 5 or 35 nm and applied for the electrochemical investigation of ferrocyanide/ferricyanide, [Fe(CN){sub 6}]{sup 3−/4−} redox system in the temperature range of 283.15–303.15 K. The findings demonstrate that on N-MWCNT films modified with AuNPs (further denoted as N-MWCNTs/AuNPs) the [Fe(CN){sub 6}]{sup 3−/4−} redox system is quasi-reversible and its reversibility is improved with increasing temperature. Namely, it was established that with the rise in temperature the barrier for interfacial electron transfer decreases leading to an enhancement of kinetics of charge transfer reaction. The Gibbs free energies display that the exergonic redox process occurring on N-MWCNTs/AuNPs is shifted toward formation of [Fe(CN){sub 6}]{sup 3−} with increasing temperature. With the increase of diameter of AuNPs a slight improvement of kinetics of redox process occurs.

  12. Die Defects and Die Corrections in Metal Extrusion

    Directory of Open Access Journals (Sweden)

    Sayyad Zahid Qamar

    2018-05-01

    Full Text Available Extrusion is a very popular and multi-faceted manufacturing process. A large number of products for the automotive, aerospace, and construction sectors are produced through aluminum extrusion. Many defects in the extruded products occur because of the conditions of the dies and tooling. The problems in dies can be due to material issues, design and manufacturing, or severe usage. They can be avoided by maintaining the billet quality, by controlling the extrusion process parameters, and through routine maintenance. Die problems that occur on a day-to-day basis are mostly repairable and are rectified through various types of die correction operations. These defects and repair operations have not been reported in detail in the published literature. The current paper presents an in-depth description of repairable die defects and related die correction operations in metal extrusion. All major die defects are defined and classified, and their causes, preventive measures, and die correction operations are described. A brief frequency-based statistical study of die defects is also carried out to identify the most frequent die corrections. This work can be of direct benefit to plant engineers and operators and to researchers and academics in the field of metal extrusion.

  13. Proton decay theory

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1983-01-01

    Topics include minimal SU(5) predictions, gauge boson mediated proton decay, uncertainties in tau/sub p/, Higgs scalar effects, proton decay via Higgs scalars, supersymmetric SU(5), dimension 5 operators and proton decay, and Higgs scalars and proton decay

  14. Hot melt extrusion versus spray drying: hot melt extrusion degrades albendazole.

    Science.gov (United States)

    Hengsawas Surasarang, Soraya; Keen, Justin M; Huang, Siyuan; Zhang, Feng; McGinity, James W; Williams, Robert O

    2017-05-01

    The purpose of this study was to enhance the dissolution properties of albendazole (ABZ) by the use of amorphous solid dispersions. Phase diagrams of ABZ-polymer binary mixtures generated from Flory-Huggins theory were used to assess miscibility and processability. Forced degradation studies showed that ABZ degraded upon exposure to hydrogen peroxide and 1 N NaOH at 80 °C for 5 min, and the degradants were albendazole sulfoxide (ABZSX), and ABZ impurity A, respectively. ABZ was chemically stable following exposure to 1 N HCl at 80 °C for one hour. Thermal degradation profiles show that ABZ, with and without Kollidon ® VA 64, degraded at 180 °C and 140 °C, respectively, which indicated that ABZ could likely be processed by thermal processing. Following hot melt extrusion, ABZ degraded up to 97.4%, while the amorphous ABZ solid dispersion was successfully prepared by spray drying. Spray-dried ABZ formulations using various types of acids (methanesulfonic acid, sulfuric acid and hydrochloric acid) and polymers (Kollidon ® VA 64, Soluplus ® and Eudragit ® E PO) were studied. The spray-dried ABZ with methanesulfonic acid and Kollidon ® VA 64 substantially improved non-sink dissolution in acidic media as compared to bulk ABZ (8-fold), physical mixture of ABZ:Kollidon ® VA 64 (5.6-fold) and ABZ mesylate salt (1.6-fold). No degradation was observed in the spray-dried product for up to six months and less than 5% after one-year storage. In conclusion, amorphous ABZ solid dispersions in combination with an acid and polymer can be prepared by spray drying to enhance dissolution and shelf-stability, whereas those made by melt extrusion are degraded.

  15. Proton therapy

    International Nuclear Information System (INIS)

    Jongen, Y.

    1995-01-01

    Ideal radiotherapy deposits a large amount of energy in the tumour volume, and none in the surrounding healthy tissues. Proton therapy comes closer to this goal because of a greater concentration of dose, well defined proton ranges and points of energy release which are precisely known - the Bragg peak1. In the past, the development of clinical proton therapy has been hampered by complexity, size, and cost. To be clinically effective, energies of several hundred MeV are required; these were previously unavailable for hospital installations, and pioneering institutions had to work with complex, inadequate equipment originally intended for nuclear physics research. Recently a number of specialist organizations and commercial companies have been working on dedicated systems for proton therapy. One, IBA of Belgium, has equipment for inhouse hospital operation which encompasses a complete therapy centre, delivered as a turnkey package and incorporating a compact, automated, higher energy cyclotron with isocentric gantries. Their system will be installed at Massachusetts General Hospital, Boston. The proton therapy system comprises: - a 235 MeV isochronous cyclotron to deliver beams of up to 1.5 microamps, but with a hardware limitation to restrict the maximum possible dose; - variable energy beam (235 to 70 MeV ) with energy spread and emittance verification; - a beam transport and switching system to connect the exit of the energy selection system to the entrances of a number of gantries and fixed beamlines. Along the beam transport system, the beam characteristics are monitored with non-interceptive multiwire ionization chambers for automatic tuning; - gantries fitted with nozzles and beamline elements for beam control; both beam scattering and beam wobbling techniques are available for shaping the beam;

  16. Study on reactive extrusion processes of block copolymer

    International Nuclear Information System (INIS)

    Wu Lili; Jia Yuxi; Sun Sheng; Zhang Guofang; Zhao Guoqun; An Lijia

    2007-01-01

    The anionic copolymerization process of styrene-butadiene (S/B) block copolymer in a closely intermeshing co-rotating twin screw extruder with butyl-lithium initiator was studied. According to the anionic copolymerization mechanism and the reactive extrusion characteristics, the mathematical models of monomer conversion, average molecular weight and fluid viscosity during the anionic copolymerization of S/B were constructed, and then the reactive extrusion process was simulated by means of the finite volume method and the uncoupled semi-implicit iterative algorithm. Finally, the influence of the feeding mixture composition on conversion was discussed. The simulated results were nearly in agreement with the experimental results

  17. Study on lead extrusion damper as a seismic support

    International Nuclear Information System (INIS)

    Nomura, T.; Kojima, N.; Fujita, K.; Ito, T.

    1989-01-01

    The fundamental characteristics of two types of lead extrusion dampers (cylinder type, rotary type) for use as the nuclear power plant piping support of the elasto-plastic of damper are clarified. As a result, these lead extrusion dampers are found to have the following dynamic characteristics: hysteresis loop is both rectangular shape and bi-linear shape; maximum reaction force is independent of velocity and frequency but it increases as displacement exceeds the specified value; and the dissipated energy is very large and is independent of velocity, frequency and initial displacement (i.e., thermal expansion of pipings) in the range of test

  18. Analysis of Material Flow in Screw Extrusion of Aluminum

    International Nuclear Information System (INIS)

    Haugen, Bjoern; Oernskar, Magnus; Welo, Torgeir; Wideroee, Fredrik

    2010-01-01

    Screw extrusion of aluminum is a new process for production of aluminum profiles. The commercial potential could be large. Little experimental and numerical work has been done with respect to this process.The material flow of hot aluminum in a screw extruder has been analyzed using finite element formulations for the non-Newtonian Navier-Stokes equations. Aluminum material properties are modeled using the Zener-Holloman material model. Effects of stick-slip conditions are investigated with respect to pressure build up and mixing quality of the extrusion process.The numerical results are compared with physical experiments using an experimental screw extruder.

  19. 75 FR 51243 - Aluminum Extrusions from the People's Republic of China: Postponement of Preliminary...

    Science.gov (United States)

    2010-08-19

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-967] Aluminum Extrusions from the... Department of Commerce (``the Department'') initiated an antidumping duty investigation on Aluminum... Aluminum Extrusions from the People's Republic of China: Initiation of Antidumping Duty Investigation, 75...

  20. Encapsulation of ferro- and ferricyanide complexes inside ZSM-5 zeolite synthesized from rice straw: Implications for synthesis of Prussian blue pigment

    International Nuclear Information System (INIS)

    Ali, Ibraheem O.; Salama, Tarek M.; Thabet, Mohamed S.; El-Nasser, Karam S.; Hassan, Ali M.

    2013-01-01

    Encapsulation of [Fe(CN) 6 ] 4− and [Fe(CN) 6 ] 3− complexes in the intracrystalline pores of ZSM-5 zeolite, Fe II L/Z and Fe III L/Z respectively, by the zeolite synthesis method was reported. The modified zeolites were characterized by powder XRD, FT-IR and UV–vis spectroscopy. The nitrogen adsorption isotherms allow for the evaluation of pore structure of the complex-modified zeolites, whereas the thermal analysis (TGA/DTA) measurements provide insight into the decomposition products of the immobilized complexes. The modified zeolites exhibited smaller pore volumes and surface areas as compared with those of unpromoted ZSM-5, suggesting the inclusion of iron cyanides inside the interconnecting channels of ZSM-5. While the ferricyanide complex enhanced the formation of highly crystalline zeolite, the ferrocyanide one resulted in a lesser effect. The electronic spectra of the colloidal species developed when Fe III L/Z brought in contact with an aqueous solution of [Fe(CN) 6 ] 3− exhibit absorptions attributed to CN − → iron charge-transfer. New bands at 294 and 319 nm due to d–d transitions of Fe III tetrahedral monomeric moieties were emitted concurrently under successive adsorption of [Fe(CN) 6 ] aq 3− over Fe III L/Z, along with a broad band at 555 nm assigned to polymeric [Fe II –C–N–Fe III ] of Prussian blue (PB). The FT-IR spectra of Fe III/II L/Z devoted to the adsorption of an aqueous solution of [Fe(CN) 6 ] 3− showed a band at 2092 cm −1 assigned to the C–N stretch in the Fe II –CN–Fe III linkages. The vibrations attributable to Fe–O–Si bonding along with hydrocarbon and nitroprusside appeared only in the spectrum of Fe III L/Z, thus was found to be strong evidence for the mutual interaction between [Fe(CN) 6 ] 3− and the latter sample. - Highlights: • We synthesized ferrous and ferric cyanide complexes inside ZSM-5 zeolite. • The decomposition of the encapsulated complexes occurred at high temperatures.

  1. Structural characterisations and mechanistic investigations of the selective dissolution of americium by the ferricyanide ions in alkaline media. Application for the partitioning americium curium

    International Nuclear Information System (INIS)

    Fouchard, Sebastien

    2000-01-01

    form of Am in basic ferricyanide media. (author) [fr

  2. Encapsulation of ferro- and ferricyanide complexes inside ZSM-5 zeolite synthesized from rice straw: Implications for synthesis of Prussian blue pigment

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ibraheem O.; Salama, Tarek M., E-mail: tm_salama@yahoo.com; Thabet, Mohamed S.; El-Nasser, Karam S.; Hassan, Ali M.

    2013-06-15

    Encapsulation of [Fe(CN){sub 6}]{sup 4−} and [Fe(CN){sub 6}]{sup 3−} complexes in the intracrystalline pores of ZSM-5 zeolite, Fe{sup II}L/Z and Fe{sup III}L/Z respectively, by the zeolite synthesis method was reported. The modified zeolites were characterized by powder XRD, FT-IR and UV–vis spectroscopy. The nitrogen adsorption isotherms allow for the evaluation of pore structure of the complex-modified zeolites, whereas the thermal analysis (TGA/DTA) measurements provide insight into the decomposition products of the immobilized complexes. The modified zeolites exhibited smaller pore volumes and surface areas as compared with those of unpromoted ZSM-5, suggesting the inclusion of iron cyanides inside the interconnecting channels of ZSM-5. While the ferricyanide complex enhanced the formation of highly crystalline zeolite, the ferrocyanide one resulted in a lesser effect. The electronic spectra of the colloidal species developed when Fe{sup III}L/Z brought in contact with an aqueous solution of [Fe(CN){sub 6}]{sup 3−} exhibit absorptions attributed to CN{sup −} → iron charge-transfer. New bands at 294 and 319 nm due to d–d transitions of Fe{sup III} tetrahedral monomeric moieties were emitted concurrently under successive adsorption of [Fe(CN){sub 6}]{sub aq}{sup 3−} over Fe{sup III}L/Z, along with a broad band at 555 nm assigned to polymeric [Fe{sup II}–C–N–Fe{sup III}] of Prussian blue (PB). The FT-IR spectra of Fe{sup III/II}L/Z devoted to the adsorption of an aqueous solution of [Fe(CN){sub 6}]{sup 3−} showed a band at 2092 cm{sup −1} assigned to the C–N stretch in the Fe{sup II}–CN–Fe{sup III} linkages. The vibrations attributable to Fe–O–Si bonding along with hydrocarbon and nitroprusside appeared only in the spectrum of Fe{sup III}L/Z, thus was found to be strong evidence for the mutual interaction between [Fe(CN){sub 6}]{sup 3−} and the latter sample. - Highlights: • We synthesized ferrous and ferric cyanide

  3. 76 FR 30650 - Aluminum Extrusions from the People's Republic of China: Antidumping Duty Order

    Science.gov (United States)

    2011-05-26

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-967] Aluminum Extrusions from the...''), the Department is issuing an antidumping duty order on aluminum extrusions from the People's Republic... of material injury by reason of imports of certain aluminum extrusions from the PRC, and its negative...

  4. 75 FR 73041 - Aluminum Extrusions From the People's Republic of China: Postponement of Final Determination of...

    Science.gov (United States)

    2010-11-29

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-967] Aluminum Extrusions From the... investigation of aluminum extrusions from the People's Republic of China (``PRC'') on April 27, 2010.\\1\\ On..., 2011. \\1\\ See Aluminum Extrusions from the People's Republic of China: Initiation of Antidumping Duty...

  5. 75 FR 34982 - Aluminum Extrusions from the People's Republic of China: Notice of Postponement of Preliminary...

    Science.gov (United States)

    2010-06-21

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-968] Aluminum Extrusions from the... in the Federal Register a notice of initiation of the countervailing duty investigation of aluminum extrusions from the People's Republic of China. See Aluminum Extrusions From the People's Republic of China...

  6. Proton radiography to improve proton therapy treatment

    NARCIS (Netherlands)

    Takatsu, J.; van der Graaf, E. R.; van Goethem, Marc-Jan; van Beuzekom, M.; Klaver, T.; Visser, Jan; Brandenburg, S.; Biegun, A. K.

    The quality of cancer treatment with protons critically depends on an accurate prediction of the proton stopping powers for the tissues traversed by the protons. Today, treatment planning in proton radiotherapy is based on stopping power calculations from densities of X-ray Computed Tomography (CT)

  7. Track with overlapping links for dry coal extrusion pumps

    Science.gov (United States)

    Saunders, Timothy; Brady, John D

    2014-01-21

    A chain for a particulate material extrusion pump includes a plurality of links, each of the plurality of links having a link body and a link ledge, wherein each link ledge of the plurality of links at least partially overlaps the link body of an adjacent one of the plurality of links.

  8. 75 FR 17436 - Certain Aluminum Extrusions From China

    Science.gov (United States)

    2010-04-06

    ... States at less than fair value and alleged to be subsidized by the Government of China. Unless the... response to a petition filed on March 31, 2010, by the Aluminum Extrusions Fair Trade Committee... presentation at the conference. A nonparty who has testimony that may aid the Commission's deliberations may...

  9. Main and interaction effects of extrusion temperature and usage ...

    African Journals Online (AJOL)

    The extruded full fat soybean (EFFSB) may be used in diet to satisfy the energy and protein requirements of fast growing broiler chickens. The main and interaction effects of three extrusion temperatures and two dietary levels of FFSB were studied on the performance, physiological enzymes and blood metabolites of broiler ...

  10. MM98.36 Strain Paths in Extrusion

    DEFF Research Database (Denmark)

    Lindegren, Maria; Wiwe, Birgitte; Wanheim, Tarras

    1998-01-01

    The extrusion process has been investigated for different geometries, in order to study the strain path of different material elements during their movements through the plastic zone. This is done by using the FEM code DEFORM and physical simulation with wax togehter with the coefficient method. ....... Calculations of strain paths have also been performed by ABAQUS....

  11. Load beam unit replaceable inserts for dry coal extrusion pumps

    Science.gov (United States)

    Saunders, Timothy; Brady, John D.

    2012-11-13

    A track assembly for a particulate material extrusion pump according to an exemplary aspect of the present disclosure includes a link assembly with a roller bearing. An insert mounted to a load beam located such that the roller bearing contacts the insert.

  12. Main and interaction effects of extrusion temperature and usage ...

    African Journals Online (AJOL)

    ali

    2012-10-30

    Oct 30, 2012 ... The main and interaction effects of three extrusion ... oil extraction and allow the use of a homegrown protein supplement in the .... Statistical analysis. The main and .... acceptable level of antitrypsin factor is 4 mg/g; this level.

  13. Effect of Thermo-extrusion Process Parameters on Selected Quality ...

    African Journals Online (AJOL)

    Effect of Thermo-extrusion Process Parameters on Selected Quality Attributes of Meat Analogue from Mucuna Bean Seed Flour. ... Nigerian Food Journal ... The product functional responses with coefficients of determination (R2) ranging between 0.658 and 0.894 were most affected by changes in barrel temperature and ...

  14. Growth of extrusions in localized cyclic plastic straining

    Czech Academy of Sciences Publication Activity Database

    Polák, Jaroslav; Sauzay, M.

    2009-01-01

    Roč. 500, č. 1-2 (2009), s. 122-129 ISSN 0921-5093 R&D Projects: GA ČR GA101/07/1500 Institutional research plan: CEZ:AV0Z20410507 Keywords : extrusion * strain localization * persistent slip band * vacancy Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.901, year: 2009

  15. Statistical reliability analyses of two wood plastic composite extrusion processes

    International Nuclear Information System (INIS)

    Crookston, Kevin A.; Mark Young, Timothy; Harper, David; Guess, Frank M.

    2011-01-01

    Estimates of the reliability of wood plastic composites (WPC) are explored for two industrial extrusion lines. The goal of the paper is to use parametric and non-parametric analyses to examine potential differences in the WPC metrics of reliability for the two extrusion lines that may be helpful for use by the practitioner. A parametric analysis of the extrusion lines reveals some similarities and disparities in the best models; however, a non-parametric analysis reveals unique and insightful differences between Kaplan-Meier survival curves for the modulus of elasticity (MOE) and modulus of rupture (MOR) of the WPC industrial data. The distinctive non-parametric comparisons indicate the source of the differences in strength between the 10.2% and 48.0% fractiles [3,183-3,517 MPa] for MOE and for MOR between the 2.0% and 95.1% fractiles [18.9-25.7 MPa]. Distribution fitting as related to selection of the proper statistical methods is discussed with relevance to estimating the reliability of WPC. The ability to detect statistical differences in the product reliability of WPC between extrusion processes may benefit WPC producers in improving product reliability and safety of this widely used house-decking product. The approach can be applied to many other safety and complex system lifetime comparisons.

  16. Effects of fermentation and extrusion on the proximate composition ...

    African Journals Online (AJOL)

    The effect of extrusion and fermentation on the proximate composition and organoleptic properties of six combinations (100:0, 90:10, 80:20, 70:30, 60:40 and 50:50) of sorghum - soya blend were investigated. A total number of 19 microorganisms were isolated during the fermentation of sorghum-soya extrudates; these ...

  17. Rheology and extrusion of low-grade paper and sludge

    Science.gov (United States)

    C. Tim Scott; Stefan Zauscher; Daniel J. Klingenberg

    1999-01-01

    This paper discusses efforts to characterize the rheological properties of pulps that include low-grade wastepapers and papermill sludges to determine their potential for extrusion and conversion into useful products. We investigated apparent changes in viscosity associated with the addition of typical inorganic paper fillers (calcium carbonate, kaolin clay, and...

  18. Cell Extrusion: A Stress-Responsive Force for Good or Evil in Epithelial Homeostasis.

    Science.gov (United States)

    Ohsawa, Shizue; Vaughen, John; Igaki, Tatsushi

    2018-02-05

    Epithelial tissues robustly respond to internal and external stressors via dynamic cellular rearrangements. Cell extrusion acts as a key regulator of epithelial homeostasis by removing apoptotic cells, orchestrating morphogenesis, and mediating competitive cellular battles during tumorigenesis. Here, we delineate the diverse functions of cell extrusion during development and disease. We emphasize the expanding role for apoptotic cell extrusion in exerting morphogenetic forces, as well as the strong intersection of cell extrusion with cell competition, a homeostatic mechanism that eliminates aberrant or unfit cells. While cell competition and extrusion can exert potent, tumor-suppressive effects, dysregulation of either critical homeostatic program can fuel cancer progression. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Apical extrusion of debris: a literature review of an inherent occurrence during root canal treatment.

    Science.gov (United States)

    Tanalp, J; Güngör, T

    2014-03-01

    Extrusion of intracanal debris as well as irrigants is a common occurrence during root canal treatment, and no instrument or technique has thoroughly solved this problem. Because flare-ups may arise with any irritation directed towards periapical tissues, a shaping or irrigation technique should minimize the risk of apical extrusion, even though it may not be prevented. There has been a rapid evolution of root canal instruments and irrigation systems through the last decade, and many have been assessed for their debris extrusion potential. The purpose of this review was to identify publications regarding the evaluation of debris, bacteria and irrigant extrusion during root canal treatment. A PubMed, Ovid and MEDLINE search was conducted using the keywords "apical extrusion", "debris extrusion" and "endodontic treatment". The literature search extended over a period of more than 30 years up to 2012. Content of the review was limited to apical extrusion of debris and irrigants, extrusion of liquid by irrigation methods and bacterial extrusion. Issues relevant to apical extrusion were obtained by further search in the reference sections of the retrieved articles. The review provides an update on the current status of apical extrusion. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  20. Proton diffraction

    International Nuclear Information System (INIS)

    Den Besten, J.L.; Jamieson, D.N.; Allen, L.J.

    1998-01-01

    The Lindhard theory on ion channeling in crystals has been widely accepted throughout ion beam analysis for use in simulating such experiments. The simulations use a Monte Carlo method developed by Barret, which utilises the classical 'billiard ball' theory of ions 'bouncing' between planes or tubes of atoms in the crystal. This theory is not valid for 'thin' crystals where the planes or strings of atoms can no longer be assumed to be of infinite proportions. We propose that a theory similar to that used for high energy electron diffraction can be applied to MeV ions, especially protons, in thin crystals to simulate the intensities of transmission channeling and of RBS spectra. The diffraction theory is based on a Bloch wave solution of the Schroedinger equation for an ion passing through the periodic crystal potential. The widely used universal potential for proton-nucleus scattering is used to construct the crystal potential. Absorption due to thermal diffuse scattering is included. Experimental parameters such as convergence angle, beam tilt and scanning directions are considered in our calculations. Comparison between theory and experiment is encouraging and suggests that further work is justified. (authors)

  1. Proton imaging apparatus for proton therapy application

    International Nuclear Information System (INIS)

    Sipala, V.; Lo Presti, D.; Brianzi, M.; Civinini, C.; Bruzzi, M.; Scaringella, M.; Talamonti, C.; Bucciolini, M.; Cirrone, G.A.P.; Cuttone, G.; Randazzo, N.; Stancampiano, C.; Tesi, M.

    2011-01-01

    Radiotherapy with protons, due to the physical properties of these particles, offers several advantages for cancer therapy as compared to the traditional radiotherapy and photons. In the clinical use of proton beams, a p CT (Proton Computer Tomography) apparatus can contribute to improve the accuracy of the patient positioning and dose distribution calculation. In this paper a p CT apparatus built by the Prima (Proton Imaging) Italian Collaboration will be presented and the preliminary results will be discussed.

  2. Proton radioactivity from proton-rich nuclei

    International Nuclear Information System (INIS)

    Guzman, F.; Goncalves, M.; Tavares, O.A.P.; Duarte, S.B.; Garcia, F.; Rodriguez, O.

    1999-03-01

    Half-lives for proton emission from proton-rich nuclei have been calculated by using the effective liquid drop model of heavy-particle decay of nuclei. It is shown that this model is able to offer results or spontaneous proton-emission half-life-values in excellent agreement with the existing experimental data. Predictions of half-life-values for other possible proton-emission cases are present for null orbital angular momentum. (author)

  3. Functionalization of whey proteins by reactive supercritical fluid extrusion

    Directory of Open Access Journals (Sweden)

    Khanitta Ruttarattanamongkol

    2012-09-01

    Full Text Available Whey protein, a by-product from cheese-making, is often used in a variety of food formulations due to its unsurpassednutritional quality and inherent functional properties. However, the possibilities for the improvement and upgrading of wheyprotein utilization still need to be explored. Reactive supercritical fluid extrusion (SCFX is a novel technique that has beenrecently reported to successfully functionalize commercially available whey proteins into a product with enhanced functionalproperties. The specific goal of this review is to provide fundamental understanding of the reinforcement mechanism andprocessing of protein functionalization by reactive SCFX process. The superimposed extrusion variables and their interactionmechanism affect the physico-chemical properties of whey proteins. By understanding the structure, functional properties andprocessing relationships of such materials, the rational design criteria for novel functionalized proteins could be developedand effectively utilized in food systems.

  4. Pellet manufacturing by extrusion-spheronization using process analytical technology

    DEFF Research Database (Denmark)

    Sandler, Niklas; Rantanen, Jukka; Heinämäki, Jyrki

    2005-01-01

    The aim of this study was to investigate the phase transitions occurring in nitrofurantoin and theophylline formulations during pelletization by extrusion-spheronization. An at-line process analytical technology (PAT) approach was used to increase the understanding of the solid-state behavior...... of the active pharmaceutical ingredients (APIs) during pelletization. Raman spectroscopy, near-infrared (NIR) spectroscopy, and X-ray powder diffraction (XRPD) were used in the characterization of polymorphic changes during the process. Samples were collected at the end of each processing stage (blending......, granulation, extrusion, spheronization, and drying). Batches were dried at 3 temperature levels (60 degrees C, 100 degrees C, and 135 degrees C). Water induced a hydrate formation in both model formulations during processing. NIR spectroscopy gave valuable real-time data about the state of water in the system...

  5. Numerical Studies of Low Cycle Fatigue in Forward Extrusion Dies

    DEFF Research Database (Denmark)

    Pedersen, Thomas Ø

    2000-01-01

    of describing the elastic-plastic material behaviour under cyclic loadings is used to study the effects of different pre-stressing concepts on the accumulation of plastic strain and the development of fatigue damage. The results show, that the accumulation of plastic strain in the critical region can......Forward extrusion dies typically fail due to transverse fatigue cracks or wear. Fatigue cracks are initiated in regions where the material is subjected to repeated plastic deformations, e.g. the transition radius in a forward extrusion die, in the present work, a material model capable...... be controlled by means of the pre-stressing system or the geometry of the die insert. (C) 2000 Elsevier Science B.V. All rights reserved....

  6. The effect of grain size on dynamic tensile extrusion behaviour

    Directory of Open Access Journals (Sweden)

    Park Leeju

    2015-01-01

    Full Text Available Dynamic tensile extrusion (DTE tests were conducted on coarse grained and ultrafine grained (UFG OFHC Cu, Interstitial free (IF Steel, and pure Ta. Equal channel angular pressing (ECAP of 16passes with Bc for Cu, IF Steel and 4 passes for Ta was employed to fabricated UFG materials. DTE tests were carried out by launching the sphere samples (Dia. 7.62 mm to the conical extrusion die at a speed of ∼500 m/sec. The fragmentation behavior of the soft-recovered fragments were examined and compared with each other. The DTE fragmentation behavior of CG and UFG was numerically simulated by the LS-DYNA FEM code.

  7. Hot-melt extrusion of sugar-starch-pellets.

    Science.gov (United States)

    Yeung, Chi-Wah; Rein, Hubert

    2015-09-30

    Sugar-starch-pellets (syn. sugar spheres) are usually manufactured through fluidized bed granulation or wet extrusion techniques. This paper introduces hot-melt extrusion (HME) as an alternative method to manufacture sugar-starch-pellets. A twin-screw extruder coupled with a Leistritz Micro Pelletizer (LMP) cutting machine was utilized for the extrusion of different types (normal-, waxy-, and high-amlyose) of corn starch, blended with varying amounts of sucrose. Pellets were characterized for their physicochemical properties including crystallinity, particle size distribution, tensile strength, and swelling expansion. Furthermore, the influence of sugar content and humidity on the product was investigated. Both sucrose and water lowered the Tg of the starch system allowing a convenient extrusion process. Mechanical strength and swelling behavior could be associated with varying amylose and amylopectin. X-ray powder diffractometric (XRPD) peaks of increasing sucrose contents appeared above 30%. This signified the oversaturation of the extruded starch matrix system with sucrose. Otherwise, had the dissolved sucrose been embedded into the molten starch matrix, no crystalline peak could have been recognized. The replacement of starch with sucrose reduced the starch pellets' swelling effect, which resulted in less sectional expansion (SEI) and changed the surface appearance. Further, a nearly equal tensile strength could be detected for sugar spheres with more than 40% sucrose. This observation stands in good relation with the analyzed values of the commercial pellets. Both techniques (fluidized bed and HME) allowed a high yield of spherical pellets (less friability) for further layering processes. Thermal influence on the sugar-starch system is still an obstacle to be controlled. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Cervical artificial disc extrusion after a paragliding accident

    OpenAIRE

    Niu, Tianyi; Hoffman, Haydn; Lu, Daniel C.

    2017-01-01

    Background: Cervical total disc replacement (TDR) is an established alternative to anterior cervical discectomy and fusion (ACDF) with excellent long-term outcomes and low failure rates. Cases of implant failure and migration are scarce and primarily limited to several years postoperatively. The authors report a case of anterior extrusion of a C4-C5 ProDisc-C (DePuy Synthes, West Chester, PA, USA) cervical artificial disc (CAD) 14 months after placement due to minor trauma. Case Description: ...

  9. A bandage contact lens prevents extrusion of ocular contents.

    Science.gov (United States)

    Ramjiani, Vipul; Fearnley, Thomas; Tan, Jennifer

    2016-02-01

    A 76 year old male presents with a corneal perforation in a phthisical eye. Definitive treatment in the form of an evisceration was delayed by 38 days. During this period a bandage contact lens prevented extrusion of ocular contents through an enlarging corneal perforation. This case demonstrates that a bandage contact lens can be effective in the immediate management of large corneal perforations whilst awaiting urgent definitive treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Application of Electrostatic Extrusion – Flavour Encapsulation and Controlled Release

    OpenAIRE

    Manojlovic, Verica; Rajic, Nevenka; Djonlagic, Jasna; Obradovic, Bojana; Nedovic, Viktor; Bugarski, Branko

    2008-01-01

    The subject of this study was the development of flavour alginate formulations aimed for thermally processed foods. Ethyl vanilline was used as the model flavour compound. Electrostatic extrusion was applied for the encapsulation of ethyl vanilline in alginate gel microbeads. The obtained microbeads with approx. 10 % w/w of ethyl vanilline encapsulated in about 2 % w/w alginate were uniformly sized spheres of about 450 ?m. Chemical characterization by H-NMR spectroscopy revealed that the algi...

  11. Cervical artificial disc extrusion after a paragliding accident.

    Science.gov (United States)

    Niu, Tianyi; Hoffman, Haydn; Lu, Daniel C

    2017-01-01

    Cervical total disc replacement (TDR) is an established alternative to anterior cervical discectomy and fusion (ACDF) with excellent long-term outcomes and low failure rates. Cases of implant failure and migration are scarce and primarily limited to several years postoperatively. The authors report a case of anterior extrusion of a C4-C5 ProDisc-C (DePuy Synthes, West Chester, PA, USA) cervical artificial disc (CAD) 14 months after placement due to minor trauma. A 33-year-old female who had undergone C4-C5 CAD implantation presented with neck pain and spasm after experiencing a paragliding accident. A 4 mm anterior protrusion of the CAD was seen on x-ray. She underwent removal of the CAD followed by anterior fusion. Other cases of CAD extrusion in the literature are discussed and the device's durability and testing are considered. Overall, CAD extrusion is a rare event. This case is likely the result of insufficient osseous integration. Patients undergoing cervical TDR should avoid high-risk activities to prevent trauma that could compromise the disc's placement, and future design/research should focus on how to enhance osseous integration at the interface while minimizing excessive heterotopic ossification.

  12. Reduction of Fumonisin Toxicity by Extrusion and Nixtamalization (Alkaline Cooking).

    Science.gov (United States)

    Voss, Kenneth; Ryu, Dojin; Jackson, Lauren; Riley, Ronald; Gelineau-van Waes, Janee

    2017-08-23

    Fumonisins are mycotoxins found in corn. They are toxic to animals and cause cancer in rodents and neural tube defects in LM/Bc mice. Reducing their concentrations in corn-based foods is therefore desirable. Chemical analysis or in vitro bioassays of food extracts might not detect toxic fumonisin reaction products that are unknown or unextractable from food matrices, thus potentially underestimating in vivo toxicity. The effectiveness of two common cooking methods, extrusion and nixtamalization (alkaline cooking), to reduce the toxicity of fumonisin-contaminated corn grits (extrusion) and whole kernel corn (nixtamalization) was shown by means of rat feeding bioassays using fumonisin-specific kidney effects as indicators of potential toxicity. A third bioassay showed that in contrast to fumonisin B 1 (FB 1 ), hydrolyzed fumonisin B 1 (HFB 1 ; formed from FB 1 during nixtamalization) did not cause neural tube defects in LM/Bc mice. The findings indicate that extrusion and nixtamalization reduce the potential toxicity of FB 1 -contaminated corn.

  13. Preventing Silicone Tube Extrusion after Nasolacrimal Duct Intubation in Children

    Directory of Open Access Journals (Sweden)

    Ali-Akbar Sabermoghaddam

    2010-01-01

    Full Text Available Herein we report our experience with a simple technique for reducing the rate of silicone tube extrusion after nasolacrimal duct (NLD intubation for congenital NLD obstruction. Medical records of children older than 2 years, with or without history of failed probing, who had undergone NLD intubation with a Crawford silicone tube over a period of 4 years were reviewed. In all subjects, one end of the Crawford tube was passed through a piece of scalp vein tubing followed by applying one or two knots. All Crawford tubes were removed after 3 months. Main outcome measures included complications such as tube extrusion, nasal discharge, crust formation and pyogenic granuloma formation. Fifty-seven patients, including 49 unilateral and 8 bilateral cases with mean age of 3.8΁1.6 (range, 2 to 11.5 years were operated. No complications such as tube dislodgement, significant nasal discharge, crust or pyogenic granuloma formation occurred prior to Crawford tube removal. All silicone tubes were successfully removed from the nasal cavity. In conclusion, passing one end of the Crawford tube through a small piece of scalp vein tubing before knotting it in the nasal cavity seems to decrease the rate of tube extrusion which is the most common complication following NLD intubation in children.

  14. Microstructural modelling and lubrication study during zirconium alloy hot extrusion

    International Nuclear Information System (INIS)

    Gaudout, B.

    2009-01-01

    Using torsion tests (with strain rate jumps) and an experimental hot mini-extrusion apparatus, several samples zirconium alloy have been deformed: Zircaloy-4 (high α range) and Zr-1Nb (α + β domain). The fragmentation of the microstructure and post-dynamic grain growth have been examined. The main difference between these two alloys is that Zr-1Nb does not show grain growth during a heat treatment within the α + β domain after hot deformation. The recrystallization volume fraction has been measured on extruded samples with or without heat treatment. These rheological and microstructural data have been used to determine the parameters of a microstructural model including: a work-hardening model (Laaasraoui/Jonas), a continuous dynamic recrystallization model (Gourdet/Montheillet) and a grain growth model. This model leads to a good prediction of recrystallization volume fraction for Zircaloy-4 extrusion. However, the Zr-1Nb model cannot be validated because of the difficulty to observe deformed microstructures. Extrusion process is lubricated with a solid film. Trapping tests show that this lubricant is thermoviscoplastic. Friction along the container and several observations show the lubrication is not realized by a continuous film. Indeed, the heterogeneousness of deformation of these alloys causes a rupture of the lubricant film. Experiments and numerical simulations show that the radial gradient of axial displacement is affected by friction but also by stress softening of the alloys. (author)

  15. The Energetics and Physiological Impact of Cohesin Extrusion.

    Science.gov (United States)

    Vian, Laura; Pękowska, Aleksandra; Rao, Suhas S P; Kieffer-Kwon, Kyong-Rim; Jung, Seolkyoung; Baranello, Laura; Huang, Su-Chen; El Khattabi, Laila; Dose, Marei; Pruett, Nathanael; Sanborn, Adrian L; Canela, Andres; Maman, Yaakov; Oksanen, Anna; Resch, Wolfgang; Li, Xingwang; Lee, Byoungkoo; Kovalchuk, Alexander L; Tang, Zhonghui; Nelson, Steevenson; Di Pierro, Michele; Cheng, Ryan R; Machol, Ido; St Hilaire, Brian Glenn; Durand, Neva C; Shamim, Muhammad S; Stamenova, Elena K; Onuchic, José N; Ruan, Yijun; Nussenzweig, Andre; Levens, David; Aiden, Erez Lieberman; Casellas, Rafael

    2018-05-17

    Cohesin extrusion is thought to play a central role in establishing the architecture of mammalian genomes. However, extrusion has not been visualized in vivo, and thus, its functional impact and energetics are unknown. Using ultra-deep Hi-C, we show that loop domains form by a process that requires cohesin ATPases. Once formed, however, loops and compartments are maintained for hours without energy input. Strikingly, without ATP, we observe the emergence of hundreds of CTCF-independent loops that link regulatory DNA. We also identify architectural "stripes," where a loop anchor interacts with entire domains at high frequency. Stripes often tether super-enhancers to cognate promoters, and in B cells, they facilitate Igh transcription and recombination. Stripe anchors represent major hotspots for topoisomerase-mediated lesions, which promote chromosomal translocations and cancer. In plasmacytomas, stripes can deregulate Igh-translocated oncogenes. We propose that higher organisms have coopted cohesin extrusion to enhance transcription and recombination, with implications for tumor development. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Dimensional accuracy of aluminium extrusions in mechanical calibration

    Science.gov (United States)

    Raknes, Christian Arne; Welo, Torgeir; Paulsen, Frode

    2018-05-01

    Reducing dimensional variations in the extrusion process without increasing cost is challenging due to the nature of the process itself. An alternative approach—also from a cost perspective—is using extruded profiles with standard tolerances and utilize downstream processes, and thus calibrate the part within tolerance limits that are not achievable directly from the extrusion process. In this paper, two mechanical calibration strategies for the extruded product are investigated, utilizing the forming lines of the manufacturer. The first calibration strategy is based on global, longitudinal stretching in combination with local bending, while the second strategy utilizes the principle of transversal stretching and local bending of the cross-section. An extruded U-profile is used to make a comparison between the two methods using numerical analyses. To provide response surfaces with the FEA program, ABAQUS is used in combination with Design of Experiment (DOE). DOE is conducted with a two-level fractional factorial design to collect the appropriate data. The aim is to find the main factors affecting the dimension accuracy of the final part obtained by the two calibration methods. The results show that both calibration strategies have proven to reduce cross-sectional variations effectively form standard extrusion tolerances. It is concluded that mechanical calibration is a viable, low-cost alternative for aluminium parts that demand high dimensional accuracy, e.g. due to fit-up or welding requirements.

  17. Multidrug and toxin extrusion proteins as transporters of antimicrobial drugs.

    Science.gov (United States)

    Nies, Anne T; Damme, Katja; Schaeffeler, Elke; Schwab, Matthias

    2012-12-01

    Antimicrobial drugs are essential in the treatment of infectious diseases. A better understanding of transport processes involved in drug disposition will improve the predictability of drug-drug interactions with consequences for drug response. Multidrug And Toxin Extrusion (MATE; SLC47A) proteins are efflux transporters mediating the excretion of several antimicrobial drugs as well as other organic compounds into bile and urine, thereby contributing to drug disposition. This review summarizes current knowledge of the structural and molecular features of human MATE transporters including their functional role in drug transport with a specific focus on antimicrobial drugs. The PubMed database was searched using the terms "MATE1," "MATE-2K," "MATE2," "SLC47A1," "SLC47A2," and "toxin extrusion protein" (up to June 2012). MATE proteins have been recognized as important transporters mediating the final excretion step of cationic drugs into bile and urine. These include the antiviral drugs acyclovir, amprenavir, and ganciclovir, the antibiotics cephalexin, cephradine and levofloxacin, as well as the antimalarial agents chloroquine and quinine. It is therefore important to enhance our understanding of the role of MATEs in drug extrusion with particular emphasis on the functional consequences of genetic variants on disposition of these antimicrobial drugs.

  18. Influence of external extrusion on stability of hydrogen molecule and its chaotic behavior

    Science.gov (United States)

    Jarosik, M. W.; SzczÈ©śniak, R.; Durajski, A. P.; Kalaga, J. K.; Leoński, W.

    2018-01-01

    We have determined the stability conditions of the hydrogen molecule under the influence of an external force of harmonic-type explicitly dependent on the amplitude (A) and frequency (Ω). The ground state of the molecule has been determined in the framework of the Born-Oppenheimer approximation, whereas the energy of the electronic subsystem has been calculated using the Hubbard model including all two-site electron interactions. The diagram of RT0(A ,Ω) , where RT0 denotes the distance between protons after the fixed initial time T0, allowed us to visualize the area of the instability with the complicated structure. We have shown that the vibrations of the hydrogen molecule have a chaotic nature for some points of the instability region. In addition to the amplitude and frequency of the extrusion, the control parameter of the stability of the molecule is the external force associated with pressure. The increase in its value causes the disappearance of the area of the instability and chaotic vibrations.

  19. Comparisons of microstructures and texture and mechanical properties of magnesium alloy fabricated by compound extrusion and direct extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Hu, H.-J., E-mail: hhj@cqut.edu.cn [Chongqing University of Technology, Chongqing 400050 (China); PLA Chongqing Logistics Engineering College, 401311 (China); Ying, Y.-L. [Chongqing University of Technology, Chongqing 400050 (China); Ou, Z.-W. [PLA Chongqing Logistics Engineering College, 401311 (China); Wang, X.-Q. [The University of Alabama, Tuscaloosa, AL 35487 (United States)

    2017-05-17

    In this study, microstructure evolution, textures and mechanical properties of AZ61 magnesium alloy were investigated by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tensile tests. The samples were processed by a new compound extrusion (CE) which combines direct extrusion (DE) and two steps of equal channel anger extrusion (ECAE). The results show that CE process can refine the microstructure more effectively than the DE process. The CE-fabricated samples have a weaker texture (0002), and a more fine and homogeneous microstructures, which attributes to the additional two steps of ECAE in CE process. In CE process, twin dynamic recrystallization and rotational dynamic recrystallization occurred, which enhances the refinement of the grains and weakening of the texture. In addition, the samples fabricated by CE process display a higher tensile properties (yield strength, tensile strength and elongation) with an excellent balance of strength and tensile ductility. Based on this study, severe plastic deformation (SPD) techniques combining conventional DE and two steps ECAE into a single process are feasibility to improve the mechanical properties of AZ61 Mg alloy.

  20. Numerical studies of temperature effect on the extrusion fracture and swell of plastic micro-pipe

    Science.gov (United States)

    Ren, Zhong; Huang, Xingyuan; Xiong, Zhihua

    2018-03-01

    Temperature is a key factor that impacts extrusion forming quality of plastic micro-pipe. In this study, the effect of temperature on extrusion fracture and swell of plastic micro-pipe was investigated by numerical method. Under a certain of the melt’s flow volume, the extrusion pattern, extrusion swelling ratio of melt are obtained under different temperatures. Results show that the extrusion swelling ratio of plastic micro-pipe decreases with increasing of temperature. In order to study the reason of temperature effect, the physical distributions of plastic micro-pipe are gotten. Numerical results show that the viscosity, pressure, stress value of melt are all decreased with the increasing of temperature, which leads to decrease the extrusion swell and fracture phenomenon for the plastic micro-pipe.

  1. Proton movies

    CERN Multimedia

    2009-01-01

    A humorous short film made by three secondary school students received an award at a Geneva film festival. Even without millions of dollars or Hollywood stars at your disposal, it is still possible to make a good science fiction film about CERN. That is what three students from the Collège Madame de Staël in Carouge, near Geneva, demonstrated. For their amateur short film on the LHC, they were commended by the jury of the video and multimedia festival for schools organised by the "Media in education" service of the Canton of Geneva’s Public Education Department. The film is a spoof of a television news report on the LHC start-up. In sequences full of humour and imagination, the reporter conducts interviews with a very serious "Professor Sairne", some protons preparing for their voyage and even the neutrons that were rejected by the LHC. "We got the idea of making a film about CERN at the end of the summer," explains Lucinda Päsche, one of the three students. "We did o...

  2. Use of a high temperature hydrostatic extrusion technique for powders strengthening

    International Nuclear Information System (INIS)

    Decours, J.; Gavinet, J.; Weisz, M.

    1975-01-01

    A conventional 575 tonnes extrusion press has been modified by a device permitting the extrusion process by hydrostatic pression through a leakless mechanical set (13,000 bars maximum), from room temperature to 1,200 deg C. This new device allows: the high temperature hydrostatic extrusion for strengthening of powders, the isostatic compression of powders. Examples of realisations obtained by this process are described, including the influence of different parameters: pressure, temperature, extrusion ratio and for different materials: pure metals (iron, nickel, niobium, etc...) and alloys (stainless steel, molybdenum, niobium nickel alloys, etc...). Then, the advantages of the process are emphasized [fr

  3. Proton-air and proton-proton cross sections

    Directory of Open Access Journals (Sweden)

    Ulrich Ralf

    2013-06-01

    Full Text Available Different attempts to measure hadronic cross sections with cosmic ray data are reviewed. The major results are compared to each other and the differences in the corresponding analyses are discussed. Besides some important differences, it is crucial to see that all analyses are based on the same fundamental relation of longitudinal air shower development to the observed fluctuation of experimental observables. Furthermore, the relation of the measured proton-air to the more fundamental proton-proton cross section is discussed. The current global picture combines hadronic proton-proton cross section data from accelerator and cosmic ray measurements and indicates a good consistency with predictions of models up to the highest energies.

  4. Microemulsion extrusion technique: a new method to produce lipid nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, Marcelo Bispo de, E-mail: dejesusmb@gmail.com; Radaic, Allan [University of Campinas-UNICAMP, Department of Biochemistry, Institute of Biology (Brazil); Zuhorn, Inge S. [University of Groningen, Department of Membrane Cell Biology, University Medical Center (Netherlands); Paula, Eneida de [University of Campinas-UNICAMP, Department of Biochemistry, Institute of Biology (Brazil)

    2013-10-15

    Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) have been intensively investigated for different applications, including their use as drug and gene delivery systems. Different techniques have been employed to produce lipid nanoparticles, of which high pressure homogenization is the standard technique that is adopted nowadays. Although this method has a high efficiency, does not require the use of organic solvents, and allows large-scale production, some limitations impede its application at laboratory scale: the equipment is expensive, there is a need of huge amounts of surfactants and co-surfactants during the preparation, and the operating conditions are energy intensive. Here, we present the microemulsion extrusion technique as an alternative method to prepare lipid nanoparticles. The parameters to produce lipid nanoparticles using microemulsion extrusion were established, and the lipid particles produced (SLN, NLC, and liposomes) were characterized with regard to size (from 130 to 190 nm), zeta potential, and drug (mitoxantrone) and gene (pDNA) delivery properties. In addition, the particles' in vitro co-delivery capacity (to carry mitoxantrone plus pDNA encoding the phosphatase and tensin homologue, PTEN) was tested in normal (BALB 3T3 fibroblast) and cancer (PC3 prostate and MCF-7 breast) cell lines. The results show that the microemulsion extrusion technique is fast, inexpensive, reproducible, free of organic solvents, and suitable for small volume preparations of lipid nanoparticles. Its application is particularly interesting when using rare and/or costly drugs or ingredients (e.g., cationic lipids for gene delivery or labeled lipids for nanoparticle tracking/diagnosis)

  5. Role of lipids in the extrusion cooking processes

    Directory of Open Access Journals (Sweden)

    Berghofe, E.

    2000-04-01

    Full Text Available Extrusion is a versatile and very efficient technology that is widely used in food and feed processing. The cooking extruders have found many applications, which include: breakfast cereals, snack foods, other cereal based products, pet food and aquatic foods, texturized vegetable proteins, confectionery products, chemical and biochemical reactions, and oil extraction. Lipids are components that play an important role in most of the extrusion cooking processes. They can act as plastificizers or emulsifiers, and affect more significantly texture and stickiness of the extrudate. This paper reviews effect of oils and other lipids reactions during extrusion cooking as well as the effects of amylase-lipid complexation on extrudate quality.La extrusión es, en general, una tecnología versátil y muy eficiente, que se aplica ampliamente en la elaboración de alimentos y piensos. Los equipos de cocción-extrusión tienen numerosas aplicaciones, entre las que pueden incluirse: los cereales de desayuno listos para comer, los aperitivos, diferentes productos basados en cereales, los piensos para animales domésticos y peces, proteínas vegetales texturizadas, productos de pastelería, reacciones químicas y bioquímicas, y la extracción de aceites. Los lípidos son componentes que juegan un papel importante en la mayoría de los procesos de cocción-extrusión. Pueden actuar como plastificantes o como emulsionantes, suministrando lubricación. En este artículo se revisan con detalle los efectos de las reacciones de los aceites y otros lípidos durante el proceso de cocción-extrucción así como el efecto de la formación de complejos amilasa-lípidos sobre la calidad de los extrudados.

  6. Distal corporoplasty for distal cylinders extrusion after penile prosthesis implantation.

    Science.gov (United States)

    Carrino, Maurizio; Chiancone, Francesco; Battaglia, Gaetano; Pucci, Luigi; Fedelini, Paolo

    2017-02-03

    Distal extrusion of cylinders is a potential complication of the penile prosthesis implantation. Several methods have been proposed for repairing a distal penile erosion. We present our preliminary experience in "Distal corporoplasty" technique. We enrolled 18 consecutive patients whose underwent a distal corporoplasty with simultaneous reimplantation of an "AMS 700 inflatable penile prosthesis (LGX)" from January 2013 to November 2015 at our hospital. All procedures were performed by a single surgical team. Intraoperative and postoperative complications have been classified and reported according to Satava6 and Clavien-Dindo (CD) system.7 Mean values with standard deviations (±SD) were computed and reported for all items. Mean age of the patients was 53.61 (±11.90) years. Mean body max index (BMI) was 24.22 (±2.51). Mean operative time was 85.2 (±13.1) minutes. Blood losses were minimal. No intraoperative complications are reported according to Satava classification. Four out of 18 patients (22.22%) experienced postoperative complications according to CD system. All patients had sexual intercourse for the first time postsurgery after a mean of 59.11 ± 2.08 days. Mean follow-up was 22.11 (±9.95). Distal extrusion of cylinders is a potential complication of the penile prosthesis implantation. Distal corporoplasty was first described by Mulcahy. He reported a series of 14 patients with a follow-up of about 2 years with optimal functional outcomes. Moreover, distal corporoplasty resulted in shorter operative time, better function, less pain, and fewer recurrences than Gortex windsock repair.10 In our experience, distal corporoplasty is a simple and safe procedure in the treatment of distal cylinders extrusion when the prosthetic material is not exposed to the exterior.

