WorldWideScience

Sample records for proton elimination rates

  1. Protein proton-proton dynamics from amide proton spin flip rates

    International Nuclear Information System (INIS)

    Weaver, Daniel S.; Zuiderweg, Erik R. P.

    2009-01-01

    Residue-specific amide proton spin-flip rates K were measured for peptide-free and peptide-bound calmodulin. K approximates the sum of NOE build-up rates between the amide proton and all other protons. This work outlines the theory of multi-proton relaxation, cross relaxation and cross correlation, and how to approximate it with a simple model based on a variable number of equidistant protons. This model is used to extract the sums of K-rates from the experimental data. Error in K is estimated using bootstrap methodology. We define a parameter Q as the ratio of experimental K-rates to theoretical K-rates, where the theoretical K-rates are computed from atomic coordinates. Q is 1 in the case of no local motion, but decreases to values as low as 0.5 with increasing domination of sidechain protons of the same residue to the amide proton flips. This establishes Q as a monotonous measure of local dynamics of the proton network surrounding the amide protons. The method is applied to the study of proton dynamics in Ca 2+ -saturated calmodulin, both free in solution and bound to smMLCK peptide. The mean Q is 0.81 ± 0.02 for free calmodulin and 0.88 ± 0.02 for peptide-bound calmodulin. This novel methodology thus reveals the presence of significant interproton disorder in this protein, while the increase in Q indicates rigidification of the proton network upon peptide binding, confirming the known high entropic cost of this process

  2. Influence of protonation or alkylation of the phosphate group on the e. s. r. spectra and on the rate of phosphate elimination from 2-methoxyethyl phosphate 2-yl radicals. [. gamma. rays

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, G; Koltzenburg, G; Ritter, A; Schulte-Frohlinde, D [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany, F.R.). Inst. fuer Strahlenchemie

    1978-02-01

    The e.s.r. spectra of l-yl, 2-yl and 3'-yl methoxethyl phosphate radicals derived from CH/sub 3/OCH/sub 2/CH/sub 2/-OPO/sub 3/H/sub 2/ by hydrogen abstraction have been measured in aqueous solutions and the hyperfine constants determined. The coupling constants vary strongly with protonation or alkylation of the phosphate group. The 2-yl radicals eliminate phosphate. The rate-constants for the elimination (ksub(e)) have been estimated by e.s.r. measurements and by product studies as a function of pH using /sup 60/Co ..gamma..-radiolysis. The ksub(e) values vary from approximately 0.3 s/sup -1/ for the CH/sub 3/OCHCH/sub 2/OPO/sub 3//sup - -/ radical and approximately 10/sup 3/s/sup -1/ for CH/sub 3/OCHCH/sub 2/OPO/sub 3/H/sup -/, to approximately 3 x 10/sup 6/s/sup -1/ for CH/sub 3/OCHCH/sub 2/OPO/sub 3/H/sub 2/. Alkylation of the phosphate group increased the elimination rate-constant to a similar extent as protonation. The results support a recent mechanism which described the OH-radical-induced single-strand breaks of DNA in aqueous solution starting from the C-4' radical of the sugar moiety. It is further concluded the C-4' radical of DNA eliminates the 3'-phosphate group faster than the 5'-phosphate group.

  3. Stereochemistry of 1,2-elimination and proton-transfer reactions: toward a unified understanding.

    Science.gov (United States)

    Mohrig, Jerry R

    2013-07-16

    Many mechanistic and stereochemical studies have focused on the breaking of the C-H bond through base-catalyzed elimination reactions. When we began our research, however, chemists knew almost nothing about the stereospecificity of addition-elimination reactions involving conjugated acyclic carbonyl compounds, even though the carbonyl group is a pivotal functional group in organic chemistry. Over the last 25 years, we have studied the addition-elimination reactions of β-substituted acyclic esters, thioesters, and ketones in order to reach a comprehensive understanding of how electronic effects influence their stereochemistry. This Account brings together our understanding of the stereochemistry of 1,2-elimination and proton-transfer reactions, describing how each study has built upon previous work and contributed to our understanding of this field. When we began, chemists thought that anti stereospecificity in base-catalyzed 1,2-elimination reactions occurred via concerted E2 mechanisms, which provide a smooth path for anti elimination. Unexpectedly, we discovered that some E1cBirrev reactions produce the same anti stereospecificity as E2 reactions even though they proceed through diffusionally equilibrated, "free" enolate-anion intermediates. This result calls into question the conventional wisdom that anti stereochemistry must result from a concerted mechanism. While carrying out our research, we developed insights ranging from the role of historical contingency in the evolution of hydratase-dehydratase enzymes to the influence of buffers on the stereochemistry of H/D exchange in D2O. Negative hyperconjugation is the most important concept for understanding our results. This idea provides a unifying view for the largely anti stereochemistry in E1cBirrev elimination reactions and a basis for understanding the stereoelectronic influence of electron-withdrawing β-substituents on proton-transfer reactions.

  4. Proton-proton reaction rates at extreme energies

    International Nuclear Information System (INIS)

    Nagano, Motohiko

    1993-01-01

    Results on proton-antiproton reaction rates (total cross-section) at collision energies of 1.8 TeV from experiments at Fermilab have suggested a lower rate of increase with energy compared to the extrapolation based on results previously obtained at CERN's proton-antiproton collider (CERN Courier, October 1991). Now an independent estimate of the values for the proton-proton total cross-section for collision energies from 5 to 30 TeV has been provided by the analysis of cosmic ray shower data collected over ten years at the Akeno Observatory operated by the Institute for Cosmic Ray Research of University of Tokyo. These results are based on the inelastic cross-section for collisions of cosmic ray protons with air nuclei at energies in the range10 16-18 eV. A new extensive air shower experiment was started at Akeno, 150 km west of Tokyo, in 1979 with a large array of detectors, both on the ground and under a 1-metre concrete absorber. This measured the total numbers of electrons and muons of energies above 1GeV for individual showers with much better accuracy than before. Data collection was almost continuous for ten years without any change in the triggering criteria for showers above10 16 eV. The mean free path for proton-air nuclei collisions has been determined from the zenith angle of the observed frequency of air showers which have the same effective path length for development in the atmosphere and the same primary energy

  5. Solvent Exchange Rates of Side-chain Amide Protons in Proteins

    International Nuclear Information System (INIS)

    Rajagopal, Ponni; Jones, Bryan E.; Klevit, Rachel E.

    1998-01-01

    Solvent exchange rates and temperature coefficients for Asn/Gln side-chain amide protons have been measured in Escherichia coli HPr. The protons of the eight side-chain amide groups (two Asn and six Gln) exhibit varying exchange rates which are slower than some of the fast exchanging backbone amide protons. Differences in exchange rates of the E and Z protons of the same side-chain amide group are obtained by measuring exchange rates at pH values > 8. An NOE between a side-chain amide proton and a bound water molecule was also observed

  6. Approaches to proton single-event rate calculations

    International Nuclear Information System (INIS)

    Petersen, E.L.

    1996-01-01

    This article discusses the fundamentals of proton-induced single-event upsets and of the various methods that have been developed to calculate upset rates. Two types of approaches are used based on nuclear-reaction analysis. Several aspects can be analyzed using analytic methods, but a complete description is not available. The paper presents an analytic description for the component due to elastic-scattering recoils. There have been a number of studies made using Monte Carlo methods. These can completely describe the reaction processes, including the effect of nuclear reactions occurring outside the device-sensitive volume. They have not included the elastic-scattering processes. The article describes the semiempirical approaches that are most widely used. The quality of previous upset predictions relative to space observations is discussed and leads to comments about the desired quality of future predictions. Brief sections treat the possible testing limitation due to total ionizing dose effects, the relationship of proton and heavy-ion upsets, upsets due to direct proton ionization, and relative proton and cosmic-ray upset rates

  7. Amide proton exchange rates of a bound pepsin inhibitor determined by isotope-edited proton NMR experiments

    International Nuclear Information System (INIS)

    Fesik, S.W.; Luly, J.R.; Stein, H.H.; BaMaung, N.

    1987-01-01

    From a series of isotope-edited proton NMR spectra, amide proton exchange rates were measured at 20 C, 30 C, and 40 0 C for a tightly bound 15 N-labeled tripeptide inhibitor of porcine pepsin (IC50 = 1.7 X 10(-) M). Markedly different NH exchange rates were observed for the three amide protons of the bound inhibitor. The P1 NH exchanged much more slowly than the P2 NH and P3 NH. These results are discussed in terms of the relative solvent accessibility in the active site and the role of the NH protons of the inhibitor for hydrogen bonding to the enzyme. In this study a useful approach is demonstrated for obtaining NH exchange rates on ligands bound to biomacromolecules, the knowledge of which could be of potential utility in the design of therapeutically useful nonpeptide enzyme inhibitors from peptide leads

  8. Environmental effects on energy metabolism and 86Rb elimination rates of fishes

    International Nuclear Information System (INIS)

    Peters, E.L.

    1994-01-01

    Relationships between energy metabolism and the turnover rates of number of important chemical and radiological elements (particularly the Group IA alkali metals: K, Rb, and Cs) have been observed in fishes. Using response surface statistics and fractional factorial ANOVA, the author examined the relative influences of temperature, salinity, food intake rate, mass, and their first order interactions on routine energy metabolism and 86 Rb elimination rates. Routine metabolic rates were increased primarily by increased temperature and salinity, with a strong body mass effect and a significant effect of food intake. 86 Rb elimination rates were increased primarily by increased temperature and salinity. There were no interactive effects between mass and either temperature or salinity for either routine energy metabolism or 86 Rb elimination rates. There was a significant interaction effect between temperature and salinity on routine energy metabolism rates, but not on 86 Rb elimination. The authors also observed a relationship between routine energy metabolism and 86 Rb elimination rates that may possibly be exploited as a means of estimating energy metabolic rates of fishes in the field. The statistical techniques used in this experiment have broad potential applications in assessing the contributions of combinations of environmental variables on contaminant kinetics, as well as in multiple toxicity testing, in that they greatly simplify experimental designs compared with traditional full-factorial methods

  9. Accurate Quantitation of Water-amide Proton Exchange Rates Using the Phase-Modulated CLEAN Chemical EXchange (CLEANEX-PM) Approach with a Fast-HSQC (FHSQC) Detection Scheme

    International Nuclear Information System (INIS)

    Hwang, Tsang-Lin; Zijl, Peter C.M. van; Mori, Susumu

    1998-01-01

    Measurement of exchange rates between water and NH protons by magnetization transfer methods is often complicated by artifacts, such as intramolecular NOEs, and/or TOCSY transfer from Cα protons coincident with the water frequency, or exchange-relayed NOEs from fast exchanging hydroxyl or amine protons. By applying the Phase-Modulated CLEAN chemical EXchange (CLEANEX-PM) spin-locking sequence, 135 o (x) 120 o (-x) 110 o (x) 110 o (-x) 120 o (x) 135 o (-x) during the mixing period, these artifacts can be eliminated, revealing an unambiguous water-NH exchange spectrum. In this paper, the CLEANEX-PM mixing scheme is combined with Fast-HSQC (FHSQC) detection and used to obtain accurate chemical exchange rates from the initial slope analysis for a sample of 15N labeled staphylococcal nuclease. The results are compared to rates obtained using Water EXchange filter (WEX) II-FHSQC, and spin-echo-filtered WEX II-FHSQC measurements, and clearly identify the spurious NOE contributions in the exchange system

  10. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion.

    Science.gov (United States)

    Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2015-11-21

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton

  11. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion

    International Nuclear Information System (INIS)

    Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2015-01-01

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton

  12. Determination of myocardial FFA elimination rates by functional images of uncorrected half-time values

    International Nuclear Information System (INIS)

    Visser, F.C.; Eenige, M.J. van; Wall, E.E. van der; Roos, J.P.; Lingen, A. van; Westera, G.; Hollander, W. den; Heidendal, G.A.K.

    1984-01-01

    This paper presents an alternative method of demarcating regions of interest over the myocardium after administration of 123 I-heptadecanoic acid to patients with coronary artery disease. In a matrix of 32x32 pixels the elimination rates of the radioactivity, which are not corrected for background activity, are visualized per pixel in a functional image. The functional image showed areas in the myocardium with high values of uncorrected elimination rates. These areas corresponded with the tracer defects on the scintigram. Corrected elimination rates obtained from regions of interest of functional images were comparable with those of scintigrams. Thus based on functional images of uncorrected elimination rates a reliable, objective determination of regions of interest over normal and abnormal myocardium can be made. (orig.) [de

  13. Inter- and intra-annular proton exchange in gaseous benzylbenzenium ions (protonated diphenylmethane)

    OpenAIRE

    Kuck, Dietmar; Bäther, Wolfgang

    1986-01-01

    Two distinct proton exchange reactions occur in metastable gaseous benzylbenzenium ions, generated by isobutane chemical ionization of diphenylmethane and four deuterium-labelled analogues. Whereas the proton ring-walk at the benzenium moiety is fast giving rise to a completely random intraannular proton exchange, the interannular proton exchange is surprisingly slow and competes with the elimination of benzene. A kinetic isotope effect of kH/kD= 5 has been determined for the interannular pro...

  14. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice

    International Nuclear Information System (INIS)

    Ware, J.H.; Rusek, A.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X.S.; Kennedy, A.R.

    2010-01-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  15. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice.

    Science.gov (United States)

    Ware, J H; Sanzari, J; Avery, S; Sayers, C; Krigsfeld, G; Nuth, M; Wan, X S; Rusek, A; Kennedy, A R

    2010-09-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  16. Ring current proton decay by charge exchange

    Science.gov (United States)

    Smith, P. H.; Hoffman, R. A.; Fritz, T.

    1975-01-01

    Explorer 45 measurements during the recovery phase of a moderate magnetic storm have confirmed that the charge exchange decay mechanism can account for the decay of the storm-time proton ring current. Data from the moderate magnetic storm of 24 February 1972 was selected for study since a symmetrical ring current had developed and effects due to asymmetric ring current losses could be eliminated. It was found that after the initial rapid decay of the proton flux, the equatorially mirroring protons in the energy range 5 to 30 keV decayed throughout the L-value range of 3.5 to 5.0 at the charge exchange decay rate calculated by Liemohn. After several days of decay, the proton fluxes reached a lower limit where an apparent equilibrium was maintained, between weak particle source mechanisms and the loss mechanisms, until fresh protons were injected into the ring current region during substorms. While other proton loss mechanisms may also be operating, the results indicate that charge exchange can entirely account for the storm-time proton ring current decay, and that this mechanism must be considered in all studies involving the loss of proton ring current particles.

  17. Mapping {sup 15}O Production Rate for Proton Therapy Verification

    Energy Technology Data Exchange (ETDEWEB)

    Grogg, Kira; Alpert, Nathaniel M.; Zhu, Xuping [Center for Advanced Radiological Sciences, Nuclear Medicine and Molecular Imaging, Radiology Department, Massachusetts General Hospital, Boston, Massachusetts (United States); Min, Chul Hee [Department of Radiological Science, College of Health Science, Yonsei University, Wonju, Kangwon (Korea, Republic of); Testa, Mauro; Winey, Brian [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Normandin, Marc D. [Center for Advanced Radiological Sciences, Nuclear Medicine and Molecular Imaging, Radiology Department, Massachusetts General Hospital, Boston, Massachusetts (United States); Shih, Helen A.; Paganetti, Harald; Bortfeld, Thomas [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); El Fakhri, Georges, E-mail: elfakhri@pet.mgh.harvard.edu [Center for Advanced Radiological Sciences, Nuclear Medicine and Molecular Imaging, Radiology Department, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2015-06-01

    Purpose: This work was a proof-of-principle study for the evaluation of oxygen-15 ({sup 15}O) production as an imaging target through the use of positron emission tomography (PET), to improve verification of proton treatment plans and to study the effects of perfusion. Methods and Materials: Dynamic PET measurements of irradiation-produced isotopes were made for a phantom and rabbit thigh muscles. The rabbit muscle was irradiated and imaged under both live and dead conditions. A differential equation was fitted to phantom and in vivo data, yielding estimates of {sup 15}O production and clearance rates, which were compared to live versus dead rates for the rabbit and to Monte Carlo predictions. Results: PET clearance rates agreed with decay constants of the dominant radionuclide species in 3 different phantom materials. In 2 oxygen-rich materials, the ratio of {sup 15}O production rates agreed with the expected ratio. In the dead rabbit thighs, the dynamic PET concentration histories were accurately described using {sup 15}O decay constant, whereas the live thigh activity decayed faster. Most importantly, the {sup 15}O production rates agreed within 2% (P>.5) between conditions. Conclusions: We developed a new method for quantitative measurement of {sup 15}O production and clearance rates in the period immediately following proton therapy. Measurements in the phantom and rabbits were well described in terms of {sup 15}O production and clearance rates, plus a correction for other isotopes. These proof-of-principle results support the feasibility of detailed verification of proton therapy treatment delivery. In addition, {sup 15}O clearance rates may be useful in monitoring permeability changes due to therapy.

  18. Consequences of acid strength for isomerization and elimination catalysis on solid acids.

    Science.gov (United States)

    Macht, Josef; Carr, Robert T; Iglesia, Enrique

    2009-05-13

    We address here the manner in which acid catalysis senses the strength of solid acids. Acid strengths for Keggin polyoxometalate (POM) clusters and zeolites, chosen because of their accurately known structures, are described rigorously by their deprotonation energies (DPE). Mechanistic interpretations of the measured dynamics of alkane isomerization and alkanol dehydration are used to obtain rate and equilibrium constants and energies for intermediates and transition states and to relate them to acid strength. n-Hexane isomerization rates were limited by isomerization of alkoxide intermediates on bifunctional metal-acid mixtures designed to maintain alkane-alkene equilibrium. Isomerization rate constants were normalized by the number of accessible protons, measured by titration with 2,6-di-tert-butylpyridine during catalysis. Equilibrium constants for alkoxides formed by protonation of n-hexene increased slightly with deprotonation energies (DPE), while isomerization rate constants decreased and activation barriers increased with increasing DPE, as also shown for alkanol dehydration reactions. These trends are consistent with thermochemical analyses of the transition states involved in isomerization and elimination steps. For all reactions, barriers increased by less than the concomitant increase in DPE upon changes in composition, because electrostatic stabilization of ion-pairs at the relevant transition states becomes more effective for weaker acids, as a result of their higher charge density at the anionic conjugate base. Alkoxide isomerization barriers were more sensitive to DPE than for elimination from H-bonded alkanols, the step that limits 2-butanol and 1-butanol dehydration rates; the latter two reactions showed similar DPE sensitivities, despite significant differences in their rates and activation barriers, indicating that slower reactions are not necessarily more sensitive to acid strength, but instead reflect the involvement of more unstable organic

  19. Recommended data on proton-ion collision rate coefficients for Fe X-Fe XV ions

    International Nuclear Information System (INIS)

    Skobelev, I.; Murakami, I.; Kato, T.

    2006-01-01

    The proton-ion collisions are important for excitation of some ion levels in a high-temperature low density plasma. In the present work evaluation of data obtained for proton-induced transitions in Fe X - Fe XV ions with the help of different theoretical methods is carried out. It is suggested a simple analytical formula with 7 parameters allowing to describe dependency of proton rate coefficient on proton temperature in an enough wide temperature range. The values of free parameters have been determined by fitting of approximation formula to numerical data and are presented for recommended data together with fitting accuracies. By comparing of proton collision rates with electron ones it is shown that proton impact excitation processes may be important for Fe X, XI, XIII-XV ions. The results obtained can be used for plasma kinetics calculations and for development of spectroscopy methods of plasma diagnostics. (author)

  20. Ambiguities of the phase analysis of the proton-proton scattering amplitude

    International Nuclear Information System (INIS)

    Grebenyuk, O.G.; Shklyarevskij, G.M.

    1980-01-01

    Ambiguities of the phase analysis of the proton-proton scattering amplitude are analysed. It is shown that for five measurements of polarization parameters sets there are ambiguities similar to the Gersten ambiguities in the phase analysis of πN scattering. A problem on additional experiments needed to eliminate these ambiguities is investigated. It is shown that for this purpose it suffices to measure three total cross sections with polarized and nonpolarized protons, thus determining the imaginary parts of amplitudes at THETA=0 and polarization parameters

  1. Proton therapy physics

    CERN Document Server

    2012-01-01

    Proton Therapy Physics goes beyond current books on proton therapy to provide an in-depth overview of the physics aspects of this radiation therapy modality, eliminating the need to dig through information scattered in the medical physics literature. After tracing the history of proton therapy, the book summarizes the atomic and nuclear physics background necessary for understanding proton interactions with tissue. It describes the physics of proton accelerators, the parameters of clinical proton beams, and the mechanisms to generate a conformal dose distribution in a patient. The text then covers detector systems and measuring techniques for reference dosimetry, outlines basic quality assurance and commissioning guidelines, and gives examples of Monte Carlo simulations in proton therapy. The book moves on to discussions of treatment planning for single- and multiple-field uniform doses, dose calculation concepts and algorithms, and precision and uncertainties for nonmoving and moving targets. It also exami...

  2. Effects of the anion salt nature on the rate constants of the aqueous proton exchange reactions.

    Science.gov (United States)

    Paredes, Jose M; Garzon, Andres; Crovetto, Luis; Orte, Angel; Lopez, Sergio G; Alvarez-Pez, Jose M

    2012-04-28

    The proton-transfer ground-state rate constants of the xanthenic dye 9-[1-(2-methyl-4-methoxyphenyl)]-6-hydroxy-3H-xanthen-3-one (TG-II), recovered by Fluorescence Lifetime Correlation Spectroscopy (FLCS), have proven to be useful to quantitatively reflect specific cation effects in aqueous solutions (J. M. Paredes, L. Crovetto, A. Orte, J. M. Alvarez-Pez and E. M. Talavera, Phys. Chem. Chem. Phys., 2011, 13, 1685-1694). Since these phenomena are more sensitive to anions than to cations, in this paper we have accounted for the influence of salts with the sodium cation in common, and the anion classified according to the empirical Hofmeister series, on the proton transfer rate constants of TG-II. We demonstrate that the presence of ions accelerates the rate of the ground-state proton-exchange reaction in the same order than ions that affect ion solvation in water. The combination of FLCS with a fluorophore undergoing proton transfer reactions in the ground state, along with the desirable feature of a pseudo-dark state when the dye is protonated, allows one unique direct determination of kinetic rate constants of the proton exchange chemical reaction. This journal is © the Owner Societies 2012

  3. Phylogenetic differences of mammalian basal metabolic rate are not explained by mitochondrial basal proton leak.

    Science.gov (United States)

    Polymeropoulos, E T; Heldmaier, G; Frappell, P B; McAllan, B M; Withers, K W; Klingenspor, M; White, C R; Jastroch, M

    2012-01-07

    Metabolic rates of mammals presumably increased during the evolution of endothermy, but molecular and cellular mechanisms underlying basal metabolic rate (BMR) are still not understood. It has been established that mitochondrial basal proton leak contributes significantly to BMR. Comparative studies among a diversity of eutherian mammals showed that BMR correlates with body mass and proton leak. Here, we studied BMR and mitochondrial basal proton leak in liver of various marsupial species. Surprisingly, we found that the mitochondrial proton leak was greater in marsupials than in eutherians, although marsupials have lower BMRs. To verify our finding, we kept similar-sized individuals of a marsupial opossum (Monodelphis domestica) and a eutherian rodent (Mesocricetus auratus) species under identical conditions, and directly compared BMR and basal proton leak. We confirmed an approximately 40 per cent lower mass specific BMR in the opossum although its proton leak was significantly higher (approx. 60%). We demonstrate that the increase in BMR during eutherian evolution is not based on a general increase in the mitochondrial proton leak, although there is a similar allometric relationship of proton leak and BMR within mammalian groups. The difference in proton leak between endothermic groups may assist in elucidating distinct metabolic and habitat requirements that have evolved during mammalian divergence.

  4. TH-C-BRD-12: Robust Intensity Modulated Proton Therapy Plan Can Eliminate Junction Shifts for Craniospinal Irradiation

    International Nuclear Information System (INIS)

    Liao, L; Jiang, S; Li, Y; Wang, X; Li, H; Zhu, X; Sahoo, N; Gillin, M; Mahajan, A; Grosshans, D; Zhang, X; Lim, G

    2014-01-01

    Purpose: The passive scattering proton therapy (PSPT) technique is the commonly used radiotherapy technique for craniospinal irradiation (CSI). However, PSPT involves many numbers of junction shifts applied over the course of treatment to reduce the cold and hot regions caused by field mismatching. In this work, we introduced a robust planning approach to develop an optimal and clinical efficient techniques for CSI using intensity modulated proton therapy (IMPT) so that junction shifts can essentially be eliminated. Methods: The intra-fractional uncertainty, in which two overlapping fields shift in the opposite directions along the craniospinal axis, are incorporated into the robust optimization algorithm. Treatment plans with junction sizes 3,5,10,15,20,25 cm were designed and compared with the plan designed using the non-robust optimization. Robustness of the plans were evaluated based on dose profiles along the craniospinal axis for the plans applying 3 mm intra-fractional shift. The dose intra-fraction variations (DIV) at the junction are used to evaluate the robustness of the plans. Results: The DIVs are 7.9%, 6.3%, 5.0%, 3.8%, 2.8% and 2.2%, for the robustly optimized plans with junction sizes 3,5,10,15,20,25 cm. The DIV are 10% for the non-robustly optimized plans with junction size 25 cm. The dose profiles along the craniospinal axis exhibit gradual and tapered dose distribution. Using DIVs less than 5% as maximum acceptable intrafractional variation, the overlapping region can be reduced to 10 cm, leading to potential reduced number of the fields. The DIVs are less than 5% for 5 mm intra-fractional shifts with junction size 25 cm, leading to potential no-junction-shift for CSI using IMPT. Conclusion: This work is the first report of the robust optimization on CSI based on IMPT. We demonstrate that robust optimization can lead to much efficient carniospinal irradiation by eliminating the junction shifts

  5. A high repetition rate transverse beam profile diagnostic for laser-plasma proton sources

    Science.gov (United States)

    Dover, Nicholas; Nishiuchi, Mamiko; Sakaki, Hironao; Kando, Masaki; Nishitani, Keita

    2016-10-01

    The recently upgraded J-KAREN-P laser can provide PW peak power and intensities approaching 1022 Wcm-2 at 0.1 Hz. Scaling of sheath acceleration to such high intensities predicts generation of protons to near 100 MeV, but changes in electron heating mechanisms may affect the emitted proton beam properties, such as divergence and pointing. High repetition rate simultaneous measurement of the transverse proton distribution and energy spectrum are therefore key to understanding and optimising the source. Recently plastic scintillators have been used to measure online proton beam transverse profiles, removing the need for time consuming post-processing. We are therefore developing a scintillator based transverse proton beam profile diagnostic for use in ion acceleration experiments using the J-KAREN-P laser. Differential filtering provides a coarse energy spectrum measurement, and time-gating allows differentiation of protons from other radiation. We will discuss the design and implementation of the diagnostic, as well as proof-of-principle results from initial experiments on the J-KAREN-P system demonstrating the measurement of sheath accelerated proton beams up to 20 MeV.

  6. Is the rate of whole-body nitrogen elimination influenced by exercise?

    Science.gov (United States)

    Pendergast, D R; Senf, C; Lundgren, C E G

    2012-01-01

    Because it has earlier been shown that exercise 24 or two hours pre-dive may suppress the appearance of venous gas bubbles (VGB) in connection with the dive, we studied whether exercise before or during N2 elimination would influence the rate of the latter. Nitrogen elimination was recorded in eight volunteers breathing a normoxic O2+argon mixture for two hours. The N2 washout was preceded two (Condition A) or 24 hours (Condition B) earlier, by one hour of exercise at 85% VO2max (two hours of exercise interspersed with two hours of rest). In separate experiments, exercise at -40% of VO2max was performed throughout the two-hour washout (Condition C), and control experiments (Condition D) with denitrogenation without exercise were also performed. There were no significant differences among conditions for the total N2 eliminated (904 +/- 196 mL). The half-times of N2 washout for A (35.2 +/- 10.8 minutes) and B (31.9 +/- 8.6 minutes) did not differ from control washouts. The rate of washout in C increased 14% compared to D (half-time: 30.4 +/- 7.6 vs. 34.5 +/- 7.8 minutes, p = 0.002), and correlated with cardiac output. Exercise 24 or two hours pre-N2 washout did not affect it, suggesting that the decreased VGB scores noted by others in dives preceded by conditions similar to A and B are not due to changes in nitrogen exchange but rather to factors related to bubble formation and/or appearance. That N2 elimination is enhanced by concomitant exercise makes physiological sense but does not necessarily explain the observation by others of a reduced risk of decompression sickness with exercise before diving.

  7. Survival of tumor cells after proton irradiation with ultra-high dose rates

    International Nuclear Information System (INIS)

    Auer, Susanne; Hable, Volker; Greubel, Christoph; Drexler, Guido A; Schmid, Thomas E; Belka, Claus; Dollinger, Günther; Friedl, Anna A

    2011-01-01

    Laser acceleration of protons and heavy ions may in the future be used in radiation therapy. Laser-driven particle beams are pulsed and ultra high dose rates of >10 9 Gy s -1 may be achieved. Here we compare the radiobiological effects of pulsed and continuous proton beams. The ion microbeam SNAKE at the Munich tandem accelerator was used to directly compare a pulsed and a continuous 20 MeV proton beam, which delivered a dose of 3 Gy to a HeLa cell monolayer within < 1 ns or 100 ms, respectively. Investigated endpoints were G2 phase cell cycle arrest, apoptosis, and colony formation. At 10 h after pulsed irradiation, the fraction of G2 cells was significantly lower than after irradiation with the continuous beam, while all other endpoints including colony formation were not significantly different. We determined the relative biological effectiveness (RBE) for pulsed and continuous proton beams relative to x-irradiation as 0.91 ± 0.26 and 0.86 ± 0.33 (mean and SD), respectively. At the dose rates investigated here, which are expected to correspond to those in radiation therapy using laser-driven particles, the RBE of the pulsed and the (conventional) continuous irradiation mode do not differ significantly

  8. Eliminating the Effect of Rating Bias on Reputation Systems

    Directory of Open Access Journals (Sweden)

    Leilei Wu

    2018-01-01

    Full Text Available The ongoing rapid development of the e-commercial and interest-base websites makes it more pressing to evaluate objects’ accurate quality before recommendation. The objects’ quality is often calculated based on their historical information, such as selected records or rating scores. Usually high quality products obtain higher average ratings than low quality products regardless of rating biases or errors. However, many empirical cases demonstrate that consumers may be misled by rating scores added by unreliable users or deliberate tampering. In this case, users’ reputation, that is, the ability to rate trustily and precisely, makes a big difference during the evaluation process. Thus, one of the main challenges in designing reputation systems is eliminating the effects of users’ rating bias. To give an objective evaluation of each user’s reputation and uncover an object’s intrinsic quality, we propose an iterative balance (IB method to correct users’ rating biases. Experiments on two datasets show that the IB method is a highly self-consistent and robust algorithm and it can accurately quantify movies’ actual quality and users’ stability of rating. Compared with existing methods, the IB method has higher ability to find the “dark horses,” that is, not so popular yet good movies, in the Academy Awards.

  9. Elimination of oral candidiasis may increase stimulated whole salivary flow rate.

    Science.gov (United States)

    Ohga, Noritaka; Yamazaki, Yutaka; Sato, Jun; Asaka, Takuya; Morimoto, Masahiro; Hata, Hironobu; Satoh, Chiharu; Kitagawa, Yoshimasa

    2016-11-01

    Candida infections are frequently encountered fungal infections in the oral mucosa. This study aimed to evaluate the effect of eliminating Candida spp. on stimulated whole salivary flow rate (SWS) in patients with oral candidiasis. This study involved 66 patients with oral candidiasis. Fifty-two consecutive patients, successfully treated by antifungal therapy, were available to examine the effect of elimination of oral Candida spp. on SWS (success group); the 14 patients who tested positive for Candida after therapy were retrospectively included (control group). SWS were used to measure saliva production. Moreover, tongue pain and xerostomia were evaluated using visual analog score (VAS). By eliminating oral Candida spp., SWS significantly increased in the success group after antifungal therapy [SWS: mean value 0.89±0.51ml/min (median 0.82ml/min: 0.15-2.14) to mean value 1.16±0.58ml/min (median 1.05ml/min: 0.2-2.93), Poral Candida spp. in patients with oral candidiasis. Copyright © 2016. Published by Elsevier Ltd.

  10. Acceleration of Polarized Protons up to 3.4 GeV/c in the Nuclotron at JINR

    Science.gov (United States)

    Kovalenko, A. D.; Butenko, A. V.; Mikhaylov, V. A.; Kondratenko, M. A.; Kondratenko, A. M.; Filatov, Yu N.

    2017-12-01

    To preserve proton polarization in the Nuclotron up to 13.5 GeV/c, it is enough to use a partial solenoid snake with maximal field integral of 25 Tm that allows one to eliminate crossings of the most dangerous intrinsic and integer spin resonances. The insertion of weak field integral is sufficient to preserve the proton polarization up to 3.4 GeV/c. This momentum corresponds to the first intrinsic resonance. To preserve polarization during crossings of five integer spin resonances, it is possible to choose crossing rates that correspond to either the fast or the slow resonance crossings. Another possibility is a deliberate increasing of the resonance strength. To eliminate depolarization during protons injection into the Nuclotron, a scheme of matching of the polarization with a vertical direction is presented. During the run in February-March 2017, the three measurements of the proton polarization at kinetic energies of 0.5 GeV, 1 GeV and 2 GeV were made that allow one to obtain the integer spin resonances strengths.

  11. Conductivity equations of protons transporting through 2D crystals obtained with the rate process theory and free volume concept

    Science.gov (United States)

    Hao, Tian; Xu, Yuanze; Hao, Ting

    2018-04-01

    The Eyring's rate process theory and free volume concept are employed to treat protons (or other particles) transporting through a 2D (two dimensional) crystal like graphene and hexagonal boron nitride. The protons are assumed to be activated first in order to participate conduction and the conduction rate is dependent on how much free volume available in the system. The obtained proton conductivity equations show that only the number of conduction protons, proton size and packing structure, and the energy barrier associated with 2D crystals are critical; the quantization conductance is unexpectedly predicted with a simple Arrhenius type temperature dependence. The predictions agree well with experimental observations and clear out many puzzles like much smaller energy barrier determined from experiments than from the density function calculations and isotope separation rate independent of the energy barrier of 2D crystals, etc. Our work may deepen our understandings on how protons transport through a membrane and has direct implications on hydrogen related technology and proton involved bioprocesses.

  12. Polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized proton beams in circular accelerators is complicated by the presence of numerous depolarizing spin resonances. Careful and tedious minimization of polarization loss at each of these resonances allowed acceleration of polarized proton beams up to 22 GeV. It has been the hope that Siberian Snakes, which are local spin rotators inserted into ring accelerators, would eliminate these resonances and allow acceleration of polarized beams with the same ease and efficiency that is now routine for unpolarized beams. First tests at IUCF with a full Siberian Snake showed that the spin dynamics with a Snake can be understood in detail. The author now has results of the first tests of a partial Siberian Snake at the AGS, accelerating polarized protons to an energy of about 25 GeV. These successful tests of storage and acceleration of polarized proton beams open up new possibilities such as stored polarized beams for internal target experiments and high energy polarized proton colliders

  13. Proton upset rate prediction: a new sensitive volume concept definition

    International Nuclear Information System (INIS)

    Inguimbert, Christophe

    1999-01-01

    We present a model for predicting proton induced single event upset rate. The approach uses heavy ion cross section experimental data combined with nuclear reaction calculations in order to determine the proton upset cross section. The p+Si nuclear reaction as well as the Si(p, p)Si Coulombic scattering are described. The upset rate calculation depends on the energy deposited available in the charge collection region (sensitive region). This region is treated as a rectangular parallelepiped of thickness d at depth h. The sensitive thickness d is used as an input parameter in our model we have developed an original method to probe the sensitive region to evaluate d with reasonable accuracy d. We use short range ions and we propose a new mathematical analysis of these experimental data to determine h and d. This method consists in de-convoluting the heavy ion upset cross section σ_S_E_U(r) by the LET function of the incident ion LET(r) (r is the range of the incident ion). Our results are in relatively good agreement with other models. The accuracy of the method allows us to discuss the validity of the sensitive volume concept. Furthermore, we extrapolate an internal gain factor α that permit to take into account the charge collection mechanisms. α and d serve for quick and reasonably accurate prediction of proton induced SEU cross section in microelectronic devices. (author) [fr

  14. Theoretical Analysis of Proton Relays in Electrochemical Proton-Coupled Electron Transfer

    International Nuclear Information System (INIS)

    Auer, Benjamin; Fernandez, Laura; Hammes-Schiffer, Sharon

    2011-01-01

    The coupling of long-range electron transfer to proton transport over multiple sites plays a vital role in many biological and chemical processes. Recently a molecule with a hydrogen-bond relay inserted between the proton donor and acceptor sites in a proton-coupled electron transfer (PCET) system was studied electrochemically. The standard rate constants and kinetic isotope effects (KIEs) were measured experimentally for this system and a related single proton transfer system. In the present paper, these systems are studied theoretically using vibronically nonadiabatic rate constant expressions for electrochemical PCET. Application of this approach to proton relays requires the calculation of multidimensional proton vibrational wavefunctions and incorporation of multiple proton donor-acceptor motions. The calculated KIEs and relative standard rate constants for the single and double proton transfer systems are in agreement with the experimental data. The calculations indicate that the standard rate constant is lower for the double proton transfer system because of the smaller overlap integral between the ground state reduced and oxidized proton vibrational wavefunctions for this system, resulting in greater contributions from excited electron-proton vibronic states with higher free energy barriers. The decrease in proton donor-acceptor distances due to thermal fluctuations and the contributions from excited electron-proton vibronic states play important roles in proton relay systems. The theory suggests that the PCET rate constant may be increased by decreasing the equilibrium proton donor-acceptor distances or modifying the thermal motions of the molecule to facilitate the concurrent decrease of these distances. The submission of this journal article in ERIA is a requirement of the EFRC subcontract with Pennsylvania State University collaborators to get publications to OSTI.

  15. Low early ototoxicity rates for pediatric medulloblastoma patients treated with proton radiotherapy

    International Nuclear Information System (INIS)

    Moeller, Benjamin J; Chintagumpala, Murali; Philip, Jimmy J; Grosshans, David R; McAleer, Mary F; Woo, Shiao Y; Gidley, Paul W; Vats, Tribhawan S; Mahajan, Anita

    2011-01-01

    Hearing loss is common following chemoradiotherapy for children with medulloblastoma. Compared to photons, proton radiotherapy reduces radiation dose to the cochlea for these patients. Here we examine whether this dosimetric advantage leads to a clinical benefit in audiometric outcomes. From 2006-2009, 23 children treated with proton radiotherapy for medulloblastoma were enrolled on a prospective observational study, through which they underwent pre- and 1 year post-radiotherapy pure-tone audiometric testing. Ears with moderate to severe hearing loss prior to therapy were censored, leaving 35 ears in 19 patients available for analysis. The predicted mean cochlear radiation dose was 30 60 Co-Gy Equivalents (range 19-43), and the mean cumulative cisplatin dose was 303 mg/m 2 (range 298-330). Hearing sensitivity significantly declined following radiotherapy across all frequencies analyzed (P < 0.05). There was partial sparing of mean post-radiation hearing thresholds at low-to-midrange frequencies and, consequently, the rate of high-grade (grade 3 or 4) ototoxicity at 1 year was favorable (5%). Ototoxicity did not correlate with predicted dose to the auditory apparatus for proton-treated patients, potentially reflecting a lower-limit threshold for radiation effect on the cochlea. Rates of high-grade early post-radiation ototoxicity following proton radiotherapy for pediatric medulloblastoma are low. Preservation of hearing in the audible speech range, as observed here, may improve both quality of life and cognitive functioning for these patients

  16. Simultaneous Two-Proton Emission Process of Neutron Deficient Nuclei

    International Nuclear Information System (INIS)

    Rodrigues, M. M. N.; Duarte, S. B.; Leite, T. N.; Teruya, N.

    2011-01-01

    In a previous work, we have calculated the one-proton emission rate of nuclei near the proton drip line, by using an analytical barrier parametrization. The calculation is based on the WKB-approximation and half-lives are obtained in good agreement with the existing experimental data for one-proton emitters. Motivated by these results, in present work, we have eliminated the artificial barrier parametrization previously used, constructing a realistic barrier composed by the superposition of a nuclear Wood-Saxon potential form plus the coulomb and centrifugal barrier. The purpose here is to see if the simple WKB-calculation is still able to reproduce recent observed experimental results for two-proton emission from 45 Fe. This decay mode has been observed by Miernik et al., reporting the proton energy distribution and half-life energy dependence for 45 Fe simultaneous 2p-emission. For theoretical determination of the half-life and these energy distributions we evoked a statistical assumption of a pioneering Goldansky's work for discussing simultaneous two-proton emission. We have shown that our calculation reproduce in quite good agreement the energy distribution and is also able to offer good half-life result with an appropriated composition of involved values of the angular momentum decay.

  17. Mechanism of Nitrogenase H 2 Formation by Metal-Hydride Protonation Probed by Mediated Electrocatalysis and H/D Isotope Effects

    Energy Technology Data Exchange (ETDEWEB)

    Khadka, Nimesh [Department of Chemistry; Milton, Ross D. [Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States; Shaw, Sudipta [Department of Chemistry; Lukoyanov, Dmitriy [Department; Dean, Dennis R. [Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States; Minteer, Shelley D. [Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States; Raugei, Simone [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Hoffman, Brian M. [Department; Seefeldt, Lance C. [Department of Chemistry

    2017-09-15

    Nitrogenase catalyzes the reduction of dinitrogen (N2) to ammonia (NH3) with obligatory reduction of protons (H+) to dihydrogen (H2) through a mechanism involving reductive elimination of two [Fe-H-Fe] bridging hydrides at its active site FeMo-cofactor. The overall rate-limiting step is associated with ATP-driven electron delivery from Fe protein, precluding isotope effect measurements on substrate reduction steps. Here, we use mediated bioelectrocatalysis to drive electron delivery to MoFe protein without Fe protein and ATP hydrolysis, thereby eliminating the normal rate-limiting step. The ratio of catalytic current in mixtures of H2O and D2O, the proton inventory, changes linearly with the D2O/H2O ratio, revealing that a single H/D is involved in the rate limiting step. Kinetic models, along with measurements that vary the electron/proton delivery rate and use different substrates, reveal that the rate-limiting step under these conditions is the H2 formation reaction. Altering the chemical environment around the active site FeMo-cofactor in the MoFe protein either by substituting nearby amino acids or transferring the isolated FeMo-cofactor into a different peptide matrix, changes the net isotope effect, but the proton inventory plot remains linear, consistent with an unchanging rate-limiting step. Density functional theory predicts a transition state for H2 formation where the proton from S-H+ moves to the hydride in Fe-H-, predicting the number and magnitude of the observed H/D isotope effect. This study not only reveals the mechanism of H2 formation, but also illustrates a strategy for mechanistic study that can be applied to other enzymes and to biomimetic complexes.

  18. Characterizing low dose and dose rate effects in rodent and human neural stem cells exposed to proton and gamma irradiation

    Directory of Open Access Journals (Sweden)

    Bertrand P. Tseng

    2013-01-01

    Full Text Available Past work has shown that exposure to gamma rays and protons elicit a persistent oxidative stress in rodent and human neural stem cells (hNSCs. We have now adapted these studies to more realistic exposure scenarios in space, using lower doses and dose rates of these radiation modalities, to further elucidate the role of radiation-induced oxidative stress in these cells. Rodent neural stem and precursor cells grown as neurospheres and human neural stem cells grown as monolayers were subjected to acute and multi-dosing paradigms at differing dose rates and analyzed for changes in reactive oxygen species (ROS, reactive nitrogen species (RNS, nitric oxide and superoxide for 2 days after irradiation. While acute exposures led to significant changes in both cell types, hNSCs in particular, exhibited marked and significant elevations in radiation-induced oxidative stress. Elevated oxidative stress was more significant in hNSCs as opposed to their rodent counterparts, and hNSCs were significantly more sensitive to low dose exposures in terms of survival. Combinations of protons and γ-rays delivered as lower priming or higher challenge doses elicited radioadaptive changes that were associated with improved survival, but in general, only under conditions where the levels of reactive species were suppressed compared to cells irradiated acutely. Protective radioadaptive effects on survival were eliminated in the presence of the antioxidant N-acetylcysteine, suggesting further that radiation-induced oxidative stress could activate pro-survival signaling pathways that were sensitive to redox state. Data corroborates much of our past work and shows that low dose and dose rate exposures elicit significant changes in oxidative stress that have functional consequences on survival.

  19. Electron Cloud Simulations of a Proton Storage Ring Using Cold Proton Bunches

    International Nuclear Information System (INIS)

    Sato, Y.; Holmes, Jeffrey A.; Lee, S.Y.; Macek, R.

    2008-01-01

    Using the ORBIT code we study the sensitivity of electron cloud properties with respect to different proton beam profiles, the secondary electron yield (SEY) parameter, and the proton loss rate. Our model uses a cold proton bunch to generate primary electrons and electromagnetic field for electron cloud dynamics. We study the dependence of the prompt and swept electron signals vs the bunch charge and the recovery of electron clouds after sweeping on the beam loss rate and the SEY. The simulation results are compared with the experimental data measured at the proton storage ring at the Los Alamos National Laboratory. Our simulations indicate that the fractional proton loss rate in the field-free straight section may be an exponential function of proton beam charge and may also be lower than the averaged fractional proton loss rate over the whole ring.

  20. Positive correlation between occlusion rate and nidus size of proton beam treated brain arteriovenous malformations (AVMs)

    DEFF Research Database (Denmark)

    Blomquist, Erik; Ronne Engström, Elisabeth; Borota, Ljubisa

    2016-01-01

    symptoms, clinical course, the size of AVM nidus and rate of occlusion was collected. Outcome parameters were the occlusion of the AVM, clinical outcome and side effects.Results. The rate of total occlusion was overall 68%. For target volume 0-2cm3 it was 77%, for 3-10 cm3 80%, for 11-15 cm3 50% and for 16...... of these had no effect and the other only partial occlusion from proton beams. Two thirds of those presenting with seizures reported an improved seizure situation after treatment.Conclusion. Our observations agree with earlier results and show that proton beam irradiation is a treatment alternative for brain......Background. Proton beam radiotherapy of arteriovenous malformations (AVM) in the brain has been performed in Uppsala since 1991. An earlier study based on the first 26 patients concluded that proton beam can be used for treating large and medium sized AVMs that were considered difficult to treat...

  1. Predicting Ionization Rates from SEP and Solar Wind Proton Precipitation into the Martian Atmosphere

    Science.gov (United States)

    Jolitz, R.; Dong, C.; Lee, C. O.; Curry, S.; Lillis, R. J.; Brain, D.; Halekas, J. S.; Larson, D. E.; Bougher, S. W.; Jakosky, B. M.

    2017-12-01

    Precipitating energetic particles ionize planetary atmospheres and increase total electron content. At Mars, the solar wind and solar energetic particles (SEPs) can precipitate directly into the atmosphere because solar wind protons can charge exchange to become neutrals and pass through the magnetosheath, while SEPs are sufficiently energetic to cross the magnetosheath unchanged. In this study we will present predicted ionization rates and resulting electron densities produced by solar wind and SEP proton ionization during nominal solar activity and a CME shock front impact event on May 16 2016. We will use the Atmospheric Scattering of Protons and Energetic Neutrals (ASPEN) model to compare ionization by SEP and solar wind protons currently measured by the SWIA (Solar Wind Ion Analyzer) and SEP instruments aboard the MAVEN spacecraft. Results will help to quantify how the ionosphere responds to extreme solar events during solar minimum.

  2. Cost-effectiveness of programs to eliminate disparities in elderly vaccination rates in the United States.

    Science.gov (United States)

    Michaelidis, Constantinos I; Zimmerman, Richard K; Nowalk, Mary Patricia; Smith, Kenneth J

    2014-07-15

    There are disparities in influenza and pneumococcal vaccination rates among elderly minority groups and little guidance as to which intervention or combination of interventions to eliminate these disparities is likely to be most cost-effective. Here, we evaluate the cost-effectiveness of four hypothetical vaccination programs designed to eliminate disparities in elderly vaccination rates and differing in the number of interventions. We developed a Markov model in which we assumed a healthcare system perspective, 10-year vaccination program and lifetime time horizon. The cohort was the combined African-American and Hispanic 65 year-old birth cohort in the United States in 2009. We evaluated five different vaccination strategies: no vaccination program and four vaccination programs that varied from "low intensity" to "very high intensity" based on the number of interventions deployed in each program, their cumulative cost and their cumulative impact on elderly minority influenza and pneumococcal vaccination rates. The very high intensity vaccination program ($24,479/quality-adjusted life year; QALY) was preferred at willingness-to-pay-thresholds of $50,000 and $100,000/QALY and prevented 37,178 influenza cases, 342 influenza deaths, 1,158 invasive pneumococcal disease (IPD) cases and 174 IPD deaths over the birth cohort's lifetime. In one-way sensitivity analyses, the very high intensity program only became cost-prohibitive (>$100,000/QALY) at less likely values for the influenza vaccination rates achieved in year 10 of the high intensity (>73.5%) or very high intensity (eliminate disparities in elderly minority vaccination rates and including four interventions would be cost-effective.

  3. Predicted Rates of Secondary Malignancies From Proton Versus Photon Radiation Therapy for Stage I Seminoma

    Energy Technology Data Exchange (ETDEWEB)

    Simone, Charles B., E-mail: csimone@alumni.upenn.edu [Department of Radiation Oncology, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania (United States); Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Kramer, Kevin [Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, Maryland (United States); O' Meara, William P. [Division of Radiation Oncology, National Naval Medical Center, Bethesda, Maryland (United States); Bekelman, Justin E. [Department of Radiation Oncology, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania (United States); Belard, Arnaud [Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, Maryland (United States); McDonough, James [Department of Radiation Oncology, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania (United States); O' Connell, John [Radiation Oncology Service, Walter Reed Army Medical Center, Washington, DC (United States)

    2012-01-01

    Purpose: Photon radiotherapy has been the standard adjuvant treatment for stage I seminoma. Single-dose carboplatin therapy and observation have emerged as alternative options due to concerns for acute toxicities and secondary malignancies from radiation. In this institutional review board-approved study, we compared photon and proton radiotherapy for stage I seminoma and the predicted rates of excess secondary malignancies for both treatment modalities. Methods and Material: Computed tomography images from 10 consecutive patients with stage I seminoma were used to quantify dosimetric differences between photon and proton therapies. Structures reported to be at increased risk for secondary malignancies and in-field critical structures were contoured. Reported models of organ-specific radiation-induced cancer incidence rates based on organ equivalent dose were used to determine the excess absolute risk of secondary malignancies. Calculated values were compared with tumor registry reports of excess secondary malignancies among testicular cancer survivors. Results: Photon and proton plans provided comparable target volume coverage. Proton plans delivered significantly lower mean doses to all examined normal tissues, except for the kidneys. The greatest absolute reduction in mean dose was observed for the stomach (119 cGy for proton plans vs. 768 cGy for photon plans; p < 0.0001). Significantly more excess secondary cancers per 10,000 patients/year were predicted for photon radiation than for proton radiation to the stomach (4.11; 95% confidence interval [CI], 3.22-5.01), large bowel (0.81; 95% CI, 0.39-1.01), and bladder (0.03; 95% CI, 0.01-0.58), while no difference was demonstrated for radiation to the pancreas (0.02; 95% CI, -0.01-0.06). Conclusions: For patients with stage I seminoma, proton radiation therapy reduced the predicted secondary cancer risk compared with photon therapy. We predict a reduction of one additional secondary cancer for every 50 patients

  4. Cross sections and rate coefficients for charge exchange reactions of protons with hydrocarbon molecules

    International Nuclear Information System (INIS)

    Janev, R.K.; Kato, T.; Wang, J.G.

    2001-05-01

    The available experimental and theoretical cross section data on charge exchange processes in collisions of protons with hydrocarbon molecules have been collected and critically assessed. Using well established scaling relationships for the charge exchange cross sections at low and high collision energies, as well as the known rate coefficients for these reactions in the thermal energy region, a complete cross section database is constructed for proton-C x H y charge exchange reactions from thermal energies up to several hundreds keV for all C x H y molecules with x=1, 2, 3 and 1 ≤ y ≤ 2x + 2. Rate coefficients for these charge exchange reactions have also been calculated in the temperature range from 0.1 eV to 20 keV. (author)

  5. Cross sections and rate coefficients for charge exchange reactions of protons with hydrocarbon molecules

    Energy Technology Data Exchange (ETDEWEB)

    Janev, R.K.; Kato, T. [National Inst. for Fusion Science, Toki, Gifu (Japan); Wang, J.G. [Department of Physics and Astronomy, University of Georgia, Athens (United States)

    2001-05-01

    The available experimental and theoretical cross section data on charge exchange processes in collisions of protons with hydrocarbon molecules have been collected and critically assessed. Using well established scaling relationships for the charge exchange cross sections at low and high collision energies, as well as the known rate coefficients for these reactions in the thermal energy region, a complete cross section database is constructed for proton-C{sub x}H{sub y} charge exchange reactions from thermal energies up to several hundreds keV for all C{sub x}H{sub y} molecules with x=1, 2, 3 and 1 {<=} y {<=} 2x + 2. Rate coefficients for these charge exchange reactions have also been calculated in the temperature range from 0.1 eV to 20 keV. (author)

  6. Effects of stereochemistry on the rates of hydrogen--deuterium exchange of protons α to the nitrosamino group

    International Nuclear Information System (INIS)

    Fraser, R.R.; Ng, L.K.

    1976-01-01

    Measurement of the rates of exchange of four benzylic protons of rigid dibenzazepine were made in tert-butyl alcohol-O-d containing potassium tert-butoxide at several concentrations. Each pseudoaxial proton exchanged 100-fold faster than its geminal partner (pseudoequatorial), likely as a result of a stereoelectronic effect. Each syn proton exchanged 1000-fold faster than the anti proton in the same biaryl environment. The lack of any significant effect of added crown either on the rate of exchange of either a syn or an antiproton indicates lack of involvement of the counterion. A suggested explanation for the unusual preference for syn exchange in this work is based on the symmetry properties of the anionic intermediate. This intermediate, like butadiene dianion, has an attractive interaction between the terminal atoms of the four-atom π system in the highest occupied molecular orbital (HOMO). This explanation is similar to that of Epiotis and co-workers, which accounts for the well-established preferential stability of cis over trans dihalo and dialkoxy ethylenes

  7. Search for Sphalerons in Proton-Proton Collisions

    CERN Document Server

    Ellis, John

    2016-04-14

    In a recent paper, Tye and Wong (TW) have argued that sphaleron-induced transitions in high-energy proton-proton collisions should be enhanced compared to previous calculations, based on a construction of a Bloch wave function in the periodic sphaleron potential and the corresponding pass band structure. Here we convolute the calculations of TW with parton distribution functions and simulations of final states to explore the signatures of sphaleron transitions at the LHC and possible future colliders. We calculate the increase of sphaleron transition rates in proton-proton collisions at centre-of-mass energies of 13/14/33/100 TeV for different sphaleron barrier heights, while recognising that the rates have large overall uncertainties. We use a simulation to show that LHC searches for microscopic black holes should have good efficiency for detecting sphaleron-induced final states, and discuss their experimental signatures and observability in Run 2 of the LHC and beyond. We recast the early ATLAS Run-2 search...

  8. Proton-induced production cross-sections and production rates of 41Ca from Ni

    International Nuclear Information System (INIS)

    Schnabel, C.; Synal, H.-A.; Gartenmann, P.; Santos-Arevalo, F.J.; Gomez-Martinez, I.; Suter, M.; Tarabischi, A.; Bastian, T.; Sudbrock, F.; Herpers, U.; Leya, I.; Gloris, M.; Michel, R.

    2004-01-01

    Proton-induced production cross-sections of 41 Ca from Ni are presented. Moreover, depth-dependent production rates of 41 Ca from Ni were determined in a meteoroid simulation experiment. Based on these data, modelled production rates of 41 Ca from Ni in iron meteoroids are presented as a function of depth and size. These data are relevant for modelling the production rate ratio of 41 Ca/ 36 Cl in metal phases of meteoroids and thus for the application of the 41 Ca- 36 Cl method to determine terrestrial ages of meteorites

  9. The elimination rate of 123I-heptadecanoic acid after intracoronary and intravenous administration

    International Nuclear Information System (INIS)

    Visser, F.C.; Eenige, M.J. van; Wall, E.E. van der; Engelen, C.J. van; Cock, C.C. de; Roos, J.P.; Westera, G.; Lingen, A. van; Hollander, W. den; Heidendal, G.A.K.

    1985-01-01

    When calculating the elimination rate of radioactivity after the administration of radioiodinated heptadecanoic acid ( 123 I-HDA), background correction is necessary due to the high level of background activity. In the present study, the subtraction method of Freundlieb et al. was investigated by comparing the half-time values of the elimination rate after intravenous (i.v.) and intracoronary (i.c.) injection. In the latter case, no background correction was necessary. Six patients undergoing cardiac catheterization were studied. Scintigraphy was performed after the injection of 123 I-HDA into the left coronary artery and after i.v. injection. Half-time values are calculated from regions of interest drawn over myocardium perfused by the left-anterior descending branch (LAD) and the left circumflex artery (LCX). In the LAD region, the mean half-time value in the i.c. study was 22 min, while in the corrected i.v. study, the mean value was 27 min. In the LCX region, the half-time values were 24 and 33 min, respectively. The background-subtraction procedure proposed by Freundlieb et al. for i.v.-injected 123 I-HDA is incomplete, as it resulted in half-time values that were higher than those of the i.c. study. (orig.)

  10. Poly(dA-dT).poly(dA-dT) two-pathway proton exchange mechanism. Effect of general and specific base catalysis on deuteration rates

    International Nuclear Information System (INIS)

    Hartmann, B.; Leng, M.; Ramstein, J.

    1986-01-01

    The deuteration rates of the poly(dA-dT).poly(dA-dT) amino and imino protons have been measured with stopped-flow spectrophotometry as a function of general and specific base catalyst concentration. Two proton exchange classes are found with time constants differing by a factor of 10 (4 and 0.4 s-1). The slower class represents the exchange of the adenine amino protons whereas the proton of the faster class has been assigned to the thymine imino proton. The exchange rates of these two classes of protons are independent of general and specific base catalyst concentration. This very characteristic behavior demonstrates that in our experimental conditions the exchange rates of the imino and amino protons in poly(dA-dT).poly(dA-dT) are limited by two different conformational fluctuations. We present a three-state exchange mechanism accounting for our experimental results

  11. Measurements of activation reaction rate distributions on a mercury target bombarded with high-energy protons at AGS

    International Nuclear Information System (INIS)

    Takada, Hiroshi; Kasugai, Yoshimi; Nakashima, Hiroshi; Ikeda, Yujiro; Jerde, Eric; Glasgow, David

    2000-02-01

    A neutronics experiment was carried out using a thick mercury target at the Alternating Gradient Synchrotron (AGS) facility of Brookhaven National Laboratory in a framework of the ASTE (AGS Spallation Target Experiment) collaboration. Reaction rate distributions around the target were measured by the activation technique at incident proton energies of 1.6, 12 and 24 GeV. Various activation detectors such as the 115 In(n,n') 115m In, 93 Nb(n,2n) 92m Nb, and 209 Bi(n,xn) reactions with threshold energies ranging from 0.3 to 70.5 MeV were employed to obtain the reaction rate data for estimating spallation source neutron characteristics of the mercury target. It was found from the measured 115 In(n,n') 115m In reaction rate distribution that the number of leakage neutrons becomes maximum at about 11 cm from the top of hemisphere of the mercury target for the 1.6-GeV proton incidence and the peak position moves towards forward direction with increase of the incident proton energy. The similar result was observed in the reaction rate distributions of other activation detectors. The experimental procedures and a full set of experimental data in numerical form are summarized in this report. (author)

  12. Particle physics contribution to the elimination of nuclear waste

    CERN Document Server

    Revol, Jean Pierre Charles

    2000-01-01

    Progress in particle accelerator technology makes it possible to use a proton accelerator to eliminate nuclear waste efficiently. The Energy Amplifier (EA) proposed by C. Rubbia and his group is a subcritical system driven by a proton accelerator. It is particularly attractive for destroying, through fission, transuranic elements produced by present nuclear reactors. The EA could also transform efficiently and at minimal cost long-lived fission fragments using the concept of Adiabatic Resonance Crossing (ARC) recently tested at CERN with the TARC experiment. The ARC concept can be extended to several other application domains (radioactive isotopes production for medicine and industry, neutron research applications, etc.).

  13. New measurement of G_E/GM for the proton

    Science.gov (United States)

    Segel, Ralph

    2003-10-01

    Recent polarization transfer measurements of the ratio of the proton electric to magnetic form factor, G E /G_M, find μ_pG E /GM = 1 - 0.13Q ^2 while a long series of L-T separations are fit by μ_pG_E/GM ≈ 1. Jefferson Lab experiment E01-001 used a new technique for making L-T separations that greatly reduces the dominant systematic uncertainties present in previous determinations. Protons from ep scattering were measured over a wide range in ɛ at Q^2 = 2.64, 3.20 and 4.10 GeV^2 and, simultaneously, protons scattered at Q^2 = 0.5 GeV^2 were measured over a small range in ɛ. The Q^2 = 0.5 GeV^2 measurements provided an internal monitor and only kinematic factors and ratios of simultaneously measured cross sections enter into the determinations of G_E/G_M. Measuring the proton cross sections has the advantage that for the same Q^2, count rates change very little with ɛ and also proton momentum is the same at all ɛ thus eliminating the effect of any momentum-dependent inefficiencies. Neither of these is true for L-T separations performed by measuring electron cross sections. Furthermore, the radiative corrections for the proton cross sections are a factor of about 2.5 smaller. All previous L-T separations measured electron cross sections and none had the advantage of an internal monitor. Therefore, the results of E01-001 stringently test whether systematic uncertainties in previous L-T separations may have been sufficient to explain the discrepancy with the recent polarization transfer results.

  14. Moving protons with pendant amines: proton mobility in a nickel catalyst for oxidation of hydrogen.

    Science.gov (United States)

    O'Hagan, Molly; Shaw, Wendy J; Raugei, Simone; Chen, Shentan; Yang, Jenny Y; Kilgore, Uriah J; DuBois, Daniel L; Bullock, R Morris

    2011-09-14

    Proton transport is ubiquitous in chemical and biological processes, including the reduction of dioxygen to water, the reduction of CO(2) to formate, and the production/oxidation of hydrogen. In this work we describe intramolecular proton transfer between Ni and positioned pendant amines for the hydrogen oxidation electrocatalyst [Ni(P(Cy)(2)N(Bn)(2)H)(2)](2+) (P(Cy)(2)N(Bn)(2) = 1,5-dibenzyl-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane). Rate constants are determined by variable-temperature one-dimensional NMR techniques and two-dimensional EXSY experiments. Computational studies provide insight into the details of the proton movement and energetics of these complexes. Intramolecular proton exchange processes are observed for two of the three experimentally observable isomers of the doubly protonated Ni(0) complex, [Ni(P(Cy)(2)N(Bn)(2)H)(2)](2+), which have N-H bonds but no Ni-H bonds. For these two isomers, with pendant amines positioned endo to the Ni, the rate constants for proton exchange range from 10(4) to 10(5) s(-1) at 25 °C, depending on isomer and solvent. No exchange is observed for protons on pendant amines positioned exo to the Ni. Analysis of the exchange as a function of temperature provides a barrier for proton exchange of ΔG(‡) = 11-12 kcal/mol for both isomers, with little dependence on solvent. Density functional theory calculations and molecular dynamics simulations support the experimental observations, suggesting metal-mediated intramolecular proton transfers between nitrogen atoms, with chair-to-boat isomerizations as the rate-limiting steps. Because of the fast rate of proton movement, this catalyst may be considered a metal center surrounded by a cloud of exchanging protons. The high intramolecular proton mobility provides information directly pertinent to the ability of pendant amines to accelerate proton transfers during catalysis of hydrogen oxidation. These results may also have broader implications for proton movement in

  15. Measurements of activation reaction rate distributions on a mercury target bombarded with high-energy protons at AGS

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Hiroshi; Kasugai, Yoshimi; Nakashima, Hiroshi; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ino, Takashi; Kawai, Masayoshi [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Jerde, Eric; Glasgow, David [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2000-02-01

    A neutronics experiment was carried out using a thick mercury target at the Alternating Gradient Synchrotron (AGS) facility of Brookhaven National Laboratory in a framework of the ASTE (AGS Spallation Target Experiment) collaboration. Reaction rate distributions around the target were measured by the activation technique at incident proton energies of 1.6, 12 and 24 GeV. Various activation detectors such as the {sup 115}In(n,n'){sup 115m}In, {sup 93}Nb(n,2n){sup 92m}Nb, and {sup 209}Bi(n,xn) reactions with threshold energies ranging from 0.3 to 70.5 MeV were employed to obtain the reaction rate data for estimating spallation source neutron characteristics of the mercury target. It was found from the measured {sup 115}In(n,n'){sup 115m}In reaction rate distribution that the number of leakage neutrons becomes maximum at about 11 cm from the top of hemisphere of the mercury target for the 1.6-GeV proton incidence and the peak position moves towards forward direction with increase of the incident proton energy. The similar result was observed in the reaction rate distributions of other activation detectors. The experimental procedures and a full set of experimental data in numerical form are summarized in this report. (author)

  16. The increase elimination rate of tritium after administration of furosemide in rats

    International Nuclear Information System (INIS)

    Chirovici, Maria; Jiquidi, Luminita; Reviu, Eugen

    2001-01-01

    It is well known that tritium has certain characteristics that present serious problems for dosimetry and health risk assessment. National Council on Radiation Protection recommends for persons contaminated with tritium oral intake of fluid (e.g. water, fruit juice, tea, coffee or beer), or instillation with 5 % glucose under a doctor's care, together with daily urinary monitoring. This paper tries to follow up the increase elimination rate of tritium in contaminated rats after administration of furosemide, a diuretic used in medical practice. The experiments has been realized on the Wistar rats divided into two groups. First, the control group was contaminated with 3 HHO by intraperitoneal (i.p.) inoculation. The second group was treated with 3 doses of 5.70 mg furosemide (i.p.) body weight at 2, 6 and 12 hours after i.p. inoculation with 3 HHO. Following exposure, the tritium elimination in excreta was monitored 18 days and blood, liver, muscle and kidney were extracted from rats at 1, 2, 4, 7, 11, 18 days after contamination. The excreta and tissues were analyzed with specific tritium radiochemical methods and the samples radioactivity was measured by liquid scintillation technique. Efficiency of treatment was about 30 %. (authors)

  17. Local Equation of State for Protons, and Implications for Proton Heating in the Solar Wind.

    Science.gov (United States)

    Zaslavsky, A.; Maksimovic, M.; Kasper, J. C.

    2017-12-01

    The solar wind protons temperature is observed to decrease with distance to the Sun at a slower rate than expected from an adiabatic expansion law: the protons are therefore said to be heated. This observation raises the question of the evaluation of the heating rate, and the question of the heat source.These questions have been investigated by previous authors by gathering proton data on various distances to the Sun, using spacecraft as Helios or Ulysses, and then computing the radial derivative of the proton temperature in order to obtain a heating rate from the internal energy equation. The problem of such an approach is the computation of the radial derivative of the temperature profile, for which uncertainties are very large, given the dispersion of the temperatures measured at a given distance.An alternative approach, that we develop in this paper, consists in looking for an equation of state that links locally the pressure (or temperature) to the mass density. If such a relation exists then one can evaluate the proton heating rate on a local basis, without having any space derivative to compute.Here we use several years of STEREO and WIND proton data to search for polytropic equation of state. We show that such relationships are indeed a good approximation in given solar wind's velocity intervals and deduce the associated protons heating rates as a function of solar wind's speed. The obtained heating rates are shown to scale from around 1 kW/kg in the slow wind to around 10 kW/kg in the fast wind, in remarkable agreement with the rate of energy observed by previous authors to cascade in solar wind's MHD turbulence at 1 AU. These results therefore support the idea of proton turbulent heating in the solar wind.

  18. The elimination of charging in the PIXE analysis of thick biological samples

    International Nuclear Information System (INIS)

    Papper, C.S.; Chaudhri, M.A.; Rouse, J.L.

    1978-01-01

    A simple technique is described for the elimination of charging of thick biological samples subjected to proton bombardment. This involves evaporating a thin layer of carbon onto the target face and results in the reduction of background and therefore enhances the sensitivity of the technique. (Auth.)

  19. Secondary isotope effects and tunneling in elimination reaction of quaternary ammonium salts

    International Nuclear Information System (INIS)

    Lin, S.

    1993-01-01

    In order to gain more experimental evidence of the tunneling effect on the non-transferred isotopically-substituted hydrogen in the rate determining step and to investigate in more detail concerning the variable nature of the E2 transition state, tritium tracer-labeled β- and/or α-phenyl substituted ethyltrimethylammonium ions in the elimination reaction and their 2,2-d 2 analogues were studied. The three different substrates are 2-(p-trifluoromethylphenyl)ethyltrimethylammonium bromide (I), 1-phenylethyltrimethylammonium bromide (II) and 1-phenyl- 2-p-chlorophenylethyltrimethylammonium bromide (III). The reactions were found to proceed via a concerted E2 process. The proton is more than one-half transferred to the base at the transition state, especially for case I and III. There is more C beta -H and less C alpha -N bond rupture at the transition state when an electron-withdrawing group is introduced on the β-phenyl ring, i.e., more carbonion character in the transition state. The secondary tritium isotope effects were measured and they were found larger than the maximum value. (1.17) for rehybridization. It was found that these values were strongly temperature dependent. They increase as the temperature goes down. The Arrenhius pre-exponential factors were below unity and the exponential factor to convert the isotope effect of D/T to H/T were much greater than predicted for zero-point energy effects alone (3.26). Tunneling turns to be the only plausible explanation. By reviewing this evidence, one may conclude that the contribution of tunneling is indeed a common occurrence in proton transfer processes. For elimination of compound I, the tunneling effect is greatest while it is less for the other two, which are about the same, but the nature of their transition states is quite different. The variable nature of the transition states for the three eliminations are discussed in terms of the More O'Ferral-Jencks diagram

  20. High-repetition-rate laser-proton acceleration from a condensed hydrogen jet

    Energy Technology Data Exchange (ETDEWEB)

    Obst, Lieselotte; Zeil, Karl; Metzkes, Josefine; Schlenvoigt, Hans-Peter; Rehwald, Martin; Sommer, Philipp; Brack, Florian; Schramm, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Goede, Sebastian; Gauthier, Maxence; Roedel, Christian; MacDonald, Michael; Schumaker, William; Glenzer, Siegfried [SLAC National Accelerator Laboratory, Stanford (United States)

    2016-07-01

    Applications of laser-accelerated protons demand a stable source of energetic particles at high repetition rates. We present the results of our experimental campaign in cooperation with MEC/SLAC at the 10Hz Ti:Sa laser Draco of Helmholtz-Zentrum Dresden-Rossendorf (HZDR), employing a pure condensed hydrogen jet as a renewable target. Draco delivers pulses of 30 fs and 5 J at 800 nm, focused to a 3 μm spot by an F/2.5 off-axis parabolic mirror. The jet's nominal electron density is approximately 30 times the critical density and its thickness is 2 μm, 5 μm or 10 μm, depending on the applied aperture on the source. Ion diagnostics reveal mono-species proton acceleration in a solid angle of at least +/-45 with respect to the incoming laser beam, with maximum energies of around 5 MeV. The expanding jet could be monitored on-shot with a temporally synchronized probe beam perpendicular to the pump laser axis. Recorded probe images resemble those of z-pinch experiments with metal wires and indicate an m=0 instability in the plasma.

  1. The rate of second electron transfer to QB(-) in bacterial reaction center of impaired proton delivery shows hydrogen-isotope effect.

