WorldWideScience

Sample records for proteomic biomarker discovery

  1. Proteomic and metabolomic approaches to biomarker discovery

    CERN Document Server

    Issaq, Haleem J

    2013-01-01

    Proteomic and Metabolomic Approaches to Biomarker Discovery demonstrates how to leverage biomarkers to improve accuracy and reduce errors in research. Disease biomarker discovery is one of the most vibrant and important areas of research today, as the identification of reliable biomarkers has an enormous impact on disease diagnosis, selection of treatment regimens, and therapeutic monitoring. Various techniques are used in the biomarker discovery process, including techniques used in proteomics, the study of the proteins that make up an organism, and metabolomics, the study of chemical fingerprints created from cellular processes. Proteomic and Metabolomic Approaches to Biomarker Discovery is the only publication that covers techniques from both proteomics and metabolomics and includes all steps involved in biomarker discovery, from study design to study execution.  The book describes methods, and presents a standard operating procedure for sample selection, preparation, and storage, as well as data analysis...

  2. Shotgun Proteomics and Biomarker Discovery

    Directory of Open Access Journals (Sweden)

    W. Hayes McDonald

    2002-01-01

    Full Text Available Coupling large-scale sequencing projects with the amino acid sequence information that can be gleaned from tandem mass spectrometry (MS/MS has made it much easier to analyze complex mixtures of proteins. The limits of this “shotgun” approach, in which the protein mixture is proteolytically digested before separation, can be further expanded by separating the resulting mixture of peptides prior to MS/MS analysis. Both single dimensional high pressure liquid chromatography (LC and multidimensional LC (LC/LC can be directly interfaced with the mass spectrometer to allow for automated collection of tremendous quantities of data. While there is no single technique that addresses all proteomic challenges, the shotgun approaches, especially LC/LC-MS/MS-based techniques such as MudPIT (multidimensional protein identification technology, show advantages over gel-based techniques in speed, sensitivity, scope of analysis, and dynamic range. Advances in the ability to quantitate differences between samples and to detect for an array of post-translational modifications allow for the discovery of classes of protein biomarkers that were previously unassailable.

  3. Exhaled Breath Condensate for Proteomic Biomarker Discovery

    Directory of Open Access Journals (Sweden)

    Sean W. Harshman

    2014-07-01

    Full Text Available Exhaled breath condensate (EBC has been established as a potential source of respiratory biomarkers. Compared to the numerous small molecules identified, the protein content of EBC has remained relatively unstudied due to the methodological and technical difficulties surrounding EBC analysis. In this review, we discuss the proteins identified in EBC, by mass spectrometry, focusing on the significance of those proteins identified. We will also review the limitations surrounding mass spectral EBC protein analysis emphasizing recommendations to enhance EBC protein identifications by mass spectrometry. Finally, we will provide insight into the future directions of the EBC proteomics field.

  4. Biomarker discovery in mass spectrometry-based urinary proteomics.

    Science.gov (United States)

    Thomas, Samuel; Hao, Ling; Ricke, William A; Li, Lingjun

    2016-04-01

    Urinary proteomics has become one of the most attractive topics in disease biomarker discovery. MS-based proteomic analysis has advanced continuously and emerged as a prominent tool in the field of clinical bioanalysis. However, only few protein biomarkers have made their way to validation and clinical practice. Biomarker discovery is challenged by many clinical and analytical factors including, but not limited to, the complexity of urine and the wide dynamic range of endogenous proteins in the sample. This article highlights promising technologies and strategies in the MS-based biomarker discovery process, including study design, sample preparation, protein quantification, instrumental platforms, and bioinformatics. Different proteomics approaches are discussed, and progresses in maximizing urinary proteome coverage and standardization are emphasized in this review. MS-based urinary proteomics has great potential in the development of noninvasive diagnostic assays in the future, which will require collaborative efforts between analytical scientists, systems biologists, and clinicians. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Proteomic Approaches in Biomarker Discovery: New Perspectives in Cancer Diagnostics

    Science.gov (United States)

    Kocevar, Nina; Komel, Radovan

    2014-01-01

    Despite remarkable progress in proteomic methods, including improved detection limits and sensitivity, these methods have not yet been established in routine clinical practice. The main limitations, which prevent their integration into clinics, are high cost of equipment, the need for highly trained personnel, and last, but not least, the establishment of reliable and accurate protein biomarkers or panels of protein biomarkers for detection of neoplasms. Furthermore, the complexity and heterogeneity of most solid tumours present obstacles in the discovery of specific protein signatures, which could be used for early detection of cancers, for prediction of disease outcome, and for determining the response to specific therapies. However, cancer proteome, as the end-point of pathological processes that underlie cancer development and progression, could represent an important source for the discovery of new biomarkers and molecular targets for tailored therapies. PMID:24550697

  6. Aptamer-based multiplexed proteomic technology for biomarker discovery.

    Science.gov (United States)

    Gold, Larry; Ayers, Deborah; Bertino, Jennifer; Bock, Christopher; Bock, Ashley; Brody, Edward N; Carter, Jeff; Dalby, Andrew B; Eaton, Bruce E; Fitzwater, Tim; Flather, Dylan; Forbes, Ashley; Foreman, Trudi; Fowler, Cate; Gawande, Bharat; Goss, Meredith; Gunn, Magda; Gupta, Shashi; Halladay, Dennis; Heil, Jim; Heilig, Joe; Hicke, Brian; Husar, Gregory; Janjic, Nebojsa; Jarvis, Thale; Jennings, Susan; Katilius, Evaldas; Keeney, Tracy R; Kim, Nancy; Koch, Tad H; Kraemer, Stephan; Kroiss, Luke; Le, Ngan; Levine, Daniel; Lindsey, Wes; Lollo, Bridget; Mayfield, Wes; Mehan, Mike; Mehler, Robert; Nelson, Sally K; Nelson, Michele; Nieuwlandt, Dan; Nikrad, Malti; Ochsner, Urs; Ostroff, Rachel M; Otis, Matt; Parker, Thomas; Pietrasiewicz, Steve; Resnicow, Daniel I; Rohloff, John; Sanders, Glenn; Sattin, Sarah; Schneider, Daniel; Singer, Britta; Stanton, Martin; Sterkel, Alana; Stewart, Alex; Stratford, Suzanne; Vaught, Jonathan D; Vrkljan, Mike; Walker, Jeffrey J; Watrobka, Mike; Waugh, Sheela; Weiss, Allison; Wilcox, Sheri K; Wolfson, Alexey; Wolk, Steven K; Zhang, Chi; Zichi, Dom

    2010-12-07

    The interrogation of proteomes ("proteomics") in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology and medicine. We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 µL of serum or plasma). Our current assay measures 813 proteins with low limits of detection (1 pM median), 7 logs of overall dynamic range (~100 fM-1 µM), and 5% median coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding signature of DNA aptamer concentrations, which is quantified on a DNA microarray. Our assay takes advantage of the dual nature of aptamers as both folded protein-binding entities with defined shapes and unique nucleotide sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to rapidly discover unique protein signatures characteristic of various disease states. We describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine.

  7. Aptamer-based multiplexed proteomic technology for biomarker discovery.

    Directory of Open Access Journals (Sweden)

    Larry Gold

    2010-12-01

    Full Text Available The interrogation of proteomes ("proteomics" in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology and medicine.We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 µL of serum or plasma. Our current assay measures 813 proteins with low limits of detection (1 pM median, 7 logs of overall dynamic range (~100 fM-1 µM, and 5% median coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding signature of DNA aptamer concentrations, which is quantified on a DNA microarray. Our assay takes advantage of the dual nature of aptamers as both folded protein-binding entities with defined shapes and unique nucleotide sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD. We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to rapidly discover unique protein signatures characteristic of various disease states.We describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine.

  8. Proteomics for discovery of candidate colorectal cancer biomarkers

    Science.gov (United States)

    Álvarez-Chaver, Paula; Otero-Estévez, Olalla; Páez de la Cadena, María; Rodríguez-Berrocal, Francisco J; Martínez-Zorzano, Vicenta S

    2014-01-01

    Colorectal cancer (CRC) is the second most common cause of cancer-related deaths in Europe and other Western countries, mainly due to the lack of well-validated clinically useful biomarkers with enough sensitivity and specificity to detect this disease at early stages. Although it is well known that the pathogenesis of CRC is a progressive accumulation of mutations in multiple genes, much less is known at the proteome level. Therefore, in the last years many proteomic studies have been conducted to find new candidate protein biomarkers for diagnosis, prognosis and as therapeutic targets for this malignancy, as well as to elucidate the molecular mechanisms of colorectal carcinogenesis. An important advantage of the proteomic approaches is the capacity to look for multiple differentially expressed proteins in a single study. This review provides an overview of the recent reports describing the different proteomic tools used for the discovery of new protein markers for CRC such as two-dimensional electrophoresis methods, quantitative mass spectrometry-based techniques or protein microarrays. Additionally, we will also focus on the diverse biological samples used for CRC biomarker discovery such as tissue, serum and faeces, besides cell lines and murine models, discussing their advantages and disadvantages, and summarize the most frequently identified candidate CRC markers. PMID:24744574

  9. Role of proteomics in the discovery of autism biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Ayadhi, L. A.; Halepoto, D. M. [King Saud Univ., Riyadh (Saudi Arabia). Dept. of Physiology

    2013-02-15

    The epidemiology of autism is continuously increasing all over the world with social, behavioural and economical burdens. Autism is considered as a multi-factorial disorder, influenced by genetic, neurological, environmental and immunological aspects. Autism is still believed to be incurable disorder with little information about the role of proteins patterns in the diagnosis of the disease. Knowing the applications of proteomic tools, it is possible to identify quantitative and qualitative protein patterns in a wide variety of tissues and body fluids such as blood, urine, saliva and cerebrospinal fluid in order to establish specific diagnostic and prognostic biomarkers. The aim of this review is to provide an overview of the various protocols available for proteomics by using mass spectrometry analysis, discuss reports in which these techniques have been previously applied in biomarker discovery for the diagnosis of autism, and consider the future development of this area of research. (author)

  10. Role of proteomics in the discovery of autism biomarkers

    International Nuclear Information System (INIS)

    Ayadhi, L.A.; Halepoto, D.M.

    2013-01-01

    The epidemiology of autism is continuously increasing all over the world with social, behavioural and economical burdens. Autism is considered as a multi-factorial disorder, influenced by genetic, neurological, environmental and immunological aspects. Autism is still believed to be incurable disorder with little information about the role of proteins patterns in the diagnosis of the disease. Knowing the applications of proteomic tools, it is possible to identify quantitative and qualitative protein patterns in a wide variety of tissues and body fluids such as blood, urine, saliva and cerebrospinal fluid in order to establish specific diagnostic and prognostic biomarkers. The aim of this review is to provide an overview of the various protocols available for proteomics by using mass spectrometry analysis, discuss reports in which these techniques have been previously applied in biomarker discovery for the diagnosis of autism, and consider the future development of this area of research. (author)

  11. Application of mass spectrometry-based proteomics for biomarker discovery in neurological disorders

    Directory of Open Access Journals (Sweden)

    Venugopal Abhilash

    2009-01-01

    Full Text Available Mass spectrometry-based quantitative proteomics has emerged as a powerful approach that has the potential to accelerate biomarker discovery, both for diagnostic as well as therapeutic purposes. Proteomics has traditionally been synonymous with 2D gels but is increasingly shifting to the use of gel-free systems and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS. Quantitative proteomic approaches have already been applied to investigate various neurological disorders, especially in the context of identifying biomarkers from cerebrospinal fluid and serum. This review highlights the scope of different applications of quantitative proteomics in understanding neurological disorders with special emphasis on biomarker discovery.

  12. Revisiting biomarker discovery by plasma proteomics

    DEFF Research Database (Denmark)

    Geyer, Philipp E; Holdt, Lesca M; Teupser, Daniel

    2017-01-01

    slow rate. As described in this review, mass spectrometry (MS)-based proteomics has become a powerful technology in biological research and it is now poised to allow the characterization of the plasma proteome in great depth. Previous "triangular strategies" aimed at discovering single biomarker...

  13. Mass Spectrometry–Based Biomarker Discovery: Toward a Global Proteome Index of Individuality

    Science.gov (United States)

    Hawkridge, Adam M.; Muddiman, David C.

    2011-01-01

    Biomarker discovery and proteomics have become synonymous with mass spectrometry in recent years. Although this conflation is an injustice to the many essential biomolecular techniques widely used in biomarker-discovery platforms, it underscores the power and potential of contemporary mass spectrometry. Numerous novel and powerful technologies have been developed around mass spectrometry, proteomics, and biomarker discovery over the past 20 years to globally study complex proteomes (e.g., plasma). However, very few large-scale longitudinal studies have been carried out using these platforms to establish the analytical variability relative to true biological variability. The purpose of this review is not to cover exhaustively the applications of mass spectrometry to biomarker discovery, but rather to discuss the analytical methods and strategies that have been developed for mass spectrometry–based biomarker-discovery platforms and to place them in the context of the many challenges and opportunities yet to be addressed. PMID:20636062

  14. Integration of Proteomics, Bioinformatics, and Systems Biology in Traumatic Brain Injury Biomarker Discovery

    Science.gov (United States)

    Guingab-Cagmat, J.D.; Cagmat, E.B.; Hayes, R.L.; Anagli, J.

    2013-01-01

    Traumatic brain injury (TBI) is a major medical crisis without any FDA-approved pharmacological therapies that have been demonstrated to improve functional outcomes. It has been argued that discovery of disease-relevant biomarkers might help to guide successful clinical trials for TBI. Major advances in mass spectrometry (MS) have revolutionized the field of proteomic biomarker discovery and facilitated the identification of several candidate markers that are being further evaluated for their efficacy as TBI biomarkers. However, several hurdles have to be overcome even during the discovery phase which is only the first step in the long process of biomarker development. The high-throughput nature of MS-based proteomic experiments generates a massive amount of mass spectral data presenting great challenges in downstream interpretation. Currently, different bioinformatics platforms are available for functional analysis and data mining of MS-generated proteomic data. These tools provide a way to convert data sets to biologically interpretable results and functional outcomes. A strategy that has promise in advancing biomarker development involves the triad of proteomics, bioinformatics, and systems biology. In this review, a brief overview of how bioinformatics and systems biology tools analyze, transform, and interpret complex MS datasets into biologically relevant results is discussed. In addition, challenges and limitations of proteomics, bioinformatics, and systems biology in TBI biomarker discovery are presented. A brief survey of researches that utilized these three overlapping disciplines in TBI biomarker discovery is also presented. Finally, examples of TBI biomarkers and their applications are discussed. PMID:23750150

  15. Clinical proteomics: Applications for prostate cancer biomarker discovery and detection.

    Science.gov (United States)

    Petricoin, Emanuel F; Ornstein, David K; Liotta, Lance A

    2004-01-01

    The science of proteomics comprises much more than simply generating lists of proteins that change in expression as a cause of or consequence of pathophysiology. The goal of proteomics should be to characterize the information flow through the intercellular protein circuitry that communicates with the extracellular microenvironment and then ultimately to the serum/plasma macroenvironment. Serum proteomic pattern diagnostics is a new type of proteomic concept in which patterns of ion signatures generated from high dimensional mass spectrometry data are used as diagnostic classifiers. This recent approach has exciting potential for clinical utility of diagnostic patterns because low molecular weight metabolites, peptides, and protein fragments may have higher accuracy than traditional biomarkers of cancer detection. Intriguingly, we now have discovered that this diagnostic information exists in a bound state, complexed with circulating highly abundant carrier proteins. These diagnostic fragments may one day be harvested by circulating nanoparticles, designed to absorb, enrich, and amplify the repertoire of diagnostic biomarkers generated-even at the critical, initial stages of carcinogenesis. Copyright 2004 Elsevier Inc.

  16. Urinary Proteomics Pilot Study for Biomarker Discovery and Diagnosis in Heart Failure with Reduced Ejection Fraction

    DEFF Research Database (Denmark)

    Rossing, Kasper; Bosselmann, Helle Skovmand; Gustafsson, Finn

    2016-01-01

    and Results Urine samples were analyzed by on-line capillary electrophoresis coupled to electrospray ionization micro time-of-flight mass spectrometry (CE-MS) to generate individual urinary proteome profiles. In an initial biomarker discovery cohort, analysis of urinary proteome profiles from 33 HFr......Background Biomarker discovery and new insights into the pathophysiology of heart failure with reduced ejection fraction (HFrEF) may emerge from recent advances in high-throughput urinary proteomics. This could lead to improved diagnosis, risk stratification and management of HFrEF. Methods.......6%) in individuals with diastolic left ventricular dysfunction (N = 176). The HFrEF-related peptide biomarkers mainly included fragments of fibrillar type I and III collagen but also, e.g., of fibrinogen beta and alpha-1-antitrypsin. Conclusion CE-MS based urine proteome analysis served as a sensitive tool...

  17. Mass Spectrometry-Based Proteomics in Molecular Diagnostics: Discovery of Cancer Biomarkers Using Tissue Culture

    Science.gov (United States)

    Paul, Debasish; Kumar, Avinash; Gajbhiye, Akshada; Santra, Manas K.; Srikanth, Rapole

    2013-01-01

    Accurate diagnosis and proper monitoring of cancer patients remain a key obstacle for successful cancer treatment and prevention. Therein comes the need for biomarker discovery, which is crucial to the current oncological and other clinical practices having the potential to impact the diagnosis and prognosis. In fact, most of the biomarkers have been discovered utilizing the proteomics-based approaches. Although high-throughput mass spectrometry-based proteomic approaches like SILAC, 2D-DIGE, and iTRAQ are filling up the pitfalls of the conventional techniques, still serum proteomics importunately poses hurdle in overcoming a wide range of protein concentrations, and also the availability of patient tissue samples is a limitation for the biomarker discovery. Thus, researchers have looked for alternatives, and profiling of candidate biomarkers through tissue culture of tumor cell lines comes up as a promising option. It is a rich source of tumor cell-derived proteins, thereby, representing a wide array of potential biomarkers. Interestingly, most of the clinical biomarkers in use today (CA 125, CA 15.3, CA 19.9, and PSA) were discovered through tissue culture-based system and tissue extracts. This paper tries to emphasize the tissue culture-based discovery of candidate biomarkers through various mass spectrometry-based proteomic approaches. PMID:23586059

  18. Mass Spectrometry-Based Proteomics in Molecular Diagnostics: Discovery of Cancer Biomarkers Using Tissue Culture

    Directory of Open Access Journals (Sweden)

    Debasish Paul

    2013-01-01

    Full Text Available Accurate diagnosis and proper monitoring of cancer patients remain a key obstacle for successful cancer treatment and prevention. Therein comes the need for biomarker discovery, which is crucial to the current oncological and other clinical practices having the potential to impact the diagnosis and prognosis. In fact, most of the biomarkers have been discovered utilizing the proteomics-based approaches. Although high-throughput mass spectrometry-based proteomic approaches like SILAC, 2D-DIGE, and iTRAQ are filling up the pitfalls of the conventional techniques, still serum proteomics importunately poses hurdle in overcoming a wide range of protein concentrations, and also the availability of patient tissue samples is a limitation for the biomarker discovery. Thus, researchers have looked for alternatives, and profiling of candidate biomarkers through tissue culture of tumor cell lines comes up as a promising option. It is a rich source of tumor cell-derived proteins, thereby, representing a wide array of potential biomarkers. Interestingly, most of the clinical biomarkers in use today (CA 125, CA 15.3, CA 19.9, and PSA were discovered through tissue culture-based system and tissue extracts. This paper tries to emphasize the tissue culture-based discovery of candidate biomarkers through various mass spectrometry-based proteomic approaches.

  19. The Proteomics Big Challenge for Biomarkers and New Drug-Targets Discovery

    Science.gov (United States)

    Savino, Rocco; Paduano, Sergio; Preianò, Mariaimmacolata; Terracciano, Rosa

    2012-01-01

    In the modern process of drug discovery, clinical, functional and chemical proteomics can converge and integrate synergies. Functional proteomics explores and elucidates the components of pathways and their interactions which, when deregulated, lead to a disease condition. This knowledge allows the design of strategies to target multiple pathways with combinations of pathway-specific drugs, which might increase chances of success and reduce the occurrence of drug resistance. Chemical proteomics, by analyzing the drug interactome, strongly contributes to accelerate the process of new druggable targets discovery. In the research area of clinical proteomics, proteome and peptidome mass spectrometry-profiling of human bodily fluid (plasma, serum, urine and so on), as well as of tissue and of cells, represents a promising tool for novel biomarker and eventually new druggable targets discovery. In the present review we provide a survey of current strategies of functional, chemical and clinical proteomics. Major issues will be presented for proteomic technologies used for the discovery of biomarkers for early disease diagnosis and identification of new drug targets. PMID:23203042

  20. Proteomic biomarker discovery in 1000 human plasma samples with mass spectrometry

    DEFF Research Database (Denmark)

    Cominetti, Ornella; Núñez Galindo, Antonio; Corthésy, John

    2016-01-01

    automated proteomic biomarker discovery workflow. Herein, we have applied this approach to analyze 1000 plasma samples from the multicentered human dietary intervention study "DiOGenes". Study design, sample randomization, tracking, and logistics were the foundations of our large-scale study. We checked...

  1. Proteome analysis of body fluids for amyotrophic lateral sclerosis biomarker discovery.

    Science.gov (United States)

    Krüger, Thomas; Lautenschläger, Janin; Grosskreutz, Julian; Rhode, Heidrun

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder of motor neurons leading to death of the patients, mostly within 2-5 years after disease onset. The pathomechanism of motor neuron degeneration is only partially understood and therapeutic strategies based on mechanistic insights are largely ineffective. The discovery of reliable biomarkers of disease diagnosis and progression is the sine qua non of both the revelation of insights into the ALS pathomechanism and the assessment of treatment efficacies. Proteomic approaches are an important pillar in ALS biomarker discovery. Cerebrospinal fluid is the most promising body fluid for differential proteome analyses, followed by blood (serum, plasma), and even urine and saliva. The present study provides an overview about reported peptide/protein biomarker candidates that showed significantly altered levels in certain body fluids of ALS patients. These findings have to be discussed according to proposed pathomechanisms to identify modifiers of disease progression and to pave the way for the development of potential therapeutic strategies. Furthermore, limitations and advantages of proteomic approaches for ALS biomarker discovery in different body fluids and reliable validation of biomarker candidates have been addressed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Sample preparation and fractionation for proteome analysis and cancer biomarker discovery by mass spectrometry.

    Science.gov (United States)

    Ahmed, Farid E

    2009-03-01

    Sample preparation and fractionation technologies are one of the most crucial processes in proteomic analysis and biomarker discovery in solubilized samples. Chromatographic or electrophoretic proteomic technologies are also available for separation of cellular protein components. There are, however, considerable limitations in currently available proteomic technologies as none of them allows for the analysis of the entire proteome in a simple step because of the large number of peptides, and because of the wide concentration dynamic range of the proteome in clinical blood samples. The results of any undertaken experiment depend on the condition of the starting material. Therefore, proper experimental design and pertinent sample preparation is essential to obtain meaningful results, particularly in comparative clinical proteomics in which one is looking for minor differences between experimental (diseased) and control (nondiseased) samples. This review discusses problems associated with general and specialized strategies of sample preparation and fractionation, dealing with samples that are solution or suspension, in a frozen tissue state, or formalin-preserved tissue archival samples, and illustrates how sample processing might influence detection with mass spectrometric techniques. Strategies that dramatically improve the potential for cancer biomarker discovery in minimally invasive, blood-collected human samples are also presented.

  3. Proteomic Biomarker Discovery in 1000 Human Plasma Samples with Mass Spectrometry.

    Science.gov (United States)

    Cominetti, Ornella; Núñez Galindo, Antonio; Corthésy, John; Oller Moreno, Sergio; Irincheeva, Irina; Valsesia, Armand; Astrup, Arne; Saris, Wim H M; Hager, Jörg; Kussmann, Martin; Dayon, Loïc

    2016-02-05

    The overall impact of proteomics on clinical research and its translation has lagged behind expectations. One recognized caveat is the limited size (subject numbers) of (pre)clinical studies performed at the discovery stage, the findings of which fail to be replicated in larger verification/validation trials. Compromised study designs and insufficient statistical power are consequences of the to-date still limited capacity of mass spectrometry (MS)-based workflows to handle large numbers of samples in a realistic time frame, while delivering comprehensive proteome coverages. We developed a highly automated proteomic biomarker discovery workflow. Herein, we have applied this approach to analyze 1000 plasma samples from the multicentered human dietary intervention study "DiOGenes". Study design, sample randomization, tracking, and logistics were the foundations of our large-scale study. We checked the quality of the MS data and provided descriptive statistics. The data set was interrogated for proteins with most stable expression levels in that set of plasma samples. We evaluated standard clinical variables that typically impact forthcoming results and assessed body mass index-associated and gender-specific proteins at two time points. We demonstrate that analyzing a large number of human plasma samples for biomarker discovery with MS using isobaric tagging is feasible, providing robust and consistent biological results.

  4. Biomarker discovery and applications for foods and beverages: proteomics to nanoproteomics.

    Science.gov (United States)

    Agrawal, Ganesh Kumar; Timperio, Anna Maria; Zolla, Lello; Bansal, Vipul; Shukla, Ravi; Rakwal, Randeep

    2013-11-20

    Foods and beverages have been at the heart of our society for centuries, sustaining humankind - health, life, and the pleasures that go with it. The more we grow and develop as a civilization, the more we feel the need to know about the food we eat and beverages we drink. Moreover, with an ever increasing demand for food due to the growing human population food security remains a major concern. Food safety is another growing concern as the consumers prefer varied foods and beverages that are not only traded nationally but also globally. The 21st century science and technology is at a new high, especially in the field of biological sciences. The availability of genome sequences and associated high-throughput sensitive technologies means that foods are being analyzed at various levels. For example and in particular, high-throughput omics approaches are being applied to develop suitable biomarkers for foods and beverages and their applications in addressing quality, technology, authenticity, and safety issues. Proteomics are one of those technologies that are increasingly being utilized to profile expressed proteins in different foods and beverages. Acquired knowledge and protein information have now been translated to address safety of foods and beverages. Very recently, the power of proteomic technology has been integrated with another highly sensitive and miniaturized technology called nanotechnology, yielding a new term nanoproteomics. Nanoproteomics offer a real-time multiplexed analysis performed in a miniaturized assay, with low-sample consumption and high sensitivity. To name a few, nanomaterials - quantum dots, gold nanoparticles, carbon nanotubes, and nanowires - have demonstrated potential to overcome the challenges of sensitivity faced by proteomics for biomarker detection, discovery, and application. In this review, we will discuss the importance of biomarker discovery and applications for foods and beverages, the contribution of proteomic technology in

  5. Urinary Proteomics Pilot Study for Biomarker Discovery and Diagnosis in Heart Failure with Reduced Ejection Fraction.

    Directory of Open Access Journals (Sweden)

    Kasper Rossing

    Full Text Available Biomarker discovery and new insights into the pathophysiology of heart failure with reduced ejection fraction (HFrEF may emerge from recent advances in high-throughput urinary proteomics. This could lead to improved diagnosis, risk stratification and management of HFrEF.Urine samples were analyzed by on-line capillary electrophoresis coupled to electrospray ionization micro time-of-flight mass spectrometry (CE-MS to generate individual urinary proteome profiles. In an initial biomarker discovery cohort, analysis of urinary proteome profiles from 33 HFrEF patients and 29 age- and sex-matched individuals without HFrEF resulted in identification of 103 peptides that were significantly differentially excreted in HFrEF. These 103 peptides were used to establish the support vector machine-based HFrEF classifier HFrEF103. In a subsequent validation cohort, HFrEF103 very accurately (area under the curve, AUC = 0.972 discriminated between HFrEF patients (N = 94, sensitivity = 93.6% and control individuals with and without impaired renal function and hypertension (N = 552, specificity = 92.9%. Interestingly, HFrEF103 showed low sensitivity (12.6% in individuals with diastolic left ventricular dysfunction (N = 176. The HFrEF-related peptide biomarkers mainly included fragments of fibrillar type I and III collagen but also, e.g., of fibrinogen beta and alpha-1-antitrypsin.CE-MS based urine proteome analysis served as a sensitive tool to determine a vast array of HFrEF-related urinary peptide biomarkers which might help improving our understanding and diagnosis of heart failure.

  6. Recent mass spectrometry-based proteomics for biomarker discovery in lung cancer, COPD, and asthma.

    Science.gov (United States)

    Fujii, Kiyonaga; Nakamura, Haruhiko; Nishimura, Toshihide

    2017-04-01

    Lung cancer and related diseases have been one of the most common causes of deaths worldwide. Genomic-based biomarkers may hardly reflect the underlying dynamic molecular mechanism of functional protein interactions, which is the center of a disease. Recent developments in mass spectrometry (MS) have made it possible to analyze disease-relevant proteins expressed in clinical specimens by proteomic challenges. Areas covered: To understand the molecular mechanisms of lung cancer and its subtypes, chronic obstructive pulmonary disease (COPD), asthma and others, great efforts have been taken to identify numerous relevant proteins by MS-based clinical proteomic approaches. Since lung cancer is a multifactorial disease that is biologically associated with asthma and COPD among various lung diseases, this study focused on proteomic studies on biomarker discovery using various clinical specimens for lung cancer, COPD, and asthma. Expert commentary: MS-based exploratory proteomics utilizing clinical specimens, which can incorporate both experimental and bioinformatic analysis of protein-protein interaction and also can adopt proteogenomic approaches, makes it possible to reveal molecular networks that are relevant to a disease subgroup and that could differentiate between drug responders and non-responders, good and poor prognoses, drug resistance, and so on.

  7. Automated Sample Preparation Platform for Mass Spectrometry-Based Plasma Proteomics and Biomarker Discovery

    Directory of Open Access Journals (Sweden)

    Vilém Guryča

    2014-03-01

    Full Text Available The identification of novel biomarkers from human plasma remains a critical need in order to develop and monitor drug therapies for nearly all disease areas. The discovery of novel plasma biomarkers is, however, significantly hampered by the complexity and dynamic range of proteins within plasma, as well as the inherent variability in composition from patient to patient. In addition, it is widely accepted that most soluble plasma biomarkers for diseases such as cancer will be represented by tissue leakage products, circulating in plasma at low levels. It is therefore necessary to find approaches with the prerequisite level of sensitivity in such a complex biological matrix. Strategies for fractionating the plasma proteome have been suggested, but improvements in sensitivity are often negated by the resultant process variability. Here we describe an approach using multidimensional chromatography and on-line protein derivatization, which allows for higher sensitivity, whilst minimizing the process variability. In order to evaluate this automated process fully, we demonstrate three levels of processing and compare sensitivity, throughput and reproducibility. We demonstrate that high sensitivity analysis of the human plasma proteome is possible down to the low ng/mL or even high pg/mL level with a high degree of technical reproducibility.

  8. Schizophrenia genomics and proteomics: are we any closer to biomarker discovery?

    Directory of Open Access Journals (Sweden)

    Kramer Alon

    2009-01-01

    Full Text Available Abstract The field of proteomics has made leaps and bounds in the last 10 years particularly in the fields of oncology and cardiovascular medicine. In comparison, neuroproteomics is still playing catch up mainly due to the relative complexity of neurological disorders. Schizophrenia is one such disorder, believed to be the results of multiple factors both genetic and environmental. Affecting over 2 million people in the US alone, it has become a major clinical and public health concern worldwide. This paper gives an update of schizophrenia biomarker research as reviewed by Lakhan in 2006 and gives us a rundown of the progress made during the last two years. Several studies demonstrate the potential of cerebrospinal fluid as a source of neuro-specific biomarkers. Genetic association studies are making headway in identifying candidate genes for schizophrenia. In addition, metabonomics, bioinformatics, and neuroimaging techniques are aiming to complete the picture by filling in knowledge gaps. International cooperation in the form of genomics and protein databases and brain banks is facilitating research efforts. While none of the recent developments described here in qualifies as biomarker discovery, many are likely to be stepping stones towards that goal.

  9. Mass Spectrometry-Based Serum Proteomics for Biomarker Discovery and Validation.

    Science.gov (United States)

    Bhosale, Santosh D; Moulder, Robert; Kouvonen, Petri; Lahesmaa, Riitta; Goodlett, David R

    2017-01-01

    Blood protein measurements are used frequently in the clinic in the assessment of patient health. Nevertheless, there remains the need for new biomarkers with better diagnostic specificities. With the advent of improved technology for bioanalysis and the growth of biobanks including collections from specific disease risk cohorts, the plasma proteome has remained a target of proteomics research toward the characterization of disease-related biomarkers. The following protocol presents a workflow for serum/plasma proteomics including details of sample preparation both with and without immunoaffinity depletion of the most abundant plasma proteins and methodology for selected reaction monitoring mass spectrometry validation.

  10. Discovery of prognostic biomarker candidates of lacunar infarction by quantitative proteomics of microvesicles enriched plasma.

    Directory of Open Access Journals (Sweden)

    Arnab Datta

    Full Text Available Lacunar infarction (LACI is a subtype of acute ischemic stroke affecting around 25% of all ischemic stroke cases. Despite having an excellent recovery during acute phase, certain LACI patients have poor mid- to long-term prognosis due to the recurrence of vascular events or a decline in cognitive functions. Hence, blood-based biomarkers could be complementary prognostic and research tools.Plasma was collected from forty five patients following a non-disabling LACI along with seventeen matched control subjects. The LACI patients were monitored prospectively for up to five years for the occurrence of adverse outcomes and grouped accordingly (i.e., LACI-no adverse outcome, LACI-recurrent vascular event, and LACI-cognitive decline without any recurrence of vascular events. Microvesicles-enriched fractions isolated from the pooled plasma of four groups were profiled by an iTRAQ-guided discovery approach to quantify the differential proteome. The data have been deposited to the ProteomeXchange with identifier PXD000748. Bioinformatics analysis and data mining revealed up-regulation of brain-specific proteins including myelin basic protein, proteins of coagulation cascade (e.g., fibrinogen alpha chain, fibrinogen beta chain and focal adhesion (e.g., integrin alpha-IIb, talin-1, and filamin-A while albumin was down-regulated in both groups of patients with adverse outcome.This data set may offer important insight into the mechanisms of poor prognosis and provide candidate prognostic biomarkers for validation on larger cohort of individual LACI patients.

  11. Biomarkers: in medicine, drug discovery, and environmental health

    National Research Council Canada - National Science Library

    Vaidya, Vishal S; Bonventre, Joseph V

    2010-01-01

    ... Identification Using Mass Spectrometry Sample Preparation Protein Quantitation Examples of Biomarker Discovery and Evaluation Challenges in Proteomic Biomarker Discovery The Road Forward: Targeted ...

  12. The use of time-resolved fluorescence in gel-based proteomics for improved biomarker discovery

    Science.gov (United States)

    Sandberg, AnnSofi; Buschmann, Volker; Kapusta, Peter; Erdmann, Rainer; Wheelock, Åsa M.

    2010-02-01

    This paper describes a new platform for quantitative intact proteomics, entitled Cumulative Time-resolved Emission 2-Dimensional Gel Electrophoresis (CuTEDGE). The CuTEDGE technology utilizes differences in fluorescent lifetimes to subtract the confounding background fluorescence during in-gel detection and quantification of proteins, resulting in a drastic improvement in both sensitivity and dynamic range compared to existing technology. The platform is primarily designed for image acquisition in 2-dimensional gel electrophoresis (2-DE), but is also applicable to 1-dimensional gel electrophoresis (1-DE), and proteins electroblotted to membranes. In a set of proof-of-principle measurements, we have evaluated the performance of the novel technology using the MicroTime 100 instrument (PicoQuant GmbH) in conjunction with the CyDye minimal labeling fluorochromes (GE Healthcare, Uppsala, Sweden) to perform differential gel electrophoresis (DIGE) analyses. The results indicate that the CuTEDGE technology provides an improvement in the dynamic range and sensitivity of detection of 3 orders of magnitude as compared to current state-of-the-art image acquisition instrumentation available for 2-DE (Typhoon 9410, GE Healthcare). Given the potential dynamic range of 7-8 orders of magnitude and sensitivities in the attomol range, the described invention represents a technological leap in detection of low abundance cellular proteins, which is desperately needed in the field of biomarker discovery.

  13. Proteomics pipeline for biomarker discovery of laser capture microdissected breast cancer tissue

    NARCIS (Netherlands)

    N.Q. Liu (Ning Qing); R.B.H. Braakman (René); C. Stingl (Christoph); T.M. Luider (Theo); J.W.M. Martens (John); J.A. Foekens (John); A. Umar (Arzu)

    2012-01-01

    textabstractMass spectrometry (MS)-based label-free proteomics offers an unbiased approach to screen biomarkers related to disease progression and therapy-resistance of breast cancer on the global scale. However, multi-step sample preparation can introduce large variation in generated data, while

  14. Quantitative proteomic analysis of microdissected oral epithelium for cancer biomarker discovery.

    Science.gov (United States)

    Xiao, Hua; Langerman, Alexander; Zhang, Yan; Khalid, Omar; Hu, Shen; Cao, Cheng-Xi; Lingen, Mark W; Wong, David T W

    2015-11-01

    Specific biomarkers are urgently needed for the detection and progression of oral cancer. The objective of this study was to discover cancer biomarkers from oral epithelium through utilizing high throughput quantitative proteomics approaches. Morphologically malignant, epithelial dysplasia, and adjacent normal epithelial tissues were laser capture microdissected (LCM) from 19 patients and used for proteomics analysis. Total proteins from each group were extracted, digested and then labelled with corresponding isobaric tags for relative and absolute quantitation (iTRAQ). Labelled peptides from each sample were combined and analyzed by liquid chromatography-mass spectrometry (LC-MS/MS) for protein identification and quantification. In total, 500 proteins were identified and 425 of them were quantified. When compared with adjacent normal oral epithelium, 17 and 15 proteins were consistently up-regulated or down-regulated in malignant and epithelial dysplasia, respectively. Half of these candidate biomarkers were discovered for oral cancer for the first time. Cornulin was initially confirmed in tissue protein extracts and was further validated in tissue microarray. Its presence in the saliva of oral cancer patients was also explored. Myoglobin and S100A8 were pre-validated by tissue microarray. These data demonstrated that the proteomic biomarkers discovered through this strategy are potential targets for oral cancer detection and salivary diagnostics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Unlocking biomarker discovery: large scale application of aptamer proteomic technology for early detection of lung cancer.

    Directory of Open Access Journals (Sweden)

    Rachel M Ostroff

    Full Text Available BACKGROUND: Lung cancer is the leading cause of cancer deaths worldwide. New diagnostics are needed to detect early stage lung cancer because it may be cured with surgery. However, most cases are diagnosed too late for curative surgery. Here we present a comprehensive clinical biomarker study of lung cancer and the first large-scale clinical application of a new aptamer-based proteomic technology to discover blood protein biomarkers in disease. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a multi-center case-control study in archived serum samples from 1,326 subjects from four independent studies of non-small cell lung cancer (NSCLC in long-term tobacco-exposed populations. Sera were collected and processed under uniform protocols. Case sera were collected from 291 patients within 8 weeks of the first biopsy-proven lung cancer and prior to tumor removal by surgery. Control sera were collected from 1,035 asymptomatic study participants with ≥ 10 pack-years of cigarette smoking. We measured 813 proteins in each sample with a new aptamer-based proteomic technology, identified 44 candidate biomarkers, and developed a 12-protein panel (cadherin-1, CD30 ligand, endostatin, HSP90α, LRIG3, MIP-4, pleiotrophin, PRKCI, RGM-C, SCF-sR, sL-selectin, and YES that discriminates NSCLC from controls with 91% sensitivity and 84% specificity in cross-validated training and 89% sensitivity and 83% specificity in a separate verification set, with similar performance for early and late stage NSCLC. CONCLUSIONS/SIGNIFICANCE: This study is a significant advance in clinical proteomics in an area of high unmet clinical need. Our analysis exceeds the breadth and dynamic range of proteome interrogated of previously published clinical studies of broad serum proteome profiling platforms including mass spectrometry, antibody arrays, and autoantibody arrays. The sensitivity and specificity of our 12-biomarker panel improves upon published protein and gene expression panels

  16. Proteomics and metabolomics for mechanistic insights and biomarker discovery in cardiovascular disease.

    Science.gov (United States)

    Barallobre-Barreiro, Javier; Chung, Yuen-Li; Mayr, Manuel

    2013-08-01

    In the last decade, proteomics and metabolomics have contributed substantially to our understanding of cardiovascular diseases. The unbiased assessment of pathophysiological processes without a priori assumptions complements other molecular biology techniques that are currently used in a reductionist approach. In this review, we highlight some of the "omics" methods used to assess protein and metabolite changes in cardiovascular disease. A discrete biological function is very rarely attributed to a single molecule; more often it is the combined input of many proteins. In contrast to the reductionist approach, in which molecules are studied individually, "omics" platforms allow the study of more complex interactions in biological systems. Combining proteomics and metabolomics to quantify changes in metabolites and their corresponding enzymes will advance our understanding of pathophysiological mechanisms and aid the identification of novel biomarkers for cardiovascular disease. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  17. Improving feature ranking for biomarker discovery in proteomics mass spectrometry data using genetic programming

    Science.gov (United States)

    Ahmed, Soha; Zhang, Mengjie; Peng, Lifeng

    2014-07-01

    Feature selection on mass spectrometry (MS) data is essential for improving classification performance and biomarker discovery. The number of MS samples is typically very small compared with the high dimensionality of the samples, which makes the problem of biomarker discovery very hard. In this paper, we propose the use of genetic programming for biomarker detection and classification of MS data. The proposed approach is composed of two phases: in the first phase, feature selection and ranking are performed. In the second phase, classification is performed. The results show that the proposed method can achieve better classification performance and biomarker detection rate than the information gain- (IG) based and the RELIEF feature selection methods. Meanwhile, four classifiers, Naive Bayes, J48 decision tree, random forest and support vector machines, are also used to further test the performance of the top ranked features. The results show that the four classifiers using the top ranked features from the proposed method achieve better performance than the IG and the RELIEF methods. Furthermore, GP also outperforms a genetic algorithm approach on most of the used data sets.

  18. Quantitative label-free proteomics for discovery of biomarkers in cerebrospinal fluid: assessment of technical and inter-individual variation.

    Directory of Open Access Journals (Sweden)

    Richard J Perrin

    Full Text Available Biomarkers are required for pre-symptomatic diagnosis, treatment, and monitoring of neurodegenerative diseases such as Alzheimer's disease. Cerebrospinal fluid (CSF is a favored source because its proteome reflects the composition of the brain. Ideal biomarkers have low technical and inter-individual variability (subject variance among control subjects to minimize overlaps between clinical groups. This study evaluates a process of multi-affinity fractionation (MAF and quantitative label-free liquid chromatography tandem mass spectrometry (LC-MS/MS for CSF biomarker discovery by (1 identifying reparable sources of technical variability, (2 assessing subject variance and residual technical variability for numerous CSF proteins, and (3 testing its ability to segregate samples on the basis of desired biomarker characteristics.Fourteen aliquots of pooled CSF and two aliquots from six cognitively normal individuals were randomized, enriched for low-abundance proteins by MAF, digested endoproteolytically, randomized again, and analyzed by nano-LC-MS. Nano-LC-MS data were time and m/z aligned across samples for relative peptide quantification. Among 11,433 aligned charge groups, 1360 relatively abundant ones were annotated by MS2, yielding 823 unique peptides. Analyses, including Pearson correlations of annotated LC-MS ion chromatograms, performed for all pairwise sample comparisons, identified several sources of technical variability: i incomplete MAF and keratins; ii globally- or segmentally-decreased ion current in isolated LC-MS analyses; and iii oxidized methionine-containing peptides. Exclusion of these sources yielded 609 peptides representing 81 proteins. Most of these proteins showed very low coefficients of variation (CV<5% whether they were quantified from the mean of all or only the 2 most-abundant peptides. Unsupervised clustering, using only 24 proteins selected for high subject variance, yielded perfect segregation of pooled and

  19. Top-down proteomics with mass spectrometry imaging: a pilot study towards discovery of biomarkers for neurodevelopmental disorders.

    Directory of Open Access Journals (Sweden)

    Hui Ye

    Full Text Available In the developing mammalian brain, inhibition of NMDA receptor can induce widespread neuroapoptosis, inhibit neurogenesis and cause impairment of learning and memory. Although some mechanistic insights into adverse neurological actions of these NMDA receptor antagonists exist, our understanding of the full spectrum of developmental events affected by early exposure to these chemical agents in the brain is still limited. Here we attempt to gain insights into the impact of pharmacologically induced excitatory/inhibitory imbalance in infancy on the brain proteome using mass spectrometric imaging (MSI. Our goal was to study changes in protein expression in postnatal day 10 (P10 rat brains following neonatal exposure to the NMDA receptor antagonist dizocilpine (MK801. Analysis of rat brains exposed to vehicle or MK801 and comparison of their MALDI MS images revealed differential relative abundances of several proteins. We then identified these markers such as ubiquitin, purkinje cell protein 4 (PEP-19, cytochrome c oxidase subunits and calmodulin, by a combination of reversed-phase (RP HPLC fractionation and top-down tandem MS platform. More in-depth large scale study along with validation experiments will be carried out in the future. Overall, our findings indicate that a brief neonatal exposure to a compound that alters excitatory/inhibitory balance in the brain has a long term effect on protein expression patterns during subsequent development, highlighting the utility of MALDI-MSI as a discovery tool for potential biomarkers.

  20. Plasma membrane proteomics and its application in clinical cancer biomarker discovery

    DEFF Research Database (Denmark)

    Leth-Larsen, Rikke; Lund, Rikke; Ditzel, Henrik J

    2010-01-01

    Plasma membrane proteins that are exposed on the cell surface have important biological functions, such as signaling into and out of the cells, ion transport, and cell-cell and cell-matrix interactions. The expression level of many of the plasma membrane proteins involved in these key functions...... targeted by protein drugs, such as human antibodies, that have enhanced survival of several groups of cancer patients. The combination of novel analytical approaches and subcellular fractionation procedures has made it possible to study the plasma membrane proteome in more detail, which will elucidate...... cancer biology, particularly metastasis, and guide future development of novel drug targets. The technical advances in plasma membrane proteomics and the consequent biological revelations will be discussed herein. Many of the advances have been made using cancer cell lines, but because the main goal...

  1. Biomarker Discovery and Mechanistic Studies of Prostate Cancer Using Targeted Proteomic Approaches

    Science.gov (United States)

    2010-07-01

    EMMPRIN is implicated in metastasis via its ability to confer resistance of breast cancer cells to anoikis by inhibiting BIM [21], and its association with...of Bim . J Biol Chem 2006;281:9719–9727. 22. Gupta N, Wollscheid B, Watts JD, Scheer B, Aebersold R, DeFranco AL. Quantitative proteomic analysis of B...disseminated in electronic form, nor  deployed in part or in whole in any  marketing , promotional or educational  contexts without authorization from

  2. A Proteomic Approach for Plasma Biomarker Discovery with iTRAQ Labelling and OFFGEL Fractionation

    Directory of Open Access Journals (Sweden)

    Emilie Ernoult

    2010-01-01

    Full Text Available Human blood plasma contains a plethora of proteins, encompassing not only proteins that have plasma-based functionalities, but also possibly every other form of low concentrated human proteins. As it circulates through the tissues, the plasma picks up proteins that are released from their origin due to physiological events such as tissue remodeling and cell death. Specific disease processes or tumors are often characterized by plasma “signatures,” which may become obvious via changes in the plasma proteome profile, for example, through over expression of proteins. However, the wide dynamic range of proteins present in plasma makes their analysis very challenging, because high-abundance proteins tend to mask those of lower abundance. In the present study, we used a strategy combining iTRAQ as a reagent which improved the peptide ionization and peptide OFFGEL fractionation that has already been shown, in our previous research, to improve the proteome coverage of cellular extracts. Two prefractioning methods were compared: immunodepletion and a bead-based library of combinatorial hexapeptide technology. Our data suggested that both methods were complementary, with regard to the number of identified proteins. iTRAQ labelling, in association with OFFGEL fractionation, allowed more than 300 different proteins to be characterized from 400 μg of plasma proteins.

  3. A proteomic approach for plasma biomarker discovery with iTRAQ labelling and OFFGEL fractionation.

    Science.gov (United States)

    Ernoult, Emilie; Bourreau, Anthony; Gamelin, Erick; Guette, Catherine

    2010-01-01

    Human blood plasma contains a plethora of proteins, encompassing not only proteins that have plasma-based functionalities, but also possibly every other form of low concentrated human proteins. As it circulates through the tissues, the plasma picks up proteins that are released from their origin due to physiological events such as tissue remodeling and cell death. Specific disease processes or tumors are often characterized by plasma "signatures," which may become obvious via changes in the plasma proteome profile, for example, through over expression of proteins. However, the wide dynamic range of proteins present in plasma makes their analysis very challenging, because high-abundance proteins tend to mask those of lower abundance. In the present study, we used a strategy combining iTRAQ as a reagent which improved the peptide ionization and peptide OFFGEL fractionation that has already been shown, in our previous research, to improve the proteome coverage of cellular extracts. Two prefractioning methods were compared: immunodepletion and a bead-based library of combinatorial hexapeptide technology. Our data suggested that both methods were complementary, with regard to the number of identified proteins. iTRAQ labelling, in association with OFFGEL fractionation, allowed more than 300 different proteins to be characterized from 400 microg of plasma proteins.

  4. The discovery and development of proteomic safety biomarkers for the detection of drug-induced liver toxicity

    International Nuclear Information System (INIS)

    Amacher, David E.

    2010-01-01

    Biomarkers are biometric measurements that provide critical quantitative information about the biological condition of the animal or individual being tested. In drug safety studies, established toxicity biomarkers are used along with other conventional study data to determine dose-limiting organ toxicity, and to define species sensitivity for new chemical entities intended for possible use as human medicines. A continuing goal of drug safety scientists in the pharmaceutical industry is to discover and develop better trans-species biomarkers that can be used to determine target organ toxicities for preclinical species in short-term studies at dose levels that are some multiple of the intended human dose and again later in full development for monitoring clinical trials at lower therapeutic doses. Of particular value are early, predictive, noninvasive biomarkers that have in vitro, in vivo, and clinical transferability. Such translational biomarkers bridge animal testing used in preclinical science and human studies that are part of subsequent clinical testing. Although suitable for in vivo preclinical regulatory studies, conventional hepatic safety biomarkers are basically confirmatory markers because they signal organ toxicity after some pathological damage has occurred, and are therefore not well-suited for short-term, predictive screening assays early in the discovery-to-development progression of new chemical entities (NCEs) available in limited quantities. Efforts between regulatory agencies and the pharmaceutical industry are underway for the coordinated discovery, qualification, verification and validation of early predictive toxicity biomarkers. Early predictive safety biomarkers are those that are detectable and quantifiable prior to the onset of irreversible tissue injury and which are associated with a mechanism of action relevant to a specific type of potential hepatic injury. Potential drug toxicity biomarkers are typically endogenous macromolecules in

  5. Implementation of proteomic biomarkers: making it work.

    Science.gov (United States)

    Mischak, Harald; Ioannidis, John P A; Argiles, Angel; Attwood, Teresa K; Bongcam-Rudloff, Erik; Broenstrup, Mark; Charonis, Aristidis; Chrousos, George P; Delles, Christian; Dominiczak, Anna; Dylag, Tomasz; Ehrich, Jochen; Egido, Jesus; Findeisen, Peter; Jankowski, Joachim; Johnson, Robert W; Julien, Bruce A; Lankisch, Tim; Leung, Hing Y; Maahs, David; Magni, Fulvio; Manns, Michael P; Manolis, Efthymios; Mayer, Gert; Navis, Gerjan; Novak, Jan; Ortiz, Alberto; Persson, Frederik; Peter, Karlheinz; Riese, Hans H; Rossing, Peter; Sattar, Naveed; Spasovski, Goce; Thongboonkerd, Visith; Vanholder, Raymond; Schanstra, Joost P; Vlahou, Antonia

    2012-09-01

    While large numbers of proteomic biomarkers have been described, they are generally not implemented in medical practice. We have investigated the reasons for this shortcoming, focusing on hurdles downstream of biomarker verification, and describe major obstacles and possible solutions to ease valid biomarker implementation. Some of the problems lie in suboptimal biomarker discovery and validation, especially lack of validated platforms with well-described performance characteristics to support biomarker qualification. These issues have been acknowledged and are being addressed, raising the hope that valid biomarkers may start accumulating in the foreseeable future. However, successful biomarker discovery and qualification alone does not suffice for successful implementation. Additional challenges include, among others, limited access to appropriate specimens and insufficient funding, the need to validate new biomarker utility in interventional trials, and large communication gaps between the parties involved in implementation. To address this problem, we propose an implementation roadmap. The implementation effort needs to involve a wide variety of stakeholders (clinicians, statisticians, health economists, and representatives of patient groups, health insurance, pharmaceutical companies, biobanks, and regulatory agencies). Knowledgeable panels with adequate representation of all these stakeholders may facilitate biomarker evaluation and guide implementation for the specific context of use. This approach may avoid unwarranted delays or failure to implement potentially useful biomarkers, and may expedite meaningful contributions of the biomarker community to healthcare. © 2012 The Authors. European Journal of Clinical Investigation © 2012 Stichting European Society for Clinical Investigation Journal Foundation.

  6. Implementation of proteomic biomarkers: making it work

    Science.gov (United States)

    Mischak, Harald; Ioannidis, John PA; Argiles, Angel; Attwood, Teresa K; Bongcam-Rudloff, Erik; Broenstrup, Mark; Charonis, Aristidis; Chrousos, George P; Delles, Christian; Dominiczak, Anna; Dylag, Tomasz; Ehrich, Jochen; Egido, Jesus; Findeisen, Peter; Jankowski, Joachim; Johnson, Robert W; Julien, Bruce A; Lankisch, Tim; Leung, Hing Y; Maahs, David; Magni, Fulvio; Manns, Michael P; Manolis, Efthymios; Mayer, Gert; Navis, Gerjan; Novak, Jan; Ortiz, Alberto; Persson, Frederik; Peter, Karlheinz; Riese, Hans H; Rossing, Peter; Sattar, Naveed; Spasovski, Goce; Thongboonkerd, Visith; Vanholder, Raymond; Schanstra, Joost P; Vlahou, Antonia

    2012-01-01

    While large numbers of proteomic biomarkers have been described, they are generally not implemented in medical practice. We have investigated the reasons for this shortcoming, focusing on hurdles downstream of biomarker verification, and describe major obstacles and possible solutions to ease valid biomarker implementation. Some of the problems lie in suboptimal biomarker discovery and validation, especially lack of validated platforms with well-described performance characteristics to support biomarker qualification. These issues have been acknowledged and are being addressed, raising the hope that valid biomarkers may start accumulating in the foreseeable future. However, successful biomarker discovery and qualification alone does not suffice for successful implementation. Additional challenges include, among others, limited access to appropriate specimens and insufficient funding, the need to validate new biomarker utility in interventional trials, and large communication gaps between the parties involved in implementation. To address this problem, we propose an implementation roadmap. The implementation effort needs to involve a wide variety of stakeholders (clinicians, statisticians, health economists, and representatives of patient groups, health insurance, pharmaceutical companies, biobanks, and regulatory agencies). Knowledgeable panels with adequate representation of all these stakeholders may facilitate biomarker evaluation and guide implementation for the specific context of use. This approach may avoid unwarranted delays or failure to implement potentially useful biomarkers, and may expedite meaningful contributions of the biomarker community to healthcare. PMID:22519700

  7. Plasma proteomics to identify biomarkers - Application to cardiovascular diseases

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Overgaard, Martin; Melholt Rasmussen, Lars

    2015-01-01

    There is an unmet need for new cardiovascular biomarkers. Despite this only few biomarkers for the diagnosis or screening of cardiovascular diseases have been implemented in the clinic. Thousands of proteins can be analysed in plasma by mass spectrometry-based proteomics technologies. Therefore......, this technology may therefore identify new biomarkers that previously have not been associated with cardiovascular diseases. In this review, we summarize the key challenges and considerations, including strategies, recent discoveries and clinical applications in cardiovascular proteomics that may lead...

  8. Mass Spectrometry-Based Biomarker Discovery.

    Science.gov (United States)

    Zhou, Weidong; Petricoin, Emanuel F; Longo, Caterina

    2017-01-01

    The discovery of candidate biomarkers within the entire proteome is one of the most important and challenging goals in proteomic research. Mass spectrometry-based proteomics is a modern and promising technology for semiquantitative and qualitative assessment of proteins, enabling protein sequencing and identification with exquisite accuracy and sensitivity. For mass spectrometry analysis, protein extractions from tissues or body fluids and subsequent protein fractionation represent an important and unavoidable step in the workflow for biomarker discovery. Following extraction of proteins, the protein mixture must be digested, reduced, alkylated, and cleaned up prior to mass spectrometry. The aim of our chapter is to provide comprehensible and practical lab procedures for sample digestion, protein fractionation, and subsequent mass spectrometry analysis.

  9. Autoantibody profiling on human proteome microarray for biomarker discovery in cerebrospinal fluid and sera of neuropsychiatric lupus.

    Directory of Open Access Journals (Sweden)

    Chaojun Hu

    Full Text Available Autoantibodies in cerebrospinal fluid (CSF from patients with neuropsychiatric systemic lupus erythematosus (NPSLE may be potential biomarkers for prediction, diagnosis, or prognosis of NPSLE. We used a human proteome microarray with~17,000 unique full-length human proteins to investigate autoantibodies associated with NPSLE. Twenty-nine CSF specimens from 12 NPSLE, 7 non-NPSLE, and 10 control (non-systemic lupus erythematosuspatients were screened for NPSLE-associated autoantibodies with proteome microarrays. A focused autoantigen microarray of candidate NPSLE autoantigens was applied to profile a larger cohort of CSF with patient-matched sera. We identified 137 autoantigens associated with NPSLE. Ingenuity Pathway Analysis revealed that these autoantigens were enriched for functions involved in neurological diseases (score = 43.Anti-proliferating cell nuclear antigen (PCNA was found in the CSF of NPSLE and non-NPSLE patients. The positive rates of 4 autoantibodies in CSF specimens were significantly different between the SLE (i.e., NPSLE and non-NPSLE and control groups: anti-ribosomal protein RPLP0, anti-RPLP1, anti-RPLP2, and anti-TROVE2 (also known as anti-Ro/SS-A. The positive rate for anti-SS-A associated with NPSLE was higher than that for non-NPSLE (31.11% cf. 10.71%; P = 0.045.Further analysis showed that anti-SS-A in CSF specimens was related to neuropsychiatric syndromes of the central nervous system in SLE (P = 0.009. Analysis with Spearman's rank correlation coefficient indicated that the titers of anti-RPLP2 and anti-SS-A in paired CSF and serum specimens significantly correlated. Human proteome microarrays offer a powerful platform to discover novel autoantibodies in CSF samples. Anti-SS-A autoantibodies may be potential CSF markers for NPSLE.

  10. Application of Fluorescence Two-Dimensional Difference In-Gel Electrophoresis as a Proteomic Biomarker Discovery Tool in Muscular Dystrophy Research

    Science.gov (United States)

    Carberry, Steven; Zweyer, Margit; Swandulla, Dieter; Ohlendieck, Kay

    2013-01-01

    In this article, we illustrate the application of difference in-gel electrophoresis for the proteomic analysis of dystrophic skeletal muscle. The mdx diaphragm was used as a tissue model of dystrophinopathy. Two-dimensional gel electrophoresis is a widely employed protein separation method in proteomic investigations. Although two-dimensional gels usually underestimate the cellular presence of very high molecular mass proteins, integral membrane proteins and low copy number proteins, this method is extremely powerful in the comprehensive analysis of contractile proteins, metabolic enzymes, structural proteins and molecular chaperones. This gives rise to two-dimensional gel electrophoretic separation as the method of choice for studying contractile tissues in health and disease. For comparative studies, fluorescence difference in-gel electrophoresis has been shown to provide an excellent biomarker discovery tool. Since aged diaphragm fibres from the mdx mouse model of Duchenne muscular dystrophy closely resemble the human pathology, we have carried out a mass spectrometry-based comparison of the naturally aged diaphragm versus the senescent dystrophic diaphragm. The proteomic comparison of wild type versus mdx diaphragm resulted in the identification of 84 altered protein species. Novel molecular insights into dystrophic changes suggest increased cellular stress, impaired calcium buffering, cytostructural alterations and disturbances of mitochondrial metabolism in dystrophin-deficient muscle tissue. PMID:24833232

  11. Combined serum and EPS-urine proteomic analysis using iTRAQ technology for discovery of potential prostate cancer biomarkers.

    Science.gov (United States)

    Zhang, Mo; Chen, Lizhu; Yuan, Zhengwei; Yang, Zeyu; Li, Yue; Shan, Liping; Yin, Bo; Fei, Xiang; Miao, Jianing; Song, Yongsheng

    2016-11-01

    Prostate cancer (PCa) is one of the most common malignant tumors and a major cause of cancer-related death for men worldwide. The aim of our study was to identify potential non-invasive serum and expressed prostatic secretion (EPS)-urine biomarkers for accurate diagnosis of PCa. Here, we performed a combined isobaric tags for relative and absolute quantification (iTRAQ) proteomic analysis to compare protein profiles using pooled serum and EPS-urine samples from 4 groups of patients: benign prostate hyperplasia (BPH), high grade prostatic intraepithelial neoplasia (HGPIN), localized PCa and metastatic PCa. The differentially expressed proteins were rigorously selected and further validated in a large and independent cohort using classical ELISA and Western blot assays. Finally, we established a multiplex biomarker panel consisting of 3 proteins (serum PF4V1, PSA, and urinary CRISP3) with an excellent diagnostic capacity to differentiate PCa from BPH [area under the receiver operating characteristic curve (AUC) of 0.941], which showed an evidently greater discriminatory ability than PSA alone (AUC, 0.757) (P<0.001). Importantly, even when PSA level was in the gray zone (4-10 ng/mL), a combination of PF4V1 and CRISP3 could achieve a relatively high diagnostic efficacy (AUC, 0.895). Furthermore, their combination also had the potential to distinguish PCa from HGPIN (AUC, 0.934). Our results demonstrated that the combined application of serum and EPS-urine biomarkers can improve the diagnosis of PCa and provide a new prospect for non-invasive PCa detection.

  12. Proteomic Biomarkers for Spontaneous Preterm Birth

    DEFF Research Database (Denmark)

    Kacerovsky, Marian; Lenco, Juraj; Musilova, Ivana

    2014-01-01

    This review aimed to identify, synthesize, and analyze the findings of studies on proteomic biomarkers for spontaneous preterm birth (PTB). Three electronic databases (Medline, Embase, and Scopus) were searched for studies in any language reporting the use of proteomic biomarkers for PTB published...

  13. Single-Nucleotide Variations in Cardiac Arrhythmias: Prospects for Genomics and Proteomics Based Biomarker Discovery and Diagnostics

    Directory of Open Access Journals (Sweden)

    Ayman Abunimer

    2014-03-01

    Full Text Available Cardiovascular diseases are a large contributor to causes of early death in developed countries. Some of these conditions, such as sudden cardiac death and atrial fibrillation, stem from arrhythmias—a spectrum of conditions with abnormal electrical activity in the heart. Genome-wide association studies can identify single nucleotide variations (SNVs that may predispose individuals to developing acquired forms of arrhythmias. Through manual curation of published genome-wide association studies, we have collected a comprehensive list of 75 SNVs associated with cardiac arrhythmias. Ten of the SNVs result in amino acid changes and can be used in proteomic-based detection methods. In an effort to identify additional non-synonymous mutations that affect the proteome, we analyzed the post-translational modification S-nitrosylation, which is known to affect cardiac arrhythmias. We identified loss of seven known S-nitrosylation sites due to non-synonymous single nucleotide variations (nsSNVs. For predicted nitrosylation sites we found 1429 proteins where the sites are modified due to nsSNV. Analysis of the predicted S-nitrosylation dataset for over- or under-representation (compared to the complete human proteome of pathways and functional elements shows significant statistical over-representation of the blood coagulation pathway. Gene Ontology (GO analysis displays statistically over-represented terms related to muscle contraction, receptor activity, motor activity, cystoskeleton components, and microtubule activity. Through the genomic and proteomic context of SNVs and S-nitrosylation sites presented in this study, researchers can look for variation that can predispose individuals to cardiac arrhythmias. Such attempts to elucidate mechanisms of arrhythmia thereby add yet another useful parameter in predicting susceptibility for cardiac diseases.

  14. Mass spectrometry-based proteomic quest for diabetes biomarkers.

    Science.gov (United States)

    Shao, Shiying; Guo, Tiannan; Aebersold, Ruedi

    2015-06-01

    Diabetes mellitus (DM) is a metabolic disorder characterized by chronic hyperglycemia, which affects hundreds of millions of individuals worldwide. Early diagnosis and complication prevention of DM are helpful for disease treatment. However, currently available DM diagnostic markers fail to achieve the goals. Identification of new diabetic biomarkers assisted by mass spectrometry (MS)-based proteomics may offer solution for the clinical challenges. Here, we review the current status of biomarker discovery in DM, and describe the pressure cycling technology (PCT)-Sequential Window Acquisition of all Theoretical fragment-ion (SWATH) workflow for sample-processing, biomarker discovery and validation, which may accelerate the current quest for DM biomarkers. This article is part of a Special Issue entitled: Medical Proteomics. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Mass spectrometry for protein quantification in biomarker discovery.

    Science.gov (United States)

    Wang, Mu; You, Jinsam

    2012-01-01

    Major technological advances have made proteomics an extremely active field for biomarker discovery in recent years due primarily to the development of newer mass spectrometric technologies and the explosion in genomic and protein bioinformatics. This leads to an increased emphasis on larger scale, faster, and more efficient methods for detecting protein biomarkers in human tissues, cells, and biofluids. Most current proteomic methodologies for biomarker discovery, however, are not highly automated and are generally labor-intensive and expensive. More automation and improved software programs capable of handling a large amount of data are essential to reduce the cost of discovery and to increase throughput. In this chapter, we discuss and describe mass spectrometry-based proteomic methods for quantitative protein analysis.

  16. Differential membrane proteomics using 18O-labeling to identify biomarkers for cholangiocarcinoma

    DEFF Research Database (Denmark)

    Kristiansen, Troels Zakarias; Harsha, H C; Grønborg, Mads

    2008-01-01

    Quantitative proteomic methodologies allow profiling of hundreds to thousands of proteins in a high-throughput fashion. This approach is increasingly applied to cancer biomarker discovery to identify proteins that are differentially regulated in cancers. Fractionation of protein samples based...

  17. Secreted proteins as a fundamental source for biomarker discovery

    Czech Academy of Sciences Publication Activity Database

    Šťastná, Miroslava; Van Eyk, J.E.

    2012-01-01

    Roč. 12, 4-5 (2012), s. 722-735 ISSN 1615-9853 Institutional research plan: CEZ:AV0Z40310501 Keywords : conditioned media * secreted proteins * proteomics * biomarker discovery Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.132, year: 2012

  18. Implementation of proteomic biomarkers : Making it work

    NARCIS (Netherlands)

    Mischak, Harald; Ioannidis, John P. A.; Argiles, Angel; Attwood, Teresa K.; Bongcam-Rudloff, Erik; Broenstrup, Mark; Charonis, Aristidis; Chrousos, George P.; Delles, Christian; Dominiczak, Anna; Dylag, Tomasz; Ehrich, Jochen; Egido, Jesus; Findeisen, Peter; Jankowski, Joachim; Johnson, Robert W.; Julien, Bruce A.; Lankisch, Tim; Leung, Hing Y.; Maahs, David; Magni, Fulvio; Manns, Michael P.; Manolis, Efthymios; Mayer, Gert; Navis, Gerarda; Novak, Jan; Ortiz, Alberto; Persson, Frederik; Peter, Karlheinz; Riese, Hans H.; Rossing, Peter; Sattar, Naveed; Spasovski, Goce; Thongboonkerd, Visith; Vanholder, Raymond; Schanstra, Joost P.; Vlahou, Antonia

    Eur J Clin Invest 2012; 42 (9): 10271036 Abstract While large numbers of proteomic biomarkers have been described, they are generally not implemented in medical practice. We have investigated the reasons for this shortcoming, focusing on hurdles downstream of biomarker verification, and describe

  19. Biomarker discovery in low-grade breast cancer using isobaric stable isotope tags and two-dimensional liquid chromatography-tandem mass spectrometry (iTRAQ-2DLC-MS/MS) based quantitative proteomic analysis.

    Science.gov (United States)

    Bouchal, Pavel; Roumeliotis, Theodoros; Hrstka, Roman; Nenutil, Rudolf; Vojtesek, Borivoj; Garbis, Spiros D

    2009-01-01

    The present pilot study constitutes a proof-of-principle in the use of a quantitative LC-MS/MS based proteomic method for the comparative analysis of representative low-grade breast primary tumor tissues with and without metastases and metastasis in lymph node relative to the nonmetastatic tumor type. The study method incorporated iTRAQ stable isotope labeling, two-dimensional liquid chromatography, nanoelectrospray ionization and high resolution tandem mass spectrometry using the hybrid QqTOF platform (iTRAQ-2DLC-MS/MS). The principal aims of this study were (1) to define the protein spectrum obtainable using this approach, and (2) to highlight potential candidates for verification and validation studies focused on biomarkers involved in metastatic processes in breast cancer. The study resulted in the reproducible identification of 605 nonredundant proteins (p biomarker discovery program.

  20. Glycoscience aids in biomarker discovery

    Directory of Open Access Journals (Sweden)

    Serenus Hua1,2 & Hyun Joo An1,2,*

    2012-06-01

    Full Text Available The glycome consists of all glycans (or carbohydrates within abiological system, and modulates a wide range of important biologicalactivities, from protein folding to cellular communications.The mining of the glycome for disease markers representsa new paradigm for biomarker discovery; however, this effortis severely complicated by the vast complexity and structuraldiversity of glycans. This review summarizes recent developmentsin analytical technology and methodology as applied tothe fields of glycomics and glycoproteomics. Mass spectrometricstrategies for glycan compositional profiling are described, as arepotential refinements which allow structure-specific profiling.Analytical methods that can discern protein glycosylation at aspecific site of modification are also discussed in detail.Biomarker discovery applications are shown at each level ofanalysis, highlighting the key role that glycoscience can play inhelping scientists understand disease biology.

  1. Bayesian methods for proteomic biomarker development

    Directory of Open Access Journals (Sweden)

    Belinda Hernández

    2015-12-01

    In this review we provide an introduction to Bayesian inference and demonstrate some of the advantages of using a Bayesian framework. We summarize how Bayesian methods have been used previously in proteomics and other areas of bioinformatics. Finally, we describe some popular and emerging Bayesian models from the statistical literature and provide a worked tutorial including code snippets to show how these methods may be applied for the evaluation of proteomic biomarkers.

  2. Systems biology and biomarker discovery

    Energy Technology Data Exchange (ETDEWEB)

    Rodland, Karin D.

    2010-12-01

    Medical practitioners have always relied on surrogate markers of inaccessible biological processes to make their diagnosis, whether it was the pallor of shock, the flush of inflammation, or the jaundice of liver failure. Obviously, the current implementation of biomarkers for disease is far more sophisticated, relying on highly reproducible, quantitative measurements of molecules that are often mechanistically associated with the disease in question, as in glycated hemoglobin for the diagnosis of diabetes [1] or the presence of cardiac troponins in the blood for confirmation of myocardial infarcts [2]. In cancer, where the initial symptoms are often subtle and the consequences of delayed diagnosis often drastic for disease management, the impetus to discover readily accessible, reliable, and accurate biomarkers for early detection is compelling. Yet despite years of intense activity, the stable of clinically validated, cost-effective biomarkers for early detection of cancer is pathetically small and still dominated by a handful of markers (CA-125, CEA, PSA) first discovered decades ago. It is time, one could argue, for a fresh approach to the discovery and validation of disease biomarkers, one that takes full advantage of the revolution in genomic technologies and in the development of computational tools for the analysis of large complex datasets. This issue of Disease Markers is dedicated to one such new approach, loosely termed the 'Systems Biology of Biomarkers'. What sets the Systems Biology approach apart from other, more traditional approaches, is both the types of data used, and the tools used for data analysis - and both reflect the revolution in high throughput analytical methods and high throughput computing that has characterized the start of the twenty first century.

  3. The application of mass-spectrometry-based protein biomarker discovery to theragnostics

    OpenAIRE

    Street, Jonathan M; Dear, James W

    2010-01-01

    Over the last decade rapid developments in mass spectrometry have allowed the identification of multiple proteins in complex biological samples. This proteomic approach has been applied to biomarker discovery in the context of clinical pharmacology (the combination of biomarker and drug now being termed ‘theragnostics’). In this review we provide a roadmap for early protein biomarker discovery studies, focusing on some key questions that regularly confront researchers.

  4. Addressing the Challenge of Defining Valid Proteomic Biomarkers and Classifiers

    LENUS (Irish Health Repository)

    Dakna, Mohammed

    2010-12-10

    Abstract Background The purpose of this manuscript is to provide, based on an extensive analysis of a proteomic data set, suggestions for proper statistical analysis for the discovery of sets of clinically relevant biomarkers. As tractable example we define the measurable proteomic differences between apparently healthy adult males and females. We choose urine as body-fluid of interest and CE-MS, a thoroughly validated platform technology, allowing for routine analysis of a large number of samples. The second urine of the morning was collected from apparently healthy male and female volunteers (aged 21-40) in the course of the routine medical check-up before recruitment at the Hannover Medical School. Results We found that the Wilcoxon-test is best suited for the definition of potential biomarkers. Adjustment for multiple testing is necessary. Sample size estimation can be performed based on a small number of observations via resampling from pilot data. Machine learning algorithms appear ideally suited to generate classifiers. Assessment of any results in an independent test-set is essential. Conclusions Valid proteomic biomarkers for diagnosis and prognosis only can be defined by applying proper statistical data mining procedures. In particular, a justification of the sample size should be part of the study design.