  7. Microemulsion extrusion technique: a new method to produce lipid nanoparticles

    International Nuclear Information System (INIS)

    Jesus, Marcelo Bispo de; Radaic, Allan; Zuhorn, Inge S.; Paula, Eneida de

    2013-01-01

    Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) have been intensively investigated for different applications, including their use as drug and gene delivery systems. Different techniques have been employed to produce lipid nanoparticles, of which high pressure homogenization is the standard technique that is adopted nowadays. Although this method has a high efficiency, does not require the use of organic solvents, and allows large-scale production, some limitations impede its application at laboratory scale: the equipment is expensive, there is a need of huge amounts of surfactants and co-surfactants during the preparation, and the operating conditions are energy intensive. Here, we present the microemulsion extrusion technique as an alternative method to prepare lipid nanoparticles. The parameters to produce lipid nanoparticles using microemulsion extrusion were established, and the lipid particles produced (SLN, NLC, and liposomes) were characterized with regard to size (from 130 to 190 nm), zeta potential, and drug (mitoxantrone) and gene (pDNA) delivery properties. In addition, the particles’ in vitro co-delivery capacity (to carry mitoxantrone plus pDNA encoding the phosphatase and tensin homologue, PTEN) was tested in normal (BALB 3T3 fibroblast) and cancer (PC3 prostate and MCF-7 breast) cell lines. The results show that the microemulsion extrusion technique is fast, inexpensive, reproducible, free of organic solvents, and suitable for small volume preparations of lipid nanoparticles. Its application is particularly interesting when using rare and/or costly drugs or ingredients (e.g., cationic lipids for gene delivery or labeled lipids for nanoparticle tracking/diagnosis)

  8. [Technique for removing donor sclera by eyeball extrusion].

    Science.gov (United States)

    González Del Valle, F; Álvarez Portela, M; Lara Medina, J; Celis Sánchez, J; Barrajón Rodríguez, A

    2012-09-01

    To describe a surgery technique for removing donor sclera tissue after corneo-scleral button excision. The extrusion technique is easy to perform. It allows the complete scleral extraction its total clean up to be performed, as well as making easier to isolate the retina and uveal tissue. This technique could have an important role in the anatomical and morphological study of ocular structures. Copyright © 2011 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  9. The role of extrusions and intrusions in fatigue crack initiation

    Czech Academy of Sciences Publication Activity Database

    Polák, Jaroslav; Mazánová, Veronika; Heczko, Milan; Petráš, Roman; Kuběna, Ivo; Casalena, L.; Man, Jiří

    2017-01-01

    Roč. 185, NOV (2017), s. 46-60 ISSN 0013-7944 R&D Projects: GA MŠk(CZ) LQ1601; GA MŠk LM2015069; GA ČR(CZ) GA13-23652S; GA ČR GA15-08826S Institutional support: RVO:68081723 Keywords : Extrusion * Fatigue crack initiation * Intrusion * Persistent slip marking * Stainless steel Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 2.151, year: 2016

  10. Hydrostatic extrusion of Cu-Ag melt spun ribbon

    Science.gov (United States)

    Hill, Mary Ann; Bingert, John F.; Bingert, Sherri A.; Thoma, Dan J.

    1998-01-01

    The present invention provides a method of producing high-strength and high-conductance copper and silver materials comprising the steps of combining a predetermined ratio of the copper with the silver to produce a composite material, and melt spinning the composite material to produce a ribbon of copper and silver. The ribbon of copper and silver is heated in a hydrogen atmosphere, and thereafter die pressed into a slug. The slug then is placed into a high-purity copper vessel and the vessel is sealed with an electron beam. The vessel and slug then are extruded into wire form using a cold hydrostatic extrusion process.

  11. Proton therapy device

    International Nuclear Information System (INIS)

    Tronc, D.

    1994-01-01

    The invention concerns a proton therapy device using a proton linear accelerator which produces a proton beam with high energies and intensities. The invention lies in actual fact that the proton beam which is produced by the linear accelerator is deflected from 270 deg in its plan by a deflecting magnetic device towards a patient support including a bed the longitudinal axis of which is parallel to the proton beam leaving the linear accelerator. The patient support and the deflecting device turn together around the proton beam axis while the bed stays in an horizontal position. The invention applies to radiotherapy. 6 refs., 5 figs

  12. Towards structural and functional analysis of the plant plasma membrane proton pump

    DEFF Research Database (Denmark)

    Justesen, Bo Højen

    The plasma membrane H+-ATPase is a proton pump essential for several physiological important processes in plants. Through the extrusion of protons from the cell, the PM H+-ATPase establishes and maintains a proton gradient used by proton coupled transporters and secondary active transport...... of nutrients and metabolites across the plasma membrane. Additional processes involving the PM H+-ATPase includes plant growth, development, and response to biotic and abiotic stresses. Extensive efforts have been made in attempts to elucidate the detailed physiological role and biochemical characteristics...... of plasma membrane H+-ATPases. Studies on the plasma membrane H+-ATPases have involved both in vivo and in vitro approaches, with the latter employing either solubilisation by detergent micelles, or reconstitution into lipid vesicles. Despite resulting in a large body of information on structure, function...

  13. Optimization of extrusion process for production of nutritious pellets

    Directory of Open Access Journals (Sweden)

    Ernesto Aguilar-Palazuelos

    2012-03-01

    Full Text Available A blend of 50% Potato Starch (PS, 35% Quality Protein Maize (QPM, and 15% Soybean Meal (SM were used in the preparation of expanded pellets utilizing a laboratory extruder with a 1.5 × 20.0 × 100.0 mm die-nozzle. The independent variables analyzed were Barrel Temperature (BT (75-140 °C and Feed Moisture (FM (16-30%. The effect of extrusion variables was investigated in terms of Expansion Index (EI, apparent density (ApD, Penetration Force (PF and Specific Mechanical Energy (SME, viscosity profiles, DSC, crystallinity by X-ray diffraction, and Scanning Electronic Microscopy (SEM. The PF decreased from 30 to 4 kgf with the increase of both independent variables (BT and FM. SME was affected only by FM, and decreased with the increase in this variable. The optimal region showed that the maximum EI was found for BT in the range of 123-140 °C and 27-31% for FM, respectively. The extruded pellets obtained from the optimal processing region were probably not completely degraded, as shown in the structural characterization. Acceptable expanded pellets could be produced using a blend of PS, QPM, and SM by extrusion cooking.

  14. Extrusion Bioprinting of Shear-Thinning Gelatin Methacryloyl Bioinks.

    Science.gov (United States)

    Liu, Wanjun; Heinrich, Marcel A; Zhou, Yixiao; Akpek, Ali; Hu, Ning; Liu, Xiao; Guan, Xiaofei; Zhong, Zhe; Jin, Xiangyu; Khademhosseini, Ali; Zhang, Yu Shrike

    2017-06-01

    Bioprinting is an emerging technique for the fabrication of 3D cell-laden constructs. However, the progress for generating a 3D complex physiological microenvironment has been hampered by a lack of advanced cell-responsive bioinks that enable bioprinting with high structural fidelity, particularly in the case of extrusion-based bioprinting. Herein, this paper reports a novel strategy to directly bioprint cell-laden gelatin methacryloyl (GelMA) constructs using bioinks of GelMA physical gels (GPGs) achieved through a simple cooling process. Attributed to their shear-thinning and self-healing properties, the GPG bioinks can retain the shape and form integral structures after deposition, allowing for subsequent UV crosslinking for permanent stabilization. This paper shows the structural fidelity by bioprinting various 3D structures that are typically challenging to fabricate using conventional bioinks under extrusion modes. Moreover, the use of the GPG bioinks enables direct bioprinting of highly porous and soft constructs at relatively low concentrations (down to 3%) of GelMA. It is also demonstrated that the bioprinted constructs not only permit cell survival but also enhance cell proliferation as well as spreading at lower concentrations of the GPG bioinks. It is believed that such a strategy of bioprinting will provide many opportunities in convenient fabrication of 3D cell-laden constructs for applications in tissue engineering, regenerative medicine, and pharmaceutical screening. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Oriented Structure of Pentablock Copolymers Induced by Solution Extrusion

    Science.gov (United States)

    Harada, Tamotsu; Bates, Frank S.; Lodge, Timothy P.

    2002-03-01

    Highly oriented structure of a poly(styrene-co-butadiene) pentablock copolymer (Mw; 104,700 g/mol, weight percentage of polybutadiene blocks; 29 wt of concentrated solutions. The pentablock copolymer was dissolved into mixtures of toluene and heptane, and the polymer concentration ranged from 40 wt extrusion, the pentablock copolymer was solidified either by coagulation in methanol or by evaporation of the solvent. Interestingly, a highly oriented lamellar structure was confirmed through the small angle X-ray scattering over a specific range of heptane composition, which is a good solvent for polybutadiene, although the hexagonal cylinder morphology was identified for the melt sample. The transition from the oriented lamellar to highly oriented cylinder structure was observed by annealing the samples at temperatures above the glass transition temperature of polystyrene. Moreover, a transition from parallel to perpendicular orientation in the lamellar state was observed with an increase of the extrusion shear rate. A comparison between pentablock and triblock copolymers will be also discussed.

  16. Analysis on dynamic tensile extrusion behavior of UFG OFHC Cu

    Science.gov (United States)

    Park, Kyung-Tae; Park, Leeju; Kim, Hak Jun; Kim, Seok Bong; Lee, Chong Soo

    2014-08-01

    Dynamic tensile extrusion (DTE) tests with the strain rate order of ~105 s-1 were conducted on coarse grained (CG) Cu and ultrafine grained (UFG) Cu. ECAP of 16 passes with route Bc was employed to fabricate UFG Cu. DTE tests were carried out by launching the sphere samples to the conical extrusion die at a speed of ~475 m/sec in a vacuumed gas gun system. UFG Cu was fragmented into 3 pieces and showed a DTE elongation of ~340%. CG Cu exhibited a larger DTE elongation of ~490% with fragmentation of 4 pieces. During DTE tests, dynamic recrystallization occurred in UFG Cu, but not in CG Cu. In order to examine the DTE behavior of CG Cu and UFG Cu under very high strain rates, a numerical analysis was undertaken by using a commercial finite element code (LS-DYNA 2D axis-symmetric model) with the Johnson - Cook model. The numerical analysis correctly predicted fragmentation and DTE elongation of CG Cu. But, the experimental DTE elongation of UFG Cu was much smaller than that predicted by the numerical analysis. This difference is discussed in terms of microstructural evolution of UFG Cu during DTE tests.

  17. Machine for extrusion under vacuum; Machine de fluage sous vide

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    In a study of the behaviour of easily oxidised metals during the extrusion process, it is first necessary to find an effective mean of fighting corrosion, since this, even when barely detectable, has an important influence on the validity of the results recorded. The neatest and also the most efficient of all the methods tried consists in creating a vacuum around the test piece. Working on this principle, and at the same time respecting the conventional rules for extrusion tests (loading the sample after stabilisation at the testing temperature, differential measurements of lengthening, etc.) we found it necessary to construct an original machine. (author) [French] L'etude du comportement au fluage des materiaux facilement oxydables exige, en premier lieu, une lutte efficace contre la corrosion qui, meme a peine decelable, prend une part preponderante quant a la validite des resultats enregistres. La solution la plus elegante, et, a vrai dire, la plus energique parmi toutes les methodes essayees, consiste a realiser le vide autour de l'eprouvette d'essai. Partant de ce principe, et pour sauvegarder les regles classiques de l'essai de fluage (mise en charge de l'eprouvette apres stabilisation en temperature d'essai, mesures differentielles des allongements, etc.) nous nous sommes trouves dans la necessite de construire une machine inedite. (auteur)

  18. Machine for extrusion under vacuum; Machine de fluage sous vide

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    In a study of the behaviour of easily oxidised metals during the extrusion process, it is first necessary to find an effective mean of fighting corrosion, since this, even when barely detectable, has an important influence on the validity of the results recorded. The neatest and also the most efficient of all the methods tried consists in creating a vacuum around the test piece. Working on this principle, and at the same time respecting the conventional rules for extrusion tests (loading the sample after stabilisation at the testing temperature, differential measurements of lengthening, etc.) we found it necessary to construct an original machine. (author) [French] L'etude du comportement au fluage des materiaux facilement oxydables exige, en premier lieu, une lutte efficace contre la corrosion qui, meme a peine decelable, prend une part preponderante quant a la validite des resultats enregistres. La solution la plus elegante, et, a vrai dire, la plus energique parmi toutes les methodes essayees, consiste a realiser le vide autour de l'eprouvette d'essai. Partant de ce principe, et pour sauvegarder les regles classiques de l'essai de fluage (mise en charge de l'eprouvette apres stabilisation en temperature d'essai, mesures differentielles des allongements, etc.) nous nous sommes trouves dans la necessite de construire une machine inedite. (auteur)

  19. Plasticized chitosan/polyolefin films produced by extrusion.

    Science.gov (United States)

    Matet, Marie; Heuzey, Marie-Claude; Ajji, Abdellah; Sarazin, Pierre

    2015-03-06

    Plasticized chitosan and polyethylene blends were produced through a single-pass extrusion process. Using a twin-screw extruder, chitosan plasticization was achieved in the presence of an acetic acid solution and glycerol, and directly mixed with metallocene polyethylene, mPE, to produce a masterbatch. Different dilutions of the masterbatch (2, 5 and 10 wt% of plasticized chitosan), in the presence of ethylene vinyl acetate, EVA, were subsequently achieved in single screw film extrusion. Very small plasticized chitosan domains (number average diameter <5 μm) were visible in the polymeric matrix. The resulting films presented a brown color and increasing haze with chitosan plasticized content. Mechanical properties of the mPE films were affected by the presence of plasticized chitosan, but improvement was observed as a result of some compatibility between mPE and chitosan in the presence of EVA. Finally the incorporation of plasticized chitosan affected mPE water vapor permeability while oxygen permeability remained constant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Physical simulation method for the investigation of weld seam formation during the extrusion of aluminum alloys

    NARCIS (Netherlands)

    Fang, G; Zhou, J.

    2017-01-01

    Extrusion through the porthole die is a predominant forming process used in the production of hollow aluminum alloy profiles across the aluminum extrusion industry. Longitudinal weld seams formed during the process may negatively influence the quality of extruded profiles. It is therefore of

  1. 75 FR 22109 - Aluminum Extrusions from the People's Republic of China: Initiation of Antidumping Duty...

    Science.gov (United States)

    2010-04-27

    ... Aluminium, Ltd., a producer of aluminum extrusions, for the 2008 2009 fiscal year. See Volume II of the..., produced by an extrusion process, made from aluminum alloys having metallic elements corresponding to the alloy series designations published by The Aluminum Association commencing with the numbers 1, 3, and 6...

  2. Extrusion-cooking to improve the animal feed quality of broad beans

    NARCIS (Netherlands)

    Moscicki, L.; Wojcik, S.; Plaur, K.; Zuilichem, van D.J.

    1984-01-01

    Extrusion-cooking of broad beans with a single-screw extruder has been investigated. Attention was focused on process requirements as well as on the nutritional effects of extrusion-cooked broad beans in a chicken feed formulation. The optimal thermal process conditions required for a product of

  3. Friction conditions in the bearing area of an aluminium extrusion process

    NARCIS (Netherlands)

    Ma, X.; de Rooij, Matthias B.; Schipper, Dirk J.

    2012-01-01

    In aluminium extrusion processes, friction inside the bearing channel is important for controlling the surface quality of the extrusion products. The contact materials show a large hardness difference, one being hot aluminium, and the other being hardened tool steel. Further, the contact pressure is

  4. Periodontal healing complications following extrusive and lateral luxation in the permanent dentition: a longitudinal cohort study

    DEFF Research Database (Denmark)

    Hermann, Nuno Vibe; Lauridsen, Eva Fejerskov; Christensen, Søren Steno Ahrensburg

    2012-01-01

    To analyze the risk of tooth loss and complications in periodontal ligament (PDL) healing following extrusive and lateral luxation in the permanent dentition.......To analyze the risk of tooth loss and complications in periodontal ligament (PDL) healing following extrusive and lateral luxation in the permanent dentition....

  5. Physical properties, molecular structures and protein quality of texturized whey protein isolate: effect of extrusion temperature

    Science.gov (United States)

    Extrusion is a powerful food processing operation, which utilizes high temperature and high shear force to produce a product with unique physical and chemical characteristics. Texturization of whey protein isolate (WPI) through extrusion for the production of protein fortified snack foods has provid...

  6. Chemical, physical and nutritional changes in soybean meal as a result of toasting and extrusion cooking

    NARCIS (Netherlands)

    Marsman, G.J.P.

    1998-01-01

    The effect of soybean meal extrusion and the development of shear forces during single-screw extrusion was compared with the toasting process of soybean meal. Attention was focused on chemical, physical and nutritional changes during these thermo-mechanical

  7. Factors affecting irrigant extrusion during root canal irrigation: a systematic review

    NARCIS (Netherlands)

    Boutsioukis, C.; Psimma, Z.; van der Sluis, L.W.M.

    2013-01-01

    The aim of the present study was to conduct a systematic review and critical analysis of published data on irrigant extrusion to identify factors causing, affecting or predisposing to irrigant extrusion during root canal irrigation of human mature permanent teeth. An electronic search was conducted

  8. 78 FR 67115 - Aluminum Extrusions From the People's Republic of China: Intent To Rescind 2012 Countervailing...

    Science.gov (United States)

    2013-11-08

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-968] Aluminum Extrusions From the People's Republic of China: Intent To Rescind 2012 Countervailing Duty Administrative Review, in Part... administrative review of the countervailing duty (CVD) order on aluminum extrusions from the People's Republic of...

  9. Coupled analysis of material flow and die deflection in direct aluminum extrusion

    NARCIS (Netherlands)

    Assaad, W.; Geijselaers, Hubertus J.M.

    2010-01-01

    The design of extrusion dies depends on the experience of the designer. After the die has been manufactured, it is tested during an extrusion trial and machined several times until it works properly. The die is designed by a trial and error method which is an expensive process in terms of time and

  10. Elastic proton-proton scattering at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Yip, K.

    2011-09-03

    Here we describe elastic proton+proton (p+p) scattering measurements at RHIC in p+p collisions with a special optics run of {beta}* {approx} 21 m at STAR, at the center-of-mass energy {radical}s = 200 GeV during the last week of the RHIC 2009 run. We present preliminary results of single and double spin asymmetries.

  11. Baryon production in proton-proton collisions

    International Nuclear Information System (INIS)

    Liu, F.M.; Werner, K.

    2002-01-01

    Motivated by the recent rapidity spectra of baryons and antibaryons in pp collisions at 158 GeV and the Ω-bar/Ω ratio discussion, we reviewed string formation mechanism and some string models. This investigation told us how color strings are formed in ultrarelativistic proton-proton collisions

  12. Extrusion conditions affect chemical composition and in vitro digestion of select food ingredients.

    Science.gov (United States)

    Dust, Jolene M; Gajda, Angela M; Flickinger, Elizabeth A; Burkhalter, Toni M; Merchen, Neal R; Fahey, George C

    2004-05-19

    An experiment was conducted to determine the effects of extrusion conditions on chemical composition and in vitro hydrolytic and fermentative digestion of barley grits, cornmeal, oat bran, soybean flour, soybean hulls, and wheat bran. Extrusion conditions altered crude protein, fiber, and starch concentrations of ingredients. Organic matter disappearance (OMD) increased for extruded versus unprocessed samples of barley grits, cornmeal, and soybean flour that had been hydrolytically digested. After 8 h of fermentative digestion, OMD decreased as extrusion conditions intensified for barley grits and cornmeal but increased for oat bran, soybean hulls, and wheat bran. Total short-chain fatty acid production decreased as extrusion conditions intensified for barley grits, soybean hulls, and soybean flour. These data suggest that the effects of extrusion conditions on ingredient composition and digestion are influenced by the unique chemical characteristics of individual substrates.

  13. High strength Al–Al2O3p composites: Optimization of extrusion parameters

    DEFF Research Database (Denmark)

    Luan, B.F.; Hansen, Niels; Godfrey, A.

    2011-01-01

    Composite aluminium alloys reinforced with Al2O3p particles have been produced by squeeze casting followed by hot extrusion and a precipitation hardening treatment. Good mechanical properties can be achieved, and in this paper we describe an optimization of the key processing parameters...... on an investigation of their mechanical properties and microstructure, as well as on the surface quality of the extruded samples. The evaluation shows that material with good strength, though with limited ductility, can be reliably obtained using a production route of squeeze casting, followed by hot extrusion....... The parameters investigated are the extrusion temperature, the extrusion rate and the extrusion ratio. The materials chosen are AA 2024 and AA 6061, each reinforced with 30vol.% Al2O3 particles of diameter typically in the range from 0.15 to 0.3μm. The extruded composites have been evaluated based...

  14. Proton: the particle.

    Science.gov (United States)

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10(80). Protons were created at 10(-6) -1 second after the Big Bang at ≈1.37 × 10(10) years beforethe present. Proton life span has been experimentally determined to be ≥10(34) years; that is, the age of the universe is 10(-24)th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W(+), W(-), Z(0), and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter. Copyright © 2013 Elsevier Inc. All

  15. Proton: The Particle

    Energy Technology Data Exchange (ETDEWEB)

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10{sup 80}. Protons were created at 10{sup −6} –1 second after the Big Bang at ≈1.37 × 10{sup 10} years beforethe present. Proton life span has been experimentally determined to be ≥10{sup 34} years; that is, the age of the universe is 10{sup −24}th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W{sup +}, W{sup −}, Z{sup 0}, and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter.

  16. Extrusão de misturas de castanha do Brasil com mandioca Extrusion of Brazil nut and cassava flour mixtures

    Directory of Open Access Journals (Sweden)

    Maria Luzenira de Souza

    2008-06-01

    Full Text Available Considerando-se que a castanha do Brasil apresenta elevado potencial nutritivo, baixo consumo no Brasil, baixo valor agregado e é um produto orgânico, além da alta produtividade, do baixo custo da mandioca e da tecnologia de extrusão termoplástica apresentarem ampla aplicabilidade e vantagens, este trabalho teve como objetivo empregar estas três variáveis, para formular misturas com castanha do Brasil e farinha de mandioca e processá-las por extrusão, visando à obtenção de produtos extrusados ricos em proteína vegetal e prontos para o consumo. Foram utilizadas torta de amêndoa de castanha do Brasil semidesengordurada e farinha de mandioca para formulações das misturas para extrusão. Aplicou-se o delineamento fatorial completo composto central (2³, com 3 variáveis independentes e a metodologia de superfície de resposta foi usada para avaliar os resultados da composição centesimal e o valor calórico, frente às variações de castanha, umidade e temperatura. Os resultados indicam que as formulações com maiores quantidades de castanha apresentam quantidades de proteínas, lipídios e cinzas mais elevadas, já as formulações com menores teores de castanha apresentam maiores percentuais de carboidratos. Os coeficientes de regressão médios do modelo estatístico para as respostas são: umidade 7,40; carboidratos 51,09; proteínas 15,34; lipídios 11,77; fibra total 9,92 e kcal 371,65. Os ensaios com menores teores de castanha e maiores de farinha apresentam-se mais expandidos e de cor clara, enquanto que aqueles com maiores teores de castanha não se expandem e têm a cor acinzentada. Conclui-se que a adição de castanha semidesengordurada à farinha de mandioca pode ser submetida à extrusão, originando um produto extrusado fonte de proteína vegetal, pronto para o consumo e que pode atender à exigência de consumidores que não utilizam proteínas de origem animal.Considering that Brazil nut presents high nutritional

  17. Melting, casting, and alpha-phase extrusion of the uranium-2.4 weight percent niobium alloy

    International Nuclear Information System (INIS)

    Anderson, R.C.; Beck, D.E.; Kollie, T.G.; Zorinsky, E.J.; Jones, J.M.

    1981-10-01

    The experimental details of the melting, casting, homogenization, and alpha-phase extrusion process used to fabricate the uranium-2.4 wt % niobium alloy into 46-mm-diameter rods is described. Extrusion defects that were detected by an ultrasonic technique were eliminated by proper choice of extrusion parameters; namely, reduction ratio, ram speed, die angle, and billet preheat temperature

  18. 77 FR 74466 - Aluminum Extrusions From the People's Republic of China: Notice of Court Decision Not in Harmony...

    Science.gov (United States)

    2012-12-14

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-968] Aluminum Extrusions From the... countervailing duty (CVD) investigation of aluminum extrusions from the People's Republic of China (PRC) \\1... Aluminum Extrusions From the People's Republic of China: Final Affirmative Countervailing Duty...

  19. Genetic Architecture of Anther Extrusion in Spring and Winter Wheat

    Directory of Open Access Journals (Sweden)

    Quddoos H. Muqaddasi

    2017-05-01

    Full Text Available Hybrid wheat breeding is gaining prominence worldwide because it ensures higher and more static yield than conventionally bred varieties. The cleistogamous floral architecture of wheat (Triticum aestivum L. impedes anthers inside the floret, making it largely an inbreeder. For hybrid seed production, high anther extrusion is needed to promote cross pollination and to ensure a high level of pollen availability for the seed plant. This study, therefore, aimed at the genetic dissection of anther extrusion (AE in panels of spring (SP, and winter wheat (WP accessions by genome wide association studies (GWAS. We performed GWAS to identify the SNP markers potentially linked with AE in each panel separately. Phenotypic data were collected for 3 years for each panel. The average levels of Pearson's correlation (r among all years and their best linear unbiased estimates (BLUEs within both panels were high (r(SP = 0.75, P < 0.0001;r(WP = 0.72, P < 0.0001. Genotypic data (with minimum of 0.05 minor allele frequency applied included 12,066 and 12,191 SNP markers for SP and WP, respectively. Both genotypes and environment influenced the magnitude of AE. In total, 23 significant (|log10(P| > 3.0 marker trait associations (MTAs were detected (SP = 11; WP = 12. Anther extrusion behaved as a complex trait with significant markers having either favorable or unfavorable additive effects and imparting minor to moderate levels of phenotypic variance (R2(SP = 9.75−14.24%; R2 (WP = 9.44−16.98%. All mapped significant markers as well as the markers within their significant linkage disequilibrium (r2 ≥ 0.30 regions were blasted against wheat genome assembly (IWGSC1+popseq to find the corresponding genes and their high confidence descriptions were retrieved. These genes and their orthologs in Hordeum vulgare, Brachypodium distachyon, Oryza sativa, and Sorghum bicolor revealed syntenic genomic regions potentially involved in flowering-related traits. Moreover, the

  20. Spherical proton emitters

    International Nuclear Information System (INIS)

    Berg, S.; Semmes, P.B.; Nazarewicz, W.

    1997-01-01

    Various theoretical approaches to proton emission from spherical nuclei are investigated, and it is found that all the methods employed give very similar results. The calculated decay widths are found to be qualitatively insensitive to the parameters of the proton-nucleus potential, i.e., changing the potential parameters over a fairly large range typically changes the decay width by no more than a factor of ∼3. Proton half-lives of observed heavy proton emitters are, in general, well reproduced by spherical calculations with the spectroscopic factors calculated in the independent quasiparticle approximation. The quantitative agreement with experimental data obtained in our study requires that the parameters of the proton-nucleus potential be chosen carefully. It also suggests that deformed proton emitters will provide invaluable spectroscopic information on the angular momentum decomposition of single-proton orbitals in deformed nuclei. copyright 1997 The American Physical Society

  1. Proton therapy physics

    CERN Document Server

    2012-01-01

    Proton Therapy Physics goes beyond current books on proton therapy to provide an in-depth overview of the physics aspects of this radiation therapy modality, eliminating the need to dig through information scattered in the medical physics literature. After tracing the history of proton therapy, the book summarizes the atomic and nuclear physics background necessary for understanding proton interactions with tissue. It describes the physics of proton accelerators, the parameters of clinical proton beams, and the mechanisms to generate a conformal dose distribution in a patient. The text then covers detector systems and measuring techniques for reference dosimetry, outlines basic quality assurance and commissioning guidelines, and gives examples of Monte Carlo simulations in proton therapy. The book moves on to discussions of treatment planning for single- and multiple-field uniform doses, dose calculation concepts and algorithms, and precision and uncertainties for nonmoving and moving targets. It also exami...

  2. Proton solvation and proton transfer in chemical and electrochemical processes

    International Nuclear Information System (INIS)

    Lengyel, S.; Conway, B.E.

    1983-01-01

    This chapter examines the proton solvation and characterization of the H 3 O + ion, proton transfer in chemical ionization processes in solution, continuous proton transfer in conductance processes, and proton transfer in electrode processes. Topics considered include the condition of the proton in solution, the molecular structure of the H 3 O + ion, thermodynamics of proton solvation, overall hydration energy of the proton, hydration of H 3 O + , deuteron solvation, partial molal entropy and volume and the entropy of proton hydration, proton solvation in alcoholic solutions, analogies to electrons in semiconductors, continuous proton transfer in conductance, definition and phenomenology of the unusual mobility of the proton in solution, solvent structure changes in relation to anomalous proton mobility, the kinetics of the proton-transfer event, theories of abnormal proton conductance, and the general theory of the contribution of transfer reactions to overall transport processes

  3. Study of proton radioactivities

    Energy Technology Data Exchange (ETDEWEB)

    Davids, C.N.; Back, B.B.; Henderson, D.J. [and others

    1995-08-01

    About a dozen nuclei are currently known to accomplish their radioactive decay by emitting a proton. These nuclei are situated far from the valley of stability, and mark the very limits of existence for proton-rich nuclei: the proton drip line. A new 39-ms proton radioactivity was observed following the bombardment of a {sup 96}Ru target by a beam of 420-MeV {sup 78}Kr. Using the double-sided Si strip detector implantation system at the FMA, a proton group having an energy of 1.05 MeV was observed, correlated with the implantation of ions having mass 167. The subsequent daughter decay was identified as {sup 166}Os by its characteristic alpha decay, and therefore the proton emitter is assigned to the {sup 167}Ir nucleus. Further analysis showed that a second weak proton group from the same nucleus is present, indicating an isomeric state. Two other proton emitters were discovered recently at the FMA: {sup 171}Au and {sup 185}Bi, which is the heaviest known proton radioactivity. The measured decay energies and half-lives will enable the angular momentum of the emitted protons to be determined, thus providing spectroscopic information on nuclei that are beyond the proton drip line. In addition, the decay energy yields the mass of the nucleus, providing a sensitive test of mass models in this extremely proton-rich region of the chart of the nuclides. Additional searches for proton emitters will be conducted in the future, in order to extend our knowledge of the location of the proton drip line.

  4. Some physicochemical properties of dextrin produced by extrusion process

    Directory of Open Access Journals (Sweden)

    Achmat Sarifudin

    2014-06-01

    Full Text Available Dextrinization of corn starch by twin screw extruder was studied. The effect of extruder operating conditions (five different screw speeds: 35, 45, 55, 65, and 70; and three temperatures: 125, 130, and 135 °C on some physicochemical properties of dextrin (total soluble solid, water absorption index, water solubility index, and total color difference was investigated. Results showed that as the screw speed and temperature of extrusion were increased the water absorption index of dextrin tended to drop meanwhile the total soluble solid, water solubility index, and color were inclined to rise. The range of total soluble solid, water absorption index, water solubility index and total color difference was 2.1–4.6 Brix, 159–203%, 20–51%, 3.5–14.1, respectively.

  5. Study on extrusion process of SiC ceramic matrix

    Science.gov (United States)

    Dai, Xiao-Yuan; Shen, Fan; Ji, Jia-You; Wang, Shu-Ling; Xu, Man

    2017-11-01

    In this thesis, the extrusion process of SiC ceramic matrix has been systematically studied.The effect of different cellulose content on the flexural strength and pore size distribution of SiC matrix was discussed.Reselts show that with the increase of cellulose content, the flexural strength decreased.The pore size distribution in the sample was 1um-4um, and the 1um-2um concentration was more concentrated. It is found that the cellulose content has little effect on the pore size distribution.When the cellulose content is 7%, the flexural strength of the sample is 40.9Mpa. At this time, the mechanical properties of the sample are the strongest.

  6. Binder extrusion of sliding wear of WC-Co alloys

    International Nuclear Information System (INIS)

    Larsen-Basse, J.

    1985-01-01

    It has previously been proposed that preferential removal of the cobalt binder is an important mechanism in the abrasive wear of cemented carbides in the WC-Co family. It is here demonstrated that binder extrusion occurs also in metal-to-metal sliding wear contacts. The wear scar generated by sliding a hardened steel ball repeatedly over a polished WC-Co surface was studied by SEM. The extruded cobalt fragments accumulate by surface defects, such as cracks caused by the sliding loaded ball, and gradual microfragmentation of the carbide grains follows. The energy required to extrude the cobalt and cause the gradual change in surface layer microstructure is provided by the frictional forces

  7. Characterization of extrusion flow using particle image velocimetry

    Directory of Open Access Journals (Sweden)

    2009-09-01

    Full Text Available The aim of this study was the characterization of polymer flows within an extrusion die using particle image velocimetry (PIV in very constraining conditions (high temperature, pressure and velocity. Measurements were realized on semi-industrial equipments in order to have test conditions close to the industrial ones. Simple flows as well as disrupted ones were studied in order to determine the capabilities and the limits of the method. The analysis of the velocity profiles pointed out significant wall slip, which was confirmed by rheological measurements based on Mooney's method. Numerical simulations were used to connect the two sets of measurements and to simulate complex velocity profiles for comparison to the experimental ones. A good agreement was found between simulations and experiments providing wall slip is taken into account in the simulation.

  8. Fatigue Behaviors of Materials Processed by Planar Twist Extrusion

    Science.gov (United States)

    Ebrahimi, Mahmoud

    2017-12-01

    Since the last decade, the fabrication of ultrafine grain and nanostructure metals and alloys has attracted much attention in the field of materials engineering. The present study aimed at experimentally investigating the fatigue properties that are of great importance in dynamic structures before and after the planar twist extrusion process for both commercially pure copper and 6061 aluminum alloy. The results indicated that the yield strength, tensile strength, hardness, and fatigue endurance of copper increased by about 398, 122, 198, and 183 pct, respectively, while they improved by about 429, 212, 227, and 148 pct, respectively, in aluminum alloy as compared to the initial conditions. The stress-strain curves displayed sizable reduction of strain hardening. Furthermore, grain-size correction factors based on the empirical results were introduced to include the effect of the grain-size effect on both low and high-cycle fatigue strengths of the material.

  9. Extrusion of the uranium-0.75 weight percent titanium alloy

    International Nuclear Information System (INIS)

    Jackson, R.J.; Lundberg, M.R.; Boland, J.F.

    1975-01-01

    Procedures are described for extruding the U--0.75 wt percent Ti alloy in the high alpha region (600 to 640 0 C) , and in the upper gamma region (900 to 1000 0 C). The casting of sound extrusion billets has importance in the production of sound extrusions, and procedures are given for casting sound billets up to 1,100 kilograms . Also important in producing sound extrusions is the use of glass lubricants. Reduction ratios of greater than 50 to 1 were achieved on reasonably sized billets. Extrusion constants of 48,000 pounds per square inch (psi) [296 megapascals (MPa)] for alpha phase (630 0 C) and 8,000 psi (56 MPa) for gamma phase (950 0 C) were achieved. Gamma-phase extrusion has preference over alpha-phase extrusion in that larger billets can be used and temperature control is not as critical. However alpha-phase extrusion offers better surface finish, less die wear, and fewer oxidation problems. Billets up to 14 inches in diameter have been successfully gamma-extruded and plans exist for extruding billets up to 20 inches (508 millimetres) in diameter. (U.S.)

  10. Investigation of the process energy demand in polymer extrusion: A brief review and an experimental study

    International Nuclear Information System (INIS)

    Abeykoon, Chamil; Kelly, Adrian L.; Brown, Elaine C.; Vera-Sorroche, Javier; Coates, Phil D.; Harkin-Jones, Eileen; Howell, Ken B.; Deng, Jing; Li, Kang; Price, Mark

    2014-01-01

    Highlights: • Energy consumption and losses in polymer extrusion are discussed. • This compares energy consumption in polymer extrusion at different conditions. • The role of power factor on energy efficiency in polymer extrusion is explored. • Empirical models on extruder energy consumption are provided. • Computer modelling of energy consumption of polymer extrusion is performed. - Abstract: Extrusion is one of the fundamental production methods in the polymer processing industry and is used in the production of a large number of commodities in a diverse industrial sector. Being an energy intensive production method, process energy efficiency is one of the major concerns and the selection of the most energy efficient processing conditions is a key to reducing operating costs. Usually, extruders consume energy through the drive motor, barrel heaters, cooling fans, cooling water pumps, gear pumps, etc. Typically the drive motor is the largest energy consuming device in an extruder while barrel/die heaters are responsible for the second largest energy demand. This study is focused on investigating the total energy demand of an extrusion plant under various processing conditions while identifying ways to optimise the energy efficiency. Initially, a review was carried out on the monitoring and modelling of the energy consumption in polymer extrusion. Also, the power factor, energy demand and losses of a typical extrusion plant were discussed in detail. The mass throughput, total energy consumption and power factor of an extruder were experimentally observed over different processing conditions and the total extruder energy demand was modelled empirically and also using a commercially available extrusion simulation software. The experimental results show that extruder energy demand is heavily coupled between the machine, material and process parameters. The total power predicted by the simulation software exhibits a lagging offset compared with the

  11. Proton-Proton and Proton-Antiproton Colliders

    CERN Document Server

    Scandale, Walter

    2014-01-01

    In the last five decades, proton–proton and proton–antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion–ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.

  12. Solid hydrogen target for laser driven proton acceleration

    Science.gov (United States)

    Perin, J. P.; Garcia, S.; Chatain, D.; Margarone, D.

    2015-05-01

    The development of very high power lasers opens up new horizons in various fields, such as laser plasma acceleration in Physics and innovative approaches for proton therapy in Medicine. Laser driven proton acceleration is commonly based on the so-called Target Normal Sheath Acceleration (TNSA) mechanisms: a high power laser is focused onto a solid target (thin metallic or plastic foil) and interact with matter at very high intensity, thus generating a plasma; as a consequence "hot" electrons are produced and move into the forward direction through the target. Protons are generated at the target rear side, electrons try to escape from the target and an ultra-strong quasi-electrostatic field (~1TV/m) is generated. Such a field can accelerate protons with a wide energy spectrum (1-200 MeV) in a few tens of micrometers. The proton beam characteristics depend on the laser parameters and on the target geometry and nature. This technique has been validated experimentally in several high power laser facilities by accelerating protons coming from hydrogenated contaminant (mainly water) at the rear of metallic target, however, several research groups are investigating the possibility to perform experiments by using "pure" hydrogen targets. In this context, the low temperature laboratory at CEA-Grenoble has developed a cryostat able to continuously produce a thin hydrogen ribbon (from 40 to 100 microns thick). A new extrusion concept, without any moving part has been carried out, using only the thermodynamic properties of the fluid. First results and perspectives are presented in this paper.

  13. Proton Fast Ignition

    International Nuclear Information System (INIS)

    Key, M H; Freeman, R R; Hatchett, S P; MacKinnon, A J; Patel, P K; Snavely, R A; Stephens, R B

    2006-04-01

    Fast ignition (FI) by a laser generated ballistically focused proton beam is a more recently proposed alternative to the original concept of FI by a laser generated beam of relativistic electrons. It has potential advantages in less complex energy transport into dense plasma. Recent successful target heating experiments motivate further investigation of the feasibility of proton fast ignition. The concept, the physics and characteristics of the proton beams, the recent experimental work on focusing of the beams and heating of solid targets and the overall prospects for proton FI are discussed

  14. Identification of an HV 1 voltage-gated proton channel in insects.

    Science.gov (United States)

    Chaves, Gustavo; Derst, Christian; Franzen, Arne; Mashimo, Yuta; Machida, Ryuichiro; Musset, Boris

    2016-04-01

    The voltage-gated proton channel 1 (HV 1) is an important component of the cellular proton extrusion machinery and is essential for charge compensation during the respiratory burst of phagocytes. HV 1 has been identified in a wide range of eukaryotes throughout the animal kingdom, with the exception of insects. Therefore, it has been proposed that insects do not possess an HV 1 channel. In the present study, we report the existence of an HV 1-type proton channel in insects. We searched insect transcriptome shotgun assembly (TSA) sequence databases and found putative HV 1 orthologues in various polyneopteran insects. To confirm that these putative HV 1 orthologues were functional channels, we studied the HV 1 channel of Nicoletia phytophila (NpHV 1), an insect of the Zygentoma order, in more detail. NpHV 1 comprises 239 amino acids and is 33% identical to the human voltage-gated proton channel 1. Patch clamp measurements in a heterologous expression system showed proton selectivity, as well as pH- and voltage-dependent gating. Interestingly, NpHV 1 shows slightly enhanced pH-dependent gating compared to the human channel. Mutations in the first transmembrane segment at position 66 (Asp66), the presumed selectivity filter, lead to a loss of proton-selective conduction, confirming the importance of this aspartate residue in voltage-gated proton channels. Nucleotide sequence data have been deposited in the GenBank database under accession number KT780722. © 2016 Federation of European Biochemical Societies.

  15. effectof extrusion conditions on aflatoxin content of corn–peanut flakes

    African Journals Online (AJOL)

    Aynadis

    metabolites which can be observed on food stuffs or ... Extrusion cooking technologies are used to ..... effective interaction to reduce aflatoxin B1in the ..... Drug. Administration, “Guidance for industry: Action levels for poisonous or deleterious.

  16. 76 FR 323 - Aluminum Extrusions From the People's Republic of China: Notice of Amended Preliminary...

    Science.gov (United States)

    2011-01-04

    ... finished good. The scope also excludes aluminum alloy sheet or plates produced by other than the extrusion... calculation program by coding the decimal point in the wrong place. The Department agrees, and finds that this...

  17. AFSC/RACE/SAP/Swiney: Primiparous and multiparous Tanner crab egg extrusion, embryo development and hatching

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study compares timing of egg extrusion, embryo development, timing and duration of eclosion, and incubation periods of Kodiak, Alaska primiparous and...

  18. Effect of rapid cooling and extrusion ratio on the mechanical property of Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taek-Soo, E-mail: tskim@kitech.re.k [Center for Echo Materials and Processing, Korea Institute of Industrial Technology, 7-47 Techno-park Songdo, Incheon 406-130 (Korea, Republic of)

    2010-08-15

    Mg{sub 95}Zn{sub 4.3}Y{sub 0.7} (at.%) alloy powders were prepared using an inert gas atomizer, followed by warm extrusion. The powders were almost spherical in shape, and the grain size, compared with the cast product, was fine being less than 5 {mu}m. The microstructure of bars extruded was examined as a function of the extrusion ratio using scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDS) and X-ray diffractometer (XRD). As the extrusion ratio increased from 10:1 to 20:1, the powders fully deformed with refining the grain size. Both the ultimate strength and elongation also showed a dependence on the extrusion ratio.

  19. Current deformation rates and extrusion of the northwestern Okhotsk plate, northeast Russia

    Science.gov (United States)

    Hindle, D.; Fujita, K.; Mackey, K.

    2006-01-01

    Northeast Asia is a region of broad deformation resulting from the convergence of the Eurasian (EU) and North American (NA) plates. Part of this convergence has been suggested to be relieved by the extrusion and deformation of the Okhotsk plate (OK). Three models for the deformation of the seismically active northwestern corner of the Okhotsk plate, based on different modes of deformation partitioning, are calculated and compared to observations from GPS, seismicity, and geology. The results suggest that this region is being extruded southeastward and deforming internally by a mixture of pure contraction, ``smooth'' extrusion, and ``rigid'' extrusion. Calculated extrusion rates are ~3-5.5 mm/yr, comparable to estimates from geologic data, and internal deformation rates are ~3.0 × 10-9 yr -1. Internal deformation may be only partially accommodated by seismicity, but the short time span of seismic data leaves this subject to large uncertainty.

  20. FEM simulation of friction testing method based on combined forward rod-backward can extrusion

    DEFF Research Database (Denmark)

    Nakamura, T; Bay, Niels; Zhang, Z. L

    1997-01-01

    A new friction testing method by combined forward rod-backward can extrusion is proposed in order to evaluate frictional characteristics of lubricants in forging processes. By this method the friction coefficient mu and the friction factor m can be estimated along the container wall and the conical...... curves are obtained by rigid-plastic FEM simulations in a combined forward rod-backward can extrusion process for a reduction in area R-b = 25, 50 and 70 percent in the backward can extrusion. It is confirmed that the friction factor m(p) on the punch nose in the backward cart extrusion has almost...... in a mechanical press with aluminium alloy A6061 as the workpiece material and different kinds of lubricants. They confirm the analysis resulting in reasonable values for the friction coefficient and the friction factor....

  1. 76 FR 80887 - Antidumping Order on Aluminum Extrusions from the People's Republic of China: Initiation of...

    Science.gov (United States)

    2011-12-27

    ... frames, solar panels, curtain walls, or furniture. Such parts that otherwise meet the definition of..., and solar panels. The scope also excludes finished goods containing aluminum extrusions that are...

  2. 78 FR 66895 - Aluminum Extrusions From the People's Republic of China: Preliminary Results of Changed...

    Science.gov (United States)

    2013-11-07

    ... frames, solar panels, curtain walls, or furniture. Such parts that otherwise meet the definition of..., and solar panels. The scope also excludes finished goods containing aluminum extrusions that are...

  3. 77 FR 39683 - Aluminum Extrusions From the People's Republic of China: Preliminary Results of Changed...

    Science.gov (United States)

    2012-07-05

    ... frames, door frames, solar panels, curtain walls, or furniture. Such parts that otherwise meet the..., and solar panels. The scope also excludes finished goods containing aluminum extrusions that are...

  4. Preparation and Evaluation of Pellets Using Acacia and Tragacanth by Extrusion-Spheronization

    OpenAIRE

    S. Pirmoradi; M R. Abbaspour; A. Akhgari

    2011-01-01

    Background and the purpose of the study: Extrusion-spheronization is an established technique for the production of pellets for pharmaceutical applications. In this study, the feasibility and influence of the incorporation of acacia, by itself and in combination with tragacanth, on the ability of formulations containing 2 model of drugs (ibuprofen and theophylline) to form spherical pellets by extrusion-spheronization was investigated.Material and Methods: Formulations containing different ra...

  5. Inductive ingot heating for extrusion press applications; Induktive Bolzenerwaermung fuer Strangpressanwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Stefan [I.A.S. Induktions-Anlagen + Service GmbH und Co. KG, Iserlohn (Germany)

    2013-03-15

    Inductive heating of large-format aluminium ingots on modern extrusion press lines generates significant process-engineering benefits. In addition, the proportion of special alloys processed is continuously increasing, accompanied simultaneously by ever smaller production batches, both of which are factors necessitating improvement of and greater flexibility in process-cycle control. This report examines a system concept recently commissioned on one of the world's largest aluminium extrusion presses. (orig.)

  6. Receptor kinase-mediated control of primary active proton pumping at the plasma membrane

    DEFF Research Database (Denmark)

    Fuglsang, Anja Thoe; Kristensen, Astrid; Cuin, Tracey A.

    2014-01-01

    Acidification of the cell wall space outside the plasma membrane is required for plant growth and is the result of proton extrusion by the plasma membrane-localized H+-ATPases. Here we show that the major plasma membrane proton pumps in Arabidopsis, AHA1 and AHA2, interact directly in vitro...... and in planta with PSY1R, a receptor kinase of the plasma membrane that serves as a receptor for the peptide growth hormone PSY1. The intracellular protein kinase domain of PSY1R phosphorylates AHA2/AHA1 at Thr-881, situated in the autoinhibitory region I of the C-terminal domain. When expressed in a yeast...... heterologous expression system, the introduction of a negative charge at this position caused pump activation. Application of PSY1 to plant seedlings induced rapid in planta phosphorylation at Thr-881, concomitant with an instantaneous increase in proton efflux from roots. The direct interaction between AHA2...

  7. Proton decay: spectroscopic probe beyond the proton drip line

    International Nuclear Information System (INIS)

    Seweryniak, D; Davids, C N; Robinson, A; Woods, P J; Blank, B; Carpenter, M P; Davinson, T; Freeman, S J; Hammond, N; Hoteling, N; Janssens, R V F; Khoo, T L; Liu, Z; Mukherjee, G; Shergur, J; Sinha, S; Sonzogni, A A; Walters, W B; Woehr, A

    2005-01-01

    Proton decay has been transformed in recent years from an exotic phenomenon into a powerful spectroscopic tool. The frontiers of experimental and theoretical proton-decay studies will be reviewed. Different aspects of proton decay will be illustrated with recent results on the deformed proton emitter 135 Tb, the odd-odd deformed proton emitter 130 Eu, the complex fine structure in the odd-odd 146 Tm nucleus and on excited states in the transitional proton emitter 145 Tm

  8. Review of inelastic proton-proton reactions

    CERN Document Server

    Morrison, Douglas Robert Ogston

    1973-01-01

    The most important new results on inelastic proton-proton scattering obtained with the new machines, I.S.R. and N.A.L., are: (1) The inelastic cross-section increases monotonically with energy from threshold to 1500 GeV/c. Above 6 GeV/c the energy variation has a s /sup +0.04/ behaviour. (2) Scaling is observed at I.S.R. energies in pion production. Confirmation is obtained of the hypothesis of limiting fragmentation. (3) The results are in general, consistent with the two-component model-one class of events being produced by diffraction dissociation and the other by a short-range-order process (e.g. the multiperipheral model). (4) There are indications that the protons have a granular structure; this from observation of secondaries of large transverse momenta. (33 refs).

  9. Suitability of the Yield Criterion in Numerical Simulation of Stretch Bending of Aluminum Extrusions

    International Nuclear Information System (INIS)

    Li, X.Q.; Zhou, X.B.; Wu, X.D.; Gao, H.Z.