    Science.gov (United States)

    Maróti, Ágnes; Wraight, Colin A; Maróti, Péter

    2015-02-01

    The 2nd electron transfer in reaction center of photosynthetic bacterium Rhodobacter sphaeroides is a two step process in which protonation of QB(-) precedes interquinone electron transfer. The thermal activation and pH dependence of the overall rate constants of different RC variants were measured and compared in solvents of water (H2O) and heavy water (D2O). The electron transfer variants where the electron transfer is rate limiting (wild type and M17DN, L210DN and H173EQ mutants) do not show solvent isotope effect and the significant decrease of the rate constant of the second electron transfer in these mutants is due to lowering the operational pKa of QB(-)/QBH: 4.5 (native), 3.9 (L210DN), 3.7 (M17DN) and 3.1 (H173EQ) at pH7. On the other hand, the proton transfer variants where the proton transfer is rate limiting demonstrate solvent isotope effect of pH-independent moderate magnitude (2.11±0.26 (WT+Ni(2+)), 2.16±0.35 (WT+Cd(2+)) and 2.34±0.44 (L210DN/M17DN)) or pH-dependent large magnitude (5.7 at pH4 (L213DN)). Upon deuteration, the free energy and the enthalpy of activation increase in all proton transfer variants by about 1 kcal/mol and the entropy of activation becomes negligible in L210DN/M17DN mutant. The results are interpreted as manifestation of equilibrium and kinetic solvent isotope effects and the structural, energetic and kinetic possibility of alternate proton delivery pathways are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Calibration of light-flavour jet $b$-tagging rates on ATLAS proton-proton collision data at $\\sqrt{s}=13$~TeV

    CERN Document Server

    The ATLAS collaboration

    2018-01-01

    The identification of jets containing $b$-hadrons is important for the physics programme of the ATLAS experiment at the Large Hadron Collider. Two evaluations of the misidentification rate of light-flavour jets for the $b$-tagging algorithm MV2c10, used in the LHC Run 2 ATLAS analyses, are described. The evaluations are performed in various ranges of jet transverse momenta and pseudorapidities with proton-proton collision data collected at a centre-of-mass energy of ${\\sqrt{s} = 13}$~TeV during the years 2015 and 2016. The first evaluation is based on a data sample enriched in light-flavour jets thanks to the application of a dedicated algorithm with much reduced capabilities in tagging $b$-jets and similar performance in mistagging light-flavour jets when compared to the standard $b$-tagging algorithm. The second evaluation is based on a bottom-up approach where the underlying tracking variables in the simulation are adjusted to match performance observed in data; the $b$-tagging algorithm is then re-evaluat...

  3. Comparison of dynamical aspects of nonadiabatic electron, proton, and proton-coupled electron transfer reactions

    International Nuclear Information System (INIS)

    Hatcher, Elizabeth; Soudackov, Alexander; Hammes-Schiffer, Sharon

    2005-01-01

    The dynamical aspects of a model proton-coupled electron transfer (PCET) reaction in solution are analyzed with molecular dynamics simulations. The rate for nonadiabatic PCET is expressed in terms of a time-dependent probability flux correlation function. The impact of the proton donor-acceptor and solvent dynamics on the probability flux is examined. The dynamical behavior of the probability flux correlation function is dominated by a solvent damping term that depends on the energy gap correlation function. The proton donor-acceptor motion does not impact the dynamical behavior of the probability flux correlation function but does influence the magnitude of the rate. The approximations previously invoked for the calculation of PCET rates are tested. The effects of solvent damping on the proton donor-acceptor vibrational motion are found to be negligible, and the short-time solvent approximation, in which only equilibrium fluctuations of the solvent are considered, is determined to be valid for these types of reactions. The analysis of PCET reactions is compared to previous analyses of single electron and proton transfer reactions. The dynamical behavior is qualitatively similar for all three types of reactions, but the time scale of the decay of the probability flux correlation function is significantly longer for single proton transfer than for PCET and single electron transfer due to a smaller solvent reorganization energy for proton transfer

  4. Proton Transfer in Nucleobases is Mediated by Water

    Energy Technology Data Exchange (ETDEWEB)

    Khistyaev, Kirill; Golan, Amir; Bravaya, Ksenia B.; Orms, Natalie; Krylov, Anna I.; Ahmed, Musahid

    2013-08-08

    Water plays a central role in chemistry and biology by mediating the interactions between molecules, altering energy levels of solvated species, modifying potential energy proles along reaction coordinates, and facilitating ecient proton transport through ion channels and interfaces. This study investigates proton transfer in a model system comprising dry and microhydrated clusters of nucleobases. With mass spectrometry and tunable vacuum ultraviolet synchrotron radiation, we show that water shuts down ionization-induced proton transfer between nucleobases, which is very ecient in dry clusters. Instead, a new pathway opens up in which protonated nucleo bases are generated by proton transfer from the ionized water molecule and elimination of a hydroxyl radical. Electronic structure calculations reveal that the shape of the potential energy prole along the proton transfer coordinate depends strongly on the character of the molecular orbital from which the electron is removed, i.e., the proton transfer from water to nucleobases is barrierless when an ionized state localized on water is accessed. The computed energetics of proton transfer is in excellent agreement with the experimental appearance energies. Possible adiabatic passage on the ground electronic state of the ionized system, while energetically accessible at lower energies, is not ecient. Thus, proton transfer is controlled electronically, by the character of the ionized state, rather than statistically, by simple energy considerations.

  5. n l -> n' l' transition rates in electron and proton - Rydberg atom collision

    Science.gov (United States)

    Vrinceanu, Daniel

    2017-04-01

    Electrons and protons drive the recombination dynamics of highly excited Rydberg atoms in cold rarefied plasmas found in astrophysical conditions such as primordial recombination or star formation in H-II clouds. It has been recognized that collisions induce both energy and angular momentum transitions in Rydberg atoms, although in different proportions, depending on the initial state, temperature and the given species considered in the collision (electron or proton). Most studies focused on one collision type at a time, under the assumption that collision types are independent or their effects are not competing. The classical Monte-Carlo trajectory simulations presented in this work calculate the rates for both energy and angular momentum transfers and show their interdependence. For example, energy transfer with small angular momentum change are more efficient for target states with initial large angular momentum. The author acknowledges support received from the National Science Foundation through a Grant for the Center for Research on Complex Networks (HRD-1137732).

  6. Measuring the contribution of low Bjorken-x gluons to the proton spin with polarized proton-proton collisions

    Science.gov (United States)

    Wolin, Scott Justin

    The PHENIX experiment is one of two detectors located at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory in Upton, NY. Understanding the spin structure of the proton is a central goal at RHIC, the only polarized proton-on-proton collider in existence. The PHENIX spin program has two primary objectives. The first is to improve the constraints on the polarized parton distributions of the anti-u and anti-d quarks within the proton. The second objective is to improve the constraint on the gluon spin contribution to the proton spin, DeltaG. The focus of this thesis is the second objective. PHENIX experiment has been successful at providing the first meaningful constraints on DeltaG, along with STAR, the other detector located at RHIC. These constraints have, in fact, eliminated the extreme scenarios for gluon polarization through measurements of the double spin asymmetry, ALL, between the cross section of like and unlike sign helicity pp interactions. ALL measurements can be performed with a variety of final states at PHENIX. Until 2009, these final states were only measured for pseudo-rapidities of |eta| Piston Calorimeter (MPC) was installed in 2006 and 2007 at forward rapidity, 3.1 < |eta| < 3.9, with the intention of giving PHENIX the ability to constrain Delta g(x) for x < 0.05. Following this, an electronics upgrade to the MPC will be described which enables the selection of events with two hadrons detected in the MPC. This requirement favors gluons at even lower x than the single hadron event selection. The di-hadron measurement that this upgrade makes possible will allow PHENIX to produce an ALL measurement that constrains Deltag(x) in the range of 5 x 10-4 < x < 0.01. Finally, we discuss the most important systematic uncertainty common to all ALL measurements which arises from the determination of the relative luminosity. A precision ALLL measurement requires measuring the final state yield from the portions of the proton beams that

  7. On unfolding counting-rate spectra of recoil-proton neutron detectors

    International Nuclear Information System (INIS)

    Yeivin, Yehuda

    1983-01-01

    This note proposes a possible scheme for unfolding recoil-proton neutron detector data, in which at first the undistorted proton source spectrum is derived. The main argument in favour of this scheme is that, compared with the conventional scheme, it necessitates somewhat weaker assumptions with respect to the unknown spectrum above the detector's upper energy cutoff, and would therefore be more reliable. We also demonstrate a simple, elementary proof of the wall effect correction for spherical detectors, and, in order to gain insight of the potential merits of the proposed unfolding scheme, illustrate our main argument by considering a hypothetic linear range-energy relation, in which case complete unfolding becomes possible with no assumptions at all on the proton spectrum above the cutoff energy. (author)

  8. Isotopically decoupled vibrational spectra and proton exchange rates for crystalline NH3 and ammonia hydrate

    Science.gov (United States)

    Thornton, Cynthia; Khatkale, M. S.; Devlin, J. Paul

    1981-12-01

    Codeposits of NH3 with ND3 or D2O have been prepared at liquid nitrogen temperatures in the absence of proton exchange. Vibrational data for the anhydrous cubic crystalline ammonia, containing isolated NH3 or ND3, confirm that, relative to water ice, intermolecular coupling in ammonia ice exerts a relatively minor influence on the infrared and Raman spectra. Nevertheless, sizeable decoupling shifts, particularly for ν1, have been observed and attributed to a combination of factors including correlation field and Fermi resonance effects. The Raman polarization data has also affirmed long standing assignments of ν1 and ν3 for ammonia ice. Warming of the ammonia thin films resulted in limited isotopic scrambling at 130 K, apparently possible only through the agency of trace concentrations of water. The vibrational coupling pattern for the resultant NHD2 and NH2D molecules suggest that proton (deuteron) migration away from the exchange centers is impossible at temperatures up to 150 K. By contrast, isotopic scrambling was rapid and complete at 140 K for amorphous ammonia hydrate films (˜35% NH3, ˜65% D2O) which were also prepared without exchange at ˜90 K. The proton (deuteron) exchange rate is much greater for the amorphous ammonia hydrate at 140 K than for pure water ice. Such exchange requires both ion-pair defect formation and proton mobility. Since the NH3 suppresses the H3O+ concentration via formation of NH+4, a suppression the likes of which has been shown to stop proton exchange in water ice, the evidence strongly suggests that NH4+ in ammonia, like H3O+ in water, is an effective proton transfer agent, probably acting through a tunneling mechanism (i.e., H3N+-HṡṡṡNH3→H3NṡṡṡH-N+H3 etc.) to render the proton mobile in the ammonia hydrate. This mobility combined with the greater NH4+ concentration, relative to the H3O+ concentration in H2O ice Ic, results in isotopic scrambling at the reduced temperature.

  9. Calculation of rate coefficients of some proton-transfer ion-molecule reactions in weakly ionized gases

    International Nuclear Information System (INIS)

    Stiller, W.

    1985-01-01

    A classical collision theory is used to describe thermal bimolecular rate coefficeints for reaction between positive and negative ions and polar molecules in a carrier gas. Special attention is paid to ion-molecule reaction in which proton transfer occurs. These reactions play an important role in terrestrial plasma devices, in ionosphere, in planetary atmospheres and in interstellar matter. The equilibrium rate coefficients of the reactions are calculated based on a microscopic reactive cross section derived from a long distance polar molecule-ion potential. The results are compared with experimental values of afterglow measurements. (D.Gy.)

  10. Storage ring proton EDM experiment

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    sensitivity of 10^-29 e-cm.  The strength of the method originates from the fact that there are high intensity polarized proton beams available and the fact that the so-called geometric phase systematic error background cancels with clock-wise and counter-clock-wise storage possible in electric rings. The ultimate sensitivity of the method is 10^-30 e-cm. At this level it will either detect a non-zero EDM or it will eliminate electro-weak baryogenesis.

  11. Inelastic and diffraction dissociation cross-sections in proton-proton collisions with ALICE

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    ALICE results on proton-proton inelastic and diffractive cross-section measurements performed at $\\sqrt{s}$ = 0.9 TeV, 2.76 TeV and 7 TeV are presented. The relative rates of single- and double- diffractive processes are measured by studying properties of gaps in the pseudorapidity distribution of charged particles. ALICE trigger efficiencies are determined for various classes of events, using a detector simulation validated with experimental data. The results are presented together with earlier measurements at proton-antiproton and proton-proton colliders at lower energies and with the measurements by other LHC experiments. Predictions by different theoretical models are compared to the data. We will also discuss the main theoretical problems in the field and present some of the recent developments.

  12. Single-Amino Acid Modifications Reveal Additional Controls on the Proton Pathway of [FeFe]-Hydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Cornish, Adam J.; Ginovska, Bojana; Thelen, Adam; da Silva, Julio C. S.; Soares, Thereza A.; Raugei, Simone; Dupuis, Michel; Shaw, Wendy J.; Hegg, Eric L.

    2016-06-07

    The proton pathway of [FeFe]-hydrogenase is essential for enzymatic H2 production and oxidation and is composed of four residues and a modeled water molecule. Recently, a computational analysis of this pathway revealed that the solvent-exposed residue of the pathway (Glu282) could form hydrogen bonds to two residues outside of the pathway (Arg286 and Ser320), implicating that these residues could function in regulating proton transfer. Substituting Arg286 with leucine eliminates hydrogen bonding with Glu282 and results in a 2.5-fold enhancement in H2 production activity, suggesting that Arg286 serves an important role in controlling the rate of proton delivery. In contrast, substitution of Ser320 with alanine reduces the rate approximately 5-fold, implying that it either acts as a member of the pathway or influences Glu282 to enable proton transfer. Interestingly, QM/MM and molecular dynamics calculations indicate that Ser320 does not play an electronic or structural role. QM calculations also estimate that including Ser320 in the pathway does not significantly change the barrier to proton movement, providing further support for its role as a member of the proton pathway. While further studies are needed to quantify the role of Ser320, collectively, these data provide evidence that the enzyme scaffold plays a significant role in modulating the activity of the enzyme, demonstrating that the rate of intraprotein proton transfer can be accelerated, particularly in a non-biological context. This work was supported by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science, DE-FC02-07ER64494). In addition, support from the DOE Office of Science Early Career Research Program through the Office of Basic Energy Sciences (WJS, BGP, SR) is gratefully acknowledged. Computational resources were provided at W. R. Wiley Environmental Molecular Science Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy’s Office of

  13. Electro-oxidation of methanol diffused through proton exchange membrane on Pt surface: crossover rate of methanol

    International Nuclear Information System (INIS)

    Jung, Inhwa; Kim, Doyeon; Yun, Yongsik; Chung, Suengyoung; Lee, Jaeyoung; Tak, Yongsug

    2004-01-01

    Methanol crossover rate through proton exchange membrane (Nafion 117) was investigated with a newly designed electrochemical stripping cell. Nanosize Pt electrode was prepared by the electroless deposition. Distinct electrocatalytic oxidation behaviors of methanol inside membrane were similar to the methanol oxidation in aqueous electrolyte, except adsorption/desorption of hydrogen. The amount of methanol diffused through membrane was calculated from the charge of methanol oxidation during repetitive cyclic voltammetry (CV) and methanol crossover rate was estimated to be 0.69 nmol/s

  14. Dose-rate effects of protons on in vivo activation of nuclear factor-kappa B and cytokines in mouse bone marrow cells

    Energy Technology Data Exchange (ETDEWEB)

    Rithidech, K.N.; Rusek, A.; Reungpatthanaphong, P.; Honikel, L.; Simon, S.R.

    2010-05-28

    The objective of this study was to determine the kinetics of nuclear factor-kappa B (NF-{kappa}B) activation and cytokine expression in bone marrow (BM) cells of exposed mice as a function of the dose rate of protons. The cytokines included in this study are pro-inflammatory [i.e., tumor necrosis factor-alpha (TNF-{alpha}), interleukin-1beta (IL-1{beta}), and IL-6] and anti-inflammatory cytokines (i.e., IL-4 and IL-10). We gave male BALB/cJ mice a whole-body exposure to 0 (sham-controls) or 1.0 Gy of 100 MeV protons, delivered at 5 or 10 mGy min{sup -1}, the dose and dose rates found during solar particle events in space. As a reference radiation, groups of mice were exposed to 0 (sham-controls) or 1 Gy of {sup 137}Cs {gamma} rays (10 mGy min{sup -1}). After irradiation, BM cells were collected at 1.5, 3, 24 h, and 1 month for analyses (five mice per treatment group per harvest time). The results indicated that the in vivo time course of effects induced by a single dose of 1 Gy of 100 MeV protons or {sup 137}Cs {gamma} rays, delivered at 10 mGy min{sup -1}, was similar. Although statistically significant levels of NF-{kappa}B activation and pro-inflammatory cytokines in BM cells of exposed mice when compared to those in the corresponding sham controls (Student's t-test, p < 0.05 or < 0.01) were induced by either dose rate, these levels varied over time for each protein. Further, only a dose rate of 5 mGy min{sup -1} induced significant levels of anti-inflammatory cytokines. The results indicate dose-rate effects of protons.

  15. A numerical solution of the coupled proton-H atom transport equations for the proton aurora

    International Nuclear Information System (INIS)

    Basu, B.; Jasperse, J.R.; Grossbard, N.J.

    1990-01-01

    A numerical code has been developed to solve the coupled proton-H atom linear transport equations for the proton aurora. The transport equations have been simplified by using plane-parallel geometry and the forward-scattering approximations only. Otherwise, the equations and their numerical solutions are exact. Results are presented for the particle fluxes and the energy deposition rates, and they are compared with the previous analytical results that were obtained by using additional simplifying approximations. It is found that although the analytical solutions for the particle fluxes differ somewhat from the numerical solutions, the energy deposition rates calculated by the two methods agree to within a few percent. The accurate particle fluxes given by the numerical code are useful for accurate calculation of the characteristic quantities of the proton aurora, such as the ionization rates and the emission rates

  16. Search for Sphalerons in Proton-Proton Collisions

    CERN Document Server

    Satco, Daria

    2017-01-01

    In view of new possibilities becoming more realistic with FCC design and of recent promising results regarding $(B+L)$-violating processes detection we concentrated our research on generation and analysis of sphaleron transitions. The existence of instanton and sphaleron solutions which are associated with transitions between different vacuum states is well known since 1980s. However first calculations of instanton rate killed any hope to detect them even at very high energies while the calculation of sphaleron transitions rate is a tricky problem which continue being widely discussed. In our research we used HERBVI package to generate baryon- and lepton-number violating processes in proton-proton collisions at typical energies 14, 33, 40 and 100 TeV in order to estimate the upper limit on the sphaleron cross-section. We considered the background processes and determined the zero background regions.

  17. Involvement of a cytosine side chain in proton transfer in the rate-determining step of ribozyme self-cleavage

    Science.gov (United States)

    Shih, I-hung; Been, Michael D.

    2001-01-01

    Ribozymes of hepatitis delta virus have been proposed to use an active-site cytosine as an acid-base catalyst in the self-cleavage reaction. In this study, we have examined the role of cytosine in more detail with the antigenomic ribozyme. Evidence that proton transfer in the rate-determining step involved cytosine 76 (C76) was obtained from examining cleavage activity of the wild-type and imidazole buffer-rescued C76-deleted (C76Δ) ribozymes in D2O and H2O. In both reactions, a similar kinetic isotope effect and shift in the apparent pKa indicate that the buffer is functionally substituting for the side chain in proton transfer. Proton inventory of the wild-type reaction supported a mechanism of a single proton transfer at the transition state. This proton transfer step was further characterized by exogenous base rescue of a C76Δ mutant with cytosine and imidazole analogues. For the imidazole analogues that rescued activity, the apparent pKa of the rescue reaction, measured under kcat/KM conditions, correlated with the pKa of the base. From these data a Brønsted coefficient (β) of 0.51 was determined for the base-rescued reaction of C76Δ. This value is consistent with that expected for proton transfer in the transition state. Together, these data provide strong support for a mechanism where an RNA side chain participates directly in general acid or general base catalysis of the wild-type ribozyme to facilitate RNA cleavage. PMID:11171978

  18. Deduction of the rates of radial diffusion of protons from the structure of the Earth's radiation belts

    Science.gov (United States)

    Kovtyukh, Alexander S.

    2016-11-01

    From the data on the fluxes and energy spectra of protons with an equatorial pitch angle of α0 ≈ 90° during quiet and slightly disturbed (Kp ≤ 2) periods, I directly calculated the value DLL, which is a measure of the rate of radial transport (diffusion) of trapped particles. This is done by successively solving the systems (chains) of integrodifferential equations which describe the balance of radial transport/acceleration and ionization losses of low-energy protons of the stationary belt. This was done for the first time. For these calculations, I used data of International Sun-Earth Explorer 1 (ISEE-1) for protons with an energy of 24 to 2081 keV at L = 2-10 and data of Explorer-45 for protons with an energy of 78.6 to 872 keV at L = 2-5. Ionization losses of protons (Coulomb losses and charge exchange) were calculated on the basis of modern models of the plasmasphere and the exosphere. It is shown that for protons with μ from ˜ 0.7 to ˜ 7 keV nT-1 at L ≈ 4.5-10, the functions of DLL can be approximated by the following equivalent expressions: DLL ≈ 4.9 × 10-14μ-4.1L8.2 or DLL ≈ 1.3 × 105(EL)-4.1 or DLL ≈ 1.2 × 10-9fd-4.1, where fd is the drift frequency of the protons (in mHz), DLL is measured in s-1, E is measured in kiloelectronvolt and μ is measured in kiloelectronvolt per nanotesla. These results are consistent with the radial diffusion of particles under the action of the electric field fluctuations (pulsations) in the range of Pc6 and contradict the mechanism of the radial diffusion of particles under the action of sudden impulses (SIs) of the magnetic field and also under the action of substorm impulses of the electric field. During magnetic storms DLL increases, and the expressions for DLL obtained here can change completely.

  19. Proton beam therapy how protons are revolutionizing cancer treatment

    CERN Document Server

    Yajnik, Santosh

    2013-01-01

    Proton beam therapy is an emerging technology with promise of revolutionizing the treatment of cancer. While nearly half of all patients diagnosed with cancer in the US receive radiation therapy, the majority is delivered via electron accelerators, where photons are used to irradiate cancerous tissue. Because of the physical properties of photon beams, photons may deposit energy along their entire path length through the body. On the other hand, a proton beam directed at a tumor travels in a straight trajectory towards its target, gives off most of its energy at a defined depth called the Bragg peak, and then stops. While photons often deposit more energy within the healthy tissues of the body than within the cancer itself, protons can deposit most of their cancer-killing energy within the area of the tumor. As a result, in the properly selected patients, proton beam therapy has the ability to improve cure rates by increasing the dose delivered to the tumor and simultaneously reduce side-effects by decreasing...

  20. Improvement of single detector proton radiography by incorporating intensity of time-resolved dose rate functions

    Science.gov (United States)

    Zhang, Rongxiao; Jee, Kyung-Wook; Cascio, Ethan; Sharp, Gregory C.; Flanz, Jacob B.; Lu, Hsiao-Ming

    2018-01-01

    Proton radiography, which images patients with the same type of particles as those with which they are to be treated, is a promising approach to image guidance and water equivalent path length (WEPL) verification in proton radiation therapy. We have shown recently that proton radiographs could be obtained by measuring time-resolved dose rate functions (DRFs) using an x-ray amorphous silicon flat panel. The WEPL values were derived solely from the root-mean-square (RMS) of DRFs, while the intensity information in the DRFs was filtered out. In this work, we explored the use of such intensity information for potential improvement in WEPL accuracy and imaging quality. Three WEPL derivation methods based on, respectively, the RMS only, the intensity only, and the intensity-weighted RMS were tested and compared in terms of the quality of obtained radiograph images and the accuracy of WEPL values. A Gammex CT calibration phantom containing inserts made of various tissue substitute materials with independently measured relative stopping powers (RSP) was used to assess the imaging performances. Improved image quality with enhanced interfaces was achieved while preserving the accuracy by using intensity information in the calibration. Other objects, including an anthropomorphic head phantom, a proton therapy range compensator, a frozen lamb’s head and an ‘image quality phantom’ were also imaged. Both the RMS only and the intensity-weighted RMS methods derived RSPs within  ±  1% for most of the Gammex phantom inserts, with a mean absolute percentage error of 0.66% for all inserts. In the case of the insert with a titanium rod, the method based on RMS completely failed, whereas that based on the intensity-weighted RMS was qualitatively valid. The use of intensity greatly enhanced the interfaces between different materials in the obtained WEPL images, suggesting the potential for image guidance in areas such as patient positioning and tumor tracking by proton

  1. Proton tunneling in solids

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, J.

    1998-10-01

    The tunneling rate of the proton and its isotopes between interstitial sites in solids is studied theoretically. The phonons and/or the electrons in the solid have two effects on the tunneling phenomenon. First, they suppress the transfer integral between two neighbouring states. Second, they give rise to a finite lifetime of the proton state. Usually the second effect is large and the tunneling probability per unit time (tunneling rate) can be defined. In some cases, however, a coherent tunneling is expected and actually observed. (author)

  2. Proton tunneling in solids

    International Nuclear Information System (INIS)

    Kondo, J.

    1998-01-01

    The tunneling rate of the proton and its isotopes between interstitial sites in solids is studied theoretically. The phonons and/or the electrons in the solid have two effects on the tunneling phenomenon. First, they suppress the transfer integral between two neighbouring states. Second, they give rise to a finite lifetime of the proton state. Usually the second effect is large and the tunneling probability per unit time (tunneling rate) can be defined. In some cases, however, a coherent tunneling is expected and actually observed. (author)

  3. Dose-rate effects of protons on in vivo activation of nuclear factor-kappa B and cytokines in mouse bone marrow cells

    International Nuclear Information System (INIS)

    Rithidech, K.N.; Rusek, A.; Reungpatthanaphong, P.; Honikel, L.; Simon, S.R.

    2010-01-01

    The objective of this study was to determine the kinetics of nuclear factor-kappa B (NF-κB) activation and cytokine expression in bone marrow (BM) cells of exposed mice as a function of the dose rate of protons. The cytokines included in this study are pro-inflammatory (i.e., tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and IL-6) and anti-inflammatory cytokines (i.e., IL-4 and IL-10). We gave male BALB/cJ mice a whole-body exposure to 0 (sham-controls) or 1.0 Gy of 100 MeV protons, delivered at 5 or 10 mGy min -1 , the dose and dose rates found during solar particle events in space. As a reference radiation, groups of mice were exposed to 0 (sham-controls) or 1 Gy of 137 Cs γ rays (10 mGy min -1 ). After irradiation, BM cells were collected at 1.5, 3, 24 h, and 1 month for analyses (five mice per treatment group per harvest time). The results indicated that the in vivo time course of effects induced by a single dose of 1 Gy of 100 MeV protons or 137 Cs γ rays, delivered at 10 mGy min -1 , was similar. Although statistically significant levels of NF-κB activation and pro-inflammatory cytokines in BM cells of exposed mice when compared to those in the corresponding sham controls (Student's t-test, p -1 induced significant levels of anti-inflammatory cytokines. The results indicate dose-rate effects of protons.

  4. Impact of solar proton events on noctilucent clouds

    Energy Technology Data Exchange (ETDEWEB)

    Rahpoe, Nabiz; Savigny, Christian von; Robert, Charles E.; Burrows, John P. [IEP, University of Bremen (Germany); DeLand, M. [Science Systems and Applications, Inc. (SSAI), Maryland (United States)

    2010-07-01

    The impact of SPEs (solar proton events) on NLCs (noctilucent clouds) is studied using the 23-year NLC data set based on measurements with SBUV instruments on NIMBUS 7 and the NOAA 9-17 satellites. We analyzed the GOES proton flux and NLC time series in order to find significant anti-correlations between proton fluxes and NLC occurrence rates and albedo. We focused on the analysis of the years when SPEs occurred during the core NLC season. For several cases anti-correlations of NLC and proton fluxes were found. For an increase of the proton flux of several orders of magnitude (with proton energies E>5 MeV) during the NLC season we find a NLC reduction in NLC occurence rate or albedo of up to 50 % (relative to maximum).

  5. Deduction of the rates of radial diffusion of protons from the structure of the Earth's radiation belts

    Directory of Open Access Journals (Sweden)

    A. S. Kovtyukh

    2016-11-01

    Full Text Available From the data on the fluxes and energy spectra of protons with an equatorial pitch angle of α0 ≈ 90° during quiet and slightly disturbed (Kp ≤ 2 periods, I directly calculated the value DLL, which is a measure of the rate of radial transport (diffusion of trapped particles. This is done by successively solving the systems (chains of integrodifferential equations which describe the balance of radial transport/acceleration and ionization losses of low-energy protons of the stationary belt. This was done for the first time. For these calculations, I used data of International Sun–Earth Explorer 1 (ISEE-1 for protons with an energy of 24 to 2081 keV at L = 2–10 and data of Explorer-45 for protons with an energy of 78.6 to 872 keV at L = 2–5. Ionization losses of protons (Coulomb losses and charge exchange were calculated on the basis of modern models of the plasmasphere and the exosphere. It is shown that for protons with μ from  ∼ 0.7 to ∼ 7 keV nT−1 at L ≈ 4.5–10, the functions of DLL can be approximated by the following equivalent expressions: DLL ≈ 4.9 × 10−14μ−4.1L8.2 or DLL ≈ 1.3 × 105(EL−4.1 or DLL ≈ 1.2 × 10−9fd−4.1, where fd is the drift frequency of the protons (in mHz, DLL is measured in s−1, E is measured in kiloelectronvolt and μ is measured in kiloelectronvolt per nanotesla. These results are consistent with the radial diffusion of particles under the action of the electric field fluctuations (pulsations in the range of Pc6 and contradict the mechanism of the radial diffusion of particles under the action of sudden impulses (SIs of the magnetic field and also under the action of substorm impulses of the electric field. During magnetic storms DLL increases, and the expressions for DLL obtained here can change completely.

  6. Reaction Coordinate, Free Energy, and Rate of Intramolecular Proton Transfer in Human Carbonic Anhydrase II.

    Science.gov (United States)

    Paul, Sanjib; Paul, Tanmoy Kumar; Taraphder, Srabani

    2018-03-22

    The role of structure and dynamics of an enzyme has been investigated at three different stages of its function including the chemical event it catalyzes. A one-pot computational method has been designed for each of these stages on the basis of classical and/or quantum mechanical-molecular mechanical molecular dynamics and transition path sampling simulations. For a pair of initial and final states A and B separated by a high free-energy barrier, using a two-stage selection process, several collective variables (CVs) are identified that can delineate A and B. However, these CVs are found to exhibit strong cross-coupling over the transition paths. A set of mutually orthogonal order parameters is then derived from these CVs and an optimal reaction coordinate, r, determined applying half-trajectory likelihood maximization along with a Bayesian information criterion. The transition paths are also used to project the multidimensional free energy surface and barrier crossing dynamics along r. The proposed scheme has been applied to the rate-determining intramolecular proton transfer reaction of the well-known enzyme human carbonic anhydrase II. The potential of mean force, F( r), in the absence of the chemical step is found to reproduce earlier results on the equilibrium population of two side-chain orientations of key residue His-64. Estimation of rate constants, k, from mean first passage times for the three different stages of catalysis shows that the rate-determining step of intramolecular proton transfer occurs with k ≃ 1.0 × 10 6 s -1 , in close agreement with known experimental results.

  7. Measurement of the relaxation rate of the magnetization in Mn12O12-acetate using proton NMR echo

    Science.gov (United States)

    Jang; Lascialfari; Borsa; Gatteschi

    2000-03-27

    We present a novel method to measure the relaxation rate W of the magnetization of Mn 12O (12)-acetate (Mn12) magnetic molecular cluster in its S = 10 ground state at low T. It is based on the observation of an exponential growth in time of the proton NMR signal during the thermal equilibration of the magnetization of the molecules. We can explain the novel effect with a simple model which relates the intensity of the proton echo signal to the microscopic reversal of the magnetization of each individual Mn12 molecule during the equilibration process. The method should find wide application in the study of magnetic molecular clusters in off-equilibrium conditions.

  8. Electron - proton colliders

    International Nuclear Information System (INIS)

    Wiik, B.H.

    1985-01-01

    Electron-proton storage rings allow us to study the interaction between the two basic constituents of matter, electrons and quarks at very short distances. Such machines were first discussed in connection with the ISR but the idea was abandoned because of the anticipated low counting rate. The interest in electron-proton storage rings was rekindeled by the discovery of large pointlike cross sections in lepton-hardon interactions and several/sup 2-15/ projects have been discussed during the past decade. However, despite a glorious past, which includes the discovery of quarks and neutral currents, and a multitude of proposals no electron-proton storage ring has ever been built. What we might learn by studying electron-proton collisions at high energies is discussed. After some brief comments on present proposals the proposed DESY ep project HERA is described as an example of how to realize such a machine

  9. Laser-accelerated proton conversion efficiency thickness scaling

    International Nuclear Information System (INIS)

    Hey, D. S.; Foord, M. E.; Key, M. H.; LePape, S. L.; Mackinnon, A. J.; Patel, P. K.; Ping, Y.; Akli, K. U.; Stephens, R. B.; Bartal, T.; Beg, F. N.; Fedosejevs, R.; Friesen, H.; Tiedje, H. F.; Tsui, Y. Y.

    2009-01-01

    The conversion efficiency from laser energy into proton kinetic energy is measured with the 0.6 ps, 9x10 19 W/cm 2 Titan laser at the Jupiter Laser Facility as a function of target thickness in Au foils. For targets thicker than 20 μm, the conversion efficiency scales approximately as 1/L, where L is the target thickness. This is explained by the domination of hot electron collisional losses over adiabatic cooling. In thinner targets, the two effects become comparable, causing the conversion efficiency to scale weaker than 1/L; the measured conversion efficiency is constant within the scatter in the data for targets between 5 and 15 μm, with a peak conversion efficiency of 4% into protons with energy greater than 3 MeV. Depletion of the hydrocarbon contaminant layer is eliminated as an explanation for this plateau by using targets coated with 200 nm of ErH 3 on the rear surface. The proton acceleration is modeled with the hybrid-particle in cell code LSP, which reproduced the conversion efficiency scaling observed in the data.

  10. PROTON MICROSCOPY AT FAIR

    International Nuclear Information System (INIS)

    Merrill, F. E.; Mariam, F. G.; Golubev, A. A.; Turtikov, V. I.; Varentsov, D.

    2009-01-01

    Proton radiography was invented in the 1990's at Los Alamos National Laboratory (LANL) as a diagnostic to study dynamic material properties under extreme pressures, strain and strain rate. Since this time hundreds of dynamic proton radiography experiments have been performed at LANL and a facility has been commissioned at the Institute for Theoretical and Experimental Physics (ITEP) in Russia for similar applications in dynamic material studies. Recently an international effort has investigated a new proton radiography capability for the study of dynamic material properties at the Facility for Anti-proton and Ion Research (FAIR) located in Darmstadt, Germany. This new Proton microscope for FAIR(PRIOR) will provide radiographic imaging of dynamic systems with unprecedented spatial, temporal and density resolution, resulting in a window for understanding dynamic material properties at new length scales. It is also proposed to install the PRIOR system at the GSI Helmholtzzentrum fuer Schwerionenforschung before installation at FAIR for dynamic experiments with different drivers including high explosives, pulsed power and lasers. The design of the proton microscope and expected radiographic performance is presented.

  11. Quantitative chemical exchange saturation transfer (qCEST) MRI--RF spillover effect-corrected omega plot for simultaneous determination of labile proton fraction ratio and exchange rate.

    Science.gov (United States)

    Sun, Phillip Zhe; Wang, Yu; Dai, ZhuoZhi; Xiao, Gang; Wu, Renhua

    2014-01-01

    Chemical exchange saturation transfer (CEST) MRI is sensitive to dilute proteins and peptides as well as microenvironmental properties. However, the complexity of the CEST MRI effect, which varies with the labile proton content, exchange rate and experimental conditions, underscores the need for developing quantitative CEST (qCEST) analysis. Towards this goal, it has been shown that omega plot is capable of quantifying paramagnetic CEST MRI. However, the use of the omega plot is somewhat limited for diamagnetic CEST (DIACEST) MRI because it is more susceptible to direct radio frequency (RF) saturation (spillover) owing to the relatively small chemical shift. Recently, it has been found that, for dilute DIACEST agents that undergo slow to intermediate chemical exchange, the spillover effect varies little with the labile proton ratio and exchange rate. Therefore, we postulated that the omega plot analysis can be improved if RF spillover effect could be estimated and taken into account. Specifically, simulation showed that both labile proton ratio and exchange rate derived using the spillover effect-corrected omega plot were in good agreement with simulated values. In addition, the modified omega plot was confirmed experimentally, and we showed that the derived labile proton ratio increased linearly with creatine concentration (p plot for quantitative analysis of DIACEST MRI. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Proton conduction based on intracrystalline chemical reaction

    International Nuclear Information System (INIS)

    Schuck, G.; Lechner, R.E.; Langer, K.

    2002-01-01

    Proton conductivity in M 3 H(SeO 4 ) 2 crystals (M=K, Rb, Cs) is shown to be due to a dynamic disorder in the form of an intracrystalline chemical equilibrium reaction: alternation between the association of the monomers [HSeO 4 ] 1- and [SeO 4 ] 2- resulting in the dimer [H(SeO 4 ) 2 ] 3- (H-bond formation) and the dissociation of the latter into the two monomers (H-bond breaking). By a combination of quasielastic neutron scattering and FTIR spectroscopy, reaction rates were obtained, as well as rates of proton exchange between selenate ions, leading to diffusion. The results demonstrate that this reaction plays a central role in the mechanism of proton transport in these solid-state protonic conductors. (orig.)

  13. The Rydberg constant and proton size from atomic hydrogen

    Science.gov (United States)

    Beyer, Axel; Maisenbacher, Lothar; Matveev, Arthur; Pohl, Randolf; Khabarova, Ksenia; Grinin, Alexey; Lamour, Tobias; Yost, Dylan C.; Hänsch, Theodor W.; Kolachevsky, Nikolai; Udem, Thomas

    2017-10-01

    At the core of the “proton radius puzzle” is a four-standard deviation discrepancy between the proton root-mean-square charge radii (rp) determined from the regular hydrogen (H) and the muonic hydrogen (µp) atoms. Using a cryogenic beam of H atoms, we measured the 2S-4P transition frequency in H, yielding the values of the Rydberg constant R∞ = 10973731.568076(96) per meterand rp = 0.8335(95) femtometer. Our rp value is 3.3 combined standard deviations smaller than the previous H world data, but in good agreement with the µp value. We motivate an asymmetric fit function, which eliminates line shifts from quantum interference of neighboring atomic resonances.

  14. Proton-air and proton-proton cross sections

    Directory of Open Access Journals (Sweden)

    Ulrich Ralf

    2013-06-01

    Full Text Available Different attempts to measure hadronic cross sections with cosmic ray data are reviewed. The major results are compared to each other and the differences in the corresponding analyses are discussed. Besides some important differences, it is crucial to see that all analyses are based on the same fundamental relation of longitudinal air shower development to the observed fluctuation of experimental observables. Furthermore, the relation of the measured proton-air to the more fundamental proton-proton cross section is discussed. The current global picture combines hadronic proton-proton cross section data from accelerator and cosmic ray measurements and indicates a good consistency with predictions of models up to the highest energies.

  15. Sterics level the rates of proton transfer to [Ni(XPh){PhP(CH₂CH₂PPh₂)₂}]⁺ (X = O, S or Se).

    Science.gov (United States)

    Alwaaly, Ahmed; Henderson, Richard A

    2014-09-04

    Rates of proton transfers between lutH(+) (lut = 2,6-dimethylpyridine) and [Ni(XPh)(PhP{CH2CH2PPh2}2)](+) (X = O, S or Se) are slow and show little variation (k(O) : k(S) : k(Se) = 1 : 12 : 9). This unusual behaviour is a consequence of sterics affecting the optimal interaction between the reactants prior to proton transfer.

  16. Measurement of the Relaxation Rate of the Magnetization in Mn12O12 -Acetate Using Proton NMR Echo

    International Nuclear Information System (INIS)

    Jang, Z. H.; Lascialfari, A.; Borsa, F.; Gatteschi, D.

    2000-01-01

    We present a novel method to measure the relaxation rate W of the magnetization of Mn 12 O 12 -acetate (Mn12) magnetic molecular cluster in its S=10 ground state at low T . It is based on the observation of an exponential growth in time of the proton NMR signal during the thermal equilibration of the magnetization of the molecules. We can explain the novel effect with a simple model which relates the intensity of the proton echo signal to the microscopic reversal of the magnetization of each individual Mn12 molecule during the equilibration process. The method should find wide application in the study of magnetic molecular clusters in off-equilibrium conditions. (c) 2000 The American Physical Society

  17. How To Eliminate Narcissism Overnight

    Science.gov (United States)

    2011-01-01

    The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition appears likely to eliminate the diagnosis of narcissistic personality disorder. There are significant problems with the discriminant validity of the current narcissistic personality disorder critiera set; furthermore, the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition's narrow focus on “grandiosity” probably contributes to the wide disparity between low narcissistic personality disorder prevalence rates in epidemiological studies and high rates of narcissistic personality disorder in clinical practice. Nevertheless, the best course of action may be to refine the narcissistic personality disorder criteria, followed by careful field testing and a search for biomarkers, rather than wholesale elimination of the narcissistic personality disorder category. The construct of “malignant narcissism” is also worthy of more intense empirical investigation. PMID:21468294

  18. [The determination of the ethanol elimination rate in the blood based on its concentration in the exhaled air].

    Science.gov (United States)

    Obukhova, L M; Erlykina, E I; Andriianova, N A

    2014-01-01

    The objective of the present study was to calculate the blood ethanol level from its content in the exhaled air. The plot of the blood ethanol level versus its content in the exhaled air was constructed and used to determine the rate of ethanol elimination from the blood. The result proved to lie within the range corresponding to the normal-for-age values. These data put in question the opinion of the independent specialist about disturbances in the alcohol dehydrogenase activity in blood manifested as a considerable increase of the rate of acetaldehyde reduction to ethanol with the decreasing ethanol dehydration rate. It is concluded that the prfoposed algorithm can be recommended for the application in the practical work of various expert services.

  19. Tracer kinetics: Modelling by partial differential equations of inhomogeneous compartments with age-dependent elimination rates. Pt. 2

    International Nuclear Information System (INIS)

    Winkler, E.

    1991-01-01

    The general theory of inhomogeneous compartments with age-dependent elimination rates is illustrated by examples. Mathematically, it turns out that models consisting of partial differential equations include ordinary, delayed and integro-differential equations, a general fact which is treated here in the context of linear tracer kinetics. The examples include standard compartments as a degenerate case, systems of standard compartments (compartment blocks), models resulting in special residence time distributions, models with pipes, and systems with heterogeneous particles. (orig./BBR) [de

  20. Radial focusing and energy compression of a laser-produced proton beam by a synchronous rf field

    Directory of Open Access Journals (Sweden)

    Masahiro Ikegami

    2009-06-01

    Full Text Available The dynamics of a MeV laser-produced proton beam affected by a radio frequency (rf electric field has been studied. The proton beam was emitted normal to the rear surface of a thin polyimide target irradiated with an ultrashort pulsed laser with a power density of 4×10^{18}  W/cm^{2}. The energy spread was compressed to less than 11% at the full width at half maximum (FWHM by an rf field. Focusing and defocusing effects of the transverse direction were also observed. These effects were analyzed and reproduced by Monte Carlo simulations. The simulation results show that the transversely focused protons had a broad continuous spectrum, while the peaks in the proton spectrum were defocused. Based on this new information, we propose that elimination of the continuous energy component of laser-produced protons is possible by utilizing a focal length difference between the continuous spectral protons and the protons included in the spectral peak.

  1. Do protons decay

    International Nuclear Information System (INIS)

    Litchfield, P.J.

    1984-09-01

    The experimental status of proton decay is reviewed after the Leipzig International conference, July 1984. A brief comparative description of the currently active experiments is given. From the overall samples of contained events it can be concluded that the experiments are working well and broadly agree with each other. The candidates for proton decay from each experiment are examined. Although several experiments report candidates at a higher rate than expected from background calculations, the validity of these calculations is still open to doubt. (author)

  2. Elimination of motion and pulsation artifacts using BLADE sequences in shoulder MR imaging

    International Nuclear Information System (INIS)

    Lavdas, E.; Zaloni, E.; Vlychou, M.; Vassiou, K.; Fezoulidis, I.; Tsagkalis, A.; Dailiana, Z.

    2015-01-01

    To evaluate the ability of proton-density with fat-suppression BLADE (proprietary name for periodically rotated overlapping parallel lines with enhanced reconstruction in MR systems from Siemens Healthcare, PDFS BLADE) and turbo inversion recovery magnitude-BLADE (TIRM BLADE) sequences to reduce motion and pulsation artifacts in shoulder magnetic resonance examinations. Forty-one consecutive patients who had been routinely scanned for shoulder examination participated in the study. The following pairs of sequences with and without BLADE were compared: (a) Oblique coronal proton-density sequence with fat saturation of 25 patients and (b) oblique sagittal T2 TIRM-weighed sequence of 20 patients. Qualitative analysis was performed by two experienced radiologists. Image motion and pulsation artifacts were also evaluated. In oblique coronal PDFS BLADE sequences, motion artifacts have been significantly eliminated, even in five cases of non-diagnostic value with conventional imaging. Similarly, in oblique sagittal T2 TIRM BLADE sequences, image quality has been improved, even in six cases of non-diagnostic value with conventional imaging. Furthermore, flow artifacts have been improved in more than 80% of all the cases. The use of BLADE sequences is recommended in shoulder imaging, especially in uncooperative patients because it effectively eliminates motion and pulsation artifacts. (orig.)

  3. Particle physics contribution to the elimination of nuclear waste

    International Nuclear Information System (INIS)

    Revol, Jean-Pierre

    2001-01-01

    My introduction on fundamental research and innovation will explain how CERN, a laboratory which is a priori entirely dedicated to fundamental research, came to contribute to a major challenge of society: the energy problem. I will describe the motivation behind the original experimental effort carried out at CERN (FEAT and TARC experiments) and discuss some of the main elements of the energy problem. Progress in particle accelerator technology makes it possible nowadays to use a proton accelerator to produce energy and eliminate nuclear waste efficiently. The Energy Amplifier proposed by Carlo Rubbia and his group is a subcritical fast neutron system driven by a proton accelerator. It is particularly attractive as it could destroy, through fission, transuranic elements produced by present nuclear reactors. The Energy Amplifier could also efficiently transform long lived fission fragments at minimal cost using the concept of Adiabatic Resonance Crossing (ARC) recently tested at CERN with the TARC experiment. The ARC concept can be extended to several other domains of application (production of radioactive isotopes for medicine and industry, neutron research applications, etc.)

  4. Commissioning of output factors for uniform scanning proton beams

    International Nuclear Information System (INIS)

    Zheng Yuanshui; Ramirez, Eric; Mascia, Anthony; Ding Xiaoning; Okoth, Benny; Zeidan, Omar; Hsi Wen; Harris, Ben; Schreuder, Andries N.; Keole, Sameer

    2011-01-01

    Purpose: Current commercial treatment planning systems are not able to accurately predict output factors and calculate monitor units for proton fields. Patient-specific field output factors are thus determined by either measurements or empirical modeling based on commissioning data. The objective of this study is to commission output factors for uniform scanning beams utilized at the ProCure proton therapy centers. Methods: Using water phantoms and a plane parallel ionization chamber, the authors first measured output factors with a fixed 10 cm diameter aperture as a function of proton range and modulation width for clinically available proton beams with ranges between 4 and 31.5 cm and modulation widths between 2 and 15 cm. The authors then measured the output factor as a function of collimated field size at various calibration depths for proton beams of various ranges and modulation widths. The authors further examined the dependence of the output factor on the scanning area (i.e., uncollimated proton field), snout position, and phantom material. An empirical model was developed to calculate the output factor for patient-specific fields and the model-predicted output factors were compared to measurements. Results: The output factor increased with proton range and field size, and decreased with modulation width. The scanning area and snout position have a small but non-negligible effect on the output factors. The predicted output factors based on the empirical modeling agreed within 2% of measurements for all prostate treatment fields and within 3% for 98.5% of all treatment fields. Conclusions: Comprehensive measurements at a large subset of available beam conditions are needed to commission output factors for proton therapy beams. The empirical modeling agrees well with the measured output factor data. This investigation indicates that it is possible to accurately predict output factors and thus eliminate or reduce time-consuming patient-specific output

  5. Proton-proton bremsstrahlung

    International Nuclear Information System (INIS)

    Fearing, H.W.

    1990-01-01

    We summarize some of the information about the nucleon-nucleon force which has been obtained by comparing recent calculations of proton-proton bremsstrahlung with cross section and analyzing power data from the new TRIUMF bremsstrahlung experiment. Some comments are made as to how these results can be extended to neutron-proton bremsstrahlung. (Author) 17 refs., 6 figs

  6. Estimation of mutation rates induced by large doses of gamma, proton and neutron irradiation of the X-chromosome of the nematode Panagrellus redivivus

    International Nuclear Information System (INIS)

    Denich, K.T.R.; Samoiloff, M.R.

    1984-01-01

    The radiation-resistant free-living nematode Panagrellus redivivus was used to study mutation rates in oocytes, following gamma, proton and neutron irradiation in the dose range 45-225 grays. γ-Radiation produced approximately 0.001 lethal X-chromosomes per gray over the range tested. Proton or neutron irradiation produced approximately 0.003 lethal X-chromosomes per gray at lower doses, with the mutation rate dropping to 0.001 lethal X-chromosome per gray at the higher doses. These results suggest a dose-dependent mutation-repair system. Cell lethality was also examined. γ-Radiation produced the greatest amount of cell lethality at all doses, while neutron irradiation had no cell lethal effect at any of the doses examined. (orig.)

  7. Coherent Photoproduction of proton anti-proton pair on deiterium with CLAS

    Energy Technology Data Exchange (ETDEWEB)

    Ghandilyan, Yeranuhi Ghandilyan [Yerevan Physics Inst. (YerPhI) (Armenia); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-01-04

    In this project coherent production of proton anti-proton pairs on deuterium with a high energy bremsstrahlung photon beam is studied. The main objective is to study claims of several groups on existence of two meson states, masses ~2.02 GeV and ~2.2 GeV. Coherent production on deuterium has an advantage compared to the production on hydrogen. It will eliminate ambiguities in the production mechanism, since only t-channel production of (p$\\bar{p}$) is allowed.

    Data from the CLAS detector at Jefferson Lab (TJNAF) has been analyzed. The experiment run in 2004-2005 with tagged bremsstrahlung photon beam of up to 5.5 GeV and a 40 cm long liquid deuterium target. During the experiment the CLAS torus magnet polarity was set to bend negatively charged particles outwards from the beam line. During the run the main trigger was tagger hodoscopes in relevant energy region in coincidence with three prong event in CLAS. The reactions γd→p$\\bar{p}$-d, γd→π+π-d, and γd→K+K-d in fully exclusive final states has been analyzed, and the cross sections have been extracted.

  8. Twist-3 effect from the longitudinally polarized proton for ALT in hadron production from pp collisions

    Directory of Open Access Journals (Sweden)

    Yuji Koike

    2016-08-01

    Full Text Available We compute the contribution from the longitudinally polarized proton to the twist-3 double-spin asymmetry ALT in inclusive (light hadron production from proton–proton collisions, i.e., p↑p→→hX. We show that using the relevant QCD equation-of-motion relation and Lorentz invariance relation allows one to eliminate the twist-3 quark-gluon correlator (associated with the longitudinally polarized proton in favor of one-variable twist-3 quark distributions and the (twist-2 transversity parton density. Including this result with the twist-3 pieces associated with the transversely polarized proton and unpolarized final-state hadron (which have already been calculated in the literature, we now have the complete leading-order cross section for this process.

  9. WE-EF-303-10: Single- Detector Proton Radiography as a Portal Imaging Equivalent for Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Doolan, P [University College London Hospital, London (United Kingdom); Bentefour, E [Ion Beam Applications, Louvain-la-Neuve (Belgium); Testa, M; Cascio, E; Lu, H [Massachussetts General Hospital, Boston, MA (United States); Royle, G [University College London, London (United Kingdom); Gottschalk, B [Harvard University, Cambridge, MA (United States)

    2015-06-15

    Purpose: In proton therapy, patient alignment is of critical importance due to the sensitivity of the proton range to tissue heterogeneities. Traditionally proton radiography is used for verification of the water-equivalent path length (WEPL), which dictates the depth protons reach. In this work we propose its use for alignment. Additionally, many new proton centers have cone-beam computed tomography in place of beamline X-ray imaging and so proton radiography offers a unique patient alignment verification similar to portal imaging in photon therapy. Method: Proton radiographs of a CIRS head phantom were acquired using the Beam Imaging System (BIS) (IBA, Louvain-la-Neuve) in a horizontal beamline. A scattered beam was produced using a small, dedicated, range modulator (RM) wheel fabricated out of aluminum. The RM wheel was rotated slowly (20 sec/rev) using a stepper motor to compensate for the frame rate of the BIS (120 ms). Dose rate functions (DRFs) over two RM wheel rotations were acquired. Calibration was made with known thicknesses of homogeneous solid water. For each pixel the time width, skewness and kurtosis of the DRFs were computed. The time width was used to compute the object WEPL. In the heterogeneous phantom, the excess skewness and excess kurtosis (i.e. difference from homogeneous cases) were computed and assessed for suitability for patient set up. Results: The technique allowed for the simultaneous production of images that can be used for WEPL verification, showing few internal details, and excess skewness and kurtosis images that can be used for soft tissue alignment. These latter images highlight areas where range mixing has occurred, correlating with phantom heterogeneities. Conclusion: The excess skewness and kurtosis images contain details that are not visible in the WET images. These images, unique to the time-resolved proton radiographic method, could be used for patient set up according to soft tissues.

  10. Study on design of proton linacs

    International Nuclear Information System (INIS)

    Yu Qingchang

    2000-01-01

    Two important directions in the development of proton linacs are high-current proton linacs (mainly applied in nuclear power field) and compact proton linacs (for proton therapy). There are some common characteristics in them: (1) Employment of the novel accelerating structures, which are combination and evolution of the conventional ones; (2) Accelerating beam with small emittance; (3) Requirement for high reliability. The construction of the former is, however, much more difficult because it still needs low beam lose rate and as high power transformation efficiency as possible. Some important problems in the design of these accelerators are discussed and some schemes designed are presented

  11. Study of elastic ρ0 photoproduction at HERA using the ZEUS leading proton spectrometer

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magil, S.

    1996-08-01

    The differential cross section dσ/dt for elastic ρ 0 photoproduction, γp→ρ 0 p(ρ 0 →π + π - ), has been measured in ep interactions at HERA. The squared four-momentum exchanged at the proton vertex, t, has been determined directly by measuring the momentum of the scattered proton using the ZEUS leading proton spectrometer (LPS), a large scale system of silicon micro-strip detectors operating close to the HERA proton beam. The LPS allows the measurement of the momentum of high energy protons scattered at small angles with accuracies of 0.4% for the longitudinal momentum and 5 MeV for the transverse momentum. Photoproduction of ρ 0 mesons has been investigated in the interval 0.073 2 , for photon virtualities q 2 2 and photon-proton centre-of-mass energies between 50 and 100 GeV. In the measured range, the t distribution exhibits an exponential shape with a slope parameter b=9.8±0.8(stat.)±1.1(syst.) GeV -2 . The use of the LPS eliminates the contamination from events with diffractive dissociation of the proton into low mass states. (orig.)

  12. Application of PM-355 track detectors for investigation of the spatial structure of plasma-proton streams

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, K., E-mail: k.malinowski@ipj.gov.p [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Skladnik-Sadowska, E.; Sadowski, M.J.; Czaus, K. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland)

    2009-10-15

    The paper describes the use of PM-355 track detectors for studies of spatial structures and energies of pulsed plasma-proton streams generated by an RPI-IBIS accelerator, powered from a 30-kJ condenser bank. Measurements were performed for different operational modes depending on a delay between the gas injection and discharge initiation. To study a spatial structure of the plasma-proton streams we used an ion pinhole camera with PM-355 detectors, placed at the symmetry axis of the experimental chamber, at a distance of 22 cm from electrode ends. To record low-energy (not below 30 keV) protons we did not apply any filter. To select protons of higher energies we used additional absorption filters made of Al-foils of 0.75, 1.5 and 3.0 mum in thickness, which eliminated protons of energies below 125, 210 and 345 keV, respectively. The spatial structure of the proton beams was analyzed and their dependence on the initial gas conditions was investigated.

  13. Rates of proton transfer to Fe-S-based clusters: comparison of clusters containing {MFe(mu(2)-S)(2)}n+ and {MFe(3)(mu(3)-S)(4)}n+ (M = Fe, Mo, or W) cores.

    Science.gov (United States)

    Bates, Katie; Garrett, Brendan; Henderson, Richard A

    2007-12-24

    The rates of proton transfer from [pyrH]+ (pyr = pyrrolidine) to the binuclear complexes [Fe2S2Cl4]2- and [S2MS2FeCl2]2- (M = Mo or W) are reported. The reactions were studied using stopped-flow spectrophotometry, and the rate constants for proton transfer were determined from analysis of the kinetics of the substitution reactions of these clusters with the nucleophiles Br- or PhS- in the presence of [pyrH]+. In general, Br- is a poor nucleophile for these clusters, and proton transfer occurs before Br- binds, allowing direct measure of the rate of proton transfer from [pyrH]+ to the cluster. In contrast, PhS- is a better nucleophile, and a pathway in which PhS- binds preferentially to the cluster prior to proton transfer from [pyrH]+ usually operates. For the reaction of [Fe2S2Cl4]2- with PhS- in the presence of [pyrH]+ both pathways are observed. Comparison of the results presented in this paper with analogous studies reported earlier on cuboidal Fe-S-based clusters allows discussion of the factors which affect the rates of proton transfer in synthetic clusters including the nuclearity of the cluster core, the metal composition, and the nature of the terminal ligands. The possible relevance of these findings to the protonation sites of natural Fe-S-based clusters, including FeMo-cofactor from nitrogenase, are presented.

  14. SU-F-T-163: Improve Proton Therapy Efficiency: Report of a Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y [Procure Proton Therapy Center, Oklahoma City, OK (United States); Flanz, J [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Mah, D [Procure Treatment Center, Somerset, NJ (United States); Pankuch, M; Kreydick, B [Northwestern Medicine Proton Center, Warrenville, IL (United States); Beltran, C [Mayo Clinic, Rochester, MN (United States); Robison, B; Schreuder, A [Provision Healthcare Partners, Knoxville, TN (United States)

    2016-06-15

    Purpose: The technology of proton therapy, especially the pencil beam scanning technique, is evolving very quickly. However, the efficiency of proton therapy seems to lag behind conventional photon therapy. The purpose of the abstract is to report on the findings of a workshop on improvement of QA, planning and treatment efficiency in proton therapy. Methods: A panel of physicists, clinicians, and vendor representatives from over 18 institutions in the United States and internationally were convened in Knoxville, Tennessee in November, 2015. The panel discussed several topics on how to improve proton therapy efficiency, including 1) lean principle and failure mode and effects analysis, 2) commissioning and machine QA, 3) treatment planning, optimization and evaluation, 4) patient positioning and IGRT, 5) vendor liaison and machine availability, and 6) staffing, education and training. Results: The relative time needed for machine QA, treatment planning & check in proton therapy was found to range from 1 to 2.5 times of that in photon therapy. Current status in proton QA, planning and treatment was assessed. Key areas for efficiency improvement, such as elimination of unnecessary QA items or steps and development of efficient software or hardware tools, were identified. A white paper to summarize our findings is being written. Conclusion: It is critical to improve efficiency by developing reliable proton beam lines, efficient software tools on treatment planning, optimization and evaluation, and dedicated proton QA device. Conscious efforts and collaborations from both industry leaders and proton therapy centers are needed to achieve this goal and further advance the technology of proton therapy.

  15. Design of the WNR proton storage ring lattice

    International Nuclear Information System (INIS)

    Cooper, R.K.; Lawrence, G.P.

    1977-01-01

    The Weapons Neutron Research Facility, now approaching operational status, is a pulsed neutron time-of-flight facility utilizing bursts of 800 MeV protons from the LAMPF linac. The protons strike a heavy metal target and produce a broad energy spectrum of neutrons via spallation reactions. Ideally the width of the proton pulse should approach a delta function in order to achieve good neutron energy resolution. Practically, the shortest pulse that can be employed in the facility is that produced by a single LAMPF micropulse, which, at design current, contains approximately 5 x 10 8 protons. With the addition of a storage ring capable of accumulating many micropulses, this intensity can be increased, as can the repetition rate. Moreover, by storing an unbunched beam, a low repetition rate, very intense proton burst can be generated. This latter mode of usage allows neutron time-of-flight studies using large neutron targets, for which pulse lengths of the order of several hundred nanoseconds are suitable. The primary goals of the ring are reported: (i) to increase the intensity of the burst to 10 11 protons while retaining a short pulse length; (ii) to increase the repetition rate of the bursts by at least a factor of six; and (iii) to store as many particles as possible, uniformly distributed around the ring

  16. Deduction of the rates of radial diffusion of protons from the structure of the Earth's radiation belts

    Energy Technology Data Exchange (ETDEWEB)

    Kovtyukh, Alexander S. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics

    2016-07-01

    From the data on the fluxes and energy spectra of protons with an equatorial pitch angle of α{sub 0} ∼ 90 during quiet and slightly disturbed (Kp≤2) periods, I directly calculated the value D{sub LL}, which is a measure of the rate of radial transport (diffusion) of trapped particles. This is done by successively solving the systems (chains) of integrodifferential equations which describe the balance of radial transport/acceleration and ionization losses of low-energy protons of the stationary belt. This was done for the first time. For these calculations, I used data of International Sun-Earth Explorer 1 (ISEE-1) for protons with an energy of 24 to 2081 keV at L = 2-10 and data of Explorer-45 for protons with an energy of 78.6 to 872 keV at L = 2-5. Ionization losses of protons (Coulomb losses and charge exchange) were calculated on the basis of modern models of the plasmasphere and the exosphere. It is shown that for protons with μ from ∝0.7 to ∝7 keV nT{sup -1} at L ∼ 4.5-10, the functions of D{sub LL} can be approximated by the following equivalent expressions: D{sub LL} ∼ 4.9 x 10{sup -14}μ{sup -4.1}L{sup 8.2} or D{sub LL} ∼ 1.3 x 10{sup 5}(EL){sup -4.1} or D{sub LL} ∼ 1.2 x 10{sup -9}f{sub d}{sup -4.1}, where f{sub d} is the drift frequency of the protons (in mHz), D{sub LL} is measured in s{sup -1}, E is measured in kiloelectronvolt and μ is measured in kiloelectronvolt per nanotesla. These results are consistent with the radial diffusion of particles under the action of the electric field fluctuations (pulsations) in the range of Pc6 and contradict the mechanism of the radial diffusion of particles under the action of sudden impulses (SIs) of the magnetic field and also under the action of substorm impulses of the electric field. During magnetic storms D{sub LL} increases, and the expressions for D{sub LL} obtained here can change completely.

  17. Elimination of the 12 C and 16 O in the elastic scattering of 14 C by polarized protons

    International Nuclear Information System (INIS)

    Avila A, O.L.; Ramirez T, J.J.; Murillo O, G.; Fernandez B, M.

    1991-04-01

    The study of the elastic scattering of 14 C for polarized protons it provides information on the nuclear structure of 15 N. In the Tandem accelerator of the Nuclear Center in collaboration with the University of Notre Dame is carrying out this study to energy between 5.0 and 9.0 MeV in steps of 10 keV. The measures of differential section and vectorial analyzer power are subjected to shift analysis of phase being able to determine the parameters of the excited levels of 15 N that are it angular momentum, parity, level width and elastic width. The details of this experiment are presented in the ACEL-9102 technical report while in this work it was discussed the way in that contributions of 12 C and 16 O are eliminated that are present as impurities in our target of 14 C. At small angles the elastic components of these impurities are shoveled with the elastic of 14 C. In the experiment carried out in the Nuclear Center were take measures of differential section for 6 angles; 35, 45, 55, 65, 145 and 165 using surface barrier detectors. It is observed that it exists shovels at 35, 45, 55 and 65 while at 145 and 165 the 12 C, the 14 C and the 16 O are totally separate. With the purpose of being able to subtract of the elastic of 14 C the proportion of 12 C, it was decided to bombard a target of 12 C leaving the same geometry that had been used to bombard 14 C. With this also carried out the reaction 12 C (p,p) 12 C between 5.0 and 9.0 MeV in steps of 50 keV. Starting from these spectra are the integration (yield) of the elastic of 12 C. (Author)

  18. The low cost Proton Precession Magnetometer developed at the Indian Institute of Geomagnetism

    International Nuclear Information System (INIS)

    Mahavarkar, P.; Singh, S.; Labde, S.; Dongre, V.; Patil, A.

    2017-01-01

    Proton magnetometers are the oldest scalar magnetometers. The first commercial units were produced in early 1960s as portable instruments. In continuation airborne instruments appeared with optimized speed of readings and sensitivity, large sensors etc. Later development of Overhauser and optically pumped magnetometers has eliminated Proton magnetometers from airborne surveys. However they remain very popular in various ground surveys and observatories. With this primary purpose of generating the ground based magnetic data, the Indian Institute of Geomagnetism (IIG) for the last 3 decades have been developing low cost Proton Precession Magnetometers (PPM). Beginning with the 1 nT PPM which has undergone several changes in design, the successor PM7 the advanced version has been successfully developed by the institute and is installed at various observatories of the institute. PM7 records the total field 'F' with accuracy of 0.1 nT and a sampling rate of 10 seconds/sample. This article briefly discusses the design and development of this IIG make PM7 and compares the data recorded by this instrument with one of the commercially available Overhauser magnetometer in the world market. The quality of data recorded by PM7 is in excellent agreement with the Overhauser. With the available quality of data generated by this instrument, PM7 is an affordable PPM for scientific institutions, schools and colleges intending to carry out geomagnetic studies. The commercial cost of PM7 is ≈ 20% of the cost of Overhauser available in market.

  19. The low cost Proton Precession Magnetometer developed at the Indian Institute of Geomagnetism

    Science.gov (United States)

    Mahavarkar, P.; Singh, S.; Labde, S.; Dongre, V.; Patil, A.

    2017-05-01

    Proton magnetometers are the oldest scalar magnetometers. The first commercial units were produced in early 1960s as portable instruments. In continuation airborne instruments appeared with optimized speed of readings and sensitivity, large sensors etc. Later development of Overhauser and optically pumped magnetometers has eliminated Proton magnetometers from airborne surveys. However they remain very popular in various ground surveys and observatories. With this primary purpose of generating the ground based magnetic data, the Indian Institute of Geomagnetism (IIG) for the last 3 decades have been developing low cost Proton Precession Magnetometers (PPM). Beginning with the 1 nT PPM which has undergone several changes in design, the successor PM7 the advanced version has been successfully developed by the institute and is installed at various observatories of the institute. PM7 records the total field `F' with accuracy of 0.1 nT and a sampling rate of 10 seconds/sample. This article briefly discusses the design and development of this IIG make PM7 and compares the data recorded by this instrument with one of the commercially available Overhauser magnetometer in the world market. The quality of data recorded by PM7 is in excellent agreement with the Overhauser. With the available quality of data generated by this instrument, PM7 is an affordable PPM for scientific institutions, schools and colleges intending to carry out geomagnetic studies. The commercial cost of PM7 is ≈ 20% of the cost of Overhauser available in market.

  20. Luminosity-Independent Measurement of the Proton-Proton Total Cross Section at $\\sqrt{s}$ = 8 TeV

    CERN Document Server

    Antchev, G; Atanassov, I; Avati, V; Baechler, J.; Berardi, V; Berretti, M; Bossini, E; Bozzo, M; Bottigli, U; Brucken, E; Buzzo, A; Cafagna, F S; Calicchio, M; Catanesi, M G; Covault, C; Csanad, M; Csorgo, T; Deile, M; Doubek, M; Eggert, K; Eremin, V; Ferretti, R; Ferro, F; Fiergolski, A; Garcia, F; Giani, S; Greco, V; Grzanka, L; Heino, J; Hilden, T; Intonti, R A; Kavspar, J; Kopal, J; Kundrat, V; Kurvinen, K; Lami, S; Latino, G; Lauhakangas, R; Leszko, T; Lippmaa, E; Lokajivcek, M; Lo Vetere, M; Lucas-Rodriguez, F; Macri, M.; Maki, T; Mercadante, A; Minafra, N; Minutoli, S; Nemes, F; Niewiadomski, H; Oliveri, E; Oljemark, F; Orava, R; Oriunno, M; Osterberg, K; Palazzi, P; Prochazka, J; Quinto, M; Radermacher, E; Radicioni, E; Ravotti, F; Robutti, E; Ropelewski, L; Ruggiero, G; Saarikko, H; Santroni, A; Scribano, A; Smajek, J; Snoeys, W; Sziklai, J; Taylor, C; Turini, N; Vacek, V; Vitek, M; Welti, J; Whitmore, J; Wyszkowski, P

    2013-01-01

    TOTEM has measured the proton-proton total cross-section at $\\sqrt{s}$ = 8 TeV using a luminosity independent method. In LHC fills with dedicated beam optics, the Roman Pots have been inserted very close to the beam allowing the detection of 90% of the nuclear elastic scattering events. Simultaneously the inelastic scattering rate has been measured by the T1 and T2 Telescopes. By applying the optical theorem, the total proton-proton cross-section of (101.7 $\\pm$ 2.9)mb is determined, well in agreement with the extrapolation from lower energies. This method allows also to derive the luminosity-independent elastic and inelastic cross-sections: $\\sigma_{el}$ = (27.1 $\\pm$ 1.4)mb; $\\sigma_{inel}$ = (74.7 $\\pm$ 1.7)mb.

  1. Energy related germination and survival rates of water-imbibed Arabidopsis seeds irradiated with protons

    International Nuclear Information System (INIS)

    Qin, H.L.; Xue, J.M.; Lai, J.N.; Wang, J.Y.; Zhang, W.M.; Miao, Q.; Yan, S.; Zhao, W.J.; He, F.; Gu, H.Y.; Wang, Y.G.

    2006-01-01

    In order to investigate the influence of ion energy on the germination and survival rates, water-imbibed Arabidopsis seeds were irradiated with protons in atmosphere. The ion fluence used in this experiment was in the range of 4 x 10 9 -1 x 10 14 ions/cm 2 . The ion energy is from 1.1 MeV to 6.5 MeV. According to the structure of the seed and TRIM simulation, the ions with the energy of 6.5 MeV can irradiate the shoot apical meristem directly whereas the ions with the energy of 1.1 MeV cannot. The results showed that both the germination and survival rates decrease while increasing the ion fluence, and the fluence-respond curve for each energy has different character. Besides the shoot apical meristem (SAM), which is generally considered as the main radiobiological target, the existence of a secondary target around SAM is proposed in this paper

  2. Energy related germination and survival rates of water-imbibed Arabidopsis seeds irradiated with protons

    Energy Technology Data Exchange (ETDEWEB)

    Qin, H.L. [Key Laboratory of Heavy Ion Physics, MOE, Peking University, Beijing 100871 (China); Xue, J.M. [Key Laboratory of Heavy Ion Physics, MOE, Peking University, Beijing 100871 (China); Lai, J.N. [Key Laboratory of Heavy Ion Physics, MOE, Peking University, Beijing 100871 (China); Wang, J.Y. [Key Laboratory of Heavy Ion Physics, MOE, Peking University, Beijing 100871 (China); Zhang, W.M. [Key Laboratory of Heavy Ion Physics, MOE, Peking University, Beijing 100871 (China); Miao, Q. [Key Laboratory of Heavy Ion Physics, MOE, Peking University, Beijing 100871 (China); Yan, S. [Key Laboratory of Heavy Ion Physics, MOE, Peking University, Beijing 100871 (China); Zhao, W.J. [Key Laboratory of Heavy Ion Physics, MOE, Peking University, Beijing 100871 (China); He, F. [School of Life Science, Peking University, Beijing 100871 (China); Gu, H.Y. [School of Life Science, Peking University, Beijing 100871 (China); Wang, Y.G. [Key Laboratory of Heavy Ion Physics, MOE, Peking University, Beijing 100871 (China)]. E-mail: ygwang@pku.edu.cn

    2006-04-15

    In order to investigate the influence of ion energy on the germination and survival rates, water-imbibed Arabidopsis seeds were irradiated with protons in atmosphere. The ion fluence used in this experiment was in the range of 4 x 10{sup 9}-1 x 10{sup 14} ions/cm{sup 2}. The ion energy is from 1.1 MeV to 6.5 MeV. According to the structure of the seed and TRIM simulation, the ions with the energy of 6.5 MeV can irradiate the shoot apical meristem directly whereas the ions with the energy of 1.1 MeV cannot. The results showed that both the germination and survival rates decrease while increasing the ion fluence, and the fluence-respond curve for each energy has different character. Besides the shoot apical meristem (SAM), which is generally considered as the main radiobiological target, the existence of a secondary target around SAM is proposed in this paper.

  3. Kinetics of proton transport in water

    DEFF Research Database (Denmark)

    Kornyshev, A.A.; Kuznetsov, A.M.; Spohr, E.

    2003-01-01

    for rationalizing the excess proton mobility, based on computer simulations, theory of proton transfer (PT) in condensed media, and analysis of classical proton conductivity experiments over broad temperature ranges. The mechanistic options involved are (i) classical hydrodynamic motion of the hydronium ion (H3O...... are brought into the framework of quantum mechanical PT theory in condensed media. Both the nature of the elementary act and the reaction coordinates are, however, different for the two types of PT clusters. The corresponding rate constants are calculated and compared with MD simulations. Within the framework...