  5. Novel ageing-biomarker discovery using data-intensive technologies.

    Science.gov (United States)

    Griffiths, H R; Augustyniak, E M; Bennett, S J; Debacq-Chainiaux, F; Dunston, C R; Kristensen, P; Melchjorsen, C J; Navarrete, Santos A; Simm, A; Toussaint, O

    2015-11-01

    Ageing is accompanied by many visible characteristics. Other biological and physiological markers are also well-described e.g. loss of circulating sex hormones and increased inflammatory cytokines. Biomarkers for healthy ageing studies are presently predicated on existing knowledge of ageing traits. The increasing availability of data-intensive methods enables deep-analysis of biological samples for novel biomarkers. We have adopted two discrete approaches in MARK-AGE Work Package 7 for biomarker discovery; (1) microarray analyses and/or proteomics in cell systems e.g. endothelial progenitor cells or T cell ageing including a stress model; and (2) investigation of cellular material and plasma directly from tightly-defined proband subsets of different ages using proteomic, transcriptomic and miR array. The first approach provided longitudinal insight into endothelial progenitor and T cell ageing. This review describes the strategy and use of hypothesis-free, data-intensive approaches to explore cellular proteins, miR, mRNA and plasma proteins as healthy ageing biomarkers, using ageing models and directly within samples from adults of different ages. It considers the challenges associated with integrating multiple models and pilot studies as rational biomarkers for a large cohort study. From this approach, a number of high-throughput methods were developed to evaluate novel, putative biomarkers of ageing in the MARK-AGE cohort. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Proteomic response of mussels Mytilus galloprovincialis exposed to CuO NPs and Cu{sup 2+}: An exploratory biomarker discovery

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Tânia, E-mail: tania.gomes@niva.no; Chora, Suze; Pereira, Catarina G.; Cardoso, Cátia; Bebianno, Maria João

    2014-10-15

    the other hand, Cu{sup 2+} affected a protein associated with adhesion and mobility, precollagen-D that is associated with the detoxification mechanism of Cu{sup 2+}. Protein identification clearly showed that the toxicity of CuO NPs is not solely due to Cu{sup 2+} dissolution and can result in mitochondrial and nucleus stress-induced cell signalling cascades that can lead to apoptosis. While the absence of the mussel genome precluded the identification of other proteins relevant to clarify the effects of CuO NPs in mussels’ tissues, proteomics analysis provided additional knowledge of their potential effects at the protein level that after confirmation and validation can be used as putative new biomarkers in nanotoxicology.

  7. Novel TIA biomarkers identified by mass spectrometry-based proteomics.

    Science.gov (United States)

    George, Paul M; Mlynash, Michael; Adams, Christopher M; Kuo, Calvin J; Albers, Gregory W; Olivot, Jean-Marc

    2015-12-01

    Transient ischemic attacks remain a clinical diagnosis with significant variability between physicians. Finding reliable biomarkers to identify transient ischemic attacks would improve patient care and optimize treatment. Our aim is to identify novel serum TIA biomarkers through the use of mass spectroscopy-based proteomics. Patients with transient neurologic symptoms were prospectively enrolled. Mass spectrometry-based proteomics, an unbiased method to identify candidate proteins, was used to test the serum of the patients for biomarkers of cerebral ischemia. Three candidate proteins were found, and serum concentrations of these proteins were measured by enzyme-linked immunosorbent assay in a second cohort of prospectively enrolled patients. The Student's t-test was used for comparison. The Benjamini-Hochberg false discovery rate controlling procedure for multiple comparison adjustments determined significance for the proteomic screen. Patients with transient ischemic attacks (n = 20), minor strokes (n = 15), and controls (i.e. migraine, seizure, n = 12) were enrolled in the first cohort. Ceruloplasmin, complement component C8 gamma (C8γ), and platelet basic protein were significantly different between the ischemic group (transient ischemic attack and minor stroke) and the controls (P = 0·0001, P = 0·00027, P = 0·00105, respectively). A second cohort of patients with transient ischemic attack (n = 22), minor stroke (n = 20), and controls' (n = 12) serum was enrolled. Platelet basic protein serum concentrations were increased in the ischemic samples compared with control (for transient ischemic attack alone, P = 0·019, for the ischemic group, P = 0·046). Ceruloplasmin trended towards increased concentrations in the ischemic group (P = 0·127); no significant difference in C8γ (P = 0·44) was found. Utilizing mass spectrometry-based proteomics, platelet basic protein has been identified as a candidate serum

  8. Biomarker discovery for cervical cancer

    NARCIS (Netherlands)

    Govorukhina, Natalia I.

    2007-01-01

    Proteomics of human boy fluids is still in its early stage of development with major methodological challenges ahead. This implies that much attention is given to improving the methods and strategies. One major challenge is that many samples that have been acquired in the past may not fulfill the

  9. Biomarkers in Alzheimer’s Disease Analysis by Mass Spectrometry-Based Proteomics

    Directory of Open Access Journals (Sweden)

    Yahui Liu

    2014-05-01

    Full Text Available Alzheimer’s disease (AD is a common chronic and destructive disease. The early diagnosis of AD is difficult, thus the need for clinically applicable biomarkers development is growing rapidly. There are many methods to biomarker discovery and identification. In this review, we aim to summarize Mass spectrometry (MS-based proteomics studies on AD and discuss thoroughly the methods to identify candidate biomarkers in cerebrospinal fluid (CSF and blood. This review will also discuss the potential research areas on biomarkers.

  10. Mass spectrometry based biomarker discovery, verification, and validation--quality assurance and control of protein biomarker assays.

    Science.gov (United States)

    Parker, Carol E; Borchers, Christoph H

    2014-06-01

    In its early years, mass spectrometry (MS)-based proteomics focused on the cataloging of proteins found in different species or different tissues. By 2005, proteomics was being used for protein quantitation, typically based on "proteotypic" peptides which act as surrogates for the parent proteins. Biomarker discovery is usually done by non-targeted "shotgun" proteomics, using relative quantitation methods to determine protein expression changes that correlate with disease (output given as "up-or-down regulation" or "fold-increases"). MS-based techniques can also perform "absolute" quantitation which is required for clinical applications (output given as protein concentrations). Here we describe the differences between these methods, factors that affect the precision and accuracy of the results, and some examples of recent studies using MS-based proteomics to verify cancer-related biomarkers. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. A Pilot Proteomic Analysis of Salivary Biomarkers in Autism Spectrum Disorder.

    Science.gov (United States)

    Ngounou Wetie, Armand G; Wormwood, Kelly L; Russell, Stefanie; Ryan, Jeanne P; Darie, Costel C; Woods, Alisa G

    2015-06-01

    Autism spectrum disorder (ASD) prevalence is increasing, with current estimates at 1/68-1/50 individuals diagnosed with an ASD. Diagnosis is based on behavioral assessments. Early diagnosis and intervention is known to greatly improve functional outcomes in people with ASD. Diagnosis, treatment monitoring and prognosis of ASD symptoms could be facilitated with biomarkers to complement behavioral assessments. Mass spectrometry (MS) based proteomics may help reveal biomarkers for ASD. In this pilot study, we have analyzed the salivary proteome in individuals with ASD compared to neurotypical control subjects, using MS-based proteomics. Our goal is to optimize methods for salivary proteomic biomarker discovery and to identify initial putative biomarkers in people with ASDs. The salivary proteome is virtually unstudied in ASD, and saliva could provide an easily accessible biomaterial for analysis. Using nano liquid chromatography-tandem mass spectrometry, we found statistically significant differences in several salivary proteins, including elevated prolactin-inducible protein, lactotransferrin, Ig kappa chain C region, Ig gamma-1 chain C region, Ig lambda-2 chain C regions, neutrophil elastase, polymeric immunoglobulin receptor and deleted in malignant brain tumors 1. Our results indicate that this is an effective method for identification of salivary protein biomarkers, support the concept that immune system and gastrointestinal disturbances may be present in individuals with ASDs and point toward the need for larger studies in behaviorally-characterized individuals. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  12. Infectious Disease Proteome Biomarkers: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Charles L.

    2011-12-31

    Research for the DOE Infectious Disease Proteome Biomarkers focused on Rift Valley fever virus (RVFV) and Venezuelan Equine Encephalitis Virus (VEEV). RVFV and VEEV are Category A and B pathogens respectively. Among the priority threats, RVFV and VEEV rank high in their potential for being weaponized and introduced to the United States, spreading quickly, and having a large health and economic impact. In addition, they both have live attenuated vaccine, which allows work to be performed at BSL-2. While the molecular biology of RVFV and VEEV are increasingly well-characterized, little is known about its host-pathogen interactions. Our research is aimed at determining critical alterations in host signaling pathways to identify therapeutics targeted against the host.

  13. The clinical impact of recent advances in LC-MS for cancer biomarker discovery and verification

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui; Shi, Tujin; Qian, Wei-Jun; Liu, Tao; Kagan, Jacob; Srivastava, Sudhir; Smith, Richard D.; Rodland, Karin D.; Camp, David G.

    2015-12-04

    Mass spectrometry-based proteomics has become an indispensable tool in biomedical research with broad applications ranging from fundamental biology, systems biology, and biomarker discovery. Recent advances in LC-MS have made it become a major technology in clinical applications, especially in cancer biomarker discovery and verification. To overcome the challenges associated with the analysis of clinical samples, such as extremely wide dynamic range of protein concentrations in biofluids and the need to perform high throughput and accurate quantification, significant efforts have been devoted to improve the overall performance of LC-MS bases clinical proteomics. In this review, we summarize the recent advances in LC-MS in the aspect of cancer biomarker discovery and quantification, and discuss its potentials, limitations, and future perspectives.

  14. The potential biomarkers of drug addiction: proteomic and metabolomics challenges.

    Science.gov (United States)

    Wang, Lv; Wu, Ning; Zhao, Tai-Yun; Li, Jin

    2016-07-28

    Drug addiction places a significant burden on society and individuals. Proteomics and metabolomics approaches pave the road for searching potential biomarkers to assist the diagnosis and treatment. This review summarized putative drug addiction-related biomarkers in proteomics and metabolomics studies and discussed challenges and prospects in future studies. Alterations of several hundred proteins and metabolites were reported when exposure to abused drug, which enriched in energy metabolism, oxidative stress response, protein modification and degradation, synaptic function and neurotrasmission, etc. Hsp70, peroxiredoxin-6 and α- and β-synuclein, as well as n-methylserotonin and purine metabolites, were promising as potential biomarker for drug addiction.

  15. Using Aptamers for Cancer Biomarker Discovery

    Directory of Open Access Journals (Sweden)

    Yun Min Chang

    2013-01-01

    Full Text Available Aptamers are single-stranded synthetic DNA- or RNA-based oligonucleotides that fold into various shapes to bind to a specific target, which includes proteins, metals, and molecules. Aptamers have high affinity and high specificity that are comparable to that of antibodies. They are obtained using iterative method, called (Systematic Evolution of Ligands by Exponential Enrichment SELEX and cell-based SELEX (cell-SELEX. Aptamers can be paired with recent advances in nanotechnology, microarray, microfluidics, and other technologies for applications in clinical medicine. One particular area that aptamers can shed a light on is biomarker discovery. Biomarkers are important in diagnosis and treatment of cancer. In this paper, we will describe ways in which aptamers can be used to discover biomarkers for cancer diagnosis and therapeutics.

  16. Approach to Cerebrospinal Fluid (CSF) Biomarker Discovery and Evaluation in HIV Infection

    Energy Technology Data Exchange (ETDEWEB)

    Price, Richard W.; Peterson, Julia; Fuchs, Dietmar; Angel, Thomas E.; Zetterberg, Henrik; Hagberg, Lars; Spudich, Serena S.; Smith, Richard D.; Jacobs, Jon M.; Brown, Joseph N.; Gisslen, Magnus

    2013-12-13

    Central nervous system (CNS) infection is a nearly universal facet of systemic HIV infection that varies in character and neurological consequences. While clinical staging and neuropsychological test performance have been helpful in evaluating patients, cerebrospinal fluid (CSF) biomarkers present a valuable and objective approach to more accurate diagnosis, assessment of treatment effects and understanding of evolving pathobiology. We review some lessons from our recent experience with CSF biomarker studies. We have used two approaches to biomarker analysis: targeted, hypothesis-driven and non-targeted exploratory discovery methods. We illustrate the first with data from a cross-sectional study of defined subject groups across the spectrum of systemic and CNS disease progression and the second with a longitudinal study of the CSF proteome in subjects initiating antiretroviral treatment. Both approaches can be useful and, indeed, complementary. The first is helpful in assessing known or hypothesized biomarkers while the second can identify novel biomarkers and point to broad interactions in pathogenesis. Common to both is the need for well-defined samples and subjects that span a spectrum of biological activity and biomarker concentrations. Previouslydefined guide biomarkers of CNS infection, inflammation and neural injury are useful in categorizing samples for analysis and providing critical biological context for biomarker discovery studies. CSF biomarkers represent an underutilized but valuable approach to understanding the interactions of HIV and the CNS and to more objective diagnosis and assessment of disease activity. Both hypothesis-based and discovery methods can be useful in advancing the definition and use of these biomarkers.

  17. Towards Discovery and Targeted Peptide Biomarker Detection Using nanoESI-TIMS-TOF MS

    Energy Technology Data Exchange (ETDEWEB)

    Garabedian, Alyssa; Benigni, Paolo; Ramirez, Cesar; Baker, Erin M.; Liu, Tao; Smith, Richard D.; Fernandez-Lima, Francisco

    2018-05-01

    Abstract. In the present work, the potential of trapped ion mobility spectrometry coupled to TOF mass spectrometry (TIMS-TOF MS) for discovery and targeted monitoring of peptide biomarkers from human-in-mouse xenograft tumor tissue was evaluated. In particular, a TIMS-MS workflow was developed for the detection and quantification of peptide biomarkers using internal heavy analogs, taking advantage of the high mobility resolution (R = 150–250) prior to mass analysis. Five peptide biomarkers were separated, identified, and quantified using offline nanoESI-TIMSCID- TOF MS; the results were in good agreement with measurements using a traditional LC-ESI-MS/MS proteomics workflow. The TIMS-TOF MS analysis permitted peptide biomarker detection based on accurate mobility, mass measurements, and high sequence coverage for concentrations in the 10–200 nM range, while simultaneously achieving discovery measurements

  18. Cancer Biomarker Discovery: Lectin-Based Strategies Targeting Glycoproteins

    Directory of Open Access Journals (Sweden)

    David Clark

    2012-01-01

    Full Text Available Biomarker discovery can identify molecular markers in various cancers that can be used for detection, screening, diagnosis, and monitoring of disease progression. Lectin-affinity is a technique that can be used for the enrichment of glycoproteins from a complex sample, facilitating the discovery of novel cancer biomarkers associated with a disease state.

  19. Biomarker Gene Signature Discovery Integrating Network Knowledge

    Directory of Open Access Journals (Sweden)

    Holger Fröhlich

    2012-02-01

    Full Text Available Discovery of prognostic and diagnostic biomarker gene signatures for diseases, such as cancer, is seen as a major step towards a better personalized medicine. During the last decade various methods, mainly coming from the machine learning or statistical domain, have been proposed for that purpose. However, one important obstacle for making gene signatures a standard tool in clinical diagnosis is the typical low reproducibility of these signatures combined with the difficulty to achieve a clear biological interpretation. For that purpose in the last years there has been a growing interest in approaches that try to integrate information from molecular interaction networks. Here we review the current state of research in this field by giving an overview about so-far proposed approaches.

  20. Candidate proteomic biomarkers for non-alcoholic fatty liver disease (steatosis and non-alcoholic steatohepatitis) discovered with mass-spectrometry: a systematic review.

    Science.gov (United States)

    Lădaru, Anca; Bălănescu, Paul; Stan, Mihaela; Codreanu, Ioana; Anca, Ioana Alina

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is characterized by lipid accumulation in the liver which is accompanied by a series of metabolic deregulations. There are sustained research efforts focusing upon biomarker discovery for NAFLD diagnosis and its prognosis in order investigate and follow-up patients as minimally invasive as possible. The objective of this study is to critically review proteomic studies that used mass spectrometry techniques and summarize relevant proteomic NAFLD candidate biomarkers. Medline and Embase databases were searched from inception to December 2014. A final number of 22 records were included that identified 251 candidate proteomic biomarkers. Thirty-three biomarkers were confirmed - 14 were found in liver samples, 21 in serum samples, and two from both serum and liver samples. Some of the biomarkers identified have already been extensively studied regarding their diagnostic and prognostic capacity. However, there are also more potential biomarkers that still need to be addressed in future studies.

  1. Systemic sclerosis biomarkers discovered using mass-spectrometry-based proteomics: a systematic review.

    Science.gov (United States)

    Bălănescu, Paul; Lădaru, Anca; Bălănescu, Eugenia; Băicuş, Cristian; Dan, Gheorghe Andrei

    2014-08-01

    Systemic sclerosis (SSc) is an autoimmune disease with incompletely known physiopathology. There is a great challenge to predict its course and therapeutic response using biomarkers. To critically review proteomic biomarkers discovered from biological specimens from systemic sclerosis patients using mass spectrometry technologies. Medline and Embase databases were searched in February 2014. Out of the 199 records retrieved, a total of 20 records were included, identifying 116 candidate proteomic biomarkers. Research in SSc proteomic biomarkers should focus on biomarker validation, as there are valuable mass-spectrometry proteomics studies in the literature.

  2. Approach to cerebrospinal fluid (CSF) biomarker discovery and evaluation in HIV infection.

    Science.gov (United States)

    Price, Richard W; Peterson, Julia; Fuchs, Dietmar; Angel, Thomas E; Zetterberg, Henrik; Hagberg, Lars; Spudich, Serena; Smith, Richard D; Jacobs, Jon M; Brown, Joseph N; Gisslen, Magnus

    2013-12-01

    Central nervous system (CNS) infection is a nearly universal facet of systemic HIV infection that varies in character and neurological consequences. While clinical staging and neuropsychological test performance have been helpful in evaluating patients, cerebrospinal fluid (CSF) biomarkers present a valuable and objective approach to more accurate diagnosis, assessment of treatment effects and understanding of evolving pathobiology. We review some lessons from our recent experience with CSF biomarker studies. We have used two approaches to biomarker analysis: targeted, hypothesis-driven and non-targeted exploratory discovery methods. We illustrate the first with data from a cross-sectional study of defined subject groups across the spectrum of systemic and CNS disease progression and the second with a longitudinal study of the CSF proteome in subjects initiating antiretroviral treatment. Both approaches can be useful and, indeed, complementary. The first is helpful in assessing known or hypothesized biomarkers while the second can identify novel biomarkers and point to broad interactions in pathogenesis. Common to both is the need for well-defined samples and subjects that span a spectrum of biological activity and biomarker concentrations. Previously-defined guide biomarkers of CNS infection, inflammation and neural injury are useful in categorizing samples for analysis and providing critical biological context for biomarker discovery studies. CSF biomarkers represent an underutilized but valuable approach to understanding the interactions of HIV and the CNS and to more objective diagnosis and assessment of disease activity. Both hypothesis-based and discovery methods can be useful in advancing the definition and use of these biomarkers.

  3. The Knowledge-Integrated Network Biomarkers Discovery for Major Adverse Cardiac Events

    Science.gov (United States)

    Jin, Guangxu; Zhou, Xiaobo; Wang, Honghui; Zhao, Hong; Cui, Kemi; Zhang, Xiang-Sun; Chen, Luonan; Hazen, Stanley L.; Li, King; Wong, Stephen T. C.

    2010-01-01

    The mass spectrometry (MS) technology in clinical proteomics is very promising for discovery of new biomarkers for diseases management. To overcome the obstacles of data noises in MS analysis, we proposed a new approach of knowledge-integrated biomarker discovery using data from Major Adverse Cardiac Events (MACE) patients. We first built up a cardiovascular-related network based on protein information coming from protein annotations in Uniprot, protein–protein interaction (PPI), and signal transduction database. Distinct from the previous machine learning methods in MS data processing, we then used statistical methods to discover biomarkers in cardiovascular-related network. Through the tradeoff between known protein information and data noises in mass spectrometry data, we finally could firmly identify those high-confident biomarkers. Most importantly, aided by protein–protein interaction network, that is, cardiovascular-related network, we proposed a new type of biomarkers, that is, network biomarkers, composed of a set of proteins and the interactions among them. The candidate network biomarkers can classify the two groups of patients more accurately than current single ones without consideration of biological molecular interaction. PMID:18665624

  4. Emerging Concepts and Methodologies in Cancer Biomarker Discovery.

    Science.gov (United States)

    Lu, Meixia; Zhang, Jinxiang; Zhang, Lanjing

    2017-01-01

    Cancer biomarker discovery is a critical part of cancer prevention and treatment. Despite the decades of effort, only a small number of cancer biomarkers have been identified for and validated in clinical settings. Conceptual and methodological breakthroughs may help accelerate the discovery of additional cancer biomarkers, particularly their use for diagnostics. In this review, we have attempted to review the emerging concepts in cancer biomarker discovery, including real-world evidence, open access data, and data paucity in rare or uncommon cancers. We have also summarized the recent methodological progress in cancer biomarker discovery, such as high-throughput sequencing, liquid biopsy, big data, artificial intelligence (AI), and deep learning and neural networks. Much attention has been given to the methodological details and comparison of the methodologies. Notably, these concepts and methodologies interact with each other and will likely lead to synergistic effects when carefully combined. Newer, more innovative concepts and methodologies are emerging as the current emerging ones became mainstream and widely applied to the field. Some future challenges are also discussed. This review contributes to the development of future theoretical frameworks and technologies in cancer biomarker discovery and will contribute to the discovery of more useful cancer biomarkers.

  5. BioinformatiqTM - integrating data types for proteomic discovery

    International Nuclear Information System (INIS)

    Arthur, J.W.; Harrison, M.; Manoharan, A.; Traini, M.; Shaw, E.; Wilkins, M.

    2001-01-01

    Proteomics (Wilkins et al. 1997) involves the large-scale analysis of expressed proteins. At each stage of the discovery process the researcher accumulates large volumes of data. These include: clinical or biological data about the sample being studied; details of sample purification and separation; images of 2D gels and associated information; MALDI mass spectra; MS/MS and PSD spectra; as well as meta-data relating to the projects undertaken and experiments performed. All this must be combined with existing databases of protein and EST sequences, post-translational modifications, and protein glycosylation, then processed with sophisticated bioinformatics tools in order to extract meaningful answers to questions of biological, clinical, and agricultural significance. BioinformatlQ TM is a web-based application for the storage, management, and automated bioinformatic analysis of proteomic information. This poster will demonstrate the integration of these disparate data sources in proteomics

  6. Identification of Biomarkers for Endometriosis Using Clinical Proteomics

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    2015-01-01

    Full Text Available Background: We investigated possible biomarkers for endometriosis (EM using the ClinProt technique and proteomics methods. Methods: We enrolled 50 patients with EM, 34 with benign ovarian neoplasms and 40 healthy volunteers in this study. Serum proteomic spectra were generated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MS combined with weak cationic exchange (WCX magnetic beads. Possible biomarkers were analyzed by a random and repeat pattern model-validation method that we designed, and ClinProtools software, results were refined using online liquid chromatography-tandem MS. Results: We found a cluster of 5 peptides (4210, 5264, 2660, 5635, and 5904 Da, using 3 peptides (4210, 5904, 2660 Da to discriminate EM patients from healthy volunteers, with 96.67% sensitivity and 100% specificity. We selected 4210 and 5904 m/z, which differed most between patients with EM and controls, and identified them as fragments of ATP1B4, and the fibrinogen alpha (FGA isoform 1/2 of the FGA chain precursor, respectively. Conclusions: ClinProt can identify EM biomarkers, which - most notably - distinguish even early-stage or minimal disease. We found 5 stable peaks at 4210, 5264, 2660, 5635, and 5904 Da as potential EM biomarkers, the strongest of which were associated with ATP1B4 (4210 Da and FGA (5904 Da; this indicates that ATP1B4 and FGA are associated with EM pathogenesis.

  7. The Urine Proteome as a Biomarker of Radiation Injury

    Science.gov (United States)

    Sharma, Mukut; Halligan, Brian D.; Wakim, Bassam T.; Savin, Virginia J.; Cohen, Eric P.; Moulder, John E.

    2009-01-01

    Terrorist attacks or nuclear accidents could expose large numbers of people to ionizing radiation, and early biomarkers of radiation injury would be critical for triage, treatment and follow-up of such individuals. However, no such biomarkers have yet been proven to exist. We tested the potential of high throughput proteomics to identify protein biomarkers of radiation injury after total body X-ray irradiation in a rat model. Subtle functional changes in the kidney are suggested by an increased glomerular permeability for macromolecules measured within 24 hours after TBI. Ultrastructural changes in glomerular podocytes include partial loss of the interdigitating organization of foot processes. Analysis of urine by LC-MS/MS and 2D-GE showed significant changes in the urine proteome within 24 hours after TBI. Tissue kallikrein 1-related peptidase, cysteine proteinase inhibitor cystatin C and oxidized histidine were found to be increased while a number of proteinase inhibitors including kallikrein-binding protein and albumin were found to be decreased post-irradiation. Thus, TBI causes immediately detectable changes in renal structure and function and in the urinary protein profile. This suggests that both systemic and renal changes are induced by radiation and it may be possible to identify a set of biomarkers unique to radiation injury. PMID:19746194

  8. Biomarker discovery in high grade sarcomas by mass spectrometry imaging

    OpenAIRE

    Lou, S.

    2017-01-01

    This thesis demonstrates a detailed biomarker discovery Mass Spectrometry Imaging workflow for histologically heterogeneous high grade sarcomas. Panels of protein and metabolite signatures were discovered either distinguishing different histological subtypes or stratifying high risk patients with poor survival.

  9. Characterization of potential ionizing radiation biomarkers by a proteomic approach

    Energy Technology Data Exchange (ETDEWEB)

    Guipaud, O; Vereycken-Holler, V; Benderitter, M [Institut de Radioprotection et de Surete Nucleaire, Lab. de Radiopathologie, 92 - Fontenay aux Roses (France); Royer, N; Vinh, J [Ecole Superieure de Physique et de Chimie Industrielles, 75 - Paris (France)

    2006-07-01

    Radio-induced lesions are tissue specific, hardly predictable, and can arise months or years later. The finding of prognostic bio-markers is of fundamental relevance for the settlement of therapeutic or preventive strategies. Using two-dimensional gel electrophoresis and mass spectrometry, a proteomic study was applied to look for differentially expressed proteins, i.e. potential bio-markers candidates, in mouse serums after a local irradiation of the dorsal skin. Our results clearly indicated that serum protein content was dynamically modified after a local skin irradiation. A set of specific proteins were early down- or up-regulated and could turn out to be good candidates as diagnostic or prognostic bio-markers. (author)

  10. Characterization of potential ionizing radiation biomarkers by a proteomic approach

    International Nuclear Information System (INIS)

    Guipaud, O.; Vereycken-Holler, V.; Benderitter, M.; Royer, N.; Vinh, J.

    2006-01-01

    Radio-induced lesions are tissue specific, hardly predictable, and can arise months or years later. The finding of prognostic bio-markers is of fundamental relevance for the settlement of therapeutic or preventive strategies. Using two-dimensional gel electrophoresis and mass spectrometry, a proteomic study was applied to look for differentially expressed proteins, i.e. potential bio-markers candidates, in mouse serums after a local irradiation of the dorsal skin. Our results clearly indicated that serum protein content was dynamically modified after a local skin irradiation. A set of specific proteins were early down- or up-regulated and could turn out to be good candidates as diagnostic or prognostic bio-markers. (author)

  11. Novel Pneumocystis Antigen Discovery Using Fungal Surface Proteomics

    OpenAIRE

    Zheng, Mingquan; Cai, Yang; Eddens, Taylor; Ricks, David M.; Kolls, Jay K.

    2014-01-01

    Pneumonia due to the fungus Pneumocystis jirovecii is a life-threatening infection that occurs in immunocompromised patients. The inability to culture the organism as well as the lack of an annotated genome has hindered antigen discovery that could be useful in developing novel vaccine- or antibody-based therapies as well as diagnostics for this infection. Here we report a novel method of surface proteomics analysis of Pneumocystis murina that reliably detected putative surface proteins that ...

  12. Noninvasive diagnosis of intraamniotic infection: proteomic biomarkers in vaginal fluid.

    Science.gov (United States)

    Hitti, Jane; Lapidus, Jodi A; Lu, Xinfang; Reddy, Ashok P; Jacob, Thomas; Dasari, Surendra; Eschenbach, David A; Gravett, Michael G; Nagalla, Srinivasa R

    2010-07-01

    We analyzed the vaginal fluid proteome to identify biomarkers of intraamniotic infection among women in preterm labor. Proteome analysis was performed on vaginal fluid specimens from women with preterm labor, using multidimensional liquid chromatography, tandem mass spectrometry, and label-free quantification. Enzyme immunoassays were used to quantify candidate proteins. Classification accuracy for intraamniotic infection (positive amniotic fluid bacterial culture and/or interleukin-6 >2 ng/mL) was evaluated using receiver-operator characteristic curves obtained by logistic regression. Of 170 subjects, 30 (18%) had intraamniotic infection. Vaginal fluid proteome analysis revealed 338 unique proteins. Label-free quantification identified 15 proteins differentially expressed in intraamniotic infection, including acute-phase reactants, immune modulators, high-abundance amniotic fluid proteins and extracellular matrix-signaling factors; these findings were confirmed by enzyme immunoassay. A multi-analyte algorithm showed accurate classification of intraamniotic infection. Vaginal fluid proteome analyses identified proteins capable of discriminating between patients with and without intraamniotic infection. Copyright (c) 2010 Mosby, Inc. All rights reserved.

  13. Proteomic identification of host and parasite biomarkers in saliva from patients with uncomplicated Plasmodium falciparum malaria

    Directory of Open Access Journals (Sweden)

    Huang Honglei

    2012-05-01

    Full Text Available Abstract Background Malaria cases attributed to Plasmodium falciparum account for approximately 600,000 deaths yearly, mainly in African children. The gold standard method to diagnose malaria requires the visualization of the parasite in blood. The role of non-invasive diagnostic methods to diagnose malaria remains unclear. Methods A protocol was optimized to deplete highly abundant proteins from saliva to improve the dynamic range of the proteins identified and assess their suitability as candidate biomarkers of malaria infection. A starch-based amylase depletion strategy was used in combination with four different lectins to deplete glycoproteins (Concanavalin A and Aleuria aurantia for N-linked glycoproteins; jacalin and peanut agglutinin for O-linked glycoproteins. A proteomic analysis of depleted saliva samples was performed in 17 children with fever and a positive–malaria slide and compared with that of 17 malaria-negative children with fever. Results The proteomic signature of malaria-positive patients revealed a strong up-regulation of erythrocyte-derived and inflammatory proteins. Three P. falciparum proteins, PFL0480w, PF08_0054 and PFI0875w, were identified in malaria patients and not in controls. Aleuria aurantia and jacalin showed the best results for parasite protein identification. Conclusions This study shows that saliva is a suitable clinical specimen for biomarker discovery. Parasite proteins and several potential biomarkers were identified in patients with malaria but not in patients with other causes of fever. The diagnostic performance of these markers should be addressed prospectively.

  14. The path from biomarker discovery to regulatory qualification

    CERN Document Server

    Goodsaid, Federico

    2013-01-01

    The Path from Biomarker Discovery to Regulatory Qualification is a unique guide that focuses on biomarker qualification, its history and current regulatory settings in both the US and abroad. This multi-contributed book provides a detailed look at the next step to developing biomarkers for clinical use and covers overall concepts, challenges, strategies and solutions based on the experiences of regulatory authorities and scientists. Members of the regulatory, pharmaceutical and biomarker development communities will benefit the most from using this book-it is a complete and practical guide to biomarker qualification, providing valuable insight to an ever-evolving and important area of regulatory science. For complimentary access to chapter 13, 'Classic' Biomarkers of Liver Injury, by John R. Senior, Associate Director for Science, Food and Drug Administration, Silver Spring, Maryland, USA, please visit the following site:  http://tinyurl.com/ClassicBiomarkers Contains a collection of experiences of different...

  15. Proteomic biomarkers for ovarian cancer risk in women with polycystic ovary syndrome: a systematic review and biomarker database integration.

    Science.gov (United States)

    Galazis, Nicolas; Olaleye, Olalekan; Haoula, Zeina; Layfield, Robert; Atiomo, William

    2012-12-01

    To review and identify possible biomarkers for ovarian cancer (OC) in women with polycystic ovary syndrome (PCOS). Systematic literature searches of MEDLINE, EMBASE, and Cochrane using the search terms "proteomics," "proteomic," and "ovarian cancer" or "ovarian carcinoma." Proteomic biomarkers for OC were then integrated with an updated previously published database of all proteomic biomarkers identified to date in patients with PCOS. Academic department of obstetrics and gynecology in the United Kingdom. A total of 180 women identified in the six studies. Tissue samples from women with OC vs. tissue samples from women without OC. Proteomic biomarkers, proteomic technique used, and methodologic quality score. A panel of six biomarkers was overexpressed both in women with OC and in women with PCOS. These biomarkers include calreticulin, fibrinogen-γ, superoxide dismutase, vimentin, malate dehydrogenase, and lamin B2. These biomarkers could help improve our understanding of the links between PCOS and OC and could potentially be used to identify subgroups of women with PCOS at increased risk of OC. More studies are required to further evaluate the role these biomarkers play in women with PCOS and OC. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  16. Cellular Models for Environmental Toxicant Biomarker Discovery

    National Research Council Canada - National Science Library

    Halverson, Kelly M; Lewsis, John A; Jackson, David A; Dennis, William; Brennan, Linda; Krakaner, Teresa

    2006-01-01

    ...) is the development of biomarkers of exposure, effect, and susceptibility. As exposure monitoring using environmental sampling equipment can be impractical and doesn't account for differences in individual responses, new methodologies must be sought...

  17. Major depressive disorder: insight into candidate cerebrospinal fluid protein biomarkers from proteomics studies.

    Science.gov (United States)

    Al Shweiki, Mhd Rami; Oeckl, Patrick; Steinacker, Petra; Hengerer, Bastian; Schönfeldt-Lecuona, Carlos; Otto, Markus

    2017-06-01

    Major Depressive Disorder (MDD) is the leading cause of global disability, and an increasing body of literature suggests different cerebrospinal fluid (CSF) proteins as biomarkers of MDD. The aim of this review is to summarize the suggested CSF biomarkers and to analyze the MDD proteomics studies of CSF and brain tissues for promising biomarker candidates. Areas covered: The review includes the human studies found by a PubMed search using the following terms: 'depression cerebrospinal fluid biomarker', 'major depression biomarker CSF', 'depression CSF biomarker', 'proteomics depression', 'proteomics biomarkers in depression', 'proteomics CSF biomarker in depression', and 'major depressive disorder CSF'. The literature analysis highlights promising biomarker candidates and demonstrates conflicting results on others. It reveals 42 differentially regulated proteins in MDD that were identified in more than one proteomics study. It discusses the diagnostic potential of the biomarker candidates and their association with the suggested pathologies. Expert commentary: One ultimate goal of finding biomarkers for MDD is to improve the diagnostic accuracy to achieve better treatment outcomes; due to the heterogeneous nature of MDD, using bio-signatures could be a good strategy to differentiate MDD from other neuropsychiatric disorders. Notably, further validation studies of the suggested biomarkers are still needed.

  18. Gaucher disease: a model disorder for biomarker discovery

    DEFF Research Database (Denmark)

    Boot, Rolf G; van Breemen, Mariëlle J; Wegdam, Wouter

    2009-01-01

    Gaucher disease is an inherited lysosomal storage disorder, characterized by massive accumulation of glucosylceramide-laden macrophages in the spleen, liver and bone marrow as a consequence of deficient activity of glucocerebrosidase. Gaucher disease has been the playground to develop new therape...... in clinical management of Gaucher patients are discussed. Moreover, the use of several modern proteomic technologies for the identification of Gaucher biomarkers is reviewed....

  19. Bioinformatics and biomarker discovery "Omic" data analysis for personalized medicine

    CERN Document Server

    Azuaje, Francisco

    2010-01-01

    This book is designed to introduce biologists, clinicians and computational researchers to fundamental data analysis principles, techniques and tools for supporting the discovery of biomarkers and the implementation of diagnostic/prognostic systems. The focus of the book is on how fundamental statistical and data mining approaches can support biomarker discovery and evaluation, emphasising applications based on different types of "omic" data. The book also discusses design factors, requirements and techniques for disease screening, diagnostic and prognostic applications. Readers are provided w

  20. Urine protein concentration estimation for biomarker discovery

    OpenAIRE

    Mistry, Hiten D.; Bramham, Kate; Weston, Andrew; Ward, Malcolm; Thompson, Andrew; Chappell, Lucy C.

    2013-01-01

    Recent advances have been made in the study of urinary proteomics as a diagnostic tool for renal disease and pre-eclampsia which requires accurate measurement of urinary protein. We compared different protein assays (Bicinchoninic acid (BCA), Lowry and Bradford) against the ‘gold standard’ amino-acid assay in urine from 43 women (8 non-pregnant, 34 pregnant, including 8 with pre-eclampsia. BCA assay was superior to both Lowry and Bradford assays (Bland Altman bias: 0.08) compared to amino-aci...

  1. Towards Discovery and Targeted Peptide Biomarker Detection Using nanoESI-TIMS-TOF MS

    Science.gov (United States)

    Garabedian, Alyssa; Benigni, Paolo; Ramirez, Cesar E.; Baker, Erin S.; Liu, Tao; Smith, Richard D.; Fernandez-Lima, Francisco

    2017-09-01

    In the present work, the potential of trapped ion mobility spectrometry coupled to TOF mass spectrometry (TIMS-TOF MS) for discovery and targeted monitoring of peptide biomarkers from human-in-mouse xenograft tumor tissue was evaluated. In particular, a TIMS-MS workflow was developed for the detection and quantification of peptide biomarkers using internal heavy analogs, taking advantage of the high mobility resolution (R = 150-250) prior to mass analysis. Five peptide biomarkers were separated, identified, and quantified using offline nanoESI-TIMS-CID-TOF MS; the results were in good agreement with measurements using a traditional LC-ESI-MS/MS proteomics workflow. The TIMS-TOF MS analysis permitted peptide biomarker detection based on accurate mobility, mass measurements, and high sequence coverage for concentrations in the 10-200 nM range, while simultaneously achieving discovery measurements of not initially targeted peptides as markers from the same proteins and, eventually, other proteins. [Figure not available: see fulltext.

  2. Mass spectrometry imaging enriches biomarker discovery approaches with candidate mapping.

    Science.gov (United States)

    Scott, Alison J; Jones, Jace W; Orschell, Christie M; MacVittie, Thomas J; Kane, Maureen A; Ernst, Robert K

    2014-01-01

    Integral to the characterization of radiation-induced tissue damage is the identification of unique biomarkers. Biomarker discovery is a challenging and complex endeavor requiring both sophisticated experimental design and accessible technology. The resources within the National Institute of Allergy and Infectious Diseases (NIAID)-sponsored Consortium, Medical Countermeasures Against Radiological Threats (MCART), allow for leveraging robust animal models with novel molecular imaging techniques. One such imaging technique, MALDI (matrix-assisted laser desorption ionization) mass spectrometry imaging (MSI), allows for the direct spatial visualization of lipids, proteins, small molecules, and drugs/drug metabolites-or biomarkers-in an unbiased manner. MALDI-MSI acquires mass spectra directly from an intact tissue slice in discrete locations across an x, y grid that are then rendered into a spatial distribution map composed of ion mass and intensity. The unique mass signals can be plotted to generate a spatial map of biomarkers that reflects pathology and molecular events. The crucial unanswered questions that can be addressed with MALDI-MSI include identification of biomarkers for radiation damage that reflect the response to radiation dose over time and the efficacy of therapeutic interventions. Techniques in MALDI-MSI also enable integration of biomarker identification among diverse animal models. Analysis of early, sublethally irradiated tissue injury samples from diverse mouse tissues (lung and ileum) shows membrane phospholipid signatures correlated with histological features of these unique tissues. This paper will discuss the application of MALDI-MSI for use in a larger biomarker discovery pipeline.

  3. Current and Future Applications of Biomedical Engineering for Proteomic Profiling: Predictive Biomarkers in Neuro-Traumatology

    Directory of Open Access Journals (Sweden)

    Mario Ganau

    2018-02-01

    Full Text Available This systematic review aims to summarize the impact of nanotechnology and biomedical engineering in defining clinically meaningful predictive biomarkers in patients with traumatic brain injury (TBI, a critical worldwide health problem with an estimated 10 billion people affected annually worldwide. Data were collected through a review of the existing English literature performed on Scopus, MEDLINE, MEDLINE in Process, EMBASE, and/or Cochrane Central Register of Controlled Trials. Only experimental articles revolving around the management of TBI, in which the role of new devices based on innovative discoveries coming from the field of nanotechnology and biomedical engineering were highlighted, have been included and analyzed in this study. Based on theresults gathered from this research on innovative methods for genomics, epigenomics, and proteomics, their future application in this field seems promising. Despite the outstanding technical challenges of identifying reliable biosignatures for TBI and the mixed nature of studies herein described (single cells proteomics, biofilms, sensors, etc., the clinical implementation of those discoveries will allow us to gain confidence in the use of advanced neuromonitoring modalities with a potential dramatic improvement in the management of those patients.

  4. Quantitative, multiplexed workflow for deep analysis of human blood plasma and biomarker discovery by mass spectrometry.

    Science.gov (United States)

    Keshishian, Hasmik; Burgess, Michael W; Specht, Harrison; Wallace, Luke; Clauser, Karl R; Gillette, Michael A; Carr, Steven A

    2017-08-01

    Proteomic characterization of blood plasma is of central importance to clinical proteomics and particularly to biomarker discovery studies. The vast dynamic range and high complexity of the plasma proteome have, however, proven to be serious challenges and have often led to unacceptable tradeoffs between depth of coverage and sample throughput. We present an optimized sample-processing pipeline for analysis of the human plasma proteome that provides greatly increased depth of detection, improved quantitative precision and much higher sample analysis throughput as compared with prior methods. The process includes abundant protein depletion, isobaric labeling at the peptide level for multiplexed relative quantification and ultra-high-performance liquid chromatography coupled to accurate-mass, high-resolution tandem mass spectrometry analysis of peptides fractionated off-line by basic pH reversed-phase (bRP) chromatography. The overall reproducibility of the process, including immunoaffinity depletion, is high, with a process replicate coefficient of variation (CV) of 4,500 proteins are detected and quantified per patient sample on average, with two or more peptides per protein and starting from as little as 200 μl of plasma. The approach can be multiplexed up to 10-plex using tandem mass tags (TMT) reagents, further increasing throughput, albeit with some decrease in the number of proteins quantified. In addition, we provide a rapid protocol for analysis of nonfractionated depleted plasma samples analyzed in 10-plex. This provides ∼600 quantified proteins for each of the ten samples in ∼5 h of instrument time.

  5. Progress and Potential of Imaging Mass Spectrometry Applied to Biomarker Discovery.

    Science.gov (United States)

    Quanico, Jusal; Franck, Julien; Wisztorski, Maxence; Salzet, Michel; Fournier, Isabelle

    2017-01-01

    Mapping provides a direct means to assess the impact of protein biomarkers and puts into context their relevance in the type of cancer being examined. To this end, mass spectrometry imaging (MSI) was developed to provide the needed spatial information which is missing in traditional liquid-based mass spectrometric proteomics approaches. Aptly described as a "molecular histology" technique, MSI gives an additional dimension in characterizing tumor biopsies, allowing for mapping of hundreds of molecules in a single analysis. A decade of developments focused on improving and standardizing MSI so that the technique can be translated into the clinical setting. This review describes the progress made in addressing the technological development that allows to bridge local protein detection by MSI to its identification and to illustrate its potential in studying various aspects of cancer biomarker discovery.

  6. Overlap of proteomics biomarkers between women with pre-eclampsia and PCOS: a systematic review and biomarker database integration.

    Science.gov (United States)

    Khan, Gulafshana Hafeez; Galazis, Nicolas; Docheva, Nikolina; Layfield, Robert; Atiomo, William

    2015-01-01

    Do any proteomic biomarkers previously identified for pre-eclampsia (PE) overlap with those identified in women with polycystic ovary syndrome (PCOS). Five previously identified proteomic biomarkers were found to be common in women with PE and PCOS when compared with controls. Various studies have indicated an association between PCOS and PE; however, the pathophysiological mechanisms supporting this association are not known. A systematic review and update of our PCOS proteomic biomarker database was performed, along with a parallel review of PE biomarkers. The study included papers from 1980 to December 2013. In all the studies analysed, there were a total of 1423 patients and controls. The number of proteomic biomarkers that were catalogued for PE was 192. Five proteomic biomarkers were shown to be differentially expressed in women with PE and PCOS when compared with controls: transferrin, fibrinogen α, β and γ chain variants, kininogen-1, annexin 2 and peroxiredoxin 2. In PE, the biomarkers were identified in serum, plasma and placenta and in PCOS, the biomarkers were identified in serum, follicular fluid, and ovarian and omental biopsies. The techniques employed to detect proteomics have limited ability in identifying proteins that are of low abundance, some of which may have a diagnostic potential. The sample sizes and number of biomarkers identified from these studies do not exclude the risk of false positives, a limitation of all biomarker studies. The biomarkers common to PE and PCOS were identified from proteomic analyses of different tissues. This data amalgamation of the proteomic studies in PE and in PCOS, for the first time, discovered a panel of five biomarkers for PE which are common to women with PCOS, including transferrin, fibrinogen α, β and γ chain variants, kininogen-1, annexin 2 and peroxiredoxin 2. If validated, these biomarkers could provide a useful framework for the knowledge infrastructure in this area. To accomplish this goal, a

  7. Proteomic Profiling of Exosomes Leads to the Identification of Novel Biomarkers for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Duijvesz, Diederick; Burnum-Johnson, Kristin E.; Gritsenko, Marina A.; Hoogland, Marije; Vredenbregt-van den Berg, Mirella S.; Willemsen, Rob; Luider, Theo N.; Pasa-Tolic, Ljiljana; Jenster, Guido

    2013-12-31

    Introduction: Current markers for prostate cancer, such as PSA lack specificity. Therefore, novel biomarkers are needed. Unfortunately, biomarker discovery from body fluids is often hampered by the high abundance of many proteins unrelated to disease. An attractive alternative biomarker discovery approach is the isolation of small vesicles (exosomes, ~100 nm). They contain proteins that are specific to the tissue from which they are derived and therefore can be considered as treasure chests for disease-specific marker discovery. Profiling prostate cancer-derived exosomes could reveal new markers for this malignancy. Materials and Methods: Exosomes were isolated from 2 immortalized primary prostate epithelial cells (PNT2C2 and RWPE-1) and 2 PCa cell lines (PC346C and VCaP) by ultracentrifugation. Proteomic analyses utilized a nanoLC coupled with an LTQ-Orbitrap operated in tandem MS (MS/MS) mode, followed by the Accurate Mass and Time (AMT) tag approach. Exosomal proteins were validated by Western blotting. A Tissue Micro Array, containing 481 different PCa samples (radical prostatectomy), was used to correlate candidate markers with several clinical-pathological parameters such as PSA, Gleason score, biochemical recurrence, and (PCa-related) death. Results: Proteomic characterization resulted in the identification of 263 proteins by at least 2 peptides. Specifically analysis of exosomes from PNT2C2, RWPE-1, PC346C, and VCaP identified 248, 233, 169, and 216 proteins, respectively. Statistical analyses revealed 52 proteins differently expressed between PCa and control cells, 9 of which were more abundant in PCa. Validation by Western blotting confirmed a higher abundance of FASN, XPO1 and PDCD6IP (ALIX) in PCa exosomes. The Tissue Micro 4 Array showed strong correlation of higher Gleason scores and local recurrence with increased cytoplasmic XPO1 (P<0.001). Conclusions: Differentially abundant proteins of cell line-derived exosomes make a clear subdivision between

  8. Comparative proteomic analysis of human malignant ascitic fluids for the development of gastric cancer biomarkers.

    Science.gov (United States)

    Jin, Jonghwa; Son, Minsoo; Kim, Hyeyoon; Kim, Hyeyeon; Kong, Seong-Ho; Kim, Hark Kyun; Kim, Youngsoo; Han, Dohyun

    2018-04-11

    Malignant ascites is a sign of peritoneal seeding, which is one of the most frequent forms of incurable distant metastasis. Because the development of malignant ascites is associated with an extremely poor prognosis, determining whether it resulted from peritoneal seeding has critical clinical implications in diagnosis, choice of treatment, and active surveillance. At present, the molecular characterizations of malignant ascites are especially limited in case of gastric cancer. We aimed to identify malignant ascites-specific proteins that may contribute to the development of alternative methods for diagnosis and therapeutic monitoring and also increase our understanding of the pathophysiology of peritoneal seeding. First, comprehensive proteomic strategies were employed to construct an in-depth proteome of ascitic fluids. Label-free quantitative proteomic analysis was subsequently performed to identify candidates that can differentiate between malignant ascitic fluilds of gastric cancer patients from benign ascitic fluids. Finally, two candidate proteins were verified by ELISA in 84 samples with gastric cancer or liver cirrhosis. Comprehensive proteome profiling resulted in the identification of 5347 ascites proteins. Using label-free quantification, we identified 299 proteins that were differentially expressed in ascitic fluids between liver cirrhosis and stage IV gastric cancer patients. In addition, we identified 645 proteins that were significantly expressed in ascitic fluids between liver cirrhosis and gastric cancer patients with peritoneal seeding. Finally, Gastriscin and Periostin that can distinguish malignant ascites from benign ascites were verified by ELISA. This study identified and verified protein markers that can distinguish malignant ascites with or without peritoneal seeding from benign ascites. Consequently, our results could be a significant resource for gastric cancer research and biomarker discovery in the diagnosis of malignant ascites

  9. Identification of proteomic biomarkers predicting prostate cancer aggressiveness and lethality despite biopsy-sampling error.

    Science.gov (United States)

    Shipitsin, M; Small, C; Choudhury, S; Giladi, E; Friedlander, S; Nardone, J; Hussain, S; Hurley, A D; Ernst, C; Huang, Y E; Chang, H; Nifong, T P; Rimm, D L; Dunyak, J; Loda, M; Berman, D M; Blume-Jensen, P

    2014-09-09

    Key challenges of biopsy-based determination of prostate cancer aggressiveness include tumour heterogeneity, biopsy-sampling error, and variations in biopsy interpretation. The resulting uncertainty in risk assessment leads to significant overtreatment, with associated costs and morbidity. We developed a performance-based strategy to identify protein biomarkers predictive of prostate cancer aggressiveness and lethality regardless of biopsy-sampling variation. Prostatectomy samples from a large patient cohort with long follow-up were blindly assessed by expert pathologists who identified the tissue regions with the highest and lowest Gleason grade from each patient. To simulate biopsy-sampling error, a core from a high- and a low-Gleason area from each patient sample was used to generate a 'high' and a 'low' tumour microarray, respectively. Using a quantitative proteomics approach, we identified from 160 candidates 12 biomarkers that predicted prostate cancer aggressiveness (surgical Gleason and TNM stage) and lethal outcome robustly in both high- and low-Gleason areas. Conversely, a previously reported lethal outcome-predictive marker signature for prostatectomy tissue was unable to perform under circumstances of maximal sampling error. Our results have important implications for cancer biomarker discovery in general and development of a sampling error-resistant clinical biopsy test for prediction of prostate cancer aggressiveness.

  10. Cancer biomarker discovery: the entropic hallmark.

    Science.gov (United States)

    Berretta, Regina; Moscato, Pablo

    2010-08-18

    It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles

  11. Biomarkers of systemic lupus erythematosus identified using mass spectrometry-based proteomics: a systematic review.

    Science.gov (United States)

    Nicolaou, Orthodoxia; Kousios, Andreas; Hadjisavvas, Andreas; Lauwerys, Bernard; Sokratous, Kleitos; Kyriacou, Kyriacos

    2017-05-01

    Advances in mass spectrometry technologies have created new opportunities for discovering novel protein biomarkers in systemic lupus erythematosus (SLE). We performed a systematic review of published reports on proteomic biomarkers identified in SLE patients using mass spectrometry-based proteomics and highlight their potential disease association and clinical utility. Two electronic databases, MEDLINE and EMBASE, were systematically searched up to July 2015. The methodological quality of studies included in the review was performed according to Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Twenty-five studies were included in the review, identifying 241 SLE candidate proteomic biomarkers related to various aspects of the disease including disease diagnosis and activity or pinpointing specific organ involvement. Furthermore, 13 of the 25 studies validated their results for a selected number of biomarkers in an independent cohort, resulting in the validation of 28 candidate biomarkers. It is noteworthy that 11 candidate biomarkers were identified in more than one study. A significant number of potential proteomic biomarkers that are related to a number of aspects of SLE have been identified using mass spectrometry proteomic approaches. However, further studies are required to assess the utility of these biomarkers in routine clinical practice. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  12. Identification of proteomic biomarkers of preeclampsia using protein microarray and tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    Karol Charkiewicz

    2015-05-01

    Full Text Available Preeclampsia (PE is the leading cause of death of the fetus and the mother. The exact pathomechanism has not so far been clarified. PE coexists with many other diseases, but it is often difficult to explain the association between them and find a clear reason for their occurrence. There are many predictive factors, but none are highly specific in preeclampsia. The diagnosis of preeclampsia seems to be very complex, which is another argument for the exploration of knowledge on this subject. Although many of the discoveries have hitherto been made in the field of proteomics, still no single specific biomarker of preeclampsia has been discovered. Research at the genome level is important because it can help us understand the genetic predisposition of patients affected by this disease. Nevertheless, researchers have recently become more interested in the pathophysiology of PE, and they are trying to answer the question: what is the real, direct cause of preeclampsia? Thus, the discovery of a protein that is a good predictor of preeclampsia development would significantly accelerate the medical care of pregnant women, and consequently reduce the risk of occurrence of HELLP syndrome and fetal death. Apart from the predictive and diagnostic function, such a discovery would help us to better understand the pathogenesis of preeclampsia and to find in the future a medical drug to suppress this disease. In order to make a breakthrough in this field, scientists need to use the most modern methods of proteomics, which allow for the analysis of small amounts of biological material in the shortest possible time, thereby giving a lot of information about existing proteins in the sample. Such optimization allows two methods, most commonly used by researchers: tandem mass spectrometry and protein microarray technique.

  13. PROFILEing idiopathic pulmonary fibrosis: rethinking biomarker discovery

    Directory of Open Access Journals (Sweden)

    Toby M. Maher

    2013-06-01

    Full Text Available Despite major advances in the understanding of the pathogenesis of idiopathic pulmonary fibrosis (IPF, diagnosis and management of the condition continue to pose significant challenges. Clinical management of IPF remains unsatisfactory due to limited availability of effective drug therapies, a lack of accurate indicators of disease progression, and an absence of simple short-term measures of therapeutic response. The identification of more accurate predictors of prognosis and survival in IPF would facilitate counseling of patients and their families, aid communication among clinicians, and would guide optimal timing of referral for transplantation. Improvements in molecular techniques have led to the identification of new disease pathways and a more targeted approach to the development of novel anti-fibrotic agents. However, despite an increased interest in biomarkers of IPF disease progression there are a lack of measures that can be used in early phase clinical trials. Careful longitudinal phenotyping of individuals with IPF together with the application of novel omics-based technology should provide important insights into disease pathogenesis and should address some of the major issues holding back drug development in IPF. The PROFILE (Prospective Observation of Fibrosis in the Lung Clinical Endpoints study is a currently enrolling, prospective cohort study designed to tackle these issues.

  14. Plasma biomarker discovery in preeclampsia using a novel differential isolation technology for circulating extracellular vesicles.

    Science.gov (United States)

    Tan, Kok Hian; Tan, Soon Sim; Sze, Siu Kwan; Lee, Wai Kheong Ryan; Ng, Mor Jack; Lim, Sai Kiang

    2014-10-01

    To circumvent the complex protein milieu of plasma and discover robust predictive biomarkers for preeclampsia (PE), we investigate if phospholipid-binding ligands can reduce the milieu complexity by extracting plasma extracellular vesicles for biomarker discovery. Cholera toxin B chain (CTB) and annexin V (AV) which respectively binds GM1 ganglioside and phosphatidylserine were used to isolate extracellular vesicles from plasma of PE patients and healthy pregnant women. The proteins in the vesicles were identified using enzyme-linked immunosorbent assay, antibody array, and mass spectrometry. CTB and AV were found to bind 2 distinct groups of extracellular vesicles. Antibody array and enzyme-linked immunosorbent assay revealed that PE patients had elevated levels of CD105, interleukin-6, placental growth factor, tissue inhibitor of metallopeptidase 1, and atrial natriuretic peptide in cholera toxin B- but not AV-vesicles, and elevated levels of plasminogen activator inhibitor-1, pro-calcitonin, S100b, tumor growth factor β, vascular endothelial growth factor receptor 1, brain natriuretic peptide, and placental growth factor in both cholera toxin B- and AV-vesicles. CD9 level was elevated in cholera toxin B-vesicles but reduced in AV vesicles of PE patients. Proteome analysis revealed that in cholera toxin B-vesicles, 87 and 222 proteins were present only in PE patients and healthy pregnant women respectively while in AV-vesicles, 104 and 157 proteins were present only in PE and healthy pregnant women, respectively. This study demonstrated for the first time that CTB and AV bind unique extracellular vesicles, and their protein cargo reflects the disease state of the patient. The successful use of these 2 ligands to isolate circulating plasma extracellular vesicles for biomarker discovery in PE represents a novel technology for biomarker discovery that can be applied to other specialties. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. State of the Art in Tumor Antigen and Biomarker Discovery

    International Nuclear Information System (INIS)

    Even-Desrumeaux, Klervi; Baty, Daniel; Chames, Patrick

    2011-01-01

    Our knowledge of tumor immunology has resulted in multiple approaches for the treatment of cancer. However, a gap between research of new tumors markers and development of immunotherapy has been established and very few markers exist that can be used for treatment. The challenge is now to discover new targets for active and passive immunotherapy. This review aims at describing recent advances in biomarkers and tumor antigen discovery in terms of antigen nature and localization, and is highlighting the most recent approaches used for their discovery including “omics” technology

  16. Maximizing biomarker discovery by minimizing gene signatures

    Directory of Open Access Journals (Sweden)

    Chang Chang

    2011-12-01

    Full Text Available Abstract Background The use of gene signatures can potentially be of considerable value in the field of clinical diagnosis. However, gene signatures defined with different methods can be quite various even when applied the same disease and the same endpoint. Previous studies have shown that the correct selection of subsets of genes from microarray data is key for the accurate classification of disease phenotypes, and a number of methods have been proposed for the purpose. However, these methods refine the subsets by only considering each single feature, and they do not confirm the association between the genes identified in each gene signature and the phenotype of the disease. We proposed an innovative new method termed Minimize Feature's Size (MFS based on multiple level similarity analyses and association between the genes and disease for breast cancer endpoints by comparing classifier models generated from the second phase of MicroArray Quality Control (MAQC-II, trying to develop effective meta-analysis strategies to transform the MAQC-II signatures into a robust and reliable set of biomarker for clinical applications. Results We analyzed the similarity of the multiple gene signatures in an endpoint and between the two endpoints of breast cancer at probe and gene levels, the results indicate that disease-related genes can be preferably selected as the components of gene signature, and that the gene signatures for the two endpoints could be interchangeable. The minimized signatures were built at probe level by using MFS for each endpoint. By applying the approach, we generated a much smaller set of gene signature with the similar predictive power compared with those gene signatures from MAQC-II. Conclusions Our results indicate that gene signatures of both large and small sizes could perform equally well in clinical applications. Besides, consistency and biological significances can be detected among different gene signatures, reflecting the

  17. Computational and Experimental Approaches to Cancer Biomarker Discovery

    DEFF Research Database (Denmark)

    Krzystanek, Marcin

    of a patient’s response to a particular treatment, thus helping to avoid unnecessary treatment and unwanted side effects in non-responding individuals.Currently biomarker discovery is facilitated by recent advances in high-throughput technologies when association between a given biological phenotype...... and the state or level of a large number of molecular entities is investigated. Such associative analysis could be confounded by several factors, leading to false discoveries. For example, it is assumed that with the exception of the true biomarkers most molecular entities such as gene expression levels show...... random distribution in a given cohort. However, gene expression levels may also be affected by technical bias when the actual measurement technology or sample handling may introduce a systematic error. If the distribution of systematic errors correlates with the biological phenotype then the risk...

  18. Analysis of Reverse Phase Protein Array Data: From Experimental Design towards Targeted Biomarker Discovery

    Directory of Open Access Journals (Sweden)

    Astrid Wachter

    2015-11-01

    Full Text Available Mastering the systematic analysis of tumor tissues on a large scale has long been a technical challenge for proteomics. In 2001, reverse phase protein arrays (RPPA were added to the repertoire of existing immunoassays, which, for the first time, allowed a profiling of minute amounts of tumor lysates even after microdissection. A characteristic feature of RPPA is its outstanding sample capacity permitting the analysis of thousands of samples in parallel as a routine task. Until today, the RPPA approach has matured to a robust and highly sensitive high-throughput platform, which is ideally suited for biomarker discovery. Concomitant with technical advancements, new bioinformatic tools were developed for data normalization and data analysis as outlined in detail in this review. Furthermore, biomarker signatures obtained by different RPPA screens were compared with another or with that obtained by other proteomic formats, if possible. Options for overcoming the downside of RPPA, which is the need to steadily validate new antibody batches, will be discussed. Finally, a debate on using RPPA to advance personalized medicine will conclude this article.

  19. Metabolomics for Biomarker Discovery: Moving to the Clinic

    Science.gov (United States)

    Zhang, Aihua; Sun, Hui; Yan, Guangli; Wang, Ping; Wang, Xijun

    2015-01-01

    To improve the clinical course of diseases, more accurate diagnostic and assessment methods are required as early as possible. In order to achieve this, metabolomics offers new opportunities for biomarker discovery in complex diseases and may provide pathological understanding of diseases beyond traditional technologies. It is the systematic analysis of low-molecular-weight metabolites in biological samples and has become an important tool in clinical research and the diagnosis of human disease and has been applied to discovery and identification of the perturbed pathways. It provides a powerful approach to discover biomarkers in biological systems and offers a holistic approach with the promise to clinically enhance diagnostics. When carried out properly, it could provide insight into the understanding of the underlying mechanisms of diseases, help to identify patients at risk of disease, and predict the response to specific treatments. Currently, metabolomics has become an important tool in clinical research and the diagnosis of human disease and becomes a hot topic. This review will highlight the importance and benefit of metabolomics for identifying biomarkers that accurately screen potential biomarkers of diseases. PMID:26090402

  20. Neopeptide Analyser: A software tool for neopeptide discovery in proteomics data [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Mandy Peffers

    2017-04-01

    Full Text Available Experiments involving mass spectrometry (MS-based proteomics are widely used for analyses of connective tissues. Common examples include the use of relative quantification to identify differentially expressed peptides and proteins in cartilage and tendon. We are working on characterising so-called ‘neopeptides’, i.e. peptides formed due to native cleavage of proteins, for example under pathological conditions. Unlike peptides typically quantified in MS workflows due to the in vitro use of an enzyme such as trypsin, a neopeptide has at least one terminus that was not due to the use of trypsin in the workflow. The identification of neopeptides within these datasets is important in understanding disease pathology, and the development of antibodies that could be utilised as diagnostic biomarkers for diseases, such as osteoarthritis, and targets for novel treatments. Our previously described neopeptide data analysis workflow was laborious and was not amenable to robust statistical analysis, which reduced confidence in the neopeptides identified. To overcome this, we developed ‘Neopeptide Analyser’, a user friendly neopeptide analysis tool used in conjunction with label-free MS quantification tool Progenesis QIP for proteomics. Neopeptide Analyser filters data sourced from Progenesis QIP output to identify neopeptide sequences, as well as give the residues that are adjacent to the peptide in its corresponding protein sequence. It also produces normalised values for the neopeptide quantification values and uses these to perform statistical tests, which are also included in the output. Neopeptide Analyser is available as a Java application for Mac, Windows and Linux. The analysis features and ease of use encourages data exploration, which could aid the discovery of novel pathways in extracellular matrix degradation, the identification of potential biomarkers and as a tool to investigate matrix turnover. Neopeptide Analyser is available from

  1. Mass spectrometry in biomarker applications: from untargeted discovery to targeted verification, and implications for platform convergence and clinical application

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Richard D.

    2012-03-01

    It is really only in the last ten years that mass spectrometry (MS) has had a truly significant (but still small) impact on biomedical research. Much of this impact can be attributed to proteomics and its more basic applications. Early biomedical applications have included a number of efforts aimed at developing new biomarkers; however, the success of these endeavors to date have been quite modest - essentially confined to preclinical applications - and have often suffered from combinations of immature technology and hubris. Now that MS-based proteomics is reaching adolescence, it is appropriate to ask if and when biomarker-related applications will extend to the clinical realm, and what developments will be essential for this transition. Biomarker development can be described as a multistage process consisting of discovery, qualification, verification, research assay optimization, validation, and commercialization (1). From a MS perspective, it is possible to 'bin' measurements into 1 of 2 categories - those aimed at discovering potential protein biomarkers and those seeking to verify and validate biomarkers. Approaches in both categories generally involve digesting proteins (e.g., with trypsin) as a first step to yield peptides that can be effectively detected and identified with MS. Discovery-based approaches use broad 'unbiased' or 'undirected' measurements that attempt to cover as many proteins as possible in the hope of revealing promising biomarker candidates. A key challenge with this approach stems from the extremely large dynamic range (i.e., relative stoichiometry) of proteins of potential interest in biofluids such as plasma and the expectation that biomarker proteins of the greatest clinical value for many diseases may very well be present at low relative abundances (2). Protein concentrations in plasma extend from approximately 10{sup 10} pg/mL for albumin to approximately 10 pg/mL and below for interleukins and other

  2. Quantitative Tissue Proteomics Analysis Reveals Versican as Potential Biomarker for Early-Stage Hepatocellular Carcinoma.

    Science.gov (United States)

    Naboulsi, Wael; Megger, Dominik A; Bracht, Thilo; Kohl, Michael; Turewicz, Michael; Eisenacher, Martin; Voss, Don Marvin; Schlaak, Jörg F; Hoffmann, Andreas-Claudius; Weber, Frank; Baba, Hideo A; Meyer, Helmut E; Sitek, Barbara

    2016-01-04

    Hepatocellular carcinoma (HCC) is one of the most aggressive tumors, and the treatment outcome of this disease is improved when the cancer is diagnosed at an early stage. This requires biomarkers allowing an accurate and early tumor diagnosis. To identify potential markers for such applications, we analyzed a patient cohort consisting of 50 patients (50 HCC and 50 adjacent nontumorous tissue samples as controls) using two independent proteomics approaches. We performed label-free discovery analysis on 19 HCC and corresponding tissue samples. The data were analyzed considering events known to take place in early events of HCC development, such as abnormal regulation of Wnt/b-catenin and activation of receptor tyrosine kinases (RTKs). 31 proteins were selected for verification experiments. For this analysis, the second set of the patient cohort (31 HCC and corresponding tissue samples) was analyzed using selected (multiple) reaction monitoring (SRM/MRM). We present the overexpression of ATP-dependent RNA helicase (DDX39), Fibulin-5 (FBLN5), myristoylated alanine-rich C-kinase substrate (MARCKS), and Serpin H1 (SERPINH1) in HCC for the first time. We demonstrate Versican core protein (VCAN) to be significantly associated with well differentiated and low-stage HCC. We revealed for the first time the evidence of VCAN as a potential biomarker for early-HCC diagnosis.

  3. Biomarkers as drug development tools: discovery, validation, qualification and use.

    Science.gov (United States)

    Kraus, Virginia B

    2018-06-01

    The 21st Century Cures Act, approved in the USA in December 2016, has encouraged the establishment of the national Precision Medicine Initiative and the augmentation of efforts to address disease prevention, diagnosis and treatment on the basis of a molecular understanding of disease. The Act adopts into law the formal process, developed by the FDA, of qualification of drug development tools, including biomarkers and clinical outcome assessments, to increase the efficiency of clinical trials and encourage an era of molecular medicine. The FDA and European Medicines Agency (EMA) have developed similar processes for the qualification of biomarkers intended for use as companion diagnostics or for development and regulatory approval of a drug or therapeutic. Biomarkers that are used exclusively for the diagnosis, monitoring or stratification of patients in clinical trials are not subject to regulatory approval, although their qualification can facilitate the conduct of a trial. In this Review, the salient features of biomarker discovery, analytical validation, clinical qualification and utilization are described in order to provide an understanding of the process of biomarker development and, through this understanding, convey an appreciation of their potential advantages and limitations.

  4. Mass spectrometry for biomarker development

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chaochao; Liu, Tao; Baker, Erin Shammel; Rodland, Karin D.; Smith, Richard D.

    2015-06-19

    Biomarkers potentially play a crucial role in early disease diagnosis, prognosis and targeted therapy. In the past decade, mass spectrometry based proteomics has become increasingly important in biomarker development due to large advances in technology and associated methods. This chapter mainly focuses on the application of broad (e.g. shotgun) proteomics in biomarker discovery and the utility of targeted proteomics in biomarker verification and validation. A range of mass spectrometry methodologies are discussed emphasizing their efficacy in the different stages in biomarker development, with a particular emphasis on blood biomarker development.

  5. A Standardized and Reproducible Urine Preparation Protocol for Cancer Biomarkers Discovery

    Directory of Open Access Journals (Sweden)

    Julia Beretov

    2014-01-01

    Full Text Available A suitable and standardized protein purification technique is essential to maintain consistency and to allow data comparison between proteomic studies for urine biomarker discovery. Ultimately, efforts should be made to standardize urine preparation protocols. The aim of this study was to develop an optimal analytical protocol to achieve maximal protein yield and to ensure that this method was applicable to examine urine protein patterns that distinguish disease and disease-free states. In this pilot study, we compared seven different urine sample preparation methods to remove salts, and to precipitate and isolate urinary proteins. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE profiles showed that the sequential preparation of urinary proteins by combining acetone and trichloroacetic acid (TCA alongside high speed centrifugation (HSC provided the best separation, and retained the most urinary proteins. Therefore, this approach is the preferred method for all further urine protein analysis.

  6. Comparative Tissue Proteomics of Microdissected Specimens Reveals Novel Candidate Biomarkers of Bladder Cancer*

    Science.gov (United States)

    Chen, Chien-Lun; Chung, Ting; Wu, Chih-Ching; Ng, Kwai-Fong; Yu, Jau-Song; Tsai, Cheng-Han; Chang, Yu-Sun; Liang, Ying; Tsui, Ke-Hung; Chen, Yi-Ting

    2015-01-01

    More than 380,000 new cases of bladder cancer are diagnosed worldwide, accounting for ∼150,200 deaths each year. To discover potential biomarkers of bladder cancer, we employed a strategy combining laser microdissection, isobaric tags for relative and absolute quantitation labeling, and liquid chromatography-tandem MS (LC-MS/MS) analysis to profile proteomic changes in fresh-frozen bladder tumor specimens. Cellular proteins from four pairs of surgically resected primary bladder cancer tumor and adjacent nontumorous tissue were extracted for use in two batches of isobaric tags for relative and absolute quantitation experiments, which identified a total of 3220 proteins. A DAVID (database for annotation, visualization and integrated discovery) analysis of dysregulated proteins revealed that the three top-ranking biological processes were extracellular matrix organization, extracellular structure organization, and oxidation-reduction. Biological processes including response to organic substances, response to metal ions, and response to inorganic substances were highlighted by up-expressed proteins in bladder cancer. Seven differentially expressed proteins were selected as potential bladder cancer biomarkers for further verification. Immunohistochemical analyses showed significantly elevated levels of three proteins—SLC3A2, STMN1, and TAGLN2—in tumor cells compared with noncancerous bladder epithelial cells, and suggested that TAGLN2 could be a useful tumor tissue marker for diagnosis (AUC = 0.999) and evaluating lymph node metastasis in bladder cancer patients. ELISA results revealed significantly increased urinary levels of both STMN1 and TAGLN2 in bladder cancer subgroups compared with control groups. In comparisons with age-matched hernia urine specimens, urinary TAGLN2 in bladder cancer samples showed the largest fold change (7.13-fold), with an area-under-the-curve value of 0.70 (p < 0.001, n = 205). Overall, TAGLN2 showed the most significant

  7. Differential Proteomics Identification of HSP90 as Potential Serum Biomarker in Hepatocellular Carcinoma by Two-dimensional Electrophoresis and Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Yiyi Sun

    2010-03-01

    Full Text Available The aim of the current study is to identify the potential biomarkers involved in Hepatocellular carcinoma (HCC carcinogenesis. A comparative proteomics approach was utilized to identify the differentially expressed proteins in the serum of 10 HCC patients and 10 controls. A total of 12 significantly altered proteins were identified by mass spectrometry. Of the 12 proteins identified, HSP90 was one of the most significantly altered proteins and its over-expression in the serum of 20 HCC patients was confirmed using ELISA analysis. The observations suggest that HSP90 might be a potential biomarker for early diagnosis, prognosis, and monitoring in the therapy of HCC. This work demonstrates that a comprehensive strategy of proteomic identification combined with further validation should be adopted in the field of cancer biomarker discovery.

  8. Topic model-based mass spectrometric data analysis in cancer biomarker discovery studies.

    Science.gov (United States)

    Wang, Minkun; Tsai, Tsung-Heng; Di Poto, Cristina; Ferrarini, Alessia; Yu, Guoqiang; Ressom, Habtom W

    2016-08-18

    A fundamental challenge in quantitation of biomolecules for cancer biomarker discovery is owing to the heterogeneous nature of human biospecimens. Although this issue has been a subject of discussion in cancer genomic studies, it has not yet been rigorously investigated in mass spectrometry based proteomic and metabolomic studies. Purification of mass spectometric data is highly desired prior to subsequent analysis, e.g., quantitative comparison of the abundance of biomolecules in biological samples. We investigated topic models to computationally analyze mass spectrometric data considering both integrated peak intensities and scan-level features, i.e., extracted ion chromatograms (EICs). Probabilistic generative models enable flexible representation in data structure and infer sample-specific pure resources. Scan-level modeling helps alleviate information loss during data preprocessing. We evaluated the capability of the proposed models in capturing mixture proportions of contaminants and cancer profiles on LC-MS based serum proteomic and GC-MS based tissue metabolomic datasets acquired from patients with hepatocellular carcinoma (HCC) and liver cirrhosis as well as synthetic data we generated based on the serum proteomic data. The results we obtained by analysis of the synthetic data demonstrated that both intensity-level and scan-level purification models can accurately infer the mixture proportions and the underlying true cancerous sources with small average error ratios (data, we found more proteins and metabolites with significant changes between HCC cases and cirrhotic controls. Candidate biomarkers selected after purification yielded biologically meaningful pathway analysis results and improved disease discrimination power in terms of the area under ROC curve compared to the results found prior to purification. We investigated topic model-based inference methods to computationally address the heterogeneity issue in samples analyzed by LC/GC-MS. We observed

  9. Lung Cancer Serum Biomarker Discovery Using Label Free LC-MS/MS

    Science.gov (United States)

    Zeng, Xuemei; Hood, Brian L.; Zhao, Ting; Conrads, Thomas P.; Sun, Mai; Gopalakrishnan, Vanathi; Grover, Himanshu; Day, Roger S.; Weissfeld, Joel L.; Wilson, David O.; Siegfried, Jill M.; Bigbee, William L.