    2005-01-01

    Stretch bending is commonly used to shape thin-walled extrusions in aerospace and automotive industries. The extrusions are pre-stretched and bent over rigid curved dies. Effective application of this process demands sufficient knowledge of how different parameters influence the final shape of the product. Numerical simulation is an effective approach to investigate these issues presently. However, the validity of simulation result depends strongly on a precise description of the mechanical behavior of the material. Due to crystallographic texture caused by the extrusion process, aluminium extrusions exhibit significant plastic anisotropy which need be described by advanced constitutive model. In this work stretch bending of aluminum extrusions is simulated by using different anisotropic criteria (Hill quadratic, Barlat three-parameter). The influence of two yield criteria on predicting maximum die force immediately before unloading, permanent sagging and vertical springback displacement in the middle section of extrusion are compared. Maximum die force and springback calculated by two yield criteria are found to be almost same. Permanent sagging is obviously underestimated by two yield criteria, however, prediction by Barlat three-parameter is closer to experiment than one of Hill quadratic yield criterion

  10. Shuttle Primary Reaction Control Subsystem Thruster Fuel Valve Pilot Seal Extrusion: A Failure Correlation

    Science.gov (United States)

    Waller, Jess; Saulsberry, Regor L.

    2003-01-01

    Pilot operated valves (POVs) are used to control the flow of hypergolic propellants monomethylhydrazine (fuel) and nitrogen tetroxide (oxidizer) to the Shuttle orbiter Primary Reaction Control Subsystem (PRCS) thrusters. The POV incorporates a two-stage design: a solenoid-actuated pilot stage, which in turn controls a pressure-actuated main stage. Isolation of propellant supply from the thruster chamber is accomplished in part by a captive polytetrafluoroethylene (PTFE) pilot seal retained inside a Custom 455.1 stainless steel cavity. Extrusion of the pilot seal restricts the flow of fuel around the pilot poppet, thus impeding or preventing the main valve stage from opening. It can also prevent the main stage from staying open with adequate force margin, particularly if there is gas in the main stage actuation cavity. During thruster operation on-orbit, fuel valve pilot seal extrusion is commonly indicated by low or erratic chamber pressure or failure of the thruster to fire upon command (Fail-Off). During ground turnaround, pilot seal extrusion is commonly indicated by slow gaseous nitrogen (GN2) main valve opening times (greater than 38 ms) or slow water main valve opening response times (greater than 33 ms). Poppet lift tests and visual inspection can also detect pilot seal extrusion during ground servicing; however, direct metrology on the pilot seat assembly provides the most quantitative and accurate means of identifying extrusion. Minimizing PRCS fuel valve pilot seal extrusion has become an important issue in the effort to improve PRCS reliability and reduce associated life cycle costs.

  11. Protons and how they are transported by proton pumps

    DEFF Research Database (Denmark)

    Buch-Pedersen, Morten Jeppe; Pedersen, Bjørn Panyella; Nissen, Poul

    2008-01-01

    molecular components that allow the plasma membrane proton H(+)-ATPase to carry out proton transport against large membrane potentials. When divergent proton pumps such as the plasma membrane H(+)-ATPase, bacteriorhodopsin, and F(O)F(1) ATP synthase are compared, unifying mechanistic premises for biological...... proton pumps emerge. Most notably, the minimal pumping apparatus of all pumps consists of a central proton acceptor/donor, a positively charged residue to control pK (a) changes of the proton acceptor/donor, and bound water molecules to facilitate rapid proton transport along proton wires....

  12. Giving Protons a Boost

    CERN Multimedia

    2004-01-01

    The first of LHC's superconducting radio-frequency cavity modules has passed its final test at full power in the test area of building SM18. These modules carry an oscillating electric field that will accelerate protons around the LHC ring and help maintain the stability of the proton beams.

  13. On the proton decay

    International Nuclear Information System (INIS)

    Fonda, L.; Ghirardi, G.C.; Weber, T.

    1983-07-01

    The problem of the proton decay is considered taking into account that in actual experiments there is an interaction of the proton with its environment which could imply an increase of its theoretical lifetime. It is seen that, by application of the time-energy uncertainty relation, no prolongation of the lifetime is obtained in this case. (author)

  14. Bioavailability enhancement of atovaquone using hot melt extrusion technology.

    Science.gov (United States)

    Kate, Laxman; Gokarna, Vinod; Borhade, Vivek; Prabhu, Priyanka; Deshpande, Vinita; Pathak, Sulabha; Sharma, Shobhona; Patravale, Vandana

    2016-04-30

    Emerging parasite resistance and poor oral bioavailability of anti-malarials are the two cardinal issues which hinder the clinical success of malaria chemotherapy. Atovaquone-Proguanil is a WHO approved fixed dose combination used to tackle the problem of emerging resistance. However, Atovaquone is a highly lipophilic drug having poor aqueous solubility (less than 0.2 μg/ml) thus reducing its oral bioavailability. The aim of the present investigation was to explore hot melt extrusion (HME) as a solvent-free technique to enhance solubility and oral bioavailability of Atovaquone and to develop an oral dosage form for Atovaquone-Proguanil combination. Solid dispersion of Atovaquone was successfully developed using HME. The solid dispersion was characterized for DSC, FTIR, XRD, SEM, and flow properties. It was filled in size 2 hard gelatin capsules. The formulation showed better release as compared to Malarone® tablets, and 3.2-fold and 4.6-fold higher bioavailability as compared to Malarone® tablets and Atovaquone respectively. The enhanced bioavailability also resulted in 100% anti-malarial activity in murine infection model at 1/8(th) therapeutic dose. Thus the developed methodology shows promising potential to solve the problems associated with Atovaquone therapy, namely its high cost and poor oral bioavailability, resulting in increased therapeutic efficacy of Atovaquone. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Thermal Stabilization study of polyacrylonitrile fiber obtained by extrusion

    Directory of Open Access Journals (Sweden)

    Robson Fleming Ribeiro

    2015-12-01

    Full Text Available A low cost and environmental friendly extrusion process of the Polyacrylonitrile (PAN polymer was viabilized by using the 1,2,3-propanetriol (glycerol as a plasticizer. The characterization of the fibers obtained by this process was the object of study in the present work. The PAN fibers were heat treated in the range of 200 °C to 300 °C, which is the temperature range related to the stabilization/oxidation step. This is a limiting phase during the carbon fiber processing. The characterization of the fibers was made using infrared spectroscopy, thermal analysis and microscopy. TGA revealed that the degradation of the extruded PAN co-VA fibers between 250 °C and 350 °C, corresponded to a 9% weight loss to samples analyzed under oxidizing atmosphere and 18% when the samples were analyzed under inert atmosphere. DSC showed that the exothermic reactions on the extruded PAN co-VA fibers under oxidizing synthetic air was broader and the cyclization started at a lower temperature compared under inert atmosphere. Furthermore, FT-IR analysis correlated with thermal anlysis showed that the stabilization/oxidation process of the extruded PAN fiber were coherent with other works that used PAN fibers obtained by other spinning processes.

  16. Utilization and Fortification of Patin Fish on Extrusion Snack

    Directory of Open Access Journals (Sweden)

    Mala Nurilmala

    2014-11-01

    Full Text Available Catfish (Pangasius sp. is a well cultured freshwater fish. Fortification improves protein level in snack and an effort to vary catfish fish product. The purpose of this study was to determine drying method for fish grit, formulation of snack and its properties. Grit formation by several drying methods and proximate (AOAC and degree of polarization. Snack used based on the physical measurement, namely development ratio. Formulations of grit composition of corn: rice: fish were 70%:30%:0% (K, 65%:25%:10% (A, 62.5%:22.5%:15% (B, 60%:20%:20% (C. Fish addition only effect the color of snack based on sensory analysis. There was no effect on snacks physical properties both 10% and 15% of fish grit added. Chemical measurements comprised water, ash, lipid, protein levels and polarization degree. Statistical analysis showed that fish addition effect the protein level on extrusion snack. In addition, polarization measurement showed that the snack with fish addition of 10% (A and 15%( B are fully gelatinized.Keyword: formulation, patin fish, snack

  17. Current advances and future perspectives in extrusion-based bioprinting.

    Science.gov (United States)

    Ozbolat, Ibrahim T; Hospodiuk, Monika

    2016-01-01

    Extrusion-based bioprinting (EBB) is a rapidly growing technology that has made substantial progress during the last decade. It has great versatility in printing various biologics, including cells, tissues, tissue constructs, organ modules and microfluidic devices, in applications from basic research and pharmaceutics to clinics. Despite the great benefits and flexibility in printing a wide range of bioinks, including tissue spheroids, tissue strands, cell pellets, decellularized matrix components, micro-carriers and cell-laden hydrogels, the technology currently faces several limitations and challenges. These include impediments to organ fabrication, the limited resolution of printed features, the need for advanced bioprinting solutions to transition the technology bench to bedside, the necessity of new bioink development for rapid, safe and sustainable delivery of cells in a biomimetically organized microenvironment, and regulatory concerns to transform the technology into a product. This paper, presenting a first-time comprehensive review of EBB, discusses the current advancements in EBB technology and highlights future directions to transform the technology to generate viable end products for tissue engineering and regenerative medicine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Die design and process optimization of plastic gear extrusion

    Science.gov (United States)

    Zhang, Lei; Fu, Zhihong; Yao, Chen; Zang, Gongzheng; Wan, Yue

    2018-01-01

    The flow velocity of the melt in the extruder was simulated by using software Polyflow, and the size of the die channel with the best flow uniformity was obtained. The die profile shape is obtained by reverse design. The length of the shaping section is determined by Ansys transient thermal analysis. According to the simulation results, the design and manufacture of extrusion die of plastic gear and vacuum cooling setting were obtained. The influence of the five process parameters on the precision of the plastic gear were studied by the single factor analysis method, such as the die temperature T, the screw speed R, the die spacing S, the vacuum degree M and the hauling speed V. The optimal combination of process parameters was obtained by using the neural network particle swarm optimization algorithm(T = 197.05 °C, R = 9.04rpm, S = 67mm, M = -0.0194MPa). The tooth profile deviation of the extruded plastic gear can reach 9 level of accuracy.

  19. Fluid Structure Interaction Techniques For Extrusion And Mixing Processes

    Science.gov (United States)

    Valette, Rudy; Vergnes, Bruno; Coupez, Thierry

    2007-05-01

    This work focuses on the development of numerical techniques devoted to the simulation of mixing processes of complex fluids such as twin-screw extrusion or batch mixing. In mixing process simulation, the absence of symmetry of the moving boundaries (the screws or the rotors) implies that their rigid body motion has to be taken into account by using a special treatment We therefore use a mesh immersion technique (MIT), which consists in using a P1+/P1-based (MINI-element) mixed finite element method for solving the velocity-pressure problem and then solving the problem in the whole barrel cavity by imposing a rigid motion (rotation) to nodes found located inside the so called immersed domain, each sub-domain (screw, rotor) being represented by a surface CAD mesh (or its mathematical equation in simple cases). The independent meshes are immersed into a unique background computational mesh by computing the distance function to their boundaries. Intersections of meshes are accounted for, allowing to compute a fill factor usable as for the VOF methodology. This technique, combined with the use of parallel computing, allows to compute the time-dependent flow of generalized Newtonian fluids including yield stress fluids in a complex system such as a twin screw extruder, including moving free surfaces, which are treated by a "level set" and Hamilton-Jacobi method.

  20. Application of Electrostatic Extrusion - Flavour Encapsulation and Controlled Release.

    Science.gov (United States)

    Manojlovic, Verica; Rajic, Nevenka; Djonlagic, Jasna; Obradovic, Bojana; Nedovic, Viktor; Bugarski, Branko

    2008-03-03

    The subject of this study was the development of flavour alginate formulationsaimed for thermally processed foods. Ethyl vanilline was used as the model flavourcompound. Electrostatic extrusion was applied for the encapsulation of ethyl vanilline inalginate gel microbeads. The obtained microbeads with approx. 10 % w/w of ethylvanilline encapsulated in about 2 % w/w alginate were uniformly sized spheres of about450 μm. Chemical characterization by H-NMR spectroscopy revealed that the alginateused in this study had a high content (67 %) of guluronic residues and was rich in GG diadblocks (FGG = 55%) and thus presented a high-quality immobilisation matrix. The thermalbehaviour of alginate beads encapsulating ethyl vanilline was investigated bythermogravimetric (TG) and differential scanning calorimetry measurements (TG-DSC)under heating conditions which mimicked usual food processing to provide informationabout thermal decomposition of alginate matrix and kinetics of aroma release. Two wellresolved weight losses were observed. The first one was in the 50-150 °C temperaturerange with the maximum at approx. 112 °C, corresponding to the dehydration of thepolymer network. The second loss in the 220-325 °C temperature range, with a maximumat ~ 247 °C corresponded to the release of vanilline. The obtained results indicate that up to230 °C most of the vanilline remained intacta, while prolonged heating at elevatedtemperatures led to the entire loss of the aroma compound.

  1. Application of Electrostatic Extrusion – Flavour Encapsulation and Controlled Release

    Science.gov (United States)

    Manojlovic, Verica; Rajic, Nevenka; Djonlagic, Jasna; Obradovic, Bojana; Nedovic, Viktor; Bugarski, Branko

    2008-01-01

    The subject of this study was the development of flavour alginate formulations aimed for thermally processed foods. Ethyl vanilline was used as the model flavour compound. Electrostatic extrusion was applied for the encapsulation of ethyl vanilline in alginate gel microbeads. The obtained microbeads with approx. 10 % w/w of ethyl vanilline encapsulated in about 2 % w/w alginate were uniformly sized spheres of about 450 μm. Chemical characterization by H-NMR spectroscopy revealed that the alginate used in this study had a high content (67 %) of guluronic residues and was rich in GG diad blocks (FGG = 55%) and thus presented a high-quality immobilisation matrix. The thermal behaviour of alginate beads encapsulating ethyl vanilline was investigated by thermogravimetric (TG) and differential scanning calorimetry measurements (TG-DSC) under heating conditions which mimicked usual food processing to provide information about thermal decomposition of alginate matrix and kinetics of aroma release. Two well resolved weight losses were observed. The first one was in the 50-150 °C temperature range with the maximum at approx. 112 °C, corresponding to the dehydration of the polymer network. The second loss in the 220-325 °C temperature range, with a maximum at ∼ 247 °C corresponded to the release of vanilline. The obtained results indicate that up to 230 °C most of the vanilline remained intacta, while prolonged heating at elevated temperatures led to the entire loss of the aroma compound. PMID:27879775

  2. PS proton source

    CERN Multimedia

    1959-01-01

    The first proton source used at CERN's Proton Synchrotron (PS) which started operation in 1959. This is CERN's oldest accelerator still functioning today (2018). It is part of the accelerator chain that supplies proton beams to the Large Hadron Collider. The source is a Thonemann type. In order to extract and accelerate the protons at high energy, a high frequency electrical field is used (140Mhz). The field is transmitted by a coil around a discharge tube in order to maintain the gas hydrogen in an ionised state. An electrical field pulse, in the order of 15kV, is then applied via an impulse transformer between anode and cathode of the discharge tube. The electrons and protons of the plasma formed in the ionised gas in the tube, are then separated. Currents in the order of 200mA during 100 microseconds have benn obtained with this type of source.

  3. Pellets de trigo e soja produzidos por extrusão Wheat and soybean pellets produced by extrusion-cooking

    Directory of Open Access Journals (Sweden)

    Sin Huei Wang

    2008-09-01

    Full Text Available A mistura de trigo e soja representa uma importante fonte calórico-protéica com proteínas de boa qualidade. Apesar disso, a utilização da soja como ingrediente tem sido limitada pelo seu sabor de feijão cru (beany flavor, o qual é melhorado pelo processo de extrusão. Foram estudados os efeitos de umidade da mistura, Temperatura de Barril (TB e Velocidade de Rotação de Parafuso (VRP, Nº 5 do extrusor no Índice de Expansão (IE, no Índice de Solubilidade em Água (ISA e nas características sensoriais de pellets produzidos com mistura de trigo e soja (90:10, objetivando a otimização deste processo para a obtenção de pellets fritos com melhores qualidades sensoriais. A farinha mista crua foi extrusada em 2 umidades (32 e 35%, 4 TB (60 a 90 °C e 4 VRP (60 a 150 rpm, totalizando 32 tratamentos. O pellet frito, preparado com a farinha mista com 32% de umidade e extrusada em 60 rpm a 80 °C, apresentou o maior IE e as melhores qualidades sensoriais (aparência, sabor e textura, sendo preferido pela equipe de provadores não treinados, tanto com sabor de bacon como com sabor de queijo.The mixture of wheat with soybean represents an important calorie-protein source with good protein quality. In spite of this, the use of soybeans as an ingredient has been limited by their beany flavor, which is improved by the extrusion process. Effects of mixture moisture, Barrel Temperature (BT and Screw-Speed (SS, Nº 5 on Expansion Index (EI, Water Solubility Index (WSI and sensory characteristics of pellets produced with a wheat-soybean (90:10 mixture were studied, in order to optimize this process for obtaining fried pellets with better sensory qualities. Raw mixed flour was extruded at two moisture contents (32 and 35%, four BT (60 to 90 °C and four SS (60 to 150 rpm, totalizing 32 treatments. The fried pellets, prepared with the mixed flour with 32% moisture and extruded at 60 rpm and 80 °C, presented the greatest EI and the best sensory

  4. Relationship Between Preoperative Extrusion of the Medial Meniscus and Surgical Outcomes After Partial Meniscectomy.

    Science.gov (United States)

    Kim, Sung-Jae; Choi, Chong Hyuk; Chun, Yong-Min; Kim, Sung-Hwan; Lee, Su-Keon; Jang, Jinyoung; Jeong, Howon; Jung, Min

    2017-07-01

    No previous study has examined arthritic change after meniscectomy with regard to extrusion of the medial meniscus. (1) To determine the factors related to preoperative meniscal extrusion; (2) to investigate the relationship between medial meniscal extrusion and postoperative outcomes of partial meniscectomy, and to identify a cutoff point of meniscal extrusion that contributes to arthritic change after partial meniscectomy in nonosteoarthritic knees. Cohort study; Level of evidence, 3. A total of 208 patients who underwent partial meniscectomy of the medial meniscus between January 2000 and September 2006 were retrospectively reviewed. The extent of extrusion and severity of degeneration of the medial meniscus as shown on preoperative MRI were evaluated. The minimum follow-up duration was 7 years. Clinical function was assessed with the Lysholm knee scoring scale, the International Knee Documentation Committee (IKDC) subjective knee evaluation form, and the Tapper and Hoover grading system. Radiological evaluation was conducted by use of the IKDC radiographic assessment scale. Regression analysis was performed to identify factors affecting preoperative extrusion of the medial meniscus and factors influencing follow-up results after partial meniscectomy. Receiver operating characteristic curve was used to identify a cutoff point for the extent of meniscal extrusion that was associated with arthritic change. The mean ± SD preoperative Lysholm knee score was 65.0 ± 6.3 and the mean IKDC subjective score was 60.1 ± 7.5. The mean follow-up functional scores were 93.2 ± 5.1 ( P meniscus showed a tendency to increase as the extent of intrameniscal degeneration increased, and the medial meniscus was extruded more in patients with horizontal, horizontal flap, and complex tears. The preoperative extent of meniscal extrusion had a statistically significant correlation with follow-up Lysholm knee score (coefficient = -0.10, P = .002), IKDC subjective score (coefficient

  5. Proton-proton colliding beam facility ISABELLE

    International Nuclear Information System (INIS)

    Hahn, H.

    1980-01-01

    This paper attempts to present the status of the ISABELLE construction project, which has the objective of building a 400 + 400 GeV proton colliding beam facility. The major technical features of the superconducting accelerators with their projected performance are described. Progress made so far, difficulties encountered, and the program until completion in 1986 is briefly reviewed

  6. Metal extrusion using hydrostatic pressures; Le filage des metaux sous pression hydrostatique

    Energy Technology Data Exchange (ETDEWEB)

    Sauve, Ch [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    The main problems connected with the deformation of metals due to extrusion are described. A method is put forward for calculating the rational rate of percentage deformation in the case of bar extrusion using a cylindrical container; reference is made to previous work on extrusion using a hydrostatic pressure with or without back-pressure. An extrusion process is described using hydrostatic pressure, without back-pressure, and using the lubricant for transmitting the thrust. This process has been used for eight years by the C.E.A. for the extrusion of a very wide range of metals, from beryllium to uranium and including steels; it leads to excellent surface textures. A very fine crystallization can be obtained on extruded products when the rate of extrusion is very low. There appears to be nothing against the use of high extrusion rates using this method. (author) [French] On expose les problemes generaux lies a la deformation des metaux par filage. On propose un calcul de la vitesse rationnelle de deformation pour cent dans le cas du filage de barres a partir d'un conteneur cylindrique, et l'on cite les travaux anterieurs sur le filage par faction d'une pression hydrostatique sans ou avec une contre-pression. On decrit un procede de filage par l'action d'une pression hydrostatique, sans contre-pression, utilisant le lubrifiant pour transmettre la poussee. Ce procede employe depuis 8 ans au C.E.A. pour filer les metaux les plus divers, depuis le beryllium jusqu'a l'uranium en passant par les aciers, permet d'obtenir d'excellents etats de surface. Une cristallisation tres fine peut etre obtenue sur les produits files lorsque le filage est tres lent. Rien ne parait s'opposer a ce que des filages rapides soient effectues avec cette methode. (auteur)

  7. Optimized manufacture of nuclear fuel cladding tubes by FEA of hot extrusion and cold pilgering processes

    Science.gov (United States)

    Gaillac, Alexis; Ly, Céline

    2018-05-01

    Within the forming route of Zirconium alloy cladding tubes, hot extrusion is used to deform the forged billets into tube hollows, which are then cold rolled to produce the final tubes with the suitable properties for in-reactor use. The hot extrusion goals are to give the appropriate geometry for cold pilgering, without creating surface defects and microstructural heterogeneities which are detrimental for subsequent rolling. In order to ensure a good quality of the tube hollows, hot extrusion parameters have to be carefully chosen. For this purpose, finite element models are used in addition to experimental tests. These models can take into account the thermo-mechanical coupling conditions obtained in the tube and the tools during extrusion, and provide a good prediction of the extrusion load and the thermo-mechanical history of the extruded product. This last result can be used to calculate the fragmentation of the microstructure in the die and the meta-dynamic recrystallization after extrusion. To further optimize the manufacturing route, a numerical model of the cold pilgering process is also applied, taking into account the complex geometry of the tools and the pseudo-steady state rolling sequence of this incremental forming process. The strain and stress history of the tube during rolling can then be used to assess the damage risk thanks to the use of ductile damage models. Once validated vs. experimental data, both numerical models were used to optimize the manufacturing route and the quality of zirconium cladding tubes. This goal was achieved by selecting hot extrusion parameters giving better recrystallized microstructure that improves the subsequent formability. Cold pilgering parameters were also optimized in order to reduce the potential ductile damage in the cold rolled tubes.

  8. Generation and use of process maps for hot extrusion of seamless tubes for nuclear applications

    International Nuclear Information System (INIS)

    Vaibhaw, Kumar; Jha, S.K.; Saibaba, N.; Jayaraj, R.N.

    2009-01-01

    Full text: Hot extrusion is known as significant bulk deformation step in manufacturing of seamless tube production. Elevated temperature deformation carried out above the recrystallization temperature would enable imposition of large strains in single step. This deformation causes a significant change in the microstructure of the material and depends on extrusion process parameters such as temperature and strain rate (Ram speed). Basic microstructure developed at this deformation stage has significant bearing on the final properties of the material fabricated with subsequent cold working steps. Zirconium alloys and special nuclear grade austenitic stainless steels are two important groups of materials used as structural and core components in thermal and fast reactors world wide respectively. The properties of former alloy are very sensitive to the thermo mechanical fabrication steps initiated with hot extrusion due to their anisotropic deformation behaviour. However, nuclear grade austenitic stainless steels have many variants from their commercial grades in terms of micro and macro alloy chemistry. Factors such as these significantly affect the workability of the materials and require proper selection of extrusion parameters especially working temperature and extrusion speed plays a key role in the quality of the product. Modern developments in processing technology envisage the application of processing maps based on dynamic material model for selection of hot extrusion parameters. The present paper is aimed at bringing out significance of the map in selection of working domain with respect to the industrial process conditions for both groups of nuclear materials mentioned earlier. Developed process maps of certain alloys suggest use of extremely slow strain rate and low temperature extrusion which can not be achieved during bulk processing due to design of equipment and heat transfer constraints in industrial scale production. Attempts are made to highlight

  9. Extrusion and drawing of zircaloy 2. Production of pressure tubes for EL-4

    International Nuclear Information System (INIS)

    Thevenet, J.

    1964-01-01

    The authors give briefly the physical mechanical and chemical properties of zircaloy 2, as far as the transformation of this alloy is concerned. Extrusion: After a few general remarks concerning the extrusion and co-extrusion, including a comparison of the deformation resistance of canning metals and of zircaloy 2, the following points are considered: - the difficulties occurring because of the use of this alloy: - atmosphere protection - adjustment on to the machine tools - low thermal conductivity - economy of the metal (price) - the factors affecting the quality of the extruded products extrusion under a copper can and under lubricant glass - fine grain structure - temperature homogeneity - working temperature The transformation cycle - '550 kg ingot - preliminary shape 'for drawing of EL-4 tubes (112 x 120 L 12 m)' - is described in detail (extrusion or forging of the φ = 340 ingot into φ = 220 billets, cutting into lengths and hot drilling at φ = 125, fixing into a copper can and rough extrusion). Drawing: The main difficulties are due to seizing of the tools and to the necessity of protecting the alloy from the atmosphere during annealings. A brief description is given of drawing out on a short mandrel, on a long mandrel, of laminating on a reducing machine and of the carrying out of an annealing, as well as of the production of EL-4 tubes (φ =107 x 113 L 430 m) by drawing out shapes having a size of 112 x 120 on long mandrels. Conclusion: It is possible by extrusion and drawing to produce zircaloy 2 tubes similar to those which may be obtained normally using stainless steel. (authors) [fr

  10. Proton storage rings

    International Nuclear Information System (INIS)

    Rau, R.R.

    1978-04-01

    A discussion is given of proton storage ring beam dynamic characteristics. Topics considered include: (1) beam energy; (2) beam luminosity; (3) limits on beam current; (4) beam site; (5) crossing angle; (6) beam--beam interaction; (7) longitudinal instability; (8) effects of scattering processes; (9) beam production; and (10) high magnetic fields. Much of the discussion is related to the design parameters of ISABELLE, a 400 x 400 GeV proton---proton intersecting storage accelerator to be built at Brookhaven National Laboratory

  11. ATLAS Forward Proton Detector

    CERN Document Server

    Grieco, Chiara; The ATLAS collaboration

    2018-01-01

    The aim of the ATLAS Forward Proton (AFP) detector system is the measurement of protons scattered diffractively or electromagnetically at very small angles. The full two-arm setup was installed during the 2016/2017 EYETS. This allows measurements of processes with two forward protons: central diffraction, exclusive production, and two-photon processes. In 2017, AFP participated in the ATLAS high-luminosity data taking on the day-by-day basis. In addition, several special runs with reduced luminosity were taken. The poster will present the AFP detectors and the lessons learned from the last year operation and some performance from 2016 and 2017.

  12. Terahertz inline wall thickness monitoring system for plastic pipe extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Hauck, J., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de; Stich, D., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de; Heidemeyer, P., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de; Bastian, M., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de; Hochrein, T., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de [SKZ - German Plastics Center, Wuerzburg (Germany)

    2014-05-15

    Conventional and commercially available inline wall thickness monitoring systems for pipe extrusion are usually based on ultrasonic or x-ray technology. Disadvantages of ultrasonic systems are the usual need of water as a coupling media and the high damping in thick walled or foamed pipes. For x-ray systems special safety requirements have to be taken into account because of the ionizing radiation. The terahertz (THz) technology offers a novel approach to solve these problems. THz waves have many properties which are suitable for the non-destructive testing of plastics. The absorption of electrical isolators is typically very low and the radiation is non-ionizing in comparison to x-rays. Through the electromagnetic origin of the THz waves they can be used for contact free measurements. Foams show a much lower absorption in contrast to acoustic waves. The developed system uses THz pulses which are generated by stimulating photoconductive switches with femtosecond laser pulses. The time of flight of THz pulses can be determined with a resolution in the magnitude of several ten femtoseconds. Hence the thickness of an object like plastic pipes can be determined with a high accuracy by measuring the time delay between two reflections on materials interfaces e.g. at the pipe's inner and outer surface, similar to the ultrasonic technique. Knowing the refractive index of the sample the absolute layer thickness from the transit time difference can be calculated easily. This method in principle also allows the measurement of multilayer systems and the characterization of foamed pipes.

  13. Finite element analysis of the combined fine blanking and extrusion process

    Science.gov (United States)

    Zheng, Peng-Fei

    The combined fine blanking and extrusion process is such a metal forming process that fine blanking and forward extrusion are carried out on sheet metal material at the same time. There are two typical characteristics in this process, one is the fine blanking whose deformation mechanism is different from conventional blanking; the other is the sheet metal extrusion, which is different from the conventional extrusion. Even though fine blanking has been used in industry for many years, only limited literature can be found which deals with the theoretical analysis of it. On the other hand, no publications on the theoretical analysis of the sheet metal extrusion have been found. Intensive work should be carried out to reveal the mechanism of both fine blanking process and sheet metal extrusion process, and further the combined fine blanking and extrusion process. The scope of this thesis is to study the mechanics of fine blanking, sheet metal extrusion, and combined fine blanking and extrusion process one by one with the rigid-plastic finite element method. All of above processes are typical unsteady ones, especially the fine blanking process in which extremely severe and localized deformation occurs. Therefore, commercial programs can not be used to solve these problems up till now. Owing to this reason, a rigid-plastic finite element program was developed for simulating these processes where remeshing and mesh tracing techniques as well as the golden section method were adopted according to the characteristics of these processes in this thesis. Moreover, a permissible kinematic velocity field was adopted as the initial velocity field for simulating extrusion process successfully. Results from the simulation included the distorted mesh, the field of material flow, the stress and the strain distributions at various moments of deformation. Results under different deformation conditions such as different blanking clearances, different diameters of the extrusion punch and

  14. Proton computed tomography

    International Nuclear Information System (INIS)

    Hanson, K.M.

    1978-01-01

    The use of protons or other heavy charged particles instead of x rays in computed tomography (CT) is explored. The results of an experimental implementation of proton CT are presented. High quality CT reconstructions are obtained at an average dose reduction factor compared with an EMI 5005 x-ray scanner of 10:1 for a 30-cm-diameter phantom and 3.5:1 for a 20-cm diameter. The spatial resolution is limited by multiple Coulomb scattering to about 3.7 mm FWHM. Further studies are planned in which proton and x-ray images of fresh human specimens will be compared. Design considerations indicate that a clinically useful proton CT scanner is eminently feasible

  15. Electron - proton colliders

    International Nuclear Information System (INIS)

    Wiik, B.H.

    1985-01-01

    Electron-proton storage rings allow us to study the interaction between the two basic constituents of matter, electrons and quarks at very short distances. Such machines were first discussed in connection with the ISR but the idea was abandoned because of the anticipated low counting rate. The interest in electron-proton storage rings was rekindeled by the discovery of large pointlike cross sections in lepton-hardon interactions and several/sup 2-15/ projects have been discussed during the past decade. However, despite a glorious past, which includes the discovery of quarks and neutral currents, and a multitude of proposals no electron-proton storage ring has ever been built. What we might learn by studying electron-proton collisions at high energies is discussed. After some brief comments on present proposals the proposed DESY ep project HERA is described as an example of how to realize such a machine

  16. Apparatus for proton radiography

    International Nuclear Information System (INIS)

    Martin, R.L.

    1976-01-01

    An apparatus for effecting diagnostic proton radiography of patients in hospitals comprises a source of negative hydrogen ions, a synchrotron for accelerating the negative hydrogen ions to a predetermined energy, a plurality of stations for stripping extraction of a radiography beam of protons, means for sweeping the extracted beam to cover a target, and means for measuring the residual range, residual energy, or percentage transmission of protons that pass through the target. The combination of information identifying the position of the beam with information about particles traversing the subject and the back absorber is performed with the aid of a computer to provide a proton radiograph of the subject. In an alternate embodiment of the invention, a back absorber comprises a plurality of scintillators which are coupled to detectors. 10 claims, 7 drawing figures

  17. Plant proton pumps

    DEFF Research Database (Denmark)

    Gaxiola, Roberto A.; Palmgren, Michael Gjedde; Schumacher, Karin

    2007-01-01

    Chemiosmotic circuits of plant cells are driven by proton (H+) gradients that mediate secondary active transport of compounds across plasma and endosomal membranes. Furthermore, regulation of endosomal acidification is critical for endocytic and secretory pathways. For plants to react...

  18. Inauguration of Proton Synchrotron

    CERN Multimedia

    1960-01-01

    On 5 February 1960, the Proton Synchrotron (PS) was formally inaugurated. The great Danish physicist, Niels Bohr, releases a bottle of champagne against a shielding block to launch the PS on its voyage in physics.

  19. The FEM simulation of continuous rotary extrusion (CRE) of aluminum alloy AA3003

    Science.gov (United States)

    Rajendran, Nijenthan; Valberg, Henry; Misiolek, Wojciech Z.

    2017-10-01

    Continuous Rotary Extrusion (CRE) process is also known in literature under Conform TM name and it is mainly used for the continuous extrusion of Aluminum and Copper alloys. CRE use a feedstock in the form of rod, powders and chips, which are fed into the groove of the rotating wheel. As the wheel rotates the feedstock moves along with it due to friction with the wheel. Once the feedstock reaches the abutment the material deforms plastically and it is extruded through the die. CRE has lot to offer when compared to other more conventional extrusion processes such as low energy input, no limit in billet length as it is a continuous process as well as improved material physical properties due to plastic deformation under constant parameters. In this work a FEM model has been developed using Deform TM 3D, to study the metal flow and state variables of AA3003 CRE extrusion. The effect of extrusion wheel velocity has been investigated. The results show that increase in wheel velocity will heat up the feedstock metal due to high shear deformation and higher friction, which significantly changes metal flow conditions at the die exit.

  20. Apical extrusion of debris in four different endodontic instrumentation systems: A meta-analysis.

    Science.gov (United States)

    Western, J Sylvia; Dicksit, Daniel Devaprakash

    2017-01-01

    All endodontic instrumentation systems tested so far, promote apical extrusion of debris, which is one of the main causes of postoperative pain, flare ups, and delayed healing. Of this meta-analysis was to collect and analyze in vitro studies quantifying apically extruded debris while using Hand ProTaper (manual), ProTaper Universal (rotary), Wave One (reciprocating), and self-adjusting file (SAF; vibratory) endodontic instrumentation systems and to determine methods which produced lesser extrusion of debris apically. An extensive electronic database search was done in PubMed, Scopus, Cochrane, LILACS, and Google Scholar from inception until February 2016 using the key terms "Apical Debris Extrusion, extruded material, and manual/rotary/reciprocating/SAF systems." A systematic search strategy was followed to extract 12 potential articles from a total of 1352 articles. The overall effect size was calculated from the raw mean difference of weight of apically extruded debris. Statistically significant difference was seen in the following comparisons: SAF ProTaper. Apical extrusion of debris was invariably present in all the instrumentation systems analyzed. SAF system seemed to be periapical tissue friendly as it caused reduced apical extrusion compared to Rotary ProTaper and Wave One.

  1. Preparation and investigation of novel gastro-floating tablets with 3D extrusion-based printing.

    Science.gov (United States)

    Li, Qijun; Guan, Xiaoying; Cui, Mengsuo; Zhu, Zhihong; Chen, Kai; Wen, Haoyang; Jia, Danyang; Hou, Jian; Xu, Wenting; Yang, Xinggang; Pan, Weisan

    2018-01-15

    Three dimensional (3D) extrusion-based printing is a paste-based rapid prototyping process, which is capable of building complex 3D structures. The aim of this study was to explore the feasibility of 3D extrusion-based printing as a pharmaceutical manufacture technique for the fabrication of gastro-floating tablets. Novel low-density lattice internal structure gastro-floating tablets of dipyridamole were developed to prolong the gastric residence time in order to improve drug release rate and consequently, improve bioavailability and therapeutic efficacy. Excipients commonly employed in the pharmaceutical study could be efficiently applied in the room temperature 3D extrusion-based printing process. The tablets were designed with three kinds of infill percentage and prepared by hydroxypropyl methylcellulose (HPMC K4M) and hydroxypropyl methylcellulose (HPMC E15) as hydrophilic matrices and microcrystalline cellulose (MCC PH101) as extrusion molding agent. In vitro evaluation of the 3D printed gastro-floating tablets was performed by determining mechanical properties, content uniformity, and weight variation. Furthermore, re-floating ability, floating duration time, and drug release behavior were also evaluated. Dissolution profiles revealed the relationship between infill percentage and drug release behavior. The results of this study revealed the potential of 3D extrusion-based printing to fabricate gastro-floating tablets with more than 8h floating process with traditional pharmaceutical excipients and lattice internal structure design. Copyright © 2017. Published by Elsevier B.V.

  2. Management of vaginal extrusion after tension-free vaginal tape procedure for urodynamic stress incontinence.

    Science.gov (United States)

    Giri, Subhasis K; Sil, Debasri; Narasimhulu, Girish; Flood, Hugh D; Skehan, Mark; Drumm, John

    2007-06-01

    To report our experience in the management of vaginal extrusion after the tension-free vaginal tape (TVT) procedure for urodynamic stress incontinence. Five patients diagnosed with vaginal extrusion after a TVT procedure performed at our institution were identified. We reviewed the patients' records retrospectively. The interval from TVT placement to diagnosis, presenting symptoms and signs, duration of symptoms, diagnostic test findings, treatment, and postoperative results were recorded. Patients were followed up for at least 12 months. From January 2001 to June 2004, a total of 166 patients underwent the TVT procedure. Of these, 5 patients (3%) were diagnosed with isolated vaginal extrusion 4 to 40 months postoperatively. No cases of urethral or bladder erosion occurred in this series. The symptoms included vaginal discharge, pain, bleeding, and dyspareunia. The eroded margin of the vaginal mucosa was trimmed, mobilized, and closed over the tape with interrupted vertical mattress sutures in a single layer using 2-0 polyglactin 910 to avoid mucosal inversion. All patients remained symptom free without any evidence of defective healing or additional extrusion at a minimal follow-up of 12 months. Primary reclosure of the vaginal mucosa over the TVT tape is an effective first-line treatment option for vaginal extrusion without compromising continence. Patients undergoing the TVT procedure should be adequately counseled about the possibility of this complication and the available treatment options.

  3. [Effect of extrusion on protein and starch bioavailability in corn and lima bean flour blends].

    Science.gov (United States)

    Pérez-Navarrete, Cecilia; Betancur-Ancona, David; Casotto, Meris; Carmona, Andrés; Tovar, Juscelino

    2007-09-01

    Extrusion is used to produce crunchy expanded foods, such as snacks. The nutritional impact of this process has not been studied sufficiently. In this study, in vitro and in vivo protein and starch bioavailability was evaluated in both raw and extruded corn (Zea mays)(C) and lima bean (Phaseolus lunatus)(B) flour blends, prepared in 75C/25B and 50C/ 50B (p/p) proportions. These were processed with a Brabender extruder at 160 degrees C, 100 rpm and 15.5% moisture content. Proximate composition showed that in the extruded products protein and ash contents increased whereas the fat level decreased. In vitro protein digestibility was higher in the extrudates (82%) than in the raw flours (77%). Potentially available starch and resistant starch contents decreased with extrusion. The in vitro assays indicated that extrusion improved protein and starch availability in the studied blends. In vivo bioavailability was evaluated using the rice weevil (Sithophilus oryzae) as a biological model. The most descriptive biomarkers of the changes suggested by the in vivo tests were body protein content (increased by extrusion) and intestinal a-amylase activity (decreased by processing). Overall, results suggest that extrusion notably increases the nutritional quality of corn and lima bean flour blends.

  4. Proton beam therapy facility

    International Nuclear Information System (INIS)

    1984-01-01

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs

  5. Proton beam therapy facility

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  6. PROTON MICROSCOPY AT FAIR

    International Nuclear Information System (INIS)

    Merrill, F. E.; Mariam, F. G.; Golubev, A. A.; Turtikov, V. I.; Varentsov, D.

    2009-01-01

    Proton radiography was invented in the 1990's at Los Alamos National Laboratory (LANL) as a diagnostic to study dynamic material properties under extreme pressures, strain and strain rate. Since this time hundreds of dynamic proton radiography experiments have been performed at LANL and a facility has been commissioned at the Institute for Theoretical and Experimental Physics (ITEP) in Russia for similar applications in dynamic material studies. Recently an international effort has investigated a new proton radiography capability for the study of dynamic material properties at the Facility for Anti-proton and Ion Research (FAIR) located in Darmstadt, Germany. This new Proton microscope for FAIR(PRIOR) will provide radiographic imaging of dynamic systems with unprecedented spatial, temporal and density resolution, resulting in a window for understanding dynamic material properties at new length scales. It is also proposed to install the PRIOR system at the GSI Helmholtzzentrum fuer Schwerionenforschung before installation at FAIR for dynamic experiments with different drivers including high explosives, pulsed power and lasers. The design of the proton microscope and expected radiographic performance is presented.

  7. Multicavity proton cyclotron accelerator

    Directory of Open Access Journals (Sweden)

    J. L. Hirshfield

    2002-08-01

    Full Text Available A mechanism for acceleration of protons is described, in which energy gain occurs near cyclotron resonance as protons drift through a sequence of rotating-mode TE_{111} cylindrical cavities in a strong nearly uniform axial magnetic field. Cavity resonance frequencies decrease in sequence from one another with a fixed frequency interval Δf between cavities, so that synchronism can be maintained between the rf fields and proton bunches injected at intervals of 1/Δf. An example is presented in which a 122 mA, 1 MeV proton beam is accelerated to 961 MeV using a cascade of eight cavities in an 8.1 T magnetic field, with the first cavity resonant at 120 MHz and with Δf=8 MHz. Average acceleration gradient exceeds 40 MV/m, average effective shunt impedance is 223 MΩ/m, but maximum surface field in the cavities does not exceed 7.2 MV/m. These features occur because protons make many orbital turns in each cavity and thus experience acceleration from each cavity field many times. Longitudinal and transverse stability appear to be intrinsic properties of the acceleration mechanism, and an example to illustrate this is presented. This acceleration concept could be developed into a proton accelerator for a high-power neutron spallation source, such as that required for transmutation of nuclear waste or driving a subcritical fission burner, provided a number of significant practical issues can be addressed.

  8. Understanding the effects of potassium ferricyanide on lead hydride formation in tetrahydroborate system and its application for determination of lead in milk using hydride generation inductively coupled plasma optical emission spectrometry

    International Nuclear Information System (INIS)

    Deng, Biyang; Xu, Xiangshu; Xiao, Yan; Zhu, Pingchuan; Wang, Yingzi

    2015-01-01

    Highlights: • Proposed a novel explanation for plumbane generation. • Expounded the role of K 3 Fe(CN) 6 in plumbane generation. • Clarified the controversial aspects in the mechanism of K 3 Fe(CN) 6 enhancement. • Used X-ray diffractometry to analyze the intermediates. • Developed a method to analyze lead in milk using K 3 Fe(CN) 6 and K 4 Fe(CN) 6 as new additives. - Absract: To understand the formation of plumbane in the Pb II -NaBH 4 -K 3 Fe(CN) 6 system, the intermediate products produced in the reaction of lead(II) and NaBH 4 in the presence of K 3 Fe(CN) 6 were studied. The produced plumbane and elemental lead were measured through continuous flow hydride generation (HG)-inductively coupled plasma optical emission spectrometry (ICP OES) and X-ray diffraction spectrometry techniques, respectively. Based on the experimental results, the explanations can be depicted in the following steps: (1) plumbane and black lead sediment (black Pb) are formed in the reaction of lead(II) and NaBH 4 ; (2) the black Pb is oxidized by K 3 Fe(CN) 6 to form Pb 2 [Fe(CN) 6 ], which further reacts with NaBH 4 to form more plumbane and black Pb; and (3) another round starts in which the produced black Pb from the step 2 is then oxidized continuously by K 3 Fe(CN) 6 to form more Pb 2 [Fe(CN) 6 ] complex, which would produce more plumbane. In short, the black Pb and Pb 2 [Fe(CN) 6 ] complex are the key intermediate products for the formation of plumbane in the Pb II -NaBH 4 -K 3 Fe(CN) 6 system. Based on the enhancement effect of potassium ferricyanide and potassium ferrocyanide, a method was developed to analyze lead in milk with HG-ICP OES technique. The detection limit of the method was observed as 0.081 μg L −1 . The linearity range of lead was found between 0.3 and 50,000 μg L −1 with correlation coefficient of 0.9993. The recovery of lead was determined as 97.6% (n = 5) for adding 10 μg L −1 lead into the milk sample

  9. Improvement of mechanical properties and corrosion resistance of biodegradable Mg-Nd-Zn-Zr alloys by double extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaobo, E-mail: xbxbzhang2003@163.com [School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167 (China); Wang, Zhangzhong [School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167 (China); Yuan, Guangyin [National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, Shanghai, 200240 (China); Xue, Yajun [School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167 (China)

    2012-08-01

    Highlights: Black-Right-Pointing-Pointer Microstructure of Mg-Nd-Zn-Zr alloys was refined and homogenized by double extrusion process. Black-Right-Pointing-Pointer The mechanical properties of the alloys were significantly enhanced by double extrusion. Black-Right-Pointing-Pointer The biocorrosion resistance of the alloys was improved by double extrusion. - Abstract: Mg-Nd-Zn-Zr alloy is a novel and promising biodegradable magnesium alloy due to good biocompatibility, desired uniform corrosion mode and outstanding corrosion resistance in simulated body fluid (SBF). However, the corrosion resistance and mechanical properties should be improved to meet the requirement of the biodegradable implants, such as plates, screws and cardiovascular stents. In the present study, double extrusion process was adopted to refine microstructure and improve mechanical properties of Mg-2.25Nd-0.11Zn-0.43Zr and Mg-2.70Nd-0.20Zn-0.41Zr alloys. The corrosion resistance of the alloys after double extrusion was also studied. The results show that the microstructure of the alloys under double extrusion becomes much finer and more homogeneous than those under once extrusion. The yield strength, ultimate tensile strength and elongation of the alloys under double extrusion are over 270 MPa, 300 MPa and 32%, respectively, indicating that outstanding mechanical properties of Mg-Nd-Zn-Zr alloy can be obtained by double extrusion. The results of immersion experiment and electrochemical measurements in SBF show that the corrosion resistance of Alloy 1 and Alloy 2 under double extrusion was increased by 7% and 8% respectively compared with those under just once extrusion.

  10. Improvement of mechanical properties and corrosion resistance of biodegradable Mg–Nd–Zn–Zr alloys by double extrusion

    International Nuclear Information System (INIS)

    Zhang, Xiaobo; Wang, Zhangzhong; Yuan, Guangyin; Xue, Yajun

    2012-01-01

    Highlights: ► Microstructure of Mg–Nd–Zn–Zr alloys was refined and homogenized by double extrusion process. ► The mechanical properties of the alloys were significantly enhanced by double extrusion. ► The biocorrosion resistance of the alloys was improved by double extrusion. - Abstract: Mg–Nd–Zn–Zr alloy is a novel and promising biodegradable magnesium alloy due to good biocompatibility, desired uniform corrosion mode and outstanding corrosion resistance in simulated body fluid (SBF). However, the corrosion resistance and mechanical properties should be improved to meet the requirement of the biodegradable implants, such as plates, screws and cardiovascular stents. In the present study, double extrusion process was adopted to refine microstructure and improve mechanical properties of Mg–2.25Nd–0.11Zn–0.43Zr and Mg–2.70Nd–0.20Zn–0.41Zr alloys. The corrosion resistance of the alloys after double extrusion was also studied. The results show that the microstructure of the alloys under double extrusion becomes much finer and more homogeneous than those under once extrusion. The yield strength, ultimate tensile strength and elongation of the alloys under double extrusion are over 270 MPa, 300 MPa and 32%, respectively, indicating that outstanding mechanical properties of Mg–Nd–Zn–Zr alloy can be obtained by double extrusion. The results of immersion experiment and electrochemical measurements in SBF show that the corrosion resistance of Alloy 1 and Alloy 2 under double extrusion was increased by 7% and 8% respectively compared with those under just once extrusion.

  11. Proton Radiography to Improve Proton Radiotherapy : Simulation Study at Different Proton Beam Energies

    NARCIS (Netherlands)

    Biegun, Aleksandra; Takatsu, Jun; van Goethem, Marc-Jan; van der Graaf, Emiel; van Beuzekom, Martin; Visser, Jan; Brandenburg, Sijtze

    To improve the quality of cancer treatment with protons, a translation of X-ray Computed Tomography (CT) images into a map of the proton stopping powers needs to be more accurate. Proton stopping powers determined from CT images have systematic uncertainties in the calculated proton range in a

  12. Co-Extrusion: Advanced Manufacturing for Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, Corie Lynn [PARC, Palo Alto, CA (United States)

    2016-11-18

    The development of mass markets for large-format batteries, including electric vehicles (EVs) and grid support, depends on both cost reductions and performance enhancements to improve their economic viability. Palo Alto Research Center (PARC) has developed a multi-material, advanced manufacturing process called co-extrusion (CoEx) to remove multiple steps in a conventional battery coating process with the potential to simultaneously increase battery energy and power density. CoEx can revolutionize battery manufacturing across most chemistries, significantly lowering end-product cost and shifting the underlying economics to make EVs and other battery applications a reality. PARC’s scale-up of CoEx for electric vehicle (EV) batteries builds on a solid base of experience in applying CoEx to solar cell manufacturing, deposition of viscous ceramic pastes, and Li-ion battery chemistries. In the solar application, CoEx has been deployed commercially at production scale where multi-channel CoEx printheads are used to print viscous silver gridline pastes at full production speeds (>40 ft/min). This operational scale-up provided invaluable experience with the nuances of speed, yield, and maintenance inherent in taking a new technology to the factory floor. PARC has leveraged this experience, adapting the CoEx process for Lithium-ion (Li-ion) battery manufacturing. To date, PARC has worked with Li-ion battery materials and structured cathodes with high-density Li-ion regions and low-density conduction regions, documenting both energy and power performance. Modeling results for a CoEx cathode show a path towards a 10-20% improvement in capacity for an EV pouch cell. Experimentally, we have realized a co-extruded battery structure with a Lithium Nickel Manganese Cobalt (NMC) cathode at print speeds equivalent to conventional roll coating processes. The heterogeneous CoEx cathode enables improved capacity in thick electrodes at higher C-rates. The proof-of-principle coin cells

  13. Multidrug and toxin extrusion proteins mediate cellular transport of cadmium

    International Nuclear Information System (INIS)

    Yang, Hong; Guo, Dong; Obianom, Obinna N.; Su, Tong; Polli, James E.; Shu, Yan

    2017-01-01

    Cadmium (Cd) is an environmentally prevalent toxicant posing increasing risk to human health worldwide. As compared to the extensive research in Cd tissue accumulation, little was known about the elimination of Cd, particularly its toxic form, Cd ion (Cd 2+ ). In this study, we aimed to examine whether Cd 2+ is a substrate of multidrug and toxin extrusion proteins (MATEs) that are important in renal xenobiotic elimination. HEK-293 cells overexpressing the human MATE1 (HEK-hMATE1), human MATE2-K (HEK-hMATE2-K) and mouse Mate1 (HEK-mMate1) were used to study the cellular transport and toxicity of Cd 2+ . The cells overexpressing MATEs showed a 2–4 fold increase of Cd 2+ uptake that could be blocked by the MATE inhibitor cimetidine. A saturable transport profile was observed with the Michaelis-Menten constant (K m ) of 130 ± 15.8 μM for HEK-hMATE1; 139 ± 21.3 μM for HEK-hMATE2-K; and 88.7 ± 13.5 μM for HEK-mMate1, respectively. Cd 2+ could inhibit the uptake of metformin, a substrate of MATE transporters, with the half maximal inhibitory concentration (IC 50 ) of 97.5 ± 6.0 μM, 20.2 ± 2.6 μM, and 49.9 ± 6.9 μM in HEK-hMATE1, HEK-hMATE2-K, and HEK-mMate1 cells, respectively. In addition, hMATE1 could transport preloaded Cd 2+ out of the HEK-hMATE1 cells, thus resulting in a significant decrease of Cd 2+ -induced cytotoxicity. The present study has provided the first evidence supporting that MATEs transport Cd 2+ and may function as cellular elimination machinery in Cd intoxication. - Highlights: • Cadmium is an environmentally prevalent toxicant. • Little was known regarding the elimination and detoxification of cadmium. • Cadmium ion is here demonstrated as a substrate of MATE transporters. • MATEs may function as cellular elimination machinery in cadmium detoxification.