  4. A critical study of emittance measurements of intense low-energy proton beams

    CERN Document Server

    Evans, Lyndon R

    1972-01-01

    The measurement of emittance in low energy proton beams suffers from two perturbing effects: 1) the neutralisation of the beam by backstreaming secondary electrons and 2) the space charge blowup of the beam sample between defining and analysing apparatus. An experimental study shows a significant change of the emittance orientation when bias is used to eliminate the secondary electrons. Biased and non-biased cases are also compared with computed dynamics including space charge. Criteria for the slit size and drift distance which make the space charge blow-up negligible are derived. In addition a transverse coherent oscillation of the proton beam, which was revealed the measurements, is discussed briefly. (11 refs).

  5. Kinetics of proton transport into influenza virions by the viral M2 channel.

    Directory of Open Access Journals (Sweden)

    Tijana Ivanovic

    Full Text Available M2 protein of influenza A viruses is a tetrameric transmembrane proton channel, which has essential functions both early and late in the virus infectious cycle. Previous studies of proton transport by M2 have been limited to measurements outside the context of the virus particle. We have developed an in vitro fluorescence-based assay to monitor internal acidification of individual virions triggered to undergo membrane fusion. We show that rimantadine, an inhibitor of M2 proton conductance, blocks the acidification-dependent dissipation of fluorescence from a pH-sensitive virus-content probe. Fusion-pore formation usually follows internal acidification but does not require it. The rate of internal virion acidification increases with external proton concentration and saturates with a pK(m of ∼4.7. The rate of proton transport through a single, fully protonated M2 channel is approximately 100 to 400 protons per second. The saturating proton-concentration dependence and the low rate of internal virion acidification derived from authentic virions support a transporter model for the mechanism of proton transfer.

  6. The effects of fasting and cold exposure on metabolic rate and mitochondrial proton leak in liver and skeletal muscle of an amphibian, the cane toad Bufo marinus.

    Science.gov (United States)

    Trzcionka, M; Withers, K W; Klingenspor, M; Jastroch, M

    2008-06-01

    Futile cycling of protons across the mitochondrial inner membrane contributes significantly to standard metabolic rate in a variety of ectothermic and endothermic animals, but adaptations of the mitochondrial bioenergetics to different environmental conditions have rarely been studied in ectotherms. Changes in ambient temperature and nutritional status have a great effect on the physiological demands of ectothermic amphibians and may require the adjustment of mitochondrial efficiency. In order to investigate the effect of temperature and nutritional status on the mitochondrial level, we exposed male cane toads to either 10 degrees C or 30 degrees C and fasted half of the animals in each group. Cold exposure resulted in a fourfold reduction of the resting metabolic rate whereas nutritional status had only minor effects. The mitochondrial adjustments to each condition were observed by comparing the proton leak kinetics of isolated liver and skeletal muscle mitochondria at 25 degrees C. In response to cold exposure, liver mitochondria showed a decrease in proton conductance while skeletal muscle mitochondria were unchanged. Additional food deprivation had minor effects in skeletal muscle, but in liver we uncovered surprising differences in energy saving mechanisms between the acclimation temperatures: in warm-acclimated toads, fasting resulted in a decrease of the proton conductance whereas in cold-acclimated toads, the activity of the respiratory chain was reduced. To investigate the molecular mechanism underlying mitochondrial proton leakage, we determined the adenine-nucleotide transporter (ANT) content, which explained tissue-specific differences in the basal proton leak, but neither the ANT nor uncoupling protein (UCP) gene expression correlated with alterations of the proton leak in response to physiological stimuli.

  7. Quantitative chemical exchange saturation transfer (qCEST) MRI - omega plot analysis of RF-spillover-corrected inverse CEST ratio asymmetry for simultaneous determination of labile proton ratio and exchange rate.

    Science.gov (United States)

    Wu, Renhua; Xiao, Gang; Zhou, Iris Yuwen; Ran, Chongzhao; Sun, Phillip Zhe

    2015-03-01

    Chemical exchange saturation transfer (CEST) MRI is sensitive to labile proton concentration and exchange rate, thus allowing measurement of dilute CEST agent and microenvironmental properties. However, CEST measurement depends not only on the CEST agent properties but also on the experimental conditions. Quantitative CEST (qCEST) analysis has been proposed to address the limitation of the commonly used simplistic CEST-weighted calculation. Recent research has shown that the concomitant direct RF saturation (spillover) effect can be corrected using an inverse CEST ratio calculation. We postulated that a simplified qCEST analysis is feasible with omega plot analysis of the inverse CEST asymmetry calculation. Specifically, simulations showed that the numerically derived labile proton ratio and exchange rate were in good agreement with input values. In addition, the qCEST analysis was confirmed experimentally in a phantom with concurrent variation in CEST agent concentration and pH. Also, we demonstrated that the derived labile proton ratio increased linearly with creatine concentration (P analysis can simultaneously determine labile proton ratio and exchange rate in a relatively complex in vitro CEST system. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Stoichiometric relationship between energy-dependent proton ejection and electron transport in mitochondria.

    Science.gov (United States)

    Brand, M D; Reynafarje, B; Lehninger, A L

    1976-01-01

    The number of protons ejected during electron transport per pair of electrons per energy-conserving site (the H+/site ratio) was measured in rat liver mitochondria by three different methods under conditions in which transmembrane movements of endogenous phosphate were minized or eliminated. (1) In the Ca2+ pulse method, between 3.5 and 4.0 molecules of 3-hydroxybutyrate and 1.75 to 2.0 Ca2+ ions were accumulated per 2 e- per site during Ca2+ induced electron transport in the presence of rotenone, when measured under conditions in which movements of endogenous phosphate were negligible. Since entry of 3-hydroxybutyrate requires its protonation to the free acid these data correspond to an H+/site ratio of 3.5-4.0 (2) In the oxygen pulse method addition of known amounts of oxygen to anaerobic mitochondria in the presence of substrate yielded H+/site ratios of 3.0 when phosphate transport was eliminated by addition of N-ethylmaleimide or by anaerobic washing to remove endogenous phosphate. In the absence of such measures the observed H+/site ratio was 2.0. (3) In the reductant pulse method measurement of the initial steady rates of H+ ejection and oxygen consumption by mitochondria in an aerobic medium after addition of substrate gave H+/site near 4.0 in the presence of N-ethylmaleimide; in the absence of the inhibitor the observed ratio was only 2.0. These and other experiments reported indicate that the values of 2.0 earlier obtained for the H+/site ratio by Mitchell and Moyle [Biochem J. (1967) 105, 1147-1162] and others were underestimates due to the unrecognized masking of H+ ejection by movements of endogenous phosphate. The results presented here show that the H+/site ratio of mitochondrial electron transport is at least 3.0 and may be as high as 4.0. PMID:1061146

  9. TOWARDS THE ELIMINATION OF PREVENTABLE DISEASES

    Directory of Open Access Journals (Sweden)

    O. V. Shamsheva

    2013-01-01

    Full Text Available The article presents incidence rates of major vaccine-preventable diseases in the world and the Russian Federation and cites mitigation measures that, in the end, must lead to the elimination of the diseases. 

  10. Elimination of copper in tissues and organs of rainbow trout

    Directory of Open Access Journals (Sweden)

    Gaye Dogan

    2011-01-01

    Full Text Available Copper (Cu elimination was investigated in the tissue and organs of rainbow trout (Oncorhynchus mykiss, Walbaum, 1792, after Cu-free diets exposure. In the current study, fish were fed to satiation on diets containing 0.022 (Group 1; Control, 0.043 (Group 2, 0.123 (Group 3, 0.424 (Group 4 g Cu*kg-1 diet for 60 days before elimination experiment. A total of 288 fish (mean weight 84.28±1.05 g were randomly transferred to 12 fibreglass tanks. The fish were fed the Cu-free diet twice daily, until apparent satiation, during 60 days. Subsequently, the experiment was established for a period of elimination, during which samples were taken at days 15, 30, 45 and 60. Cu concentration in the muscle, gill tissue, digestive system, liver and whole body of fish were determined after 60 days depuration. Cu concentrations in tissues of rainbow trout decreased during depuration period, and the order of Cu elimination in tissue and organs of rainbow trout was: digestive system (73.1 %, then gill (41.1 %, muscle (31.5 % and liver (17.2 % for group 2; digestive system (74.1%, then muscle (65.8%, gill (60.0% and liver (34.6% for group 3; and digestive system (85.8%, then muscle (80.8%, liver (50.5% and less/equal in gill (50.2% for group 4. In statistical analysis, both groups and time were significant factors (P less than 0.05 on elimination rate. Moreover, significant interaction between groups and time were identified on elimination rate. Digestive system showed the fastest elimination rates of Cu at all groups compared with other tissues.

  11. Measurement of the Relaxation Rate of the Magnetization in Mn{sub 12}O{sub 12} -Acetate Using Proton NMR Echo

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Z. H. [Department of Physics and Astronomy, Ames Laboratory, Iowa State University, Ames, Iowa 50011 (United States); Lascialfari, A. [Dipartimento di Fisica ' ' A. Volta' ' e Unita' , INFM di Pavia, Via Bassi 6, 27100 Pavia, (Italy); Borsa, F. [Department of Physics and Astronomy, Ames Laboratory, Iowa State University, Ames, Iowa 50011 (United States); Dipartimento di Fisica ' ' A. Volta' ' e Unita' , INFM di Pavia, Via Bassi 6, 27100 Pavia, (Italy); Gatteschi, D. [Department of Chemistry, University of Florence, Via Maragliano 77, 50144 Firenze, (Italy)

    2000-03-27

    We present a novel method to measure the relaxation rate W of the magnetization of Mn{sub 12}O {sub 12} -acetate (Mn12) magnetic molecular cluster in its S=10 ground state at low T . It is based on the observation of an exponential growth in time of the proton NMR signal during the thermal equilibration of the magnetization of the molecules. We can explain the novel effect with a simple model which relates the intensity of the proton echo signal to the microscopic reversal of the magnetization of each individual Mn12 molecule during the equilibration process. The method should find wide application in the study of magnetic molecular clusters in off-equilibrium conditions. (c) 2000 The American Physical Society.

  12. Effects of trapped proton flux anisotropy on dose rates in low Earth orbit

    International Nuclear Information System (INIS)

    Badhwar, G.D.; Kushin, V.V.; Akatov, Yu A.; Myltseva, V.A.

    1999-01-01

    Trapped protons in the South Atlantic Anomaly (SAA) have a rather narrow pitch angle distribution and exhibit east-west anisotropy. In low Earth orbits, the E-W effect results in different amounts of radiation dose received by different sections of the spacecraft. This effect is best studied on missions in which the spacecraft flies in a fixed orientation. The magnitude of the effect depends on the particle energy and altitude through the SAA. In this paper, we describe a clear example of this effect from measurements of radiation dose rates and linear energy transfer spectra made on Space Shuttle flight STS-94 (28.5 deg. inclination x 296 km altitude). The ratio of dose rates from the two directions at this location in the mid-deck was 2.7. As expected from model calculations, the spectra from the two directions are different, that is the ratio is energy dependent. The data can be used to distinguish the anisotropy models. The flight carried an active tissue equivalent proportional counter (TEPC), and passive thermoluminscent detectors (TLDs), and two types of nuclear emulsions. Using nuclear emulsions, charged particles and secondary neutron energy spectra were measured. The combined galactic cosmic radiation+trapped charged particle lineal energy spectra measured by the TEPC and the linear energy transfer spectrum measured by nuclear emulsions are in good agreement. The charged particle absorbed dose rates varied from 112 to 175 μGy/day, and dose equivalent rates from 264.3 to 413 μSv/day. Neutrons in the 1-10 MeV contributed a dose rate of 3.7 μGy/day and dose equivalent rate of 30.8 μSv/day, respectively

  13. Effects of trapped proton flux anisotropy on dose rates in low Earth orbit.

    Science.gov (United States)

    Badhwar, G D; Kushin, V V; Akatov YuA; Myltseva, V A

    1999-06-01

    Trapped protons in the South Atlantic Anomaly (SAA) have a rather narrow pitch angle distribution and exhibit east-west anisotropy. In low Earth orbits, the E-W effect results in different amounts of radiation dose received by different sections of the spacecraft. This effect is best studied on missions in which the spacecraft flies in a fixed orientation. The magnitude of the effect depends on the particle energy and altitude through the SAA. In this paper, we describe a clear example of this effect from measurements of radiation dose rates and linear energy transfer spectra made on Space Shuttle flight STS-94 (28.5 degree inclination x 296 km altitude). The ratio of dose rates from the two directions at this location in the mid-deck was 2.7. As expected from model calculations, the spectra from the two directions are different, that is the ratio is energy dependent. The data can be used to distinguish the anisotropy models. The flight carried an active tissue equivalent proportional counter (TEPC), and passive thermoluminscent detectors (TLDs), and two types of nuclear emulsions. Using nuclear emulsions, charged particles and secondary neutron energy spectra were measured. The combined galactic cosmic radiation+trapped charged particle lineal energy spectra measured by the TEPC and the linear energy transfer spectrum measured by nuclear emulsions are in good agreement. The charged particle absorbed dose rates varied from 112 to 175 microGy/day, and dose equivalent rates from 264.3 to 413 microSv/day. Neutrons in the 1-10 MeV contributed a dose rate of 3.7 microGy/day and dose equivalent rate of 30.8 microSv/day, respectively.

  14. Treatment planning with protons for pediatric retinoblastoma, medulloblastoma, and pelvic sarcoma: How do protons compare with other conformal techniques?

    International Nuclear Information System (INIS)

    Lee, Catherine T.; Bilton, Stephen D.; Famiglietti, Robin M.; Riley, Beverly A.; Mahajan, Anita; Chang, Eric L.; Maor, Moshe H.; Woo, Shiao Y.; Cox, James D.; Smith, Alfred R.

    2005-01-01

    , 21% was the mean hypothalamus-pituitary volume irradiated for protons, 81% for IMRT, 91% for 3D-CRT); additional dose reductions to the optic chiasm, eyes, vertebrae, mandible, thyroid, lung, kidneys, heart, and liver were seen. Intensity-modulated radiotherapy appeared to be the second best technique for posterior fossa irradiation. For spinal irradiation 3D-CRT electrons were better than 3D-CRT photons in sparing dose to the thyroid, heart, lung, kidney, and liver. With pelvic sarcoma, protons were superior in eliminating any dose to the ovaries (0% of mean ovarian volume was irradiated at ≥2 Gy with protons) and to some extent, the pelvic bones and vertebrae. Intensity-modulated radiotherapy did show more bladder dose reduction than the other techniques in pelvic sarcoma irradiation. Conclusions: In the diseases studied, using various techniques of 3D-CRT, electrons, IMRT, and protons, protons are most optimal in treating retinoblastomas, medulloblastomas (posterior fossa and craniospinal), and pelvic sarcomas. Protons delivered superior target dose coverage and sparing of normal structures. As dose-volume parameters are expected to correlate with acute and late toxicity, proton therapy should receive serious consideration as the preferred technique for the treatment of pediatric tumors

  15. On the model-dependence of the relation between minimum-bias and inelastic proton-proton cross sections

    International Nuclear Information System (INIS)

    Ostapchenko, S.

    2011-01-01

    The model-dependence of the relation between the inelastic and various minimum-bias proton-proton cross sections is analyzed, paying a special attention to the sensitivity of minimum-bias triggers to diffractive collisions. Concentrating on the trigger selections of the ATLAS experiment, the measured cross sections are compared to predictions of a number of hadronic Monte Carlo models used in the cosmic ray field. It is demonstrated that the ATLAS results are able to discriminate between different models and between certain theoretical approaches for soft multi-particle production. On the other hand, the strong model-dependence of the selection efficiency of the minimum-bias triggers prevents one from inferring high mass diffraction rate from the discussed data. Moreover, the measured cross sections prove to be insensitive to the production of low mass diffractive states in proton-proton collisions. Consequently, a reliable determination of the total inelastic cross section requires forward proton tracking by a dedicated experiment.

  16. Elimination of onchocerciasis from Colombia: first proof of concept of river blindness elimination in the world.

    Science.gov (United States)

    Nicholls, Rubén Santiago; Duque, Sofía; Olaya, Luz Adriana; López, Myriam Consuelo; Sánchez, Sol Beatriz; Morales, Alba Lucía; Palma, Gloria Inés

    2018-04-11

    Onchocerciasis is a chronic parasitic infection originally endemic in 13 discrete regional foci distributed among six countries of Latin America (Brazil, Colombia, Ecuador, Guatemala, Mexico and Venezuela). In Colombia, this disease was discovered in 1965 in the Pacific Coast of the country. The National Onchocerciasis Elimination Program was established in 1993 with the aim of eliminating disease morbidity and infection transmission. In 2013, the World Health Organization (WHO) verified Colombia as free of onchocerciasis, becoming the first country in the world to reach such a goal. This report provides the empirical evidence of the elimination of Onchocerca volvulus transmission by Simulium exiguum (s.l.) after 12 years of 6-monthly mass drug administration of Mectizan® (ivermectin) to all the eligible residents living in this endemic area. From 1996 onwards, a biannual community-based mass ivermectin administration programme was implemented, complemented by health education and community participation. In-depth parasitological, serological and entomological surveys were conducted periodically between 1998 and 2007 to evaluate the impact of ivermectin treatment according to the 2001 WHO guidelines. When the interruption of parasite transmission was demonstrated, the drug distribution ceased and a three-year post-treatment surveillance (PTS) period (2008-2010) was initiated. After 23 rounds of treatment, parasitological and ophthalmological assessments showed absence of microfilariae in skin and anterior chamber of the eyes. Serological tests proved lack of antibodies against O. volvulus in children under 10 years-old. A total of 10,500 S. exiguum flies tested by PCR had no L3 infection (infectivity rate = 0.0095%; 95% CI: 0.0029-0.049) during 2004, indicating interruption of parasite transmission. However, biannual ivermectin treatments continued until 2007 followed by a 3-year PTS period at the end of which 13,481 flies were analyzed and no infective flies were

  17. Research on anisotropy of fusion-produced protons and neutrons emission from high-current plasma-focus discharges

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, K., E-mail: karol.malinowski@ncbj.gov.pl; Sadowski, M. J.; Szydlowski, A. [National Centre for Nuclear Research (NCBJ), 05-400 Otwock (Poland); Institute of Plasma Physics and Laser Microfusion (IFPiLM), 01-497 Warsaw (Poland); Skladnik-Sadowska, E.; Czaus, K.; Kwiatkowski, R.; Zaloga, D. [National Centre for Nuclear Research (NCBJ), 05-400 Otwock (Poland); Paduch, M.; Zielinska, E. [Institute of Plasma Physics and Laser Microfusion (IFPiLM), 01-497 Warsaw (Poland)

    2015-01-15

    The paper concerns fast protons and neutrons from D-D fusion reactions in a Plasma-Focus-1000U facility. Measurements were performed with nuclear-track detectors arranged in “sandwiches” of an Al-foil and two PM-355 detectors separated by a polyethylene-plate. The Al-foil eliminated all primary deuterons, but was penetrable for fast fusion protons. The foil and first PM-355 detector were penetrable for fast neutrons, which were converted into recoil-protons in the polyethylene and recorded in the second PM-355 detector. The “sandwiches” were irradiated by discharges of comparable neutron-yields. Analyses of etched tracks and computer simulations of the fusion-products behavior in the detectors were performed.

  18. Batch desorption studies and multiple sorption-regeneration cycles in a fixed-bed column for Cd(II) elimination by protonated Sargassum muticum

    International Nuclear Information System (INIS)

    Lodeiro, P.; Herrero, R.; Sastre de Vicente, M.E.

    2006-01-01

    The protonated alga Sargassum muticum was employed in batch desorption studies to find the most appropriate eluting agent for Cd(II)-laden biomass regeneration. Eleven types of eluting solutions at different concentrations were tested, finding elution efficiencies higher than 90% for most of the desorbents studied. Total organic carbon and biomass weight loss measurements were made. The reusability of the protonated alga was also studied using a fixed-bed column. Eleven consecutive sorption-regeneration cycles at a flow rate of 10 mL min -1 were carried out for the removal of 50 mg L -1 Cd(II) solution. A 0.1 M HNO 3 solution was employed as desorbing agent. The column was operated during 605 h for sorption and 66 h for desorption, equivalent to a continuous use during 28 days, with no apparent loss of sorption performance. In these cycles, no diminution of the breakthrough time was found; although, a relative loss of sorption capacity, regarding the found in the first cycle, was observed. The slope of the breakthrough curves experiments a gradual increase reaching its maximum value for the last cycle tested (40% greater than for the first one). The maximum Cd(II) concentration elution peak was achieved in 5 min or less, and the metal effluent concentration was always lower than 0.9 mg L -1 after 1 h of elution. The maximum concentration factor was determined to be between 55 and 109

  19. Toward elimination of discrepancies between theory and experiment: The rate constant of the atmospheric conversion of SO3 to H2SO4

    Science.gov (United States)

    Loerting, Thomas; Liedl, Klaus R.

    2000-01-01

    The hydration rate constant of sulfur trioxide to sulfuric acid is shown to depend sensitively on water vapor pressure. In the 1:1 SO3-H2O complex, the rate is predicted to be slower by about 25 orders of magnitude compared with laboratory results [Lovejoy, E. R., Hanson, D. R. & Huey, L. G. (1996) J. Phys. Chem. 100, 19911–19916; Jayne, J. T., Pöschl, U., Chen, Y.-m., Dai, D., Molina, L. T., Worsnop, D. R., Kolb, C. E. & Molina, M. J. (1997) J. Phys. Chem. A 101, 10000–10011]. This discrepancy is removed mostly by allowing a second and third water molecule to participate. An asynchronous water-mediated double proton transfer concerted with the nucleophilic attack and a double proton transfer accompanied by a transient H3O+ rotation are predicted to be the fastest reaction mechanisms. Comparison of the predicted negative apparent “activation” energies with the experimental finding indicates that in our atmosphere, different reaction paths involving two and three water molecules are taken in the process of forming sulfate aerosols and consequently acid rain. PMID:10922048

  20. In situ measured elimination of Vibrio cholerae from brackish water.

    Science.gov (United States)

    Pérez, María Elena Martínez; Macek, Miroslav; Galván, María Teresa Castro

    2004-01-01

    In situ elimination of fluorescently labelled Vibrio cholerae (FLB) was measured in two saline water bodies in Mexico: in a brackish water lagoon, Mecoacán (Gulf of Mexico; State of Tabasco) and an athalassohaline lake, Alchichica (State of Puebla). Disappearance rates of fluorescently labelled V. cholera O1 showed that they were eliminated from the environment at an average rate of 32% and 63%/day, respectively (based on the bacterial standing stocks). The indirect immunofluorescence method confirmed the presence of V. cholerae O1 in the lagoon. However, the elimination of FLB was not directly related either to the presence or absence of the bacterium in the water body or to the phytoplankton concentration.

  1. Novel MC/BZY Proton Conductor: Materials Development, Device Evaluation, and Theoretical Exploration using CI and DFT Methods

    Science.gov (United States)

    2017-09-05

    the protons produced by surface defect reactions were transferred to the neighboring carbonate-ions ( CO3 2-) at the BZY/MC interface to form HCO3...static DFT study of the proton transfer in the crystal structure of lithium carbonate 33. The calculated energy barrier was 0.34 eV along the...However, the value is only 20.5 kcal/mol in Ref. 33, which was calculated based on a single molecule of HCO3 -. To eliminate possible uncertainty in the

  2. Influence of Proton Acceptors on the Proton-Coupled Electron Transfer Reaction Kinetics of a Ruthenium-Tyrosine Complex.

    Science.gov (United States)

    Lennox, J Christian; Dempsey, Jillian L

    2017-11-22

    A polypyridyl ruthenium complex with fluorinated bipyridine ligands and a covalently bound tyrosine moiety was synthesized, and its photo-induced proton-coupled electron transfer (PCET) reactivity in acetonitrile was investigated with transient absorption spectroscopy. Using flash-quench methodology with methyl viologen as an oxidative quencher, a Ru 3+ species is generated that is capable of initiating the intramolecular PCET oxidation of the tyrosine moiety. Using a series of substituted pyridine bases, the reaction kinetics were found to vary as a function of proton acceptor concentration and identity, with no significant H/D kinetic isotope effect. Through analysis of the kinetics traces and comparison to a control complex without the tyrosine moiety, PCET reactivity was found to proceed through an equilibrium electron transfer followed by proton transfer (ET-PT) pathway in which irreversible deprotonation of the tyrosine radical cation shifts the ET equilibrium, conferring a base dependence on the reaction. Comprehensive kinetics modeling allowed for deconvolution of complex kinetics and determination of rate constants for each elementary step. Across the five pyridine bases explored, spanning a range of 4.2 pK a units, a linear free-energy relationship was found for the proton transfer rate constant with a slope of 0.32. These findings highlight the influence that proton transfer driving force exerts on PCET reaction kinetics.

  3. [Effect of high magnesium ion concentration on the electron transport rate and proton exchange in thylakoid membranes in higher plants].

    Science.gov (United States)

    Ignat'ev, A R; Khorobrykh, S A; Ivanov, B N

    2001-01-01

    The effects of magnesium ion concentration on the rate of electron transport in isolated pea thylakoids were investigated in the pH range from 4.0 up to 8.0. In the absence of magnesium ions in the medium and in the presence of 5 mM MgCl2 in the experiments not only without added artificial acceptors but also with ferricyanide or methylviologen as an acceptor, this rate had a well-expressed maximum at pH 5.0. It was shown that, after depression to minimal values at pH 5.5-6.5, it gradually rose with increasing pH. An increase in magnesium ion concentration up to 20 mM essentially affected the electron transfer rate: it decreased somewhat at pH 4.0-5.0 but increased at higher pH values. At this magnesium ion concentration, the maximum rate was at pH 6.0-6.5 and the minimum, at pH 7.0. Subsequent rise upon increasing pH to 8.0 was expressed more sharply. The influence of high magnesium ion concentration on the rate of electron transport was not observed in the presence of gramicidin D. It was found that without uncoupler, the changes in the electron transfer rate under the influence of magnesium ions correlated to the changes in the first-order rate constant of the proton efflux from thylakoids. It is supposed that the change in the ability of thylakoids to keep protons by the action of magnesium ions is the result of electrostatic interactions of these ions with the charges on the external surface of membranes. A possible role of regulation of the electron transport rate by magnesium ions in vivo is discussed.

  4. Elimination patterns of worldwide used sulfonamides and tetracyclines during anaerobic fermentation.

    Science.gov (United States)

    Spielmeyer, Astrid; Breier, Bettina; Groißmeier, Kathrin; Hamscher, Gerd

    2015-10-01

    Antibiotics such as sulfonamides and tetracyclines are frequently used in veterinary medicine. Due to incomplete absorption in the animal gut and/or unmetabolized excretion, the substances can enter the environment by using manure as soil fertilizer. The anaerobic fermentation process of biogas plants is discussed as potential sink for antibiotic compounds. However, negative impacts of antibiotics on the fermentation process are suspected. The elimination of sulfadiazine, sulfamethazine, tetracycline and chlortetracycline in semi-continuous lab-scale fermenters was investigated. Both biogas production and methane yield were not negatively affected by concentrations up to 38 mg per kg for sulfonamides and 7 mg per kg for tetracyclines. All substances were partly eliminated with elimination rates between 14% and 89%. Both matrix and structure of the target molecule influenced the elimination rate. Chlortetracycline was mainly transformed into iso-chlortetracycline. In all other cases, the elimination pathways remained undiscovered; however, sorption processes seem to have a negligible impact. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Proton radiography to improve proton therapy treatment

    NARCIS (Netherlands)

    Takatsu, J.; van der Graaf, E. R.; van Goethem, Marc-Jan; van Beuzekom, M.; Klaver, T.; Visser, Jan; Brandenburg, S.; Biegun, A. K.

    The quality of cancer treatment with protons critically depends on an accurate prediction of the proton stopping powers for the tissues traversed by the protons. Today, treatment planning in proton radiotherapy is based on stopping power calculations from densities of X-ray Computed Tomography (CT)

  6. Proton radioactivity from proton-rich nuclei

    International Nuclear Information System (INIS)

    Guzman, F.; Goncalves, M.; Tavares, O.A.P.; Duarte, S.B.; Garcia, F.; Rodriguez, O.

    1999-03-01

    Half-lives for proton emission from proton-rich nuclei have been calculated by using the effective liquid drop model of heavy-particle decay of nuclei. It is shown that this model is able to offer results or spontaneous proton-emission half-life-values in excellent agreement with the existing experimental data. Predictions of half-life-values for other possible proton-emission cases are present for null orbital angular momentum. (author)

  7. Measurement of the North-South asymmetry in the solar proton albedo neutron flux

    International Nuclear Information System (INIS)

    Ifedili, S.O.

    1979-01-01

    The solar proton albedo neutron flux in the range 10 -2 --10 7 eV measured by a neutron detector on board the Ogo 6 satellite was examined for north-south asymmetry. For the solar proton event of December 19, 1969, the S/N ratio of the solar proton albedo neutron rate at geomagnetic latitude lambda>70 0 was 1.61 +- 0.27 during the event, while for the November 2, 1969, event at 40 0 0 and altitudes ranging from 700 km to 800 km the solar proton albedo neutron rate was 0.40 +- 0.10 count/s in the north and 0.00 +- 0.10 count/s in the south. During the solar proton event of December 18, 1969, the N/S ratio of the solar proton albedo neutron rate at lambda>70 0 was 1.00 +- 0.26. The results are consistent with the expected N-S asymmetry in the solar proton flux. An interplanetary proton anisotropy with the interplanetary magnetic field polarity away from the sun corresponded to larger fluxes of solar proton albedo neutrons at the north polar cap than at the south, while an interplanetary proton anisotropy with the interplanetary magnetic field polarity toward the sun corresponded to larger fluxes of solar proton albedo neutrons at the south polar cap than at the north. This evidence favors the direct access of solar protons to the earth's polar caps via the merged interplanetary and geomagnetic field lines

  8. Measuring the Weak Charge of the Proton via Elastic Electron-Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Donald C. [Univ. of Virginia, Charlottesville, VA (United States)

    2015-10-01

    The Qweak experiment which ran in Hall C at Jefferson Lab in Newport News, VA, and completed data taking in May 2012, measured the weak charge of the proton QpW via elastic electron-proton scattering. Longitudinally polarized electrons were scattered from an unpolarized liquid hydrogen target. The helicity of the electron beam was flipped at approximately 1 kHz between left and right spin states. The Standard Model predicts a small parity-violating asymmetry of scattering rates between right and left helicity states due to the weak interaction. An initial result using 4% of the data was published in October 2013 [1] with a measured parity-violating asymmetry of -279 ± 35(stat) ± 31 (syst) ppb. This asymmetry, along with other data from parity-violating electron scattering experiments, provided the world's first determination of the weak charge of the proton. The weak charge of the proton was found to be pW = 0.064 ± 0.012, in good agreement with the Standard Model prediction of pW(SM) = 0.0708 ± 0.0003[2].

  9. Measurements of fusion-protons anisotropy around the pinch axis within high-current PF-1000 experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, M.J. [The Andrzej Soltan Institute for Nuclear Studies - IPJ, 05-400 Otwock-Swierk (Poland)] [Institute of Plasma Physics and Laser Microfusion - IPPLM, 01-497 Warsaw (Poland); Malinowska, A.; Malinowski, K.; Czaus, K.; Kwiatkowski, R.; Skladnik-Sadowska, E.; Zebrowski, J. [The Andrzej Soltan Institute for Nuclear Studies - IPJ, 05-400 Otwock-Swierk (Poland); Karpinski, L.; Paduch, M.; Scholz, M.; Stepniewski, W. [Institute of Plasma Physics and Laser Microfusion - IPPLM, 01-497 Warsaw (Poland)

    2011-07-01

    The paper describes measurements of fast protons produced by D-D fusion reactions during high-current discharges within the PF-1000 facility operated with the deuterium filling at 27 kV, 480 kJ. The measurements were performed by means of a set of pinhole-cameras equipped with PM-355 track detectors shielded by 80-{mu}m-thick Al-filters, which eliminated fast primary deuterons and protons of lower energy (< 3 MeV). Those cameras were placed at different angles around the pinch axis. The obtained proton images showed a distinct angular anisotropy, which was explained by an influence of local magnetic fields connected with a filamentary structure of the plasma column during the fast proton (and neutron) emission. The paper shows that in addition to measurements of a fusion neutron anisotropy it is reasonable to study also an anisotropy of fusion protons (originated from the second branch of the D-D reactions), as well as other charged fusion products. This document is composed of a paper followed by a poster

  10. Proton-transfer reactions in ionized gases

    International Nuclear Information System (INIS)

    Stiller, W.; Schmidt, R.; Schuster, R.

    1985-01-01

    Ion-molecule reactions play an important role in various radiolytic processes, e.g. gas-pulse radiolysis, environmental research. For a discussion of mechanisms rate coefficients have to be assessed. Here gas-phase rate coefficients of ion-(polar) molecule reactions are calculated using the ideas of interaction potentials, reactive cross-sections and distribution functions of the translational energies of both the reactants (ions I, molecules M). The starting point of our approach, directed especially to gas-phase proton-transfer reactions, is the idea that the rate coefficient k can be calculated as an ion-molecule capture-rate coefficient multiplied by a 'steric factor' representing the probability for proton transfer. Mutual capture of the reaction partners within a possible reaction zone is caused by the physical interaction between an ion and a polar molecule. A model is discussed. Results are presented. (author)

  11. Proton Radiography to Improve Proton Radiotherapy : Simulation Study at Different Proton Beam Energies

    NARCIS (Netherlands)

    Biegun, Aleksandra; Takatsu, Jun; van Goethem, Marc-Jan; van der Graaf, Emiel; van Beuzekom, Martin; Visser, Jan; Brandenburg, Sijtze

    To improve the quality of cancer treatment with protons, a translation of X-ray Computed Tomography (CT) images into a map of the proton stopping powers needs to be more accurate. Proton stopping powers determined from CT images have systematic uncertainties in the calculated proton range in a

  12. Bio-physical effects of scanned proton beams: measurements and models for discrete high dose rates scanning systems

    International Nuclear Information System (INIS)

    De-Marzi, Ludovic

    2016-01-01

    The main objective of this thesis is to develop and optimize algorithms for intensity modulated proton therapy, taking into account the physical and biological pencil beam properties. A model based on the summation and fluence weighted division of the pencil beams has been used. A new parameterization of the lateral dose distribution has been developed using a combination of three Gaussian functions. The algorithms have been implemented into a treatment planning system, then experimentally validated and compared with Monte Carlo simulations. Some approximations have been made and validated in order to achieve reasonable calculation times for clinical purposes. In a second phase, a collaboration with Institut Curie radiobiological teams has been started in order to implement radiobiological parameters and results into the optimization loop of the treatment planning process. Indeed, scanned pencil beams are pulsed and delivered at high dose rates (from 10 to 100 Gy/s), and the relative biological efficiency of protons is still relatively unknown given the wide diversity of use of these beams: the different models available and their dependence with linear energy transfers have been studied. A good agreement between dose calculations and measurements (deviations lower than 3 % and 2 mm) has been obtained. An experimental protocol has been set in order to qualify pulsed high dose rate effects and preliminary results obtained on one cell line suggested variations of the biological efficiency up to 10 %, though with large uncertainties. (author) [fr

  13. Test of internal halo targets in the HERA proton ring

    International Nuclear Information System (INIS)

    Hast, C.; Hofmann, W.; Khan, S.; Knoepfle, K.T.; Reber, M.; Rieling, J.; Spahn, M.; Spengler, J.; Lohse, T.; Pugatch, V.

    1994-07-01

    Internal wire targets in the halo of stored proton beams provide a line source of proton-nucleus interactions for highest-rate fixed target experiments. We have studied such internal halo targets at the 820 GeV proton ring of the HERA ep collider. The tests showed that most of the protons in the beam halo - which would otherwise hit the collimators - can be brought to interaction in a relatively thin target wire at distances of 7 to 8 beam widths from the center of the beam. At less than 10% of the HERA total design current, and less than 20% of the current per bunch, interaction rates up to 8 MHz were observed, corresponding to more than 2 interactions per bunch crossing. The halo targets were used in parallel to the HERA luminosity operation; no significant disturbances of the HERA ep experiments, of the machine stability or beam quality were observed. We present data on the steady-state and transient behaviour of interaction rates and discuss the interpretation in terms of a simple beam dynamics model. Issues of short-, medium- and long-term rate fluctuations and of rate stabilization by feedback are addressed. (orig.)

  14. Test of internal halo targets in the HERA proton ring

    International Nuclear Information System (INIS)

    Hast, C.; Hofmann, W.; Khan, S.; Knoepfle, K.T.; Reber, M.; Rieling, J.; Spahn, M.; Spengler, J.; Lohse, T.; Pugatch, V.

    1995-01-01

    Internal wire targets in the halo of stored proton beams provide a line source of proton-nucleus interactions for highest-rate fixed target experiments. We have studied such internal halo targets at the 820 GeV proton ring of the HERA ep collider. The tests showed that most of the protons in the beam halo - which would otherwise hit the collimators - can be brought to interaction in a relatively thin target wire at distances of 7 to 8 beam widths from the center of the beam. At less than 10% of the HERA total design current, and less than 20% of the current per bunch, interaction rates up to 8 MHz were observed, corresponding to more than 2 interactions per bunch crossing. The halo targets were used in parallel to the HERA luminosity operation; no significant disturbances of the HERA ep experiments, of the machine stability or beam quality were observed. We present data on the steady-state and transient behaviour of interaction rates and discuss the interpretation in terms of a simple beam dynamics model. Issues of short-, medium- and long-term rate fluctuations and of rate stabilization by feedback are addressed. ((orig.))

  15. Kinetic Effects Of Increased Proton Transfer Distance On Proton-Coupled Oxidations Of Phenol-Amines

    Science.gov (United States)

    Rhile, Ian J.

    2011-01-01

    To test the effect of varying the proton donor-acceptor distance in proton-coupled electron transfer (PCET) reactions, the oxidation of a bicyclic amino-indanol (2) is compared with that of a closely related phenol with an ortho CPh2NH2 substituent (1). Spectroscopic, structural, thermochemical and computational studies show that the two amino-phenols are very similar, except that the O⋯N distance (dON) is >0.1 Å longer in 2 than in 1. The difference in dON is 0.13 ± 0.03 Å from X-ray crystallography and 0.165 Å from DFT calculations. Oxidations of these phenols by outer-sphere oxidants yield distonic radical cations •OAr–NH3+ by concerted proton-electron transfer (CPET). Simple tunneling and classical kinetic models both predict that the longer donor-acceptor distance in 2 should lead to slower reactions, by ca. two orders of magnitude, as well as larger H/D kinetic isotope effects (KIEs). However, kinetic studies show that the compound with the longer proton-transfer distance, 2, exhibits smaller KIEs and has rate constants that are quite close to those of 1. For example, the oxidation of 2 by the triarylamminium radical cation N(C6H4OMe)3•+ (3a+) occurs at (1.4 ± 0.1) × 104 M-1 s-1, only a factor of two slower than the closely related reaction of 1 with N(C6H4OMe)2(C6H4Br)•+ (3b+). This difference in rate constants is well accounted for by the slightly different free energies of reaction: ΔG°(2 + 3a+) = +0.078 V vs. ΔG°(1 + 3b+) = +0.04 V. The two phenol-amines do display some subtle kinetic differences: for instance, compound 2 has a shallower dependence of CPET rate constants on driving force (Brønsted α, Δln(k)/Δln(Keq)). These results show that the simple tunneling model is not a good predictor of the effect of proton donor-acceptor distance on concerted-electron transfer reactions involving strongly hydrogen-bonded systems. Computational analysis of the observed similarity of the two phenols emphasizes the importance of the highly

  16. MIXING THE SOLAR WIND PROTON AND ELECTRON SCALES: EFFECTS OF ELECTRON TEMPERATURE ANISOTROPY ON THE OBLIQUE PROTON FIREHOSE INSTABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Maneva, Y.; Lazar, M.; Poedts, S. [Centre for Mathematical Plasma Astrophysics, Celestijnenlaan 200B, 3001 Heverlee (Belgium); Viñas, A., E-mail: yana.maneva@wis.kuleuven.be [NASA Goddard Space Flight Center, Heliophysics Science Division, Greenbelt, MD 20771 (United States)

    2016-11-20

    The double adiabatic expansion of the nearly collisionless solar wind plasma creates conditions for the firehose instability to develop and efficiently prevent the further increase of the plasma temperature in the direction parallel to the interplanetary magnetic field. The conditions imposed by the firehose instability have been extensively studied using idealized approaches that ignore the mutual effects of electrons and protons. Recently, more realistic approaches have been proposed that take into account the interplay between electrons and protons, unveiling new regimes of the parallel oscillatory modes. However, for oblique wave propagation the instability develops distinct branches that grow much faster and may therefore be more efficient than the parallel firehose instability in constraining the temperature anisotropy of the plasma particles. This paper reports for the first time on the effects of electron plasma properties on the oblique proton firehose (PFH) instability and provides a comprehensive vision of the entire unstable wave-vector spectrum, unifying the proton and the smaller electron scales. The plasma β and temperature anisotropy regimes considered here are specific for the solar wind and magnetospheric conditions, and enable the electrons and protons to interact via the excited electromagnetic fluctuations. For the selected parameters, simultaneous electron and PFH instabilities can be observed with a dispersion spectrum of the electron firehose (EFH) extending toward the proton scales. Growth rates of the PFH instability are markedly boosted by the anisotropic electrons, especially in the oblique direction where the EFH growth rates are orders of magnitude higher.

  17. Mixing the Solar Wind Proton and Electron Scales: Effects of Electron Temperature Anisotropy on the Oblique Proton Firehose Instability

    Science.gov (United States)

    Maneva, Y.; Lazar, M.; Vinas, A.; Poedts, S.

    2016-01-01

    The double adiabatic expansion of the nearly collisionless solar wind plasma creates conditions for the firehose instability to develop and efficiently prevent the further increase of the plasma temperature in the direction parallel to the interplanetary magnetic field. The conditions imposed by the firehose instability have been extensively studied using idealized approaches that ignore the mutual effects of electrons and protons. Recently, more realistic approaches have been proposed that take into account the interplay between electrons and protons,? unveiling new regimes of the parallel oscillatory modes. However, for oblique wave propagation the instability develops distinct branches that grow much faster and may therefore be more efficient than the parallel firehose instability in constraining the temperature anisotropy of the plasma particles. This paper reports for the first time on the effects of electron plasma properties on the oblique proton firehose (PFH) instability and provides a comprehensive vision of the entire unstable wave-vector spectrum, unifying the proton and the smaller electron scales. The plasma ß and temperature anisotropy regimes considered here are specific for the solar wind and magnetospheric conditions, and enable the electrons and protons to interact via the excited electromagnetic fluctuations. For the selected parameters, simultaneous electron and PFH instabilities can be observed with a dispersion spectrum of the electron firehose (EFH) extending toward the proton scales. Growth rates of the PFH instability are markedly boosted by the anisotropic electrons, especially in the oblique direction where the EFH growth rates are orders of magnitude higher.

  18. Proton solvation and proton transfer in chemical and electrochemical processes

    International Nuclear Information System (INIS)

    Lengyel, S.; Conway, B.E.

    1983-01-01

    This chapter examines the proton solvation and characterization of the H 3 O + ion, proton transfer in chemical ionization processes in solution, continuous proton transfer in conductance processes, and proton transfer in electrode processes. Topics considered include the condition of the proton in solution, the molecular structure of the H 3 O + ion, thermodynamics of proton solvation, overall hydration energy of the proton, hydration of H 3 O + , deuteron solvation, partial molal entropy and volume and the entropy of proton hydration, proton solvation in alcoholic solutions, analogies to electrons in semiconductors, continuous proton transfer in conductance, definition and phenomenology of the unusual mobility of the proton in solution, solvent structure changes in relation to anomalous proton mobility, the kinetics of the proton-transfer event, theories of abnormal proton conductance, and the general theory of the contribution of transfer reactions to overall transport processes

  19. Protons and how they are transported by proton pumps

    DEFF Research Database (Denmark)

    Buch-Pedersen, Morten Jeppe; Pedersen, Bjørn Panyella; Nissen, Poul

    2008-01-01

    molecular components that allow the plasma membrane proton H(+)-ATPase to carry out proton transport against large membrane potentials. When divergent proton pumps such as the plasma membrane H(+)-ATPase, bacteriorhodopsin, and F(O)F(1) ATP synthase are compared, unifying mechanistic premises for biological...... proton pumps emerge. Most notably, the minimal pumping apparatus of all pumps consists of a central proton acceptor/donor, a positively charged residue to control pK (a) changes of the proton acceptor/donor, and bound water molecules to facilitate rapid proton transport along proton wires....

  20. Proton NMR study of α-MnH 0.06

    Science.gov (United States)

    Soloninin, A. V.; Skripov, A. V.; Buzlukov, A. L.; Antonov, V. E.; Antonova, T. E.

    2004-07-01

    Proton nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation rates for the solid solution α-MnH 0.06 have been measured over the temperature range 11-297 K and the resonance frequency range 20-90 MHz. A considerable shift and broadening of the proton NMR line and a sharp peak of the spin-lattice relaxation rate are observed near 130 K. These effects are attributed to the onset of antiferromagnetic ordering below the Néel temperature TN≈130 K. The proton NMR line does not disappear in the antiferromagnetic phase; this suggests a small magnitude of the local magnetic fields at H-sites in α-MnH 0.06. The spin-lattice relaxation rate in the paramagnetic phase is dominated by the effects of spin fluctuations.

  1. The accumulation and elimination of radiocesium by naturally contaminated wood ducks

    International Nuclear Information System (INIS)

    Fendley, T.T.; Manlove, M.N.; Brisbin, I.L. Jr.

    1977-01-01

    The accumulation of radiocesium was studied in hand-reared wood ducks which were released into a South Carolina swamp habitat which had been contaminated with production reactor effluents. The uptake of radiocesium by the ducks was described as: ln pCi radiocesium/g live body weight = 0.36 + 0.18 (days). There was no effect of sex on uptake rate. The average estimated time required to attain practical equilibrium (0.90 Qsub(e)) was 17.3 days, with a range from 10.2 to 26.8 days. Ducks which were recaptured after attaining equilibrium concentrations in the field (averaging 16.6 pCi radiocesium/g live body weight) showed single-component elimination-rate curves when confined in a semi-natural pen for elimination studies. Radiocesium elimination under penned conditions was described as: ln % initial body burden = 4.60-0.13 (days). Elimination-rate and body weight showed a negative linear correlation for the penned birds although there was no effect of sex on loss-rate. Radiocesium biological half-times for the penned ducks averaged 5.6 days with a range from 3.2 to 9.3 days. Calculations based on biological half-times determined from studies with the penned birds, were successful in accurately predicting both the levels and rates of radiocesium accumulation by free-living birds in the field. (author)

  2. Protonation Reaction of Benzonitrile Radical Anion and Absorption of Product

    DEFF Research Database (Denmark)

    Holcman, Jerzy; Sehested, Knud

    1975-01-01

    The rate constant for the protonation of benzonitrile radical anions formed in pulse radiolysis of aqueous benzonitrile solutions is (3.5 ± 0.5)× 1010 dm3 mol–1 s–1. A new 270 nm absorption band is attributed to the protonated benzonitrile anion. The pK of the protonation reaction is determined t...

  3. (Anti-)deuteron formation and neutron-proton correlation

    International Nuclear Information System (INIS)

    Mrowczynski, S.

    1995-01-01

    The neutron-proton correlation, deuteron and antideuteron formation in nuclear collisions are all due to the final state interactions. The neutron-proton correlation function and the (anti-)deuteron formation rate are calculated in parallel. These quantities are expressed through the space-time parameters of the particle source created in nucleus-nucleus collisions. In the case of baryon reach sources, the nucleons are emitted from the whole source volume while the antinucleons dominantly from the surface due to the antinucleon absorption in the baryon environment. Thus, the shape of the antinucleon source is different from the nucleon one, and consequently the antideuteron formation rate is substantially smaller than that one of deuterons. The correlation function satisfies the sum rule, which, in particular, connects the number of correlated neutron-proton pairs with the number of produced deuterons. (author). 18 refs., 4 figs

  4. Mechanisms and rates of proton transfer to coordinated carboxydithioates: studies on [Ni(S2CR){PhP(CH2CH2PPh2)2}](+) (R = Me, Et, Bu(n) or Ph).

    Science.gov (United States)

    Alwaaly, Ahmed; Clegg, William; Henderson, Richard A; Probert, Michael R; Waddell, Paul G

    2015-02-21

    The complexes [Ni(S2CR)(triphos)]BPh4 (R = Me, Et, Bu(n) or Ph; triphos = PhP{CH2CH2PPh2}2) have been prepared and characterised. X-ray crystallography (for R = Et, Ph, C6H4Me-4, C6H4OMe-4 and C6H4Cl-4) shows that the geometry of the five-coordinate nickel in the cation is best described as distorted trigonal bipyramidal, containing a bidentate carboxydithioate ligand with the two sulfur atoms spanning axial and equatorial sites, the other axial site being occupied by the central phosphorus of triphos. The reactions of [Ni(S2CR)(triphos)](+) with mixtures of HCl and Cl(-) in MeCN to form equilibrium solutions containing [Ni(SH(S)CR)(triphos)](2+) have been studied using stopped-flow spectrophotometry. The kinetics show that proton transfer is slower than the diffusion-controlled limit and involves at least two coupled equilibria. The first step involves the rapid association between [Ni(S2CR)(triphos)](+) and HCl to form the hydrogen-bonded precursor, {[Ni(S2CR)(triphos)](+)HCl} (K) and this is followed by the intramolecular proton transfer (k) to produce [Ni(SH(S)CR)(triphos)](2+). In the reaction of [Ni(S2CMe)(triphos)](+) the rate law is consistent with the carboxydithioate ligand undergoing chelate ring-opening after protonation. It seems likely that chelate ring-opening occurs for all [Ni(S2CR)(triphos)](+), but only with [Ni(S2CMe)(triphos)](+) is the protonation step sufficiently fast that chelate ring-opening is rate-limiting. With all other systems, proton transfer is rate-limiting. DFT calculations indicate that protonation can occur at either sulfur atom, but only protonation at the equatorial sulfur results in chelate ring-opening. The ways in which protonation of either sulfur atom complicates the analyses and interpretation of the kinetics are discussed.

  5. Production of protons in ( sup 1 sup 6 Op)-collisions

    CERN Document Server

    Yuldashev, B S; Fazylov, M I; Bazarov, E K; Glagolev, V V; Gulamov, K G; Dzhuraev, S K

    2003-01-01

    For the first time, the analysis of the momentum characteristics of proton fragments produced in ( sup 1 sup 6 Op)-collisions at 3.25 A GeV/s under the conditions of total geometry is carried out. The universal nature of the production of protons is found. The production of proton (except for 'evaporation' protons) moving forward in the rest frame of fragmenting nuclei does not depend on the initial energy and the type of a target nucleus ('nuclear scaling'). The existence of strong correlation between the form of the pulse spectrum of proton-fragments and the excitation rate of the fragmenting nucleus, especially for slow protons, is shown.

  6. Reducing the Cost of Proton Radiation Therapy: The Feasibility of a Streamlined Treatment Technique for Prostate Cancer

    International Nuclear Information System (INIS)

    Newhauser, Wayne D.; Zhang, Rui; Jones, Timothy G.; Giebeler, Annelise; Taddei, Phillip J.; Stewart, Robert D.; Lee, Andrew; Vassiliev, Oleg

    2015-01-01

    Proton radiation therapy is an effective modality for cancer treatments, but the cost of proton therapy is much higher compared to conventional radiotherapy and this presents a formidable barrier to most clinical practices that wish to offer proton therapy. Little attention in literature has been paid to the costs associated with collimators, range compensators and hypofractionation. The objective of this study was to evaluate the feasibility of cost-saving modifications to the present standard of care for proton treatments for prostate cancer. In particular, we quantified the dosimetric impact of a treatment technique in which custom fabricated collimators were replaced with a multileaf collimator (MLC) and the custom range compensators (RC) were eliminated. The dosimetric impacts of these modifications were assessed for 10 patients with a commercial treatment planning system (TPS) and confirmed with corresponding Monte Carlo simulations. We assessed the impact on lifetime risks of radiogenic second cancers using detailed dose reconstructions and predictive dose-risk models based on epidemiologic data. We also performed illustrative calculations, using an isoeffect model, to examine the potential for hypofractionation. Specifically, we bracketed plausible intervals of proton fraction size and total treatment dose that were equivalent to a conventional photon treatment of 79.2 Gy in 44 fractions. Our results revealed that eliminating the RC and using an MLC had negligible effect on predicted dose distributions and second cancer risks. Even modest hypofractionation strategies can yield substantial cost savings. Together, our results suggest that it is feasible to modify the standard of care to increase treatment efficiency, reduce treatment costs to patients and insurers, while preserving high treatment quality

  7. Reducing the Cost of Proton Radiation Therapy: The Feasibility of a Streamlined Treatment Technique for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Newhauser, Wayne D., E-mail: newhauser@lsu.edu [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, LA 70803 (United States); Department of Physics, Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809 (United States); Zhang, Rui [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, LA 70803 (United States); Department of Physics, Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809 (United States); Departments of Radiation Physics and Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States); The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030 (United States); Jones, Timothy G. [Departments of Radiation Physics and Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States); The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030 (United States); Department of Physics, Abilene Christian University, ACU Box 27963, Abilene, TX 79699 (United States); Giebeler, Annelise; Taddei, Phillip J. [Departments of Radiation Physics and Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States); The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030 (United States); Stewart, Robert D. [Department of Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356043, Seattle, WA 98195 (United States); Lee, Andrew [Departments of Radiation Physics and Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States); Vassiliev, Oleg [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, LA 70803 (United States); Department of Physics, Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809 (United States)

    2015-04-24

    Proton radiation therapy is an effective modality for cancer treatments, but the cost of proton therapy is much higher compared to conventional radiotherapy and this presents a formidable barrier to most clinical practices that wish to offer proton therapy. Little attention in literature has been paid to the costs associated with collimators, range compensators and hypofractionation. The objective of this study was to evaluate the feasibility of cost-saving modifications to the present standard of care for proton treatments for prostate cancer. In particular, we quantified the dosimetric impact of a treatment technique in which custom fabricated collimators were replaced with a multileaf collimator (MLC) and the custom range compensators (RC) were eliminated. The dosimetric impacts of these modifications were assessed for 10 patients with a commercial treatment planning system (TPS) and confirmed with corresponding Monte Carlo simulations. We assessed the impact on lifetime risks of radiogenic second cancers using detailed dose reconstructions and predictive dose-risk models based on epidemiologic data. We also performed illustrative calculations, using an isoeffect model, to examine the potential for hypofractionation. Specifically, we bracketed plausible intervals of proton fraction size and total treatment dose that were equivalent to a conventional photon treatment of 79.2 Gy in 44 fractions. Our results revealed that eliminating the RC and using an MLC had negligible effect on predicted dose distributions and second cancer risks. Even modest hypofractionation strategies can yield substantial cost savings. Together, our results suggest that it is feasible to modify the standard of care to increase treatment efficiency, reduce treatment costs to patients and insurers, while preserving high treatment quality.

  8. Determinants of Human African Trypanosomiasis Elimination via Paratransgenesis.

    Directory of Open Access Journals (Sweden)

    Jennifer A Gilbert

    2016-03-01

    Full Text Available Human African trypanosomiasis (HAT, transmitted by tsetse flies, has historically infected hundreds of thousands of individuals annually in sub-Saharan Africa. Over the last decade, concerted control efforts have reduced reported cases to below 10,000 annually, bringing complete elimination within reach. A potential technology to eliminate HAT involves rendering the flies resistant to trypanosome infection. This approach can be achieved through the introduction of transgenic Sodalis symbiotic bacteria that have been modified to produce a trypanocide, and propagated via Wolbachia symbionts, which confer a reproductive advantage to the paratransgenic tsetse. However, the population dynamics of these symbionts within tsetse flies have not yet been evaluated. Specifically, the key factors that determine the effectiveness of paratransgenesis have yet to be quantified. To identify the impact of these determinants on T.b. gambiense and T.b. rhodesiense transmission, we developed a mathematical model of trypanosome transmission that incorporates tsetse and symbiont population dynamics. We found that fecundity and mortality penalties associated with Wolbachia or recombinant Sodalis colonization, probabilities of vertical transmission, and tsetse migration rates are fundamental to the feasibility of HAT elimination. For example, we determined that HAT elimination could be sustained over 25 years when Wolbachia colonization minimally impacted fecundity or mortality, and when the probability of recombinant Sodalis vertical transmission exceeded 99.9%. We also found that for a narrow range of recombinant Sodalis vertical transmission probability (99.9-90.6% for T.b. gambiense and 99.9-85.8% for T.b. rhodesiense, cumulative HAT incidence was reduced between 30% and 1% for T.b. gambiense and between 21% and 3% for T.b. rhodesiense, although elimination was not predicted. Our findings indicate that fitness and mortality penalties associated with paratransgenic

  9. An investigation into the electron-proton discrimination capabilities of ionization calorimeters

    International Nuclear Information System (INIS)

    Briggs, M.S.

    1982-01-01

    This paper seeks to provide an experimental indication of the rate at which protons mimic electrons in ionization calorimeters. A pseudo-theoretical electron cascade function was fitted to calorimeter events caused by 300 GeV accelerator protons in order to see what fraction of the protons looked like electrons. For calorimeters longer than one nuclear interaction length, the results were in good agreement with the theory which says that one process should make a singificant contribution to the mimicking of electrons by protons: the diffractive excitation of the incident proton, producing a π 0 while the incident proton continues on undeflected without further interactions. For calorimeters shorter than one nuclear interaction length a much higher mimic rate was seen, which is to be expected since hadrons produced with a π 0 can easily pass undetected through the calorimeter. These results can be used to estimate the contamination of the data of past experiments and as support for the prediction being used to design future experiments. (orig.)

  10. Tracer kinetics: Modelling by partial differential equations of inhomogeneous compartments with age-dependent elimination rates. Pt. 1

    International Nuclear Information System (INIS)

    Winkler, E.

    1991-01-01

    Mathematical models in tracer kinetics are usually based on ordinary differential equations which correspond to a system of kinetically homogeneous compartments (standard compartments). A generalization is possible by the admission of inhomogeneities in the behaviour of the elements belonging to a compartment. The important special case of the age-dependence of elimination rates is treated in its deterministic version. It leads to partial different equations (i.e., systems with distributed coefficients) with the 'age' or the 'residence time' of an element of the compartment as a variable additional to 'time'. The basic equations for one generalized compartment and for systems of such compartments are given together with their general solutions. (orig.) [de

  11. Instability of equatorial protons in Jupiter's mid-magnetosphere

    International Nuclear Information System (INIS)

    Northrop, T.G.; Schardt, A.W.

    1980-01-01

    Two different models for the distribution function are fit to the Jovian protons seen by Pioneer 10 inbound. The models reproduce the observed energy and angular distributions. These models are then used to assess the collisionless mirror instability. Because of the pancake proton angular distributions in the equatorial ring current region, the ring current particle population appears to be mirror unstable at times, with instability growth rates of approx.10 min. Such a time is consistent with observed proton flux autocorrelation times. An instability such as this (there are other candidates) may be responsible for the previously established proton flux flowing parallel to the magnetic field away from the equatorial region

  12. Data acquisition system for a proton imaging apparatus

    CERN Document Server

    Sipala, V; Bruzzi, M; Bucciolini, M; Candiano, G; Capineri, L; Cirrone, G A P; Civinini, C; Cuttone, G; Lo Presti, D; Marrazzo, L; Mazzaglia, E; Menichelli, D; Randazzo, N; Talamonti, C; Tesi, M; Valentini, S

    2009-01-01

    New developments in the proton-therapy field for cancer treatments, leaded Italian physics researchers to realize a proton imaging apparatus consisting of a silicon microstrip tracker to reconstruct the proton trajectories and a calorimeter to measure their residual energy. For clinical requirements, the detectors used and the data acquisition system should be able to sustain about 1 MHz proton rate. The tracker read-out, using an ASICs developed by the collaboration, acquires the signals detector and sends data in parallel to an FPGA. The YAG:Ce calorimeter generates also the global trigger. The data acquisition system and the results obtained in the calibration phase are presented and discussed.

  13. Parity Nonconservation in Proton-Proton and Proton-Water Scattering at 1.5 GeV/c

    Science.gov (United States)

    Mischke, R. E.; Bowman, J. D.; Carlini, R.; MacArthur, D.; Nagle, D. E.; Frauenfelder, H.; Harper, R. W.; Yuan, V.; McDonald, A. B.; Talaga, R. L.

    1984-07-01

    Experiments searching for parity nonconservation in the scattering of 1.5 GeV/c (800 MeV) polarized protons from an unpolarized water target and a liquid hydrogen target are described. The intensity of the incident proton beam was measured upstream and downstream of the target by a pair of ionization detectors. The beam helicity was reversed at a 30-Hz rate. Auxiliary detectors monitored beam properties that could give rise to false effects. The result for the longitudinal asymmetry from the water is A{sub L} = (1.7 +- 3.3 +- 1.4) x 10{sup -7}, where the first error is statistical and the second is an estimate of systematic effects. The hydrogen data yield a preliminary result of A{sub L} = (1.0 +- 1.6) x 10{sup -7}. The systematic errors for p-p are expected to be < 1 x 10{sup -7}.

  14. Proton therapy with concomitant capecitabine for pancreatic and ampullary cancers is associated with a low incidence of gastrointestinal toxicity

    International Nuclear Information System (INIS)

    Nichols, R. Charles Jr.; Huh, Soon; Ho, Meng Wei; Mendenhall, Nancy P.; Morris, Christopher G.; Hoppe, Bradford S.; George, Thomas J.; Zaiden, Robert A. Jr.; Awad, Ziad T.; Asbun, Horacio J.

    2013-01-01

    Background: To review treatment toxicity for patients with pancreatic and ampullary cancer treated with proton therapy at our institution. Material and methods: From March 2009 through April 2012, 22 patients were treated with proton therapy and concomitant capecitabine (1000 mg PO twice daily) for resected (n = 5); marginally resectable (n = 5); and unresectable/inoperable (n = 12) biopsy-proven pancreatic and ampullary adenocarcinoma. Two patients with unresectable disease were excluded from the analysis for reasons unrelated to treatment. Proton doses ranged from 50.40 cobalt gray equivalent (CGE) to 59.40 CGE. Results: Median follow-up for all patients was 11 (range 5-36) months. No patient demonstrated any grade 3 toxicity during treatment or during the follow-up period. Grade 2 gastrointestinal toxicities occurred in three patients, consisting of vomiting (n = 3); and diarrhea (n = 2). Median weight loss during treatment was 1.3 kg (1.75% of body weight). Chemotherapy was well-tolerated with a median 99% of the prescribed doses delivered. Percentage weight loss was reduced (p = 0.0390) and grade 2 gastrointestinal toxicity was eliminated (p = 0.0009) in patients treated with plans that avoided anterior and left lateral fields which were associated with reduced small bowel and gastric exposure. Discussion: Proton therapy may allow for significant sparing of the small bowel and stomach and is associated with a low rate of gastrointestinal toxicity. Although long-term follow-up will be needed to assess efficacy, we believe that the favorable toxicity profile associated with proton therapy may allow for radiotherapy dose escalation, chemotherapy intensification, and possibly increased acceptance of preoperative radiotherapy for patients with resectable or marginally resectable disease

  15. Proton therapy with concomitant capecitabine for pancreatic and ampullary cancers is associated with a low incidence of gastrointestinal toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, R. Charles Jr.; Huh, Soon; Ho, Meng Wei; Mendenhall, Nancy P.; Morris, Christopher G.; Hoppe, Bradford S. [Univ. of Florida Proton Therapy Inst., Jacksonville (United States)], e-mail: rnichols@floridaproton.org; George, Thomas J.; Zaiden, Robert A. Jr. [Dept. of Hematology and Medical Oncology, Univ. of Florida, Gainesville and Jacksonville (United States); Awad, Ziad T. [Dept. of Surgery, Univ. of Florida, Jacksonville (United States); Asbun, Horacio J. [Dept. of Surgery, Mayo Clinic, Jacksonville (United States)

    2013-04-15

    Background: To review treatment toxicity for patients with pancreatic and ampullary cancer treated with proton therapy at our institution. Material and methods: From March 2009 through April 2012, 22 patients were treated with proton therapy and concomitant capecitabine (1000 mg PO twice daily) for resected (n = 5); marginally resectable (n = 5); and unresectable/inoperable (n = 12) biopsy-proven pancreatic and ampullary adenocarcinoma. Two patients with unresectable disease were excluded from the analysis for reasons unrelated to treatment. Proton doses ranged from 50.40 cobalt gray equivalent (CGE) to 59.40 CGE. Results: Median follow-up for all patients was 11 (range 5-36) months. No patient demonstrated any grade 3 toxicity during treatment or during the follow-up period. Grade 2 gastrointestinal toxicities occurred in three patients, consisting of vomiting (n = 3); and diarrhea (n = 2). Median weight loss during treatment was 1.3 kg (1.75% of body weight). Chemotherapy was well-tolerated with a median 99% of the prescribed doses delivered. Percentage weight loss was reduced (p = 0.0390) and grade 2 gastrointestinal toxicity was eliminated (p = 0.0009) in patients treated with plans that avoided anterior and left lateral fields which were associated with reduced small bowel and gastric exposure. Discussion: Proton therapy may allow for significant sparing of the small bowel and stomach and is associated with a low rate of gastrointestinal toxicity. Although long-term follow-up will be needed to assess efficacy, we believe that the favorable toxicity profile associated with proton therapy may allow for radiotherapy dose escalation, chemotherapy intensification, and possibly increased acceptance of preoperative radiotherapy for patients with resectable or marginally resectable disease.

  16. Radiative proton-capture nuclear processes in metallic hydrogen

    International Nuclear Information System (INIS)

    Ichimaru, Setsuo

    2001-01-01

    Protons being the lightest nuclei, metallic hydrogen may exhibit the features of quantum liquids most relevant to enormous enhancement of nuclear reactions; thermonuclear and pycnonuclear rates and associated enhancement factors of radiative proton captures of high-Z nuclei as well as of deuterons are evaluated. Atomic states of high-Z impurities are determined in a way consistent with the equations of state and screening characteristics of the metallic hydrogen. Rates of pycnonuclear p-d reactions are prodigiously high at densities ≥20 g/cm 3 , pressures ≥1 Gbar, and temperatures ≥950 K near the conditions of solidification. It is also predicted that proton captures of nuclei such as C, N, O, and F may take place at considerable rates, owing to strong screening by K-shell electrons, if the densities ≥60-80 g/cm 3 , the pressures ≥7-12 Gbar, and the temperatures just above solidification. The possibilities and significance of pycnonuclear p-d fusion experiments are specifically remarked

  17. Experiments to measure the gluon helicity distribution in protons

    International Nuclear Information System (INIS)

    Spinka, H.; Beddo, M.E.; Underwood, D.G.

    1993-01-01

    Several experiments are described that could obtain information about the gluon helicity distribution in protons. These experiments include inclusive direct-γ, direct-γ + jet, jet, and jet + jet production with colliding beams of longitudinally-polarized protons. Some rates and kinematics are also discussed

  18. Eliminating armaments

    International Nuclear Information System (INIS)

    Adams, R.

    1998-01-01

    The end of Cold War induced optimistic projections concerning disarmament, elimination of nuclear weapons, elimination of massive inequities - poverty, hatred, racism. All these goals should be achieved simultaneously, but little has been achieved so far

  19. Clinical results of proton beam therapy for skull base chordoma

    International Nuclear Information System (INIS)

    Igaki, Hiroshi; Tokuuye, Koichi; Okumura, Toshiyuki; Sugahara, Shinji; Kagei, Kenji; Hata, Masaharu; Ohara, Kiyoshi; Hashimoto, Takayuki; Tsuboi, Koji; Takano, Shingo; Matsumura, Akira; Akine, Yasuyuki

    2004-01-01

    Purpose: To evaluate clinical results of proton beam therapy for patients with skull base chordoma. Methods and materials: Thirteen patients with skull base chordoma who were treated with proton beams with or without X-rays at the University of Tsukuba between 1989 and 2000 were retrospectively reviewed. A median total tumor dose of 72.0 Gy (range, 63.0-95.0 Gy) was delivered. The patients were followed for a median period of 69.3 months (range, 14.6-123.4 months). Results: The 5-year local control rate was 46.0%. Cause-specific, overall, and disease-free survival rates at 5 years were 72.2%, 66.7%, and 42.2%, respectively. The local control rate was higher, without statistical significance, for those with preoperative tumors <30 mL. Partial or subtotal tumor removal did not yield better local control rates than for patients who underwent biopsy only as the latest surgery. Conclusion: Proton beam therapy is effective for patients with skull base chordoma, especially for those with small tumors. For a patient with a tumor of <30 mL with no prior treatment, biopsy without tumor removal seems to be appropriate before proton beam therapy

  20. The future and progress of proton beam radiotherapy

    International Nuclear Information System (INIS)

    Tsujii, Hirohiko

    1994-01-01

    The advantage of proton therapy is reduction of treatment volumes relative to those feasible with conventional photon therapy. The consequence is that the radiation dose to the target can be raised, with a resultant increase in tumor control probability. Proton beams, however, yield no biological gains because their biological properties are similar to conventional low LET radiations. As more sophisticated technologies are needed, there have been many advances which are applicable to photon therapy; 3-D treatment planning, DVH analysis, and systems for positioning, etc. As of January 1994, a total of about 13,000 cases were reported as having had treatments with proton beams in 16 centers world wide. The tumor sites for those include uveal melanoma (30-40%), intra-cranial small targets (40%), and others. Uveal melanomas had been most extensively treated with 70 Gy/5 fx or 60 Gy/4 fx which resulted in local control and survival rates of >96% and 80%, respectively. For chordoma and chondrosarcoma of the skull base and cervical spine, the 5 year local control rates were 65% and 91%, respectively. Promising results are also being obtained for head and neck and pelvic tumors. Deeper-seated tumors have been treated only at Tsukuba University with successful results in some anatomic sites. Among these, inoperable primary hepatocellular carcinomas were effectively treated with a total dose of 75-85 Gy (3.0-4.5 Gy/fx). The 3 year survival rates for all patients, Child A+B patient, and Child A patients were 38%, 47%, and 60%, respectively, which compare favorably to other modalities. These successful results of world wide proton therapy have led us to the conclusion that a hospital-based proton facility will provide opportunities for additional patients to be treated with protons. Thus, new plans are proposed from more than 10 institutions to build a new treatment center or upgrade the energy of currently available proton beams. (author)

  1. Proton decay: spectroscopic probe beyond the proton drip line

    International Nuclear Information System (INIS)

    Seweryniak, D; Davids, C N; Robinson, A; Woods, P J; Blank, B; Carpenter, M P; Davinson, T; Freeman, S J; Hammond, N; Hoteling, N; Janssens, R V F; Khoo, T L; Liu, Z; Mukherjee, G; Shergur, J; Sinha, S; Sonzogni, A A; Walters, W B; Woehr, A

    2005-01-01

    Proton decay has been transformed in recent years from an exotic phenomenon into a powerful spectroscopic tool. The frontiers of experimental and theoretical proton-decay studies will be reviewed. Different aspects of proton decay will be illustrated with recent results on the deformed proton emitter 135 Tb, the odd-odd deformed proton emitter 130 Eu, the complex fine structure in the odd-odd 146 Tm nucleus and on excited states in the transitional proton emitter 145 Tm

  2. Proton therapy project at PSI

    International Nuclear Information System (INIS)

    Nakagawa, K.; Akanuma, A.; Karasawa, K.

    1990-01-01

    Particle radiation which might present steeper dose distribution has received much attention as the third particle facility at the Paul Scherrer Institute (PSI), Switzerland. Proton conformation with sharp fall-off is considered to be the radiation beam suitable for confining high doses to a target volume without complications and for verifying which factor out of high RBE or physical dose distribution is more essential for local control in malignant tumors. This paper discusses the current status of the spot scanning method, which allows three dimensional conformation radiotherapy, and preliminary results. Preliminary dose distribution with proton conformation technique was acquired by modifying a computer program for treatment planning in pion treatment. In a patient with prostate carcinoma receiving both proton and pion radiation therapy, proton conformation was found to confine high doses to the target area and spare both the bladder and rectum well; and pion therapy was found to deliver non-homogeneous radiation to these organs. Although there are some obstacles in the proton project at PSI, experimental investigations are encouraging. The dynamic spot scanning method with combination of the kicker magnet, wobbler magnet, range shifter, patient transporter, and position sensitive monitor provides highly confined dose distribution, making it possible to increase total doses and thus to improve local control rate. Proton confirmation is considered to be useful for verifying possible biological effectiveness of negative pion treatment of PSI as well. (N.K.)