    2011-01-01

    Introduction Lung cancer remains the leading cause of cancer-related death with poor survival due to the late stage at which lung cancer is typically diagnosed. Given the clinical burden from lung cancer, and the relatively favorable survival associated with early stage lung cancer, biomarkers for early detection of lung cancer are of important potential clinical benefit. Methods We performed a global lung cancer serum biomarker discovery study using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in a set of pooled non-small cell lung cancer (NSCLC) case sera and matched controls. Immunoaffinity subtraction was used to deplete the top most abundant serum proteins; the remaining serum proteins were subjected to trypsin digestion and analyzed in triplicate by LC-MS/MS. The tandem mass spectrum data were searched against the human proteome database and the resultant spectral counting data were used to estimate the relative abundance of proteins across the case/control serum pools. The spectral counting derived abundances of some candidate biomarker proteins were confirmed with multiple reaction monitoring MS assays. Results A list of 49 differentially abundant candidate proteins was compiled by applying a negative binomial regression model to the spectral counting data (pbiomarkers with statistically significant differential abundance across the lung cancer case/control pools which, when validated, could improve lung cancer early detection. PMID:21304412

  10. Random glycopeptide bead libraries for seromic biomarker discovery

    DEFF Research Database (Denmark)

    Kracun, Stjepan Kresimir; Cló, Emiliano; Clausen, Henrik

    2010-01-01

    have developed a random glycopeptide bead library screening platform for detection of autoantibodies and other binding proteins. Libraries were build on biocompatible PEGA beads including a safety-catch C-terminal amide linker (SCAL) that allowed mild cleavage conditions (I(2)/NaBH(4) and TFA...... to other tumor glycoforms by on-bead enzymatic glycosylation reactions with recombinant glycosyltransferases. Hence, we have developed a high-throughput flexible platform for rapid discovery of O-glycopeptide biomarkers and the method has applicability in other types of assays such as lectin...

  11. Proteome screening of pleural effusions identifies galectin 1 as a diagnostic biomarker and highlights several prognostic biomarkers for malignant mesothelioma.

    Science.gov (United States)

    Mundt, Filip; Johansson, Henrik J; Forshed, Jenny; Arslan, Sertaç; Metintas, Muzaffer; Dobra, Katalin; Lehtiö, Janne; Hjerpe, Anders

    2014-03-01

    Malignant mesothelioma is an aggressive asbestos-induced cancer, and affected patients have a median survival of approximately one year after diagnosis. It is often difficult to reach a conclusive diagnosis, and ancillary measurements of soluble biomarkers could increase diagnostic accuracy. Unfortunately, few soluble mesothelioma biomarkers are suitable for clinical application. Here we screened the effusion proteomes of mesothelioma and lung adenocarcinoma patients to identify novel soluble mesothelioma biomarkers. We performed quantitative mass-spectrometry-based proteomics using isobaric tags for quantification and used narrow-range immobilized pH gradient/high-resolution isoelectric focusing (pH 4-4.25) prior to analysis by means of nano liquid chromatography coupled to MS/MS. More than 1,300 proteins were identified in pleural effusions from patients with malignant mesothelioma (n = 6), lung adenocarcinoma (n = 6), or benign mesotheliosis (n = 7). Data are available via ProteomeXchange with identifier PXD000531. The identified proteins included a set of known mesothelioma markers and proteins that regulate hallmarks of cancer such as invasion, angiogenesis, and immune evasion, plus several new candidate proteins. Seven candidates (aldo-keto reductase 1B10, apolipoprotein C-I, galectin 1, myosin-VIIb, superoxide dismutase 2, tenascin C, and thrombospondin 1) were validated by enzyme-linked immunosorbent assays in a larger group of patients with mesothelioma (n = 37) or metastatic carcinomas (n = 25) and in effusions from patients with benign, reactive conditions (n = 16). Galectin 1 was identified as overexpressed in effusions from lung adenocarcinoma relative to mesothelioma and was validated as an excellent predictor for metastatic carcinomas against malignant mesothelioma. Galectin 1, aldo-keto reductase 1B10, and apolipoprotein C-I were all identified as potential prognostic biomarkers for malignant mesothelioma. This analysis of the effusion proteome

  12. Enhancement of MS Signal Processing For Improved Cancer Biomarker Discovery

    Science.gov (United States)

    Si, Qian

    Technological advances in proteomics have shown great potential in detecting cancer at the earliest stages. One way is to use the time of flight mass spectroscopy to identify biomarkers, or early disease indicators related to the cancer. Pattern analysis of time of flight mass spectra data from blood and tissue samples gives great hope for the identification of potential biomarkers among the complex mixture of biological and chemical samples for the early cancer detection. One of the keys issues is the pre-processing of raw mass spectra data. A lot of challenges need to be addressed: unknown noise character associated with the large volume of data, high variability in the mass spectroscopy measurements, and poorly understood signal background and so on. This dissertation focuses on developing statistical algorithms and creating data mining tools for computationally improved signal processing for mass spectrometry data. I have introduced an advanced accurate estimate of the noise model and a half-supervised method of mass spectrum data processing which requires little knowledge about the data.

  13. A novel proteomic biomarker panel as a diagnostic tool for patients with ovarian cancer

    DEFF Research Database (Denmark)

    Høgdall, Claus; Fung, Eric T; Christensen, Ib J

    2011-01-01

    Previous reports have shown that the proteomic markers apolipoprotein A1, hepcidin, transferrin, inter-alpha trypsin IV internal fragment, transthyretin, connective-tissue activating protein 3 and beta-2 microglobulin may discriminate between a benign pelvic mass and ovarian cancer (OC). The aim...... was to determine if these serum proteomic biomarkers alone as well as in combination with age and serum CA125, could be helpful in triage of women with a pelvic mass....

  14. Serum quantitative proteomic analysis reveals potential zinc-associated biomarkers for nonbacterial prostatitis.

    Science.gov (United States)

    Yang, Xiaoli; Li, Hongtao; Zhang, Chengdong; Lin, Zhidi; Zhang, Xinhua; Zhang, Youjie; Yu, Yanbao; Liu, Kun; Li, Muyan; Zhang, Yuening; Lv, Wenxin; Xie, Yuanliang; Lu, Zheng; Wu, Chunlei; Teng, Ruobing; Lu, Shaoming; He, Min; Mo, Zengnan

    2015-10-01

    Prostatitis is one of the most common urological problems afflicting adult men. The etiology and pathogenesis of nonbacterial prostatitis, which accounts for 90-95% of cases, is largely unknown. As serum proteins often indicate the overall pathologic status of patients, we hypothesized that protein biomarkers of prostatitis might be identified by comparing the serum proteomes of patients with and without nonbacterial prostatitis. All untreated samples were collected from subjects attending the Fangchenggang Area Male Health and Examination Survey (FAMHES). We profiled pooled serum samples from four carefully selected groups of patients (n = 10/group) representing the various categories of nonbacterial prostatitis (IIIa, IIIb, and IV) and matched healthy controls using a mass spectrometry-based 4-plex iTRAQ proteomic approach. More than 160 samples were validated by ELISA. Overall, 69 proteins were identified. Among them, 42, 52, and 37 proteins were identified with differential expression in Category IIIa, IIIb, and IV prostatitis, respectively. The 19 common proteins were related to immunity and defense, ion binding, transport, and proteolysis. Two zinc-binding proteins, superoxide dismutase 3 (SOD3), and carbonic anhydrase I (CA1), were significantly higher in all types of prostatitis than in the control. A receiver operating characteristic curve estimated sensitivities of 50.4 and 68.1% and specificities of 92.1 and 83.8% for CA1 and SOD3, respectively, in detecting nonbacterial prostatitis. The serum CA1 concentration was inversely correlated to the zinc concentration in expressed-prostatic secretions. Our findings suggest that SOD3 and CA1 are potential diagnostic markers of nonbacterial prostatitis, although further large-scale studies are required. The molecular profiles of nonbacterial prostatitis pathogenesis may lay a foundation for discovery of new therapies. © 2015 Wiley Periodicals, Inc.

  15. Metabolomics in cancer biomarker discovery: current trends and future perspectives.

    Science.gov (United States)

    Armitage, Emily G; Barbas, Coral

    2014-01-01

    Cancer is one of the most devastating human diseases that causes a vast number of mortalities worldwide each year. Cancer research is one of the largest fields in the life sciences and despite many astounding breakthroughs and contributions over the past few decades, there is still a considerable amount to unveil on the function of cancer. It is well known that cancer metabolism differs from that of normal tissue and an important hypothesis published in the 1950s by Otto Warburg proposed that cancer cells rely on anaerobic metabolism as the source for energy, even under physiological oxygen levels. Following this, cancer central carbon metabolism has been researched extensively and beyond respiration, cancer has been found to involve a wide range of metabolic processes, and many more are still to be unveiled. Studying cancer through metabolomics could reveal new biomarkers for cancer that could be useful for its future prognosis, diagnosis and therapy. Metabolomics is becoming an increasingly popular tool in the life sciences since it is a relatively fast and accurate technique that can be applied with either a particular focus or in a global manner to reveal new knowledge about biological systems. There have been many examples of its application to reveal potential biomarkers in different cancers that have employed a range of different analytical platforms. In this review, approaches in metabolomics that have been employed in cancer biomarker discovery are discussed and some of the most noteworthy research in the field is highlighted. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Quantitative proteomic analysis for novel biomarkers of buccal squamous cell carcinoma arising in background of oral submucous fibrosis

    International Nuclear Information System (INIS)

    Liu, Wen; Zeng, Lijuan; Li, Ning; Wang, Fei; Jiang, Canhua; Guo, Feng; Chen, Xinqun; Su, Tong; Xu, Chunjiao; Zhang, Shanshan; Fang, Changyun

    2016-01-01

    In South and Southeast Asian, the majority of buccal squamous cell carcinoma (BSCC) can arise from oral submucous fibrosis (OSF). BSCCs develop in OSF that are often not completely resected, causing local relapse. The aim of our study was to find candidate protein biomarkers to detect OSF and predict prognosis in BSCCs by quantitative proteomics approaches. We compared normal oral mucosa (NBM) and paired biopsies of BSCC and OSF by quantitative proteomics using isobaric tags for relative and absolute quantification (iTRAQ) to discover proteins with differential expression. Gene Ontology and KEGG networks were analyzed. The prognostic value of biomarkers was evaluated in 94 BSCCs accompanied with OSF. Significant associations were assessed by Kaplan-Meier survival and Cox-proportional hazards analysis. In total 30 proteins were identified with significantly different expression (false discovery rate < 0.05) among three tissues. Two consistently upregulated proteins, ANXA4 and FLNA, were validated. The disease-free survival was negatively associated with the expression of ANXA4 (hazard ratio, 3.4; P = 0.000), FLNA (hazard ratio, 2.1; P = 0.000) and their combination (hazard ratio, 8.8; P = 0.002) in BSCCs. The present study indicates that iTRAQ quantitative proteomics analysis for tissues of BSCC and OSF is a reliable strategy. A significantly up-regulated ANXA4 and FLNA could be not only candidate biomarkers for BSCC prognosis but also potential targets for its therapy. The online version of this article (doi:10.1186/s12885-016-2650-1) contains supplementary material, which is available to authorized users

  17. Serum Proteomics in Dementia : Discovery and Validation of Biomarkers

    NARCIS (Netherlands)

    L. IJsselstijn (Linda)

    2013-01-01

    textabstractDementia is a syndrome due to disease of the brain, usually of a chronic or progressive nature, in which there is disturbance of multiple higher cortical functions, including memory, thinking, orientation, comprehension, calculation, learning capacity, language, and

  18. Multi-dimensional discovery of biomarker and phenotype complexes

    Directory of Open Access Journals (Sweden)

    Huang Kun

    2010-10-01

    Full Text Available Abstract Background Given the rapid growth of translational research and personalized healthcare paradigms, the ability to relate and reason upon networks of bio-molecular and phenotypic variables at various levels of granularity in order to diagnose, stage and plan treatments for disease states is highly desirable. Numerous techniques exist that can be used to develop networks of co-expressed or otherwise related genes and clinical features. Such techniques can also be used to create formalized knowledge collections based upon the information incumbent to ontologies and domain literature. However, reports of integrative approaches that bridge such networks to create systems-level models of disease or wellness are notably lacking in the contemporary literature. Results In response to the preceding gap in knowledge and practice, we report upon a prototypical series of experiments that utilize multi-modal approaches to network induction. These experiments are intended to elicit meaningful and significant biomarker-phenotype complexes spanning multiple levels of granularity. This work has been performed in the experimental context of a large-scale clinical and basic science data repository maintained by the National Cancer Institute (NCI funded Chronic Lymphocytic Leukemia Research Consortium. Conclusions Our results indicate that it is computationally tractable to link orthogonal networks of genes, clinical features, and conceptual knowledge to create multi-dimensional models of interrelated biomarkers and phenotypes. Further, our results indicate that such systems-level models contain interrelated bio-molecular and clinical markers capable of supporting hypothesis discovery and testing. Based on such findings, we propose a conceptual model intended to inform the cross-linkage of the results of such methods. This model has as its aim the identification of novel and knowledge-anchored biomarker-phenotype complexes.

  19. Proteomic profiling of exosomes leads to the identification of novel biomarkers for prostate cancer

    NARCIS (Netherlands)

    D. Duijvesz (Diederick); K.E. Burnum-Johnson (Kristin); M.A. Gritsenko (Marina); A.M. Hoogland (Marije); M.S. Vredenbregt-van den Berg (Mirella); R. Willemsen (Rob); T.M. Luider (Theo); L. Paša-Tolić (Ljiljana); G.W. Jenster (Guido)

    2013-01-01

    textabstractBackground: Current markers for prostate cancer, such as PSA lack specificity. Therefore, novel biomarkers are needed. Unfortunately, the complexity of body fluids often hampers biomarker discovery. An attractive alternative approach is the isolation of small vesicles, i.e. exosomes,

  20. Multicentric validation of proteomic biomarkers in urine specific for diabetic nephropathy

    DEFF Research Database (Denmark)

    Alkhalaf, Alaa; Zürbig, Petra; Bakker, Stephan J L

    2010-01-01

    /d and diabetic retinopathy (n = 66). Controls were matched for gender and diabetes duration (n = 82). METHODOLOGY/PRINCIPAL FINDINGS: Proteome analysis was performed blinded using high-resolution capillary electrophoresis coupled with mass spectrometry (CE-MS). Data were evaluated employing the previously......BACKGROUND: Urine proteome analysis is rapidly emerging as a tool for diagnosis and prognosis in disease states. For diagnosis of diabetic nephropathy (DN), urinary proteome analysis was successfully applied in a pilot study. The validity of the previously established proteomic biomarkers...... with respect to the diagnostic and prognostic potential was assessed on a separate set of patients recruited at three different European centers. In this case-control study of 148 Caucasian patients with diabetes mellitus type 2 and duration ≥5 years, cases of DN were defined as albuminuria >300 mg...

  1. Salivary proteomic and genomic biomarkers for primary Sjogren's syndrome

    NARCIS (Netherlands)

    Hu, Shen; Wang, Jianghua; Leong, Sonya; Xie, Yongming; Yu, Tianwei; Zhou, Hui; Henry, Sharon; Vissink, Arjan; Pijpe, Justin; Kallenberg, Cees; Elashoff, David; Loo, Joseph A.; Wong, David T.

    2007-01-01

    Objective. To identify a panel of protein and messenger RNA (mRNA) biomarkers in human whole saliva (WS) that may be used in the detection of primary Sjogren's syndrome (SS). Methods. Mass spectrometry and expression microarray profiling were used to identify candidate protein and mRNA, biomarkers

  2. Salivary proteomic and genomic biomarkers for primary Sjogren's syndrome

    NARCIS (Netherlands)

    Hu, Shen; Wang, Jianghua; Leong, Sonya; Xie, Yongming; Yu, Tianwei; Zhou, Hui; Henry, Sharon; Vissink, Arjan; Pijpe, Justin; Kallenberg, Cees; Elashoff, David; Loo, Joseph A.; Wong, David T.

    Objective. To identify a panel of protein and messenger RNA (mRNA) biomarkers in human whole saliva (WS) that may be used in the detection of primary Sjogren's syndrome (SS). Methods. Mass spectrometry and expression microarray profiling were used to identify candidate protein and mRNA, biomarkers

  3. A semiparametric modeling framework for potential biomarker discovery and the development of metabonomic profiles

    Directory of Open Access Journals (Sweden)

    Dey Dipak K

    2008-01-01

    Full Text Available Abstract Background The discovery of biomarkers is an important step towards the development of criteria for early diagnosis of disease status. Recently electrospray ionization (ESI and matrix assisted laser desorption (MALDI time-of-flight (TOF mass spectrometry have been used to identify biomarkers both in proteomics and metabonomics studies. Data sets generated from such studies are generally very large in size and thus require the use of sophisticated statistical techniques to glean useful information. Most recent attempts to process these types of data model each compound's intensity either discretely by positional (mass to charge ratio clustering or through each compounds' own intensity distribution. Traditionally data processing steps such as noise removal, background elimination and m/z alignment, are generally carried out separately resulting in unsatisfactory propagation of signals in the final model. Results In the present study a novel semi-parametric approach has been developed to distinguish urinary metabolic profiles in a group of traumatic patients from those of a control group consisting of normal individuals. Data sets obtained from the replicates of a single subject were used to develop a functional profile through Dirichlet mixture of beta distribution. This functional profile is flexible enough to accommodate variability of the instrument and the inherent variability of each individual, thus simultaneously addressing different sources of systematic error. To address instrument variability, all data sets were analyzed in replicate, an important issue ignored by most studies in the past. Different model comparisons were performed to select the best model for each subject. The m/z values in the window of the irregular pattern are then further recommended for possible biomarker discovery. Conclusion To the best of our knowledge this is the very first attempt to model the physical process behind the time-of flight mass

  4. Identification of cancer protein biomarkers using proteomic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mor, Gil G.; Ward, David C.; Bray-Ward, Patricia

    2016-10-18

    The claimed invention describes methods to diagnose or aid in the diagnosis of cancer. The claimed methods are based on the identification of biomarkers which are particularly well suited to discriminate between cancer subjects and healthy subjects. These biomarkers were identified using a unique and novel screening method described herein. The biomarkers identified herein can also be used in the prognosis and monitoring of cancer. The invention comprises the use of leptin, prolactin, OPN and IGF-II for diagnosing, prognosis and monitoring of ovarian cancer.

  5. Integrating proteomic and functional genomic technologies in discovery-driven translational breast cancer research

    DEFF Research Database (Denmark)

    Celis, Julio E; Gromov, Pavel; Gromova, Irina

    2003-01-01

    The application of state-of-the-art proteomics and functional genomics technologies to the study of cancer is rapidly shifting toward the analysis of clinically relevant samples derived from patients, as the ultimate aim of translational research is to bring basic discoveries closer to the bedside...

  6. The Urine Proteome as a Biomarker of Radiation Injury: Submitted to Proteomics- Clinical Applications Special Issue: "Renal and Urinary Proteomics (Thongboonkerd)"

    Science.gov (United States)

    Sharma, Mukut; Halligan, Brian D; Wakim, Bassam T; Savin, Virginia J; Cohen, Eric P; Moulder, John E

    2008-06-18

    Terrorist attacks or nuclear accidents could expose large numbers of people to ionizing radiation, and early biomarkers of radiation injury would be critical for triage, treatment and follow-up of such individuals. However, no such biomarkers have yet been proven to exist. We tested the potential of high throughput proteomics to identify protein biomarkers of radiation injury after total body X-ray irradiation in a rat model. Subtle functional changes in the kidney are suggested by an increased glomerular permeability for macromolecules measured within 24 hours after TBI. Ultrastructural changes in glomerular podocytes include partial loss of the interdigitating organization of foot processes. Analysis of urine by LC-MS/MS and 2D-GE showed significant changes in the urine proteome within 24 hours after TBI. Tissue kallikrein 1-related peptidase, cysteine proteinase inhibitor cystatin C and oxidized histidine were found to be increased while a number of proteinase inhibitors including kallikrein-binding protein and albumin were found to be decreased post-irradiation. Thus, TBI causes immediately detectable changes in renal structure and function and in the urinary protein profile. This suggests that both systemic and renal changes are induced by radiation and it may be possible to identify a set of biomarkers unique to radiation injury.

  7. Mass spectrometric based approaches in urine metabolomics and biomarker discovery.

    Science.gov (United States)

    Khamis, Mona M; Adamko, Darryl J; El-Aneed, Anas

    2017-03-01

    Urine metabolomics has recently emerged as a prominent field for the discovery of non-invasive biomarkers that can detect subtle metabolic discrepancies in response to a specific disease or therapeutic intervention. Urine, compared to other biofluids, is characterized by its ease of collection, richness in metabolites and its ability to reflect imbalances of all biochemical pathways within the body. Following urine collection for metabolomic analysis, samples must be immediately frozen to quench any biogenic and/or non-biogenic chemical reactions. According to the aim of the experiment; sample preparation can vary from simple procedures such as filtration to more specific extraction protocols such as liquid-liquid extraction. Due to the lack of comprehensive studies on urine metabolome stability, higher storage temperatures (i.e. 4°C) and repetitive freeze-thaw cycles should be avoided. To date, among all analytical techniques, mass spectrometry (MS) provides the best sensitivity, selectivity and identification capabilities to analyze the majority of the metabolite composition in the urine. Combined with the qualitative and quantitative capabilities of MS, and due to the continuous improvements in its related technologies (i.e. ultra high-performance liquid chromatography [UPLC] and hydrophilic interaction liquid chromatography [HILIC]), liquid chromatography (LC)-MS is unequivocally the most utilized and the most informative analytical tool employed in urine metabolomics. Furthermore, differential isotope tagging techniques has provided a solution to ion suppression from urine matrix thus allowing for quantitative analysis. In addition to LC-MS, other MS-based technologies have been utilized in urine metabolomics. These include direct injection (infusion)-MS, capillary electrophoresis-MS and gas chromatography-MS. In this article, the current progresses of different MS-based techniques in exploring the urine metabolome as well as the recent findings in providing

  8. Crowdsourcing Disease Biomarker Discovery Research: The IP4IC Study.

    Science.gov (United States)

    Chancellor, Michael B; Bartolone, Sarah N; Veerecke, Andrew; Lamb, Laura E

    2018-05-01

    Biomarker discovery is limited by readily assessable, cost efficient human samples available in large numbers that represent the entire heterogeneity of the disease. We developed a novel, active participation crowdsourcing method to determine BP-RS (Bladder Permeability Defect Risk Score). It is based on noninvasive urinary cytokines to discriminate patients with interstitial cystitis/bladder pain syndrome who had Hunner lesions from controls and patients with interstitial cystitis/bladder pain syndrome but without Hunner lesions. We performed a national crowdsourcing study in cooperation with the Interstitial Cystitis Association. Patients answered demographic, symptom severity and urinary frequency questionnaires on a HIPAA (Health Insurance Portability and Accountability Act) compliant website. Urine samples were collected at home, stabilized with a preservative and sent to Beaumont Hospital for analysis. The expression of 3 urinary cytokines was used in a machine learning algorithm to develop BP-RS. The IP4IC study collected a total of 448 urine samples, representing 153 patients (147 females and 6 males) with interstitial cystitis/bladder pain syndrome, of whom 54 (50 females and 4 males) had Hunner lesions. A total of 159 female and 136 male controls also participated, who were age matched. A defined BP-RS was calculated to predict interstitial cystitis/bladder pain syndrome with Hunner lesions or a bladder permeability defect etiology with 89% validity. In this novel participation crowdsourcing study we obtained a large number of urine samples from 46 states, which were collected at home, shipped and stored at room temperature. Using a machine learning algorithm we developed BP-RS to quantify the risk of interstitial cystitis/bladder pain syndrome with Hunner lesions, which is indicative of a bladder permeability defect etiology. To our knowledge BP-RS is the first validated urine biomarker assay for interstitial cystitis/bladder pain syndrome and one of the

  9. Disease Classification and Biomarker Discovery Using ECG Data

    Directory of Open Access Journals (Sweden)

    Rong Huang

    2015-01-01

    Full Text Available In the recent decade, disease classification and biomarker discovery have become increasingly important in modern biological and medical research. ECGs are comparatively low-cost and noninvasive in screening and diagnosing heart diseases. With the development of personal ECG monitors, large amounts of ECGs are recorded and stored; therefore, fast and efficient algorithms are called for to analyze the data and make diagnosis. In this paper, an efficient and easy-to-interpret procedure of cardiac disease classification is developed through novel feature extraction methods and comparison of classifiers. Motivated by the observation that the distributions of various measures on ECGs of the diseased group are often skewed, heavy-tailed, or multimodal, we characterize the distributions by sample quantiles which outperform sample means. Three classifiers are compared in application both to all features and to dimension-reduced features by PCA: stepwise discriminant analysis (SDA, SVM, and LASSO logistic regression. It is found that SDA applied to dimension-reduced features by PCA is the most stable and effective procedure, with sensitivity, specificity, and accuracy being 89.68%, 84.62%, and 88.52%, respectively.

  10. The Present and Future of Biomarkers in Prostate Cancer: Proteomics, Genomics, and Immunology Advancements

    Directory of Open Access Journals (Sweden)

    Pierre-Olivier Gaudreau

    2016-01-01

    Full Text Available Prostate cancer (PC is the second most common form of cancer in men worldwide. Biomarkers have emerged as essential tools for treatment and assessment since the variability of disease behavior, the cost and diversity of treatments, and the related impairment of quality of life have given rise to a need for a personalized approach. High-throughput technology platforms in proteomics and genomics have accelerated the development of biomarkers. Furthermore, recent successes of several new agents in PC, including immunotherapy, have stimulated the search for predictors of response and resistance and have improved the understanding of the biological mechanisms at work. This review provides an overview of currently established biomarkers in PC, as well as a selection of the most promising biomarkers within these particular fields of development.

  11. Improving the quality of biomarker discovery research: the right samples and enough of them.

    Science.gov (United States)

    Pepe, Margaret S; Li, Christopher I; Feng, Ziding

    2015-06-01

    Biomarker discovery research has yielded few biomarkers that validate for clinical use. A contributing factor may be poor study designs. The goal in discovery research is to identify a subset of potentially useful markers from a large set of candidates assayed on case and control samples. We recommend the PRoBE design for selecting samples. We propose sample size calculations that require specifying: (i) a definition for biomarker performance; (ii) the proportion of useful markers the study should identify (Discovery Power); and (iii) the tolerable number of useless markers amongst those identified (False Leads Expected, FLE). We apply the methodology to a study of 9,000 candidate biomarkers for risk of colon cancer recurrence where a useful biomarker has positive predictive value ≥ 30%. We find that 40 patients with recurrence and 160 without recurrence suffice to filter out 98% of useless markers (2% FLE) while identifying 95% of useful biomarkers (95% Discovery Power). Alternative methods for sample size calculation required more assumptions. Biomarker discovery research should utilize quality biospecimen repositories and include sample sizes that enable markers meeting prespecified performance characteristics for well-defined clinical applications to be identified. The scientific rigor of discovery research should be improved. ©2015 American Association for Cancer Research.

  12. Discovery based and targeted Mass Spectrometry in farm animal proteomics

    DEFF Research Database (Denmark)

    Bendixen, Emøke

    2013-01-01

    for investigating farm animal biology. SRM is particularly important for validation biomarker candidates This talk will introduce the use of different mass spectrometry approaches through examples related to food quality and animal welfare, including studies of gut health in pigs, host pathogen interactions...

  13. Identification of 10 Candidate Biomarkers Distinguishing Tuberculous and Malignant Pleural Fluid by Proteomic Methods

    OpenAIRE

    Lee, Chang Youl; Hong, Ji Young; Lee, Myung-Goo; Suh, In-Bum

    2017-01-01

    Purpose Pleural effusion, an accumulation of fluid in the pleural space, usually occurs in patients when the rate of fluid formation exceeds the rate of fluid removal. The differential diagnosis of tuberculous pleurisy and malignant pleural effusion is a difficult task in high tuberculous prevalence areas. The aim of the present study was to identify novel biomarkers for the diagnosis of pleural fluid using proteomics technology. Materials and Methods We used samples from five patients with t...

  14. Biomarker Discovery in Gulf War Veterans: Development of a War Illness Diagnostic Panel

    Science.gov (United States)

    2016-12-01

    Award Number: W81XWH-12-1-0382 TITLE: Biomarker Discovery in Gulf War Veterans: Development of a War Illness Diagnostic Panel PRINCIPAL...SUBTITLE Biomarker Discovery in Gulf War Veterans: Development of a War Illness Diagnostic Panel 5a. CONTRACT NUMBER W81XWH-12-1-0382 5b. GRANT...of the 1990-1991 Gulf War are affected by Gulf War illness (GWI), the chronic condition currently defined only by veterans’ self-reported symptoms

  15. Proteomics analysis after traumatic brain injury in rats: the search for potential biomarkers

    Directory of Open Access Journals (Sweden)

    Jun Ding

    2015-04-01

    Full Text Available Many studies of protein expression after traumatic brain injury (TBI have identified biomarkers for diagnosing or determining the prognosis of TBI. In this study, we searched for additional protein markers of TBI using a fluid perfusion impact device to model TBI in S-D rats. Two-dimensional gel electrophoresis and mass spectrometry were used to identify differentially expressed proteins. After proteomic analysis, we detected 405 and 371 protein spots within a pH range of 3-10 from sham-treated and contused brain cortex, respectively. Eighty protein spots were differentially expressed in the two groups and 20 of these proteins were identified. This study validated the established biomarkers of TBI and identified potential biomarkers that could be examined in future work.

  16. Advances in the proteomic discovery of novel therapeutic targets in cancer

    Directory of Open Access Journals (Sweden)

    Guo S

    2013-10-01

    Full Text Available Shanchun Guo,1 Jin Zou,2 Guangdi Wang3 1Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 2Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA, USA; 3Research Centers in Minority Institutions Cancer Research Program, Xavier University of Louisiana, New Orleans, LA, USA Abstract: Proteomic approaches are continuing to make headways in cancer research by helping to elucidate complex signaling networks that underlie tumorigenesis and disease progression. This review describes recent advances made in the proteomic discovery of drug targets for therapeutic development. A variety of technical and methodological advances are overviewed with a critical assessment of challenges and potentials. A number of potential drug targets, such as baculoviral inhibitor of apoptosis protein repeat-containing protein 6, macrophage inhibitory cytokine 1, phosphoglycerate mutase 1, prohibitin 1, fascin, and pyruvate kinase isozyme 2 were identified in the proteomic analysis of drug-resistant cancer cells, drug action, and differential disease state tissues. Future directions for proteomics-based target identification and validation to be more translation efficient are also discussed. Keywords: proteomics, cancer, therapeutic target, signaling network, tumorigenesis

  17. Urine Proteomics in the Era of Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Ashley Beasley-Green

    2016-11-01

    Full Text Available With the technological advances of mass spectrometry (MS-based platforms, clinical proteomics is one of the most rapidly growing areas in biomedical research. Urine proteomics has become a popular subdiscipline of clinical proteomics because it is an ideal source for the discovery of noninvasive disease biomarkers. The urine proteome offers a comprehensive view of the local and systemic physiology since the proteome is primarily composed of proteins/peptides from the kidneys and plasma. The emergence of MS-based proteomic platforms as prominent bioanalytical tools in clinical applications has enhanced the identification of protein-based urinary biomarkers. This review highlights the characteristics of urine that make it an attractive biofluid for biomarker discovery and the impact of MS-based technologies on the clinical assessment of urinary protein biomarkers.

  18. Plasma Proteome Biomarkers of Inflammation in School Aged Children in Nepal.

    Directory of Open Access Journals (Sweden)

    Sun Eun Lee

    Full Text Available Inflammation is a condition stemming from complex host defense and tissue repair mechanisms, often simply characterized by plasma levels of a single acute reactant. We attempted to identify candidate biomarkers of systemic inflammation within the plasma proteome. We applied quantitative proteomics using isobaric mass tags (iTRAQ tandem mass spectrometry to quantify proteins in plasma of 500 Nepalese children 6-8 years of age. We evaluated those that co-vary with inflammation, indexed by α-1-acid glycoprotein (AGP, a conventional biomarker of inflammation in population studies. Among 982 proteins quantified in >10% of samples, 99 were strongly associated with AGP at a family-wise error rate of 0.1%. Magnitude and significance of association varied more among proteins positively (n = 41 than negatively associated (n = 58 with AGP. The former included known positive acute phase proteins including C-reactive protein, serum amyloid A, complement components, protease inhibitors, transport proteins with anti-oxidative activity, and numerous unexpected intracellular signaling molecules. Negatively associated proteins exhibited distinct differences in abundance between secretory hepatic proteins involved in transporting or binding lipids, micronutrients (vitamin A and calcium, growth factors and sex hormones, and proteins of largely extra-hepatic origin involved in the formation and metabolic regulation of extracellular matrix. With the same analytical approach and the significance threshold, seventy-two out of the 99 proteins were commonly associated with CRP, an established biomarker of inflammation, suggesting the validity of the identified proteins. Our findings have revealed a vast plasma proteome within a free-living population of children that comprise functional biomarkers of homeostatic and induced host defense, nutrient metabolism and tissue repair, representing a set of plasma proteins that may be used to assess dynamics and extent of

  19. Data-Independent Acquisition-Based Quantitative Proteomic Analysis Reveals Potential Biomarkers of Kidney Cancer.

    Science.gov (United States)

    Song, Yimeng; Zhong, Lijun; Zhou, Juntuo; Lu, Min; Xing, Tianying; Ma, Lulin; Shen, Jing

    2017-12-01

    Renal cell carcinoma (RCC) is a malignant and metastatic cancer with 95% mortality, and clear cell RCC (ccRCC) is the most observed among the five major subtypes of RCC. Specific biomarkers that can distinguish cancer tissues from adjacent normal tissues should be developed to diagnose this disease in early stages and conduct a reliable prognostic evaluation. Data-independent acquisition (DIA) strategy has been widely employed in proteomic analysis because of various advantages, including enhanced protein coverage and reliable data acquisition. In this study, a DIA workflow is constructed on a quadrupole-Orbitrap LC-MS platform to reveal dysregulated proteins between ccRCC and adjacent normal tissues. More than 4000 proteins are identified, 436 of these proteins are dysregulated in ccRCC tissues. Bioinformatic analysis reveals that multiple pathways and Gene Ontology items are strongly associated with ccRCC. The expression levels of L-lactate dehydrogenase A chain, annexin A4, nicotinamide N-methyltransferase, and perilipin-2 examined through RT-qPCR, Western blot, and immunohistochemistry confirm the validity of the proteomic analysis results. The proposed DIA workflow yields optimum time efficiency and data reliability and provides a good choice for proteomic analysis in biological and clinical studies, and these dysregulated proteins might be potential biomarkers for ccRCC diagnosis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Non-invasively collected amniotic fluid as a source of possible biomarkers for premature rupture of membranes investigated by proteomic approach.

    Science.gov (United States)

    Consonni, Sara; Mainini, Veronica; Pizzardi, Agnese; Gianazza, Erica; Chinello, Clizia; Locatelli, Anna; Magni, Fulvio

    2014-02-01

    Preterm delivery is one of the main causes of perinatal morbidity and mortality and it accounts for 75 % of perinatal mortality and more than half of the long-term morbidity. We applied a proteomic approach based on mass spectrometry (MS) for biomarkers discovery of preterm premature rupture of membranes (pPROM) by investigating amniotic fluid (AF) invasively and non-invasively collected. Amniotic fluid was obtained from vagina of women with pPROM (group 1), PROM at term (group 2) and by genetic amniocentesis (group 3). Pre-fractionated AF proteome was analyzed through matrix assisted laser desorption ionization-time of flight (MALDI-TOF) MS. The characterization of proteins/peptides of interest was obtained by high performance liquid chromatography-electrospray tandem MS. Three peptides overexpressed in pPROM and able to discriminate the groups 1 and 2 were detected. One peptide was identified as the fragment Gly452LAVPDGPLGLPPKPro466 of the protein KIAA1522, expressed by fetal brain and liver. This peptide was overexpressed in a patient of the group 3, completely asymptomatic at the time of the amniocentesis, who later developed pPROM. Amniotic fluid invasively and non-invasively collected can be analyzed by MALDI-TOF MS to obtain proteomic profiles. Proteomic analysis identified a peptide with promising diagnostic capability for pPROM.

  1. Identification of azurocidin as a potential periodontitis biomarker by a proteomic analysis of gingival crevicular fluid

    Directory of Open Access Journals (Sweden)

    Lee Jae-Mok

    2011-07-01

    Full Text Available Abstract Background The inflammatory disease periodontitis results in tooth loss and can even lead to diseases of the whole body if not treated. Gingival crevicular fluid (GCF reflects the condition of the gingiva and contains proteins transuded from serum or cells at inflamed sites. In this study, we aimed to discover potential protein biomarkers for periodontitis in GCF proteome using LC-MS/MS. Results We identified 305 proteins from GCF of healthy individuals and periodontitis patients collected using a sterile gel loading tip by ESI-MS/MS coupled to nano-LC. Among these proteins, about 45 proteins were differentially expressed in the GCF proteome of moderate periodontitis patients when compared to the healthy individuals. We first identified azurocidin in the GCF, but not the saliva, as an upregulated protein in the periodontitis patients and verified its increased expression during periodontitis by ELISA using the GCF of the classified periodontitis patients compared to the healthy individuals. In addition, we found that azurocidin inhibited the differentiation of bone marrow-derived macrophages to osteoclasts. Conclusions Our results show that GCF collection using a gel loading tip and subsequent LC-MS/MS analysis following 1D-PAGE proteomic separation are effective for the analysis of the GCF proteome. Our current results also suggest that azurocidin could be a potential biomarker candidate for the early detection of inflammatory periodontal destruction by gingivitis and some chronic periodontitis. Our data also suggest that azurocidin may have an inhibitory role in osteoclast differentiation and, thus, a protective role in alveolar bone loss during the early stages of periodontitis.

  2. Novel ageing-biomarker discovery using data-intensive technologies

    OpenAIRE

    Griffiths, H.R.; Augustyniak, E.M.; Bennett, S.J.; Debacq-Chainiaux, F.; Dunston, C.R.; Kristensen, P.; Melchjorsen, C.J.; Navarrete, Santos A.; Simm, A.; Toussaint, O.

    2015-01-01

    Ageing is accompanied by many visible characteristics. Other biological and physiological markers are also well-described e.g. loss of circulating sex hormones and increased inflammatory cytokines. Biomarkers for healthy ageing studies are presently predicated on existing knowledge of ageing traits. The increasing availability of data-intensive methods enables deep-analysis of biological samples for novel biomarkers. We have adopted two discrete approaches in MARK-AGE Work Package 7 for bioma...

  3. Sparse Mbplsr for Metabolomics Data and Biomarker Discovery

    DEFF Research Database (Denmark)

    Karaman, İbrahim

    2014-01-01

    the link between high throughput metabolomics data generated on different analytical platforms, discover important metabolites deriving from the digestion processes in the gut, and automate metabolic pathway discovery from mass spectrometry. PLS (partial least squares) based chemometric methods were...

  4. Defining Diagnostic Biomarkers Using Shotgun Proteomics and MALDI-TOF Mass Spectrometry.

    Science.gov (United States)

    Armengaud, Jean

    2017-01-01

    Whole-cell MALDI-TOF has become a robust and widely used tool to quickly identify any pathogen. In addition to being routinely used in hospitals, it is also useful for low cost dereplication in large scale screening procedures of new environmental isolates for environmental biotechnology or taxonomical applications. Here, I describe how specific biomarkers can be defined using shotgun proteomics and whole-cell MALDI-TOF mass spectrometry. Based on MALDI-TOF spectra recorded on a given set of pathogens with internal calibrants, m/z values of interest are extracted. The proteins which contribute to these peaks are deduced from label-free shotgun proteomics measurements carried out on the same sample. Quantitative information based on the spectral count approach allows ranking the most probable candidates. Proteogenomic approaches help to define whether these proteins give the same m/z values along the whole taxon under consideration or result in heterogeneous lists. These specific biomarkers nicely complement conventional profiling approaches and may help to better define groups of organisms, for example at the subspecies level.

  5. Identification of Abiotic Stress Protein Biomarkers by Proteomic Screening of Crop Cultivar Diversity.

    Science.gov (United States)

    Barkla, Bronwyn J

    2016-09-08

    Modern day agriculture practice is narrowing the genetic diversity in our food supply. This may compromise the ability to obtain high yield under extreme climactic conditions, threatening food security for a rapidly growing world population. To identify genetic diversity, tolerance mechanisms of cultivars, landraces and wild relatives of major crops can be identified and ultimately exploited for yield improvement. Quantitative proteomics allows for the identification of proteins that may contribute to tolerance mechanisms by directly comparing protein abundance under stress conditions between genotypes differing in their stress responses. In this review, a summary is provided of the data accumulated from quantitative proteomic comparisons of crop genotypes/cultivars which present different stress tolerance responses when exposed to various abiotic stress conditions, including drought, salinity, high/low temperature, nutrient deficiency and UV-B irradiation. This field of research aims to identify molecular features that can be developed as biomarkers for crop improvement, however without accurate phenotyping, careful experimental design, statistical robustness and appropriate biomarker validation and verification it will be challenging to deliver what is promised.

  6. Identification of Abiotic Stress Protein Biomarkers by Proteomic Screening of Crop Cultivar Diversity

    Directory of Open Access Journals (Sweden)

    Bronwyn J. Barkla

    2016-09-01

    Full Text Available Modern day agriculture practice is narrowing the genetic diversity in our food supply. This may compromise the ability to obtain high yield under extreme climactic conditions, threatening food security for a rapidly growing world population. To identify genetic diversity, tolerance mechanisms of cultivars, landraces and wild relatives of major crops can be identified and ultimately exploited for yield improvement. Quantitative proteomics allows for the identification of proteins that may contribute to tolerance mechanisms by directly comparing protein abundance under stress conditions between genotypes differing in their stress responses. In this review, a summary is provided of the data accumulated from quantitative proteomic comparisons of crop genotypes/cultivars which present different stress tolerance responses when exposed to various abiotic stress conditions, including drought, salinity, high/low temperature, nutrient deficiency and UV-B irradiation. This field of research aims to identify molecular features that can be developed as biomarkers for crop improvement, however without accurate phenotyping, careful experimental design, statistical robustness and appropriate biomarker validation and verification it will be challenging to deliver what is promised.

  7. Application of Machine Learning to Proteomics Data: Classification and Biomarker Identification in Postgenomics Biology

    Science.gov (United States)

    Swan, Anna Louise; Mobasheri, Ali; Allaway, David; Liddell, Susan

    2013-01-01

    Abstract Mass spectrometry is an analytical technique for the characterization of biological samples and is increasingly used in omics studies because of its targeted, nontargeted, and high throughput abilities. However, due to the large datasets generated, it requires informatics approaches such as machine learning techniques to analyze and interpret relevant data. Machine learning can be applied to MS-derived proteomics data in two ways. First, directly to mass spectral peaks and second, to proteins identified by sequence database searching, although relative protein quantification is required for the latter. Machine learning has been applied to mass spectrometry data from different biological disciplines, particularly for various cancers. The aims of such investigations have been to identify biomarkers and to aid in diagnosis, prognosis, and treatment of specific diseases. This review describes how machine learning has been applied to proteomics tandem mass spectrometry data. This includes how it can be used to identify proteins suitable for use as biomarkers of disease and for classification of samples into disease or treatment groups, which may be applicable for diagnostics. It also includes the challenges faced by such investigations, such as prediction of proteins present, protein quantification, planning for the use of machine learning, and small sample sizes. PMID:24116388

  8. Protein corona as a proteome fingerprint: The example of hidden biomarkers for cow mastitis.

    Science.gov (United States)

    Miotto, Giovanni; Magro, Massimiliano; Terzo, Milo; Zaccarin, Mattia; Da Dalt, Laura; Bonaiuto, Emanuela; Baratella, Davide; Gabai, Gianfranco; Vianello, Fabio

    2016-04-01

    Proteome modifications in a biological fluid can potentially indicate the occurrence of pathologies, even if the identification of a proteome fingerprint correlated to a specific disease represents a very difficult task. When a nanomaterial is introduced into a biological fluid, macromolecules compete to form a protein corona on the nanoparticle surface, and depending on the specific proteome, different patterns of proteins will form the final protein corona shell depending on their affinity for the nanoparticle surface. Novel surface active maghemite nanoparticles (SAMNs) display a remarkable selectivity toward protein corona formation, and they are able to concentrate proteins and peptides presenting high affinities for their surface even if they are present in very low amounts. Thus, SAMNs may confer visibility to hidden biomarkers correlated to the occurrence of a pathology. In the present report, SAMNs were introduced into milk samples from healthy cows and from animals affected by mastitis, and the selectively bound protein corona shell was easily analyzed and quantified by gel electrophoresis and characterized by mass spectrometry. Upon incubation in mastitic milk, SAMNs were able to selectively bind αs2-casein fragments containing the FALPQYLK sequence, as part of the larger casocidin-1 peptide with strong antibacterial activity, which were not present in healthy samples. Thus, SAMNs can be used as a future candidate for the rapid diagnosis of mastitis in bovine milk. The present report proposes protein competition for SAMN protein corona formation as a means of mirroring proteome modifications. Thus, the selected protein shell on the nanoparticles results in a fingerprint of the specific pathology. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Gel-free proteomics reveal potential biomarkers of priming-induced salt tolerance in durum wheat.

    Science.gov (United States)

    Fercha, Azzedine; Capriotti, Anna Laura; Caruso, Giuseppe; Cavaliere, Chiara; Gherroucha, Hocine; Samperi, Roberto; Stampachiacchiere, Serena; Lagana, Aldo

    2013-10-08

    Seed priming has been successfully demonstrated to be an efficient method to improve crop productivity under stressful conditions. As a first step toward better understanding of the mechanisms underlying the priming-induced salt stress tolerance in durum wheat, and to overcome the limitations of the gel-based approach, a comparative gel-free proteomic analysis was conducted with durum wheat seed samples of varying vigor as generated by hydro- and ascorbate-priming treatments. Results indicate that hydro-priming was accompanied by significant changes of 72 proteins, most of which are involved in proteolysis, protein synthesis, metabolism and disease/defense response. Ascorbate-priming was, however, accompanied by significant changes of 83 proteins, which are mainly involved in protein metabolism, antioxidant protection, repair processes and, interestingly, in methionine-related metabolism. The present study provides new information for understanding how 'priming-memory' invokes seed stress tolerance. The current work describes the first study in which gel-free shotgun proteomics were used to investigate the metabolic seed protein fraction in durum wheat. A combined approach of protein fractionation, hydrogel nanoparticle enrichment technique, and gel-free shotgun proteomic analysis allowed us to identify over 380 proteins exhibiting greater molecular weight diversity (ranging from 7 to 258kDa). Accordingly, we propose that this approach could be useful to acquire a wider perspective and a better understanding of the seed proteome. In the present work, we employed this method to investigate the potential biomarkers of priming-induced salt tolerance in durum wheat. In this way, we identified several previously unrecognized proteins which were never been reported before, particularly for the ascorbate-priming treatment. These findings could provide new avenues for improving crop productivity, particularly under unfavorable environmental conditions. © 2013.

  10. Urinary proteomic biomarkers for diagnosis and risk stratification of autosomal dominant polycystic kidney disease: a multicentric study.

    Directory of Open Access Journals (Sweden)

    Andreas D Kistler

    Full Text Available Treatment options for autosomal dominant polycystic kidney disease (ADPKD will likely become available in the near future, hence reliable diagnostic and prognostic biomarkers for the disease are strongly needed. Here, we aimed to define urinary proteomic patterns in ADPKD patients, which aid diagnosis and risk stratification. By capillary electrophoresis online coupled to mass spectrometry (CE-MS, we compared the urinary peptidome of 41 ADPKD patients to 189 healthy controls and identified 657 peptides with significantly altered excretion, of which 209 could be sequenced using tandem mass spectrometry. A support-vector-machine based diagnostic biomarker model based on the 142 most consistent peptide markers achieved a diagnostic sensitivity of 84.5% and specificity of 94.2% in an independent validation cohort, consisting of 251 ADPKD patients from five different centers and 86 healthy controls. The proteomic alterations in ADPKD included, but were not limited to markers previously associated with acute kidney injury (AKI. The diagnostic biomarker model was highly specific for ADPKD when tested in a cohort consisting of 481 patients with a variety of renal and extrarenal diseases, including AKI. Similar to ultrasound, sensitivity and specificity of the diagnostic score depended on patient age and genotype. We were furthermore able to identify biomarkers for disease severity and progression. A proteomic severity score was developed to predict height adjusted total kidney volume (htTKV based on proteomic analysis of 134 ADPKD patients and showed a correlation of r = 0.415 (p<0.0001 with htTKV in an independent validation cohort consisting of 158 ADPKD patients. In conclusion, the performance of peptidomic biomarker scores is superior to any other biochemical markers of ADPKD and the proteomic biomarker patterns are a promising tool for prognostic evaluation of ADPKD.

  11. Common Subcluster Mining in Microarray Data for Molecular Biomarker Discovery.

    Science.gov (United States)

    Sadhu, Arnab; Bhattacharyya, Balaram

    2017-10-11

    Molecular biomarkers can be potential facilitators for detection of cancer at early stage which is otherwise difficult through conventional biomarkers. Gene expression data from microarray experiments on both normal and diseased cell samples provide enormous scope to explore genetic relations of disease using computational techniques. Varied patterns of expressions of thousands of genes at different cell conditions along with inherent experimental error make the task of isolating disease related genes challenging. In this paper, we present a data mining method, common subcluster mining (CSM), to discover highly perturbed genes under diseased condition from differential expression patterns. The method builds heap through superposing near centroid clusters from gene expression data of normal samples and extracts its core part. It, thus, isolates genes exhibiting the most stable state across normal samples and constitute a reference set for each centroid. It performs the same operation on datasets from corresponding diseased samples and isolates the genes showing drastic changes in their expression patterns. The method thus finds the disease-sensitive genesets when applied to datasets of lung cancer, prostrate cancer, pancreatic cancer, breast cancer, leukemia and pulmonary arterial hypertension. In majority of the cases, few new genes are found over and above some previously reported ones. Genes with distinct deviations in diseased samples are prospective candidates for molecular biomarkers of the respective disease.

  12. Potential protein biomarkers for burning mouth syndrome discovered by quantitative proteomics.

    Science.gov (United States)

    Ji, Eoon Hye; Diep, Cynthia; Liu, Tong; Li, Hong; Merrill, Robert; Messadi, Diana; Hu, Shen

    2017-01-01

    Burning mouth syndrome (BMS) is a chronic pain disorder characterized by severe burning sensation in normal looking oral mucosa. Diagnosis of BMS remains to be a challenge to oral healthcare professionals because the method for definite diagnosis is still uncertain. In this study, a quantitative saliva proteomic analysis was performed in order to identify target proteins in BMS patients' saliva that may be used as biomarkers for simple, non-invasive detection of the disease. By using isobaric tags for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry to quantify 1130 saliva proteins between BMS patients and healthy control subjects, we found that 50 proteins were significantly changed in the BMS patients when compared to the healthy control subjects ( p ≤ 0.05, 39 up-regulated and 11 down-regulated). Four candidates, alpha-enolase, interleukin-18 (IL-18), kallikrein-13 (KLK13), and cathepsin G, were selected for further validation. Based on enzyme-linked immunosorbent assay measurements, three potential biomarkers, alpha-enolase, IL-18, and KLK13, were successfully validated. The fold changes for alpha-enolase, IL-18, and KLK13 were determined as 3.6, 2.9, and 2.2 (burning mouth syndrome vs. control), and corresponding receiver operating characteristic values were determined as 0.78, 0.83, and 0.68, respectively. Our findings indicate that testing of the identified protein biomarkers in saliva might be a valuable clinical tool for BMS detection. Further validation studies of the identified biomarkers or additional candidate biomarkers are needed to achieve a multi-marker prediction model for improved detection of BMS with high sensitivity and specificity.

  13. Mining novel biomarkers for prognosis of gastric cancer with serum proteomics

    Directory of Open Access Journals (Sweden)

    Sui Mei-Hua

    2009-09-01

    Full Text Available Abstract Background Although gastric caner (GC remains the second cause of cancer-related death, useful biomarkers for prognosis are still unavailable. We present here the attempt of mining novel biomarkers for GC prognosis by using serum proteomics. Methods Sera from 43 GC patients and 41 controls with gastritis as Group 1 and 11 GC patients as Group 2 was successively detected by Surface Enhanced Laser Desorption/ionization Time of Flight Mass Spectrometry (SELDI-TOF-MS with Q10 chip. Peaks were acquired by Ciphergen ProteinChip Software 3.2.0 and analyzed by Zhejiang University-ProteinChip Data Analysis System (ZJU-PDAS. CEA level were evaluated by chemiluminescence immunoassay. Results After median follow-up periods of 33 months, Group 1 with 4 GC patients lost was divided into 20 good-prognosis GC patients (overall survival more than 24 months and 19 poor-prognosis GC patients (no more than 24 months. The established prognosis pattern consisted of 5 novel prognosis biomarkers with 84.2% sensitivity and 85.0% specificity, which were significantly higher than those of carcinoembryonic antigen (CEA and TNM stage. We also tested prognosis pattern blindly in Group 2 with 66.7% sensitivity and 80.0% specificity. Moreover, we found that 4474-Da peak elevated significantly in GC and was associated with advanced stage (III+IV and short survival (p Conclusion We have identified a number of novel biomarkers for prognosis prediction of GC by using SELDI-TOF-MS combined with sophisticated bioinformatics. Particularly, elevated expression of 4474-Da peak showed very promising to be developed into a novel biomarker associated with biologically aggressive features of GC.

  14. Identification of Novel Translational Urinary Biomarkers for Acetaminophen-Induced Acute Liver Injury Using Proteomic Profiling in Mice

    NARCIS (Netherlands)

    van Swelm, Rachel P. L.; Laarakkers, Coby M. M.; van der Kuur, Ellen C.; Morava-Kozicz, Eva; Wevers, Ron A.; Augustijn, Kevin D.; Touw, Daan J.; Sandel, Maro H.; Masereeuw, Rosalinde; Russel, Frans G. M.

    2012-01-01

    Drug-induced liver injury (DILI) is the leading cause of acute liver failure. Currently, no adequate predictive biomarkers for DILI are available. This study describes a translational approach using proteomic profiling for the identification of urinary proteins related to acute liver injury induced

  15. Identification of candidate diagnostic serum biomarkers for Kawasaki disease using proteomic analysis

    Science.gov (United States)

    Kimura, Yayoi; Yanagimachi, Masakatsu; Ino, Yoko; Aketagawa, Mao; Matsuo, Michie; Okayama, Akiko; Shimizu, Hiroyuki; Oba, Kunihiro; Morioka, Ichiro; Imagawa, Tomoyuki; Kaneko, Tetsuji; Yokota, Shumpei; Hirano, Hisashi; Mori, Masaaki

    2017-01-01

    Kawasaki disease (KD) is a systemic vasculitis and childhood febrile disease that can lead to cardiovascular complications. The diagnosis of KD depends on its clinical features, and thus it is sometimes difficult to make a definitive diagnosis. In order to identify diagnostic serum biomarkers for KD, we explored serum KD-related proteins, which differentially expressed during the acute and recovery phases of two patients by mass spectrometry (MS). We identified a total of 1,879 proteins by MS-based proteomic analysis. The levels of three of these proteins, namely lipopolysaccharide-binding protein (LBP), leucine-rich alpha-2-glycoprotein (LRG1), and angiotensinogen (AGT), were higher in acute phase patients. In contrast, the level of retinol-binding protein 4 (RBP4) was decreased. To confirm the usefulness of these proteins as biomarkers, we analyzed a total of 270 samples, including those collected from 55 patients with acute phase KD, by using western blot analysis and microarray enzyme-linked immunosorbent assays (ELISAs). Over the course of this experiment, we determined that the expression level of these proteins changes specifically in the acute phase of KD, rather than the recovery phase of KD or other febrile illness. Thus, LRG1 could be used as biomarkers to facilitate KD diagnosis based on clinical features. PMID:28262744

  16. MRM screening/biomarker discovery with linear ion trap MS: a library of human cancer-specific peptides

    International Nuclear Information System (INIS)

    Yang, Xu; Lazar, Iulia M

    2009-01-01

    The discovery of novel protein biomarkers is essential in the clinical setting to enable early disease diagnosis and increase survivability rates. To facilitate differential expression analysis and biomarker discovery, a variety of tandem mass spectrometry (MS/MS)-based protein profiling techniques have been developed. For achieving sensitive detection and accurate quantitation, targeted MS screening approaches, such as multiple reaction monitoring (MRM), have been implemented. MCF-7 breast cancer protein cellular extracts were analyzed by 2D-strong cation exchange (SCX)/reversed phase liquid chromatography (RPLC) separations interfaced to linear ion trap MS detection. MS data were interpreted with the Sequest-based Bioworks software (Thermo Electron). In-house developed Perl-scripts were used to calculate the spectral counts and the representative fragment ions for each peptide. In this work, we report on the generation of a library of 9,677 peptides (p < 0.001), representing ~1,572 proteins from human breast cancer cells, that can be used for MRM/MS-based biomarker screening studies. For each protein, the library provides the number and sequence of detectable peptides, the charge state, the spectral count, the molecular weight, the parameters that characterize the quality of the tandem mass spectrum (p-value, DeltaM, Xcorr, DeltaCn, Sp, no. of matching a, b, y ions in the spectrum), the retention time, and the top 10 most intense product ions that correspond to a given peptide. Only proteins identified by at least two spectral counts are listed. The experimental distribution of protein frequencies, as a function of molecular weight, closely matched the theoretical distribution of proteins in the human proteome, as provided in the SwissProt database. The amino acid sequence coverage of the identified proteins ranged from 0.04% to 98.3%. The highest-abundance proteins in the cellular extract had a molecular weight (MW)<50,000. Preliminary experiments have

  17. Biomarker discovery in neurological diseases: a metabolomic approach

    Directory of Open Access Journals (Sweden)

    Afaf El-Ansary

    2009-12-01

    Full Text Available Afaf El-Ansary, Nouf Al-Afaleg, Yousra Al-YafaeeBiochemistry Department, Science College, King Saud University, Riyadh, Saudi ArabiaAbstract: Biomarkers are pharmacological and physiological measurements or specific biochemicals in the body that have a particular molecular feature that makes them useful for measuring the progress of disease or the effects of treatment. Due to the complexity of neurological disorders, it is very difficult to have perfect markers. Brain diseases require plenty of markers to reflect the metabolic impairment of different brain cells. The recent introduction of the metabolomic approach helps the study of neurological diseases based on profiling a multitude of biochemical components related to brain metabolism. This review is a trial to elucidate the possibility to use this approach to identify plasma metabolic markers related to neurological disorders. Previous trials using different metabolomic analyses including nuclear magnetic resonance spectroscopy, gas chromatography combined with mass spectrometry, liquid chromatography combined with mass spectrometry, and capillary electrophoresis will be traced.Keywords: metabolic biomarkers, neurological disorders. metabolome, nuclear magnetic resonance, mass spectrometry, chromatography

  18. Data from a targeted proteomics approach to discover biomarkers in saliva for the clinical diagnosis of periodontitis

    Directory of Open Access Journals (Sweden)

    V. Orti

    2018-06-01

    Full Text Available This study focused on the search for new biomarkers based on liquid chromatography-multiple reaction monitoring (LC-MRM proteomics profiling of whole saliva from patients with periodontitis compared to healthy subjects. The LC-MRM profiling approach is a new and innovative method that has already been validated for the absolute and multiplexed quantification of biomarkers in several diseases. The dataset for this study was produced using LC-MRM to monitor protein levels in a multiplex assay, it provides clinical information on salivary biomarkers of periodontitis. The data presented here is an extension of our recently published research article (Mertens et al., 2017 [1]. Keywords: Clinical chemistry, Mass spectrometry, Proteomics, Saliva biochemistry, Oral disease, Periodontitis

  19. Pairwise protein expression classifier for candidate biomarker discovery for early detection of human disease prognosis

    Directory of Open Access Journals (Sweden)

    Kaur Parminder

    2012-08-01

    Full Text Available Abstract Background An approach to molecular classification based on the comparative expression of protein pairs is presented. The method overcomes some of the present limitations in using peptide intensity data for class prediction for problems such as the detection of a disease, disease prognosis, or for predicting treatment response. Data analysis is particularly challenging in these situations due to sample size (typically tens being much smaller than the large number of peptides (typically thousands. Methods based upon high dimensional statistical models, machine learning or other complex classifiers generate decisions which may be very accurate but can be complex and difficult to interpret in simple or biologically meaningful terms. A classification scheme, called ProtPair, is presented that generates simple decision rules leading to accurate classification which is based on measurement of very few proteins and requires only relative expression values, providing specific targeted hypotheses suitable for straightforward validation. Results ProtPair has been tested against clinical data from 21 patients following a bone marrow transplant, 13 of which progress to idiopathic pneumonia syndrome (IPS. The approach combines multiple peptide pairs originating from the same set of proteins, with each unique peptide pair providing an independent measure of discriminatory power. The prediction rate of the ProtPair for IPS study as measured by leave-one-out CV is 69.1%, which can be very beneficial for clinical diagnosis as it may flag patients in need of closer monitoring. The “top ranked” proteins provided by ProtPair are known to be associated with the biological processes and pathways intimately associated with known IPS biology based on mouse models. Conclusions An approach to biomarker discovery, called ProtPair, is presented. ProtPair is based on the differential expression of pairs of peptides and the associated proteins. Using mass

  20. Differential proteomic and tissue expression analyses identify valuable diagnostic biomarkers of hepatocellular differentiation and hepatoid adenocarcinomas.

    Science.gov (United States)

    Reis, Henning; Padden, Juliet; Ahrens, Maike; Pütter, Carolin; Bertram, Stefanie; Pott, Leona L; Reis, Anna-Carinna; Weber, Frank; Juntermanns, Benjamin; Hoffmann, Andreas-C; Eisenacher, Martin; Schlaak, Joörg F; Canbay, Ali; Meyer, Helmut E; Sitek, Barbara; Baba, Hideo A

    2015-10-01

    The exact discrimination of lesions with true hepatocellular differentiation from secondary tumours and neoplasms with hepatocellular histomorphology like hepatoid adenocarcinomas (HAC) is crucial. Therefore, we aimed to identify ancillary protein biomarkers by using complementary proteomic techniques (2D-DIGE, label-free MS). The identified candidates were immunohistochemically validated in 14 paired samples of hepatocellular carcinoma (HCC) and non-tumourous liver tissue (NT). The candidates and HepPar1/Arginase1 were afterwards tested for consistency in a large cohort of hepatocellular lesions and NT (n = 290), non-hepatocellular malignancies (n = 383) and HAC (n = 13). Eight non-redundant, differentially expressed proteins were suitable for further immunohistochemical validation and four (ABAT, BHMT, FABP1, HAOX1) for further evaluation. Sensitivity and specificity rates for HCC/HAC were as follows: HepPar1 80.2%, 94.3% / 80.2%, 46.2%; Arginase1 82%, 99.4% / 82%, 69.2%; BHMT 61.4%, 93.8% / 61.4%, 100%; ABAT 84.4%, 33.7% / 84.4%, 30.8%; FABP1 87.2%, 95% / 87.2%, 69.2%; HAOX1 95.5%, 36.3% / 95.5%, 46.2%. The best 2×/3× biomarker panels for the diagnosis of HCC consisted of Arginase1/HAOX1 and BHMT/Arginase1/HAOX1 and for HAC consisted of Arginase1/FABP1 and BHMT/Arginase1/FABP1. In summary, we successfully identified, validated and benchmarked protein biomarker candidates of hepatocellular differentiation. BHMT in particular exhibited superior diagnostic characteristics in hepatocellular lesions and specifically in HAC. BHMT is therefore a promising (panel based) biomarker candidate in the differential diagnostic process of lesions with hepatocellular aspect.

  1. Proteomic candidate biomarkers of drug-induced nephrotoxicity in the rat.

    Directory of Open Access Journals (Sweden)

    Rodney Rouse

    Full Text Available Improved biomarkers of acute nephrotoxicity are coveted by the drug development industry, regulatory agencies, and clinicians. In an effort to identify such biomarkers, urinary peptide profiles of rats treated with two different nephrotoxins were investigated. 493 marker candidates were defined that showed a significant response to cis-platin comparing a cis-platin treated cohort to controls. Next, urine samples from rats that received three consecutive daily doses of 150 or 300 mg/kg gentamicin were examined. 557 potential biomarkers were initially identified; 108 of these gentamicin-response markers showed a clear temporal response to treatment. 39 of the cisplatin-response markers also displayed a clear response to gentamicin. Of the combined 147 peptides, 101 were similarly regulated by gentamicin or cis-platin and 54 could be identified by tandem mass spectrometry. Most were collagen type I and type III fragments up-regulated in response to gentamicin treatment. Based on these peptides, classification models were generated and validated in a longitudinal study. In agreement with histopathology, the observed changes in classification scores were transient, initiated after the first dose, and generally persistent over a period of 10-20 days before returning to control levels. The data support the hypothesis that gentamicin-induced renal toxicity up-regulates protease activity, resulting in an increase in several specific urinary collagen fragments. Urinary proteomic biomarkers identified here, especially those common to both nephrotoxins, may serve as a valuable tool to investigate potential new drug candidates for the risk of nephrotoxicity.

  2. Proteomics and metabolomics in ageing research: from biomarkers to systems biology.

    Science.gov (United States)

    Hoffman, Jessica M; Lyu, Yang; Pletcher, Scott D; Promislow, Daniel E L

    2017-07-15

    Age is the single greatest risk factor for a wide range of diseases, and as the mean age of human populations grows steadily older, the impact of this risk factor grows as well. Laboratory studies on the basic biology of ageing have shed light on numerous genetic pathways that have strong effects on lifespan. However, we still do not know the degree to which the pathways that affect ageing in the lab also influence variation in rates of ageing and age-related disease in human populations. Similarly, despite considerable effort, we have yet to identify reliable and reproducible 'biomarkers', which are predictors of one's biological as opposed to chronological age. One challenge lies in the enormous mechanistic distance between genotype and downstream ageing phenotypes. Here, we consider the power of studying 'endophenotypes' in the context of ageing. Endophenotypes are the various molecular domains that exist at intermediate levels of organization between the genotype and phenotype. We focus our attention specifically on proteins and metabolites. Proteomic and metabolomic profiling has the potential to help identify the underlying causal mechanisms that link genotype to phenotype. We present a brief review of proteomics and metabolomics in ageing research with a focus on the potential of a systems biology and network-centric perspective in geroscience. While network analyses to study ageing utilizing proteomics and metabolomics are in their infancy, they may be the powerful model needed to discover underlying biological processes that influence natural variation in ageing, age-related disease, and longevity. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  3. Low molecular weight protein enrichment on mesoporous silica thin films for biomarker discovery.

    Science.gov (United States)

    Fan, Jia; Gallagher, James W; Wu, Hung-Jen; Landry, Matthew G; Sakamoto, Jason; Ferrari, Mauro; Hu, Ye

    2012-04-17

    The identification of circulating biomarkers holds great potential for non invasive approaches in early diagnosis and prognosis, as well as for the monitoring of therapeutic efficiency.(1-3) The circulating low molecular weight proteome (LMWP) composed of small proteins shed from tissues and cells or peptide fragments derived from the proteolytic degradation of larger proteins, has been associated with the pathological condition in patients and likely reflects the state of disease.(4,5) Despite these potential clinical applications, the use of Mass Spectrometry (MS) to profile the LMWP from biological fluids has proven to be very challenging due to the large dynamic range of protein and peptide concentrations in serum.(6) Without sample pre-treatment, some of the more highly abundant proteins obscure the detection of low-abundance species in serum/plasma. Current proteomic-based approaches, such as two-dimensional polyacrylamide gel-electrophoresis (2D-PAGE) and shotgun proteomics methods are labor-intensive, low throughput and offer limited suitability for clinical applications.(7-9) Therefore, a more effective strategy is needed to isolate LMWP from blood and allow the high throughput screening of clinical samples. Here, we present a fast, efficient and reliable multi-fractionation system based on mesoporous silica chips to specifically target and enrich LMWP.(10,11) Mesoporous silica (MPS) thin films with tunable features at the nanoscale were fabricated using the triblock copolymer template pathway. Using different polymer templates and polymer concentrations in the precursor solution, various pore size distributions, pore structures, connectivity and surface properties were determined and applied for selective recovery of low mass proteins. The selective parsing of the enriched peptides into different subclasses according to their physicochemical properties will enhance the efficiency of recovery and detection of low abundance species. In combination with mass

  4. In vitro biomarker discovery in the parasitic flatworm Fasciola hepatica for monitoring chemotherapeutic treatment

    Directory of Open Access Journals (Sweden)

    Russell M. Morphew

    2014-06-01

    Full Text Available The parasitic flatworm Fasciola hepatica is a global food security risk. With no vaccines, the sustainability of triclabendazole (TCBZ is threatened by emerging resistance. F. hepatica excretory/secretory (ES products can be detected in host faeces and used to estimate TCBZ success and failure. However, there are no faecal based molecular diagnostics dedicated to assessing drug failure or resistance to TCBZ in the field. Utilising in vitro maintenance and sub-proteomic approaches two TCBZ stress ES protein response fingerprints were identified: markers of non-killing and lethal doses. This study provides candidate protein/peptide biomarkers to validate for detection of TCBZ failure and resistance.

  5. Emerging concepts in biomarker discovery; The US-Japan workshop on immunological molecular markers in oncology

    Science.gov (United States)

    Tahara, Hideaki; Sato, Marimo; Thurin, Magdalena; Wang, Ena; Butterfield, Lisa H; Disis, Mary L; Fox, Bernard A; Lee, Peter P; Khleif, Samir N; Wigginton, Jon M; Ambs, Stefan; Akutsu, Yasunori; Chaussabel, Damien; Doki, Yuichiro; Eremin, Oleg; Fridman, Wolf Hervé; Hirohashi, Yoshihiko; Imai, Kohzoh; Jacobson, James; Jinushi, Masahisa; Kanamoto, Akira; Kashani-Sabet, Mohammed; Kato, Kazunori; Kawakami, Yutaka; Kirkwood, John M; Kleen, Thomas O; Lehmann, Paul V; Liotta, Lance; Lotze, Michael T; Maio, Michele; Malyguine, Anatoli; Masucci, Giuseppe; Matsubara, Hisahiro; Mayrand-Chung, Shawmarie; Nakamura, Kiminori; Nishikawa, Hiroyoshi; Palucka, A Karolina; Petricoin, Emanuel F; Pos, Zoltan; Ribas, Antoni; Rivoltini, Licia; Sato, Noriyuki; Shiku, Hiroshi; Slingluff, Craig L; Streicher, Howard; Stroncek, David F; Takeuchi, Hiroya; Toyota, Minoru; Wada, Hisashi; Wu, Xifeng; Wulfkuhle, Julia; Yaguchi, Tomonori; Zeskind, Benjamin; Zhao, Yingdong; Zocca, Mai-Britt; Marincola, Francesco M

    2009-01-01

    Supported by the Office of International Affairs, National Cancer Institute (NCI), the "US-Japan Workshop on Immunological Biomarkers in Oncology" was held in March 2009. The workshop was related to a task force launched by the International Society for the Biological Therapy of Cancer (iSBTc) and the United States Food and Drug Administration (FDA) to identify strategies for biomarker discovery and validation in the field of biotherapy. The effort will culminate on October 28th 2009 in the "iSBTc-FDA-NCI Workshop on Prognostic and Predictive Immunologic Biomarkers in Cancer", which will be held in Washington DC in association with the Annual Meeting. The purposes of the US-Japan workshop were a) to discuss novel approaches to enhance the discovery of predictive and/or prognostic markers in cancer immunotherapy; b) to define the state of the science in biomarker discovery and validation. The participation of Japanese and US scientists provided the opportunity to identify shared or discordant themes across the distinct immune genetic background and the diverse prevalence of disease between the two Nations. Converging concepts were identified: enhanced knowledge of interferon-related pathways was found to be central to the understanding of immune-mediated tissue-specific destruction (TSD) of which tumor rejection is a representative facet. Although the expression of interferon-stimulated genes (ISGs) likely mediates the inflammatory process leading to tumor rejection, it is insufficient by itself and the associated mechanisms need to be identified. It is likely that adaptive immune responses play a broader role in tumor rejection than those strictly related to their antigen-specificity; likely, their primary role is to trigger an acute and tissue-specific inflammatory response at the tumor site that leads to rejection upon recruitment of additional innate and adaptive immune mechanisms. Other candidate systemic and/or tissue-specific biomarkers were recognized that

  6. Emerging concepts in biomarker discovery; The US-Japan workshop on immunological molecular markers in oncology

    Directory of Open Access Journals (Sweden)

    Rivoltini Licia

    2009-06-01

    Full Text Available Abstract Supported by the Office of International Affairs, National Cancer Institute (NCI, the "US-Japan Workshop on Immunological Biomarkers in Oncology" was held in March 2009. The workshop was related to a task force launched by the International Society for the Biological Therapy of Cancer (iSBTc and the United States Food and Drug Administration (FDA to identify strategies for biomarker discovery and validation in the field of biotherapy. The effort will culminate on October 28th 2009 in the "iSBTc-FDA-NCI Workshop on Prognostic and Predictive Immunologic Biomarkers in Cancer", which will be held in Washington DC in association with the Annual Meeting. The purposes of the US-Japan workshop were a to discuss novel approaches to enhance the discovery of predictive and/or prognostic markers in cancer immunotherapy; b to define the state of the science in biomarker discovery and validation. The participation of Japanese and US scientists provided the opportunity to identify shared or discordant themes across the distinct immune genetic background and the diverse prevalence of disease between the two Nations. Converging concepts were identified: enhanced knowledge of interferon-related pathways was found to be central to the understanding of immune-mediated tissue-specific destruction (TSD of which tumor rejection is a representative facet. Although the expression of interferon-stimulated genes (ISGs likely mediates the inflammatory process leading to tumor rejection, it is insufficient by itself and the associated mechanisms need to be identified. It is likely that adaptive immune responses play a broader role in tumor rejection than those strictly related to their antigen-specificity; likely, their primary role is to trigger an acute and tissue-specific inflammatory response at the tumor site that leads to rejection upon recruitment of additional innate and adaptive immune mechanisms. Other candidate systemic and/or tissue-specific biomarkers

  7. Quantitative iTRAQ-Based Proteomic Identification of Candidate Biomarkers for Diabetic Nephropathy in Plasma of Type 1 Diabetic Patients

    DEFF Research Database (Denmark)

    Overgaard, Anne Julie; Thingholm, Tine Engberg; Larsen, Martin R

    2010-01-01

    INTRODUCTION: As part of a clinical proteomics programme focused on diabetes and its complications, it was our goal to investigate the proteome of plasma in order to find improved candidate biomarkers to predict diabetic nephropathy. METHODS: Proteins derived from plasma from a cross-sectional co...... nephropathy; however, they need to be confirmed in a longitudinal cohort. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12014-010-9053-0) contains supplementary material, which is available to authorized users....