  14. Hot-melt extrusion for enhanced delivery of drug particles.

    Science.gov (United States)

    Miller, Dave A; McConville, Jason T; Yang, Wei; Williams, Robert O; McGinity, James W

    2007-02-01

    With the recent advent of nanotechnology for pharmaceutical applications, drug particle engineering is the focus of increasing interest as a viable approach for overcoming solubility limitations of poorly water-soluble drugs. Although these particle engineering techniques have been proven successful for enhancing the dissolution properties of many poorly water-soluble drugs, there are limitations associated with them such as particle aggregation, morphological instability, and poor wettability. The aim of this study was to demonstrate a processing technique in which hot-melt extrusion (HME) is utilized to overcome these limitations. Micronized particles of amorphous itraconazole (ITZ) stabilized with PVP or HPMC were produced and subsequently melt extruded with poloxamer 407 and PEO 200 M to deaggregate and disperse the particles into the hydrophilic polymer matrix. Differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy were used to demonstrate that the HME process did not alter the properties of the micronized particles. Dissolution testing conducted at sink conditions revealed that the dissolution rate of the micronized particles was improved by HME due to particle deaggregation and enhanced wetting. Supersaturation dissolution testing demonstrated that the ITZ-HPMC micronized particle extrudates provided superior supersaturation of ITZ compared to the ITZ-PVP micronized particle extrudates. Supersaturation dissolution testing incorporating a pH change (from pH 1.2 to 6.8 at 2 h) revealed that neither micronized particle extrudate formulation significantly reduced the rate of ITZ precipitation from supersaturated solution once pH was increased. Moreover, the two extrudate formulations performed very similarly when only considering dissolution testing from just before pH adjustment through the duration of testing at neutral pH. From oral dosing of rats, it was determined that the two extrudate formulations performed similarly in

  15. Multidrug and toxin extrusion proteins mediate cellular transport of cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hong; Guo, Dong; Obianom, Obinna N. [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States); Su, Tong [Department of Oral Maxillofacial Surgery, the First Affiliated Hospital, Xiangya Medical School, Central South University, Hunan 410007 (China); Polli, James E. [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States); Shu, Yan, E-mail: yshu@rx.umaryland.edu [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States)

    2017-01-01

    Cadmium (Cd) is an environmentally prevalent toxicant posing increasing risk to human health worldwide. As compared to the extensive research in Cd tissue accumulation, little was known about the elimination of Cd, particularly its toxic form, Cd ion (Cd{sup 2+}). In this study, we aimed to examine whether Cd{sup 2+} is a substrate of multidrug and toxin extrusion proteins (MATEs) that are important in renal xenobiotic elimination. HEK-293 cells overexpressing the human MATE1 (HEK-hMATE1), human MATE2-K (HEK-hMATE2-K) and mouse Mate1 (HEK-mMate1) were used to study the cellular transport and toxicity of Cd{sup 2+}. The cells overexpressing MATEs showed a 2–4 fold increase of Cd{sup 2+} uptake that could be blocked by the MATE inhibitor cimetidine. A saturable transport profile was observed with the Michaelis-Menten constant (K{sub m}) of 130 ± 15.8 μM for HEK-hMATE1; 139 ± 21.3 μM for HEK-hMATE2-K; and 88.7 ± 13.5 μM for HEK-mMate1, respectively. Cd{sup 2+} could inhibit the uptake of metformin, a substrate of MATE transporters, with the half maximal inhibitory concentration (IC{sub 50}) of 97.5 ± 6.0 μM, 20.2 ± 2.6 μM, and 49.9 ± 6.9 μM in HEK-hMATE1, HEK-hMATE2-K, and HEK-mMate1 cells, respectively. In addition, hMATE1 could transport preloaded Cd{sup 2+} out of the HEK-hMATE1 cells, thus resulting in a significant decrease of Cd{sup 2+}-induced cytotoxicity. The present study has provided the first evidence supporting that MATEs transport Cd{sup 2+} and may function as cellular elimination machinery in Cd intoxication. - Highlights: • Cadmium is an environmentally prevalent toxicant. • Little was known regarding the elimination and detoxification of cadmium. • Cadmium ion is here demonstrated as a substrate of MATE transporters. • MATEs may function as cellular elimination machinery in cadmium detoxification.

  16. Studies in reactive extrusion processing of biodegradable polymeric materials

    Science.gov (United States)

    Balakrishnan, Sunder

    Various reaction chemistries such as Polymerization, Polymer cross-linking and Reactive grafting were investigated in twin-screw extruders. Poly (1,4-dioxan-2-one) (PPDX) was manufactured in melt by the continuous polymerization of 1,4-dioxan-2-one (PDX) monomer in a twin-screw extruder using Aluminum tri-sec butoxide (ATSB) initiator. Good and accurate control over molecular weight was obtained by controlling the ratio of monomer to initiator. A screw configuration consisting of only conveying elements was used for the polymerization. The polymerization reaction was characterized by a monomer-polymer dynamic equilibrium, above the melting temperature of the polymer, limiting the equilibrium conversion to 78-percent. Near complete (˜100-percent) conversion was obtained on co-polymerizing PDX monomer with a few mol-percent (around 8-percent) Caprolactone (CL) monomer in a twin-screw extruder using ATSB initiator. The co-polymers exhibited improved thermal stability with reduction in glass transition temperature. The extruder was modeled as an Axial Dispersed Plug Flow Reactor for the polymerization of CL monomer using Residence Time Distribution (RTD) Analysis. The model provided a good fit to the experimental RTD and conversion data. Aliphatic and aliphatic-aromatic co-polyesters, namely Polycaprolactone (PCL) and Poly butylenes (adipate-co-terephthalate) (Ecoflex) were cross-linked in a twin-screw extruder using radical initiator to form micro-gel reinforced biodegradable polyesters. Cross-linked Ecoflex was further extrusion blended with talc to form blends suitable to be blown into films. A screw configuration consisting of conveying and kneading elements was found to be effective in dispersion of the talc particles (5--10 microns) in the polyester matrix. While the rates of crystallization increased for the talc filled polyester blends, overall crystallinity reduced. Mechanical, tear and puncture properties of films made using the talc filled polyester blends

  17. REFINEMENT OF THE REVERSE EXTRUSION TEST TO DETERMINE THE TWO CONSISTENCY LIMITS

    Directory of Open Access Journals (Sweden)

    Kamil KAYABALI

    2015-11-01

    Full Text Available Liquid limit (LL and plastic limit (PL are the two most commonly used index proper- ties of fine-grained soils. They have been used in not only classification of soils but also in correlation with certain engineering properties. Therefore, they have been subjected to numerous researches since they were first introduced by Atterberg in 1911. While their me- chanisms were well defined in many codes and they have been in use for decades, criticisms often arose pertinent to the uncertainties inherent to them. Incredible amount of effort has been exerted to invent more rational testing methods in place of both the Casagrande’s cup and bead rolling methods. Part of those efforts has been on devicing a single tool to measure the two relative index properties together. Recently, the reverse extrusion test was brought into the use of geotechnical engineers. It was shown that this tool has a potential of measu- ring LL, PL, and even the shrinkage limit (SL. The aim of this investigation is to reassess the ability of the reverse extrusion test to determine LL and PL with further refinement. In this regard 70 fine-grained soils covering a large range of plasticity were employed. Fall-cone method and rolling-device method were employed to determine LL and PL, res- pectively. The reverse extrusion tests were carried out at least five different water contents per soil sample. Extrusion pressures were plotted against water content and a curve fitting was applied to data pairs, from which the y-intercept (the coefficient a and the slope (the coefficieent b of the curve were determined. Those reverse extrusion coefficients were utilized to determine the representative extrusion pressures corresponding to LL and PL, as was done by the earlier researchers; however, the degree of success for the prediction of LL and PL using the representative extrusion pressures was not encouraging. Different from the previously proposed approaches, the reverse extrusion

  18. Development of poloxamer gel formulations via hot-melt extrusion technology.

    Science.gov (United States)

    Mendonsa, Nicole S; Murthy, S Narasimha; Hashemnejad, Seyed Meysam; Kundu, Santanu; Zhang, Feng; Repka, Michael A

    2018-02-15

    Poloxamer gels are conventionally prepared by the "hot" or the "cold" process. But these techniques have some disadvantages such as high energy consumption, requires expensive equipment and often have scale up issues. Therefore, the objective of this work was to develop poloxamer gels by hot-melt extrusion technology. The model drug selected was ketoprofen. The formulations developed were 30% and 40% poloxamer gels. Of these formulations, the 30% poloxamer gels were selected as ideal gels. DSC and XRD studies showed an amorphous nature of the drug after extrusion. It was observed from the permeation studies that with increasing poloxamer concentration, a decrease in drug permeation was obtained. Other studies conducted for the formulations included in-vitro release studies, texture analysis, rheological studies and pH measurements. In conclusion, the hot-melt extrusion technology could be successfully employed to develop poloxamer gels by overcoming the drawbacks associated with the conventional techniques. Published by Elsevier B.V.

  19. Recent Advances in Extrusion-Based 3D Printing for Biomedical Applications.

    Science.gov (United States)

    Placone, Jesse K; Engler, Adam J

    2018-04-01

    Additive manufacturing, or 3D printing, has become significantly more commonplace in tissue engineering over the past decade, as a variety of new printing materials have been developed. In extrusion-based printing, materials are used for applications that range from cell free printing to cell-laden bioinks that mimic natural tissues. Beyond single tissue applications, multi-material extrusion based printing has recently been developed to manufacture scaffolds that mimic tissue interfaces. Despite these advances, some material limitations prevent wider adoption of the extrusion-based 3D printers currently available. This progress report provides an overview of this commonly used printing strategy, as well as insight into how this technique can be improved. As such, it is hoped that the prospective report guides the inclusion of more rigorous material characterization prior to printing, thereby facilitating cross-platform utilization and reproducibility. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Complex deformation routes for direct recycling aluminium alloy scrap via industrial hot extrusion

    Science.gov (United States)

    Paraskevas, Dimos; Kellens, Karel; Kampen, Carlos; Mohammadi, Amirahmad; Duflou, Joost R.

    2018-05-01

    This paper presents the final results of an industrial project, aiming for direct hot extrusion of wrought aluminium alloy scrap at an industrial scale. Two types of complex deformation/extrusion routes were tested for the production of the same profile, starting from AA6060 scrap in form of machining chips. More specifically scrap-based billets were extruded through: a 2-porthole and a 4-porthole die-set, modified for enhanced scrap consolidation and grain refinement. For comparison reasons, cast billets of the same alloy were extruded through the modified 2-porthole die set. The tensile testing results as well as microstructural investigations show that the 4-porthole extrusion route further improves scrap consolidation compared to the 2-porthole die output. The successful implementation of solid state recycling, directly at industrial level, indicates the technological readiness level of this research.

  1. Microstructure and properties of ultrafine grain nickel 200 after hydrostatic extrusion processes

    Science.gov (United States)

    Sitek, R.; Krajewski, C.; Kamiński, J.; Spychalski, M.; Garbacz, H.; Pachla, W.; Kurzydłowski, K. J.

    2012-09-01

    This paper presents the results of the studies of the structure and properties of ultrafine grained nickel 200 obtained by hydrostatic extrusion processes. Microstructure was characterized by means of optical microscopy and electron transmission microscopy. Corrosion resistance was studied by impedance and potentiodynamic methods using an AutoLab PGSTAT 100 potentiostat in 0.1 M Na2SO4 solution and in acidified (by addition of H2SO4) 0.1 M NaCl solution at pH = 4.2 at room temperature. Microhardness tests were also performed. The results showed that hydrostatic extrusion produces a heterogeneous, ultrafine-grained microstructure in nickel 200. The corrosive resistance tests showed that the grain refinement by hydrostatic extrusion is accompanied by a decreased corrosive resistance of nickel 200.

  2. Modelling of anisotropy for Al-Li 2099 T83 extrusions and effect of precipitate density

    International Nuclear Information System (INIS)

    Bois-Brochu, Alexandre; Blais, Carl; Tchitembo Goma, Franck Armel; Larouche, Daniel

    2016-01-01

    The development of aluminum-lithium alloys for aerospace applications requires a thorough understanding of how processing and product geometry impact their microstructure, texture and mechanical properties. The anisotropy of the mechanical properties is in part related to the deformation texture formed during thermo-mechanical processing. In this study, two different extrusions of Al-Li 2099 T83 were characterized, a cylindrical extrusion and an integrally stiffened panel (ISP). A model is proposed to predict mechanical properties and their anisotropy as a function of the <111> fiber texture. Furthermore, the volume fraction of precipitates was measured in zones of high anisotropy (cylindrical extrusion) and low anisotropy (ISP). Results show that there is no significant difference between the two parts concerning volume fraction of precipitates.

  3. Modelling of anisotropy for Al-Li 2099 T83 extrusions and effect of precipitate density

    Energy Technology Data Exchange (ETDEWEB)

    Bois-Brochu, Alexandre, E-mail: Alexandre.Bois-Brochu.1@ulaval.ca; Blais, Carl, E-mail: Carl.Blais@gmn.ulaval.ca; Tchitembo Goma, Franck Armel, E-mail: Franck-Armel.Tchitembo-Goma.1@ulaval.ca; Larouche, Daniel, E-mail: Daniel.Larouche@gmn.ulaval.ca

    2016-09-15

    The development of aluminum-lithium alloys for aerospace applications requires a thorough understanding of how processing and product geometry impact their microstructure, texture and mechanical properties. The anisotropy of the mechanical properties is in part related to the deformation texture formed during thermo-mechanical processing. In this study, two different extrusions of Al-Li 2099 T83 were characterized, a cylindrical extrusion and an integrally stiffened panel (ISP). A model is proposed to predict mechanical properties and their anisotropy as a function of the <111> fiber texture. Furthermore, the volume fraction of precipitates was measured in zones of high anisotropy (cylindrical extrusion) and low anisotropy (ISP). Results show that there is no significant difference between the two parts concerning volume fraction of precipitates.

  4. Experimental and finite element analyses of plastic deformation behavior in vortex extrusion

    International Nuclear Information System (INIS)

    Shahbaz, M.; Pardis, N.; Kim, J.G.; Ebrahimi, R.; Kim, H.S.

    2016-01-01

    Vortex extrusion (VE) is a single pass severe plastic deformation (SPD) technique which can impose high strain values with almost uniform distribution within cross section of the processed material. This technique needs no additional facilities for installation on any conventional extrusion equipment. In this study the deformation behavior of material during VE is investigated and the results are compared with those of conventional extrusion (CE). These investigations include finite element analysis, visioplasticity, and microstructural characterization of the processed samples. The results indicate that the VE process can accumulate a higher strain value by applying an additional torsional deformation. The role of this additional deformation mode on the microstructural evolution of the VE sample is discussed and compared with the results obtained on the CE samples.

  5. Characterisation of the wall-slip during extrusion of heavy-clay products

    Science.gov (United States)

    Kocserha, I.; Gömze, A. L.; Kulkov, S.; Kalatur, E.; Buyakova, S. P.; Géber, R.; Buzimov, A. Y.

    2017-01-01

    During extrusion through the extrusion die, heavy-clay compounds are usually show plug flow with extensive slip at the wall of the die. In this study, the viscosity and the thickness of the slip layer were investigated. For the examination a brick-clay from Malyi (Hungary) deposit was applied as a raw material. The clay was characterised by XRPD, BET, SEM and granulometry. As the slip layer consists of suspension of the fine clay fraction so the clay minerals content of the clay (dviscosity of suspension with different water content was measured by means of rotational viscosimeter. The thickness of the slip layer was calculated from the measured viscosity and other data obtained from an earlier study with capillary rheometer. The calculated thickness value showed a tendency to reach a limit value by increasing the extrusion speed.

  6. Forward impact extrusion of surface textured steel blanks using coated tooling

    Science.gov (United States)

    Hild, Rafael; Feuerhack, Andreas; Trauth, Daniel; Arghavani, Mostafa; Kruppe, Nathan C.; Brögelmann, Tobias; Bobzin, Kirsten; Klocke, Fritz

    2017-10-01

    A method to enable dry metal forming by the means of a self-lubricating coating and surface textures was researched using an innovative Pin-On-Cylinder-Tribometer. The experimental analysis was complemented by a numerical model of the complex contact conditions between coated tools and the surface textured specimen at the micro-level. Based on the results, the explanation of the tribological interactions between surface textured specimens and the tool in dry full forward extrusion is the objective of this work. Therefore, experimental dry extrusion tests were performed using a tool system. The extruded specimens were evaluated regarding their geometry as well as by the required punch force. Thereby, the effectiveness and the feasibility of dry metal forming on the example of full forward extrusion was evaluated. Thus, one more step towards the technical realization of dry metal forming of low alloy steels under industrial conditions was realized.

  7. Direct measurement of the initial proton extrusion to oxygen uptake ratio accompanying succinate oxidation by rat liver mitochondria.

    Science.gov (United States)

    Setty, O H; Shrager, R I; Bunow, B; Reynafarje, B; Lehninger, A L; Hendler, R W

    1986-01-01

    The problem of obtaining very early ratios for the H+/O stoichiometry accompanying succinate oxidation by rat liver mitochondria was attacked using new techniques for direct measurement rather than extrapolations based on data obtained after mixing and the recovery of the electrode from initial injection of O2. Respiration was quickly initiated in a thoroughly mixed O2-containing suspension of mitochondria under a CO atmosphere by photolysis of the CO-cytochrome c oxidase complex-. Fast responding O2 and pH electrodes were used to collect data every 10 ms. The response time for each electrode was experimentally measured in each experiment and suitable corrections for electrode relaxations were made. With uncorrected data obtained after 0.8 s, the extrapolation back to zero time on the basis of single-exponential curve fitting confirmed values close to 8.0 as previously reported (Costa et al., 1984). The data directly obtained, however, indicate an initial burst in H+/O ratio that peaked to values of approximately 20 to 30 prior to 50 ms and which was no longer evident after 0.3 s. Newer information and considerations that place all extrapolation methods in question are discussed. PMID:3019443

  8. Proton Motive Force-Driven and ATP-Dependent Drug Extrusion Systems in Multidrug-Resistant Lactococcus lactis

    NARCIS (Netherlands)

    BOLHUIS, H; MOLENAAR, D; POELARENDS, G; VANVEEN, HW; POOLMAN, B; DRIESSEN, AJM; KONINGS, WN

    1994-01-01

    Three mutants of Lactococcus lactis subsp. lactis MG1363, termed Eth(R), Dau(R), and Rho(R), were selected for resistance to high concentrations of ethidium bromide, daunomycin, and rhodamine 6G, respectively. These mutants were found to be cross resistant to a number of structurally and

  9. A brief review of extrusion-based tissue scaffold bio-printing.

    Science.gov (United States)

    Ning, Liqun; Chen, Xiongbiao

    2017-08-01

    Extrusion-based bio-printing has great potential as a technique for manipulating biomaterials and living cells to create three-dimensional (3D) scaffolds for damaged tissue repair and function restoration. Over the last two decades, advances in both engineering techniques and life sciences have evolved extrusion-based bio-printing from a simple technique to one able to create diverse tissue scaffolds from a wide range of biomaterials and cell types. However, the complexities associated with synthesis of materials for bio-printing and manipulation of multiple materials and cells in bio-printing pose many challenges for scaffold fabrication. This paper presents an overview of extrusion-based bio-printing for scaffold fabrication, focusing on the prior-printing considerations (such as scaffold design and materials/cell synthesis), working principles, comparison to other techniques, and to-date achievements. This paper also briefly reviews the recent development of strategies with regard to hydrogel synthesis, multi-materials/cells manipulation, and process-induced cell damage in extrusion-based bio-printing. The key issue and challenges for extrusion-based bio-printing are also identified and discussed along with recommendations for future, aimed at developing novel biomaterials and bio-printing systems, creating patterned vascular networks within scaffolds, and preserving the cell viability and functions in scaffold bio-printing. The address of these challenges will significantly enhance the capability of extrusion-based bio-printing. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Numerical investigations on the lateral angular co-extrusion of aluminium and steel

    Science.gov (United States)

    Behrens, B.-A.; Klose, C.; Chugreev, A.; Thürer, S. E.; Uhe, J.

    2018-05-01

    In order to save weight and costs, different materials can be combined within one component. In the novel process chain being developed within the Collaborative Research Centre (CRC) 1153, joined semi-finished workpieces are used to produce hybrid solid components with locally adapted properties. Different materials are joined in an initial step before the forming process takes place. Hereby, the quality of the joining zone is improved by means of the thermo-mechanical treatment during the forming and machining processes. The lateral angular co-extrusion (LACE) approach is used to produce semi-finished workpieces because it allows for the production of coaxial semi-finished products consisting of aluminium and steel. In the further process chain, these semi-finished products are processed into hybrid bearing bushings with locally adapted properties by die forging. In the scope of this work, numerical investigations of the co-extrusion of aluminium-steel compounds were carried out using finite element (FE) simulation in order to examine the influence of the process parameters on the co-extrusion process. For this purpose, the relevant material properties of the aluminium alloy EN AW-6082 were determined experimentally and subsequently implemented in the numerical model. The obtained numerical model was used to study the impact of different ram speeds, press ratios and billet temperatures on the resulting extrusion forces and the material flow. The numerical results have been validated using force-time curves obtained from experimental extrusion tests carried out on a 2.5 MN laboratory extrusion press.

  11. Extrusion of Debris from Primary Molar Root Canals following Instrumentation with Traditional and New File Systems.

    Science.gov (United States)

    Thakur, Bhagyashree; Pawar, Ajinkya M; Kfir, Anda; Neelakantan, Prasanna

    2017-11-01

    To assess the amount of debris extruded apically during instrumentation of distal canals of extracted primary molars by three instrument systems [ProTaper Universal (PTU), ProTaper NEXT (PTN), and self-adjusting file (SAF)] compared with conventional stainless steel hand K-files (HF, control). Primary mandibular molars (n = 120) with a single distal canal were selected and randomly divided into four groups (n = 30) for root canal instrumentation using group I, HF (to size 0.30/0.02 taper), group II, PTU (to size F3), group III, PTN (to size X3), and group IV, SAF. Debris extruded during instrumentation was collected in preweighed Eppendorf tubes, stored in an incubator at 70°C for 5 days and then weighed. Statistical analysis was performed by one-way analysis of variance (ANOVA), followed by Turkey's post hoc test (p = 0.05). All the groups resulted in extrusion of debris. There was statistically significant difference (p < 0.001) in the debris extrusion between the three groups: HF (0.00133 ± 0.00012), PTU (0.00109 ± 0.00005), PTN (0.00052 ± 0.00008), and SAF (0.00026 ± 0.00004). Instrumentation with SAF resulted in the least debris extrusion when used for shaping root canals of primary molar teeth. Debris extrusion in primary teeth poses an adverse effect on the stem cells and may also alter the permanent dental germ. Debris extrusion is rarely reported for primary teeth and it is important for the clinician to know which endodontic instrumentation leads to less extrusion of debris.

  12. Prediction of extrusion die wear by use of an artificial neural network

    International Nuclear Information System (INIS)

    Naidim, O.; Epureanu, A.; Tabacaru, V.

    2000-01-01

    In its vision of designing a technology, the process of optimisation of a material extrusion is an on-line process. The tool life is an important factor in selecting the objective function that represents the cost of the extruded product. This work is intended to realise the prediction of die wear evolution within the extrusion process, based on information obtained from numerical modelling. In order to reduce the number of experiments and to realise a flexible process of designing the necessary tools for an extrusion process, finite element (FE) modelling was used to determine designing space against the shape of the extruded product, the work conditions, the material and wear conditions. The information generated using FE was then used to train a neural network using backpropagation algorithm. Parameters considered in constructing neural networks include error tolerance, the factor of estimation of the 'best solution', the number of training cycles and the number of hidden layers. A general formula of calculus applicable in any extrusion process can be determined by establishing a relation between the stress state obtained within the extrusion process, deformation speed and friction on one hand, and wear on the other hand. The (1/W) parameter, where W is the tool wear in the active zone of the extrusion die, is a measure taken into account in calculating the die life as written in (1); this is the reason why it is important to make prediction of W value for geometries used in designing process or to optimise the die shape in order to reduce wear. (author)

  13. Magnetic properties of uranium ferrocyanides and ferricyanides

    Czech Academy of Sciences Publication Activity Database

    Göbl, R.; Zentko, A.; Kováč, J.; Csach, K.; Zentková, M.; Maryško, Miroslav

    2000-01-01

    Roč. 50, č. 5 (2000), s. 671-676 ISSN 0011-4626 Grant - others:Slavak Grant Agency VEGA(SK) 2/5140/98 Institutional research plan: CEZ:AV0Z1010914 Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.298, year: 2000

  14. Oscillatory Shear Rheology in Examining the Drug-Polymer Interactions Relevant in Hot Melt Extrusion

    DEFF Research Database (Denmark)

    Aho, Johanna; Edinger, Magnus; Botker, Johan

    2016-01-01

    The flow properties of drug-polymer mixtures have a significant influence on their processability when using techniques such as hot melt extrusion (HME). Suitable extrusion temperature and screw speed to be used in laboratory scale HME were evaluated for mixtures containing 30% of paracetamol (PRC...... of the drug substances. Consecutively, the mixtures were extruded, and the maximum plasticizing weight fraction of each drug was determined by means of rheological measurements. IBU was found to have an efficient plasticizing functionality, decreasing the viscosity of the mixtures even above its apparent...

  15. Effect of Multiple Extrusions on the Impact Properties of Polypropylene/Clay Nanocomposites

    DEFF Research Database (Denmark)

    Klitkou, Rasmus; Jensen, Erik Appel; Christiansen, Jesper de Claville

    2012-01-01

    Polypropylene (PP)-based polymer nanocomposites containing organically modified montmorillonite (OMMT) with and without maleic anhydride grafted PP, were compounded by twin-screw extrusion. The extrusion process was repeated various numbers of times to increase the extruder residence time (TR) and......) increased monotonically with increased TR by 70% from least dispersed to best dispersed, which was still 20% below the level for neat PP. Both the fracture initiation energy and propagation energy increased with TR, but the primary effect on ri came from the fracture propagation energy, which delivered 80...

  16. Lateral extrusion of Tunisia : Contribution of Jeffara Fault (southern branch) and Petroleum Implications

    Science.gov (United States)

    Ghedhoui, R.; Deffontaines, B.; Rabia, M. C.

    2012-04-01

    Contrasting to the northward African plate motion toward Eurasia and due to its geographic position in the North African margin, since early cretaceous, Tunisia seems to be submitted to an eastward migration. The aim of this work is to study the southern branch of this inferred tectonic splay that may guide the Tunisian extrusion characterised to the east by the Mediterranean sea as a free eastern boundary. The Jeffara Fault zone (southern Tunisia), represent a case example of such deformation faced by Tunisia. Helped by the results of previous researchers (Bouaziz, 1995 ; Rabiaa, 1998 ; Touati et Rodgers, 1998 ; Sokoutis D. et al., 2000 ; Bouaziz et al., 2002 ; Jallouli et al., 2005 ; Deffontaines et al., 2008…), and new evidences developed in this study, we propose a geodynamic Tunisian east extrusion model, due to such the northern African plate migration to the Eurasian one. In this subject, structural geomorphology is undertaken herein based on both geomorphometric drainage network analysis (Deffontaines et al., 1990), the Digital Terrain Model photo-interpretation (SRTM) combined with photo-interpretation of detailed optical images (Landsat ETM+), and confirmed by field work and numerous seismic profiles at depth. All these informations were then integrated within a GIS (Geodatabase) (Deffontaines 1990 ; Deffontaines et al. 1994 ; Deffontaines, 2000 ; Slama, 2008 ; Deffontaines, 2008) and are coherent with the eastern extrusion of the Sahel block. We infer that the NW-SE Gafsa-Tozeur, which continue to the Jeffara major fault zone acting as a transtensive right lateral motion since early cretaceous is the southern branch of the Sahel block extrusion. Our structural analyses prove the presence of NW-SE right lateral en-echelon tension gashes, NW-SE aligned salt diapirs, numerous folds offsets, en-echelon folds, and so on that parallel this major NW-SE transtensive extrusion fault zone.These evidences confirm the fact that the NW-SE Jeffara faults correspond

  17. Dental extrusion with orthodontic miniscrew anchorage: a case report describing a modified method.

    Science.gov (United States)

    Horliana, Ricardo Fidos; Horliana, Anna Carolina Ratto Tempestini; Wuo, Alexandre do Vale; Perez, Flávio Eduardo Guillin; Abrão, Jorge

    2015-01-01

    In recent years, the skeletal anchorage through miniscrews has expanded the treatment options in orthodontics (Yamaguchi et al., 2012). We hereby present a modified method for tooth extrusion for cases where crown-lengthening surgery is contraindicated for aesthetic reasons. This modified method uses three orthodontic appliances: a mini-implant, an orthodontic wire, and a bracket. The aim of this case report was to increase the length of the clinical crown of a fractured tooth (tooth 23) by means of an orthodontic extrusion with the modified method of Roth and Diedrich.

  18. THE IMPACT OF EXTRUSION ON THE BIOGAS AND BIOMETHANE YIELD OF PLANT SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Krzysztof Pilarski

    2016-09-01

    Full Text Available The objective of the present work was to determine the effect of pretreatment by extrusion on the biogas and biomethane yield of lignocellulosic substrates such as maize silage and maize straw silage. The biogas yields of the substrates before and after treatment were compared. Moreover, energy efficiency of pretreatment by extrusion was analyzed in order to assess the applicability of the process in an agricultural biogas plant. Extrusion tests were carried out in a short single-screw extruder KZM-2 in which the length-to-diameter ratio of the screw was 6:1 and rotational speed was 200 rpm. The biogas yield tests of the plant substrates after extrusion were carried out in a laboratory scale, using 15 biofermenters operated in a periodic manner, at a constant temperature of 39°C (mesophilic digestion and controlled pH conditions. The gas-emission analysis was performed using a certified gas analyzer from Geotech GA5000. Pretreatment by extrusion was observed to improve the quantity of methane generated: in terms of fresh matter for maize silage subjected to extrusion, the methane yield was 16.48% higher than that of the non-extruded silage. On the other hand, maize straw silage after extrusion gave 35.30% more methane than did the same, non-extruded, material. Differences in yields relative to dry organic matter are also described in this paper. Taking into account the amount of energy that is spent on pretreatment and the generated amount of methane, the energy balance for the process gives an idea of the economics of the operation. For maize silage, energy efficiency was lower by 13.21% (-553.2 kWh/Mg, in contrast to maize straw silage, where the increase in energy was 33.49% (678.4 kWh/Mg. The obtained results indicate that more studies on the pretreatment and digestion of maize silage are required in order to improve the efficiency of its use for making biogas. To fully utilize its potential, it is necessary to know thoroughly the effect of

  19. Extrusion Process by Finite Volume Method Using OpenFoam Software

    International Nuclear Information System (INIS)

    Matos Martins, Marcelo; Tonini Button, Sergio; Divo Bressan, Jose; Ivankovic, Alojz

    2011-01-01

    The computational codes are very important tools to solve engineering problems. In the analysis of metal forming process, such as extrusion, this is not different because the computational codes allow analyzing the process with reduced cost. Traditionally, the Finite Element Method is used to solve solid mechanic problems, however, the Finite Volume Method (FVM) have been gaining force in this field of applications. This paper presents the velocity field and friction coefficient variation results, obtained by numerical simulation using the OpenFoam Software and the FVM to solve an aluminum direct cold extrusion process.

  20. Consensus Control Design for 360 MN Extrusion Machine Producing Process

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2014-01-01

    Full Text Available This paper mainly addresses the issue of 360 MN extrusion machine and focuses on the stabilization control of main table attitude. We will first introduce the problem and then model the extrusion machine. As the machine is a multi-input multioutput (MIMO and strong coupling system, it is challenging to apply existing control theory to design a controller to stabilize the main table attitude. Motivated by recent research in the field of multiagent systems, we design a consensus control protocol for our system and derive our convergence conditions based directly on Routh stability criterion. The advantages of the design are also demonstrated by numerical simulation.

  1. The Development and Numerical Analysis of the Conical Radiator Extrusion Process

    Directory of Open Access Journals (Sweden)

    Michalczyk J.

    2017-12-01

    Full Text Available The article presents a newly developed method for single-operation extrusion of conical radiators. This is the author’s radiator manufacturing method being the subject of a patent application. The proposed method enables the manufacture of radiators either with or without an inner opening and with an integral plate. Selected results of numerical computations made within Forge®3D, a finite element method (FEM-based software program, were presented during the analysis of the process. A comparative analysis of the proposed manufacturing method using the double-sided extrusion method was also made.

  2. Incorporation of ladle furnace slag in ceramic formulations: study of extrusion zones

    International Nuclear Information System (INIS)

    Feitosa, E.F.; Santana, C.M.; Luna, D.S.; Santos, D.M.S.; Silva, G.S.; Noleto, L.T.; Almeida, N.C.; Rabelo, A.A.; Fagury Neto, E.

    2016-01-01

    This study aimed to investigate the effect of incorporation of ladle furnace slag (LFS) in two clays with higher and lower plasticity, used for the manufacture of structural ceramics. The LFS from a local steel making plant was added to ceramic compositions in proportions of 8 %, 14 % and 16 %. The formulations were tested in appropriate equipment that measures the liquid limit and plastic limit. The property examined was the plasticity index, in order to make a study of the extrusion zones. Results showed that the addition of slag into clay mixtures alters the plasticity; however, the extrusion process was not hampered. (author)

  3. Debris extrusion by glide-path establishing endodontic instruments with different geometries

    Directory of Open Access Journals (Sweden)

    Jung-Hong Ha

    2016-06-01

    Conclusion: Creating the glide-path using nickel-titanium rotary files produced lower amounts of debris extrusion than using manual stainless-steel files. The progressive taper design of ProGlider, the center-off cross-section of One G, and the alternative-pitch design of ScoutRace may have increased the efficiencies of debris removal with minimal extrusion during glide-path preparation. Glide-path preparation using NiTi rotary files have better clinical efficiency than the manual stainless-steel file.

  4. LATE TRIASSIC OBLIQUE EXTRUSION OF UHP/HP COMPLEXES IN THE ATBASHI ACCRETIONARY COMPLEX OF SOUTH TIANSHAN, KYRGYZSTAN

    Directory of Open Access Journals (Sweden)

    Wenjiao Xiao

    2017-01-01

    Full Text Available The exhumation and tectonic emplacement of eclogites and blueschists take place in forearc accretionary complexes by either forearc- or backarc-directed extrusion, but few examples have been well analysed in detail. Here we present an example of oblique wedge extrusion of UHP/HP rocks in the Atbashi accretionary complex of the Kyrgyz South Tianshan.

  5. 78 FR 34984 - Aluminum Extrusions From the People's Republic of China: Notice of Court Decision Not in Harmony...

    Science.gov (United States)

    2013-06-11

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-967; C-570-968] Aluminum... (AD) and countervailing duty (CVD) orders on aluminum extrusions,\\1\\ pursuant to the CIT's remand... Rail Kits \\2\\ and is amending its final scope ruling. \\1\\ See Aluminum Extrusions from the People's...

  6. Proton therapy in Australia

    International Nuclear Information System (INIS)

    Jackson, M.

    2000-01-01

    Full text: Proton therapy has been in use since 1954 and over 25,000 patients have been treated worldwide. Until recently most patients were treated at physics research facilities but with the development of more compact and reliable accelerators it is now possible to realistically plan for proton therapy in an Australian hospital. The Australian National Proton Project has been formed to look at the feasibility of a facility which would be primarily for patient treatment but would also be suitable for research and commercial applications. A detailed report will be produced by the end of the year. The initial clinical experience was mainly with small tumours and other lesions close to critical organs. Large numbers of eye tumours have also been treated. Protons have a well-defined role in these situations and are now being used in the treatment of more common cancers. With the development of hospital-based facilities, over 2,500 patients with prostate cancer have been treated using a simple technique which gives results at least as good as radical surgery, external beam radiotherapy or brachytherapy. Importantly, the incidence of severe complications is very low. There are encouraging results in many disease sites including lung, liver, soft tissue sarcomas and oesophagus. As proton therapy becomes more widely available, randomised trials comparing it with conventional radiotherapy or Intensity Modulated Radiation Therapy (IMRT) will be possible. In most situations the use of protons will enable a higher dose to be given safely but in situations where local control rates are already satisfactory, protons are expected to produce less complications than conventional treatment. The initial costs of a proton facility are high but the recurrent costs are similar to other forms of high technology radiotherapy. . Simple treatment techniques with only a few fields are usually possible and proton therapy avoids the high integral doses associated with IMRT. This reduction in

  7. Proton dynamics in cancer.

    Science.gov (United States)

    Huber, Veronica; De Milito, Angelo; Harguindey, Salvador; Reshkin, Stephan J; Wahl, Miriam L; Rauch, Cyril; Chiesi, Antonio; Pouysségur, Jacques; Gatenby, Robert A; Rivoltini, Licia; Fais, Stefano

    2010-06-15

    Cancer remains a leading cause of death in the world today. Despite decades of research to identify novel therapeutic approaches, durable regressions of metastatic disease are still scanty and survival benefits often negligible. While the current strategy is mostly converging on target-therapies aimed at selectively affecting altered molecular pathways in tumor cells, evidences are in parallel pointing to cell metabolism as a potential Achilles' heel of cancer, to be disrupted for achieving therapeutic benefit. Critical differences in the metabolism of tumor versus normal cells, which include abnormal glycolysis, high lactic acid production, protons accumulation and reversed intra-extracellular pH gradients, make tumor site a hostile microenvironment where only cancer cells can proliferate and survive. Inhibiting these pathways by blocking proton pumps and transporters may deprive cancer cells of a key mechanism of detoxification and thus represent a novel strategy for a pleiotropic and multifaceted suppression of cancer cell growth.Research groups scattered all over the world have recently started to investigate various aspects of proton dynamics in cancer cells with quite encouraging preliminary results. The intent of unifying investigators involved in this research line led to the formation of the "International Society for Proton Dynamics in Cancer" (ISPDC) in January 2010. This is the manifesto of the newly formed society where both basic and clinical investigators are called to foster translational research and stimulate interdisciplinary collaboration for the development of more specific and less toxic therapeutic strategies based on proton dynamics in tumor cell biology.

  8. Proton dynamics in cancer

    Directory of Open Access Journals (Sweden)

    Pouysségur Jacques

    2010-06-01

    Full Text Available Abstract Cancer remains a leading cause of death in the world today. Despite decades of research to identify novel therapeutic approaches, durable regressions of metastatic disease are still scanty and survival benefits often negligible. While the current strategy is mostly converging on target-therapies aimed at selectively affecting altered molecular pathways in tumor cells, evidences are in parallel pointing to cell metabolism as a potential Achilles' heel of cancer, to be disrupted for achieving therapeutic benefit. Critical differences in the metabolism of tumor versus normal cells, which include abnormal glycolysis, high lactic acid production, protons accumulation and reversed intra-extracellular pH gradients, make tumor site a hostile microenvironment where only cancer cells can proliferate and survive. Inhibiting these pathways by blocking proton pumps and transporters may deprive cancer cells of a key mechanism of detoxification and thus represent a novel strategy for a pleiotropic and multifaceted suppression of cancer cell growth. Research groups scattered all over the world have recently started to investigate various aspects of proton dynamics in cancer cells with quite encouraging preliminary results. The intent of unifying investigators involved in this research line led to the formation of the "International Society for Proton Dynamics in Cancer" (ISPDC in January 2010. This is the manifesto of the newly formed society where both basic and clinical investigators are called to foster translational research and stimulate interdisciplinary collaboration for the development of more specific and less toxic therapeutic strategies based on proton dynamics in tumor cell biology.

  9. Polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized proton beams in circular accelerators is complicated by the presence of numerous depolarizing spin resonances. Careful and tedious minimization of polarization loss at each of these resonances allowed acceleration of polarized proton beams up to 22 GeV. It has been the hope that Siberian Snakes, which are local spin rotators inserted into ring accelerators, would eliminate these resonances and allow acceleration of polarized beams with the same ease and efficiency that is now routine for unpolarized beams. First tests at IUCF with a full Siberian Snake showed that the spin dynamics with a Snake can be understood in detail. The author now has results of the first tests of a partial Siberian Snake at the AGS, accelerating polarized protons to an energy of about 25 GeV. These successful tests of storage and acceleration of polarized proton beams open up new possibilities such as stored polarized beams for internal target experiments and high energy polarized proton colliders

  10. Journal of Proton Therapy

    Directory of Open Access Journals (Sweden)

    Editorial Office

    2015-01-01

    Full Text Available Journal of Proton Therapy (JPT is an international open access, peer-reviewed journal, which publishes original research, technical reports, reviews, case reports, editorials, and other materials on proton therapy with focus on radiation oncology, medical physics, medical dosimetry, and radiation therapy.No article processing/submission feeNo publication feePeer-review completion within 3-6 weeksImmediate publication after the completion of final author proofreadDOI assignment for each published articleFree access to published articles for all readers without any access barriers or subscriptionThe views and opinions expressed in articles are those of the author/s and do not necessarily reflect the policies of the Journal of Proton Therapy.Authors are encouraged to submit articles for publication in the inaugural issue of the Journal of Proton Therapy by online or email to editor@protonjournal.comOfficial Website of Journal of Proton Therapy: http://www.protonjournal.org/

  11. Medical Proton Accelerator Project

    International Nuclear Information System (INIS)

    Comsan, M.N.H.

    2008-01-01

    A project for a medical proton accelerator for cancer treatment is outlined. The project is motivated by the need for a precise modality for cancer curing especially in children. Proton therapy is known by its superior radiation and biological effectiveness as compared to photon or electron therapy. With 26 proton and 3 heavy-ion therapy complexes operating worldwide only one (p) exists in South Africa, and none in south Asia and the Middle East. The accelerator of choice should provide protons with energy 75 MeV for eye treatment and 250 MeV for body treatment. Four treatment rooms are suggested: two with isocentric gantries, one with fixed beams and one for development. Passive scanning is recommended. The project can serve Middle East and North Africa with ∼ 400 million populations. The annual capacity of the project is estimated as 1,100 to be compared with expected radiation cases eligible for proton cancer treatment of not less than 200,000

  12. Proton relativistic model; Modelo relativistico do proton

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Wilson Roberto Barbosa de

    1996-12-31

    In this dissertation, we present a model for the nucleon, which is composed by three relativistic quarks interacting through a contract force. The nucleon wave-function was obtained from the Faddeev equation in the null-plane. The covariance of the model under kinematical null-plane boots is discussed. The electric proton form-factor, calculated from the Faddeev wave-function, was in agreement with the data for low-momentum transfers and described qualitatively the asymptotic region for momentum transfers around 2 GeV. (author) 42 refs., 22 figs., 1 tab.

  13. Proton exchange membranes based on PVDF/SEBS blends

    Energy Technology Data Exchange (ETDEWEB)

    Mokrini, A.; Huneault, M.A. [Industrial Materials Institute, National Research Council of Canada, 75 de Mortagne Blvd., Boucherville, Que. (Canada J4B 6Y4)

    2006-03-09

    Proton-conductive polymer membranes are used as an electrolyte in the so-called proton exchange membrane fuel cells. Current commercially available membranes are perfluorosulfonic acid polymers, a class of high-cost ionomers. This paper examines the potential of polymer blends, namely those of styrene-(ethylene-butylene)-styrene block copolymer (SEBS) and polyvinylidene fluoride (PVDF), in the proton exchange membrane application. SEBS/PVDF blends were prepared by twin-screw extrusion and the membranes were formed by calendering. SEBS is a phase-segregated material where the polystyrene blocks can be selectively functionalized offering high ionic conductivity, while PVDF insures good dimensional stability and chemical resistance to the films. Proton conductivity of the films was obtained by solid-state grafting of sulfonic acid moieties. The obtained membranes were characterized in terms of conductivity, ionic exchange capacity and water uptake. In addition, the membranes were characterized in terms of morphology, microstructure and thermo-mechanical properties to establish the blends morphology-property relationships. Modification of interfacial properties between SEBS and PVDF was found to be a key to optimize the blends performance. Addition of a methyl methacrylate-butyl acrylate-methyl methacrylate block copolymer (MMA-BA-MMA) was found to compatibilize the blend by reducing the segregation scale and improving the blend homogeneity. Mechanical resistance of the membranes was also improved through the addition of this compatibilizer. As little as 2wt.% compatibilizer was sufficient for complete interfacial coverage and lead to improved mechanical properties. Compatibilized blend membranes also showed higher conductivities, 1.9x10{sup -2} to 5.5x10{sup -3}Scm{sup -1}, and improved water management. (author)

  14. Synchrotron radiation from protons

    International Nuclear Information System (INIS)

    Dutt, S.K.

    1992-12-01

    Synchrotron radiation from protons, though described by the same equations as the radiation from electrons, exhibits a number of interesting features on account of the parameters reached in praxis. In this presentation, we shall point out some of the features relating to (i) normal synchrotron radiation from dipoles in proton machines such as the High Energy Booster and the Superconducting Super Collider; (ii) synchrotron radiation from short dipoles, and its application to light monitors for proton machines, and (iii) synchrotron radiation from undulators in the limit when, the deflection parameter is much smaller than unity. The material for this presentation is taken largely from the work of Hofmann, Coisson, Bossart, and their collaborators, and from a paper by Kim. We shall emphasize the qualitative aspects of synchrotron radiation in the cases mentioned above, making, when possible, simple arguments for estimating the spectral and angular properties of the radiation. Detailed analyses can be found in the literature

  15. Polarized proton colliders

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    High energy polarized beam collisions will open up the unique physics opportunities of studying spin effects in hard processes. This will allow the study of the spin structure of the proton and also the verification of the many well documented expectations of spin effects in perturbative QCD and parity violation in W and Z production. Proposals for polarized proton acceleration for several high energy colliders have been developed. A partial Siberian Snake in the AGS has recently been successfully tested and full Siberian Snakes, spin rotators, and polarimeters for RHIC are being developed to make the acceleration of polarized beams to 250 GeV possible. This allows for the unique possibility of colliding two 250 GeV polarized proton beams at luminosities of up to 2 x 10 32 cm -2 s -1

  16. Current-current interaction picture for proton-proton scattering

    International Nuclear Information System (INIS)

    Clarke, D.J.; Lo, S.Y.

    1979-01-01

    The authors propose that color current - color current interaction is reponsible for small angle elastic proton proton scattering at asymptotic energy. Excellent fits are obtained for all data above 12 GeV/c which covers twelve orders of magnitude

  17. Protons and how they are transported by proton pumps

    DEFF Research Database (Denmark)

    Buch-Pedersen, Morten Jeppe; Pedersen, Bjørn Panyella; Veierskov, Bjarke

    2008-01-01

    The very high mobility of protons in aqueous solutions demands special features of membrane proton transporters to sustain efficient yet regulated proton transport across biological membranes. By the use of the chemical energy of ATP, plasma-membrane-embedded ATPases extrude protons from cells...... of plants and fungi to generate electrochemical proton gradients. The recently published crystal structure of a plasma membrane H(+)-ATPase contributes to our knowledge about the mechanism of these essential enzymes. Taking the biochemical and structural data together, we are now able to describe the basic...... molecular components that allow the plasma membrane proton H(+)-ATPase to carry out proton transport against large membrane potentials. When divergent proton pumps such as the plasma membrane H(+)-ATPase, bacteriorhodopsin, and F(O)F(1) ATP synthase are compared, unifying mechanistic premises for biological...

  18. Proton tunneling in solids

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, J.

    1998-10-01

    The tunneling rate of the proton and its isotopes between interstitial sites in solids is studied theoretically. The phonons and/or the electrons in the solid have two effects on the tunneling phenomenon. First, they suppress the transfer integral between two neighbouring states. Second, they give rise to a finite lifetime of the proton state. Usually the second effect is large and the tunneling probability per unit time (tunneling rate) can be defined. In some cases, however, a coherent tunneling is expected and actually observed. (author)

  19. Proton irradiation and endometriosis

    International Nuclear Information System (INIS)

    Wood, D.H.; Yochmowitz, M.G.; Salmon, Y.L.; Eason, R.L.; Boster, R.A.

    1983-01-01

    It was found that female rhesus monkeys given single total-body exposures of protons of varying energies developed endometriosis at a frequency significantly higher than that of nonirradiated animals of the same age. The minimum latency period was determined to be 7 years after the proton exposure. The doses and energies of the radiation received by the experimental animals were within the range that could be received by an aircrew member in near-earth orbit during a random solar flare event. It is concluded that endometriosis should be a consideration in assessing the risk of delayed radiation effects in female crew members. 15 references

  20. Diagnosis by proton bombardment

    International Nuclear Information System (INIS)

    Steward, V.W.; Koehler, A.M.

    1976-01-01

    Beams of monoenergetic protons or other charged ions are passed through the living human body to detect abnormalities and obstructions in body tissue, which abnormalities and obstructions are visualized as density variations in the particle image emerging from the body part under investigation. The particles used are preferably protons having an energy of 100 to 300 MeV, more especially 200 to 300 MeV. The method is of use in detecting inter alia tumors, blood clots, infarcts, soft tissue lesions and multiple sclerosis in patients without exposure to high radiation dosages. 6 claims, 2 drawing figures

  1. Do protons decay

    International Nuclear Information System (INIS)

    Litchfield, P.J.