  3. [Simulating measles and rubella elimination levels according to social stratification and interaction].

    Science.gov (United States)

    Hincapié-Palacio, Doracelly; Ospina-Giraldo, Juan; Gómez-Arias, Rubén D; Uyi-Afuwape, Anthony; Chowell-Puente, Gerardo

    2010-02-01

    The study was aimed at comparing measles and rubella disease elimination levels in a homogeneous and heterogeneous population according to socioeconomic status with interactions amongst low- and high-income individuals and diversity in the average number of contacts amongst them. Effective reproductive rate simulations were deduced from a susceptibleinfected- recovered (SIR) mathematical model according to different immunisation rates using measles (1980 and 2005) and rubella (1998 and 2005) incidence data from Latin-America and the Caribbean. Low- and high-income individuals' social interaction and their average number of contacts were analysed by bipartite random network analysis. MAPLE 12 (Maplesoft Inc, Ontario Canada) software was used for making the simulations. The progress made in eliminating both diseases between both periods of time was reproduced in the socially-homogeneous population. Measles (2005) would be eliminated in high- and low-income groups; however, it would only be achieved in rubella (2005) if there were a high immunity rate amongst the low-income group. If the average number of contacts were varied, then rubella would not be eliminated, even with a 95 % immunity rate. Monitoring the elimination level in diseases like measles and rubella requires that socio-economic status be considered as well as the population's interaction pattern. Special attention should be paid to communities having diversity in their average number of contacts occurring in confined spaces such as displaced communities, prisons, educational establishments, or hospitals.

  4. Proton imaging apparatus for proton therapy application

    International Nuclear Information System (INIS)

    Sipala, V.; Lo Presti, D.; Brianzi, M.; Civinini, C.; Bruzzi, M.; Scaringella, M.; Talamonti, C.; Bucciolini, M.; Cirrone, G.A.P.; Cuttone, G.; Randazzo, N.; Stancampiano, C.; Tesi, M.

    2011-01-01

    Radiotherapy with protons, due to the physical properties of these particles, offers several advantages for cancer therapy as compared to the traditional radiotherapy and photons. In the clinical use of proton beams, a p CT (Proton Computer Tomography) apparatus can contribute to improve the accuracy of the patient positioning and dose distribution calculation. In this paper a p CT apparatus built by the Prima (Proton Imaging) Italian Collaboration will be presented and the preliminary results will be discussed.

  5. Protons and how they are transported by proton pumps

    DEFF Research Database (Denmark)

    Buch-Pedersen, Morten Jeppe; Pedersen, Bjørn Panyella; Veierskov, Bjarke

    2008-01-01

    The very high mobility of protons in aqueous solutions demands special features of membrane proton transporters to sustain efficient yet regulated proton transport across biological membranes. By the use of the chemical energy of ATP, plasma-membrane-embedded ATPases extrude protons from cells...... of plants and fungi to generate electrochemical proton gradients. The recently published crystal structure of a plasma membrane H(+)-ATPase contributes to our knowledge about the mechanism of these essential enzymes. Taking the biochemical and structural data together, we are now able to describe the basic...... molecular components that allow the plasma membrane proton H(+)-ATPase to carry out proton transport against large membrane potentials. When divergent proton pumps such as the plasma membrane H(+)-ATPase, bacteriorhodopsin, and F(O)F(1) ATP synthase are compared, unifying mechanistic premises for biological...

  6. Possibilities of polarized protons in Sp anti p S and other high energy hadron colliders

    International Nuclear Information System (INIS)

    Courant, E.D.

    1984-01-01

    The requirements for collisions with polarized protons in hadron colliders above 200 GeV are listed and briefly discussed. Particular attention is given to the use of the ''Siberan snake'' to eliminate depolarizing resonances, which occur when the spin precession frequency equals a frequency contained in the spectrum of the field seen by the beam. The Siberian snake is a device which makes the spin precession frequency essentially constant by using spin rotators, which precess the spin by 180 0 about either the longitudinal or transverse horizontal axis. It is concluded that operation with polarized protons should be possible at all the high energy hadron colliders

  7. Measurement of small-angle antiproton-proton and proton-proton elastic scattering at the CERN intersecting storage rings

    NARCIS (Netherlands)

    Amos, N.; Block, M.M.; Bobbink, G.J.; Botje, M.A.J.; Favart, D.; Leroy, C.; Linde, F.; Lipnik, P.; Matheys, J-P.; Miller, D.

    1985-01-01

    Antiproton-proton and proton-proton small-angle elastic scattering was measured for centre-of-mass energies at the CERN Intersectung Storage Rings. In addition, proton-proton elastic scattering was measured at . Using the optical theorem, total cross sections are obtained with an accuracy of about

  8. Proton transfer and complex formation of angiotensin I ions with gaseous molecules at various temperature

    International Nuclear Information System (INIS)

    Nonose, Shinji; Yamashita, Kazuki; Sudo, Ayako; Kawashima, Minami

    2013-01-01

    Highlights: • Proton transfer from angiotensin I ions (z = 2, 3) to gaseous molecules was studied. • Temperature dependence of absolute reaction rate constants was measured. • Remarkable changes were obtained for distribution of product ions and reaction rate constants. • Proton transfer reaction was enhanced and reduced by complex formation. • Conformation changes are induced by complex formation and or by thermal collision with He. - Abstract: Proton transfer reactions of angiotensin I ions for +2 charge state, [M + 2H] 2+ , to primary, secondary and aromatic amines were examined in the gas phase. Absolute reaction rate constants for proton transfer were determined from intensities of parent and product ions in the mass spectra. Temperature dependence of the reaction rate constants was measured. Remarkable change was observed for distribution of product ions and reaction rate constants. Proton transfer reaction was enhanced or reduced by complex formation of [M + 2H] 2+ with gaseous molecules. The results relate to conformation changes of [M + 2H] 2+ with change of temperature, which are induced by complex formation and or by thermal collision with He. Proton transfer reactions of angiotensin I ions for +3 charge state, [M + 3H] 3+ , were also studied. The reaction rates did not depend on temperature so definitely

  9. On proton CT reconstruction using MVCT-converted virtual proton projections

    Energy Technology Data Exchange (ETDEWEB)

    Wang Dongxu; Mackie, T. Rockwell; Tome, Wolfgang A. [Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705 and Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242 (United States); Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705 and Morgridge Institute of Research, University of Wisconsin, Madison, Wisconsin 53715 (United States); Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705 and Oncophysics Institute, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461 (United States)

    2012-06-15

    Purpose: To describe a novel methodology of converting megavoltage x-ray projections into virtual proton projections that are otherwise missing due to the proton range limit. These converted virtual proton projections can be used in the reconstruction of proton computed tomography (pCT). Methods: Relations exist between proton projections and multispectral megavoltage x-ray projections for human tissue. Based on these relations, these tissues can be categorized into: (a) adipose tissue; (b) nonadipose soft tissues; and (c) bone. These three tissue categories can be visibly identified on a regular megavoltage x-ray computed tomography (MVCT) image. With an MVCT image and its projection data available, the x-ray projections through heterogeneous anatomy can be converted to the corresponding proton projections using predetermined calibration curves for individual materials, aided by a coarse segmentation on the x-ray CT image. To show the feasibility of this approach, mathematical simulations were carried out. The converted proton projections, plotted on a proton sinogram, were compared to the simulated ground truth. Proton stopping power images were reconstructed using either the virtual proton projections only or a blend of physically available proton projections and virtual proton projections that make up for those missing due to the range limit. These images were compared to a reference image reconstructed from theoretically calculated proton projections. Results: The converted virtual projections had an uncertainty of {+-}0.8% compared to the calculated ground truth. Proton stopping power images reconstructed using a blend of converted virtual projections (48%) and physically available projections (52%) had an uncertainty of {+-}0.86% compared with that reconstructed from theoretically calculated projections. Reconstruction solely from converted virtual proton projections had an uncertainty of {+-}1.1% compared with that reconstructed from theoretical projections

  10. On proton CT reconstruction using MVCT-converted virtual proton projections

    International Nuclear Information System (INIS)

    Wang Dongxu; Mackie, T. Rockwell; Tomé, Wolfgang A.

    2012-01-01

    Purpose: To describe a novel methodology of converting megavoltage x-ray projections into virtual proton projections that are otherwise missing due to the proton range limit. These converted virtual proton projections can be used in the reconstruction of proton computed tomography (pCT). Methods: Relations exist between proton projections and multispectral megavoltage x-ray projections for human tissue. Based on these relations, these tissues can be categorized into: (a) adipose tissue; (b) nonadipose soft tissues; and (c) bone. These three tissue categories can be visibly identified on a regular megavoltage x-ray computed tomography (MVCT) image. With an MVCT image and its projection data available, the x-ray projections through heterogeneous anatomy can be converted to the corresponding proton projections using predetermined calibration curves for individual materials, aided by a coarse segmentation on the x-ray CT image. To show the feasibility of this approach, mathematical simulations were carried out. The converted proton projections, plotted on a proton sinogram, were compared to the simulated ground truth. Proton stopping power images were reconstructed using either the virtual proton projections only or a blend of physically available proton projections and virtual proton projections that make up for those missing due to the range limit. These images were compared to a reference image reconstructed from theoretically calculated proton projections. Results: The converted virtual projections had an uncertainty of ±0.8% compared to the calculated ground truth. Proton stopping power images reconstructed using a blend of converted virtual projections (48%) and physically available projections (52%) had an uncertainty of ±0.86% compared with that reconstructed from theoretically calculated projections. Reconstruction solely from converted virtual proton projections had an uncertainty of ±1.1% compared with that reconstructed from theoretical projections. If

  11. The Lamb shift in muonic hydrogen and the proton radius from effective field theories

    Energy Technology Data Exchange (ETDEWEB)

    Peset, Clara; Pineda, Antonio [Universitat Autonoma de Barcelona, Grup de Fisica Teorica, Dept. Fisica and IFAE, Bellaterra (Barcelona) (Spain)

    2015-12-15

    We comprehensively analyse the theoretical prediction for the Lamb shift in muonic hydrogen, and the associated determination of the proton radius. We use effective field theories. This allows us to relate the proton radius with well-defined objects in quantum field theory, eliminating unnecessary model dependence. The use of effective field theories also helps us to organize the computation so that we can clearly state the parametric accuracy of the result. In this paper we review all (and check several of) the contributions to the energy shift of order α{sup 5}, as well as those that scale like α{sup 6} x logarithms in the context of non-relativistic effective field theories of QED. (orig.)

  12. Minimal supersymmetric hybrid inflation, flipped SU(5) and proton decay

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Mansoor Ur; Shafi, Qaisar [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Wickman, Joshua R., E-mail: jwickman@udel.ed [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2010-04-26

    Minimal supersymmetric hybrid inflation utilizes a canonical Kaehler potential and a renormalizable superpotential which is uniquely determined by imposing a U(1) R-symmetry. In computing the scalar spectral index n{sub s} we take into account modifications of the tree level potential caused by radiative and supergravity corrections, as well as contributions from the soft supersymmetry breaking terms with a negative soft mass-squared term allowed for the inflaton. All of these contributions play a role in realizing n{sub s} values in the range 0.96-0.97 preferred by WMAP. The U(1) R-symmetry plays an important role in flipped SU(5) by eliminating the troublesome dimension five proton decay. The proton decays into e{sup +}pi{sup 0} via dimension six operators arising from the exchange of superheavy gauge bosons with a lifetime of order 10{sup 34}-10{sup 36} years.

  13. Positron lifetime study of copper irradiated by energetic protons or energetic neutrons

    International Nuclear Information System (INIS)

    Howell, R.H.

    1979-03-01

    Positron lifetime measurements of pure copper damaged by irradiation with energetic protons and neutrons are presented. Lifetime determinations of the bulk material and various traps were made, and the dependence of the trapping rate on dose and irradiation energy were investigated. The results from the neutron- and proton-irradiated samples point to the existence of traps with similar but distinct lifetime parameters, not varying greatly from values reported in deformation studies. Also, a trap with long lifetime is seen for some proton irradiations, but is never seen for the neutron irradiations. The trapping rate of the short-lifetime trap is a linear function of dose for proton-irradiated samples and nearly so for the neutron irradiation. 1 figure

  14. Proton therapy in Australia

    International Nuclear Information System (INIS)

    Jackson, M.

    2000-01-01

    Full text: Proton therapy has been in use since 1954 and over 25,000 patients have been treated worldwide. Until recently most patients were treated at physics research facilities but with the development of more compact and reliable accelerators it is now possible to realistically plan for proton therapy in an Australian hospital. The Australian National Proton Project has been formed to look at the feasibility of a facility which would be primarily for patient treatment but would also be suitable for research and commercial applications. A detailed report will be produced by the end of the year. The initial clinical experience was mainly with small tumours and other lesions close to critical organs. Large numbers of eye tumours have also been treated. Protons have a well-defined role in these situations and are now being used in the treatment of more common cancers. With the development of hospital-based facilities, over 2,500 patients with prostate cancer have been treated using a simple technique which gives results at least as good as radical surgery, external beam radiotherapy or brachytherapy. Importantly, the incidence of severe complications is very low. There are encouraging results in many disease sites including lung, liver, soft tissue sarcomas and oesophagus. As proton therapy becomes more widely available, randomised trials comparing it with conventional radiotherapy or Intensity Modulated Radiation Therapy (IMRT) will be possible. In most situations the use of protons will enable a higher dose to be given safely but in situations where local control rates are already satisfactory, protons are expected to produce less complications than conventional treatment. The initial costs of a proton facility are high but the recurrent costs are similar to other forms of high technology radiotherapy. . Simple treatment techniques with only a few fields are usually possible and proton therapy avoids the high integral doses associated with IMRT. This reduction in

  15. Proton transfer to charged platinum electrodes. A molecular dynamics trajectory study.

    Science.gov (United States)

    Wilhelm, Florian; Schmickler, Wolfgang; Spohr, Eckhard

    2010-05-05

    A recently developed empirical valence bond (EVB) model for proton transfer on Pt(111) electrodes (Wilhelm et al 2008 J. Phys. Chem. C 112 10814) has been applied in molecular dynamics (MD) simulations of a water film in contact with a charged Pt surface. A total of seven negative surface charge densities σ between -7.5 and -18.9 µC cm(-2) were investigated. For each value of σ, between 30 and 84 initial conditions of a solvated proton within a water slab were sampled, and the trajectories were integrated until discharge of a proton occurred on the charged surfaces. We have calculated the mean rates for discharge and for adsorption of solvated protons within the adsorbed water layer in contact with the metal electrode as a function of surface charge density. For the less negative values of σ we observe a Tafel-like exponential increase of discharge rate with decreasing σ. At the more negative values this exponential increase levels off and the discharge process is apparently transport limited. Mechanistically, the Tafel regime corresponds to a stepwise proton transfer: first, a proton is transferred from the bulk into the contact water layer, which is followed by transfer of a proton to the charged surface and concomitant discharge. At the more negative surface charge densities the proton transfer into the contact water layer and the transfer of another proton to the surface and its discharge occur almost simultaneously.

  16. The measurement and prediction of proton upset

    Science.gov (United States)

    Shimano, Y.; Goka, T.; Kuboyama, S.; Kawachi, K.; Kanai, T.

    1989-12-01

    The authors evaluate tolerance to proton upset for three kinds of memories and one microprocessor unit for space use by irradiating them with high-energy protons up to nearly 70 MeV. They predict the error rates of these memories using a modified semi-empirical equation of Bendel and Petersen (1983). A two-parameter method was used instead of Bendel's one-parameter method. There is a large difference between these two methods with regard to the fitted parameters. The calculation of upset rates in orbits were carried out using these parameters and NASA AP8MAC, AP8MIC. For the 93419 RAM the result of this calculation was compared with the in-orbit data taken on the MOS-1 spacecraft. A good agreement was found between the two sets of upset-rate data.

  17. Proton Mediated Chemistry and Catalysis in a Self-Assembled Supramolecular Host

    Energy Technology Data Exchange (ETDEWEB)

    Pluth, Michael; Bergman, Robert; Raymond, Kenneth

    2009-04-10

    Synthetic supramolecular host assemblies can impart unique reactivity to encapsulated guest molecules. Synthetic host molecules have been developed to carry out complex reactions within their cavities, despite the fact that they lack the type of specifically tailored functional groups normally located in the analogous active sites of enzymes. Over the past decade, the Raymond group has developed a series of self-assembled supramolecules and the Bergman group has developed and studied a number of catalytic transformations. In this Account, we detail recent collaborative work between these two groups, focusing on chemical catalysis stemming from the encapsulation of protonated guests and expanding to acid catalysis in basic solution. We initially investigated the ability of a water-soluble, self-assembled supramolecular host molecule to encapsulate protonated guests in its hydrophobic core. Our study of encapsulated protonated amines revealed rich host-guest chemistry. We established that self-exchange (that is, in-out guest movement) rates of protonated amines were dependent on the steric bulk of the amine rather than its basicity. The host molecule has purely rotational tetrahedral (T) symmetry, so guests with geminal N-methyl groups (and their attendant mirror plane) were effectively desymmetrized; this allowed for the observation and quantification of the barriers for nitrogen inversion followed by bond rotation. Furthermore, small nitrogen heterocycles, such as N-alkylaziridines, N-alkylazetidines, and N-alkylpyrrolidines, were found to be encapsulated as proton-bound homodimers or homotrimers. We further investigated the thermodynamic stabilization of protonated amines, showing that encapsulation makes the amines more basic in the cavity. Encapsulation raises the effective basicity of protonated amines by up to 4.5 pK{sub a} units, a difference almost as large as that between the moderate and strong bases carbonate and hydroxide. The thermodynamic stabilization

  18. Proton-Mediated Chemistry and Catalysis in a Self-Assembled Supramolecular Host

    International Nuclear Information System (INIS)

    Pluth, Michael; Bergman, Robert; Raymond, Kenneth

    2009-01-01

    Synthetic supramolecular host assemblies can impart unique reactivity to encapsulated guest molecules. Synthetic host molecules have been developed to carry out complex reactions within their cavities, despite the fact that they lack the type of specifically tailored functional groups normally located in the analogous active sites of enzymes. Over the past decade, the Raymond group has developed a series of self-assembled supramolecules and the Bergman group has developed and studied a number of catalytic transformations. In this Account, we detail recent collaborative work between these two groups, focusing on chemical catalysis stemming from the encapsulation of protonated guests and expanding to acid catalysis in basic solution. We initially investigated the ability of a water-soluble, self-assembled supramolecular host molecule to encapsulate protonated guests in its hydrophobic core. Our study of encapsulated protonated amines revealed rich host-guest chemistry. We established that self-exchange (that is, in-out guest movement) rates of protonated amines were dependent on the steric bulk of the amine rather than its basicity. The host molecule has purely rotational tetrahedral (T) symmetry, so guests with geminal N-methyl groups (and their attendant mirror plane) were effectively desymmetrized; this allowed for the observation and quantification of the barriers for nitrogen inversion followed by bond rotation. Furthermore, small nitrogen heterocycles, such as N-alkylaziridines, N-alkylazetidines, and N-alkylpyrrolidines, were found to be encapsulated as proton-bound homodimers or homotrimers. We further investigated the thermodynamic stabilization of protonated amines, showing that encapsulation makes the amines more basic in the cavity. Encapsulation raises the effective basicity of protonated amines by up to 4.5 pK a units, a difference almost as large as that between the moderate and strong bases carbonate and hydroxide. The thermodynamic stabilization of

  19. Determination of the Jet Neutron Rate and Fusion Power using the Magnetic Proton Recoil Neutron Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Sjoestrand, Henrik

    2003-01-01

    In this thesis a new independent method has been developed to enable precise measurements of neutron yields and rates from fusion plasmas and thereby determining the fusion power and fusion energy. The new method, together with the associated diagnostics, can provide information of great importance to present and future high fusion yield experiments, such as the Joint European Torus (JET) tokamak and the International Thermonuclear Experiment Reactor (ITER). The method has been applied to data from high fusion rate experiments from the tritium campaign at JET. By using the count-rate from the Magnetic Proton Recoil (MPR) neutron spectrometer the number of neutrons in the spectrometer's line of sight has been calculated. To be able to do this, all relevant factors between the plasma and the instrument have been evaluated. The number of neutrons in the MPR line of sight has been related to the total number of produced neutrons in the plasma by using information on the neutron emission profile. The achieved results have been compared with other JET neutron diagnostic data and the agreement is shown to be very good.

  20. Synthesis and Characterization of Sulfonated Graphene Oxide Reinforced Sulfonated Poly (Ether Ether Ketone (SPEEK Composites for Proton Exchange Membrane Materials

    Directory of Open Access Journals (Sweden)

    Ning Cao

    2018-03-01

    Full Text Available As a clean energy utilization device, full cell is gaining more and more attention. Proton exchange membrane (PEM is a key component of the full cell. The commercial-sulfonated, tetrafluoroethylene-based fluoropolymer-copolymer (Nafion membrane exhibits excellent proton conductivity under a fully humidified environment. However, it also has some disadvantages in practice, such as high fuel permeability, a complex synthesis process, and high cost. To overcome these disadvantages, a low-cost and novel membrane was developed. The sulfonated poly (ether ether ketone (SPEEK was selected as the base material of the proton exchange membrane. Sulfonated graphene (SG was cross-linked with SPEEK through the elimination reaction of hydrogen bonds. It was found that the sulfonic acid groups and hydrophilic oxygen groups increased obviously in the resultant membrane. Compared with the pure SPEEK membrane, the SG-reinforced membrane exhibited better proton conductivity and methanol permeability prevention. The results indicate that the SG/SPEEK could be applied as a new proton exchange membrane in fuel cells.

  1. Multimodal technique to eliminate humidity interference for specific detection of ethanol.

    Science.gov (United States)

    Jalal, Ahmed Hasnain; Umasankar, Yogeswaran; Gonzalez, Pablo J; Alfonso, Alejandro; Bhansali, Shekhar

    2017-01-15

    Multimodal electrochemical technique incorporating both open circuit potential (OCP) and amperometric techniques have been conceptualized and implemented to improve the detection of specific analyte in systems where more than one analyte is present. This approach has been demonstrated through the detection of ethanol while eliminating the contribution of water in a micro fuel cell sensor system. The sensor was interfaced with LMP91000 potentiostat, controlled through MSP430F5529LP microcontroller to implement an auto-calibration algorithm tailored to improve the detection of alcohol. The sensor was designed and fabricated as a three electrode system with Nafion as a proton exchange membrane (PEM). The electrochemical signal of the interfering phase (water) was eliminated by implementing the multimodal electrochemical detection technique. The results were validated by comparing sensor and potentiostat performances with a commercial sensor and potentiostat respectively. The results suggest that such a sensing system can detect ethanol at concentrations as low as 5ppm. The structure and properties such as low detection limit, selectivity and miniaturized size enables potential application of this device in wearable transdermal alcohol measurements. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. National Cancer Database Analysis of Proton Versus Photon Radiation Therapy in Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, Kristin A., E-mail: kristin.higgins@emory.edu [Department of Radiation Oncology, Emory University, Atlanta, Georgia (United States); Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); O' Connell, Kelli [Rollins School of Public Health, Emory University, Atlanta, Georgia (United States); Liu, Yuan [Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Rollins School of Public Health, Emory University, Atlanta, Georgia (United States); Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia (United States); Gillespie, Theresa W. [Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Department of Surgery, Emory University, Atlanta, Georgia (United States); McDonald, Mark W. [Department of Radiation Oncology, Emory University, Atlanta, Georgia (United States); Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Pillai, Rathi N. [Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia (United States); Patel, Kirtesh R.; Patel, Pretesh R. [Department of Radiation Oncology, Emory University, Atlanta, Georgia (United States); Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Robinson, Clifford G. [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States); Simone, Charles B. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Owonikoko, Taofeek K. [Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia (United States); Belani, Chandra P. [Penn State Hershey Cancer Institute, Pennsylvania University, Hershey, Pennsylvania (United States); and others

    2017-01-01

    Purpose: To analyze outcomes and predictors associated with proton radiation therapy for non-small cell lung cancer (NSCLC) in the National Cancer Database. Methods and Materials: The National Cancer Database was queried to capture patients with stage I-IV NSCLC treated with thoracic radiation from 2004 to 2012. A logistic regression model was used to determine the predictors for utilization of proton radiation therapy. The univariate and multivariable association with overall survival were assessed by Cox proportional hazards models along with log–rank tests. A propensity score matching method was implemented to balance baseline covariates and eliminate selection bias. Results: A total of 243,822 patients (photon radiation therapy: 243,474; proton radiation therapy: 348) were included in the analysis. Patients in a ZIP code with a median income of <$46,000 per year were less likely to receive proton treatment, with the income cohort of $30,000 to $35,999 least likely to receive proton therapy (odds ratio 0.63 [95% confidence interval (CI) 0.44-0.90]; P=.011). On multivariate analysis of all patients, non-proton therapy was associated with significantly worse survival compared with proton therapy (hazard ratio 1.21 [95% CI 1.06-1.39]; P<.01). On propensity matched analysis, proton radiation therapy (n=309) was associated with better 5-year overall survival compared with non-proton radiation therapy (n=1549), 22% versus 16% (P=.025). For stage II and III patients, non-proton radiation therapy was associated with worse survival compared with proton radiation therapy (hazard ratio 1.35 [95% CI 1.10-1.64], P<.01). Conclusions: Thoracic radiation with protons is associated with better survival in this retrospective analysis; further validation in the randomized setting is needed to account for any imbalances in patient characteristics, including positron emission tomography–computed tomography staging.

  3. Proton and deuteron NMR study of PTFE ionomer membranes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, G; Pak, Y S [Dept. of Materials Science, McMaster Univ., Hamilton, Ontario (Canada)

    1992-02-01

    Proton and deuteron NMR have been conducted to investigate the ionic motion in perfluorinated ionomer membranes from Dow Chemical (XUS) and DuPont (Nafion{sup R}). Two proton relaxation peaks were found in the XUS specimen absorbed with H{sub 2}O. The major (narrow) peak presented a spin-lattice relaxation time (T{sub 1}) of 107 ms while the minor (broader) one gave much longer T{sub 1}. While the former was attributed to the water molecules involved in restricted motion, the latter was expected to be associated with the protons located in the vicinity of the sulfonate groups. Similar to the previous results from the others, only a single peak was detected in Nafion{sup R} in {sup 1}H spectra, indicating that the protons in the different environments were engaging rapid exchange within NMR time scale. In contrast to the inverse proportion dependence of the linewidth on the water sorption in Nafion{sup R}, the major line of the XUS membrane exhibited insensitive linewidth dependence on the variation of H{sub 2}O concentration. The difference was attributed to the existence of narrow breaths of the pores in XUS sample, such that free water contribution to the enhancement of proton mobility was limited. The {sup 2}H spectra of Nafion{sup R} were found to possess a doublet, due to nuclear quadrupolar interaction. Dow (XUS) membrane treated in at 100% relative humidity (RH) D{sub 2}O presented a single peak with the linewidth insensitive to the amount of heavy water absorbed. An additional rise emerged on the ''shoulder'' of this single peak when treated at 33% RH. It is concluded that XUS membrane does not provide strong hydrogen bonding to eliminate the rapid motion average over the nuclear quadrupole interaction. (orig.).

  4. Intrinsic uncoupling of mitochondrial proton pumps. 2. Modeling studies.

    Science.gov (United States)

    Pietrobon, D; Zoratti, M; Azzone, G F; Caplan, S R

    1986-02-25

    The thermodynamic and kinetic properties associated with intrinsic uncoupling in a six-state model of a redox proton pump have been studied by computing the flow-force relations for different degrees of coupling. Analysis of these relations shows the regulatory influence of the thermodynamic forces on the extent and relative contributions of redox slip and proton slip. Inhibition has been introduced into the model in two different ways, corresponding to possible modes of action of experimental inhibitors. Experiments relating the rate of electron transfer to delta microH at static head upon progressive inhibition of the pumps have been simulated considering (1) the limiting case that the nonzero rate of electron transfer at static head is only due to intrinsic uncoupling (no leaks) and (2) the experimentally observed case that about 30% of the nonzero rate of electron transfer at static head is due to a constant proton leakage conductance in parallel with the pumps, the rest being due to intrinsic uncoupling. The same simulations have been performed for experiments in which the rate of electron transfer is varied by varying the substrate concentration rather than by using an inhibitor. The corresponding experimental results obtained by measuring delta microH and the rate of electron transfer at different succinate concentrations in rat liver mitochondria are presented. Comparison between simulated behavior and experimental results leads to the general conclusion that the typical relationship between rate of electron transfer and delta microH found in mitochondria at static head could certainly be a manifestation of some degree of intrinsic uncoupling in the redox proton pumps.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Actin-cytoskeleton rearrangement modulates proton-induced uptake

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Dov, Nadav [Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv (Israel); Korenstein, Rafi, E-mail: korens@post.tau.ac.il [Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv (Israel)

    2013-04-15

    Recently it has been shown that elevating proton concentration at the cell surface stimulates the formation of membrane invaginations and vesicles accompanied by an enhanced uptake of macromolecules. While the initial induction of inward membrane curvature was rationalized in terms of proton-based increase of charge asymmetry across the membrane, the mechanisms underlying vesicle formation and its scission are still unknown. In light of the critical role of actin in vesicle formation during endocytosis, the present study addresses the involvement of cytoskeletal actin in proton-induced uptake (PIU). The uptake of dextran-FITC is used as a measure for the factual fraction of inward invaginations that undergo scission from the cell's plasma membrane. Our findings show that the rate of PIU in suspended cells is constant, whereas the rate of PIU in adherent cells is gradually increased in time, saturating at the level possessed by suspended cells. This is consistent with pH induced gradual degradation of stress-fibers in adherent cells. Wortmannin and calyculin-A are able to elevate PIU by 25% in adherent cells but not in suspended cells, while cytochalasin-D, rapamycin and latrunculin-A elevate PIU both in adherent and suspended cells. However, extensive actin depolymerization by high concentrations of latrunculin-A is able to inhibit PIU. We conclude that proton-induced membrane vesiculation is restricted by the actin structural resistance to the plasma membrane bending. Nevertheless, a certain degree of cortical actin restructuring is required for the completion of the scission process. - Highlights: ► Acidification of cells' exterior enhances uptake of macromolecules by the cells. ► Disruption of actin stress fibers leads to enhancement of proton induced uptake. ► Extensive depolymerization of cellular actin attenuates proton-induced uptake.

  6. Uptake, absorption efficiency and elimination of DDT in marine phytoplankton, copepods and fish

    International Nuclear Information System (INIS)

    Wang Xinhong; Wang Wenxiong

    2005-01-01

    Uptake, absorption efficiency and elimination of DDT were measured in marine phytoplankton, copepods (Acartia erythraea) and fish (mangrove snappers Lutjanus argentimaculatus). The uptake rate constant of DDT from water decreased with increasing trophic level. The dietary absorption efficiency (AE) of DDT was 10-29% in copepods and 72-99% in fish. Food concentration did not significantly affect the AEs of DDT, but the AEs varied considerably among the different food diets. The elimination rate constants of DDT by the copepods were comparable following uptake from the diet and from the water. Elimination of DDT from the fish was exceedingly low. Both aqueous and dietary uptake are equally important for DDT accumulation in the copepods. In fish, dissolved exposure is a more significant route than intake from the diet. The predicted trophic transfer factors in the copepods and the fish are consistent with the field measurements in marine zooplankton and fish. -Biomagnification and exposure of DDT in a marine food chain is demonstrated by measurements of uptake and elimination rates and kinetic modeling

  7. Mutant breeding of ornamental trees for creating variations with high value using Proton Beam

    International Nuclear Information System (INIS)

    Kwon, H. J.; Lim, J. H.; Woo, S. M.; Hwang, M. J.; Pyo, S. H.; Woo, J. S.

    2009-04-01

    It is necessary to induce the improved strains of ornamental plants with more disease-resistant and useful for landscape or phytoremediation. Mutation breeding has played an important role in crop improvement, and more than 2,000 mutant cultivars have been released. For the induction of mutation, gamma rays and X-rays are widely used as a mutagen. Proton beam had higher energy than -ray and worked with localized strength, so that proton-beam radiation could be valuable tool to induce useful strains of ornamental plants. Proton ion beam irradiation was used to induce a useful mutant in rice, chrysanthemum, carnation, and so on in Japan. Also, proton ion beam was used to select a useful host strain, in polyhydroxybutyrate (PHB), a member of biodegradable plastic, could be overproduced in Korea. Therefore, we surmise that the effects of proton beam is different from those of gamma rays and X-rays, and we expect proton beam to be a new mutagen. This research was conducted to investigate the proton-beam radiation sensitivity and seed germination rate of the various ornamental plants like as Albizia julibrissin, Ficus religiosa, Rhus chinensis, Sorbaria sorbilfolia and Spiraea chinensis, to survey the quantitative characteristics of proton beam induced strains. To induce the variants of ornamental plants, seeds were irradiated at the dose of 0∼2kGy of proton beam at room temperature. Proton beam energy level was 45 MeV and was irradiated at dose of 0∼2kGy by MC-50 Cyclotron. After irradiation, to assess the effects of proton beam on radiation sensitivity and morphological changes of the plants and the seed germination rate were analysed. By the proton beam radiation, the germination rate decreased at the higher dose. The other hand, the germination rate of Rhus chinensis increased the dose higher, so that it need to investigate the germination rate over 2kGy radiation. The effects of mutation induction by proton beam irradiation on seeds in Lagerstroemia indica were

  8. Mutant breeding of ornamental trees for creating variations with high value using Proton Beam

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, H. J.; Lim, J. H.; Woo, S. M.; Hwang, M. J.; Pyo, S. H.; Woo, J. S. [Phygen Co., Daejeon (Korea, Republic of)

    2009-04-15

    It is necessary to induce the improved strains of ornamental plants with more disease-resistant and useful for landscape or phytoremediation. Mutation breeding has played an important role in crop improvement, and more than 2,000 mutant cultivars have been released. For the induction of mutation, gamma rays and X-rays are widely used as a mutagen. Proton beam had higher energy than -ray and worked with localized strength, so that proton-beam radiation could be valuable tool to induce useful strains of ornamental plants. Proton ion beam irradiation was used to induce a useful mutant in rice, chrysanthemum, carnation, and so on in Japan. Also, proton ion beam was used to select a useful host strain, in polyhydroxybutyrate (PHB), a member of biodegradable plastic, could be overproduced in Korea. Therefore, we surmise that the effects of proton beam is different from those of gamma rays and X-rays, and we expect proton beam to be a new mutagen. This research was conducted to investigate the proton-beam radiation sensitivity and seed germination rate of the various ornamental plants like as Albizia julibrissin, Ficus religiosa, Rhus chinensis, Sorbaria sorbilfolia and Spiraea chinensis, to survey the quantitative characteristics of proton beam induced strains. To induce the variants of ornamental plants, seeds were irradiated at the dose of 0{approx}2kGy of proton beam at room temperature. Proton beam energy level was 45 MeV and was irradiated at dose of 0{approx}2kGy by MC-50 Cyclotron. After irradiation, to assess the effects of proton beam on radiation sensitivity and morphological changes of the plants and the seed germination rate were analysed. By the proton beam radiation, the germination rate decreased at the higher dose. The other hand, the germination rate of Rhus chinensis increased the dose higher, so that it need to investigate the germination rate over 2kGy radiation. The effects of mutation induction by proton beam irradiation on seeds in Lagerstroemia

  9. [Neoplastic transformation of mouse fibroblasts under the influence of high-energy protons and gamma-rays].

    Science.gov (United States)

    Voskanian, K Sh

    2004-01-01

    Oncoginic transformations of mouse fibroblasts C3H10T1/2 after exposure to proton energies 150 and 584 MeV were compared with fibroblast effects of gamma-radiation. Prior to exposure, cell populations (2.7 x 10(3) cells/cm2) were inoculated in plastic vials with the surface area of 75 cm2 and cultivated 11 days. Survivability was determined by comparing the number of cell colonies in irradiated and non-irradiated (control) vials. Transformation rate was calculated by dividing the total transformation focus number by the number of survived cells in a vial. Rate of oncogenic transformations after gamma- and proton (584 MeV) irradiation was essentially identical, i.e. the parameter grew rapidly at the doses 1 Gy. In the dose interval between 1 and 5 Gy, transformation rate for proton energy 150 MeV was found low compared with gamma-radiation and proton energy 584 MeV. It is hypothesized that the different transformation rate after exposure to proton energy 150 MeV is linked with the high linear energy transfer as compared with the proton energy of 584 MeV and gamma-radiation.

  10. Membrane introduction proton-transfer-reaction mass spectrometry

    International Nuclear Information System (INIS)

    Alexander, M.; Boscaini, E.; Maerk, T.; Lindinger, W.

    2002-01-01

    Proton-transfer-reaction mass spectrometry (PTR-MS) is a rapidly expanding field with multiple applications in ion physics, atmospheric chemistry, food chemistry, volatile organic compounds monitoring and biology. Initial studies that combine PTR-MS and membrane introduction mass spectrometry (MIMS) were researched and outlined. First using PTR-MS, certain fundamental physical properties of a poly-dimethylsiloxane (PDMS) membrane including solubilities and diffusion coefficients were measured. Second, it was shown how the chemical selectivity of the (PDMS) can be used to extend the capabilities of the PTR-MS instrument by eliminating certain isobaric interferences and excluding water from volatile organic compounds (VOCs). Experiments with mixtures of several VOCs (toluene, benzene, acetone, propanal, methanol) are presented. (nevyjel)

  11. Experimental Investigation of the ^{19}Ne(p,γ)^{20}Na Reaction Rate and Implications for Breakout from the Hot CNO Cycle.

    Science.gov (United States)

    Belarge, J; Kuvin, S A; Baby, L T; Baker, J; Wiedenhöver, I; Höflich, P; Volya, A; Blackmon, J C; Deibel, C M; Gardiner, H E; Lai, J; Linhardt, L E; Macon, K T; Need, E; Rasco, B C; Quails, N; Colbert, K; Gay, D L; Keeley, N

    2016-10-28

    The ^{19}Ne(p,γ)^{20}Na reaction is the second step of a reaction chain which breaks out from the hot CNO cycle, following the ^{15}O(α,γ)^{19}Ne reaction at the onset of x-ray burst events. We investigate the spectrum of the lowest proton-unbound states in ^{20}Na in an effort to resolve contradictions in spin-parity assignments and extract reliable information about the thermal reaction rate. The proton-transfer reaction ^{19}Ne(d,n)^{20}Na is measured with a beam of the radioactive isotope ^{19}Ne at an energy around the Coulomb barrier and in inverse kinematics. We observe three proton resonances with the ^{19}Ne ground state, at 0.44, 0.66, and 0.82 MeV c.m. energies, which are assigned 3^{+}, 1^{+}, and (0^{+}), respectively. In addition, we identify two resonances with the first excited state in ^{19}Ne, one at 0.20 MeV and one, tentatively, at 0.54 MeV. These observations allow us for the first time to experimentally quantify the astrophysical reaction rate on an excited nuclear state. Our experiment shows an efficient path for thermal proton capture in ^{19}Ne(p,γ)^{20}Na, which proceeds through ground state and excited-state capture in almost equal parts and eliminates the possibility for this reaction to create a bottleneck in the breakout from the hot CNO cycle.

  12. Proton therapy

    International Nuclear Information System (INIS)

    Smith, Alfred R

    2006-01-01

    Proton therapy has become a subject of considerable interest in the radiation oncology community and it is expected that there will be a substantial growth in proton treatment facilities during the next decade. I was asked to write a historical review of proton therapy based on my personal experiences, which have all occurred in the United States, so therefore I have a somewhat parochial point of view. Space requirements did not permit me to mention all of the existing proton therapy facilities or the names of all of those who have contributed to proton therapy. (review)

  13. Proton-proton bremsstrahlung in a relativistic covariant model

    NARCIS (Netherlands)

    Martinus, Gerard Henk

    1998-01-01

    Proton-proton bremsstrahlung is one of the simplest processes involving the half off-shell NN interaction. Since protons are equally-charged particles with the same mass, electric-dipole radiation is suppressed and higher-order effects play an important role. Thus it is possible to get information

  14. CALCULATION OF THE PROTON-TRANSFER RATE USING DENSITY-MATRIX EVOLUTION AND MOLECULAR-DYNAMICS SIMULATIONS - INCLUSION OF THE PROTON EXCITED-STATES

    NARCIS (Netherlands)

    MAVRI, J; BERENDSEN, HJC

    1995-01-01

    The methodology for treatment of proton transfer processes by density matrix evolution (DME) with inclusion of many excited states is presented. The DME method (Berendsen, H. J. C.; Mavri, J. J. Phys. Chem. 1993, 97, 13464) that simulates the dynamics of quantum systems embedded in a classical

  15. Preliminary results of proton therapy in choroidal melanoma at the centre de proton therapy d'Orsay (C.P.O.): 464 initial cases

    International Nuclear Information System (INIS)

    Desjardins, L.; Levy, C.; D'hermies, F.; Frau, E.; Schlienger, P.; Habrand, J.L.; Mammar, H.; Schwartz, L.; Mazal, A.; Delacroix, S.; Nauraye, C.; Ferrand, R.; Asselain, B.

    1997-01-01

    Retrospective analysis of the treatment of choroidal melanoma with proton-therapy at the Centre de protontherapie d'Orsay, France. Between September 1991 and September 1995, 612 patients presenting with choroidal melanoma were treated by proton-therapy in Orsay. Following initial management of the first 464 patients, results were analyzed, as were results after a 1-year follow up for 305 patients, a 2-year follow-up for 169 patients, and a 3-year follow-up for 59 patients. Univariate analysis showed that the actuarial local recurrence rate was 5 %, the 3-year survival rate 88 %, and the overall metastatic rate 5%. The initial tumor volume was the most significant predictive factor for visual results and metastases. Multivariate analysis revealed that visual results were significantly related to the initial tumor volume, initial retinal detachment, and total dose delivered to the optic nerve and macula. Proton-therapy of choroidal melanoma allows in most cases conservation of the eye without modification of survival. Visual results mainly depend on the site and size of the tumor. (author)

  16. Proton-Proton and Proton-Antiproton Colliders

    CERN Document Server

    Scandale, Walter

    2014-01-01

    In the last five decades, proton–proton and proton–antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion–ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.

  17. Dynamics of Anti-Proton -- Protons and Anti-Proton -- Nucleus Reactions

    CERN Document Server

    Galoyan, A; Uzhinsky, V

    2016-01-01

    A short review of simulation results of anti-proton-proton and anti-proton-nucleus interactions within the framework of Geant4 FTF (Fritiof) model is presented. The model uses the main assumptions of the Quark-Gluon-String Model or Dual Parton Model. The model assumes production and fragmentation of quark-anti-quark and diquark-anti-diquark strings in the mentioned interactions. Key ingredients of the model are cross sections of string creation processes and an usage of the LUND string fragmentation algorithm. They allow one to satisfactory describe a large set of experimental data, especially, a strange particle production, Lambda hyperons and K mesons.

  18. Track etch parameters and annealing kinetics assessment of protons of low energy in CR-39 detector

    International Nuclear Information System (INIS)

    Jain, R.K.; Kumar, Ashok; Singh, B.K.

    2012-01-01

    Highlights: ► We calibrate CR-39 detector with very low energy protons. ► We establish linear relationship between track diameter and time/energy up to 200 keV. ► We determine activation energy of annealing using different models. ► We justify concept of single annealing activation energy in CR-39. - Abstract: In this paper threshold of the registration sensitivity of very low energy proton in CR-39 is investigated. Irradiation of CR-39 (poly-allyl-diglycol carbonate) was carried out with very low energy mono energetic protons of 20–60 keV from a mini proton accelerator. Nearly 10 4 /cm 2 fluence of protons was used. The variation of track diameter with etching time as well as proton energy response curve was carefully calibrated. The bulk and track etch rates were measured by using proton track diameters. Bulk etch rate was also measured by the thickness of removed surface layer. The thermal annealing of proton track at temperatures ranging from 100 to 200 °C in CR-39 was studied by several models. Activation energy of annealed CR-39 detectors was calculated by slope of track etch rate and temperature plot. The data of proton tracks of 200, 250 and 300 keV from 400 kV Van-de-Graaff accelerator was also used and compared with the track diameters of different energies of proton.

  19. Measurement of metabolism of worker ants by using the elimination of caesium-134

    International Nuclear Information System (INIS)

    Nielsen, M.G.; Jensen, T.F.

    1977-01-01

    In order to find a method for measuring field metabolism of worker ants the elimination of 134 Cs by two ant species has been investigated. Equations relating temperature to radiocaesium elimination and metabolism have been found. From these equations the relationship between elimination and metabolism is calculated. Consequently, the elimination of the isotope can be used for measuring metabolism. A pilot field experiment with Lasius alienus (Foerst.) reveals that the traditional methods of estimating field metabolism give values which are considerably lower than the value based on caesium elimination rate. This difference is supposed to be mainly due to greater motor activity of the animals in the field. Consequently, the value of the caesium elimination method is closer to the 'true' value of field metabolism. (orig.) [de

  20. Eliminating radium from uranium mill acid effluent with barium chloride-sodium carbonate precipitation

    International Nuclear Information System (INIS)

    Xiao Jiayuan

    1998-01-01

    The eliminating radium procedure, barium chloride-sodium carbonate-sand filtering, being used, radium can be eliminated to 3.7 x 10 -2 Bq/L order of magnitude from uranium mill acid effluents which contain 3.7 Bq/L Ra and pH 6∼9 when Ba 2+ is added by 3∼5 mg per litre, Na 2 CO 3 5mg. The radium elimination rate is more than 90%

  1. Proton: the particle.

    Science.gov (United States)

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10(80). Protons were created at 10(-6) -1 second after the Big Bang at ≈1.37 × 10(10) years beforethe present. Proton life span has been experimentally determined to be ≥10(34) years; that is, the age of the universe is 10(-24)th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W(+), W(-), Z(0), and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter. Copyright © 2013 Elsevier Inc. All

  2. Proton: The Particle

    Energy Technology Data Exchange (ETDEWEB)

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10{sup 80}. Protons were created at 10{sup −6} –1 second after the Big Bang at ≈1.37 × 10{sup 10} years beforethe present. Proton life span has been experimentally determined to be ≥10{sup 34} years; that is, the age of the universe is 10{sup −24}th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W{sup +}, W{sup −}, Z{sup 0}, and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter.

  3. The one-armed ATLAS Forward Proton detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00372192; Lange, Joern

    The ATLAS experiment at the European Laboratory for Particle Physics (CERN), Geneva, has been taking data successfully since the Large Hadron Collider (LHC) accelerator started operations in 2010. Since then, it has been generating proton-proton collisions to study the frontiers of particle physics, at a centre of mass energy of 7-8 TeV first and, more recently, 13 TeV. However, the experiment is in constant evolution: detectors ageing due to radiation damage, increasing collision rates and pile-up, and new scientific objectives often require upgrades of the ATLAS detectors. These ever-growing challenges motivate the continued research and development of new detector technologies. To enhance the physics search of the experiment the ATLAS collaboration recently added a forward detector to identify intact protons that emerge from LHC collisions at very shallow angles. The ATLAS Forward Proton (AFP) detector enables the identification of diffractive processes and, ultimately, of central exclusive events, thus al...

  4. Elimination reactions. V. Steric effects in Hofmann elimination

    International Nuclear Information System (INIS)

    Coke, J.L.; Smith, G.D.; Britton, G.H. Jr.

    1975-01-01

    Earlier Hofmann elimination studies were extended, and the percent syn eliminations in several ring systems have been correlated using cis-d 1 and trans-d 1 models. The measurements of several syn and anti k/sub H//k/sub D/ kinetic isotope effects are reported. Results indicate that Hofmann elimination of N,N,N-trimethyl-3,3-dimethylcyclopentylammonium hydroxide goes by 97 percent syn mechanism to give 3,3-dimethylcyclopentene and by 70 + - 6 percent syn mechanism to give 4,4-dimethylcyclopentene. There appears to be severe steric interactions in the anti mechanism in the 3,3-dimethylcyclopentyl system. Results indicate that, for Hofmann pyrolysis of trimethylammonium hydroxides, cyclopentene is formed by a 39 +- 7 percent syn mechanism, cyclohexene is formed by a 2 + - 2 percent syn mechanism, and cycloheptene is formed by a 30 +- 2 percent syn mechanism. Steric effects on isotope effects and mechanisms are discussed. (U.S.)

  5. Epoxy-crosslinked sulfonated poly (phenylene) copolymer proton exchange membranes

    Science.gov (United States)

    Hibbs, Michael; Fujimoto, Cy H.; Norman, Kirsten; Hickner, Michael A.

    2010-10-19

    An epoxy-crosslinked sulfonated poly(phenylene) copolymer composition used as proton exchange membranes, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cell, in electrode casting solutions and electrodes, and in sulfur dioxide electrolyzers. These improved membranes are tougher, have higher temperature capability, and lower SO.sub.2 crossover rates.

  6. Detection of individual spin transitions of a single proton confined in a cryogenic Penning trap

    Energy Technology Data Exchange (ETDEWEB)

    Kracke, Holger

    2013-02-27

    The presented experiment for the determination of the magnetic moment of the proton is based on the measurement of the ratio of cyclotron frequency and Larmor frequency of a single proton confined in a cryogenic double-Penning trap. In the course of this thesis, the simultaneous non-destructive measurement of two of the three eigenfrequencies of the proton in thermal equilibrium with corresponding detection systems was demonstrated, which reduces the measurement time of the cyclotron frequency by a factor of two. Furthermore, this thesis presents the first detection of individual spin transitions of a single proton, which allows for the determination of the Larmor frequency. The continuous Stern-Gerlach effect is utilized to couple the magnetic moment to the axial mode of the trapped proton by means of a magnetic bottle. Thus, a spin flip causes a jump of the axial frequency, which can be measured non-destructively with highly-sensitive detection systems. However, not only the spin momentum is coupled to the axial motion but also the angular momentum. Thus, the main experimental challenge is the elimination of energy fluctuations in the radial modes in order to maintain spin flip resolution. Due to systematic studies on the stability of the axial frequency and a complete revision of the experimental setup, this goal was achieved. The spin state of the proton can be determined with very high fidelity for the very first time. Thus, this thesis represents an important step towards a high-precision determination of the magnetic moment of the proton.

  7. Antiproton-proton and proton-proton elastic scattering at 100 and 200 GeV/c

    International Nuclear Information System (INIS)

    Kaplan, D.H.; Karchin, P.; Orear, J.; Kalbach, R.M.; Krueger, K.W.; Pifer, A.E.; Baker, W.F.; Eartly, D.P.; Klinger, J.S.; Lennox, A.J.; Rubinstein, R.; McHugh, S.F.

    1982-01-01

    Antiproton-proton elastic scattering has been measured at 100 GeV/c for 0.5 2 and at 200 GeV/c for 0.9 2 . The data show that the -tapprox. =1.4 (GeV/c) 2 dip recently observed at 50 GeV/c persists to higher incident momenta. Proton-proton measurements made at the same beam momenta show similar structure

  8. Universal leakage elimination

    International Nuclear Information System (INIS)

    Byrd, Mark S.; Lidar, Daniel A.; Wu, L.-A.; Zanardi, Paolo

    2005-01-01

    'Leakage' errors are particularly serious errors which couple states within a code subspace to states outside of that subspace, thus destroying the error protection benefit afforded by an encoded state. We generalize an earlier method for producing leakage elimination decoupling operations and examine the effects of the leakage eliminating operations on decoherence-free or noiseless subsystems which encode one logical, or protected qubit into three or four qubits. We find that by eliminating a large class of leakage errors, under some circumstances, we can create the conditions for a decoherence-free evolution. In other cases we identify a combined decoherence-free and quantum error correcting code which could eliminate errors in solid-state qubits with anisotropic exchange interaction Hamiltonians and enable universal quantum computing with only these interactions

  9. The physics interests of a 10 TeV proton synchrotron, 400 x 400 GeV2 proton storage rings, and electron-proton storage rings

    International Nuclear Information System (INIS)

    Camilleri, L.

    1976-01-01

    This report consists of a collection of documents produced by two Study Groups, one on a multi-TeV Proton Synchrotron and the other on 400 x 400 GeV 2 Proton Storage Rings. In both studies the reactions of interest in the weak, electromagnetic and strong interactions are discussed. The technical feasibility of the relevant experiments is investigated by attempting. in each case, the design of an experimental set-up. Event rates are estimated using currently p revailing theoretical models and by extrapolation of results at present accelerators. In addition to the work of the two Study Groups, a section on the physics interests and technical problems of ep Storage Rings is included. (author)

  10. Proton decay theory

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1983-01-01

    Topics include minimal SU(5) predictions, gauge boson mediated proton decay, uncertainties in tau/sub p/, Higgs scalar effects, proton decay via Higgs scalars, supersymmetric SU(5), dimension 5 operators and proton decay, and Higgs scalars and proton decay

  11. Accumulation and elimination of radioactive phosphorus (32P) in some organs of the Tilapia Nilotica

    International Nuclear Information System (INIS)

    Banico, M.P.T.

    1989-01-01

    The rate of accumulation and elimination of 32 P was measured in five organs, i.e., brain, bone, heart, muscle and small intestines of the Tilapia nilotica at 19 0 C or 28 0 C. There was a faster rate of uptake at 28 0 C, with the small intestines having the highest concentration of radioactive material. Elimination rates, however, indicate that bone retains 32 P longest. (Auth.). 10 refs.; 2 figs

  12. Studies of scintillator response to 60 MeV protons in a proton beam imaging system

    Directory of Open Access Journals (Sweden)

    Rydygier Marzena

    2015-09-01

    Full Text Available A Proton Beam Imaging System (ProBImS is under development at the Institute of Nuclear Physics, Polish Academy of Sciences (IFJ PAN. The ProBImS will be used to optimize beam delivery at IFJ PAN proton therapy facilities, delivering two-dimensional distributions of beam profiles. The system consists of a scintillator, optical tract and a sensitive CCD camera which digitally records the light emitted from the proton-irradiated scintillator. The optical system, imaging data transfer and control software have already been developed. Here, we report preliminary results of an evaluation of the DuPont Hi-speed thick back screen EJ 000128 scintillator to determine its applicability in our imaging system. In order to optimize the light conversion with respect to the dose locally deposited by the proton beam in the scintillation detector, we have studied the response of the DuPont scintillator in terms of linearity of dose response, uniformity of light emission and decay rate of background light after deposition of a high dose in the scintillator. We found a linear dependence of scintillator light output vs. beam intensity by showing the intensity of the recorded images to be proportional to the dose deposited in the scintillator volume.

  13. LASL high-current proton storage rings

    International Nuclear Information System (INIS)

    Lawrence, G.P.; Cooper, R.K.; Hudgings, D.W.; Spalek, G.; Jason, A.J.; Higgins, E.F.; Gillis, R.E.

    1980-01-01

    The Proton Storage Ring at LAMPF is a high-current accumulator designed to convert long 800-MeV linac pulses into very short high-intensity proton bunches ideally suited to driving a pulsed polyenergetic neutron source. The Ring, authorized for construction at $19 million, will operate in a short-bunch high-frequency mode for fast neutron physics and a long-bunch low-frequency mode for thermal neutron-scattering programs. Unique features of the project include charge-changing injection with initial conversion from H - to H 0 , a high repetition rate fast-risetime extraction kicker, and high-frequency and first-harmonic bunching system

  14. Proton beam radiotherapy of iris melanoma

    International Nuclear Information System (INIS)

    Damato, Bertil; Kacperek, Andrzej; Chopra, Mona; Sheen, Martin A.; Campbell, Ian R.; Errington, R. Douglas

    2005-01-01

    Purpose: To report on outcomes after proton beam radiotherapy of iris melanoma. Methods and Materials: Between 1993 and 2004, 88 patients with iris melanoma received proton beam radiotherapy, with 53.1 Gy in 4 fractions. Results: The patients had a mean age of 52 years and a median follow-up of 2.7 years. The tumors had a median diameter of 4.3 mm, involving more than 2 clock hours of iris in 32% of patients and more than 2 hours of angle in 27%. The ciliary body was involved in 20%. Cataract was present in 13 patients before treatment and subsequently developed in another 18. Cataract had a 4-year rate of 63% and by Cox analysis was related to age (p = 0.05), initial visual loss (p < 0.0001), iris involvement (p < 0.0001), and tumor thickness (p < 0.0001). Glaucoma was present before treatment in 13 patients and developed after treatment in another 3. Three eyes were enucleated, all because of recurrence, which had an actuarial 4-year rate of 3.3% (95% CI 0-8.0%). Conclusions: Proton beam radiotherapy of iris melanoma is well tolerated, the main problems being radiation-cataract, which was treatable, and preexisting glaucoma, which in several patients was difficult to control

  15. Influence of the rated power in the performance of different proton exchange membrane (PEM) fuel cells

    International Nuclear Information System (INIS)

    San Martin, J.I.; Zamora, I.; San Martin, J.J.; Aperribay, V.; Torres, E.; Eguia, P.

    2010-01-01

    Fuel cells are clean generators that provide both electrical and thermal energy with a high global efficiency level. The characteristics of these devices depend on numerous parameters such as: temperature, fuel and oxidizer pressures, fuel and oxidizer flows, etc. Therefore, their influence should be evaluated to appropriately characterize behaviour of the fuel cell, in order to enable its integration in the electric system. This paper presents a theoretical and experimental analysis of the performance of two commercial Proton Exchange Membrane (PEM) fuel cells of 40 and 1200 W, and introduces the application of the principle of geometrical similarity. Using the principle of geometrical similarity it is possible to extrapolate the results obtained from the evaluation of one fuel cell to other fuel cells with different ratings. An illustrating example is included.

  16. Measurement of activation reaction rate distribution on a mercury target with a lead-reflector and light-water-moderator for high energy proton bombardment using AGS accelerator

    International Nuclear Information System (INIS)

    Kasugai, Yoshimi; Takada, Hiroshi; Meigo, Shin-ichiro

    2001-02-01

    Characteristic of spallation neutrons driven by GeV protons from a mercury target with a lead-reflector and light-water-moderator was studied experimentally using the Alternating Gradient Synchrotron (AGS) facility of Brookhaven National Laboratory in a framework of the ASTE (AGS Spallation Target Experiment) collaboration. Several reaction rates along with the mercury target were measured with the activation method at incident proton energies of 1.94, 12 and 24 GeV. Indium, niobium, aluminum, cobalt, nickel and bismuth were used as activation detectors to cover the threshold energy of between 0.33 and 40.9 MeV. This report summarizes the experimental procedure with all the measured data. (author)

  17. Baryon production in proton-proton collisions

    International Nuclear Information System (INIS)

    Liu, F.M.; Werner, K.

    2002-01-01

    Motivated by the recent rapidity spectra of baryons and antibaryons in pp collisions at 158 GeV and the Ω-bar/Ω ratio discussion, we reviewed string formation mechanism and some string models. This investigation told us how color strings are formed in ultrarelativistic proton-proton collisions

  18. Quarkonium production in high energy proton-proton and proton-nucleus collisions

    International Nuclear Information System (INIS)

    Conesa del Valle, Z.; Corcella, G.; Fleuret, F.; Ferreiro, E.G.; Kartvelishvili, V.; Kopeliovich, B.; Lansberg, J.P.; Lourenco, C.; Martinez, G.; Papadimitriou, V.; Satz, H.; Scomparin, E.; Ullrich, T.; Teryaev, O.; Vogt, R.; Wang, J.X.

    2011-01-01

    We present a brief overview of the most relevant current issues related to quarkonium production in high energy proton-proton and proton-nucleus collisions along with some perspectives. After reviewing recent experimental and theoretical results on quarkonium production in pp and pA collisions, we discuss the emerging field of polarisation studies. Afterwards, we report on issues related to heavy-quark production, both in pp and pA collisions, complemented by AA collisions. To put the work in broader perpectives, we emphasize the need for new observables to investigate the quarkonium production mechanisms and reiterate the qualities that make quarkonia a unique tool for many investigations in particle and nuclear physics.

  19. Proton beam radiotherapy of choroidal melanoma: The Liverpool-Clatterbridge experience

    International Nuclear Information System (INIS)

    Damato, Bertil; Kacperek, Andrzej; Chopra, Mona; Campbell, Ian R.; Errington, R. Douglas

    2005-01-01

    Purpose To report on outcomes after proton beam radiotherapy of choroidal melanoma using a 62-MeV cyclotron in patients considered unsuitable for other forms of conservative therapy. Methods and Materials A total of 349 patients with choroidal melanoma referred to the Liverpool Ocular Oncology Centre underwent proton beam radiotherapy at Clatterbridge Centre for Oncology (CCO) between January 1993 and December 2003. Four daily fractions of proton beam radiotherapy were delivered, with a total dose of 53.1 proton Gy, and with lateral and distal safety margins of 2.5 mm. Outcomes measured were local tumor recurrence; ocular conservation; vision; and metastatic death according to age, gender, eye, visual acuity, location of anterior and posterior tumor margins, quadrant, longest basal tumor dimension, tumor height, extraocular extension, and retinal invasion. Results The 5-year actuarial rates were 3.5% for local tumor recurrence, 9.4% for enucleation, 79.1% for conservation of vision of counting fingers or better, 61.1% for conservation of vision of 20/200 or better, 44.8% for conservation of vision of 20/40 or better, and 10.0% for death from metastasis. Conclusion Proton beam radiotherapy with a 62 MeV cyclotron achieves high rates of local tumor control and ocular conservation, with visual outcome depending on tumor size and location

  20. The underlying event in proton-proton collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel, F.

    2009-05-15

    In this thesis, studies of the underlying event in proton-proton collisions at a center-of-mass energy of {radical}(s) = 10 TeV are presented. Crucial ingredient to underlying event models are multiple parton-parton scatters in single proton-proton collisions. The feasibility of measuring the underlying event was investigated with the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) using charged particles and charged-particle jets. Systematic uncertainties of the underlying event measurement due to detector misalignment and imperfect track reconstruction are found to be negligible after {integral}Ldt=1 pb{sup -1} of data are available. Different model predictions are compared with each other using fully simulated Monte Carlo samples. It is found, that distinct models differ strongly enough to tell them apart with early data. (orig.)

  1. Conception of a New Recoil Proton Telescope for Real-Time Neutron Spectrometry in Proton-Therapy

    Science.gov (United States)

    Combe, Rodolphe; Arbor, Nicolas; el Bitar, Ziad; Higueret, Stéphane; Husson, Daniel

    2018-01-01

    Neutrons are the main type of secondary particles emitted in proton-therapy. Because of the risk of secondary cancer and other late occurring effects, the neutron dose should be included in the out-of-field dose calculations. A neutron spectrometer has to be used to take into account the energy dependence of the neutron radiological weighting factor. Due to its high dependence on various parameters of the irradiation (beam, accelerator, patient), the neutron spectrum should be measured independently for each treatment. The current reference method for the measurement of the neutron energy, the Bonner Sphere System, consists of several homogeneous polyethylene spheres with increasing diameters equipped with a proportional counter. It provides a highresolution reconstruction of the neutron spectrum but requires a time-consuming work of signal deconvolution. New neutron spectrometers are being developed, but the main experimental limitation remains the high neutron flux in proton therapy treatment rooms. A new model of a real-time neutron spectrometer, based on a Recoil Proton Telescope technology, has been developed at the IPHC. It enables a real-time high-rate reconstruction of the neutron spectrum from the measurement of the recoil proton trajectory and energy. A new fast-readout microelectronic integrated sensor, called FastPixN, has been developed for this specific purpose. A first prototype, able to detect neutrons between 5 and 20 MeV, has already been validated for metrology with the AMANDE facility at Cadarache. The geometry of the new Recoil Proton Telescope has been optimized via extensive Geant4 Monte Carlo simulations. Uncertainty sources have been carefully studied in order to improve simultaneously efficiency and energy resolution, and solutions have been found to suppress the various expected backgrounds. We are currently upgrading the prototype for secondary neutron detection in proton therapy applications.

  2. Mutation breeding of rape by using proton ion beam

    International Nuclear Information System (INIS)

    Eun, J. S.; Chang, Y. S.; Han, S. G.; Choi, S. R.; Kim, J. S.

    2006-04-01

    This experiment was carried out by irradiation the proton ion beam and gamma-ray at level 100 to 2,000 Gy on dry seeds of 3 varieties, 'Naehan', 'Hanla' and 'Tammi' to increase the cultivation area and develope for biodiesel in rape (Brassica napus) and checked the radiosensitivity test including germination rate, emergence rate and chromosome aberration and the occurrence of morphological mutant in M1 generation. The germination rate and emergence rate were 98∼100% because they had no relation with radiation source, dosage and variety. There was no significance in survival rate up to 1,000 Gy dosage after sowing of 7 days and remarkably reduced from 39.5 to 69.6% at 1,500 to 2,000 Gy dosage. The length and area of cotyledon, and hypocotyl length were highly reduced with significance by increasing dosage of proton ion and gamma-irradiation in all 3 varieties and showed the sensitive responses on 'Naehan', 'Hanla' and 'Tammi' in order. By the way, there was a radiation hormesis in 'Tammi' by increasing the length and area of cotyledon in the proton ion treatment at 100∼200 Gy dosage compared to the control (no treatment). With the same effect, it had the similar results in the fresh weight of above-aerial parts in 3∼4 weeks after sowing

  3. Uptake and elimination kinetics of metals in soil invertebrates: a review.

    Science.gov (United States)

    Ardestani, Masoud M; van Straalen, Nico M; van Gestel, Cornelis A M

    2014-10-01

    Uptake and elimination kinetics of metals in soil invertebrates are a function of both soil and organism properties. This study critically reviewed metal toxicokinetics in soil invertebrates and its potential use for assessing bioavailability. Uptake and elimination rate constants of different metals are summarized. Invertebrates have different strategies for essential and non-essential metals. As a consequence, different types of models must be applied to describe metal uptake and elimination kinetics. We discuss model parameters for each metal separately and show how they are influenced by exposure concentrations and by physiological properties of the organisms. Soil pH, cation exchange capacity, clay and organic matter content significantly affect uptake rates of non-essential metals in soil invertebrates. For essential metals, kinetics is hardly influenced by soil properties, but rather prone to physiological regulation mechanisms of the organisms. Our analysis illustrates that toxicokinetics can be a valuable measurement to assess bioavailability of soil-bound metals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Induction of cancer cell death by proton beam in tumor hypoxic region

    International Nuclear Information System (INIS)

    Lee, Y. M.; Heo, T. R.; Lee, K. B.; Jang, K. H.; Kim, H. N.; Lee, S. H.; Jeong, M. H.

    2008-04-01

    Proton beam has been applied to treat various tumor patients in clinical studies. However, it is still undefined whether proton radiation can inhibit the blood vessel formation and induce the cell death in vascular endothelial cells in growing organs. The aim of this study are first, to develop an optimal animal model for the observation of blood vessel development with low dose of proton beam and second, to investigate the effect of low dose proton beam on the inhibition of blood vessel formation induced by hypoxic conditions. In this study, flk1-GFP transgenic zebrafish embryos were used to directly visualize and determine the inhibition of blood vessels by low dose (1, 2, 5 Gy) of proton beam with spread out Bragg peak (SOBP). And we observed cell death by acridine orange staining at 96 hours post fertilization (hpf) stage of embryos after proton irradiation. We also compared the effects of proton beam with those of gamma-ray. An antioxidant, N-acetyl cystein (NAC) was used to investigate whether reactive oxygen species (ROS) were involved in the cell deaths induced by proton irradiation. Irradiated flk-1-GFP transgenic embryos with proton beam irradiation (35 MeV, spread out Bragg peak, SOBP) demonstrated a marked inhibition of embryonic growth and an altered fluorescent blood vessel development in the trunk region. When the cells with DNA damage in the irradiated zebrafish were stained with acridine orange, green fluorescent cell death spots were increased in trunk regions compared to non-irradiated control embryos. Proton beam also significantly increased the cell death rate in human umbilical vein endothelial cells (HUVEC), but pretreatment of N-acetyl cystein (NAC), an antioxidant, recovered the proton-induced cell death rate (p<0.01). Moreover, pretreatment of NAC abrogated the effect of proton beam on the inhibition of trunk vessel development and malformation of trunk truncation. From this study, we found that proton radiation therapy can inhibit the

  5. MUSE: Measuring the proton radius with muon-proton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bernauer, Jan Christopher [Massachusetts Institute of Technology, Cambridge (United States)

    2014-07-01

    The proton radius has been measured so far using electron-proton scattering, electronic Hydrogen spectroscopy and muonic Hydrogen spectroscopy, the latter producing a much more accurate, but seven sigma different, result, leading to the now famous proton radius puzzle. The MUSE collaboration aims to complete the set of measurements by using muon scattering to determine the proton radius and to shed light on possible explanations of the discrepancy. The talk gives an overview of the experiment motivation and design and a status report on the progress.

  6. Uptake and elimination of radiotungsten in black bullheads

    International Nuclear Information System (INIS)

    Reed, J.R.

    1975-01-01

    Black bullheads, Ictalurus melas (Rafinesque), accumulated radiotungsten from food and water. Whole-body activity reached a plateau after the fish had been in tagged water 4 days (mean temperature 154 0 C). Whole-body elimination of radiotungsten varied with the method of uptake. Fish that had accumulated radiotungsten from water had a single exponential component of elimination with a biological half-life of 2.75 days. Fish that had received radioisotope in a single feeding lost activity at two rates; one component had a biological half-life of 14 hr and the second 6 days. The bone, skin, flesh, blood, and gills contained the greatest percentages of whole-body activity after 1 day of uptake from tagged water; after 8 days, the flesh, gills, bone, and gut together contained 78.6 percent of the total activity. The bone had the longest biological half-life (8.0 days) of the tissues examined and contained 69.8 percent of the whole-body acitivty after 16 days of elimination

  7. Proton therapy device

    International Nuclear Information System (INIS)

    Tronc, D.

    1994-01-01

    The invention concerns a proton therapy device using a proton linear accelerator which produces a proton beam with high energies and intensities. The invention lies in actual fact that the proton beam which is produced by the linear accelerator is deflected from 270 deg in its plan by a deflecting magnetic device towards a patient support including a bed the longitudinal axis of which is parallel to the proton beam leaving the linear accelerator. The patient support and the deflecting device turn together around the proton beam axis while the bed stays in an horizontal position. The invention applies to radiotherapy. 6 refs., 5 figs

  8. Addition and elimination kinetics in OH radical induced oxidation of phenol and cresols in acidic and alkaline solutions

    International Nuclear Information System (INIS)

    Roder, M.; Wojnarovits, L.; Foeldiak, G.; Emmi, S.S.; Beggiato, G.; D'Angelantonio, M.

    1999-01-01

    The rates of the two consecutive reactions, OH radical addition and H 2 O/OH - elimination, were studied by pulse radiolysis in highly acidic (pH=1.3-1.9) and alkaline (pH∼11) solutions, respectively, for phenol and for the three cresol isomers. The rate coefficient of the addition as measured by the build-up of phenoxyl radical absorbance and by a competitive method is the same (1.4±0.1)x10 10 mol -1 dm 3 s -1 both in acidic and alkaline solution. The rate coefficient of the H 2 O elimination in acidic solution is (1.6±0.2)x10 6 s -1 , whereas the coefficient of the OH - elimination in alkaline solutions is 6-8 times higher. The kinetics of the phenoxyl radical formation was described by the two-exponential equation of the consecutive reactions: the first exponential is related to the pseudo-first-order addition, while the second to the elimination reaction. No considerable structure dependence was found in the rate coefficients, indicating that the methyl substitutent in these highly acidic or alkaline solutions influences neither the addition nor the elimination rate

  9. Delayed protons and properties of proton-rich nuclei

    International Nuclear Information System (INIS)

    Karnaukhov, V.A.

    1976-01-01

    The object of the investigation is to study the properties of proton-rich nuclei. The emphasis in the proposed survey is made on investigations in the range of Z > 50. Measurement of the total energy in emission of delayed protons (DP) enables one to determine the difference between the masses of initial and final isotopes. The statistical model of the DP emission is used for describing the proton spectrum. A comparison of the DP experimental and theoretical spectra shows that the presence of local resonances in the strength functions of the β dacay is rather a rule than an exception. Studies into the fine structure of the proton spectra supply information of the density of nuclei considerably removed from the β-stability line at the excitation energies of 3-7 MeV. The aproaches for retrieval of nuclear information with the aid of proton radiators developed so far can serve as a good basis for systematic investigation over a wide range of A and Z

  10. Transfer Rate Edited experiment for the selective detection of Chemical Exchange via Saturation Transfer (TRE-CEST)

    Science.gov (United States)

    Friedman, Joshua I.; Xia, Ding; Regatte, Ravinder R.; Jerschow, Alexej

    2015-07-01

    Chemical Exchange Saturation Transfer (CEST) magnetic resonance experiments have become valuable tools in magnetic resonance for the detection of low concentration solutes with far greater sensitivity than direct detection methods. Accurate measures of rates of chemical exchange provided by CEST are of particular interest to biomedical imaging communities where variations in chemical exchange can be related to subtle variations in biomarker concentration, temperature and pH within tissues using MRI. Despite their name, however, traditional CEST methods are not truly selective for chemical exchange and instead detect all forms of magnetization transfer including through-space NOE. This ambiguity crowds CEST spectra and greatly complicates subsequent data analysis. We have developed a Transfer Rate Edited CEST experiment (TRE-CEST) that uses two different types of solute labeling in order to selectively amplify signals of rapidly exchanging proton species while simultaneously suppressing 'slower' NOE-dominated magnetization transfer processes. This approach is demonstrated in the context of both NMR and MRI, where it is used to detect the labile amide protons of proteins undergoing chemical exchange (at rates ⩾ 30 s-1) while simultaneously eliminating signals originating from slower (∼5 s-1) NOE-mediated magnetization transfer processes. TRE-CEST greatly expands the utility of CEST experiments in complex systems, and in-vivo, in particular, where it is expected to improve the quantification of chemical exchange and magnetization transfer rates while enabling new forms of imaging contrast.