  8. Comparative Proteomic Profiling and Biomarker Identification of Traditional Chinese Medicine-Based HIV/AIDS Syndromes.

    Science.gov (United States)

    Wen, Li; Liu, Ye-Fang; Jiang, Cen; Zeng, Shao-Qian; Su, Yue; Wu, Wen-Jun; Liu, Xi-Yang; Wang, Jian; Liu, Ying; Su, Chen; Li, Bai-Xue; Feng, Quan-Sheng

    2018-03-08

    Given the challenges in exploring lifelong therapy with little side effect for human immunodeficiency virus infection and acquired immune deficiency syndrome (HIV/AIDS) cases, there is increasing interest in developing traditional Chinese medicine (TCM) treatments based on specific TCM syndrome. However, there are few objective and biological evidences for classification and diagnosis of HIV/AIDS TCM syndromes to date. In this study, iTRAQ-2DLC-MS/MS coupled with bioinformatics were firstly employed for comparative proteomic profiling of top popular TCM syndromes of HIV/AIDS: accumulation of heat-toxicity (AHT) and Yang deficiency of spleen and kidney (YDSK). It was found that for the two TCM syndromes, the identified differential expressed proteins (DEPs) as well as their biological function distributions and participation in signaling pathways were significantly different, providing biological evidence for the classification of HIV/AIDS TCM syndromes. Furthermore, the TCM syndrome-specific DEPs were confirmed as biomarkers based on western blot analyses, including FN1, GPX3, KRT10 for AHT and RBP4, ApoE, KNG1 for YDSK. These biomarkers also biologically linked with the specific TCM syndrome closely. Thus the clinical and biological basis for differentiation and diagnosis of HIV/AIDs TCM syndromes were provided for the first time, providing more opportunities for stable exertion and better application of TCM efficacy and superiority in HIV/AIDS treatment.

  9. Discovery of sexual dimorphisms in metabolic and genetic biomarkers.

    Directory of Open Access Journals (Sweden)

    Kirstin Mittelstrass

    2011-08-01

    Full Text Available Metabolomic profiling and the integration of whole-genome genetic association data has proven to be a powerful tool to comprehensively explore gene regulatory networks and to investigate the effects of genetic variation at the molecular level. Serum metabolite concentrations allow a direct readout of biological processes, and association of specific metabolomic signatures with complex diseases such as Alzheimer's disease and cardiovascular and metabolic disorders has been shown. There are well-known correlations between sex and the incidence, prevalence, age of onset, symptoms, and severity of a disease, as well as the reaction to drugs. However, most of the studies published so far did not consider the role of sexual dimorphism and did not analyse their data stratified by gender. This study investigated sex-specific differences of serum metabolite concentrations and their underlying genetic determination. For discovery and replication we used more than 3,300 independent individuals from KORA F3 and F4 with metabolite measurements of 131 metabolites, including amino acids, phosphatidylcholines, sphingomyelins, acylcarnitines, and C6-sugars. A linear regression approach revealed significant concentration differences between males and females for 102 out of 131 metabolites (p-values<3.8×10(-4; Bonferroni-corrected threshold. Sex-specific genome-wide association studies (GWAS showed genome-wide significant differences in beta-estimates for SNPs in the CPS1 locus (carbamoyl-phosphate synthase 1, significance level: p<3.8×10(-10; Bonferroni-corrected threshold for glycine. We showed that the metabolite profiles of males and females are significantly different and, furthermore, that specific genetic variants in metabolism-related genes depict sexual dimorphism. Our study provides new important insights into sex-specific differences of cell regulatory processes and underscores that studies should consider sex-specific effects in design and

  10. Informatics-guided procurement of patient samples for biomarker discovery projects in cancer research.

    Science.gov (United States)

    Suh, K Stephen; Remache, Yvonne K; Patel, Jalpa S; Chen, Steve H; Haystrand, Russell; Ford, Peggy; Shaikh, Anadil M; Wang, Jian; Goy, Andre H

    2009-02-01

    Modern cancer research for biomarker discovery program requires solving several tasks that are directly involved with patient sample procurement. One requirement is to construct a highly efficient workflow on the clinical side for the procurement to generate a consistent supply of high quality samples for research. This undertaking needs a network of interdepartmental collaborations and participations at various levels, including physical human interactions, information technology implementations and a bioinformatics tool that is highly effective and user-friendly to busy clinicians and researchers associated with the sample procurement. Collegial participation that is sequential but continual from one department to another demands dedicated bioinformatics software coordinating between the institutional clinic and the tissue repository facility. Participants in the process include admissions, consenting process, phlebotomy, surgery center and pathology. During this multiple step procedures, clinical data are collected for detailed analytical endpoints to supplement logistics of defining and validating the discovery of biomarkers.

  11. Mass spectrometry based proteomics profiling as diagnostic tool in oncology: current status and future perspective.

    Science.gov (United States)

    Findeisen, Peter; Neumaier, Michael

    2009-01-01

    Proteomics analysis has been heralded as a novel tool for identifying new and specific biomarkers that may improve diagnosis and monitoring of various disease states. Recent years have brought a number of proteomics profiling technologies. Although proteomics profiling has resulted in the detection of disease-associated differences and modification of proteins, current proteomics technologies display certain limitations that are hampering the introduction of these new technologies into clinical laboratory diagnostics and routine applications. In this review, we summarize current advances in mass spectrometry based biomarker discovery. The promises and challenges of this new technology are discussed with particular emphasis on diagnostic perspectives of mass-spectrometry based proteomics profiling for malignant diseases.

  12. Molecular correlates of trait anxiety: expanding biomarker discovery from protein expression to turnover

    OpenAIRE

    Zhang, Yaoyang

    2010-01-01

    Depression and anxiety disorders affect a great number of people in the world. Although remarkable efforts have been devoted to understanding the clinical and biological basis of these disorders, progress has been relatively slow. Furthermore, no laboratory test currently is available for diagnosis of anxiety and depression. These disorders are mainly diagnosed empirically on the basis of a doctor’s personal observations and experiences. Hence, discovery of biomarkers for these psychiatric di...

  13. From the endometrium physiology to a comprehensive strategy for the discovery of ovarian cancer biomarkers

    OpenAIRE

    Janos L. Tanyi; Nathalie Scholler

    2011-01-01

    The development of comprehensive strategies for biomarker discovery of gynecological cancers is needed. The unique physiology of the female genital track revolves around ovulatory cycles ending by the proteolysis of the endometrium triggered by progesterone decline during the last part of the luteal phase. Building on the known link between incessant ovulation and ovarian cancer, we hypothesize that life-long menstruations could damage neighboring organs such as fallopian tubes, ovaries and p...

  14. Biomarker Discovery in Human Prostate Cancer: an Update in Metabolomics Studies

    Directory of Open Access Journals (Sweden)

    Ana Rita Lima

    2016-08-01

    Full Text Available Prostate cancer (PCa is the most frequently diagnosed cancer and the second leading cause of cancer death among men in Western countries. Current screening techniques are based on the measurement of serum prostate specific antigen (PSA levels and digital rectal examination. A decisive diagnosis of PCa is based on prostate biopsies; however, this approach can lead to false-positive and false-negative results. Therefore, it is important to discover new biomarkers for the diagnosis of PCa, preferably noninvasive ones. Metabolomics is an approach that allows the analysis of the entire metabolic profile of a biological system. As neoplastic cells have a unique metabolic phenotype related to cancer development and progression, the identification of dysfunctional metabolic pathways using metabolomics can be used to discover cancer biomarkers and therapeutic targets. In this study, we review several metabolomics studies performed in prostatic fluid, blood plasma/serum, urine, tissues and immortalized cultured cell lines with the objective of discovering alterations in the metabolic phenotype of PCa and thus discovering new biomarkers for the diagnosis of PCa. Encouraging results using metabolomics have been reported for PCa, with sarcosine being one of the most promising biomarkers identified to date. However, the use of sarcosine as a PCa biomarker in the clinic remains a controversial issue within the scientific community. Beyond sarcosine, other metabolites are considered to be biomarkers for PCa, but they still need clinical validation. Despite the lack of metabolomics biomarkers reaching clinical practice, metabolomics proved to be a powerful tool in the discovery of new biomarkers for PCa detection.

  15. Integration of lyoplate based flow cytometry and computational analysis for standardized immunological biomarker discovery.

    Directory of Open Access Journals (Sweden)

    Federica Villanova

    Full Text Available Discovery of novel immune biomarkers for monitoring of disease prognosis and response to therapy in immune-mediated inflammatory diseases is an important unmet clinical need. Here, we establish a novel framework for immunological biomarker discovery, comparing a conventional (liquid flow cytometry platform (CFP and a unique lyoplate-based flow cytometry platform (LFP in combination with advanced computational data analysis. We demonstrate that LFP had higher sensitivity compared to CFP, with increased detection of cytokines (IFN-γ and IL-10 and activation markers (Foxp3 and CD25. Fluorescent intensity of cells stained with lyophilized antibodies was increased compared to cells stained with liquid antibodies. LFP, using a plate loader, allowed medium-throughput processing of samples with comparable intra- and inter-assay variability between platforms. Automated computational analysis identified novel immunophenotypes that were not detected with manual analysis. Our results establish a new flow cytometry platform for standardized and rapid immunological biomarker discovery with wide application to immune-mediated diseases.

  16. Integration of lyoplate based flow cytometry and computational analysis for standardized immunological biomarker discovery.

    Science.gov (United States)

    Villanova, Federica; Di Meglio, Paola; Inokuma, Margaret; Aghaeepour, Nima; Perucha, Esperanza; Mollon, Jennifer; Nomura, Laurel; Hernandez-Fuentes, Maria; Cope, Andrew; Prevost, A Toby; Heck, Susanne; Maino, Vernon; Lord, Graham; Brinkman, Ryan R; Nestle, Frank O

    2013-01-01

    Discovery of novel immune biomarkers for monitoring of disease prognosis and response to therapy in immune-mediated inflammatory diseases is an important unmet clinical need. Here, we establish a novel framework for immunological biomarker discovery, comparing a conventional (liquid) flow cytometry platform (CFP) and a unique lyoplate-based flow cytometry platform (LFP) in combination with advanced computational data analysis. We demonstrate that LFP had higher sensitivity compared to CFP, with increased detection of cytokines (IFN-γ and IL-10) and activation markers (Foxp3 and CD25). Fluorescent intensity of cells stained with lyophilized antibodies was increased compared to cells stained with liquid antibodies. LFP, using a plate loader, allowed medium-throughput processing of samples with comparable intra- and inter-assay variability between platforms. Automated computational analysis identified novel immunophenotypes that were not detected with manual analysis. Our results establish a new flow cytometry platform for standardized and rapid immunological biomarker discovery with wide application to immune-mediated diseases.

  17. A qualitative and quantitative evaluation of the peptide characteristics of microwave- and ultrasound-assisted digestion in discovery and targeted proteomic analyses.

    Science.gov (United States)

    Guo, Zhengguang; Cheng, Jie; Sun, Haidan; Sun, Wei

    2017-08-30

    Fast digestion methods can dramatically accelerate enzyme digestion and increase the throughput of proteomic analysis. However, the peptide characteristics of fast digestion methods and their performance in discovery and targeted proteomic analysis must be systematically evaluated. Three digestion methods, including overnight digestion, microwave-assisted protein enzymatic digestion (MAPED), and high-intensity focused ultrasonic-assisted enzymatic digestion (HIFUSAED), in trypsin or in trypsin/Lys-C were comprehensively compared in both discovery and targeted proteomics analysis using the HeLa cell proteome. In discovery proteomic analysis, the highest numbers of peptides and proteins were identified when the sample was digested via the MAPED method with trypsin/Lys-C. The fast digestion methods showed a higher mis-cleavage rate and a lower semi-tryptic rate than the overnight digestion method. In both label-free quantitative analysis and targeted proteomic analysis, both fully cleaved peptides (FCPs) and mis-cleaved peptides (MCPs) from the fast digestion methods and the overnight digestion method showed good reproducibility if they showed good abundance. When both the FCPs and MCPs were included in the analysis, the MAPED with trypsin/Lys-C method showed the best results for both discovery proteomic analysis and relative quantitative targeted proteomic analysis. These results will be beneficial for the application of fast digestion methods to proteomics. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Identification of Potential Plasma Biomarkers for Nonalcoholic Fatty Liver Disease by Integrating Transcriptomics and Proteomics in Laying Hens.

    Science.gov (United States)

    Tsai, Meng-Tsz; Chen, Yu-Jen; Chen, Ching-Yi; Tsai, Mong-Hsun; Han, Chia-Li; Chen, Yu-Ju; Mersmann, Harry J; Ding, Shih-Torng

    2017-03-01

    Background: Prevalent worldwide obesity is associated with increased incidence of nonalcoholic fatty liver disease (NAFLD) and metabolic syndrome. The identification of noninvasive biomarkers for NAFLD is of recent interest. Because primary de novo lipogenesis occurs in chicken liver as in human liver, adult chickens with age-associated steatosis resembling human NAFLD is an appealing animal model. Objective: The objective of this study was to screen potential biomarkers in the chicken model for NAFLD by transcriptomic and proteomic analysis. Methods: Hy-Line W-36 laying hens were fed standard feed from 25 to 45 wk of age to induce fatty liver. They were killed every 4 wk, and liver and plasma were collected at each time point to assess fatty liver development and for transcriptomic and proteomic analysis. Next, selected biomarkers were confirmed in additional experiments by providing supplements of the hepatoprotective nutrients betaine [300, 600, or 900 parts per million (ppm) in vivo; 2 mM in vitro] or docosahexaenoic acid (DHA; 1% in vivo; 100 μM in vitro) to 30-wk-old Hy-Line W-36 laying hens for 4 mo and to Hy-Line W-36 chicken primary hepatocytes with oleic acid-induced steatosis. Liver or hepatocyte lipid contents and the expression of biomarkers were then examined. Results: Plasma acetoacetyl-CoA synthetase (AACS), dipeptidyl-peptidase 4 (DPP4), glutamine synthetase (GLUL), and glutathione S -transferase (GST) concentrations are well-established biomarkers for NAFLD. Selected biomarkers had significant positive associations with hepatic lipid deposition ( P steatosis accompanied by the reduced expression of selected biomarkers in vivo and in vitro ( P < 0.05). Conclusion: This study used adult laying hens to identify biomarkers for NAFLD and indicated that AACS, DPP4, GLUL, and GST could be considered to be potential diagnostic indicators for NAFLD in the future. © 2017 American Society for Nutrition.

  19. Technological advances and proteomic applications in drug discovery and target deconvolution: identification of the pleiotropic effects of statins.

    Science.gov (United States)

    Banfi, Cristina; Baetta, Roberta; Gianazza, Erica; Tremoli, Elena

    2017-06-01

    Proteomic-based techniques provide a powerful tool for identifying the full spectrum of protein targets of a drug, elucidating its mechanism(s) of action, and identifying biomarkers of its efficacy and safety. Herein, we outline the technological advancements in the field, and illustrate the contribution of proteomics to the definition of the pharmacological profile of statins, which represent the cornerstone of the prevention and treatment of cardiovascular diseases (CVDs). Statins act by inhibiting 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, thus reducing cholesterol biosynthesis and consequently enhancing the clearance of low-density lipoproteins from the blood; however, HMG-CoA reductase inhibition can result in a multitude of additional effects beyond lipid lowering, known as 'pleiotropic effects'. The case of statins highlights the unique contribution of proteomics to the target profiling of a drug molecule. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Chemical proteomics for target discovery of head-to-tail cyclized mini-proteins

    Science.gov (United States)

    Hellinger, Roland; Thell, Kathrin; Vasileva, Mina; Muhammad, Taj; Gunasekera, Sunithi; Kümmel, Daniel; Göransson, Ulf; Becker, Christian W.; Gruber, Christian W.

    2017-10-01

    Target deconvolution is one of the most challenging tasks in drug discovery, but a key step in drug development. In contrast to small molecules, there is a lack of validated and robust methodologies for target elucidation of peptides. In particular, it is difficult to apply these methods to cyclic and cysteine-stabilized peptides since they exhibit reduced amenability to chemical modification and affinity capture; however, such ribosomal synthesized and post-translationally modified peptide natural products are rich sources of promising drug candidates. For example, plant-derived circular peptides called cyclotides have recently attracted much attention due to their immunosuppressive effects and oral activity in the treatment of multiple sclerosis in mice, but their molecular target has hitherto not been reported. In this study a chemical proteomics approach using photo-affinity crosslinking was developed to determine a target of the circular peptide [T20K]kalata B1. Using this prototypic nature-derived peptide enabled the identification of a possible modulation of 14-3-3 proteins. This biochemical interaction was validated via competition pull down assays as well as a cellular reporter assay indicating an effect on 14-3-3-dependent transcriptional activity. As proof of concept, the presented approach may be applicable for target elucidation of various cyclic peptides and mini-proteins, in particular cyclotides, which represent a promising class of molecules in drug discovery and development.

  1. Biomarker discovery for colon cancer using a 761 gene RT-PCR assay

    Directory of Open Access Journals (Sweden)

    Hackett James R

    2007-08-01

    Full Text Available Abstract Background Reverse transcription PCR (RT-PCR is widely recognized to be the gold standard method for quantifying gene expression. Studies using RT-PCR technology as a discovery tool have historically been limited to relatively small gene sets compared to other gene expression platforms such as microarrays. We have recently shown that TaqMan® RT-PCR can be scaled up to profile expression for 192 genes in fixed paraffin-embedded (FPE clinical study tumor specimens. This technology has also been used to develop and commercialize a widely used clinical test for breast cancer prognosis and prediction, the Onco typeDX™ assay. A similar need exists in colon cancer for a test that provides information on the likelihood of disease recurrence in colon cancer (prognosis and the likelihood of tumor response to standard chemotherapy regimens (prediction. We have now scaled our RT-PCR assay to efficiently screen 761 biomarkers across hundreds of patient samples and applied this process to biomarker discovery in colon cancer. This screening strategy remains attractive due to the inherent advantages of maintaining platform consistency from discovery through clinical application. Results RNA was extracted from formalin fixed paraffin embedded (FPE tissue, as old as 28 years, from 354 patients enrolled in NSABP C-01 and C-02 colon cancer studies. Multiplexed reverse transcription reactions were performed using a gene specific primer pool containing 761 unique primers. PCR was performed as independent TaqMan® reactions for each candidate gene. Hierarchal clustering demonstrates that genes expected to co-express form obvious, distinct and in certain cases very tightly correlated clusters, validating the reliability of this technical approach to biomarker discovery. Conclusion We have developed a high throughput, quantitatively precise multi-analyte gene expression platform for biomarker discovery that approaches low density DNA arrays in numbers of

  2. Opportunities and Challenges of Proteomics in Pediatric Patients: Circulating Biomarkers After Hematopoietic Stem Cell Transplantation As a Successful Example

    Science.gov (United States)

    Paczesny, Sophie; Duncan, Christine; Jacobsohn, David; Krance, Robert; Leung, Kathryn; Carpenter, Paul; Bollard, Catherine; Renbarger, Jamie; Cooke, Kenneth

    2015-01-01

    Biomarkers have the potential to improve diagnosis and prognosis, facilitate targeted treatment, and reduce health care costs. Thus, there is great hope that biomarkers will be integrated in all clinical decisions in the near future. A decade ago, the biomarker field was launched with great enthusiasm because mass spectrometry revealed that blood contains a rich library of candidate biomarkers. However, biomarker research has not yet delivered on its promise due to several limitations: (i) improper sample handling and tracking as well as limited sample availability in the pediatric population, (ii) omission of appropriate controls in original study designs, (iii) lability and low abundance of interesting biomarkers in blood, and (iv) the inability to mechanistically tie biomarker presence to disease biology. These limitations as well as successful strategies to overcome them are discussed in this review. Several advances in biomarker discovery and validation have been made in hematopoietic stem cell transplantation, the current most effective tumor immunotherapy, and these could serve as examples for other conditions. This review provides fresh optimism that biomarkers clinically relevant in pediatrics are closer to being realized based on: (i) a uniform protocol for low-volume blood collection and preservation, (ii) inclusion of well-controlled independent cohorts, (iii) novel technologies and instrumentation with low analytical sensitivity, and (iv) integrated animal models for exploring potential biomarkers and targeted therapies. PMID:25196024

  3. Candidate biomarker discovery and selection for ‘Granny Smith' superficial scald risk management and diagnosis, poster board

    Science.gov (United States)

    Discovery of candidate biomarkers for superficial scald, a peel disorder that develops during storage of susceptible apple cultivars, is part of a larger project aimed at developing biomarker-based risk-management and diagnostic tools for multiple apple postharvest disorders (http://www.tfrec.wsu.ed...

  4. Variable importance analysis based on rank aggregation with applications in metabolomics for biomarker discovery.

    Science.gov (United States)

    Yun, Yong-Huan; Deng, Bai-Chuan; Cao, Dong-Sheng; Wang, Wei-Ting; Liang, Yi-Zeng

    2016-03-10

    Biomarker discovery is one important goal in metabolomics, which is typically modeled as selecting the most discriminating metabolites for classification and often referred to as variable importance analysis or variable selection. Until now, a number of variable importance analysis methods to discover biomarkers in the metabolomics studies have been proposed. However, different methods are mostly likely to generate different variable ranking results due to their different principles. Each method generates a variable ranking list just as an expert presents an opinion. The problem of inconsistency between different variable ranking methods is often ignored. To address this problem, a simple and ideal solution is that every ranking should be taken into account. In this study, a strategy, called rank aggregation, was employed. It is an indispensable tool for merging individual ranking lists into a single "super"-list reflective of the overall preference or importance within the population. This "super"-list is regarded as the final ranking for biomarker discovery. Finally, it was used for biomarkers discovery and selecting the best variable subset with the highest predictive classification accuracy. Nine methods were used, including three univariate filtering and six multivariate methods. When applied to two metabolic datasets (Childhood overweight dataset and Tubulointerstitial lesions dataset), the results show that the performance of rank aggregation has improved greatly with higher prediction accuracy compared with using all variables. Moreover, it is also better than penalized method, least absolute shrinkage and selectionator operator (LASSO), with higher prediction accuracy or less number of selected variables which are more interpretable. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Systems Biology Modeling of the Radiation Sensitivity Network: A Biomarker Discovery Platform

    International Nuclear Information System (INIS)

    Eschrich, Steven; Zhang Hongling; Zhao Haiyan; Boulware, David; Lee, Ji-Hyun; Bloom, Gregory; Torres-Roca, Javier F.

    2009-01-01

    Purpose: The discovery of effective biomarkers is a fundamental goal of molecular medicine. Developing a systems-biology understanding of radiosensitivity can enhance our ability of identifying radiation-specific biomarkers. Methods and Materials: Radiosensitivity, as represented by the survival fraction at 2 Gy was modeled in 48 human cancer cell lines. We applied a linear regression algorithm that integrates gene expression with biological variables, including ras status (mut/wt), tissue of origin and p53 status (mut/wt). Results: The biomarker discovery platform is a network representation of the top 500 genes identified by linear regression analysis. This network was reduced to a 10-hub network that includes c-Jun, HDAC1, RELA (p65 subunit of NFKB), PKC-beta, SUMO-1, c-Abl, STAT1, AR, CDK1, and IRF1. Nine targets associated with radiosensitization drugs are linked to the network, demonstrating clinical relevance. Furthermore, the model identified four significant radiosensitivity clusters of terms and genes. Ras was a dominant variable in the analysis, as was the tissue of origin, and their interaction with gene expression but not p53. Overrepresented biological pathways differed between clusters but included DNA repair, cell cycle, apoptosis, and metabolism. The c-Jun network hub was validated using a knockdown approach in 8 human cell lines representing lung, colon, and breast cancers. Conclusion: We have developed a novel radiation-biomarker discovery platform using a systems biology modeling approach. We believe this platform will play a central role in the integration of biology into clinical radiation oncology practice.

  6. Integration of Serum Protein Biomarker and Tumor Associated Autoantibody Expression Data Increases the Ability of a Blood-Based Proteomic Assay to Identify Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Meredith C Henderson

    Full Text Available Despite significant advances in breast imaging, the ability to accurately detect Breast Cancer (BC remains a challenge. With the discovery of key biomarkers and protein signatures for BC, proteomic technologies are currently poised to serve as an ideal diagnostic adjunct to imaging. Research studies have shown that breast tumors are associated with systemic changes in levels of both serum protein biomarkers (SPB and tumor associated autoantibodies (TAAb. However, the independent contribution of SPB and TAAb expression data for identifying BC relative to a combinatorial SPB and TAAb approach has not been fully investigated. This study evaluates these contributions using a retrospective cohort of pre-biopsy serum samples with known clinical outcomes collected from a single site, thus minimizing potential site-to-site variation and enabling direct assessment of SPB and TAAb contributions to identify BC. All serum samples (n = 210 were collected prior to biopsy. These specimens were obtained from 18 participants with no evidence of breast disease (ND, 92 participants diagnosed with Benign Breast Disease (BBD and 100 participants diagnosed with BC, including DCIS. All BBD and BC diagnoses were based on pathology results from biopsy. Statistical models were developed to differentiate BC from non-BC (i.e., BBD and ND using expression data from SPB alone, TAAb alone, and a combination of SPB and TAAb. When SPB data was independently used for modeling, clinical sensitivity and specificity for detection of BC were 74.7% and 77.0%, respectively. When TAAb data was independently used, clinical sensitivity and specificity for detection of BC were 72.2% and 70.8%, respectively. When modeling integrated data from both SPB and TAAb, the clinical sensitivity and specificity for detection of BC improved to 81.0% and 78.8%, respectively. These data demonstrate the benefit of the integration of SPB and TAAb data and strongly support the further development of

  7. Proteomics mapping of cord blood identifies haptoglobin "switch-on" pattern as biomarker of early-onset neonatal sepsis in preterm newborns.

    Science.gov (United States)

    Buhimschi, Catalin S; Bhandari, Vineet; Dulay, Antonette T; Nayeri, Unzila A; Abdel-Razeq, Sonya S; Pettker, Christian M; Thung, Stephen; Zhao, Guomao; Han, Yiping W; Bizzarro, Matthew; Buhimschi, Irina A

    2011-01-01

    Intra-amniotic infection and/or inflammation (IAI) are important causes of preterm birth and early-onset neonatal sepsis (EONS). A prompt and accurate diagnosis of EONS is critical for improved neonatal outcomes. We sought to explore the cord blood proteome and identify biomarkers and functional protein networks characterizing EONS in preterm newborns. We studied a prospective cohort of 180 premature newborns delivered May 2004-September 2009. A proteomics discovery phase employing two-dimensional differential gel electrophoresis (2D-DIGE) and mass spectrometry identified 19 differentially-expressed proteins in cord blood of newborns with culture-confirmed EONS (n = 3) versus GA-matched controls (n = 3). Ontological classifications of the proteins included transfer/carrier, immunity/defense, protease/extracellular matrix. The 1(st)-level external validation conducted in the remaining 174 samples confirmed elevated haptoglobin and haptoglobin-related protein immunoreactivity (Hp&HpRP) in newborns with EONS (presumed and culture-confirmed) independent of GA at birth and birthweight (PLCA) was further used for unbiased classification of all 180 cases based on probability of "antenatal IAI exposure" as latent variable. This was then subjected to 2(nd)-level validation against indicators of adverse short-term neonatal outcome. The optimal LCA algorithm combined Hp&HpRP switch pattern (most input), interleukin-6 and neonatal hematological indices yielding two non-overlapping newborn clusters with low (≤20%) versus high (≥70%) probability of IAI exposure. This approach reclassified ∼30% of clinical EONS diagnoses lowering the number needed to harm and increasing the odds ratios for several adverse outcomes including intra-ventricular hemorrhage. Antenatal exposure to IAI results in precocious switch-on of Hp&HpRP expression. As EONS biomarker, cord blood Hp&HpRP has potential to improve the selection of newborns for prompt and targeted treatment at birth.

  8. Proteomics Mapping of Cord Blood Identifies Haptoglobin “Switch-On” Pattern as Biomarker of Early-Onset Neonatal Sepsis in Preterm Newborns

    Science.gov (United States)

    Buhimschi, Catalin S.; Bhandari, Vineet; Dulay, Antonette T.; Nayeri, Unzila A.; Abdel-Razeq, Sonya S.; Pettker, Christian M.; Thung, Stephen; Zhao, Guomao; Han, Yiping W.; Bizzarro, Matthew; Buhimschi, Irina A.

    2011-01-01

    Background Intra-amniotic infection and/or inflammation (IAI) are important causes of preterm birth and early-onset neonatal sepsis (EONS). A prompt and accurate diagnosis of EONS is critical for improved neonatal outcomes. We sought to explore the cord blood proteome and identify biomarkers and functional protein networks characterizing EONS in preterm newborns. Methodology/Principal Findings We studied a prospective cohort of 180 premature newborns delivered May 2004-September 2009. A proteomics discovery phase employing two-dimensional differential gel electrophoresis (2D-DIGE) and mass spectrometry identified 19 differentially-expressed proteins in cord blood of newborns with culture-confirmed EONS (n = 3) versus GA-matched controls (n = 3). Ontological classifications of the proteins included transfer/carrier, immunity/defense, protease/extracellular matrix. The 1st-level external validation conducted in the remaining 174 samples confirmed elevated haptoglobin and haptoglobin-related protein immunoreactivity (Hp&HpRP) in newborns with EONS (presumed and culture-confirmed) independent of GA at birth and birthweight (PLCA) was further used for unbiased classification of all 180 cases based on probability of “antenatal IAI exposure” as latent variable. This was then subjected to 2nd-level validation against indicators of adverse short-term neonatal outcome. The optimal LCA algorithm combined Hp&HpRP switch pattern (most input), interleukin-6 and neonatal hematological indices yielding two non-overlapping newborn clusters with low (≤20%) versus high (≥70%) probability of IAI exposure. This approach reclassified ∼30% of clinical EONS diagnoses lowering the number needed to harm and increasing the odds ratios for several adverse outcomes including intra-ventricular hemorrhage. Conclusions/Significance Antenatal exposure to IAI results in precocious switch-on of Hp&HpRP expression. As EONS biomarker, cord blood Hp&HpRP has potential to improve the

  9. Identification of novel biomarkers for sepsis prognosis via urinary proteomic analysis using iTRAQ labeling and 2D-LC-MS/MS.

    Directory of Open Access Journals (Sweden)

    Longxiang Su

    Full Text Available Sepsis is the major cause of death for critically ill patients. Recent progress in proteomics permits a thorough characterization of the mechanisms associated with critical illness. The purpose of this study was to screen potential biomarkers for early prognostic assessment of patients with sepsis.For the discovery stage, 30 sepsis patients with different prognoses were selected. Urinary proteins were identified using isobaric tags for relative and absolute quantitation (iTRAQ coupled with LC-MS/MS. Mass spec instrument analysis were performed with Mascot software and the International Protein Index (IPI; bioinformatic analyses were used by the algorithm of set and the Gene Ontology (GO Database. For the verification stage, the study involved another 54 sepsis-hospitalized patients, with equal numbers of patients in survivor and non-survivor groups based on 28-day survival. Differentially expressed proteins were verified by Western Blot.A total of 232 unique proteins were identified. Proteins that were differentially expressed were further analyzed based on the pathophysiology of sepsis and biomathematics. For sepsis prognosis, five proteins were significantly up-regulated: selenium binding protein-1, heparan sulfate proteoglycan-2, alpha-1-B glycoprotein, haptoglobin, and lipocalin; two proteins were significantly down-regulated: lysosome-associated membrane proteins-1 and dipeptidyl peptidase-4. Based on gene ontology clustering, these proteins were associated with the biological processes of lipid homeostasis, cartilage development, iron ion transport, and certain metabolic processes. Urinary LAMP-1 was down-regulated, consistent with the Western Blot validation.This study provides the proteomic analysis of urine to identify prognostic biomarkers of sepsis. The seven identified proteins provide insight into the mechanism of sepsis. Low urinary LAMP-1 levels may be useful for early prognostic assessment of sepsis.ClinicalTrial.gov NCT01493492.

  10. Gene Expression and Proteome Analysis as Sources of Biomarkers in Basal Cell Carcinoma

    Science.gov (United States)

    Ghita, Mihaela Adriana; Voiculescu, Suzana; Rosca, Adrian E.; Moraru, Liliana; Greabu, Maria

    2016-01-01

    Basal cell carcinoma (BCC) is the world's leading skin cancer in terms of frequency at the moment and its incidence continues to rise each year, leading to profound negative psychosocial and economic consequences. UV exposure is the most important environmental factor in the development of BCC in genetically predisposed individuals, this being reflected by the anatomical distribution of lesions mainly on sun-exposed skin areas. Early diagnosis and prompt management are of crucial importance in order to prevent local tissue destruction and subsequent disfigurement. Although various noninvasive or minimal invasive techniques have demonstrated their utility in increasing diagnostic accuracy of BCC and progress has been made in its treatment options, recurrent, aggressive, and metastatic variants of BCC still pose significant challenge for the healthcare system. Analysis of gene expression and proteomic profiling of tumor cells and of tumoral microenvironment in various tissues strongly suggests that certain molecules involved in skin cancer pathogenic pathways might represent novel predictive and prognostic biomarkers in BCC. PMID:27578920

  11. Identification of 10 Candidate Biomarkers Distinguishing Tuberculous and Malignant Pleural Fluid by Proteomic Methods.

    Science.gov (United States)

    Lee, Chang Youl; Hong, Ji Young; Lee, Myung Goo; Suh, In Bum

    2017-11-01

    Pleural effusion, an accumulation of fluid in the pleural space, usually occurs in patients when the rate of fluid formation exceeds the rate of fluid removal. The differential diagnosis of tuberculous pleurisy and malignant pleural effusion is a difficult task in high tuberculous prevalence areas. The aim of the present study was to identify novel biomarkers for the diagnosis of pleural fluid using proteomics technology. We used samples from five patients with transudative pleural effusions for internal standard, five patients with tuberculous pleurisy, and the same numbers of patients having malignant effusions were enrolled in the study. We analyzed the proteins in pleural fluid from patients using a technique that combined two-dimensional liquid-phase electrophoresis and matrix assisted laser desorption/ionization-time of flight-mass spectrometry. We identified a total of 10 proteins with statistical significance. Among 10 proteins, trasthyretin, haptoglobin, metastasis-associated protein 1, t-complex protein 1, and fibroblast growth factor-binding protein 1 were related with malignant pleural effusions and human ceruloplasmin, lysozyme precursor, gelsolin, clusterin C complement lysis inhibitor, and peroxirexdoxin 3 were expressed several times or more in tuberculous pleural effusions. Highly expressed proteins in malignant pleural effusion were associated with carcinogenesis and cell growth, and proteins associated with tuberculous pleural effusion played a role in the response to inflammation and fibrosis. These findings will aid in the development of novel diagnostic tools for tuberculous pleurisy and malignant pleural effusion of lung cancer. © Copyright: Yonsei University College of Medicine 2017

  12. Proteomic Analysis of Saliva Identifies Potential Biomarkers for Orthodontic Tooth Movement

    Science.gov (United States)

    Ellias, Mohd Faiz; Zainal Ariffin, Shahrul Hisham; Karsani, Saiful Anuar; Abdul Rahman, Mariati; Senafi, Shahidan; Megat Abdul Wahab, Rohaya

    2012-01-01

    Orthodontic treatment has been shown to induce inflammation, followed by bone remodelling in the periodontium. These processes trigger the secretion of various proteins and enzymes into the saliva. This study aims to identify salivary proteins that change in expression during orthodontic tooth movement. These differentially expressed proteins can potentially serve as protein biomarkers for the monitoring of orthodontic treatment and tooth movement. Whole saliva from three healthy female subjects were collected before force application using fixed appliance and at 14 days after 0.014′′ Niti wire was applied. Salivary proteins were resolved using two-dimensional gel electrophoresis (2DE) over a pH range of 3–10, and the resulting proteome profiles were compared. Differentially expressed protein spots were then identified by MALDI-TOF/TOF tandem mass spectrometry. Nine proteins were found to be differentially expressed; however, only eight were identified by MALDI-TOF/TOF. Four of these proteins—Protein S100-A9, immunoglobulin J chain, Ig alpha-1 chain C region, and CRISP-3—have known roles in inflammation and bone resorption. PMID:22919344

  13. Gene Expression and Proteome Analysis as Sources of Biomarkers in Basal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Mihai Lupu

    2016-01-01

    Full Text Available Basal cell carcinoma (BCC is the world’s leading skin cancer in terms of frequency at the moment and its incidence continues to rise each year, leading to profound negative psychosocial and economic consequences. UV exposure is the most important environmental factor in the development of BCC in genetically predisposed individuals, this being reflected by the anatomical distribution of lesions mainly on sun-exposed skin areas. Early diagnosis and prompt management are of crucial importance in order to prevent local tissue destruction and subsequent disfigurement. Although various noninvasive or minimal invasive techniques have demonstrated their utility in increasing diagnostic accuracy of BCC and progress has been made in its treatment options, recurrent, aggressive, and metastatic variants of BCC still pose significant challenge for the healthcare system. Analysis of gene expression and proteomic profiling of tumor cells and of tumoral microenvironment in various tissues strongly suggests that certain molecules involved in skin cancer pathogenic pathways might represent novel predictive and prognostic biomarkers in BCC.

  14. NMR and pattern recognition methods in metabolomics: From data acquisition to biomarker discovery: A review

    International Nuclear Information System (INIS)

    Smolinska, Agnieszka; Blanchet, Lionel; Buydens, Lutgarde M.C.; Wijmenga, Sybren S.

    2012-01-01

    Highlights: ► Procedures for acquisition of different biofluids by NMR. ► Recent developments in metabolic profiling of different biofluids by NMR are presented. ► The crucial steps involved in data preprocessing and multivariate chemometric analysis are reviewed. ► Emphasis is given on recent findings on Multiple Sclerosis via NMR and pattern recognition methods. - Abstract: Metabolomics is the discipline where endogenous and exogenous metabolites are assessed, identified and quantified in different biological samples. Metabolites are crucial components of biological system and highly informative about its functional state, due to their closeness to functional endpoints and to the organism's phenotypes. Nuclear Magnetic Resonance (NMR) spectroscopy, next to Mass Spectrometry (MS), is one of the main metabolomics analytical platforms. The technological developments in the field of NMR spectroscopy have enabled the identification and quantitative measurement of the many metabolites in a single sample of biofluids in a non-targeted and non-destructive manner. Combination of NMR spectra of biofluids and pattern recognition methods has driven forward the application of metabolomics in the field of biomarker discovery. The importance of metabolomics in diagnostics, e.g. in identifying biomarkers or defining pathological status, has been growing exponentially as evidenced by the number of published papers. In this review, we describe the developments in data acquisition and multivariate analysis of NMR-based metabolomics data, with particular emphasis on the metabolomics of Cerebrospinal Fluid (CSF) and biomarker discovery in Multiple Sclerosis (MScl).

  15. The Emerging Field of Quantitative Blood Metabolomics for Biomarker Discovery in Critical Illnesses

    Science.gov (United States)

    Serkova, Natalie J.; Standiford, Theodore J.

    2011-01-01

    Metabolomics, a science of systems biology, is the global assessment of endogenous metabolites within a biologic system and represents a “snapshot” reading of gene function, enzyme activity, and the physiological landscape. Metabolite detection, either individual or grouped as a metabolomic profile, is usually performed in cells, tissues, or biofluids by either nuclear magnetic resonance spectroscopy or mass spectrometry followed by sophisticated multivariate data analysis. Because loss of metabolic homeostasis is common in critical illness, the metabolome could have many applications, including biomarker and drug target identification. Metabolomics could also significantly advance our understanding of the complex pathophysiology of acute illnesses, such as sepsis and acute lung injury/acute respiratory distress syndrome. Despite this potential, the clinical community is largely unfamiliar with the field of metabolomics, including the methodologies involved, technical challenges, and, most importantly, clinical uses. Although there is evidence of successful preclinical applications, the clinical usefulness and application of metabolomics in critical illness is just beginning to emerge, the advancement of which hinges on linking metabolite data to known and validated clinically relevant indices. In addition, other important aspects, such as patient selection, sample collection, and processing, as well as the needed multivariate data analysis, have to be taken into consideration before this innovative approach to biomarker discovery can become a reliable tool in the intensive care unit. The purpose of this review is to begin to familiarize clinicians with the field of metabolomics and its application for biomarker discovery in critical illnesses such as sepsis. PMID:21680948

  16. Proteomics analysis of dendritic cell activation by contact allergens reveals possible biomarkers regulated by Nrf2

    Energy Technology Data Exchange (ETDEWEB)

    Mussotter, Franz, E-mail: franz.mussotter@bfr.bund.de [German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin (Germany); Tomm, Janina Melanie [Helmholtz Centre for Environmental Research (UFZ), Department of Molecular Systems Biology, Leipzig (Germany); El Ali, Zeina; Pallardy, Marc; Kerdine-Römer, Saadia [INSERM UMR 996, Univ Paris-Sud, Université Paris-Saclay, Chátenay-Malabry (France); Götz, Mario [German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin (Germany); Bergen, Martin von [Helmholtz Centre for Environmental Research (UFZ), Department of Molecular Systems Biology, Leipzig (Germany); University of Leipzig, Institute of Biochemistry, Leipzig (Germany); Aalborg University, Department of Chemistry and Bioscience, Aalborg (Denmark); Haase, Andrea; Luch, Andreas [German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin (Germany)

    2016-12-15

    Allergic contact dermatitis is a widespread disease with high clinical relevance affecting approximately 20% of the general population. Typically, contact allergens are low molecular weight electrophilic compounds which can activate the Keap1/Nrf2 pathway. We performed a proteomics study to reveal possible biomarkers for dendritic cell (DC) activation by contact allergens and to further elucidate the role of Keap1/Nrf2 signaling in this process. We used bone marrow derived dendritic cells (BMDCs) of wild-type (nrf2{sup +/+}) and Nrf2 knockout (nrf2{sup −/−}) mice and studied their response against the model contact sensitizers 2,4-dinitrochlorobenzene (DNCB), cinnamaldehyde (CA) and nickel(II) sulfate by 2-dimensional polyacrylamide gel electrophoresis (2D-PAGE) in combination with electrospray ionization tandem mass spectrometry (ESI-MS/MS). Sodium dodecyl sulfate (SDS, 100 μM) served as irritant control. While treatment with nickel(II) sulfate and SDS had only little effects, CA and DNCB led to significant changes in protein expression. We found 18 and 30 protein spots up-regulated in wild-type cells treated with 50 and 100 μM CA, respectively. For 5 and 10 μM DNCB, 32 and 37 spots were up-regulated, respectively. Almost all of these proteins were not differentially expressed in nrf2{sup −/−} BMDCs, indicating an Nrf2-dependent regulation. Among them proteins were detected which are involved in oxidative stress and heat shock responses, as well as in signal transduction or basic cellular pathways. The applied approach allowed us to differentiate between Nrf2-dependent and Nrf2-independent cellular biomarkers differentially regulated upon allergen-induced DC activation. The data presented might contribute to the further development of suitable in vitro testing methods for chemical-mediated sensitization. - Highlights: • Contact allergens induce proteins involved in DC maturation Nrf2-dependently. • Induction of these proteins points to a functional

  17. Adipokines: a treasure trove for the discovery of biomarkers for metabolic disorders.

    Science.gov (United States)

    Lehr, Stefan; Hartwig, Sonja; Sell, Henrike

    2012-01-01

    Adipose tissue is a major endocrine organ, releasing signaling and mediator proteins, termed adipokines, via which adipose tissue communicates with other organs. Expansion of adipose tissue in obesity alters adipokine secretion which may contribute to the development of metabolic diseases. Consequently, this correlation has emphasized the importance to further characterize the adipocyte secretion profile, and several attempts have been made to characterize the complex nature of the adipose tissue secretome by utilizing diverse proteomic profiling approaches. Although the entirety of human adipokines is still incompletely characterized, to date more than 600 potentially secretory proteins were identified providing a rich source to identify putative novel biomarkers associated with metabolic diseases. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Discovery and annotation of small proteins using genomics, proteomics and computational approaches

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaohan; Tschaplinski, Timothy J.; Hurst, Gregory B.; Jawdy, Sara; Abraham, Paul E.; Lankford, Patricia K.; Adams, Rachel M.; Shah, Manesh B.; Hettich, Robert L.; Lindquist, Erika; Kalluri, Udaya C.; Gunter, Lee E.; Pennacchio, Christa; Tuskan, Gerald A.

    2011-03-02

    Small proteins (10 200 amino acids aa in length) encoded by short open reading frames (sORF) play important regulatory roles in various biological processes, including tumor progression, stress response, flowering, and hormone signaling. However, ab initio discovery of small proteins has been relatively overlooked. Recent advances in deep transcriptome sequencing make it possible to efficiently identify sORFs at the genome level. In this study, we obtained 2.6 million expressed sequence tag (EST) reads from Populus deltoides leaf transcriptome and reconstructed full-length transcripts from the EST sequences. We identified an initial set of 12,852 sORFs encoding proteins of 10 200 aa in length. Three computational approaches were then used to enrich for bona fide protein-coding sORFs from the initial sORF set: (1) codingpotential prediction, (2) evolutionary conservation between P. deltoides and other plant species, and (3) gene family clustering within P. deltoides. As a result, a high-confidence sORF candidate set containing 1469 genes was obtained. Analysis of the protein domains, non-protein-coding RNA motifs, sequence length distribution, and protein mass spectrometry data supported this high-confidence sORF set. In the high-confidence sORF candidate set, known protein domains were identified in 1282 genes (higher-confidence sORF candidate set), out of which 611 genes, designated as highest-confidence candidate sORF set, were supported by proteomics data. Of the 611 highest-confidence candidate sORF genes, 56 were new to the current Populus genome annotation. This study not only demonstrates that there are potential sORF candidates to be annotated in sequenced genomes, but also presents an efficient strategy for discovery of sORFs in species with no genome annotation yet available.

  19. Mass Spectrometry for Translational Proteomics: Progress and Clinical Implications

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Erin Shammel; Liu, Tao; Petyuk, Vladislav A.; Burnum-Johnson, Kristin E.; Ibrahim, Yehia M.; Anderson, Gordon A.; Smith, Richard D.

    2012-08-31

    Mass spectrometry (MS)-based proteomics measurements have become increasingly utilized in a wide range of biological and biomedical applications, and have significantly enhanced the understanding of the complex and dynamic nature of the proteome and its connections to biology and diseases. While some MS techniques such as those for targeted analysis are increasingly applied with great success, others such as global quantitative analysis (for e.g. biomarker discovery) are more challenging and continue to be developed and refined to provide the desired throughput, sensitivity and/ or specificity. New MS capabilities and proteomics-based pipelines/strategies also keep enhancing for the advancement of clinical proteomics applications such as protein biomarker discovery and validation. Herein, we provide a brief review to summarize the current state of MS-based proteomics with respect to its advantages and present limitations, while highlighting its potential in future clinical applications.

  20. Proteomic analyses of host and pathogen responses during bovine mastitis.

    Science.gov (United States)

    Boehmer, Jamie L

    2011-12-01

    The pursuit of biomarkers for use as clinical screening tools, measures for early detection, disease monitoring, and as a means for assessing therapeutic responses has steadily evolved in human and veterinary medicine over the past two decades. Concurrently, advances in mass spectrometry have markedly expanded proteomic capabilities for biomarker discovery. While initial mass spectrometric biomarker discovery endeavors focused primarily on the detection of modulated proteins in human tissues and fluids, recent efforts have shifted to include proteomic analyses of biological samples from food animal species. Mastitis continues to garner attention in veterinary research due mainly to affiliated financial losses and food safety concerns over antimicrobial use, but also because there are only a limited number of efficacious mastitis treatment options. Accordingly, comparative proteomic analyses of bovine milk have emerged in recent years. Efforts to prevent agricultural-related food-borne illness have likewise fueled an interest in the proteomic evaluation of several prominent strains of bacteria, including common mastitis pathogens. The interest in establishing biomarkers of the host and pathogen responses during bovine mastitis stems largely from the need to better characterize mechanisms of the disease, to identify reliable biomarkers for use as measures of early detection and drug efficacy, and to uncover potentially novel targets for the development of alternative therapeutics. The following review focuses primarily on comparative proteomic analyses conducted on healthy versus mastitic bovine milk. However, a comparison of the host defense proteome of human and bovine milk and the proteomic analysis of common veterinary pathogens are likewise introduced.

  1. Reproducible cancer biomarker discovery in SELDI-TOF MS using different pre-processing algorithms.

    Directory of Open Access Journals (Sweden)

    Jinfeng Zou

    Full Text Available BACKGROUND: There has been much interest in differentiating diseased and normal samples using biomarkers derived from mass spectrometry (MS studies. However, biomarker identification for specific diseases has been hindered by irreproducibility. Specifically, a peak profile extracted from a dataset for biomarker identification depends on a data pre-processing algorithm. Until now, no widely accepted agreement has been reached. RESULTS: In this paper, we investigated the consistency of biomarker identification using differentially expressed (DE peaks from peak profiles produced by three widely used average spectrum-dependent pre-processing algorithms based on SELDI-TOF MS data for prostate and breast cancers. Our results revealed two important factors that affect the consistency of DE peak identification using different algorithms. One factor is that some DE peaks selected from one peak profile were not detected as peaks in other profiles, and the second factor is that the statistical power of identifying DE peaks in large peak profiles with many peaks may be low due to the large scale of the tests and small number of samples. Furthermore, we demonstrated that the DE peak detection power in large profiles could be improved by the stratified false discovery rate (FDR control approach and that the reproducibility of DE peak detection could thereby be increased. CONCLUSIONS: Comparing and evaluating pre-processing algorithms in terms of reproducibility can elucidate the relationship among different algorithms and also help in selecting a pre-processing algorithm. The DE peaks selected from small peak profiles with few peaks for a dataset tend to be reproducibly detected in large peak profiles, which suggests that a suitable pre-processing algorithm should be able to produce peaks sufficient for identifying useful and reproducible biomarkers.

  2. A proteomic analysis identifies candidate early biomarkers to predict ovarian hyperstimulation syndrome in polycystic ovarian syndrome patients.

    Science.gov (United States)

    Wu, Lan; Sun, Yazhou; Wan, Jun; Luan, Ting; Cheng, Qing; Tan, Yong

    2017-07-01

    Ovarian hyperstimulation syndrome (OHSS) is a potentially life‑threatening, iatrogenic complication that occurs during assisted reproduction. Polycystic ovarian syndrome (PCOS) significantly increases the risk of OHSS during controlled ovarian stimulation. Therefore, a more effective early prediction technique is required in PCOS patients. Quantitative proteomic analysis of serum proteins indicates the potential diagnostic value for disease. In the present study, the authors revealed the differentially expressed proteins in OHSS patients with PCOS as new diagnostic biomarkers. The promising proteins obtained from liquid chromatography‑mass spectrometry were subjected to ELISA and western blotting assay for further confirmation. A total of 57 proteins were identified with significant difference, of which 29 proteins were upregulated and 28 proteins were downregulated in OHSS patients. Haptoglobin, fibrinogen and lipoprotein lipase were selected as candidate biomarkers. Receiver operating characteristic curve analysis demonstrated all three proteins may have potential as biomarkers to discriminate OHSS in PCOS patients. Haptoglobin, fibrinogen and lipoprotein lipase have never been reported as a predictive marker of OHSS in PCOS patients, and their potential roles in OHSS occurrence deserve further studies. The proteomic results reported in the present study may gain deeper insights into the pathophysiology of OHSS.

  3. Differential profiling of breast cancer plasma proteome by isotope-coded affinity tagging method reveals biotinidase as a breast cancer biomarker

    International Nuclear Information System (INIS)

    Kang, Un-Beom; Ahn, Younghee; Lee, Jong Won; Kim, Yong-Hak; Kim, Joon; Yu, Myeong-Hee; Noh, Dong-Young; Lee, Cheolju

    2010-01-01

    Breast cancer is one of the leading causes of women's death worldwide. It is important to discover a reliable biomarker for the detection of breast cancer. Plasma is the most ideal source for cancer biomarker discovery since many cells cross-communicate through the secretion of soluble proteins into blood. Plasma proteomes obtained from 6 breast cancer patients and 6 normal healthy women were analyzed by using the isotope-coded affinity tag (ICAT) labeling approach and tandem mass spectrometry. All the plasma samples used were depleted of highly abundant 6 plasma proteins by immune-affinity column chromatography before ICAT labeling. Several proteins showing differential abundance level were selected based on literature searches and their specificity to the commercially available antibodies, and then verified by immunoblot assays. A total of 155 proteins were identified and quantified by ICAT method. Among them, 33 proteins showed abundance changes by more than 1.5-fold between the plasmas of breast cancer patients and healthy women. We chose 5 proteins for the follow-up confirmation in the individual plasma samples using immunoblot assay. Four proteins, α1-acid glycoprotein 2, monocyte differentiation antigen CD14, biotinidase (BTD), and glutathione peroxidase 3, showed similar abundance ratio to ICAT result. Using a blind set of plasmas obtained from 21 breast cancer patients and 21 normal healthy controls, we confirmed that BTD was significantly down-regulated in breast cancer plasma (Wilcoxon rank-sum test, p = 0.002). BTD levels were lowered in all cancer grades (I-IV) except cancer grade zero. The area under the receiver operating characteristic curve of BTD was 0.78. Estrogen receptor status (p = 0.940) and progesterone receptor status (p = 0.440) were not associated with the plasma BTD levels. Our study suggests that BTD is a potential serological biomarker for the detection of breast cancer

  4. Integrated Proteomic Pipeline Using Multiple Search Engines for a Proteogenomic Study with a Controlled Protein False Discovery Rate.

    Science.gov (United States)

    Park, Gun Wook; Hwang, Heeyoun; Kim, Kwang Hoe; Lee, Ju Yeon; Lee, Hyun Kyoung; Park, Ji Yeong; Ji, Eun Sun; Park, Sung-Kyu Robin; Yates, John R; Kwon, Kyung-Hoon; Park, Young Mok; Lee, Hyoung-Joo; Paik, Young-Ki; Kim, Jin Young; Yoo, Jong Shin

    2016-11-04

    In the Chromosome-Centric Human Proteome Project (C-HPP), false-positive identification by peptide spectrum matches (PSMs) after database searches is a major issue for proteogenomic studies using liquid-chromatography and mass-spectrometry-based large proteomic profiling. Here we developed a simple strategy for protein identification, with a controlled false discovery rate (FDR) at the protein level, using an integrated proteomic pipeline (IPP) that consists of four engrailed steps as follows. First, using three different search engines, SEQUEST, MASCOT, and MS-GF+, individual proteomic searches were performed against the neXtProt database. Second, the search results from the PSMs were combined using statistical evaluation tools including DTASelect and Percolator. Third, the peptide search scores were converted into E-scores normalized using an in-house program. Last, ProteinInferencer was used to filter the proteins containing two or more peptides with a controlled FDR of 1.0% at the protein level. Finally, we compared the performance of the IPP to a conventional proteomic pipeline (CPP) for protein identification using a controlled FDR of <1% at the protein level. Using the IPP, a total of 5756 proteins (vs 4453 using the CPP) including 477 alternative splicing variants (vs 182 using the CPP) were identified from human hippocampal tissue. In addition, a total of 10 missing proteins (vs 7 using the CPP) were identified with two or more unique peptides, and their tryptic peptides were validated using MS/MS spectral pattern from a repository database or their corresponding synthetic peptides. This study shows that the IPP effectively improved the identification of proteins, including alternative splicing variants and missing proteins, in human hippocampal tissues for the C-HPP. All RAW files used in this study were deposited in ProteomeXchange (PXD000395).

  5. Discovery and identification of potential biomarkers of pediatric Acute Lymphoblastic Leukemia

    Directory of Open Access Journals (Sweden)

    Cui Ziyou

    2009-03-01

    Full Text Available Abstract Background Acute lymphoblastic leukemia (ALL is a common form of cancer in children. Currently, bone marrow biopsy is used for diagnosis. Noninvasive biomarkers for the early diagnosis of pediatric ALL are urgently needed. The aim of this study was to discover potential protein biomarkers for pediatric ALL. Methods Ninety-four pediatric ALL patients and 84 controls were randomly divided into a "training" set (45 ALL patients, 34 healthy controls and a test set (49 ALL patients, 30 healthy controls and 30 pediatric acute myeloid leukemia (AML patients. Serum proteomic profiles were measured using surface-enhanced laser desorption/ionization-time-of-flight mass spectroscopy (SELDI-TOF-MS. A classification model was established by Biomarker Pattern Software (BPS. Candidate protein biomarkers were purified by HPLC, identified by LC-MS/MS and validated using ProteinChip immunoassays. Results A total of 7 protein peaks (9290 m/z, 7769 m/z, 15110 m/z, 7564 m/z, 4469 m/z, 8937 m/z, 8137 m/z were found with differential expression levels in the sera of pediatric ALL patients and controls using SELDI-TOF-MS and then analyzed by BPS to construct a classification model in the "training" set. The sensitivity and specificity of the model were found to be 91.8%, and 90.0%, respectively, in the test set. Two candidate protein peaks (7769 and 9290 m/z were found to be down-regulated in ALL patients, where these were identified as platelet factor 4 (PF4 and pro-platelet basic protein precursor (PBP. Two other candidate protein peaks (8137 and 8937 m/z were found up-regulated in the sera of ALL patients, and these were identified as fragments of the complement component 3a (C3a. Conclusion Platelet factor (PF4, connective tissue activating peptide III (CTAP-III and two fragments of C3a may be potential protein biomarkers of pediatric ALL and used to distinguish pediatric ALL patients from healthy controls and pediatric AML patients. Further studies with

  6. Discovery and identification of potential biomarkers of pediatric Acute Lymphoblastic Leukemia

    Science.gov (United States)

    Shi, Linan; Zhang, Jun; Wu, Peng; Feng, Kai; Li, Jing; Xie, Zhensheng; Xue, Peng; Cai, Tanxi; Cui, Ziyou; Chen, Xiulan; Hou, Junjie; Zhang, Jianzhong; Yang, Fuquan

    2009-01-01

    Background Acute lymphoblastic leukemia (ALL) is a common form of cancer in children. Currently, bone marrow biopsy is used for diagnosis. Noninvasive biomarkers for the early diagnosis of pediatric ALL are urgently needed. The aim of this study was to discover potential protein biomarkers for pediatric ALL. Methods Ninety-four pediatric ALL patients and 84 controls were randomly divided into a "training" set (45 ALL patients, 34 healthy controls) and a test set (49 ALL patients, 30 healthy controls and 30 pediatric acute myeloid leukemia (AML) patients). Serum proteomic profiles were measured using surface-enhanced laser desorption/ionization-time-of-flight mass spectroscopy (SELDI-TOF-MS). A classification model was established by Biomarker Pattern Software (BPS). Candidate protein biomarkers were purified by HPLC, identified by LC-MS/MS and validated using ProteinChip immunoassays. Results A total of 7 protein peaks (9290 m/z, 7769 m/z, 15110 m/z, 7564 m/z, 4469 m/z, 8937 m/z, 8137 m/z) were found with differential expression levels in the sera of pediatric ALL patients and controls using SELDI-TOF-MS and then analyzed by BPS to construct a classification model in the "training" set. The sensitivity and specificity of the model were found to be 91.8%, and 90.0%, respectively, in the test set. Two candidate protein peaks (7769 and 9290 m/z) were found to be down-regulated in ALL patients, where these were identified as platelet factor 4 (PF4) and pro-platelet basic protein precursor (PBP). Two other candidate protein peaks (8137 and 8937 m/z) were found up-regulated in the sera of ALL patients, and these were identified as fragments of the complement component 3a (C3a). Conclusion Platelet factor (PF4), connective tissue activating peptide III (CTAP-III) and two fragments of C3a may be potential protein biomarkers of pediatric ALL and used to distinguish pediatric ALL patients from healthy controls and pediatric AML patients. Further studies with additional

  7. Identification of Analytical Factors Affecting Complex Proteomics Profiles Acquired in a Factorial Design Study with Analysis of Variance : Simultaneous Component Analysis

    NARCIS (Netherlands)

    Mitra, V.; Govorukhina, N.; Zwanenburg, G.; Hoefsloot, H.; Westra, I.; Smilde, A.; Reijmers, T.; van der Zee, A.G.J.; Suits, F.; Bischoff, R.; Horvatovich, P.

    2016-01-01

    Complex shotgun proteomics peptide profiles obtained in quantitative differential protein expression studies, such as in biomarker discovery, may be affected by multiple experimental factors. These preanalytical factors may affect the measured protein abundances which in turn influence the outcome

  8. Assessment of metabolomic and proteomic biomarkers in detection and prognosis of progression of renal function in chronic kidney disease.

    Directory of Open Access Journals (Sweden)

    Esther Nkuipou-Kenfack

    Full Text Available Chronic kidney disease (CKD is part of a number of systemic and renal diseases and may reach epidemic proportions over the next decade. Efforts have been made to improve diagnosis and management of CKD. We hypothesised that combining metabolomic and proteomic approaches could generate a more systemic and complete view of the disease mechanisms. To test this approach, we examined samples from a cohort of 49 patients representing different stages of CKD. Urine samples were analysed for proteomic changes using capillary electrophoresis-mass spectrometry and urine and plasma samples for metabolomic changes using different mass spectrometry-based techniques. The training set included 20 CKD patients selected according to their estimated glomerular filtration rate (eGFR at mild (59.9±16.5 mL/min/1.73 m2; n = 10 or advanced (8.9±4.5 mL/min/1.73 m2; n = 10 CKD and the remaining 29 patients left for the test set. We identified a panel of 76 statistically significant metabolites and peptides that correlated with CKD in the training set. We combined these biomarkers in different classifiers and then performed correlation analyses with eGFR at baseline and follow-up after 2.8±0.8 years in the test set. A solely plasma metabolite biomarker-based classifier significantly correlated with the loss of kidney function in the test set at baseline and follow-up (ρ = -0.8031; p<0.0001 and ρ = -0.6009; p = 0.0019, respectively. Similarly, a urinary metabolite biomarker-based classifier did reveal significant association to kidney function (ρ = -0.6557; p = 0.0001 and ρ = -0.6574; p = 0.0005. A classifier utilising 46 identified urinary peptide biomarkers performed statistically equivalent to the urinary and plasma metabolite classifier (ρ = -0.7752; p<0.0001 and ρ = -0.8400; p<0.0001. The combination of both urinary proteomic and urinary and plasma metabolic biomarkers did not improve the correlation with eGFR. In

  9. Using a novel "Integrated Biomarker Proteomic" index to assess the effects of freshwater pollutants in European eel peripheral blood mononuclear cells.

    Science.gov (United States)

    Roland, Kathleen; Kestemont, Patrick; Dieu, Marc; Raes, Martine; Silvestre, Frédéric

    2016-03-30

    Using proteomic data as biomarkers of environmental pollution has the potential to be of a great interest in ecological risk assessment as they constitute early warning indicators of ecologically relevant effects on biological systems. To develop such specific and sensitive biomarkers, the use of a set of proteins is required and the identification of protein expression signatures (PES) may reflect the exposure to specific classes of pollutants. Using 2D-DIGE (Differential in Gel Electrophoresis) methodology, this study aimed at identifying specific PES on European eel (Anguilla anguilla) peripheral blood mononuclear cells (PBMC) after 48 h in vitro exposure to two sublethal concentrations of dichlorodiphenyltrichloroethane (p,p'-DDT) (10 μg/L and 1mg/L) or cadmium (Cd) (1 μg/L and 100 μg/L). The present results have been supplemented with data of a first in vitro study on cells exposed to perfluorooctane sulfonate (PFOS) (10 μg/L and 1mg/L). A total of thirty-four protein spots, belonging to 18 different identified proteins found in all conditions, have been selected as possible biomarkers to develop a synthetic Integrated Biomarker Proteomic (IBP) index. IBP follows a dose-response relationship with higher values at the highest tested concentration for each pollutant (Cd: 9.96; DDT: 7.44; PFOS: 7.94) compared to the lowest tested concentration (Cd: 3.81; DDT: 2.91; PFOS: 2.06). In a second step, star plot graphs have been applied to proteomic data in order to allow visual integration of a set of early warning responses measured with protein biomarkers. Such star plots permit to discriminate the type of pollutant inducing a proteomic response. We conclude that using IBP is relevant in environmental risk assessment, giving to this index the potential to be applied as a global index of proteome alteration in endangered species such as the European eel. In this study, 34 protein spots have been selected as possible biomarkers to develop a synthetic Integrated

  10. Comprehensive Analysis of MILE Gene Expression Data Set Advances Discovery of Leukaemia Type and Subtype Biomarkers.

    Science.gov (United States)

    Labaj, Wojciech; Papiez, Anna; Polanski, Andrzej; Polanska, Joanna

    2017-03-01

    Large collections of data in studies on cancer such as leukaemia provoke the necessity of applying tailored analysis algorithms to ensure supreme information extraction. In this work, a custom-fit pipeline is demonstrated for thorough investigation of the voluminous MILE gene expression data set. Three analyses are accomplished, each for gaining a deeper understanding of the processes underlying leukaemia types and subtypes. First, the main disease groups are tested for differential expression against the healthy control as in a standard case-control study. Here, the basic knowledge on molecular mechanisms is confirmed quantitatively and by literature references. Second, pairwise comparison testing is performed for juxtaposing the main leukaemia types among each other. In this case by means of the Dice coefficient similarity measure the general relations are pointed out. Moreover, lists of candidate main leukaemia group biomarkers are proposed. Finally, with this approach being successful, the third analysis provides insight into all of the studied subtypes, followed by the emergence of four leukaemia subtype biomarkers. In addition, the class enhanced DEG signature obtained on the basis of novel pipeline processing leads to significantly better classification power of multi-class data classifiers. The developed methodology consisting of batch effect adjustment, adaptive noise and feature filtration coupled with adequate statistical testing and biomarker definition proves to be an effective approach towards knowledge discovery in high-throughput molecular biology experiments.

  11. NMR and pattern recognition methods in metabolomics: From data acquisition to biomarker discovery: A review

    Energy Technology Data Exchange (ETDEWEB)

    Smolinska, Agnieszka, E-mail: A.Smolinska@science.ru.nl [Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen (Netherlands); Blanchet, Lionel [Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen (Netherlands); Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Buydens, Lutgarde M.C.; Wijmenga, Sybren S. [Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen (Netherlands)

    2012-10-31

    Highlights: Black-Right-Pointing-Pointer Procedures for acquisition of different biofluids by NMR. Black-Right-Pointing-Pointer Recent developments in metabolic profiling of different biofluids by NMR are presented. Black-Right-Pointing-Pointer The crucial steps involved in data preprocessing and multivariate chemometric analysis are reviewed. Black-Right-Pointing-Pointer Emphasis is given on recent findings on Multiple Sclerosis via NMR and pattern recognition methods. - Abstract: Metabolomics is the discipline where endogenous and exogenous metabolites are assessed, identified and quantified in different biological samples. Metabolites are crucial components of biological system and highly informative about its functional state, due to their closeness to functional endpoints and to the organism's phenotypes. Nuclear Magnetic Resonance (NMR) spectroscopy, next to Mass Spectrometry (MS), is one of the main metabolomics analytical platforms. The technological developments in the field of NMR spectroscopy have enabled the identification and quantitative measurement of the many metabolites in a single sample of biofluids in a non-targeted and non-destructive manner. Combination of NMR spectra of biofluids and pattern recognition methods has driven forward the application of metabolomics in the field of biomarker discovery. The importance of metabolomics in diagnostics, e.g. in identifying biomarkers or defining pathological status, has been growing exponentially as evidenced by the number of published papers. In this review, we describe the developments in data acquisition and multivariate analysis of NMR-based metabolomics data, with particular emphasis on the metabolomics of Cerebrospinal Fluid (CSF) and biomarker discovery in Multiple Sclerosis (MScl).

  12. Proteomic analysis identifies galectin-1 as a predictive biomarker for relapsed/refractory disease in classical Hodgkin lymphoma

    DEFF Research Database (Denmark)

    Kamper, Peter; Ludvigsen, Maja; Bendix, Knud

    2011-01-01

    Considerable effort has been spent identifying prognostic biomarkers in classic Hodgkin lymphoma (cHL). The aim of our study was to search for possible prognostic parameters in advanced-stage cHL using a proteomics-based strategy. A total of 14 cHL pretreatment tissue samples from younger, advanced......-stage patients were included. Patients were grouped according to treatment response. Proteins that were differentially expressed between the groups were analyzed using 2D-PAGE and identified by liquid chromatography mass spectrometry. Selected proteins were validated using Western blot analysis. One...

  13. 3D profile-based approach to proteome-wide discovery of novel human chemokines.

    Directory of Open Access Journals (Sweden)

    Aurelie Tomczak

    Full Text Available Chemokines are small secreted proteins with important roles in immune responses. They consist of a conserved three-dimensional (3D structure, so-called IL8-like chemokine fold, which is supported by disulfide bridges characteristic of this protein family. Sequence- and profile-based computational methods have been proficient in discovering novel chemokines by making use of their sequence-conserved cysteine patterns. However, it has been recently shown that some chemokines escaped annotation by these methods due to low sequence similarity to known chemokines and to different arrangement of cysteines in sequence and in 3D. Innovative methods overcoming the limitations of current techniques may allow the discovery of new remote homologs in the still functionally uncharacterized fraction of the human genome. We report a novel computational approach for proteome-wide identification of remote homologs of the chemokine family that uses fold recognition techniques in combination with a scaffold-based automatic mapping of disulfide bonds to define a 3D profile of the chemokine protein family. By applying our methodology to all currently uncharacterized human protein sequences, we have discovered two novel proteins that, without having significant sequence similarity to known chemokines or characteristic cysteine patterns, show strong structural resemblance to known anti-HIV chemokines. Detailed computational analysis and experimental structural investigations based on mass spectrometry and circular dichroism support our structural predictions and highlight several other chemokine-like features. The results obtained support their functional annotation as putative novel chemokines and encourage further experimental characterization. The identification of remote homologs of human chemokines may provide new insights into the molecular mechanisms causing pathologies such as cancer or AIDS, and may contribute to the development of novel treatments. Besides

  14. A Selected Reaction Monitoring Mass Spectrometry Protocol for Validation of Proteomic Biomarker Candidates in Studies of Psychiatric Disorders.

    Science.gov (United States)

    Reis-de-Oliveira, Guilherme; Garcia, Sheila; Guest, Paul C; Cassoli, Juliana S; Martins-de-Souza, Daniel

    2017-01-01

    Most biomarker candidates arising from proteomic studies of psychiatric disorders have not progressed for use in clinical studies due to insufficient validation steps. Here we describe a selective reaction monitoring mass spectrometry (SRM-MS) approach that could be used as a follow-up validation tool of proteins identified in blood serum or plasma. This protocol specifically covers the stages of peptide selection and optimization. The increasing application of SRM-MS should enable fast, sensitive, and robust methods with the potential for use in clinical studies involving sampling of serum or plasma. Understanding the molecular mechanisms and identifying potential biomarkers for risk assessment, diagnosis, prognosis, and prediction of drug response goes toward the implementation of translational medicine strategies for improved treatment of patients with psychiatric disorders and other debilitating diseases.

  15. [Search for potential gastric cancer biomarkers using low molecular weight blood plasma proteome profiling by mass spectrometry].

    Science.gov (United States)

    Shevchenko, V E; Arnotskaia, N E; Ogorodnikova, E V; Davydov, M M; Ibraev, M A; Turkin, I N; Davydov, M I

    2014-01-01

    Gastric cancer, one of the most widespread malignant tumors, still lacks reliable serum/plasma biomarkers of its early detection. In this study we have developed, unified, and tested a new methodology for search of gastric cancer biomarkers based on profiling of low molecular weight proteome (LMWP) (1-17 kDa). This approach included three main components: sample pre-fractionation, matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS), data analysis by a bioinformatics software package. Applicability and perspectives of the developed approach for detection of potential gastric cancer markers during LMWP analysis have been demonstrated using 69 plasma samples from patients with gastric cancer (stages I-IV) and 238 control samples. The study revealed peptides/polypeptides, which may be potentially used for detection of this pathology.

  16. Discovery of serum biomarkers predicting development of a subsequent depressive episode in social anxiety disorder.

    Science.gov (United States)

    Gottschalk, M G; Cooper, J D; Chan, M K; Bot, M; Penninx, B W J H; Bahn, S

    2015-08-01

    Although social anxiety disorder (SAD) is strongly associated with the subsequent development of a depressive disorder (major depressive disorder or dysthymia), no underlying biological risk factors are known. We aimed to identify biomarkers which predict depressive episodes in SAD patients over a 2-year follow-up period. One hundred sixty-five multiplexed immunoassay analytes were investigated in blood serum of 143 SAD patients without co-morbid depressive disorders, recruited within the Netherlands Study of Depression and Anxiety (NESDA). Predictive performance of identified biomarkers, clinical variables and self-report inventories was assessed using receiver operating characteristics curves (ROC) and represented by the area under the ROC curve (AUC). Stepwise logistic regression resulted in the selection of four serum analytes (AXL receptor tyrosine kinase, vascular cell adhesion molecule 1, vitronectin, collagen IV) and four additional variables (Inventory of Depressive Symptomatology, Beck Anxiety Inventory somatic subscale, depressive disorder lifetime diagnosis, BMI) as optimal set of patient parameters. When combined, an AUC of 0.86 was achieved for the identification of SAD individuals who later developed a depressive disorder. Throughout our analyses, biomarkers yielded superior discriminative performance compared to clinical variables and self-report inventories alone. We report the discovery of a serum marker panel with good predictive performance to identify SAD individuals prone to develop subsequent depressive episodes in a naturalistic cohort design. Furthermore, we emphasise the importance to combine biological markers, clinical variables and self-report inventories for disease course predictions in psychiatry. Following replication in independent cohorts, validated biomarkers could help to identify SAD patients at risk of developing a depressive disorder, thus facilitating early intervention. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The Role of Proteomics in Biomarker Development for Improved Patient Diagnosis and Clinical Decision Making in Prostate Cancer.

    LENUS (Irish Health Repository)

    Tonry, Claire L

    2016-07-18

    Prostate Cancer (PCa) is the second most commonly diagnosed cancer in men worldwide. Although increased expression of prostate-specific antigen (PSA) is an effective indicator for the recurrence of PCa, its intended use as a screening marker for PCa is of considerable controversy. Recent research efforts in the field of PCa biomarkers have focused on the identification of tissue and fluid-based biomarkers that would be better able to stratify those individuals diagnosed with PCa who (i) might best receive no treatment (active surveillance of the disease); (ii) would benefit from existing treatments; or (iii) those who are likely to succumb to disease recurrence and\\/or have aggressive disease. The growing demand for better prostate cancer biomarkers has coincided with the development of improved discovery and evaluation technologies for multiplexed measurement of proteins in bio-fluids and tissues. This review aims to (i) provide an overview of these technologies as well as describe some of the candidate PCa protein biomarkers that have been discovered using them; (ii) address some of the general limitations in the clinical evaluation and validation of protein biomarkers; and (iii) make recommendations for strategies that could be adopted to improve the successful development of protein biomarkers to deliver improvements in personalized PCa patient decision making.