    1984-09-01

    The experimental status of proton decay is reviewed after the Leipzig International conference, July 1984. A brief comparative description of the currently active experiments is given. From the overall samples of contained events it can be concluded that the experiments are working well and broadly agree with each other. The candidates for proton decay from each experiment are examined. Although several experiments report candidates at a higher rate than expected from background calculations, the validity of these calculations is still open to doubt. (author)

  2. Proton tunneling in solids

    International Nuclear Information System (INIS)

    Kondo, J.

    1998-01-01

    The tunneling rate of the proton and its isotopes between interstitial sites in solids is studied theoretically. The phonons and/or the electrons in the solid have two effects on the tunneling phenomenon. First, they suppress the transfer integral between two neighbouring states. Second, they give rise to a finite lifetime of the proton state. Usually the second effect is large and the tunneling probability per unit time (tunneling rate) can be defined. In some cases, however, a coherent tunneling is expected and actually observed. (author)

  3. Proton Beam Writing

    International Nuclear Information System (INIS)

    Rajta, I.; Szilasi, S.Z.; Csige, I.; Baradacs, E.

    2005-01-01

    Complete text of publication follows. Refractive index depth profile in PMMA due to proton irradiation Proton Beam Writing has been successfully used to create buried channel waveguides in PMMA, which suggested that proton irradiation increases the refractive index. To investigate this effect, PMMA samples were irradiated by 1.7-2.1 MeV proton beam. Spectroscopic Ellipsometry has been used to investigate the depth profile of the refractive index. An increase of the refractive index was observed in the order of 0.01, which is approximately one order of magnitude higher than the detection limit. The highest increase of the refractive index occurs at the end of range, i.e. we found a good correlation with the Bragg curve of the energy loss. Hardness changes in PMMA due to proton beam micromachining As protons penetrate a target material and lose their energy according to the Bragg curve, the energy loss is different at different depths. This causes depth-dependent changes of some physical properties in the target material (e.g. refractive index, hardness). In order to characterize the changes of hardness and other mechanical properties as a function of beam penetration depth, systematic investigations have been performed on PMMA, the most common resist material used in proton beam micromachining. Silicon check valve made by proton beam micromachining The possible application of Proton Beam Micromachining (PBM) has been demonstrated by a few authors for creating 3D Si microstructures. In this work we present alternative methods for the formation of a simple a non-return valve for microfluidic applications. Two different approaches have been applied, in both cases we exploited characteristic features of the PBM technique and the selective formation and dissolution of porous Si over the implantation damaged areas. In the first case we implanted 10 μm thick cantilever-type membrane of the valve normally to the crystal surface and at 30-60 degrees to the sidewalls of the

  4. Proton-proton bremsstrahlung in a relativistic covariant model

    NARCIS (Netherlands)

    Martinus, Gerard Henk

    1998-01-01

    Proton-proton bremsstrahlung is one of the simplest processes involving the half off-shell NN interaction. Since protons are equally-charged particles with the same mass, electric-dipole radiation is suppressed and higher-order effects play an important role. Thus it is possible to get information

  5. Predictions of diffractive cross sections in proton-proton collisions

    Energy Technology Data Exchange (ETDEWEB)

    Goulianos, Konstantin [Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States)

    2013-04-15

    We review our pre-LHC predictions of the total, elastic, total-inelastic, and diffractive components of proton-proton cross sections at high energies, expressed in the form of unitarized expressions based on a special parton-model approach to diffraction employing inclusive proton parton distribution functions and QCD color factors and compare with recent LHC results.

  6. Definition of a JA2 equivalent propellant to be produced by continuous solvent-less extrusion

    NARCIS (Netherlands)

    Manning, T.G.; Leone, J.; Zebregs, M.; Ramlal, D.R.; Driel, C.A. van

    2013-01-01

    The aim of this work is to demonstrate the manufacturing of a propellant by solvent-less continuous twin screw extrusion processing while maintaining gun performance characteristics of conventional JA-2 propellant. This is elucidated by explicitly researching the relationship between interior

  7. Study on Hot Deformation Behavior of 7085 Aluminum Alloy during Backward Extrusion Process

    Directory of Open Access Journals (Sweden)

    R. B. Mei

    2015-01-01

    Full Text Available Compression test was carried out and the true stress-strain curves were obtained from the hot compression of 7085 alloy. A numerical simulation on the deformation behavior of 7085 aluminum alloy during the backward extrusion was also performed by finite element method. The results show that dynamic recrystallization occurs in the hot compression of 7085 alloy and the peak stress reaches higher values as the strain rate increases and deformation temperature decreases. The backward extrusion processes include contact deformation, initial deformation, and steady deformation. Severe plastic deformation of shear and compression occurs when the metal flowed into the channel between fillet of punch and wall of die so that the grain size can be refined by backward extrusion. The deformation in the region of top of wall is too small to meet the mechanical properties of requirements and the metal usually needs to be trimmed. The experiments with the same parameters as simulation had been carried out and the experimental cup after extrusion has better quality.

  8. Design of an extrusion screw and solid fuel produced from coconut shell

    Directory of Open Access Journals (Sweden)

    Madhiyanon, T

    2006-03-01

    Full Text Available The objectives were to design an extrusion screw to produce biomass solid fuel in a cold extrusion process, and investigate the effects of molasses used as a selected adhesive on the physical properties of extruded products. The material employed consisted of crushed coconut shell char and coconut fiber char mixed at a ratio of 40:60. The ratios of molasses in the mixture were 10:100, 15:100 and 20:100 (by weight and the extrusion die angles were 1.0, 1.1, 1.2, and 1.3 degrees gradation per experiment. The experimental results showed that the newly designed screw could function properly in the output range 0.75-0.90 kg/min, which is close to the design value. Regarding the molasses's effect on solid fuel properties, increasing the share of molasses was positive for both output and strength of the resulting briquettes, whereas the results of increasing die angle showed decreases in both output and strength. The compressive strength varied between 2.49-2.87 MPa in all circumstances, which was considerably higher than acceptable industrial level. Furthermore, the extruded solid fuel showed excellent resistance to impact force. Regarding energy consumption, the amount of electrical energy used in the extrusion process was insignificant, ranging between 0.040-0.079 kWh/kg.

  9. Extrusion Processing of Raw Food Materials and by-products: A Review.

    Science.gov (United States)

    Offiah, Vivian; Kontogiorgos, Vassilis; Falade, Kolawole O

    2018-05-22

    Extrusion technology has rapidly transformed the food industry with its numerous advantages over other processing methods. It offers a platform for processing different products from various food groups by modifying minor or major ingredients and processing conditions. Although cereals occupy a large portion of the extruded foods market, several other types of raw materials have been used. Extrusion processing of various food groups, including cereals and pseudo cereals, roots and tubers, pulses and oilseeds, fruits and vegetables, and animal products, as well as structural and nutritional changes in these food matrices are reviewed. Value addition by extrusion to food processing wastes and by-products from fruits and vegetables, dairy, meat and seafood, cereals and residues from starch, syrup and alcohol production, and oilseed processing are also discussed. Extrusion presents an economical technology for incorporating food processing residues and by-products back into the food stream. In contemporary scenarios, rising demand for extruded products with functional ingredients, attributed to evolving lifestyles and preferences, have led to innovations in the form, texture, color and content of extruded products. Information presented in this review would be of importance to processors and researchers as they seek to enhance nutritional quality and delivery of extruded products.

  10. Effect of Different Extrusion Parameters on Dietary Fiber in Wheat Bran and Rye Bran.

    Science.gov (United States)

    Andersson, Annica A M; Andersson, R; Jonsäll, Anette; Andersson, Jörgen; Fredriksson, Helena

    2017-06-01

    Wheat bran and rye bran are mostly used as animal feed today, but their high content of dietary fiber and bioactive components are beneficial to human health. Increased use of bran as food raw material could therefore be desirable. However, bran mainly contains unextractable dietary fiber and deteriorates the sensory properties of products. Processing by extrusion could increase the extractability of dietary fiber and increase the sensory qualities of bran products. Wheat bran and rye bran were therefore extruded at different levels of moisture content, screw speed and temperature, in order to find the optimal setting for increased extractability of dietary fiber and positive sensory properties. A water content of 24% for wheat bran and 30% for rye bran, a screw speed of 400 rpm, and a temperature of 130 °C resulted in the highest extractability of total dietary fiber and arabinoxylan. Arabinoxylan extractability increased from 5.8% in wheat bran to 9.0% in extruded wheat bran at those settings, and from 14.6% to 19.2% for rye bran. Total contents of dietary fiber and arabinoxylan were not affected by extrusion. Content of β-glucan was also maintained during extrusion, while its molecular weight decreased slightly and extractability increased slightly. Extrusion at these settings is therefore a suitable process for increasing the use of wheat bran and rye bran as a food raw material. © 2017 Institute of Food Technologists®.

  11. Effect of extrusion, espansion and toasting on the nutritional value of peas, faba beans and lupins

    Directory of Open Access Journals (Sweden)

    Filippo Rossi

    2010-01-01

    Full Text Available An assessment was made of the effect that different treatments (toasting, expansion, extrusion have on the nutritionalvalue of protein plants (pea, faba bean, lupin. In a randomized block design, feeds were screened for enzymaticdigestibility of starch and protein, N solubility and in vitro protein degradability. Expansion and extrusion cause increasedstarch enzymatic degradability while toasting produced virtually no effects. In peas this value increased from 11.80% inmeal to 39.70% in the extruded product; 85.37% is the percentage for the expanded product, while 10.90% is the starchdigestibility value for toasted peas. In faba beans the extrusion process increased starch digestibility from 11.39% to85.05%, while in extruded lupins a complete starch hydrolysis was obtained, while in the meal the polysaccharide digestionwas 54.48%.The expansion and extrusion processes significantly decreased rumen degradability during the first 8 hours of incubation.Toasted peas had lower degradability if compared with controls but not with the other treatments. The onlypotentially alternative source to soybean is the extruded faba bean. In spite of its lower protein content, this feed ischaracterized by a considerably lower in vitro protein degradability than soybean. This implies that the digestible foodprotein content is comparable (124.90 g/kg DM to that of soybean (109.78 g/kg DM and definitely higher than thatof all other protein plants.

  12. Jute fiber reinforced polypropylene produced by continuous extrusion compounding. Part 1. Processing and ageing properties

    NARCIS (Netherlands)

    Oever, van den M.J.A.; Snijder, M.H.B.

    2008-01-01

    This article addresses the processing and ageing properties of jute fiber reinforced polypropylene (PP) composites. The composite has been manufactured by a continuous extrusion process and results in free flowing composite granules, comprising up to 50 weight percent (wt %) jute fiber in PP. These

  13. Numerical modeling of the strand deposition flow in extrusion-based additive manufacturing

    DEFF Research Database (Denmark)

    Comminal, Raphaël; Serdeczny, Marcin P.; Pedersen, David B.

    2018-01-01

    -based additive manufacturing, as well as the surface roughness of the fabricated part. Under the assumptions of an isothermal Newtonian fluid and a creeping laminar flow, the deposition flow is controlled by two parameters: the gap distance between the extrusion nozzle and the substrate, and the velocity ratio...

  14. Dual-Extrusion 3D Printing of Anatomical Models for Education

    Science.gov (United States)

    Smith, Michelle L.; Jones, James F. X.

    2018-01-01

    Two material 3D printing is becoming increasingly popular, inexpensive and accessible. In this paper, freely available printable files and dual extrusion fused deposition modelling were combined to create a number of functional anatomical models. To represent muscle and bone FilaFlex[superscript 3D] flexible filament and polylactic acid (PLA)…

  15. Design of conveyor type machine with numerical control for manufacturing of extrusion thermoplastic thread

    Science.gov (United States)

    Gorbunova, T. N.; Koltunov, I. I.; Tumanova, M. B.

    2018-05-01

    The article is devoted to the development of a model and control program for a 3D printer working based on extrusion technology. The article contains descriptions of all components of the machine and blocks of the interface of the control program.

  16. Rapid orthodontic extrusion using an interocclusal appliance for the reestablishment of biologic width: a case report.

    Science.gov (United States)

    Kim, Sung Hyun; Tramontina, Vinicius Augusto; Papalexiou, Vula; Luczyszyn, Sônia Mara; Grassi, Maria Bibiana; de Fatima Scarpim, Maria; Tanaka, Orlando Motohiro

    2011-03-01

    A multidisciplinary treatment of a case of subgingival fracture in a maxillary anterior tooth is presented. This case report describes a simple method involving an interocclusal appliance and an elastic band for rapid orthodontic extrusion to reestablish biologic width. In addition, a simple technique for surgical recontouring following the coronal displacement of the gingival margin prior to restoration of fractured tooth is explained.

  17. Effects of extrusion cooking on the chemical composition and functional properties of dry bean powders

    Science.gov (United States)

    This study aimed to investigate the impacts of extrusion cooking on the chemical composition and functional properties of bean powders from four bean varieties. The raw bean powders were extruded under eight different conditions, and the extrudates were then dried and ground (particle size = 0.5 mm)...

  18. Modelling extrudate expansion in a twin-screw food extrusion cooking process through dimensional analysis methodology

    DEFF Research Database (Denmark)

    Cheng, Hongyuan; Friis, Alan

    2010-01-01

    A new phenomenological model is proposed to correlate extrudate expansion and extruder operation parameters in a twin-screw food extrusion cooking process. Buckingham's pi dimensional analysis method is applied to establish the model. Three dimensionless groups, i.e. pump efficiency, water content...

  19. Raw material changes and their processing parameters in an extrusion cooking process

    DEFF Research Database (Denmark)

    Cheng, Hongyuan; Friis, Alan

    In this work, the effects of raw material and process parameters on product expansion in a fish feed extrusion process were investigated. Four different recipes were studied with a pilot-scale twin-screw co-rotating extruder according to a set of pre-defined processing conditions. In the four rec...

  20. Extrusion-mixing compared with hand-mixing of polyether impression materials?

    Science.gov (United States)

    McMahon, Caroline; Kinsella, Daniel; Fleming, Garry J P

    2010-12-01

    The hypotheses tested were two-fold (a) whether altering the base:catalyst ratio influences working time, elastic recovery and strain in compression properties of a hand-mixed polyether impression material and (b) whether an extrusion-mixed polyether impression material would have a significant advantage over a hand-mixed polyether impression material mixed to the optimum base:catalyst ratio. The polyether was hand-mixed at the optimum (manufacturers recommended) base:catalyst ratios (7:1) and further groups were made by increasing or decreasing the catalyst length by 25%. Additionally specimens were also made from an extrusion-mixed polyether impression material and compared with the optimum hand-mixed base:catalyst ratio. A penetrometer assembly was used to measure the working time (n=5). Five cylindrical specimens for each hand-mixed and extrusion mixed group investigated were employed for elastic recovery and strain in compression testing. Hand-mixing polyether impression materials with 25% more catalyst than that recommended significantly decreased the working time while hand-mixing with 25% less catalyst than that recommended significantly increased the strain in compression. The extrusion-mixed polyether impression material provided similar working time, elastic recovery and strain in compression to the hand-mixed polyether mixed at the optimum base:catalyst ratio.

  1. Modeling And Simulation Of Combined Extrusion For Spark Plug Body Parts

    Science.gov (United States)

    Canta, T.; Noveanu, D.; Frunza, D.

    2004-06-01

    The paper presents the modeling and simulation for the extrusion technology of a new type of spark plug body for Dacia Supernova car. This technology was simulated using the finite elements modeling and analysis SuperForm software, designed for the simulation of plastic deformation processes. There is also presented a comparison between the results of the simulation and the industrial results.

  2. Condensed tannins in traditional wet-cooked and modern extrusion-cooked sorghum porridges

    CSIR Research Space (South Africa)

    Dlamini, NR

    2009-07-01

    Full Text Available the quantity and profile of condensed tannins in traditional wet-cooked and modern ready-to-eat extrusion-cooked sorghum porridges. CT were analyzed using normal-phase HPLC with fluorescence detection and their content was compared to CT and total phenols...

  3. Effects of equal channel angular extrusion on microstructure, strength and ballistic performance of AA5754 plates

    DEFF Research Database (Denmark)

    Mishin, Oleg; Hong, Chuanshi; Toftegaard, Helmuth Langmaack

    2014-01-01

    The microstructure, hardness, tensile properties and ballistic performance have been investigated in thick plates of the AA5754 alloy both in a coarse-grained as-received condition and after 4 passes of equal channel angular extrusion (ECAE) conducted at elevated temperatures. It is found that ECAE...

  4. Effect of ECAP and extrusion on particle distribution in Al-nano ...

    Indian Academy of Sciences (India)

    Administrator

    Al-nano–Al2O3 composite. R DERAKHSHANDEH HAGHIGHI. Department of Materials Science and Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran. MS received 24 January 2014; accepted 23 April 2015. Abstract. In this study equal channel angular pressing (ECAP) and conventional extrusion were used ...

  5. Integrated bottom up and top down approach to optimization of the extrusion process

    NARCIS (Netherlands)

    Vaneker, Thomas H.J.; Koenis, P.T.G.; van Ouwerkerk, Gijs; van Ouwerkerk, Gijs; Nilsen, K.E.; van Houten, Frederikus J.A.M.

    2008-01-01

    Boal BV and the University of Twente participate in research projects focused on improvement of die design methods for aluminum extrusion dies. Within this research empirical knowledge is combined with insights gained from numerical process simulations. Design rules for improvements to the geometry

  6. Ceramic core–shell composites with modified mechanical properties prepared by thermoplastic co-extrusion

    Czech Academy of Sciences Publication Activity Database

    Kaštyl, J.; Chlup, Zdeněk; Clemens, F.; Trunec, M.

    2015-01-01

    Roč. 35, č. 10 (2015), s. 2873-2881 ISSN 0955-2219 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Alumina * Zirconia toughened alumina * Co-extrusion * Composite * Mechanical properties1 Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.933, year: 2015

  7. Fate of Fusarium mycotoxins in maize flour and grits during extrusion cooking.

    Science.gov (United States)

    Scudamore, Keith A; Guy, Robin C E; Kelleher, Brian; MacDonald, Susan J

    2008-11-01

    Extrusion technology is used widely in the manufacture of a range of breakfast cereals and snacks for human consumption and animal feeds. To minimise consumer exposure to mycotoxins, the levels of deoxynivalenol (DON) and zearalenone (ZON) in cereals/cereal products and fumonisins B(1) and B(2) (FB(1) and FB(2)) in maize are controlled by European Union legislation. Relatively few studies, however, have examined the loss of Fusarium mycotoxins during processing. The behaviour of FB(1), FB(2) and fumonisin B(3) (FB(3)), DON and ZON during extrusion of naturally contaminated maize flour and maize grits is examined using pilot-scale equipment. DON and ZON are relatively stable during extrusion cooking but the fumonisins are lost to varying degrees. There is some loss of ZON when present in low concentrations and extruded at higher moisture contents. The presence of additives, such as reducing sugars and sodium chloride, can also affect mycotoxin levels. Moisture content of the cereal feed during extrusion is important and has a greater effect than temperature, particularly on the loss of fumonisins at the lower moistures. The effects are complex and not easy to explain, although more energy input to the extruder is required for drier materials. However, on the basis of these studies, the relationship between the concentration of Fusarium toxins in the raw and finished product is toxin- and process-dependent.

  8. Control of material flow in a combined backward can - forward rod extrusion

    DEFF Research Database (Denmark)

    Kuzman, K; Pfeifer, E; Bay, Niels

    1996-01-01

    of tool geometry, friction and lubrication as well as workpiece properties on balanced material flow in a combined extrusion process. The FEM analysis applying the DEFORM code has been used in order to predict the process parameters and to estimate its stability. The subsequent experimental verification...

  9. Intermittent Hypoxia Inhibits Na+-H+ Exchange-Mediated Acid Extrusion Via Intracellular Na+ Accumulation in Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Huai-Ren Chang

    2018-04-01

    Full Text Available Background/Aims: Intermittent hypoxia (IH has been shown to exert preconditioning-like cardioprotective effects. It also has been reported that IH preserves intracellular pH (pHi during ischemia and protects cardiomyocytes against ischemic reperfusion injury. However, the exact mechanism is still unclear. Methods: In this study, we used proton indicator BCECF-AM to analyze the rate of pHi recovery from acidosis in the IH model of rat neonatal cardiomyocytes. Neonatal cardiomyocytes were first treated with repetitive hypoxia-normoxia cycles for 1-4 days. Cells were then acid loaded with NH4Cl, and the rate of pHi recovery from acidosis was measured. Results: We found that the pHi recovery rate from acidosis was much slower in the IH group than in the room air (RA group. When we treated cardiomyocytes with Na+-H+ exchange (NHE inhibitors (Amiloride and HOE642 or Na+-free Tyrode solution during the recovery, there was no difference between RA and IH groups. We also found intracellular Na+ concentration ([Na+]i significantly increased after IH exposure for 4 days. However, the phenomenon could be abolished by pretreatment with ROS inhibitors (SOD and phenanathroline, intracellular calcium chelator or Na+-Ca2+ exchange (NCX inhibitor. Furthermore, the pHi recovery rate from acidosis became faster in the IH group than in the RA group when inhibition of NCX activity. Conclusions: These results suggest that IH would induce the elevation of ROS production. ROS then activates Ca2+-efflux mode of NCX and results in intracellular Na+ accumulation. The rise of [Na+]i further inhibits the activity of NHE-mediated acid extrusion and retards the rate of pHi recovery from acidosis during IH.

  10. Progresses in proton radioactivity studies

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, L. S., E-mail: flidia@ist.utl.pt [Center of Physics and Engineering of Advanced Materials, CeFEMA and Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, P1049-001 Lisbon (Portugal); Maglione, E. [Dipartimento di Fisica e Astronomia “G. Galilei”, Via Marzolo 8, I-35131 Padova, Italy and Istituto Nazionale di Fisica Nucleare, Padova (Italy)

    2016-07-07

    In the present talk, we will discuss recent progresses in the theoretical study of proton radioactivity and their impact on the present understanding of nuclear structure at the extremes of proton stability.

  11. Proton Radiography (pRad)

    Data.gov (United States)

    Federal Laboratory Consortium — The proton radiography project has used 800 MeV protons provided by the LANSCE accelerator facility at LANL, to diagnose more than 300 dynamic experiments in support...

  12. Analysis and modeling of hot extrusion die for its service life enhancement

    Science.gov (United States)

    Akhtar, Syed Sohail

    Aluminum extrusion finds extensive application in the construction, automobile and aerospace industries. High pressures, elevated temperatures, complex and intricate section geometries lead to repeated mechanical and thermal stresses in the die and affiliated tooling. Product rework and rejects can be traced back to various defects spread over the die life cycle: die design, die manufacture and heat treatment, process parameters, inprocess die maintenance/correction and, billet type and quality. Therefore, improved and efficient service life of die and related tooling used in the extrusion press is one the most important factors in maximizing productivity and minimizing cost for ensuring the economical efficiency of an aluminum extrusion plant. How often a die has to be scrapped and replaced with a new one directly contributes to the commercial viability of producing a certain profile. The focus of the current work is on three distinct yet inter-related studies pertaining to the improvement of aluminum extrusion die. Study-A (Die Failure Analysis) is an investigation of various modes and critical failure types based on industrial data (Chapter-2 ), examination of failed dies and finite element simulation for identification of critical process parameters and design features in die fatigue-life (Chapter-3). In Study-B (Die Surface Hardening Treatment), two-stage controlled gas nitriding process for H13 steel is evaluated, both experimentally and numerically, in terms of nitrided case morphology and properties (Chapter-4) followed by experimental and numerical investigation of the effects of repeated nitriding (Chapter-5), pre-nitriding surface preparation (Chapter-6) and die profile geometry (Chapter-7) on nitriding performance in regard to die service life. In Study-C (Effect of Billet Quality on Die Life), the effect of billet quality and related influencing extrusion parameters on the die service life is investigated based on industrial data and some regression

  13. Violent collisions of spinning protons

    Energy Technology Data Exchange (ETDEWEB)

    Krisch, A.D. [Michigan Univ., Spin Physics Center, Ann Arbor, MI (United States)

    2005-07-01

    The author draws the history of polarized proton beams that has relied on experiments that took place in different accelerators like ZGS (zero gradient synchrotron, Argonne), AGS (Brookhaven) and Fermilab from 1973 till today. The first studies of the behavior and spin-manipulation of polarized protons helped in developing polarized beams around the world: Brookhaven now has 200 GeV polarized protons in the RHIC collider, perhaps someday the 7 TeV LHC at CERN might have polarized protons.

  14. Understanding the effects of potassium ferricyanide on lead hydride formation in tetrahydroborate system and its application for determination of lead in milk using hydride generation inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Biyang, E-mail: dengby16@163.com; Xu, Xiangshu; Xiao, Yan; Zhu, Pingchuan; Wang, Yingzi

    2015-01-01

    Highlights: • Proposed a novel explanation for plumbane generation. • Expounded the role of K{sub 3}Fe(CN){sub 6} in plumbane generation. • Clarified the controversial aspects in the mechanism of K{sub 3}Fe(CN){sub 6} enhancement. • Used X-ray diffractometry to analyze the intermediates. • Developed a method to analyze lead in milk using K{sub 3}Fe(CN){sub 6} and K{sub 4}Fe(CN){sub 6} as new additives. - Absract: To understand the formation of plumbane in the Pb{sup II}-NaBH{sub 4}-K{sub 3}Fe(CN){sub 6} system, the intermediate products produced in the reaction of lead(II) and NaBH{sub 4} in the presence of K{sub 3}Fe(CN){sub 6} were studied. The produced plumbane and elemental lead were measured through continuous flow hydride generation (HG)-inductively coupled plasma optical emission spectrometry (ICP OES) and X-ray diffraction spectrometry techniques, respectively. Based on the experimental results, the explanations can be depicted in the following steps: (1) plumbane and black lead sediment (black Pb) are formed in the reaction of lead(II) and NaBH{sub 4}; (2) the black Pb is oxidized by K{sub 3}Fe(CN){sub 6} to form Pb{sub 2}[Fe(CN){sub 6}], which further reacts with NaBH{sub 4} to form more plumbane and black Pb; and (3) another round starts in which the produced black Pb from the step 2 is then oxidized continuously by K{sub 3}Fe(CN){sub 6} to form more Pb{sub 2}[Fe(CN){sub 6}] complex, which would produce more plumbane. In short, the black Pb and Pb{sub 2}[Fe(CN){sub 6}] complex are the key intermediate products for the formation of plumbane in the Pb{sup II}-NaBH{sub 4}-K{sub 3}Fe(CN){sub 6} system. Based on the enhancement effect of potassium ferricyanide and potassium ferrocyanide, a method was developed to analyze lead in milk with HG-ICP OES technique. The detection limit of the method was observed as 0.081 μg L{sup −1}. The linearity range of lead was found between 0.3 and 50,000 μg L{sup −1} with correlation coefficient of 0

  15. Neutron-proton scattering

    International Nuclear Information System (INIS)

    Doll, P.

    1990-02-01

    Neutron-proton scattering as fundamental interaction process below and above hundred MeV is discussed. Quark model inspired interactions and phenomenological potential models are described. The seminar also indicates the experimental improvements for achieving new precise scattering data. Concluding remarks indicate the relevance of nucleon-nucleon scattering results to finite nuclei. (orig.) [de

  16. Radiotherapy : proton therapy

    International Nuclear Information System (INIS)

    1991-01-01

    The first phase of proton therapy at the National Accelerator Centre will be the development of a 200 MeV small-field horizontal beam radioneurosurgical facility in the south treatment vault. A progressive expansion of this facility is planned. The patient support and positioning system has been designed and developed by the Departments of Mechanical Engineering and Surveying of the University of Cape Town to ensure the accurate positioning in the proton beam of the lesion to be treated. The basic components of the system are an adjustable chair, a series of video cameras and two computers. The specifications for the proton therapy interlock system require that the inputs to and the outputs from the system be similar to those of the neutron therapy system. Additional facilities such as a full diagnostic system which would assist the operators in the event of an error will also be provided. Dosimeters are required for beam monitoring, for monitor calibration and for determining dose distributions. Several designs of transmission ionization chambers for beam monitoring have been designed and tested, while several types of ionization chambers and diodes have been used for the dose distribution measurements. To facilitate the comparison of measured ranges and energy losses of proton beams in the various materials with tabled values, simple empirical approximations, which are sufficiently accurate for most applications, have been used. 10 refs., 10 fig., 4 tabs

  17. Proton Pulse Radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, H C; Nilsson, G; Reitberger, T; Thuomas, K A

    1973-03-15

    A 5 MeV proton accelerator (Van de Graaff) has been used for pulse radiolysis of a number of organic gases and the transient spectra obtained from the alkanes methane, ethane, propane, n-butane and neopentane have tentatively been assigned to alkyl radicals. Some methodological aspects of this new technique are discussed

  18. The Melbourne proton microprobe

    International Nuclear Information System (INIS)

    Legge, G.J.F.; McKenzie, C.D.; Mazzolini, A.P.

    1979-01-01

    A scanning proton microprobe is described which operates in ultra-high vacuum with a resolution of ten microns. The operating principles and main features of the design are discussed and the ability of such an instrument to detect trace elements down to a few ppm by mass is illustrated

  19. Proton microanalysis in plants

    International Nuclear Information System (INIS)

    Garrec, J.P.

    Micro-analyses by nuclear reactions and atomic excitation are used to determine the distribution of fluorine and calcium in the needles of Abies Alba. Fluorine is detected by the nuclear reaction 19 F(p,α) 16 O at the 1.35 MeV resonance. Calcium is measured by its characteristic X-rays due to proton excitation [fr

  20. Reduction of fumonisin B₁ in corn grits by twin-screw extrusion.

    Science.gov (United States)

    Jackson, Lauren S; Jablonski, Joseph; Bullerman, Lloyd B; Bianchini, Andreia; Hanna, Milford A; Voss, Kenneth A; Hollub, April D; Ryu, Dojin

    2011-08-01

    This study was designed to investigate the fate of fumonisins in flaking corn grits during twin-screw extrusion by measuring fumonisin B₁ (FB₁) and its analogs with a mass balance approach. Food grade corn grits and 2 batches of grits contaminated with FB₁ at 10 and 50 μg/g by Fusarium verticillioides M-2552 were processed with or without glucose supplementation (10%, w/w) with a twin-screw extruder. Extrusion reduced FB₁ in contaminated grits by 64% to 72% without glucose and 89% to 94% with added glucose. In addition, extrusion alone resulted in 26% to 73% reduction in the levels of fumonisin B₂ and fumonisin B₃, while levels of both mycotoxins were reduced by >89% in extruded corn grits containing 10% glucose. Mass balance analysis showed that 38% to 46% of the FB₁ species detected in corn extruded with glucose was N-(deoxy-D-fructos-1-yl)-FB₁, while 23% to 37% of FB₁ species detected in extruded corn grits with and without added glucose was bound to the matrix. It was also found that the hydrolyzed form of FB₁ was a minor species in extruded corn grits with or without added glucose, representing fumonisin analogues measured in this study. Research is needed to identify the reaction products resulting from extrusion processing of fumonisin-contaminated corn products. Twin-screw extrusion is widely used in food industry for its versatility. This technology may reduce the level of fumonisins in corn particularly with added glucose. Journal of Food Science © 2011 Institute of Food Technologists® No claim to original US government works.

  1. Strain transformation between tectonic extrusion and crustal thickening in the growth of the Tibetan Plateau

    Science.gov (United States)

    Liu, M.; Li, Y.; Sun, Y.; Shen, X.

    2017-12-01

    The Indo-Eurasian continental collision since 50 Ma has thickened the crust to raise the Himalayan-Tibetan Plateau and driven lateral extrusion of Asian lithospheric blocks to affect Cenozoic tectonics in central and east Asia. The relative roles of crustal thickening and tectonic extrusion, and the strain partitioning between them over time and space, remain controversial. We have analyzed the strain rates using GPS velocities, and correlated the results with vertical motion derived from precise leveling. We found that tectonic extrusion largely transforms to crustal thickening near the margins of the Tibetan Plateau. Near the NW margin of the Tibetan Plateau, the shear stain transforms to compressive strain, consistent with neotectonic studies that indicate crustal shortening and uplift. Around the SE margin, shear stain largely terminates in the southern Yunnan province of China. The present-day crustal motion in SE Tibetan Plateau can be well explained by gravitational spreading without invoking plate-edge push as envisioned in the tectonic extrusion model. Using data collected from local seismic arrays, we derived receiver functions to image the lithospheric structures across the Tibetan Plateau and the Alashan block to its north and the Ordos block to its east. Our results indicate that the mantle lithosphere of these bounding Asian blocks has not been reworked by Tibetan tectonics; instead they have acted as restrictive walls to the growing Tibetan Plateau. Our finite element modeling shows that crustal deformation along the margins of the Tibetan Plateau are consistent with the notion that the east- and southeastward extrusion of the Tibetan lithosphere is largely confined to the Tibetan Plateau because of the restrictive bounding blocks of the Asian lithosphere. Thus the tectonic impact of the Indo-Eurasian collision on the Cenozoic Asian tectonics may not be as extensive as previously thought.

  2. Acid-extrusion from tissue: the interplay between membrane transporters and pH buffers.

    Science.gov (United States)

    Hulikova, Alzbeta; Harris, Adrian L; Vaughan-Jones, Richard D; Swietach, Pawel

    2012-01-01

    The acid-base balance of cells is related to the concentration of free H⁺ ions. These are highly reactive, and their intracellular concentration must be regulated to avoid detrimental effects to the cell. H⁺ ion dynamics are influenced by binding to chelator substances ('buffering'), and by the production, diffusion and membrane-transport of free H⁺ ions or of the H⁺-bound chelators. Intracellular pH (pHi) regulation aims to balance this system of diffusion-reaction-transport processes at a favourable steady-state pHi. The ability of cells to regulate pHi may set a limit to tissue growth and can be subject to selection pressures. Cancer cells have been postulated to respond favourably to such selection pressures by evolving a better means of pHi regulation. A particularly important feature of tumour pHi regulation is acid-extrusion, which involves H⁺-extrusion and HCO₃⁻-uptake by membrane-bound transporter-proteins. Extracellular CO₂/HCO₃⁻ buffer facilitates these membrane-transport processes. As a mobile pH-buffer, CO₂/HCO₃⁻ protects the extracellular space from excessive acidification that could otherwise inhibit further acid-extrusion. CO₂/HCO₃⁻ also provides substrate for HCO₃⁻-transporters. However, the inherently slow reaction kinetics of CO₂/HCO₃⁻ can be rate-limiting for acid-extrusion. To circumvent this, cells can express extracellular-facing carbonic anhydrase enzymes to accelerate the attainment of equilibrium between CO₂, HCO₃⁻ and H⁺. The acid-extrusion apparatus has been proposed as a target for anti-cancer therapy. The major targets include H⁺ pumps, Na⁺/H⁺ exchangers and carbonic anhydrases. The effectiveness of such therapy will depend on the correct identification of rate-limiting steps in pHi regulation in a specific type of cancer.

  3. Effects of extrusion variables on the properties of waxy hulless barley extrudates.

    Science.gov (United States)

    Köksel, Hamit; Ryu, Gy-Hyung; Başman, Arzu; Demiralp, Hande; Ng, Perry K W

    2004-02-01

    The objective of this research was to investigate the extrudability of waxy hulless barley flour under various extrusion conditions. Waxy hulless barley flour was processed in a laboratory-scale corotating twin-screw extruder with different levels of feed moisture content (22.3, 26.8, and 30.7%) and die temperature (130, 150, and 170 degrees C) to develop a snack food with high beta-glucan content. The effects of extrusion condition variables (screw configuration, moisture, and temperature) on the system variables (pressure and specific mechanical energy), the extrudate physical properties (sectional expansion index, bulk density), starch gelatinization, pasting properties (cold peak viscosity, trough viscosity, and final viscosity), and beta-glucan contents were determined. Results were evaluated by using response surface methodology. Increased extrusion temperature and feed moisture content resulted in decreases in exit die pressure and specific mechanical energy values. For extrudates extruded under low shear screw configuration (LS), increased barrel temperature decreased sectional expansion index (SEI) values at both low and high moisture contents. The feed moisture seems to have an inverse relationship with SEI over the range studied. Bulk density was higher at higher moisture contents, for both low and high barrel temperatures, for samples extruded under high shear screw configuration (HS) and LS. Cold peak viscosities (CV) were observed in all samples. The CV increased with the increase in extrusion temperature and feed moisture content. Although beta-glucan contents of the LS extrudates were comparable to that of barley flour sample, HS samples had generally lower beta-glucan contents. The extrusion cooking technique seems to be promising for the production of snack foods with high beta-glucan content, especially using LS conditions.

  4. Proton transfer events in GFP

    NARCIS (Netherlands)

    Di Donato, M.; van Wilderen, L.J.G.W.; van Stokkum, I.H.M.; Cohen Stuart, T.A.; Kennis, J.T.M.; Hellingwerf, K.J.; van Grondelle, R.; Groot, M.L.

    2011-01-01

    Proton transfer is one of the most important elementary processes in biology. Green fluorescent protein (GFP) serves as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. Illumination initiates proton

  5. Concept Feasibility Report for Using Co-Extrusion to Bond Metals to Complex Shapes of U-10Mo

    Energy Technology Data Exchange (ETDEWEB)

    Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Paxton, Dean M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Mark T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Soulami, Ayoub [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-12-01

    In support of the Convert Program of the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA) Global Threat Reduction Initiative (GTRI), Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum (U-10Mo) alloy plate fuel for the U.S. high-performance research reactors (USHPRR). This report documents the results of PNNL’s efforts to develop the extrusion process for this concept. The approach to the development of a co-extruded complex-shaped fuel has been described and an extrusion of DU-10Mo was made. The initial findings suggest that given the extrusion forces required for processing U-10Mo, the co-extrusion process can meet the production demands of the USHPRR fuel and may be a viable production method. The development activity is in the early stages and has just begun to identify technical challenges to address details such as dimensional tolerances and shape control. New extrusion dies and roll groove profiles have been developed and will be assessed by extrusion and rolling of U-10Mo during the next fiscal year. Progress on the development and demonstration of the co-extrusion process for flat and shaped fuel is reported in this document

  6. Effect of extrusion conditions on the physico-chemical properties and in vitro protein digestibility of canola meal.

    Science.gov (United States)

    Zhang, Bo; Liu, Guo; Ying, Danyang; Sanguansri, Luz; Augustin, Mary Ann

    2017-10-01

    Canola meal has potential as a high protein food ingredient. The extrusion-induced changes in color, pH, extractable protein and in vitro protein digestibility of canola meal under different extrusion conditions was assessed. The extrusion barrel moisture (24%, 30% or 36%) and screw kneading block length (0, 30 or 60mm) were used as independent process parameters. Extrusion at high barrel moisture (36%) favored protein aggregation resulting in lower extractable protein compared to extrusion at the lowest barrel moisture (24%). At lower barrel moisture contents (24% and 30%), a longer kneading block length increased extractable protein but this was not the case at 36% barrel moisture. Canola protein digestibility was improved upon extrusion at 30% barrel moisture but there was no significant change at lower (24%) or higher (36%) barrel moisture. The kneading block length of the screw had no significant effect on the canola protein digestibility within the same barrel moisture level. The relationship between the physico-chemical parameters and in vitro digestibility was examined. This study highlighted the complex interplay of extrusion processing variables that affect protein degradation and the interaction of components, with consequent effects on protein digestibility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Australian national proton facility

    International Nuclear Information System (INIS)

    Jackson, M.

    2000-01-01

    Full text: Proton therapy has been in use since 1954 and over 25,000 patients have been treated worldwide. Until recently most patients were treated at physics research facilities and apart from the Harvard Cyclotron Laboratory and some low energy machines for eye treatment, only small numbers of patients were treated in each centre and conditions were less than optimal. Limited beam time and lack of support facilities restricted the type of patient treated and conventional fractionation could not be used. The initial clinical experience was mainly with small tumours and other lesions close to critical organs. Large numbers of eye tumours have also been treated. Protons have a well-defined role in these situations and are now being used in the treatment of more common cancers. Since the development of hospital-based facilities, such as the one in Loma Linda in California, over 2,500 patients with prostate cancer have been treated using a simple technique which gives results at least as good as radical surgery, external beam radiotherapy or brachytherapy. Importantly, the incidence of severe complications is very low. There are encouraging results in many disease sites including lung, liver, soft tissue sarcomas and oesophagus. As proton therapy becomes more widely available, randomised trials comparing it with conventional radiotherapy or intensity modulated radiotherapy (IMRT) will be possible. In most situations the use of protons will enable a higher dose to be given safely but in situations where local control rates are already satisfactory, protons are expected to produce less complications than conventional treatment. The initial costs of a proton facility are high but the recurrent costs are similar to other forms of high technology radiotherapy. Simple treatment techniques with only a few fields are usually possible and proton therapy avoids the high integral doses associated with IMRT. This reduction in the low dose volume is likely to be particularly

  8. Protonation of pyridine. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Zahran, N F; Ghoniem, H; Helal, A I [Physics Dept., Nuclear Research Center, AEA., Cairo, (Egypt); Rasheed, N [Nuclear Material Authority, Cairo, (Egypt)

    1996-03-01

    Field ionization mass spectra of pyridine is measured using 10{mu}m activated wire. protonation of pyridine, is observed as an intense peak in the mass spectra. Charge distribution of pyridine molecule is calculated using the modified neglect of diatomic overlap (MNDO) technique, and consequently proton attachment is proposed to be on the nitrogen atom. Temperature dependence of (M+H){sup +} ion is investigated and discussed. MNDO calculations of the protonated species are done, and the proton affinity of pyridine molecule is estimated. Time dependence of the field ionization process of pyridine and protonated ions are observed and discussed. 5 figs.

  9. An osteophyte in the tibial plateau is a risk factor for allograft extrusion after meniscus allograft transplantation.

    Science.gov (United States)

    Jeon, Byeongsam; Kim, Jong-Min; Kim, Jong-Min; Lee, Chang-Rack; Kim, Kyung-Ah; Bin, Seong-Il

    2015-05-01

    Osteophytes can be observed on the tibial plateau during meniscus allograft transplantation (MAT). However, no studies to date have evaluated the effect of these osteophytes on meniscus allograft extrusion. Osteophyte excision in the tibial plateau could reduce extrusion of the transplanted meniscus and improve short-term clinical outcomes with meniscus allograft transplantation. Cohort study; Level of evidence, 3. Between October 2004 and July 2012, a total of 323 patients underwent MAT at a single institution. Of these, 88 patients had a peripheral osteophyte in their tibial plateau, and they were enrolled in the study retrospectively. The mean age of the patients was 35.3 years (range, 15-56 years); there were 57 male and 31 female patients. Forty-four patients underwent osteophyte excision concomitantly with MAT and 44 patients underwent MAT only. The 2 groups showed no difference in terms of age, body mass index, time after meniscectomy, and preoperative knee scores. A medial meniscus allograft was transplanted in 13 cases (15%) and a lateral meniscus in 75 (85%). The absolute extrusion and relative percentage of extrusion were measured to evaluate allograft extrusion 12 months after MAT. The modified Lysholm scoring system and the Hospital for Special Surgery score at 2 years after MAT were used to evaluate clinical outcomes. The mean absolute extrusions at 1 year postoperatively in the excision and nonexcision groups were 3.5±1.5 and 5.5±1.6 mm, respectively. The mean relative percentages of extrusion were 34.1%±15.9% and 54.7%±20.7%, respectively. The rates of allograft extrusion (>3 mm) were 28 of 44 (63.6%) and 41 of 44 (93.2%) in the excision and nonexcision groups, respectively. The intergroup differences in absolute extrusion, relative percentage of extrusion, and rate of allograft extrusion were statistically significant (P<.001 for all 3 parameters). There were no significant differences in the clinical outcomes (modified Lysholm or Hospital of

  10. Proton transfer events in GFP.

    Science.gov (United States)

    Di Donato, Mariangela; van Wilderen, Luuk J G W; Van Stokkum, Ivo H M; Stuart, Thomas Cohen; Kennis, John T M; Hellingwerf, Klaas J; van Grondelle, Rienk; Groot, Marie Louise

    2011-09-28

    Proton transfer is one of the most important elementary processes in biology. Green fluorescent protein (GFP) serves as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. Illumination initiates proton transfer through a 'proton-wire', formed by the chromophore (the proton donor), water molecule W22, Ser205 and Glu222 (the acceptor), on a picosecond time scale. To obtain a more refined view of this process, we have used a combined approach of time resolved mid-infrared spectroscopy and visible pump-dump-probe spectroscopy to resolve with atomic resolution how and how fast protons move through this wire. Our results indicate that absorption of light by GFP induces in 3 ps (10 ps in D(2)O) a shift of the equilibrium positions of all protons in the H-bonded network, leading to a partial protonation of Glu222 and to a so-called low barrier hydrogen bond (LBHB) for the chromophore's proton, giving rise to dual emission at 475 and 508 nm. This state is followed by a repositioning of the protons on the wire in 10 ps (80 ps in D(2)O), ultimately forming the fully deprotonated chromophore and protonated Glu222.

  11. Solar proton fluxes since 1956

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1977-01-01

    The fluxes of protons emitted during solar flares since 1956 were evaluated. The depth-versus-activity profiles of 56 Co in several lunar rocks are consistent with the solar-proton fluxes detected by experiments on several satellites. Only about 20% of the solar-proton-induced activities of 22 Na and 55 Fe in lunar rocks from early Apollo missions were produced by protons emitted from the sun during solar cycle 20 (1965--1975). The depth-versus-activity data for these radionuclides in several lunar rocks were used to determine the fluxes of protons during solar cycle 19 (1954--1964). The average proton fluxes for cycle 19 are about five times those for both the last million years and for cycle 20. These solar-proton flux variations correlate with changes in sunspot activity

  12. Proton mass decomposition

    Science.gov (United States)

    Yang, Yi-Bo; Chen, Ying; Draper, Terrence; Liang, Jian; Liu, Keh-Fei

    2018-03-01

    We report the results on the proton mass decomposition and also on the related quark and glue momentum fractions. The results are based on overlap valence fermions on four ensembles of Nf = 2 + 1 DWF configurations with three lattice spacings and volumes, and several pion masses including the physical pion mass. With 1-loop pertur-bative calculation and proper normalization of the glue operator, we find that the u, d, and s quark masses contribute 9(2)% to the proton mass. The quark energy and glue field energy contribute 31(5)% and 37(5)% respectively in the MS scheme at µ = 2 GeV. The trace anomaly gives the remaining 23(1)% contribution. The u, d, s and glue momentum fractions in the MS scheme are consistent with the global analysis at µ = 2 GeV.

  13. Proton solar flares

    International Nuclear Information System (INIS)

    Shaposhnikova, E.F.

    1979-01-01

    The observations of proton solar flares have been carried out in 1950-1958 using the extrablackout coronograph of the Crimea astrophysical observatory. The experiments permit to determine two characteristic features of flares: the directed motion of plasma injection flux from the solar depths and the appearance of a shock wave moving from the place of the injection along the solar surface. The appearance of the shock wave is accompanied by some phenomena occuring both in the sunspot zone and out of it. The consistent flash of proton flares in the other groups of spots, the disappearance of fibres and the appearance of eruptive prominences is accomplished in the sunspot zone. Beyond the sunspot zone the flares occur above spots, the fibres disintegrate partially or completely and the eruptive prominences appear in the regions close to the pole

  14. Study and automatic control of the ceramic tile extrusion operation; Estudio y control automatico de la operacion de extrusion de baldosas ceramicas

    Energy Technology Data Exchange (ETDEWEB)

    Aguilella, M.; Foucard, L.; Mallol, G.; Sanchez, M. J.; Lopez, M.; Benasges, R.

    2012-07-01

    The ever-larger tile sizes demanded by the market, the higher quality requirements, and the increasingly similar installation to that of pressed products make it necessary to narrow the tolerance limits of final extruded tile size in order to maintain the products competitiveness. The results of this study show that, though mixing water has a great influence on drying shrinkage, it hardly affects extruded tile firing shrinkage. This indicates that control of the water added in the extrusion process is indispensable in order avoid variations in drying shrinkage and, thus, to assure good dimensional stability of the end product. (Author)

  15. The Amsterdam proton microbeam

    International Nuclear Information System (INIS)

    Bos, A.J.J.

    1984-01-01

    The aim of the work presented in this thesis is to develop a microbeam setup such that small beam spot sizes can be produced routinely, and to investigate the capabilities of the setup for micro-PIXE analysis. The development and performance of the Amsterdam proton microbeam setup are described. The capabilities of the setup for micro-PIXE are shown with an investigation into the presence of trace elements in human hair. (Auth.)

  16. The proton radius puzzle

    Science.gov (United States)

    Bonesini, Maurizio

    2017-12-01

    The FAMU (Fisica degli Atomi Muonici) experiment has the goal to measure precisely the proton Zemach radius, thus contributing to the solution of the so-called proton radius "puzzle". To this aim, it makes use of a high-intensity pulsed muon beam at RIKEN-RAL impinging on a cryogenic hydrogen target with an high-Z gas admixture and a tunable mid-IR high power laser, to measure the hyperfine (HFS) splitting of the 1S state of the muonic hydrogen. From the value of the exciting laser frequency, the energy of the HFS transition may be derived with high precision ( 10-5) and thus, via QED calculations, the Zemach radius of the proton. The experimental apparatus includes a precise fiber-SiPMT beam hodoscope and a crown of eight LaBr3 crystals and a few HPGe detectors for detection of the emitted characteristic X-rays. Preliminary runs to optimize the gas target filling and its operating conditions have been taken in 2014 and 2015-2016. The final run, with the pump laser to drive the HFS transition, is expected in 2018.

  17. Heavy quarks in proton

    CERN Document Server

    AUTHOR|(SzGeCERN)655637

    The measurement of prompt photon associated with a b jet in proton-proton interactions can provide us insight into the inner structure of proton. This is because precision of determination of parton distribution functions of b quark and gluon can be increased by such a measurement. The measurement of cross-section of prompt photon associated with a b jet (process $pp\\longrightarrow \\gamma + b + X$) at $\\sqrt{s}$= 8 TeV with the ATLAS detector is presented. Full 8 TeV dataset collected by ATLAS during the year 2012 was used in this analysis. Corresponding integrated luminosity is 20.3 $fb^{-1}$. Fiducial differential cross-section as a function of photon transverse momentum at particle level was extracted from data and compared with the prediction of leading order event generator Pythia 8. Cross-section extracted from data is normalised independently on the Monte Carlo prediction. Values of data distribution lie above Monte Carlo values. The difference can be explained by presence of higher order effects not ...

  18. [Why proton therapy? And how?