  11. Beam-induced and cosmic-ray backgrounds observed in the ATLAS detector during the LHC 2012 proton-proton running period

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arduini, Gianluigi; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Broughton, James; Bruce, Roderik; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerda Alberich, Leonor; Cerio, Benjamin; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Stephen Kam-wah; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chatterjee, Avishek; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Colasurdo, Luca; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Ennis, Joseph Stanford; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Federica; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Louis Guillaume; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gongadze, Alexi; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Grohs, Johannes Philipp; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanneau, Fabien; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Köhler, Markus Konrad; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Kentaro, Kawade; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Lazzaroni, Massimo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Lerner, Giuseppe; Leroy, Claude; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Qi; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Lindquist, Brian Edward; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Hongbin; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; Marceca, Gino; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McClymont, Laurie; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Muskinja, Miha; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'grady, Fionnbarr; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palm, Marcus; Palma, Alberto; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Perez Codina, Estel; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puddu, Daniele; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Ratti, Maria Giulia; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodina, Yulia; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Hong Ye; Sood, Alexander; Sopczak, Andre; Sopko, Vit; Sorin, Veronica; Sosa, David; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Stärz, Steffen; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tseng, Jeffrey; Tsiareshka, Pavel; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turgeman, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tyndel, Mike; Ucchielli, Giulia; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz

    2016-05-20

    This paper discusses various observations on beam-induced and cosmic-ray backgrounds in the ATLAS detector during the LHC 2012 proton-proton run. Building on published results based on 2011 data, the correlations between background and residual pressure of the beam vacuum are revisited. Ghost charge evolution over 2012 and its role for backgrounds are evaluated. New methods to monitor ghost charge with beam-gas rates are presented and observations of LHC abort gap population by ghost charge are discussed in detail. Fake jets from colliding bunches and from ghost charge are analysed with improved methods, showing that ghost charge in individual radio-frequency buckets of the LHC can be resolved. Some results of two short periods of dedicated cosmic-ray background data-taking are shown; in particular cosmic-ray muon induced fake jet rates are compared to Monte Carlo simulations and to the fake jet rates from beam background. A thorough analysis of a particular LHC fill, where abnormally high background was obse...

  12. Study of inelastic processes in proton-proton collisions at the LHC with the TOTEM Experiment

    CERN Document Server

    Brogi, Paolo; Latino, Giuseppe

    2011-01-01

    The TOTEM experiment, located into the CMS cavern at the CERN Large Hadron Collider (LHC), is one of the six experiments that are investigating high energy physics at this new machine. In particular TOTEM has been designed for TOTal cross-section, Elastic scattering and diffraction dissociation Measurements. The total proton-proton cross-section will be measured with the luminosity-independent method based on the Optical Theorem. This method will allow a precision of 1÷2% at the center of mass energy of 14 TeV. In order to reach such a small error it is necessary to study the p-p elastic scattering cross-section (dσ/dt) down to |t|∼ 10^−3 GeV^2 (to evaluate at best the extrapolation to t = 0) and, at the same time, to measure the total inelastic interaction rate. For this aim, elastically scattered protons must be detected at very small angles with respect to the beam while having the largest possible η coverage for particle detection in order to reduce losses of inelastic events. In addition, TOTEM wi...

  13. Predictions of diffractive cross sections in proton-proton collisions

    Energy Technology Data Exchange (ETDEWEB)

    Goulianos, Konstantin [Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States)

    2013-04-15

    We review our pre-LHC predictions of the total, elastic, total-inelastic, and diffractive components of proton-proton cross sections at high energies, expressed in the form of unitarized expressions based on a special parton-model approach to diffraction employing inclusive proton parton distribution functions and QCD color factors and compare with recent LHC results.

  14. Spherical proton emitters

    International Nuclear Information System (INIS)

    Berg, S.; Semmes, P.B.; Nazarewicz, W.

    1997-01-01

    Various theoretical approaches to proton emission from spherical nuclei are investigated, and it is found that all the methods employed give very similar results. The calculated decay widths are found to be qualitatively insensitive to the parameters of the proton-nucleus potential, i.e., changing the potential parameters over a fairly large range typically changes the decay width by no more than a factor of ∼3. Proton half-lives of observed heavy proton emitters are, in general, well reproduced by spherical calculations with the spectroscopic factors calculated in the independent quasiparticle approximation. The quantitative agreement with experimental data obtained in our study requires that the parameters of the proton-nucleus potential be chosen carefully. It also suggests that deformed proton emitters will provide invaluable spectroscopic information on the angular momentum decomposition of single-proton orbitals in deformed nuclei. copyright 1997 The American Physical Society

  15. Elastic proton-proton scattering at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Yip, K.

    2011-09-03

    Here we describe elastic proton+proton (p+p) scattering measurements at RHIC in p+p collisions with a special optics run of {beta}* {approx} 21 m at STAR, at the center-of-mass energy {radical}s = 200 GeV during the last week of the RHIC 2009 run. We present preliminary results of single and double spin asymmetries.

  16. Aprotic solvent systems provide mechanistic windows for biomolecular reactions: nucleic acid proton exchange

    International Nuclear Information System (INIS)

    McConnell, B.; Tan, A.

    1986-01-01

    Detection of general acid-base catalysis of proton transfer reactions in aqueous cytidine (or adenosine) is completely obscured by the highly reactive endocyclic protonated species of the nucleobase, whose amino proton lifetime is much shorter than that of the neutral form. In aqueous solution, protonation of the nucleobase always accompanies protonation of the buffer catalyzing exchange. However, in DMSO/water mixtures this is not the case; aqueous protonated acetate or chloroacetate can be added to cytidine in DMSO solutions without further dissociation of the buffer or significant protonation of cytidine N-3. Under these conditions general acid catalysis is observed, which involves an H-bonded complex between cytidine (N-3) and the buffer acid. Increased amino proton exchange in response to H-bond donation to C(N-3) is further suggested by increased 1 H NMR saturation-recovery rates with the formation of G-C base-pairs in DMSO and by the inverse dependence of amino proton exchange on nucleoside concentration

  17. A CGC/saturation approach for angular correlations in proton-proton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gotsman, E. [Tel Aviv University, Department of Particle Physics, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv (Israel); Levin, E. [Tel Aviv University, Department of Particle Physics, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv (Israel); Universidad Tecnica Federico Santa Maria, Departamento de Fisica, Valparaiso (Chile); Centro Cientifico-Tecnologico de Valparaiso, Valparaiso (Chile); Potashnikova, I. [Universidad Tecnica Federico Santa Maria, Departamento de Fisica, Valparaiso (Chile); Centro Cientifico-Tecnologico de Valparaiso, Valparaiso (Chile)

    2017-09-15

    We generalized our model for the description of hard processes, and calculate the value of the azimuthal angular correlations (Fourier harmonics v{sub n}), for proton-proton scattering. The energy and multiplicity independence, as well as the value of v{sub n}, turns out to be in accord with the experimental data, or slightly larger. Therefore, before making extreme assumptions on proton-proton collisions, such as the production of a quark-gluon plasma in large multiplicity events, we need to understand how these affect the Bose-Einstein correlations, which have to be taken into account since the Bose-Einstein correlations are able to describe the angular correlations in proton-proton collisions, without including final state interactions. (orig.)

  18. Ligand and proton exchange dynamics in recombinant human myoglobin mutants.

    Science.gov (United States)

    Lambright, D G; Balasubramanian, S; Boxer, S G

    1989-05-05

    Site-specific mutants of human myoglobin have been prepared in which lysine 45 is replaced by arginine (K45R) and aspartate 60 by glutamate (D60E), in order to examine the influence of these residues and their interaction on the dynamics of the protein. These proteins were studied by a variety of methods, including one and two-dimensional proton nuclear magnetic resonance spectroscopy, exchange kinetics for the distal and proximal histidine NH protons as a function of pH in the met cyano forms, flash photolysis of the CO forms, and ligand replacement kinetics. The electronic absorption and proton nuclear magnetic resonance spectra of the CO forms of these proteins are virtually identical, indicating that the structure of the heme pocket is unaltered by these mutations. There are, however, substantial changes in the dynamics of both CO binding and proton exchange for the mutant K45R, whereas the mutant D60E exhibits behavior indistinguishable from the reference human myoglobin. K45R has a faster CO bimolecular recombination rate and slower CO off-rate relative to the reference. The kinetics for CO binding are independent of pH (6.5 to 10) as well as ionic strength (0 to 1 M-NaCl). The exchange rate for the distal histidine NH is substantially lower for K45R than the reference, whereas the proximal histidine NH exchange rate is unaltered. The exchange behavior of the human proteins is similar to that reported for a comparison of the exchange rates for myoglobins having lysine at position 45 with sperm whale myoglobin, which has arginine at this position. This indicates that the differences in exchange rates reflects largely the Lys----Arg substitution. The lack of a simple correlation for the CO kinetics with this substitution means that these are sensitive to other factors as well. Specific kinetic models, whereby substitution of arginine for lysine at position 45 can affect ligand binding dynamics, are outlined. These experiments demonstrate that a relatively

  19. Proton-proton elastic scattering measurements at COSY

    Energy Technology Data Exchange (ETDEWEB)

    Bagdasarian, Zara [Forschungszentrum Juelich, Juelich (Germany); Tbilisi State University, Tbilisi (Georgia); Collaboration: ANKE-Collaboration

    2014-07-01

    To construct the reliable phase shift analysis (PSA) that can successfully describe the nucleon-nucleon (NN) interaction it is necessary to measure variety of experimental observables for both proton-proton (pp) and neutron-proton (np) elastic scattering. The polarized beams and targets at COSY-ANKE facility allow a substantial contribution to the existing database. The experiment was carried out in April 2013 at ANKE using a transversely polarized proton beam incident on an unpolarized hydrogen cluster target. Six beam energies of T{sub p}=0.8,1.6,1.8,2.0,2.2,2.4 GeV were used. The aim of this talk is to present the preliminary results for the analyzing power (A{sub y}) for the pp elastic scattering in the so-far unexplored 5 <θ{sub cm}<30 angular range. Our measurements are also compared to the world data and current partial wave solutions.

  20. Correlations associated with small angle protons produced in proton- proton collisions at 31 GeV total energy

    CERN Document Server

    Albrow, M G; Barber, D P; Bogaerts, A; Bosnjakovic, B; Brooks, J R; Clegg, A B; Erné, F C; Gee, C N P; Locke, D H; Loebinger, F K; Murphy, P G; Rudge, A; Sens, Johannes C

    1973-01-01

    High energy inelastic protons with x=2 p/sub L//s/sup 1/2/>0.99 observed in 15.3/15.3 GeV proton-proton collisions at the CERN ISR are accompanied by particles whose angular distribution is confined to a narrow cone in the opposite direction. In contrast, lower energy protons (0.72

  1. Role of neutrino mixing in accelerated proton decay

    Science.gov (United States)

    Blasone, M.; Lambiase, G.; Luciano, G. G.; Petruzziello, L.

    2018-05-01

    The decay of accelerated protons has been analyzed both in the laboratory frame (where the proton is accelerated) and in the comoving frame (where the proton is at rest and interacts with the Fulling-Davies-Unruh thermal bath of electrons and neutrinos). The equality between the two rates has been exhibited as an evidence of the necessity of Fulling-Davies-Unruh effect for the consistency of quantum field theory formalism. Recently, it has been argued that neutrino mixing can spoil such a result, potentially opening new scenarios in neutrino physics. In the present paper, we analyze in detail this problem, and we find that, assuming flavor neutrinos to be fundamental and working within a certain approximation, the agreement can be restored.

  2. Molecular mechanisms controlling proton pumping by bacteriorhodopsin. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Crouch, Rosalie K.; Ebrey, Thomas G.

    2000-02-10

    Bacteriorhodopsin (bR) is the simplest biological system for the transduction of light energy. Light energy is directly converted to transmembrane proton gradient by a single, small membrane protein. The extraordinary stability of bR makes it an outstanding subject for bioenergetic studies. This project has focused on the role of interactions between key residues of the pigment involved in light-induced proton transfer. Methods to estimate the strength of these interactions and their correlation with the rate and efficiency of proton transfer have been developed. The concept of the coupling of the protonation states of key groups has been applied to individual steps of the proton transfer with the ultimate goal of understanding on the molecular level the driving forces for proton transport and the pathway of the transported proton in bT. The mechanism of light-induced proton release, uptake and the mechanism of recovery of initial state of bT has been examined. The experiments were performed with genetically engineered, site-specific mutants of bR. This has enabled us to characterize the role of individual amino acid residues in bR. Time resolved and low temperature absorption spectroscopy and light-induced photocurrent measurements were used in order to study the photochemical cycle and proton transfer in mutant pigments. Chemical modification and crosslinking of both the specific amino acids to the chromophore or to other amino acids were used to elucidate the role of light-induced conformational changes in the photocycle and the structure of the protein in the ground state. The results of this project provided new knowledge on the architecture of the proton transfer pathways inside the protein, on the mechanism of proton release in bR, and on the role of specific amino acid residues in the structure and function of bR.

  3. Dosimetric Considerations to Determine the Optimal Technique for Localized Prostate Cancer Among External Photon, Proton, or Carbon-Ion Therapy and High-Dose-Rate or Low-Dose-Rate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Georg, Dietmar, E-mail: Dietmar.Georg@akhwien.at [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Hopfgartner, Johannes [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Gòra, Joanna [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Kuess, Peter [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Kragl, Gabriele [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Berger, Daniel [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Hegazy, Neamat [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Goldner, Gregor; Georg, Petra [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria)

    2014-03-01

    Purpose: To assess the dosimetric differences among volumetric modulated arc therapy (VMAT), scanned proton therapy (intensity-modulated proton therapy, IMPT), scanned carbon-ion therapy (intensity-modulated carbon-ion therapy, IMIT), and low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy (BT) treatment of localized prostate cancer. Methods and Materials: Ten patients were considered for this planning study. For external beam radiation therapy (EBRT), planning target volume was created by adding a margin of 5 mm (lateral/anterior–posterior) and 8 mm (superior–inferior) to the clinical target volume. Bladder wall (BW), rectal wall (RW), femoral heads, urethra, and pelvic tissue were considered as organs at risk. For VMAT and IMPT, 78 Gy(relative biological effectiveness, RBE)/2 Gy were prescribed. The IMIT was based on 66 Gy(RBE)/20 fractions. The clinical target volume planning aims for HDR-BT ({sup 192}Ir) and LDR-BT ({sup 125}I) were D{sub 90%} ≥34 Gy in 8.5 Gy per fraction and D{sub 90%} ≥145 Gy. Both physical and RBE-weighted dose distributions for protons and carbon-ions were converted to dose distributions based on 2-Gy(IsoE) fractions. From these dose distributions various dose and dose–volume parameters were extracted. Results: Rectal wall exposure 30-70 Gy(IsoE) was reduced for IMIT, LDR-BT, and HDR-BT when compared with VMAT and IMPT. The high-dose region of the BW dose–volume histogram above 50 Gy(IsoE) of IMPT resembled the VMAT shape, whereas all other techniques showed a significantly lower high-dose region. For all 3 EBRT techniques similar urethra D{sub mean} around 74 Gy(IsoE) were obtained. The LDR-BT results were approximately 30 Gy(IsoE) higher, HDR-BT 10 Gy(IsoE) lower. Normal tissue and femoral head sparing was best with BT. Conclusion: Despite the different EBRT prescription and fractionation schemes, the high-dose regions of BW and RW expressed in Gy(IsoE) were on the same order of magnitude. Brachytherapy techniques

  4. Dosimetric Considerations to Determine the Optimal Technique for Localized Prostate Cancer Among External Photon, Proton, or Carbon-Ion Therapy and High-Dose-Rate or Low-Dose-Rate Brachytherapy

    International Nuclear Information System (INIS)

    Georg, Dietmar; Hopfgartner, Johannes; Gòra, Joanna; Kuess, Peter; Kragl, Gabriele; Berger, Daniel; Hegazy, Neamat; Goldner, Gregor; Georg, Petra

    2014-01-01

    Purpose: To assess the dosimetric differences among volumetric modulated arc therapy (VMAT), scanned proton therapy (intensity-modulated proton therapy, IMPT), scanned carbon-ion therapy (intensity-modulated carbon-ion therapy, IMIT), and low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy (BT) treatment of localized prostate cancer. Methods and Materials: Ten patients were considered for this planning study. For external beam radiation therapy (EBRT), planning target volume was created by adding a margin of 5 mm (lateral/anterior–posterior) and 8 mm (superior–inferior) to the clinical target volume. Bladder wall (BW), rectal wall (RW), femoral heads, urethra, and pelvic tissue were considered as organs at risk. For VMAT and IMPT, 78 Gy(relative biological effectiveness, RBE)/2 Gy were prescribed. The IMIT was based on 66 Gy(RBE)/20 fractions. The clinical target volume planning aims for HDR-BT ( 192 Ir) and LDR-BT ( 125 I) were D 90% ≥34 Gy in 8.5 Gy per fraction and D 90% ≥145 Gy. Both physical and RBE-weighted dose distributions for protons and carbon-ions were converted to dose distributions based on 2-Gy(IsoE) fractions. From these dose distributions various dose and dose–volume parameters were extracted. Results: Rectal wall exposure 30-70 Gy(IsoE) was reduced for IMIT, LDR-BT, and HDR-BT when compared with VMAT and IMPT. The high-dose region of the BW dose–volume histogram above 50 Gy(IsoE) of IMPT resembled the VMAT shape, whereas all other techniques showed a significantly lower high-dose region. For all 3 EBRT techniques similar urethra D mean around 74 Gy(IsoE) were obtained. The LDR-BT results were approximately 30 Gy(IsoE) higher, HDR-BT 10 Gy(IsoE) lower. Normal tissue and femoral head sparing was best with BT. Conclusion: Despite the different EBRT prescription and fractionation schemes, the high-dose regions of BW and RW expressed in Gy(IsoE) were on the same order of magnitude. Brachytherapy techniques were clearly superior in

  5. Study of proton radioactivities

    Energy Technology Data Exchange (ETDEWEB)

    Davids, C.N.; Back, B.B.; Henderson, D.J. [and others

    1995-08-01

    About a dozen nuclei are currently known to accomplish their radioactive decay by emitting a proton. These nuclei are situated far from the valley of stability, and mark the very limits of existence for proton-rich nuclei: the proton drip line. A new 39-ms proton radioactivity was observed following the bombardment of a {sup 96}Ru target by a beam of 420-MeV {sup 78}Kr. Using the double-sided Si strip detector implantation system at the FMA, a proton group having an energy of 1.05 MeV was observed, correlated with the implantation of ions having mass 167. The subsequent daughter decay was identified as {sup 166}Os by its characteristic alpha decay, and therefore the proton emitter is assigned to the {sup 167}Ir nucleus. Further analysis showed that a second weak proton group from the same nucleus is present, indicating an isomeric state. Two other proton emitters were discovered recently at the FMA: {sup 171}Au and {sup 185}Bi, which is the heaviest known proton radioactivity. The measured decay energies and half-lives will enable the angular momentum of the emitted protons to be determined, thus providing spectroscopic information on nuclei that are beyond the proton drip line. In addition, the decay energy yields the mass of the nucleus, providing a sensitive test of mass models in this extremely proton-rich region of the chart of the nuclides. Additional searches for proton emitters will be conducted in the future, in order to extend our knowledge of the location of the proton drip line.

  6. Advanced Proton Conducting Polymer Electrolytes for Electrochemical Capacitors

    Science.gov (United States)

    Gao, Han

    . The optimized polymer electrolyte demonstrated even higher proton conductivity than pure HPAs and the enabled electrochemical capacitors have demonstrated an exceptionally high rate capability of 50 Vs-1 in cyclic voltammograms and a 10 ms time constant in impedance analyses.

  7. Predicting Atmospheric Ionization and Excitation by Precipitating SEP and Solar Wind Protons Measured By MAVEN

    Science.gov (United States)

    Jolitz, Rebecca; Dong, Chuanfei; Lee, Christina; Lillis, Rob; Brain, David; Curry, Shannon; Halekas, Jasper; Bougher, Stephen W.; Jakosky, Bruce

    2017-10-01

    Precipitating energetic particles ionize and excite planetary atmospheres, increasing electron content and producing aurora. At Mars, the solar wind and solar energetic particles (SEPs) can precipitate directly into the atmosphere because solar wind protons can charge exchange to become neutral and pass the magnetosheath, and SEPs are sufficiently energetic to cross the magnetosheath unchanged. We will compare ionization and Lyman alpha emission rates for solar wind and SEP protons during nominal solar activity and a CME shock front impact event on May 16 2016. We will use the Atmospheric Scattering of Protons and Energetic Neutrals (ASPEN) model to compare excitation and ionization rates by SEPs and solar wind protons currently measured by the SWIA (Solar Wind Ion Analyzer) and SEP instruments aboard the MAVEN spacecraft. Results will help quantify how SEP and solar wind protons influence atmospheric energy deposition during solar minimum.

  8. Dosimetry of medical proton beams at the JINR phasotron in Dubna

    International Nuclear Information System (INIS)

    Kovar, I.; Spurny, F.; Wagner, R.; Molokanov, A.G.; Mitsyn, G.V.; Zorin, V.P.

    1993-01-01

    The method for determination of the dose rate absorbed by tissue for JINR phasotron medical proton beams on a basis of clinical dosimeter calibration with the 60 Co γ-source, the main parameters of detectors used for measurements of spatial dose distributions, results of ion recombination correction factors in air thimble ionization chambers measurements are described. It is found that the error of JINR phasotron proton beams dosimetry is about 5%. This accuracy meets the international requirements for the therapeutic proton beams. 15 refs.; 4 figs

  9. Australian national proton facility

    International Nuclear Information System (INIS)

    Jackson, M.

    2000-01-01

    Full text: Proton therapy has been in use since 1954 and over 25,000 patients have been treated worldwide. Until recently most patients were treated at physics research facilities and apart from the Harvard Cyclotron Laboratory and some low energy machines for eye treatment, only small numbers of patients were treated in each centre and conditions were less than optimal. Limited beam time and lack of support facilities restricted the type of patient treated and conventional fractionation could not be used. The initial clinical experience was mainly with small tumours and other lesions close to critical organs. Large numbers of eye tumours have also been treated. Protons have a well-defined role in these situations and are now being used in the treatment of more common cancers. Since the development of hospital-based facilities, such as the one in Loma Linda in California, over 2,500 patients with prostate cancer have been treated using a simple technique which gives results at least as good as radical surgery, external beam radiotherapy or brachytherapy. Importantly, the incidence of severe complications is very low. There are encouraging results in many disease sites including lung, liver, soft tissue sarcomas and oesophagus. As proton therapy becomes more widely available, randomised trials comparing it with conventional radiotherapy or intensity modulated radiotherapy (IMRT) will be possible. In most situations the use of protons will enable a higher dose to be given safely but in situations where local control rates are already satisfactory, protons are expected to produce less complications than conventional treatment. The initial costs of a proton facility are high but the recurrent costs are similar to other forms of high technology radiotherapy. Simple treatment techniques with only a few fields are usually possible and proton therapy avoids the high integral doses associated with IMRT. This reduction in the low dose volume is likely to be particularly

  10. Parametric Model for Astrophysical Proton-Proton Interactions and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Niklas [KTH Royal Institute of Technology, Stockholm (Sweden)

    2007-01-01

    Observations of gamma-rays have been made from celestial sources such as active galaxies, gamma-ray bursts and supernova remnants as well as the Galactic ridge. The study of gamma rays can provide information about production mechanisms and cosmic-ray acceleration. In the high-energy regime, one of the dominant mechanisms for gamma-ray production is the decay of neutral pions produced in interactions of ultra-relativistic cosmic-ray nuclei and interstellar matter. Presented here is a parametric model for calculations of inclusive cross sections and transverse momentum distributions for secondary particles--gamma rays, e±, ve, $\\bar{v}$e, vμ and $\\bar{μ}$e--produced in proton-proton interactions. This parametric model is derived on the proton-proton interaction model proposed by Kamae et al.; it includes the diffraction dissociation process, Feynman-scaling violation and the logarithmically rising inelastic proton-proton cross section. To improve fidelity to experimental data for lower energies, two baryon resonance excitation processes were added; one representing the Δ(1232) and the other multiple resonances with masses around 1600 MeV/c2. The model predicts the power-law spectral index for all secondary particle to be about 0.05 lower in absolute value than that of the incident proton and their inclusive cross sections to be larger than those predicted by previous models based on the Feynman-scaling hypothesis. The applications of the presented model in astrophysics are plentiful. It has been implemented into the Galprop code to calculate the contribution due to pion decays in the Galactic plane. The model has also been used to estimate the cosmic-ray flux in the Large Magellanic Cloud based on HI, CO and gamma-ray observations. The transverse momentum distributions enable calculations when the proton distribution is anisotropic. It is shown that the gamma-ray spectrum and flux due to a

  11. Macrofilaricides and onchocerciasis control, mathematical modelling of the prospects for elimination

    Directory of Open Access Journals (Sweden)

    Lazdins Janis

    2001-11-01

    Full Text Available Abstract Background In most endemic parts of the world, onchocerciasis (river blindness control relies, or will soon rely, exclusively on mass treatment with the microfilaricide ivermectin. Worldwide eradication of the parasite by means of this drug is unlikely. Macrofilaricidal drugs are currently being developed for human use. Methods We used ONCHOSIM, a microsimulation mathematical model of the dynamics of onchocerciasis transmission, to explore the potentials of a hypothetical macrofilaricidal drug for the elimination of onchocerciasis under different epidemiological conditions, as characterized by previous intervention strategies, vectorial capacity and levels of coverage. Results With a high vector biting rate and poor coverage, a very effective macrofilaricide would appear to have a substantially higher potential for achieving elimination of the parasite than does ivermectin. Conclusions Macrofilaricides have a substantially higher potential for achieving onchocerciasis elimination than ivermectin, but high coverage levels are still key. When these drugs become available, onchocerciasis elimination strategies should be reconsidered. In view of the impact of control efforts preceding the introduction of macrofilaricides on the success of elimination, it is important to sustain current control efforts.

  12. Nanostructure-based proton exchange membrane for fuel cell applications at high temperature.

    Science.gov (United States)

    Li, Junsheng; Wang, Zhengbang; Li, Junrui; Pan, Mu; Tang, Haolin

    2014-02-01

    As a clean and highly efficient energy source, the proton exchange membrane fuel cell (PEMFC) has been considered an ideal alternative to traditional fossil energy sources. Great efforts have been devoted to realizing the commercialization of the PEMFC in the past decade. To eliminate some technical problems that are associated with the low-temperature operation (such as catalyst poisoning and poor water management), PEMFCs are usually operated at elevated temperatures (e.g., > 100 degrees C). However, traditional proton exchange membrane (PEM) shows poor performance at elevated temperature. To achieve a high-performance PEM for high temperature fuel cell applications, novel PEMs, which are based on nanostructures, have been developed recently. In this review, we discuss and summarize the methods for fabricating the nanostructure-based PEMs for PEMFC operated at elevated temperatures and the high temperature performance of these PEMs. We also give an outlook on the rational design and development of the nanostructure-based PEMs.

  13. From 2D to 3D: Proton Radiography and Proton CT in proton therapy: A simulation study

    NARCIS (Netherlands)

    Takatsu, J.; van der Graaf, E.R.; van Goethem, M.-J.; Brandenburg, S.; Biegun, Aleksandra

    (1) Purpose In order to reduce the uncertainty in translation of the X-ray Computed Tomography (CT) image into a map of proton stopping powers (3-4% and even up to 10% in regions containing bones [1-8]), proton radiography is being studied as an alternative imaging technique in proton therapy. We

  14. Vibrational spectroscopy on protons and deuterons in proton conducting perovskites

    DEFF Research Database (Denmark)

    Glerup, M.; Poulsen, F.W.; Berg, R.W.

    2002-01-01

    A short review of IR-spectroscopy on protons in perovskite structure oxides is given. The nature of possible proton sites, libration and combination tones and degree of hydrogen bonding is emphasised. Three new spectroscopic experiments and/or interpretations are presented. An IR-microscopy exper......A short review of IR-spectroscopy on protons in perovskite structure oxides is given. The nature of possible proton sites, libration and combination tones and degree of hydrogen bonding is emphasised. Three new spectroscopic experiments and/or interpretations are presented. An IR...

  15. Interaction of Macro-particles with LHC proton beam

    CERN Document Server

    Zimmermann, F; Xagkoni, A

    2010-01-01

    We study the interaction of macro-particles residing inside the LHC vacuum chamber, e.g. soot or thermalinsulation fragments, with the circulating LHC proton beam. The coupled equations governing the motion and charging rate of metallic or dielectric micron-size macroparticles are solved numerically to determine the time spent by such “dust” particles close to the path of the beam as well as the resulting proton-beam losses, which could lead to a quench of superconducting magnets and, thereby, to a premature beam abort.

  16. Repeated proton beam therapy for hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Hashimoto, Takayuki; Tokuuye, Koichi; Fukumitsu, Nobuyoshi; Igaki, Hiroshi; Hata, Masaharu; Kagei, Kenji; Sugahara, Shinji; Ohara, Kiyoshi; Matsuzaki, Yasushi; Akine, Yasuyuki

    2006-01-01

    Purpose: To retrospectively evaluate the safety and effectiveness of repeated proton beam therapy for newly developed or recurrent hepatocellular carcinoma (HCC). Methods and Materials: From June 1989 through July 2000, 225 patients with HCC underwent their first course of proton beam therapy at University of Tsukuba. Of them, 27 with 68 lesions who had undergone two or more courses were retrospectively reviewed in this study. Median interval between the first and second course was 24.5 months (range 3.3-79.8 months). Median total dose of 72 Gy in 16 fractions and 66 Gy in 16 fractions were given for the first course and the rest of the courses, respectively. Results: The 5-year survival rate and median survival period from the beginning of the first course for the 27 patients were 55.6% and 62.2 months, respectively. Five-year local control rate for the 68 lesions was 87.8%. Of the patients, 1 with Child-Pugh class B and another with class C before the last course suffered from acute hepatic failure. Conclusions: Repeated proton beam therapy for HCC is safe when the patient has a target in the peripheral region of the liver and liver function is Child-Pugh class A

  17. Experimental characterization and physical modelling of the dose distribution of scanned proton pencil beams

    International Nuclear Information System (INIS)

    Pedroni, E; Scheib, S; Boehringer, T; Coray, A; Grossmann, M; Lin, S; Lomax, A

    2005-01-01

    In this paper we present the pencil beam dose model used for treatment planning at the PSI proton gantry, the only system presently applying proton therapy with a beam scanning technique. The scope of the paper is to give a general overview on the various components of the dose model, on the related measurements and on the practical parametrization of the results. The physical model estimates from first physical principles absolute dose normalized to the number of incident protons. The proton beam flux is measured in practice by plane-parallel ionization chambers (ICs) normalized to protons via Faraday-cup measurements. It is therefore possible to predict and deliver absolute dose directly from this model without other means. The dose predicted in this way agrees very well with the results obtained with ICs calibrated in a cobalt beam. Emphasis is given in this paper to the characterization of nuclear interaction effects, which play a significant role in the model and are the major source of uncertainty in the direct estimation of the absolute dose. Nuclear interactions attenuate the primary proton flux, they modify the shape of the depth-dose curve and produce a faint beam halo of secondary dose around the primary proton pencil beam in water. A very simple beam halo model has been developed and used at PSI to eliminate the systematic dependences of the dose observed as a function of the size of the target volume. We show typical results for the relative (using a CCD system) and absolute (using calibrated ICs) dosimetry, routinely applied for the verification of patient plans. With the dose model including the nuclear beam halo we can predict quite precisely the dose directly from treatment planning without renormalization measurements, independently of the dose, shape and size of the dose fields. This applies also to the complex non-homogeneous dose distributions required for the delivery of range-intensity-modulated proton therapy, a novel therapy technique

  18. Stereochemistry-Dependent Proton Conduction in Proton Exchange Membrane Fuel Cells.

    Science.gov (United States)

    Thimmappa, Ravikumar; Devendrachari, Mruthyunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Tiwari, Omshanker; Gaikwad, Pramod; Paswan, Bhuneshwar; Thotiyl, Musthafa Ottakam

    2016-01-12

    Graphene oxide (GO) is impermeable to H2 and O2 fuels while permitting H(+) shuttling, making it a potential candidate for proton exchange membrane fuel cells (PEMFC), albeit with a large anisotropy in their proton transport having a dominant in plane (σIP) contribution over the through plane (σTP). If GO-based membranes are ever to succeed in PEMFC, it inevitably should have a dominant through-plane proton shuttling capability (σTP), as it is the direction in which proton gets transported in a real fuel-cell configuration. Here we show that anisotropy in proton conduction in GO-based fuel cell membranes can be brought down by selectively tuning the geometric arrangement of functional groups around the dopant molecules. The results show that cis isomer causes a selective amplification of through-plane proton transport, σTP, pointing to a very strong geometry angle in ionic conduction. Intercalation of cis isomer causes significant expansion of GO (001) planes involved in σTP transport due to their mutual H-bonding interaction and efficient bridging of individual GO planes, bringing down the activation energy required for σTP, suggesting the dominance of a Grotthuss-type mechanism. This isomer-governed amplification of through-plane proton shuttling resulted in the overall boosting of fuel-cell performance, and it underlines that geometrical factors should be given prime consideration while selecting dopant molecules for bringing down the anisotropy in proton conduction and enhancing the fuel-cell performance in GO-based PEMFC.

  19. Accumulation and Elimination of 137Cs Radionuclide by gold fish (Cyprinus Carpio)

    International Nuclear Information System (INIS)

    Hiswara, E; Tjahaya, I P; Wahyudi

    1996-01-01

    A study to estimate accumulation and elimination of 137Cs radionuclide by gold fish (Cyprinus Carpio) has been carried out. The experiment used aquarium as a cultivating media. Gold fish was placed into aquarium filled with 70 liter of water and 137Cs concentration of 10 Bq/ml. From the observing time of 40 days it was found that activity concentration in fish became saturated in 30th day. Saturation after the 30th day was confined by additional observation using 137Cs concentration of 5 and 15 Bq/ml. Saturated concentration fish was then transfered to inactive aquarium to determine is elimination rate. Transfer factor, i.e. the ratio of 137Cs concentration in fish to that in water, was found to be (12.99+0.28) ml/g, whereas the elimination rate of 137Cs was found to be 0.046 day, which correspond to a biological half life of 15 days

  20. Proton-Beam Therapy for Olfactory Neuroblastoma

    International Nuclear Information System (INIS)

    Nishimura, Hideki; Ogino, Takashi; Kawashima, Mitsuhiko; Nihei, Keiji; Arahira, Satoko; Onozawa, Masakatsu; Katsuta, Shoichi; Nishio, Teiji

    2007-01-01

    Purpose: To analyze the feasibility and efficacy of proton-beam therapy (PBT) for olfactory neuroblastoma (ONB) as a definitive treatment, by reviewing our preliminary experience. Olfactory neuroblastoma is a rare disease, and a standard treatment strategy has not been established. Radiation therapy for ONB is challenging because of the proximity of ONBs to critical organs. Proton-beam therapy can provide better dose distribution compared with X-ray irradiation because of its physical characteristics, and is deemed to be a feasible treatment modality. Methods and Materials: A retrospective review was performed on 14 patients who underwent PBT for ONB as definitive treatment at the National Cancer Center Hospital East (Kashiwa, Chiba, Japan) from November 1999 to February 2005. A total dose of PBT was 65 cobalt Gray equivalents (Gy E ), with 2.5-Gy E once-daily fractionations. Results: The median follow-up period for surviving patients was 40 months. One patient died from disseminated disease. There were two persistent diseases, one of which was successfully salvaged with surgery. The 5-year overall survival rate was 93%, the 5-year local progression-free survival rate was 84%, and the 5-year relapse-free survival rate was 71%. Liquorrhea was observed in one patient with Kadish's stage C disease (widely destroying the skull base). Most patients experienced Grade 1 to 2 dermatitis in the acute phase. No other adverse events of Grade 3 or greater were observed according to the RTOG/EORTC acute and late morbidity scoring system. Conclusions: Our preliminary results of PBT for ONB achieved excellent local control and survival outcomes without serious adverse effects. Proton-beam therapy is considered a safe and effective modality that warrants further study

  1. Tritium Sequestration in Gen IV NGNP Gas Stream via Proton Conducting Ceramic Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fanglin Frank [Univ. of South Carolina, Columbia, SC (United States); Adams, Thad M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brinkman, Kyle [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reifsnider, Kenneth [Univ. of South Carolina, Columbia, SC (United States)

    2011-09-30

    Several types of high-temperature proton conductors based on SrCeO3 and BaCeO3 have been systematically investigated in this project for tritium separation in NGNP applications. One obstacle for the field application is the chemical stability issues in the presence of steam and CO2 for these proton conductors. Several strategies to overcome such issues have been evaluated, including A site doping and B site co-doping method for perovskite-structured proton conductors. Novel zirconium-free proton conductors have also been developed with improved electrical conductivity and enhanced chemical stability. Novel catalytic materials for the proton-conducting separation membranes have been investigated. A tubular geometry proton-conducting membrane has been developed for the proton separation membranes. Total dose rate estimated from tritium decay (beta emission) under realistic membrane operating conditions, combined with electron irradiation experiments, indicates that proton ceramic materials possess the appropriate radiation stability for this application.

  2. Latitudinal and longitudinal dispersion of energetic auroral protons

    Directory of Open Access Journals (Sweden)

    D. A. Lorentzen

    Full Text Available Using a collision by collision model from Lorentzen et al., the latitudinal and longitudinal dispersion of single auroral protons are calculated. The proton energies varies from 1 to 50 keV, and are released into the atmosphere at 700 km altitude. The dipole magnetic field has a dip-angle of 8 degrees. Results show that the main dispersion region is at high altitudes (300-350 km and occurs during the first few charge exchange collisions. As the proton travels further down the atmosphere the mean free path becomes smaller, and as a result the spreading effect will not be as pronounced. This means that the first few charge exchange collisions fully determines the width of both the latitudinal and longitudinal dispersion. The volume emission rate was calculated for energies between 1 and 50 keV, and it was found that dayside auroral hydrogen emissions rates were approximately 10 times weaker than nightside emission rates. Simulations were also performed to obtain the dependence of the particle dispersion as a function of initial pitch-angle. It was found that the dispersion varies greatly with initial pitch-angle, and the results are summarized in two tables; a main and an extreme dispersion region.

    Key words. Ionosphere (auroral ionosphere; · particle precipitation · Space plasma physics · (transport processes

  3. Latitudinal and longitudinal dispersion of energetic auroral protons

    Directory of Open Access Journals (Sweden)

    D. A. Lorentzen

    2000-01-01

    Full Text Available Using a collision by collision model from Lorentzen et al., the latitudinal and longitudinal dispersion of single auroral protons are calculated. The proton energies varies from 1 to 50 keV, and are released into the atmosphere at 700 km altitude. The dipole magnetic field has a dip-angle of 8 degrees. Results show that the main dispersion region is at high altitudes (300-350 km and occurs during the first few charge exchange collisions. As the proton travels further down the atmosphere the mean free path becomes smaller, and as a result the spreading effect will not be as pronounced. This means that the first few charge exchange collisions fully determines the width of both the latitudinal and longitudinal dispersion. The volume emission rate was calculated for energies between 1 and 50 keV, and it was found that dayside auroral hydrogen emissions rates were approximately 10 times weaker than nightside emission rates. Simulations were also performed to obtain the dependence of the particle dispersion as a function of initial pitch-angle. It was found that the dispersion varies greatly with initial pitch-angle, and the results are summarized in two tables; a main and an extreme dispersion region.Key words. Ionosphere (auroral ionosphere; · particle precipitation · Space plasma physics · (transport processes

  4. Review of inelastic proton-proton reactions

    CERN Document Server

    Morrison, Douglas Robert Ogston

    1973-01-01

    The most important new results on inelastic proton-proton scattering obtained with the new machines, I.S.R. and N.A.L., are: (1) The inelastic cross-section increases monotonically with energy from threshold to 1500 GeV/c. Above 6 GeV/c the energy variation has a s /sup +0.04/ behaviour. (2) Scaling is observed at I.S.R. energies in pion production. Confirmation is obtained of the hypothesis of limiting fragmentation. (3) The results are in general, consistent with the two-component model-one class of events being produced by diffraction dissociation and the other by a short-range-order process (e.g. the multiperipheral model). (4) There are indications that the protons have a granular structure; this from observation of secondaries of large transverse momenta. (33 refs).

  5. Exposure to radon in Sweden dwellings - attitudes and elimination

    International Nuclear Information System (INIS)

    Jansson, B.; Tholander, M.; Axelson, O.

    1989-01-01

    Owners of 208 dwellings with radon daughter concentrations of 400 Bq/m 3 EER or above were asked about attitudes and measures toward elimination via mailed questionnaires. The response rate was 88% and some steps toward elimination had been taken in 83 dwellings. For the remaining houses, no improvements had been made either because of financial problems, lack of technical advice, or doubts about radon daughter exposure as a health hazard. The results of this study suggest the need to more definitely assess the risk through epidemiologic studies, as well as to provide more information about technical solutions and financial support to house owners

  6. Use of a parallel artificial membrane system to evaluate passive absorption and elimination in small fish.

    Science.gov (United States)

    Kwon, Jung-Hwan; Katz, Lynn E; Liljestrand, Howard M

    2006-12-01

    A parallel artificial lipid membrane system was developed to mimic passive mass transfer of hydrophobic organic chemicals in fish. In this physical model system, a membrane filter-supported lipid bilayer separates two aqueous phases that represent the external and internal aqueous environments of fish. To predict bioconcentration kinetics in small fish with this system, literature absorption and elimination rates were analyzed with an allometric diffusion model to quantify the mass transfer resistances in the aqueous and lipid phases of fish. The effect of the aqueous phase mass transfer resistance was controlled by adjusting stirring intensity to mimic bioconcentration rates in small fish. Twenty-three simple aromatic hydrocarbons were chosen as model compounds for purposes of evaluation. For most of the selected chemicals, literature absorption/elimination rates fall into the range predicted from measured membrane permeabilities and elimination rates of the selected chemicals determined by the diffusion model system.

  7. A hospital-based proton linac for neutron therapy and radioisotope production

    International Nuclear Information System (INIS)

    Lennox, A.J.

    1988-10-01

    Fermilab's Alvarez proton linac has been used routinely for neutron therapy since 1976. The Neutron Therapy Facility (NTF) operates in a mode parasitic to the laboratory's high energy physics program, which uses the linac as an injector for a synchrotron. Parasitic operation is possible because the linac delivers /approximately/1.2 /times/ 10 13 protons per pulse at a 15 Hz rate, while the high energy physics program requires beam at a rate not greater than 0.5 Hz. Protons not needed for physics experiments strike a beryllium target to produce neutrons for neutron therapy. Encouraging clinical results from NTF have led to a study of the issues involved in providing hospitals with a neutron beam of the type available at Fermilab. This paper describes the issues addressed by that study. 12 refs., 1 fig., 1 tab

  8. Proton linac for hospital-based fast neutron therapy and radioisotope production

    International Nuclear Information System (INIS)

    Lennox, A.J.; Hendrickson, F.R.; Swenson, D.A.; Winje, R.A.; Young, D.E.

    1989-09-01

    Recent developments in linac technology have led to the design of a hospital-based proton linac for fast neutron therapy. The 180 microamp average current allows beam to be diverted for radioisotope production during treatments while maintaining an acceptable dose rate. During dedicated operation, dose rates greater than 280 neutron rads per minute are achievable at depth, DMAX = 1.6 cm with source to axis distance, SAD = 190 cm. Maximum machine energy is 70 MeV and several intermediate energies are available for optimizing production of isotopes for Positron Emission Tomography and other medical applications. The linac can be used to produce a horizontal or a gantry can be added to the downstream end of the linac for conventional patient positioning. The 70 MeV protons can also be used for proton therapy for ocular melanomas. 17 refs., 1 fig., 1 tab

  9. Current-current interaction picture for proton-proton scattering

    International Nuclear Information System (INIS)

    Clarke, D.J.; Lo, S.Y.

    1979-01-01

    The authors propose that color current - color current interaction is reponsible for small angle elastic proton proton scattering at asymptotic energy. Excellent fits are obtained for all data above 12 GeV/c which covers twelve orders of magnitude

  10. Low Goiter Rate Associated with Small Average Thyroid Volume in Schoolchildren after the Elimination of Iodine Deficiency Disorders.

    Directory of Open Access Journals (Sweden)

    Peihua Wang

    Full Text Available After the implementation of the universal salt iodization (USI program in 1996, seven cross-sectional school-based surveys have been conducted to monitor iodine deficiency disorders (IDD among children in eastern China.This study aimed to examine the correlation of total goiter rate (TGR with average thyroid volume (Tvol and urinary iodine concentration (UIC in Jiangsu province after IDD elimination.Probability-proportional-to-size sampling was applied to select 1,200 children aged 8-10 years old in 30 clusters for each survey in 1995, 1997, 1999, 2001, 2002, 2005, 2009 and 2011. We measured Tvol using ultrasonography in 8,314 children and measured UIC (4,767 subjects and salt iodine (10,184 samples using methods recommended by the World Health Organization. Tvol was used to calculate TGR based on the reference criteria specified for sex and body surface area (BSA.TGR decreased from 55.2% in 1997 to 1.0% in 2009, and geometric means of Tvol decreased from 3.63 mL to 1.33 mL, along with the UIC increasing from 83 μg/L in 1995 to 407 μg/L in 1999, then decreasing to 243 μg/L in 2005, and then increasing to 345 μg/L in 2011. In the low goiter population (TGR 300 μg/L was associated with a smaller average Tvol in children.After IDD elimination in Jiangsu province in 2001, lower TGR was associated with smaller average Tvol. Average Tvol was more sensitive than TGR in detecting the fluctuation of UIC. A UIC of 300 μg/L may be defined as a critical value for population level iodine status monitoring.

  11. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Yuki, E-mail: ynagao@jaist.ac.jp; Kubo, Takahiro

    2014-12-30

    Graphical abstract: - Highlights: • Proton transport of fully protonated poly(aspartic acid) thin film was investigated. • The thin film structure differed greatly from the partially protonated one. • Proton transport occurs on the surface, not inside of the thin film. • This result contributes to biological transport systems such as bacteriorhodopsin. - Abstract: Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120–670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system.

  12. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    International Nuclear Information System (INIS)

    Nagao, Yuki; Kubo, Takahiro

    2014-01-01

    Graphical abstract: - Highlights: • Proton transport of fully protonated poly(aspartic acid) thin film was investigated. • The thin film structure differed greatly from the partially protonated one. • Proton transport occurs on the surface, not inside of the thin film. • This result contributes to biological transport systems such as bacteriorhodopsin. - Abstract: Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120–670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system

  13. Reactions of the ionized enol tautomer of acetanilide: elimination of HNCO via a novel rearrangement.

    Science.gov (United States)

    Heydorn, Lisa N; Carter, Lynn M; Bowen, Richard D; Terlouw, Johan K

    2003-01-01

    The reactions of ionised acetanilide, C(6)H(5)NH(=O)CH(3)(.+), and its enol, C(6)H(5)NH(OH)=CH(2)(.+), have been studied by a combination of tandem mass spectrometric and computational methods. These two isomeric radical cations have distinct chemistries at low internal energies. The keto tautomer eliminates exclusively CH(2)=C=O to give ionised aniline. In contrast, the enol tautomer loses H-N=C=O, via an unusual skeletal rearrangement, to form predominantly ionised methylene cyclohexadiene. Hydrogen atom loss also occurs from the enol tautomer, with the formation of protonated oxindole. The mechanisms for H-N=C=O and hydrogen atom loss both involve cyclisation; the former proceeds via a spiro transition state formed by attachment of the methylene group to the ipso position, whereas the latter entails the formation of a five-membered ring by attachment to the ortho position. The behaviour of labelled analogues reveals that these two processes have different site selectivities. Hydrogen atom loss involves a reverse critical energy and is subject to an isotope effect. Surprisingly, attempts to promote the enolisation of ionised acetanilide by proton-transport catalysis were unsuccessful. In a reversal of the usual situation for ionised carbonyl compounds, ionised acetanilide is actually more stable than its enol tautomer. The enol tautomer was resistant to proton-transport catalysed ketonisation to ionised acetanilide, possibly because the favoured geometry of the encounter complex with the base molecule is inappropriate for facilitating tautomerisation.

  14. Preliminary design of a dedicated proton therapy linac

    International Nuclear Information System (INIS)

    Hamm, R.W.; Crandall, K.R.; Potter, J.M.

    1991-01-01

    The preliminary design has been completed for a low current, compact proton linac dedicated to cancer therapy. A 3 GHz side-coupled structure accelerates the beam from a 70 MeV drift tube linac using commercially available S-band rf power systems and accelerating cavities. This significantly reduces the linac cost and allows incremental energies up to 250 MeV. The short beam pulse width and high repetition rate make the linac similar to the high energy electron linacs now used for cancer therapy, yet produce a proton flux sufficient for treatment of large tumors. The high pulse repetition rate permits raster scanning, and the small output beam size and emittance result in a compact isocentric gantry design. Such a linac will reduce the facility and operating costs for a dedicated cancer therapy system

  15. Proton-proton bremsstrahlung towards the elastic limit

    Science.gov (United States)

    Mahjour-Shafiei, M.; Amir-Ahmadi, H. R.; Bacelar, J. C. S.; Castelijns, R.; Ermisch, K.; van Garderen, E.; Gašparić, I.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Kiš, M.; Löhner, H.

    2005-05-01

    In oder to study proton-proton bremsstrahlung moving towards the elastic limit, a detection system, consisting of Plastic-ball and SALAD, was set up and an experiment at 190 MeV incident beam energy was performed. Here, the experimental setup and the data analysis procedure along with some results obtained in the measurement are discussed.

  16. Proton-proton bremsstrahlung towards the elastic limit

    International Nuclear Information System (INIS)

    Mahjour-Shafiei, M.; Amir-Ahmadi, H.R.; Bacelar, J.C.S.; Castelijns, R.; Ermisch, K.; Garderen, E. van; Harakeh, M.N.; Kalantar-Nayestanaki, N.; Kis, M.; Loehner, H.; Gasparic, I.

    2005-01-01

    In oder to study proton-proton bremsstrahlung moving towards the elastic limit, a detection system, consisting of Plastic-ball and SALAD, was set up and an experiment at 190 MeV incident beam energy was performed. Here, the experimental setup and the data analysis procedure along with some results obtained in the measurement are discussed

  17. Beam-induced and cosmic-ray backgrounds observed in the ATLAS detector during the LHC 2012 proton-proton running period

    International Nuclear Information System (INIS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abolins, M.; AbouZeid, O.S.; Abraham, N.L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B.S.; Adamczyk, L.; Adams, D.L.; Adelman, J.

    2016-01-01

    This paper discusses various observations on beam-induced and cosmic-ray backgrounds in the ATLAS detector during the LHC 2012 proton-proton run. Building on published results based on 2011 data, the correlations between background and residual pressure of the beam vacuum are revisited. Ghost charge evolution over 2012 and its role for backgrounds are evaluated. New methods to monitor ghost charge with beam-gas rates are presented and observations of LHC abort gap population by ghost charge are discussed in detail. Fake jets from colliding bunches and from ghost charge are analysed with improved methods, showing that ghost charge in individual radio-frequency buckets of the LHC can be resolved. Some results of two short periods of dedicated cosmic-ray background data-taking are shown; in particular cosmic-ray muon induced fake jet rates are compared to Monte Carlo simulations and to the fake jet rates from beam background. A thorough analysis of a particular LHC fill, where abnormally high background was observed, is presented. Correlations between backgrounds and beam intensity losses in special fills with very high β * are studied.

  18. Detection of laser-accelerated protons

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Sabine

    2012-08-08

    Real-time (Online) detection of laser-accelerated protons is a challenge for any electronic detector system due to the peculiar time structure ({<=} ns) and high intensity ({>=}10{sup 7} p/cm{sup 2}) of the generated ion pulses. Besides considerable saturation effects, problems are expected by an electromagnetic interference pulse (EMP), generated during laser-plasma interaction. In the scope of this work, different detection systems were built-up with regard to specific demands of laser-ion-acceleration at the MPQ ATLAS laser, which allow the quantitative analysis of the generated proton beam. A cell irradiation experiment at the ATLAS laser was accomplished to demonstrate the usability of laser-accelerated protons for radiation therapy. Cells were irradiated with a single shot dose of few Gy for a proton energy of 5 MeV. The following cell analysis required the spatially resolved measurement of the dose distribution. Only radiation-sensitive films were applicable because of the small proton range, although they show significant quenching effects for the used proton energy. This was extensively studied in the 3-200 MeV energy range. A film-based dosimetry protocol for low-energy proton irradiations was developed, making the absolute dose determination in the cell experiment possible. The non-electronic detectors (nuclear track detectors, radiation-sensitive films) are still state of the art in laser-accelerated ion diagnostics, although these detectors only allow a delayed in time (offline) detection. A non-electronic system, based on image plates, was thoroughly characterized and calibrated for ongoing experiments at the ATLAS laser, for the first time. Main objective of this work, though, was the set-up of a real-time detection system, which is urgently required, owing to increasing repetition rate of the laser accelerator (>Hz), to advance the parameter optimisation of the laser-acceleration in an efficient way. Systems based on silicon pixel detectors are

  19. Detection of laser-accelerated protons

    International Nuclear Information System (INIS)

    Reinhardt, Sabine

    2012-01-01

    Real-time (Online) detection of laser-accelerated protons is a challenge for any electronic detector system due to the peculiar time structure (≤ ns) and high intensity (≥10 7 p/cm 2 ) of the generated ion pulses. Besides considerable saturation effects, problems are expected by an electromagnetic interference pulse (EMP), generated during laser-plasma interaction. In the scope of this work, different detection systems were built-up with regard to specific demands of laser-ion-acceleration at the MPQ ATLAS laser, which allow the quantitative analysis of the generated proton beam. A cell irradiation experiment at the ATLAS laser was accomplished to demonstrate the usability of laser-accelerated protons for radiation therapy. Cells were irradiated with a single shot dose of few Gy for a proton energy of 5 MeV. The following cell analysis required the spatially resolved measurement of the dose distribution. Only radiation-sensitive films were applicable because of the small proton range, although they show significant quenching effects for the used proton energy. This was extensively studied in the 3-200 MeV energy range. A film-based dosimetry protocol for low-energy proton irradiations was developed, making the absolute dose determination in the cell experiment possible. The non-electronic detectors (nuclear track detectors, radiation-sensitive films) are still state of the art in laser-accelerated ion diagnostics, although these detectors only allow a delayed in time (offline) detection. A non-electronic system, based on image plates, was thoroughly characterized and calibrated for ongoing experiments at the ATLAS laser, for the first time. Main objective of this work, though, was the set-up of a real-time detection system, which is urgently required, owing to increasing repetition rate of the laser accelerator (>Hz), to advance the parameter optimisation of the laser-acceleration in an efficient way. Systems based on silicon pixel detectors are applicable for

  20. Transarterial Fiducial Marker Placement for Image-guided Proton Therapy for Malignant Liver Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, Kengo, E-mail: yesterday.is.yesterday@gmail.com; Shimohira, Masashi, E-mail: mshimohira@gmail.com [Nagoya City University Graduate School of Medical Sciences, Department of Radiology (Japan); Sasaki, Shigeru, E-mail: ssasaki916@yahoo.co.jp; Iwata, Hiromitsu, E-mail: h-iwa-ncu@nifty.com; Nishikawa, Hiroko, E-mail: piroko1018@gmail.com; Ogino, Hiroyuki, E-mail: oginogio@gmail.com; Hara, Masaki, E-mail: mhara@med.nagoya-cu.ac.jp [Nagoya City West Medical Center, Department of Radiation Oncology, Nagoya Proton Therapy Center (Japan); Hashizume, Takuya, E-mail: tky300@gmail.com; Shibamoto, Yuta, E-mail: yshiba@med.nagoya-cu.ac.jp [Nagoya City University Graduate School of Medical Sciences, Department of Radiology (Japan)

    2015-10-15

    PurposeThe aim of this study is to analyze the technical and clinical success rates and safety of transarterial fiducial marker placement for image-guided proton therapy for malignant liver tumors.Methods and MaterialsFifty-five patients underwent this procedure as an interventional treatment. Five patients had 2 tumors, and 4 tumors required 2 markers each, so the total number of procedures was 64. The 60 tumors consisted of 46 hepatocellular carcinomas and 14 liver metastases. Five-mm-long straight microcoils of 0.018 inches in diameter were used as fiducial markers and placed in appropriate positions for each tumor. We assessed the technical and clinical success rates of transarterial fiducial marker placement, as well as the complications associated with it. Technical success was defined as the successful delivery and placement of the fiducial coil, and clinical success was defined as the completion of proton therapy.ResultsAll 64 fiducial coils were successfully installed, so the technical success rate was 100 % (64/64). Fifty-four patients underwent proton therapy without coil migration. In one patient, proton therapy was not performed because of obstructive jaundice due to bile duct invasion by hepatocellular carcinoma. Thus, the clinical success rate was 98 % (54/55). Slight bleeding was observed in one case, but it was stopped immediately and then observed. None of the patients developed hepatic infarctions due to fiducial marker migration.ConclusionTransarterial fiducial marker placement appears to be a useful and safe procedure for proton therapy for malignant liver tumors.

  1. Transarterial Fiducial Marker Placement for Image-guided Proton Therapy for Malignant Liver Tumors

    International Nuclear Information System (INIS)

    Ohta, Kengo; Shimohira, Masashi; Sasaki, Shigeru; Iwata, Hiromitsu; Nishikawa, Hiroko; Ogino, Hiroyuki; Hara, Masaki; Hashizume, Takuya; Shibamoto, Yuta

    2015-01-01

    PurposeThe aim of this study is to analyze the technical and clinical success rates and safety of transarterial fiducial marker placement for image-guided proton therapy for malignant liver tumors.Methods and MaterialsFifty-five patients underwent this procedure as an interventional treatment. Five patients had 2 tumors, and 4 tumors required 2 markers each, so the total number of procedures was 64. The 60 tumors consisted of 46 hepatocellular carcinomas and 14 liver metastases. Five-mm-long straight microcoils of 0.018 inches in diameter were used as fiducial markers and placed in appropriate positions for each tumor. We assessed the technical and clinical success rates of transarterial fiducial marker placement, as well as the complications associated with it. Technical success was defined as the successful delivery and placement of the fiducial coil, and clinical success was defined as the completion of proton therapy.ResultsAll 64 fiducial coils were successfully installed, so the technical success rate was 100 % (64/64). Fifty-four patients underwent proton therapy without coil migration. In one patient, proton therapy was not performed because of obstructive jaundice due to bile duct invasion by hepatocellular carcinoma. Thus, the clinical success rate was 98 % (54/55). Slight bleeding was observed in one case, but it was stopped immediately and then observed. None of the patients developed hepatic infarctions due to fiducial marker migration.ConclusionTransarterial fiducial marker placement appears to be a useful and safe procedure for proton therapy for malignant liver tumors

  2. Proton-proton and deuteron-deuteron correlations in interactions of relativistic helium nuclei with protons

    International Nuclear Information System (INIS)

    Galazka-Friedman, J.; Sobczak, T.; Stepaniak, J.; Zielinski, I.P.; Bano, M.; Hlavacova, J.; Martinska, G.; Patocka, J.; Seman, M.; Sandor, L.; Urban, J.

    1993-01-01

    The reactions 4 Hep→pp+X, 3 Hep→pp+X and 4 Hep→ddp have been investigated and the correlation function has been measured for protons and deuterons with small relative momenta. Strong positive correlation has been observed for protons related mainly to the final state interactions in 1 S 0 state. The root mean square radius of the proton source calculated from the correlation function has been found to be equal to (1.7±0.3) fm and (2.1±0.3) fm for 4 He and 3 He respectively. It agrees with the known radii of these nuclei. (orig.)

  3. Effectiveness of ranitidine bismuth citrate and proton pump inhibitor ...

    African Journals Online (AJOL)

    Effectiveness of ranitidine bismuth citrate and proton pump inhibitor based triple therapies of Helicobacter pylori in Turkey. ... Results: When we look at the eradication rates of the treatment groups, only two groups (ranitidine bismuth citrate and rabeprazole groups) had eradication rates greater than 80%, both at intention to ...

  4. Prospects of target nanostructuring for laser proton acceleration

    Science.gov (United States)

    Lübcke, Andrea; Andreev, Alexander A.; Höhm, Sandra; Grunwald, Ruediger; Ehrentraut, Lutz; Schnürer, Matthias

    2017-03-01

    In laser-based proton acceleration, nanostructured targets hold the promise to allow for significantly boosted proton energies due to strong increase of laser absorption. We used laser-induced periodic surface structures generated in-situ as a very fast and economic way to produce nanostructured targets capable of high-repetition rate applications. Both in experiment and theory, we investigate the impact of nanostructuring on the proton spectrum for different laser-plasma conditions. Our experimental data show that the nanostructures lead to a significant enhancement of absorption over the entire range of laser plasma conditions investigated. At conditions that do not allow for efficient laser absorption by plane targets, i.e. too steep plasma gradients, nanostructuring is found to significantly enhance the proton cutoff energy and conversion efficiency. In contrast, if the plasma gradient is optimized for laser absorption of the plane target, the nanostructure-induced absorption increase is not reflected in higher cutoff energies. Both, simulation and experiment point towards the energy transfer from the laser to the hot electrons as bottleneck.

  5. ALPtraum. ALP production in proton beam dump experiments

    International Nuclear Information System (INIS)

    Doebrich, Babette; Jaeckel, Joerg

    2015-12-01

    With their high beam energy and intensity, existing and near-future proton beam dumps provide an excellent opportunity to search for new very weakly coupled particles in the MeV to GeV mass range. One particularly interesting example is a so-called axion-like particle (ALP), i.e. a pseudoscalar coupled to two photons. The challenge in proton beam dumps is to reliably calculate the production of the new particles from the interactions of two composite objects, the proton and the target atoms. In this work we argue that Primakoff production of ALPs proceeds in a momentum range where production rates and angular distributions can be determined to sufficient precision using simple electromagnetic form factors. Reanalysing past proton beam dump experiments for this production channel, we derive novel constraints on the parameter space for ALPs. We show that the NA62 experiment at CERN could probe unexplored parameter space by running in 'dump mode' for a few days and discuss opportunities for future experiments such as SHiP.

  6. Pair angular correlations for pions, kaons and protons in proton-proton collisions in ALICE

    CERN Document Server

    Zaborowska, Anna

    2014-01-01

    This thesis presents the correlation functions in $\\Delta\\eta\\, \\Delta\\phi$ space for pairs of pions, kaons and protons. The studies were carried out on the set of proton-proton collisions at the centre-of-mass energy $\\sqrt{s}$ = 7 TeV, obtained in ALICE, A Large Ion Collider Experiment at CERN, the European Organization for Nuclear Research. The analysis was performed for two charge combinations (like-sign pairs and unlike-sign pairs) as well as for three multiplicity ranges. Angular correlations are a rich source of information about the elementary particles behaviour. They result in from the interplay of numerous effects, including resonances’ decays, Coulomb interactions and energy and momentum conservation. In case of identical particles quantum statistics needs to be taken into account. Moreover, particles differ in terms of quark content. Kaons, carrying the strange quark obey the strangeness conservation law. In the production of protons baryon number must be conserved. These features are reflected...

  7. Transfer Rate Edited experiment for the selective detection of Chemical Exchange via Saturation Transfer (TRE-CEST).

    Science.gov (United States)

    Friedman, Joshua I; Xia, Ding; Regatte, Ravinder R; Jerschow, Alexej

    2015-07-01

    Chemical Exchange Saturation Transfer (CEST) magnetic resonance experiments have become valuable tools in magnetic resonance for the detection of low concentration solutes with far greater sensitivity than direct detection methods. Accurate measures of rates of chemical exchange provided by CEST are of particular interest to biomedical imaging communities where variations in chemical exchange can be related to subtle variations in biomarker concentration, temperature and pH within tissues using MRI. Despite their name, however, traditional CEST methods are not truly selective for chemical exchange and instead detect all forms of magnetization transfer including through-space NOE. This ambiguity crowds CEST spectra and greatly complicates subsequent data analysis. We have developed a Transfer Rate Edited CEST experiment (TRE-CEST) that uses two different types of solute labeling in order to selectively amplify signals of rapidly exchanging proton species while simultaneously suppressing 'slower' NOE-dominated magnetization transfer processes. This approach is demonstrated in the context of both NMR and MRI, where it is used to detect the labile amide protons of proteins undergoing chemical exchange (at rates⩾30s(-1)) while simultaneously eliminating signals originating from slower (∼5s(-1)) NOE-mediated magnetization transfer processes. TRE-CEST greatly expands the utility of CEST experiments in complex systems, and in-vivo, in particular, where it is expected to improve the quantification of chemical exchange and magnetization transfer rates while enabling new forms of imaging contrast. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. A mathematical model for carbon dioxide elimination: an insight for tuning mechanical ventilation.

    Science.gov (United States)

    Pomprapa, Anake; Schwaiberger, David; Lachmann, Burkhard; Leonhardt, Steffen

    2014-01-01

    The aim is to provide better understanding of carbon dioxide (CO2) elimination during ventilation for both the healthy and atelectatic condition, derived in a pressure-controlled mode. Therefore, we present a theoretical analysis of CO2 elimination of healthy and diseased lungs. Based on a single-compartment model, CO2 elimination is mathematically modeled and its contours were plotted as a function of temporal settings and driving pressure. The model was validated within some level of tolerance on an average of 4.9% using porcine dynamics. CO2 elimination is affected by various factors, including driving pressure, temporal variables from mechanical ventilator settings, lung mechanics and metabolic rate. During respiratory care, CO2 elimination is a key parameter for bedside monitoring, especially for patients with pulmonary disease. This parameter provides valuable insight into the status of an atelectatic lung and of cardiopulmonary pathophysiology. Therefore, control of CO2 elimination should be based on the fine tuning of the driving pressure and temporal ventilator settings. However, for critical condition of hypercapnia, airway resistance during inspiration and expiration should be additionally measured to determine the optimal percent inspiratory time (%TI) to maximize CO2 elimination for treating patients with hypercapnia.

  9. Pion Production from Proton Synchrotron Radiation under Strong Magnetic Field in Relativistic Quantum Approach

    Directory of Open Access Journals (Sweden)

    Maruyama Tomoyuki

    2016-01-01

    Full Text Available We study pion production from proton synchrotron radiation in the presence of strong magnetic fields by using the exact proton propagator in a strong magnetic field and explicitly including the anomalous magnetic moment. Results in this exact quantum-field approach do not agree with those obtained in the semi-classical approach. Furthermore, we also find that the anomalous magnetic moment of the proton greatly enhances the production rate about by two orders of magnitude, and that the polar angle of an emitted pion is the same as that of an initial proton.

  10. Proton Fast Ignition

    International Nuclear Information System (INIS)

    Key, M H; Freeman, R R; Hatchett, S P; MacKinnon, A J; Patel, P K; Snavely, R A; Stephens, R B

    2006-04-01

    Fast ignition (FI) by a laser generated ballistically focused proton beam is a more recently proposed alternative to the original concept of FI by a laser generated beam of relativistic electrons. It has potential advantages in less complex energy transport into dense plasma. Recent successful target heating experiments motivate further investigation of the feasibility of proton fast ignition. The concept, the physics and characteristics of the proton beams, the recent experimental work on focusing of the beams and heating of solid targets and the overall prospects for proton FI are discussed

  11. Impact of proton irradiation on deep level states in n-GaN

    International Nuclear Information System (INIS)

    Zhang, Z.; Arehart, A. R.; Cinkilic, E.; Ringel, S. A.; Chen, J.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D.; McSkimming, B.; Speck, J. S.

    2013-01-01

    Deep levels in 1.8 MeV proton irradiated n-type GaN were systematically characterized using deep level transient spectroscopies and deep level optical spectroscopies. The impacts of proton irradiation on the introduction and evolution of those deep states were revealed as a function of proton fluences up to 1.1 × 10 13 cm −2 . The proton irradiation introduced two traps with activation energies of E C - 0.13 eV and 0.16 eV, and a monotonic increase in the concentration for most of the pre-existing traps, though the increase rates were different for each trap, suggesting different physical sources and/or configurations for these states. Through lighted capacitance voltage measurements, the deep levels at E C - 1.25 eV, 2.50 eV, and 3.25 eV were identified as being the source of systematic carrier removal in proton-damaged n-GaN as a function of proton fluence

  12. Neutron double differential distributions, dose rates and specific activities from accelerator components irradiated by 50-400 MeV protons

    International Nuclear Information System (INIS)

    Cerutti, F.; Charitonidis, N.; Silari, M.; Charitonidis, N.

    2010-01-01

    Systematic Monte Carlo simulations with the FLUKA code were performed to estimate the induced radioactivity in five materials commonly used in particle accelerator structures: boron nitride and carbon (dumps and collimators), copper (RF cavities, coils and vacuum chambers), iron and stainless steel (magnets and vacuum chambers). Using a simplified geometry set-up, the five materials were bombarded with protons in the energy range from 50 to 400 MeV. This energy range is typical of intermediate-energy proton accelerators used as injectors to higher-energy machines, as research accelerators for nuclear physics, and in hadron therapy. Ambient dose equivalent rates were calculated at distances up to one meter around the target, for seven cooling times up to six months. A complete inventory of the radionuclides present in the target was calculated for all combinations of target, beam energy and cooling time. The influence of the target size and of self-absorption was investigated. The energy and angular distributions of neutrons escaping from the target were also scored for all materials and beam energies. The influence on the neutron spectra of the presence of concrete walls (the accelerator tunnel) around the target was also estimated. The results of the present study provide a simple database to be used for a first, approximate estimate of the radiological risk to be expected when intervening on activated accelerator components. (authors)

  13. Volatile elements production rates in a 1.4 Gev proton-irradiated molten lead-bismuth target

    CERN Document Server

    Zanini, L; Everaerts, P; Fallot, M; Franberg, H; Gröschel, F; Jost, C; Kirchner, T; Kojima, Y; Köster, U; Lebenhaft, J; Manfrina, E; Pitcher, E J; Ravn, H L; Tall, Y; Wagner, W; Wohlmuther, M

    2005-01-01

    Production rates of volatile elements following spallation reaction of 1.4 GeV protons on a liquid Pb/Bi target have been measured. The experiment was performed at the ISOLDE facility at CERN. These data are of interest for the developments of targets for accelerator driven systems such as MEGAPIE. Additional data have been taken on a liquid Pb target. Calculations were performed using the FLUKA and MCNPX Monte Carlo codes coupled with the evolution codes ORIHET3 and FISPACT using different options for the intra-nuclear cascades and evaporation models. Preliminary results from the data analysis show good comparison with calculations for Hg and for noble gases. For other elements such as I it is apparent that only a fraction of the produced isotopes is released. The agreement with the experimental data varies depending on the model combination used. The best results are obtained using MCNPX with the INCL4/ABLA models and with FLUKA. Discrepancies are found for some isotopes produced by fission using the MCNPX ...

  14. Two-dimensional Nonlinear Simulations of Temperature-anisotropy Instabilities with a Proton-alpha Drift

    Science.gov (United States)

    Markovskii, S. A.; Chandran, Benjamin D. G.; Vasquez, Bernard J.

    2018-04-01

    We present two-dimensional hybrid simulations of proton-cyclotron and mirror instabilities in a proton-alpha plasma with particle-in-cell ions and a neutralizing electron fluid. The instabilities are driven by the protons with temperature perpendicular to the background magnetic field larger than the parallel temperature. The alpha particles with initially isotropic temperature have a nonzero drift speed with respect to the protons. The minor ions are known to influence the relative effect of the proton-cyclotron and mirror instabilities. In this paper, we show that the mirror mode can dominate the power spectrum at the nonlinear stage even if its linear growth rate is significantly lower than that of the proton-cyclotron mode. The proton-cyclotron instability combined with the alpha-proton drift is a possible cause of the nonzero magnetic helicity observed in the solar wind for fluctuations propagating nearly parallel to the magnetic field. Our simulations generally confirm this concept but reveal a complex helicity spectrum that is not anticipated from the linear theory of the instability.