  18. The Role of Proteomics in Biomarker Development for Improved Patient Diagnosis and Clinical Decision Making in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Claire L. Tonry

    2016-07-01

    Full Text Available Prostate Cancer (PCa is the second most commonly diagnosed cancer in men worldwide. Although increased expression of prostate-specific antigen (PSA is an effective indicator for the recurrence of PCa, its intended use as a screening marker for PCa is of considerable controversy. Recent research efforts in the field of PCa biomarkers have focused on the identification of tissue and fluid-based biomarkers that would be better able to stratify those individuals diagnosed with PCa who (i might best receive no treatment (active surveillance of the disease; (ii would benefit from existing treatments; or (iii those who are likely to succumb to disease recurrence and/or have aggressive disease. The growing demand for better prostate cancer biomarkers has coincided with the development of improved discovery and evaluation technologies for multiplexed measurement of proteins in bio-fluids and tissues. This review aims to (i provide an overview of these technologies as well as describe some of the candidate PCa protein biomarkers that have been discovered using them; (ii address some of the general limitations in the clinical evaluation and validation of protein biomarkers; and (iii make recommendations for strategies that could be adopted to improve the successful development of protein biomarkers to deliver improvements in personalized PCa patient decision making.

  19. Profilin-1 overexpression in MDA-MB-231 breast cancer cells is associated with alterations in proteomics biomarkers of cell proliferation, survival, and motility as revealed by global proteomics analyses.

    Science.gov (United States)

    Coumans, Joëlle V F; Gau, David; Poljak, Anne; Wasinger, Valerie; Roy, Partha; Moens, Pierre D J

    2014-12-01

    Despite early screening programs and new therapeutic strategies, metastatic breast cancer is still the leading cause of cancer death in women in industrialized countries and regions. There is a need for novel biomarkers of susceptibility, progression, and therapeutic response. Global analyses or systems science approaches with omics technologies offer concrete ways forward in biomarker discovery for breast cancer. Previous studies have shown that expression of profilin-1 (PFN1), a ubiquitously expressed actin-binding protein, is downregulated in invasive and metastatic breast cancer. It has also been reported that PFN1 overexpression can suppress tumorigenic ability and motility/invasiveness of breast cancer cells. To obtain insights into the underlying molecular mechanisms of how elevating PFN1 level induces these phenotypic changes in breast cancer cells, we investigated the alteration in global protein expression profiles of breast cancer cells upon stable overexpression of PFN1 by a combination of three different proteome analysis methods (2-DE, iTRAQ, label-free). Using MDA-MB-231 as a model breast cancer cell line, we provide evidence that PFN1 overexpression is associated with alterations in the expression of proteins that have been functionally linked to cell proliferation (FKPB1A, HDGF, MIF, PRDX1, TXNRD1, LGALS1, STMN1, LASP1, S100A11, S100A6), survival (HSPE1, HSPB1, HSPD1, HSPA5 and PPIA, YWHAZ, CFL1, NME1) and motility (CFL1, CORO1B, PFN2, PLS3, FLNA, FLNB, NME2, ARHGDIB). In view of the pleotropic effects of PFN1 overexpression in breast cancer cells as suggested by these new findings, we propose that PFN1-induced phenotypic changes in cancer cells involve multiple mechanisms. Our data reported here might also offer innovative strategies for identification and validation of novel therapeutic targets and companion diagnostics for persons with, or susceptibility to, breast cancer.

  20. Proteomic and metabolomic biomarkers for III-V semiconductors: And prospects for application to nano-materials

    International Nuclear Information System (INIS)

    Fowler, Bruce A.; Conner, Elizabeth A.; Yamauchi, Hiroshi

    2008-01-01

    There has been an increased appreciation over the last 20 years that chemical agents at very low dose levels can produce biological responses in protein expression patterns (proteomic responses) or alterations in sensitive metabolic pathways (metabolomic responses). Marked improvements in analytical methodologies, such as 2-D gel electrophoresis, matrix-assisted laser desorption-time of flight (MALDI-TOF) and surface enhanced laser desorption-time of flight (SELDI-TOF) technologies are capable of identifying specific protein patterns related to exposure to chemicals either alone or as mixtures. The detection and interpretation of early cellular responses to chemical agents have also made great advances through correlative ultrastructural morphometric and biochemical studies. Similarly, advances in analytical technologies such as HPLC, proton NMR, MALDI-TOF, and SELDI-TOF have permitted early detection of changes in a number of essential metabolic pathways following chemical exposures by measurement of alterations in metabolic products from those pathways. Data from these approaches are increasingly regarded as potentially useful biomarkers of chemical exposure and early cellular responses. Validation and establishment of linkages to biological outcomes are needed in order for biomarkers of effect to be established. This short review will cover a number of the above techniques and report data from chemical exposures to two binary III-V semiconductor compounds to illustrate gender differences in proteomic responses. In addition, the use of these methodologies in relation to rapid safety evaluations of nanotechnology products will be discussed. (Supported in part by NIH R01-ES4879)

  1. Comparison of proteomic biomarker panels in urine and serum for ovarian cancer diagnosis

    DEFF Research Database (Denmark)

    Petri, Anette Lykke; Simonsen, Anja Hviid; Høgdall, Estrid

    2010-01-01

    The purposes of this study were to confirm previously found candidate epithelial ovarian cancer biomarkers in urine and to compare a paired serum biomarker panel and a urine biomarker panel from the same study cohort with regard to the receiver operating characteristic curve (ROC) area under the ...

  2. Metabolomic and proteomic biomarkers for III-V semiconductors: Chemical-specific porphyrinurias and proteinurias

    International Nuclear Information System (INIS)

    Fowler, Bruce A.; Conner, Elizabeth A.; Yamauchi, Hiroshi

    2005-01-01

    A pressing need exists to develop and validate molecular biomarkers to assess the early effects of chemical agents, both individually and in mixtures. This is particularly true for new and chemically intensive industries such as the semiconductor industry. Previous studies from this laboratory and others have demonstrated element-specific alterations of the heme biosynthetic pathway for the III-V semiconductors gallium arsenide (GaAs) and indium arsenide (InAs) with attendant increased urinary excretion of specific heme precursors. These data represent an example of a metabolomic biomarker to assess chemical effects early, before clinical disease develops. Previous studies have demonstrated that the intratracheal or subcutaneous administration of GaAs and InAs particles to hamsters produces the induction of the major stress protein gene families in renal proximal tubule cells. This was monitored by 35-S methionine labeling of gene products followed by two-dimensional gel electrophoresis after exposure to InAs particles. The present studies examined whether these effects were associated with the development of compound-specific proteinuria after 10 or 30 days following subcutaneous injection of GaAs or InAs particles in hamsters. The results of these studies demonstrated the development of GaAs- and InAs-specific alterations in renal tubule cell protein expression patterns that varied at 10 and 30 days. At the 30-day point, cells in hamsters that received InAs particles showed marked attenuation of protein expression, suggesting inhibition of the stress protein response. These changes were associated with GaAs and InAs proteinuria patterns as monitored by two-dimensional gel electrophoresis and silver staining. The intensity of the protein excretion patterns increased between the 10- and 30-day points and was most pronounced for animals in the 30-day InAs treatment group. No overt morphologic signs of cell death were seen in renal tubule cells of these animals

  3. PODCAST: From Lost in Translation to Paradise Found: Enabling Protein Biomarker Method Transfer by Mass Spectrometry | Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    Translation of novel biomarkers into clinical care for the evaluation of therapeutic safety and efficacy has been slow, partly attributable to the cost and complexity of immunoassay development.  The potential for liquid chromatography-tandem mass spectrometry (LC-MS/MS) to streamline the translation of novel protein biomarkers is profound.  Drs. Henry Rodriguez and Andrew Hoofnagle discuss what the future may be for clinical proteomics. This is an American Association for Clinical Chemistry (AACC) podcast.

  4. Association of SNCA with Parkinson: replication in the Harvard NeuroDiscovery Center Biomarker Study

    Science.gov (United States)

    Ding, Hongliu; Sarokhan, Alison K.; Roderick, Sarah S.; Bakshi, Rachit; Maher, Nancy E.; Ashourian, Paymon; Kan, Caroline G.; Chang, Sunny; Santarlasci, Andrea; Swords, Kyleen E.; Ravina, Bernard M.; Hayes, Michael T.; Sohur, U. Shivraj; Wills, Anne-Marie; Flaherty, Alice W.; Unni, Vivek K.; Hung, Albert Y.; Selkoe, Dennis J.; Schwarzschild, Michael A.; Schlossmacher, Michael G.; Sudarsky, Lewis R.; Growdon, John H.; Ivinson, Adrian J.; Hyman, Bradley T.; Scherzer, Clemens R.

    2011-01-01

    Background Mutations in the α-synuclein gene (SNCA) cause autosomal dominant forms of Parkinson’s disease, but the substantial risk conferred by this locus to the common sporadic disease has only recently emerged from genome-wide association studies. Methods Here we genotyped a prioritized non-coding variant in SNCA intron-4 in 344 patients with Parkinson’s and 275 controls from the longitudinal Harvard NeuroDiscovery Center Biomarker Study. Results The common minor allele of rs2736990 was associated with elevated disease susceptibility (odds ratio = 1.40, P value = 0.0032). Conclusions This result increases confidence in the notion that in many clinically well-characterized patients genetic variation in SNCA contributes to “sporadic” disease. PMID:21953863

  5. Probing the O-glycoproteome of Gastric Cancer Cell Lines for Biomarker Discovery

    DEFF Research Database (Denmark)

    Vieira Campos, Diana Alexandra; Freitas, Daniela; Gomes, Joana

    2015-01-01

    biomarker assays. However, the current knowledge of secreted and circulating O-glycoproteins is limited. Here, we used the COSMC KO "SimpleCell" (SC) strategy to characterize the O-glycoproteome of two gastric cancer SC lines (AGS, MKN45) as well as a gastric cell line (KATO III) which naturally expresses...... at least partially truncated O-glycans. Overall we identified 499 O-glycoproteins and 1,236 O-glycosites in gastric cancer SCs, and a total 47 O-glycoproteins and 73 O-glycosites in the KATO III cell line. We next modified the glycoproteomic strategy to apply it to pools of sera from gastric cancer...... with the STn glycoform were further validated as being expressed in gastric cancer tissue. A proximity ligation assay was used to demonstrate that CD44 was expressed with the STn glycoform in gastric cancer tissues. The study provides a discovery strategy for aberrantly glycosylated O-glycoproteins and a set...

  6. Identification of β2-microglobulin as a urinary biomarker for chronic allograft nephropathy using proteomic methods.

    LENUS (Irish Health Repository)

    Johnston, Olwyn

    2011-08-01

    Chronic allograft nephropathy (CAN) remains the leading cause of renal graft loss after the first year following renal transplantation. This study aimed to identify novel urinary proteomic profiles, which could distinguish and predict CAN in susceptible individuals.

  7. From the endometrium physiology to a comprehensive strategy for the discovery of ovarian cancer biomarkers

    Directory of Open Access Journals (Sweden)

    Janos L. Tanyi

    2011-12-01

    Full Text Available The development of comprehensive strategies for biomarker discovery of gynecological cancers is needed. The unique physiology of the female genital track revolves around ovulatory cycles ending by the proteolysis of the endometrium triggered by progesterone decline during the last part of the luteal phase. Building on the known link between incessant ovulation and ovarian cancer, we hypothesize that life-long menstruations could damage neighboring organs such as fallopian tubes, ovaries and peritoneum via endometrial secretions, and thus endometrium neighboring structures may have developed highly efficient protective strategies that could, in turn, be hijacked by cancer cells for survival and invasion. After literature review, we could classify the molecules involved in ovulation and menstruation pathways in three main categories: proteases, proteases inhibitors and cell-surface protectors. Strikingly, all validated biomarkers for ovarian cancers belong to at least one of these categories. We thus propose the development of comprehensive methods for identification of early diagnostic markers for gynecological cancers using systematical mapping and characterization of surface or soluble molecules belonging to physiological pathways linked to menstruation and differently expressed during luteal cycles.

  8. Biomarkers Discovery for Colorectal Cancer: A Review on Tumor Endothelial Markers as Perspective Candidates

    Directory of Open Access Journals (Sweden)

    Łukasz Pietrzyk

    2016-01-01

    Full Text Available Colorectal cancer (CRC is the third most common cancer in the world. The early detection of CRC, during the promotion/progression stages, is an enormous challenge for a successful outcome and remains a fundamental problem in clinical approach. Despite the continuous advancement in diagnostic and therapeutic methods, there is a need for discovery of sensitive and specific, noninvasive biomarkers. Tumor endothelial markers (TEMs are associated with tumor-specific angiogenesis and are potentially useful to discriminate between tumor and normal endothelium. The most promising TEMs for oncogenic signaling in CRC appeared to be the TEM1, TEM5, TEM7, and TEM8. Overexpression of TEMs especially TEM1, TEM7, and TEM8 in colorectal tumor tissue compared to healthy tissue suggests their role in tumor blood vessels formation. Thus TEMs appear to be perspective candidates for early detection, monitoring, and treatment of CRC patients. This review provides an update on recent data on tumor endothelial markers and their possible use as biomarkers for screening, diagnosis, and therapy of colorectal cancer patients.

  9. Biomarkers Discovery for Colorectal Cancer: A Review on Tumor Endothelial Markers as Perspective Candidates.

    Science.gov (United States)

    Pietrzyk, Łukasz

    2016-01-01

    Colorectal cancer (CRC) is the third most common cancer in the world. The early detection of CRC, during the promotion/progression stages, is an enormous challenge for a successful outcome and remains a fundamental problem in clinical approach. Despite the continuous advancement in diagnostic and therapeutic methods, there is a need for discovery of sensitive and specific, noninvasive biomarkers. Tumor endothelial markers (TEMs) are associated with tumor-specific angiogenesis and are potentially useful to discriminate between tumor and normal endothelium. The most promising TEMs for oncogenic signaling in CRC appeared to be the TEM1, TEM5, TEM7, and TEM8. Overexpression of TEMs especially TEM1, TEM7, and TEM8 in colorectal tumor tissue compared to healthy tissue suggests their role in tumor blood vessels formation. Thus TEMs appear to be perspective candidates for early detection, monitoring, and treatment of CRC patients. This review provides an update on recent data on tumor endothelial markers and their possible use as biomarkers for screening, diagnosis, and therapy of colorectal cancer patients.

  10. Averaged differential expression for the discovery of biomarkers in the blood of patients with prostate cancer.

    Directory of Open Access Journals (Sweden)

    V Uma Bai

    Full Text Available The identification of a blood-based diagnostic marker is a goal in many areas of medicine, including the early diagnosis of prostate cancer. We describe the use of averaged differential display as an efficient mechanism for biomarker discovery in whole blood RNA. The process of averaging reduces the problem of clinical heterogeneity while simultaneously minimizing sample handling.RNA was isolated from the blood of prostate cancer patients and healthy controls. Samples were pooled and subjected to the averaged differential display process. Transcripts present at different levels between patients and controls were purified and sequenced for identification. Transcript levels in the blood of prostate cancer patients and controls were verified by quantitative RT-PCR. Means were compared using a t-test and a receiver-operating curve was generated. The Ring finger protein 19A (RNF19A transcript was identified as having higher levels in prostate cancer patients compared to healthy men through the averaged differential display process. Quantitative RT-PCR analysis confirmed a more than 2-fold higher level of RNF19A mRNA levels in the blood of patients with prostate cancer than in healthy controls (p = 0.0066. The accuracy of distinguishing cancer patients from healthy men using RNF19A mRNA levels in blood as determined by the area under the receiving operator curve was 0.727.Averaged differential display offers a simplified approach for the comprehensive screening of body fluids, such as blood, to identify biomarkers in patients with prostate cancer. Furthermore, this proof-of-concept study warrants further analysis of RNF19A as a clinically relevant biomarker for prostate cancer detection.

  11. atBioNet– an integrated network analysis tool for genomics and biomarker discovery

    Directory of Open Access Journals (Sweden)

    Ding Yijun

    2012-07-01

    Full Text Available Abstract Background Large amounts of mammalian protein-protein interaction (PPI data have been generated and are available for public use. From a systems biology perspective, Proteins/genes interactions encode the key mechanisms distinguishing disease and health, and such mechanisms can be uncovered through network analysis. An effective network analysis tool should integrate different content-specific PPI databases into a comprehensive network format with a user-friendly platform to identify key functional modules/pathways and the underlying mechanisms of disease and toxicity. Results atBioNet integrates seven publicly available PPI databases into a network-specific knowledge base. Knowledge expansion is achieved by expanding a user supplied proteins/genes list with interactions from its integrated PPI network. The statistically significant functional modules are determined by applying a fast network-clustering algorithm (SCAN: a Structural Clustering Algorithm for Networks. The functional modules can be visualized either separately or together in the context of the whole network. Integration of pathway information enables enrichment analysis and assessment of the biological function of modules. Three case studies are presented using publicly available disease gene signatures as a basis to discover new biomarkers for acute leukemia, systemic lupus erythematosus, and breast cancer. The results demonstrated that atBioNet can not only identify functional modules and pathways related to the studied diseases, but this information can also be used to hypothesize novel biomarkers for future analysis. Conclusion atBioNet is a free web-based network analysis tool that provides a systematic insight into proteins/genes interactions through examining significant functional modules. The identified functional modules are useful for determining underlying mechanisms of disease and biomarker discovery. It can be accessed at: http

  12. atBioNet--an integrated network analysis tool for genomics and biomarker discovery.

    Science.gov (United States)

    Ding, Yijun; Chen, Minjun; Liu, Zhichao; Ding, Don; Ye, Yanbin; Zhang, Min; Kelly, Reagan; Guo, Li; Su, Zhenqiang; Harris, Stephen C; Qian, Feng; Ge, Weigong; Fang, Hong; Xu, Xiaowei; Tong, Weida

    2012-07-20

    Large amounts of mammalian protein-protein interaction (PPI) data have been generated and are available for public use. From a systems biology perspective, Proteins/genes interactions encode the key mechanisms distinguishing disease and health, and such mechanisms can be uncovered through network analysis. An effective network analysis tool should integrate different content-specific PPI databases into a comprehensive network format with a user-friendly platform to identify key functional modules/pathways and the underlying mechanisms of disease and toxicity. atBioNet integrates seven publicly available PPI databases into a network-specific knowledge base. Knowledge expansion is achieved by expanding a user supplied proteins/genes list with interactions from its integrated PPI network. The statistically significant functional modules are determined by applying a fast network-clustering algorithm (SCAN: a Structural Clustering Algorithm for Networks). The functional modules can be visualized either separately or together in the context of the whole network. Integration of pathway information enables enrichment analysis and assessment of the biological function of modules. Three case studies are presented using publicly available disease gene signatures as a basis to discover new biomarkers for acute leukemia, systemic lupus erythematosus, and breast cancer. The results demonstrated that atBioNet can not only identify functional modules and pathways related to the studied diseases, but this information can also be used to hypothesize novel biomarkers for future analysis. atBioNet is a free web-based network analysis tool that provides a systematic insight into proteins/genes interactions through examining significant functional modules. The identified functional modules are useful for determining underlying mechanisms of disease and biomarker discovery. It can be accessed at: http://www.fda.gov/ScienceResearch/BioinformaticsTools/ucm285284.htm.

  13. Metabolic profiling of an Echinostoma caproni infection in the mouse for biomarker discovery.

    Directory of Open Access Journals (Sweden)

    Jasmina Saric

    Full Text Available BACKGROUND: Metabolic profiling holds promise with regard to deepening our understanding of infection biology and disease states. The objectives of our study were to assess the global metabolic responses to an Echinostoma caproni infection in the mouse, and to compare the biomarkers extracted from different biofluids (plasma, stool, and urine in terms of characterizing acute and chronic stages of this intestinal fluke infection. METHODOLOGY/PRINCIPAL FINDINGS: Twelve female NMRI mice were infected with 30 E. caproni metacercariae each. Plasma, stool, and urine samples were collected at 7 time points up to day 33 post-infection. Samples were also obtained from non-infected control mice at the same time points and measured using (1H nuclear magnetic resonance (NMR spectroscopy. Spectral data were subjected to multivariate statistical analyses. In plasma and urine, an altered metabolic profile was already evident 1 day post-infection, characterized by reduced levels of plasma choline, acetate, formate, and lactate, coupled with increased levels of plasma glucose, and relatively lower concentrations of urinary creatine. The main changes in the urine metabolic profile started at day 8 post-infection, characterized by increased relative concentrations of trimethylamine and phenylacetylglycine and lower levels of 2-ketoisocaproate and showed differentiation over the course of the infection. CONCLUSION/SIGNIFICANCE: The current investigation is part of a broader NMR-based metabonomics profiling strategy and confirms the utility of this approach for biomarker discovery. In the case of E. caproni, a diagnosis based on all three biofluids would deliver the most comprehensive fingerprint of an infection. For practical purposes, however, future diagnosis might aim at a single biofluid, in which case urine would be chosen for further investigation, based on quantity of biomarkers, ease of sampling, and the degree of differentiation from the non

  14. Application in pesticide analysis: Liquid chromatography - A review of the state of science for biomarker discovery and identification

    Science.gov (United States)

    Book Chapter 18, titled Application in pesticide analysis: Liquid chromatography - A review of the state of science for biomarker discovery and identification, will be published in the book titled High Performance Liquid Chromatography in Pesticide Residue Analysis (Part of the C...

  15. Proteome screening of pleural effusions identifies IL1A as a diagnostic biomarker for non-small cell lung cancer.

    Science.gov (United States)

    Li, Yuanyuan; Lian, Hengning; Jia, Qingzhu; Wan, Ying

    2015-02-06

    Non-small cell lung cancer (NSCLC) is a common malignant disease, and in ~10-20% of patients, pleural effusion is the first symptom. The pleural effusion proteome contains information on pulmonary disease that directly or indirectly reflects pathophysiological status. However, the proteome of pleural effusion in NSCLC patients is not well understood, nor is the variability in protein composition between malignant and benign pleural effusions. Here, we investigated the different proteins in pleural effusions from NSCLC and tuberculosis (TB) patients by using nano-scale liquid chromatography-tandem mass spectrometry (nLC-MS/MS) analysis. In total, 363 proteins were identified in the NSCLC pleural effusion proteome with a low false discovery rate (pleural effusion were involved in cell adhesion, proteolysis, and cell migration. Furthermore, interleukin 1 alpha (IL1A), a protein that regulates tumor growth, angiogenesis, and metastasis, was significantly more abundant in the NSCLC group compared to the TB group, a finding that was validated with an ELISA assay. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Quantitative proteomic analysis by iTRAQ® for the identification of candidate biomarkers in ovarian cancer serum

    Directory of Open Access Journals (Sweden)

    Higgins LeeAnn

    2010-06-01

    Full Text Available Abstract Background Ovarian cancer is the most lethal gynecologic malignancy, with the majority of cases diagnosed at an advanced stage when treatments are less successful. Novel serum protein markers are needed to detect ovarian cancer in its earliest stage; when detected early, survival rates are over 90%. The identification of new serum biomarkers is hindered by the presence of a small number of highly abundant proteins that comprise approximately 95% of serum total protein. In this study, we used pooled serum depleted of the most highly abundant proteins to reduce the dynamic range of proteins, and thereby enhance the identification of serum biomarkers using the quantitative proteomic method iTRAQ®. Results Medium and low abundance proteins from 6 serum pools of 10 patients each from women with serous ovarian carcinoma, and 6 non-cancer control pools were labeled with isobaric tags using iTRAQ® to determine the relative abundance of serum proteins identified by MS. A total of 220 unique proteins were identified and fourteen proteins were elevated in ovarian cancer compared to control serum pools, including several novel candidate ovarian cancer biomarkers: extracellular matrix protein-1, leucine-rich alpha-2 glycoprotein-1, lipopolysaccharide binding protein-1, and proteoglycan-4. Western immunoblotting validated the relative increases in serum protein levels for several of the proteins identified. Conclusions This study provides the first analysis of immunodepleted serum in combination with iTRAQ® to measure relative protein expression in ovarian cancer patients for the pursuit of serum biomarkers. Several candidate biomarkers were identified which warrant further development.

  17. Time- and radiation-dose dependent changes in the plasma proteome after total body irradiation of non-human primates: Implications for biomarker selection.

    Directory of Open Access Journals (Sweden)

    Stephanie D Byrum

    Full Text Available Acute radiation syndrome (ARS is a complex multi-organ disease resulting from total body exposure to high doses of radiation. Individuals can be exposed to total body irradiation (TBI in a number of ways, including terrorist radiological weapons or nuclear accidents. In order to determine whether an individual has been exposed to high doses of radiation and needs countermeasure treatment, robust biomarkers are needed to estimate radiation exposure from biospecimens such as blood or urine. In order to identity such candidate biomarkers of radiation exposure, high-resolution proteomics was used to analyze plasma from non-human primates following whole body irradiation (Co-60 at 6.7 Gy and 7.4 Gy with a twelve day observation period. A total of 663 proteins were evaluated from the plasma proteome analysis. A panel of plasma proteins with characteristic time- and dose-dependent changes was identified. In addition to the plasma proteomics study reported here, we recently identified candidate biomarkers using urine from these same non-human primates. From the proteomic analysis of both plasma and urine, we identified ten overlapping proteins that significantly differentiate both time and dose variables. These shared plasma and urine proteins represent optimal candidate biomarkers of radiation exposure.

  18. Identification of EBP50 as a Specific Biomarker for Carcinogens Via the Analysis of Mouse Lymphoma Cellular Proteome

    Science.gov (United States)

    Lee, Yoen Jung; Choi, In-Kwon; Sheen, Yhun Yhong; Park, Sue Nie; Kwon, Ho Jeong

    2012-01-01

    To identify specific biomarkers generated upon exposure of L5178Y mouse lymphoma cells to carcinogens, 2-DE and MALDI-TOF MS analysis were conducted using the cellular proteome of L5178Y cells that had been treated with the known carcinogens, 1,2-dibromoethane and O-nitrotoluene and the noncarcinogens, emodin and D-mannitol. Eight protein spots that showed a greater than 1.5-fold increase or decrease in intensity following carcinogen treatment compared with treatment with noncarcinogens were selected. Of the identified proteins, we focused on the candidate biomarker ERM-binding phosphoprotein 50 (EBP50), the expression of which was specifically increased in response to treatment with the carcinogens. The expression level of EBP50 was determined by western analysis using polyclonal rabbit anti-EBP50 antibody. Further, the expression level of EBP50 was increased in cells treated with seven additional carcinogens, verifying that EBP50 could serve as a specific biomarker for carcinogens. PMID:22434383

  19. Predictive Power Estimation Algorithm (PPEA--a new algorithm to reduce overfitting for genomic biomarker discovery.

    Directory of Open Access Journals (Sweden)

    Jiangang Liu

    Full Text Available Toxicogenomics promises to aid in predicting adverse effects, understanding the mechanisms of drug action or toxicity, and uncovering unexpected or secondary pharmacology. However, modeling adverse effects using high dimensional and high noise genomic data is prone to over-fitting. Models constructed from such data sets often consist of a large number of genes with no obvious functional relevance to the biological effect the model intends to predict that can make it challenging to interpret the modeling results. To address these issues, we developed a novel algorithm, Predictive Power Estimation Algorithm (PPEA, which estimates the predictive power of each individual transcript through an iterative two-way bootstrapping procedure. By repeatedly enforcing that the sample number is larger than the transcript number, in each iteration of modeling and testing, PPEA reduces the potential risk of overfitting. We show with three different cases studies that: (1 PPEA can quickly derive a reliable rank order of predictive power of individual transcripts in a relatively small number of iterations, (2 the top ranked transcripts tend to be functionally related to the phenotype they are intended to predict, (3 using only the most predictive top ranked transcripts greatly facilitates development of multiplex assay such as qRT-PCR as a biomarker, and (4 more importantly, we were able to demonstrate that a small number of genes identified from the top-ranked transcripts are highly predictive of phenotype as their expression changes distinguished adverse from nonadverse effects of compounds in completely independent tests. Thus, we believe that the PPEA model effectively addresses the over-fitting problem and can be used to facilitate genomic biomarker discovery for predictive toxicology and drug responses.

  20. Characterization of Foodborne Strains of Staphylococcus aureus by Shotgun Proteomics: Functional Networks, Virulence Factors and Species-Specific Peptide Biomarkers

    Science.gov (United States)

    Carrera, Mónica; Böhme, Karola; Gallardo, José M.; Barros-Velázquez, Jorge; Cañas, Benito; Calo-Mata, Pilar

    2017-01-01

    In the present work, we applied a shotgun proteomics approach for the fast and easy characterization of 20 different foodborne strains of Staphylococcus aureus (S. aureus), one of the most recognized foodborne pathogenic bacteria. A total of 644 non-redundant proteins were identified and analyzed via an easy and rapid protein sample preparation procedure. The results allowed the differentiation of several proteome datasets from the different strains (common, accessory, and unique datasets), which were used to determine relevant functional pathways and differentiate the strains into different Euclidean hierarchical clusters. Moreover, a predicted protein-protein interaction network of the foodborne S. aureus strains was created. The whole confidence network contains 77 nodes and 769 interactions. Most of the identified proteins were surface-associated proteins that were related to pathways and networks of energy, lipid metabolism and virulence. Twenty-seven virulence factors were identified, and most of them corresponded to autolysins, N-acetylmuramoyl-L-alanine amidases, phenol-soluble modulins, extracellular fibrinogen-binding proteins and virulence factor EsxA. Potential species-specific peptide biomarkers were screened. Twenty-one species-specific peptide biomarkers, belonging to eight different proteins (nickel-ABC transporter, N-acetylmuramoyl-L-alanine amidase, autolysin, clumping factor A, gram-positive signal peptide YSIRK, cysteine protease/staphopain, transcriptional regulator MarR, and transcriptional regulator Sar-A), were proposed to identify S. aureus. These results constitute the first major dataset of peptides and proteins of foodborne S. aureus strains. This repository may be useful for further studies, for the development of new therapeutic treatments for S. aureus food intoxications and for microbial source-tracking in foodstuffs. PMID:29312172

  1. A proteomic strategy to identify novel serum biomarkers for liver cirrhosis and hepatocellular cancer in individuals with fatty liver disease

    Directory of Open Access Journals (Sweden)

    Stewart Stephen

    2009-08-01

    Full Text Available Abstract Background Non-alcoholic fatty liver disease (NAFLD has a prevalence of over 20% in Western societies. Affected individuals are at risk of developing both cirrhosis and hepatocellular cancer (HCC. Presently there is no cost effective population based means of identifying cirrhotic individuals and even if there were, our ability to perform HCC surveillance in the at risk group is inadequate. We have performed a pilot proteomic study to assess this as a strategy for serum biomarker detection. Methods 2D Gel electrophoresis was performed on immune depleted sera from 3 groups of patients, namely those with (1 pre-cirrhotic NAFLD (2 cirrhotic NAFLD and (3 cirrhotic NAFLD with co-existing HCC. Five spots differentiating at least one of these three groups were characterised by mass spectroscopy. An ELISA assay was optimised and a cross sectional study assessing one of these serum spots was performed on serum from 45 patients with steatohepatitis related cirrhosis and HCC and compared to 77 patients with histologically staged steatohepatitis. Results Four of the spots identified were apolipoprotein isoforms, the pattern of which was able to differentiate the three groups. The 5th spot, seen in the serum of cirrhotic individuals and more markedly in those with HCC, was identified as CD5 antigen like (CD5L. By ELISA assay, although CD5L was markedly elevated in a number of cirrhotic individuals with HCC, its overall ability to distinguish non-cancer from cancer individuals as determined by AUC ROC analysis was poor. However, serum CD5L was dramatically increased, independently of age, sex, and the presence of necroinflammation, in the serum of individuals with NAFLD cirrhosis relative to those with pre-cirrhotic disease. Conclusion This novel proteomic strategy has identified a number of candidate biomarkers which may have benefit in the surveillance and diagnosis of individuals with chronic liver disease and/or HCC.

  2. Scrambled eggs: Proteomic portraits and novel biomarkers of egg quality in zebrafish (Danio rerio).

    Science.gov (United States)

    Yilmaz, Ozlem; Patinote, Amélie; Nguyen, Thao Vi; Com, Emmanuelle; Lavigne, Regis; Pineau, Charles; Sullivan, Craig V; Bobe, Julien

    2017-01-01

    Egg quality is a complex biological trait and a major determinant of reproductive fitness in all animals. This study delivered the first proteomic portraits of egg quality in zebrafish, a leading biomedical model for early development. Egg batches of good and poor quality, evidenced by embryo survival for 24 h, were sampled immediately after spawning and used to create pooled or replicated sample sets whose protein extracts were subjected to different levels of fractionation before liquid chromatography and tandem mass spectrometry. Obtained spectra were searched against a zebrafish proteome database and detected proteins were annotated, categorized and quantified based on normalized spectral counts. Manually curated and automated enrichment analyses revealed poor quality eggs to be deficient of proteins involved in protein synthesis and energy and lipid metabolism, and of some vitellogenin products and lectins, and to have a surfeit of proteins involved in endo-lysosomal activities, autophagy, and apoptosis, and of some oncogene products, lectins and egg envelope proteins. Results of pathway and network analyses suggest that this aberrant proteomic profile results from failure of oocytes giving rise to poor quality eggs to properly transit through final maturation, and implicated Wnt signaling in the etiology of this defect. Quantitative comparisons of abundant proteins in good versus poor quality eggs revealed 17 candidate egg quality markers. Thus, the zebrafish egg proteome is clearly linked to embryo developmental potential, a phenomenon that begs further investigation to elucidate the root causes of poor egg quality, presently a serious and intractable problem in livestock and human reproductive medicine.

  3. The distinctive gastric fluid proteome in gastric cancer reveals a multi-biomarker diagnostic profile

    Directory of Open Access Journals (Sweden)

    Eng Alvin KH

    2008-10-01

    Full Text Available Abstract Background Overall gastric cancer survival remains poor mainly because there are no reliable methods for identifying highly curable early stage disease. Multi-protein profiling of gastric fluids, obtained from the anatomic site of pathology, could reveal diagnostic proteomic fingerprints. Methods Protein profiles were generated from gastric fluid samples of 19 gastric cancer and 36 benign gastritides patients undergoing elective, clinically-indicated gastroscopy using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry on multiple ProteinChip arrays. Proteomic features were compared by significance analysis of microarray algorithm and two-way hierarchical clustering. A second blinded sample set (24 gastric cancers and 29 clinically benign gastritides was used for validation. Results By significance analysyis of microarray, 60 proteomic features were up-regulated and 46 were down-regulated in gastric cancer samples (p Conclusion This simple and reproducible multimarker proteomic assay could supplement clinical gastroscopic evaluation of symptomatic patients to enhance diagnostic accuracy for gastric cancer and pre-malignant lesions.

  4. A proteomics approach to the identification of biomarkers for psoriasis utilising keratome biopsy

    DEFF Research Database (Denmark)

    Williamson, James C; Scheipers, Peter; Schwämmle, Veit

    2013-01-01

    a quantitative proteomics screen of four patients with psoriasis using stable isotope dimethyl labelling and identified over 50 proteins consistently altered in abundance in psoriasis lesional versus non-lesional skin. This includes several canonical psoriasis related proteins (e.g. S100A7 [Psoriasin] and FABP5...

  5. A novel proteomic biomarker panel as a diagnostic tool for patients with ovarian cancer

    DEFF Research Database (Denmark)

    Høgdall, Claus; Fung, Eric T; Christensen, Ib J

    2011-01-01

    Previous reports have shown that the proteomic markers apolipoprotein A1, hepcidin, transferrin, inter-alpha trypsin IV internal fragment, transthyretin, connective-tissue activating protein 3 and beta-2 microglobulin may discriminate between a benign pelvic mass and ovarian cancer (OC). The aim...

  6. Biomarker candidate discovery in Atlantic cod (Gadus morhua) continuously exposed to North Sea produced water from egg to fry

    DEFF Research Database (Denmark)

    Bohne-Kjersem, Anneli; Bache, Nicolai; Meier, Sonnich

    2010-01-01

    were able to compare the induced changes by PW to the mode of action of oestrogens. Changes in the proteome in response to exposure in whole cod fry (approximately 80 days post-hatching, dph) were detected by two-dimensional gel electrophoresis and image analysis and identified by MALDI-ToF-ToF mass...... spectrometry, using a newly developed cod EST database and the NCBI database. Many of the protein changes occurred at low levels (0.01% and 0.1% PW) of exposure, indicating putative biological responses at lower levels than previously detected. Using discriminant analysis, we identified a set of protein...... changes that may be useful as biomarker candidates of produced water (PW) and oestradiol exposure in Atlantic cod fry. The biomarker candidates discovered in this study may, following validation, prove effective as diagnostic tools in monitoring exposure and effects of discharges from the petroleum...

  7. Mining the granule proteome

    DEFF Research Database (Denmark)

    Albrethsen, Jakob; Goetze, Jens P; Johnsen, Anders H

    2015-01-01

    Proteomics of secretory granules is an emerging strategy for identifying secreted proteins, including potentially novel candidate biomarkers and peptide hormones. In addition, proteomics can provide information about the abundance, localization and structure (post-translational modification) of g...

  8. Biomarker Discovery In Chronic Obstructive Pulmonary Disease (COPD) Using Epithelial Lining Fluid : A Proteomic Approach

    NARCIS (Netherlands)

    Franciosi, L.; Govorukhina, N.; Fusetti, F.; Poolman, B.; Hacken, N. ten; Postma, D.; Bischoff, R.

    2011-01-01

    RATIONALE Chronic Obstructive Pulmonary Disease (COPD) is the third most frequent disease worldwide with increasing mortality. Cigarette smoking is the principle risk factor and 15-20% of smokers develop COPD. Epithelial Lining Fluid (ELF) covers the internal part of the airways and can be collected

  9. Proteomic discovery of biomarkers of metal contamination in Sydney Rock oysters (Saccostrea glomerata)

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Emma L., E-mail: emma.thompson@mq.edu.au [Department of Biological Sciences, Macquarie University, NSW 2109 (Australia); Sydney Institute of Marine Science, Chowder Bay, NSW 2088 (Australia); Taylor, Daisy A. [Department of Biological Sciences, Macquarie University, NSW 2109 (Australia); Sydney Institute of Marine Science, Chowder Bay, NSW 2088 (Australia); Nair, Sham V. [Department of Biological Sciences, Macquarie University, NSW 2109 (Australia); Birch, Gavin [Department of Geochemistry, University of Sydney, NSW 2006 (Australia); Haynes, Paul A. [Department of Chemistry and Biomolecular Sciences, Macquarie University, NSW 2109 (Australia); Raftos, David A. [Department of Biological Sciences, Macquarie University, NSW 2109 (Australia); Sydney Institute of Marine Science, Chowder Bay, NSW 2088 (Australia)

    2012-03-15

    In the current study we examined the effects of metal contamination on the protein complement of Sydney Rock oysters. Saccostrea glomerata were exposed for 4 days to three environmentally relevant concentrations (100 {mu}g/l, 50 {mu}g/l and 5 {mu}g/l) of cadmium, copper, lead and zinc. Protein abundances in oyster haemolymph from metal-exposed oysters were compared to those from non-exposed controls using two-dimensional electrophoresis to display differentially expressed proteins. Differentially expressed proteins were subsequently identified using tandem mass spectrometry (LC-MS/MS), to assign their putative biological functions. Unique sets of differentially expressed proteins were affected by each metal, in addition to proteins that were affected by more than one metal. The proteins identified included some that are commonly associated with environmental monitoring, such as HSP 70, and other novel proteins not previously considered as candidates for molecular biomonitoring. The most common biological functions of proteins were associated with stress response, cytoskeletal activity and protein synthesis.

  10. Proteomic profiling of mammary carcinomas identifies C7orf24, a gamma-glutamyl cyclotransferase, as a potential cancer biomarker

    DEFF Research Database (Denmark)

    Gromov, Pavel; Gromova, Irina; Friis, Esbern

    2010-01-01

    Breast cancer is the leading cause of cancer deaths in women today and is the most common cancer (excluding skin cancers) among women in the Western world. Although cancers detected by screening mammography are significantly smaller than nonscreening ones, noninvasive biomarkers for detection......, and a novel protein, C7orf24, was identified as being upregulated in cancer cells. Protein expression levels of C7orf24 were evaluated by immunohistochemical assays to qualify deregulation of this protein. Analysis of C7orf24 expression showed up-regulation in 36.4 and 23.4% of cases present in the discovery...

  11. Liver proteome response of largemouth bass (Micropterus salmoides) exposed to several environmental contaminants: Potential insights into biomarker development

    International Nuclear Information System (INIS)

    Sanchez, Brian C.; Ralston-Hooper, Kimberly J.; Kowalski, Kevin A.; Dorota Inerowicz, H.; Adamec, Jiri; Sepulveda, Maria S.

    2009-01-01

    Liver proteome response of largemouth bass (Micropterus salmoides) exposed to environmental contaminants was analyzed to identify novel biomarkers of exposure. Adult male bass were exposed to cadmium chloride (CdCl 2 ), atrazine, PCB 126, phenanthrene, or toxaphene via intraperitoneal injection with target body burdens of 0.00067, 3.0, 2.5, 50, and 100 μg/g, respectively. After a 96 h exposure, hepatic proteins were separated with two-dimensional gel electrophoresis and differentially expressed proteins (vs. controls) recognized and identified with MALDI-TOF/TOF mass spectrometry. We identified, 30, 18, eight, 19, and five proteins as differentially expressed within the CdCl 2 , atrazine, PCB 126, phenanthrene, and toxaphene treatments, respectively. Alterations were observed in the expression of proteins associated with cellular ion homeostasis (toxaphene), oxidative stress (phenanthrene, PCB 126), and energy production including glycolysis (CdCl 2 , atrazine) and ATP synthesis (atrazine). This work supports the further evaluation of several of these proteins as biomarkers of contaminant exposure in fish.

  12. Defining the Adipose Tissue Proteome of Dairy Cows to Reveal Biomarkers Related to Peripartum Insulin Resistance and Metabolic Status.

    Science.gov (United States)

    Zachut, Maya

    2015-07-02

    Adipose tissue is a central regulator of metabolism in dairy cows; however, little is known about the association between various proteins in adipose tissue and the metabolic status of peripartum cows. Therefore, the objectives were to (1) examine total protein expression in adipose tissue of dairy cows and (2) identify biomarkers in adipose that are linked to insulin resistance and to cows' metabolic status. Adipose tissue biopsies were obtained from eight multiparous cows at -17 and +4 days relative to parturition. Proteins were analyzed by intensity-based, label-free, quantitative shotgun proteomics (nanoLC-MS/MS). Cows were divided into groups with insulin-resistant (IR) and insulin-sensitive (IS) adipose according to protein kinase B phosphorylation following insulin stimulation. Cows with IR adipose lost more body weight postpartum compared with IS cows. Differential expression of 143 out of 586 proteins was detected in prepartum versus postpartum adipose. Comparing IR to IS adipose revealed differential expression of 18.9% of the proteins; those related to lipolysis (hormone-sensitive lipase, perilipin, monoglycerol lipase) were increased in IR adipose. In conclusion, we found novel biomarkers related to IR in adipose and to metabolic status that could be used to characterize high-yielding dairy cows that are better adapted to peripartum metabolic stress.

  13. Environmental monitoring of Domingo Rubio stream (Huelva Estuary, SW Spain) by combining conventional biomarkers and proteomic analysis in Carcinus maenas

    Energy Technology Data Exchange (ETDEWEB)

    Montes Nieto, Rafael [Department of Biochemistry and Molecular Biology, University of Cordoba, Severo Ochoa Building, Rabanales Campus, Highway A4 Km 396a, 14071 Cordoba (Spain); Garcia-Barrera, Tamara; Gomez-Ariza, Jose-Luis [Department of Chemistry and Materials Sciences, University of Huelva, Faculty of Experimental Sciences, El Carmen Campus, 21007 Huelva (Spain); Lopez-Barea, Juan, E-mail: bb1lobaj@uco.e [Department of Biochemistry and Molecular Biology, University of Cordoba, Severo Ochoa Building, Rabanales Campus, Highway A4 Km 396a, 14071 Cordoba (Spain)

    2010-02-15

    Element load, conventional biomarkers and altered protein expression profiles were studied in Carcinus maenas crabs, to assess contamination of 'Domingo Rubio' stream, an aquatic ecosystem that receives pyritic metals, industrial contaminants, and pesticides. Lower antioxidative activities - glucose-6-phosphate and 6-phosphogluconate dehydrogenases, catalase - were found in parallel to higher levels of damaged biomolecules - malondialdehyde, oxidized glutathione -, due to oxidative lesions promoted by contaminants, as the increased levels of essential - Zn, Cu, Co - and nonessential - Cr, Ni, Cd - elements. Utility of Proteomics to assess environmental quality was confirmed, especially after considering the six proteins identified by de novo sequencing through capLC-muESI-ITMS/MS and homology search on databases. They include tripartite motif-containing protein 11 and ATF7 transcription factor (upregulated), plus CBR-NHR-218 nuclear hormone receptor, two components of the ABC transporters and aldehyde dehydrogenase (downregulated). These proteins could be used as novel potential biomarkers of the deleterious effects of pollutants present in the area. - Pollution assessment at 'Domingo Rubio' stream (Spain).

  14. Investigating the emerging role of comparative proteomics in the search for new biomarkers of metal contamination under varying abiotic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Vellinger, Céline, E-mail: celine.vellinger@gmail.com [Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), CNRS UMR 7360, Université de Lorraine – Metz (France); Sohm, Bénédicte, E-mail: benedicte.sohm@univ-lorraine.fr [Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), CNRS UMR 7360, Université de Lorraine – Metz (France); Parant, Marc, E-mail: marc.parant@univ-lorraine.fr [Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), CNRS UMR 7360, Université de Lorraine – Metz (France); Immel, Françoise, E-mail: Francoise.Immel@u-bourgogne.fr [Biogéosciences, CNRS UMR 6282, Université de Bourgogne – Dijon (France); Usseglio-Polatera, Philippe, E-mail: philippe.usseglio-polatera@univ-lorraine.fr [Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), CNRS UMR 7360, Université de Lorraine – Metz (France)

    2016-08-15

    mixture previously observed on G. pulex mortality at 10 °C. - Highlights: • We tested comparative proteomics for identifying new biomarkers of chemical exposure. • Both metal interactions and temperature confounding effects were taken into account. • 129 spots have been highlighted as potential Protein Expression Signatures at 10 °C. • Proteomics has high potential but a long way still to go to efficient multi-marker. • Recommendations and precautions for future studies have been presented.

  15. Investigating the emerging role of comparative proteomics in the search for new biomarkers of metal contamination under varying abiotic conditions

    International Nuclear Information System (INIS)

    Vellinger, Céline; Sohm, Bénédicte; Parant, Marc; Immel, Françoise; Usseglio-Polatera, Philippe

    2016-01-01

    mixture previously observed on G. pulex mortality at 10 °C. - Highlights: • We tested comparative proteomics for identifying new biomarkers of chemical exposure. • Both metal interactions and temperature confounding effects were taken into account. • 129 spots have been highlighted as potential Protein Expression Signatures at 10 °C. • Proteomics has high potential but a long way still to go to efficient multi-marker. • Recommendations and precautions for future studies have been presented.

  16. Scrambled eggs: Proteomic portraits and novel biomarkers of egg quality in zebrafish (Danio rerio.

    Directory of Open Access Journals (Sweden)

    Ozlem Yilmaz

    Full Text Available Egg quality is a complex biological trait and a major determinant of reproductive fitness in all animals. This study delivered the first proteomic portraits of egg quality in zebrafish, a leading biomedical model for early development. Egg batches of good and poor quality, evidenced by embryo survival for 24 h, were sampled immediately after spawning and used to create pooled or replicated sample sets whose protein extracts were subjected to different levels of fractionation before liquid chromatography and tandem mass spectrometry. Obtained spectra were searched against a zebrafish proteome database and detected proteins were annotated, categorized and quantified based on normalized spectral counts. Manually curated and automated enrichment analyses revealed poor quality eggs to be deficient of proteins involved in protein synthesis and energy and lipid metabolism, and of some vitellogenin products and lectins, and to have a surfeit of proteins involved in endo-lysosomal activities, autophagy, and apoptosis, and of some oncogene products, lectins and egg envelope proteins. Results of pathway and network analyses suggest that this aberrant proteomic profile results from failure of oocytes giving rise to poor quality eggs to properly transit through final maturation, and implicated Wnt signaling in the etiology of this defect. Quantitative comparisons of abundant proteins in good versus poor quality eggs revealed 17 candidate egg quality markers. Thus, the zebrafish egg proteome is clearly linked to embryo developmental potential, a phenomenon that begs further investigation to elucidate the root causes of poor egg quality, presently a serious and intractable problem in livestock and human reproductive medicine.

  17. Identification of Abiotic Stress Protein Biomarkers by Proteomic Screening of Crop Cultivar Diversity

    OpenAIRE

    Barkla, Bronwyn J.

    2016-01-01

    Modern day agriculture practice is narrowing the genetic diversity in our food supply. This may compromise the ability to obtain high yield under extreme climactic conditions, threatening food security for a rapidly growing world population. To identify genetic diversity, tolerance mechanisms of cultivars, landraces and wild relatives of major crops can be identified and ultimately exploited for yield improvement. Quantitative proteomics allows for the identification of proteins that may cont...

  18. Scrambled eggs: Proteomic portraits and novel biomarkers of egg quality in zebrafish (Danio rerio)

    OpenAIRE

    Yilmaz, Ozlem; Patinote, Amélie; Nguyen, Thao Vi; Com, Emmanuelle; Lavigne, Regis; Pineau, Charles; Sullivan, Craig V.; Bobe, Julien

    2017-01-01

    Egg quality is a complex biological trait and a major determinant of reproductive fitness in all animals. This study delivered the first proteomic portraits of egg quality in zebrafish, a leading biomedical model for early development. Egg batches of good and poor quality, evidenced by embryo survival for 24 h, were sampled immediately after spawning and used to create pooled or replicated sample sets whose protein extracts were subjected to different levels of fractionation before liquid chr...

  19. Analytical Pipeline for Discovery and Verification of Glycoproteins from Plasma-Derived Extracellular Vesicles as Breast Cancer Biomarkers.

    Science.gov (United States)

    Chen, I-Hsuan; Aguilar, Hillary Andaluz; Paez Paez, J Sebastian; Wu, Xiaofeng; Pan, Li; Wendt, Michael K; Iliuk, Anton B; Zhang, Ying; Tao, W Andy

    2018-05-15

    Glycoproteins comprise more than half of current FDA-approved protein cancer markers, but the development of new glycoproteins as disease biomarkers has been stagnant. Here we present a pipeline to develop glycoproteins from extracellular vesicles (EVs) through integrating quantitative glycoproteomics with a novel reverse phase glycoprotein array and then apply it to identify novel biomarkers for breast cancer. EV glycoproteomics show promise in circumventing the problems plaguing current serum/plasma glycoproteomics and allowed us to identify hundreds of glycoproteins that have not been identified in blood. We identified 1,453 unique glycopeptides representing 556 glycoproteins in EVs, among which 20 were verified significantly higher in individual breast cancer patients. We further applied a novel glyco-specific reverse phase protein array to quantify a subset of the candidates. Together, this study demonstrates the great potential of this integrated pipeline for biomarker discovery.

  20. A structured proteomic approach identifies 14-3-3Sigma as a novel and reliable protein biomarker in panel based differential diagnostics of liver tumors.

    Science.gov (United States)

    Reis, Henning; Pütter, Carolin; Megger, Dominik A; Bracht, Thilo; Weber, Frank; Hoffmann, Andreas-C; Bertram, Stefanie; Wohlschläger, Jeremias; Hagemann, Sascha; Eisenacher, Martin; Scherag, André; Schlaak, Jörg F; Canbay, Ali; Meyer, Helmut E; Sitek, Barbara; Baba, Hideo A

    2015-06-01

    Hepatocellular carcinoma (HCC) is a major lethal cancer worldwide. Despite sophisticated diagnostic algorithms, the differential diagnosis of small liver nodules still is difficult. While imaging techniques have advanced, adjuvant protein-biomarkers as glypican3 (GPC3), glutamine-synthetase (GS) and heat-shock protein 70 (HSP70) have enhanced diagnostic accuracy. The aim was to further detect useful protein-biomarkers of HCC with a structured systematic approach using differential proteome techniques, bring the results to practical application and compare the diagnostic accuracy of the candidates with the established biomarkers. After label-free and gel-based proteomics (n=18 HCC/corresponding non-tumorous liver tissue (NTLT)) biomarker candidates were tested for diagnostic accuracy in immunohistochemical analyses (n=14 HCC/NTLT). Suitable candidates were further tested for consistency in comparison to known protein-biomarkers in HCC (n=78), hepatocellular adenoma (n=25; HCA), focal nodular hyperplasia (n=28; FNH) and cirrhosis (n=28). Of all protein-biomarkers, 14-3-3Sigma (14-3-3S) exhibited the most pronounced up-regulation (58.8×) in proteomics and superior diagnostic accuracy (73.0%) in the differentiation of HCC from non-tumorous hepatocytes also compared to established biomarkers as GPC3 (64.7%) and GS (45.4%). 14-3-3S was part of the best diagnostic three-biomarker panel (GPC3, HSP70, 14-3-3S) for the differentiation of HCC and HCA which is of most important significance. Exclusion of GS and inclusion of 14-3-3S in the panel (>1 marker positive) resulted in a profound increase in specificity (+44.0%) and accuracy (+11.0%) while sensitivity remained stable (96.0%). 14-3-3S is an interesting protein biomarker with the potential to further improve the accuracy of differential diagnostic process of hepatocellular tumors. This article is part of a Special Issue entitled: Medical Proteomics. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Bioinformatical Analysis of Organ-Related (Heart, Brain, Liver, and Kidney and Serum Proteomic Data to Identify Protein Regulation Patterns and Potential Sepsis Biomarkers

    Directory of Open Access Journals (Sweden)

    Andreas Hohn

    2018-01-01

    Full Text Available During the last years, proteomic studies have revealed several interesting findings in experimental sepsis models and septic patients. However, most studies investigated protein alterations only in single organs or in whole blood. To identify possible sepsis biomarkers and to evaluate the relationship between protein alteration in sepsis affected organs and blood, proteomics data from the heart, brain, liver, kidney, and serum were analysed. Using functional network analyses in combination with hierarchical cluster analysis, we found that protein regulation patterns in organ tissues as well as in serum are highly dynamic. In the tissue proteome, the main functions and pathways affected were the oxidoreductive activity, cell energy generation, or metabolism, whereas in the serum proteome, functions were associated with lipoproteins metabolism and, to a minor extent, with coagulation, inflammatory response, and organ regeneration. Proteins from network analyses of organ tissue did not correlate with statistically significantly regulated serum proteins or with predicted proteins of serum functions. In this study, the combination of proteomic network analyses with cluster analyses is introduced as an approach to deal with high-throughput proteomics data to evaluate the dynamics of protein regulation during sepsis.

  2. Biomarker Discovery Using New Metabolomics Software for Automated Processing of High Resolution LC-MS Data

    Science.gov (United States)

    Hnatyshyn, S.; Reily, M.; Shipkova, P.; McClure, T.; Sanders, M.; Peake, D.

    2011-01-01

    Robust biomarkers of target engagement and efficacy are required in different stages of drug discovery. Liquid chromatography coupled to high resolution mass spectrometry provides sensitivity, accuracy and wide dynamic range required for identification of endogenous metabolites in biological matrices. LCMS is widely-used tool for biomarker identification and validation. Typical high resolution LCMS profiles from biological samples may contain greater than a million mass spectral peaks corresponding to several thousand endogenous metabolites. Reduction of the total number of peaks, component identification and statistical comparison across sample groups remains to be a difficult and time consuming challenge. Blood samples from four groups of rats (male vs. female, fully satiated and food deprived) were analyzed using high resolution accurate mass (HRAM) LCMS. All samples were separated using a 15 minute reversed-phase C18 LC gradient and analyzed in both positive and negative ion modes. Data was acquired using 15K resolution and 5ppm mass measurement accuracy. The entire data set was analyzed using software developed in collaboration between Bristol Meyers Squibb and Thermo Fisher Scientific to determine the metabolic effects of food deprivation on rats. Metabolomic LC-MS data files are extraordinarily complex and appropriate reduction of the number of spectral peaks via identification of related peaks and background removal is essential. A single component such as hippuric acid generates more than 20 related peaks including isotopic clusters, adducts and dimers. Plasma and urine may contain 500-1500 unique quantifiable metabolites. Noise filtering approaches including blank subtraction were used to reduce the number of irrelevant peaks. By grouping related signals such as isotopic peaks and alkali adducts, data processing was greatly simplified by reducing the total number of components by 10-fold. The software processes 48 samples in under 60minutes. Principle

  3. Discovery of dachshund 2 protein as a novel biomarker of poor prognosis in epithelial ovarian cancer

    Directory of Open Access Journals (Sweden)

    Nodin Björn

    2012-01-01

    Full Text Available Abstract Background The Dachshund homolog 2 (DACH2 gene has been implicated in development of the female genital tract in mouse models and premature ovarian failure syndrome, but to date, its expression in human normal and cancerous tissue remains unexplored. Using the Human Protein Atlas as a tool for cancer biomarker discovery, DACH2 protein was found to be differentially expressed in epithelial ovarian cancer (EOC. Here, the expression and prognostic significance of DACH2 was further evaluated in ovarian cancer cell lines and human EOC samples. Methods Immunohistochemical expression of DACH2 was examined in tissue microarrays with 143 incident EOC cases from two prospective, population-based cohorts, including a subset of benign-appearing fallopian tubes (n = 32. A nuclear score (NS, i.e. multiplier of staining fraction and intensity, was calculated. For survival analyses, cases were dichotomized into low (NS 3 using classification and regression tree analysis. Kaplan Meier analysis and Cox proportional hazards modelling were used to assess the impact of DACH2 expression on survival. DACH2 expression was analysed in the cisplatin sensitive ovarian cancer cell line A2780 and its cisplatin resistant derivative A2780-Cp70. The specificity of the DACH2 antibody was tested using siRNA-mediated silencing of DACH2 in A2780-Cp70 cells. Results DACH2 expression was considerably higher in the cisplatin resistant A2780-Cp70 cells compared to the cisplatin-sensitive A2780 cells. While present in all sampled fallopian tubes, DACH2 expression ranged from negative to strong in EOC. In EOC, DACH2 expression correlated with several proteins involved in DNA integrity and repair, and proliferation. DACH2 expression was significantly higher in carcinoma of the serous subtype compared to non-serous carcinoma. In the full cohort, high DACH2 expression was significantly associated with poor prognosis in univariable analysis, and in carcinoma of the serous subtype

  4. Using MALDI-IMS and MRM to stablish a pipeline for discovery and validation of tumor neovasculature biomarker candidates. — EDRN Public Portal

    Science.gov (United States)

    In an effort to circumvent the limitations associated with biomarker discovery workflows involving cell lines and cell cultures, histology-directed MALDI protein profiling and imaging mass spectrometry will be used for identification of vascular endothelial biomarkers suitable for early prostate cancer detection by CEUS targeted molecular imaging

  5. False-Positive Rate Determination of Protein Target Discovery using a Covalent Modification- and Mass Spectrometry-Based Proteomics Platform

    Science.gov (United States)

    Strickland, Erin C.; Geer, M. Ariel; Hong, Jiyong; Fitzgerald, Michael C.

    2014-01-01

    Detection and quantitation of protein-ligand binding interactions is important in many areas of biological research. Stability of proteins from rates of oxidation (SPROX) is an energetics-based technique for identifying the proteins targets of ligands in complex biological mixtures. Knowing the false-positive rate of protein target discovery in proteome-wide SPROX experiments is important for the correct interpretation of results. Reported here are the results of a control SPROX experiment in which chemical denaturation data is obtained on the proteins in two samples that originated from the same yeast lysate, as would be done in a typical SPROX experiment except that one sample would be spiked with the test ligand. False-positive rates of 1.2-2.2 % and analysis of the isobaric mass tag (e.g., iTRAQ®) reporter ions used for peptide quantitation. Our results also suggest that technical replicates can be used to effectively eliminate such false positives that result from this random error, as is demonstrated in a SPROX experiment to identify yeast protein targets of the drug, manassantin A. The impact of ion purity in the tandem mass spectral analyses and of background oxidation on the false-positive rate of protein target discovery using SPROX is also discussed.

  6. Proteomics Mapping of Cord Blood Identifies Haptoglobin ?Switch-On? Pattern as Biomarker of Early-Onset Neonatal Sepsis in Preterm Newborns

    OpenAIRE

    Buhimschi, Catalin S.; Bhandari, Vineet; Dulay, Antonette T.; Nayeri, Unzila A.; Abdel-Razeq, Sonya S.; Pettker, Christian M.; Thung, Stephen; Zhao, Guomao; Han, Yiping W.; Bizzarro, Matthew; Buhimschi, Irina A.

    2011-01-01

    Background Intra-amniotic infection and/or inflammation (IAI) are important causes of preterm birth and early-onset neonatal sepsis (EONS). A prompt and accurate diagnosis of EONS is critical for improved neonatal outcomes. We sought to explore the cord blood proteome and identify biomarkers and functional protein networks characterizing EONS in preterm newborns. Methodology/Principal Findings We studied a prospective cohort of 180 premature newborns delivered May 2004-September 2009. A prote...

  7. Label-Free LC-MS/MS Proteomic Analysis of Cerebrospinal Fluid Identifies Protein/Pathway Alterations and Candidate Biomarkers for Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Collins, Mahlon A; An, Jiyan; Hood, Brian L; Conrads, Thomas P; Bowser, Robert P

    2015-11-06

    Analysis of the cerebrospinal fluid (CSF) proteome has proven valuable to the study of neurodegenerative disorders. To identify new protein/pathway alterations and candidate biomarkers for amyotrophic lateral sclerosis (ALS), we performed comparative proteomic profiling of CSF from sporadic ALS (sALS), healthy control (HC), and other neurological disease (OND) subjects using label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 1712 CSF proteins were detected and relatively quantified by spectral counting. Levels of several proteins with diverse biological functions were significantly altered in sALS samples. Enrichment analysis was used to link these alterations to biological pathways, which were predominantly related to inflammation, neuronal activity, and extracellular matrix regulation. We then used our CSF proteomic profiles to create a support vector machines classifier capable of discriminating training set ALS from non-ALS (HC and OND) samples. Four classifier proteins, WD repeat-containing protein 63, amyloid-like protein 1, SPARC-like protein 1, and cell adhesion molecule 3, were identified by feature selection and externally validated. The resultant classifier distinguished ALS from non-ALS samples with 83% sensitivity and 100% specificity in an independent test set. Collectively, our results illustrate the utility of CSF proteomic profiling for identifying ALS protein/pathway alterations and candidate disease biomarkers.

  8. Proteomic-based detection of a protein cluster dysregulated during cardiovascular development identifies biomarkers of congenital heart defects.

    Directory of Open Access Journals (Sweden)

    Anjali K Nath

    Full Text Available Cardiovascular development is vital for embryonic survival and growth. Early gestation embryo loss or malformation has been linked to yolk sac vasculopathy and congenital heart defects (CHDs. However, the molecular pathways that underlie these structural defects in humans remain largely unknown hindering the development of molecular-based diagnostic tools and novel therapies.Murine embryos were exposed to high glucose, a condition known to induce cardiovascular defects in both animal models and humans. We further employed a mass spectrometry-based proteomics approach to identify proteins differentially expressed in embryos with defects from those with normal cardiovascular development. The proteins detected by mass spectrometry (WNT16, ST14, Pcsk1, Jumonji, Morca2a, TRPC5, and others were validated by Western blotting and immunoflorescent staining of the yolk sac and heart. The proteins within the proteomic dataset clustered to adhesion/migration, differentiation, transport, and insulin signaling pathways. A functional role for several proteins (WNT16, ADAM15 and NOGO-A/B was demonstrated in an ex vivo model of heart development. Additionally, a successful application of a cluster of protein biomarkers (WNT16, ST14 and Pcsk1 as a prenatal screen for CHDs was confirmed in a study of human amniotic fluid (AF samples from women carrying normal fetuses and those with CHDs.The novel finding that WNT16, ST14 and Pcsk1 protein levels increase in fetuses with CHDs suggests that these proteins may play a role in the etiology of human CHDs. The information gained through this bed-side to bench translational approach contributes to a more complete understanding of the protein pathways dysregulated during cardiovascular development and provides novel avenues for diagnostic and therapeutic interventions, beneficial to fetuses at risk for CHDs.

  9. Application of Proteomics and Peptidomics to COPD

    Directory of Open Access Journals (Sweden)

    Girolamo Pelaia

    2014-01-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is a complex disorder involving both airways and lung parenchyma, usually associated with progressive and poorly reversible airflow limitation. In order to better characterize the phenotypic heterogeneity and the prognosis of patients with COPD, there is currently an urgent need for discovery and validation of reliable disease biomarkers. Within this context, proteomic and peptidomic techniques are emerging as very valuable tools that can be applied to both systemic and pulmonary samples, including peripheral blood, induced sputum, exhaled breath condensate, bronchoalveolar lavage fluid, and lung tissues. Identification of COPD biomarkers by means of proteomic and peptidomic approaches can thus also lead to discovery of new molecular targets potentially useful to improve and personalize the therapeutic management of this widespread respiratory disease.

  10. Qualitative and quantitative characterization of plasma proteins when incorporating traveling wave ion mobility into a liquid chromatography-mass spectrometry workflow for biomarker discovery: use of product ion quantitation as an alternative data analysis tool for label free quantitation.

    Science.gov (United States)

    Daly, Charlotte E; Ng, Leong L; Hakimi, Amirmansoor; Willingale, Richard; Jones, Donald J L

    2014-02-18

    Discovery of protein biomarkers in clinical samples necessitates significant prefractionation prior to liquid chromatography-mass spectrometry (LC-MS) analysis. Integrating traveling wave ion mobility spectrometry (TWIMS) enables in-line gas phase separation which when coupled with nanoflow liquid chromatography and data independent acquisition tandem mass spectrometry, confers significant advantages to the discovery of protein biomarkers by improving separation and inherent sensitivity. Incorporation of TWIMS leads to a packet of concentrated ions which ultimately provides a significant improvement in sensitivity. As a consequence of ion packeting, when present at high concentrations, accurate quantitation of proteins can be affected due to detector saturation effects. Human plasma was analyzed in triplicate using liquid-chromatography data independent acquisition mass spectrometry (LC-DIA-MS) and using liquid-chromatography ion-mobility data independent acquisition mass spectrometry (LC-IM-DIA-MS). The inclusion of TWIMS was assessed for the effect on sample throughput, data integrity, confidence of protein and peptide identification, and dynamic range. The number of identified proteins is significantly increased by an average of 84% while both the precursor and product mass accuracies are maintained between the modalities. Sample dynamic range is also maintained while quantitation is achieved for all but the most abundant proteins by incorporating a novel data interpretation method that allows accurate quantitation to occur. This additional separation is all achieved within a workflow with no discernible deleterious effect on throughput. Consequently, TWIMS greatly enhances proteome coverage and can be reliably used for quantification when using an alternative product ion quantification strategy. Using TWIMS in biomarker discovery in human plasma is thus recommended.

  11. SWATHtoMRM: Development of High-Coverage Targeted Metabolomics Method Using SWATH Technology for Biomarker Discovery.

    Science.gov (United States)

    Zha, Haihong; Cai, Yuping; Yin, Yandong; Wang, Zhuozhong; Li, Kang; Zhu, Zheng-Jiang

    2018-03-20

    The complexity of metabolome presents a great analytical challenge for quantitative metabolite profiling, and restricts the application of metabolomics in biomarker discovery. Targeted metabolomics using multiple-reaction monitoring (MRM) technique has excellent capability for quantitative analysis, but suffers from the limited metabolite coverage. To address this challenge, we developed a new strategy, namely, SWATHtoMRM, which utilizes the broad coverage of SWATH-MS technology to develop high-coverage targeted metabolomics method. Specifically, SWATH-MS technique was first utilized to untargeted profile one pooled biological sample and to acquire the MS 2 spectra for all metabolites. Then, SWATHtoMRM was used to extract the large-scale MRM transitions for targeted analysis with coverage as high as 1000-2000 metabolites. Then, we demonstrated the advantages of SWATHtoMRM method in quantitative analysis such as coverage, reproducibility, sensitivity, and dynamic range. Finally, we applied our SWATHtoMRM approach to discover potential metabolite biomarkers for colorectal cancer (CRC) diagnosis. A high-coverage targeted metabolomics method with 1303 metabolites in one injection was developed to profile colorectal cancer tissues from CRC patients. A total of 20 potential metabolite biomarkers were discovered and validated for CRC diagnosis. In plasma samples from CRC patients, 17 out of 20 potential biomarkers were further validated to be associated with tumor resection, which may have a great potential in assessing the prognosis of CRC patients after tumor resection. Together, the SWATHtoMRM strategy provides a new way to develop high-coverage targeted metabolomics method, and facilitates the application of targeted metabolomics in disease biomarker discovery. The SWATHtoMRM program is freely available on the Internet ( http://www.zhulab.cn/software.php ).

  12. One Sample, One Shot - Evaluation of sample preparation protocols for the mass spectrometric proteome analysis of human bile fluid without extensive fractionation

    NARCIS (Netherlands)

    Megger, D.A.; Padden, J.; Rosowski, K.; Uszkoreit, J.; Bracht, T.; Eisenacher, M.; Gerges, C.; Neuhaus, H.; Schumacher, B.; Schlaak, J.F.; Sitek, B.

    2017-01-01

    The proteome analysis of bile fluid represents a promising strategy to identify biomarker candidates for various diseases of the hepatobiliary system. However, to obtain substantive results in biomarker discovery studies large patient cohorts necessarily need to be analyzed. Consequently, this would

  13. Prediction of Chronic Kidney Disease Stage 3 by CKD273, a Urinary Proteomic Biomarker

    DEFF Research Database (Denmark)

    Pontillo, Claudia; Zhang, Zhen-Yu; Schanstra, Joost P

    2017-01-01

    Introduction: CKD273 is a urinary biomarker, which in advanced chronic kidney disease predicts further deterioration. We investigated whether CKD273 can also predict a decline of estimated glomerular filtration rate (eGFR) to ... threshold (P = 0.086). Discussion: In conclusion, while accounting for baseline eGFR, albuminuria, and covariables, CKD273 adds to the prediction of stage 3 chronic kidney disease, at which point intervention remains an achievable therapeutic target....

  14. Identification of proteomic biomarkers predicting prostate cancer aggressiveness and lethality despite biopsy-sampling error

    OpenAIRE

    Shipitsin, M; Small, C; Choudhury, S; Giladi, E; Friedlander, S; Nardone, J; Hussain, S; Hurley, A D; Ernst, C; Huang, Y E; Chang, H; Nifong, T P; Rimm, D L; Dunyak, J; Loda, M

    2014-01-01

    Background: Key challenges of biopsy-based determination of prostate cancer aggressiveness include tumour heterogeneity, biopsy-sampling error, and variations in biopsy interpretation. The resulting uncertainty in risk assessment leads to significant overtreatment, with associated costs and morbidity. We developed a performance-based strategy to identify protein biomarkers predictive of prostate cancer aggressiveness and lethality regardless of biopsy-sampling variation. Methods: Prostatectom...

  15. A multiplex quantitative proteomics strategy for protein biomarker studies in urinary exosomes.

    Science.gov (United States)

    Raj, Delfin A A; Fiume, Immacolata; Capasso, Giovambattista; Pocsfalvi, Gabriella

    2012-06-01

    Urinary exosomes have received considerable attention as a potential biomarker source for the diagnosis of renal diseases. Notwithstanding, their use in protein biomarker research is hampered by the lack of efficient methods for vesicle isolation, lysis, and protein quantification. Here we report an improved ultracentrifugation-based method that facilitates the solubilization and removal of major impurities associated with urinary exosomes. A double-cushion sucrose/D(2)O centrifugation step was used after a two-step differential centrifugation to separate exosomes from the heavier vesicles. After the removal of uromodulin, 378 and 79 unique proteins were identified, respectively, in low- and high-density fractions. Comparison of our data with two previously published data sets helped to define proteins commonly found in urinary exosomes. Lysis, protein extraction, and in-solution digestion of exosomes were then optimized for MudPIT application. More than a hundred exosomal proteins were quantified by four-plex iTRAQ analysis of single and pooled samples from two different age groups. For healthy men, six proteins (TSN1, PODXL, IDHC, PPAP, ACBP, and ANXA5) showed significant expression differences between exosome pools of those aged 25-50 and 50-70 years old. Thus, exosomes isolated by our method provide the basis for the development of robust quantitative methods for protein biomarker research.

  16. Identification of plasma biomarker candidates in glioblastoma using an antibody-array-based proteomic approach

    International Nuclear Information System (INIS)

    Zupancic, Klemen; Blejec, Andrej; Herman, Ana; Veber, Matija; Verbovsek, Urska; Korsic, Marjan; Knezevic, Miomir; Rozman, Primoz; Turnsek, Tamara Lah; Gruden, Kristina; Motaln, Helena

    2014-01-01

    Glioblastoma multiforme (GBM) is a brain tumour with a very high patient mortality rate, with a median survival of 47 weeks. This might be improved by the identification of novel diagnostic, prognostic and predictive therapy-response biomarkers, preferentially through the monitoring of the patient blood. The aim of this study was to define the impact of GBM in terms of alterations of the plasma protein levels in these patients. We used a commercially available antibody array that includes 656 antibodies to analyse blood plasma samples from 17 healthy volunteers in comparison with 17 blood plasma samples from patients with GBM. We identified 11 plasma proteins that are statistically most strongly associated with the presence of GBM. These proteins belong to three functional signalling pathways: T-cell signalling and immune responses; cell adhesion and migration; and cell-cycle control and apoptosis. Thus, we can consider this identified set of proteins as potential diagnostic biomarker candidates for GBM. In addition, a set of 16 plasma proteins were significantly associated with the overall survival of these patients with GBM. Guanine nucleotide binding protein alpha (GNAO1) was associated with both GBM presence and survival of patients with GBM. Antibody array analysis represents a useful tool for the screening of plasma samples for potential cancer biomarker candidates in small-scale exploratory experiments; however, clinical validation of these candidates requires their further evaluation in a larger study on an independent cohort of patients

  17. Clinical proteomics identifies urinary CD14 as a potential biomarker for diagnosis of stable coronary artery disease.

