WorldWideScience

Sample records for proteins kinetic studies

  1. Kinetics and Thermodynamics of Membrane Protein Folding

    Directory of Open Access Journals (Sweden)

    Ernesto A. Roman

    2014-03-01

    Full Text Available Understanding protein folding has been one of the great challenges in biochemistry and molecular biophysics. Over the past 50 years, many thermodynamic and kinetic studies have been performed addressing the stability of globular proteins. In comparison, advances in the membrane protein folding field lag far behind. Although membrane proteins constitute about a third of the proteins encoded in known genomes, stability studies on membrane proteins have been impaired due to experimental limitations. Furthermore, no systematic experimental strategies are available for folding these biomolecules in vitro. Common denaturing agents such as chaotropes usually do not work on helical membrane proteins, and ionic detergents have been successful denaturants only in few cases. Refolding a membrane protein seems to be a craftsman work, which is relatively straightforward for transmembrane β-barrel proteins but challenging for α-helical membrane proteins. Additional complexities emerge in multidomain membrane proteins, data interpretation being one of the most critical. In this review, we will describe some recent efforts in understanding the folding mechanism of membrane proteins that have been reversibly refolded allowing both thermodynamic and kinetic analysis. This information will be discussed in the context of current paradigms in the protein folding field.

  2. Kinetics of fibrilar aggregation of food proteins

    NARCIS (Netherlands)

    Arnaudov, L.N.

    2005-01-01

    In this thesis we study the kinetics of fibrilar aggregation of two model proteins widely used in the food industry -b-lactoglobulin (b-lg) and hen

  3. A study of whole body protein kinetics in malnourished children with persistent diarrhea: A double blind trial of zinc supplementation

    International Nuclear Information System (INIS)

    Bhutta, Z.A.; Nizami, S.Q.; Hardy, S.; Hendricks, K.

    1996-01-01

    Persistent diarrhoea (PD) is globally recognized as a major cause of childhood morbidity and mortality. PD is closely associated with malnutrition and nutrition rehabilitation especially domiciliary dietary therapy posses a therapeutic challenge. While there has been success in managing such children with locally home available traditional diets, there has been concern with the potential of associated micronutrient especially zinc deficiency. We are evaluating the impact of zinc supplementation of a traditional rice-lentil (khitchri) and yogurt diet in malnourished children with PD in randomized double blind study. In addition to the impact on weight gain, stool output and body composition, we will evaluate whole body protein kinetics using the modified CRP protocol [employing 15 N-glycine, H 13 Co 3 and 1- 13 C leucine]. We will also estimate the effect of coexisting illnesses, especially febrile episodes on nutritional recovery and protein metabolism. (author). 20 refs, 5 figs, 1 tab

  4. The Kinetics of Crystallization of Colloids and Proteins: A Light Scattering Study

    Science.gov (United States)

    McClymer, Jim

    2002-01-01

    Hard-sphere colloidal systems serve as model systems for aggregation, nucleation, crystallization and gelation as well as interesting systems in their own right.There is strong current interest in using colloidal systems to form photonic crystals. A major scientific thrust of NASA's microgravity research is the crystallization of proteins for structural determination. The crystallization of proteins is a complicated process that requires a great deal of trial and error experimentation. In spite of a great deal of work, "better" protein crystals cannot always be grown in microgravity and conditions for crystallization are not well understood. Crystallization of colloidal systems interacting as hard spheres and with an attractive potential induced by entropic forces have been studied in a series of static light scattering experiments. Additionally, aggregation of a protein as a function of pH has been studied using dynamic light scattering. For our experiments we used PMMA (polymethylacrylate) spherical particles interacting as hard spheres, with no attractive potential. These particles have a radius of 304 nanometers, a density of 1.22 gm/ml and an index of refraction of 1.52. A PMMA colloidal sample at a volume fraction of approximately 54% was index matched in a solution of cycloheptyl bromide (CHB) and cis-decalin. The sample is in a glass cylindrical vial that is placed in an ALV static and dynamic light scattering goniometer system. The vial is immersed in a toluene bath for index matching to minimize flair. Vigorous shaking melts any colloidal crystals initially present. The sample is illuminated with diverging laser light (632.8 nanometers) from a 4x microscope objective placed so that the beam is approximately 1 cm in diameter at the sample location. The sample is rotated about its long axis at approximately 3.5 revolutions per minute (highest speed) as the colloidal crystal system is non-ergodic. The scattered light is detected at various angles using the