  15. A Measurement of the Rate of Muon Capture in Hydrogen Gas and Determination of the Proton's Induced Pseudoscalar Coupling gp

    International Nuclear Information System (INIS)

    Banks, Thomas Ira

    2007-01-01

    This dissertation describes a measurement of the rate of nuclear muon capture by the proton, performed by the MuCap Collaboration using a new technique based on a time projection chamber operating in ultraclean, deuterium-depleted hydrogen gas at room temperature and 1 MPa pressure. The hydrogen target's low gas density of 1 percent compared to liquid hydrogen is key to avoiding uncertainties that arise from the formation of muonic molecules. The capture rate was obtained from the difference between the mu- disappearance rate in hydrogen--as determined from data collected in the experiment's first physics run in fall2004--and the world average for the mu+ decay rate. After combining the results of my analysis with the results from another independent analysis of the 2004 data, the muon capture rate from the hyperfine singlet ground state of the mu-p atom is found to be Λ S = 725.0 ± 17.4 1/s, from which the induced pseudoscalar coupling of the nucleon, gP(q2 = -0.88m2mu)= 7.3 ± 1.1, is extracted. This result for gP is consistent with theoretical predictions that are based on the approximate chiral symmetry of QCD

  16. Proton tracking in a high-granularity Digital Tracking Calorimeter for proton CT purposes

    Science.gov (United States)

    Pettersen, H. E. S.; Alme, J.; Biegun, A.; van den Brink, A.; Chaar, M.; Fehlker, D.; Meric, I.; Odland, O. H.; Peitzmann, T.; Rocco, E.; Ullaland, K.; Wang, H.; Yang, S.; Zhang, C.; Röhrich, D.

    2017-07-01

    Radiation therapy with protons as of today utilizes information from x-ray CT in order to estimate the proton stopping power of the traversed tissue in a patient. The conversion from x-ray attenuation to proton stopping power in tissue introduces range uncertainties of the order of 2-3% of the range, uncertainties that are contributing to an increase of the necessary planning margins added to the target volume in a patient. Imaging methods and modalities, such as Dual Energy CT and proton CT, have come into consideration in the pursuit of obtaining an as good as possible estimate of the proton stopping power. In this study, a Digital Tracking Calorimeter is benchmarked for proof-of-concept for proton CT purposes. The Digital Tracking Calorimeter was originally designed for the reconstruction of high-energy electromagnetic showers for the ALICE-FoCal project. The presented prototype forms the basis for a proton CT system using a single technology for tracking and calorimetry. This advantage simplifies the setup and reduces the cost of a proton CT system assembly, and it is a unique feature of the Digital Tracking Calorimeter concept. Data from the AGORFIRM beamline at KVI-CART in Groningen in the Netherlands and Monte Carlo simulation results are used to in order to develop a tracking algorithm for the estimation of the residual ranges of a high number of concurrent proton tracks. High energy protons traversing the detector leave a track through the sensor layers. These tracks are spread out through charge diffusion processes. A charge diffusion model is applied for acquisition of estimates of the deposited energy of the protons in each sensor layer by using the size of the charge diffused area. A model fit of the Bragg Curve is applied to each reconstructed track and through this, estimating the residual range of each proton. The range of the individual protons can at present be estimated with a resolution of 4%. The readout system for this prototype is able to

  17. Proton tracking in a high-granularity Digital Tracking Calorimeter for proton CT purposes

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, H.E.S., E-mail: helge.pettersen@helse-bergen.no [Department of Oncology and Medical Physics, Haukeland University Hospital, Postbox 1400, 5021 Bergen (Norway); Department of Physics and Technology, University of Bergen, Postbox 7803, 5020 Bergen (Norway); Alme, J. [Department of Physics and Technology, University of Bergen, Postbox 7803, 5020 Bergen (Norway); Biegun, A. [Kernfysisch Versneller Instituut, University of Groningen, NL-9747 AA Groningen (Netherlands); Brink, A. van den [Nikhef, Utrecht University, Postbox 41882, 1009 DB Amsterdam (Netherlands); Chaar, M.; Fehlker, D. [Department of Physics and Technology, University of Bergen, Postbox 7803, 5020 Bergen (Norway); Meric, I. [Department of Electrical Engineering, Bergen University College, Postbox 7030, 5020 Bergen (Norway); Odland, O.H. [Department of Oncology and Medical Physics, Haukeland University Hospital, Postbox 1400, 5021 Bergen (Norway); Peitzmann, T.; Rocco, E. [Nikhef, Utrecht University, Postbox 41882, 1009 DB Amsterdam (Netherlands); Ullaland, K. [Department of Physics and Technology, University of Bergen, Postbox 7803, 5020 Bergen (Norway); Wang, H. [Nikhef, Utrecht University, Postbox 41882, 1009 DB Amsterdam (Netherlands); Yang, S. [Department of Physics and Technology, University of Bergen, Postbox 7803, 5020 Bergen (Norway); Zhang, C. [Nikhef, Utrecht University, Postbox 41882, 1009 DB Amsterdam (Netherlands); Röhrich, D. [Department of Physics and Technology, University of Bergen, Postbox 7803, 5020 Bergen (Norway)

    2017-07-11

    Radiation therapy with protons as of today utilizes information from x-ray CT in order to estimate the proton stopping power of the traversed tissue in a patient. The conversion from x-ray attenuation to proton stopping power in tissue introduces range uncertainties of the order of 2–3% of the range, uncertainties that are contributing to an increase of the necessary planning margins added to the target volume in a patient. Imaging methods and modalities, such as Dual Energy CT and proton CT, have come into consideration in the pursuit of obtaining an as good as possible estimate of the proton stopping power. In this study, a Digital Tracking Calorimeter is benchmarked for proof-of-concept for proton CT purposes. The Digital Tracking Calorimeter was originally designed for the reconstruction of high-energy electromagnetic showers for the ALICE-FoCal project. The presented prototype forms the basis for a proton CT system using a single technology for tracking and calorimetry. This advantage simplifies the setup and reduces the cost of a proton CT system assembly, and it is a unique feature of the Digital Tracking Calorimeter concept. Data from the AGORFIRM beamline at KVI-CART in Groningen in the Netherlands and Monte Carlo simulation results are used to in order to develop a tracking algorithm for the estimation of the residual ranges of a high number of concurrent proton tracks. High energy protons traversing the detector leave a track through the sensor layers. These tracks are spread out through charge diffusion processes. A charge diffusion model is applied for acquisition of estimates of the deposited energy of the protons in each sensor layer by using the size of the charge diffused area. A model fit of the Bragg Curve is applied to each reconstructed track and through this, estimating the residual range of each proton. The range of the individual protons can at present be estimated with a resolution of 4%. The readout system for this prototype is able to

  18. CHARGE-2/C, Flux and Dose Behind Shield from Electron, Proton, Heavy Particle Irradiation

    International Nuclear Information System (INIS)

    Ucker, W.R.; Lilley, J.R.

    1994-01-01

    1 - Description of problem or function: The CHARGE code computes flux spectra, dose and other response rates behind a multilayered spherical or infinite planar shield exposed to isotopic fluxes of electrons, protons and heavy charged particles. The doses, or other responses, to electron, primary proton, heavy particle, electron Bremsstrahlung, secondary proton, and secondary neutron radiations are calculated as a function of penetration into the shield; the materials of each layer may be mixtures of elements contained in the accompanying data library, or supplied by the user. The calculation may optionally be halted before the entire shield is traversed by specifying a minimum total dose rate; the computation stops when the dose drops below this value. The ambient electron, proton and heavy particle spectra may be specified in tabular or functional form. These incident charged particle spectra are divided into energy bands or groups, the number or spacing of which are controlled by input data. The variation of the group boundary energies and group spectra as a function of shield penetration uniquely determines charged particle dose rates and secondary particle production rates. The charged particle shielding calculation is essentially the integration of the range- energy equation which expresses the variation of particle energy wit distance travelled. 2 - Method of solution: The 'straight-ahead' approximation is used throughout, that is the changes in particle direction of motion due to elastic scattering are ignored. This approximation is corrected, in the case of electrons, by applying transmission factors obtained from Monte Carlo calculations. Inelastic scattering between protons and the shielding material is assumed to produce two classes of secondaries 1) Cascade protons and neutrons, emitted in the same direction as the primaries 2) Evaporation neutrons, emitted isotropically. The transmission of secondary protons is analyzed in exactly the same way as the

  19. A method to eliminate wetting during the homogenization of HgCdTe

    Science.gov (United States)

    Su, Ching-Hua; Lehoczky, S. L.; Szofran, F. R.

    1986-01-01

    Adhesion of HgCdTe samples to fused silica ampoule walls, or 'wetting', during the homogenization process was eliminated by adopting a slower heating rate. The idea is to decrease Cd activity in the sample so as to reduce the rate of reaction between Cd and the silica wall.

  20. Two-proton radioactivity in proton-rich fp shell nuclei at high spin

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Mamta [Nuclear Science Centre, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110067 (India)

    2006-07-15

    Two-proton radioactivity in extremely proton-rich fp shell nuclei at high spins is investigated in a theoretical framework. Separation energy and entropy fluctuate with spin and hence affect the location of the proton drip line.

  1. Two-proton radioactivity in proton-rich fp shell nuclei at high spin

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2006-01-01

    Two-proton radioactivity in extremely proton-rich fp shell nuclei at high spins is investigated in a theoretical framework. Separation energy and entropy fluctuate with spin and hence affect the location of the proton drip line

  2. Account of magnetic field effects of polarized proton target on charged particle trajectories in experiments with magnetic spectrometers

    International Nuclear Information System (INIS)

    Telegin, Yu.N.; Ranyuk, Yu.N.; Karnaukhov, I.M.; Lukhanin, A.A.; Sporov, E.A.

    1980-01-01

    Some effects of the influence of magnetic field of a polarized proton target (PPT) on trajectories of secondary particles in experiments using magnetic spectrometers are considered. It is shown that these effects can be eliminated by the target shift relatively to the spectrometer rotation axis and variation of the spectrometer installation angle. Numerical calculations of the correction values were performed for emitted particle momenta of 100-800 MeB/s and working intensity of the H 0 magnetic field H 0 =27 kG. The influence of the PPT magnetic field on the functions of angular and energy resolution in the γp→π + n experiment is investigated. The results obtained can be used in experiments with a polarized proton target

  3. The influence of the Coulomb-distortion effect on proton-proton observables

    International Nuclear Information System (INIS)

    Plessas, W.; Mathelitsch, L.

    1980-01-01

    The effect of the Coulomb distortion of the strong interaction is studied on the basis of nucleon-nucleon observables. In particular, cross sections, polarizations, spin-correlation parameters, and spin-transfer coefficients are considered for proton-proton as well as neutron-neutron scattering at laboratory kinetic energies Esub(Lab) = 10, 20, and 50 MeV. The calculations are performed for the meson-theoretical PARIS potential, the nonlocal separable GRAZ potential and also using the Arndt-Hackman-Roper parametrization of proton-proton scattering phase shifts. Important conclusions are drawn with respect to phenomenological phase-shift analyses. (Auth.)

  4. Intestinal absorption and biliary elimination of glycyrrhizic acid diethyl ester in rats

    Directory of Open Access Journals (Sweden)

    Koga K

    2013-10-01

    Full Text Available Kenjiro Koga,1 Mayuri Kawamura,1 Hiroshi Iwase,2 Nobuji Yoshikawa31Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, 2Research Division, 3Research and Development Division, Cokey Systems Co, Ltd, Matsusaka, JapanBackground: The purpose of this study was to evaluate absorption and elimination from the gastrointestinal tract of glycyrrhizic acid diethyl ester (GZ-DE which was prepared as a prodrug of glycyrrhizic acid (a poorly absorbed compound in rats.Methods: After the GZ-DE solution was administered via the intravenous, intraduodenal, intraileal, and stomach routes, GZ-DE and GZ concentrations in bile were determined by high-performance liquid chromatography. The stability of GZ-DE was estimated from residual GZ-DE and GZ produced in GZ-DE solutions prepared with distilled water, a pH 1.2 solution, 0.9% NaCl solution, and phosphate-buffered solution (pH 7.4 at 37°C.Results: GZ-DE was eliminated into bile by the pharmacokinetic parameters of apparent distribution rate constant (4.56 ± 0.36 per hour and apparent elimination rate constant (0.245 ± 0.042 per hour. After intravenous and intraduodenal administration of GZ-DE, the concentration ratio of GZ-DE to GZ in bile was approximately 4:1, and the bioavailability of GZ containing GZ-DE was three-fold higher compared with the bioavailability of GZ after intraduodenal administration. GZ-DE was immediately precipitated in pH 1.2 solution and was converted to GZ by hydrolysis in pH 7.4 solution.Conclusion: Improvement of intestinal absorption of GZ was made possible by administration of GZ-DE into the intestine where absorption of GZ is lower than in the strong acidic environment of the stomach. However, because the elimination rate in bile simulated from kinetic parameters of GZ-DE was higher than the conversion rate from GZ-DE to GZ by hydrolysis, it is thought that the availability of GZ as a revolutionary prodrug was not high from the

  5. RENAL SAFETY OF PROTON PUMP INHIBITORS

    Directory of Open Access Journals (Sweden)

    A. I. Dyadyk

    2017-01-01

    Full Text Available Proton pump inhibitors are a widely used in clinical practice, and are taken by millions of patients around the world for a long time. While proton pump inhibitors are well-tolerated class of drugs, the number of publications has been raised about adverse renal effects, specially their association with acute tubulointerstitial nephritis. It is one of the leading causes of acute renal injury and have catastrophic long-term consequences called chronic kidney disease. In this review, we consider epidemiology, pathogenesis, diagnostic criteria (including biopsy and morphological pattern, clinical manifestations and treatment of proton pump inhibitors-induced acute tubulointerstitial nephritis. A subclinical course without classical manifestations of a cell-mediated hypersensitivity reaction (fever, skin rash, eosinophilia, arthralgia is characteristic of acute tubulointerstitial nephritis. Increased serum creatinine, decreased glomerular filtration rate, electrolyte disorders, pathological changes in urine tests are not highly specific indicators, but allow to suspect the development of acute tubulointerstitial nephritis. The “gold” standard of diagnosis is the intravital morphological examination of the kidney tissue. Timely diagnosis and immediate discontinuation of the potentially causative drug is the mainstay of therapy and the first necessary step in the early management of suspected or biopsy-proven drug-induced acute tubulointerstitial nephritis. The usage of proton pump inhibitors should be performed only on strict indications with optimal duration of treatment and careful monitoring of kidney function. Multiple comorbidities (older age, heart failure, diabetes, cirrhosis, chronic kidney disease, hypovolemia increase potential nephrotoxicity. Awareness of this iatrogenic complication will improve diagnosis of proton pump inhibitors-induced acute tubulointerstitial nephritis by multidisciplinary specialists and increase the possibility

  6. Proton-proton Scattering Above 3 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    A. Sibirtsev, J. Haidenbauer, H.-W. Hammer S. Krewald ,Ulf-G. Meissner

    2010-01-01

    A large set of data on proton-proton differential cross sections, analyzing powers and the double-polarization parameter A{sub NN} is analyzed employing the Regge formalism. We find that the data available at proton beam momenta from 3 GeV/c to 50 GeV/c exhibit features that are very well in line with the general characteristics of Regge phenomenology and can be described with a model that includes the {rho}, {omega}, f{sub 2}, and a{sub 2} trajectories and single-Pomeron exchange. Additional data, specifically for spin-dependent observables at forward angles, would be very helpful for testing and refining our Regge model.

  7. Proton dose calculation on scatter-corrected CBCT image: Feasibility study for adaptive proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yang-Kyun, E-mail: ykpark@mgh.harvard.edu; Sharp, Gregory C.; Phillips, Justin; Winey, Brian A. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2015-08-15

    Purpose: To demonstrate the feasibility of proton dose calculation on scatter-corrected cone-beam computed tomographic (CBCT) images for the purpose of adaptive proton therapy. Methods: CBCT projection images were acquired from anthropomorphic phantoms and a prostate patient using an on-board imaging system of an Elekta infinity linear accelerator. Two previously introduced techniques were used to correct the scattered x-rays in the raw projection images: uniform scatter correction (CBCT{sub us}) and a priori CT-based scatter correction (CBCT{sub ap}). CBCT images were reconstructed using a standard FDK algorithm and GPU-based reconstruction toolkit. Soft tissue ROI-based HU shifting was used to improve HU accuracy of the uncorrected CBCT images and CBCT{sub us}, while no HU change was applied to the CBCT{sub ap}. The degree of equivalence of the corrected CBCT images with respect to the reference CT image (CT{sub ref}) was evaluated by using angular profiles of water equivalent path length (WEPL) and passively scattered proton treatment plans. The CBCT{sub ap} was further evaluated in more realistic scenarios such as rectal filling and weight loss to assess the effect of mismatched prior information on the corrected images. Results: The uncorrected CBCT and CBCT{sub us} images demonstrated substantial WEPL discrepancies (7.3 ± 5.3 mm and 11.1 ± 6.6 mm, respectively) with respect to the CT{sub ref}, while the CBCT{sub ap} images showed substantially reduced WEPL errors (2.4 ± 2.0 mm). Similarly, the CBCT{sub ap}-based treatment plans demonstrated a high pass rate (96.0% ± 2.5% in 2 mm/2% criteria) in a 3D gamma analysis. Conclusions: A priori CT-based scatter correction technique was shown to be promising for adaptive proton therapy, as it achieved equivalent proton dose distributions and water equivalent path lengths compared to those of a reference CT in a selection of anthropomorphic phantoms.

  8. Enhancing effect of spawning on elimination of a persistent polychlorinated biphenyl from female yellow perch

    International Nuclear Information System (INIS)

    Vodicnik, M.J.; Peterson, R.E.

    1985-01-01

    Distribution and elimination of 2,5,2',5'-tetrachloro[14C]biphenyl (4-CB) were studied for 6 months after exposing sexually mature female yellow perch to the compound in water and transferring them to flowing 4-CB-free water. Perch that were exposed in January spawned in May, and the study was terminated in June. During the first 41/2 months after exposure, the t1/2 for whole-body elimination was 22 weeks, primarily by elimination of 4-CB from the viscera and carcass. During spawning, enhanced elimination (t1/2 less than 0.7 weeks) was due to the voiding of eggs containing 4-CB. After spawning, whole-body elimination returned to a slower rate (t1/2 = 16.3 weeks). Prior to the enhancement in 4-CB elimination rate during spawning, there was a redistribution of 4-CB residues within the body of the perch which was characterized by a transfer of 4-CB residues from primarily the carcass and viscera to eggs. Two weeks after exposure, 30% of the initial 4-CB body burden was distributed to the eggs, whereas just prior to spawning, about 50% was present in this tissue. These findings demonstrate that egg maturation and spawning result in a significant reduction in the body burden of a persistent polychlorinated biphenyl in a lean-fish species

  9. Mutant breeding of ornamental trees for creating variations with high value using proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Jae Hong; Woo, Seong Min; Hwang, Mun Joo; Pyo, Sun Hui [Phygen, Daejeon (Korea, Republic of); Kwon, Hye Jin [Environmental-Friendly Agriculture Research Institute, Seoul (Korea, Republic of); Woo, Jong Suk [Cheonan Yonam College, Cheonan (Korea, Republic of)

    2010-04-15

    This research was conducted to investigate the proton-beam radiation sensitivity and seed germination rate of 18 ornamental plants and to survey the quantitative characteristics of proton beam induced strains. To induce the variants of ornamental plants, seeds were irradiated at the dose of 0{approx} 2kGy of proton beam at room temperature by 45 MeV MC-50 Cyclotron. After irradiation, to assess the effects of proton beam on radiation sensitivity and morphological changes of the plants and the seed germination rate were analysed. The effects of mutation induction by proton beam irradiation on seeds in Lagerstroemia indica and Ligustrum obtusifolium were investigated. Irradiation with proton beam at the dose of 750Gy induced mutants in leaf length, leaf width, internode length, plant height, leaf color, autumn leaves and plant width in each strains. According to a principal component analysis, the induced strains were divided into three groups. Promising strain(strain 25) for commercial varieties was selected Lagerstroemia indica. It was analysed that strain 25 showed the highest genetic dissimility from original species. The strain 25 had red leaf edge and maintained autumnal tints till late fall. So, we try to promote a patent registration of the strain 25 as a new caltivar 'Bulkkot'

  10. Mutant breeding of ornamental trees for creating variations with high value using proton beam

    International Nuclear Information System (INIS)

    Yim, Jae Hong; Woo, Seong Min; Hwang, Mun Joo; Pyo, Sun Hui; Kwon, Hye Jin; Woo, Jong Suk

    2010-04-01

    This research was conducted to investigate the proton-beam radiation sensitivity and seed germination rate of 18 ornamental plants and to survey the quantitative characteristics of proton beam induced strains. To induce the variants of ornamental plants, seeds were irradiated at the dose of 0∼ 2kGy of proton beam at room temperature by 45 MeV MC-50 Cyclotron. After irradiation, to assess the effects of proton beam on radiation sensitivity and morphological changes of the plants and the seed germination rate were analysed. The effects of mutation induction by proton beam irradiation on seeds in Lagerstroemia indica and Ligustrum obtusifolium were investigated. Irradiation with proton beam at the dose of 750Gy induced mutants in leaf length, leaf width, internode length, plant height, leaf color, autumn leaves and plant width in each strains. According to a principal component analysis, the induced strains were divided into three groups. Promising strain(strain 25) for commercial varieties was selected Lagerstroemia indica. It was analysed that strain 25 showed the highest genetic dissimility from original species. The strain 25 had red leaf edge and maintained autumnal tints till late fall. So, we try to promote a patent registration of the strain 25 as a new caltivar 'Bulkkot'

  11. High intensity proton accelerator and its application (Proton Engineering Center)

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi

    1995-01-01

    A plan called PROTON ENGINEERING CENTER has been proposed in JAERI. The center is a complex composed of research facilities and a beam shape and storage ring based on a proton linac with an energy of 1.5 GeV and an average current of 10 mA. The research facilities planned are OMEGA·Nuclear Energy Development Facility, Neutron Facility for Material Irradiation, Nuclear Data Experiment Facility, Neutron Factory, Meson Factory, Spallation Radioisotope Beam Facility, and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutrons, π-mesons, muons, and unstable isotopes originated from the protons are available for promoting the innovative research of nuclear energy and basic science and technology. (author)

  12. Relativistic total and differential cross section proton--proton electron--positron pair production calculation

    International Nuclear Information System (INIS)

    Rubinstein, J.E.

    1976-01-01

    Circle Feynman diagrams for a specific permutation of variables along with their corresponding algebraic expressions are presented to evaluate [H] 2 for proton-proton electron-positron pair production. A Monte Carlo integration technique is introduced and is used to set up the multiple integral expression for the total pair production cross section. The technique is first applied to the Compton scattering problem and then to an arbitrary multiple integral. The relativistic total cross section for proton-proton electron-positron pair production was calculated for eight different values of incident proton energy. A variety of differential cross sections were calculated for the above energies. Angular differential cross section distributions are presented for the electron, positron, and proton. Invariant mass differential cross section distributions are done both with and without the presence of [H] 2 . Both WGHT and log 10 (TOTAL) distributions were also obtained. The general behavioral trends of the total and differential cross sections for proton-proton electron-positron pair production are presented. The range of validity for this calculation is from 0 to about 200 MeV

  13. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    Science.gov (United States)

    Nagao, Yuki; Kubo, Takahiro

    2014-12-01

    Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120-670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system.

  14. Prompt neutrino production in 400 GeV proton copper interactions

    International Nuclear Information System (INIS)

    Graessler, H.; Dris, M.; Simopoulou, E.; Vayaki, A.; Barnham, K.W.J.; Miller, D.B.; Mobayyen, M.M.; Talebzadeh, M.; Aderholz, M.; Deck, L.; Schmitz, N.; Wittek, W.; Guy, J.; Venus, W.; Bolognese, T.; Faccini-Turluer, M.L.; Vignaud, D.; Hulth, P.O.; Hultqvist, K.; Walck, C.; Bostock, P.; Krstic, J.; Myatt, G.; Radojicic, D.

    1986-01-01

    The prompt electron neutrino and muon neutrino fluxes from proton copper interactions at 400 GeV/c proton momentum have been measured. The asymmetry between the prompt electron (anti)neutrino and the prompt muon (anti)neutrino event rates above 20 GeV is Asub(cμ)=(Nsub(e)-Nsub(μ))/Nsub(e)+Nsub(μ))=0.07+-0.08. The cross section weighted charge asymmetry for electrons and muons combined is Asub(ν)sub(anti ν)=0.15+-0.08. The number of anti D decays into anti νsub(e) and anti νsub(μ) is (4.1+-0.9) . 10 -4 per incident proton. No evidence for νsub(tau) interactions was found. (orig.)

  15. Intermittent hemodialysis is superior to continuous veno-venous hemodialysis/hemodiafiltration to eliminate methanol and formate during treatment for methanol poisoning

    Science.gov (United States)

    Zakharov, Sergey; Pelclova, Daniela; Navratil, Tomas; Belacek, Jaromir; Kurcova, Ivana; Komzak, Ondrej; Salek, Tomas; Latta, Jiri; Turek, Radovan; Bocek, Robert; Kucera, Cyril; Hubacek, Jaroslav A; Fenclova, Zdenka; Petrik, Vit; Cermak, Martin; Hovda, Knut Erik

    2014-01-01

    During an outbreak of methanol poisonings in the Czech Republic in 2012, we were able to study methanol and formate elimination half-lives during intermittent hemodialysis (IHD) and continuous veno-venous hemodialysis/hemodiafiltration (CVVHD/HDF) and the relative impact of dialysate and blood flow rates on elimination. Data were obtained from 11 IHD and 13 CVVHD/HDF patients. Serum methanol and formate concentrations were measured by gas chromatography and an enzymatic method. The groups were relatively comparable, but the CVVHD/HDF group was significantly more acidotic (mean pH 6.9 vs. 7.1 IHD). The mean elimination half-life of methanol was 3.7 and formate 1.6 h with IHD, versus 8.1 and 3.6 h, respectively, with CVVHD/HDF (both significant). The 54% greater reduction in methanol and 56% reduction in formate elimination half-life during IHD resulted from the higher blood and dialysate flow rates. Increased blood and dialysate flow on the CVVHD/HDF also increased elimination significantly. Thus, IHD is superior to CVVHD/HDF for more rapid methanol and formate elimination, and if CVVHD/HDF is the only treatment available then elimination is greater with greater blood and dialysate flow rates. PMID:24621917

  16. Correlation of the antimicrobial activity of salicylaldehydes with broadening of the NMR signal of the hydroxyl proton. Possible involvement of proton exchange processes in the antimicrobial activity.

    Science.gov (United States)

    Elo, Hannu; Kuure, Matti; Pelttari, Eila

    2015-03-06

    Certain substituted salicylaldehydes are potent antibacterial and antifungal agents and some of them merit consideration as potential chemotherapeutic agents against Candida infections, but their mechanism of action has remained obscure. We report here a distinct correlation between broadening of the NMR signal of the hydroxyl proton of salicylaldehydes and their activity against several types of bacteria and fungi. When proton NMR spectra of the compounds were determined using hexadeuterodimethylsulfoxide as solvent and the height of the OH proton signal was measured, using the signal of the aldehyde proton as an internal standard, it was discovered that a prerequisite of potent antimicrobial activity is that the proton signal is either unobservable or relatively very low, i.e. that it is extremely broadened. Thus, none of the congeners whose OH proton signal was high were potent antimicrobial agents. Some congeners that gave a very low OH signal were, however, essentially inactive against the microbes, indicating that although drastic broadening of the OH signal appears to be a prerequisite, also other (so far unknown) factors are needed for high antimicrobial activity. Because broadening of the hydroxyl proton signal is related to the speed of the proton exchange process(es) involving that proton, proton exchange may be involved in the mechanism of action of the compounds. Further studies are needed to analyze the relative importance of different factors (such as electronic effects, strength of the internal hydrogen bond, co-planarity of the ring and the formyl group) that determine the rates of those processes. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. Cut Elimination, Identity Elimination, and Interpolation in Super-Belnap Logics

    Czech Academy of Sciences Publication Activity Database

    Přenosil, Adam

    2017-01-01

    Roč. 105, č. 6 (2017), s. 1255-1289 ISSN 0039-3215 R&D Projects: GA ČR GBP202/12/G061 EU Projects: European Commission(XE) 689176 - SYSMICS Institutional support: RVO:67985807 Keywords : Super-Belnap logic s * Dunn–Belnap logic * Logic of Paradox * Strong Kleene logic * Exactly True Logic * Gentzen calculus * Cut elimination * Identity elimination * Interpolation Subject RIV: BA - General Mathematics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 0.589, year: 2016

  18. Faster proton transfer dynamics of water on SnO2 compared to TiO2.

    Science.gov (United States)

    Kumar, Nitin; Kent, Paul R C; Bandura, Andrei V; Kubicki, James D; Wesolowski, David J; Cole, David R; Sofo, Jorge O

    2011-01-28

    Proton jump processes in the hydration layer on the iso-structural TiO(2) rutile (110) and SnO(2) cassiterite (110) surfaces were studied with density functional theory molecular dynamics. We find that the proton jump rate is more than three times faster on cassiterite compared with rutile. A local analysis based on the correlation between the stretching band of the O-H vibrations and the strength of H-bonds indicates that the faster proton jump activity on cassiterite is produced by a stronger H-bond formation between the surface and the hydration layer above the surface. The origin of the increased H-bond strength on cassiterite is a combined effect of stronger covalent bonding and stronger electrostatic interactions due to differences of its electronic structure. The bridging oxygens form the strongest H-bonds between the surface and the hydration layer. This higher proton jump rate is likely to affect reactivity and catalytic activity on the surface. A better understanding of its origins will enable methods to control these rates.

  19. Elimination device for metal impurities

    International Nuclear Information System (INIS)

    Yanagisawa, Ko.

    1982-01-01

    Purpose: To enable reuse of adsorbing materials by eliminating Fe 3 O 4 films reduced with adsorbing performance by way of electrolytic polishing and then forming fresh membranes using high temperature steams. Constitution: An elimination device is provided to a coolant clean-up system of a reactor for eliminating impurities such as cobalt. The elimination device comprises adsorbing materials made of stainless steel tips or the likes having Fe 3 O 4 films. The adsorbing materials are regenerated by applying an electric current between grid-like cathode plates and anode plates to leach out the Fe 3 O 4 films, washing out the electrolytic solution by cleaning water and then applying steams at high temperature onto the adsorbing materials to thereby form fresh Fe 3 O 4 films again thereon. The regeneration of the adsorbing materials enables to eliminate Co 60 and the like in the primary coolant efficiently. (Moriyama, K.)

  20. Cost-Effectiveness of a Program to Eliminate Disparities in Pneumococcal Vaccination Rates in Elderly Minority Populations: An Exploratory Analysis

    Science.gov (United States)

    Michaelidis, Constantinos I.; Zimmerman, Richard K.; Nowalk, Mary Patricia; Smith, Kenneth J.

    2013-01-01

    Objective Invasive pneumococcal disease is a major cause of preventable morbidity and mortality in the United States, particularly among the elderly (>65 years). There are large racial disparities in pneumococcal vaccination rates in this population. Here, we estimate the cost-effectiveness of a hypothetical national vaccination intervention program designed to eliminate racial disparities in pneumococcal vaccination in the elderly. Methods In an exploratory analysis, a Markov decision-analysis model was developed, taking a societal perspective and assuming a 1-year cycle length, 10-year vaccination program duration, and lifetime time horizon. In the base-case analysis, it was conservatively assumed that vaccination program promotion costs were $10 per targeted minority elder per year, regardless of prior vaccination status and resulted in the elderly African American and Hispanic pneumococcal vaccination rate matching the elderly Caucasian vaccination rate (65%) in year 10 of the program. Results The incremental cost-effectiveness of the vaccination program relative to no program was $45,161 per quality-adjusted life-year gained in the base-case analysis. In probabilistic sensitivity analyses, the likelihood of the vaccination program being cost-effective at willingness-to-pay thresholds of $50,000 and $100,000 per quality-adjusted life-year gained was 64% and 100%, respectively. Conclusions In a conservative analysis biased against the vaccination program, a national vaccination intervention program to ameliorate racial disparities in pneumococcal vaccination would be cost-effective. PMID:23538183

  1. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    Energy Technology Data Exchange (ETDEWEB)

    Teng, J.; Gu, Y.Q., E-mail: tengjian@mail.ustc.edu.cn; Zhu, B.; Hong, W.; Zhao, Z.Q.; Zhou, W.M.; Cao, L.F.

    2013-11-21

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

  2. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    Science.gov (United States)

    Teng, J.; Gu, Y. Q.; Zhu, B.; Hong, W.; Zhao, Z. Q.; Zhou, W. M.; Cao, L. F.

    2013-11-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

  3. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    International Nuclear Information System (INIS)

    Teng, J.; Gu, Y.Q.; Zhu, B.; Hong, W.; Zhao, Z.Q.; Zhou, W.M.; Cao, L.F.

    2013-01-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator

  4. Fabrication and optimization of a fiber-optic radiation sensor for proton beam dosimetry

    International Nuclear Information System (INIS)

    Jang, K.W.; Yoo, W.J.; Seo, J.K.; Heo, J.Y.; Moon, J.; Park, J.-Y.; Hwang, E.J.; Shin, D.; Park, S.-Y.; Cho, H.-S.; Lee, B.

    2011-01-01

    In this study, we fabricated a fiber-optic radiation sensor for proton therapy dosimetry and measured the output and the peak-to-plateau ratio of scintillation light with various kinds of organic scintillators in order to select an organic scintillator appropriate for measuring the dose of a proton beam. For the optimization of an organic scintillator, the linearity between the light output and the stopping power of a proton beam was evaluated for two different diameters of the scintillator, and the angular dependency and standard deviation of the light pulses were investigated for four different scintillator lengths. We also evaluated the linearity between the light output and the dose rate and monitor units of a proton generator, respectively. The relative depth-dose curve of the proton beam was obtained and corrected using Birk's theory.

  5. Biological amine transport in chromaffin ghosts. Coupling to the transmembrane proton and potential gradients.

    Science.gov (United States)

    Johnson, R G; Pfister, D; Carty, S E; Scarpa, A

    1979-11-10

    The effect of the transmembrane proton gradient (delta pH) and potential gradient (delta psi) upon the rate and extent of amine accumulation was investigated in chromaffin ghosts. The chromaffin ghosts were formed by hypo-osmotic lysis of isolated bovine chromaffin granules and extensive dialysis in order to remove intragranular binding components and dissipate the endogenous electrochemical gradients. Upon ATP addition to suspensions of chromaffin ghosts, a transmembrane proton gradient alone, a transmembrane gradient alone, or both, could be established, depending upon the compositions of the media in which the ghosts were formed and resuspended. When chloride was present in the medium, addition of ATP resulted in the generation of a transmembrane proton gradient, acidic inside of 1 pH unit (measured by [14C]methylamine distribution), and no transmembrane potential (measured by [14C]-thiocyanate distribution). When ATP was added to chromaffin ghosts suspended in a medium in which chloride was substituted by isethionate, a transmembrane potential, inside positive, of 45 mV and no transmembrane proton gradient, was measured. In each medium, the addition of agents known to affect proton or potential gradients, respectively, exerted a predictable mechanism of action. Accumulation of [14C]epinephrine or [14C]5-hydroxytryptamine was over 1 order of magnitude greater in the presence of the transmembrane proton gradient or the transmembrane potential than in the absence of any gradient and, moreover, was related to the magnitude of the proton or potential gradient in a dose-dependent manner. When ghosts were added to a medium containing chloride and isethionate, both a delta pH and delta psi could be generated upon addition of ATP. In this preparation, the maximal rate of amine accumulation was observed. The results indicate that amine accumulation into chromaffin ghosts can occur in the presence of either a transmembrane proton gradient, or a transmembrane potential

  6. Proton electroinsertion in self-assembled materials for neutralization pseudocapacitors.

    Science.gov (United States)

    Facci, Tiago; Gomes, Wellington J A S; Bravin, Bruno; Araújo, Diógenes M; Huguenin, Fritz

    2014-01-14

    We propose novel pseudocapacitors that can store energy related to the partial entropy change associated with proton concentration variations following neutralization reactions. In this situation, it is possible to obtain electrochemical energy after the complete charge/discharge cycle conducted in electrolytic solutions with different proton concentrations. To this end, we prepared modified electrodes from phosphomolybdic acid (PMA), poly(3,4-ethylenedioxythiophene/poly(styrenesulfonate) (PEDOT-PSS), and polyallylamine (PAH) by the layer-by-layer (LbL) method and investigated their electrochemical behavior, aiming to use them in these neutralization pseudocapacitors. We analyzed the potentiodynamic profile of the current density at several scan rates, to evaluate the reversibility of the proton electroinsertion process, which is crucial to maximum energy storage efficiency. On the basis of the proposed reaction mechanism and by using frequency-domain measurements and models, we determined rate constants at different potentials. Our results demonstrated that the conducting polymer affects the self-assembled matrixes, ensuring that energy storage is high (22.5 kJ mol(-1)). The process involved neutralization of a hydrochloric acid solution from pH = 1 to pH = 6, which corresponds to 40% of the neutralization enthalpy.

  7. PS proton source

    CERN Multimedia

    1959-01-01

    The first proton source used at CERN's Proton Synchrotron (PS) which started operation in 1959. This is CERN's oldest accelerator still functioning today (2018). It is part of the accelerator chain that supplies proton beams to the Large Hadron Collider. The source is a Thonemann type. In order to extract and accelerate the protons at high energy, a high frequency electrical field is used (140Mhz). The field is transmitted by a coil around a discharge tube in order to maintain the gas hydrogen in an ionised state. An electrical field pulse, in the order of 15kV, is then applied via an impulse transformer between anode and cathode of the discharge tube. The electrons and protons of the plasma formed in the ionised gas in the tube, are then separated. Currents in the order of 200mA during 100 microseconds have benn obtained with this type of source.

  8. First Extraction of Transversity from a Global Analysis of Electron-Proton and Proton-Proton Data

    Science.gov (United States)

    Radici, Marco; Bacchetta, Alessandro

    2018-05-01

    We present the first extraction of the transversity distribution in the framework of collinear factorization based on the global analysis of pion-pair production in deep-inelastic scattering and in proton-proton collisions with a transversely polarized proton. The extraction relies on the knowledge of dihadron fragmentation functions, which are taken from the analysis of electron-positron annihilation data. For the first time, the transversity is extracted from a global analysis similar to what is usually done for the spin-averaged and helicity distributions. The knowledge of transversity is important for, among other things, detecting possible signals of new physics in high-precision low-energy experiments.

  9. 15-MeV proton emission from ICRF-heated plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, O N; Conroy, S W; Hone, M; Sadler, G J; Van Belle, P [Commission of the European Communities, Luxembourg (Luxembourg)

    1994-07-01

    {sup 3} He-d fusion reaction protons emitted from ICRF-heated discharges were recorded with a silicon diode detector installed in the JET tokamak. The detection rates demonstrated that sawtooth crashes eject fast particles from the inner region of the plasma. The energy spectra of the fusion product protons using H minority provided evidence for the second harmonic acceleration of deuterons at sub-MW levels of RF power and those with {sup 3} He minority did not possess the expected twin-lobed shape predicted by kinematics calculations. (authors). 5 refs., 6 figs.

  10. Highlights of electron-proton deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Feltesse, J.

    1996-02-01

    Salient results on deep inelastic scattering from the H1 and ZEUS collaborations are reviewed. These include preliminary measurements of the proton structure function F 2 extending to new regimes at both high Q 2 and low Q 2 and x, studies of the hadronic final states and discussion on QCD interpretations of low x data. New determination of α s from jet rates in deep inelastic scattering based on 1994 data are presented. A consistent picture of the gluon density in the proton at low x from a variety of processes is obtained. (author)

  11. 15-MeV proton emission from ICRF-heated plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, O.N.; Conroy, S.W.; Hone, M.; Sadler, G.J.; Belle, P. van [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-12-31

    {sup 3}He-d fusion reaction protons emitted from ICRF-heated discharges were recorded with a silicon diode detector installed in the Joint European Torus (JET). The detection rates demonstrated that sawtooth crashes eject fast particles from the inner region of the plasma. The energy spectra of the fusion product protons using H minority provided evidence for the second harmonic acceleration of deuterons at sub-MW levels of RF power and those with {sup 3}He minority did not possess the expected twin-lobed shape predicted by kinematics calculations. (author) 5 refs., 6 figs.

  12. Proton therapy for uveal melanomas and other eye lesions

    International Nuclear Information System (INIS)

    Munzenrider, J.E.

    1999-01-01

    Charged particle beams are ideal for treating intra-ocular lesions, since they can be made to deposit their dose in the target, while significantly limiting dose received by non-involved ocular and orbital structures. Proton beam treatment of large numbers of uveal melanoma patients consistently achieves local control rates in excess of 95%, and eye retention rates of approximately 90%. Visual preservation is related to initial visual acuity, tumor size and location, and dose received by the macula, disc, and lens. The probability of distant metastasis is increased by larger tumor diameter, more anterior tumor location, and older patient age. Proton therapy is also effective treatment for patients with ocular angiomas, hemangiomas, metastatic tumors, and retinoblastomas, and may be beneficial for patients with exudative ('wet') age-related macular degeneration. (orig.)

  13. Proton therapy for uveal melanomas and other eye lesions

    Energy Technology Data Exchange (ETDEWEB)

    Munzenrider, J.E. [Dept. of Radiation Oncology, Harvard Univ. Medical School, Boston, MA (United States)

    1999-06-01

    Charged particle beams are ideal for treating intra-ocular lesions, since they can be made to deposit their dose in the target, while significantly limiting dose received by non-involved ocular and orbital structures. Proton beam treatment of large numbers of uveal melanoma patients consistently achieves local control rates in excess of 95%, and eye retention rates of approximately 90%. Visual preservation is related to initial visual acuity, tumor size and location, and dose received by the macula, disc, and lens. The probability of distant metastasis is increased by larger tumor diameter, more anterior tumor location, and older patient age. Proton therapy is also effective treatment for patients with ocular angiomas, hemangiomas, metastatic tumors, and retinoblastomas, and may be beneficial for patients with exudative (`wet`) age-related macular degeneration. (orig.)

  14. PREFACE: Transport phenomena in proton conducting media Transport phenomena in proton conducting media

    Science.gov (United States)

    Eikerling, Michael

    2011-06-01

    Proton transport phenomena are of paramount importance for acid-base chemistry, energy transduction in biological organisms, corrosion processes, and energy conversion in electrochemical systems such as polymer electrolyte fuel cells. The relevance for such a plethora of materials and systems, and the ever-lasting fascination with the highly concerted nature of underlying processes drive research across disciplines in chemistry, biology, physics and chemical engineering. A proton never travels alone. Proton motion is strongly correlated with its environment, usually comprised of an electrolyte and a solid or soft host material. For the transport in nature's most benign proton solvent and shuttle, water that is, insights from ab initio simulations, matured over the last 15 years, have furnished molecular details of the structural diffusion mechanism of protons. Excess proton movement in water consists of sequences of Eigen-Zundel-Eigen transitions, triggered by hydrogen bond breaking and making in the surrounding water network. Nowadays, there is little debate about the validity of this mechanism in water, which bears a stunning resemblance to the basic mechanistic picture put forward by de Grotthuss in 1806. While strong coupling of an excess proton with degrees of freedom of solvent and host materials facilitates proton motion, this coupling also creates negative synergies. In general, proton mobility in biomaterials and electrochemical proton conducting media is highly sensitive to the abundance and structure of the proton solvent. In polymer electrolyte membranes, in which protons are bound to move in nano-sized water-channels, evaporation of water or local membrane dehydration due to electro-osmotic coupling are well-known phenomena that could dramatically diminish proton conductivity. Contributions in this special issue address various vital aspects of the concerted nature of proton motion and they elucidate important structural and dynamic effects of solvent

  15. Proton transfer events in GFP.

    Science.gov (United States)

    Di Donato, Mariangela; van Wilderen, Luuk J G W; Van Stokkum, Ivo H M; Stuart, Thomas Cohen; Kennis, John T M; Hellingwerf, Klaas J; van Grondelle, Rienk; Groot, Marie Louise

    2011-09-28

    Proton transfer is one of the most important elementary processes in biology. Green fluorescent protein (GFP) serves as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. Illumination initiates proton transfer through a 'proton-wire', formed by the chromophore (the proton donor), water molecule W22, Ser205 and Glu222 (the acceptor), on a picosecond time scale. To obtain a more refined view of this process, we have used a combined approach of time resolved mid-infrared spectroscopy and visible pump-dump-probe spectroscopy to resolve with atomic resolution how and how fast protons move through this wire. Our results indicate that absorption of light by GFP induces in 3 ps (10 ps in D(2)O) a shift of the equilibrium positions of all protons in the H-bonded network, leading to a partial protonation of Glu222 and to a so-called low barrier hydrogen bond (LBHB) for the chromophore's proton, giving rise to dual emission at 475 and 508 nm. This state is followed by a repositioning of the protons on the wire in 10 ps (80 ps in D(2)O), ultimately forming the fully deprotonated chromophore and protonated Glu222.

  16. The use of the foil technique for the elimination of charging, and for beam monitoring in microbeam analysis of thick insulating samples

    International Nuclear Information System (INIS)

    Chaudhri, M.A.; Melbourne Univ., Austin

    1982-01-01

    It has been demonstrated that the 'thin-foil-technique' for the elimination of charging and accurate beam current/charge measurement, first developed by us, can also be conveniently applied to microbeam analysis of thick insulating samples. We have calculated the spatial broadening of proton microbeams of 1-20 MeV energies at the target, due to thin carbon foils of different thicknesses ranging from 10-40 μg/cm 2 placed either 2 or 5 mm in front of the target by using Moliere's theory of multiple scattering. The results show that at higher proton energies there is very little broadening of the incident beam even from thicker foils. But for lower energy protons (1 and 2 MeV) this broadening or worsening of the spatial resolution is relatively larger, especially from thicker foils. However, we have further shown that, even at these energies, the beam broadening can be minimized to acceptable limits by selecting a suitable thickness of carbon foil and placing it as close to the insulating target as possible. A comprehensive table is provided, which would help in selecting the most suitable carbon-foil thickness and the distance in front of the target where this foil should be placed, for microprobe application requiring different beam spots and proton energies. The advantages of this foil technique are described. (orig.)

  17. A durable alternative for proton-exchange membranes: sulfonated poly(benzoxazole thioether sulfone)s

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dan [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Lab of PEMFC Key Materials and Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Liaoning, Dalian 116023 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Li, Jinhuan [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Song, Min-Kyu; Liu, Meilin [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Yi, Baolian; Zhang, Huamin [Lab of PEMFC Key Materials and Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Liaoning, Dalian 116023 (China)

    2011-03-18

    To develop a durable proton-exchange membrane (PEM) for fuel-cell applications, a series of sulfonated poly(benzoxazole thioether sulfone)s (SPTESBOs) are designed and synthesized, with anticipated good dimensional stability (via acid-base cross linking), improved oxidative stability against free radicals (via incorporation of thioether groups), and enhanced inherent stability (via elimination of unstable end groups) of the backbone. The structures and the degree of sulfonation of the copolymers are characterized using Fourier-transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy ({sup 1}H NMR and {sup 19}F NMR). The electrochemical stabilities of the monomers are examined using cyclic voltammetry in a typical three-electrode cell configuration. The physicochemical properties of the membranes vital to fuel-cell performance are also carefully evaluated under conditions relevant to fuel-cell operation, including chemical and thermal stability, proton conductivity, solubility in different solvents, water uptake, and swelling ratio. The new membranes exhibit low dimensional change at 25 C to 90 C and excellent thermal stability up to 250 C. Upon elimination of unstable end groups, the co-polymers display enhanced chemical resistance and oxidative stability in Fenton's test. Further, the SPTESBO-HFB-60 (HFB-60=hexafluorobenzene, 60 mol% sulfone) membrane displays comparable fuel-cell performance to that of an NRE 212 membrane at 80 C under fully humidified condition, suggesting that the new membranes have the potential to be more durable but less expensive for fuel-cell applications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. The role of a microDiamond detector in the dosimetry of proton pencil beams

    Energy Technology Data Exchange (ETDEWEB)

    Goma, Carles [Paul Scherrer Institute, Villigen (Switzerland). Centre for Proton Therapy; Swiss Federal Institute of Technology Zurich (Switzerland). Dept. of Physics; Marinelli, Marco; Verona-Rinati, Gianluca [Roma Univ. ' ' Tor Vergata' ' (Italy). Dipt. di Ingegneria Industriale; INFN, Roma (Italy); Safai, Sairos [Paul Scherrer Institute, Villigen (Switzerland). Centre for Proton Therapy; Wuerfel, Jan [PTW-Freiburg, Freiburg (Germany)

    2016-05-01

    In this work, the performance of a microDiamond detector in a scanned proton beam is studied and its potential role in the dosimetric characterization of proton pencil beams is assessed. The linearity of the detector response with the absorbed dose and the dependence on the dose-rate were tested. The depth-dose curve and the lateral dose profiles of a proton pencil beam were measured and compared to reference data. The feasibility of calibrating the beam monitor chamber with a microDiamond detector was also studied. It was found the detector reading is linear with the absorbed dose to water (down to few cGy) and the detector response is independent of both the dose-rate (up to few Gy/s) and the proton beam energy (within the whole clinically-relevant energy range). The detector showed a good performance in depth-dose curve and lateral dose profile measurements; and it might even be used to calibrate the beam monitor chambers-provided it is cross-calibrated against a reference ionization chamber. In conclusion, the microDiamond detector was proved capable of performing an accurate dosimetric characterization of proton pencil beams.

  19. Sparse-view proton computed tomography using modulated proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jiseoc; Kim, Changhwan; Cho, Seungryong, E-mail: scho@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejon 305-701 (Korea, Republic of); Min, Byungjun [Department of Radiation Oncology, Kangbuk Samsung Hospital, 110–746 (Korea, Republic of); Kwak, Jungwon [Department of Radiation Oncology, Asan Medical Center, 138–736 (Korea, Republic of); Park, Seyjoon; Lee, Se Byeong [Proton Therapy Center, National Cancer Center, 410–769 (Korea, Republic of); Park, Sungyong [Proton Therapy Center, McLaren Cancer Institute, Flint, Michigan 48532 (United States)

    2015-02-15

    Purpose: Proton imaging that uses a modulated proton beam and an intensity detector allows a relatively fast image acquisition compared to the imaging approach based on a trajectory tracking detector. In addition, it requires a relatively simple implementation in a conventional proton therapy equipment. The model of geometric straight ray assumed in conventional computed tomography (CT) image reconstruction is however challenged by multiple-Coulomb scattering and energy straggling in the proton imaging. Radiation dose to the patient is another important issue that has to be taken care of for practical applications. In this work, the authors have investigated iterative image reconstructions after a deconvolution of the sparsely view-sampled data to address these issues in proton CT. Methods: Proton projection images were acquired using the modulated proton beams and the EBT2 film as an intensity detector. Four electron-density cylinders representing normal soft tissues and bone were used as imaged object and scanned at 40 views that are equally separated over 360°. Digitized film images were converted to water-equivalent thickness by use of an empirically derived conversion curve. For improving the image quality, a deconvolution-based image deblurring with an empirically acquired point spread function was employed. They have implemented iterative image reconstruction algorithms such as adaptive steepest descent-projection onto convex sets (ASD-POCS), superiorization method–projection onto convex sets (SM-POCS), superiorization method–expectation maximization (SM-EM), and expectation maximization-total variation minimization (EM-TV). Performance of the four image reconstruction algorithms was analyzed and compared quantitatively via contrast-to-noise ratio (CNR) and root-mean-square-error (RMSE). Results: Objects of higher electron density have been reconstructed more accurately than those of lower density objects. The bone, for example, has been reconstructed

  20. The LILIA experiment: Energy selection and post-acceleration of laser generated protons

    Science.gov (United States)

    Turchetti, Giorgio; Sinigardi, Stefano; Londrillo, Pasquale; Rossi, Francesco; Sumini, Marco; Giove, Dario; De Martinis, Carlo

    2012-12-01

    The LILIA experiment is planned at the SPARCLAB facility of the Frascati INFN laboratories. We have simulated the laser acceleration of protons, the transport and energy selection with collimators and a pulsed solenoid and the post-acceleration with a compact high field linac. For the highest achievable intensity corresponding to a = 30 over 108 protons at 30 MeV with a 3% spread are selected, and at least107 protons are post-accelerated up to 60 MeV. If a 10 Hz repetition rated can be achieved the delivered dose would be suitable for the treatment of small superficial tumors.

  1. WE-EF-303-09: Proton-Acoustic Range Verification in Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M; Xing, L [Stanford University School of Medicine, Stanford, CA (United States); Xiang, L [University of Oklahoma (OK), Norman, OK (United States)

    2015-06-15

    Purpose: We investigated proton-acoustic signals detection for range verification with current ultrasound instruments in typical clinical scenarios. Using simulations that included a realistic noise model, we determined the theoretical minimum dose required to generate detectable proton-acoustic signals. Methods: An analytical model was used to calculate the dose distributions and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. The acoustic waves propagating from the Bragg peak were modeled by the general 3D pressure wave equation and convolved with Gaussian kernels to simulate various proton pulse widths (0.1 – 10 ms). A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth band-pass filter, and ii) randomly generated noise based on a model of thermal noise in the transducer. The signal-to-noise ratio was calculated, determining the minimum number of protons and dose required per pulse. The maximum spatial resolution was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer center frequency (70–380 kHz). The minimum number of protons were on the order of 0.6–6 million per pulse, leading to 3–110 mGy dose per pulse at the Bragg peak, depending on the spot size. The acoustic signal consisted of lower frequencies for wider pulses, leading to lower noise levels, but also worse spatial resolution. The resolution was 1-mm for a 0.1-µs pulse width, but increased to 5-mm for a 10-µs pulse width. Conclusion: We have established minimum dose detection limits for proton-acoustic range validation. These limits correspond to a best case scenario with a large detector with no losses and only detector thermal noise. Feasible proton-acoustic range detection will require at least 10{sup 7} protons per pulse and pulse widths ≤ 1-µs.

  2. Proton computed tomography

    International Nuclear Information System (INIS)

    Hanson, K.M.

    1978-01-01

    The use of protons or other heavy charged particles instead of x rays in computed tomography (CT) is explored. The results of an experimental implementation of proton CT are presented. High quality CT reconstructions are obtained at an average dose reduction factor compared with an EMI 5005 x-ray scanner of 10:1 for a 30-cm-diameter phantom and 3.5:1 for a 20-cm diameter. The spatial resolution is limited by multiple Coulomb scattering to about 3.7 mm FWHM. Further studies are planned in which proton and x-ray images of fresh human specimens will be compared. Design considerations indicate that a clinically useful proton CT scanner is eminently feasible

  3. Correlated stopping, proton clusters and higher order proton cumulants

    Energy Technology Data Exchange (ETDEWEB)

    Bzdak, Adam [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow (Poland); Koch, Volker [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Skokov, Vladimir [RIKEN/BNL, Brookhaven National Laboratory, Upton, NY (United States)

    2017-05-15

    We investigate possible effects of correlations between stopped nucleons on higher order proton cumulants at low energy heavy-ion collisions. We find that fluctuations of the number of wounded nucleons N{sub part} lead to rather nontrivial dependence of the correlations on the centrality; however, this effect is too small to explain the large and positive four-proton correlations found in the preliminary data collected by the STAR collaboration at √(s) = 7.7 GeV. We further demonstrate that, by taking into account additional proton clustering, we are able to qualitatively reproduce the preliminary experimental data. We speculate that this clustering may originate either from collective/multi-collision stopping which is expected to be effective at lower energies or from a possible first-order phase transition, or from (attractive) final state interactions. To test these ideas we propose to measure a mixed multi-particle correlation between stopped protons and a produced particle (e.g. pion, antiproton). (orig.)

  4. Proton-90Zr interaction at sub-coulomb proton energies

    International Nuclear Information System (INIS)

    Laird, C.E.; Flynn, D.; Hershberger, R.L.; Gabbard, F.

    1985-01-01

    Measurements have been made of proton elastic scattering differential cross sections for proton scattering at 135 0 and 165 0 from 2 to 7 MeV, of inelastic scattering cross sections for proton scattering from 3.9 to 5.7 MeV, and of the radiative capture cross sections from 1.9 to 5.7 MeV detecting primary and cascade gamma rays. Optical potentials with Hauser-Feshbach and coupled-channel models have been used to analyze the data. This analysis yields an energy dependent absorptive potential of W = 2.63+.73 whose mean value of 5 MeV at E/sub p/ = 4 MeV is consistent with previously reported, but anomalously small values. The diffuseness of the real potential is .54 fm, which is consistent with values found for 92 Zr and 94 Zr. The adopted model values are used to deduce a total proton strength function which displays the features of both the 3s and the 3p single particle resonances

  5. Elimination Kinetics of Ethanol in a 5-Week-Old Infant and a Literature Review of Infant Ethanol Pharmacokinetics

    Directory of Open Access Journals (Sweden)

    Jonathan B. Ford

    2013-01-01

    Full Text Available Primary ethanol metabolism occurs through alcohol dehydrogenase, but minor metabolic pathways such as the P450 enzymes CYP2E1 and CYP1A2 and the enzyme catalase exist. These enzymes have distinct developmental stages. Elimination kinetics of ethanol in the infant is limited. We report the elimination kinetics of ethanol in a 5-week-old African-American male who had a serum ethanol level of 270 mg/dL on admission. A previously healthy 5-week-old African-American male was brought to the ED with a decreased level of consciousness. His initial blood ethanol level was 270 mg/dL. Serial blood ethanol levels were obtained. The elimination rate of ethanol was calculated to be in a range from 17.1 to 21.2 mg/dL/hr and appeared to follow zero-order elimination kinetics with a R2=0.9787. Elimination kinetics for ethanol in the young infant has been reported in only four previously published reports. After reviewing these reports, there appears to be variability in the elimination rates of ethanol in infants. Very young infants may not eliminate ethanol as quickly as previously described. Given that there are different stages of enzyme development in children, caution should be used when generalizing the elimination kinetics in young infants and children.

  6. NMR studies of proton exchange kinetics in aqueous formaldehyde solutions.

    Science.gov (United States)

    Rivlin, Michal; Eliav, Uzi; Navon, Gil

    2014-05-01

    Aqueous solutions of formaldehyde, formalin, are commonly used for tissue fixation and preservation. Treatment with formalin is known to shorten the tissue transverse relaxation time T2. Part of this shortening is due to the effect of formalin on the water T2. In the present work we show that the shortening of water T2 is a result of proton exchange between water and the major constituent of aqueous solutions of formaldehyde, methylene glycol. We report the observation of the signal of the hydroxyl protons of methylene glycol at 2ppm to high frequency of the water signal that can be seen at low temperatures and at pH range of 6.0±1.5 and, at conditions where it cannot be observed by the single pulse experiment, it can be detected indirectly through the water signal by the chemical exchange saturation transfer (CEST) experiment. The above finding made it possible to obtain the exchange rate between the hydroxyl protons of the methylene glycol and water in aqueous formaldehyde solutions, either using the dispersion of the spin-lattice relaxation rate in the rotating frame (1/T1ρ) or, at the slow exchange regime, from the line width hydroxyl protons of methylene glycol. The exchange rate was ∼10(4)s(-1) at pH 7.4 and 37°C, the activation energy, 50.2kJ/mol and its pH dependence at 1.1°C was fitted to: k (s(-1))=520+6.5×10(7)[H(+)]+3.0×10(9)[OH(-)]. Copyright © 2014. Published by Elsevier Inc.

  7. Prompt neutrino production in 400 GeV proton copper interactions

    Science.gov (United States)

    Grässler, H.; Dröge, W.; Idschok, U.; Kreutzmann, H.; Nellen, B.; Wünsch, B.; Cooper-Sarkar, A. M.; Cundy, D. C.; Foeth, H.; Grant, A.; Harigel, G. G.; Klein, H.; Morrison, D. R. O.; Nikolić, M.; Pape, L.; Parker, M. A.; Schmid, P.; Wachsmuth, H.; Dris, M.; Simopoulou, E.; Vayaki, A.; Barnham, K. W. J.; Miller, D. B.; Mobayyen, M. M.; Talebzadeh, M.; Aderholz, M.; Deck, L.; Schmitz, N.; Wittek, W.; Bostock, P.; Krstić, J.; Myatt, G.; Radojicić, D.; Guy, J.; Venus, W.; Bolognese, T.; Faccini-Turluer, M. L.; Vignaud, D.; Hulth, P. O.; Hultqvist, K.; Walck, Ch.; BEBC WA66 Collaboration

    1986-08-01

    The prompt electron neutrino and muon neutrino fluxes from proton copper interactions at 400 GeV/ c proton momentum have been measured. The asymmetry between the prompt electron (anti) neutrino and the prompt muon (anti) neutrino event rates above 20 GeV is A eμ = {(N e - N μ}/{(N c + N μ) } = 0.07 ± 0.08 corresponding to an Ne/ Nμ ratio of 1.14 -0.16-0.19. The cross section weighted charge asymmetry for electrons and muons combined is A ν overlineν = 0.15 ± 0.08 . The number of overlineD decays into overlineνeandoverlineνμis (4.1 ± 0.9) × 10 -4 per incident proton. No evidence for ντ interactions was found.

  8. Proton-rich nuclear statistical equilibrium

    International Nuclear Information System (INIS)

    Seitenzahl, I.R.; Timmes, F.X.; Marin-Lafleche, A.; Brown, E.; Magkotsios, G.; Truran, J.

    2008-01-01

    Proton-rich material in a state of nuclear statistical equilibrium (NSE) is one of the least studied regimes of nucleosynthesis. One reason for this is that after hydrogen burning, stellar evolution proceeds at conditions of an equal number of neutrons and protons or at a slight degree of neutron-richness. Proton-rich nucleosynthesis in stars tends to occur only when hydrogen-rich material that accretes onto a white dwarf or a neutron star explodes, or when neutrino interactions in the winds from a nascent proto-neutron star or collapsar disk drive the matter proton-rich prior to or during the nucleosynthesis. In this Letter we solve the NSE equations for a range of proton-rich thermodynamic conditions. We show that cold proton-rich NSE is qualitatively different from neutron-rich NSE. Instead of being dominated by the Fe-peak nuclei with the largest binding energy per nucleon that have a proton-to-nucleon ratio close to the prescribed electron fraction, NSE for proton-rich material near freezeout temperature is mainly composed of 56Ni and free protons. Previous results of nuclear reaction network calculations rely on this nonintuitive high-proton abundance, which this Letter explains. We show how the differences and especially the large fraction of free protons arises from the minimization of the free energy as a result of a delicate competition between the entropy and nuclear binding energy.

  9. Measurement of the inelastic proton-proton cross section with the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Zenis, Tibor [Comenius University Bratislava (Slovakia); Collaboration: ATLAS Collaboration

    2013-04-15

    A measurement of the inelastic proton-proton cross-section at centre-of-mass energy of Central diffraction in proton-proton collisions at {radical}(s) = 7TeV using the ATLAS detector at the Large Hadron Collider is presented. Events are selected by requiring hits in scintillator counters mounted in the forward region of the ATLAS detector and the dataset corresponding to an integrated luminosity of 20{mu}b{sup -1}. In addition, the total cross-section is studied as a function of the rapidity gap size measured with the inner detector and calorimetry.

  10. ISABELLE: a proposal for construction of a proton--proton storage accelerator facility

    International Nuclear Information System (INIS)

    1976-05-01

    The construction of an Intersecting Storage Accelerator Facility (ISA or ISABELLE) at Brookhaven National Laboratory is proposed. ISABELLE will permit the exploration of proton-proton collisions at center-of-mass energies continuously variable from 60 to 400 GeV and with luminosities of 10 32 to 10 33 cm -2 sec -1 over the entire range. An overview of the physics potential of this machine is given, covering the production of charged and neutral intermediate vector bosons, the hadron production at high transverse momentum, searches for new, massive particles, and the energy dependence of the strong interactions. The facility consists of two interlaced rings of superconducting magnets in a common tunnel about 3 km in circumference. The proton beams will collide at eight intersection regions where particle detectors will be arranged for studying the collision processes. Protons of approximately 30 GeV from the AGS will be accumulated to obtain the design current of 10A prior to acceleration to final energy. The design and performance of existing full-size superconducting dipoles and quadrupoles is described. The conceptual design of the accelerator systems and the conventional structures and buildings is presented. A preliminary cost estimate and construction schedule are given. Possible future options such as proton-antiproton, proton-deuteron and electron-proton collisions are discussed

  11. SU-E-J-63: Feasibility Study of Proton Digital Tomosynthesis in Proton Beam Therapy.

    Science.gov (United States)

    Min, B; Kwak, J; Lee, J; Cho, S; Park, S; Yoo, S; Chung, K; Cho, S; Lim, Y; Shin, D; Lee, S; Kim, J

    2012-06-01

    We investigated the feasibility of proton tomosynthesis as daily positioning of patients and compared the results with photon tomosynthesis as an alternative to conventional portal imaging or on-board cone-beam computed tomography. Dedicated photon-like proton beam using the passively scattered proton beams by the cyclotron was generated for proton imaging. The eleven projections were acquired over 30 degree with 3 degree increment in order to investigate the performance of proton tomosynthesis. The cylinder blocks and resolution phantom were used to evaluate imaging performance. Resolution phantom of a cylinder of diameter 12 cm was used to investigate the reconstructed imaging characteristics. Electron density cylinder blocks with diameter of 28 mm and height of 70 mm were employed to assess the imaging quality. The solid water, breast, bone, adipose, lung, muscle, and liver, which were tissue equivalent inserts, were positioned around the resolution phantom. The images were reconstructed by projection onto convex sets (POCS) algorithm and total variation minimization (TVM) methods. The Gafchromic EBT films were utilized for measuring the photon-like proton beams as a proton detector. In addition, the photon tomosynthesis images were obtained for a comparison with proton tomosynthesis images. The same angular sampling data were acquired for both proton and photon tomosynthesis. In the resolution phantom image obtained proton tomosynthesis, down to 1.6 mm diameter rods were resolved visually, although the separation between adjacent rods was less distinct. In contrast, down to 1.2 mm diameter rods were resolved visually in the reconstructed image obtained photon tomosynthesis. Both proton and photon tomosynthesis images were similar in intensities of different density blocks. Our results demonstrated that proton tomosynthesis could make it possible to provide comparable tomography imaging to photon tomosynthesis for positioning as determined by manual registration

  12. A short comparison of electron and proton transfer processes in biological systems

    International Nuclear Information System (INIS)

    Bertrand, Patrick

    2005-01-01

    The main differences between electron and proton transfers that take place in biological systems are examined. The relation between the distance dependence of the rate constant and the mass of the transferred particle is analyzed in detail. Differences between the two processes have important consequences at the experimental level, which are discussed. The various mechanisms that ensure the coupling between electron and proton transfers are briefly described

  13. Proton-proton elastic scattering at ultrahigh energies

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Shaukat, M.A.; Fazal-e-Aleem (University of the Punjab, Lahore (Pakistan). Dept. of Physics)

    1981-05-30

    Recent experimental results on proton-proton elastic scattering at high energies are discussed in the context of the comments by Chou and Yang. There does not appear to be any tendency that the experimental results would agree with the predictions of the geometrical model even at ultrahigh energies. The angular distribution structure as described by using the dipole pomeron is consistent with the experimental data at presently available high energies and predicts results quite different from the geometrical model.

  14. Two proton decay in 12O

    International Nuclear Information System (INIS)

    Kumawat, M.; Singh, U.K.; Jain, S.K.; Saxena, G.; Kaushik, M.; Aggarwal, Mamta

    2017-01-01

    Two-proton radioactivity was observed experimentally in the decay of 45 Fe, 54 Zn and 48 Ni. From then many theoretical studies of one and two-proton radioactivity have been carried out within the framework of different models including RMF+BCS approach for medium mass region. Towards light mass region proton-proton correlations were observed in two-proton decay of 19 Mg and 16 Ne. Recently, different mechanism of two-proton emission from proton-rich nuclei 23 Al and 22 Mg has been investigated and transition from direct to sequential two-proton decay in sd shell nuclei is observed. Encouraged with these recent studies of two proton emission in light mass nuclei, we have applied our RMF+BCS approach for the study of two proton emission in light mass region and in this paper we present our result of two proton emission in 12 O

  15. Proton Radiography with CR-39 by Using the Protons from High Power Femto-second Laser System

    International Nuclear Information System (INIS)

    Choi, Chang Il; Lee, Dong Hoon; Kang, Byoung Hwi; Kim, Yong Kyun; Choi, Il Woo; Ko, Do Kyeong; Lee, Jong Min

    2008-01-01

    Proton radiography techniques are useful to obtain a high quality image of a thin object, because protons travel straight in matter. Generation of the high energy proton using conventional accelerator costs high and requires large accelerating facility. But proton radiography using high power femto-second(10-15 second) laser has been interested, because it can generate high energy protons at lower price than the conventional accelerator like a cyclotron. For this study, we used the CR-39 SSNTD (Solid State Nuclear Track Detector) as the proton radiography screen. Commonly, CR-39 is used to detect the tracks of energetic charged particles. Incident energetic charged particles left latent tracks in the CR-39, in the form of broken molecular chains and free radicals. These latent tracks show high chemical reactivity. After chemical etching with the caustic alkali solution such as NaOH or KOH, tracks are appeared to forms of hole. If protons with various energies enter the two targets with another thickness, number of protons passed through the target per unit area is different each other. Using this feature of protons, we can a proton radiographic image with CR-39. We studied proton radiography with CR-39 by using energetic protons from high power femto-second laser and evaluated potentiality of femto-second laser as new energetic proton generator for radiography

  16. Proton and neutron radiation in cancer treatment: clinical and economic outcomes

    International Nuclear Information System (INIS)

    Fleurette, F.; Charvet-Protat, S.

    1996-01-01

    The French National Agency for Medical Evaluation (ANDEM) was requested to assess the effectiveness of proton and neutron beam therapy in cancer treatment compared to conventional radiotherapy. This task was accomplished by a critical appraisal of the clinical and economic literature. According to the published economic literature and the capital and staffing cost analysis, it appears that the costs of proton therapy are likely to be two or three times greater than those conformal therapy. According to the published clinical literature, proton beam therapy should be proposed as a routine treatment only for uveal melanoma and skull base cancers. Neutron beam therapy should be proposed as a routine treatment for inoperable salivary gland tumors; its use may be also discussed in cases of stage C-D1 prostate cancers and soft tissue sarcomas. Based on the current scientific evidence and given the incidence rate of these tumors, the time and material requirements, the current French proton/neutron beam facilities are able to meet the current demand. FOr other cancers the medical and economic potential of proton therapy is still an open question. (author)

  17. Influence of reactor irradiation on the protons intercalation and stability of barium cerates and strontium cerates

    International Nuclear Information System (INIS)

    Aksenova, T.I.; Khromushin, I.V.; Zhotabaev, Zh.R.; Kornienko, P.A.; Munasbaeva, K.K.

    2005-01-01

    The work is devoted to study of reactor irradiation influence on the gas-solid exchange processes in the high-temperature proton semiconductors on the base of cerates and strontium. A number of new regularities of influence of content of some proton semiconductors on the gas-solid exchange processes was established. It is shown, that increase of rate of cation doping rate leads to considerable lowering in its of carbonic gas content, and therefore to improvement their tribological properties. It is revealed, that irradiation of polycrystalline samples leads to growth of oxygen amount desorbed from samples, whereas irradiation of monocrystalline samples practically does not has effect on the desorbed oxygen amount. It was found, that character of relation of intercalated in the sample protons depend on sample doping rate

  18. Why do proton conducting polybenzimidazole phosphoric acid membranes perform well in high-temperature PEM fuel cells?