    Directory of Open Access Journals (Sweden)

    Min-Yi Lee

    Full Text Available Inflammation plays a key role in coronary artery disease (CAD and other manifestations of atherosclerosis. Recently, urinary proteins were found to be useful markers for reflecting inflammation status of different organs. To identify potential biomarker for diagnosis of CAD, we performed one-dimensional SDS-gel electrophoresis followed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS. Among the proteins differentially expressed in urine samples, monocyte antigen CD14 was found to be consistently expressed in higher amounts in the CAD patients as compared to normal controls. Using enzyme-linked immunosorbent assays to analyze the concentrations of CD14 in urine and serum, we confirmed that urinary CD14 levels were significantly higher in patients (n = 73 with multi-vessel and single vessel CAD than in normal control (n = 35 (P < 0.001. Logistic regression analysis further showed that urinary CD14 concentration level is associated with severity or number of diseased vessels and SYNTAX score after adjustment for potential confounders. Concomitantly, the proportion of CD14+ monocytes was significantly increased in CAD patients (59.7 ± 3.6% as compared with healthy controls (14.9 ± 2.1% (P < 0.001, implicating that a high level of urinary CD14 may be potentially involved in mechanism(s leading to CAD pathogenesis. By performing shotgun proteomics, we further revealed that CD14-associated inflammatory response networks may play an essential role in CAD. In conclusion, the current study has demonstrated that release of CD14 in urine coupled with more CD14+ monocytes in CAD patients is significantly correlated with severity of CAD, pointing to the potential application of urinary CD14 as a novel noninvasive biomarker for large-scale diagnostic screening of susceptible CAD patients.

  18. Serum proteomic changes after randomized prolonged erythropoietin treatment and/or endurance training: detection of novel biomarkers.

    Directory of Open Access Journals (Sweden)

    Britt Christensen

    Full Text Available Despite implementation of the biological passport to detect erythropoietin abuse, a need for additional biomarkers remains. We used a proteomic approach to identify novel serum biomarkers of prolonged erythropoiesis-stimulating agent (ESA exposure (Darbepoietin-α and/or aerobic training.Thirty-six healthy young males were randomly assigned to the following groups: Sedentary-placebo (n = 9, Sedentary-ESA (n = 9, Training-placebo (n = 10, or Training-ESA (n = 8. They were treated with placebo/Darbepoietin-α subcutaneously once/week for 10 weeks followed by a 3-week washout period. Training consisted of supervised biking 3/week for 13 weeks at the highest possible intensity. Serum was collected at baseline, week 3 (high dose Darbepoietin-α, week 10 (reduced dose Darbepoietin-α, and after a 3-week washout period.Serum proteins were separated according to charge and molecular mass (2D-gel electrophoresis. The identity of proteins from spots exhibiting altered intensity was determined by mass spectrometry.Six protein spots changed in response to Darbepoietin-α treatment. Comparing all 4 experimental groups, two protein spots (serotransferrin and haptoglobin/haptoglobin related protein showed a significant response to Darbepoietin-α treatment. The haptoglobin/haptoglobin related protein spot showed a significantly lower intensity in all subjects in the training-ESA group during the treatment period and increased during the washout period.An isoform of haptoglobin/haptoglobin related protein could be a new anti-doping marker and merits further research.ClinicalTrials.gov NCT01320449.

  19. Identification of candidate biomarkers of the exposure to PCBs in contaminated cattle: A gene expression- and proteomic-based approach.

    Science.gov (United States)

    Girolami, F; Badino, P; Spalenza, V; Manzini, L; Renzone, G; Salzano, A M; Dal Piaz, F; Scaloni, A; Rychen, G; Nebbia, C

    2018-05-28

    Dioxins and polychlorinated biphenyls (PCBs) are widespread and persistent contaminants. Through a combined gene expression/proteomic-based approach, candidate biomarkers of the exposure to such environmental pollutants in cattle subjected to a real eco-contamination event were identified. Animals were removed from the polluted area and fed a standard ration for 6 months. The decontamination was monitored by evaluating dioxin and PCB levels in pericaudal fat two weeks after the removal from the contaminated area (day 0) and then bimonthly for six months (days 59, 125 and 188). Gene expression measurements demonstrated that CYP1B1 expression was significantly higher in blood lymphocytes collected in contaminated animals (day 0), and decreased over time during decontamination. mRNA levels of interleukin 2 showed an opposite quantitative trend. MALDI-TOF-MS polypeptide profiling of serum samples ascertained a progressive decrease (from day 0 to 188) of serum levels of fibrinogen β-chain and serpin A3-7-like fragments, apolipoprotein (APO) C-II and serum amyloid A-4 protein, along with an augmented representation of transthyretin isoforms, as well as APOC-III and APOA-II proteins during decontamination. When differentially represented species were combined with serum antioxidant, acute phase and proinflammatory protein levels already ascertained in the same animals (Cigliano et al., 2016), bioinformatics unveiled an interaction network linking together almost all components. This suggests the occurrence of a complex PCB-responsive mechanism associated with animal contamination/decontamination, including a cohort of protein/polypeptide species involved in blood redox homeostasis, inflammation and lipid transport. All together, these results suggest the use in combination of such biomarkers for identifying PCB-contaminated animals, and for monitoring the restoring of their healthy condition following a decontamination process. Copyright © 2018 Elsevier B.V. All

  20. Discovery of Proteomic Code with mRNA Assisted Protein Folding

    Directory of Open Access Journals (Sweden)

    Jan C. Biro

    2008-12-01

    Full Text Available The 3x redundancy of the Genetic Code is usually explained as a necessity to increase the mutation-resistance of the genetic information. However recent bioinformatical observations indicate that the redundant Genetic Code contains more biological information than previously known and which is additional to the 64/20 definition of amino acids. It might define the physico-chemical and structural properties of amino acids, the codon boundaries, the amino acid co-locations (interactions in the coded proteins and the free folding energy of mRNAs. This additional information, which seems to be necessary to determine the 3D structure of coding nucleic acids as well as the coded proteins, is known as the Proteomic Code and mRNA Assisted Protein Folding.

  1. Predictive biomarker discovery through the parallel integration of clinical trial and functional genomics datasets

    DEFF Research Database (Denmark)

    Swanton, C.; Larkin, J.M.; Gerlinger, M.

    2010-01-01

    -cancer agents. The consortium focuses on the identification of reliable predictive biomarkers to approved agents with anti-angiogenic activity for which no reliable predictive biomarkers exist: sunitinib, a multi-targeted tyrosine kinase inhibitor and everolimus, a mammalian target of rapamycin (mTOR) pathway...

  2. Plasma low-molecular-weight proteome profiling identified neuropeptide-Y as a prostate cancer biomarker polypeptide.

    Science.gov (United States)

    Ueda, Koji; Tatsuguchi, Ayako; Saichi, Naomi; Toyama, Atsuhiko; Tamura, Kenji; Furihata, Mutsuo; Takata, Ryo; Akamatsu, Shusuke; Igarashi, Masahiro; Nakayama, Masato; Sato, Taka-Aki; Ogawa, Osamu; Fujioka, Tomoaki; Shuin, Taro; Nakamura, Yusuke; Nakagawa, Hidewaki

    2013-10-04

    In prostate cancer diagnosis, PSA test has greatly contributed to the early detection of prostate cancer; however, expanding overdiagnosis and unnecessary biopsies have emerged as serious issues. To explore plasma biomarkers complementing the specificity of PSA test, we developed a unique proteomic technology QUEST-MS (Quick Enrichment of Small Targets for Mass Spectrometry). The QUEST-MS method based on 96-well formatted sequential reversed-phase chromatography allowing efficient enrichment of <20 kDa proteins quickly and reproducibly. Plasma from 24 healthy controls, 19 benign prostate hypertrophy patients, and 73 prostate cancer patients were purified with QUEST-MS and analyzed by LC/MS/MS. Among 153 057 nonredundant peptides, 189 peptides showed prostate cancer specific detection pattern, which included a neurotransmitter polypeptide neuropeptide-Y (NPY). We further validated the screening results by targeted multiple reaction monitoring technology using independent sample set (n = 110). The ROC curve analysis revealed that logistic regression-based combination of NPY, and PSA showed 81.5% sensitivity and 82.2% specificity for prostate cancer diagnosis. Thus QUEST-MS technology allowed comprehensive and high-throughput profiling of plasma polypeptides and had potential to effectively uncover very low abundant tumor-derived small molecules, such as neurotransmitters, peptide hormones, or cytokines.

  3. A High-Resolution Proteomic Landscaping of Primary Human Dental Stem Cells: Identification of SHED- and PDLSC-Specific Biomarkers

    Directory of Open Access Journals (Sweden)

    Vasiliki Taraslia

    2018-01-01

    Full Text Available Dental stem cells (DSCs have emerged as a promising tool for basic research and clinical practice. A variety of adult stem cell (ASC populations can be isolated from different areas within the dental tissue, which, due to their cellular and molecular characteristics, could give rise to different outcomes when used in potential applications. In this study, we performed a high-throughput molecular comparison of two primary human adult dental stem cell (hADSC sub-populations: Stem Cells from Human Exfoliated Deciduous Teeth (SHEDs and Periodontal Ligament Stem Cells (PDLSCs. A detailed proteomic mapping of SHEDs and PDLSCs, via employment of nano-LC tandem-mass spectrometry (MS/MS revealed 2032 identified proteins in SHEDs and 3235 in PDLSCs. In total, 1516 proteins were expressed in both populations, while 517 were unique for SHEDs and 1721 were exclusively expressed in PDLSCs. Further analysis of the recorded proteins suggested that SHEDs predominantly expressed molecules that are involved in organizing the cytoskeletal network, cellular migration and adhesion, whereas PDLSCs are highly energy-producing cells, vastly expressing proteins that are implicated in various aspects of cell metabolism and proliferation. Applying the Rho-GDI signaling pathway as a paradigm, we propose potential biomarkers for SHEDs and for PDLSCs, reflecting their unique features, properties and engaged molecular pathways.

  4. Metabolomics as a Tool for Discovery of Biomarkers of Autism Spectrum Disorder in the Blood Plasma of Children

    Science.gov (United States)

    West, Paul R.; Amaral, David G.; Bais, Preeti; Smith, Alan M.; Egnash, Laura A.; Ross, Mark E.; Palmer, Jessica A.; Fontaine, Burr R.; Conard, Kevin R.; Corbett, Blythe A.; Cezar, Gabriela G.; Donley, Elizabeth L. R.; Burrier, Robert E.

    2014-01-01

    Background The diagnosis of autism spectrum disorder (ASD) at the earliest age possible is important for initiating optimally effective intervention. In the United States the average age of diagnosis is 4 years. Identifying metabolic biomarker signatures of ASD from blood samples offers an opportunity for development of diagnostic tests for detection of ASD at an early age. Objectives To discover metabolic features present in plasma samples that can discriminate children with ASD from typically developing (TD) children. The ultimate goal is to identify and develop blood-based ASD biomarkers that can be validated in larger clinical trials and deployed to guide individualized therapy and treatment. Methods Blood plasma was obtained from children aged 4 to 6, 52 with ASD and 30 age-matched TD children. Samples were analyzed using 5 mass spectrometry-based methods designed to orthogonally measure a broad range of metabolites. Univariate, multivariate and machine learning methods were used to develop models to rank the importance of features that could distinguish ASD from TD. Results A set of 179 statistically significant features resulting from univariate analysis were used for multivariate modeling. Subsets of these features properly classified the ASD and TD samples in the 61-sample training set with average accuracies of 84% and 86%, and with a maximum accuracy of 81% in an independent 21-sample validation set. Conclusions This analysis of blood plasma metabolites resulted in the discovery of biomarkers that may be valuable in the diagnosis of young children with ASD. The results will form the basis for additional discovery and validation research for 1) determining biomarkers to develop diagnostic tests to detect ASD earlier and improve patient outcomes, 2) gaining new insight into the biochemical mechanisms of various subtypes of ASD 3) identifying biomolecular targets for new modes of therapy, and 4) providing the basis for individualized treatment

  5. Metabolomics as a tool for discovery of biomarkers of autism spectrum disorder in the blood plasma of children.

    Directory of Open Access Journals (Sweden)

    Paul R West

    Full Text Available The diagnosis of autism spectrum disorder (ASD at the earliest age possible is important for initiating optimally effective intervention. In the United States the average age of diagnosis is 4 years. Identifying metabolic biomarker signatures of ASD from blood samples offers an opportunity for development of diagnostic tests for detection of ASD at an early age.To discover metabolic features present in plasma samples that can discriminate children with ASD from typically developing (TD children. The ultimate goal is to identify and develop blood-based ASD biomarkers that can be validated in larger clinical trials and deployed to guide individualized therapy and treatment.Blood plasma was obtained from children aged 4 to 6, 52 with ASD and 30 age-matched TD children. Samples were analyzed using 5 mass spectrometry-based methods designed to orthogonally measure a broad range of metabolites. Univariate, multivariate and machine learning methods were used to develop models to rank the importance of features that could distinguish ASD from TD.A set of 179 statistically significant features resulting from univariate analysis were used for multivariate modeling. Subsets of these features properly classified the ASD and TD samples in the 61-sample training set with average accuracies of 84% and 86%, and with a maximum accuracy of 81% in an independent 21-sample validation set.This analysis of blood plasma metabolites resulted in the discovery of biomarkers that may be valuable in the diagnosis of young children with ASD. The results will form the basis for additional discovery and validation research for 1 determining biomarkers to develop diagnostic tests to detect ASD earlier and improve patient outcomes, 2 gaining new insight into the biochemical mechanisms of various subtypes of ASD 3 identifying biomolecular targets for new modes of therapy, and 4 providing the basis for individualized treatment recommendations.

  6. A Proteomic Approach Identifies Candidate Early Biomarkers to Predict Severe Dengue in Children.

    Directory of Open Access Journals (Sweden)

    Dang My Nhi

    2016-02-01

    Full Text Available Severe dengue with severe plasma leakage (SD-SPL is the most frequent of dengue severe form. Plasma biomarkers for early predictive diagnosis of SD-SPL are required in the primary clinics for the prevention of dengue death.Among 63 confirmed dengue pediatric patients recruited, hospital based longitudinal study detected six SD-SPL and ten dengue with warning sign (DWS. To identify the specific proteins increased or decreased in the SD-SPL plasma obtained 6-48 hours before the shock compared with the DWS, the isobaric tags for relative and absolute quantification (iTRAQ technology was performed using four patients each group. Validation was undertaken in 6 SD-SPL and 10 DWS patients.Nineteen plasma proteins exhibited significantly different relative concentrations (p<0.05, with five over-expressed and fourteen under-expressed in SD-SPL compared with DWS. The individual protein was classified to either blood coagulation, vascular regulation, cellular transport-related processes or immune response. The immunoblot quantification showed angiotensinogen and antithrombin III significantly increased in SD-SPL whole plasma of early stage compared with DWS subjects. Even using this small number of samples, antithrombin III predicted SD-SPL before shock occurrence with accuracy.Proteins identified here may serve as candidate predictive markers to diagnose SD-SPL for timely clinical management. Since the number of subjects are small, so further studies are needed to confirm all these biomarkers.

  7. Discovery of Novel Biomarkers for Alzheimer’s Disease from Blood

    Directory of Open Access Journals (Sweden)

    Jintao Long

    2016-01-01

    Full Text Available Blood-based biomarkers for Alzheimer’s disease would be very valuable because blood is a more accessible biofluid and is suitable for repeated sampling. However, currently there are no robust and reliable blood-based biomarkers for practical diagnosis. In this study we used a knowledge-based protein feature pool and two novel support vector machine embedded feature selection methods to find panels consisting of two and three biomarkers. We validated these biomarker sets using another serum cohort and an RNA profile cohort from the brain. Our panels included the proteins ECH1, NHLRC2, HOXB7, FN1, ERBB2, and SLC6A13 and demonstrated promising sensitivity (>87%, specificity (>91%, and accuracy (>89%.

  8. Discovery of safety biomarkers for atorvastatin in rat urine using mass spectrometry based metabolomics combined with global and targeted approach

    International Nuclear Information System (INIS)

    Kumar, Bhowmik Salil; Lee, Young-Joo; Yi, Hong Jae; Chung, Bong Chul; Jung, Byung Hwa

    2010-01-01

    In order to develop a safety biomarker for atorvastatin, this drug was orally administrated to hyperlipidemic rats, and a metabolomic study was performed. Atorvastatin was given in doses of either 70 mg kg -1 day -1 or 250 mg kg -1 day -1 for a period of 7 days (n = 4 for each group). To evaluate any abnormal effects of the drug, physiological and plasma biochemical parameters were measured and histopathological tests were carried out. Safety biomarkers were derived by comparing these parameters and using both global and targeted metabolic profiling. Global metabolic profiling was performed using liquid chromatography/time of flight/mass spectrometry (LC/TOF/MS) with multivariate data analysis. Several safety biomarker candidates that included various steroids and amino acids were discovered as a result of global metabolic profiling, and they were also confirmed by targeted metabolic profiling using gas chromatography/mass spectrometry (GC/MS) and capillary electrophoresis/mass spectrometry (CE/MS). Serum biochemical and histopathological tests were used to detect abnormal drug reactions in the liver after repeating oral administration of atorvastatin. The metabolic differences between control and the drug-treated groups were compared using PLS-DA score plots. These results were compared with the physiological and plasma biochemical parameters and the results of a histopathological test. Estrone, cortisone, proline, cystine, 3-ureidopropionic acid and histidine were proposed as potential safety biomarkers related with the liver toxicity of atorvastatin. These results indicate that the combined application of global and targeted metabolic profiling could be a useful tool for the discovery of drug safety biomarkers.

  9. Discovery of safety biomarkers for atorvastatin in rat urine using mass spectrometry based metabolomics combined with global and targeted approach

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Bhowmik Salil [Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of); University of Science and Technology, (305-333) 113 Gwahangno, Yuseong-gu, Daejeon (Korea, Republic of); Lee, Young-Joo; Yi, Hong Jae [College of Pharmacy, Kyung Hee University, Hoegi-dong, Dongdaemun-gu, Seoul 130-791 (Korea, Republic of); Chung, Bong Chul [Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of); Jung, Byung Hwa, E-mail: jbhluck@kist.re.kr [Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of); University of Science and Technology, (305-333) 113 Gwahangno, Yuseong-gu, Daejeon (Korea, Republic of)

    2010-02-19

    In order to develop a safety biomarker for atorvastatin, this drug was orally administrated to hyperlipidemic rats, and a metabolomic study was performed. Atorvastatin was given in doses of either 70 mg kg{sup -1} day{sup -1} or 250 mg kg{sup -1} day{sup -1} for a period of 7 days (n = 4 for each group). To evaluate any abnormal effects of the drug, physiological and plasma biochemical parameters were measured and histopathological tests were carried out. Safety biomarkers were derived by comparing these parameters and using both global and targeted metabolic profiling. Global metabolic profiling was performed using liquid chromatography/time of flight/mass spectrometry (LC/TOF/MS) with multivariate data analysis. Several safety biomarker candidates that included various steroids and amino acids were discovered as a result of global metabolic profiling, and they were also confirmed by targeted metabolic profiling using gas chromatography/mass spectrometry (GC/MS) and capillary electrophoresis/mass spectrometry (CE/MS). Serum biochemical and histopathological tests were used to detect abnormal drug reactions in the liver after repeating oral administration of atorvastatin. The metabolic differences between control and the drug-treated groups were compared using PLS-DA score plots. These results were compared with the physiological and plasma biochemical parameters and the results of a histopathological test. Estrone, cortisone, proline, cystine, 3-ureidopropionic acid and histidine were proposed as potential safety biomarkers related with the liver toxicity of atorvastatin. These results indicate that the combined application of global and targeted metabolic profiling could be a useful tool for the discovery of drug safety biomarkers.

  10. In Silico discovery of transcription factors as potential diagnostic biomarkers of ovarian cancer

    KAUST Repository

    Kaur, Mandeep

    2011-09-19

    Background: Our study focuses on identifying potential biomarkers for diagnosis and early detection of ovarian cancer (OC) through the study of transcription regulation of genes affected by estrogen hormone.Results: The results are based on a set of 323 experimentally validated OC-associated genes compiled from several databases, and their subset controlled by estrogen. For these two gene sets we computationally determined transcription factors (TFs) that putatively regulate transcription initiation. We ranked these TFs based on the number of genes they are likely to control. In this way, we selected 17 top-ranked TFs as potential key regulators and thus possible biomarkers for a set of 323 OC-associated genes. For 77 estrogen controlled genes from this set we identified three unique TFs as potential biomarkers.Conclusions: We introduced a new methodology to identify potential diagnostic biomarkers for OC. This report is the first bioinformatics study that explores multiple transcriptional regulators of OC-associated genes as potential diagnostic biomarkers in connection with estrogen responsiveness. We show that 64% of TF biomarkers identified in our study are validated based on real-time data from microarray expression studies. As an illustration, our method could identify CP2 that in combination with CA125 has been reported to be sensitive in diagnosing ovarian tumors. 2011 Kaur et al; licensee BioMed Central Ltd.

  11. In Silico discovery of transcription factors as potential diagnostic biomarkers of ovarian cancer

    KAUST Repository

    Kaur, Mandeep; MacPherson, Cameron R; Schmeier, Sebastian; Narasimhan, Kothandaraman; Choolani, Mahesh; Bajic, Vladimir B.

    2011-01-01

    Background: Our study focuses on identifying potential biomarkers for diagnosis and early detection of ovarian cancer (OC) through the study of transcription regulation of genes affected by estrogen hormone.Results: The results are based on a set of 323 experimentally validated OC-associated genes compiled from several databases, and their subset controlled by estrogen. For these two gene sets we computationally determined transcription factors (TFs) that putatively regulate transcription initiation. We ranked these TFs based on the number of genes they are likely to control. In this way, we selected 17 top-ranked TFs as potential key regulators and thus possible biomarkers for a set of 323 OC-associated genes. For 77 estrogen controlled genes from this set we identified three unique TFs as potential biomarkers.Conclusions: We introduced a new methodology to identify potential diagnostic biomarkers for OC. This report is the first bioinformatics study that explores multiple transcriptional regulators of OC-associated genes as potential diagnostic biomarkers in connection with estrogen responsiveness. We show that 64% of TF biomarkers identified in our study are validated based on real-time data from microarray expression studies. As an illustration, our method could identify CP2 that in combination with CA125 has been reported to be sensitive in diagnosing ovarian tumors. 2011 Kaur et al; licensee BioMed Central Ltd.

  12. Proteomic profiling in multiple sclerosis clinical courses reveals potential biomarkers of neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Maria Liguori

    Full Text Available The aim of our project was to perform an exploratory analysis of the cerebrospinal fluid (CSF proteomic profiles of Multiple Sclerosis (MS patients, collected in different phases of their clinical course, in order to investigate the existence of peculiar profiles characterizing the different MS phenotypes. The study was carried out on 24 Clinically Isolated Syndrome (CIS, 16 Relapsing Remitting (RR MS, 11 Progressive (Pr MS patients. The CSF samples were analysed using the Matrix Assisted Laser Desorption Ionisation Time Of Flight (MALDI-TOF mass spectrometer in linear mode geometry and in delayed extraction mode (m/z range: 1000-25000 Da. Peak lists were imported for normalization and statistical analysis. CSF data were correlated with demographic, clinical and MRI parameters. The evaluation of MALDI-TOF spectra revealed 348 peak signals with relative intensity ≥ 1% in the study range. The peak intensity of the signals corresponding to Secretogranin II and Protein 7B2 were significantly upregulated in RRMS patients compared to PrMS (p<0.05, whereas the signals of Fibrinogen and Fibrinopeptide A were significantly downregulated in CIS compared to PrMS patients (p<0.04. Additionally, the intensity of the Tymosin β4 peak was the only signal to be significantly discriminated between the CIS and RRMS patients (p = 0.013. Although with caution due to the relatively small size of the study populations, and considering that not all the findings remained significant after adjustment for multiple comparisons, in our opinion this mass spectrometry evaluation confirms that this technique may provide useful and important information to improve our understanding of the complex pathogenesis of MS.

  13. Network-based analysis of proteomic profiles

    KAUST Repository

    Wong, Limsoon

    2016-01-26

    Mass spectrometry (MS)-based proteomics is a widely used and powerful tool for profiling systems-wide protein expression changes. It can be applied for various purposes, e.g. biomarker discovery in diseases and study of drug responses. Although RNA-based high-throughput methods have been useful in providing glimpses into the underlying molecular processes, the evidences they provide are indirect. Furthermore, RNA and corresponding protein levels have been known to have poor correlation. On the other hand, MS-based proteomics tend to have consistency issues (poor reproducibility and inter-sample agreement) and coverage issues (inability to detect the entire proteome) that need to be urgently addressed. In this talk, I will discuss how these issues can be addressed by proteomic profile analysis techniques that use biological networks (especially protein complexes) as the biological context. In particular, I will describe several techniques that we have been developing for network-based analysis of proteomics profile. And I will present evidence that these techniques are useful in identifying proteomics-profile analysis results that are more consistent, more reproducible, and more biologically coherent, and that these techniques allow expansion of the detected proteome to uncover and/or discover novel proteins.

  14. Screening of plasma biomarkers in patients with unstable angina pectoris with proteomics analysis

    Directory of Open Access Journals (Sweden)

    Shui-wang HU

    2017-08-01

    Full Text Available Objective To analyze and compare the differentially expressed plasma proteins between patients with stable angina pectoris (SAP and unstable angina pectoris (UAP, and search for the biomarkers that maybe used for early diagnosis of UAP. Methods Sixty plasma samples were collected respectively from normal controls group (N group, SAP group and UAP group during Jun. 2014 to Apr. 2015 from the Third Affiliated Hospital of Southern Medical University. Ten samples (100μl of each group were selected randomly to pool into 3 groups severally. After removing high-abundance proteins from plasma, two- dimensional difference gel electrophoresis (DIGE was used to isolate the total proteins, and then the protein spots with more than 2-fold changes between UAP and SAP were picked up after the differential software analysis. Afterward, the varied proteins were identified by matrix assisted laser desorption ionization-time of flight/time of flight (MALDI-TOF/TOF mass spectrometry (MS. Finally, 40 plasma samples were collected respectively from N, SAP and UAP group, and the UAP specific differential proteins were selected to be verified by ELISA. Results A total of 10 varied protein spots with more than 2-fold changes in UAP and SAP were found including 9 up-regulated proteins and 1 down-regulated one. MS identification indicated that the up-regulated proteins included fibrinogen gamma chain (FGG, complement C4-B (C4B, immunoglobulin (Ig kappa chain C region (IGKC and hemoglobin subunit alpha (HBA1, whereas the down-regulated one was haptoglobin (HP. After comparing the varied proteins with that in N group, 2 specifically UAP-related proteins, IGKC and HP, were detected totally. IGKC was selected to validate by ELISA, and the corresponding results showed that IGKC was increased specifically in UAP plasma (P<0.05 when compared with N and SAP group, which was consistent with DIGE. Conclusion IGKC and HP have been detected as specifically related proteins to UAP

  15. Comprehensive serum profiling for the discovery of epithelial ovarian cancer biomarkers.

    Directory of Open Access Journals (Sweden)

    Ping Yip

    Full Text Available FDA-cleared ovarian cancer biomarkers are limited to CA-125 and HE4 for monitoring and recurrence and OVA1, a multivariate panel consisting of CA-125 and four additional biomarkers, for referring patients to a specialist. Due to relatively poor performance of these tests, more accurate and broadly applicable biomarkers are needed. We evaluated the dysregulation of 259 candidate cancer markers in serum samples from 499 patients. Sera were collected prospectively at 11 monitored sites under a single well-defined protocol. All stages of ovarian cancer and common benign gynecological conditions were represented. To ensure consistency and comparability of biomarker comparisons, all measurements were performed on a single platform, at a single site, using a panel of rigorously calibrated, qualified, high-throughput, multiplexed immunoassays and all analyses were conducted using the same software. Each marker was evaluated independently for its ability to differentiate ovarian cancer from benign conditions. A total of 175 markers were dysregulated in the cancer samples. HE4 (AUC=0.933 and CA-125 (AUC=0.907 were the most informative biomarkers, followed by IL-2 receptor α, α1-antitrypsin, C-reactive protein, YKL-40, cellular fibronectin, CA-72-4 and prostasin (AUC>0.800. To improve the discrimination between cancer and benign conditions, a simple multivariate combination of markers was explored using logistic regression. When combined into a single panel, the nine most informative individual biomarkers yielded an AUC value of 0.950, significantly higher than obtained when combining the markers in the OVA1 panel (AUC 0.912. Additionally, at a threshold sensitivity of 90%, the combination of the top 9 markers gave 88.9% specificity compared to 63.4% specificity for the OVA1 markers. Although a blinded validation study has not yet been performed, these results indicate that alternative biomarker combinations might lead to significant improvements in the

  16. MALDI-imaging guided microproteomics workflow for biomarker discovery of intra-tumor heterogeneity

    OpenAIRE

    Alberts, Deborah; Longuespée, Rémi; Smargiasso, Nicolas; Mazzucchelli, Gabriel; Baiwir, Dominique; DELVENNE, Philippe; Pamelard, Fabien; Picard de Meller, Gael; De Pauw, Edwin

    2016-01-01

    Introduction A single tumoral tissue can bear phenotypically different cell populations. This phenomenon called intra-tumor heterogeneity can lead to differential behaviors regarding metastasis seeding and therapy resistance [Zardavas et al., Nature Rev. Clin. Onc. 2015]. MALDI imaging has proven its efficiency for revealing hidden molecular features offering an insight into distinct cellular regions based on their molecular content. Further, proteomics applied to these regions could allo...

  17. Serum proteomic analysis reveals potential serum biomarkers for occupational medicamentosa-like dermatitis caused by trichloroethylene.

    Science.gov (United States)

    Huang, Peiwu; Ren, Xiaohu; Huang, Zhijun; Yang, Xifei; Hong, Wenxu; Zhang, Yanfang; Zhang, Hang; Liu, Wei; Huang, Haiyan; Huang, Xinfeng; Wu, Desheng; Yang, Linqing; Tang, Haiyan; Zhou, Li; Li, Xuan; Liu, Jianjun

    2014-08-17

    Trichloroethylene (TCE) is an industrial solvent with widespread occupational exposure and also a major environmental contaminant. Occupational medicamentosa-like dermatitis induced by trichloroethylene (OMLDT) is an autoimmune disease and it has become one major hazard in China. In this study, sera from 3 healthy controls and 3 OMLDT patients at different disease stages were used for a screening study by 2D-DIGE and MALDI-TOF-MS/MS. Eight proteins including transthyretin (TTR), retinol binding protein 4 (RBP4), haptoglobin, clusterin, serum amyloid A protein (SAA), apolipoprotein A-I, apolipoprotein C-III and apolipoprotein C-II were found to be significantly altered among the healthy, acute-stage, healing-stage and healed-stage groups. Specifically, the altered expression of TTR, RBP4 and haptoglobin were further validated by Western blot analysis and ELISA. Our data not only suggested that TTR, RBP4 and haptoglobin could serve as potential serum biomarkers of OMLDT, but also indicated that measurement of TTR, RBP4 and haptoglobin or their combination could help aid in the diagnosis, monitoring the progression and therapy of the disease. Copyright © 2014. Published by Elsevier Ireland Ltd.

  18. A Comprehensive Workflow of Mass Spectrometry-Based Untargeted Metabolomics in Cancer Metabolic Biomarker Discovery Using Human Plasma and Urine

    Directory of Open Access Journals (Sweden)

    Jianwen She

    2013-09-01

    Full Text Available Current available biomarkers lack sensitivity and/or specificity for early detection of cancer. To address this challenge, a robust and complete workflow for metabolic profiling and data mining is described in details. Three independent and complementary analytical techniques for metabolic profiling are applied: hydrophilic interaction liquid chromatography (HILIC–LC, reversed-phase liquid chromatography (RP–LC, and gas chromatography (GC. All three techniques are coupled to a mass spectrometer (MS in the full scan acquisition mode, and both unsupervised and supervised methods are used for data mining. The univariate and multivariate feature selection are used to determine subsets of potentially discriminative predictors. These predictors are further identified by obtaining accurate masses and isotopic ratios using selected ion monitoring (SIM and data-dependent MS/MS and/or accurate mass MSn ion tree scans utilizing high resolution MS. A list combining all of the identified potential biomarkers generated from different platforms and algorithms is used for pathway analysis. Such a workflow combining comprehensive metabolic profiling and advanced data mining techniques may provide a powerful approach for metabolic pathway analysis and biomarker discovery in cancer research. Two case studies with previous published data are adapted and included in the context to elucidate the application of the workflow.

  19. Proteomic biomarkers predicting lymph node involvement in serum of cervical cancer patients. Limitations of SELDI-TOF MS

    Directory of Open Access Journals (Sweden)

    Van Gorp Toon

    2012-06-01

    Full Text Available Abstract Background Lymph node status is not part of the staging system for cervical cancer, but provides important information for prognosis and treatment. We investigated whether lymph node status can be predicted with proteomic profiling. Material & methods Serum samples of 60 cervical cancer patients (FIGO I/II were obtained before primary treatment. Samples were run through a HPLC depletion column, eliminating the 14 most abundant proteins ubiquitously present in serum. Unbound fractions were concentrated with spin filters. Fractions were spotted onto CM10 and IMAC30 surfaces and analyzed with surface-enhanced laser desorption time of flight (SELDI-TOF mass spectrometry (MS. Unsupervised peak detection and peak clustering was performed using MASDA software. Leave-one-out (LOO validation for weighted Least Squares Support Vector Machines (LSSVM was used for prediction of lymph node involvement. Other outcomes were histological type, lymphvascular space involvement (LVSI and recurrent disease. Results LSSVM models were able to determine LN status with a LOO area under the receiver operating characteristics curve (AUC of 0.95, based on peaks with m/z values 2,698.9, 3,953.2, and 15,254.8. Furthermore, we were able to predict LVSI (AUC 0.81, to predict recurrence (AUC 0.92, and to differentiate between squamous carcinomas and adenocarcinomas (AUC 0.88, between squamous and adenosquamous carcinomas (AUC 0.85, and between adenocarcinomas and adenosquamous carcinomas (AUC 0.94. Conclusions Potential markers related with lymph node involvement were detected, and protein/peptide profiling support differentiation between various subtypes of cervical cancer. However, identification of the potential biomarkers was hampered by the technical limitations of SELDI-TOF MS.

  20. Possible Biomarkers for the Early Detection of HIV-associated Heart Diseases: A Proteomics and Bioinformatics Prediction

    Directory of Open Access Journals (Sweden)

    Suraiya Rasheed

    2015-01-01

    Full Text Available The frequency of cardiovascular disorders is increasing in HIV-infected individuals despite a significant reduction in the viral load by antiretroviral therapies (ART. Since the CD4+ T-cells are responsible for the viral load as well as immunological responses, we hypothesized that chronic HIV-infection of T-cells produces novel proteins/enzymes that cause cardiac dysfunctions. To identify specific factors that might cause cardiac disorders without the influence of numerous cofactors produced by other pathogenic microorganisms that co-inhabit most HIV-infected individuals, we analyzed genome-wide proteomes of a CD4+ T-cell line at different stages of HIV replication and cell growth over >6 months. Subtractive analyses of several hundred differentially regulated proteins from HIV-infected and uninfected counterpart cells and comparisons with proteins expressed from the same cells after treating with the antiviral drug Zidovudine/AZT and inhibiting virus replication, identified a well-coordinated network of 12 soluble/diffusible proteins in HIV-infected cells. Functional categorization, bioinformatics and statistical analyses of each protein predicted that the expression of cardiac-specific Ca2+ kinase together with multiple Ca2+ release channels causes a sustained overload of Ca2+ in the heart which induces fetal/cardiac myosin heavy chains (MYH6 and MYH7 and a myosin light-chain kinase. Each of these proteins has been shown to cause cardiac stress, arrhythmia, hypertrophic signaling, cardiomyopathy and heart failure (p = 8 × 10−11. Translational studies using the newly discovered proteins produced by HIV infection alone would provide additional biomarkers that could be added to the conventional markers for an early diagnosis and/or development of specific therapeutic interventions for heart diseases in HIV-infected individuals.

  1. Tumor antigens as proteogenomic biomarkers in invasive ductal carcinomas

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn; Campos, Benito; Winther, Ole

    2014-01-01

    directly linked to the hallmarks of cancer. The results found by proteogenomic analysis of the 32 tumor antigens studied here, capture largely the same pathway irregularities as those elucidated from large-scale screening of genomics analyses, where several thousands of genes are often found......Background: The majority of genetic biomarkers for human cancers are defined by statistical screening of high-throughput genomics data. While a large number of genetic biomarkers have been proposed for diagnostic and prognostic applications, only a small number have been applied in the clinic....... Similarly, the use of proteomics methods for the discovery of cancer biomarkers is increasing. The emerging field of proteogenomics seeks to enrich the value of genomics and proteomics approaches by studying the intersection of genomics and proteomics data. This task is challenging due to the complex nature...

  2. Mining the Proteome of subsp. ATCC 25586 for Potential Therapeutics Discovery: An Approach

    Directory of Open Access Journals (Sweden)

    Abdul Musaweer Habib

    2016-12-01

    Full Text Available The plethora of genome sequence information of bacteria in recent times has ushered in many novel strategies for antibacterial drug discovery and facilitated medical science to take up the challenge of the increasing resistance of pathogenic bacteria to current antibiotics. In this study, we adopted subtractive genomics approach to analyze the whole genome sequence of the Fusobacterium nucleatum, a human oral pathogen having association with colorectal cancer. Our study divulged 1,499 proteins of F. nucleatum, which have no homolog's in human genome. These proteins were subjected to screening further by using the Database of Essential Genes (DEG that resulted in the identification of 32 vitally important proteins for the bacterium. Subsequent analysis of the identified pivotal proteins, using the Kyoto Encyclopedia of Genes and Genomes (KEGG Automated Annotation Server (KAAS resulted in sorting 3 key enzymes of F. nucleatum that may be good candidates as potential drug targets, since they are unique for the bacterium and absent in humans. In addition, we have demonstrated the three dimensional structure of these three proteins. Finally, determination of ligand binding sites of the 2 key proteins as well as screening for functional inhibitors that best fitted with the ligands sites were conducted to discover effective novel therapeutic compounds against F. nucleatum.

  3. Improving sensitivity in proteome studies by analysis of false discovery rates for multiple search engines.

    Science.gov (United States)

    Jones, Andrew R; Siepen, Jennifer A; Hubbard, Simon J; Paton, Norman W

    2009-03-01

    LC-MS experiments can generate large quantities of data, for which a variety of database search engines are available to make peptide and protein identifications. Decoy databases are becoming widely used to place statistical confidence in result sets, allowing the false discovery rate (FDR) to be estimated. Different search engines produce different identification sets so employing more than one search engine could result in an increased number of peptides (and proteins) being identified, if an appropriate mechanism for combining data can be defined. We have developed a search engine independent score, based on FDR, which allows peptide identifications from different search engines to be combined, called the FDR Score. The results demonstrate that the observed FDR is significantly different when analysing the set of identifications made by all three search engines, by each pair of search engines or by a single search engine. Our algorithm assigns identifications to groups according to the set of search engines that have made the identification, and re-assigns the score (combined FDR Score). The combined FDR Score can differentiate between correct and incorrect peptide identifications with high accuracy, allowing on average 35% more peptide identifications to be made at a fixed FDR than using a single search engine.

  4. Mining PubMed for Biomarker-Disease Associations to Guide Discovery

    OpenAIRE

    Jessen, Walter; Landschulz, Katherine; Turi, Thomas; Reams, Rachel

    2012-01-01

    Biomedical knowledge is growing exponentially; however, meta-knowledge around the data is often lacking. PubMed is a database comprising more than 21 million citations for biomedical literature from MEDLINE and additional life science journals dating back to the 1950s. To explore the use and frequency of biomarkers across human disease, we mined PubMed for biomarker-disease associations. We then ranked the top 100 linked diseases by relevance and mapped them to medical subject headings (MeSH)...

  5. Effects of three commonly-used diuretics on the urinary proteome.

    Science.gov (United States)

    Li, Xundou; Zhao, Mindi; Li, Menglin; Jia, Lulu; Gao, Youhe

    2014-06-01

    Biomarker is the measurable change associated with a physiological or pathophysiological process. Unlike blood which has mechanisms to keep the internal environment homeostatic, urine is more likely to reflect changes of the body. As a result, urine is likely to be a better biomarker source than blood. However, since the urinary proteome is affected by many factors, including diuretics, careful evaluation of those effects is necessary if urinary proteomics is used for biomarker discovery. Here, we evaluated the effects of three commonly-used diuretics (furosemide, F; hydrochlorothiazide, H; and spirolactone, S) on the urinary proteome in rats. Urine samples were collected before and after intragastric administration of diuretics at therapeutic doses and the proteomes were analyzed using label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS). Based on the criteria of P≤0.05, a fold change ≥2, a spectral count ≥5, and false positive rate (FDR) ≤1%, 14 proteins (seven for F, five for H, and two for S) were identified by Progenesis LC-MS. The human orthologs of most of these 14 proteins are stable in the healthy human urinary proteome, and ten of them are reported as disease biomarkers. Thus, our results suggest that the effects of diuretics deserve more attention in future urinary protein biomarker studies. Moreover, the distinct effects of diuretics on the urinary proteome may provide clues to the mechanisms of diuretics. Copyright © 2014. Production and hosting by Elsevier Ltd.

  6. Effects of Three Commonly-used Diuretics on the Urinary Proteome

    Directory of Open Access Journals (Sweden)

    Xundou Li

    2014-06-01

    Full Text Available Biomarker is the measurable change associated with a physiological or pathophysiological process. Unlike blood which has mechanisms to keep the internal environment homeostatic, urine is more likely to reflect changes of the body. As a result, urine is likely to be a better biomarker source than blood. However, since the urinary proteome is affected by many factors, including diuretics, careful evaluation of those effects is necessary if urinary proteomics is used for biomarker discovery. Here, we evaluated the effects of three commonly-used diuretics (furosemide, F; hydrochlorothiazide, H; and spirolactone, S on the urinary proteome in rats. Urine samples were collected before and after intragastric administration of diuretics at therapeutic doses and the proteomes were analyzed using label-free liquid chromatography–tandem mass spectrometry (LC–MS/MS. Based on the criteria of P ⩽ 0.05, a fold change ⩾2, a spectral count ⩾5, and false positive rate (FDR ⩽1%, 14 proteins (seven for F, five for H, and two for S were identified by Progenesis LC–MS. The human orthologs of most of these 14 proteins are stable in the healthy human urinary proteome, and ten of them are reported as disease biomarkers. Thus, our results suggest that the effects of diuretics deserve more attention in future urinary protein biomarker studies. Moreover, the distinct effects of diuretics on the urinary proteome may provide clues to the mechanisms of diuretics.

  7. Discovery of Biochemical Biomarkers for Aggression: A Role for Metabolomics in Psychiatry

    NARCIS (Netherlands)

    Hagenbeek, F.A.; Kluft, C.; Hankemeier, T.; Bartels, M.; Draisma, H.H.M.; Middeldorp, C.M.; Berger, R.; Noto, A.; Lussu, M.; Pool, R.; Fanos, V.; Boomsma, D.I.

    2016-01-01

    Human aggression encompasses a wide range of behaviors and is related to many psychiatric disorders. We introduce the different classification systems of aggression and related disorders as a basis for discussing biochemical biomarkers and then present an overview of studies in humans (published

  8. Semen proteomics and male infertility.

    Science.gov (United States)

    Jodar, Meritxell; Soler-Ventura, Ada; Oliva, Rafael

    2017-06-06

    Semen is a complex body fluid containing an admixture of spermatozoa suspended in secretions from the testes and epididymis which are mixed at the time of ejaculation with secretions from other accessory sex glands such as the prostate and seminal vesicles. High-throughput technologies have revealed that, contrary to the idea that sperm cells are simply a silent delivery vehicle of the male genome to the oocyte, the sperm cells in fact provide both a specific epigenetically marked DNA together with a complex population of proteins and RNAs crucial for embryogenesis. Similarly, -omic technologies have also enlightened that seminal fluid seems to play a much greater role than simply being a medium to carry the spermatozoa through the female reproductive tract. In the present review, we briefly overview the sperm cell biology, consider the key issues in sperm and seminal fluid sample preparation for high-throughput proteomic studies, describe the current state of the sperm and seminal fluid proteomes generated by high-throughput proteomic technologies and provide new insights into the potential communication between sperm and seminal fluid. In addition, comparative proteomic studies open a window to explore the potential pathogenic mechanisms of infertility and the discovery of potential biomarkers with clinical significance. The review updates the numerous proteomics studies performed on semen, including spermatozoa and seminal fluid. In addition, an integrative analysis of the testes, sperm and seminal fluid proteomes is also included providing insights into the molecular mechanisms that regulate the generation, maturation and transit of spermatozoa. Furthermore, the compilation of several differential proteomic studies focused on male infertility reveals potential pathways disturbed in specific subtypes of male infertility and points out towards future research directions in the field. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Integrative analysis to select cancer candidate biomarkers to targeted validation

    Science.gov (United States)

    Heberle, Henry; Domingues, Romênia R.; Granato, Daniela C.; Yokoo, Sami; Canevarolo, Rafael R.; Winck, Flavia V.; Ribeiro, Ana Carolina P.; Brandão, Thaís Bianca; Filgueiras, Paulo R.; Cruz, Karen S. P.; Barbuto, José Alexandre; Poppi, Ronei J.; Minghim, Rosane; Telles, Guilherme P.; Fonseca, Felipe Paiva; Fox, Jay W.; Santos-Silva, Alan R.; Coletta, Ricardo D.; Sherman, Nicholas E.; Paes Leme, Adriana F.

    2015-01-01

    Targeted proteomics has flourished as the method of choice for prospecting for and validating potential candidate biomarkers in many diseases. However, challenges still remain due to the lack of standardized routines that can prioritize a limited number of proteins to be further validated in human samples. To help researchers identify candidate biomarkers that best characterize their samples under study, a well-designed integrative analysis pipeline, comprising MS-based discovery, feature selection methods, clustering techniques, bioinformatic analyses and targeted approaches was performed using discovery-based proteomic data from the secretomes of three classes of human cell lines (carcinoma, melanoma and non-cancerous). Three feature selection algorithms, namely, Beta-binomial, Nearest Shrunken Centroids (NSC), and Support Vector Machine-Recursive Features Elimination (SVM-RFE), indicated a panel of 137 candidate biomarkers for carcinoma and 271 for melanoma, which were differentially abundant between the tumor classes. We further tested the strength of the pipeline in selecting candidate biomarkers by immunoblotting, human tissue microarrays, label-free targeted MS and functional experiments. In conclusion, the proposed integrative analysis was able to pre-qualify and prioritize candidate biomarkers from discovery-based proteomics to targeted MS. PMID:26540631

  10. The Proteome of Primary Prostate Cancer

    DEFF Research Database (Denmark)

    Iglesias-Gato, Diego; Wikström, Pernilla; Tyanova, Stefka

    2016-01-01

    for disease aggressiveness. DESIGN, SETTING, AND PARTICIPANTS: Mass spectrometry was used for genome-scale quantitative proteomic profiling of 28 prostate tumors (Gleason score 6-9) and neighboring nonmalignant tissue in eight cases, obtained from formalin-fixed paraffin-embedded prostatectomy samples. Two...... changes occurring during prostate cancer (PCa) initiation and progression can result in clinically relevant discoveries. OBJECTIVES: To study cellular processes altered in PCa using system-wide quantitative analysis of changes in protein expression in clinical samples and to identify prognostic biomarkers......BACKGROUND: Clinical management of the prostate needs improved prognostic tests and treatment strategies. Because proteins are the ultimate effectors of most cellular reactions, are targets for drug actions and constitute potential biomarkers; a quantitative systemic overview of the proteome...

  11. Comprehensive data analysis of human ureter proteome

    Directory of Open Access Journals (Sweden)

    Sameh Magdeldin

    2016-03-01

    Full Text Available Comprehensive human ureter proteome dataset was generated from OFFGel fractionated ureter samples. Our result showed that among 2217 non-redundant ureter proteins, 751 protein candidates (33.8% were detected in urine as urinary protein/polypeptide or exosomal protein. On the other hand, comparing ureter protein hits (48 that are not shown in corresponding databases to urinary bladder and prostate human protein atlas databases pinpointed 21 proteins that might be unique to ureter tissue. In conclusion, this finding offers future perspectives for possible identification of ureter disease-associated biomarkers such as ureter carcinoma. In addition, Cytoscape GO annotation was examined on the final ureter dataset to better understand proteins molecular function, biological processes, and cellular component. The ureter proteomic dataset published in this article will provide a valuable resource for researchers working in the field of urology and urine biomarker discovery.

  12. Potential Peripheral Biomarkers for the Diagnosis of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Seema Patel

    2011-01-01

    Full Text Available Advances in the discovery of a peripheral biomarker for the diagnosis of Alzheimer's would provide a way to better detect the onset of this debilitating disease in a manner that is both noninvasive and universally available. This paper examines the current approaches that are being used to discover potential biomarker candidates available in the periphery. The search for a peripheral biomarker that could be utilized diagnostically has resulted in an extensive amount of studies that employ several biological approaches, including the assessment of tissues, genomics, proteomics, epigenetics, and metabolomics. Although a definitive biomarker has yet to be confirmed, advances in the understanding of the mechanisms of the disease and major susceptibility factors have been uncovered and reveal promising possibilities for the future discovery of a useful biomarker.

  13. Three-Dimensionally Functionalized Reverse Phase Glycoprotein Array for Cancer Biomarker Discovery and Validation.

    Science.gov (United States)

    Pan, Li; Aguilar, Hillary Andaluz; Wang, Linna; Iliuk, Anton; Tao, W Andy

    2016-11-30

    Glycoproteins have vast structural diversity that plays an important role in many biological processes and have great potential as disease biomarkers. Here, we report a novel functionalized reverse phase protein array (RPPA), termed polymer-based reverse phase glycoprotein array (polyGPA), to capture and profile glycoproteomes specifically, and validate glycoproteins. Nitrocellulose membrane functionalized with globular hydroxyaminodendrimers was used to covalently capture preoxidized glycans on glycoproteins from complex protein samples such as biofluids. The captured glycoproteins were subsequently detected using the same validated antibodies as in RPPA. We demonstrated the outstanding specificity, sensitivity, and quantitative capabilities of polyGPA by capturing and detecting purified as well as endogenous α-1-acid glycoprotein (AGP) in human plasma. We further applied quantitative N-glycoproteomics and the strategy to validate a panel of glycoproteins identified as potential biomarkers for bladder cancer by analyzing urine glycoproteins from bladder cancer patients or matched healthy individuals.

  14. Three-dimensionally Functionalized Reverse Phase Glycoprotein Array for Cancer Biomarker Discovery and Validation

    OpenAIRE

    Pan, Li; Aguilar, Hillary Andaluz; Wang, Linna; Iliuk, Anton; Tao, W. Andy

    2016-01-01

    Glycoproteins have vast structural diversity which plays an important role in many biological processes and have great potential as disease biomarkers. Here we report a novel functionalized reverse phase protein array (RPPA), termed polymer-based reverse phase GlycoProtein Array (polyGPA), to specifically capture and profile glycoproteomes, and validate glycoproteins. Nitrocellulose membrane functionalized with globular hydroxyaminodendrimers was used to covalently capture pre-oxidized glycan...

  15. Use of biomarkers in the discovery of novel anti-schizophrenia drugs

    DEFF Research Database (Denmark)

    Mikkelsen, Jens D; Thomsen, Morten S; Hansen, Henrik H

    2010-01-01

    Schizophrenia is characterized by a diverse symptomatology that often includes positive, cognitive and negative symptoms. Current anti-schizophrenic drugs act at multiple receptors, but little is known about how each of these receptors contributes to their mechanisms of action. Screening of novel...... anti-schizophrenic drug candidates targeting single receptors will be based on biomarker assays that measure signalling pathways, transcriptional factors, epigenetic mechanisms and synaptic function and translate these effects to behavioural effects in animals and humans. This review discusses current...

  16. Discovery and validation of DNA hypomethylation biomarkers for liver cancer using HRM-specific probes.

    Directory of Open Access Journals (Sweden)

    Barbara Stefanska

    Full Text Available Poor prognosis of hepatocellular carcinoma (HCC associated with late diagnosis necessitates the development of early diagnostic biomarkers. We have previously delineated the landscape of DNA methylation in HCC patients unraveling the importance of promoter hypomethylation in activation of cancer- and metastasis-driving genes. The purpose of the present study was to test the feasibility that genes that are hypomethylated in HCC could serve as candidate diagnostic markers. We use high resolution melting analysis (HRM as a simple translatable PCR-based method to define methylation states in clinical samples. We tested seven regions selected from the shortlist of genes hypomethylated in HCC and showed that HRM analysis of several of them distinguishes methylation states in liver cancer specimens from normal adjacent liver and chronic hepatitis in the Shanghai area. Such regions were identified within promoters of neuronal membrane glycoprotein M6-B (GPM6B and melanoma antigen family A12 (MAGEA12 genes. Differences in HRM in the immunoglobulin superfamily Fc receptor (FCRL1 separated invasive tumors from less invasive HCC. The identified biomarkers differentiated HCC from chronic hepatitis in another set of samples from Dhaka. Although the main thrust in DNA methylation diagnostics in cancer is on hypermethylated genes, our study for the first time illustrates the potential use of hypomethylated genes as markers for solid tumors. After further validation in a larger cohort, the identified DNA hypomethylated regions can become important candidate biomarkers for liver cancer diagnosis and prognosis, especially in populations with high risk for HCC development.

  17. Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery

    NARCIS (Netherlands)

    Merchant, M.L.; Rood, I.M.; Deegens, J.K.J.; Klein, J.B.

    2017-01-01

    Urine is a valuable diagnostic medium and, with the discovery of urinary extracellular vesicles, is viewed as a dynamic bioactive fluid. Extracellular vesicles are lipid-enclosed structures that can be classified into three categories: exosomes, microvesicles (or ectosomes) and apoptotic bodies.

  18. Nutrition and biomarkers in psychiatry : research on micronutrient deficiencies in schizophrenia, the role of the intestine in the hyperserotonemia of autism, and a method for non-hypothesis driven discovery of biomarkers in urine

    NARCIS (Netherlands)

    Kemperman, Ramses Franciscus Jacobus

    2007-01-01

    This thesis describes the study of markers of nutrition and intestinal motility in mental disorders with a focus on schizophrenia and autism, and the development, evaluation and application of a biomarker discovery method for urine. The aim of the thesis is to investigate the role of long-chain

  19. Systematic biomarker discovery and coordinative validation for different primary nephrotic syndromes using gas chromatography-mass spectrometry.

    Science.gov (United States)

    Lee, Jung-Eun; Lee, Yu Ho; Kim, Se-Yun; Kim, Yang Gyun; Moon, Ju-Young; Jeong, Kyung-Hwan; Lee, Tae Won; Ihm, Chun-Gyoo; Kim, Sooah; Kim, Kyoung Heon; Kim, Dong Ki; Kim, Yon Su; Kim, Chan-Duck; Park, Cheol Whee; Lee, Do Yup; Lee, Sang-Ho

    2016-07-01

    The goal of this study is to identify systematic biomarker panel for primary nephrotic syndromes from urine samples by applying a non-target metabolite profiling, and to validate their utility in independent sampling and analysis by multiplex statistical approaches. Nephrotic syndrome (NS) is a nonspecific kidney disorder, which is mostly represented by minimal change disease (MCD), focal segmental glomerulosclerosis (FSGS), and membranous glomerulonephritis (MGN). Since urine metabolites may mirror disease-specific functional perturbations in kidney injury, we examined urine samples for distinctive metabolic changes to identify biomarkers for clinical applications. We developed unbiased multi-component covarianced models from a discovery set with 48 samples (12 healthy controls, 12 MCD, 12 FSGS, and 12 MGN). To extensively validate their diagnostic potential, new batch from 54 patients with primary NS were independently examined a year after. In the independent validation set, the model including citric acid, pyruvic acid, fructose, ethanolamine, and cysteine effectively discriminated each NS using receiver operating characteristic (ROC) analysis except MCD-MGN comparison; nonetheless an additional metabolite multi-composite greatly improved the discrimination power between MCD and MGN. Finally, we proposed the re-constructed metabolic network distinctively dysregulated by the different NSs that may deepen comprehensive understanding of the disease mechanistic, and help the enhanced identification of NS and therapeutic plans for future. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Protein biomarker discovery and fast monitoring for the identification and detection of Anisakids by parallel reaction monitoring (PRM) mass spectrometry.

    Science.gov (United States)

    Carrera, Mónica; Gallardo, José M; Pascual, Santiago; González, Ángel F; Medina, Isabel

    2016-06-16

    Anisakids are fish-borne parasites that are responsible for a large number of human infections and allergic reactions around the world. World health organizations and food safety authorities aim to control and prevent this emerging health problem. In the present work, a new method for the fast monitoring of these parasites is described. The strategy is divided in three steps: (i) purification of thermostable proteins from fish-borne parasites (Anisakids), (ii) in-solution HIFU trypsin digestion and (iii) monitoring of several peptide markers by parallel reaction monitoring (PRM) mass spectrometry. This methodology allows the fast detection of Anisakids in Biomarker Discovery and the Fast Monitoring for the identification and detection of Anisakids in fishery products. The strategy is based on the purification of thermostable proteins, the use of accelerated in-solution trypsin digestions under an ultrasonic field provided by High-Intensity Focused Ultrasound (HIFU) and the monitoring of several peptide biomarkers by Parallel Reaction Monitoring (PRM) Mass Spectrometry in a linear ion trap mass spectrometer. The workflow allows the unequivocal detection of Anisakids, in <2h. The present strategy constitutes the fastest method for Anisakids detection, whose application in the food quality control area, could provide to the authorities an effective and rapid method to guarantee the safety to the consumers. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Biomarker discovery in heterogeneous tissue samples -taking the in-silico deconfounding approach

    Directory of Open Access Journals (Sweden)

    Parida Shreemanta K

    2010-01-01

    Full Text Available Abstract Background For heterogeneous tissues, such as blood, measurements of gene expression are confounded by relative proportions of cell types involved. Conclusions have to rely on estimation of gene expression signals for homogeneous cell populations, e.g. by applying micro-dissection, fluorescence activated cell sorting, or in-silico deconfounding. We studied feasibility and validity of a non-negative matrix decomposition algorithm using experimental gene expression data for blood and sorted cells from the same donor samples. Our objective was to optimize the algorithm regarding detection of differentially expressed genes and to enable its use for classification in the difficult scenario of reversely regulated genes. This would be of importance for the identification of candidate biomarkers in heterogeneous tissues. Results Experimental data and simulation studies involving noise parameters estimated from these data revealed that for valid detection of differential gene expression, quantile normalization and use of non-log data are optimal. We demonstrate the feasibility of predicting proportions of constituting cell types from gene expression data of single samples, as a prerequisite for a deconfounding-based classification approach. Classification cross-validation errors with and without using deconfounding results are reported as well as sample-size dependencies. Implementation of the algorithm, simulation and analysis scripts are available. Conclusions The deconfounding algorithm without decorrelation using quantile normalization on non-log data is proposed for biomarkers that are difficult to detect, and for cases where confounding by varying proportions of cell types is the suspected reason. In this case, a deconfounding ranking approach can be used as a powerful alternative to, or complement of, other statistical learning approaches to define candidate biomarkers for molecular diagnosis and prediction in biomedicine, in

  2. Multiple reaction monitoring (MRM)-profiling for biomarker discovery applied to human polycystic ovarian syndrome.

    Science.gov (United States)

    Cordeiro, Fernanda B; Ferreira, Christina R; Sobreira, Tiago Jose P; Yannell, Karen E; Jarmusch, Alan K; Cedenho, Agnaldo P; Lo Turco, Edson G; Cooks, R Graham

    2017-09-15

    We describe multiple reaction monitoring (MRM)-profiling, which provides accelerated discovery of discriminating molecular features, and its application to human polycystic ovary syndrome (PCOS) diagnosis. The discovery phase of the MRM-profiling seeks molecular features based on some prior knowledge of the chemical functional groups likely to be present in the sample. It does this through use of a limited number of pre-chosen and chemically specific neutral loss and/or precursor ion MS/MS scans. The output of the discovery phase is a set of precursor/product transitions. In the screening phase these MRM transitions are used to interrogate multiple samples (hence the name MRM-profiling). MRM-profiling was applied to follicular fluid samples of 22 controls and 29 clinically diagnosed PCOS patients. Representative samples were delivered by flow injection to a triple quadrupole mass spectrometer set to perform a number of pre-chosen and chemically specific neutral loss and/or precursor ion MS/MS scans. The output of this discovery phase was a set of 1012 precursor/product transitions. In the screening phase each individual sample was interrogated for these MRM transitions. Principal component analysis (PCA) and receiver operating characteristic (ROC) curves were used for statistical analysis. To evaluate the method's performance, half the samples were used to build a classification model (testing set) and half were blinded (validation set). Twenty transitions were used for the classification of the blind samples, most of them (N = 19) showed lower abundances in the PCOS group and corresponded to phosphatidylethanolamine (PE) and phosphatidylserine (PS) lipids. Agreement of 73% with clinical diagnosis was found when classifying the 26 blind samples. MRM-profiling is a supervised method characterized by its simplicity, speed and the absence of chromatographic separation. It can be used to rapidly isolate discriminating molecules in healthy/disease conditions by

  3. Discovery of Metabolic Biomarkers for Duchenne Muscular Dystrophy within a Natural History Study.

    Directory of Open Access Journals (Sweden)

    Simina M Boca

    Full Text Available Serum metabolite profiling in Duchenne muscular dystrophy (DMD may enable discovery of valuable molecular markers for disease progression and treatment response. Serum samples from 51 DMD patients from a natural history study and 22 age-matched healthy volunteers were profiled using liquid chromatography coupled to mass spectrometry (LC-MS for discovery of novel circulating serum metabolites associated with DMD. Fourteen metabolites were found significantly altered (1% false discovery rate in their levels between DMD patients and healthy controls while adjusting for age and study site and allowing for an interaction between disease status and age. Increased metabolites included arginine, creatine and unknown compounds at m/z of 357 and 312 while decreased metabolites included creatinine, androgen derivatives and other unknown yet to be identified compounds. Furthermore, the creatine to creatinine ratio is significantly associated with disease progression in DMD patients. This ratio sharply increased with age in DMD patients while it decreased with age in healthy controls. Overall, this study yielded promising metabolic signatures that could prove useful to monitor DMD disease progression and response to therapies in the future.

  4. Proteomic analysis of tissue samples in translational breast cancer research

    DEFF Research Database (Denmark)

    Gromov, Pavel; Moreira, José; Gromova, Irina

    2014-01-01

    In the last decade, many proteomic technologies have been applied, with varying success, to the study of tissue samples of breast carcinoma for protein expression profiling in order to discover protein biomarkers/signatures suitable for: characterization and subtyping of tumors; early diagnosis...... the translation of basic discoveries into the daily breast cancer clinical practice. In particular, we address major issues in experimental design by reviewing the strengths and weaknesses of current proteomic strategies in the context of the analysis of human breast tissue specimens....

  5. Development and standardization of multiplexed antibody microarrays for use in quantitative proteomics

    Directory of Open Access Journals (Sweden)

    Sorette M

    2004-12-01

    Full Text Available Abstract Background Quantitative proteomics is an emerging field that encompasses multiplexed measurement of many known proteins in groups of experimental samples in order to identify differences between groups. Antibody arrays are a novel technology that is increasingly being used for quantitative proteomics studies due to highly multiplexed content, scalability, matrix flexibility and economy of sample consumption. Key applications of antibody arrays in quantitative proteomics studies are identification of novel diagnostic assays, biomarker discovery in trials of new drugs, and validation of qualitative proteomics discoveries. These applications require performance benchmarking, standardization and specification. Results Six dual-antibody, sandwich immunoassay arrays that measure 170 serum or plasma proteins were developed and experimental procedures refined in more than thirty quantitative proteomics studies. This report provides detailed information and specification for manufacture, qualification, assay automation, performance, assay validation and data processing for antibody arrays in large scale quantitative proteomics studies. Conclusion The present report describes development of first generation standards for antibody arrays in quantitative proteomics. Specifically, it describes the requirements of a comprehensive validation program to identify and minimize antibody cross reaction under highly multiplexed conditions; provides the rationale for the application of standardized statistical approaches to manage the data output of highly replicated assays; defines design requirements for controls to normalize sample replicate measurements; emphasizes the importance of stringent quality control testing of reagents and antibody microarrays; recommends the use of real-time monitors to evaluate sensitivity, dynamic range and platform precision; and presents survey procedures to reveal the significance of biomarker findings.

  6. Automated Morphological and Morphometric Analysis of Mass Spectrometry Imaging Data: Application to Biomarker Discovery

    Science.gov (United States)

    Picard de Muller, Gaël; Ait-Belkacem, Rima; Bonnel, David; Longuespée, Rémi; Stauber, Jonathan

    2017-12-01

    Mass spectrometry imaging datasets are mostly analyzed in terms of average intensity in regions of interest. However, biological tissues have different morphologies with several sizes, shapes, and structures. The important biological information, contained in this highly heterogeneous cellular organization, could be hidden by analyzing the average intensities. Finding an analytical process of morphology would help to find such information, describe tissue model, and support identification of biomarkers. This study describes an informatics approach for the extraction and identification of mass spectrometry image features and its application to sample analysis and modeling. For the proof of concept, two different tissue types (healthy kidney and CT-26 xenograft tumor tissues) were imaged and analyzed. A mouse kidney model and tumor model were generated using morphometric - number of objects and total surface - information. The morphometric information was used to identify m/z that have a heterogeneous distribution. It seems to be a worthwhile pursuit as clonal heterogeneity in a tumor is of clinical relevance. This study provides a new approach to find biomarker or support tissue classification with more information. [Figure not available: see fulltext.

  7. Urinary metabonomics study on toxicity biomarker discovery in rats treated with Xanthii Fructus.

    Science.gov (United States)

    Lu, Fang; Cao, Min; Wu, Bin; Li, Xu-zhao; Liu, Hong-yu; Chen, Da-zhong; Liu, Shu-min

    2013-08-26

    Xanthii Fructus (XF) is commonly called "Cang-Erzi" in traditional Chinese medicine (TCM) and widely used for the treatment of sinusitis, headache, rheumatism, and skin itching. However, the clinical utilization of XF is relatively restricted owing to its toxicity. To discover the characteristic potential biomarkers in rats treated with XF by urinary metabonomics. Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) was applied in the study. The total ion chromatograms obtained from control and different dosage groups were distinguishable by a multivariate statistical analysis method. The greatest difference in metabolic profile was observed between high dosage group and control group, and the metabolic characters in rats treated with XF were perturbed in a dose-dependent manner. The metabolic changes in response for XF treatment were observed in urinary samples, which were revealed by orthogonal projection to latent structures discriminate analysis (OPLS-DA), and 10 metabolites could be served as the potential toxicity biomarkers. In addition, the mechanism associated with the damages of lipid per-oxidation and the metabolic disturbances of fatty acid oxidation were investigated. These results indicate that metabonomics analysis in urinary samples may be useful for predicting the toxicity induced by XF. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Identification and characterization of N-glycosylated proteins using proteomics

    DEFF Research Database (Denmark)

    Selby, David S; Larsen, Martin R; Calvano, Cosima Damiana

    2008-01-01

    and analysis of glycoproteins and glycopeptides. Combinations of affinity-enrichment techniques, chemical and biochemical protocols, and advanced mass spectrometry facilitate detailed glycoprotein analysis in proteomics, from fundamental biological studies to biomarker discovery in biomedicine....... is a complex task and is currently achieved by mass spectrometry-based methods that enable identification of glycoproteins and localization, classification, and analysis of individual glycan structures on proteins. In this chapter we briefly introduce a range of analytical technologies for recovery...

  9. A review of studies of the proteomes of circulating microparticles

    DEFF Research Database (Denmark)

    Nielsen, Christoffer T.; Østergaard, Ole; Rasmussen, Niclas S.

    2017-01-01

    understood, MVs are involved in trafficking of information from cell-to-cell, and are implicated in the regulation of immunity, thrombosis, and coagulation. Different subtypes of extracellular MVs exist. This review focuses on the cell membrane-derived shedded MVs (ranging in size from 200 to 1000 nm...... conditions such as cancer and chronic viral infections. This review highlights the methodology and results of the proteome studies behind these discoveries and places them in a pathophysiological and biomarker perspective....

  10. Preparation of the low molecular weight serum proteome for mass spectrometry analysis.

    Science.gov (United States)

    Waybright, Timothy J; Chan, King C; Veenstra, Timothy D; Xiao, Zhen

    2013-01-01

    The discovery of viable biomarkers or indicators of disease states is complicated by the inherent complexity of the chosen biological specimen. Every sample, whether it is serum, plasma, urine, tissue, cells, or a host of others, contains thousands of large and small components, each interacting in multiple ways. The need to concentrate on a group of these components to narrow the focus on a potential biomarker candidate becomes, out of necessity, a priority, especially in the search for immune-related low molecular weight serum biomarkers. One such method in the field of proteomics is to divide the sample proteome into groups based on the size of the protein, analyze each group, and mine the data for statistically significant items. This chapter details a portion of this method, concentrating on a method for fractionating and analyzing the low molecular weight proteome of human serum.

  11. Towards Precision Medicine in the Clinic: From Biomarker Discovery to Novel Therapeutics.

    Science.gov (United States)

    Collins, Dearbhaile C; Sundar, Raghav; Lim, Joline S J; Yap, Timothy A

    2017-01-01

    Precision medicine continues to be the benchmark to which we strive in cancer research. Seeking out actionable aberrations that can be selectively targeted by drug compounds promises to optimize treatment efficacy and minimize toxicity. Utilizing these different targeted agents in combination or in sequence may further delay resistance to treatments and prolong antitumor responses. Remarkable progress in the field of immunotherapy adds another layer of complexity to the management of cancer patients. Corresponding advances in companion biomarker development, novel methods of serial tumor assessments, and innovative trial designs act synergistically to further precision medicine. Ongoing hurdles such as clonal evolution, intra- and intertumor heterogeneity, and varied mechanisms of drug resistance continue to be challenges to overcome. Large-scale data-sharing and collaborative networks using next-generation sequencing (NGS) platforms promise to take us further into the cancer 'ome' than ever before, with the goal of achieving successful precision medicine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Metabolomic Discovery of Novel Urinary Galabiosylceramide Analogs as Fabry Disease Biomarkers

    Science.gov (United States)

    Boutin, Michel; Auray-Blais, Christiane

    2015-03-01

    Fabry disease is an X-linked, complex, multisystemic lysosomal storage disorder presenting marked phenotypic and genotypic variability among affected male and female patients. Glycosphingolipids, mainly globotriaosylceramide (Gb3) isoforms/analogs, globotriaosylsphingosine (lyso-Gb3) and analogs, as well as galabiosylceramide (Ga2) isoforms/analogs accumulate in the vascular endothelium, nerves, cardiomyocytes, renal glomerular and tubular epithelial cells, and biological fluids. The search for biomarkers reflecting disease severity and progression is still on-going. A metabolomic study using quadrupole time-of-flight mass spectrometry has revealed 22 galabiosylceramide isoforms/analogs in urine of untreated Fabry patients classified in seven groups according to their chemical structure: (1) Saturated fatty acid; (2) one extra double bond; (3) two extra double bonds; (4) hydroxylated saturated fatty acid; (5) hydroxylated fatty acid and one extra double bond; (6) hydrated sphingosine and hydroxylated fatty acid; (7) methylated amide linkage. Relative quantification of both Ga2 and Gb3 isoforms/analogs was performed. All these biomarkers are significantly more abundant in urine samples from untreated Fabry males compared with healthy male controls. A significant amount of Ga2 isoforms/analogs, accounting for 18% of all glycosphingolipids analyzed (Ga2 + Gb3 and respective isoforms/analogs), were present in urine of Fabry patients. Gb3 isoforms containing saturated fatty acids are the most abundant (60.9%) compared with 26.3% for Ga2. A comparison between Ga2 isoforms/analogs and their Gb3 counterparts also showed that the proportion of analogs with hydroxylated fatty acids is significantly greater for Ga2 (35.8%) compared with Gb3 (1.9%). These results suggest different biological pathways involved in the synthesis and/or degradation of Gb3 and Ga2 metabolites.

  13. MAPU: Max-Planck Unified database of organellar, cellular, tissue and body fluid proteomes.

    Science.gov (United States)

    Zhang, Yanling; Zhang, Yong; Adachi, Jun; Olsen, Jesper V; Shi, Rong; de Souza, Gustavo; Pasini, Erica; Foster, Leonard J; Macek, Boris; Zougman, Alexandre; Kumar, Chanchal; Wisniewski, Jacek R; Jun, Wang; Mann, Matthias

    2007-01-01

    Mass spectrometry (MS)-based proteomics has become a powerful technology to map the protein composition of organelles, cell types and tissues. In our department, a large-scale effort to map these proteomes is complemented by the Max-Planck Unified (MAPU) proteome database. MAPU contains several body fluid proteomes; including plasma, urine, and cerebrospinal fluid. Cell lines have been mapped to a depth of several thousand proteins and the red blood cell proteome has also been analyzed in depth. The liver proteome is represented with 3200 proteins. By employing high resolution MS and stringent validation criteria, false positive identification rates in MAPU are lower than 1:1000. Thus MAPU datasets can serve as reference proteomes in biomarker discovery. MAPU contains the peptides identifying each protein, measured masses, scores and intensities and is freely available at http://www.mapuproteome.com using a clickable interface of cell or body parts. Proteome data can be queried across proteomes by protein name, accession number, sequence similarity, peptide sequence and annotation information. More than 4500 mouse and 2500 human proteins have already been identified in at least one proteome. Basic annotation information and links to other public databases are provided in MAPU and we plan to add further analysis tools.

  14. Cell surface profiling using high-throughput flow cytometry: a platform for biomarker discovery and analysis of cellular heterogeneity.