  5. Novel synthetic approach to the prion protein: Kinetic study optimization of a native chemical ligation

    Czech Academy of Sciences Publication Activity Database

    Zawada, Zbigniew; Šebestík, Jaroslav; Bouř, Petr; Hlaváček, Jan; Stibor, Ivan

    2008-01-01

    Roč. 14, č. 8 (2008), s. 76-77 ISSN 1075-2617. [European Peptide Symposium /30./. 31.08.2008-05.09.2008, Helsinki] R&D Projects: GA ČR GA203/07/1517 Institutional research plan: CEZ:AV0Z40550506 Keywords : prion protein * neurodegenerative diseases * chemical synthesis * ligation conditions Subject RIV: CC - Organic Chemistry

  6. Proteomic analyses for profiling regulated proteins/enzymes by Fucus vesiculosus fucoidan in B16 melanoma cells: A combination of enzyme kinetics functional study.

    Science.gov (United States)

    Wang, Zhi-Jiang; Zheng, Li; Yang, Jun-Mo; Kang, Yani; Park, Yong-Doo

    2018-06-01

    Fucoidans are complex sulfated polysaccharides that have a wide range of biological activities. Previously, we reported the various effects of Fucus vesiculosus fucoidan on tyrosinase and B16 melanoma cells. In this study, to identify fucoidan-targeted proteins in B16 melanoma cells, we performed a proteomics study and integrated enzyme kinetics. We detected 19 candidate proteins dysregulated by fucoidan treatment. Among the probed proteins, the enzyme kinetics of two candidate enzymes, namely lactate dehydrogenase (LDH) as an upregulated protein and superoxide dismutase (SOD) as a downregulated enzyme, were determined. The enzyme kinetics results showed that Fucus vesiculosus fucoidan significantly inhibited LDH catalytic function while it did not affect SOD activity even at a high dose, while only slightly decreased activity (up to 10%) at a low dose. Based on our previous and present observations, fucoidan could inhibit B16 melanoma cells growth via regulating proteins/enzymes expression levels such as LDH and SOD known as cell survival biomarkers. Interestingly, both expression level and enzyme catalytic activity of LDH were regulated by fucoidan, which could directly induce the apoptotic effect on B16 melanoma cells along with SOD downregulation. This study highlights how combining proteomics with enzyme kinetics can yield valuable insights into fucoidan targets. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Kinetics of protein unfolding at interfaces

    International Nuclear Information System (INIS)

    Yano, Yohko F

    2012-01-01

    The conformation of protein molecules is determined by a balance of various forces, including van der Waals attraction, electrostatic interaction, hydrogen bonding, and conformational entropy. When protein molecules encounter an interface, they are often adsorbed on the interface. The conformation of an adsorbed protein molecule strongly depends on the interaction between the protein and the interface. Recent time-resolved investigations have revealed that protein conformation changes during the adsorption process due to the protein-protein interaction increasing with increasing interface coverage. External conditions also affect the protein conformation. This review considers recent dynamic observations of protein adsorption at various interfaces and their implications for the kinetics of protein unfolding at interfaces. (topical review)

  8. Advanced path sampling of the kinetic network of small proteins

    NARCIS (Netherlands)

    Du, W.

    2014-01-01

    This thesis is focused on developing advanced path sampling simulation methods to study protein folding and unfolding, and to build kinetic equilibrium networks describing these processes. In Chapter 1 the basic knowledge of protein structure and folding theories were introduced and a brief overview

  9. Enzyme kinetic characterization of protein tyrosine phosphatases

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Branner, S.; Møller, K. B.

    2003-01-01

    Protein tyrosine phosphatases (PTPs) play a central role in cellular signaling processes, resulting in an increased interest in modulating the activities of PTPs. We therefore decided to undertake a detailed enzyme kinetic evaluation of various transmembrane and cytosolic PTPs (PTPalpha, PTPbeta...