    Science.gov (United States)

    Melchior, Jan-Patrick; Majer, Günter; Kreuer, Klaus-Dieter

    2016-12-21

    Transport properties and hydration behavior of phosphoric acid/(benz)imidazole mixtures are investigated by diverse NMR techniques, thermogravimetric analysis (TGA) and conductivity measurements. The monomeric systems can serve as models for phosphoric acid/poly-benzimidazole membranes which are known for their exceptional performance in high temperature PEM fuel cells. 1 H- and 31 P-NMR data show benzimidazole acting as a strong Brønsted base with respect to neat phosphoric acid. Since benzimidazole's nitrogens are fully protonated with a low rate for proton exchange with phosphate species, proton diffusion and conduction processes must take place within the hydrogen bond network of phosphoric acid only. The proton exchange dynamics between phosphate and benzimidazole species pass through the intermediate exchange regime (with respect to NMR line separations) with exchange times being close to typical diffusion times chosen in PFG-NMR diffusion measurements (ms regime). The resulting effects, as described by the Kärger equation, are included into the evaluation of PFG-NMR data for obtaining precise proton diffusion coefficients. The highly reduced proton diffusion coefficient within the phosphoric acid part of the model systems compared to neat phosphoric acid is suggested to be the immediate consequence of proton subtraction from phosphoric acid. This reduces hydrogen bond network frustration (imbalance of the number of proton donors and acceptors) and therefore also the rate of structural proton diffusion, phosphoric acid's acidity and hygroscopicity. Reduced water uptake, shown by TGA, goes along with reduced electroosmotic water drag which is suggested to be the reason for PBI-phosphoric acid membranes performing better in fuel cells than other phosphoric-acid-containing electrolytes with higher protonic conductivity.

  19. Organ burdens and elimination rates of inhaled thorium and plutonium

    International Nuclear Information System (INIS)

    Unnikrishnan, K.; Murthy, K.B.S.; Sunta, C.M.

    1986-01-01

    For the purpose of interpreting observations from internal monitoring programmes, organ burdens and excretion rates resulting from inhalation of long-lived isotopes of plutonium and thorium have been calculated, on the basis of the ICRP model. Two types of inhalation, instantaneous (acute) and at a steady rate (chronic) are considered. The expected buildups of the burden in lungs, lymph nodes, bone, liver and other tissues, as well as the excretion rates, have been calculated for aerosol classes W and Y, and particle sizes of AMAD 1 μm and 6 μm. Further, in view of their use in selecting the periodicity of routine monitoring, theoretical results are also presented for the case of a total inhalation of 1 ALI in one year, instantaneously or at a constant rate. (author)

  20. Decoration of dislocations by proton irradiation of halite

    International Nuclear Information System (INIS)

    Bird, J.R.; Rose, A.; Wilkins, R.W.T.

    1981-01-01

    Proton irradiation of halite (NaCl) at temperatures in the range 150-220 0 C produces a variety of colours from yellow/brown through blue to violet/red. Under suitable conditions, colour bands are formed which decorate dislocations and colour other crystal features. One beam line of the Lucas Heights 3 MV Van de Graaff accelerator has been adapted to permit the measurement of optical absorption spectra during proton irradiation of heated crystals. The results show that colour centre formation is a more complex process than has been previously reported, even for synthetic NaCl crystals. The dependence of absorption at various wavelengths on dose, dose rate, temperature, strain and exposure to light is being used to study the different quasi-equilibrium concentrations of colour centres involved in the decoration process. Proton induced X-ray measurements provide information on the presence of impurities which can have an important influence on colour centre formation. (orig.)

  1. Measurement of the ratio of charged current neutrino cross sections on neutrons and protons in the energy range 1-10 GeV

    International Nuclear Information System (INIS)

    Lerche, W.; Pohl, M.; Schultze, K.; Derange, B.; Francois, T.; Van Dam, P.; Jaffre, M.; Longuemare, C.; Pascaud, C.; Calimani, E.; Ciampolillo, S.; Mattioli, F.

    1978-01-01

    The charged current cross-section ratio R = sigma(γ+n)/sigma(γ+p), averaged over the energy range, 1-10 GeV, is determined by two independent methods. The combined value is R = 2.08+-0.15. Semi-inclusive proton production rates on both proton and neutron targets are presented. Event rates of exclusive channels on the proton target are also given. (Auth.)

  2. Proton permeation of lipid bilayers.

    Science.gov (United States)

    Deamer, D W

    1987-10-01

    Proton permeation of the lipid bilayer barrier has two unique features. First, permeability coefficients measured at neutral pH ranges are six to seven orders of magnitude greater than expected from knowledge of other monovalent cations. Second, proton conductance across planar lipid bilayers varies at most by a factor of 10 when pH is varied from near 1 to near 11. Two mechanisms have been proposed to account for this anomalous behavior: proton conductance related to contaminants of lipid bilayers, and proton translocation along transient hydrogen-bonded chains (tHBC) of associated water molecules in the membrane. The weight of evidence suggests that trace contaminants may contribute to proton conductance across planar lipid membranes at certain pH ranges, but cannot account for the anomalous proton flux in liposome systems. Two new results will be reported here which were designed to test the tHBC model. These include measurements of relative proton/potassium permeability in the gramicidin channel, and plots of proton flux against the magnitude of pH gradients. (1) The relative permeabilities of protons and potassium through the gramicidin channel, which contains a single strand of hydrogen-bonded water molecules, were found to differ by at least four orders of magnitude when measured at neutral pH ranges. This result demonstrates that a hydrogen-bonded chain of water molecules can provide substantial discrimination between protons and other cations. It was also possible to calculate that if approximately 7% of bilayer water was present in a transient configuration similar to that of the gramicidin channel, it could account for the measured proton flux. (2) The plot of proton conductance against pH gradient across liposome membranes was superlinear, a result that is consistent with one of three alternative tHBC models for proton conductance described by Nagle elsewhere in this volume.

  3. Proton beam characterization by proton-induced acoustic emission: simulation studies

    International Nuclear Information System (INIS)

    Jones, K C; Witztum, A; Avery, S; Sehgal, C M

    2014-01-01

    Due to their Bragg peak, proton beams are capable of delivering a targeted dose of radiation to a narrow volume, but range uncertainties currently limit their accuracy. One promising beam characterization technique, protoacoustic range verification, measures the acoustic emission generated by the proton beam. We simulated the pressure waves generated by proton radiation passing through water. We observed that the proton-induced acoustic signal consists of two peaks, labeled α and γ, with two originating sources. The α acoustic peak is generated by the pre-Bragg peak heated region whereas the source of the γ acoustic peak is the proton Bragg peak. The arrival time of the α and γ peaks at a transducer reveals the distance from the beam propagation axis and Bragg peak center, respectively. The maximum pressure is not observed directly above the Bragg peak due to interference of the acoustic signals. Range verification based on the arrival times is shown to be more effective than determining the Bragg peak position based on pressure amplitudes. The temporal width of the α and γ peaks are linearly proportional to the beam diameter and Bragg peak width, respectively. The temporal separation between compression and rarefaction peaks is proportional to the spill time width. The pressure wave expected from a spread out Bragg peak dose is characterized. The simulations also show that acoustic monitoring can verify the proton beam dose distribution and range by characterizing the Bragg peak position to within ∼1 mm. (paper)

  4. ELM elimination with Li powder injection in EAST discharges using the tungsten upper divertor

    Science.gov (United States)

    Maingi, R.; Hu, J. S.; Sun, Z.; Tritz, K.; Zuo, G. Z.; Xu, W.; Huang, M.; Meng, X. C.; Canik, J. M.; Diallo, A.; Lunsford, R.; Mansfield, D. K.; Osborne, T. H.; Gong, X. Z.; Wang, Y. F.; Li, Y. Y.; EAST Team

    2018-02-01

    We report the first successful use of lithium (Li) to eliminate edge-localized modes (ELMs) with tungsten divertor plasma-facing components in the EAST device. Li powder injected into the scrape-off layer of the tungsten upper divertor successfully eliminated ELMs for 3-5 s in EAST. The ELM elimination became progressively more effective in consecutive discharges at constant lithium delivery rates, and the divertor D α baseline emission was reduced, both signatures of improved wall conditioning. A modest decrease in stored energy and normalized energy confinement was also observed, but the confinement relative to H98 remained well above 1, extending the previous ELM elimination results via Li injection into the lower carbon divertor in EAST (Hu et al 2015 Phys. Rev. Lett. 114 055001). These results can be compared with recent observations with lithium pellets in ASDEX-Upgrade that failed to mitigate ELMs (Lang et al 2017 Nucl. Fusion 57 016030), highlighting one comparative advantage of continuous powder injection for real-time ELM elimination.

  5. Generalized z-scaling in proton-proton collisions at high energies

    International Nuclear Information System (INIS)

    Zborovsky, I.; Tokarev, M.

    2006-01-01

    New generalization of z-scaling in inclusive particle production is proposed. The scaling variable z is a fractal measure which depends on kinematical characteristics of the underlying subprocess expressed in terms of the momentum fractions x 1 and x 2 of the incoming protons. In the generalized approach, the x 1 and x 2 are functions of the momentum fractions y a and y b of the scattered and recoil constituents carried out by the inclusive particle and recoil object, respectively. The scaling function ψ(z) for charged and identified hadrons produced in proton-proton collisions is constructed. The fractal dimensions and heat capacity of the produced medium entering definition of the z are established to obtain energy, angular and multiplicity independence of the ψ(z). The scheme allows unique description of data on inclusive cross sections of charged particles, pions, kaons, antiprotons, and lambdas at high energies. The obtained results are of interest to use z-scaling as a tool for searching for new physics phenomena of particle production in high transverse momentum and high multiplicity region at the proton-proton colliders RHIC and LHC

  6. With neutrino masses revealed, proton decay is the missing link

    International Nuclear Information System (INIS)

    Pati, J.C.

    1999-01-01

    By way of paying tribute to Abdus Salam, I recall the ideas of higher unification that he and I initiated. I discuss the current status of those ideas in the light of recent developments, including those of: (a) gauge coupling unification, (b) discovery of neutrino-oscillation at SuperKamiokande, and (c) ongoing searches for proton decay. It is noted that the mass of ν τ (∼ 1/20 eV), suggested by the SuperK result, provides clear support for the route to higher unification based on the ideas of (i) SU(4)-color, (ii) left-right symmetry and (iii) supersymmetry. The change in perspective, pertaining to both gauge coupling unification and proton decay, brought forth by supersymmetry and superstrings, is noted. And, the beneficial roles of string-symmetries in addressing certain naturalness problems of supersymmetry, including that of rapid proton decay, are emphasized. Further, it is noted that with neutrino masses and coupling unification revealed, proton decay is the missing link. Following recent joint work with K. Babu and F. Wilczek, based on supersymmetric unification, it is remarked that the SuperKamiokande result on neutrino oscillation in fact enhances the expected rate of proton decay compared to prior estimates. Thus, assuming supersymmetric unification, one expects that the discovery of proton decay should not be far behind. (author)

  7. Proton-proton, anti-proton-anti-proton, proton-anti-proton correlations in Au+Au collisions measured by STAR at RHIC

    International Nuclear Information System (INIS)

    Gos, H.P.

    2007-01-01

    The analysis of two-particle correlations provides a powerful tool to study the properties of hot and dense matter created in heavy-ion collisions at ultra-relativistic energies. Applied to identical and non-identical hadron pairs, it makes the study of space-time evolution of the source in femtoscopic scale possible. Baryon femtoscopy allows extraction of the radii of produced sources which can be compared to those deduced from identical pion studies, providing complete information about the source characteristics. In this paper we present the correlation functions obtained for identical and non-identical baryon pairs of protons and anti-protons. The data were collected recently in Au+Au collisions at √(s NN )=62 GeV and √(s NN )=200 GeV by the STAR detector at the RHIC accelerator. We introduce corrections to the baryon-baryon correlations taking into account: residual correlations from weak decays, particle identification probability and the fraction of primary baryons. Finally we compare our results to theoretical predictions. (orig.)

  8. Measurement of activation reaction rate distributions in a lead assembly bombarded with 500-MeV protons

    CERN Document Server

    Takada, H; Sasa, T; Tsujimoto, K; Yasuda, H

    2000-01-01

    Reaction rate distributions of various activation detectors such as the /sup nat/Ni(n, x)/sup 58/Co, /sup 197/Au(n,2n)/sup 196/Au, and /sup 197/Au(n,4n)/sup 194/Au reactions were measured to study the production and the transport of spallation neutrons in a lead assembly bombarded with protons of 500 MeV. The measured data were analyzed with the nucleon-meson transport code NMTC/JAERI combined with the MCNP4A code using the nuclide production cross sections based on the JENDL Dosimetry File and those calculated with the ALICE-F code. It was found that the NMTC/JAERI-MCNP4A calculations agreed well with the experiments for the low-energy-threshold reaction of /sup nat/Ni(n, x)/sup 58/Co. With the increase of threshold energy, however, the calculation underestimated the experiments, especially above 20 MeV. The reason for the disagreement can be attributed to the underestimation of the neutron yield in the tens of mega-electron-volt regions by the NMTC/JAERI code. (32 refs).

  9. Solar proton fluxes since 1956

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1977-01-01

    The fluxes of protons emitted during solar flares since 1956 were evaluated. The depth-versus-activity profiles of 56 Co in several lunar rocks are consistent with the solar-proton fluxes detected by experiments on several satellites. Only about 20% of the solar-proton-induced activities of 22 Na and 55 Fe in lunar rocks from early Apollo missions were produced by protons emitted from the sun during solar cycle 20 (1965--1975). The depth-versus-activity data for these radionuclides in several lunar rocks were used to determine the fluxes of protons during solar cycle 19 (1954--1964). The average proton fluxes for cycle 19 are about five times those for both the last million years and for cycle 20. These solar-proton flux variations correlate with changes in sunspot activity

  10. A simulation model approach to analysis of the business case for eliminating health care disparities

    Directory of Open Access Journals (Sweden)

    Tunceli Kaan

    2011-03-01

    Full Text Available Abstract Background Purchasers can play an important role in eliminating racial and ethnic disparities in health care. A need exists to develop a compelling "business case" from the employer perspective to put, and keep, the issue of racial/ethnic disparities in health care on the quality improvement agenda for health plans and providers. Methods To illustrate a method for calculating an employer business case for disparity reduction and to compare the business case in two clinical areas, we conducted analyses of the direct (medical care costs paid by employers and indirect (absenteeism, productivity effects of eliminating known racial/ethnic disparities in mammography screening and appropriate medication use for patients with asthma. We used Markov simulation models to estimate the consequences, for defined populations of African-American employees or health plan members, of a 10% increase in HEDIS mammography rates or a 10% increase in appropriate medication use among either adults or children/adolescents with asthma. Results The savings per employed African-American woman aged 50-65 associated with a 10% increase in HEDIS mammography rate, from direct medical expenses and indirect costs (absenteeism, productivity combined, was $50. The findings for asthma were more favorable from an employer point of view at approximately $1,660 per person if raising medication adherence rates in African-American employees or dependents by 10%. Conclusions For the employer business case, both clinical scenarios modeled showed positive results. There is a greater potential financial gain related to eliminating a disparity in asthma medications than there is for eliminating a disparity in mammography rates.

  11. A simulation model approach to analysis of the business case for eliminating health care disparities.

    Science.gov (United States)

    Nerenz, David R; Liu, Yung-wen; Williams, Keoki L; Tunceli, Kaan; Zeng, Huiwen

    2011-03-19

    Purchasers can play an important role in eliminating racial and ethnic disparities in health care. A need exists to develop a compelling "business case" from the employer perspective to put, and keep, the issue of racial/ethnic disparities in health care on the quality improvement agenda for health plans and providers. To illustrate a method for calculating an employer business case for disparity reduction and to compare the business case in two clinical areas, we conducted analyses of the direct (medical care costs paid by employers) and indirect (absenteeism, productivity) effects of eliminating known racial/ethnic disparities in mammography screening and appropriate medication use for patients with asthma. We used Markov simulation models to estimate the consequences, for defined populations of African-American employees or health plan members, of a 10% increase in HEDIS mammography rates or a 10% increase in appropriate medication use among either adults or children/adolescents with asthma. The savings per employed African-American woman aged 50-65 associated with a 10% increase in HEDIS mammography rate, from direct medical expenses and indirect costs (absenteeism, productivity) combined, was $50. The findings for asthma were more favorable from an employer point of view at approximately $1,660 per person if raising medication adherence rates in African-American employees or dependents by 10%. For the employer business case, both clinical scenarios modeled showed positive results. There is a greater potential financial gain related to eliminating a disparity in asthma medications than there is for eliminating a disparity in mammography rates. © 2011 Nerenz et al; licensee BioMed Central Ltd.

  12. External proton and Li beams; Haces externos de protones y litios

    Energy Technology Data Exchange (ETDEWEB)

    Schuff, Juan A; Burlon, Alejandro A; Debray, Mario E; Kesque, Jose M; Kreiner, Andres J; Stoliar, Pablo A; Naab, Fabian; Ozafran, Mabel J; Vazquez, Monica E [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Fisica; Policastro, Lucia L; Duran, Hebe; Molinari, Beatriz L; O' Connor, Silvia E; Saint-Martin, Maria L.G.; Palmieri, Monica; Bernaola, Omar A; Opezzo, Oscar J [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Radiobiologia; Mazal, A; Favaudon, F; Henry, Y [Institut Curie, 75 - Paris (France); Perez de la Hoz, A.; Somacal, Hector; Valda, Alejandro; Canevas, S; Ruffolo, M; Tasat, D R [Universidad Nacional de General San Martin, Villa Ballester (Argentina). Escuela de Ciencia y Tecnologia; Davidson, Miguel; Davidson, Jorge [Buenos Aires Univ. (Argentina). Dept. de Fisica; Delacroix, S; Nauraye, C; Brune, E; Gautier, C; Habrand, J L [Centre de Protontherapie, 91 - Orsay (France); Muhlmann, M C [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina)

    2000-07-01

    In the frame of a feasibility study to introduce proton therapy in Argentina in a collaborative agreement between the Physics and Radiobiology Departments of the National Atomic Energy Commission or Argentina and the Centre de Protontherapie de Orsay, France, external proton and Li beams were produced at the TANDAR accelerator in Buenos Aires. The specific aim of this work was to start radiobiology studies on cell cultures and small laboratory animals. In particular we seek to determine here the relative biological effectiveness, RBE, for proton and Li beams as a function of energy for different tumor and normal cell lines. The 24 MeV proton beam was diffused using a 25 {mu}m gold foil and extracted through a Kapton window to obtain a homogeneous field (constant to 95%) of about 7 cm in diameter. Measurements were carried out with quasi-monoenergetic beams (of 20.2 {+-} 0.07 MeV, 2.9 {+-} 0.10 MeV y 1.5 {+-} 0.1 MeV for protons and 21.4 {+-} 0.4 MeV for Lithium). Proton fluence and Bragg peaks were measured. The dose delivered in each case was monitored on-line with a calibrated transmission ionization chamber. Three cell lines PDV, PDVC 57 and V 79 (as a reference) were irradiated with {gamma}-rays, proton and lithium beams with linear energy transfer (LET) from 2 to 100 keV/{mu}m. RBE values in the range of 1.2-5.9 were obtained. In addition preliminary studies on chromosomal aberrations and viability of alveolar macrophages were carried out. (author)

  13. Kinetics of water-mediated proton transfer in our atmosphere

    International Nuclear Information System (INIS)

    Loerting, T.

    2000-07-01

    Variational transition state theory and multidimensional tunneling methods on hybrid density functional theory generated hypersurfaces have been used to investigate the temperature dependence of the reaction rate constants of water-mediated proton transfer reactions relevant to the chemistry of our atmosphere, namely the hydration of sulfur dioxide and sulfur trioxide and the decomposition of chlorine nitrate. Highly accurate reaction barriers were calculated using ab initio methods taking into account most of the electron correlation, namely CCSD(T)/aug-cc-pVDZ//MP2/aug-cc-pVDZ and G2(MP2). On comparing the determined rate constants with laboratory and atmospheric data, the following points could be established: All of the investigated reactions are highly sensitive to changes in humidity, as water acts as efficient catalyst, i.e., the barrier to the reaction is reduced drastically. Present-day atmospheric chemistry can only be explained when a limited number of water molecules is available for the formation of molecular clusters. Both in the troposphere and in the stratosphere SO 3 is hydrated rather than SO 2 . SO 2 emissions have to be oxidized, therefore, before being subject to hydration. A mechanism involving two or three water molecules is relevant for the production of sulfate aerosols, which play a decisive role in the context of global climate change and acid rain. A third water molecule has the function of assisting double-proton transfer rather than acting as active participant in triple-proton transfer in the case of the hydration of sulfur oxides. The observed ozone depletion above Arctica and Antarctica can be explained either by decomposition of chlorine nitrate in the presence of three water molecules (triple proton transfer) or by decomposition of chlorine nitrate in the presence of one molecule of HCl and one molecule of water (double proton transfer). The preassociation reaction required for homogeneous gas-phase conversion of chlorine

  14. Proton-proton elastic scattering at ultrahigh energies

    International Nuclear Information System (INIS)

    Saleem, M.; Shaukat, M.A.; Fazal-e-Aleem

    1981-01-01

    Recent experimental results on proton-proton elastic scattering at high energies are discussed in the context of the comments by Chou and Yang. There does not appear to be any tendency that the experimental results would agree with the predictions of the geometrical model even at ultrahigh energies. The angular distribution structure as described by using the dipole pomeron is consistent with the experimental data at presently available high energies and predicts results quite different from the geometrical model. (author)

  15. Measurements of gas and volatile element production rates from an irradiated molten lead and lead-bismuth spallation target with proton beams of 1 and 1.4 GeV

    International Nuclear Information System (INIS)

    Tall, Y.

    2008-03-01

    The integrated project EUROTRANS (European Research Programme for the Transmutation of High Level Nuclear Waste in an Accelerator Driven System) of the 6. EURATOM Framework Programme aims to demonstrate the transmutation of radioactive waste in ADS (Accelerator Driven Sub-critical system). It will carry out a first advanced design of an experimental facility to demonstrate the technical feasibility of transmutation, and will produce a conceptual design of an industrial facility dedicated to transmutation. An ADS consists of three fundamental elements: the accelerator of protons, the sub-critical core and the spallation target. SUBATECH (physique Sub-Atomique et des Technologies associees) laboratory is involved to the study of the chosen liquid lead-bismuth as a spallation ADS target. The irradiation of liquid lead-bismuth target with energetic proton beam generates in addition to neutrons, volatile and radioactive residues. In order to determine experimentally the production rates of gas and volatile elements following a spallation reaction in a lead-bismuth target, the experiment IS419 was performed at the ISOLDE facility at CERN (Centre Europeen de la Recherche Nucleaire). This experiment constitutes the frame of the thesis whose main objective is to assess and study the production and release rates of many gas and volatile element from the irradiated lead-bismuth target with an energetic proton beam. The obtained data are compared to Monte Carlo simulation code (MCNPX) results in order to test the intranuclear cascade model of Bertini and of Cugnon, and the evaporation options of Dresner and Schmidt. (author)

  16. On Distributions of Emission Sources and Speed-of-Sound in Proton-Proton (Proton-Antiproton Collisions

    Directory of Open Access Journals (Sweden)

    Li-Na Gao

    2015-01-01

    Full Text Available The revised (three-source Landau hydrodynamic model is used in this paper to study the (pseudorapidity distributions of charged particles produced in proton-proton and proton-antiproton collisions at high energies. The central source is assumed to contribute with a Gaussian function which covers the rapidity distribution region as wide as possible. The target and projectile sources are assumed to emit isotropically particles in their respective rest frames. The model calculations obtained with a Monte Carlo method are fitted to the experimental data over an energy range from 0.2 to 13 TeV. The values of the squared speed-of-sound parameter in different collisions are then extracted from the width of the rapidity distributions.

  17. Evaluation of the Induced Activity in Air by the External Proton Beam in the Target Room of the Proton Accelerator Facility of Proton Engineering Frontier Project

    International Nuclear Information System (INIS)

    Lee, Cheol Woo; Lee, Young Ouk; Cho, Young Sik; Ahn, So Hyun

    2007-01-01

    One of the radiological concerns is the worker's exposure level and the concentration of the radionuclides in the air after shutdown, for the safety analysis on the proton accelerator facility. Although, the primary radiation source is the protons accelerated up to design value, all of the radio-nuclide is produced from the secondary neutron and photon induced reaction in air. Because, the protons don't penetrate the acceleration equipment like the DTL tank wall or BTL wall, secondary neutrons or photons are only in the air in the accelerator tunnel building because of the short range of the proton in the materials. But, for the case of the target rooms, external proton beams are occasionally used in the various experiments. When these external proton beams travel through air from the end of the beam transport line to the target, they interact directly with air and produce activation products from the proton induced reaction. The external proton beam will be used in the target rooms in the accelerator facility of the Proton Accelerator Frontier Project (PEFP). In this study, interaction characteristics of the external proton beam with air and induced activity in air from the direct interaction of the proton beam were evaluated

  18. Proton beam characterization in the experimental room of the Trento Proton Therapy facility

    Science.gov (United States)

    Tommasino, F.; Rovituso, M.; Fabiano, S.; Piffer, S.; Manea, C.; Lorentini, S.; Lanzone, S.; Wang, Z.; Pasini, M.; Burger, W. J.; La Tessa, C.; Scifoni, E.; Schwarz, M.; Durante, M.

    2017-10-01

    As proton therapy is becoming an established treatment methodology for cancer patients, the number of proton centres is gradually growing worldwide. The economical effort for building these facilities is motivated by the clinical aspects, but might be also supported by the potential relevance for the research community. Experiments with high-energy protons are needed not only for medical physics applications, but represent also an essential part of activities dedicated to detector development, space research, radiation hardness tests, as well as of fundamental research in nuclear and particle physics. Here we present the characterization of the beam line installed in the experimental room of the Trento Proton Therapy Centre (Italy). Measurements of beam spot size and envelope, range verification and proton flux were performed in the energy range between 70 and 228 MeV. Methods for reducing the proton flux from typical treatments values of 106-109 particles/s down to 101-105 particles/s were also investigated. These data confirm that a proton beam produced in a clinical centre build by a commercial company can be exploited for a broad spectrum of experimental activities. The results presented here will be used as a reference for future experiments.

  19. Transverse Single-Spin Asymmetries in Proton-Proton Collisions at the AFTER@LHC Experiment

    Directory of Open Access Journals (Sweden)

    K. Kanazawa

    2015-01-01

    Full Text Available We present results for transverse single-spin asymmetries in proton-proton collisions at kinematics relevant for AFTER, a proposed fixed-target experiment at the Large Hadron Collider. These include predictions for pion, jet, and direct photon production from analytical formulas already available in the literature. We also discuss specific measurements that will benefit from the higher luminosity of AFTER, which could help resolve an almost 40-year puzzle of what causes transverse single-spin asymmetries in proton-proton collisions.

  20. Board Level Proton Testing Book of Knowledge for NASA Electronic Parts and Packaging Program

    Science.gov (United States)

    Guertin, Steven M.

    2017-01-01

    This book of knowledge (BoK) provides a critical review of the benefits and difficulties associated with using proton irradiation as a means of exploring the radiation hardness of commercial-off-the-shelf (COTS) systems. This work was developed for the NASA Electronic Parts and Packaging (NEPP) Board Level Testing for the COTS task. The fundamental findings of this BoK are the following. The board-level test method can reduce the worst case estimate for a board's single-event effect (SEE) sensitivity compared to the case of no test data, but only by a factor of ten. The estimated worst case rate of failure for untested boards is about 0.1 SEE/board-day. By employing the use of protons with energies near or above 200 MeV, this rate can be safely reduced to 0.01 SEE/board-day, with only those SEEs with deep charge collection mechanisms rising this high. For general SEEs, such as static random-access memory (SRAM) upsets, single-event transients (SETs), single-event gate ruptures (SEGRs), and similar cases where the relevant charge collection depth is less than 10 µm, the worst case rate for SEE is below 0.001 SEE/board-day. Note that these bounds assume that no SEEs are observed during testing. When SEEs are observed during testing, the board-level test method can establish a reliable event rate in some orbits, though all established rates will be at or above 0.001 SEE/board-day. The board-level test approach we explore has picked up support as a radiation hardness assurance technique over the last twenty years. The approach originally was used to provide a very limited verification of the suitability of low cost assemblies to be used in the very benign environment of the International Space Station (ISS), in limited reliability applications. Recently the method has been gaining popularity as a way to establish a minimum level of SEE performance of systems that require somewhat higher reliability performance than previous applications. This sort of application of

  1. The EDDA experiment: proton-proton elastic scattering excitation functions at intermediate energies

    International Nuclear Information System (INIS)

    Hinterberher, F.

    1996-01-01

    The EDDA experiment is designed to provide a high precision measurement of proton-proton elastic scattering excitation functions ranging from 0.5 to 2.5 GeV of (lab) incident kinetic energy. It is an internal target experiment utilizing the proton beam of the cooler synchrotron COSY operated by KFA Juelich. The excitation functions are measured during the acceleration ramp of COSY. (author)

  2. Proton storage rings

    International Nuclear Information System (INIS)

    Rau, R.R.

    1978-04-01

    A discussion is given of proton storage ring beam dynamic characteristics. Topics considered include: (1) beam energy; (2) beam luminosity; (3) limits on beam current; (4) beam site; (5) crossing angle; (6) beam--beam interaction; (7) longitudinal instability; (8) effects of scattering processes; (9) beam production; and (10) high magnetic fields. Much of the discussion is related to the design parameters of ISABELLE, a 400 x 400 GeV proton---proton intersecting storage accelerator to be built at Brookhaven National Laboratory

  3. Temperature-dependent elimination efficiency on Phaeocystis globosa by different initial population sizes of rotifer Brachionus plicatilis.

    Science.gov (United States)

    Sun, Yunfei; Wang, Yuanyuan; Lei, Jin; Qian, Chenchen; Zhu, Xuexia; Akbar, Siddiq; Huang, Yuan; Yang, Zhou

    2018-07-01

    Due to sea water eutrophication and global warming, the harmful Phaeocystis blooms outbreak frequently in coastal waters, which cause a serious threat to marine ecosystem. The application of rotifer to control the harmful alga is a promising way. To investigate the influence of initial rotifer density and temperature on the ability of rotifer Brachionus plicatilis to eliminate Phaeocystis globosa population, we cultured P. globosa with different initial rotifer densities (1, 3, 5 inds mL -1 ) at 19, 22, 25, 28, and 31 °C for 9-16 d. Results showed that the population of rotifer feeding on Phaeocystis increased rapidly and higher temperatures favored the growth of P. globosa and B. plicatilis. With increased initial rotifer density and temperature, both the clearance rate of rotifer and the reduction rate of P. globosa increased, and thus P. globosa were eliminated earlier. Both temperature and initial rotifer density had significant effects on clearance rate of rotifer and the time to Phaeocystis extinction, and there was a significant interaction between the two factors on the two parameters, i.e., the effect of initial rotifer density on eliminating Phaeocystis decreased with increasing temperature. The rotifer in 5 inds mL -1 at 28 °C eliminated P. globosa in 4 d, whereas the rotifer in 1 ind mL -1 at 19 °C spent about 16 d on eliminating P. globosa. In conclusion, higher temperature and bigger initial rotifer density promote rotifer to eliminate the harmful P. globosa, and the optimal temperature for rotifer to clear P. globosa is 28 °C. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Proton Radiotherapy for Pediatric Ewing’s Sarcoma: Initial Clinical Outcomes

    International Nuclear Information System (INIS)

    Rombi, Barbara; DeLaney, Thomas F.; MacDonald, Shannon M.; Huang, Mary S.; Ebb, David H.; Liebsch, Norbert J.; Raskin, Kevin A.; Yeap, Beow Y.; Marcus, Karen J.; Tarbell, Nancy J.; Yock, Torunn I.

    2012-01-01

    Purpose: Proton radiotherapy (PT) has been prescribed similarly to photon radiotherapy to achieve comparable disease control rates at comparable doses. The chief advantage of protons in this setting is to reduce acute and late toxicities by decreasing the amount of normal tissue irradiated. We report the preliminary clinical outcomes including late effects on our pediatric Ewing’s sarcoma patients treated with PT at the Francis H. Burr Proton Therapy Center at Massachusetts General Hospital (Boston, MA). Methods and Materials: This was a retrospective review of the medical records of 30 children with Ewing’s sarcoma who were treated with PT between April 2003 and April 2009. Results: A total of 14 male and 16 female patients with tumors in several anatomic sites were treated with PT at a median age of 10 years. The median dose was 54 Gy (relative biological effectiveness) with a median follow-up of 38.4 months. The 3-year actuarial rates of event-free survival, local control, and overall survival were 60%, 86%, and 89%, respectively. PT was acutely well tolerated, with mostly mild-to-moderate skin reactions. At the time of writing, the only serious late effects have been four hematologic malignancies, which are known risks of topoisomerase and anthracyline exposure. Conclusions: Proton radiotherapy was well tolerated, with few adverse events. Longer follow-up is needed to more fully assess tumor control and late effects, but the preliminary results are encouraging.

  5. Solar Proton Events in Six Solar Cycles

    Science.gov (United States)

    Vitaly, Ishkov

    Based on materials the catalogs of solar proton events (SPE) in 1955 ‒ 2010 and list SPE for the current 24 solar cycle (SC) are examined confirmed SPE with E> 10 MeV proton flux in excess of 1 proton cm-2 s ster-1 (pfu) from Švestka and Simon’s (1955 - 1969) and 5 volumes Logachev’s (1970 - 2006) Catalogs of SPE. Historically thus it was formed, that the measurements of the proton fluxes began in the epoch “increased” solar activity (SC 18 ‒ 22), and includes transition period of the solar magnetic fields reconstruction from epoch “increased” to the epoch “lowered” solar activity (22 ‒ 23 SC). In current 24 SC ‒ first SC of the incipient epoch of “lowered” SA ‒ SPE realize under the new conditions, to that of previously not observed. As showed a study of five solar cycles with the reliable measurements of E> 10 MeV proton flux in excess of 1 pfu (1964 - 2013): ‒ a quantity of SPEs remained approximately identical in SC 20, 21, somewhat decreased in the initial solar cycle of the solar magnetic fields reconstruction period (22), but it returned to the same quantity in, the base for the period of reconstruction, SC 23. ‒ Into the first 5 years of the each solar cycle development the rate of the proton generation events noticeably increased in 22 cycles of solar activity and returned to the average in cycles 23 and 24. ‒ Extreme solar flare events are achieved, as a rule, in the solar magnetic fields reconstruction period (August - September 1859; June 1991; October ‒ November 2003.), it is confirmed also for SPE: the extreme fluxes of solar protons (S4) except one (August 1972) were occurred in period of perestroika (SC 22 and 23). This can speak, that inside the epochs SA, when the generation of magnetic field in the convective zone works in the steady-state regime, extreme SPE are improbable. ‒ The largest in the fluxes of protons (S3, S4) occur in the complexes of the active regions flare events, where magnetic field more

  6. The LILIA experiment: Energy selection and post-acceleration of laser generated protons

    Energy Technology Data Exchange (ETDEWEB)

    Turchetti, Giorgio; Sinigardi, Stefano; Londrillo, Pasquale; Rossi, Francesco; Sumini, Marco; Giove, Dario; De Martinis, Carlo [Dipartimento di Fisica, Universita di Bologna and INFN Sezione di Bologna (Italy); Dipartimento di Ingegneria Industriale, Universita di Bologna and INFN Sezione di Bologna (Italy); Dipartimento di Fisica, Universita di Milano and INFN Sezione di Milano (Italy)

    2012-12-21

    The LILIA experiment is planned at the SPARCLAB facility of the Frascati INFN laboratories. We have simulated the laser acceleration of protons, the transport and energy selection with collimators and a pulsed solenoid and the post-acceleration with a compact high field linac. For the highest achievable intensity corresponding to a= 30 over 10{sup 8} protons at 30 MeV with a 3% spread are selected, and at least10{sup 7} protons are post-accelerated up to 60 MeV. If a 10 Hz repetition rated can be achieved the delivered dose would be suitable for the treatment of small superficial tumors.

  7. Self-modulation instability of a long proton bunch in plasmas

    CERN Document Server

    Kumar, Naveen; Lotov, Konstantin

    2010-01-01

    An analytical model for the self-modulation instability of a long relativistic proton bunch propagating in uniform plasmas is developed. The self-modulated proton bunch resonantly excites a large amplitude plasma wave (wake field), which can be used for acceleration of plasma electrons. Analytical expressions for the linear growth rate and the number of exponentiations are given. We use the full three-dimensional particle-in-cell (PIC) simulations to study the beam self-modulation and the transition to the nonlinear stage. It is shown that the self-modulation of the proton bunch competes with the hosing instability which tends to destroy the plasma wave. A method is proposed and studied through PIC simulations to circumvent this problem which relies on the seeding of the self-modulation instability in the bunch.

  8. Effects of perfluorochemical distribution and elimination dynamics on cardiopulmonary function.

    Science.gov (United States)

    Miller, T F; Milestone, B; Stern, R; Shaffer, T H; Wolfson, M R

    2001-03-01

    Based on a physicochemical property profile, we tested the hypothesis that different perfluorochemical (PFC) liquids may have distinct effects on intrapulmonary PFC distribution, lung function, and PFC elimination kinetics during partial liquid ventilation (PLV). Young rabbits were studied in five groups [healthy, PLV with perflubron (PFB) or with perfluorodecalin (DEC); saline lavage injury and conventional mechanical ventilation (CMV); saline lavage injury PLV with PFB or with DEC]. Arterial blood chemistry, respiratory compliance (Cr), quantitative computed tomography of PFC distribution, and PFC loss rate were assessed for 4 h. Initial distribution of PFB was more homogenous than that of DEC; over time, PFB redistributed to dependent regions whereas DEC distribution was relatively constant. PFC loss rate decreased over time in all groups, was higher with DEC than PFB, and was lower with injury. In healthy animals, arterial PO(2) (Pa(O(2))) and Cr decreased with either PFC; the decrease was greater and sustained with DEC. Lavaged animals treated with either PFC demonstrated increased Pa(O(2)), which was sustained with PFB but deteriorated with DEC. Lavaged animals treated with PFB demonstrated increased Cr, higher Pa(O(2)), and lower arterial PCO(2) than with CMV or PLV with DEC. The results indicate that 1) initial distribution and subsequent intrapulmonary redistribution of PFC are related to PFC properties; 2) PFC distribution influences PFC elimination, gas exchange, and Cr; and 3) PFC elimination, gas exchange, and Cr are influenced by PFC properties and lung condition.

  9. The measurement of proton stopping power using proton-cone-beam computed tomography

    International Nuclear Information System (INIS)

    Zygmanski, P.; Rabin, M.S.Z.; Gall, K.P.; Rosenthal, S.J.

    2000-01-01

    A cone-beam computed tomography (CT) system utilizing a proton beam has been developed and tested. The cone beam is produced by scattering a 160 MeV proton beam with a modifier that results in a signal in the detector system, which decreases monotonically with depth in the medium. The detector system consists of a Gd 2 O 2 S:Tb intensifying screen viewed by a cooled CCD camera. The Feldkamp-Davis-Kress cone-beam reconstruction algorithm is applied to the projection data to obtain the CT voxel data representing proton stopping power. The system described is capable of reconstructing data over a 16x16x16cm 3 volume into 512x512x512 voxels. A spatial and contrast resolution phantom was scanned to determine the performance of the system. Spatial resolution is significantly degraded by multiple Coulomb scattering effects. Comparison of the reconstructed proton CT values with x-ray CT derived proton stopping powers shows that there may be some advantage to obtaining stopping powers directly with proton CT. The system described suggests a possible practical method of obtaining this measurement in vivo. (author)

  10. Proton position near QB and coupling of electron and proton transfer in photosynthesis

    International Nuclear Information System (INIS)

    Belousov, R V; Poltev, S V; Kukushkin, A K

    2003-01-01

    We have calculated the energy levels and wavefunctions of a proton in a histidine (His)-plastoquinone (PQ) system in the reaction centre (RC) of photosystem 2 of higher plants and the RC of purple bacteria for different redox states of PQ Q B . For oxidized Q B , the proton is located near His. For once-reduced PQ, it is positioned in the middle between the nitrogen of His and the oxygen of PQ. For twofold-reduced PQ, the proton is localized near the oxygen of PQ. Using the values of total energy of the system in these states, we have also estimated the frequency of proton oscillations. On the basis of these results we propose a hypothesis about the coupling of electron-proton transfer

  11. Radiation protection around high energy proton accelerators

    International Nuclear Information System (INIS)

    Bourgois, L.

    1996-01-01

    Proton accelerators are intense radiation sources because of the particle beam itself, secondary radiation and structure activation. So radiation protection is required around these equipment during running time but even during downtime. This article presents some estimated values about structure and air activation and applies the Moyer model to get dose rate behind shielding. (A.C.)

  12. Analysis of protein content in grain by proton activation

    International Nuclear Information System (INIS)

    Dohan, D.A.; Standing, K.G.

    1976-01-01

    The total protein content of grain is an important measure of its nutritional value. More than one million protein analyses are carried out each year in Canada alone. The traditional method of measurement has been the Kjeldahl chemical technique, which measures total nitrogen. A new method of protein analysis which also measures total nitrogen has been developed. A beam of 16 MeV protons strikes a sample of grain and produces radioactive 14 0 nuclei through the reaction 14 N(p,n) 14 0. The effective sample thickness is determined by the proton range. The 14 0 decay (tausub(1/2)=71sec) is detected off-line by its characteristic 2.31 MeV γ-ray. The total number of protons hitting the sample is measured by integrating the beam current. The ratio of the number of γ-rays counted to the total number of protons striking the sample determines the abundance of nitrogen. The measurement is unambiguous, since no other reaction can produce 14 0 at 16 MeV proton energy. A mechanized system for sample handling has been constructed. Samples are carried into the irradiation area on a conveyor belt, then back through a shielding wall into a counting area. The laboratory PDP 15/40 computer controls the entire operation. At present the system is being tested at a rate of about two samples per minute. (author)

  13. Proton tracking in a high-granularity Digital Tracking Calorimeter for proton CT purposes

    NARCIS (Netherlands)

    Pettersen, H. E. S.; Alme, J.; Biegun, A.; van den Brink, A.; Chaar, M.; Fehlker, D.; Meric, I.; Odland, O. H.; Peitzmann, T.; Rocco, E.; Ullaland, K.; Wang, H.; Yang, S.; Zhang, C.; Rohrich, D.

    2017-01-01

    Radiation therapy with protons as of today utilizes information from x-ray CT in order to estimate the proton stopping power of the traversed tissue in a patient. The conversion from x-ray attenuation to proton stopping power in tissue introduces range uncertainties of the order of 2-3% of the

  14. Simple descriptors for proton-conducting perovskites from density functional theory

    DEFF Research Database (Denmark)

    Bork, Nicolai Christian; Bonanos, Nikolaos; Rossmeisl, Jan

    2010-01-01

    series of (pseudo)cubic perovskites, ABO3, have been investigated using density functional theory calculations. The structures have been optimized and thermodynamic properties and activation energies for the relevant steps of the hydrogen/proton diffusion mechanism have been calculated using...... the nudged elastic band path technique. We find a strong correlation between the O-H binding energy for hydrogen/proton uptake in perovskites and the energy barriers involved in the observed Grotthuss-type diffusion process. We demonstrate the possibility of estimating diffusion rates based on O-H binding...

  15. High energy proton-induced radioactivity in HgI2 crystals

    International Nuclear Information System (INIS)

    Porras, E.; Ferrero, J.L.; Sanchez, F.; Ruiz, J.A.; Lei, F.

    1995-01-01

    Mercuric iodide (HgI 2 ) semiconductor crystals are generating a lot of interest as room temperature solid state detectors for hard X-ray astronomy observations. For these applications one of the most important background sources is the cosmic proton induced radioactivity in the detector material. In order to study this background noise contribution a 1x1x1 cm HgI 2 crystal was irradiated with high energy protons. The resulting long-lived unstable isotopes and their production rates have been identified and compared with Monte Carlo simulations. ((orig.))

  16. [Why proton therapy? And how?

    Science.gov (United States)

    Thariat, Juliette; Habrand, Jean Louis; Lesueur, Paul; Chaikh, Abdulhamid; Kammerer, Emmanuel; Lecomte, Delphine; Batalla, Alain; Balosso, Jacques; Tessonnier, Thomas

    2018-03-01

    Proton therapy is a radiotherapy, based on the use of protons, charged subatomic particles that stop at a given depth depending on their initial energy (pristine Bragg peak), avoiding any output beam, unlike the photons used in most of the other modalities of radiotherapy. Proton therapy has been used for 60 years, but has only become ubiquitous in the last decade because of recent major advances in particle accelerator technology. This article reviews the history of clinical implementation of protons, the nature of the technological advances that now allows its expansion at a lower cost. It also addresses the technical and physical specificities of proton therapy and the clinical situations for which proton therapy may be relevant but requires evidence. Different proton therapy techniques are possible. These are explained in terms of their clinical potential by explaining the current terminology (such as cyclotrons, synchrotrons or synchrocyclotrons, using superconducting magnets, fixed line or arm rotary with passive diffusion delivery or active by scanning) in basic words. The requirements associated with proton therapy are increased due to the precision of the depth dose deposit. The learning curve of proton therapy requires that clinical indications be prioritized according to their associated uncertainties (such as range uncertainties and movement in lung tumors). Many clinical indications potentially fall under proton therapy ultimately. Clinical strategies are explained in a paralleled manuscript. Copyright © 2018 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  17. Radioactive wastes eliminating device

    International Nuclear Information System (INIS)

    Mitsutsuka, Norimasa.

    1979-01-01

    Purpose: To eliminate impurities and radioactive wastes by passing liquid sodium in a cold trap and an adsorption device. Constitution: Heated sodium is partially extracted from the core of a nuclear reactor by way of a pump, flown into and cooled in heat exchangers and then introduced into a cold trap for removal of impurities. The liquid sodium eliminated with impurities is introduced into an adsorption separator and purified by the elimination of radioactive wastes. The purified sodium is returned to the nuclear reactor. A heater is provided between the cold trap and the adsorption separator, so that the temperature of the liquid sodium introduced into the adsorption separator is not lower than the minimum temperature in the cold trap to thereby prevent deposition of impurities in the adsorption separator. (Kawakami, Y.)

  18. Investigation of fusion proton and triton emission in ASDEX

    International Nuclear Information System (INIS)

    Leinberger, U.

    1991-01-01

    A diagnostic method of measuring the fusion rate profile was developed on ASDEX. The collimated protons and tritons from d-d fusion reaction are simultaneously detected by a semiconductor counter at a single position in the vacuum vessel for different viewing directions. The detection efficiency profiles for these viewing directions are numerically calculated from the measured currents in the coils and assumed plasma current distributions. Folding the detection efficiency profile with a fusion rate profile yields the proton and triton fluxes to the detector. Comparison with measured fluxes allows one to find a fusion rate profile in agreement with the experimental data. In certain cases the detection efficiency profile strongly on the plasma current density profile, and information on the current distribution in the plasma can thus be achieved. It was proved that the spectra from rotating plasmas are in accordance with the theory of a rotating thermal plasma. Deviations can only be found in the case of strong vignetting of the detection efficiency by structures in the vacuum vessel. (orig.)

  19. Guanidinium chloride induction of partial unfolding in amide proton exchange in RNase A.

    Science.gov (United States)

    Mayo, S L; Baldwin, R L

    1993-11-05

    Amide (NH) proton exchange rates were measured in 0.0 to 0.7 M guanidinium chloride (GdmCl) for 23 slowly exchanging peptide NH protons of ribonuclease A (RNase A) at pH* 5.5 (uncorrected pH measured in D2O), 34 degrees C. The purpose was to find out whether GdmCl induces exchange through binding to exchange intermediates that are partly or wholly unfolded. It was predicted that, when the logarithm of the exchange rate is plotted as a function of the molarity of GdmCl, the slope should be a measure of the amount of buried surface area exposed to GdmCl in the exchange intermediate. The results indicate that these concentrations of GdmCl do induce exchange by means of a partial unfolding mechanism for all 23 protons; this implies that exchange reactions can be used to study the unfolding and stability of local regions. Of the 23 protons, nine also show a second mechanism of exchange at lower concentrations of GdmCl, a mechanism that is nearly independent of GdmCl concentration and is termed "limited structural fluctuation."

  20. Tautomeric transformation of temozolomide, their proton affinities and chemical reactivities: A theoretical approach.

    Science.gov (United States)

    Sang-Aroon, Wichien; Ruangpornvisuti, Vithaya; Amornkitbamrung, Vittaya

    2016-05-01

    The gas-phase geometry optimizations of bare, mono- and dihydrated complexes of temozolomide isomers were carried out using density functional calculation at the M06-2X/6-31+G(d,p) level of the theory. The structures and protonation energies of protonated species of temozolomide are reported. Chemical indices of all isomers and protonated species are also reported. Energies, thermodynamic quantities, rate constants and equilibrium constants of tautomeric and rotameric transformations of all isomers I1↔TZM↔HIa↔HIb↔I2↔I3 in bare and hydrated systems were obtained. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Proton tracking in a high-granularity Digital Tracking Calorimeter for proton CT purposes

    NARCIS (Netherlands)

    Pettersen, H. E.S.; Alme, J.; Biegun, A.; van den Brink, A.; Chaar, M.; Fehlker, D.; Meric, I.; Odland, O. H.; Peitzmann, T.; Rocco, E.; Ullaland, K.; Wang, H.; Yang, S.; Zhang, C.; Röhrich, D.

    2017-01-01

    Radiation therapy with protons as of today utilizes information from x-ray CT in order to estimate the proton stopping power of the traversed tissue in a patient. The conversion from x-ray attenuation to proton stopping power in tissue introduces range uncertainties of the order of 2–3% of the

  2. Production of neutrinos and neutrino-like particles in proton-nucleus interactions

    International Nuclear Information System (INIS)

    Dishaw, J.P.

    1979-03-01

    An experimental search was performed to look for the direct production of neutrinos or neutrino-like particles, i.e., neutral particles which interact weakly with hadrons, in proton-nucleus interactions at 400 GeV incident proton energy. Possible sources of such particles include the semi-leptonic decay of new heavy particles such as charm, and the direct production of a light neutral Higgs particle such as the axion. The production of these particles has been inferred in this experiment by energy nonconservation in the collision of a proton with an iron nucleus. The total visible energy of the interaction was measured using a sampling ionization calorimeter. After correcting for beam intensity effects and cutting the data to eliminate systematic effects in the measurement, the final resolution of the calorimeter was 3.51% and increased with decreasing incident beam energy with a square root dependence on the beam energy. Energy nonconservation in the data is manifest as a non-Gaussian distribution on the low side of the calorimeter measured energy. Model calculations yield the fraction of events expected in this non-Gaussian behavior for the various sources of neutrinos or neutrino-like particles. A maximum likelihood fit to the data with the theoretical fraction of events expected yields the 95% confidence level production cross section upper limit values. The upper limits for general production of neutrino-like particles for various parameterizations of the production cross section are presented. The following specific upper limits have been established: charm particle production -3 times the π 0 production cross section. 144 references

  3. Nucleosynthesis of proton-rich nuclei. Experimental results on the rp-process

    International Nuclear Information System (INIS)

    Galaviz, D; Amthor, A M; Bazin, D; Becerril, A D; Brown, B A; Cole, A; Cook, J M; Elliot, T; Estrade, A; Gade, A; Glasmacher, T; Lorusso, G; Matos, M; Montes, F; Mueller, W; Chen, A A; Fueloep, Z S; Heger, A; Howard, M E; Kessler, R

    2010-01-01

    We report in this study the nuclear properties of proton-rich isotopes located along the rp-process path. The experiments have recently been performed at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. The level properties above the proton separation energy of the nuclei 30 S, 36 K and 37 Ca were measured with precision of < 10 keV. This will allow a reduction in the determination of the astrophysical (p,γ) reaction rate under rp-process conditions.

  4. Formation of Cavities at and Away from Grain Boundaries during 600 MeV Proton Irradiation

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Leffers, Torben; Green, W. V.

    1982-01-01

    High-purity aluminium (99.9999%) was irradiated with 600 MeV protons at the Swiss Institute for Nuclear Research (SIN) with a damage rate of 3,5 x 10^-6 dpa/s. Irradiation with 600 MeV protons produces helium, hydrogen, and other impurities through mutational reactions. The irradiation experiment...

  5. Proton radioactivity: the case for 53m Co proton-emitter isomer

    International Nuclear Information System (INIS)

    Tavares, O.A.P.; Medeiros, E.L.

    2010-01-01

    The partial proton emission half-life for 53m Co unstable isomer is re-examined in the framework of a semiempirical model based on tunneling through a Coulomb-plus centrifugal- plus-overlapping potential barrier within the spherical nucleus approximation. It is shown that the known measured half-life value of 17 s is compatible with a large prolate shape for 53m Co proton emitter and a high angular momentum ι = 11 assigned to the proton transition to the ground-state of 52 Fe. (author)

  6. Study on patient-induced radioactivity during proton treatment in hengjian proton medical facility.

    Science.gov (United States)

    Wu, Qingbiao; Wang, Qingbin; Liang, Tianjiao; Zhang, Gang; Ma, Yinglin; Chen, Yu; Ye, Rong; Liu, Qiongyao; Wang, Yufei; Wang, Huaibao

    2016-09-01

    At present, increasingly more proton medical facilities have been established globally for better curative effect and less side effect in tumor treatment. Compared with electron and photon, proton delivers more energy and dose at its end of range (Bragg peak), and has less lateral scattering for its much larger mass. However, proton is much easier to produce neutron and induced radioactivity, which makes radiation protection for proton accelerators more difficult than for electron accelerators. This study focuses on the problem of patient-induced radioactivity during proton treatment, which has been ignored for years. However, we confirmed it is a vital factor for radiation protection to both patient escort and positioning technician, by FLUKA's simulation and activation formula calculation of Hengjian Proton Medical Facility (HJPMF), whose energy ranges from 130 to 230MeV. Furthermore, new formulas for calculating the activity buildup process of periodic irradiation were derived and used to study the relationship between saturation degree and half-life of nuclides. Finally, suggestions are put forward to lessen the radiation hazard from patient-induced radioactivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Experimental determination of the complete spin structure for anti-proton + proton -> anti-\\Lambda + \\Lambda at anti-proton beam momentum of 1.637 GeV/c

    CERN Document Server

    Paschke, K.D.; Berdoz, A.; Franklin, G.B.; Khaustov, P.; Meyer, C.A.; Bradtke, C.; Gehring, R.; Goertz, S.; Harmsen, J.; Meier, A.; Meyer, W.; Radtke, E.; Reicherz, G.; Dutz, H.; Pluckthun, M.; Schoch, B.; Dennert, H.; Eyrich, W.; Hauffe, J.; Metzger, A.; Moosburger, M.; Stinzing, F.; Wirth, St.; Fischer, H.; Franz, J.; Heinsius, F.H.; Kriegler, E.; Schmitt, H.; Bunker, B.; Hertzog, D.; Jones, T.; Tayloe, R.; Broders, R.; Geyer, R.; Kilian, K.; Oelert, W.; Rohrich, K.; Sachs, K.; Sefzick, T.; Bassalleck, B.; Eilerts, S.; Fields, D.E.; Kingsberry, P.; Lowe, J.; Stotzer, R.; Johansson, T.; Pomp, S.; Wirth, St.

    2006-01-01

    The reaction anti-proton + proton -> anti-\\Lambda + \\Lambda -> anti-proton + \\pi^+ + proton + \\pi^- has been measured with high statistics at anti-proton beam momentum of 1.637 GeV/c. The use of a transversely-polarized frozen-spin target combined with the self-analyzing property of \\Lambda/anti-\\Lambda decay allows access to unprecedented information on the spin structure of the interaction. The most general spin-scattering matrix can be written in terms of eleven real parameters for each bin of scattering angle, each of these parameters is determined with reasonable precision. From these results all conceivable spin-correlations are determined with inherent self-consistency. Good agreement is found with the few previously existing measurements of spin observables in anti-proton + proton -> anti-\\Lambda + \\Lambda near this energy. Existing theoretical models do not give good predictions for those spin-observables that had not been previously measured.

  8. Elimination of radioactivity after intratracheal instillation of tritiated 3, 4-benzopyrene in hamsters

    Energy Technology Data Exchange (ETDEWEB)

    Pylev, L N; Roe, F J.C.; Warwick, G P

    1969-01-01

    Injection and recovery experiments of tritiated 3,4-benzopyrene (BaP) injected alone or with particulate carriers into hamsters were performed. After 21 days, asbestos or carbon black carriers had significantly increased the retention of BaP in the lung. Elimination was rapid at first (2 weeks: and little influenced by carrier; slower rate of elimination was noted after that. Carriers increased recoverable macrophages but decreased the amount of radioactivity per macrophage. Radioactivity was similar in all groups for kidney, liver, blood, feces, and urine.

  9. Composite proton exchange membrane based on sulfonated organic nanoparticles

    Science.gov (United States)

    Pitia, Emmanuel Sokiri

    exchange was characterized with solid state 13C NMR spectroscopy, FTIR spectroscopy, TGA, elemental analysis, and titration. The results indicate the extent of ion exchange was ~ 70-80%. Due to the mass of QAA, the remaining QAA reduced the IEC of the nanoparticles to < 2.2 meq/g. In fabricating the composite membranes, the nanoparticles and polystyrene were solution cast in a continuous process with and without electric field. The electric field had no effect on the water uptake. Based on the morphology and the proton conductivity, it appears orientation of the nanoparticles did not occur. We hypothesize the lack of orientation was caused by swelling of the particles with the solvent. The solvent inside the particle minimized polarizability, and thus prevented orientation. The composite membranes were limited to low proton conductivity of ~ 10-5 S/cm due to low IEC of the nanoparticles, but good dispersion of the nanoparticles was achieved. Future work should look into eliminating the QAA during synthesis and developing a rigid core for the nanoparticles.

  10. SU-E-T-214: Intensity Modulated Proton Therapy (IMPT) Based On Passively Scattered Protons and Multi-Leaf Collimation: Prototype TPS and Dosimetry Study

    International Nuclear Information System (INIS)

    Sanchez-Parcerisa, D; Carabe-Fernandez, A

    2014-01-01

    Purpose. Intensity-modulated proton therapy is usually implemented with multi-field optimization of pencil-beam scanning (PBS) proton fields. However, at the view of the experience with photon-IMRT, proton facilities equipped with double-scattering (DS) delivery and multi-leaf collimation (MLC) could produce highly conformal dose distributions (and possibly eliminate the need for patient-specific compensators) with a clever use of their MLC field shaping, provided that an optimal inverse TPS is developed. Methods. A prototype TPS was developed in MATLAB. The dose calculation process was based on a fluence-dose algorithm on an adaptive divergent grid. A database of dose kernels was precalculated in order to allow for fast variations of the field range and modulation during optimization. The inverse planning process was based on the adaptive simulated annealing approach, with direct aperture optimization of the MLC leaves. A dosimetry study was performed on a phantom formed by three concentrical semicylinders separated by 5 mm, of which the inner-most and outer-most were regarded as organs at risk (OARs), and the middle one as the PTV. We chose a concave target (which is not treatable with conventional DS fields) to show the potential of our technique. The optimizer was configured to minimize the mean dose to the OARs while keeping a good coverage of the target. Results. The plan produced by the prototype TPS achieved a conformity index of 1.34, with the mean doses to the OARs below 78% of the prescribed dose. This Result is hardly achievable with traditional conformal DS technique with compensators, and it compares to what can be obtained with PBS. Conclusion. It is certainly feasible to produce IMPT fields with MLC passive scattering fields. With a fully developed treatment planning system, the produced plans can be superior to traditional DS plans in terms of plan conformity and dose to organs at risk

  11. Defect structure in proton-irradiated copper and nickel

    International Nuclear Information System (INIS)

    Tsukuda, Noboru; Ehrhart, P.; Jaeger, W.; Schilling, W.; Dworschak, F.; Gadalla, A.A.

    1987-01-01

    This single crystals of copper or nickel with a thickness of about 10 μm are irradiated with 3 MeV protons at room temperature and the structures of resultant defects are investigated based on measurements of the effects of irradiation on the electrical resistivity, length, lattice constants, x-ray diffraction line profile and electron microscopic observations. The measurements show that the electrical resistivity increases with irradiation dose, while leveling off at high dose due to overlapping of irradiation cascades. The lattice constants decreases, indicating that many vacancies still remain while most of the interstitial stoms are eliminated, absorbed or consumed for dislocation loop formation. The x-ray line profile undergoes broadening, which is the result of dislocation loops, dislocation networks and SFT's introduced by the proton irradiation. Various defects have different effects though they cannot be identified separately from the profile alone. A satellite peak appears at a low angle, which seems to arise from periodic defect structures that are found in electron microscopic observations. In both copper and nickel, such periodic defect structures are seen over a wide range from high to low dose. Defect-free and defect-rich domains (defect walls), 0.5 to several μm in size, are alingned parallel to the {001} plane at intervals of 60 nm. The defect walls, which consist of dislocations, dislocation loops and SFT's, is 20 - 40 nm thick. (Nogami, K.)

  12. Proton irradiation induced defects in Cd and Zn doped InP

    International Nuclear Information System (INIS)

    Rybicki, G.C.; Williams, W.S.

    1993-01-01

    Proton irradiation induced defects in Zn and Cd doped InP have been studied by deep level transient spectroscopy, (DLTS). After 2 MeV proton irradiation the defects H4 and H5 were observed in lightly Zn doped InP, while the defects H3 and H5 were observed in more heavily Zn and Cd doped InP. The defect properties were not affected by the substitution of Cd for Zn, but the introduction rate of H5 was lower in Cd doped InP. The annealing rate of defects was also higher in Cd doped InP. The use of Cd doped InP may thus result in an InP solar cell with even greater radiation resistance

  13. Non-invasive measurement and imaging of tissue iron oxide nanoparticle concentrations in vivo using proton relaxometry

    International Nuclear Information System (INIS)

    St Pierre, T G; Clark, P R; Chua-anusorn, W; Fleming, A; Pardoe, H; Jeffrey, G P; Olynyk, J K; Pootrakul, P; Jones, S; Moroz, P

    2005-01-01

    Magnetic nanoparticles and microparticles can be found in biological tissues for a variety of reasons including pathological deposition of biogenic particles, administration of synthetic particles for scientific or clinical reasons, and the inclusion of biogenic magnetic particles for the sensing of the geomagnetic field. In applied magnetic fields, the magnetisation of tissue protons can be manipulated with radiofrequency radiation such that the macroscopic magnetisation of the protons precesses freely in the plane perpendicular to the applied static field. The presence of magnetic particles within tissue enhances the rate of dephasing of proton precession with higher concentrations of particles resulting in higher dephasing rates. Magnetic resonance imaging instruments can be used to measure and image the rate of decay of spin echo recoverable proton transverse magnetisation (R 2 ) within tissues enabling the measurement and imaging of magnetic particle concentrations with the aid of suitable calibration curves. Applications include the non-invasive measurement of liver iron concentrations in iron-overload disorders and measurement and imaging of magnetic particle concentrations used in magnetic hyperthermia therapy. Future applications may include the tracking of magnetically labelled drugs or biomolecules and the measurement of fibrotic liver damage

  14. Modification of Gaussian Elimination to the Complex Seismic Data

    International Nuclear Information System (INIS)

    Smaglichenko, Tatyana A.

    2011-01-01

    A method for solution of large and sparse systems with complex seismic observations has been developed by revising of the classical Gaussian elimination. The observation matrix is divided into a set of smaller cells that can be determined based on clusters of a seismic activity. Reliable inversion solutions with minimum error rating are selected within each cell, then solutions that are non-stable with respect to the same unknown are rejected After the final sifting the found unknowns are eliminated from the initial system with subsequent decreasing of its size. A numerical example is provided to demonstrate how the method can be applied to a real data set (a case study of the Nagano fault area, Central Japan). Results of processing of a huge volume of data and their importance for the Earthquake Early Warning (EEW) system are briefly discussed.

  15. Target experiments with high-power proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Baumung, K; Bluhm, H; Hoppe, P; Rusch, D; Singer, J; Stoltz, O [Forschungszentrum Karlsruhe (Germany); Kanel, G I; Razorenov, S V; Utkin, A V [Russian Academy of Sciences, Chernogolovka (Russian Federation). Inst. of Chemical Physics

    1997-12-31

    At the Karlsruhe Light Ion Facility KALE a pulsed high-power proton beam (50 ns, 0.15 TW/cm{sup 2}, 8 mm fwhm focus diameter, 1.7 MeV peak proton energy) is used to generate short, intense pressure pulses or to ablatively accelerate targets 10-100 {mu}m thick to velocities > 10 km/s. The velocity history of the rear target surface is recorded by line-imaging laser Doppler velocimetry with high spatial ({>=} 10 {mu}m) and temporal ({>=} 200 ps) resolution, and provides information on proton beam parameters, and on the state of the matter at high energy densities and intense loading. Utilizing the bell-shaped power density profile the authors demonstrated a new straightforward method for measuring the shock pressure that leads to material melting in the rarefaction wave. For the first time, the dynamic tensile strength was measured across a crystal grain boundary, and using targets with a 1D periodic structure, the growth rate of a Rayleigh Taylor instability could be measured for the first time in direct drive experiments with an ion beam. (author). 8 figs., 15 refs.

  16. Quarkonium production in high energyproton-proton and proton-nucleus collisions

    Energy Technology Data Exchange (ETDEWEB)

    del Valle, Z C; Corcella, G; Fleuret, F; Ferreiro, E G; Kartvelishvili, V; Kopeliovich, B; Lansberg, J P; Lourenco, C; Martinez, G; Papadimitriou, V; Satz, H; Scomparin, E; Ullrich, T; Teryaev, O; Vogt, R; Wang, J X

    2011-03-14

    We present a brief overview of the most relevant current issues related to quarkonium production in high energy proton-proton and proton-nucleus collisions along with some perspectives. After reviewing recent experimental and theoretical results on quarkonium production in pp and pA collisions, we discuss the emerging field of polarization studies. Afterwards, we report on issues related to heavy-quark production, both in pp and pA collisions, complemented by AA collisions. To put the work in broader perpectives, we emphasize the need for new observables to investigate the quarkonium production mechanisms and reiterate the qualities that make quarkonia a unique tool for many investigations in particle and nuclear physics.

  17. Protonation of pyridine. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Zahran, N F; Ghoniem, H; Helal, A I [Physics Dept., Nuclear Research Center, AEA., Cairo, (Egypt); Rasheed, N [Nuclear Material Authority, Cairo, (Egypt)

    1996-03-01

    Field ionization mass spectra of pyridine is measured using 10{mu}m activated wire. protonation of pyridine, is observed as an intense peak in the mass spectra. Charge distribution of pyridine molecule is calculated using the modified neglect of diatomic overlap (MNDO) technique, and consequently proton attachment is proposed to be on the nitrogen atom. Temperature dependence of (M+H){sup +} ion is investigated and discussed. MNDO calculations of the protonated species are done, and the proton affinity of pyridine molecule is estimated. Time dependence of the field ionization process of pyridine and protonated ions are observed and discussed. 5 figs.

  18. Influence of substitution of the proton donor and proton acceptor abilities of molecules. 1. The development method of definition proton donor and proton acceptor abilities A-H containing molecules

    International Nuclear Information System (INIS)

    Nurulloev, M.; Narziev, B.N.; Islomov, Z.; Fayzieva, M.

    2005-01-01

    The influence of nature of the assistant is investigated in work, it is quantity and a site on proton donor and proton acceptor abilities. A-H containing organic connections and ways, of definition of these abilities are developed by the method, of IR spectroscopy. It is developed model and it offered a technique of definition of these abilities. It is shown that the proton donor and proton acceptor is abilities of molecules as constants, are one of individual physical and chemical characteristics A-H of containing organic connections. These sizes determine the abilities of molecules, to form the intermolecular hydrogen connections, disabilities of the H-complexes formed in condensed, environments concerning to the non replaced molecule

  19. Expected proton signal sizes in the PRaVDA Range Telescope for proton Computed Tomography

    International Nuclear Information System (INIS)

    Price, T.; Parker, D.J.; Green, S.; Esposito, M.; Waltham, C.; Allinson, N.M.; Poludniowski, G.; Evans, P.; Taylor, J.; Manolopoulos, S.; Anaxagoras, T.; Nieto-Camero, J.

    2015-01-01

    Proton radiotherapy has demonstrated benefits in the treatment of certain cancers. Accurate measurements of the proton stopping powers in body tissues are required in order to fully optimise the delivery of such treaments. The PRaVDA Consortium is developing a novel, fully solid state device to measure these stopping powers. The PRaVDA Range Telescope (RT), uses a stack of 24 CMOS Active Pixel Sensors (APS) to measure the residual proton energy after the patient. We present here the ability of the CMOS sensors to detect changes in the signal sizes as the proton traverses the RT, compare the results with theory, and discuss the implications of these results on the reconstruction of proton tracks

  20. A detection system for very low-energy protons from {beta}-delayed proton decay

    Energy Technology Data Exchange (ETDEWEB)

    Spiridon, A.; Pollacco, E.; Trache, L.; Simmons, E.; McCleskey, M.; Roeder, B. T.; Tribble, R. E.; Pascovici, G.; Riallot, M.; Mols, J. P.; Kebbiri, M. [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); CEA/IRFU Saclay, Gif-sur-Yvette (France); Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); Institut fuer Kernphysik der Universitaet zu Koeln, D-50937 Koeln (Germany); CEA/IRFU Saclay, Gif-sur-Yvette (France)

    2012-11-20

    We have recently developed a gas based detection system called AstroBox, motivated by nuclear astrophysics studies. The goal was to detect very low-energy protons from {beta}-delayed p-decay with reduced beta background and improved energy resolution. The detector was tested using the {beta}-delayed proton-emitter 23Al previously studied with a set-up based on thin double-sided Si strip detectors. The proton spectrum obtained with AstroBox showed no beta background down to {approx}80 keV. The low energy (206 keV, 267 keV) proton peaks were positively identified, well separated, and the resolution was improved.

  1. A detection system for very low-energy protons from β-delayed proton decay

    International Nuclear Information System (INIS)

    Spiridon, A.; Pollacco, E.; Trache, L.; Simmons, E.; McCleskey, M.; Roeder, B. T.; Tribble, R. E.; Pascovici, G.; Riallot, M.; Mols, J. P.; Kebbiri, M.

    2012-01-01

    We have recently developed a gas based detection system called AstroBox, motivated by nuclear astrophysics studies. The goal was to detect very low-energy protons from β-delayed p-decay with reduced beta background and improved energy resolution. The detector was tested using the β-delayed proton-emitter 23Al previously studied with a set-up based on thin double-sided Si strip detectors. The proton spectrum obtained with AstroBox showed no beta background down to ∼80 keV. The low energy (206 keV, 267 keV) proton peaks were positively identified, well separated, and the resolution was improved.

  2. Modeling the Proton Radiation Belt With Van Allen Probes Relativistic Electron-Proton Telescope Data

    Science.gov (United States)

    Selesnick, R. S.; Baker, D. N.; Kanekal, S. G.; Hoxie, V. C.; Li, X.

    2018-01-01

    An empirical model of the proton radiation belt is constructed from data taken during 2013-2017 by the Relativistic Electron-Proton Telescopes on the Van Allen Probes satellites. The model intensity is a function of time, kinetic energy in the range 18-600 MeV, equatorial pitch angle, and L shell of proton guiding centers. Data are selected, on the basis of energy deposits in each of the nine silicon detectors, to reduce background caused by hard proton energy spectra at low L. Instrument response functions are computed by Monte Carlo integration, using simulated proton paths through a simplified structural model, to account for energy loss in shielding material for protons outside the nominal field of view. Overlap of energy channels, their wide angular response, and changing satellite orientation require the model dependencies on all three independent variables be determined simultaneously. This is done by least squares minimization with a customized steepest descent algorithm. Model uncertainty accounts for statistical data error and systematic error in the simulated instrument response. A proton energy spectrum is also computed from data taken during the 8 January 2014 solar event, to illustrate methods for the simpler case of an isotropic and homogeneous model distribution. Radiation belt and solar proton results are compared to intensities computed with a simplified, on-axis response that can provide a good approximation under limited circumstances.

  3. Proposal for construction of a proton--proton storage accelerator facility (Isabelle)

    International Nuclear Information System (INIS)

    1975-06-01

    A proposal is made for the construction of proton storage rings at the Brookhaven Alternating Gradient Synchrotron (AGS) using superconducting magnets for which much of the technology has already been developed. This proton-proton colliding beam facility, ''ISABELLE,'' will provide large increases in both the center-of-mass energy and the luminosity, key machine parameters for high energy physics. The physics potential and the general description of the facility are discussed in detail, and the physical plant layout, a cost estimate and schedule, and future options are given.(U.S.)

  4. A new impact picture for low and high energy proton-proton elastic scattering

    International Nuclear Information System (INIS)

    Bourrely, C.; Soffer, J.; Wu, Tai Tsun

    1978-05-01

    The impact picture that was used several years ago to predict the increase of total and integrated differential cross sections at high energies was improved significantly. The major improvements consist of the following: (1) the dependence of the Pomeron term on the momentum transfer is taken from a modified version of the relation between matter distribution and charge distribution; (2) Regge backgrounds are properly taken into account; and (3) a simple non-trivial form is used for the hadronic matter current in the proton. For proton-proton elastic scattering, the phenomenological differential cross section is in good agreement with the experimental data in the laboratory momentum range of 14 GeV/c to 2000 GeV/c, and is predicted for ISABELLE energy. Because of the third improvement, predictions are obtained for both polarization and R parameters for proton-proton elastic scattering

  5. Ex-ante benefit-cost analysis of the elimination of a Glossina palpalis gambiensis population in the Niayes of Senegal.