    Directory of Open Access Journals (Sweden)

    Craig A Gedye

    Full Text Available Cell surface proteins have a wide range of biological functions, and are often used as lineage-specific markers. Antibodies that recognize cell surface antigens are widely used as research tools, diagnostic markers, and even therapeutic agents. The ability to obtain broad cell surface protein profiles would thus be of great value in a wide range of fields. There are however currently few available methods for high-throughput analysis of large numbers of cell surface proteins. We describe here a high-throughput flow cytometry (HT-FC platform for rapid analysis of 363 cell surface antigens. Here we demonstrate that HT-FC provides reproducible results, and use the platform to identify cell surface antigens that are influenced by common cell preparation methods. We show that multiple populations within complex samples such as primary tumors can be simultaneously analyzed by co-staining of cells with lineage-specific antibodies, allowing unprecedented depth of analysis of heterogeneous cell populations. Furthermore, standard informatics methods can be used to visualize, cluster and downsample HT-FC data to reveal novel signatures and biomarkers. We show that the cell surface profile provides sufficient molecular information to classify samples from different cancers and tissue types into biologically relevant clusters using unsupervised hierarchical clustering. Finally, we describe the identification of a candidate lineage marker and its subsequent validation. In summary, HT-FC combines the advantages of a high-throughput screen with a detection method that is sensitive, quantitative, highly reproducible, and allows in-depth analysis of heterogeneous samples. The use of commercially available antibodies means that high quality reagents are immediately available for follow-up studies. HT-FC has a wide range of applications, including biomarker discovery, molecular classification of cancers, or identification of novel lineage specific or stem cell

  15. Cell surface profiling using high-throughput flow cytometry: a platform for biomarker discovery and analysis of cellular heterogeneity.

    Science.gov (United States)

    Gedye, Craig A; Hussain, Ali; Paterson, Joshua; Smrke, Alannah; Saini, Harleen; Sirskyj, Danylo; Pereira, Keira; Lobo, Nazleen; Stewart, Jocelyn; Go, Christopher; Ho, Jenny; Medrano, Mauricio; Hyatt, Elzbieta; Yuan, Julie; Lauriault, Stevan; Meyer, Mona; Kondratyev, Maria; van den Beucken, Twan; Jewett, Michael; Dirks, Peter; Guidos, Cynthia J; Danska, Jayne; Wang, Jean; Wouters, Bradly; Neel, Benjamin; Rottapel, Robert; Ailles, Laurie E

    2014-01-01

    Cell surface proteins have a wide range of biological functions, and are often used as lineage-specific markers. Antibodies that recognize cell surface antigens are widely used as research tools, diagnostic markers, and even therapeutic agents. The ability to obtain broad cell surface protein profiles would thus be of great value in a wide range of fields. There are however currently few available methods for high-throughput analysis of large numbers of cell surface proteins. We describe here a high-throughput flow cytometry (HT-FC) platform for rapid analysis of 363 cell surface antigens. Here we demonstrate that HT-FC provides reproducible results, and use the platform to identify cell surface antigens that are influenced by common cell preparation methods. We show that multiple populations within complex samples such as primary tumors can be simultaneously analyzed by co-staining of cells with lineage-specific antibodies, allowing unprecedented depth of analysis of heterogeneous cell populations. Furthermore, standard informatics methods can be used to visualize, cluster and downsample HT-FC data to reveal novel signatures and biomarkers. We show that the cell surface profile provides sufficient molecular information to classify samples from different cancers and tissue types into biologically relevant clusters using unsupervised hierarchical clustering. Finally, we describe the identification of a candidate lineage marker and its subsequent validation. In summary, HT-FC combines the advantages of a high-throughput screen with a detection method that is sensitive, quantitative, highly reproducible, and allows in-depth analysis of heterogeneous samples. The use of commercially available antibodies means that high quality reagents are immediately available for follow-up studies. HT-FC has a wide range of applications, including biomarker discovery, molecular classification of cancers, or identification of novel lineage specific or stem cell markers.

  16. microRNA Biomarker Discovery and High-Throughput DNA Sequencing Are Possible Using Long-term Archived Serum Samples.

    Science.gov (United States)

    Rounge, Trine B; Lauritzen, Marianne; Langseth, Hilde; Enerly, Espen; Lyle, Robert; Gislefoss, Randi E

    2015-09-01

    The impacts of long-term storage and varying preanalytical factors on the quality and quantity of DNA and miRNA from archived serum have not been fully assessed. Preanalytical and analytical variations and degradation may introduce bias in representation of DNA and miRNA and may result in loss or corruption of quantitative data. We have evaluated DNA and miRNA quantity, quality, and variability in samples stored up to 40 years using one of the oldest prospective serum collections in the world, the Janus Serumbank, a biorepository dedicated to cancer research. miRNAs are present and stable in archived serum samples frozen at -25°C for at least 40 years. Long-time storage did not reduce miRNA yields; however, varying preanalytical conditions had a significant effect and should be taken into consideration during project design. Of note, 500 μL serum yielded sufficient miRNA for qPCR and small RNA sequencing and on average 650 unique miRNAs were detected in samples from presumably healthy donors. Of note, 500 μL serum yielded sufficient DNA for whole-genome sequencing and subsequent SNP calling, giving a uniform representation of the genomes. DNA and miRNA are stable during long-term storage, making large prospectively collected serum repositories an invaluable source for miRNA and DNA biomarker discovery. Large-scale biomarker studies with long follow-up time are possible utilizing biorepositories with archived serum and state-of-the-art technology. ©2015 American Association for Cancer Research.

  17. Adapting mass spectrometry-based platforms for clinical proteomics applications: The capillary electrophoresis coupled mass spectrometry paradigm

    Science.gov (United States)

    Metzger, Jochen; Luppa, Peter B.; Good, David M.; Mischak, Harald

    2018-01-01

    Single biomarker detection is common in clinical laboratories due to the currently available method spectrum. For various diseases, however, no specific single biomarker could be identified. A strategy to overcome this diagnostic void is to shift from single analyte detection to multiplexed biomarker profiling. Mass spectrometric methods were employed for biomarker discovery in body fluids. The enormous complexity of biofluidic proteome compartments implies upstream fractionation. For this reason, mass spectrometry (MS) was coupled to two-dimensional gel electrophoresis, liquid chromatography, surface-enhanced laser desorption/ionization, or capillary electrophoresis (CE). Differences in performance and operating characteristics make them differentially suited for routine laboratory applications. Progress in the field of clinical proteomics relies not only on the use of an adequate technological platform, but also on a fast and efficient proteomic workflow including standardized sample preparation, proteomic data processing, statistical validation of biomarker selection, and sample classification. Based on CE-MS analysis, we describe how proteomic technology can be implemented in a clinical laboratory environment. In the last part of this review, we give an overview of CE-MS-based clinical studies and present information on identity and biological significance of the identified peptide biomarkers providing evidence of disease-induced changes in proteolytic processing and posttranslational modification. PMID:19404829

  18. Profiling of circulating microRNAs for prostate cancer biomarker discovery

    DEFF Research Database (Denmark)

    Haldrup, Christa; Kosaka, Nobuyoshi; Ochiya, Takahiro

    2014-01-01

    Prostate cancer (PC) is the most frequent cancer in men in the Western world. Currently, serum prostate-specific antigen levels and digital rectal examinations are used to indicate the need for diagnostic prostate biopsy, but lack in specificity and sensitivity. Thus, many men undergo unnecessary...... performed genome-wide miRNA profiling of serum samples from 13 benign prostatic hyperplasia (BPH) control patients and 31 PC patients. Furthermore, we carefully reviewed the literature on circulating miRNA biomarkers for PC. Our results confirmed the de-regulation of miR-141 and miR-375, two of the most...... well-documented candidate miRNA markers for PC. Moreover, we identified several new potential serum miRNA markers for PC and developed three novel and highly specific (100 %) miRNA candidate marker panels able to identify 84 % of all PC patients (miR-562/miR-210/miR-501-3p/miR-375/miR-551b), 80...

  19. Preliminary characterizations of a serum biomarker for sarcoidosis by comparative proteomic approach with tandem-mass spectrometry in ethnic Han Chinese patients.

    Science.gov (United States)

    Zhang, Yuan; Chen, Xianqiu; Hu, Yang; Du, Shanshan; Shen, Li; He, Yifan; Zhang, Yuxuan; Zhang, Xia; Li, Huiping; Yung, Rex C

    2013-02-11

    The diagnosis of sarcoidosis is still a significant challenge in China because of the need to exclude other diseases including granulomatous infections and malignancies that may be clinically and radiographically similar. The specific aim of the study is to search for serum protein biomarkers of sarcoidosis and to validate their clinical usefulness in differential diagnosis. Serum samples were collected from patients with sarcoidosis (n = 37), and compared to those from patients with tuberculosis (n = 20), other pulmonary diseases (n = 20), and healthy volunteers (n = 20) for determination of sarcoidosis-specific or -associated protein expression profiles. The first part of this study focused on proteomic analysis of serum from patients with sarcoidosis to identify a pattern of peptides capable of differentiating the studied populations using the ClinProt profiling technology based on mass spectrometry. Enzyme Linked Immunosorbent Assay (ELISA) was then used to verify corresponding elevation of the serum protein concentration of the potential biomarkers in the same patients sets. Receiver operating characteristic curve (ROC) analyses was performed to determine the optimal cutoff value for diagnosis. Immunohistochemistry was carried out to further confirm the protein expression patterns of the biomarkers in lung tissue. An unique protein peak of M/Z 3,210 Daltons (Da) was found to be differentially expressed between the sarcoidosis and control groups and was identified as the N-terminal peptide of 29 amino acids (94-122) of serum amyloid A (SAA). ELISA confirmed that the serum SAA level was significantly higher in the sarcoidosis group than that of the other 3 control groups (p biomarker for ruling-out the diagnosis of sarcoidosis in Chinese subjects.

  20. Preliminary characterizations of a serum biomarker for sarcoidosis by comparative proteomic approach with tandem-mass spectrometry in ethnic Han Chinese patients

    Directory of Open Access Journals (Sweden)

    Zhang Yuan

    2013-02-01

    Full Text Available Abstract Background The diagnosis of sarcoidosis is still a significant challenge in China because of the need to exclude other diseases including granulomatous infections and malignancies that may be clinically and radiographically similar. The specific aim of the study is to search for serum protein biomarkers of sarcoidosis and to validate their clinical usefulness in differential diagnosis. Methods Serum samples were collected from patients with sarcoidosis (n = 37, and compared to those from patients with tuberculosis (n = 20, other pulmonary diseases (n = 20, and healthy volunteers (n = 20 for determination of sarcoidosis-specific or -associated protein expression profiles. The first part of this study focused on proteomic analysis of serum from patients with sarcoidosis to identify a pattern of peptides capable of differentiating the studied populations using the ClinProt profiling technology based on mass spectrometry. Enzyme Linked Immunosorbent Assay (ELISA was then used to verify corresponding elevation of the serum protein concentration of the potential biomarkers in the same patients sets. Receiver operating characteristic curve (ROC analyses was performed to determine the optimal cutoff value for diagnosis. Immunohistochemistry was carried out to further confirm the protein expression patterns of the biomarkers in lung tissue. Results An unique protein peak of M/Z 3,210 Daltons (Da was found to be differentially expressed between the sarcoidosis and control groups and was identified as the N-terminal peptide of 29 amino acids (94-122 of serum amyloid A (SAA. ELISA confirmed that the serum SAA level was significantly higher in the sarcoidosis group than that of the other 3 control groups (p p  Conclusion This is the first study to investigate serum protein markers in Chinese subjects with sarcoidosis. This study shows that the serum SAA expression profiles were different between the sarcoidosis and non

  1. Allergic asthma biomarkers using systems approaches

    Directory of Open Access Journals (Sweden)

    Gaurab eSircar

    2014-01-01

    Full Text Available Asthma is characterized by lung inflammation caused by complex interaction between the immune system and environmental factors such as allergens and inorganic pollutants. Recent research in this field is focused on discovering new biomarkers associated with asthma pathogenesis. This review illustrates updated research associating biomarkers of allergic asthma and their potential use in systems biology of the disease. We focus on biomolecules with altered expression, which may serve as inflammatory, diagnostic and therapeutic biomarkers of asthma discovered in human or experimental asthma model using genomic, proteomic and epigenomic approaches for gene and protein expression profiling. These include high-throughput technologies such as state of the art microarray and proteomics Mass Spectrometry (MS platforms. Emerging concepts of molecular interactions and pathways may provide new insights in searching potential clinical biomarkers. We summarized certain pathways with significant linkage to asthma pathophysiology by analyzing the compiled biomarkers. Systems approaches with this data can identify the regulating networks, which will eventually identify the key biomarkers to be used for diagnostics and drug discovery.

  2. voomDDA: discovery of diagnostic biomarkers and classification of RNA-seq data

    Directory of Open Access Journals (Sweden)

    Gokmen Zararsiz

    2017-10-01

    Full Text Available RNA-Seq is a recent and efficient technique that uses the capabilities of next-generation sequencing technology for characterizing and quantifying transcriptomes. One important task using gene-expression data is to identify a small subset of genes that can be used to build diagnostic classifiers particularly for cancer diseases. Microarray based classifiers are not directly applicable to RNA-Seq data due to its discrete nature. Overdispersion is another problem that requires careful modeling of mean and variance relationship of the RNA-Seq data. In this study, we present voomDDA classifiers: variance modeling at the observational level (voom extensions of the nearest shrunken centroids (NSC and the diagonal discriminant classifiers. VoomNSC is one of these classifiers and brings voom and NSC approaches together for the purpose of gene-expression based classification. For this purpose, we propose weighted statistics and put these weighted statistics into the NSC algorithm. The VoomNSC is a sparse classifier that models the mean-variance relationship using the voom method and incorporates voom’s precision weights into the NSC classifier via weighted statistics. A comprehensive simulation study was designed and four real datasets are used for performance assessment. The overall results indicate that voomNSC performs as the sparsest classifier. It also provides the most accurate results together with power-transformed Poisson linear discriminant analysis, rlog transformed support vector machines and random forests algorithms. In addition to prediction purposes, the voomNSC classifier can be used to identify the potential diagnostic biomarkers for a condition of interest. Through this work, statistical learning methods proposed for microarrays can be reused for RNA-Seq data. An interactive web application is freely available at http://www.biosoft.hacettepe.edu.tr/voomDDA/.

  3. voomDDA: discovery of diagnostic biomarkers and classification of RNA-seq data.

    Science.gov (United States)

    Zararsiz, Gokmen; Goksuluk, Dincer; Klaus, Bernd; Korkmaz, Selcuk; Eldem, Vahap; Karabulut, Erdem; Ozturk, Ahmet

    2017-01-01

    RNA-Seq is a recent and efficient technique that uses the capabilities of next-generation sequencing technology for characterizing and quantifying transcriptomes. One important task using gene-expression data is to identify a small subset of genes that can be used to build diagnostic classifiers particularly for cancer diseases. Microarray based classifiers are not directly applicable to RNA-Seq data due to its discrete nature. Overdispersion is another problem that requires careful modeling of mean and variance relationship of the RNA-Seq data. In this study, we present voomDDA classifiers: variance modeling at the observational level (voom) extensions of the nearest shrunken centroids (NSC) and the diagonal discriminant classifiers. VoomNSC is one of these classifiers and brings voom and NSC approaches together for the purpose of gene-expression based classification. For this purpose, we propose weighted statistics and put these weighted statistics into the NSC algorithm. The VoomNSC is a sparse classifier that models the mean-variance relationship using the voom method and incorporates voom's precision weights into the NSC classifier via weighted statistics. A comprehensive simulation study was designed and four real datasets are used for performance assessment. The overall results indicate that voomNSC performs as the sparsest classifier. It also provides the most accurate results together with power-transformed Poisson linear discriminant analysis, rlog transformed support vector machines and random forests algorithms. In addition to prediction purposes, the voomNSC classifier can be used to identify the potential diagnostic biomarkers for a condition of interest. Through this work, statistical learning methods proposed for microarrays can be reused for RNA-Seq data. An interactive web application is freely available at http://www.biosoft.hacettepe.edu.tr/voomDDA/.

  4. Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery.

    Science.gov (United States)

    Merchant, Michael L; Rood, Ilse M; Deegens, Jeroen K J; Klein, Jon B

    2017-12-01

    Urine is a valuable diagnostic medium and, with the discovery of urinary extracellular vesicles, is viewed as a dynamic bioactive fluid. Extracellular vesicles are lipid-enclosed structures that can be classified into three categories: exosomes, microvesicles (or ectosomes) and apoptotic bodies. This classification is based on the mechanisms by which membrane vesicles are formed: fusion of multivesicular bodies with the plasma membranes (exosomes), budding of vesicles directly from the plasma membrane (microvesicles) or those shed from dying cells (apoptotic bodies). During their formation, urinary extracellular vesicles incorporate various cell-specific components (proteins, lipids and nucleic acids) that can be transferred to target cells. The rigour needed for comparative studies has fueled the search for optimal approaches for their isolation, purification, and characterization. RNA, the newest extracellular vesicle component to be discovered, has received substantial attention as an extracellular vesicle therapeutic, and compelling evidence suggests that ex vivo manipulation of microRNA composition may have uses in the treatment of kidney disorders. The results of these studies are building the case that urinary extracellular vesicles act as mediators of renal pathophysiology. As the field of extracellular vesicle studies is burgeoning, this Review focuses on primary data obtained from studies of human urine rather than on data from studies of laboratory animals or cultured immortalized cells.

  5. iTRAQ-Based Proteomics Analysis of Serum Proteins in Wistar Rats Treated with Sodium Fluoride: Insight into the Potential Mechanism and Candidate Biomarkers of Fluorosis

    Directory of Open Access Journals (Sweden)

    Yan Wei

    2016-09-01

    Full Text Available Fluorosis induced by exposure to high level fluoride is quite widespread in the world. The manifestations of fluorosis include dental mottling, bone damage, and impaired malfunction of soft tissues. However, the molecular mechanism of fluorosis has not been clarified until now. To explore the underlying mechanisms of fluorosis and screen out serum biomarkers, we carried out a quantitative proteomics study to identify differentially expressed serum proteins in Wistar rats treated with sodium fluoride (NaF by using a proteomics approach of isobaric tagging for relative and absolute quantitation (iTRAQ. We fed Wistar rats drinking water that had 50, 150, and 250 mg/L of dissolved NaF for 24 weeks. For the experimental duration, each rat was given an examination of the lower incisors to check for the condition of dental fluorosis (DF. By the end of the treatment, fluoride ion concentration in serum and lower incisors were detected. The results showed that NaF treatment can induce rat fluorosis. By iTRAQ analysis, a total of 37 differentially expressed serum proteins were identified between NaF-treated and control rats. These proteins were further analyzed by bioinformatics, out of which two proteins were validated by enzyme-linked immunoadsorbent assays (ELISA. The major proteins were involved in complement and coagulation cascade, inflammatory response, complement activation, defense response, and wound response, suggesting that inflammation and immune reactions may play a key role in fluorosis pathogenesis. These proteins may contribute to the understanding of the mechanism of fluoride toxicity, and may serve as potential biomarkers for fluorosis.

  6. Challenges in modern biomarker discovery--17th HUPO BPP workshop: May 24-25, 2012, Sao Paulo, Brazil.

    Science.gov (United States)

    Gröttrup, Bernd; Esselmann, Hermann; May, Caroline; Schrötter, Andreas; Woitalla, Dirk; Heinsen, Helmut; Marcus, Katrin; Wiltfang, Jens; Meyer, Helmut E; Grinberg, Lea T; Park, Young Mok

    2013-01-01

    The HUPO Brain Proteome Project (HUPO BPP) held its 17(th) workshop in Sao Paulo, Brazil, on May 24 and 25, 2012. The focus was on the progress on the Human Brain Proteome Atlas as well as ideas, strategies and methodological aspects in clinical neuroproteomics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Custom database development and biomarker discovery methods for MALDI-TOF mass spectrometry-based identification of high-consequence bacterial pathogens.

    Science.gov (United States)

    Tracz, Dobryan M; Tyler, Andrea D; Cunningham, Ian; Antonation, Kym S; Corbett, Cindi R

    2017-03-01

    A high-quality custom database of MALDI-TOF mass spectral profiles was developed with the goal of improving clinical diagnostic identification of high-consequence bacterial pathogens. A biomarker discovery method is presented for identifying and evaluating MALDI-TOF MS spectra to potentially differentiate biothreat bacteria from less-pathogenic near-neighbour species. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  8. Novel Bioinformatics-Based Approach for Proteomic Biomarkers Prediction of Calpain-2 & Caspase-3 Protease Fragmentation: Application to βII-Spectrin Protein

    Science.gov (United States)

    El-Assaad, Atlal; Dawy, Zaher; Nemer, Georges; Kobeissy, Firas

    2017-01-01

    The crucial biological role of proteases has been visible with the development of degradomics discipline involved in the determination of the proteases/substrates resulting in breakdown-products (BDPs) that can be utilized as putative biomarkers associated with different biological-clinical significance. In the field of cancer biology, matrix metalloproteinases (MMPs) have shown to result in MMPs-generated protein BDPs that are indicative of malignant growth in cancer, while in the field of neural injury, calpain-2 and caspase-3 proteases generate BDPs fragments that are indicative of different neural cell death mechanisms in different injury scenarios. Advanced proteomic techniques have shown a remarkable progress in identifying these BDPs experimentally. In this work, we present a bioinformatics-based prediction method that identifies protease-associated BDPs with high precision and efficiency. The method utilizes state-of-the-art sequence matching and alignment algorithms. It starts by locating consensus sequence occurrences and their variants in any set of protein substrates, generating all fragments resulting from cleavage. The complexity exists in space O(mn) as well as in O(Nmn) time, where N, m, and n are the number of protein sequences, length of the consensus sequence, and length per protein sequence, respectively. Finally, the proposed methodology is validated against βII-spectrin protein, a brain injury validated biomarker.

  9. Proteomic and transcriptomic profiling of in vitro established radiation resistant oral cancer cells for identification of radioresistance related biomarkers

    International Nuclear Information System (INIS)

    Mohd Yasser; Pawar, Sagar; Teni, Tanuja

    2016-01-01

    Radiotherapy is an integral part of oral cancer treatment, either alone or in combination with surgery. But, during radiotherapy, oral tumours of a subset of patients develop radioresistance that creates major obstruction towards its efficacy. The aim of our study was to establish radioresistant cell lines from different oral subsites using clinically admissible low dose radiation and profile them by proteomic and transcriptomic approaches to identify proteins associated with radioresistance in oral cancer

  10. Proteomics and the search for welfare and stress biomarkers in animal production in the one-health context.

    Science.gov (United States)

    Marco-Ramell, A; de Almeida, A M; Cristobal, S; Rodrigues, P; Roncada, P; Bassols, A

    2016-06-21

    Stress and welfare are important factors in animal production in the context of growing production optimization and scrutiny by the general public. In a context in which animal and human health are intertwined aspects of the one-health concept it is of utmost importance to define the markers of stress and welfare. These are important tools for producers, retailers, regulatory agents and ultimately consumers to effectively monitor and assess the welfare state of production animals. Proteomics is the science that studies the proteins existing in a given tissue or fluid. In this review we address this topic by showing clear examples where proteomics has been used to study stress-induced changes at various levels. We adopt a multi-species (cattle, swine, small ruminants, poultry, fish and shellfish) approach under the effect of various stress inducers (handling, transport, management, nutritional, thermal and exposure to pollutants) clearly demonstrating how proteomics and systems biology are key elements to the study of stress and welfare in farm animals and powerful tools for animal welfare, health and productivity.

  11. Proteomic profiling of a mouse model of acute intestinal Apc deletion leads to identification of potential novel biomarkers of human colorectal cancer (CRC).

    Science.gov (United States)

    Hammoudi, Abeer; Song, Fei; Reed, Karen R; Jenkins, Rosalind E; Meniel, Valerie S; Watson, Alastair J M; Pritchard, D Mark; Clarke, Alan R; Jenkins, John R

    2013-10-25

    Colorectal cancer (CRC) is the fourth most common cause of cancer-related death worldwide. Accurate non-invasive screening for CRC would greatly enhance a population's health. Adenomatous polyposis coli (Apc) gene mutations commonly occur in human colorectal adenomas and carcinomas, leading to Wnt signalling pathway activation. Acute conditional transgenic deletion of Apc in murine intestinal epithelium (AhCre(+)Apc(fl)(/)(fl)) causes phenotypic changes similar to those found during colorectal tumourigenesis. This study comprised a proteomic analysis of murine small intestinal epithelial cells following acute Apc deletion to identify proteins that show altered expression during human colorectal carcinogenesis, thus identifying proteins that may prove clinically useful as blood/serum biomarkers of colorectal neoplasia. Eighty-one proteins showed significantly increased expression following iTRAQ analysis, and validation of nine of these by Ingenuity Pathaway Analysis showed they could be detected in blood or serum. Expression was assessed in AhCre(+)Apc(fl)(/)(fl) small intestinal epithelium by immunohistochemistry, western blot and quantitative real-time PCR; increased nucelolin concentrations were also detected in the serum of AhCre(+)Apc(fl)(/)(fl) and Apc(Min)(/)(+) mice by ELISA. Six proteins; heat shock 60kDa protein 1, Nucleolin, Prohibitin, Cytokeratin 18, Ribosomal protein L6 and DEAD (Asp-Glu-Ala-Asp) box polypeptide 5,were selected for further investigation. Increased expression of 4 of these was confirmed in human CRC by qPCR. In conclusion, several novel candidate biomarkers have been identified from analysis of transgenic mice in which the Apc gene was deleted in the intestinal epithelium that also showed increased expression in human CRC. Some of these warrant further investigation as potential serum-based biomarkers of human CRC. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Proteomic analysis of minute amount of colonic biopsies by enteroscopy sampling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xing [Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (China); Xu, Yanli [Fuyang People’s Hospital (China); Meng, Qian [Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (China); Zheng, Qingqing [Digestive Endoscopic Center, Shanghai Jiaotong University Affiliated Sixth People’s Hospital (China); Wu, Jianhong [Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (China); Wang, Chen; Jia, Weiping [Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital (China); Figeys, Daniel [Department of Biochemistry, Microbiology and Immunology, and Department of Chemistry and Biomolecular Sciences, University of Ottawa (Canada); Chang, Ying, E-mail: emulan@163.com [Digestive Endoscopic Center, Shanghai Jiaotong University Affiliated Sixth People’s Hospital (China); Zhou, Hu, E-mail: zhouhu@simm.ac.cn [Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (China)

    2016-08-05

    Colorectal cancer (CRC) is one of the most common types of malignant tumor worldwide. Currently, although many researchers have been devoting themselves in CRC studies, the process of locating biomarkers for CRC early diagnosis and prognostic is still very slow. Using a centrifugal proteomic reactor-based proteomic analysis of minute amount of colonic biopsies by enteroscopy sampling, 2620 protein groups were quantified between cancer mucosa and adjacent normal colorectal mucosa. Of which, 403 protein groups were differentially expressed with statistic significance between cancer and normal tissues, including 195 up-regulated and 208 down-regulated proteins in cancer tissues. Three proteins (SOD3, PRELP and NGAL) were selected for further Western blot validation. And the resulting Western blot experimental results were consistent with the quantitative proteomic data. SOD3 and PRELP are down-regulated in CRC mucosa comparing to adjacent normal tissue, while NGAL is up-regulated in CRC mucosa. In conclusion, the centrifugal proteomic reactor-based label-free quantitative proteomic approach provides a highly sensitive and powerful tool for analyzing minute protein sample from tiny colorectal biopsies, which may facilitate CRC biomarkers discovery for diagnoses and prognoses. -- Highlights: •Minute amount of colonic biopsies by endoscopy is suitable for proteomic analysis. •Centrifugal proteomic reactor can be used for processing tiny clinic biopsy sample. •SOD3 and PRELP are down-regulated in CRC, while NGAL is up-regulated in CRC.

  13. Proteomic analysis of minute amount of colonic biopsies by enteroscopy sampling

    International Nuclear Information System (INIS)

    Liu, Xing; Xu, Yanli; Meng, Qian; Zheng, Qingqing; Wu, Jianhong; Wang, Chen; Jia, Weiping; Figeys, Daniel; Chang, Ying; Zhou, Hu

    2016-01-01

    Colorectal cancer (CRC) is one of the most common types of malignant tumor worldwide. Currently, although many researchers have been devoting themselves in CRC studies, the process of locating biomarkers for CRC early diagnosis and prognostic is still very slow. Using a centrifugal proteomic reactor-based proteomic analysis of minute amount of colonic biopsies by enteroscopy sampling, 2620 protein groups were quantified between cancer mucosa and adjacent normal colorectal mucosa. Of which, 403 protein groups were differentially expressed with statistic significance between cancer and normal tissues, including 195 up-regulated and 208 down-regulated proteins in cancer tissues. Three proteins (SOD3, PRELP and NGAL) were selected for further Western blot validation. And the resulting Western blot experimental results were consistent with the quantitative proteomic data. SOD3 and PRELP are down-regulated in CRC mucosa comparing to adjacent normal tissue, while NGAL is up-regulated in CRC mucosa. In conclusion, the centrifugal proteomic reactor-based label-free quantitative proteomic approach provides a highly sensitive and powerful tool for analyzing minute protein sample from tiny colorectal biopsies, which may facilitate CRC biomarkers discovery for diagnoses and prognoses. -- Highlights: •Minute amount of colonic biopsies by endoscopy is suitable for proteomic analysis. •Centrifugal proteomic reactor can be used for processing tiny clinic biopsy sample. •SOD3 and PRELP are down-regulated in CRC, while NGAL is up-regulated in CRC.

  14. Application of a high throughput method of biomarker discovery to improvement of the EarlyCDT(®-Lung Test.

    Directory of Open Access Journals (Sweden)

    Isabel K Macdonald

    Full Text Available BACKGROUND: The National Lung Screening Trial showed that CT screening for lung cancer led to a 20% reduction in mortality. However, CT screening has a number of disadvantages including low specificity. A validated autoantibody assay is available commercially (EarlyCDT®-Lung to aid in the early detection of lung cancer and risk stratification in patients with pulmonary nodules detected by CT. Recent advances in high throughput (HTP cloning and expression methods have been developed into a discovery pipeline to identify biomarkers that detect autoantibodies. The aim of this study was to demonstrate the successful clinical application of this strategy to add to the EarlyCDT-Lung panel in order to improve its sensitivity and specificity (and hence positive predictive value, (PPV. METHODS AND FINDINGS: Serum from two matched independent cohorts of lung cancer patients were used (n = 100 and n = 165. Sixty nine proteins were initially screened on an abridged HTP version of the autoantibody ELISA using protein prepared on small scale by a HTP expression and purification screen. Promising leads were produced in shake flask culture and tested on the full assay. These results were analyzed in combination with those from the EarlyCDT-Lung panel in order to provide a set of re-optimized cut-offs. Five proteins that still displayed cancer/normal differentiation were tested for reproducibility and validation on a second batch of protein and a separate patient cohort. Addition of these proteins resulted in an improvement in the sensitivity and specificity of the test from 38% and 86% to 49% and 93% respectively (PPV improvement from 1 in 16 to 1 in 7. CONCLUSION: This is a practical example of the value of investing resources to develop a HTP technology. Such technology may lead to improvement in the clinical utility of the EarlyCDT--Lung test, and so further aid the early detection of lung cancer.

  15. A Timely shift from shotgun to targeted proteomics and how it can be groundbreaking for cancer research

    DEFF Research Database (Denmark)

    Faria, Sara S.; Morris, Carlos F.M.; Silva, Adriano R.

    2017-01-01

    shifting potential of modern targeted proteomics applied to cancer research can be demonstrated by the large number of advancements and increasing examples of new and more useful biomarkers found during the course of this review in different aspects of cancer research. Out of the many studies dedicated...... to cancer biomarker discovery, we were able to devise some clear trends, such as the fact that breast cancer is the most common type of tumor studied and that most of the research for any given type of cancer is focused on the discovery diagnostic biomarkers, with the exception of those that rely on samples...... applicable results have called for the implementation of more direct, hypothesis-based studies such as those made available through targeted approaches, that might be able to streamline biomarker discovery and validation as a means to increase survivability of affected patients. In fact, the paradigm...

  16. Identification of hepatic biomarkers for physiological imbalance of dairy cows in early and mid lactation using proteomic technology

    DEFF Research Database (Denmark)

    Moyes, Kasey; Bendixen, Emøke; Codrea, Marius Cosmin

    2013-01-01

    the ration with 60% wheat straw. Liver biopsies were collected −1 and 3 d relative to restriction. Before restriction, an index for PI was calculated based on plasma nonesterified fatty acids, β-hydroxybutyrate, and glucose concentrations. Within E and M cows, a subsets of 6 cow was classified as having...... as potential hepatic biomarkers for PI for cows during early lactation and alcohol dehydrogenase-4 and methylmalonate-semialdehyde dehydrogenase for cows in mid lactation. This preliminary study identified new biomarkers in liver for PI and provided a better understanding of the differences in coping...

  17. Guidelines for Biomarker of Food Intake Reviews (BFIRev): how to conduct an extensive literature search for biomarker of food intake discovery.

    Science.gov (United States)

    Praticò, Giulia; Gao, Qian; Scalbert, Augustin; Vergères, Guy; Kolehmainen, Marjukka; Manach, Claudine; Brennan, Lorraine; Pedapati, Sri Harsha; Afman, Lydia A; Wishart, David S; Vázquez-Fresno, Rosa; Lacueva, Cristina Andres; Garcia-Aloy, Mar; Verhagen, Hans; Feskens, Edith J M; Dragsted, Lars O

    2018-01-01

    Identification of new biomarkers of food and nutrient intake has developed fast over the past two decades and could potentially provide important new tools for compliance monitoring and dietary intake assessment in nutrition and health science. In recent years, metabolomics has played an important role in identifying a large number of putative biomarkers of food intake (BFIs). However, the large body of scientific literature on potential BFIs outside the metabolomics area should also be taken into account. In particular, we believe that extensive literature reviews should be conducted and that the quality of all suggested biomarkers should be systematically evaluated. In order to cover the literature on BFIs in the most appropriate and consistent manner, there is a need for appropriate guidelines on this topic. These guidelines should build upon guidelines in related areas of science while targeting the special needs of biomarker methodology. This document provides a guideline for conducting an extensive literature search on BFIs, which will provide the basis to systematically validate BFIs. This procedure will help to prioritize future work on the identification of new potential biomarkers and on validating these as well as other biomarker candidates, thereby providing better tools for future studies in nutrition and health.

  18. Guidelines for Biomarker of Food Intake Reviews (BFIRev: how to conduct an extensive literature search for biomarker of food intake discovery

    Directory of Open Access Journals (Sweden)

    Giulia Praticò

    2018-02-01

    Full Text Available Abstract Identification of new biomarkers of food and nutrient intake has developed fast over the past two decades and could potentially provide important new tools for compliance monitoring and dietary intake assessment in nutrition and health science. In recent years, metabolomics has played an important role in identifying a large number of putative biomarkers of food intake (BFIs. However, the large body of scientific literature on potential BFIs outside the metabolomics area should also be taken into account. In particular, we believe that extensive literature reviews should be conducted and that the quality of all suggested biomarkers should be systematically evaluated. In order to cover the literature on BFIs in the most appropriate and consistent manner, there is a need for appropriate guidelines on this topic. These guidelines should build upon guidelines in related areas of science while targeting the special needs of biomarker methodology. This document provides a guideline for conducting an extensive literature search on BFIs, which will provide the basis to systematically validate BFIs. This procedure will help to prioritize future work on the identification of new potential biomarkers and on validating these as well as other biomarker candidates, thereby providing better tools for future studies in nutrition and health.

  19. Proteomic biomarkers apolipoprotein A1, truncated transthyretin and connective tissue activating protein III enhance the sensitivity of CA125 for detecting early stage epithelial ovarian cancer.

    Science.gov (United States)

    Clarke, Charlotte H; Yip, Christine; Badgwell, Donna; Fung, Eric T; Coombes, Kevin R; Zhang, Zhen; Lu, Karen H; Bast, Robert C

    2011-09-01

    The low prevalence of ovarian cancer demands both high sensitivity (>75%) and specificity (99.6%) to achieve a positive predictive value of 10% for successful early detection. Utilizing a two stage strategy where serum marker(s) prompt the performance of transvaginal sonography (TVS) in a limited number (2%) of women could reduce the requisite specificity for serum markers to 98%. We have attempted to improve sensitivity by combining CA125 with proteomic markers. Sera from 41 patients with early stage (I/II) and 51 with late stage (III/IV) epithelial ovarian cancer, 40 with benign disease and 99 healthy individuals, were analyzed to measure 7 proteins [Apolipoprotein A1 (Apo-A1), truncated transthyretin (TT), transferrin, hepcidin, ß-2-microglobulin (ß2M), Connective Tissue Activating Protein III (CTAPIII), and Inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4)]. Statistical models were fit by logistic regression, followed by optimization of factors retained in the models determined by optimizing the Akaike Information Criterion. A validation set included 136 stage I ovarian cancers, 140 benign pelvic masses and 174 healthy controls. In a training set analysis, the 3 most effective biomarkers (Apo-A1, TT and CTAPIII) exhibited 54% sensitivity at 98% specificity, CA125 alone produced 68% sensitivity and the combination increased sensitivity to 88%. In a validation set, the marker panel plus CA125 produced a sensitivity of 84% at 98% specificity (P=0.015, McNemar's test). Combining a panel of proteomic markers with CA125 could provide a first step in a sequential two-stage strategy with TVS for early detection of ovarian cancer. Copyright © 2011. Published by Elsevier Inc.

  20. Circulating extracellular vesicles with specific proteome and liver microRNAs are potential biomarkers for liver injury in experimental fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Davide Povero

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is the most common chronic liver disease in both adult and children. Currently there are no reliable methods to determine disease severity, monitor disease progression, or efficacy of therapy, other than an invasive liver biopsy.Choline Deficient L-Amino Acid (CDAA and high fat diets were used as physiologically relevant mouse models of NAFLD. Circulating extracellular vesicles were isolated, fully characterized by proteomics and molecular analyses and compared to control groups. Liver-related microRNAs were isolated from purified extracellular vesicles and liver specimens.We observed statistically significant differences in the level of extracellular vesicles (EVs in liver and blood between two control groups and NAFLD animals. Time-course studies showed that EV levels increase early during disease development and reflect changes in liver histolopathology. EV levels correlated with hepatocyte cell death (r2 = 0.64, p<0.05, fibrosis (r2 = 0.66, p<0.05 and pathological angiogenesis (r2 = 0.71, p<0.05. Extensive characterization of blood EVs identified both microparticles (MPs and exosomes (EXO present in blood of NAFLD animals. Proteomic analysis of blood EVs detected various differentially expressed proteins in NAFLD versus control animals. Moreover, unsupervised hierarchical clustering identified a signature that allowed for discrimination between NAFLD and controls. Finally, the liver appears to be an important source of circulating EVs in NAFLD animals as evidenced by the enrichment in blood with miR-122 and 192--two microRNAs previously described in chronic liver diseases, coupled with a corresponding decrease in expression of these microRNAs in the liver.These findings suggest a potential for using specific circulating EVs as sensitive and specific biomarkers for the noninvasive diagnosis and monitoring of NAFLD.

  1. Fast and Accurate Protein False Discovery Rates on Large-Scale Proteomics Data Sets with Percolator 3.0

    Science.gov (United States)

    The, Matthew; MacCoss, Michael J.; Noble, William S.; Käll, Lukas

    2016-11-01

    Percolator is a widely used software tool that increases yield in shotgun proteomics experiments and assigns reliable statistical confidence measures, such as q values and posterior error probabilities, to peptides and peptide-spectrum matches (PSMs) from such experiments. Percolator's processing speed has been sufficient for typical data sets consisting of hundreds of thousands of PSMs. With our new scalable approach, we can now also analyze millions of PSMs in a matter of minutes on a commodity computer. Furthermore, with the increasing awareness for the need for reliable statistics on the protein level, we compared several easy-to-understand protein inference methods and implemented the best-performing method—grouping proteins by their corresponding sets of theoretical peptides and then considering only the best-scoring peptide for each protein—in the Percolator package. We used Percolator 3.0 to analyze the data from a recent study of the draft human proteome containing 25 million spectra (PM:24870542). The source code and Ubuntu, Windows, MacOS, and Fedora binary packages are available from http://percolator.ms/ under an Apache 2.0 license.

  2. Coupled Transcriptome and Proteome Analysis of Human Lymphotropic Tumor Viruses: Insights on the Detection and Discovery of Viral Genes

    Energy Technology Data Exchange (ETDEWEB)

    Dresang, Lindsay R.; Teuton, Jeremy R.; Feng, Huichen; Jacobs, Jon M.; Camp, David G.; Purvine, Samuel O.; Gritsenko, Marina A.; Li, Zhihua; Smith, Richard D.; Sugden, Bill; Moore, Patrick S.; Chang, Yuan

    2011-12-20

    Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) are related human tumor viruses that cause primary effusion lymphomas (PEL) and Burkitt's lymphomas (BL), respectively. Viral genes expressed in naturally-infected cancer cells contribute to disease pathogenesis; knowing which viral genes are expressed is critical in understanding how these viruses cause cancer. To evaluate the expression of viral genes, we used high-resolution separation and mass spectrometry coupled with custom tiling arrays to align the viral proteomes and transcriptomes of three PEL and two BL cell lines under latent and lytic culture conditions. Results The majority of viral genes were efficiently detected at the transcript and/or protein level on manipulating the viral life cycle. Overall the correlation of expressed viral proteins and transcripts was highly complementary in both validating and providing orthogonal data with latent/lytic viral gene expression. Our approach also identified novel viral genes in both KSHV and EBV, and extends viral genome annotation. Several previously uncharacterized genes were validated at both transcript and protein levels. Conclusions This systems biology approach coupling proteome and transcriptome measurements provides a comprehensive view of viral gene expression that could not have been attained using each methodology independently. Detection of viral proteins in combination with viral transcripts is a potentially powerful method for establishing virus-disease relationships.

  3. MAPU: Max-Planck Unified database of organellar, cellular, tissue and body fluid proteomes

    DEFF Research Database (Denmark)

    Zhang, Yanling; Zhang, Yong; Adachi, Jun

    2007-01-01

    and stringent validation criteria, false positive identification rates in MAPU are lower than 1:1000. Thus MAPU datasets can serve as reference proteomes in biomarker discovery. MAPU contains the peptides identifying each protein, measured masses, scores and intensities and is freely available at http......://www.mapuproteome.com using a clickable interface of cell or body parts. Proteome data can be queried across proteomes by protein name, accession number, sequence similarity, peptide sequence and annotation information. More than 4500 mouse and 2500 human proteins have already been identified in at least one proteome. Basic...... annotation information and links to other public databases are provided in MAPU and we plan to add further analysis tools....

  4. Proteomic analysis in type 2 diabetes patients before and after a very low calorie diet reveals potential disease state and intervention specific biomarkers.

    Directory of Open Access Journals (Sweden)

    Maria A Sleddering

    Full Text Available Very low calorie diets (VLCD with and without exercise programs lead to major metabolic improvements in obese type 2 diabetes patients. The mechanisms underlying these improvements have so far not been elucidated fully. To further investigate the mechanisms of a VLCD with or without exercise and to uncover possible biomarkers associated with these interventions, blood samples were collected from 27 obese type 2 diabetes patients before and after a 16-week VLCD (Modifast ∼ 450 kcal/day. Thirteen of these patients followed an exercise program in addition to the VCLD. Plasma was obtained from 27 lean and 27 obese controls as well. Proteomic analysis was performed using mass spectrometry (MS and targeted multiple reaction monitoring (MRM and a large scale isobaric tags for relative and absolute quantitation (iTRAQ approach. After the 16-week VLCD, there was a significant decrease in body weight and HbA1c in all patients, without differences between the two intervention groups. Targeted MRM analysis revealed differences in several proteins, which could be divided in diabetes-associated (fibrinogen, transthyretin, obesity-associated (complement C3, and diet-associated markers (apolipoproteins, especially apolipoprotein A-IV. To further investigate the effects of exercise, large scale iTRAQ analysis was performed. However, no proteins were found showing an exercise effect. Thus, in this study, specific proteins were found to be differentially expressed in type 2 diabetes patients versus controls and before and after a VLCD. These proteins are potential disease state and intervention specific biomarkers.Controlled-Trials.com ISRCTN76920690.

  5. Analysis of hard protein corona composition on selective iron oxide nanoparticles by MALDI-TOF mass spectrometry: identification and amplification of a hidden mastitis biomarker in milk proteome.

    Science.gov (United States)

    Magro, Massimiliano; Zaccarin, Mattia; Miotto, Giovanni; Da Dalt, Laura; Baratella, Davide; Fariselli, Piero; Gabai, Gianfranco; Vianello, Fabio

    2018-05-01

    Surface active maghemite nanoparticles (SAMNs) are able to recognize and bind selected proteins in complex biological systems, forming a hard protein corona. Upon a 5-min incubation in bovine whey from mastitis-affected cows, a significant enrichment of a single peptide characterized by a molecular weight at 4338 Da originated from the proteolysis of a S1 -casein was observed. Notably, among the large number of macromolecules in bovine milk, the detection of this specific peptide can hardly be accomplished by conventional analytical techniques. The selective formation of a stable binding between the peptide and SAMNs is due to the stability gained by adsorption-induced surface restructuration of the nanomaterial. We attributed the surface recognition properties of SAMNs to the chelation of iron(III) sites on their surface by sterically compatible carboxylic groups of the peptide. The specific peptide recognition by SAMNs allows its easy determination by MALDI-TOF mass spectrometry, and a threshold value of its normalized peak intensity was identified by a logistic regression approach and suggested for the rapid diagnosis of the pathology. Thus, the present report proposes the analysis of hard protein corona on nanomaterials as a perspective for developing fast analytical procedures for the diagnosis of mastitis in cows. Moreover, the huge simplification of proteome complexity by exploiting the selectivity derived by the peculiar SAMN surface topography, due to the iron(III) distribution pattern, could be of general interest, leading to competitive applications in food science and in biomedicine, allowing the rapid determination of hidden biomarkers by a cutting edge diagnostic strategy. Graphical abstract The topography of iron(III) sites on surface active maghemite nanoparticles (SAMNs) allows the recognition of sterically compatible carboxylic groups on proteins and peptides in complex biological matrixes. The analysis of hard protein corona on SAMNs led to the

  6. Comparison of serum fractionation methods by data independent label-free proteomics

    Directory of Open Access Journals (Sweden)

    D. Baiwir

    2015-12-01

    Full Text Available Off-line sample prefractionations applied prior to biomarker discovery proteomics are options to enable more protein identifications and detect low-abundance proteins. This work compared five commercial methods efficiency to raw serum analysis using label-free proteomics. The variability of the protein quantities determined for each process was similar to the unprefractionated serum. A 49% increase in protein identifications and 12.2% of reliable quantification were obtained. A 61 times lower limit of protein quantitation was reached compared to protein concentrations observed in raw serum. The concentrations of detected proteins were confronted to estimated reference values.

  7. Tissue-based quantitative proteome analysis of human hepatocellular carcinoma using tandem mass tags.

    Science.gov (United States)

    Megger, Dominik Andre; Rosowski, Kristin; Ahrens, Maike; Bracht, Thilo; Eisenacher, Martin; Schlaak, Jörg F; Weber, Frank; Hoffmann, Andreas-Claudius; Meyer, Helmut E; Baba, Hideo A; Sitek, Barbara

    2017-03-01

    Human hepatocellular carcinoma (HCC) is a severe malignant disease, and accurate and reliable diagnostic markers are still needed. This study was aimed for the discovery of novel marker candidates by quantitative proteomics. Proteomic differences between HCC and nontumorous liver tissue were studied by mass spectrometry. Among several significantly upregulated proteins, translocator protein 18 (TSPO) and Ras-related protein Rab-1A (RAB1A) were selected for verification by immunohistochemistry in an independent cohort. For RAB1A, a high accuracy for the discrimination of HCC and nontumorous liver tissue was observed. RAB1A was verified to be a potent biomarker candidate for HCC.

  8. Proteomic analysis of apoplastic fluid of Coffea arabica leaves highlights novel biomarkers for resistance against Hemileia vastatrix

    Directory of Open Access Journals (Sweden)

    Leonor eGuerra-Guimarães

    2015-06-01

    Full Text Available A proteomic analysis of the apoplastic fluid (APF of coffee leaves was conducted to investigate the cellular processes associated with incompatible (resistant and compatible (susceptible Coffea arabica-Hemileia vastatrix interactions, during the 24-96 hai period. The APF proteins were extracted by leaf vacuum infiltration and protein profiles were obtained by 2-DE. The comparative analysis of the gels revealed 210 polypeptide spots whose volume changed in abundance between samples (control, resistant and susceptible during the 24-96 hai period. The proteins identified were involved mainly in protein degradation, cell wall metabolism and stress/defense responses, most of them being hydrolases (around 70%, particularly sugar hydrolases and peptidases/proteases. The changes in the APF proteome along the infection process revealed two distinct phases of defense responses, an initial/basal one (24-48 hai and a late/specific one (72-96 hai. Compared to susceptibility, resistance was associated with a higher number of proteins, which was more evident in the late/specific phase. Proteins involved in the resistance response were mainly, glycohydrolases of the cell wall, serine proteases and pathogen related-like proteins (PR-proteins, suggesting that some of these proteins could be putative candidates for resistant markers of coffee to H. vastatrix. Antibodies were produced against chitinase, pectin methylesterase, serine carboxypeptidase, reticuline oxidase and subtilase and by an immunodetection assay it was observed an increase of these proteins in the resistant sample. With this methodology we have identified proteins that are candidate markers of resistance and that will be useful in coffee breeding programs to assist in the selection of cultivars with resistance to H. vastatrix.

  9. Proteomic profiling of mammary carcinomas identifies C7orf24, a gamma-glutamyl cyclotransferase, as a potential cancer biomarker

    DEFF Research Database (Denmark)

    Gromov, Pavel; Gromova, Irina; Friis, Esbern

    2010-01-01

    Breast cancer is the leading cause of cancer deaths in women today and is the most common cancer (excluding skin cancers) among women in the Western world. Although cancers detected by screening mammography are significantly smaller than nonscreening ones, noninvasive biomarkers for detection...... in different types of cancer suggests deregulation of C7orf24 to be a general event in epithelial carcinogenesis, indicating that this protein may play an important role in cancer cell biology and thus constitute a novel therapeutic target. Furthermore, as C7orf24 is externalized to the tissue extracellular...... fluid and can be detected in serum, this protein also represents a potential serological marker....

  10. An individual urinary proteome analysis in normal human beings to define the minimal sample number to represent the normal urinary proteome

    Directory of Open Access Journals (Sweden)

    Liu Xuejiao

    2012-11-01

    Full Text Available Abstract Background The urinary proteome has been widely used for biomarker discovery. A urinary proteome database from normal humans can provide a background for discovery proteomics and candidate proteins/peptides for targeted proteomics. Therefore, it is necessary to define the minimum number of individuals required for sampling to represent the normal urinary proteome. Methods In this study, inter-individual and inter-gender variations of urinary proteome were taken into consideration to achieve a representative database. An individual analysis was performed on overnight urine samples from 20 normal volunteers (10 males and 10 females by 1DLC/MS/MS. To obtain a representative result of each sample, a replicate 1DLCMS/MS analysis was performed. The minimal sample number was estimated by statistical analysis. Results For qualitative analysis, less than 5% of new proteins/peptides were identified in a male/female normal group by adding a new sample when the sample number exceeded nine. In addition, in a normal group, the percentage of newly identified proteins/peptides was less than 5% upon adding a new sample when the sample number reached 10. Furthermore, a statistical analysis indicated that urinary proteomes from normal males and females showed different patterns. For quantitative analysis, the variation of protein abundance was defined by spectrum count and western blotting methods. And then the minimal sample number for quantitative proteomic analysis was identified. Conclusions For qualitative analysis, when considering the inter-individual and inter-gender variations, the minimum sample number is 10 and requires a balanced number of males and females in order to obtain a representative normal human urinary proteome. For quantitative analysis, the minimal sample number is much greater than that for qualitative analysis and depends on the experimental methods used for quantification.

  11. Proteomics Core

    Data.gov (United States)

    Federal Laboratory Consortium — Proteomics Core is the central resource for mass spectrometry based proteomics within the NHLBI. The Core staff help collaborators design proteomics experiments in a...

  12. Discovery of putative salivary biomarkers for Sjögren's syndrome using high resolution mass spectrometry and bioinformatics.

    Science.gov (United States)

    Zoukhri, Driss; Rawe, Ian; Singh, Mabi; Brown, Ashley; Kublin, Claire L; Dawson, Kevin; Haddon, William F; White, Earl L; Hanley, Kathleen M; Tusé, Daniel; Malyj, Wasyl; Papas, Athena

    2012-03-01

    The purpose of the current study was to determine if saliva contains biomarkers that can be used as diagnostic tools for Sjögren's syndrome (SjS). Twenty seven SjS patients and 27 age-matched healthy controls were recruited for these studies. Unstimulated glandular saliva was collected from the Wharton's duct using a suction device. Two µl of salvia were processed for mass spectrometry analyses on a prOTOF 2000 matrix-assisted laser desorption/ionization orthogonal time of flight (MALDI O-TOF) mass spectrometer. Raw data were analyzed using bioinformatic tools to identify biomarkers. MALDI O-TOF MS analyses of saliva samples were highly reproducible and the mass spectra generated were very rich in peptides and peptide fragments in the 750-7,500 Da range. Data analysis using bioinformatic tools resulted in several classification models being built and several biomarkers identified. One model based on 7 putative biomarkers yielded a sensitivity of 97.5%, specificity of 97.8% and an accuracy of 97.6%. One biomarker was present only in SjS samples and was identified as a proteolytic peptide originating from human basic salivary proline-rich protein 3 precursor. We conclude that salivary biomarkers detected by high-resolution mass spectrometry coupled with powerful bioinformatic tools offer the potential to serve as diagnostic/prognostic tools for SjS.

  13. Discovery of Novel Secreted Virulence Factors from Salmonella enterica Serovar Typhimurium by Proteomic Analysis of Culture Supernatants

    Energy Technology Data Exchange (ETDEWEB)

    Niemann, George; Brown, Roslyn N.; Gustin, Jean K.; Stufkens, Afke; Shaikh-Kidwai, Afshan S.; Li, Jie; McDermott, Jason E.; Brewer, Heather M.; Schepmoes, Athena A.; Smith, Richard D.; Adkins, Joshua N.; Heffron, Fred

    2011-01-01

    The intracellular pathogen Salmonella enterica serovar Typhimurium is a leading cause of acute gastroenteritis in the world. This pathogen has two type-III secretion systems (TTSS) necessary for virulence that are encoded in Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) and are expressed during extracellular or intracellular infectious states, respectively, to deliver virulence factors (effectors) to the host cell cytoplasm. While many have been identified and at least partially characterized, the full repertoire of effectors has not been catalogued. In this mass spectrometry-based proteomics study, we identified effector proteins secreted under minimal acidic medium growth conditions that induced the SPI-2 TTSS and its effectors, and compared the secretome from the parent strain to the secretome from strains missing either essential (SsaK) or regulatory components (SsaL) of the SPI-2 secretion apparatus. We identified 75% of the known TTSS effector repertoire. Excluding translocon components, 95% of the known effectors were biased for identification in the ssaL mutant background, which demonstrated that SsaL regulates SPI-2 type III secretion. To confirm secretion to animal cells, we made translational fusions of several of the best candidates to the calmodulin-dependent adenylate cyclase of Bordetella pertussis and assayed cAMP levels of infected J774 macrophage-like cells. From these infected cells we identified six new TTSS effectors and two others that are secreted independent of TTSS. Our results substantiate reports of additional secretion systems encoded by Salmonella other than TTSS.

  14. Intraluminal proteome and peptidome of human urinary extracellular vesicles.

    Science.gov (United States)

    Liu, Xinyu; Chinello, Clizia; Musante, Luca; Cazzaniga, Marta; Tataruch, Dorota; Calzaferri, Giulio; James Smith, Andrew; De Sio, Gabriele; Magni, Fulvio; Zou, Hequn; Holthofer, Harry

    2015-06-01

    Urinary extracellular vesicles (UEVs) are a novel source for disease biomarker discovery. However, Tamm-Horsfall protein (THP) is still a challenge for proteomic analysis since it can inhibit detection of low-abundance proteins. Here, we introduce a new approach that does not involve an ultracentrifugation step to enrich vesicles and that reduces the amount of THP to manageable levels. UEVs were dialyzed and ultrafiltered after reduction and alkylation. The retained fraction was digested with trypsin to reduce the remaining THP and incubated with deoxycholate (DOC). The internal peptidome and internal proteome were analyzed by LC-ESI-MS. A total of 942 different proteins and 3115 unique endogenous peptide fragments deriving from 973 different protein isoforms were identified. Around 82% of the key endosomal sorting complex required for transport components of UEVs generation could be detected from the intraluminal content. Our UEVs preparation protocol provides a simplified way to investigate the intraluminal proteome and peptidome, in particular the subpopulation of UEVs of the trypsin-resistant class of exosomes (positive for tumor susceptibility gene101) and eliminates the majority of interfering proteins such as THP. This method allows the possibility to study endoproteome and endopeptidome of UEVs, thus greatly facilitating biomarker discovery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Prediction of acute coronary syndromes by urinary proteome analysis.

    Directory of Open Access Journals (Sweden)

    Nay M Htun

    Full Text Available Identification of individuals who are at risk of suffering from acute coronary syndromes (ACS may allow to introduce preventative measures. We aimed to identify ACS-related urinary peptides, that combined as a pattern can be used as prognostic biomarker. Proteomic data of 252 individuals enrolled in four prospective studies from Australia, Europe and North America were analyzed. 126 of these had suffered from ACS within a period of up to 5 years post urine sampling (cases. Proteomic analysis of 84 cases and 84 matched controls resulted in the discovery of 75 ACS-related urinary peptides. Combining these to a peptide pattern, we established a prognostic biomarker named Acute Coronary Syndrome Predictor 75 (ACSP75. ACSP75 demonstrated reasonable prognostic discrimination (c-statistic = 0.664, which was similar to Framingham risk scoring (c-statistics = 0.644 in a validation cohort of 42 cases and 42 controls. However, generating by a composite algorithm named Acute Coronary Syndrome Composite Predictor (ACSCP, combining the biomarker pattern ACSP75 with the previously established urinary proteomic biomarker CAD238 characterizing coronary artery disease as the underlying aetiology, and age as a risk factor, further improved discrimination (c-statistic = 0.751 resulting in an added prognostic value over Framingham risk scoring expressed by an integrated discrimination improvement of 0.273 ± 0.048 (P < 0.0001 and net reclassification improvement of 0.405 ± 0.113 (P = 0.0007. In conclusion, we demonstrate that urinary peptide biomarkers have the potential to predict future ACS events in asymptomatic patients. Further large scale studies are warranted to determine the role of urinary biomarkers in clinical practice.

  16. Proteomic analysis of serum of workers occupationally exposed to arsenic, cadmium, and lead for biomarker research: A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Kossowska, Barbara, E-mail: barbara@immchem.am.wroc.pl [Department of Chemistry and Immunochemistry, Wroclaw Medical University, Bujwida 44a, 50-345 Wroclaw (Poland); Dudka, Ilona, E-mail: ilona.dudka@pwr.wroc.pl [Medicinal Chemistry and Microbiology Group, Department of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Bugla-Ploskonska, Gabriela, E-mail: gabriela.bugla-ploskonska@microb.uni.wroc.pl [Department of Microbiology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw (Poland); Szymanska-Chabowska, Anna, E-mail: aszyman@mp.pl [Department of Internal and Occupational Medicine, Wroclaw Medical University, Wybrzeze L. Pasteura 4, 50-367 Wroclaw (Poland); Doroszkiewicz, Wlodzimierz, E-mail: wlodzimierz.doroszkiewicz@microb.uni.wroc.pl [Department of Microbiology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw (Poland); Gancarz, Roman, E-mail: roman.gancarz@pwr.wroc.pl [Medicinal Chemistry and Microbiology Group, Department of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Andrzejak, Ryszard, E-mail: ryszard@chzaw.am.wroc.pl [Department of Internal and Occupational Medicine, Wroclaw Medical University, Wybrzeze L. Pasteura 4, 50-367 Wroclaw (Poland); Antonowicz-Juchniewicz, Jolanta, E-mail: jola@chzaw.am.wroc.pl [Department of Internal and Occupational Medicine, Wroclaw Medical University, Wybrzeze L. Pasteura 4, 50-367 Wroclaw (Poland)

    2010-10-15

    The main factor of environmental contamination is the presence of the heavy metals lead, cadmium, and arsenic. The aim of serum protein profile analysis of people chronically exposed to heavy metals is to find protein markers of early pathological changes. The study was conducted in a group of 389 healthy men working in copper foundry and 45 age-matched non-exposed healthy men. Toxicological test samples included whole blood, serum, and urine. Thirty-seven clinical parameters were measured. Based on the parameters values of the healthy volunteers, the centroid in 37-dimensional space was calculated. The individuals in the metal-exposed and control groups were ordered based on the Euclidean distance from the centroid defined by the first component according to Principal Component Analysis (PCA). Serum samples of two individuals, one from the control and one from the metal-exposed group, were chosen for proteomic analysis. In optimized conditions of two-dimensional gel electrophoresis (2-DE), two protein maps were obtained representing both groups. Twenty-eight corresponding protein spots from both protein maps were chosen and identified based on PDQuest analysis and the SWISS-2DPAGE database. From a panel of six proteins with differences in expression greater than a factor of two, three potential markers with the highest differences were selected: hemoglobin-spot 26 (pI 7.05, Mw 10.53), unidentified protein-spot 27 (pI 6.73, Mw 10.17), and unidentified protein-spot 25 (pI 5.75, Mw 12.07). Further studies are required to prove so far obtained results. Identified proteins could serve as potential markers of preclinical changes and could be in the future included in biomonitoring of people exposed to heavy metals.

  17. Proteomic analysis of serum of workers occupationally exposed to arsenic, cadmium, and lead for biomarker research: A preliminary study

    International Nuclear Information System (INIS)

    Kossowska, Barbara; Dudka, Ilona; Bugla-Ploskonska, Gabriela; Szymanska-Chabowska, Anna; Doroszkiewicz, Wlodzimierz; Gancarz, Roman; Andrzejak, Ryszard; Antonowicz-Juchniewicz, Jolanta

    2010-01-01

    The main factor of environmental contamination is the presence of the heavy metals lead, cadmium, and arsenic. The aim of serum protein profile analysis of people chronically exposed to heavy metals is to find protein markers of early pathological changes. The study was conducted in a group of 389 healthy men working in copper foundry and 45 age-matched non-exposed healthy men. Toxicological test samples included whole blood, serum, and urine. Thirty-seven clinical parameters were measured. Based on the parameters values of the healthy volunteers, the centroid in 37-dimensional space was calculated. The individuals in the metal-exposed and control groups were ordered based on the Euclidean distance from the centroid defined by the first component according to Principal Component Analysis (PCA). Serum samples of two individuals, one from the control and one from the metal-exposed group, were chosen for proteomic analysis. In optimized conditions of two-dimensional gel electrophoresis (2-DE), two protein maps were obtained representing both groups. Twenty-eight corresponding protein spots from both protein maps were chosen and identified based on PDQuest analysis and the SWISS-2DPAGE database. From a panel of six proteins with differences in expression greater than a factor of two, three potential markers with the highest differences were selected: hemoglobin-spot 26 (pI 7.05, Mw 10.53), unidentified protein-spot 27 (pI 6.73, Mw 10.17), and unidentified protein-spot 25 (pI 5.75, Mw 12.07). Further studies are required to prove so far obtained results. Identified proteins could serve as potential markers of preclinical changes and could be in the future included in biomonitoring of people exposed to heavy metals.

  18. Discovery of novel differentiation markers in the early stage of chondrogenesis by glycoform-focused reverse proteomics and genomics.

    Science.gov (United States)

    Ishihara, Takeshi; Kakiya, Kiyoshi; Takahashi, Koji; Miwa, Hiroto; Rokushima, Masatomo; Yoshinaga, Tomoyo; Tanaka, Yoshikazu; Ito, Takaomi; Togame, Hiroko; Takemoto, Hiroshi; Amano, Maho; Iwasaki, Norimasa; Minami, Akio; Nishimura, Shin-Ichiro

    2014-01-01

    Osteoarthritis (OA) is one of the most common chronic diseases among adults, especially the elderly, which is characterized by destruction of the articular cartilage. Despite affecting more than 100 million individuals all over the world, therapy is currently limited to treating pain, which is a principal symptom of OA. New approaches to the treatment of OA that induce regeneration and repair of cartilage are strongly needed. To discover potent markers for chondrogenic differentiation, glycoform-focused reverse proteomics and genomics were performed on the basis of glycoblotting-based comprehensive approach. Expression levels of high-mannose type N-glycans were up-regulated significantly at the late stage of differentiation of the mouse chondroprogenitor cells. Among 246 glycoproteins carrying this glycotype identified by ConA affinity chromatography and LC/MS, it was demonstrated that 52% are classified as cell surface glycoproteins. Gene expression levels indicated that mRNAs for 15 glycoproteins increased distinctly in the earlier stages during differentiation compared with Type II collagen. The feasibility of mouse chondrocyte markers in human chondrogenesis model was demonstrated by testing gene expression levels of these 15 glycoproteins during differentiation in human mesenchymal stem cells. The results showed clearly an evidence of up-regulation of 5 genes, ectonucleotide pyrophosphatase/phosphodiesterase family member 1, collagen alpha-1(III) chain, collagen alpha-1(XI) chain, aquaporin-1, and netrin receptor UNC5B, in the early stages of differentiation. These cell surface 5 glycoproteins become highly sensitive differentiation markers of human chondrocytes that contribute to regenerative therapies, and development of novel therapeutic reagents. © 2013.

  19. Proteomics-Based Characterization of the Humoral Immune Response in Sporotrichosis: Toward Discovery of Potential Diagnostic and Vaccine Antigens.

    Science.gov (United States)

    Rodrigues, Anderson Messias; Fernandes, Geisa Ferreira; Araujo, Leticia Mendes; Della Terra, Paula Portella; dos Santos, Priscila Oliveira; Pereira, Sandro Antonio; Schubach, Tânia Maria Pacheco; Burger, Eva; Lopes-Bezerra, Leila Maria; de Camargo, Zoilo Pires

    2015-01-01

    Sporothrix schenckii and associated species are agents of human and animal sporotrichosis that cause large sapronoses and zoonoses worldwide. Epidemiological surveillance has highlighted an overwhelming occurrence of the highly pathogenic fungus Sporothrix brasiliensis during feline outbreaks, leading to massive transmissions to humans. Early diagnosis of feline sporotrichosis by demonstrating the presence of a surrogate marker of infection can have a key role for selecting appropriate disease control measures and minimizing zoonotic transmission to humans. We explored the presence and diversity of serum antibodies (IgG) specific against Sporothrix antigens in cats with sporotrichosis and evaluated the utility of these antibodies for serodiagnosis. Antigen profiling included protein extracts from the closest known relatives S. brasiliensis and S. schenckii. Enzyme-linked immunosorbent assays and immunoblotting enabled us to characterize the major antigens of feline sporotrichosis from sera from cats with sporotrichosis (n = 49), healthy cats (n = 19), and cats with other diseases (n = 20). Enzyme-linked immunosorbent assay-based quantitation of anti-Sporothrix IgG exhibited high sensitivity and specificity in cats with sporotrichosis (area under the curve, 1.0; 95% confidence interval, 0.94-1; Psporotrichosis. Two-dimensional immunoblotting revealed six IgG-reactive isoforms of gp60 in the S. brasiliensis proteome, similar to the humoral response found in human sporotrichosis. A convergent IgG-response in various hosts (mice, cats, and humans) has important implications for our understanding of the coevolution of Sporothrix and its warm-blooded hosts. We propose that 3-carboxymuconate cyclase has potential for the serological diagnosis of sporotrichosis and as target for the development of an effective multi-species vaccine against sporotrichosis in animals and humans.

  20. Mining the human urine proteome for monitoring renal transplant injury

    Energy Technology Data Exchange (ETDEWEB)

    Sigdel, Tara K.; Gao, Yuqian; He, Jintang; Wang, Anyou; Nicora, Carrie D.; Fillmore, Thomas L.; Shi, Tujin; Webb-Robertson, Bobbie-Jo; Smith, Richard D.; Qian, Wei-Jun; Salvatierra, Oscar; Camp, David G.; Sarwal, Minnie M.

    2016-06-01

    The human urinary proteome reflects systemic and inherent renal injury perturbations and can be analyzed to harness specific biomarkers for different kidney transplant injury states. 396 unique urine samples were collected contemporaneously with an allograft biopsy from 396 unique kidney transplant recipients. Centralized, blinded histology on the graft was used to classify matched urine samples into categories of acute rejection (AR), chronic allograft nephropathy (CAN), BK virus nephritis (BKVN), and stable graft (STA). Liquid chromatography–mass spectrometry (LC-MS) based proteomics using iTRAQ based discovery (n=108) and global label-free LC-MS analyses of individual samples (n=137) for quantitative proteome assessment were used in the discovery step. Selected reaction monitoring (SRM) was applied to identify and validate minimal urine protein/peptide biomarkers to accurately segregate organ injury causation and pathology on unique urine samples (n=151). A total of 958 proteins were initially quantified by iTRAQ, 87% of which were also identified among 1574 urine proteins detected in LC-MS validation. 103 urine proteins were significantly (p<0.05) perturbed in injury and enriched for humoral immunity, complement activation, and lymphocyte trafficking. A set of 131 peptides corresponding to 78 proteins were assessed by SRM for their significance in an independent sample cohort. A minimal set of 35 peptides mapping to 33 proteins, were modeled to segregate different injury groups (AUC =93% for AR, 99% for CAN, 83% for BKVN). Urinary proteome discovery and targeted validation identified urine protein fingerprints for non-invasive differentiation of kidney transplant injuries, thus opening the door for personalized immune risk assessment and therapy.

  1. Proteomic Profiling for Identification of Novel Biomarkers Differentially Expressed in Human Ovaries from Polycystic Ovary Syndrome Patients.

    Directory of Open Access Journals (Sweden)

    Li Li

    Full Text Available To identify differential protein expression pattern associated with polycystic ovary syndrome (PCOS.Twenty women were recruited for the study, ten with PCOS as a test group and ten without PCOS as a control group. Differential in-gel electrophoresis (DIGE analysis and mass spectroscopy were employed to identify proteins that were differentially expressed between the PCOS and normal ovaries. The differentially expressed proteins were further validated by western blot (WB and immunohistochemistry (IHC.DIGE analysis revealed eighteen differentially expressed proteins in the PCOS ovaries of which thirteen were upregulated, and five downregulated. WB and IHC confirmed the differential expression of membrane-associated progesterone receptor component 1 (PGRMC1, retinol-binding protein 1 (RBP1, heat shock protein 90B1, calmodulin 1, annexin A6, and tropomyosin 2. Also, WB analysis revealed significantly (P<0.05 higher expression of PGRMC1 and RBP1 in PCOS ovaries as compared to the normal ovaries. The differential expression of the proteins was also validated by IHC.The present study identified novel differentially expressed proteins in the ovarian tissues of women with PCOS that can serve as potential biomarkers for the diagnosis and development of novel therapeutics for the treatment of PCOS using molecular interventions.

  2. An integrated workflow for multiplex CSF proteomics and peptidomics-identification of candidate cerebrospinal fluid biomarkers of Alzheimer's disease.

    Science.gov (United States)

    Hölttä, Mikko; Minthon, Lennart; Hansson, Oskar; Holmén-Larsson, Jessica; Pike, Ian; Ward, Malcolm; Kuhn, Karsten; Rüetschi, Ulla; Zetterberg, Henrik; Blennow, Kaj; Gobom, Johan

    2015-02-06

    Many disease processes in the brain are reflected in the protein composition of the cerebrospinal fluid (CSF). In addition to proteins, CSF also contains a large number of endogenous peptides whose potential as disease biomarkers largely remains to be explored. We have developed a novel workflow in which multiplex isobaric labeling is used for simultaneous quantification of endogenous CSF peptides and proteins by liquid chromatography coupled with mass spectrometry. After the labeling of CSF samples, endogenous peptides are separated from proteins by ultrafiltration. The proteins retained on the filters are trypsinized, and the tryptic peptides are collected separately. We evaluated this technique in a comparative pilot study of CSF peptide and protein profiles in eight patients with Alzheimer's disease (AD) and eight nondemented controls. We identified several differences between the AD and control group among endogenous peptides derived from proteins known to be associated with AD, including neurosecretory protein VGF (ratios AD/controls 0.45-0.81), integral membrane protein 2B (ratios AD/controls 0.72-0.84), and metallothionein-3 (ratios AD/controls 0.51-0.61). Analysis of tryptic peptides identified several proteins that were altered in the AD group, some of which have previously been reported as changed in AD, for example, VGF (ratio AD/controls 0.70).

  3. Proteomic Profiling for Identification of Novel Biomarkers Differentially Expressed in Human Ovaries from Polycystic Ovary Syndrome Patients.

    Science.gov (United States)

    Li, Li; Zhang, Jiangyu; Deng, Qingshan; Li, Jieming; Li, Zhengfen; Xiao, Yao; Hu, Shuiwang; Li, Tiantian; Tan, Qiuxiao; Li, Xiaofang; Luo, Bingshu; Mo, Hui

    2016-01-01

    To identify differential protein expression pattern associated with polycystic ovary syndrome (PCOS). Twenty women were recruited for the study, ten with PCOS as a test group and ten without PCOS as a control group. Differential in-gel electrophoresis (DIGE) analysis and mass spectroscopy were employed to identify proteins that were differentially expressed between the PCOS and normal ovaries. The differentially expressed proteins were further validated by western blot (WB) and immunohistochemistry (IHC). DIGE analysis revealed eighteen differentially expressed proteins in the PCOS ovaries of which thirteen were upregulated, and five downregulated. WB and IHC confirmed the differential expression of membrane-associated progesterone receptor component 1 (PGRMC1), retinol-binding protein 1 (RBP1), heat shock protein 90B1, calmodulin 1, annexin A6, and tropomyosin 2. Also, WB analysis revealed significantly (Povaries as compared to the normal ovaries. The differential expression of the proteins was also validated by IHC. The present study identified novel differentially expressed proteins in the ovarian tissues of women with PCOS that can serve as potential biomarkers for the diagnosis and development of novel therapeutics for the treatment of PCOS using molecular interventions.

  4. Proteomics-Based Characterization of the Humoral Immune Response in Sporotrichosis: Toward Discovery of Potential Diagnostic and Vaccine Antigens.