  10. Study on a hidden protein-DNA binding in salmon sperm DNA sample by dynamic kinetic capillary isoelectric focusing

    International Nuclear Information System (INIS)

    Liang Liang; Dou Peng; Dong Mingming; Ke Xiaokang; Bian Ningsheng; Liu Zhen

    2009-01-01

    Nuclease P1 is an important enzyme that hydrolyzes RNA or single-stranded DNA into nucleotides, and complete digestion is an essential basis for assays based on this enzyme. To digest a doubled-stranded DNA, the enzyme is usually combined with heat denaturing, which breaks doubled-stranded DNA into single strands. This paper presents an un-expected phenomenon that nuclease P1, in combination with heat denaturing, fails to completely digest a DNA sample extracted from salmon sperm. Under the experimental conditions used, at which nuclease P1 can completely digest calf thymus DNA, the digestion yield of salmon sperm DNA was only 89.5%. Spectrometric measurement indicated that a total protein of 4.7% is present in the DNA sample. To explain the reason for this phenomenon, the dynamic kinetic capillary isoelectric focusing (DK-CIEF) approach proposed previously, which allows for the discrimination of different types of protein-DNA interactions and the measurement of the individual dissociation rate constants, was modified and applied to examine possible protein-DNA interactions involved. It was found that a non-specific DNA-protein binding occurs in the sample, the dissociation rate constant for which was measured to be 7.05 ± 0.83 x 10 -3 s -1 . The formation of DNA-protein complex was suggested to be the main reason for the incomplete digestion of the DNA sample. The modified DK-CIEF approach can be applied as general DNA samples, with the advantages of fast speed and low sample consumption.

  11. Quantification of protein interaction kinetics in a micro droplet

    Energy Technology Data Exchange (ETDEWEB)

    Yin, L. L. [Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, Arizona 85287 (United States); College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Wang, S. P., E-mail: shaopeng.wang@asu.edu, E-mail: njtao@asu.edu; Shan, X. N.; Tao, N. J., E-mail: shaopeng.wang@asu.edu, E-mail: njtao@asu.edu [Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, Arizona 85287 (United States); Zhang, S. T. [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China)

    2015-11-15

    Characterization of protein interactions is essential to the discovery of disease biomarkers, the development of diagnostic assays, and the screening for therapeutic drugs. Conventional flow-through kinetic measurements need relative large amount of sample that is not feasible for precious protein samples. We report a novel method to measure protein interaction kinetics in a single droplet with sub microliter or less volume. A droplet in a humidity-controlled environmental chamber is replacing the microfluidic channels as the reactor for the protein interaction. The binding process is monitored by a surface plasmon resonance imaging (SPRi) system. Association curves are obtained from the average SPR image intensity in the center area of the droplet. The washing step required by conventional flow-through SPR method is eliminated in the droplet method. The association and dissociation rate constants and binding affinity of an antigen-antibody interaction are obtained by global fitting of association curves at different concentrations. The result obtained by this method is accurate as validated by conventional flow-through SPR system. This droplet-based method not only allows kinetic studies for proteins with limited supply but also opens the door for high-throughput protein interaction study in a droplet-based microarray format that enables measurement of many to many interactions on a single chip.

  12. Periodic and stochastic thermal modulation of protein folding kinetics.

    Science.gov (United States)

    Platkov, Max; Gruebele, Martin

    2014-07-21

    Chemical reactions are usually observed either by relaxation of a bulk sample after applying a sudden external perturbation, or by intrinsic fluctuations of a few molecules. Here we show that the two ideas can be combined to measure protein folding kinetics, either by periodic thermal modulation, or by creating artificial thermal noise that greatly exceeds natural thermal fluctuations. We study the folding reaction of the enzyme phosphoglycerate kinase driven by periodic temperature waveforms. As the temperature waveform unfolds and refolds the protein, its fluorescence color changes due to FRET (Förster resonant Energy Transfer) of two donor/acceptor fluorophores labeling the protein. We adapt a simple model of periodically driven kinetics that nicely fits the data at all temperatures and driving frequencies: The phase shifts of the periodic donor and acceptor fluorescence signals as a function of driving frequency reveal reaction rates. We also drive the reaction with stochastic temperature waveforms that produce thermal fluctuations much greater than natural fluctuations in the bulk. Such artificial thermal noise allows the recovery of weak underlying signals due to protein folding kinetics. This opens up the possibility for future detection of a stochastic resonance for protein folding subject to noise with controllable amplitude.

  13. Stochastic optimization-based study of dimerization kinetics

    Indian Academy of Sciences (India)

    To this end, we study dimerization kinetics of protein as a model system. We follow the dimerization kinetics using a stochastic simulation algorithm and ... optimization; dimerization kinetics; sensitivity analysis; stochastic simulation ... tion in large molecules and clusters, or the design ..... An unbiased strategy of allocating.