    Directory of Open Access Journals (Sweden)

    Fanny Bouyer

    2014-08-01

    Full Text Available In 2005, the Government of Senegal embarked on a campaign to eliminate a Glossina palpalis gambiensis population from the Niayes area (∼ 1000 km(2 under the umbrella of the Pan African Tsetse and Trypanosomosis Eradication Campaign (PATTEC. The project was considered an ecologically sound approach to intensify cattle production. The elimination strategy includes a suppression phase using insecticide impregnated targets and cattle, and an elimination phase using the sterile insect technique, necessary to eliminate tsetse in this area.Three main cattle farming systems were identified: a traditional system using trypanotolerant cattle and two "improved" systems using more productive cattle breeds focusing on milk and meat production. In improved farming systems herd size was 45% lower and annual cattle sales were €250 (s.d. 513 per head as compared to €74 (s.d. 38 per head in traditional farming systems (p<10-3. Tsetse distribution significantly impacted the occurrence of these farming systems (p = 0.001, with 34% (s.d. 4% and 6% (s.d. 4% of improved systems in the tsetse-free and tsetse-infested areas, respectively. We calculated the potential increases of cattle sales as a result of tsetse elimination considering two scenarios, i.e. a conservative scenario with a 2% annual replacement rate from traditional to improved systems after elimination, and a more realistic scenario with an increased replacement rate of 10% five years after elimination. The final annual increase of cattle sales was estimated at ∼ €2800/km(2 for a total cost of the elimination campaign reaching ∼ €6400/km(2.Despite its high cost, the benefit-cost analysis indicated that the project was highly cost-effective, with Internal Rates of Return (IRR of 9.8% and 19.1% and payback periods of 18 and 13 years for the two scenarios, respectively. In addition to an increase in farmers' income, the benefits of tsetse elimination include a reduction of grazing pressure on

  6. Proton gradients and proton-dependent transport processes in the chloroplast

    Directory of Open Access Journals (Sweden)

    Ricarda eHöhner

    2016-02-01

    Full Text Available Proton gradients are fundamental to chloroplast function. Across thylakoid membranes, the light induced proton gradient is essential for ATP synthesis. As a result of proton pumping into the thylakoid lumen, an alkaline stromal pH develops, which is required for full activation of pH-dependent Calvin Benson cycle enzymes. This implies that a pH gradient between the cytosol (pH 7 and the stroma (pH 8 is established upon illumination. To maintain this pH gradient chloroplasts actively extrude protons. More than 30 years ago it was already established that these proton fluxes are electrically counterbalanced by Mg2+, K+ or Cl- fluxes, but only recently the first transport systems that regulate the pH gradient were identified. Notably several (Na+,K+/H+ antiporter systems where identified, that play a role in pH gradient regulation, ion homeostasis, osmoregulation, or coupling of secondary active transport. The established pH gradients are important to drive uptake of essential ions and solutes, but not many transporters involved have been identified to date. In this mini review we summarize the current status in the field and the open questions that need to be addressed in order to understand how pH gradients are maintained, how this is interconnected with other transport processes and what this means for chloroplast function.

  7. Probing the Spin Structure of the Proton Using Polarized Proton-Proton Collisions and the Production of W Bosons

    Energy Technology Data Exchange (ETDEWEB)

    Beaumier, Michael J. [Univ. of California, Riverside, CA (United States)

    2016-08-01

    This thesis discusses the process of extracting the longitudinal asymmetry, A$W±\\atop{L}$ describing W → μ production in forward kinematic regimes. This asymmetry is used to constrain our understanding of the polarized parton distribution functions characterizing $\\bar{u}$ and $\\bar{d}$ sea quarks in the proton. This asymmetry will be used to constrain the overall contribution of the sea-quarks to the total proton spin. The asymmetry is evaluated over the pseudorapidity range of the PHENIX Muon Arms, 2.1 < |η| 2.6, for longitudinally polarized proton-proton collisions at 510 GeV √s. In particular, I will discuss the statistical methods used to characterize real muonic W decays and the various background processes is presented, including a discussion of likelihood event selection and the Extended Unbinned Maximum Likelihood t. These statistical methods serve estimate the yields of W muonic decays, which are used to calculate the longitudinal asymmetry.

  8. Journal of Proton Therapy

    Directory of Open Access Journals (Sweden)

    Editorial Office

    2015-01-01

    Full Text Available Journal of Proton Therapy (JPT is an international open access, peer-reviewed journal, which publishes original research, technical reports, reviews, case reports, editorials, and other materials on proton therapy with focus on radiation oncology, medical physics, medical dosimetry, and radiation therapy.No article processing/submission feeNo publication feePeer-review completion within 3-6 weeksImmediate publication after the completion of final author proofreadDOI assignment for each published articleFree access to published articles for all readers without any access barriers or subscriptionThe views and opinions expressed in articles are those of the author/s and do not necessarily reflect the policies of the Journal of Proton Therapy.Authors are encouraged to submit articles for publication in the inaugural issue of the Journal of Proton Therapy by online or email to editor@protonjournal.comOfficial Website of Journal of Proton Therapy: http://www.protonjournal.org/

  9. Excitation of electromagnetic proton cyclotron instability by parallel electric field in the equatorial magnetosphere

    International Nuclear Information System (INIS)

    Dixit, S.K.; Azif, Z.A.; Gwal, A.K.

    1994-01-01

    The characteristics of the growth rate of electromagnetic ion cyclotron (EMIC) instability is investigated in a mixture of cold species of ions and warm proton in the presence of weak parallel static electric field. An attempt has been made to explain the excitation of EMIC waves through linear wave-particle (W-P) interaction in the equatorial magnetospheric region. The proton cyclotron instability is modified in presence of weak parallel electric field and the growth rate is computed for equatorial magnetospheric plasma parameters. The results of theoretical investigations of the growth rate are used to explain the excitation mechanism of extremely low frequency/very low frequency (ELF/VLF) waves as observed by satellites. (author). 29 refs., 4 figs

  10. Energizing porters by proton-motive force.

    Science.gov (United States)

    Nelson, N

    1994-11-01

    It is generally accepted that the chemistry of water was the most crucial determinant in shaping life on earth. Among the more important chemical features of water is its dissociation into protons and hydroxyl ions. The presence of relatively high proton concentrations in the ambient solution resulted in the evolution of proton pumps during the dawn of life on earth. These proton pumps maintained neutral pH inside the cells and generated electrochemical gradients of protons (proton-motive force) across their membranes. The existence of proton-motive force enabled the evolution of porters driven by it that are most probably among the more primitive porters in the world. The directionality of the substrate transport by the porters could be to both sides of the membranes because they can serve as proton symporters or antiporters. One of the most important subjects of this meeting is the mechanism by which proton-motive and other ion-motive forces drive the transport processes through porters. Is there a common mechanism of action for all proton-driven porters? Is there some common partial reaction by which we can identify the way that porters are energized by proton-motive force? Is there a common coupling between proton movement and uptake or secretion of certain molecules? Even a partial answer to one of these questions would advance our knowledge... or confusion. As my mentor Efraim Racker used to say: 'If you are not totally confused you do not understand the issue'.

  11. Accumulation and elimination of polychlorinated dibenzo-p-dioxins and dibenzofurans in mule ducks

    International Nuclear Information System (INIS)

    Wu, Ting-Wei; Lee, Jai-Wei; Liu, Hsueh-Yen; Lin, Wei-Hsiao; Chu, Chun-Yen; Lin, Sheng-Lun; Chang-Chien, Guo Ping; Yu, Chi

    2014-01-01

    In Taiwan, a food safety crisis involving a presence of high concentrations of dioxin residues in duck eggs occurred in 2004. The dioxin content in duck meat sampled from supermarkets was also reported to be substantially higher than in products from other farm animals. Despite increased awareness of the potential for contamination and exposure to dioxins, the accumulation and elimination of dioxins in ducks have not been well characterized. In the present study, mule ducks were fed capsules containing polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) for 14 days and the trial was continued for another 28 days without PCDD/Fs supplementation. Ducks were sacrificed on the 14th, 28th, and 42nd days from the beginning of administration and samples of abdominal fat, breast, and liver tissue were obtained. The concentrations of PCDD/Fs were analyzed in the samples to investigate their distribution and elimination in various duck tissues. The bioaccumulation of PCDD/Fs in ducks was found to be tissue-dependent. In the abdominal fat, the bioconcentration factor was negatively correlated with the degree of chlorination. Conversely, more chlorinated PCDD/Fs (hexa- or hepta-congeners) were associated with higher bioconcentration in the liver and breast tissue. In terms of the efficiency of PCDD/Fs elimination, the liver was found to be the fastest, followed by the breast and the abdominal fat. The clearance rate positively correlated with the degree of chlorination, as determined by comparing the apparent elimination rate constant (k) of PCDD/Fs in various tissues. Overall, lower k values observed in this study imply that mule ducks have a reduced clearance of PCDD/Fs in comparison with layer and broiler chickens. - Highlights: • We describe the accumulation and elimination of PCDD/Fs in mule ducks. • The accumulation of PCDD/Fs in mule ducks was tissue-specific. • The elimination of PCDD/Fs in tissues of mule ducks was congener-specific. • The

  12. Accumulation and elimination of polychlorinated dibenzo-p-dioxins and dibenzofurans in mule ducks

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ting-Wei, E-mail: M10126010@mail.npust.edu.tw [Department of Animal Science, National Pingtung University of Science Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan (China); Lee, Jai-Wei, E-mail: joeylee@mail.npust.edu.tw [Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan (China); Liu, Hsueh-Yen, E-mail: M9926012@mail.npust.edu.tw [Department of Animal Science, National Pingtung University of Science Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan (China); Lin, Wei-Hsiao, E-mail: M10126011@mail.npust.edu.tw [Department of Animal Science, National Pingtung University of Science Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan (China); Chu, Chun-Yen, E-mail: cychu@mail.npust.edu.tw [Graduate Institute of Animal Vaccine Technology, National Pingtung University of Science Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan (China); Lin, Sheng-Lun, E-mail: sllin100@csu.edu.tw [Supermicro Mass Research and Technology Center, Cheng Shiu University, No. 840, Chengcing Road, Niaosong Dist., Kaohsiung City 83347, Taiwan (China); Center for General Education, Cheng Shiu University, No. 840, Chengcing Road, Niaosong Dist., Kaohsiung City 83347, Taiwan (China); Chang-Chien, Guo Ping, E-mail: guoping@csu.edu.tw [Supermicro Mass Research and Technology Center, Cheng Shiu University, No. 840, Chengcing Road, Niaosong Dist., Kaohsiung City 83347, Taiwan (China); Department of Cosmetics and Fashion styling, Cheng Shiu University, No. 840, Chengcing Road, Niaosong Dist., Kaohsiung City 83347, Taiwan (China); Yu, Chi, E-mail: chiyu@mail.npust.edu.tw [Department of Animal Science, National Pingtung University of Science Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan (China)

    2014-11-01

    In Taiwan, a food safety crisis involving a presence of high concentrations of dioxin residues in duck eggs occurred in 2004. The dioxin content in duck meat sampled from supermarkets was also reported to be substantially higher than in products from other farm animals. Despite increased awareness of the potential for contamination and exposure to dioxins, the accumulation and elimination of dioxins in ducks have not been well characterized. In the present study, mule ducks were fed capsules containing polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) for 14 days and the trial was continued for another 28 days without PCDD/Fs supplementation. Ducks were sacrificed on the 14th, 28th, and 42nd days from the beginning of administration and samples of abdominal fat, breast, and liver tissue were obtained. The concentrations of PCDD/Fs were analyzed in the samples to investigate their distribution and elimination in various duck tissues. The bioaccumulation of PCDD/Fs in ducks was found to be tissue-dependent. In the abdominal fat, the bioconcentration factor was negatively correlated with the degree of chlorination. Conversely, more chlorinated PCDD/Fs (hexa- or hepta-congeners) were associated with higher bioconcentration in the liver and breast tissue. In terms of the efficiency of PCDD/Fs elimination, the liver was found to be the fastest, followed by the breast and the abdominal fat. The clearance rate positively correlated with the degree of chlorination, as determined by comparing the apparent elimination rate constant (k) of PCDD/Fs in various tissues. Overall, lower k values observed in this study imply that mule ducks have a reduced clearance of PCDD/Fs in comparison with layer and broiler chickens. - Highlights: • We describe the accumulation and elimination of PCDD/Fs in mule ducks. • The accumulation of PCDD/Fs in mule ducks was tissue-specific. • The elimination of PCDD/Fs in tissues of mule ducks was congener-specific. • The

  13. Study of proton and 2 protons emission from light neutron deficient nuclei around A=20

    International Nuclear Information System (INIS)

    Zerguerras, T.

    2001-09-01

    Proton and two proton emission from light neutron deficient nuclei around A=20 have been studied. A radioactive beam of 18 Ne, 17 F and 20 Mg, produced at the Grand Accelerateur National d'Ions Lourds by fragmentation of a 24 Mg primary beam at 95 MeV/A, bombarded a 9 Be target to form unbound states. Proton(s) and nuclei from the decay were detected respectively in the MUST array and the SPEG spectrometer. From energy and angle measurements, the invariant mass of the decaying nucleus could be reconstructed. Double coincidence events between a proton and 17 F, 16 O, 15 O, 14 O and 18 Ne were registered to obtain excitation energy spectra of 18 Ne, 17 F, 16 F, 15 F et 19 Na. Generally, the masses measures are in agreement with previous experiments. In the case of 18 Ne, excitation energy and angular distributions agree well with the predictions of a break up model calculation. From 17 Ne proton coincidences, a first experimental measurement of the ground state mass excess of 18 Na has been obtained and yields 24,19(0,15)MeV. Two proton emission from 17 Ne and 18 Ne excited states and the 19 Mg ground state was studied through triple coincidences between two proton and 15 O, 16 O and 17 Ne respectively. In the first case, the proton-proton relative angle distribution in the center of mass has been compared with model calculation. Sequential emission from excited states of 17 Ne, above the proton emission threshold, through 16 F is dominant but a 2 He decay channel could not be excluded. No 2 He emission from the 1.288 MeV 17 Ne state, or from the 6.15 MeV 18 Ne state has been observed. Only one coincidence event between 17 Ne and two proton was registered, the value of the one neutron stripping reaction cross section of 20 Mg being much lower than predicted. (author)

  14. Beam-Beam Effects in the SPS Proton-Anti Proton Collider

    CERN Document Server

    Cornelis, K.

    2014-01-01

    During the proton-anti proton collider run several experiments were carried out in order to understand the effect of the beam-beam interaction on backgrounds and lifetimes. In this talk a selection of these experiments will be presented. From these experiments, the importance of relative beam sizes and tune ripple could be demonstrated.

  15. Pion Production from Proton Synchrotron Radiation under Strong Magnetic Field in a Relativistic Quantum Approach

    Directory of Open Access Journals (Sweden)

    Maruyama Tomoyuki

    2016-01-01

    Full Text Available We study pion production from proton synchrotron radiation in the presence of strong magnetic fields by using the exact proton propagator in a strong magnetic field and explicitly including the anomalous magnetic moment. Results in this exact quantum approach do not agree with those obtained in the semi-classical approach. Then, we find that the anomalous magnetic moment of the proton greatly enhances the production rate by about two orders magnitude, and that the decay width satisfies a robust scaling law.

  16. MO-A-BRD-10: A Fast and Accurate GPU-Based Proton Transport Monte Carlo Simulation for Validating Proton Therapy Treatment Plans

    Energy Technology Data Exchange (ETDEWEB)

    Wan Chan Tseung, H; Ma, J; Beltran, C [Mayo Clinic, Rochester, MN (United States)

    2014-06-15

    Purpose: To build a GPU-based Monte Carlo (MC) simulation of proton transport with detailed modeling of elastic and non-elastic (NE) protonnucleus interactions, for use in a very fast and cost-effective proton therapy treatment plan verification system. Methods: Using the CUDA framework, we implemented kernels for the following tasks: (1) Simulation of beam spots from our possible scanning nozzle configurations, (2) Proton propagation through CT geometry, taking into account nuclear elastic and multiple scattering, as well as energy straggling, (3) Bertini-style modeling of the intranuclear cascade stage of NE interactions, and (4) Simulation of nuclear evaporation. To validate our MC, we performed: (1) Secondary particle yield calculations in NE collisions with therapeutically-relevant nuclei, (2) Pencil-beam dose calculations in homogeneous phantoms, (3) A large number of treatment plan dose recalculations, and compared with Geant4.9.6p2/TOPAS. A workflow was devised for calculating plans from a commercially available treatment planning system, with scripts for reading DICOM files and generating inputs for our MC. Results: Yields, energy and angular distributions of secondaries from NE collisions on various nuclei are in good agreement with the Geant4.9.6p2 Bertini and Binary cascade models. The 3D-gamma pass rate at 2%–2mm for 70–230 MeV pencil-beam dose distributions in water, soft tissue, bone and Ti phantoms is 100%. The pass rate at 2%–2mm for treatment plan calculations is typically above 98%. The net computational time on a NVIDIA GTX680 card, including all CPU-GPU data transfers, is around 20s for 1×10{sup 7} proton histories. Conclusion: Our GPU-based proton transport MC is the first of its kind to include a detailed nuclear model to handle NE interactions on any nucleus. Dosimetric calculations demonstrate very good agreement with Geant4.9.6p2/TOPAS. Our MC is being integrated into a framework to perform fast routine clinical QA of pencil

  17. Rate-controlling two-proton transfer coupled with heavy-atom motion in the 2-pyridinone-catalyzed mutarotation of tetramethylglucose. Experimental and calculated deuterium isotope effects

    International Nuclear Information System (INIS)

    Engdahl, K.A.; Bivehed, H.; Ahlberg, P.; Saunders, W.H. Jr.

    1983-01-01

    Primary and secondary deuterium isotope effects have been measured by polarimetry, and primary isotope effects have been calculated for the classical bifunctional catalysis: 2-pyridinone-catalyzed mutarotation of 2,3,4,6-tetra-O-methyl-α-D-glucopyranose (α-TMG) in benzene. From the positively curved plot of the specific rate of epimerization vs. the mole fraction of 2 H in the ''pool'' of OH and NH hydrogens, the isotope effects k/sub HH//k/sub DD/ = 3.66 +/- 0.09, k/sub HH//k/sub DH/ = 1.5, and k/sub HH//k/sub HD/ = 2.4 have been calculated. A secondary isotope effect of 1.14 +/- 0.02 has been measured by using α-TMG and (1- 2 H)-2,3,4,6-tetra-O-methyl-α-D-glucopyranose [(l- 2 H)-α-TMG], the synthesis of which is described in detail, together with those for (N- 2 H)-2-pyridinone and (1-O- 2 H)-2,3,4,6-tetra-O-methyl-α-D-glucopyranose [(1-O- 2 H)-α-TMG]. The rate data obtained have also been analyzed by fractionation theory, yielding approximately equal fractionation factors (0.5). The interpretation of the results has been assisted by calculations of the primary deuterium isotope effects using the BEBOVIB IV program. Two models involving small and considerable coupling, respectively, of the transferring protons to heavy-atom motion have been considered. In the favored structure for the transition state of the rate-limiting step, two protons are in transit, and their motion is governed either by a potential with a barrier or by one without. Their motion is considerably coupled to the heavy-atom motion (i.e., the breakage of the ring C-O bond), and tunnel corrections to the isotope effects are found to be negligible

  18. Restrained Proton Indicator in Combined Quantum-Mechanics/Molecular-Mechanics Dynamics Simulations of Proton Transfer through a Carbon Nanotube.

    Science.gov (United States)

    Duster, Adam W; Lin, Hai

    2017-09-14

    Recently, a collective variable "proton indicator" was purposed for tracking an excess proton solvated in bulk water in molecular dynamics simulations. In this work, we demonstrate the feasibility of utilizing the position of this proton indicator as a reaction coordinate to model an excess proton migrating through a hydrophobic carbon nanotube in combined quantum-mechanics/molecular-mechanics simulations. Our results indicate that applying a harmonic restraint to the proton indicator in the bulk solvent near the nanotube pore entrance leads to the recruitment of water molecules into the pore. This is consistent with an earlier study that employed a multistate empirical valence bond potential and a different representation (center of excess charge) of the proton. We attribute this water recruitment to the delocalized nature of the solvated proton, which prefers to be in high-dielectric bulk solvent. While water recruitment into the pore is considered an artifact in the present simulations (because of the artificially imposed restraint on the proton), if the proton were naturally restrained, it could assist in building water wires prior to proton transfer through the pore. The potential of mean force for a proton translocation through the water-filled pore was computed by umbrella sampling, where the bias potentials were applied to the proton indicator. The free energy curve and barrier heights agree reasonably with those in the literature. The results suggest that the proton indicator can be used as a reaction coordinate in simulations of proton transport in confined environments.

  19. Proton therapy

    International Nuclear Information System (INIS)

    Jongen, Y.

    1995-01-01

    Ideal radiotherapy deposits a large amount of energy in the tumour volume, and none in the surrounding healthy tissues. Proton therapy comes closer to this goal because of a greater concentration of dose, well defined proton ranges and points of energy release which are precisely known - the Bragg peak1. In the past, the development of clinical proton therapy has been hampered by complexity, size, and cost. To be clinically effective, energies of several hundred MeV are required; these were previously unavailable for hospital installations, and pioneering institutions had to work with complex, inadequate equipment originally intended for nuclear physics research. Recently a number of specialist organizations and commercial companies have been working on dedicated systems for proton therapy. One, IBA of Belgium, has equipment for inhouse hospital operation which encompasses a complete therapy centre, delivered as a turnkey package and incorporating a compact, automated, higher energy cyclotron with isocentric gantries. Their system will be installed at Massachusetts General Hospital, Boston. The proton therapy system comprises: - a 235 MeV isochronous cyclotron to deliver beams of up to 1.5 microamps, but with a hardware limitation to restrict the maximum possible dose; - variable energy beam (235 to 70 MeV ) with energy spread and emittance verification; - a beam transport and switching system to connect the exit of the energy selection system to the entrances of a number of gantries and fixed beamlines. Along the beam transport system, the beam characteristics are monitored with non-interceptive multiwire ionization chambers for automatic tuning; - gantries fitted with nozzles and beamline elements for beam control; both beam scattering and beam wobbling techniques are available for shaping the beam;

  20. A scintillator-based online detector for the angularly resolved measurement of laser-accelerated proton spectra

    International Nuclear Information System (INIS)

    Metzkes, J.; Kraft, S. D.; Sobiella, M.; Stiller, N.; Zeil, K.; Schramm, U.; Karsch, L.; Schürer, M.; Pawelke, J.; Richter, C.

    2012-01-01

    In recent years, a new generation of high repetition rate (∼10 Hz), high power (∼100 TW) laser systems has stimulated intense research on laser-driven sources for fast protons. Considering experimental instrumentation, this development requires online diagnostics for protons to be added to the established offline detection tools such as solid state track detectors or radiochromic films. In this article, we present the design and characterization of a scintillator-based online detector that gives access to the angularly resolved proton distribution along one spatial dimension and resolves 10 different proton energy ranges. Conceived as an online detector for key parameters in laser-proton acceleration, such as the maximum proton energy and the angular distribution, the detector features a spatial resolution of ∼1.3 mm and a spectral resolution better than 1.5 MeV for a maximum proton energy above 12 MeV in the current design. Regarding its areas of application, we consider the detector a useful complement to radiochromic films and Thomson parabola spectrometers, capable to give immediate feedback on the experimental performance. The detector was characterized at an electrostatic Van de Graaff tandetron accelerator and tested in a laser-proton acceleration experiment, proving its suitability as a diagnostic device for laser-accelerated protons.

  1. A scintillator-based online detector for the angularly resolved measurement of laser-accelerated proton spectra.

    Science.gov (United States)

    Metzkes, J; Karsch, L; Kraft, S D; Pawelke, J; Richter, C; Schürer, M; Sobiella, M; Stiller, N; Zeil, K; Schramm, U

    2012-12-01

    In recent years, a new generation of high repetition rate (~10 Hz), high power (~100 TW) laser systems has stimulated intense research on laser-driven sources for fast protons. Considering experimental instrumentation, this development requires online diagnostics for protons to be added to the established offline detection tools such as solid state track detectors or radiochromic films. In this article, we present the design and characterization of a scintillator-based online detector that gives access to the angularly resolved proton distribution along one spatial dimension and resolves 10 different proton energy ranges. Conceived as an online detector for key parameters in laser-proton acceleration, such as the maximum proton energy and the angular distribution, the detector features a spatial resolution of ~1.3 mm and a spectral resolution better than 1.5 MeV for a maximum proton energy above 12 MeV in the current design. Regarding its areas of application, we consider the detector a useful complement to radiochromic films and Thomson parabola spectrometers, capable to give immediate feedback on the experimental performance. The detector was characterized at an electrostatic Van de Graaff tandetron accelerator and tested in a laser-proton acceleration experiment, proving its suitability as a diagnostic device for laser-accelerated protons.

  2. Induction of cancer cell death by proton beam in tumor hypoxic region

    International Nuclear Information System (INIS)

    Lee, Y. M.; Hur, T. R.; Lee, K. B.; Jeong, M. H.; Park, J. W.

    2007-04-01

    Proton beam induced apoptosis significantly in Lewis lung carcinoma cells and hepatoma HepG2 cells in a dose- and time-dependent manner, but slightly in leukemia Molt-4 cells. Relative biological effectiveness (RBE) values for death rate relative to gamma ray were ranged from 1.3 to 2.1 in LLC or HepG2 but 0.7 in Molt-4 cells at 72h after irradiation. The typical apoptosis was observed by nuclear DNA staining with DAPI. By FACS analysis after stained with PI, sub-G1 cell fraction was significantly increased but G2/M phase was not altered by proton beam irradiation measured at 24 h after irradiation. Proton beam-irradiated tumor cells induced cleavage of PARP-1 and procaspases (-3 and -9) and increased the level of p53 and p21. decreased pro-lamin B. Acitivity of caspases was significantly increased after proton beam irradiation. Furthermore, ROS were significantly increased and N-acetyl cystein (NAC) pretreatment restored the apoptotic cell death induced in proton beam-irradiated cells. In conclusion, single treatment of low energy proton beam with SOBP induced apoptosis of solid tumor cells via increased ROS, active caspase -3,-9 and p53, p2

  3. Induction of cancer cell death by proton beam in tumor hypoxic region

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. M.; Hur, T. R.; Lee, K. B.; Jeong, M. H.; Park, J. W. [Kyungbook National Univ., Daegu (Korea, Republic of)

    2007-04-15

    Proton beam induced apoptosis significantly in Lewis lung carcinoma cells and hepatoma HepG2 cells in a dose- and time-dependent manner, but slightly in leukemia Molt-4 cells. Relative biological effectiveness (RBE) values for death rate relative to gamma ray were ranged from 1.3 to 2.1 in LLC or HepG2 but 0.7 in Molt-4 cells at 72h after irradiation. The typical apoptosis was observed by nuclear DNA staining with DAPI. By FACS analysis after stained with PI, sub-G1 cell fraction was significantly increased but G2/M phase was not altered by proton beam irradiation measured at 24 h after irradiation. Proton beam-irradiated tumor cells induced cleavage of PARP-1 and procaspases (-3 and -9) and increased the level of p53 and p21. decreased pro-lamin B. Acitivity of caspases was significantly increased after proton beam irradiation. Furthermore, ROS were significantly increased and N-acetyl cystein (NAC) pretreatment restored the apoptotic cell death induced in proton beam-irradiated cells. In conclusion, single treatment of low energy proton beam with SOBP induced apoptosis of solid tumor cells via increased ROS, active caspase -3,-9 and p53, p2.

  4. Correlations between high momentum particles in proton-proton collisions at high energies

    International Nuclear Information System (INIS)

    Bobbink, G.J.

    1981-01-01

    This thesis describes an experiment performed at the CERN Intersecting Storage Rings. The experiment studies the reaction p+p→h 1 +h 2 +X at two centre-of-mass energies, √s=44.7 GeV and √s=62.3 GeV. Two of the outgoing particles (h 1 and h 2 ) are detected in opposite c.m.s. hemispheres at small polar angles with respect to the direction of two incident protons. The remaining particles produced (X) are not detected. The hadrons hsub(i) are identified mesons (π + , π - , K + , K - ) or baryons (p, Λ) with relatively large longitudinal psub(L) and small transverse momentum psub(T). The aim of the experiment is twofold. The first aim is to study whether the momentum distributions of the fast particles hsub(i) are correlated and thereby to constrain the possible interaction mechanisms responsible for the production of high psub(L), low psub(T) particles. The second aim is to establish to what extent the production of pions and kaons in inclusive proton-proton collisions (e.g. p+p→π+X, X=all other particles) resembles the production of pions and kaons in diffractive proton-proton collisions (e.g. p+p→p+π+X, in which the final-state proton has a momentum close to its maximum possible value). (Auth.)

  5. A diffusion model-free framework with echo time dependence for free-water elimination and brain tissue microstructure characterization.

    Science.gov (United States)

    Molina-Romero, Miguel; Gómez, Pedro A; Sperl, Jonathan I; Czisch, Michael; Sämann, Philipp G; Jones, Derek K; Menzel, Marion I; Menze, Bjoern H

    2018-03-23

    The compartmental nature of brain tissue microstructure is typically studied by diffusion MRI, MR relaxometry or their correlation. Diffusion MRI relies on signal representations or biophysical models, while MR relaxometry and correlation studies are based on regularized inverse Laplace transforms (ILTs). Here we introduce a general framework for characterizing microstructure that does not depend on diffusion modeling and replaces ill-posed ILTs with blind source separation (BSS). This framework yields proton density, relaxation times, volume fractions, and signal disentanglement, allowing for separation of the free-water component. Diffusion experiments repeated for several different echo times, contain entangled diffusion and relaxation compartmental information. These can be disentangled by BSS using a physically constrained nonnegative matrix factorization. Computer simulations, phantom studies, together with repeatability and reproducibility experiments demonstrated that BSS is capable of estimating proton density, compartmental volume fractions and transversal relaxations. In vivo results proved its potential to correct for free-water contamination and to estimate tissue parameters. Formulation of the diffusion-relaxation dependence as a BSS problem introduces a new framework for studying microstructure compartmentalization, and a novel tool for free-water elimination. © 2018 International Society for Magnetic Resonance in Medicine.

  6. Medical Proton Accelerator Project

    International Nuclear Information System (INIS)

    Comsan, M.N.H.

    2008-01-01

    A project for a medical proton accelerator for cancer treatment is outlined. The project is motivated by the need for a precise modality for cancer curing especially in children. Proton therapy is known by its superior radiation and biological effectiveness as compared to photon or electron therapy. With 26 proton and 3 heavy-ion therapy complexes operating worldwide only one (p) exists in South Africa, and none in south Asia and the Middle East. The accelerator of choice should provide protons with energy 75 MeV for eye treatment and 250 MeV for body treatment. Four treatment rooms are suggested: two with isocentric gantries, one with fixed beams and one for development. Passive scanning is recommended. The project can serve Middle East and North Africa with ∼ 400 million populations. The annual capacity of the project is estimated as 1,100 to be compared with expected radiation cases eligible for proton cancer treatment of not less than 200,000

  7. Investigating fusion plasma instabilities in the Mega Amp Spherical Tokamak using mega electron volt proton emissions (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Perez, R. V., E-mail: rvale006@fiu.edu; Boeglin, W. U.; Angulo, A.; Avila, P.; Leon, O.; Lopez, C. [Department of Physics, Florida International University, 11200 SW 8 ST, CP204, Miami, Florida 33199 (United States); Darrow, D. S. [Princeton Plasma Physics Laboratory, James Forrestal Campus, P.O. Box 451, Princeton, New Jersey 08543 (United States); Cecconello, M.; Klimek, I. [Department of Physics and Astronomy, Uppsala University, Uppsala SE-751 20 (Sweden); Allan, S. Y.; Akers, R. J.; Keeling, D. L.; McClements, K. G.; Scannell, R.; Conway, N. J. [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Turnyanskiy, M. [ITER Physics Department, EFDA CSU Garching, Boltzmannstrasse 2, D-85748, Garching (Germany); Jones, O. M. [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Michael, C. A. [Australian National University, Canberra ACT 0200 (Australia)

    2014-11-15

    The proton detector (PD) measures 3 MeV proton yield distributions from deuterium-deuterium fusion reactions within the Mega Amp Spherical Tokamak (MAST). The PD’s compact four-channel system of collimated and individually oriented silicon detectors probes different regions of the plasma, detecting protons (with gyro radii large enough to be unconfined) leaving the plasma on curved trajectories during neutral beam injection. From first PD data obtained during plasma operation in 2013, proton production rates (up to several hundred kHz and 1 ms time resolution) during sawtooth events were compared to the corresponding MAST neutron camera data. Fitted proton emission profiles in the poloidal plane demonstrate the capabilities of this new system.

  8. Effects of proton beam irradiation on seed germination and growth of soybean ( Glycine max L. Merr.)

    Science.gov (United States)

    Im, Juhyun; Kim, Woon Ji; Kim, Sang Hun; Ha, Bo-Keun

    2017-12-01

    The present study aimed to evaluate the morphological effects of proton beam irradiation on the seed germination, seedling survival, and plant growth of soybean. Seeds of three Korean elite cultivars (Kwangankong, Daepungkong, and Pungsannamulkong) were irradiated with a 57-MeV proton beam in the range of 50 - 400 Gy. The germination rates of all the varieties increased to > 95%; however, the survival rates were significantly reduced. At doses of > 300 Gy irradiation, the Daepungkong, Kwangankong, and Pungsannamulkong cultivars exhibited 39, 75, and 71% survival rates, respectively. In addition, plant height and the fresh weight of shoots and roots were significantly decreased by doses of > 100 Gy irradiation, as were the dry weights of the shoots and roots. However, SPAD values increased with increasing doses of irradiation. Abnormal plants with atypically branched stems, modified leaves, and chlorophyll mutations were observed. Based on the survival rate, plant growth inhibition, and mutation frequency, it appears that the optimum dosage of proton beam irradiation for soybean mutation breeding is between 250 and 300 Gy.

  9. Impact parameter analysis of proton-proton elastic and inelastic interactions at 360 GeV/c

    International Nuclear Information System (INIS)

    Banerjee, S.; Ragavan, R.; Bailly, J

    1987-01-01

    Data obtained with the European Hybrid Spectrometer on the proton-proton elastic scattering at 360 GeV/c are presented. The differential cross sections of elastic and inelastic pp-interactions are studied as a function of the impact parameter. The results are compared to those obtained at other energies. They are interpreted in the framework of a simple geometrical Monte-Carlo model of inelastic collisions considering protons as composite particles having a definite effective radius with valence quarks inside. The shape of the inelastic overlap function is well reproduced for both pp- and π + p-interactions. The effective radii of the proton and pion as well as of the valence quarks are estimated for inelastic interactions. The model calculations indicate an increase of the effective radii both of protons and valence quarks and an increase of the proton opacity with increasing energy

  10. How To Eliminate Narcissism Overnight: DSM-V and the Death of Narcissistic Personality Disorder.

    Science.gov (United States)

    Pies, Ronald

    2011-02-01

    The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition appears likely to eliminate the diagnosis of narcissistic personality disorder. There are significant problems with the discriminant validity of the current narcissistic personality disorder critiera set; furthermore, the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition's narrow focus on "grandiosity" probably contributes to the wide disparity between low narcissistic personality disorder prevalence rates in epidemiological studies and high rates of narcissistic personality disorder in clinical practice. Nevertheless, the best course of action may be to refine the narcissistic personality disorder criteria, followed by careful field testing and a search for biomarkers, rather than wholesale elimination of the narcissistic personality disorder category. The construct of "malignant narcissism" is also worthy of more intense empirical investigation.

  11. Proton Radiotherapy for Pediatric Ewing's Sarcoma: Initial Clinical Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Rombi, Barbara [ATreP (Provincial Agency for Proton Therapy), Trento (Italy); DeLaney, Thomas F.; MacDonald, Shannon M. [Department of Radiation Oncology, Massachusetts General Hospital-Harvard Medical School, Boston, MA (United States); Huang, Mary S.; Ebb, David H. [Department of Pediatric Hematology and Oncology, Massachusetts General Hospital-Harvard Medical School, Boston, MA (United States); Liebsch, Norbert J. [Department of Radiation Oncology, Massachusetts General Hospital-Harvard Medical School, Boston, MA (United States); Raskin, Kevin A. [Department of Orthopaedic Surgery, Massachusetts General Hospital-Harvard Medical School, Boston, MA (United States); Yeap, Beow Y. [Department of Medicine, Massachusetts General Hospital-Harvard Medical School, Boston, MA (United States); Marcus, Karen J. [Division of Radiation Oncology, Children' s Hospital Boston, MA (United States); Tarbell, Nancy J. [Department of Radiation Oncology, Massachusetts General Hospital-Harvard Medical School, Boston, MA (United States); Yock, Torunn I., E-mail: tyock@partners.org [Department of Radiation Oncology, Massachusetts General Hospital-Harvard Medical School, Boston, MA (United States)

    2012-03-01

    Purpose: Proton radiotherapy (PT) has been prescribed similarly to photon radiotherapy to achieve comparable disease control rates at comparable doses. The chief advantage of protons in this setting is to reduce acute and late toxicities by decreasing the amount of normal tissue irradiated. We report the preliminary clinical outcomes including late effects on our pediatric Ewing's sarcoma patients treated with PT at the Francis H. Burr Proton Therapy Center at Massachusetts General Hospital (Boston, MA). Methods and Materials: This was a retrospective review of the medical records of 30 children with Ewing's sarcoma who were treated with PT between April 2003 and April 2009. Results: A total of 14 male and 16 female patients with tumors in several anatomic sites were treated with PT at a median age of 10 years. The median dose was 54 Gy (relative biological effectiveness) with a median follow-up of 38.4 months. The 3-year actuarial rates of event-free survival, local control, and overall survival were 60%, 86%, and 89%, respectively. PT was acutely well tolerated, with mostly mild-to-moderate skin reactions. At the time of writing, the only serious late effects have been four hematologic malignancies, which are known risks of topoisomerase and anthracyline exposure. Conclusions: Proton radiotherapy was well tolerated, with few adverse events. Longer follow-up is needed to more fully assess tumor control and late effects, but the preliminary results are encouraging.

  12. Relative biological effectiveness of protons and heavy particles

    International Nuclear Information System (INIS)

    Vyglenov, A.; Fedorenko, B.; Kabachenko, A.

    1986-01-01

    The genetic effectiveness was studied of protons (9 GeB/nuclon, 0,72 Gy/min), α-particles (4 GeB/nuclon, 0,9 Gy/min) and carbon ions (4 GeB/nuclon 0,36 Gy/min). The translocation yield in mouse spermatogonia was used as indicator of radiation-induced genetic injury. Reciprocal translocation were registered six months after the irradiation on spermatocytes in diakinesmetaphase I. Comparison was made with gamma-irradiated animals from 60 Co source with dose rate 1,44 Gy/min. The relative biological effectiveness (RBE) was determined by comparing the regression coefficients from the linear dose translocation yield dependency. The values of the RBE coefficients were 0.8, 0.9 and 1.2, accordingly for protons, α-particles and carbon ions

  13. Violent collisions of spinning protons

    Energy Technology Data Exchange (ETDEWEB)

    Krisch, A.D. [Michigan Univ., Spin Physics Center, Ann Arbor, MI (United States)

    2005-07-01

    The author draws the history of polarized proton beams that has relied on experiments that took place in different accelerators like ZGS (zero gradient synchrotron, Argonne), AGS (Brookhaven) and Fermilab from 1973 till today. The first studies of the behavior and spin-manipulation of polarized protons helped in developing polarized beams around the world: Brookhaven now has 200 GeV polarized protons in the RHIC collider, perhaps someday the 7 TeV LHC at CERN might have polarized protons.

  14. Proton-counting radiography for proton therapy: a proof of principle using CMOS APS technology

    International Nuclear Information System (INIS)

    Poludniowski, G; Esposito, M; Evans, P M; Allinson, N M; Anaxagoras, T; Green, S; Parker, D J; Price, T; Manolopoulos, S; Nieto-Camero, J

    2014-01-01

    Despite the early recognition of the potential of proton imaging to assist proton therapy (Cormack 1963 J. Appl. Phys. 34 2722), the modality is still removed from clinical practice, with various approaches in development. For proton-counting radiography applications such as computed tomography (CT), the water-equivalent-path-length that each proton has travelled through an imaged object must be inferred. Typically, scintillator-based technology has been used in various energy/range telescope designs. Here we propose a very different alternative of using radiation-hard CMOS active pixel sensor technology. The ability of such a sensor to resolve the passage of individual protons in a therapy beam has not been previously shown. Here, such capability is demonstrated using a 36 MeV cyclotron beam (University of Birmingham Cyclotron, Birmingham, UK) and a 200 MeV clinical radiotherapy beam (iThemba LABS, Cape Town, SA). The feasibility of tracking individual protons through multiple CMOS layers is also demonstrated using a two-layer stack of sensors. The chief advantages of this solution are the spatial discrimination of events intrinsic to pixelated sensors, combined with the potential provision of information on both the range and residual energy of a proton. The challenges in developing a practical system are discussed. (paper)

  15. Proton-counting radiography for proton therapy: a proof of principle using CMOS APS technology.

    Science.gov (United States)

    Poludniowski, G; Allinson, N M; Anaxagoras, T; Esposito, M; Green, S; Manolopoulos, S; Nieto-Camero, J; Parker, D J; Price, T; Evans, P M

    2014-06-07

    Despite the early recognition of the potential of proton imaging to assist proton therapy (Cormack 1963 J. Appl. Phys. 34 2722), the modality is still removed from clinical practice, with various approaches in development. For proton-counting radiography applications such as computed tomography (CT), the water-equivalent-path-length that each proton has travelled through an imaged object must be inferred. Typically, scintillator-based technology has been used in various energy/range telescope designs. Here we propose a very different alternative of using radiation-hard CMOS active pixel sensor technology. The ability of such a sensor to resolve the passage of individual protons in a therapy beam has not been previously shown. Here, such capability is demonstrated using a 36 MeV cyclotron beam (University of Birmingham Cyclotron, Birmingham, UK) and a 200 MeV clinical radiotherapy beam (iThemba LABS, Cape Town, SA). The feasibility of tracking individual protons through multiple CMOS layers is also demonstrated using a two-layer stack of sensors. The chief advantages of this solution are the spatial discrimination of events intrinsic to pixelated sensors, combined with the potential provision of information on both the range and residual energy of a proton. The challenges in developing a practical system are discussed.

  16. First demonstration of multi-MeV proton acceleration from a cryogenic hydrogen ribbon target

    Science.gov (United States)

    Kraft, Stephan D.; Obst, Lieselotte; Metzkes-Ng, Josefine; Schlenvoigt, Hans-Peter; Zeil, Karl; Michaux, Sylvain; Chatain, Denis; Perin, Jean-Paul; Chen, Sophia N.; Fuchs, Julien; Gauthier, Maxence; Cowan, Thomas E.; Schramm, Ulrich

    2018-04-01

    We show efficient laser driven proton acceleration up to 14 MeV from a 62 μm thick cryogenic hydrogen ribbon. Pulses of the short pulse laser ELFIE at LULI with a pulse length of ≈350 fs at an energy of 8 J per pulse are directed onto the target. The results are compared to proton spectra from metal and plastic foils with different thicknesses and show a similarly good performance both in maximum energy as well as in proton number. Thus, this target type is a promising candidate for experiments with high repetition rate laser systems.

  17. Proton transfers in the Strecker reaction revealed by DFT calculations

    Directory of Open Access Journals (Sweden)

    Shinichi Yamabe

    2014-08-01

    Full Text Available The Strecker reaction of acetaldehyde, NH3, and HCN to afford alanine was studied by DFT calculations for the first time, which involves two reaction stages. In the first reaction stage, the aminonitrile was formed. The rate-determining step is the deprotonation of the NH3+ group in MeCH(OH-NH3+ to form 1-aminoethanol, which occurs with an activation energy barrier (ΔE≠ of 9.6 kcal/mol. The stereochemistry (R or S of the aminonitrile product is determined at the NH3 addition step to the carbonyl carbon of the aldehyde. While the addition of CN− to the carbon atom of the protonated imine 7 appears to scramble the stereochemistry, the water cluster above the imine plane reinforces the CN− to attack the imine group below the plane. The enforcement hinders the scrambling. In the second stage, the aminonitrile transforms to alanine, where an amide Me-CH(NH2-C(=O-NH2 is the key intermediate. The rate-determining step is the hydrolysis of the cyano group of N(amino-protonated aminonitrile which occurs with an ΔE≠ value of 34.7 kcal/mol. In the Strecker reaction, the proton transfer along the hydrogen bonds plays a crucial role.

  18. The study of PDMS surface treatment and it's applications by using proton beam

    International Nuclear Information System (INIS)

    Baek, J. Y.; Kim, J. Y.; Kwon, K. H.; Park, J. Y.

    2007-04-01

    caused cracks on PDMS and color change, high energy proton beam destroy the property itself. Through-hole seems not possibly achievable using proton beam. Metal layer deposition: Metal deposition rate increased in the case of proton beam treatment than no treatment on PDMS. Fibrobrast cell culture: To check the feasibility about cell culture on the treated PDMS surfaces, fibroblast cell was chosen because it has adhesion molecules. Cell proliferation(WST-1) and light microscopy were used to view the morphology patterning. In several cases of beam treatments, there were outstanding cell growth rate found

  19. Concept for a Future Super Proton-Proton Collider

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jingyu; et al.

    2015-07-12

    Following the discovery of the Higgs boson at LHC, new large colliders are being studied by the international high-energy community to explore Higgs physics in detail and new physics beyond the Standard Model. In China, a two-stage circular collider project CEPC-SPPC is proposed, with the first stage CEPC (Circular Electron Positron Collier, a so-called Higgs factory) focused on Higgs physics, and the second stage SPPC (Super Proton-Proton Collider) focused on new physics beyond the Standard Model. This paper discusses this second stage.

  20. Concept for a Future Super Proton-Proton Collider

    CERN Document Server

    Tang, Jingyu; Chai, Weiping; Chen, Fusan; Chen, Nian; Chou, Weiren; Dong, Haiyi; Gao, Jie; Han, Tao; Leng, Yongbin; Li, Guangrui; Gupta, Ramesh; Li, Peng; Li, Zhihui; Liu, Baiqi; Liu, Yudong; Lou, Xinchou; Luo, Qing; Malamud, Ernie; Mao, Lijun; Palmer, Robert B.; Peng, Quanling; Peng, Yuemei; Ruan, Manqi; Sabbi, GianLuca; Su, Feng; Su, Shufang; Stratakis, Diktys; Sun, Baogeng; Wang, Meifen; Wang, Jie; Wang, Liantao; Wang, Xiangqi; Wang, Yifang; Wang, Yong; Xiao, Ming; Xing, Qingzhi; Xu, Qingjin; Xu, Hongliang; Xu, Wei; Witte, Holger; Yan, Yingbing; Yang, Yongliang; Yang, Jiancheng; Yuan, Youjin; Zhang, Bo; Zhang, Yuhong; Zheng, Shuxin; Zhu, Kun; Zhu, Zian; Zou, Ye

    2015-01-01

    Following the discovery of the Higgs boson at LHC, new large colliders are being studied by the international high-energy community to explore Higgs physics in detail and new physics beyond the Standard Model. In China, a two-stage circular collider project CEPC-SPPC is proposed, with the first stage CEPC (Circular Electron Positron Collier, a so-called Higgs factory) focused on Higgs physics, and the second stage SPPC (Super Proton-Proton Collider) focused on new physics beyond the Standard Model. This paper discusses this second stage.

  1. Parity Non-Conservation in Proton-Proton Elastic Scattering

    International Nuclear Information System (INIS)

    Brown, V.R.; B.F. Gibson; J.A. Carlson; R. Schiavilla

    2002-01-01

    The parity non-conserving longitudinal asymmetry in proton-proton (pp) elastic scattering is calculated in the lab-energy range 0-350 MeV using contemporary, realistic strong-interaction potentials combined with a weak-interaction potential comprised of rho- and omega-meson exchanges as exemplified by the DDH model. Values for the rho- and omega-meson coupling constants, h rho rho rho and h rho rho omega , are determined from comparison with the measured asymmetries at 13.6 MeV, 45 MeV, and 221 MeV

  2. Protonic decay of oriented nuclei

    International Nuclear Information System (INIS)

    Kadmensky, S.G.

    2002-01-01

    On the basis of the multiparticle theory of protonic decay, the angular distributions of protons emitted by oriented spherical and deformed nuclei in the laboratory frame and in the internal coordinate frame of deformed parent nuclei are constructed with allowance for symmetry with respect to time inversion. It is shown that, because of the deep-subbarrier character of protonic decay, the adiabatic approximation is not applicable to describing the angular distributions of protons emitted by oriented deformed nuclei and that the angular distribution of protons in the laboratory frame does not coincide with that in the internal coordinate frame. It is demonstrated that these angular distributions coincide only if the adiabatic and the semiclassical approximation are simultaneously valid

  3. Proton transfer events in GFP

    NARCIS (Netherlands)

    Di Donato, M.; van Wilderen, L.J.G.W.; van Stokkum, I.H.M.; Cohen Stuart, T.A.; Kennis, J.T.M.; Hellingwerf, K.J.; van Grondelle, R.; Groot, M.L.

    2011-01-01

    Proton transfer is one of the most important elementary processes in biology. Green fluorescent protein (GFP) serves as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. Illumination initiates proton

  4. Pauli principle in the soft-photon approach to proton-proton bremsstrahlung

    NARCIS (Netherlands)

    Liou, MK; Timmermans, R; Gibson, BF

    1996-01-01

    A relativistic and manifestly gauge-invariant soft-photon amplitude, which is consistent with the soft-photon theorem and satisfies the Pauli principle, is derived for the proton-proton bremsstrahlung process. This soft-photon amplitude is the first two-u-two-t special amplitude to satisfy all

  5. Measurements of low energy observables in proton-proton collisions with the ATLAS Detector.

    CERN Document Server

    Myska, Miroslav; The ATLAS collaboration

    2017-01-01

    Low energy phenomena have been studied in detail at the LHC, providing important input for improving models of non-perturbative QCD effects. The ATLAS collaboration has performed several new measurements in this sector: We present charged-particle distributions sensitive to the underlying event, measured by the ATLAS detector in proton--proton collisions at a centre-of-mass energy of 13 TeV. The results are corrected for detector effects and compared to predictions from various Monte Carlo generators. ATLAS has also studied the correlated hadron production. In particular, an analysis of the momentum difference between charged hadrons in high–energy proton–proton collisions is performed and the results are compared to the predictions of a helical QCD string fragmentation model. New results in forward physics are expected to be available soon. We close this presentation with the measurement of the exclusive "\\gamma\\gamma \\rightarrow \\mu^{+}\\mu^{-}" production in proton-proton collisions at a center-of-mass ...

  6. Proton Conductive Channel Optimization in Methanol Resistive Hybrid Hyperbranched Polyamide Proton Exchange Membrane

    Directory of Open Access Journals (Sweden)

    Liying Ma

    2017-12-01

    Full Text Available Based on a previously developed polyamide proton conductive macromolecule, the nano-scale structure of the self-assembled proton conductive channels (PCCs is adjusted via enlarging the nano-scale pore size within the macromolecules. Hyperbranched polyamide macromolecules with different size are synthesized from different monomers to tune the nano-scale pore size within the macromolecules, and a series of hybrid membranes are prepared from these two micromoles to optimize the PCC structure in the proton exchange membrane. The optimized membrane exhibits methanol permeability low to 2.2 × 10−7 cm2/s, while the proton conductivity of the hybrid membrane can reach 0.25 S/cm at 80 °C, which was much higher than the value of the Nafion 117 membrane (0.192 S/cm. By considering the mechanical, dimensional, and the thermal properties, the hybrid hyperbranched polyamide proton exchange membrane (PEM exhibits promising application potential in direct methanol fuel cells (DMFC.

  7. USCIS Backlog Elimination

    Data.gov (United States)

    Department of Homeland Security — USCIS is streamlining the way immigration benefits are delivered. By working smarter and eliminating redundancies, USCIS is bringing a business model to government....

  8. Enhancement of proton transfer in ion channels by membrane phosphate headgroups.

    Science.gov (United States)

    Wyatt, Debra L; de Godoy, Carlos Marcelo G; Cukierman, Samuel

    2009-05-14

    The transfer of protons (H+) in gramicidin (gA) channels is markedly distinct in monoglyceride and phospholipid membranes. In this study, the molecular groups that account for those differences were investigated using a new methodology. The rates of H+ transfer were measured in single gA channels reconstituted in membranes made of plain ceramides or sphingomyelins and compared to those in monoglyceride and phospholipid bilayers. Single-channel conductances to protons (gH) were significantly larger in sphingomyelin than in ceramide membranes. A novel and unsuspected finding was that H+ transfer was heavily attenuated or completely blocked in ceramide (but not in sphingomyelin) membranes in low-ionic-strength solutions. It is reasoned that H-bond dynamics at low ionic strengths between membrane ceramides and gA makes channels dysfunctional. The rate of H+ transfer in gA channels in ceramide membranes is significantly higher than that in monoglyceride bilayers. This suggests that solvation of the hydrophobic surface of gA channels by two acyl chains in ceramides stabilizes the gA channels and the water wire inside the pore, leading to an enhancement of H+ transfer in relation to that occurring in monoglyceride membranes. gH values in gA channels are similar in ceramide and monoglyceride bilayers and in sphingomyelin and phospholipid membranes. It is concluded that phospho headgroups in membranes have significant effects on the rate of H+ transfer at the membrane gA channel/solution interfaces, enhancing the entry and exit rates of protons in channels.

  9. Proton Beam Writing

    International Nuclear Information System (INIS)

    Rajta, I.; Szilasi, S.Z.; Csige, I.; Baradacs, E.

    2005-01-01

    Complete text of publication follows. Refractive index depth profile in PMMA due to proton irradiation Proton Beam Writing has been successfully used to create buried channel waveguides in PMMA, which suggested that proton irradiation increases the refractive index. To investigate this effect, PMMA samples were irradiated by 1.7-2.1 MeV proton beam. Spectroscopic Ellipsometry has been used to investigate the depth profile of the refractive index. An increase of the refractive index was observed in the order of 0.01, which is approximately one order of magnitude higher than the detection limit. The highest increase of the refractive index occurs at the end of range, i.e. we found a good correlation with the Bragg curve of the energy loss. Hardness changes in PMMA due to proton beam micromachining As protons penetrate a target material and lose their energy according to the Bragg curve, the energy loss is different at different depths. This causes depth-dependent changes of some physical properties in the target material (e.g. refractive index, hardness). In order to characterize the changes of hardness and other mechanical properties as a function of beam penetration depth, systematic investigations have been performed on PMMA, the most common resist material used in proton beam micromachining. Silicon check valve made by proton beam micromachining The possible application of Proton Beam Micromachining (PBM) has been demonstrated by a few authors for creating 3D Si microstructures. In this work we present alternative methods for the formation of a simple a non-return valve for microfluidic applications. Two different approaches have been applied, in both cases we exploited characteristic features of the PBM technique and the selective formation and dissolution of porous Si over the implantation damaged areas. In the first case we implanted 10 μm thick cantilever-type membrane of the valve normally to the crystal surface and at 30-60 degrees to the sidewalls of the

  10. Proton Therapy for Spinal Ependymomas: Planning, Acute Toxicities, and Preliminary Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Amsbaugh, Mark J. [Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Grosshans, David R., E-mail: dgrossha@mdanderson.org [Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); McAleer, Mary Frances; Zhu, Ron; Wages, Cody; Crawford, Cody N.; Palmer, Matthew; De Gracia, Beth; Woo Shiao; Mahajan, Anita [Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2012-08-01

    Purpose: To report acute toxicities and preliminary outcomes for pediatric patients with ependymomas of the spine treated with proton beam therapy at the MD Anderson Cancer Center. Methods and Materials: Eight pediatric patients received proton beam irradiation between October 2006 and September 2010 for spinal ependymomas. Toxicity data were collected weekly during radiation therapy and all follow-up visits. Toxicities were graded according to the Common Terminology Criteria for Adverse Events version 3.0. Results: All patients had surgical resection of the tumor before irradiation (7 subtotal resection and 1 gross total resection). Six patients had World Health Organization Grade I ependymomas, and two had World Health Organization Grade II ependymomas. Patients had up to 3 surgical interventions before radiation therapy (range, 1-3; median, 1). Three patients received proton therapy after recurrence and five as part of their primary management. The entire vertebral body was treated in all but 2 patients. The mean radiation dose was 51.1 cobalt gray equivalents (range, 45 to 54 cobalt gray equivalents). With a mean follow-up of 26 months from the radiation therapy start date (range, 7-51 months), local control, event-free survival, and overall survival rates were all 100%. The most common toxicities during treatment were Grade 1 or 2 erythema (75%) and Grade 1 fatigue (38%). No patients had a Grade 3 or higher adverse event. Proton therapy dramatically reduced dose to all normal tissues anterior to the vertebral bodies in comparison to photon therapy. Conclusion: Preliminary outcomes show the expected control rates with favorable acute toxicity profiles. Proton beam therapy offers a powerful treatment option in the pediatric population, where adverse events related to radiation exposure are of concern. Extended follow-up will be required to assess for late recurrences and long-term adverse effects.

  11. Measurement of antiproton-proton elastic scattering and total cross section at a centre-of-mass energy of 546 GeV

    International Nuclear Information System (INIS)

    Swol, R.W. van.

    1985-01-01

    The transformation of the CERN Super Proton Synchrotron (SPS) from a fixed target machine into a colliding beam facility allowed the study of antiproton-proton scattering at a centre-of-mass (CM) energy of 546 GeV. This thesis describes the measurement of antiproton-proton elastic scattering and the antiproton-proton total cross section, sigmasub(tot)(anti pp), at the CERN anti pp Collider. The aim of the experiment is to establish the considerable rise with energy of the total cross section, which was predicted after the discovery of rising proton-proton total cross sections at the CERN Intersecting Storage Rings (ISR), covering an energy range of 20-60 GeV. The experimental method used for measuring sigmasub(tot)(anti pp) with an accuracy of 1-2% consists of the simultaneous measurement of both the elastic scattering event rate at small scattering angles and the inelastic interaction rate. Using the optical theorem, the total and the elastic cross sections can then be obtained without a determination of the machine luminosity. (Auth.)

  12. Aspects of the fundamental theory of proton-proton scattering

    CERN Document Server

    Martin, A

    1973-01-01

    After recalling the existence of a high energy bound on proton-proton total cross-sections, the author discusses the various phenomena which occur when these cross-sections rise and especially when they have the qualitative behaviour of the bound: rising elastic cross- sections, shrinking diffraction peak, validity of the Pomeranchuk theorem for total and elastic cross-sections, existence of a positive real part of the forward amplitude at high energies. (16 refs).

  13. Outcomes of Proton Radiation Therapy for Peripapillary Choroidal Melanoma at the BC Cancer Agency

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Eric, E-mail: etran2@bccancer.bc.ca [Radiation Therapy Program, BC Cancer Agency and University of British Columbia, Vancouver, British Columbia (Canada); Ma, Roy [Radiation Therapy Program, BC Cancer Agency and University of British Columbia, Vancouver, British Columbia (Canada); Paton, Katherine [Department of Ophthalmology and Visual Sciences, Vancouver Hospital Eye Care Centre and University of British Columbia, Vancouver, British Columbia (Canada); Blackmore, Ewart [TRIUMF, Vancouver, British Columbia (Canada); Pickles, Tom [Radiation Therapy Program, BC Cancer Agency and University of British Columbia, Vancouver, British Columbia (Canada)

    2012-08-01

    Purpose: To report toxicity, local control, enucleation, and survival rates for patients with peripapillary choroidal melanoma treated with proton therapy in Canada. Methods and Materials: We performed a retrospective analysis of patients with peripapillary choroidal melanoma ({<=}2 mm from optic disc) treated between 1995 and 2007 at the only Canadian proton therapy facility. A prospective database was updated for follow-up information from a chart review. Descriptive and actuarial data are presented. Results: In total, 59 patients were treated. The median age was 59 years. According to the 2010 American Joint Committee on Cancer TNM classification, there were 20 T1 tumors (34%), 28 T2 tumors (48%), and 11 T3 tumors (19%). The median tumor diameter was 11.4 mm, and the median thickness was 3.5 mm. Median follow-up was 63 months. Nineteen patients received 54 cobalt gray equivalents (CGE) and forty patients received 60 CGE, each in 4 fractions. The 5-year actuarial local control rate was 91% (T1, 100%; T2, 93%; and T3, 59%) (p = 0.038). There was a suggestive relationship between local control and dose. The local control rate was 97% with 60 CGE and 83% with 54 CGE (p = 0.106). The metastasis-free survival rate was 82% and related to T stage (T1, 94%; T2, 84%; and T3, 47%) (p < 0.001). Twelve patients died, including eleven with metastases. The 5-year actuarial rate of neovascular glaucoma was 31% (23% for T1-T2 and 68% for T3, p < 0.001), and that of enucleation was 0% for T1, 14% for T2, and 72% for T3 (p < 0.001). Radiation retinopathy (74%) and optic neuropathy (64%) were common within-field effects. Conclusions: Proton therapy provides excellent local control with acceptable toxicity while conserving the globe in 80% of cases. These results are consistent with other single-institution series using proton radiotherapy, and toxicity rates were acceptable. T3 tumors carry a higher rate of both local recurrence and metastasis.

  14. Outcomes of Proton Radiation Therapy for Peripapillary Choroidal Melanoma at the BC Cancer Agency

    International Nuclear Information System (INIS)

    Tran, Eric; Ma, Roy; Paton, Katherine; Blackmore, Ewart; Pickles, Tom

    2012-01-01

    Purpose: To report toxicity, local control, enucleation, and survival rates for patients with peripapillary choroidal melanoma treated with proton therapy in Canada. Methods and Materials: We performed a retrospective analysis of patients with peripapillary choroidal melanoma (≤2 mm from optic disc) treated between 1995 and 2007 at the only Canadian proton therapy facility. A prospective database was updated for follow-up information from a chart review. Descriptive and actuarial data are presented. Results: In total, 59 patients were treated. The median age was 59 years. According to the 2010 American Joint Committee on Cancer TNM classification, there were 20 T1 tumors (34%), 28 T2 tumors (48%), and 11 T3 tumors (19%). The median tumor diameter was 11.4 mm, and the median thickness was 3.5 mm. Median follow-up was 63 months. Nineteen patients received 54 cobalt gray equivalents (CGE) and forty patients received 60 CGE, each in 4 fractions. The 5-year actuarial local control rate was 91% (T1, 100%; T2, 93%; and T3, 59%) (p = 0.038). There was a suggestive relationship between local control and dose. The local control rate was 97% with 60 CGE and 83% with 54 CGE (p = 0.106). The metastasis-free survival rate was 82% and related to T stage (T1, 94%; T2, 84%; and T3, 47%) (p < 0.001). Twelve patients died, including eleven with metastases. The 5-year actuarial rate of neovascular glaucoma was 31% (23% for T1–T2 and 68% for T3, p < 0.001), and that of enucleation was 0% for T1, 14% for T2, and 72% for T3 (p < 0.001). Radiation retinopathy (74%) and optic neuropathy (64%) were common within-field effects. Conclusions: Proton therapy provides excellent local control with acceptable toxicity while conserving the globe in 80% of cases. These results are consistent with other single-institution series using proton radiotherapy, and toxicity rates were acceptable. T3 tumors carry a higher rate of both local recurrence and metastasis.

  15. Selection of jets produced in 13TeV proton-proton collisions with the ATLAS detector

    CERN Document Server

    The ATLAS collaboration

    2015-01-01

    Quality criteria for the selection of reconstructed anti-$k_t$ jets with $R = 0.4$ in the ATLAS detector are described. The study is based on data recorded in June 2015 by the ATLAS experiment in $\\sqrt{s}$ = 13 TeV protonâproton collisions at the Large Hadron Collider, with a total integrated luminosity of 6.4 pb$^{−1}$. Two selection criteria are introduced. The Loose selection is designed to provide an efficiency of selecting jets from proton-proton collisions above 99.5% (99.9%) for $p_T>$ 20 (100) GeV to be used in most ATLAS physics analyses. A tighter set of selection cuts, called Tight, is designed to further reject background jets for analyses sensitive to non-collision backgrounds with an efficiency of selecting jets from proton-proton collisions above 95% (99.5%) for $p_T>$ 20 (100) GeV.

  16. Long-Term Outcomes After Proton Beam Therapy for Sinonasal Squamous Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Andrea L.; Adams, Judith A.; Weyman, Elizabeth A.; Busse, Paul M.; Goldberg, Saveli I. [Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Varvares, Mark; Deschler, Daniel D.; Lin, Derrick T. [Head and Neck Surgical Oncology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts (United States); Delaney, Thomas F. [Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Chan, Annie W., E-mail: awchan@partners.org [Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2016-05-01

    Purpose: Squamous cell carcinoma (SCC) is the most common sinonasal cancer and is associated with one of the poor outcomes. Proton therapy allows excellent target coverage with maximal sparing of adjacent normal tissues. We evaluated the long-term outcomes in patients with sinonasal SCC treated with proton therapy. Methods and Materials: Between 1991 and 2008, 54 patients with Stage III and IV SCC of the nasal cavity and paranasal sinus received proton beam therapy at our institution to a median dose of 72.8 Gy(RBE). Sixty-nine percent underwent prior surgical resection, and 74% received elective nodal radiation. Locoregional control and survival probabilities were estimated with the Kaplan-Meier method. Multivariate analyses were performed using the Cox proportional-hazards model. Treatment toxicity was scored using the Common Terminology Criteria for Adverse Events version 4.0. Results: With a median follow-up time of 82 months in surviving patients, there were 10 local, 7 regional, and 11 distant failures. The 2-year and 5-year actuarial local control rate was 80%. The 2-year and 5-year rates of overall survival were 67% and 47%, respectively. Only smoking status was predictive for worse locoregional control, with current smokers having a 5-year rate of 23% compared with 83% for noncurrent smokers (P=.004). Karnofsky performance status ≤80 was the most significant factor predictive for worse overall survival in multivariate analysis (adjusted hazard ratio 4.5, 95% confidence interval 1.6-12.5, P=.004). There were nine grade 3 and six grade 4 toxicities, and no grade 5 toxicity. Wound adverse events constituted the most common grade 3-4 toxicity. Conclusions: Our long-term results show that proton radiation therapy is well tolerated and yields good locoregional control for SCC of the nasal cavity and paranasal sinus. Current smokers and patients with poor performance status had inferior outcomes. Prospective study is necessary to compare IMRT with proton

  17. Long-Term Outcomes After Proton Beam Therapy for Sinonasal Squamous Cell Carcinoma

    International Nuclear Information System (INIS)

    Russo, Andrea L.; Adams, Judith A.; Weyman, Elizabeth A.; Busse, Paul M.; Goldberg, Saveli I.; Varvares, Mark; Deschler, Daniel D.; Lin, Derrick T.; Delaney, Thomas F.; Chan, Annie W.

    2016-01-01

    Purpose: Squamous cell carcinoma (SCC) is the most common sinonasal cancer and is associated with one of the poor outcomes. Proton therapy allows excellent target coverage with maximal sparing of adjacent normal tissues. We evaluated the long-term outcomes in patients with sinonasal SCC treated with proton therapy. Methods and Materials: Between 1991 and 2008, 54 patients with Stage III and IV SCC of the nasal cavity and paranasal sinus received proton beam therapy at our institution to a median dose of 72.8 Gy(RBE). Sixty-nine percent underwent prior surgical resection, and 74% received elective nodal radiation. Locoregional control and survival probabilities were estimated with the Kaplan-Meier method. Multivariate analyses were performed using the Cox proportional-hazards model. Treatment toxicity was scored using the Common Terminology Criteria for Adverse Events version 4.0. Results: With a median follow-up time of 82 months in surviving patients, there were 10 local, 7 regional, and 11 distant failures. The 2-year and 5-year actuarial local control rate was 80%. The 2-year and 5-year rates of overall survival were 67% and 47%, respectively. Only smoking status was predictive for worse locoregional control, with current smokers having a 5-year rate of 23% compared with 83% for noncurrent smokers (P=.004). Karnofsky performance status ≤80 was the most significant factor predictive for worse overall survival in multivariate analysis (adjusted hazard ratio 4.5, 95% confidence interval 1.6-12.5, P=.004). There were nine grade 3 and six grade 4 toxicities, and no grade 5 toxicity. Wound adverse events constituted the most common grade 3-4 toxicity. Conclusions: Our long-term results show that proton radiation therapy is well tolerated and yields good locoregional control for SCC of the nasal cavity and paranasal sinus. Current smokers and patients with poor performance status had inferior outcomes. Prospective study is necessary to compare IMRT with proton

  18. Conceptual design of proton beam window

    International Nuclear Information System (INIS)

    Teraoku, Takuji; Kaminaga, Masanori; Terada, Atsuhiko; Ishikura, Syuichi; Kinoshita, Hidetaka; Hino, Ryutaro

    2001-01-01

    In a MW-scale neutron scattering facility coupled with a high-intensity proton accelerator, a proton beam window is installed as the boundary between a high vacuum region of the proton beam transport line and a helium environment around the target assembly working as a neutron source. The window is cooled by water so as to remove high volumetric heat generated by the proton beam. A concept of the flat-type proton beam window consisting of two plates of 3 mm thick was proposed, which was found to be feasible under the proton beam power of 5 MW through thermal-hydraulic and structural strength analyses. (authors)

  19. Large-sub(pT) production of single and double photons in proton-proton and pion-proton collisions

    International Nuclear Information System (INIS)

    Berger, E.L.; Argonne National Lab., IL; Braaten, E.; Field, R.D.

    1984-01-01

    Quantum chromodynamic (QCD) predictions are made for the large transverse momentum production of single and double photons in proton-proton, proton-antiproton, and pion-proton collisions. In π - p collisions at center-of-mass energy W=27.4 GeV and psub(T)=4.0 GeV, it is estimated that about 0.3% of the 90 0 single photon triggers will be balanced on the 'away-side' by a single photon with roughly the same transverse momentum. In π + p collisions this fraction drops to about 0.09%. These fractions increase with psub(T). In addition to the pure QED annihilation term qanti q -> γγ, it is found that the QCD-induced subprocess gg -> γγ provides an important source of double photons. Photon bremsstrahlung contributions are also examined. Experimental study of the systematics of single and double photon production in hadron-hadron collisions will provide information on the size of the strong interaction coupling constant, αsub(s)(Q), and on the charges of the quarks. Knowledge of the gluon distributions within hadrons and of the effective transverse momentum of partons in hadrons can also be gained. (orig.)

  20. Accelerated partial-breast irradiation using proton beams: Initial clinical experience

    International Nuclear Information System (INIS)

    Kozak, Kevin R.; Smith, Barbara L.; Adams, Judith C.; Kornmehl, Ellen; Katz, Angela; Gadd, Michele; Specht, Michelle; Hughes, Kevin; Gioioso, Valeria; Lu, H.-M.; Braaten, Kristina; Recht, Abram; Powell, Simon N.; DeLaney, Thomas F.; Taghian, Alphonse G.

    2006-01-01

    Purpose: We present our initial clinical experience with proton, three-dimensional, conformal, external beam, partial-breast irradiation (3D-CPBI). Methods and Materials: Twenty patients with Stage I breast cancer were treated with proton 3D-CPBI in a Phase I/II clinical trial. Patients were followed at 3 to 4 weeks, 6 to 8 weeks, 6 months, and every 6 months thereafter for recurrent disease, cosmetic outcome, toxicity, and patient satisfaction. Results: With a median follow-up of 12 months (range, 8-22 months), no recurrent disease has been detected. Global breast cosmesis was judged by physicians to be good or excellent in 89% and 100% of cases at 6 months and 12 months, respectively. Patients rated global breast cosmesis as good or excellent in 100% of cases at both 6 and 12 months. Proton 3D-CPBI produced significant acute skin toxicity with moderate to severe skin color changes in 79% of patients at 3 to 4 weeks and moderate to severe moist desquamation in 22% of patients at 6 to 8 weeks. Telangiectasia was noted in 3 patients. Three patients reported rib tenderness in the treated area, and one rib fracture was documented. At last follow-up, 95% of patients reported total satisfaction with proton 3D-CPBI. Conclusions: Based on our study results, proton 3D-CPBI offers good-to-excellent cosmetic outcomes in 89% to 100% of patients at 6-month and 12-month follow-up and nearly universal patient satisfaction. However, proton 3D-CPBI, as used in this study, does result in significant acute skin toxicity and may potentially be associated with late skin (telangiectasia) and rib toxicity. Because of the dosimetric advantages of proton 3D-CPBI, technique modifications are being explored to improve acute skin tolerance