    Directory of Open Access Journals (Sweden)

    Anderson Messias Rodrigues

    Full Text Available Sporothrix schenckii and associated species are agents of human and animal sporotrichosis that cause large sapronoses and zoonoses worldwide. Epidemiological surveillance has highlighted an overwhelming occurrence of the highly pathogenic fungus Sporothrix brasiliensis during feline outbreaks, leading to massive transmissions to humans. Early diagnosis of feline sporotrichosis by demonstrating the presence of a surrogate marker of infection can have a key role for selecting appropriate disease control measures and minimizing zoonotic transmission to humans.We explored the presence and diversity of serum antibodies (IgG specific against Sporothrix antigens in cats with sporotrichosis and evaluated the utility of these antibodies for serodiagnosis. Antigen profiling included protein extracts from the closest known relatives S. brasiliensis and S. schenckii. Enzyme-linked immunosorbent assays and immunoblotting enabled us to characterize the major antigens of feline sporotrichosis from sera from cats with sporotrichosis (n = 49, healthy cats (n = 19, and cats with other diseases (n = 20.Enzyme-linked immunosorbent assay-based quantitation of anti-Sporothrix IgG exhibited high sensitivity and specificity in cats with sporotrichosis (area under the curve, 1.0; 95% confidence interval, 0.94-1; P<0.0001 versus controls. The two sets of Sporothrix antigens were remarkably cross-reactive, supporting the hypothesis that antigenic epitopes may be conserved among closely related agents. One-dimensional immunoblotting indicated that 3-carboxymuconate cyclase (a 60-kDa protein in S. brasiliensis and a 70-kDa protein in S. schenckii is the immunodominant antigen in feline sporotrichosis. Two-dimensional immunoblotting revealed six IgG-reactive isoforms of gp60 in the S. brasiliensis proteome, similar to the humoral response found in human sporotrichosis.A convergent IgG-response in various hosts (mice, cats, and humans has important implications for our

  5. Spatiotemporal proteomic analyses during pancreas cancer progression identifies serine/threonine stress kinase 4 (STK4) as a novel candidate biomarker for early stage disease.

    Science.gov (United States)

    Mirus, Justin E; Zhang, Yuzheng; Hollingsworth, Michael A; Solan, Joell L; Lampe, Paul D; Hingorani, Sunil R

    2014-12-01

    Pancreas cancer, or pancreatic ductal adenocarcinoma, is the deadliest of solid tumors, with a five-year survival rate of pancreas cancer. Mouse models that accurately recapitulate the human condition allow disease tracking from inception to invasion and can therefore be useful for studying early disease stages in which surgical resection is possible. Using a highly faithful mouse model of pancreas cancer in conjunction with a high-density antibody microarray containing ∼2500 antibodies, we interrogated the pancreatic tissue proteome at preinvasive and invasive stages of disease. The goal was to discover early stage tissue markers of pancreas cancer and follow them through histologically defined stages of disease using cohorts of mice lacking overt clinical signs and symptoms and those with end-stage metastatic disease, respectively. A panel of seven up-regulated proteins distinguishing pancreas cancer from normal pancreas was validated, and their levels were assessed in tissues collected at preinvasive, early invasive, and moribund stages of disease. Six of the seven markers also differentiated pancreas cancer from an experimental model of chronic pancreatitis. The levels of serine/threonine stress kinase 4 (STK4) increased between preinvasive and invasive stages, suggesting its potential as a tissue biomarker, and perhaps its involvement in progression from precursor pancreatic intraepithelial neoplasia to pancreatic ductal adenocarcinoma. Immunohistochemistry of STK4 at different stages of disease revealed a dynamic expression pattern further implicating it in early tumorigenic events. Immunohistochemistry of a panel of human pancreas cancers confirmed that STK4 levels were increased in tumor epithelia relative to normal tissue. Overall, this integrated approach yielded several tissue markers that could serve as signatures of disease stage, including early (resectable), and therefore clinically meaningful, stages. © 2014 by The American Society for

  6. Quantitative Clinical Chemistry Proteomics (qCCP) using mass spectrometry: general characteristics and application.

    Science.gov (United States)

    Lehmann, Sylvain; Hoofnagle, Andrew; Hochstrasser, Denis; Brede, Cato; Glueckmann, Matthias; Cocho, José A; Ceglarek, Uta; Lenz, Christof; Vialaret, Jérôme; Scherl, Alexander; Hirtz, Christophe

    2013-05-01

    Proteomics studies typically aim to exhaustively detect peptides/proteins in a given biological sample. Over the past decade, the number of publications using proteomics methodologies has exploded. This was made possible due to the availability of high-quality genomic data and many technological advances in the fields of microfluidics and mass spectrometry. Proteomics in biomedical research was initially used in 'functional' studies for the identification of proteins involved in pathophysiological processes, complexes and networks. Improved sensitivity of instrumentation facilitated the analysis of even more complex sample types, including human biological fluids. It is at that point the field of clinical proteomics was born, and its fundamental aim was the discovery and (ideally) validation of biomarkers for the diagnosis, prognosis, or therapeutic monitoring of disease. Eventually, it was recognized that the technologies used in clinical proteomics studies [particularly liquid chromatography-tandem mass spectrometry (LC-MS/MS)] could represent an alternative to classical immunochemical assays. Prior to deploying MS in the measurement of peptides/proteins in the clinical laboratory, it seems likely that traditional proteomics workflows and data management systems will need to adapt to the clinical environment and meet in vitro diagnostic (IVD) regulatory constraints. This defines a new field, as reviewed in this article, that we have termed quantitative Clinical Chemistry Proteomics (qCCP).

  7. Sparse multi-block PLSR for biomarker discovery when integrating data from LC-MS and NMR metabolomics

    DEFF Research Database (Denmark)

    Karaman, Ibrahim; Nørskov, Natalja; Yde, Christian Clement

    2015-01-01

    The objective of this study was to implement a multivariate method which analyzes multi-block metabolomics data and performs variable selection in order to discover potential biomarkers, simultaneously. We call this method sparse multi-block partial least squares regression (Sparse MBPLSR). To ac...

  8. The 3rd Central and Eastern European Proteomic Conference

    Czech Academy of Sciences Publication Activity Database

    Gadher, S. J.; Martinková, Jiřina; Drahoš, L.; Vékey, K.; Allmaier, G.; Kovářová, Hana

    2010-01-01

    Roč. 7, č. 1 (2010), s. 15-17 ISSN 1478-9450 Institutional research plan: CEZ:AV0Z50450515 Keywords : proteomics * proteome research * biomarkers Subject RIV: CE - Biochemistry Impact factor: 4.406, year: 2010

  9. Glycoblotting method allows for rapid and efficient glycome profiling of human Alzheimer's disease brain, serum and cerebrospinal fluid towards potential biomarker discovery.

    Science.gov (United States)

    Gizaw, Solomon T; Ohashi, Tetsu; Tanaka, Masakazu; Hinou, Hiroshi; Nishimura, Shin-Ichiro

    2016-08-01

    Understanding of the significance of posttranslational glycosylation in Alzheimer's disease (AD) is of growing importance for the investigation of the pathogenesis of AD as well as discovery research of the disease-specific serum biomarkers. We designed a standard protocol for the glycoblotting combined with MALDI-TOFMS to perform rapid and quantitative profiling of the glycan parts of glycoproteins (N-glycans) and glycosphingolipids (GSLs) using human AD's post-mortem samples such as brain tissues (dissected cerebral cortices such as frontal, parietal, occipital, and temporal domains), serum and cerebrospinal fluid (CSF). The structural profiles of the major N-glycans released from glycoproteins and the total expression levels of the glycans were found to be mostly similar between the brain tissues of the AD patients and those of the normal control group. In contrast, the expression levels of the serum and CSF protein N-glycans such as bisect-type and multiply branched glycoforms were increased significantly in AD patient group. In addition, the levels of some gangliosides such as GM1, GM2 and GM3 appeared to alter in the AD patient brain and serum samples when compared with the normal control groups. Alteration of the expression levels of major N- and GSL-glycans in human brain tissues, serum and CSF of AD patients can be monitored quantitatively by means of the glycoblotting-based standard protocols. The changes in the expression levels of the glycans derived from the human post-mortem samples uncovered by the standardized glycoblotting method provides potential serum biomarkers in central nervous system disorders and can contribute to the insight into the molecular mechanisms in the pathogenesis of neurodegenerative diseases and future drug discovery. Most importantly, the present preliminary trials using human post-mortem samples of AD patients suggest that large-scale serum glycomics cohort by means of various-types of human AD patients as well as the normal

  10. What is a biomarker? Research investments and lack of clinical integration necessitate a review of biomarker terminology and validation schema.

    Science.gov (United States)

    Ptolemy, Adam S; Rifai, Nader

    2010-01-01

    A continual trend of annual growth can be seen within research devoted to the discovery and validation of disease biomarkers within both the natural and clinical sciences. This expansion of intellectual endeavours was quantified through database searches of (a) research grant awards provided by the various branches of the National Institutes of Health (NIH) and (b) academic publications. A search of awards presented between 1986 and 2009 revealed a total of 28,856 grants awarded by the NIH containing the term "biomarker". The total funds for these awards in 2008 and 2009 alone were over $2.5 billion. During the same respective time frames, searches of "biomarker" and either "discovery", "genomics", "proteomics" or "metabolomics" yielded a total of 4,928 NIH grants whose combined funding exceeded $1.2 billion. The derived trend in NIH awards paralleled the annual expansion in "biomarker" literature. A PubMed search for the term, between 1990 and 2009, revealed a total of 441,510 published articles, with 38,457 published in 2008. These enormous investments and academic outputs however have not translated into the expected integration of new biomarkers for patient care. For example no proteomics derived biomarkers are currently being utilized in routine clinical management. This translational chasm necessitates a review of the previously proposed biomarker definitions and evaluation schema. A subsequent discussion of both the analytical and pre-analytical considerations for such research is also presented within. This required knowledge should aid scientists in their pursuit and validation of new biological markers of disease.

  11. Development of a universal metabolome-standard method for long-term LC-MS metabolome profiling and its application for bladder cancer urine-metabolite-biomarker discovery.

    Science.gov (United States)

    Peng, Jun; Chen, Yi-Ting; Chen, Chien-Lun; Li, Liang

    2014-07-01

    Large-scale metabolomics study requires a quantitative method to generate metabolome data over an extended period with high technical reproducibility. We report a universal metabolome-standard (UMS) method, in conjunction with chemical isotope labeling liquid chromatography-mass spectrometry (LC-MS), to provide long-term analytical reproducibility and facilitate metabolome comparison among different data sets. In this method, UMS of a specific type of sample labeled by an isotope reagent is prepared a priori. The UMS is spiked into any individual samples labeled by another form of the isotope reagent in a metabolomics study. The resultant mixture is analyzed by LC-MS to provide relative quantification of the individual sample metabolome to UMS. UMS is independent of a study undertaking as well as the time of analysis and useful for profiling the same type of samples in multiple studies. In this work, the UMS method was developed and applied for a urine metabolomics study of bladder cancer. UMS of human urine was prepared by (13)C2-dansyl labeling of a pooled sample from 20 healthy individuals. This method was first used to profile the discovery samples to generate a list of putative biomarkers potentially useful for bladder cancer detection and then used to analyze the verification samples about one year later. Within the discovery sample set, three-month technical reproducibility was examined using a quality control sample and found a mean CV of 13.9% and median CV of 9.4% for all the quantified metabolites. Statistical analysis of the urine metabolome data showed a clear separation between the bladder cancer group and the control group from the discovery samples, which was confirmed by the verification samples. Receiver operating characteristic (ROC) test showed that the area under the curve (AUC) was 0.956 in the discovery data set and 0.935 in the verification data set. These results demonstrated the utility of the UMS method for long-term metabolomics and

  12. Nonylphenol Toxicity Evaluation and Discovery of Biomarkers in Rat Urine by a Metabolomics Strategy through HPLC-QTOF-MS

    Directory of Open Access Journals (Sweden)

    Yan-Xin Zhang

    2016-05-01

    Full Text Available Nonylphenol (NP was quantified using liquid chromatography tandem mass spectrometry (LC-MS/MS in the urine and plasma of rats treated with 0, 50, and 250 mg/kg/day of NP for four consecutive days. A urinary metabolomic strategy was originally implemented by high performance liquid chromatography time of flight mass spectrometry (HPLC-QTOF-MS to explore the toxicological effects of NP and determine the overall alterations in the metabolite profiles so as to find potential biomarkers. It is essential to point out that from the observation, the metabolic data were clearly clustered and separated for the three groups. To further identify differentiated metabolites, multivariate analysis, including principal component analysis (PCA, orthogonal partial least-squares discriminant analysis (OPLS-DA, high-resolution MS/MS analysis, as well as searches of Metlin and Massbank databases, were conducted on a series of metabolites between the control and dose groups. Finally, five metabolites, including glycine, glycerophosphocholine, 5-hydroxytryptamine, malonaldehyde (showing an upward trend, and tryptophan (showing a downward trend, were identified as the potential urinary biomarkers of NP-induced toxicity. In order to validate the reliability of these potential biomarkers, an independent validation was performed by using the multiple reaction monitoring (MRM-based targeted approach. The oxidative stress reflected by urinary 8-oxo-deoxyguanosine (8-oxodG levels was elevated in individuals highly exposed to NP, supporting the hypothesis that mitochondrial dysfunction was a result of xenoestrogen accumulation. This study reveals a promising approach to find biomarkers to assist researchers in monitoring NP.

  13. Targeted proteomics guided by label-free global proteome analysis in saliva reveal transition signatures from health to periodontal disease.

    Science.gov (United States)

    Bostanci, Nagihan; Selevsek, Nathalie; Wolski, Witold; Grossmann, Jonas; Bao, Kai; Wahlander, Asa; Trachsel, Christian; Schlapbach, Ralph; Özturk, Veli Özgen; Afacan, Beral; Emingil, Gulnur; Belibasakis, Georgios N

    2018-04-02

    Periodontal diseases are among the most prevalent worldwide, but largely silent, chronic diseases. They affect the tooth-supporting tissues with multiple ramifications on life quality. Their early diagnosis is still challenging, due to lack of appropriate molecular diagnostic methods. Saliva offers a non-invasively collectable reservoir of clinically relevant biomarkers, which, if utilized efficiently, could facilitate early diagnosis and monitoring of ongoing disease. Despite several novel protein markers being recently enlisted by discovery proteomics, their routine diagnostic application is hampered by the lack of validation platforms that allow for rapid, accurate and simultaneous quantification of multiple proteins in large cohorts. We carried out a pipeline of two proteomic platforms; firstly, we applied open ended label-free quantitative (LFQ) proteomics for discovery in saliva (n=67, health, gingivitis, and periodontitis), followed by selected-reaction monitoring (SRM)-targeted proteomics for validation in an independent cohort (n=82). The LFQ platform led to the discovery of 119 proteins with at least two-fold significant difference between health and disease. The 65 proteins chosen for the subsequent SRM platform included 50 related proteins derived from the significantly enriched processes of the LFQ data, 11 from literature-mining, and four house-keeping ones. Among those, 60 were reproducibly quantifiable proteins (92% success rate), represented by a total of 143 peptides. Machine-learning modeling led to a narrowed-down panel of five proteins of high predictive value for periodontal diseases (higher in disease: Matrix metalloproteinase-9, Ras-related protein-1, Actin-related protein 2/3 complex subunit 5; lower in disease: Clusterin, Deleted in Malignant Brain Tumors 1), with maximum area under the receiver operating curve >0.97. This panel enriches the pool of credible clinical biomarker candidates for diagnostic assay development. Yet, the quantum

  14. Unrestrictive identification of post-translational modifications in the urine proteome without enrichment

    Science.gov (United States)

    2013-01-01

    Background Research on the human urine proteome may lay the foundation for the discovery of relevant disease biomarkers. Post-translational modifications (PTMs) have important effects on the functions of protein biomarkers. Identifying PTMs without enrichment adds no extra steps to conventional identification procedures for urine proteomics. The only difference is that this method requires software that can conduct unrestrictive identifications of PTMs. In this study, routine urine proteomics techniques were used to identify urine proteins. Unspecified PTMs were searched by MODa and PEAKS 6 automated software, followed by a manual search to screen out in vivo PTMs by removing all in vitro PTMs and amino acid substitutions. Results There were 75 peptides with 6 in vivo PTMs that were found by both MODa and PEAKS 6. Of these, 34 peptides in 18 proteins have novel in vivo PTMs compared with the annotation information of these proteins on the Universal Protein Resource website. These new in vivo PTMs had undergone methylation, dehydration, oxidation, hydroxylation, phosphorylation, or dihydroxylation. Conclusions In this study, we identified PTMs of urine proteins without the need for enrichment. Our investigation may provide a useful reference for biomarker discovery in the future. PMID:23317149

  15. Proteomic Analysis of the Human Olfactory Bulb.

    Science.gov (United States)

    Dammalli, Manjunath; Dey, Gourav; Madugundu, Anil K; Kumar, Manish; Rodrigues, Benvil; Gowda, Harsha; Siddaiah, Bychapur Gowrishankar; Mahadevan, Anita; Shankar, Susarla Krishna; Prasad, Thottethodi Subrahmanya Keshava

    2017-08-01

    The importance of olfaction to human health and disease is often underappreciated. Olfactory dysfunction has been reported in association with a host of common complex diseases, including neurological diseases such as Alzheimer's disease and Parkinson's disease. For health, olfaction or the sense of smell is also important for most mammals, for optimal engagement with their environment. Indeed, animals have developed sophisticated olfactory systems to detect and interpret the rich information presented to them to assist in day-to-day activities such as locating food sources, differentiating food from poisons, identifying mates, promoting reproduction, avoiding predators, and averting death. In this context, the olfactory bulb is a vital component of the olfactory system receiving sensory information from the axons of the olfactory receptor neurons located in the nasal cavity and the first place that processes the olfactory information. We report in this study original observations on the human olfactory bulb proteome in healthy subjects, using a high-resolution mass spectrometry-based proteomic approach. We identified 7750 nonredundant proteins from human olfactory bulbs. Bioinformatics analysis of these proteins showed their involvement in biological processes associated with signal transduction, metabolism, transport, and olfaction. These new observations provide a crucial baseline molecular profile of the human olfactory bulb proteome, and should assist the future discovery of biomarker proteins and novel diagnostics associated with diseases characterized by olfactory dysfunction.

  16. Data for a comprehensive map and functional annotation of the human cerebrospinal fluid proteome

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    2015-06-01

    Full Text Available Knowledge about the normal human cerebrospinal fluid (CSF proteome serves as a baseline reference for CSF biomarker discovery and provides insight into CSF physiology. In this study, high-pH reverse-phase liquid chromatography (hp-RPLC was first integrated with a TripleTOF 5600 mass spectrometer to comprehensively profile the normal CSF proteome. A total of 49,836 unique peptides and 3256 non-redundant proteins were identified. To obtain high-confidence results, 2513 proteins with at least 2 unique peptides were further selected as bona fide CSF proteins. Nearly 30% of the identified CSF proteins have not been previously reported in the normal CSF proteome. More than 25% of the CSF proteins were components of CNS cell microenvironments, and network analyses indicated their roles in the pathogenesis of neurological diseases. The top canonical pathway in which the CSF proteins participated was axon guidance signaling. More than one-third of the CSF proteins (788 proteins were related to neurological diseases, and these proteins constitute potential CSF biomarker candidates. The mapping results can be freely downloaded at http://122.70.220.102:8088/csf/, which can be used to navigate the CSF proteome. For more information about the data, please refer to the related original article [1], which has been recently accepted by Journal of Proteomics.

  17. Metabolic profiling of yeast culture using gas chromatography coupled with orthogonal acceleration accurate mass time-of-flight mass spectrometry: application to biomarker discovery.

    Science.gov (United States)

    Kondo, Elsuida; Marriott, Philip J; Parker, Rhiannon M; Kouremenos, Konstantinos A; Morrison, Paul; Adams, Mike

    2014-01-07

    Yeast and yeast cultures are frequently used as additives in diets of dairy cows. Beneficial effects from the inclusion of yeast culture in diets for dairy mammals have been reported, and the aim of this study was to develop a comprehensive analytical method for the accurate mass identification of the 'global' metabolites in order to differentiate a variety of yeasts at varying growth stages (Diamond V XP, Yea-Sacc and Levucell). Microwave-assisted derivatization for metabolic profiling is demonstrated through the analysis of differing yeast samples developed for cattle feed, which include a wide range of metabolites of interest covering a large range of compound classes. Accurate identification of the components was undertaken using GC-oa-ToFMS (gas chromatography-orthogonal acceleration-time-of-flight mass spectrometry), followed by principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) for data reduction and biomarker discovery. Semi-quantification (fold changes in relative peak areas) was reported for metabolites identified as possible discriminative biomarkers (p-value 2), including D-ribose (four fold decrease), myo-inositol (five fold increase), L-phenylalanine (three fold increase), glucopyranoside (two fold increase), fructose (three fold increase) and threitol (three fold increase) respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Use of the local false discovery rate for identification of metabolic biomarkers in rat urine following Genkwa Flos-induced hepatotoxicity.

    Directory of Open Access Journals (Sweden)

    Zuojing Li

    Full Text Available Metabolomics is concerned with characterizing the large number of metabolites present in a biological system using nuclear magnetic resonance (NMR and HPLC/MS (high-performance liquid chromatography with mass spectrometry. Multivariate analysis is one of the most important tools for metabolic biomarker identification in metabolomic studies. However, analyzing the large-scale data sets acquired during metabolic fingerprinting is a major challenge. As a posterior probability that the features of interest are not affected, the local false discovery rate (LFDR is a good interpretable measure. However, it is rarely used to when interrogating metabolic data to identify biomarkers. In this study, we employed the LFDR method to analyze HPLC/MS data acquired from a metabolomic study of metabolic changes in rat urine during hepatotoxicity induced by Genkwa flos (GF treatment. The LFDR approach was successfully used to identify important rat urine metabolites altered by GF-stimulated hepatotoxicity. Compared with principle component analysis (PCA, LFDR is an interpretable measure and discovers more important metabolites in an HPLC/MS-based metabolomic study.

  19. A single lysis solution for the analysis of tissue samples by different proteomic technologies

    DEFF Research Database (Denmark)

    Gromov, P.; Celis, J.E.; Gromova, I.

    2008-01-01

    -based proteomics (reverse-phase lysate arrays or direct antibody arrays), allowing the direct comparison of qualitative and quantitative data yielded by these technologies when applied to the same samples. The usefulness of the CLB1 solution for gel-based proteomics was further established by 2D PAGE analysis...... dissease, is driving scientists to increasingly use clinically relevant samples for biomarker and target discovery. Tissues are heterogeneous and as a result optimization of sample preparation is critical for generating accurate, representative, and highly reproducible quantitative data. Although a large...... number of protocols for preparation of tissue lysates has been published, so far no single recipe is able to provide a "one-size fits all" solubilization procedure that can be used to analyse the same lysate using different proteomics technologies. Here we present evidence showing that cell lysis buffer...

  20. Respiratory Proteomics Today: Are Technological Advances for the Identification of Biomarker Signatures Catching up with Their Promise? A Critical Review of the Literature in the Decade 2004-2013.

    Science.gov (United States)

    Viglio, Simona; Stolk, Jan; Iadarola, Paolo; Giuliano, Serena; Luisetti, Maurizio; Salvini, Roberta; Fumagalli, Marco; Bardoni, Anna

    2014-01-22

    To improve the knowledge on a variety of severe disorders, research has moved from the analysis of individual proteins to the investigation of all proteins expressed by a tissue/organism. This global proteomic approach could prove very useful: (i) for investigating the biochemical pathways involved in disease; (ii) for generating hypotheses; or (iii) as a tool for the identification of proteins differentially expressed in response to the disease state. Proteomics has not been used yet in the field of respiratory research as extensively as in other fields, only a few reproducible and clinically applicable molecular markers, which can assist in diagnosis, having been currently identified. The continuous advances in both instrumentation and methodology, which enable sensitive and quantitative proteomic analyses in much smaller amounts of biological material than before, will hopefully promote the identification of new candidate biomarkers in this area. The aim of this report is to critically review the application over the decade 2004-2013 of very sophisticated technologies to the study of respiratory disorders. The observed changes in protein expression profiles from tissues/fluids of patients affected by pulmonary disorders opens the route for the identification of novel pathological mediators of these disorders.

  1. Unraveling the molecular repertoire of tears as a source of biomarkers: beyond ocular diseases.

    Science.gov (United States)

    Pieragostino, Damiana; D'Alessandro, Michele; di Ioia, Maria; Di Ilio, Carmine; Sacchetta, Paolo; Del Boccio, Piero

    2015-02-01

    Proteomics and metabolomics investigations of body fluids present several challenges for biomarker discovery of several diseases. The search for biomarkers is actually conducted in different body fluids, even if the ideal biomarker can be found in an easily accessible biological fluid, because, if validated, the biomarker could be sought in the healthy population. In this regard, tears could be considered an optimum material obtained by noninvasive procedures. In the past years, the scientific community has become more interested in the study of tears for the research of new biomarkers not only for ocular diseases. In this review, we provide a discussion on the current state of biomarkers research in tears and their relevance for clinical practice, and report the main results of clinical proteomics studies on systemic and eye diseases. We summarize the main methods for tear samples analyses and report recent advances in "omics" platforms for tears investigations. Moreover, we want to take stock of the emerging field of metabolomics and lipidomics as a new and integrated approach to study protein-metabolites interplay for biomarkers research, where tears represent a still unexplored and attractive field. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Mass Spectrometry–based Proteomic Profiling of Lung Cancer

    Science.gov (United States)

    Ocak, Sebahat; Chaurand, Pierre; Massion, Pierre P.

    2009-01-01

    In an effort to further our understanding of lung cancer biology and to identify new candidate biomarkers to be used in the management of lung cancer, we need to probe these tissues and biological fluids with tools that address the biology of lung cancer directly at the protein level. Proteins are responsible of the function and phenotype of cells. Cancer cells express proteins that distinguish them from normal cells. Proteomics is defined as the study of the proteome, the complete set of proteins produced by a species, using the technologies of large-scale protein separation and identification. As a result, new technologies are being developed to allow the rapid and systematic analysis of thousands of proteins. The analytical advantages of mass spectrometry (MS), including sensitivity and high-throughput, promise to make it a mainstay of novel biomarker discovery to differentiate cancer from normal cells and to predict individuals likely to develop or recur with lung cancer. In this review, we summarize the progress made in clinical proteomics as it applies to the management of lung cancer. We will focus our discussion on how MS approaches may advance the areas of early detection, response to therapy, and prognostic evaluation. PMID:19349484

  3. Comprehensive proteomic analysis of human pancreatic juice

    DEFF Research Database (Denmark)

    Grønborg, Mads; Bunkenborg, Jakob; Kristiansen, Troels Zakarias

    2004-01-01

    Proteomic technologies provide an excellent means for analysis of body fluids for cataloging protein constituents and identifying biomarkers for early detection of cancers. The biomarkers currently available for pancreatic cancer, such as CA19-9, lack adequate sensitivity and specificity...... contributing to late diagnosis of this deadly disease. In this study, we carried out a comprehensive characterization of the "pancreatic juice proteome" in patients with pancreatic adenocarcinoma. Pancreatic juice was first fractionated by 1-dimensional gel electrophoresis and subsequently analyzed by liquid...... in this study could be directly assessed for their potential as biomarkers for pancreatic cancer by quantitative proteomics methods or immunoassays....

  4. Mass Spectrometry-Based Proteomics for Pre-Eclampsia and Preterm Birth

    Science.gov (United States)

    Law, Kai P.; Han, Ting-Li; Tong, Chao; Baker, Philip N.

    2015-01-01

    Pregnancy-related complications such as pre-eclampsia and preterm birth now represent a notable burden of adverse health. Pre-eclampsia is a hypertensive disorder unique to pregnancy. It is an important cause of maternal death worldwide and a leading cause of fetal growth restriction and iatrogenic prematurity. Fifteen million infants are born preterm each year globally, but more than one million of those do not survive their first month of life. Currently there are no predictive tests available for diagnosis of these pregnancy-related complications and the biological mechanisms of the diseases have not been fully elucidated. Mass spectrometry-based proteomics have all the necessary attributes to provide the needed breakthrough in understanding the pathophysiology of complex human diseases thorough the discovery of biomarkers. The mass spectrometry methodologies employed in the studies for pregnancy-related complications are evaluated in this article. Top-down proteomic and peptidomic profiling by laser mass spectrometry, liquid chromatography or capillary electrophoresis coupled to mass spectrometry, and bottom-up quantitative proteomics and targeted proteomics by liquid chromatography mass spectrometry have been applied to elucidate protein biomarkers and biological mechanism of pregnancy-related complications. The proteomes of serum, urine, amniotic fluid, cervical-vaginal fluid, placental tissue, and cytotrophoblastic cells have all been investigated. Numerous biomarkers or biomarker candidates that could distinguish complicated pregnancies from healthy controls have been proposed. Nevertheless, questions as to the clinically utility and the capacity to elucidate the pathogenesis of the pre-eclampsia and preterm birth remain to be answered. PMID:26006232

  5. Mass Spectrometry-Based Proteomics for Pre-Eclampsia and Preterm Birth

    Directory of Open Access Journals (Sweden)

    Kai P. Law

    2015-05-01

    Full Text Available Pregnancy-related complications such as pre-eclampsia and preterm birth now represent a notable burden of adverse health. Pre-eclampsia is a hypertensive disorder unique to pregnancy. It is an important cause of maternal death worldwide and a leading cause of fetal growth restriction and iatrogenic prematurity. Fifteen million infants are born preterm each year globally, but more than one million of those do not survive their first month of life. Currently there are no predictive tests available for diagnosis of these pregnancy-related complications and the biological mechanisms of the diseases have not been fully elucidated. Mass spectrometry-based proteomics have all the necessary attributes to provide the needed breakthrough in understanding the pathophysiology of complex human diseases thorough the discovery of biomarkers. The mass spectrometry methodologies employed in the studies for pregnancy-related complications are evaluated in this article. Top-down proteomic and peptidomic profiling by laser mass spectrometry, liquid chromatography or capillary electrophoresis coupled to mass spectrometry, and bottom-up quantitative proteomics and targeted proteomics by liquid chromatography mass spectrometry have been applied to elucidate protein biomarkers and biological mechanism of pregnancy-related complications. The proteomes of serum, urine, amniotic fluid, cervical-vaginal fluid, placental tissue, and cytotrophoblastic cells have all been investigated. Numerous biomarkers or biomarker candidates that could distinguish complicated pregnancies from healthy controls have been proposed. Nevertheless, questions as to the clinically utility and the capacity to elucidate the pathogenesis of the pre-eclampsia and preterm birth remain to be answered.

  6. Discovery of coding genetic variants influencing diabetes-related serum biomarkers and their impact on risk of type 2 diabetes

    DEFF Research Database (Denmark)

    Ahluwalia, Tarun Veer Singh; Allin, Kristine Højgaard; Sandholt, Camilla Helene

    2015-01-01

    CONTEXT: Type 2 diabetes (T2D) prevalence is spiraling globally, and knowledge of its pathophysiological signatures is crucial for a better understanding and treatment of the disease. OBJECTIVE: We aimed to discover underlying coding genetic variants influencing fasting serum levels of nine......-nucleotide polymorphisms and were tested for association with each biomarker. Identified loci were tested for association with T2D through a large-scale meta-analysis involving up to 17 024 T2D cases and up to 64 186 controls. RESULTS: We discovered 11 associations between single-nucleotide polymorphisms and five distinct......, of which the association with the CELSR2 locus has not been shown previously. CONCLUSION: The identified loci influence processes related to insulin signaling, cell communication, immune function, apoptosis, DNA repair, and oxidative stress, all of which could provide a rationale for novel diabetes...

  7. Metabolomic study of lipids in serum for biomarker discovery in Alzheimer's disease using direct infusion mass spectrometry.

    Science.gov (United States)

    González-Domínguez, R; García-Barrera, T; Gómez-Ariza, J L

    2014-09-01

    In this study, we demonstrated the potential of direct infusion mass spectrometry for the lipidomic characterization of Alzheimer's disease. Serum samples were extracted for lipids recovery, and directly analyzed using an electrospray source. Metabolomic fingerprints were subjected to multivariate analysis in order to discriminate between groups of patients and healthy controls, and then some key-compounds were identified as possible markers of Alzheimer's disease. Major differences were found in lipids, although some low molecular weight metabolites also showed significant changes. Thus, important metabolic pathways involved in neurodegeneration could be studied on the basis of these perturbations, such as membrane breakdown (phospholipids and diacylglycerols), oxidative stress (prostaglandins, imidazole and histidine), alterations in neurotransmission systems (oleamide and putrescine) and hyperammonaemia (guanidine and arginine). Moreover, it is noteworthy that some of these potential biomarkers have not been previously described for Alzheimer's disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. SELDI-TOF MS-based discovery of a biomarker in Cucumis sativus seeds exposed to CuO nanoparticles.

    Science.gov (United States)

    Moon, Young-Sun; Park, Eun-Sil; Kim, Tae-Oh; Lee, Hoi-Seon; Lee, Sung-Eun

    2014-11-01

    Metal oxide nanoparticles (NPs) can inhibit plant seed germination and root elongation via the release of metal ions. In the present study, two acute phytotoxicity tests, seed germination and root elongation tests, were conducted on cucumber seeds (Cucumis sativus) treated with bulk copper oxide (CuO) and CuO NPs. Two concentrations of bulk CuO and CuO NPs, 200 and 600ppm, were used to test the inhibition rate of root germination; both concentrations of bulk CuO weakly inhibited seed germination, whereas CuO NPs significantly inhibited germination, showing a low germination rate of 23.3% at 600ppm. Root elongation tests demonstrated that CuO NPs were much stronger inhibitors than bulk CuO. SELDI-TOF MS analysis showed that 34 proteins were differentially expressed in cucumber seeds after exposure to CuO NPs, with the expression patterns of at least 9 proteins highly differing from those in seeds treated with bulk CuO and in control plants. Therefore, these 9 proteins were used to identify CuO NP-specific biomarkers in cucumber plants exposed to CuO NPs. A 5977-m/z protein was the most distinguishable biomarker for determining phytotoxicity by CuO NPs. Principal component analysis (PCA) of the SELDI-TOF MS results showed variability in the modes of inhibitory action on cucumber seeds and roots. To our knowledge, this is the first study to demonstrate that the phytotoxic effect of metal oxide NPs on plants is not caused by the same mode of action as other toxins. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Application of a new procedure for liquid chromatography/mass spectrometry profiling of plasma amino acid-related metabolites and untargeted shotgun proteomics to identify mechanisms and biomarkers of calcific aortic stenosis.

    Science.gov (United States)

    Olkowicz, Mariola; Debski, Janusz; Jablonska, Patrycja; Dadlez, Michal; Smolenski, Ryszard T

    2017-09-29

    Calcific aortic valve stenosis (CAS) increasingly affects our ageing population, but the mechanisms of the disease and its biomarkers are not well established. Recently, plasma amino acid-related metabolite (AA) profiling has attracted attention in studies on pathology and development of biomarkers of cardiovascular diseases, but has not been studied in CAS. To evaluate the potential relationship between CAS and AA metabolome, a new ion-pairing reversed-phase liquid chromatography-tandem mass spectrometry (IP-RPLC-MS/MS) method has been developed and validated for simultaneous determination of 43 AAs in plasma of stenotic patients and age-matched control subjects. Furthermore, untargeted mass spectrometry-based proteomic analysis and confirmatory ELISA assays were performed. The method developed offered high accuracy (intra-assay imprecision averaged 4.4% for all compounds) and sensitivity (LOQ within 0.01-0.5μM). We found that 22 AAs and three AA ratios significantly changed in the CAS group as compared to control. The most pronounced differences were observed in urea cycle-related AAs and branched-chain AA (BCAA)-related AAs. The contents of asymmetric dimethylarginine (ADMA) and its monomethylated derivative (NMMA) were increased by 30-64% with CAS. The arginine/ADMA and Fischer's ratios as well as arginine, homoarginine, ADMA, symmetric dimethylarginine, hydroxyproline, betaine and 3-methylhistidine correlated with cardiac function-related parameters and concomitant systemic factors in the CAS patients. The results of proteomic analysis were consistent with involvement of inflammation, lipid abnormalities, hemostasis and extracellular matrix remodeling in CAS. In conclusion, changes in plasma AA profile and protein pattern that we identified in CAS provide information relevant to pathomechanisms and may deliver new biomarkers of the disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Bioavailability and Toxicity of Copper, Manganese, and Nickel in Paronychiurus kimi (Collembola), and Biomarker Discovery for Their Exposure.

    Science.gov (United States)

    Son, Jino; Lee, Yun-Sik; Lee, Sung-Eun; Shin, Key-Il; Cho, Kijong

    2017-01-01

    Bioavailability and toxicity of Cu, Mn, and Ni in Paronychiurus kimi were investigated after 28 days of exposure to OECD artificial soil spiked with these metals. Uptake and effect of Cu, Mn, and Ni on the reproduction of P. kimi were related to different metal fractions (water-soluble, 0.01 M CaCl 2 -extractable or porewater metal concentrations). Cu and Mn concentrations in P. kimi increased with increasing Cu and Mn concentrations in the soil, while Ni contents in P. kimi reached a plateau at a concentration higher than 200 mg/kg in soil. Both uptake and juvenile production related well to different metal fractions, suggesting that these metal fractions are suitable for assessing bioavailability and toxicity of metals in P. kimi. When toxicity for reproduction was compared, as reflected by EC 50 values, the order of metal toxicity varied depending upon how exposure concentration was expressed. Moreover, the results of proteomic analysis showed that several proteins involved in the immune system, neuronal outgrowth, and metal ion binding were up-regulated in P. kimi following short-term (7 days) exposure to sublethal level (corresponding to 50% of the EC 50 ) of Cu, Mn, or Ni, respectively. This suggests that the ecotoxicoproteomic approach seems to be a promising tool for early exposure warnings below which significant adverse effects are unlikely to occur. This study demonstrated that a combination of chemical and biological measures can provide information about metal bioavailability and toxicity to which P. kimi has been exposed.

  11. Advances of Proteomic Sciences in Dentistry.

    Science.gov (United States)

    Khurshid, Zohaib; Zohaib, Sana; Najeeb, Shariq; Zafar, Muhammad Sohail; Rehman, Rabia; Rehman, Ihtesham Ur

    2016-05-13

    Applications of proteomics tools revolutionized various biomedical disciplines such as genetics, molecular biology, medicine, and dentistry. The aim of this review is to highlight the major milestones in proteomics in dentistry during the last fifteen years. Human oral cavity contains hard and soft tissues and various biofluids including saliva and crevicular fluid. Proteomics has brought revolution in dentistry by helping in the early diagnosis of various diseases identified by the detection of numerous biomarkers present in the oral fluids. This paper covers the role of proteomics tools for the analysis of oral tissues. In addition, dental materials proteomics and their future directions are discussed.

  12. Biomarkers of safety and immune protection for genetically modified live attenuated leishmania vaccines against visceral leishmaniasis - discovery and implications.

    Science.gov (United States)

    Gannavaram, Sreenivas; Dey, Ranadhir; Avishek, Kumar; Selvapandiyan, Angamuthu; Salotra, Poonam; Nakhasi, Hira L

    2014-01-01

    Despite intense efforts there is no safe and efficacious vaccine against visceral leishmaniasis, which is fatal and endemic in many tropical countries. A major shortcoming in the vaccine development against blood-borne parasitic agents such as Leishmania is the inadequate predictive power of the early immune responses mounted in the host against the experimental vaccines. Often immune correlates derived from in-bred animal models do not yield immune markers of protection that can be readily extrapolated to humans. The limited efficacy of vaccines based on DNA, subunit, heat killed parasites has led to the realization that acquisition of durable immunity against the protozoan parasites requires a controlled infection with a live attenuated organism. Recent success of irradiated malaria parasites as a vaccine candidate further strengthens this approach to vaccination. We developed several gene deletion mutants in Leishmania donovani as potential live attenuated vaccines and reported extensively on the immunogenicity of LdCentrin1 deleted mutant in mice, hamsters, and dogs. Additional limited studies using genetically modified live attenuated Leishmania parasites as vaccine candidates have been reported. However, for the live attenuated parasite vaccines, the primary barrier against widespread use remains the absence of clear biomarkers associated with protection and safety. Recent studies in evaluation of vaccines, e.g., influenza and yellow fever vaccines, using systems biology tools demonstrated the power of such strategies in understanding the immunological mechanisms that underpin a protective phenotype. Applying similar tools in isolated human tissues such as PBMCs from healthy individuals infected with live attenuated parasites such as LdCen(-/-) in vitro followed by human microarray hybridization experiments will enable us to understand how early vaccine-induced gene expression profiles and the associated immune responses are coordinately regulated in normal

  13. Biomarkers of Safety and Immune Protection for Genetically Modified Live Attenuated Leishmania Vaccines Against Visceral Leishmaniasis – Discovery and Implications

    Science.gov (United States)

    Gannavaram, Sreenivas; Dey, Ranadhir; Avishek, Kumar; Selvapandiyan, Angamuthu; Salotra, Poonam; Nakhasi, Hira L.

    2014-01-01

    Despite intense efforts there is no safe and efficacious vaccine against visceral leishmaniasis, which is fatal and endemic in many tropical countries. A major shortcoming in the vaccine development against blood-borne parasitic agents such as Leishmania is the inadequate predictive power of the early immune responses mounted in the host against the experimental vaccines. Often immune correlates derived from in-bred animal models do not yield immune markers of protection that can be readily extrapolated to humans. The limited efficacy of vaccines based on DNA, subunit, heat killed parasites has led to the realization that acquisition of durable immunity against the protozoan parasites requires a controlled infection with a live attenuated organism. Recent success of irradiated malaria parasites as a vaccine candidate further strengthens this approach to vaccination. We developed several gene deletion mutants in Leishmania donovani as potential live attenuated vaccines and reported extensively on the immunogenicity of LdCentrin1 deleted mutant in mice, hamsters, and dogs. Additional limited studies using genetically modified live attenuated Leishmania parasites as vaccine candidates have been reported. However, for the live attenuated parasite vaccines, the primary barrier against widespread use remains the absence of clear biomarkers associated with protection and safety. Recent studies in evaluation of vaccines, e.g., influenza and yellow fever vaccines, using systems biology tools demonstrated the power of such strategies in understanding the immunological mechanisms that underpin a protective phenotype. Applying similar tools in isolated human tissues such as PBMCs from healthy individuals infected with live attenuated parasites such as LdCen−/− in vitro followed by human microarray hybridization experiments will enable us to understand how early vaccine-induced gene expression profiles and the associated immune responses are coordinately regulated in normal

  14. Characterization of the canine urinary proteome.

    Science.gov (United States)

    Brandt, Laura E; Ehrhart, E J; Scherman, Hataichanok; Olver, Christine S; Bohn, Andrea A; Prenni, Jessica E

    2014-06-01

    Urine is an attractive biofluid for biomarker discovery as it is easy and minimally invasive to obtain. While numerous studies have focused on the characterization of human urine, much less research has focused on canine urine. The objectives of this study were to characterize the universal canine urinary proteome (both soluble and exosomal), to determine the overlap between the canine proteome and a representative human urinary proteome study, to generate a resource for future canine studies, and to determine the suitability of the dog as a large animal model for human diseases. The soluble and exosomal fractions of normal canine urine were characterized using liquid chromatography tandem mass spectrometry (LC-MS/MS). Biological Networks Gene Ontology (BiNGO) software was utilized to assign the canine urinary proteome to respective Gene Ontology categories, such as Cellular Component, Molecular Function, and Biological Process. Over 500 proteins were confidently identified in normal canine urine. Gene Ontology analysis revealed that exosomal proteins were largely derived from an intracellular location, while soluble proteins included both extracellular and membrane proteins. Exosome proteins were assigned to metabolic processes and localization, while soluble proteins were primarily annotated to specific localization processes. Several proteins identified in normal canine urine have previously been identified in human urine where these proteins are related to various extrarenal and renal diseases. The results of this study illustrate the potential of the dog as an animal model for human disease states and provide the framework for future studies of canine renal diseases. © 2014 American Society for Veterinary Clinical Pathology and European Society for Veterinary Clinical Pathology.

  15. Biology and Biomarkers for Wound Healing

    Science.gov (United States)

    Lindley, Linsey E.; Stojadinovic, Olivera; Pastar, Irena; Tomic-Canic, Marjana

    2016-01-01

    Background As the population grows older, the incidence and prevalence of conditions which lead to a predisposition for poor wound healing also increases. Ultimately, this increase in non-healing wounds has led to significant morbidity and mortality with subsequent huge economic ramifications. Therefore, understanding specific molecular mechanisms underlying aberrant wound healing is of great importance. It has, and will continue to be the leading pathway to the discovery of therapeutic targets as well as diagnostic molecular biomarkers. Biomarkers may help identify and stratify subsets of non-healing patients for whom biomarker-guided approaches may aid in healing. Methods A series of literature searches were performed using Medline, PubMed, Cochrane Library, and Internet searches. Results Currently, biomarkers are being identified using biomaterials sourced locally, from human wounds and/or systemically using systematic high-throughput “omics” modalities (genomic, proteomic, lipidomic, metabolomic analysis). In this review we highlight the current status of clinically applicable biomarkers and propose multiple steps in validation and implementation spectrum including those measured in tissue specimens e.g. β-catenin and c-myc, wound fluid e.g. MMP’s and interleukins, swabs e.g. wound microbiota and serum e.g. procalcitonin and MMP’s. Conclusions Identification of numerous potential biomarkers utilizing different avenues of sample collection and molecular approaches is currently underway. A focus on simplicity, and consistent implementation of these biomarkers as well as an emphasis on efficacious follow-up therapeutics is necessary for transition of this technology to clinically feasible point-of-care applications. PMID:27556760

  16. Liver proteomics in progressive alcoholic steatosis

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, Harshica [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555 (United States); Wiktorowicz, John E.; Soman, Kizhake V. [Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555 (United States); Kaphalia, Bhupendra S.; Khan, M. Firoze [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555 (United States); Shakeel Ansari, G.A., E-mail: sansari@utmb.edu [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555 (United States)

    2013-02-01

    Fatty liver is an early stage of alcoholic and nonalcoholic liver disease (ALD and NALD) that progresses to steatohepatitis and other irreversible conditions. In this study, we identified proteins that were differentially expressed in the livers of rats fed 5% ethanol in a Lieber–DeCarli diet daily for 1 and 3 months by discovery proteomics (two-dimensional gel electrophoresis and mass spectrometry) and non-parametric modeling (Multivariate Adaptive Regression Splines). Hepatic fatty infiltration was significantly higher in ethanol-fed animals as compared to controls, and more pronounced at 3 months of ethanol feeding. Discovery proteomics identified changes in the expression of proteins involved in alcohol, lipid, and amino acid metabolism after ethanol feeding. At 1 and 3 months, 12 and 15 different proteins were differentially expressed. Of the identified proteins, down regulation of alcohol dehydrogenase (− 1.6) at 1 month and up regulation of aldehyde dehydrogenase (2.1) at 3 months could be a protective/adaptive mechanism against ethanol toxicity. In addition, betaine-homocysteine S-methyltransferase 2 a protein responsible for methionine metabolism and previously implicated in fatty liver development was significantly up regulated (1.4) at ethanol-induced fatty liver stage (1 month) while peroxiredoxin-1 was down regulated (− 1.5) at late fatty liver stage (3 months). Nonparametric analysis of the protein spots yielded fewer proteins and narrowed the list of possible markers and identified D-dopachrome tautomerase (− 1.7, at 3 months) as a possible marker for ethanol-induced early steatohepatitis. The observed differential regulation of proteins have potential to serve as biomarker signature for the detection of steatosis and its progression to steatohepatitis once validated in plasma/serum. -- Graphical abstract: The figure shows the Hierarchial cluster analysis of differentially expressed protein spots obtained after ethanol feeding for 1 (1–3

  17. Advances of Salivary Proteomics in Oral Squamous Cell Carcinoma (OSCC Detection: An Update

    Directory of Open Access Journals (Sweden)

    Rabia Sannam Khan

    2016-12-01

    Full Text Available Oral cancer refers to malignancies that have higher morbidity and mortality rates due to the late stage diagnosis and no early detection of a reliable diagnostic marker, while oral squamous cell carcinoma (OSCC is amongst the world’s top ten most common cancers. Diagnosis of cancer requires highly sensitive and specific diagnostic tools which can support untraceable hidden sites of OSCC, yet to be unleashed, for which plenty of biomarkers are identified; the most recommended biomarker detection medium for OSCC includes biological fluids, such as blood and saliva. Saliva holds a promising future in the search for new clinical biomarkers that are easily accessible, less complex, accurate, and cost effective as well as being a non-invasive technique to follow, by analysing the malignant cells’ molecular pathology obtained from saliva through proteomic, genomic and transcriptomic approaches. However, protein biomarkers provide an immense potential for developing novel marker-based assays for oral cancer, hence this current review offers an overall focus on the discovery of a panel of candidates as salivary protein biomarkers, as well as the proteomic tools used for their identification and their significance in early oral cancer detection.

  18. Biomarkers of safety and immune protection for genetically modified live attenuated Leishmania vaccines against visceral leishmaniasis-Discovery and implications

    Directory of Open Access Journals (Sweden)

    Sreenivas eGannavaram

    2014-05-01

    Full Text Available Despite intense efforts there is no safe and efficacious vaccine against visceral leishmaniasis, which is fatal and endemic in many tropical countries. A major shortcoming in the vaccine development against blood borne parasitic agents such as Leishmania is the inadequate predictive power of the early immune responses mounted in the host against the experimental vaccines. Often immune correlates derived from in-bred animal models do not yield immune markers of protection that can be readily extrapolated to humans. The limited efficacy of vaccines based on DNA, sub-unit, heat killed parasites has led to the realization that acquisition of durable immunity against the protozoan parasites requires a controlled infection with a live attenuated organism. Recent success of irradiated malaria parasites as a vaccine candidate further strengthens this approach to vaccination. We developed several gene deletion mutants in L. donovani as potential live attenuated vaccines and reported extensively on the immunogenicity of LdCentrin1 deleted mutant in mice, hamsters and dogs. Additional limited studies using genetically modified live attenuated Leishmania parasites as vaccine candidates have been reported. However, for the live attenuated parasite vaccines, the primary barrier against widespread use remains the absence of clear biomarkers associated with protection and safety. Recent studies in evaluation of vaccines e.g., influenza and yellow fever vaccines, using systems biology tools demonstrated the power of such strategies in understanding the immunological mechanisms that underpin a protective phenotype. Applying similar tools in isolated human tissues such as PBMCs from healthy individuals infected with live attenuated parasites such as LdCen1-/- in vitro followed by human microarray hybridization experiments will enable us to understand how early vaccine-induced gene expression profiles and the associated immune responses are coordinately regulated

  19. Big Biomedical data as the key resource for discovery science

    Energy Technology Data Exchange (ETDEWEB)

    Toga, Arthur W.; Foster, Ian; Kesselman, Carl; Madduri, Ravi; Chard, Kyle; Deutsch, Eric W.; Price, Nathan D.; Glusman, Gustavo; Heavner, Benjamin D.; Dinov, Ivo D.; Ames, Joseph; Van Horn, John; Kramer, Roger; Hood, Leroy

    2015-07-21

    Modern biomedical data collection is generating exponentially more data in a multitude of formats. This flood of complex data poses significant opportunities to discover and understand the critical interplay among such diverse domains as genomics, proteomics, metabolomics, and phenomics, including imaging, biometrics, and clinical data. The Big Data for Discovery Science Center is taking an “-ome to home” approach to discover linkages between these disparate data sources by mining existing databases of proteomic and genomic data, brain images, and clinical assessments. In support of this work, the authors developed new technological capabilities that make it easy for researchers to manage, aggregate, manipulate, integrate, and model large amounts of distributed data. Guided by biological domain expertise, the Center’s computational resources and software will reveal relationships and patterns, aiding researchers in identifying biomarkers for the most confounding conditions and diseases, such as Parkinson’s and Alzheimer’s.

  20. Identification of cypermethrin induced protein changes in green algae by iTRAQ quantitative proteomics.

    Science.gov (United States)

    Gao, Yan; Lim, Teck Kwang; Lin, Qingsong; Li, Sam Fong Yau

    2016-04-29

    Cypermethrin (CYP) is one of the most widely used pesticides in large scale for agricultural and domestic purpose and the residue often seriously affects aquatic system. Environmental pollutant-induced protein changes in organisms could be detected by proteomics, leading to discovery of potential biomarkers and understanding of mode of action. While proteomics investigations of CYP stress in some animal models have been well studied, few reports about the effects of exposure to CYP on algae proteome were published. To determine CYP effect in algae, the impact of various dosages (0.001μg/L, 0.01μg/L and 1μg/L) of CYP on green algae Chlorella vulgaris for 24h and 96h was investigated by using iTRAQ quantitative proteomics technique. A total of 162 and 198 proteins were significantly altered after CYP exposure for 24h and 96h, respectively. Overview of iTRAQ results indicated that the influence of CYP on algae protein might be dosage-dependent. Functional analysis of differentially expressed proteins showed that CYP could induce protein alterations related to photosynthesis, stress responses and carbohydrate metabolism. This study provides a comprehensive view of complex mode of action of algae under CYP stress and highlights several potential biomarkers for further investigation of pesticide-exposed plant and algae. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Technological advances for deciphering the complexity of psychiatric disorders: merging proteomics with cell biology.

    Science.gov (United States)

    Wesseling, Hendrik; Guest, Paul C; Lago, Santiago G; Bahn, Sabine

    2014-08-01

    Proteomic studies have increased our understanding of the molecular pathways affected in psychiatric disorders. Mass spectrometry and two-dimensional gel electrophoresis analyses of post-mortem brain samples from psychiatric patients have revealed effects on synaptic, cytoskeletal, antioxidant and mitochondrial protein networks. Multiplex immunoassay profiling studies have found alterations in hormones, growth factors, transport and inflammation-related proteins in serum and plasma from living first-onset patients. Despite these advances, there are still difficulties in translating these findings into platforms for improved treatment of patients and for discovery of new drugs with better efficacy and side effect profiles. This review describes how the next phase of proteomic investigations in psychiatry should include stringent replication studies for validation of biomarker candidates and functional follow-up studies which can be used to test the impact on physiological function. All biomarker candidates should now be tested in series with traditional and emerging cell biological approaches. This should include investigations of the effects of post-translational modifications, protein dynamics and network analyses using targeted proteomic approaches. Most importantly, there is still an urgent need for development of disease-relevant cellular models for improved translation of proteomic findings into a means of developing novel drug treatments for patients with these life-altering disorders.

  2. Tissue- and Serum-Associated Biomarkers of Hepatocellular Carcinoma

    Science.gov (United States)

    Chauhan, Ranjit; Lahiri, Nivedita

    2016-01-01

    Hepatocellular carcinoma (HCC), one of the leading causes of cancer deaths in the world, is offering a challenge to human beings, with the current modes of treatment being a palliative approach. Lack of proper curative or preventive treatment methods encouraged extensive research around the world with an aim to detect a vaccine or therapeutic target biomolecule that could lead to development of a drug or vaccine against HCC. Biomarkers or biological disease markers have emerged as a potential tool as drug/vaccine targets, as they can accurately diagnose, predict, and even prevent the diseases. Biomarker expression in tissue, serum, plasma, or urine can detect tumor in very early stages of its development and monitor the cancer progression and also the effect of therapeutic interventions. Biomarker discoveries are driven by advanced techniques, such as proteomics, transcriptomics, whole genome sequencing, micro- and micro-RNA arrays, and translational clinics. In this review, an overview of the potential of tissue- and serum-associated HCC biomarkers as diagnostic, prognostic, and therapeutic targets for drug development is presented. In addition, we highlight recently developed micro-RNA, long noncoding RNA biomarkers, and single-nucleotide changes, which may be used independently or as complementary biomarkers. These active investigations going on around the world aimed at conquering HCC might show a bright light in the near future. PMID:27398029

  3. Tissue- and Serum-Associated Biomarkers of Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Ranjit Chauhan

    2016-01-01

    Full Text Available Hepatocellular carcinoma (HCC, one of the leading causes of cancer deaths in the world, is offering a challenge to human beings, with the current modes of treatment being a palliative approach. Lack of proper curative or preventive treatment methods encouraged extensive research around the world with an aim to detect a vaccine or therapeutic target biomolecule that could lead to development of a drug or vaccine against HCC. Biomarkers or biological disease markers have emerged as a potential tool as drug/vaccine targets, as they can accurately diagnose, predict, and even prevent the diseases. Biomarker expression in tissue, serum, plasma, or urine can detect tumor in very early stages of its development and monitor the cancer progression and also the effect of therapeutic interventions. Biomarker discoveries are driven by advanced techniques, such as proteomics, transcriptomics, whole genome sequencing, micro- and micro-RNA arrays, and translational clinics. In this review, an overview of the potential of tissue- and serum-associated HCC biomarkers as diagnostic, prognostic, and therapeutic targets for drug development is presented. In addition, we highlight recently developed micro-RNA, long noncoding RNA biomarkers, and single-nucleotide changes, which may be used independently or as complementary biomarkers. These active investigations going on around the world aimed at conquering HCC might show a bright light in the near future.

  4. New biomarkers for sepsis

    Directory of Open Access Journals (Sweden)

    Li-xin XIE

    2013-01-01

    Full Text Available There is a higher sepsis rate in the intensive care unit (ICU patients, which is one of the most important causes for patient death, but the sepsis lacks specific clinical manifestations. Exploring sensitive and specific molecular markers for infection that accurately reflect infection severity and prognosis is very clinically important. In this article, based on our previous study, we introduce some new biomarkers with high sensitivity and specificity for the diagnosis and predicting the prognosis and severity of sepsis. Increase of serum soluble(s triggering receptor expressed on myeloid cells-1 (sTREM-1 suggests a poor prognosis of septic patients, and changes of locus rs2234237 of sTREM-1 may be the one of important mechanisms. Additionally, urine sTREM-1 can provide an early warning of possible secondary acute kidney injury (AKI in sepsis patients. Serum sCD163 level was found to be a more important factor than procalcitonin (PCT and C-reactive protein (CRP in prognosis of sepsis, especially severe sepsis. Moreover, urine sCD163 also shows excellent performance in the diagnosis of sepsis and sepsis-associated AKI. Circulating microRNAs, such as miR-150, miR-297, miR-574-5p, miR -146a , miR-223, miR -15a and miR-16, also play important roles in the evaluation of status of septic patients. In the foreseeable future, newly-emerging technologies, including proteomics, metabonomics and trans-omics, may exert profound effects on the discovery of valuable biomarkers for sepsis.

  5. Proteomic analysis of coronary sinus serum reveals leucine-rich α2-glycoprotein as a novel biomarker of ventricular dysfunction and heart failure.

    LENUS (Irish Health Repository)

    Watson, Chris J

    2011-03-01

    Heart failure (HF) prevention strategies require biomarkers that identify disease manifestation. Increases in B-type natriuretic peptide (BNP) correlate with increased risk of cardiovascular events and HF development. We hypothesize that coronary sinus serum from a high BNP hypertensive population reflects an active pathological process and can be used for biomarker exploration. Our aim was to discover differentially expressed disease-associated proteins that identify patients with ventricular dysfunction and HF.

  6. Glyco-centric lectin magnetic bead array (LeMBA − proteomics dataset of human serum samples from healthy, Barrett׳s esophagus and esophageal adenocarcinoma individuals

    Directory of Open Access Journals (Sweden)

    Alok K. Shah

    2016-06-01

    Full Text Available This data article describes serum glycoprotein biomarker discovery and qualification datasets generated using lectin magnetic bead array (LeMBA – mass spectrometry techniques, “Serum glycoprotein biomarker discovery and qualification pipeline reveals novel diagnostic biomarker candidates for esophageal adenocarcinoma” [1]. Serum samples collected from healthy, metaplastic Barrett׳s esophagus (BE and esophageal adenocarcinoma (EAC individuals were profiled for glycoprotein subsets via differential lectin binding. The biomarker discovery proteomics dataset consisting of 20 individual lectin pull-downs for 29 serum samples with a spiked-in internal standard chicken ovalbumin protein has been deposited in the PRIDE partner repository of the ProteomeXchange Consortium with the data set identifier PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD002442. Annotated MS/MS spectra for the peptide identifications can be viewed using MS-Viewer (〈http://prospector2.ucsf.edu/prospector/cgi-bin/msform.cgi?form=msviewer〉 using search key “jn7qafftux”. The qualification dataset contained 6-lectin pulldown-coupled multiple reaction monitoring-mass spectrometry (MRM-MS data for 41 protein candidates, from 60 serum samples. This dataset is available as a supplemental files with the original publication [1].

  7. Human cervicovaginal fluid biomarkers to predict term and preterm labor

    Science.gov (United States)

    Heng, Yujing J.; Liong, Stella; Permezel, Michael; Rice, Gregory E.; Di Quinzio, Megan K. W.; Georgiou, Harry M.

    2015-01-01

    Preterm birth (PTB; birth before 37 completed weeks of gestation) remains the major cause of neonatal morbidity and mortality. The current generation of biomarkers predictive of PTB have limited utility. In pregnancy, the human cervicovaginal fluid (CVF) proteome is a reflection of the local biochemical milieu and is influenced by the physical changes occurring in the vagina, cervix and adjacent overlying fetal membranes. Term and preterm labor (PTL) share common pathways of cervical ripening, myometrial activation and fetal membranes rupture leading to birth. We therefore hypothesize that CVF biomarkers predictive of labor may be similar in both the term and preterm labor setting. In this review, we summarize some of the existing published literature as well as our team's breadth of work utilizing the CVF for the discovery and validation of putative CVF biomarkers predictive of human labor. Our team established an efficient method for collecting serial CVF samples for optimal 2-dimensional gel electrophoresis resolution and analysis. We first embarked on CVF biomarker discovery for the prediction of spontaneous onset of term labor using 2D-electrophoresis and solution array multiple analyte profiling. 2D-electrophoretic analyses were subsequently performed on CVF samples associated with PTB. Several proteins have been successfully validated and demonstrate that these biomarkers are associated with term and PTL and may be predictive of both term and PTL. In addition, the measurement of these putative biomarkers was found to be robust to the influences of vaginal microflora and/or semen. The future development of a multiple biomarker bed-side test would help improve the prediction of PTB and the clinical management of patients. PMID:26029118

  8. Urine sample preparation for proteomic analysis.

    Science.gov (United States)

    Olszowy, Pawel; Buszewski, Boguslaw

    2014-10-01

    Sample preparation for both environmental and more importantly biological matrices is a bottleneck of all kinds of analytical processes. In the case of proteomic analysis this element is even more important due to the amount of cross-reactions that should be taken into consideration. The incorporation of new post-translational modifications, protein hydrolysis, or even its degradation is possible as side effects of proteins sample processing. If protocols are evaluated appropriately, then identification of such proteins does not bring difficulties. However, if structural changes are provided without sufficient attention then protein sequence coverage will be reduced or even identification of such proteins could be impossible. This review summarizes obstacles and achievements in protein sample preparation of urine for proteome analysis using different tools for mass spectrometry analysis. The main aim is to present comprehensively the idea of urine application as a valuable matrix. This article is dedicated to sample preparation and application of urine mainly in novel cancer biomarkers discovery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Discovery of biomarkers for glycaemic deterioration before and after the onset of type 2 diabetes: rationale and design of the epidemiological studies within the IMI DIRECT Consortium

    DEFF Research Database (Denmark)

    Koivula, Robert W.; Heggie, Alison; Barnett, Anna

    2014-01-01

    , urine and nail clippings, which, among other biochemical analyses, will be characterised at genetic, transcriptomic, metabolomic, proteomic and metagenomic levels. Lifestyle is assessed using high-resolution triaxial accelerometry, 24 h diet record, and food habit questionnaires. Conclusinos...

  10. Integrated Detection of Pathogens and Host Biomarkers for Wounds

    Energy Technology Data Exchange (ETDEWEB)

    Jaing, C

    2012-03-19

    The increasing incidence and complications arising from combat wounds has necessitated a reassessment of methods for effective treatment. Infection, excessive inflammation, and incidence of drug-resistant organisms all contribute toward negative outcomes for afflicted individuals. The organisms and host processes involved in wound progression, however, are incompletely understood. We therefore set out, using our unique technical resources, to construct a profile of combat wounds which did or did not successfully resolve. We employed the Lawrence Livermore Microbial Detection Array and identified a number of nosocomial pathogens present in wound samples. Some of these identities corresponded with bacterial isolates previously cultured, while others were not obtained via standard microbiology. Further, we optimized proteomics protocols for the identification of host biomarkers indicative of various stages in wound progression. In combination with our pathogen data, our biomarker discovery efforts will provide a profile corresponding to wound complications, and will assist significantly in treatment of these complex cases.

  11. Biomarker Analysis of Stored Blood Products: Emphasis on Pre-Analytical Issues

    Science.gov (United States)

    Delobel, Julien; Rubin, Olivier; Prudent, Michel; Crettaz, David; Tissot, Jean-Daniel; Lion, Niels

    2010-01-01

    Millions of blood products are transfused every year; many lives are thus directly concerned by transfusion. The three main labile blood products used in transfusion are erythrocyte concentrates, platelet concentrates and fresh frozen plasma. Each of these products has to be stored according to its particular components. However, during storage, modifications or degradation of those components may occur, and are known as storage lesions. Thus, biomarker discovery of in vivo blood aging as well as in vitro labile blood products storage lesions is of high interest for the transfusion medicine community. Pre-analytical issues are of major importance in analyzing the various blood products during storage conditions as well as according to various protocols that are currently used in blood banks for their preparations. This paper will review key elements that have to be taken into account in the context of proteomic-based biomarker discovery applied to blood banking. PMID:21151459

  12. Unravelling the nuclear matrix proteome

    DEFF Research Database (Denmark)

    Albrethsen, Jakob; Knol, Jaco C; Jimenez, Connie R

    2009-01-01

    The nuclear matrix (NM) model posits the presence of a protein/RNA scaffold that spans the mammalian nucleus. The NM proteins are involved in basic nuclear function and are a promising source of protein biomarkers for cancer. Importantly, the NM proteome is operationally defined as the proteins...

  13. Dietary Yeast Cell Wall Extract Alters the Proteome of the Skin Mucous Barrier in Atlantic Salmon (Salmo salar: Increased Abundance and Expression of a Calreticulin-Like Protein.

    Directory of Open Access Journals (Sweden)

    Giulia Micallef

    Full Text Available In order to improve fish health and reduce use of chemotherapeutants in aquaculture production, the immunomodulatory effect of various nutritional ingredients has been explored. In salmon, there is evidence that functional feeds can reduce the abundance of sea lice. This study aimed to determine if there were consistent changes in the skin mucus proteome that could serve as a biomarker for dietary yeast cell wall extract. The effect of dietary yeast cell wall extract on the skin mucus proteome of Atlantic salmon was examined using two-dimensional gel electrophoresis. Forty-nine spots showed a statistically significant change in their normalised volumes between the control and yeast cell wall diets. Thirteen spots were successfully identified by peptide fragment fingerprinting and LC-MS/MS and these belonged to a variety of functions and pathways. To assess the validity of the results from the proteome approach, the gene expression of a selection of these proteins was studied in skin mRNA from two different independent feeding trials using yeast cell wall extracts. A calreticulin-like protein increased in abundance at both the protein and transcript level in response to dietary yeast cell wall extract. The calreticulin-like protein was identified as a possible biomarker for yeast-derived functional feeds since it showed the most consistent change in expression in both the mucus proteome and skin transcriptome. The discovery of such a biomarker is expected to quicken the pace of research in the application of yeast cell wall extracts.

  14. Systemic effects of ionizing radiation at the proteome and metabolome levels in the blood of cancer patients treated with radiotherapy: the influence of inflammation and radiation toxicity.

    Science.gov (United States)

    Jelonek, Karol; Pietrowska, Monika; Widlak, Piotr

    2017-07-01

    Blood is the most common replacement tissue used to study systemic responses of organisms to different types of pathological conditions and environmental insults. Local irradiation during cancer radiotherapy induces whole body responses that can be observed at the blood proteome and metabolome levels. Hence, comparative blood proteomics and metabolomics are emerging approaches used in the discovery of radiation biomarkers. These techniques enable the simultaneous measurement of hundreds of molecules and the identification of sets of components that can discriminate different physiological states of the human body. Radiation-induced changes are affected by the dose and volume of irradiated tissues; hence, the molecular composition of blood is a hypothetical source of biomarkers for dose assessment and the prediction and monitoring of systemic responses to radiation. This review aims to provide a comprehensive overview on the available evidence regarding molecular responses to ionizing radiation detected at the level of the human blood proteome and metabolome. It focuses on patients exposed to radiation during cancer radiotherapy and emphasizes effects related to radiation-induced toxicity and inflammation. Systemic responses to radiation detected at the blood proteome and metabolome levels are primarily related to the intensity of radiation-induced toxicity, including inflammatory responses. Thus, several inflammation-associated molecules can be used to monitor or even predict radiation-induced toxicity. However, these abundant molecular features have a rather limited applicability as universal biomarkers for dose assessment, reflecting the individual predisposition of the immune system and tissue-specific mechanisms involved in radiation-induced damage.

  15. Potential biomarker panels in overall breast cancer management: advancements by multilevel diagnostics.

    Science.gov (United States)

    Girotra, Shantanu; Yeghiazaryan, Kristina; Golubnitschaja, Olga

    2016-09-01

    Breast cancer (BC) prevalence has reached an epidemic scale with half a million deaths annually. Current deficits in BC management include predictive and preventive approaches, optimized screening programs, individualized patient profiling, highly sensitive detection technologies for more precise diagnostics and therapy monitoring, individualized prediction and effective treatment of BC metastatic disease. To advance BC management, paradigm shift from delayed to predictive, preventive and personalized medical services is essential. Corresponding step forwards requires innovative multilevel diagnostics procuring specific panels of validated biomarkers. Here, we discuss current instrumental advancements including genomics, proteomics, epigenetics, miRNA, metabolomics, circulating tumor cells and cancer stem cells with a focus on biomarker discovery and multilevel diagnostic panels. A list of the recommended biomarker candidates is provided.

  16. Proteomic profiling in incubation medium of mouse, rat and human precision-cut liver slices for biomarker detection regarding acute drug-induced liver injury

    NARCIS (Netherlands)

    van Swelm, Rachel P L; Hadi, Mackenzie; Laarakkers, Coby M M; Masereeuw, R.|info:eu-repo/dai/nl/155644033; Groothuis, Geny M M; Russel, Frans G M

    Drug-induced liver injury is one of the leading causes of drug withdrawal from the market. In this study, we investigated the applicability of protein profiling of the incubation medium of human, mouse and rat precision-cut liver slices (PCLS) exposed to liver injury-inducing drugs for biomarker

  17. Biomarkers in cancer screening: a public health perspective.

    Science.gov (United States)

    Srivastava, Sudhir; Gopal-Srivastava, Rashmi

    2002-08-01

    The last three decades have witnessed a rapid advancement and diffusion of technology in health services. Technological innovations have given health service providers the means to diagnose and treat an increasing number of illnesses, including cancer. In this effort, research on biomarkers for cancer detection and risk assessment has taken a center stage in our effort to reduce cancer deaths. For the first time, scientists have the technologies to decipher and understand these biomarkers and to apply them to earlier cancer detection. By identifying people at high risk of developing cancer, it would be possible to develop intervention efforts on prevention rather than treatment. Once fully developed and validated, then the regular clinical use of biomarkers in early detection and risk assessment will meet nationally recognized health care needs: detection of cancer at its earliest stage. The dramatic rise in health care costs in the past three decades is partly related to the proliferation of new technologies. More recent analysis indicates that technological change, such as new procedures, products and capabilities, is the primary explanation of the historical increase in expenditure. Biomarkers are the new entrants in this competing environment. Biomarkers are considered as a competing, halfway or add-on technology. Technology such as laboratory tests of biomarkers will cost less compared with computed tomography (CT) scans and other radiographs. However, biomarkers for earlier detection and risk assessment have not achieved the level of confidence required for clinical applications. This paper discusses some issues related to biomarker development, validation and quality assurance. Some data on the trends of diagnostic technologies, proteomics and genomics are presented and discussed in terms of the market share. Eventually, the use of biomarkers in health care could reduce cost by providing noninvasive, sensitive and reliable assays at a fraction of the cost of

  18. Proteomic Discovery and Development of a Multiplexed Targeted MRM-LC-MS/MS Assay for Urine Biomarkers of Extracellular Matrix Disruption in Mucopolysaccharidoses I, II, and VI

    NARCIS (Netherlands)

    Heywood, Wendy E.; Camuzeaux, Stephane; Doykov, Ivan; Patel, Nina; Preece, Rhian-Lauren; Footitt, Emma; Cleary, Maureen; Clayton, Peter; Grunewald, Stephanie; Abulhoul, Lara; Chakrapani, Anupam; Sebire, Neil J.; Hindmarsh, Peter; de Koning, Tom J.; Heales, Simon; Burke, Derek; Gissen, Paul; Mills, Kevin

    2015-01-01

    The mucopolysaccharidoses (MPS) are lysosomal storage disorders that result from defects in the catabolism of glycosaminoglycans. Impaired muscle, bone, and connective tissue are typical clinical features of MPS due to disruption of the extracellular matrix Markers of MPS disease pathology are

  19. Ocular Proteomics with Emphasis on Two-Dimensional Gel Electrophoresis and Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Honoré Bent

    2010-01-01

    Full Text Available Abstract The intention of this review is to provide an overview of current methodologies employed in the rapidly developing field of ocular proteomics with emphasis on sample preparation, two-dimensional polyacrylamide gel electrophoresis (2D-PAGE and mass spectrometry (MS. Appropriate sample preparation for the diverse range of cells and tissues of the eye is essential to ensure reliable results. Current methods of protein staining for 2D-PAGE, protein labelling for two-dimensional difference gel electrophoresis, gel-based expression analysis and protein identification by MS are summarised. The uses of gel-free MS-based strategies (MuDPIT, iTRAQ, ICAT and SILAC are also discussed. Proteomic technologies promise to shed new light onto ocular disease processes that could lead to the discovery of strong novel biomarkers and therapeutic targets useful in many ophthalmic conditions.

  20. Application of a global proteomic approach to archival precursor lesions: deleted in malignant brain tumors 1 and tissue transglutaminase 2 are upregulated in pancreatic cancer precursors

    DEFF Research Database (Denmark)

    Cheung, Wang; Darfler, Marlene M; Alvarez, Hector

    2008-01-01

    BACKGROUND: Pancreatic cancer is an almost uniformly fatal disease, and early detection is a critical determinant of improved survival. A variety of noninvasive precursor lesions of pancreatic adenocarcinoma have been identified, which provide a unique opportunity for intervention prior to onset ...... their overexpression in IPMNs. CONCLUSION: Global proteomics analysis using the Liquid Tissue workflow is a feasible approach for unbiased biomarker discovery in limited archival material, particularly applicable to precursor lesions of cancer......., and mass spectrometry to conduct a global proteomic analysis of an intraductal papillary mucinous neoplasm (IPMN). Tissue microarrays comprised of 38 IPMNs were used for validation of candidate proteins. RESULTS: The proteomic analysis of the IPMN Liquid Tissue lysate resulted in identification of 1......,534 peptides corresponding to 523 unique proteins. A subset of 25 proteins was identified that had previously been reported as upregulated in pancreatic cancer. Immunohistochemical analysis for two of these, deleted in malignant brain tumors 1 (DMBT1) and tissue transglutaminase 2 (TGM2), confirmed...