    Science.gov (United States)

    Thariat, Juliette; Habrand, Jean Louis; Lesueur, Paul; Chaikh, Abdulhamid; Kammerer, Emmanuel; Lecomte, Delphine; Batalla, Alain; Balosso, Jacques; Tessonnier, Thomas

    2018-03-01

    Proton therapy is a radiotherapy, based on the use of protons, charged subatomic particles that stop at a given depth depending on their initial energy (pristine Bragg peak), avoiding any output beam, unlike the photons used in most of the other modalities of radiotherapy. Proton therapy has been used for 60 years, but has only become ubiquitous in the last decade because of recent major advances in particle accelerator technology. This article reviews the history of clinical implementation of protons, the nature of the technological advances that now allows its expansion at a lower cost. It also addresses the technical and physical specificities of proton therapy and the clinical situations for which proton therapy may be relevant but requires evidence. Different proton therapy techniques are possible. These are explained in terms of their clinical potential by explaining the current terminology (such as cyclotrons, synchrotrons or synchrocyclotrons, using superconducting magnets, fixed line or arm rotary with passive diffusion delivery or active by scanning) in basic words. The requirements associated with proton therapy are increased due to the precision of the depth dose deposit. The learning curve of proton therapy requires that clinical indications be prioritized according to their associated uncertainties (such as range uncertainties and movement in lung tumors). Many clinical indications potentially fall under proton therapy ultimately. Clinical strategies are explained in a paralleled manuscript. Copyright © 2018 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  19. Proton permeation of lipid bilayers.

    Science.gov (United States)

    Deamer, D W

    1987-10-01

    Proton permeation of the lipid bilayer barrier has two unique features. First, permeability coefficients measured at neutral pH ranges are six to seven orders of magnitude greater than expected from knowledge of other monovalent cations. Second, proton conductance across planar lipid bilayers varies at most by a factor of 10 when pH is varied from near 1 to near 11. Two mechanisms have been proposed to account for this anomalous behavior: proton conductance related to contaminants of lipid bilayers, and proton translocation along transient hydrogen-bonded chains (tHBC) of associated water molecules in the membrane. The weight of evidence suggests that trace contaminants may contribute to proton conductance across planar lipid membranes at certain pH ranges, but cannot account for the anomalous proton flux in liposome systems. Two new results will be reported here which were designed to test the tHBC model. These include measurements of relative proton/potassium permeability in the gramicidin channel, and plots of proton flux against the magnitude of pH gradients. (1) The relative permeabilities of protons and potassium through the gramicidin channel, which contains a single strand of hydrogen-bonded water molecules, were found to differ by at least four orders of magnitude when measured at neutral pH ranges. This result demonstrates that a hydrogen-bonded chain of water molecules can provide substantial discrimination between protons and other cations. It was also possible to calculate that if approximately 7% of bilayer water was present in a transient configuration similar to that of the gramicidin channel, it could account for the measured proton flux. (2) The plot of proton conductance against pH gradient across liposome membranes was superlinear, a result that is consistent with one of three alternative tHBC models for proton conductance described by Nagle elsewhere in this volume.

  20. Mechanical properties of copper-lithium alloys produced by mechanic alloyed and hot extrusion

    International Nuclear Information System (INIS)

    Castillo B, Ricardo; Gorziglia S, Ezio; Penaloza V, Augusto

    2004-01-01

    In this work are presented the progress carried out on the characterization of some physical and mechanical properties, together with the determination of the micro mechanism of fracture of the Cu-2% wt Li, that was obtained by mechanical alloying followed hot extrusion at 500 o C and 700 o C. Hardness and tensile mechanical tests were performed together with metallographic and fractographic analysis. The experimental results obtained with powders of the Cu-Li alloy studied are compared with powder of pure copper, under similar test conditions. The results show that by hot extrusion was allowed to obtain very high densification levels for the materials under study. Moreover, it was found that lithium reduce both the tensile strength and elongation, of copper by a mechanism of embrittlement. The results are compares with the literature (au)

  1. High-temperature extrusion behavior of a superplastic zirconia-based ceramic

    International Nuclear Information System (INIS)

    Kellett, B.J.; Carry, C.; Mocellin, A.

    1990-01-01

    Workability of 3-mol%-yttria-stabilized tetragonal ZrO 2 has been gauged through a series of extrusion experiments performed under vacuum with graphite dies at 1500 degrees C and 35 MPa piston stress. It is shown that dense and smooth extrustions can be obtained from solid billets when graphite paper is used as a lubricant. Sigmoidal dies and conical dies with cone angles of 18.4 degrees, 26.6 degrees, and 45 degrees and diameter ratios of 1.5, 2, and 3 were used to explore extrusion behavior. Observed piston velocities correspond to what may be predicted from the experimental uniaxial constitutive creep equation and a simple slab analysis. A precise analysis, however, is not attempted because of lack of steady-state behavior of the material itself

  2. Rational analysis and index of plasticity of clays for extrusion evaluation

    International Nuclear Information System (INIS)

    Silva, A.R.; Guimaraes Filho, M.A.S.; Santos, C.V.P.; Fagury Neto, E.; Rabelo, A.A.

    2011-01-01

    In the microregion Maraba, in the southeast paraense, there's a important industrial park in the area of red ceramic due to the quality of the extracted clays in the proximities of their rivers. With the intention of collaborating for the production of tiles and structural blocks of quality, in this work the rational analysis of clays was accomplished, through the relationship of the qualitative X-ray diffraction and X-ray fluorescence results. Was possible to quantify the present phases in the collected clays and these results were correlated to the Atterberg's limits - plasticity and liquidity limitsand the respective plasticity indexes - making possible to classify the clays in areas of great and acceptable extrusion. The results of the rational analysis demonstrated that the analyzed clays are plastic kaolinites and don't present quantitative differences very accentuated among the present phases detected besides they possess an area of acceptable extrusion naturally. (author)

  3. Aluminum-graphite composite produced by mechanical milling and hot extrusion

    International Nuclear Information System (INIS)

    Flores-Zamora, M.I.; Estrada-Guel, I.; Gonzalez-Hernandez, J.; Miki-Yoshida, M.; Martinez-Sanchez, R.

    2007-01-01

    Aluminum-graphite composites were produced by mechanical milling followed by hot extrusion. Graphite content was varied between 0 and 1 wt.%. Al-graphite mixtures were initially mixed in a shaker mill without ball, followed by mechanical milling in a High-energy simoloyer mill for 2 h under argon atmosphere. Milled powders were subsequently pressed at ∼950 MPa for 2 min, and next sintered under vacuum for 3 h at 823 K. Finally, sintered products were held for 0.5 h at 823 K and hot extruded using indirect extrusion. Tension and compression tests were carried out to determine the yield stress and maximum stress of the materials. We found that the mechanical resistance increased as the graphite content increased. Microstructural characterization was done by transmission electron microscopy. Al-O-C nanofibers and graphite nanoparticles were observed in extruded samples by transmission electron microscopy. These nanoparticles and nanofibers seemed to be responsible of the reinforcement phenomenon

  4. Applying orthodontic tooth extrusion in a patient treated with bisphosphonate and irradiation: a case report.

    Science.gov (United States)

    Morita, Hiromitsu; Imai, Yuko; Yoneda, Masahiro; Hirofuji, Takao

    2017-01-01

    Bisphosphonates and irradiation are useful medical treatments, but can often cause oral complications such as medication-related oral necrosis of the jaw (MRONJ) and osteoradionecrosis (ORN) during oral surgery, including tooth extraction. Therefore, we should take all risks into consideration carefully before choosing dental treatment for patients with a medical history of such therapies. A 55-year-old woman who underwent cord blood transplantation to treat extranodal natural killer T (NK/T) cell lymphoma (nasal type IVB) had a medical history of bisphosphonate and irradiation treatments. We treated her residual tooth root by applying orthodontic extrusion to avoid extraction and successfully restored the tooth. Application of an orthodontic tooth extrusion technique for conservative treatment of a residual tooth is a useful means of avoiding MRONJ or ORN in patients who have a medical history of bisphosphonate and irradiation treatments. © 2016 Special Care Dentistry Association and Wiley Periodicals, Inc.

  5. A Mathematical Model on the Resolution of Extrusion Bioprinting for the Development of New Bioinks

    Directory of Open Access Journals (Sweden)

    Ratima Suntornnond

    2016-09-01

    Full Text Available Pneumatic extrusion-based bioprinting is a recent and interesting technology that is very useful for biomedical applications. However, many process parameters in the bioprinter need to be fully understood in order to print at an adequate resolution. In this paper, a simple yet accurate mathematical model to predict the printed width of a continuous hydrogel line is proposed, in which the resolution is expressed as a function of nozzle size, pressure, and printing speed. A thermo-responsive hydrogel, pluronic F127, is used to validate the model predictions. This model could provide a platform for future correlation studies on pneumatic extrusion-based bioprinting as well as for developing new bioink formulations.

  6. Reprocessability of PHB in extrusion: ATR-FTIR, tensile tests and thermal studies

    Directory of Open Access Journals (Sweden)

    Leonardo Fábio Rivas

    Full Text Available Abstract Mechanical recycling of biodegradable plastics has to be encouraged, since the consumption of energy and raw materials can be reduced towards a sustainable development in plastics materials. In this study, the evolution of thermal and mechanical properties, as well as structural changes of poly(hydroxybutyrate (PHB up to three extrusion cycles were investigated. Results indicated a significant reduction in mechanical properties already at the second extrusion cycle, with a reduction above 50% in the third cycle. An increase in the crystallinity index was observed due to chemicrystallization process during degradation by chain scission. On the other hand, significant changes in the chemical structure or in thermal stability of PHB cannot be detected by Fourier transform infrared spectroscopy (FTIR and thermogravimetric analyses (TGA, respectively.

  7. New device to measure dynamic intrusion/extrusion cycles of lyophobic heterogeneous systems.

    Science.gov (United States)

    Guillemot, Ludivine; Galarneau, Anne; Vigier, Gérard; Abensur, Thierry; Charlaix, Élisabeth

    2012-10-01

    Lyophobic heterogeneous systems (LHS) are made of mesoporous materials immersed in a non-wetting liquid. One application of LHS is the nonlinear damping of high frequency vibrations. The behaviour of LHS is characterized by P - ΔV cycles, where P is the pressure applied to the system, and ΔV its volume change due to the intrusion of the liquid into the pores of the material, or its extrusion out of the pores. Very few dynamic studies of LHS have been performed until now. We describe here a new apparatus that allows us to carry out dynamic intrusion/extrusion cycles with various liquid/porous material systems, controlling the temperature from ambient to 120 °C and the frequency from 0.01 to 20 Hz. We show that for two LHS: water/MTS and Galinstan/CPG, the energy dissipated during one cycle depends very weakly on the cycle frequency, in strong contrast to conventional dampers.

  8. Comparison of apical debris extrusion using a conventional and two rotary techniques.

    Science.gov (United States)

    Adl, Alireza; Sahebi, Safoora; Moazami, Fariborz; Niknam, Mahnaz

    2009-01-01

    Preparation techniques and instruments produce and push debris out of canals. This can induce inflammation within the periapical area. Therefore, instrumentation that causes less extrusion of debris is more desirable. The purpose of this in vitro study was to evaluate the quantity of debris extruded from the apical foramen during root canal preparation by using one hand, and two rotary instrumentation techniques. Three different groups each with 12 mesiobuccal roots of human maxillary first molar were instrumented using either step-back technique with hand instruments, FlexMaster or Mtwo rotary system. Debris extruded from the apical foramen during canal preparation was collected. The mean dry weights of debris were compared using one-way ANOVA. Step-back group had a significantly greater mean weight of debris compared to the other two groups (Pengine driven techniques were associated with less apical debris extrusion. [Iranian Endodontic Journal 2009;4(4):135-8].

  9. Crystal Structure of a Plant Multidrug and Toxic Compound Extrusion Family Protein.

    Science.gov (United States)

    Tanaka, Yoshiki; Iwaki, Shigehiro; Tsukazaki, Tomoya

    2017-09-05

    The multidrug and toxic compound extrusion (MATE) family of proteins consists of transporters responsible for multidrug resistance in prokaryotes. In plants, a number of MATE proteins were identified by recent genomic and functional studies, which imply that the proteins have substrate-specific transport functions instead of multidrug extrusion. The three-dimensional structure of eukaryotic MATE proteins, including those of plants, has not been reported, preventing a better understanding of the molecular mechanism of these proteins. Here, we describe the crystal structure of a MATE protein from the plant Camelina sativa at 2.9 Å resolution. Two sets of six transmembrane α helices, assembled pseudo-symmetrically, possess a negatively charged internal pocket with an outward-facing shape. The crystal structure provides insight into the diversity of plant MATE proteins and their substrate recognition and transport through the membrane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. 3D FEM Geometry and Material Flow Optimization of Porthole-Die Extrusion

    International Nuclear Information System (INIS)

    Ceretti, Elisabetta; Mazzoni, Luca; Giardini, Claudio

    2007-01-01

    The aim of this work is to design and to improve the geometry of a porthole-die for the production of aluminum components by means of 3D FEM simulations. In fact, the use of finite element models will allow to investigate the effects of the die geometry (webs, extrusion cavity) on the material flow and on the stresses acting on the die so to reduce the die wear and to improve the tool life. The software used to perform the simulations was a commercial FEM code, Deform 3D. The technological data introduced in the FE model have been furnished by METRA S.p.A. Company, partner in this research. The results obtained have been considered valid and helpful by the Company for building a new optimized extrusion porthole-die

  11. Influence of material and solution composition on the extrusion/erosion behaviour of compacted bentonite

    International Nuclear Information System (INIS)

    Schatz, Timothy; Martikainen, Jari; Koskinen, Kari

    2010-01-01

    Document available in extended abstract form only. In principle, in a KBS-3 type repository, the volume of a deposition hole is fixed and the bentonite buffer mass accordingly balanced to lead to the development of a suitable swelling pressure upon saturation. However, fractures intersecting the deposition holes give rise to the possibility that volume constrained conditions do not universally exist. Such fractures may provide pathways for the continued, localised, free swelling of bentonite buffer material. Loss of mass from the deposition hole by extrusion into intersecting fractures may compromise the long-term safety and performance of the buffer component of the engineered barrier system. Furthermore, the continued hydration and expansion of extruded bentonite in these fracture environments could lead to the separation of colloid-sized (or larger) particles by diffusion or shear which may have to be accounted for in possible radionuclide migration scenarios. Geochemical conditions, with respect to both solution and material composition, are considered to play important roles regarding the fracture extrusion/erosion of bentonite buffer material. For example, calcium-montmorillonite exhibits limited free swelling relative to sodium-montmorillonite and the colloidal and rheological properties of montmorillonite dispersions are sensitive to the presence of electrolytes. Insofar as both the buffer material composition (due to ion exchange) and groundwater composition (dilution resulting from infiltration of glacial melt water) are expected to evolve with time, so too might the potential for fracture extrusion/erosion of buffer material vary over time. The hydraulic characteristics of the intersecting fracture are expected to influence the extrusion/erosion process as well. To evaluate the effect of material and solution composition on the potential for extrusion of buffer mass into intersecting fractures, a series of batch experiments were performed. In these

  12. Inherent safety phenomenon of fission-gas induced axial extrusion in oxide and metal fueled LMFBRs

    International Nuclear Information System (INIS)

    Miles, K.J.; Kalimullah.

    1985-01-01

    The current emphasis in LMFBR design is to develop reactor systems that contain as many features as possible to limit the severity of hypothetical accidents and provide the maximum time before corrective action is required while maintaining low capital costs. One feature is the possibility of fission-gas induced axial extrusion of the fuel within the intact cladding. The potential exists for this phenomenon to enable the reactor to withstand most accidents of the TOP variety, or at least provide an extended time for corrective action to be taken. Under transient conditions which produce a heating of the fuel above its nominal operating temperature, thermal expansion of the material axially produces a negative reactivity effect. This effect is presently considered in most accident analysis codes. The phenomenon of fission-gas induced axial extrusion has received renewed interest because of the consideration of metal alloys of uranium and plutonium for the fuel in some current reactor designs

  13. Extrusion of blends of cassava leaves and cassava flour: physical characteristics of extrudates

    Directory of Open Access Journals (Sweden)

    Cristiane da Cunha Salata

    2014-09-01

    Full Text Available A cassava-based puffed snack was produced using a single screw extruder to determine the effect of the raw material composition (cassava leaf flour and moisture and the process parameters (extrusion temperature and screw speed on the physical characteristics of an extruded-expanded snack. A central composite rotational design, including four factors with 30 treatments, was used with the following as dependent variables: expansion index, specific volume, water solubility index, water absorption index, color (L*, a*, b*, and hardness. Under conditions of low moisture content (12 to 14%, low percentage of cassava leaf flour (2 to 4%, and intermediate conditions of extrusion temperature (100°C and screw speed (230rpm, it was possible to obtain puffed snack products with desirable characteristics.

  14. Effect of extrusion processing on the microstructure, mechanical properties, biocorrosion properties and antibacterial properties of Ti-Cu sintered alloys

    International Nuclear Information System (INIS)

    Zhang, Erlin; Li, Shengyi; Ren, Jing; Zhang, Lan; Han, Yong

    2016-01-01

    Ti-Cu sintered alloys, Ti-Cu(S) alloy, have exhibited good anticorrosion resistance and strong antibacterial properties, but low ductility in previous study. In this paper, Ti-Cu(S) alloys were subjected to extrusion processing in order to improve the comprehensive property. The phase constitute, microstructure, mechanical property, biocorrosion property and antibacterial activity of the extruded alloys, Ti-Cu(E), were investigated in comparison with Ti-Cu(S) by X-ray diffraction (XRD), optical microscopy (OM), scanning electronic microscopy (SEM) with energy disperse spectroscopy (EDS), mechanical testing, electrochemical testing and plate-count method in order to reveal the effect of the extrusion process. XRD, OM and SEM results showed that the extrusion process did not change the phase constitute but refined the grain size and Ti 2 Cu particle significantly. Ti-Cu(E) alloys exhibited higher hardness and compressive yield strength than Ti-Cu(S) alloys due to the fine grain and Ti 2 Cu particles. With the consideration of the total compressive strain, it was suggested that the extrusion process could improve the ductility of Ti-Cu alloy(S) alloys. Electrochemical results have indicated that the extrusion process improved the corrosion resistance of Ti-Cu(S) alloys. Plate-count method displayed that both Ti-Cu(S) and Ti-Cu(E) exhibited strong antibacterial activity (> 99%) against S. aureus. All these results demonstrated that hot forming processing, such as the extrusion in this study, refined the microstructure and densified the alloy, in turn improved the ductility and strength as well as anticorrosion properties without reduction in antibacterial properties. - Highlights: • Hot extrusion refined the grain size and Ti 2 Cu phase significantly. • Hot extrusion increased the mechanical properties and the corrosion resistance. • The antibacterial properties was not affected by the hot process.

  15. Graphite and PMMA as pore formers for thermoplastic extrusion of porous 3Y-TZP oxygen transport membrane supports

    DEFF Research Database (Denmark)

    Bjørnetun Haugen, Astri; Gurauskis, Jonas; Kaiser, Andreas

    2016-01-01

    A gas permeable porous support is a crucial part of an asymmetric oxygen transport membrane (OTM). Here, we develop feedstocks for thermoplastic extrusion of tubular, porous 3Y-TZP (partially stabilized zirconia polycrystals, (Y2O3)0.03(ZrO2)0.97)) ceramics, using graphite and/or polymethyl....... This demonstrates the suitability of thermoplastic extrusion for fabrication of porous 3Y-TZP OTM supports, or for other technologies requiring porous ceramics....

  16. Procyanidin content of grape seed and pomace, and total anthocyanin content of grape pomace as affected by extrusion processing.

    Science.gov (United States)

    Khanal, R C; Howard, L R; Prior, R L

    2009-08-01

    Grape juice processing by-products, grape seed and pomace are a rich source of procyanidins, compounds that may afford protection against chronic disease. This study was undertaken to identify optimal extrusion conditions to enhance the contents of monomers and dimers at the expense of large molecular weight procyanidin oligomers and polymers in grape seed and pomace. Extrusion variables, temperature (160, 170, and 180 degrees C in grape seed, and 160, 170, 180, and 190 degrees C in pomace) and screw speed (100, 150, and 200 rpm in both) were tested using mixtures of grape seed as well as pomace with decorticated white sorghum flour at a ratio of 30 : 70 and moisture content of 45%. Samples of grape seed and pomace were analyzed for procyanidin composition before and after extrusion, and total anthocyanins were determined in pomace. Additionally, chromatograms from diol and normal phase high-performance liquid chromatography were compared for the separation of procyanidins. Extrusion of both grape by-products increased the biologically important monomer and dimers considerably across all temperature and screw speeds. Highest monomer content resulted when extruded at a temperature of 170 degrees C and screw speed of 200 rpm, which were 120% and 80% higher than the unextruded grape seed and pomace, respectively. Increases in monomer and dimer contents were apparently the result of reduced polymer contents, which declined by 27% to 54%, or enhanced extraction facilitated by disruption of the food matrix during extrusion. Extrusion processing reduced total anthocyanins in pomace by 18% to 53%. Extrusion processing can be used to increase procyanidin monomer and dimer contents in grape seed and pomace. Procyanidins in grape by-products have many health benefits, but most are present as large molecular weight compounds, which are poorly absorbed. Extrusion processing appears to be a promising technology to increase levels of the bioactive low molecular weight

  17. MUSE: Measuring the proton radius with muon-proton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bernauer, Jan Christopher [Massachusetts Institute of Technology, Cambridge (United States)

    2014-07-01

    The proton radius has been measured so far using electron-proton scattering, electronic Hydrogen spectroscopy and muonic Hydrogen spectroscopy, the latter producing a much more accurate, but seven sigma different, result, leading to the now famous proton radius puzzle. The MUSE collaboration aims to complete the set of measurements by using muon scattering to determine the proton radius and to shed light on possible explanations of the discrepancy. The talk gives an overview of the experiment motivation and design and a status report on the progress.

  18. Vibrational spectroscopy on protons and deuterons in proton conducting perovskites

    DEFF Research Database (Denmark)

    Glerup, M.; Poulsen, F.W.; Berg, R.W.

    2002-01-01

    A short review of IR-spectroscopy on protons in perovskite structure oxides is given. The nature of possible proton sites, libration and combination tones and degree of hydrogen bonding is emphasised. Three new spectroscopic experiments and/or interpretations are presented. An IR-microscopy exper......A short review of IR-spectroscopy on protons in perovskite structure oxides is given. The nature of possible proton sites, libration and combination tones and degree of hydrogen bonding is emphasised. Three new spectroscopic experiments and/or interpretations are presented. An IR...

  19. Poly(lactic acid) (PLA) Based Tear Resistant and Biodegradable Flexible Films by Blown Film Extrusion

    OpenAIRE

    Norma Mallegni; Thanh Vu Phuong; Maria-Beatrice Coltelli; Patrizia Cinelli; Andrea Lazzeri

    2018-01-01

    Poly(lactic acid) (PLA) was melt mixed in a laboratory extruder with poly(butylene adipate-co-terephthalate) (PBAT) and poly(butylene succinate) (PBS) in the presence of polypropylene glycol di glycidyl ether (EJ400) that acted as both plasticizer and compatibilizer. The process was then scaled up in a semi-industrial extruder preparing pellets having different content of a nucleating agent (LAK). All of the formulations could be processed by blowing extrusion and the obtained films showed me...

  20. Solid State Bonding Mechanics In Extrusion And FSW: Experimental Tests And Numerical Analyses

    International Nuclear Information System (INIS)

    Buffa, G.; Fratini, L.; Donati, L.; Tomesani, L.

    2007-01-01

    In the paper the authors compare the different solid state bonding mechanics for both the processes of hollow profiles extrusion and Friction Stir Welding (FSW), through the results obtained from a wide experimental campaign on AA6082-T6 aluminum alloys. Microstructure evaluation, tensile tests and micro-hardness measurements realized on specimens extracted by samples of the two processes are discussed also by means of the results obtained from coupled FEM simulation of the processes

  1. An investigation on diffusion bonding of aluminum to copper using equal channel angular extrusion process

    OpenAIRE

    Eslami, P.; Taheri, A. Karimi

    2011-01-01

    A new method for production of bimetallic rods, utilizing the equal channel angular extrusion (ECAE) process has been introduced before by previous researchers, but no attempt has been made to assess the effect of different temperatures and holding times in order to achieve a diffusional bond between the mating surfaces. In present research copper sheathed aluminum rods have been ECAEed at room temperature and subsequently held at a constant ECAE pressure, at different temperatures and holdin...

  2. Dental Extrusion with Orthodontic Miniscrew Anchorage: A Case Report Describing a Modified Method

    OpenAIRE

    Horliana, Ricardo Fidos; Horliana, Anna Carolina Ratto Tempestini; Wuo, Alexandre do Vale; Perez, Fl?vio Eduardo Guillin; Abr?o, Jorge

    2015-01-01

    In recent years, the skeletal anchorage through miniscrews has expanded the treatment options in orthodontics (Yamaguchi et al., 2012). We hereby present a modified method for tooth extrusion for cases where crown-lengthening surgery is contraindicated for aesthetic reasons. This modified method uses three orthodontic appliances: a mini-implant, an orthodontic wire, and a bracket. The aim of this case report was to increase the length of the clinical crown of a fractured tooth (tooth 23) by m...

  3. AN INVESTIGATION OF THE IMPACT OF IMPURITIES ON THE MECHANICAL PROPERTIES OF RECYCLED PVC EXTRUSION PIPES

    OpenAIRE

    Adamu Alhaji Umar; Raji Olalere Fatai

    2007-01-01

    This work studied the effect of using recycled scraps in the production of rigid PVC extrusion pipe. Different formulations with varied percentages of scraps were extruded and various tests carried out on the sample specimen to determine their corresponding mechanical properties. It was finally discovered that among the two sources of scraps, the in-house scraps contained less impurities and blending about 10% of it with virgin PVC material in the production gave improved mechanical propertie...

  4. The shape of extrusions and intrusions and initiation of stage I fatigue cracks

    Czech Academy of Sciences Publication Activity Database

    Polák, Jaroslav; Man, Jiří; Vystavěl, T.; Petrenec, Martin

    2009-01-01

    Roč. 517, 1-2 (2009), s. 204-211 ISSN 0921-5093 R&D Projects: GA ČR GA106/06/1096; GA ČR GA101/07/1500 Institutional research plan: CEZ:AV0Z20410507 Keywords : Extrusion * Intrusion * Fatigue crack initiation * Stainless steel Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.901, year: 2009

  5. Application of Electrostatic Extrusion – Flavour Encapsulation and Controlled Release

    OpenAIRE

    Branko Bugarski; Viktor Nedovic; Bojana Obradovic; Jasna Djonlagic; Nevenka Rajic; Verica Manojlovic

    2008-01-01

    The subject of this study was the development of flavour alginate formulationsaimed for thermally processed foods. Ethyl vanilline was used as the model flavourcompound. Electrostatic extrusion was applied for the encapsulation of ethyl vanilline inalginate gel microbeads. The obtained microbeads with approx. 10 % w/w of ethylvanilline encapsulated in about 2 % w/w alginate were uniformly sized spheres of about450 μm. Chemical characterization by H-NMR spectroscopy revealed that the algina...

  6. Analysis of Crystallographic Textures in Aluminum Plates Processed by Equal Channel Angular Extrusion

    DEFF Research Database (Denmark)

    Li, Saiyi; Mishin, Oleg

    2014-01-01

    A modeling and experimental investigation has been conducted to explore the effect of processing route on texture evolution during equal channel angular extrusion (ECAE) of aluminum plate samples. It is found that although the textures in the plates develop along orientation fibers previously ide...... identified for ECAE-processed rods and bars, the main components and strength of these textures vary significantly with processing route, which may lead to considerable differences in the plastic anisotropy of the plates....

  7. Quantitative measures of meniscus extrusion predict incident radiographic knee osteoarthritis – data from the Osteoarthritis Initiative

    Science.gov (United States)

    Emmanuel, K.; Quinn, E.; Niu, J.; Guermazi, A.; Roemer, F.; Wirth, W.; Eckstein, F.; Felson, D.

    2017-01-01

    SUMMARY Objective To test the hypothesis that quantitative measures of meniscus extrusion predict incident radiographic knee osteoarthritis (KOA), prior to the advent of radiographic disease. Methods 206 knees with incident radiographic KOA (Kellgren Lawrence Grade (KLG) 0 or 1 at baseline, developing KLG 2 or greater with a definite osteophyte and joint space narrowing (JSN) grade ≥1 by year 4) were matched to 232 control knees not developing incident KOA. Manual segmentation of the central five slices of the medial and lateral meniscus was performed on coronal 3T DESS MRI and quantitative meniscus position was determined. Cases and controls were compared using conditional logistic regression adjusting for age, sex, BMI, race and clinical site. Sensitivity analyses of early (year [Y] 1/2) and late (Y3/4) incidence was performed. Results Mean medial extrusion distance was significantly greater for incident compared to non-incident knees (1.56 mean ± 1.12 mm SD vs 1.29 ± 0.99 mm; +21%, P meniscus (25.8 ± 15.8% vs 22.0 ± 13.5%; +17%, P meniscus in incident medial KOA, or for the tibial plateau coverage between incident and non-incident knees. Restricting the analysis to medial incident KOA at Y1/2 differences were attenuated, but reached significance for extrusion distance, whereas no significant differences were observed at incident KOA in Y3/4. Conclusion Greater medial meniscus extrusion predicts incident radiographic KOA. Early onset KOA showed greater differences for meniscus position between incident and non-incident knees than late onset KOA. PMID:26318658

  8. Quantitative measures of meniscus extrusion predict incident radiographic knee osteoarthritis--data from the Osteoarthritis Initiative.

    Science.gov (United States)

    Emmanuel, K; Quinn, E; Niu, J; Guermazi, A; Roemer, F; Wirth, W; Eckstein, F; Felson, D

    2016-02-01

    To test the hypothesis that quantitative measures of meniscus extrusion predict incident radiographic knee osteoarthritis (KOA), prior to the advent of radiographic disease. 206 knees with incident radiographic KOA (Kellgren Lawrence Grade (KLG) 0 or 1 at baseline, developing KLG 2 or greater with a definite osteophyte and joint space narrowing (JSN) grade ≥1 by year 4) were matched to 232 control knees not developing incident KOA. Manual segmentation of the central five slices of the medial and lateral meniscus was performed on coronal 3T DESS MRI and quantitative meniscus position was determined. Cases and controls were compared using conditional logistic regression adjusting for age, sex, BMI, race and clinical site. Sensitivity analyses of early (year [Y] 1/2) and late (Y3/4) incidence was performed. Mean medial extrusion distance was significantly greater for incident compared to non-incident knees (1.56 mean ± 1.12 mm SD vs 1.29 ± 0.99 mm; +21%, P meniscus (25.8 ± 15.8% vs 22.0 ± 13.5%; +17%, P meniscus in incident medial KOA, or for the tibial plateau coverage between incident and non-incident knees. Restricting the analysis to medial incident KOA at Y1/2 differences were attenuated, but reached significance for extrusion distance, whereas no significant differences were observed at incident KOA in Y3/4. Greater medial meniscus extrusion predicts incident radiographic KOA. Early onset KOA showed greater differences for meniscus position between incident and non-incident knees than late onset KOA. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  9. Reduction of Ochratoxin A in Oat Flakes by Twin-Screw Extrusion Processing.

    Science.gov (United States)

    Lee, Hyun Jung; Dahal, Samjhana; Perez, Enrique Garcia; Kowalski, Ryan Joseph; Ganjyal, Girish M; Ryu, Dojin

    2017-10-01

    Ochratoxin A (OTA) is one of the most important mycotoxins owing to its widespread occurrence and toxicity, including nephrotoxicity and potential carcinogenicity to humans. OTA has been detected in a wide range of agricultural commodities, including cereal grains and their processed products. In particular, oat-based products show a higher incidence and level of contamination. Extrusion cooking is widely used in the manufacturing of breakfast cereals and snacks and may reduce mycotoxins to varying degrees. Hence, the effects of extrusion cooking on the stability of OTA in spiked (100 μg/kg) oat flake was investigated by using a laboratory-scale twin-screw extruder with a central composite design. Factors examined were moisture content (20, 25, and 30% dry weight basis), temperature (140, 160, and 180°C), screw speed (150, 200, and 250 rpm), and die size (1.5, 2, and 3 mm). Both nonextruded and extruded samples were analyzed for reductions of OTA by high-performance liquid chromatography, coupled with fluorescence detection. The percentage of reductions in OTA in the contaminated oat flakes upon extrusion processing were in the range of 0 to 28%. OTA was partially stable during extrusion, with only screw speed and die size having significant effect on reduction (P < 0.005). The highest reduction of 28% was achieved at 180°C, 20% moisture, 250 rpm screw speed, and a 3-mm die with 193 kJ/kg specific mechanical energy. According to the central composite design analyses, up to 28% of OTA can be reduced by a combination of 162°C, 30% moisture, and 221 rpm, with a 3-mm die.

  10. Measurement of small-angle antiproton-proton and proton-proton elastic scattering at the CERN intersecting storage rings

    NARCIS (Netherlands)

    Amos, N.; Block, M.M.; Bobbink, G.J.; Botje, M.A.J.; Favart, D.; Leroy, C.; Linde, F.; Lipnik, P.; Matheys, J-P.; Miller, D.

    1985-01-01

    Antiproton-proton and proton-proton small-angle elastic scattering was measured for centre-of-mass energies at the CERN Intersectung Storage Rings. In addition, proton-proton elastic scattering was measured at . Using the optical theorem, total cross sections are obtained with an accuracy of about

  11. Proton and carbon ion therapy

    CERN Document Server

    Lomax, Tony

    2013-01-01

    Proton and Carbon Ion Therapy is an up-to-date guide to using proton and carbon ion therapy in modern cancer treatment. The book covers the physics and radiobiology basics of proton and ion beams, dosimetry methods and radiation measurements, and treatment delivery systems. It gives practical guidance on patient setup, target localization, and treatment planning for clinical proton and carbon ion therapy. The text also offers detailed reports on the treatment of pediatric cancers, lymphomas, and various other cancers. After an overview, the book focuses on the fundamental aspects of proton and carbon ion therapy equipment, including accelerators, gantries, and delivery systems. It then discusses dosimetry, biology, imaging, and treatment planning basics and provides clinical guidelines on the use of proton and carbon ion therapy for the treatment of specific cancers. Suitable for anyone involved with medical physics and radiation therapy, this book offers a balanced and critical assessment of state-of-the-art...

  12. Reduction of cyanogenic glycosides by extrusion - influence of temperature and moisture content of the processed material

    Directory of Open Access Journals (Sweden)

    Čolović Dušica S.

    2015-01-01

    Full Text Available Тhe paper presents results of the investigation of the influence of extrusion temperature and moisture content of treated material on the reduction of cyanogenic glycosides (CGs in linseed-based co-extrudate. CGs are the major limitation of the effective usage of linseed in animal nutrition. Hence, some technological process must be applied for detoxification of linseed before its application as a nutrient. Extrusion process has demonstrated several advantages in reducing the present CGs, since it combines the influences of heating, shearing, high pressure, mixing, etc. According to obtained results, the increase in both temperature and moisture content of the starting mixture decreased the content of CGs in the processed material. HCN content, as a measurement of GCs presence, ranged from 25.42 mg/kg, recorded at the moisture content of 11.5%, to 126 mg/kg, detected at the lowest moisture content of 7%. It seems that moisture content and temperature had the impact on HCN content of equal importance. However, the influence of extrusion parameters other than temperature and moisture content could not be neglected. Therefore, the impact of individual factors has to be tested together. [Projekat Ministarstva nauke Republike Srbije, br. III 46012

  13. Impacts of Scarification and Degermination on the Expansion Characteristics of Select Quinoa Varieties during Extrusion Processing.

    Science.gov (United States)

    Aluwi, Nicole A; Gu, Bon-Jae; Dhumal, Gaurav S; Medina-Meza, Ilce G; Murphy, Kevin M; Ganjyal, Girish M

    2016-12-01

    Extrusion of 2 quinoa varieties, Cherry Vanilla and Black (scarified and unscarified) and a mixed quinoa variety, Bolivian Royal (scarified and degermed) were studied for their extrusion characteristics. A corotating twin-screw extruder with a 3 mm round die was used. Feed moisture contents of 15%, 20%, and 25% (wet basis) were studied. The extruder barrel temperature was kept constant at 140 °C and screw speeds were varied from 100, 150, and 200 revolutions per minutes. Process responses (specific mechanical energy, back pressure, and torque) and product responses (expansion ratio, unit density, and water absorption index/water solubility index) were evaluated. The degermed Bolivian Royal showed the highest expansion in comparison to all other varieties, attributed to its significantly low levels of fat, fiber, and protein. The scarified Cherry Vanilla resulted in the lowest expansion ratio. This was attributed to the increase in the protein content from the removal of the outer layer. The results indicate that all the varieties performed differently in the extrusion process due to their modification processes as well as the individual variety characteristics. © 2016 Institute of Food Technologists®.

  14. Apical Extrusion of Debris Produced during Continuous Rotating and Reciprocating Motion

    Directory of Open Access Journals (Sweden)

    Giselle Nevares

    2015-01-01

    Full Text Available This study aimed to analyse and compare apical extrusion of debris in canals instrumented with systems used in reciprocating and continuous motion. Sixty mandibular premolars were randomly divided into 3 groups (n=20: the Reciproc (REC, WaveOne (WO, and HyFlex CM (HYF groups. One Eppendorf tube per tooth was weighed in advance on an analytical balance. The root canals were instrumented according to the manufacturer’s instructions, and standardised irrigation with 2.5% sodium hypochlorite was performed to a total volume of 9 mL. After instrumentation, the teeth were removed from the Eppendorf tubes and incubated at 37°C for 15 days to evaporate the liquid. The tubes were weighed again, and the difference between the initial and final weight was calculated to determine the weight of the debris. The data were statistically analysed using the Shapiro-Wilk, Wilcoxon, and Mann-Whitney tests (α=5%. All systems resulted in the apical extrusion of debris. Reciproc produced significantly more debris than WaveOne (p<0.05, and both systems produced a greater apical extrusion of debris than HyFlex CM (p<0.001. Cross section and motion influenced the results, despite tip standardization.

  15. Tribological investigations of the applicability of surface functionalization for dry extrusion processes

    Science.gov (United States)

    Teller, Marco; Prünte, Stephan; Ross, Ingo; Temmler, André; Schneider, Jochen M.; Hirt, Gerhard

    2017-10-01

    Cold extrusion processes are characterized by large relative contact stresses combined with a severe surface enlargement of the workpiece. Under these process conditions a high risk for galling of workpiece material to the tool steel occurs especially in processing of aluminum and aluminum alloys. In order to reduce adhesive wear lubricants for separation of workpiece and tool surfaces are used. As a consequence additional process steps (e.g. preparation and cleaning of workpieces) are necessary. Thus, the realization of a dry forming process is aspired from an environmental and economic perspective. In this paper a surface functionalization with self-assembled-monolayers (SAM) of the tool steels AISI D2 (DIN 1.2379) and AISI H11 (DIN 1.2343) is evaluated by a process-oriented tribological test. The tribological experiment is able to resemble and scale the process conditions of cold extrusion related to relative contact stress and surface enlargement for the forming of pure aluminum (Al99.5). The effect of reduced relative contact stress, surface enlargement and relative velocity on adhesive wear and tool lifetime is evaluated. Similar process conditions are achievable by different die designs with decreased extrusion ratios and adjusted die angles. The effect of surface functionalization critically depends on the substrate material. The different microstructure and the resulting differences in surface chemistry of the two tested tool steels appear to affect the performance of the tool surface functionalization with SAM.

  16. Application of extrusion technology to prepare bread crumb, a comparison with oven method

    International Nuclear Information System (INIS)

    Pasha, I.; Asim, M.

    2015-01-01

    The current research project was designed to conclude the upshot of extrusion cooking temperature on the properties and acceptability of bread crumb. Bread crumbs were obtained by drying the bread, maintaining moisture up to 3-8% and then broken down using hammer mill or crusher which breaks the bread into bread crumbs. Significantly highest moisture contents 7.26% was observed in oven baked bread crumb as compared to 6.25% in bread crumb prepared by extrusion cooking method. The highest bulk density (28.13 g/100 L) was observed in extruded bread crumb whereas, the oven baked bread crumbs showed lower bulk density (7.03 g/100 L). The fat uptake of extruded and oven baked bread crumbs were found 0.516 mg/g and 0.493 mg/g, respectively. The extruded bread crumb showed higher water binding capacity as 34.76 g H/sub 2/O/kg as compared to oven baked bread crumb which showed 27.92 g H/sub 2/O/kg. Sensory evaluation of extruded and oven baked bread crumbs depicted that bread crumbs prepared from extrusion cooking methods got significantly higher scores for taste, flavour and over all acceptability as compared to those prepared by oven baked method. As far as crispiness is concerned oven baked bread crumbs got comparatively higher scores. Moreover, it was concluded that the treatment T2 of extruded bread crumbs got more sensory scores than oven baked bread crumbs. (author)

  17. Inline monitoring and a PAT strategy for pharmaceutical hot melt extrusion.

    Science.gov (United States)

    Wahl, Patrick R; Treffer, Daniel; Mohr, Stefan; Roblegg, Eva; Koscher, Gerold; Khinast, Johannes G

    2013-10-15

    Implementation of continuous manufacturing in the pharmaceutical industry requires tight process control. This study focuses on a PAT strategy for hot melt extrusion of vegetable calcium stearate (CaSt) as matrix carrier and paracetamol as active pharmaceutical ingredient (API). The extrusion was monitored using in-line near-infrared (NIR) spectroscopy. A NIR probe was located in the section between the extrusion screws and the die, using a novel design of the die channel. A chemometric model was developed based on premixes at defined concentrations and was implemented in SIPAT for real time API concentration monitoring. Subsequently, step experiments were performed for different API concentrations, screw speeds and screw designs. The predicted API concentration was in good agreement with the pre-set concentrations. The transition from one API plateau to another was a smooth curve due to the mixing behaviour of the extruder. The accuracy of the model was confirmed via offline HPLC analysis. The screw design was determined as the main influential factor on content uniformity (CU). Additionally the influence of multiple feeders had a significant impact on CU. The results demonstrate that in-line NIR measurements is a powerful tool for process development (e.g., mixing characterization), monitoring and further control strategies. Copyright © 2013. Published by Elsevier B.V.

  18. Investigation of cold extrusion process using coupled thermo-mechanical FEM analysis and adaptive friction modeling

    Science.gov (United States)

    Görtan, Mehmet Okan

    2017-10-01

    Cold extrusion processes are known for their excellent material usage as well as high efficiency in the production of large batches. Although the process starts at room temperature, workpiece temperatures may rise above 200°C. Moreover, contact normal stresses can exceed 2500 MPa, whereas surface enlargement values can reach up to 30. These changes affects friction coefficients in cold extrusion processes. In the current study, friction coefficients between a plain carbon steel C4C (1.0303) and a tool steel (1.2379) are determined dependent on temperature and contact pressure using the sliding compression test (SCT). In order to represent contact normal stress and temperature effects on friction coefficients, an empirical adaptive friction model has been proposed. The validity of the model has been tested with experiments and finite element simulations for a cold forward extrusion process. By using the proposed adaptive friction model together with thermo-mechanical analysis, the deviation in the process loads between numerical simulations and model experiments could be reduced from 18.6% to 3.3%.

  19. The Coupling of Back-arc Extension, Extrusion and Subduction Dynamics in the Eastern Mediterranean

    Science.gov (United States)

    Capitanio, Fabio A.

    2017-04-01

    Extension in the Aegean Sea and lateral Anatolian extrusion are contrasting and seemingly unrelated examples of continental tectonics In the Eastern Mediterranean. It is acknowledged that these must reconcile with the dynamics of Tethys closure and following continental collision along the convergent margin, however the underlying mechanisms have been difficult to pinpoint, thus far. Three-dimensional numerical modelling of the dynamics of subduction and coupling with the mantle and upper plates allows probing the evolution of similar areas, supporting inferences on the ultimate causes for the continental tectonics. I will present models that reproduce the force balance of subducting slabs' buoyancy, mantle flow and upper plate interiors, and emphasise the role of perturbations in the force balance that may have followed slab breakoff, collision and trench land-locking reconstructed during the oceanic closure in the Eastern Mediterranean. These perturbations lead to a range of different margin motions and strain regimes in the upper plate, from rollback and back-arc spreading, to indentation and extrusion along the collisional margin. Different spatial and temporal fingerprints are illustrated for these processes, and while the trench rollback and back-arc spreading are rather stable features, extrusion is transient. When these regimes overlap, rapid and complex rearrangements of the tectonics in the upper plate are the result. The remarkable similarity between the models' and the Eastern Mediterranean tectonic regimes and geophysical observable allows proposing viable driving mechanisms and support inferences on the Miocene-to-Pliocene evolution of this puzzling area.

  20. Extrusion enhances metabolizable energy and ileal amino acids digestibility of canola meal for broiler chickens

    Directory of Open Access Journals (Sweden)

    Aljuobori Ahmed

    2014-01-01

    Full Text Available The aim of the current study was to determine the effect of extrusion process on apparent metabolizable energy (AME, crude protein (CP and amino acid (AA digestibility of canola meal (CM in broiler chickens. A total of 36, 42-day-old broilers were randomly assigned into adaptation diets (no CM or 30% CM with six replicates. After 4 days of adaptation period, on day 47, birds were allowed to consume the assay diets that contain CM or extruded canola meal (ECM as the sole source of energy and protein. Following 4 h after feeding, the birds were killed and ileal contents were collected. The results showed that ECM had greater (P<0.001 AME (10.87 vs 9.39 MJ/kg compared to CM. The extrusion also significantly enhanced apparent ileal digestibility of CP and some of AA such as Asp, Glu, Ser, Thr and Trp. In conclusion, the extrusion treatment appeared to be a practical and effective approach in enhancing the digestibility of AME, CP and some AA of CM in broiler chickens.

  1. Study to elucidate formation pathways of selected roast-smelling odorants upon extrusion cooking.

    Science.gov (United States)

    Davidek, Tomas; Festring, Daniel; Dufossé, Thierry; Novotny, Ondrej; Blank, Imre

    2013-10-30

    The formation pathways of the N-containing roast-smelling compounds 2-acetyl-1-pyrroline, 2-acetyl-1(or 3),4,5,6-tetrahydropyridine, and their structural analogues 2-propionyl-1-pyrroline and 2-propionyl-1(or 3),4,5,6-tetrahydropyridine were studied upon extrusion cooking using the CAMOLA approach. The samples were produced under moderate extrusion conditions (135 °C, 20% moisture, 400 rpm) employing a rice-based model recipe enriched with flavor precursors ([U-(13)C6]-D-glucose, D-glucose, glycine, L-proline, and L-ornithine). The obtained data indicate that the formation of these compounds upon extrusion follows pathways similar to those reported for nonsheared model systems containing D-glucose and L-proline. 2-Acetyl-1-pyrroline is formed (i) by acylation of 1-pyrroline via C2 sugar fragments (major pathway) and (ii) via ring-opening of 1-pyrroline incorporating C3 sugar fragments (minor pathway), whereas 2-propionyl-1-pyrroline incorporates exclusively C3 sugar fragments. 2-Acetyl-1(or 3),4,5,6-tetrahydropyridine and the corresponding propionyl analogue incorporate C3 and C4 sugar fragments, respectively. In addition, it has been shown that the formation of 2-acetyl-1-pyrroline in low-moisture systems depends on the pH value of the reaction mixture.

  2. An upper bound solution for the spread extrusion of elliptical sections

    International Nuclear Information System (INIS)

    Abrinia, K.; Makaremi, M.

    2007-01-01

    The three dimensional problem of extrusion of elliptical sections with side material flow or spread has been formulated using the upper bound theory. The shape of the die for such a process is such that it could allow the material to flow sideways as well as in the forward direction. When flat faced dies are used a deforming region is developed with dead metal zones. Therefore this deforming region has been represented in the formulation based on the definitions of streamlines and stream surfaces. A generalized kinematically admissible velocity field was then derived for this formulation and strain rate components obtained for the upper bound solution. The general formulation for the deforming region and the velocity and strain rate fields allow for the optimization of the upper bound solution so that the nearest geometry of the deforming region and dead metal zone to the actual one was obtained.Using this geometry a die with similar surfaces to those of the dead metal zone is designed having converging and diverging surfaces to lead the material flow. The analysis was also carried out for this die and results were obtained showing a reduction in the extrusion pressure compared to the flat faced die. Effects of reduction of area, shape complexity, spread ratio and friction on the extrusion process were also investigated

  3. Improving the automated optimization of profile extrusion dies by applying appropriate optimization areas and strategies

    Science.gov (United States)

    Hopmann, Ch.; Windeck, C.; Kurth, K.; Behr, M.; Siegbert, R.; Elgeti, S.

    2014-05-01

    The rheological design of profile extrusion dies is one of the most challenging tasks in die design. As no analytical solution is available, the quality and the development time for a new design highly depend on the empirical knowledge of the die manufacturer. Usually, prior to start production several time-consuming, iterative running-in trials need to be performed to check the profile accuracy and the die geometry is reworked. An alternative are numerical flow simulations. These simulations enable to calculate the melt flow through a die so that the quality of the flow distribution can be analyzed. The objective of a current research project is to improve the automated optimization of profile extrusion dies. Special emphasis is put on choosing a convenient starting geometry and parameterization, which enable for possible deformations. In this work, three commonly used design features are examined with regard to their influence on the optimization results. Based on the results, a strategy is derived to select the most relevant areas of the flow channels for the optimization. For these characteristic areas recommendations are given concerning an efficient parameterization setup that still enables adequate deformations of the flow channel geometry. Exemplarily, this approach is applied to a L-shaped profile with different wall thicknesses. The die is optimized automatically and simulation results are qualitatively compared with experimental results. Furthermore, the strategy is applied to a complex extrusion die of a floor skirting profile to prove the universal adaptability.

  4. Study on the combustion behavior of high impact polystyrene nanocomposites produced by different extrusion processes

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available The combustion behavior of a blend made of high impact polystyrene (HIPS with sodium montmorillonite (MMT-Na+ and triphenyl phosphite (TPP, as a halogen-free flame retardant, is analyzed in detail in this work. The blend is processed through various extrusion methods aimed to improve clay dispersion. The UL94 method in vertical position, oxygen index and cone calorimetric measurements assess HIPS blend behavior in combustion. TGA, FTIR, SEM and X-ray measurements, together with mechanical and rheological tests evaluate the thermal degradation, morphology, intercalation and degree of dispersion of particles. The use of a static-mixing die placed at the extreme of a single screw extruder improves clay platelets distribution and reduces the peak heat release rate better than employing a twin screw extrusion process. In addition, mechanical and rheological properties are affected substantially by changing the extrusion process. A correlation between clay dispersion and HIPS fire retardant properties is found, as the peak heat release rate decreases with good clay dispersion in cone calorimetric tests.

  5. Rapid production of hollow SS316 profiles by extrusion based additive manufacturing

    Science.gov (United States)

    Rane, Kedarnath; Cataldo, Salvatore; Parenti, Paolo; Sbaglia, Luca; Mussi, Valerio; Annoni, Massimiliano; Giberti, Hermes; Strano, Matteo

    2018-05-01

    Complex shaped stainless steel tubes are often required for special purpose biomedical equipment. Nevertheless, traditional manufacturing technologies, such as extrusion, lack the ability to compete in a market of customized complex components because of associated expenses towards tooling and extrusion presses. To rapid manufacture few of such components with low cost and high precision, a new Extrusion based Additive Manufacturing (EAM) process, is proposed in this paper, and as an example, short stainless steel 316L complex shaped and sectioned tubes were prepared by EAM. Several sample parts were produced using this process; the dimensional stability, surface roughness and chemical composition of sintered samples were investigated to prove process competence. The results indicate that feedstock with a 316L particle content of 92.5 wt. % can be prepared with a sigma blade mixing, whose rheological behavior is fit for EAM. The green samples have sufficient strength to handle them for subsequent treatments. The sintered samples considerably shrunk to designed dimensions and have a homogeneous microstructure to impart mechanical strength. Whereas, maintaining comparable dimensional accuracy and chemical composition which are required for biomedical equipment still need iterations, a kinematic correction and modification in debinding cycle was proposed.

  6. A Miniaturized Extruder to Prototype Amorphous Solid Dispersions: Selection of Plasticizers for Hot Melt Extrusion.

    Science.gov (United States)

    Lauer, Matthias E; Maurer, Reto; Paepe, Anne T De; Stillhart, Cordula; Jacob, Laurence; James, Rajesh; Kojima, Yuki; Rietmann, Rene; Kissling, Tom; van den Ende, Joost A; Schwarz, Sabine; Grassmann, Olaf; Page, Susanne

    2018-05-19

    Hot-melt extrusion is an option to fabricate amorphous solid dispersions and to enhance oral bioavailability of poorly soluble compounds. The selection of suitable polymer carriers and processing aids determines the dissolution, homogeneity and stability performance of this solid dosage form. A miniaturized extrusion device (MinEx) was developed and Hypromellose acetate succinate type L (HPMCAS-L) based extrudates containing the model drugs neurokinin-1 (NK1) and cholesterylester transfer protein (CETP) were manufactured, plasticizers were added and their impact on dissolution and solid-state properties were assessed. Similar mixtures were manufactured with a lab-scale extruder, for face to face comparison. The properties of MinEx extrudates widely translated to those manufactured with a lab-scale extruder. Plasticizers, Polyethyleneglycol 4000 (PEG4000) and Poloxamer 188, were homogenously distributed but decreased the storage stability of the extrudates. Stearic acid was found condensed in ultrathin nanoplatelets which did not impact the storage stability of the system. Depending on their distribution and physicochemical properties, plasticizers can modulate storage stability and dissolution performance of extrudates. MinEx is a valuable prototyping-screening method and enables rational selection of plasticizers in a time and material sparing manner. In eight out of eight cases the properties of the extrudates translated to products manufactured in lab-scale extrusion trials.

  7. Microstructure of titanium deformed by warm extrusion with forward- backward rotating die

    International Nuclear Information System (INIS)

    Sztwiertnia, K; Morawiec, A; Bieda, M; Kawałko, J

    2014-01-01

    The principal KoBo device is a press with a forward-backward rotating die, enabling the extrusion of ingots under conditions of constant destabilization of their substructure. Polycrystalline grade 2 titanium was subjected to warm KoBo type extrusion. Microstructure of the material was investigated by means of Electron Backscatter Diffraction (EBSD) in the scanning electron microscope. It clearly shows deformation-induced grain fragmentation. The EBSD maps reveal heterogeneous microstructure built of ribbons curled about the extrusion direction (ED) and some equiaxed or cigar-like grains. Sizes of grains vary in the range 70 – 1500 nm for the minor axis and 350 – 20000 nm for the major axis. The material has a relatively sharp nearly axial texture with the <0001> axis perpendicular to ED. In misorientation angle distribution, besides the peak at low angle boundaries, there are three other peaks at about: 29.7deg, 89.7deg and 93.2deg. They do not correspond to any twin boundaries or low Σ coincidence site lattice misorientations

  8. Hot Melt Extrusion and Spray Drying of Co-amorphous Indomethacin-Arginine With Polymers.

    Science.gov (United States)

    Lenz, Elisabeth; Löbmann, Korbinian; Rades, Thomas; Knop, Klaus; Kleinebudde, Peter

    2017-01-01

    Co-amorphous drug-amino acid systems have gained growing interest as an alternative to common amorphous formulations which contain polymers as stabilizers. Several preparation methods have recently been investigated, including vibrational ball milling on a laboratory scale or spray drying in a larger scale. In this study, the feasibility of hot melt extrusion for continuous manufacturing of co-amorphous drug-amino acid formulations was examined, challenging the fact that amino acids melt with degradation at high temperatures. Furthermore, the need for an addition of a polymer in this process was evaluated. After a polymer screening via the solvent evaporation method, co-amorphous indomethacin-arginine was prepared by a melting-solvent extrusion process without and with copovidone. The obtained products were characterized with respect to their solid-state properties, non-sink dissolution behavior, and stability. Results were compared to those of spray-dried formulations with the same compositions and to spray-dried indomethacin-copovidone. Overall, stable co-amorphous systems could be prepared by extrusion without or with copovidone, which exhibited comparable molecular interaction properties to the respective spray-dried products, while phase separation was detected by differential scanning calorimetry in several cases. The formulations containing indomethacin in combination with arginine and copovidone showed enhanced dissolution behavior over the formulations with only copovidone or arginine. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  9. Modelling the Thermo-Mechanical Behavior of Magnesium Alloys during Indirect Extrusion

    International Nuclear Information System (INIS)

    Steglich, D.; Ertuerk, S.; Bohlen, J.; Letzig, D.; Brocks, W.

    2010-01-01

    One of the basic metal forming process for semi-finished products is extrusion. Since extrusion involves complex thermo-mechanical and multiaxial loading conditions resulting in large strains, high strain rates and an increase in temperature due to deformation, a proper yield criterion and hardening law should be used in the numerical modelling of the process. A phenomenological model based on a plastic potential has been proposed that takes strain, strain rate and temperature dependency on flow behaviour into consideration. A hybrid methodology of experiment and finite element simulation has been adopted in order to obtain necessary model parameters. The anisotropy/asymmetry in yielding was quantified by tensile and compression tests of specimens prepared from different directions. The identification of the corresponding model parameters was performed by a genetic algorithm. A fully coupled thermo-mechanical analysis has been used in extrusion simulations for calculation of the temperature field by considering heat fluxes and heat generated due to plastic deformation. The results of the approach adopted in this study appeared to be successful showing promising predictions of the experiments and thus may be extended to be applicable to other magnesium alloys or even other hcp metals.

  10. A Novel Continuous Extrusion Process to Fabricate Wedge-Shaped Light Guide Plates

    Directory of Open Access Journals (Sweden)

    Wen-Tse Hsiao

    2013-01-01

    Full Text Available Backlight modules are key components in thin-film transistor liquid crystal displays (TFT-LCD. Among the components of a backlight module, the light guide plate (LGP plays the most important role controlling the light projected to the eyes of users. A wedge-shaped LGP, with its asymmetrical structure, is usually fabricated by an injection proces, but the fabrication time of this process is long. This study proposes a continuous extrusion process to fabricate wedge-shaped LGPs. This continuous process has advantages for mass production. Besides a T-die and rollers, this system also has an in situ monitor of the melt-bank that forms during the extrusion process, helping control the plate thickness. Results show that the melt bank has a close relationship with the plate thickness. The temperature of the bottom heater and roller was adjusted to reduce the surface deformation of the wedge-shaped plate. This continuous extrusion system can successfully manufacture wedge-shaped LGPs for mass production.

  11. Characterization of ultra-fine grained aluminum produced by accumulative back extrusion (ABE)

    International Nuclear Information System (INIS)

    Alihosseini, H.; Faraji, G.; Dizaji, A.F.; Dehghani, K.

    2012-01-01

    In the present work, the microstructural evolutions and microhardness of AA1050 subjected to one, two and three passes of accumulative back extrusion (ABE) were investigated. The microstructural evolutions were characterized using transmission electron microscopy. The results revealed that applying three passes of accumulative back extrusion led to significant grain refinement. The initial grain size of 47 μm was refined to the grains of 500 nm after three passes of ABE. Increasing the number of passes resulted in more decrease in grain size, better microstructure homogeneity and increase in the microhardness. The cross-section of ABEed specimen consisted of two different zones: (i) shear deformation zone, and (ii) normal deformation zone. The microhardness measurements indicated that the hardness increased from the initial value of 31 Hv to 67 Hv, verifying the significant microstructural refinement via accumulative back extrusion. - Highlights: ► A significant grain refinement can be achieved in AA1050, Al alloy by applying ABE. ► Microstructural homogeneity of ABEed samples increased by increasing the number of ABE cycles. ► A substantial increase in the hardness, from 31 Hv to 67 Hv, was recorded.

  12. Structure-Property Correlations in Al-Li Alloy Integrally Stiffened Extrusions

    Science.gov (United States)

    Hales, Stephen J.; Hafley, Robert A.

    2001-01-01

    The objective of this investigation was to establish the relationship between mechanical property anisotropy, microstructure and crystallographic texture in integrally 'T'-stiffened extruded panels fabricated from the Al-Li alloys 2195, 2098 and 2096. In-plane properties were measured as a function of orientation at two locations in the panels, namely mid-way between (Skin), and directly beneath (Base), the integral 'T' stiffeners. The 2195 extrusion exhibited the best combination of strength and toughness, but was the most anisotropic. The 2098 extrusion exhibited lower strength and comparable toughness, but was more isotropic than 2195. The 2096 extrusion exhibited the lowest strength and poor toughness, but was the most isotropic. All three alloys exhibited highly elongated grain structures and similar location-dependent variations in grain morphology. The textural characteristics comprised a beta + fiber texture, similar to rolled product, in the Skin regions and alpha + fiber texture, comparable to axisymmetric extruded product, in the Base regions. In an attempt to quantitatively correlate texture with yield strength anisotropy, the original 'full constraint' Taylor model and a variant of the 'relaxed constraint' model, explored by Wert et al., were applied to the data. A comparison of the results revealed that the Wert model was consistently more accurate than the Taylor model.

  13. Effects of extrusion, infrared and microwave processing on Maillard reaction products and phenolic compounds in soybean.

    Science.gov (United States)

    Zilić, Slađana; Mogol, Burçe Ataç; Akıllıoğlu, Gül; Serpen, Arda; Delić, Nenad; Gökmen, Vural

    2014-01-15

    The Maillard reaction indicators furosine, hydroxymethylfurfural (HMF), acrylamide and color were determined to evaluate heat effects induced during extrusion, infrared and microwave heating of soybean. In addition, the present paper aimed to study changes in the phenolic compounds, as well as in the overall antioxidant properties of different soybean products in relation to heating at 45-140 °C during the processes. Soybean proteins were highly sensible to Maillard reaction and furosine was rapidly formed under slight heating conditions during extrusion and infrared heating. Microwave heating at lower temperatures for a longer time yielded lower acrylamide levels in the final soybean products, as a result of its partial degradation. However, during infrared heating, acrylamide formation greatly increased with decreasing moisture content. After a short time of extrusion and infrared heating at 140 °C and microwave heating at 135 °C for 5 min, concentrations of HMF increased to 11.34, 26.21 and 34.97 µg g(-1), respectively. The heating conditions caused formation of acrylamide, HMF and furosine in high concentration. The results indicate that the complex structure of soybeans provides protection of phenolic compounds from thermal degradation, and that Maillard reaction products improved the antioxidant properties of heat-treated soybean. © 2013 Society of Chemical Industry.

  14. The Effects of Fortification of Legumes and Extrusion on the Protein Digestibility of Wheat Based Snack.

    Science.gov (United States)

    Patil, Swapnil S; Brennan, Margaret A; Mason, Susan L; Brennan, Charles S

    2016-04-06

    Cereal food products are an important part of the human diet with wheat being the most commonly consumed cereal in many parts of the world. Extruded snack products are increasing in consumer interest due to their texture and ease of use. However, wheat based foods are rich in starch and are associated with high glycaemic impact products. Although legume materials are generally rich in fibre and protein and may be of high nutritive value, there is a paucity of research regarding their use in extruded snack food products. The aim of this study was to prepare wheat-based extrudates using four different legume flours: lentil, chickpea, green pea, and yellow pea flour. The effects of adding legumes to wheat-based snacks at different levels (0%, 5%, 10%, and 15%) during extrusion were investigated in terms of protein digestibility. It was observed that fortification of snacks with legumes caused a slight increase in the protein content by 1%-1.5% w/w, and the extrusion technique increased the protein digestibility by 37%-62% w/v. The product developed by extrusion was found to be low in fat and moisture content.

  15. Extrusion cooking technology: Principal mechanism and effect on direct expanded snacks – An overview

    Directory of Open Access Journals (Sweden)

    Ajita Tiwari

    2017-04-01

    Full Text Available The snack industry is one of the fastest growing food sectors and is an important contributor within the global convenience food market. Nowadays snacks and convenience foods are also consumed regularly in India. Properly designed convenience foods can make an important contribution to nutrition in societies where social changes are altering traditional patterns of food preparation. Extrusion cooking as a popular means of preparing snack foods based on cereals and plant protein foodstuff has elicited considerable interest and attention over the past 30 years. Several studies on the extrusion of cereals and pulses, using various proportions, have been conducted because blends of cereals and pulses produce protein enriched products. Special importance is placed on the physicochemical and chemical modifications of protein, starch and dietary fibre. Extruded products can be categorized for a particular application based on their functional properties such as water absorption and water solubility index, expansion ratio, bulk density and viscosity of the dough.Therefore, the literature was reviewed for effect of extrusion processing on product parameters, and nutritional and anti-nutritional properties of extruded products.

  16. The Effects of Fortification of Legumes and Extrusion on the Protein Digestibility of Wheat Based Snack

    Directory of Open Access Journals (Sweden)

    Swapnil S. Patil

    2016-04-01

    Full Text Available Cereal food products are an important part of the human diet with wheat being the most commonly consumed cereal in many parts of the world. Extruded snack products are increasing in consumer interest due to their texture and ease of use. However, wheat based foods are rich in starch and are associated with high glycaemic impact products. Although legume materials are generally rich in fibre and protein and may be of high nutritive value, there is a paucity of research regarding their use in extruded snack food products. The aim of this study was to prepare wheat-based extrudates using four different legume flours: lentil, chickpea, green pea, and yellow pea flour. The effects of adding legumes to wheat-based snacks at different levels (0%, 5%, 10%, and 15% during extrusion were investigated in terms of protein digestibility. It was observed that fortification of snacks with legumes caused a slight increase in the protein content by 1%–1.5% w/w, and the extrusion technique increased the protein digestibility by 37%–62% w/v. The product developed by extrusion was found to be low in fat and moisture content.

  17. [Effect of high magnesium ion concentration on the electron transport rate and proton exchange in thylakoid membranes in higher plants].

    Science.gov (United States)

    Ignat'ev, A R; Khorobrykh, S A; Ivanov, B N

    2001-01-01

    The effects of magnesium ion concentration on the rate of electron transport in isolated pea thylakoids were investigated in the pH range from 4.0 up to 8.0. In the absence of magnesium ions in the medium and in the presence of 5 mM MgCl2 in the experiments not only without added artificial acceptors but also with ferricyanide or methylviologen as an acceptor, this rate had a well-expressed maximum at pH 5.0. It was shown that, after depression to minimal values at pH 5.5-6.5, it gradually rose with increasing pH. An increase in magnesium ion concentration up to 20 mM essentially affected the electron transfer rate: it decreased somewhat at pH 4.0-5.0 but increased at higher pH values. At this magnesium ion concentration, the maximum rate was at pH 6.0-6.5 and the minimum, at pH 7.0. Subsequent rise upon increasing pH to 8.0 was expressed more sharply. The influence of high magnesium ion concentration on the rate of electron transport was not observed in the presence of gramicidin D. It was found that without uncoupler, the changes in the electron transfer rate under the influence of magnesium ions correlated to the changes in the first-order rate constant of the proton efflux from thylakoids. It is supposed that the change in the ability of thylakoids to keep protons by the action of magnesium ions is the result of electrostatic interactions of these ions with the charges on the external surface of membranes. A possible role of regulation of the electron transport rate by magnesium ions in vivo is discussed.

  18. The PIREX proton irradiation facility

    International Nuclear Information System (INIS)

    Victoria, M.

    1995-01-01

    The proton Irradiation Experiment (PIREX) is a materials irradiation facility installed in a beam line of the 590 MeV proton accelerator at the Paul Scherrer Institute. Its main purpose is the testing of candidate materials for fusion reactor components. Protons of this energy produce simultaneously displacement damage and spallation products, amongst them helium and can therefore simulate any possible synergistic effects of damage and helium, that would be produced by the fusion neutrons

  19. The PIREX proton irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Victoria, M. [Association EURATOM, Villigen (Switzerland)

    1995-10-01

    The proton Irradiation Experiment (PIREX) is a materials irradiation facility installed in a beam line of the 590 MeV proton accelerator at the Paul Scherrer Institute. Its main purpose is the testing of candidate materials for fusion reactor components. Protons of this energy produce simultaneously displacement damage and spallation products, amongst them helium and can therefore simulate any possible synergistic effects of damage and helium, that would be produced by the fusion neutrons.

  20. Search for proton decay: introduction

    International Nuclear Information System (INIS)

    Goldhaber, M.

    1984-01-01

    In interpreting contained events observed in various proton decay detectors one can sometimes postulate, though usually not unambiguously, a potential decay mode of the proton, called a candidate. It is called a candidate, because for any individual event it is not possible to exclude the possibility that it is instead due to cosmic ray background, chiefly atmospheric neutrinos. Some consistency checks are proposed which could help establish proton decay, if it does occur in the presently accessible lifetime window

  1. Sea Quarks in the Proton

    Directory of Open Access Journals (Sweden)

    Reimer Paul E

    2016-01-01

    Full Text Available The proton is a composite particle in which the binding force is responsible for the majority of its mass. To understand this structure, the distributions and origins of the quark-antiquark pairs produced by the strong force must be measured. The SeaQuest collaboration is using the Drell-Yan process to elucidate antiquark distributions in the proton and to study their modification when the proton is held within a nucleus.

  2. Proton irradiation and endometriosis

    International Nuclear Information System (INIS)

    Wood, D.H.; Yochmowitz, M.G.; Salmon, Y.L.; Eason, R.L.; Boster, R.A.

    1983-01-01

    Female rhesus monkeys given single total-body exposures of protons of varying energies developed endometriosis at a frequency significantly higher than that of nonirradiated animals of the same age. The minimum latency period was 7 years after exposure. The doses and energies of the radiation received were within the range that could be received by an aircrew member in near-earth orbit during a random solar flare event, leading to the conclusion that endometriosis should be a consideration in assessing the risk of delayed radiation effects in female crewmembers

  3. Proton nuclear scattering radiography

    International Nuclear Information System (INIS)

    Duchazeaubeneix, J.C.; Faivre, J.C.; Garreta, D.

    1982-10-01

    Nuclear scattering of protons allows to radiograph objects with specific properties: direct 3- dimensional radiography, different information as compared to X-ray technique, hydrogen radiography. Furthermore, it is a well adapted method to gating techniques allowing the radiography of fast periodic moving systems. Results obtained on different objects (light and heavy materials) are shown and discussed. The dose delivery is compatible with clinical use, but at the moment, the irradiation time is too long between 1 and 4 hours. Perspectives to make the radiography faster and to get a practical method are discussed

  4. Proton nuclear scattering radiography

    International Nuclear Information System (INIS)

    Saudinos, J.

    1982-04-01

    Nuclear scattering of protons allows to radiograph objects with specific properties: 3-dimensional radiography, different information as compared to X-ray technique, hydrogen radiography. Furthermore the nuclear scattering radiography (NSR) is a well adapted method to gating techniques allowing the radiography of fast periodic moving objects. Results obtained on phantoms, formalin fixed head and moving object are shown and discussed. The dose delivery is compatible with clinical use, but at the moment, the irradiation time is too long between 1 and 4 hours. Perspectives to make the radiograph faster and to get a practical method are discussed

  5. Proton relativistic model

    International Nuclear Information System (INIS)

    Araujo, Wilson Roberto Barbosa de

    1995-01-01

    In this dissertation, we present a model for the nucleon, which is composed by three relativistic quarks interacting through a contract force. The nucleon wave-function was obtained from the Faddeev equation in the null-plane. The covariance of the model under kinematical null-plane boots is discussed. The electric proton form-factor, calculated from the Faddeev wave-function, was in agreement with the data for low-momentum transfers and described qualitatively the asymptotic region for momentum transfers around 2 GeV. (author)

  6. Effect of materials and temperature on the forward extrusion of magnesium alloys

    International Nuclear Information System (INIS)

    Chandrasekaran, Margam; John, Yong Ming Shyan

    2004-01-01

    Magnesium alloys are being extensively used in weight-saving applications and as a potential replacement for plastics in electronic and computer applications. However, processing of magnesium has always been a challenge for manufacturing industries owing to their high brittleness despite their good EMI shielding property and high specific strength. Despite these advantages, they are limited by their processability. The present work aims to evaluate lower temperature formability of magnesium alloys. Three different materials were selected for axisymmetric extrusion tests, namely AZ31, AZ61 and the forging alloy, ZK 60. To establish the size and capacity of the press required to perform these forming trials and to know the formability, simulation using finite element analysis was carried on a representative material AZ31 using the properties established based on earlier work. A die set with a die shoe was designed to perform the forward extrusion trials. The area reduction ratio for forward extrusion was fixed at 41% for the die design and simulation. The maximum strain is given as ln(A o /A f ) ∼ 0.88 in the case of forward extrusion. The temperature was varied with a temperature controller built in-house from room temperature (RT) to 300 deg.C. However, the results provided below only include the tests carried out at RT, 100, 150, 175 and 200 deg.C. Although the forming trials were successful above 200 deg.C, there was difficulty in removing the specimens from the die cavity. Secondly, the process of removing the samples in the case of AZ31 and ZK 60 resulted in cracking, so it was difficult to evaluate the samples and the process. However, AZ61 samples did not show any evidence of crack formation during ejection of the formed sample. Simulation results and experimental trials showed that magnesium (AZ31) could be easily formed at elevated temperatures of 300 deg.C. Though there was a good correlation on the yield point prediction between simulation and

  7. Proton-proton bremsstrahlung towards the elastic limit

    Science.gov (United States)

    Mahjour-Shafiei, M.; Amir-Ahmadi, H. R.; Bacelar, J. C. S.; Castelijns, R.; Ermisch, K.; van Garderen, E.; Gašparić, I.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Kiš, M.; Löhner, H.

    2005-05-01

    In oder to study proton-proton bremsstrahlung moving towards the elastic limit, a detection system, consisting of Plastic-ball and SALAD, was set up and an experiment at 190 MeV incident beam energy was performed. Here, the experimental setup and the data analysis procedure along with some results obtained in the measurement are discussed.

  8. Proton-proton bremsstrahlung towards the elastic limit

    International Nuclear Information System (INIS)

    Mahjour-Shafiei, M.; Amir-Ahmadi, H.R.; Bacelar, J.C.S.; Castelijns, R.; Ermisch, K.; Garderen, E. van; Harakeh, M.N.; Kalantar-Nayestanaki, N.; Kis, M.; Loehner, H.; Gasparic, I.

    2005-01-01

    In oder to study proton-proton bremsstrahlung moving towards the elastic limit, a detection system, consisting of Plastic-ball and SALAD, was set up and an experiment at 190 MeV incident beam energy was performed. Here, the experimental setup and the data analysis procedure along with some results obtained in the measurement are discussed

  9. The FAIR proton linac

    International Nuclear Information System (INIS)

    Kester, O.

    2015-01-01

    FAIR - the Facility for Antiproton and Ion Research in Europe - constructed at GSI in Darmstadt comprises an international centre of heavy ion accelerators that will drive heavy ion and antimatter research. FAIR will provide worldwide unique accelerator and experimental facilities, allowing a large variety of fore-front research in physics and applied science. FAIR will deliver antiproton and ion beams of unprecedented intensities and qualities. The main part of the FAIR facility is a sophisticated accelerator system, which delivers beams to different experiments of the FAIR experimental collaborations - APPA, NuSTAR, CBM and PANDA - in parallel. Modern H-type cavities offer highest shunt impedances of resonant structures of heavy ion linacs at low beam energies < 20 MeV/u and enable the acceleration of intense proton and ion beams. One example is the interdigital H-type structure. The crossed-bar H-cavities extend these properties to high energies even beyond 100 MeV/u. Compared to conventional Alvarez cavities, these crossed-bar (CH) cavities feature much higher shunt impedance at low energies. The design of the proton linac is based on those cavities

  10. Proton minibeam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Girst, Stefanie

    2016-03-08

    The risk of developing adverse side effects in the normal tissue after radiotherapy is often limiting for the dose that can be applied to the tumor. Proton minibeam radiotherapy, a spatially fractionated radiotherapy method using sub-millimeter proton beams, similar to grid therapy or microbeam radiation radiotherapy (MRT) using X-rays, has recently been invented at the ion microprobe SNAKE in Munich. The aim of this new concept is to minimize normal tissue injuries in the entrance channel and especially in the skin by irradiating only a small percentage of the cells in the total irradiation field, while maintaining tumor control via a homogeneous dose in the tumor, just like in conventional broad beam radiotherapy. This can be achieved by optimizing minibeam sizes and distances according to the prevailing tumor size and depth such that after widening of the minibeams due to proton interactions in the tissue, the overlapping minibeams produce a homogeneous dose distribution throughout the tumor. The aim of this work was to elucidate the prospects of minibeam radiation therapy compared to conventional homogeneous broad beam radiotherapy in theory and in experimental studies at the ion microprobe SNAKE. Treatment plans for model tumors of different sizes and depths were created using the planning software LAPCERR, to elaborate suitable minibeam sizes and distances for the individual tumors. Radiotherapy-relevant inter-beam distances required to obtain a homogeneous dose in the target volume were found to be in the millimeter range. First experiments using proton minibeams of only 10 μm and 50 μm size (termed microchannels in the corresponding publication Zlobinskaya et al. 2013) and therapy-conform larger dimensions of 100 μm and 180 μm were performed in the artificial human in-vitro skin model EpiDermFT trademark (MatTek). The corresponding inter-beam distances were 500 μm, 1mm and 1.8 mm, respectively, leading to irradiation of only a few percent of the cells

  11. Berkeley Proton Linear Accelerator

    Science.gov (United States)

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  12. A Comparison of Apical Bacterial Extrusion in Manual, ProTaper Rotary, and One Shape Rotary Instrumentation Techniques.

    Science.gov (United States)

    Mittal, Rakesh; Singla, Meenu G; Garg, Ashima; Dhawan, Anu

    2015-12-01

    Apical extrusion of irrigants and debris is an inherent limitation associated with cleaning and shaping of root canals and has been studied extensively because of its clinical relevance as a cause of flare-ups. Many factors affect the amount of extruded intracanal materials. The purpose of this study was to assess the bacterial extrusion by using manual, multiple-file continuous rotary system (ProTaper) and single-file continuous rotary system (One Shape). Forty-two human mandibular premolars were inoculated with Enterococcus faecalis by using a bacterial extrusion model. The teeth were divided into 3 experimental groups (n = 12) and 1 control group (n = 6). The root canals of experimental groups were instrumented according to the manufacturers' instructions by using manual technique, ProTaper rotary system, or One Shape rotary system. Sterilized saline was used as an irrigant, and bacterial extrusion was quantified as colony-forming units/milliliter. The results obtained were statistically analyzed by using one-way analysis of variance for intergroup comparison and post hoc Tukey test for pair-wise comparison. The level for accepting statistical significance was set at P step-back technique exhibiting significantly more bacterial extrusion than the engine-driven systems. Of the 2 engine-driven systems, ProTaper rotary extruded significantly more bacteria than One Shape rotary system (P engine-driven nickel-titanium systems were associated with less apical extrusion. The instrument design may play a role in amount of extrusion. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Efeito do cozimento por extrusão na estabilidade oxidativa de produtos de moagem de aveia Extrusion cooking effects on oxidative stability of oat coarse milling product

    Directory of Open Access Journals (Sweden)

    Luiz Carlos Gutkoski

    1999-01-01

    Full Text Available O objetivo do presente trabalho foi estudar os efeitos de umidade e de temperatura de extrusão na estabilidade oxidativa de produtos de aveia (Avena sativa L.. Cariopses de aveia foram moídas em moinho de rolos Brabender e obtidas frações de granulometrias superior e inferior a 532 mim. A fração de granulometria superior a 532 mm, de alto teor de proteínas, lipídios e fibra alimentar, foi condicionada na umidade desejada (15,5-25,5% e extrusada em extrusor de laboratório Brabender monorosca. As condições usadas na extrusão foram taxa de compressão de 3:1, rotação de 100 rpm, matriz de 6 mm de diâmetro e temperaturas entre 77,6 e 162,4°C nas 2ª e 3ª zonas e de 80°C na 1ª zona. O material extrusado foi seco em estufa, moído, acondicionado em sacos de plástico e utilizado periodicamente nas determinações de peróxidos e de n-hexanal. O óleo da fração estudada apresentou quantidade relativamente alta de ácidos graxos insaturados (79,47%, sendo linoléico o principal representante. Independentemente do conteúdo inicial de umidade, todos os produtos extrusados em temperaturas inferiores a 120°C apresentaram baixa rancidez oxidativa, ou seja, essas temperaturas se mostraram adequadas ao processamento de aveia.The objective of the present research was to study the effects of extrusion cooking on oxidative stability of oat (Avena sativa L. milling product. The dehulled grains were ground in a Brabender Quadrumat Senior mill and separated in two fractions, coarse over 532 mm and fine less than 532 mum. The coarse fraction, with higher amount of crude protein, lipids and dietary fiber content was conditioned to moisture levels (15.5-25.5% and extruded in a Brabender single-screw laboratory extruder (C/D= 20:1. The extrusion conditions were compression ratio of 3:1, screw speed of 100 rpm, a die of 6 mm in diameter and temperatures between 77.6 and 162.4°C in the 2nd and 3rd zones while the 1st zone was maintained at 80

  14. Polarized Proton Collisions at RHIC

    CERN Document Server

    Bai, Mei; Alekseev, Igor G; Alessi, James; Beebe-Wang, Joanne; Blaskiewicz, Michael; Bravar, Alessandro; Brennan, Joseph M; Bruno, Donald; Bunce, Gerry; Butler, John J; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Laster, Jonathan S; Lee, Roger C; Luccio, Alfredo U; Luo, Yun; MacKay, William W; Makdisi, Yousef; Marr, Gregory J; Marusic, Al; McIntyre, Gary; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oddo, Peter; Oerter, Brian; Osamu, Jinnouchi; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smith, Kevin T; Svirida, Dima; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Wilinski, Michelle; Zaltsman, Alex; Zelenski, Anatoli; Zeno, Keith; Zhang, S Y

    2005-01-01

    The Relativistic Heavy Ion Collider~(RHIC) provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC to avoid depolarizing resonances. In 2003, polarized proton beams were accelerated to 100~GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. RHIC polarized proton run experience demonstrates that optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limite...

  15. Polarized proton collider at RHIC

    International Nuclear Information System (INIS)

    Alekseev, I.; Allgower, C.; Bai, M.; Batygin, Y.; Bozano, L.; Brown, K.; Bunce, G.; Cameron, P.; Courant, E.; Erin, S.; Escallier, J.; Fischer, W.; Gupta, R.; Hatanaka, K.; Huang, H.; Imai, K.; Ishihara, M.; Jain, A.; Lehrach, A.; Kanavets, V.; Katayama, T.; Kawaguchi, T.; Kelly, E.; Kurita, K.; Lee, S.Y.; Luccio, A.; MacKay, W.W.; Mahler, G.; Makdisi, Y.; Mariam, F.; McGahern, W.; Morgan, G.; Muratore, J.; Okamura, M.; Peggs, S.; Pilat, F.; Ptitsin, V.; Ratner, L.; Roser, T.; Saito, N.; Satoh, H.; Shatunov, Y.; Spinka, H.; Syphers, M.; Tepikian, S.; Tominaka, T.; Tsoupas, N.; Underwood, D.; Vasiliev, A.; Wanderer, P.; Willen, E.; Wu, H.; Yokosawa, A.; Zelenski, A.N.

    2003-01-01

    In addition to heavy ion collisions (RHIC Design Manual, Brookhaven National Laboratory), RHIC will also collide intense beams of polarized protons (I. Alekseev, et al., Design Manual Polarized Proton Collider at RHIC, Brookhaven National Laboratory, 1998, reaching transverse energies where the protons scatter as beams of polarized quarks and gluons. The study of high energy polarized protons beams has been a long term part of the program at BNL with the development of polarized beams in the Booster and AGS rings for fixed target experiments. We have extended this capability to the RHIC machine. In this paper we describe the design and methods for achieving collisions of both longitudinal and transverse polarized protons in RHIC at energies up to √s=500 GeV

  16. Protonic decay of oriented nuclei

    International Nuclear Information System (INIS)

    Kadmensky, S.G.

    2002-01-01

    On the basis of the multiparticle theory of protonic decay, the angular distributions of protons emitted by oriented spherical and deformed nuclei in the laboratory frame and in the internal coordinate frame of deformed parent nuclei are constructed with allowance for symmetry with respect to time inversion. It is shown that, because of the deep-subbarrier character of protonic decay, the adiabatic approximation is not applicable to describing the angular distributions of protons emitted by oriented deformed nuclei and that the angular distribution of protons in the laboratory frame does not coincide with that in the internal coordinate frame. It is demonstrated that these angular distributions coincide only if the adiabatic and the semiclassical approximation are simultaneously valid

  17. Protein proton-proton dynamics from amide proton spin flip rates

    International Nuclear Information System (INIS)

    Weaver, Daniel S.; Zuiderweg, Erik R. P.

    2009-01-01

    Residue-specific amide proton spin-flip rates K were measured for peptide-free and peptide-bound calmodulin. K approximates the sum of NOE build-up rates between the amide proton and all other protons. This work outlines the theory of multi-proton relaxation, cross relaxation and cross correlation, and how to approximate it with a simple model based on a variable number of equidistant protons. This model is used to extract the sums of K-rates from the experimental data. Error in K is estimated using bootstrap methodology. We define a parameter Q as the ratio of experimental K-rates to theoretical K-rates, where the theoretical K-rates are computed from atomic coordinates. Q is 1 in the case of no local motion, but decreases to values as low as 0.5 with increasing domination of sidechain protons of the same residue to the amide proton flips. This establishes Q as a monotonous measure of local dynamics of the proton network surrounding the amide protons. The method is applied to the study of proton dynamics in Ca 2+ -saturated calmodulin, both free in solution and bound to smMLCK peptide. The mean Q is 0.81 ± 0.02 for free calmodulin and 0.88 ± 0.02 for peptide-bound calmodulin. This novel methodology thus reveals the presence of significant interproton disorder in this protein, while the increase in Q indicates rigidification of the proton network upon peptide binding, confirming the known high entropic cost of this process

  18. Quantitative evaluation of apical extrusion of intracanal bacteria using rotary ProTaper, K3XF, twisted and hand K-file system: An ex vivo study

    Directory of Open Access Journals (Sweden)

    Priyanka Ghogre

    2015-01-01

    Conclusions: Both the rotary and hand instrumentation systems extruded intracanal bacteria through the apical foramen. K3XF file system showed least bacterial extrusion amongst all instrumentation groups.

  19. Proton femtoscopy at STAR

    International Nuclear Information System (INIS)

    Zbroszczyk, H.P.

    2011-01-01

    The analysis of two-particle femtoscopy provides a powerful tool to study the properties of matter created in heavy-ion collisions. Applied to identical and nonidentical hadron pairs, it makes the study of space-time evolution of the source in femtoscopic scale possible. Baryon femtoscopy allows extraction of the radii of produced sources which can be compared to those deduced from identical pion studies, providing additional information about source characteristics. In this paper we present the correlation functions obtained for protons and antiprotons for Au + Au collisions at √ s NN = 62.4 and 200 GeV. On the other hand, as STAR experiment participates in the Beam Energy Scan (BES) program, we present theoretical predictions of p - p , p-bar - p-bar and p - p-bar femtoscopic measurements, based on UrQMD simulation for √ s NN = 5-39 GeV

  20. Proton synchrotron accelerator theory

    International Nuclear Information System (INIS)

    Wilson, E.J.N.

    1977-01-01

    This is the text of a series of lectures given as part of the CERN Academic Training Programme and primarily intended for young engineers and technicians in preparation for the running-in of the 400 GeV Super Proton Synchrotron (SPS). Following the definition of basic quantities, the problems of betatron motion and the effect of momentum spread and orbital errors on the transverse motion of the beam are reviewed. Consideration is then given to multipole fields, chromaticity and non-linear resonances. After dealing with basic relations governing longitudinal beam dynamics, the space-charge, resistive-wall and other collective effects are treated, with reference to precautions in the SPS to prevent their occurrence. (Auth.)

  1. Proton decay: 1982

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1982-01-01

    Employing the current world average Λ/sub MS/ = 0.160 GeV as input, the minimal Georgi-Glashow SU(5) model predicts sin 2 theta/sub W/(m/sub W/) = 0.214, m/sub b//m/sub tau/ approx. = 2.8 and tau/sub p/ approx. = (0.4 approx. 12) x 10 29 yr. The first two predictions are in excellent agreement with experiment; but the implied proton lifetime is already somewhat below the present experimental bound. In this status report, uncertainties in tau/sub p/ are described and effects of appendages to the SU(5) model (such as new fermion generations, scalars, supersymmetry, etc.) are examined

  2. BROOKHAVEN: Proton goal reached

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    On March 30 the 35-year old Alternating Gradient Synchrotron (AGS) exceeded its updated design goal of 6 x 10 13 protons per pulse (ppp), by accelerating 6.3 x 10 13 ppp, a world record intensity. This goal was set 11 years ago and achieving it called for the construction of a new booster and the reconstruction of much of the AGS. The booster was completed in 1991, and reached its design intensity of 1.5 x 10 13 ppp in 1993. The AGS reconstruction was finished in 1994, and by July of that year the AGS claimed a new US record intensity for a proton synchrotron of 4 x 10 13 ppp, using four booster pulses. Reaching the design intensity was scheduled for 1995. In 1994, the AGS had seemed to be solidly limited to 4 x 10 13 ppp, but in 1995 the operations crew, working on their own in the quiet of the owl shift, steadily improved the intensity, regularly setting new records, much to the bemusement of the machine physicists. The physicists, however, did contribute. A second harmonic radiofrequency cavity in the booster increased the radiofrequency bucket area for capture, raising the booster intensity from 1.7 to 2.1 x 10 13 ppp. In the AGS, new radiofrequency power supplies raised the available voltage from 8 to 13 kV, greatly enhancing the beam loading capabilities of the system. A powerful new transverse damping system successfully controlled instabilities that otherwise would have destroyed the beam in less than a millisecond. Also in the AGS, 35th harmonic octupole resonances were found

  3. BROOKHAVEN: Proton goal reached

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-09-15

    On March 30 the 35-year old Alternating Gradient Synchrotron (AGS) exceeded its updated design goal of 6 x 10{sup 13} protons per pulse (ppp), by accelerating 6.3 x 10{sup 13} ppp, a world record intensity. This goal was set 11 years ago and achieving it called for the construction of a new booster and the reconstruction of much of the AGS. The booster was completed in 1991, and reached its design intensity of 1.5 x 10{sup 13} ppp in 1993. The AGS reconstruction was finished in 1994, and by July of that year the AGS claimed a new US record intensity for a proton synchrotron of 4 x 10{sup 13} ppp, using four booster pulses. Reaching the design intensity was scheduled for 1995. In 1994, the AGS had seemed to be solidly limited to 4 x 10{sup 13} ppp, but in 1995 the operations crew, working on their own in the quiet of the owl shift, steadily improved the intensity, regularly setting new records, much to the bemusement of the machine physicists. The physicists, however, did contribute. A second harmonic radiofrequency cavity in the booster increased the radiofrequency bucket area for capture, raising the booster intensity from 1.7 to 2.1 x 10{sup 13} ppp. In the AGS, new radiofrequency power supplies raised the available voltage from 8 to 13 kV, greatly enhancing the beam loading capabilities of the system. A powerful new transverse damping system successfully controlled instabilities that otherwise would have destroyed the beam in less than a millisecond. Also in the AGS, 35th harmonic octupole resonances were found.

  4. The extrusion test and sensory perception revisited: Some comments on generality and the effect of measurement temperature.

    Science.gov (United States)

    Brenner, Tom; Tomczyńska-Mleko, Marta; Mleko, Stanisław; Nishinari, Katsuyoshi

    2017-12-01

    Relations between sensory perception, extrusion and fracture in shear, extension and compression are examined. Gelatin-based gels are perceived as less firm and less hard than expected based on their mechanical properties compared to polysaccharide gels that have the same mechanical properties at room temperature but melt well above body temperature, underlying the importance of the measurement temperature for gels that melt during mastication. Correlations between parameters from extrusion and compression, extension and shear are verified using mixed polysaccharide gels. We previously reported a high correlation between several sensory attributes and parameters from an extrusion test. The extrusion test showed the most robust correlation, and could be used to assess samples at both extremes of the texture range with respect to elasticity, for example, both samples that could not be extended as their very low elasticity led to their fracture during handling, as well as samples that could not be fractured in compression. Here, we reexamine the validity of the relations reported. We demonstrate the generality of the relations between large deformation tests and extrusion, but the findings underscore the need to take into account the measurement temperature for samples that melt during mastication when correlating instrumental parameters with sensory perception. © 2017 Wiley Periodicals, Inc.

  5. Equal Channel Angular Extrusion Simulation of High-Nb Containing β-γ TiAl Alloys

    Directory of Open Access Journals (Sweden)

    Lai-qi Zhang

    2015-01-01

    Full Text Available TiAl alloys containing high Nb are significantly promising for high-temperature structural applications in aerospace and automotive industries. Unfortunately the low plasticity at room temperature limits their extensive applications. To improve the plasticity, not only optimizing the opposition, but also refining grain size through equal channel angular extrusion (ECAE is necessary. The equal channel angular extrusion simulation of Ti-44Al-8Nb-(Cr,Mn,B,Y(at% alloy was investigated by using the Deform-3D software. The influences of friction coefficient, extrusion velocity, and different channel angles on effective strain, damage factor, and the load on the die were analyzed. The results indicate that, with the increasing of friction coefficient, effective strain is enhanced. The extrusion velocity has little effect on the uniformity of effective strain; in contrast it has large influence on the damage factor. Thus smaller extrusion rate is more appropriate. Under the condition of different channel angles, the larger one results in the lower effective strain magnitude and better strain distribution uniformity.

  6. Effects of raw material extrusion and steam conditioning on feed pellet quality and nutrient digestibility of growing meat rabbits.

    Science.gov (United States)

    Liao, Kuoyao; Cai, Jingyi; Shi, Zhujun; Tian, Gang; Yan, Dong; Chen, Delin

    2017-06-01

    This study was conducted to investigate the effects of raw material extrusion and steam conditioning on feed pellet quality and nutrient digestibility of growing meat rabbits, in order to determine appropriate rabbit feed processing methods and processing parameters. In Exp. 1, an orthogonal design was adopted. Barrel temperature, material moisture content and feed rate were selected as test factors, and acid detergent fiber (ADF) content was selected as an evaluation index to research the optimum extrusion parameters. In Exp. 2, a two-factor design was adopted. Four kinds of rabbit feeds were processed and raw material extrusion adopted optimum extrusion parameters of Exp. 1. A total of 40 healthy and 42-day-old rabbits with similar weight were used in a randomized design, which consisted of 4 groups and 10 replicates in each group (1 rabbits in each replicate). The adaptation period lasted for 7 d, and the digestion trial lasted for 4 d. The results showed as follows: 1) ADF was significantly affected by barrel temperature ( P  digestibility of dry matter and total energy ( P  digestibility of crude fiber (CF), ADF and NDF ( P  digestibility of rabbit feed. Thus, using extrusion and steam conditioning technology at the same time in the weaning rabbits feed processing can improve the pellet quality and nutrient apparent digestibility of rabbit feed.

  7. Textures and mechanical properties in rare-earth free quasicrystal reinforced Mg-Zn-Zr alloys prepared by extrusion

    International Nuclear Information System (INIS)

    Ohhashi, S.; Kato, A.; Demura, M.; Tsai, A.P.

    2011-01-01

    Highlights: → Powder-metallurgical warm extrusion made quasicrystal dispersing Mg alloys. → Mg extrusions containing quasicrystals showed randomized textures. → These extrusion showed the enhancement of mechanical properties at 150 deg. C. - Abstract: Microstructure and mechanical properties of quasicrystals dispersed Mg alloys prepared by warm extrusion of the mixtures of Mg and Zn-Mg-Zr quasicrystalline (Qc) powders have been studied. Strong texture oriented along a [101-bar 0] direction observed in pure Mg was reduced in Qc-dispersed samples, as verified by pole figure method and electron back scattering diffraction. The ultimate tensile strengths at 150 deg. C for Qc-dispersed extrusions were much higher than 110 MPa for pure Mg, which drastically reached 156 MPa for 15 wt.% Qc by preventing the motion of dislocations. Elongation was improved by the randomization of grain orientation: from 5.7% for pure Mg to 12.9% for 10 wt.% Qc at room temperature; from 15% for pure Mg to 37.1% for 5 wt.% Qc at 150 deg. C.

  8. Characterization of Al–Li 2099 extrusions and the influence of fiber texture on the anisotropy of static mechanical properties

    International Nuclear Information System (INIS)

    Bois-Brochu, Alexandre; Blais, Carl; Goma, Franck Armel Tchitembo; Larouche, Daniel; Boselli, Julien; Brochu, Mathieu

    2014-01-01

    The development of aluminum–lithium alloys for aerospace applications requires a thorough understanding of how processing and product geometry impact their microstructure, texture and mechanical properties. The anisotropy of the mechanical properties is in part related to the deformation texture formed during thermo-mechanical processing. In this study, two different extrusions of Al–Li 2099 T83 were characterized, a cylindrical extrusion and an integrally stiffened panel (ISP). A decrease of tensile properties was observed from the longitudinal direction to the transverse direction with a minimum in the 45° direction, the magnitude of which depends on the location in the extrusions. The 〈111〉 fiber texture is prominent in most locations of the extrusion with a smaller intensity of the 〈100〉 component. Rolling textures were observed in two locations of the ISP that have a larger cross sectional aspect ratio. Variations of strength and anisotropy as a function of location in the extrusion correlate well with the intensity of the 〈111〉 fiber texture. On the other hand, our findings show an absence of correlation between the Taylor factor and the anisotropy. These results suggest that strength anisotropy may be controlled by the volume fraction of T 1 precipitates that could itself be related to the intensity of the 〈111〉 fiber texture

  9. Characterization of Al–Li 2099 extrusions and the influence of fiber texture on the anisotropy of static mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Bois-Brochu, Alexandre, E-mail: Alexandre.Bois-Brochu.1@ulaval.ca [Department of Mining and Metallurgy, Adrien-Pouliot Building, Université Laval, 1065 Rue de la medicine, Québec, Québec G1V 0A6 (Canada); Blais, Carl, E-mail: Carl.Blais@gmn.ulaval.ca [Department of Mining and Metallurgy, Adrien-Pouliot Building, Université Laval, 1065 Rue de la medicine, Québec, Québec G1V 0A6 (Canada); Goma, Franck Armel Tchitembo, E-mail: Franck-Armel.Tchitembo-Goma.1@ulaval.ca [Department of Mining and Metallurgy, Adrien-Pouliot Building, Université Laval, 1065 Rue de la medicine, Québec, Québec G1V 0A6 (Canada); Larouche, Daniel, E-mail: Daniel.Larouche@gmn.ulaval.ca [Department of Mining and Metallurgy, Adrien-Pouliot Building, Université Laval, 1065 Rue de la medicine, Québec, Québec G1V 0A6 (Canada); Boselli, Julien, E-mail: Julien.Boselli@alcoa.com [Alcoa Technical Center, Alcoa, PA 15069 (United States); Brochu, Mathieu, E-mail: Mathieu.Brochu@mcgill.ca [Department of Mining and Materials Engineering, Wong Building, McGill University, 3610 University Street, Montréal, Québec H3A 2B2 (Canada)

    2014-03-01

    The development of aluminum–lithium alloys for aerospace applications requires a thorough understanding of how processing and product geometry impact their microstructure, texture and mechanical properties. The anisotropy of the mechanical properties is in part related to the deformation texture formed during thermo-mechanical processing. In this study, two different extrusions of Al–Li 2099 T83 were characterized, a cylindrical extrusion and an integrally stiffened panel (ISP). A decrease of tensile properties was observed from the longitudinal direction to the transverse direction with a minimum in the 45° direction, the magnitude of which depends on the location in the extrusions. The 〈111〉 fiber texture is prominent in most locations of the extrusion with a smaller intensity of the 〈100〉 component. Rolling textures were observed in two locations of the ISP that have a larger cross sectional aspect ratio. Variations of strength and anisotropy as a function of location in the extrusion correlate well with the intensity of the 〈111〉 fiber texture. On the other hand, our findings show an absence of correlation between the Taylor factor and the anisotropy. These results suggest that strength anisotropy may be controlled by the volume fraction of T{sub 1} precipitates that could itself be related to the intensity of the 〈111〉 fiber texture.

  10. Influence of Extrusion Temperature on the Aging Behavior and Mechanical Properties of an AA6060 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Nadja Berndt

    2018-01-01

    Full Text Available Processing of AA6060 aluminum alloys for semi-products usually includes hot extrusion with subsequent artificial aging for several hours. Processing below the recrystallization temperature allows for an increased strength at a significantly reduced annealing time by combining strain hardening and precipitation hardening. In this study, we investigate the potential of cold and warm extrusion as alternative processing routes for high strength aluminum semi-products. Cast billets of the age hardening aluminum alloy AA6060 were solution annealed and then extruded at room temperature, 120 or 170 °C, followed by an aging treatment. Electron microscopy and mechanical testing were performed on the as-extruded as well as the annealed materials to characterize the resulting microstructural features and mechanical properties. All of the extruded profiles exhibit similar, strongly graded microstructures. The strain gradients and the varying extrusion temperatures lead to different stages of dynamic precipitation in the as-extruded materials, which significantly alter the subsequent aging behavior and mechanical properties. The experimental results demonstrate that extrusion below recrystallization temperature allows for high strength at a massively reduced aging time due to dynamic precipitation and/or accelerated precipitation kinetics. The highest strength and ductility were achieved by extrusion at 120 °C and subsequent short-time aging.

  11. Extrusion Conditions and Amylose Content Affect Physicochemical Properties of Extrudates Obtained from Brown Rice Grains

    Directory of Open Access Journals (Sweden)

    Rolando José González

    2013-01-01

    Full Text Available The utilization of whole grains in food formulations is nowadays recommended. Extrusion cooking allows obtaining precooked cereal products and a wide range of ready-to-eat foods. Two rice varieties having different amylose content (Fortuna 16% and Paso 144, 27% were extruded using a Brabender single screw extruder. Factorial experimental design was used to study the effects of extrusion temperature (160, 175, and 190°C and grits moisture content (14%, 16.5%, and 19% on extrudate properties. Specific mechanical energy consumption (SMEC, radial expansion (E, specific volume (SV, water absorption (WA, and solubility (S were determined on each extrudate sample. In general, Fortuna variety showed higher values of SMEC and S (703–409 versus 637–407 J/g; 33.0–21.0 versus 20.1–11.0%, resp. than those of Paso 144; on the contrary SV (8.64–3.47 versus 8.27–4.53 mL/g and WA tended to be lower (7.7–5.1 versus 8.4–6.6 mL/g. Both varieties showed similar values of expansion rate (3.60–2.18. Physical characteristics depended on extrusion conditions and rice variety used. The degree of cooking reached by Paso rice samples was lower than that obtained for Fortuna. It is suggested that the presence of germ and bran interfered with the cooking process, decreasing friction level and broadening residence time distribution.

  12. A FEM simulation study of the solid state hydrostatic extrusion of PMMA

    Science.gov (United States)

    Costa, André L. M.; Riffel, Douglas B.; Misiolek, Wojciech Z.; Valberg, Henry S.

    2018-05-01

    Solid state hydrostatic extrusion (SSHE) of polymers below glass transition temperature is used to obtain highly oriented structures. Experimental studies on the SSHE of polymethyl-methacrylate (PMMA) have been made since early eighties but there is no information on internal temperature, stress and strain distribution. In this work we have made 3D FEM simulations of SSHE of PMMA by using the commercial DEFORM package with experimental flow curves and thermal properties from literature. The initial temperature of tooling and workpiece was 90°C, ram speeds were 1.0 and 10.0 mm/min with extrusion ratio R = 3.0. For a comparative analysis, SSHE simulation of the AA7108 aluminum alloy at 400°C was also performed. These ranges of parameters were chosen in order to encompass the parameters found in previously mentioned experiments. The best correlation with experimental hydrostatic pressure was verified for a shear friction coefficient at the material-conical die interface m = 0.50. Force-displacement curve for PMMA presented a constitutive and thermal softening in contrast to a constant force curve for aluminum. The internal temperature in the deformation zone increased in a characteristic "owl's face" profile in contrast to quasi-constant profile of aluminum alloy. In both PMMA and aluminum the stress is hydrostatic inside the container, but the stress profiles are significantly different inside the deformation zone. As expected, the strain and strain-rate profiles are practically the same for the two materials, but the temperature profile has promoted slightly differences in material flow. The velocity gradient from center to surface is higher in PMMA than aluminum. It's supposed that during hydrostatic extrusion solid PMMA has a characteristic thermally-inducted mechanical behavior.

  13. Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device.

    Science.gov (United States)

    Hamid, Q; Snyder, J; Wang, C; Timmer, M; Hammer, J; Guceri, S; Sun, W

    2011-09-01

    In the field of biofabrication, tissue engineering and regenerative medicine, there are many methodologies to fabricate a building block (scaffold) which is unique to the target tissue or organ that facilitates cell growth, attachment, proliferation and/or differentiation. Currently, there are many techniques that fabricate three-dimensional scaffolds; however, there are advantages, limitations and specific tissue focuses of each fabrication technique. The focus of this initiative is to utilize an existing technique and expand the library of biomaterials which can be utilized to fabricate three-dimensional scaffolds rather than focusing on a new fabrication technique. An expanded library of biomaterials will enable the precision extrusion deposition (PED) device to construct three-dimensional scaffolds with enhanced biological, chemical and mechanical cues that will benefit tissue generation. Computer-aided motion and extrusion drive the PED to precisely fabricate micro-scaled scaffolds with biologically inspired, porosity, interconnectivity and internal and external architectures. The high printing resolution, precision and controllability of the PED allow for closer mimicry of tissues and organs. The PED expands its library of biopolymers by introducing an assisting cooling (AC) device which increases the working extrusion temperature from 120 to 250 °C. This paper investigates the PED with the integrated AC's capabilities to fabricate three-dimensional scaffolds that support cell growth, attachment and proliferation. Studies carried out in this paper utilized a biopolymer whose melting point is established to be 200 °C. This polymer was selected to illustrate the newly developed device's ability to fabricate three-dimensional scaffolds from a new library of biopolymers. Three-dimensional scaffolds fabricated with the integrated AC device should illustrate structural integrity and ability to support cell attachment and proliferation.

  14. Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, Q; Snyder, J; Wang, C; Guceri, S; Sun, W [Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA (United States); Timmer, M; Hammer, J, E-mail: sunwei@drexel.edu [Advanced Technologies and Regenerative Medicine, Somerville, NJ (United States)

    2011-09-15

    In the field of biofabrication, tissue engineering and regenerative medicine, there are many methodologies to fabricate a building block (scaffold) which is unique to the target tissue or organ that facilitates cell growth, attachment, proliferation and/or differentiation. Currently, there are many techniques that fabricate three-dimensional scaffolds; however, there are advantages, limitations and specific tissue focuses of each fabrication technique. The focus of this initiative is to utilize an existing technique and expand the library of biomaterials which can be utilized to fabricate three-dimensional scaffolds rather than focusing on a new fabrication technique. An expanded library of biomaterials will enable the precision extrusion deposition (PED) device to construct three-dimensional scaffolds with enhanced biological, chemical and mechanical cues that will benefit tissue generation. Computer-aided motion and extrusion drive the PED to precisely fabricate micro-scaled scaffolds with biologically inspired, porosity, interconnectivity and internal and external architectures. The high printing resolution, precision and controllability of the PED allow for closer mimicry of tissues and organs. The PED expands its library of biopolymers by introducing an assisting cooling (AC) device which increases the working extrusion temperature from 120 to 250 deg. C. This paper investigates the PED with the integrated AC's capabilities to fabricate three-dimensional scaffolds that support cell growth, attachment and proliferation. Studies carried out in this paper utilized a biopolymer whose melting point is established to be 200 deg. C. This polymer was selected to illustrate the newly developed device's ability to fabricate three-dimensional scaffolds from a new library of biopolymers. Three-dimensional scaffolds fabricated with the integrated AC device should illustrate structural integrity and ability to support cell attachment and proliferation.

  15. Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device

    International Nuclear Information System (INIS)

    Hamid, Q; Snyder, J; Wang, C; Guceri, S; Sun, W; Timmer, M; Hammer, J

    2011-01-01

    In the field of biofabrication, tissue engineering and regenerative medicine, there are many methodologies to fabricate a building block (scaffold) which is unique to the target tissue or organ that facilitates cell growth, attachment, proliferation and/or differentiation. Currently, there are many techniques that fabricate three-dimensional scaffolds; however, there are advantages, limitations and specific tissue focuses of each fabrication technique. The focus of this initiative is to utilize an existing technique and expand the library of biomaterials which can be utilized to fabricate three-dimensional scaffolds rather than focusing on a new fabrication technique. An expanded library of biomaterials will enable the precision extrusion deposition (PED) device to construct three-dimensional scaffolds with enhanced biological, chemical and mechanical cues that will benefit tissue generation. Computer-aided motion and extrusion drive the PED to precisely fabricate micro-scaled scaffolds with biologically inspired, porosity, interconnectivity and internal and external architectures. The high printing resolution, precision and controllability of the PED allow for closer mimicry of tissues and organs. The PED expands its library of biopolymers by introducing an assisting cooling (AC) device which increases the working extrusion temperature from 120 to 250 deg. C. This paper investigates the PED with the integrated AC's capabilities to fabricate three-dimensional scaffolds that support cell growth, attachment and proliferation. Studies carried out in this paper utilized a biopolymer whose melting point is established to be 200 deg. C. This polymer was selected to illustrate the newly developed device's ability to fabricate three-dimensional scaffolds from a new library of biopolymers. Three-dimensional scaffolds fabricated with the integrated AC device should illustrate structural integrity and ability to support cell attachment and proliferation.

  16. Complications of grafts used in female pelvic floor reconstruction: Mesh erosion and extrusion

    Directory of Open Access Journals (Sweden)

    Tanya M Nazemi

    2007-01-01

    Full Text Available Introduction: Various grafts have been used in the treatment of urinary incontinence and pelvic prolapse. Autologous materials such as muscle and fascia were first utilized to provide additional anatomic support to the periurethral and pelvic tissues; however, attempts to minimize the invasiveness of the procedures have led to the use of synthetic materials. Complications such as infection and erosion or extrusion associated with these materials may be troublesome to manage. We review the literature and describe a brief overview of grafts used in pelvic floor reconstruction and focus on the management complications specifically related to synthetic materials. Materials and Methods: We performed a comprehensive review of the literature on grafts used in pelvic floor surgery using MEDLINE and resources cited in those peer-reviewed manuscripts. The results are presented. Results: Biologic materials provide adequate cure rates but have associated downfalls including potential complications from harvesting, variable tissue quality and cost. The use of synthetic materials as an alternative graft in pelvic floor repairs has become a popular option. Of all synthetic materials, the type I macroporous polypropylene meshes have demonstrated superiority in terms of efficacy and fewer complication rates due to their structure and composition. Erosion and extrusion of mesh are common and troublesome complications that may be managed conservatively with observation with or without local hormone therapy, with transvaginal debridement or with surgical exploration and total mesh excision, dependent upon the location of the mesh and the mesh type utilized. Conclusions: The ideal graft would provide structural integrity and durability with minimal adverse reaction by the host tissue. Biologic materials in general tend to have fewer associated complications, however, the risks of harvesting, variable integrity of allografts, availability and high cost has led to the

  17. An analysis of extrusion of buffer material into fracture behavior by diffusion model

    International Nuclear Information System (INIS)

    Matsumoto, Kazuhiro; Tanai, Kenji; Kanno, Takeshi; Iwata, Yumiko

    2005-06-01

    The buffer that will be used as a component of the engineered barriers system swells when saturated by groundwater. As a result of this swelling, buffer may penetrate into the surrounding rock zone through open fractures. It sustained for extremely long periods of time, the buffer extrusion could lead to reduction of buffer density, which may in turn degrade the assumed performance. In this report, the viscosity of bentonite was measured as one of the parameter of diffusion model. In addition, the simulation analysis was carried out to confirm the applicability of diffusion model. Moreover, an analytical evaluation on extrusion behavior of buffer into rock fractures was performed to estimate the long-term stability of buffer as reduction of density. (1) Measurement of the viscosity of bentonite. The viscosity of bentonite is measured by the Rheometer. The viscosity of bentonite indicated tendency to non-Newton flow. The viscosity of bentonite at water contents of 400-1000% was estimated. The evaluated value of the viscosity was modified based on this measurement. (2) Simulation analysis of an experiment results. The simulation analysis of the experimental result using diffusion model was performed to confirm applicability of this model. The results of the simulation reasonably agreed with obtained experimental result. (3) Example analysis of a long-term stability of buffer. The analysis of a long-term stability of buffer as reduction of density was performed to compare with the results in H12 report. In this analysis, the density of the buffer material decreased earlier than the results in H12 report. In addition, a long-term change in the density of the buffer material under seawater condition was preliminary calculated. As a result, it is indicated that extrusion behavior is not significant under seawater condition. (author)

  18. Two proton decay in 12O

    International Nuclear Information System (INIS)

    Kumawat, M.; Singh, U.K.; Jain, S.K.; Saxena, G.; Kaushik, M.; Aggarwal, Mamta

    2017-01-01

    Two-proton radioactivity was observed experimentally in the decay of 45 Fe, 54 Zn and 48 Ni. From then many theoretical studies of one and two-proton radioactivity have been carried out within the framework of different models including RMF+BCS approach for medium mass region. Towards light mass region proton-proton correlations were observed in two-proton decay of 19 Mg and 16 Ne. Recently, different mechanism of two-proton emission from proton-rich nuclei 23 Al and 22 Mg has been investigated and transition from direct to sequential two-proton decay in sd shell nuclei is observed. Encouraged with these recent studies of two proton emission in light mass nuclei, we have applied our RMF+BCS approach for the study of two proton emission in light mass region and in this paper we present our result of two proton emission in 12 O

  19. Proton pump inhibitors as anti vacuolar-ATPases drugs: a novel anticancer strategy.

    Science.gov (United States)

    Spugnini, Enrico P; Citro, Gennaro; Fais, Stefano

    2010-05-08

    The vacuolar ATPases are ATP-dependent proton pumps whose functions include the acidification of intracellular compartments and the extrusion of protons through the cell cytoplasmic membrane. These pumps play a pivotal role in the regulation of cell pH in normal cells and, to a much greater extent, in tumor cells. In fact, the glucose metabolism in hypoxic conditions by the neoplasms leads to an intercellular pH drift towards acidity. The acid microenvironment is modulated through the over-expression of H+ transporters that are also involved in tumor progression, invasiveness, distant spread and chemoresistance. Several strategies to block/downmodulate the efficiency of these transporters are currently being investigated. Among them, proton pump inhibitors have shown to successfully block the H+ transporters in vitro and in vivo, leading to apoptotic death. Furthermore, their action seems to synergize with conventional chemotherapy protocols, leading to chemosensitization and reversal of chemoresistance. Aim of this article is to critically revise the current knowledge of this cellular machinery and to summarize the therapeutic strategies developed to counter this mechanism.

  20. Proton pump inhibitors as anti vacuolar-ATPases drugs: a novel anticancer strategy

    Directory of Open Access Journals (Sweden)

    Fais Stefano

    2010-05-01

    Full Text Available Abstract The vacuolar ATPases are ATP-dependent proton pumps whose functions include the acidification of intracellular compartments and the extrusion of protons through the cell cytoplasmic membrane. These pumps play a pivotal role in the regulation of cell pH in normal cells and, to a much greater extent, in tumor cells. In fact, the glucose metabolism in hypoxic conditions by the neoplasms leads to an intercellular pH drift towards acidity. The acid microenvironment is modulated through the over-expression of H+ transporters that are also involved in tumor progression, invasiveness, distant spread and chemoresistance. Several strategies to block/downmodulate the efficiency of these transporters are currently being investigated. Among them, proton pump inhibitors have shown to successfully block the H+ transporters in vitro and in vivo, leading to apoptotic death. Furthermore, their action seems to synergize with conventional chemotherapy protocols, leading to chemosensitization and reversal of chemoresistance. Aim of this article is to critically revise the current knowledge of this cellular machinery and to summarize the therapeutic strategies developed to counter this mechanism.

  1. Micropore extrusion-induced alignment transition from perpendicular to parallel of cylindrical domains in block copolymers.

    Science.gov (United States)

    Qu, Ting; Zhao, Yongbin; Li, Zongbo; Wang, Pingping; Cao, Shubo; Xu, Yawei; Li, Yayuan; Chen, Aihua

    2016-02-14

    The orientation transition from perpendicular to parallel alignment of PEO cylindrical domains of PEO-b-PMA(Az) films has been demonstrated by extruding the block copolymer (BCP) solutions through a micropore of a plastic gastight syringe. The parallelized orientation of PEO domains induced by this micropore extrusion can be recovered to perpendicular alignment via ultrasonication of the extruded BCP solutions and subsequent annealing. A plausible mechanism is proposed in this study. The BCP films can be used as templates to prepare nanowire arrays with controlled layers, which has enormous potential application in the field of integrated circuits.

  2. Nerva Fuel Element Development Program Summary Report - July 1966 through June 1972 Extrusion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Napier, J. M.

    1973-09-21

    This part of the completion report pertaining to the NERVA graphite fuel element program covers data collected during the extrusion studies. The physical properties of the fuel element reached the following values: coefficient of thermal expansion (CTE) - 7.0 x 10-6/o C (25 - l,OOOo C); modulus of elasticity - 1.5 x lo6 psi; flexural strength - - 8,000 psi; ultimate strain to failure - 5,500 pidin; good thermal stress resistance. Matrices were produced which could be vapor coated with crack-free films of zirconium carbide. The CTE of the matrix was almost equal to the CTE of the zirconium carbide coating.

  3. Extrusion of polysaccharide nanocrystal reinforced polymer nanocomposites through compatibilization with poly(ethylene oxide).

    Science.gov (United States)

    Pereda, Mariana; El Kissi, Nadia; Dufresne, Alain

    2014-06-25

    Polysaccharide nanocrystals with a rodlike shape but with different dimensions and specific surface area were prepared from cotton and capim dourado cellulose, and with a plateletlike morphology from waxy maize starch granules. The rheological behavior of aqueous solutions of poly(ethylene oxide) (PEO) with different molecular weights when adding these nanoparticles was investigated evidencing specific interactions between PEO chains and nanocrystals. Because PEO also bears hydrophobic moieties, it was employed as a compatibilizing agent for the melt processing of polymer nanocomposites. The freeze-dried mixtures were used to prepare nanocomposite materials with a low density polyethylene matrix by extrusion. The thermal and mechanical behavior of ensuing nanocomposites was studied.

  4. The theoretical and experimental researches of Pb-Al composite materials extrusion

    Directory of Open Access Journals (Sweden)

    G. Ryzińska

    2012-07-01

    Full Text Available The work presents the analysis of the character of a simultaneous plastic flow of composite material of a hard core-soft sleeve structure. Experimental research work using model composite material Aluminium-Lead and theoretical analysis allowed to identify the initial cracking conditions, its character and localization, depending on geometrical parameters of the composite materials and the extrusion ratio value. It has been shown that the higher the parameters’ values are, the longer the flawless extruded product is (cracking appears in the further stages of the process.

  5. Physical modelling and numerical simulation of the round-to-square forward extrusion

    DEFF Research Database (Denmark)

    Gouveia, B.P.P.A.; Rodrigues, J.M.C.; Martins, P.A.F.

    2001-01-01

    , and comparisons are made between the numerical predictions and experimental data obtained through the utilisation of physical modelling. Assessment is made in terms of flow pattern and strain distribution for two different cross-sections corresponding to the axial symmetry planes of the three......-dimensional extrusion part. The experimental distribution of strain is determined from the shape change of quadrilateral grids previously printed on the surface of the axial cross-sections of the undeformed billets by means of large deformation square-grid analysis. Good agreement is obtained between physical...

  6. CHARACTERIZATION OF THE GRAINS IN 2014 ALUMINIUM ALLOY AFTER EQUAL CHANNEL ANGULAR EXTRUSION (ECAE PROCESS

    Directory of Open Access Journals (Sweden)

    Sonia Boczkal

    2011-05-01

    Full Text Available In 2014 alloy deformed by Equal Channel Angular Extrusion process (ECAE the changes in the size and shape of structural constituents were examined. The samples subjected after deformation to additional annealing at 300°C/10min were characterized by larger grains of nearly-equiaxial shapes. The microstructure after deformation was composed of a large number of the mutually crossing bands and microbands. The intersection of microbands resulted in formation of rectangular and rhombohedral grains. It was noted that the average grain size after ε = 4.6 (4 passes was 0.2 μm.

  7. Extrusive and Intrusive Magmatism Greatly Influence the Tectonic Mode of Earth-Like Planets

    Science.gov (United States)

    Lourenco, D.; Tackley, P. J.; Rozel, A.; Ballmer, M.

    2017-09-01

    Plate tectonics on Earth-like planets is typically modelling using a strongly temperature-dependent visco-plastic rheology. Previous analyses have generally focussed on purely thermal convection. However, we have shown that the influence of compositional heterogeneity in the form of continental or oceanic crust can greatly influence plate tectonics by making it easier (i.e. it occurs at a lower yield stress or friction coefficient). Here we present detailed results on this topic, in particular focussing on the influence of intrusive vs. extrusive magmatism on the tectonic mode.

  8. Kit ligand promotes first polar body extrusion of mouse preovulatory oocytes

    Directory of Open Access Journals (Sweden)

    Ye Yinghui

    2009-04-01

    Full Text Available Abstract Background Shortly after stimulation by the preovulatory surge of luteinizing hormone (LH, oocytes arrested at the late prophase I resume meiosis characterized by germinal vesicle breakdown (GVBD, chromosome condensation, and extrusion of the first polar body in preparation for fertilization and early embryonic development. However, oocytes express few or no LH receptors and are insensitive to direct LH stimulation. Thus, factors released by granulosa or theca cells expect to convey the LH stimuli to oocytes. To identify candidate ligand-receptor pairs potentially involved in the process of oocyte maturation, we performed DNA microarray analyses of ovarian transcripts in mice and identified Kit ligand (Kitl as an ovarian factor stimulated by the LH/hCG surge. The purpose of this study is to investigate the roles of KITL in the nuclear and cytoplasmic maturation of preovulatory mouse oocytes. Methods The levels of Kitl and c-kit transcripts in mouse ovaries and isolated ovarian cells were determined by real-time RT-PCR, while expression of KITL protein was examined by immunohistochemistry. Follicle culture, cumulus-oocyte complexes (COC and denuded oocytes culture were used to evaluate the effect of KITL on mouse oocyte nuclear maturation. To assess the effect of KITL treatment on the cytoplasmic maturation of preovulatory oocytes, we performed in vitro maturation of oocytes followed by in vitro fertilization. Results Major increase of Kitl transcripts in granulosa cells and mouse ovaries, and predominant expression of c-kit in preovulatory oocytes were identified by real-time RT-PCR. Predominant expression of KITL protein was found in granulosa cells of preovulatory and small antral follicles at 4 h after hCG treatment. In vitro cultures demonstrated that treatment with KITL enhanced first polar body extrusion in a dose-dependent manner. Moreover, treatment of COC with KITL enhanced first polar body extrusion with increase in cyclin B1

  9. Extrusion of bone anchor suture following flexor digitorum profundus tendon avulsion injury repair.

    LENUS (Irish Health Repository)

    Tiong, William H C

    2011-09-01

    Flexor digitorum profundus (FDP) zone I tendon avulsion injury is traditionally repaired with a pullout suture technique. More recently, bone anchor sutures have been used as a viable alternative and have largely replaced areas in hand surgery where pullout suture technique was once required. To date, there have been very few complications reported related to bone anchor suture use in FDP tendon reattachment to the bone. We report a very unusual case of extrusion of bone anchor through the nailbed, 6 years after zone I FDP tendon avulsion injury repair and a brief review of literature.

  10. Quantitative Microstructural Characterization of Thick Aluminum Plates Heavily Deformed Using Equal Channel Angular Extrusion

    DEFF Research Database (Denmark)

    Mishin, Oleg; Segal, V.M.; Ferrasse, S.

    2012-01-01

    A detailed quantitative analysis of the microstructure has been performed in three orthogonal planes of 15-mm-thick aluminum plates heavily deformed via two equal channel angular extrusion (ECAE) routes. One route was a conventional route A with no rotation between passes. Another route involved...... sequential 90 deg rotations about the normal direction (ND) between passes. The microstructure in the center of these plates, and especially the extent of microstructural heterogeneity, has been characterized quantitatively and compared with that in bar samples extruded via either route A or route Bc with 90...... Bc. © The Minerals, Metals & Materials Society and ASM International 2012...

  11. Optimization of the uniformity of a metal flow during continuous extrusion by the Conform method

    Science.gov (United States)

    Lyubanova, A. Sh.; Gorokhov, Yu. V.; Solopko, I. V.; Ziborov, A. Yu.

    2010-03-01

    The scheme of plastic deformation of a billet in a container is considered as part of continuous extrusion by the Conform method. A mathematical model of the motion of a viscoplastic Bingham liquid is used to determine the metal velocity distribution in the plastic-deformation zone. As a result, the optimum angle between the longitudinal axes of the die and container is estimated. This angle is found to be one of the main factors affecting the nonuniformity of deformation when a metal flows into the die. The calculated results are compared to experimental data.

  12. Efeito de parâmetros de extrusão na cor E propriedades de pasta da farinha de mandioquinha-salsa (Arracacia xanthorrhiza Effect of extrusion parameters on color and pasting properties of peruvian carrot flour (Arracacia xanthorrhiza

    Directory of Open Access Journals (Sweden)

    Bruna Menegassi

    2007-12-01

    Full Text Available Processou-se neste trabalho a farinha de mandioquinha-salsa (Arracacia xanthorrhiza Bancr. em uma linha de extrusão (mono rosca variando as condições operacionais: umidade da farinha (11-19%, temperatura de extrusão (86-154ºC e taxa de rotação da rosca (136-272rpm. Os parâmetros de cor analisados foram luminosidade (L* e os componentes de cromaticidade a* e b*. Os parâmetros de propriedade de pasta analisados foram viscosidade inicial, pico de viscosidade, quebra de viscosidade, tendência a retrogradação e viscosidade final. Os resultados obtidos mostraram que a umidade da matéria-prima interferiu nos componentes de cor das farinhas com efeito significativo sobre a luminosidade e croma a*, e a temperatura interferiu no croma b* . Quanto ao efeito dos parâmetros de processo sobre as propriedades de pasta, a umidade interferiu nas viscosidades inicial e final dos produtos, pico e quebra de viscosidade, enquanto a temperatura de extrusão e a rotação da rosca tiveram influência sobre a tendência a retrogradação e viscosidade final dos produtos.In this work peruvian carrot flour (Arracacia xanthorrhiza Bancr. was processed in a single screw extruder at different moisture contents (11-19%, extrusion temperature (86-154ºC and screw speed (136-272rpm. The parameters L*, a* and b* of color were analyzed in extruded flours. The viscosity related parameters determined include initial viscosity, viscosity peak, breakdown, setback and final viscosity. The results showed effect of feed moisture on flour color (L* and a* and the extrusion temperature influenced b*. Moisture content of the feed had effect on initial and final viscosity, viscosity peak and breakdown. Extrusion temperature and screw speed had effect on final viscosity and setback.

  13. High intensity proton accelerator and its application (Proton Engineering Center)

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi

    1995-01-01

    A plan called PROTON ENGINEERING CENTER has been proposed in JAERI. The center is a complex composed of research facilities and a beam shape and storage ring based on a proton linac with an energy of 1.5 GeV and an average current of 10 mA. The research facilities planned are OMEGA·Nuclear Energy Development Facility, Neutron Facility for Material Irradiation, Nuclear Data Experiment Facility, Neutron Factory, Meson Factory, Spallation Radioisotope Beam Facility, and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutrons, π-mesons, muons, and unstable isotopes originated from the protons are available for promoting the innovative research of nuclear energy and basic science and technology. (author)

  14. The underlying event in proton-proton collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel, F.

    2009-05-15

    In this thesis, studies of the underlying event in proton-proton collisions at a center-of-mass energy of {radical}(s) = 10 TeV are presented. Crucial ingredient to underlying event models are multiple parton-parton scatters in single proton-proton collisions. The feasibility of measuring the underlying event was investigated with the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) using charged particles and charged-particle jets. Systematic uncertainties of the underlying event measurement due to detector misalignment and imperfect track reconstruction are found to be negligible after {integral}Ldt=1 pb{sup -1} of data are available. Different model predictions are compared with each other using fully simulated Monte Carlo samples. It is found, that distinct models differ strongly enough to tell them apart with early data. (orig.)

  15. Proton-proton elastic scattering measurements at COSY

    Energy Technology Data Exchange (ETDEWEB)

    Bagdasarian, Zara [Forschungszentrum Juelich, Juelich (Germany); Tbilisi State University, Tbilisi (Georgia); Collaboration: ANKE-Collaboration

    2014-07-01

    To construct the reliable phase shift analysis (PSA) that can successfully describe the nucleon-nucleon (NN) interaction it is necessary to measure variety of experimental observables for both proton-proton (pp) and neutron-proton (np) elastic scattering. The polarized beams and targets at COSY-ANKE facility allow a substantial contribution to the existing database. The experiment was carried out in April 2013 at ANKE using a transversely polarized proton beam incident on an unpolarized hydrogen cluster target. Six beam energies of T{sub p}=0.8,1.6,1.8,2.0,2.2,2.4 GeV were used. The aim of this talk is to present the preliminary results for the analyzing power (A{sub y}) for the pp elastic scattering in the so-far unexplored 5 <θ{sub cm}<30 angular range. Our measurements are also compared to the world data and current partial wave solutions.

  16. Where is the proton's spin?

    International Nuclear Information System (INIS)

    Close, F.E.

    1988-01-01

    There has been much recent excitement arising from the claim by the EMC collaboration that none of the proton's spin is carried by quarks. There are many textbooks, including those written by some members of this audience, which assert that the proton's spin is carried by quarks. I will review the history of deep inelastic scattering of polarized leptons from polarized protons, culminating in this most recent dramatic claim. I will show that, for the last decade, data have appeared consistent with predictions of the quark model and highlight what the new and potentially exciting data are. I will conclude with suggestions for the future. 33 refs

  17. Acceleration of polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1998-01-01

    The acceleration of polarized beams in circular accelerators is complicated by the numerous depolarizing spin resonances. Using a partial Siberian snake and a rf dipole that ensure stable adiabatic spin motion during acceleration has made it possible to accelerate polarized protons to 25 GeV at the Brookhaven AGS. Full Siberian snakes are being developed for RHIC to make the acceleration of polarized protons to 250 GeV possible. A similar scheme is being studied for the 800 GeV HERA proton accelerator

  18. Where is the proton's spin?

    International Nuclear Information System (INIS)

    Close, F.E.

    1989-01-01

    There has been much recent excitement arising from the claim by the EMC collaboration that none of the proton's spin is carried by quarks. There are many textbooks, including those written by some members of this audience, which assert that the proton's spin is carried by quarks. I will review the history of deep inelastic scattering of polarized leptons from polarized protons, culminating in this most recent dramatic claim. I will show that, for the last decade, data have appeared consistent with predictions of the quark model and highlight what the new and potentially exciting data are. I will conclude with suggestions for the future

  19. Measurement of proton autoneutralization potential

    International Nuclear Information System (INIS)

    Garcia, M.

    1984-09-01

    A proton space charge having multi-MeV kinetic energy was injected through a thin ground plane to extract electrons and produce a time-dependent autoneutralization space potential. An electon-emitting floating-potential resistive divider was used to measure the space potential during 20 ns of the proton current pulse. During this time, proton kinetic energy fell from 10.6 MeV to 8.5 MeV and thus the space potential (taken as 1.09 x the floating potential) fell from 5.8 kV to 4.6 kV

  20. Scattering of intermediate energy protons

    International Nuclear Information System (INIS)

    Chaumeaux, Alain.

    1980-06-01

    The scattering of 1 GeV protons appears to be a powerful means of investigating nuclear matter. We worked with SPESI and the formalism of Kerman-Mc Manus and Thaler. The amplitude of nucleon-nucleon scattering was studied as were the aspects of 1 GeV proton scattering (multiple scattering, absorption, spin-orbit coupling, N-N amplitude, KMT-Glauber comparison, second order effects). The results of proton scattering on 16 O, the isotopes of calcium, 58 Ni, 90 Zr and 208 Pb are given [fr

  1. Aspects of the fundamental theory of proton-proton scattering

    CERN Document Server

    Martin, A

    1973-01-01

    After recalling the existence of a high energy bound on proton-proton total cross-sections, the author discusses the various phenomena which occur when these cross-sections rise and especially when they have the qualitative behaviour of the bound: rising elastic cross- sections, shrinking diffraction peak, validity of the Pomeranchuk theorem for total and elastic cross-sections, existence of a positive real part of the forward amplitude at high energies. (16 refs).

  2. Proton-proton elastic scattering at ultrahigh energies

    International Nuclear Information System (INIS)

    Saleem, M.; Shaukat, M.A.; Fazal-e-Aleem

    1981-01-01

    Recent experimental results on proton-proton elastic scattering at high energies are discussed in the context of the comments by Chou and Yang. There does not appear to be any tendency that the experimental results would agree with the predictions of the geometrical model even at ultrahigh energies. The angular distribution structure as described by using the dipole pomeron is consistent with the experimental data at presently available high energies and predicts results quite different from the geometrical model. (author)

  3. Proton-proton elastic scattering at ultrahigh energies

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Shaukat, M.A.; Fazal-e-Aleem (University of the Punjab, Lahore (Pakistan). Dept. of Physics)

    1981-05-30

    Recent experimental results on proton-proton elastic scattering at high energies are discussed in the context of the comments by Chou and Yang. There does not appear to be any tendency that the experimental results would agree with the predictions of the geometrical model even at ultrahigh energies. The angular distribution structure as described by using the dipole pomeron is consistent with the experimental data at presently available high energies and predicts results quite different from the geometrical model.

  4. Apical extrusion of debris after hand, engine-driven reciprocating and continuous preparation = Extrusão apical de “debris” após o preparo manual e mecanizado oscilatório e contínuo

    Directory of Open Access Journals (Sweden)

    Luisi, Simone Bonato

    2010-01-01

    Conclusão: A técnica rotatória contínua com Pro-taper produziu maior quantidade de extrusão apical do que as técnicas coroa-ápice manual e mecanizada com sistema de rotação oscilatória. A direção da instrumentação, se cérvico-apical ou ápico-cervical, parece ser o fator mais determinante na extrusão de “debris” independente desta ser realizada manual ou mecanizada

  5. Influence of extrusion parameters on sic distribution and properties of AA6061/SiC composites produced by kobo method

    Energy Technology Data Exchange (ETDEWEB)

    WoĨniak, Jarosáaw; Kostecki, Marek; Broniszewski, Kamil; Olszyna, Andrzej [Faculty of Material Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Bochniak, Wáodzimierz [Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Cracow (Poland)

    2013-07-01

    The influence of extrusion parameters on reinforcements distribution and properties of AA6061+x% vol. SiC p (x=0; 2.5; 5; 7.5; 10) composites was discussed in this paper The averages size of AA6061 and SiC particles were 10.6 μ m and 0.42 μ m, respectively. The composites were consolidated via powder metallurgy processing (without the sintering) and extruded by KoBo method. The microstructure was examined on each steps of production. High values of density for all produced composites were achieved. Additionally, hardness and Young’s modulus were investigated. The best reinforcement distribution and mechanical properties were obtained for composites extruded with the highest extrusion ratio. Key words: aluminum alloy, extrusion, aged hardening, metal matrix composites, microstructure.

  6. Finite Element Analysis and Die Design of Non-specific Engineering Structure of Aluminum Alloy during Extrusion

    International Nuclear Information System (INIS)

    Chen, D.-C.; Lu, Y.-Y.

    2010-01-01

    Aluminum extension applies to industrial structure, light load, framework rolls and conveyer system platform. Many factors must be controlled in processing the non-specific engineering structure (hollow shape) of the aluminum alloy during extrusion, to obtain the required plastic strain and desired tolerance values. The major factors include the forming angle of the die and temperature of billet and various materials. This paper employs rigid-plastic finite element (FE) DEFORM 3D software to investigate the plastic deformation behavior of an aluminum alloy (A6061, A5052, A3003) workpiece during extrusion for the engineering structure of the aluminum alloy. This work analyzes effective strain, effective stress, damage and die radius load distribution of the billet under various conditions. The analytical results confirm the suitability of the current finite element software for the non-specific engineering structure of aluminum alloy extrusion.

  7. Effects of Sintering and Extrusion on the Microstructures and Mechanical Properties of a SiC/Al-Cu Composite

    Science.gov (United States)

    Sun, Chao; Shen, Rujuan; Song, Min

    2012-03-01

    This article studied the effects of sintering and extrusion on the microstructures and mechanical properties of SiC particle reinforced Al-Cu alloy composite produced by powder metallurgy method. It has been shown that both extrusion and increasing sintering temperature can significantly improve the strength and plasticity of the composite. The extrusion and increase of the sintering temperature can break up the oxide coating on the matrix powder surfaces, decrease the number of pores, accelerate the elements' diffusion and increase the density and particle interfacial bonding strength, thus significantly improve the mechanical properties of the composite. The strength and hardness of the composite increase and the elongation decreases with increasing the aging time at under-aged stage, while the strength and hardness start to decrease and the elongation starts to increase with increasing the aging time at over-aged stage due to the formation and growth of the secondary strengthening precipitates in the Al-Cu matrix.

  8. Analysis and Prediction of the Billet Butt and Transverse Weld in the Continuous Extrusion Process of a Hollow Aluminum Profile

    Science.gov (United States)

    Lou, Shumei; Wang, Yongxiao; Liu, Chuanxi; Lu, Shuai; Liu, Sujun; Su, Chunjian

    2017-08-01

    In continuous extrusions of aluminum profiles, the thickness of the billet butt and the length of the discarded extrudate containing the transverse weld play key roles in reducing material loss and improving product quality. The formation and final distribution of the billet butt and transverse weld depend entirely on the flow behavior of the billet skin material. This study examined the flow behavior of the billet skin material as well as the formation and evolution of the billet butt and the transverse weld in detail through numerical simulation and a series of experiments. In practical extrusions, even if the billet skin is removed by lathe turning shortly before extrusion, billet skin impurities are still distributed around the transverse weld and in the billet butt. The thickness of the scrap billet butt and the length of the discarded extrudate containing the transverse weld can be exactly predicted via simulation.

  9. Marsupialization of a large dentigerous cyst in the mandible with orthodontic extrusion of three impacted teeth. A case report.

    Science.gov (United States)

    Abu-Mostafa, Nedal; Abbasi, Arshad

    2017-09-01

    The dentigerous cyst (DC) is the most common type of developmental odontogenic cyst. It is usually asymptomatic and associated with the crown of an unerupted or impacted tooth. However, after a long duration, it is likely to cause significant bone resorption, cortical expansion, and tooth displacement. This report presents a large infected DC in the mandible of a 12-year-old female patient. The DC was located inferior to badly decayed primary molars and surrounded three impacted permanent teeth: canine, first premolar, which had a dilacerated root, and second premolar. The DC was treated successfully by marsupialization and extrusion of the impacted teeth. In conclusion, the combination of marsupialization with orthodontic extrusion is a conservative, efficient protocol that stimulates bone healing and promotes the eruption of cyst-associated teeth even if they are deeply impacted, crowded, or have a dilacerated root. Key words: Dentigerous cyst, marsupialization, impacted teeth, orthodontic extrusion, dilacerated root.

  10. Effect of conventional and extrusion pelleting on in situ ruminal degradability of starch, protein, and fibre in cattle

    DEFF Research Database (Denmark)

    Razzaghi, Ali; Larsen, Mogens; Lund, Peter

    2016-01-01

    +50% sugar beet pulp (SBP), or 50% maize+50% SBP. Meals were pelleted by either conventional pelleting, or by cooking extrusion using two distinct settings giving pellets with either high density (HD) or low density (LD). Ruminal degradation of starch, crude protein (CP) and NDF, and intestinal...... affected ruminal degradability of starch, protein, and NDF differently depending on both type of cereal and composition of the concentrate mixture.......>Pelleting>Meal). In contradiction, ESD for pure wheat and wheat mixtures was reduced, though differences were minor. Conventional pelleting reduced the effective protein degradability (EPD) for pure wheat, but extrusion did not further affect the EPD. In contrast, the most intense processing with extrusion LD increased EPD...

  11. Anomalous growth of whisker-like bismuth-tin extrusions from tin-enriched tin-Bi deposits

    International Nuclear Information System (INIS)

    Hu, C.-C.; Tsai, Y.-D.; Lin, C.-C.; Lee, G.-L.; Chen, S.-W.; Lee, T.-C.; Wen, T.-C.

    2009-01-01

    This article shows the first finding that the anomalous growth of Bi-Sn extrusions from tin-enriched alloys (Sn-xBi with x between 20 and 10 wt.%) can be induced by post-plating annealing in N 2 between 145 and 260 deg. C for 10 min although metal whiskers were commonly formed on the surface of pure metals or alloys of the enriched component. From SEM observations, very similar to Sn whiskers, Bi-Sn extrusions vary in size, shape, length, and diameter with changing the annealing temperature, which are highly important in regarding the potential for failure of electronic products. Annealing resulting in thermal expansion of Sn grains is believed to squeeze the Bi-Sn alloys with relatively low melting points to form whisker-like extrusions although the exact mechanism is unclear

  12. Effect of extrusion processing on the microstructure, mechanical properties, biocorrosion properties and antibacterial properties of Ti-Cu sintered alloys.

    Science.gov (United States)

    Zhang, Erlin; Li, Shengyi; Ren, Jing; Zhang, Lan; Han, Yong

    2016-12-01

    Ti-Cu sintered alloys, Ti-Cu(S) alloy, have exhibited good anticorrosion resistance and strong antibacterial properties, but low ductility in previous study. In this paper, Ti-Cu(S) alloys were subjected to extrusion processing in order to improve the comprehensive property. The phase constitute, microstructure, mechanical property, biocorrosion property and antibacterial activity of the extruded alloys, Ti-Cu(E), were investigated in comparison with Ti-Cu(S) by X-ray diffraction (XRD), optical microscopy (OM), scanning electronic microscopy (SEM) with energy disperse spectroscopy (EDS), mechanical testing, electrochemical testing and plate-count method in order to reveal the effect of the extrusion process. XRD, OM and SEM results showed that the extrusion process did not change the phase constitute but refined the grain size and Ti2Cu particle significantly. Ti-Cu(E) alloys exhibited higher hardness and compressive yield strength than Ti-Cu(S) alloys due to the fine grain and Ti2Cu particles. With the consideration of the total compressive strain, it was suggested that the extrusion process could improve the ductility of Ti-Cu alloy(S) alloys. Electrochemical results have indicated that the extrusion process improved the corrosion resistance of Ti-Cu(S) alloys. Plate-count method displayed that both Ti-Cu(S) and Ti-Cu(E) exhibited strong antibacterial activity (>99%) against S. aureus. All these results demonstrated that hot forming processing, such as the extrusion in this study, refined the microstructure and densified the alloy, in turn improved the ductility and strength as well as anticorrosion properties without reduction in antibacterial properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Density and superconducting properties of metal-sheathed YBa2Cu3Oy ceramic processed by hydrostatic extrusion

    International Nuclear Information System (INIS)

    Karpov, M.I.; Korzhov, V.P.; Artamoshin, A.V.; Prokopenko, V.M.

    1994-01-01

    Brittle materials can be deformed without cracking and rupturing using hydrostatic extrusion, which provides the greatest pore annihilation in powder-processed materials and allows large degrees of one-step deformation, which is favorable for texturing. Earlier, a casting slip prepared by mixing a starting powder of Y-based ceramic with an organic binder was conventionally extruded to produce a wire 150 μm in diameter. After special sintering, the critical-current density in the material attained a few hundred amperes per square centimeter at 77 K, and the wire could be rolled into a winding ≥0.3 m in diameter. Hydrostatic extrusion of an assembly composed of Y-based ceramic in a bimetallic Nb/Cu tube 30 mm in diameter was used to produce rods 6 mm in diameter; drawing of these rods yielded samples of wire 2 to 3 mm in diameter. It was shown that the extrusion pressure and strain substantially influence the yield of the rupture-free wire. No signs of rupturing, cracking, or necking were observed in wire extruded at pressures ≤700 MPa and degrees of deformation ≤50%. A pronounced instability of the hydrostatic extrusion, the appearance of defects, and even the rupture of the rods were caused by an increase in the pressure up to 2000 MPa and in the degree of one-step deformation up to 80%. In this work, the authors focus on the possibility of producing thin YBa 2 Cu 3 O y superconductors using only hydrostatic extrusion. They determined the parameters for the hydrostatic extrusion of the metal-sheathed YBa 2 Cu 3 O y ceramic to a diameter of 3 mm or to a rectangular cross section. Effects of the ceramic core, and of the reduction coefficient on superconducting-transition parameters and the critical-current density of the ceramic were examined

  14. A new arthroscopic classification of degenerative medial meniscus root tear that correlates with meniscus extrusion on magnetic resonance imaging.

    Science.gov (United States)

    Bin, Seong-Il; Jeong, Tae-Wan; Kim, Su-Jin; Lee, Dae-Hee

    2016-03-01

    To determine a new classification system for medial meniscus root tears (MMRT) based on arthroscopic findings. 24 knees (55%) belonged to the nondisplaced or overlapped group, and 20 knees (45%) to the widely displaced group. Absolute meniscal extrusion was defined as distance between outer edge of the articular cartilage of tibial plateau and meniscal outer edge. Relative extrusion was defined as extruded meniscus width divided by entire meniscal width, multiplied by 100. The proportion of knees with major (>3 mm) extrusion were compared in two groups, as were the severity of chondral wear and osteoarthritic change. Absolute (4.6 mm vs. 3.7 mm, P=0.006) and relative (46% vs. 39%, P=0.042) extrusion of the medial meniscus were greater in widely displaced than in nondisplaced or overlapped group. Medial joint space width was significantly narrower in the widely displaced than in the nondisplaced or overlapped group (3.0 mm vs. 4.0 mm, P=0.007). The widely displaced group had a 4° greater varus deformity, and higher rates of major extrusion (>3 mm), grade III or IV chondral wear in the medial femoral condyle (60% vs. 29%, P=0.039) and medial compartment osteoarthritis (75% vs. 21%, P=0.001) than did the nondisplaced or overlapped group. Widely displaced MMRT had greater meniscal extrusion and more severe chondral wear and osteoarthritis than did nondisplaced or overlapped MMRT. In this novel classification system, the stage of MMRT severity was associated with tear site displacement. Case series (level IV). Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Proton radiotherapy: some perspectives

    International Nuclear Information System (INIS)

    Kirn, T.F.

    1988-01-01

    A news article highlighting the use of protons in radiotherapy is presented. Development of stereotaxic radiosurgery is the result of contributions from physicists, radiologists, and neurosurgeons, says Jacob Fabrikant, MD, head of the Arteriovenous Malformation Program at the University of California's Lawrence Berkeley laboratory. It also appears to have been the product of Harvard University (Boston) and University of California (Berkeley) cooperation. Robert R. Wilson, PhD, now a professor emeritus at Cornell University, Ithaca, NY, is credited with proposing the medical use of charged particles. Wilson, a physicist, says that the idea occurred to him while he was at Berkeley in the mid-1940's, designing the cyclotron to be built at Harvard. Although he was aware of their work, he does not remember discussing it with Robert Stone, MD, or John Lawrence, MD, who only a few years earlier at Berkeley had begun the initial medical experiments with neutrons. Wilson says that it simply occurred to him that in certain instances charged particles had two advantages over x-rays

  16. Polarized protons at RHIC

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1990-12-01

    The Physics case is presented for the use of polarized protons at RHIC for one or two months each year. This would provide a facility with polarizations of approx-gt 50% high luminosity ∼2.0 x 10 32 cm -2 s -1 , the possibility of both longitudinal and transverse polarization at the interaction regions, and frequent polarization reversal for control of systematic errors. The annual integrated luminosity for such running (∼10 6 sec per year) would be ∫ Ldt = 2 x 10 38 cm -2 -- roughly 20 times the total luminosity integrated in ∼ 10 years of operation of the CERN Collider (∼10 inverse picobarns, 10 37 cm -2 ). This facility would be unique in the ability to perform parity-violating measurements and polarization test of QCD. Also, the existence of p-p collisions in a new energy range would permit the study of ''classical'' reactions like the total cross section and elastic scattering, etc., and serve as a complement to measurements from p-bar p colliders. 11 refs

  17. Proton-proton and deuteron-deuteron correlations in interactions of relativistic helium nuclei with protons

    International Nuclear Information System (INIS)

    Galazka-Friedman, J.; Sobczak, T.; Stepaniak, J.; Zielinski, I.P.; Bano, M.; Hlavacova, J.; Martinska, G.; Patocka, J.; Seman, M.; Sandor, L.; Urban, J.

    1993-01-01

    The reactions 4 Hep→pp+X, 3 Hep→pp+X and 4 Hep→ddp have been investigated and the correlation function has been measured for protons and deuterons with small relative momenta. Strong positive correlation has been observed for protons related mainly to the final state interactions in 1 S 0 state. The root mean square radius of the proton source calculated from the correlation function has been found to be equal to (1.7±0.3) fm and (2.1±0.3) fm for 4 He and 3 He respectively. It agrees with the known radii of these nuclei. (orig.)

  18. Dynamics of Anti-Proton -- Protons and Anti-Proton -- Nucleus Reactions

    CERN Document Server

    Galoyan, A; Uzhinsky, V

    2016-01-01

    A short review of simulation results of anti-proton-proton and anti-proton-nucleus interactions within the framework of Geant4 FTF (Fritiof) model is presented. The model uses the main assumptions of the Quark-Gluon-String Model or Dual Parton Model. The model assumes production and fragmentation of quark-anti-quark and diquark-anti-diquark strings in the mentioned interactions. Key ingredients of the model are cross sections of string creation processes and an usage of the LUND string fragmentation algorithm. They allow one to satisfactory describe a large set of experimental data, especially, a strange particle production, Lambda hyperons and K mesons.

  19. Parametric Model for Astrophysical Proton-Proton Interactions and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Niklas [KTH Royal Institute of Technology, Stockholm (Sweden)

    2007-01-01

    Observations of gamma-rays have been made from celestial sources such as active galaxies, gamma-ray bursts and supernova remnants as well as the Galactic ridge. The study of gamma rays can provide information about production mechanisms and cosmic-ray acceleration. In the high-energy regime, one of the dominant mechanisms for gamma-ray production is the decay of neutral pions produced in interactions of ultra-relativistic cosmic-ray nuclei and interstellar matter. Presented here is a parametric model for calculations of inclusive cross sections and transverse momentum distributions for secondary particles--gamma rays, e±, ve, $\\bar{v}$e, vμ and $\\bar{μ}$e--produced in proton-proton interactions. This parametric model is derived on the proton-proton interaction model proposed by Kamae et al.; it includes the diffraction dissociation process, Feynman-scaling violation and the logarithmically rising inelastic proton-proton cross section. To improve fidelity to experimental data for lower energies, two baryon resonance excitation processes were added; one representing the Δ(1232) and the other multiple resonances with masses around 1600 MeV/c2. The model predicts the power-law spectral index for all secondary particle to be about 0.05 lower in absolute value than that of the incident proton and their inclusive cross sections to be larger than those predicted by previous models based on the Feynman-scaling hypothesis. The applications of the presented model in astrophysics are plentiful. It has been implemented into the Galprop code to calculate the contribution due to pion decays in the Galactic plane. The model has also been used to estimate the cosmic-ray flux in the Large Magellanic Cloud based on HI, CO and gamma-ray observations. The transverse momentum distributions enable calculations when the proton distribution is anisotropic. It is shown that the gamma-ray spectrum and flux due to a

  20. Preparation of High Modulus Poly(Ethylene Terephthalate: Influence of Molecular Weight, Extrusion, and Drawing Parameters

    Directory of Open Access Journals (Sweden)

    Jian Min Zhang

    2017-01-01

    Full Text Available Poly(ethylene terephthalate (PET which is one of the most commercially important polymers, has for many years been an interesting candidate for the production of high performance fibres and tapes. In current study, we focus on investigating the effects of the various processing variables on the mechanical properties of PET produced by a distinctive process of melt spinning and uniaxial two-stage solid-state drawing (SSD. These processing variables include screw rotation speed during extrusion, fibre take-up speed, molecular weight, draw-ratio, and drawing temperature. As-spun PET production using a single-screw extrusion process was first optimized to induce an optimal polymer microstructure for subsequent drawing processes. It was found that less crystallization which occurred during this process would lead to better drawability, higher draw-ratio, and mechanical properties in the subsequent SSD process. Then the effect of drawing temperature (DT in uniaxial two-stage SSD process was studied to understand how DT (