  14. Equilibrium Kinetics Studies and Crystallization Aboard the International Space Station (ISS) Using the Protein Crystallization Apparatus for Microgravity (PCAM)

    Science.gov (United States)

    Achari, Aniruddha; Roeber, Dana F.; Barnes, Cindy L.; Kundrot, Craig E.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    Protein Crystallization Apparatus in Microgravity (PCAM) trays have been used in Shuttle missions to crystallize proteins in a microgravity environment. The crystallization experiments are 'sitting drops' similar to that in Cryschem trays, but the reservoir solution is soaked in a wick. From early 2001, crystallization experiments are conducted on the International Space Station using mission durations of months rather than two weeks on previous shuttle missions. Experiments were set up in April 2001 on Flight 6A to characterize the time crystallization experiments will take to reach equilibrium in a microgravity environment using salts, polyethylene glycols and an organic solvent as precipitants. The experiments were set up to gather data for a series of days of activation with different droplet volumes and precipitants. The experimental set up on ISS and results of this study will be presented. These results will help future users of PCAM to choose precipitants to optimize crystallization conditions for their target macromolecules for a particular mission with known mission duration. Changes in crystal morphology and size between the ground and space grown crystals of a protein and a protein -DNA complex flown on the same mission will also be presented.

  15. 15N tracer kinetic studies on the validity of various 15N tracer substances for determining whole-body protein parameters in very small preterm infants

    International Nuclear Information System (INIS)

    Plath, C.; Heine, W.; Wutzke, K.D.; Krienke, L.; Toewe, J.M.; Massute, G.; Windischmann, C.

    1987-01-01

    Reliable 15 N tracer substances for tracer kinetic determination of whole-body protein parameters in very small preterm infants are still a matter of intensive research, especially after some doubts have been raised about the validity of [ 15 N]glycine, a commonly used 15 N tracer. Protein turnover, synthesis, breakdown, and further protein metabolism data were determined by a paired comparison in four preterm infants. Their post-conceptual age was 32.2 +/- 0.8 weeks, and their body weight was 1670 +/- 181 g. Tracer substances applied in this study were a [ 15 N]amino acid mixture (Ia) and [ 15 N]glycine (Ib). In a second group of three infants with a post conceptual age of 15 N-labeled 32.0 +/- 1.0 weeks and a body weight of 1,907 +/- 137 g, yeast protein hydrolysate (II) was used as a tracer substance. A three-pool model was employed for the analysis of the data. This model takes into account renal and fecal 15 N losses after a single 15 N pulse. Protein turnovers were as follows: 11.9 +/- 3.1 g kg-1 d-1 (Ia), 16.2 +/- 2.5 g kg-1 d-1 (Ib), and 10.8 +/- 3.0 g kg-1 d-1 (II). We were able to demonstrate an overestimation of the protein turnover when Ib was used. There was an expected correspondence in the results obtained from Ia and II. The 15 N-labeled yeast protein hydrolysate is a relatively cheap tracer that allows reliable determination of whole-body protein parameters in very small preterm infants

  16. An improved ultrafast 2D NMR experiment: Towards atom-resolved real-time studies of protein kinetics at multi-Hz rates

    International Nuclear Information System (INIS)

    Gal, Maayan; Kern, Thomas; Schanda, Paul; Frydman, Lucio; Brutscher, Bernhard

    2009-01-01

    Multidimensional NMR spectroscopy is a well-established technique for the characterization of structure and fast-time-scale dynamics of highly populated ground states of biological macromolecules. The investigation of short-lived excited states that are important for molecular folding, misfolding and function, however, remains a challenge for modern biomolecular NMR techniques. Off-equilibrium real-time kinetic NMR methods allow direct observation of conformational or chemical changes by following peak positions and intensities in a series of spectra recorded during a kinetic event. Because standard multidimensional NMR methods required to yield sufficient atom-resolution are intrinsically time-consuming, many interesting phenomena are excluded from real-time NMR analysis. Recently, spatially encoded ultrafast 2D NMR techniques have been proposed that allow one to acquire a 2D NMR experiment within a single transient. In addition, when combined with the SOFAST technique, such ultrafast experiments can be repeated at high rates. One of the problems detected for such ultrafast protein NMR experiments is related to the heteronuclear decoupling during detection with interferences between the pulses and the oscillatory magnetic field gradients arising in this scheme. Here we present a method for improved ultrafast data acquisition yielding higher signal to noise and sharper lines in single-scan 2D NMR spectra. In combination with a fast-mixing device, the recording of 1 H- 15 N correlation spectra with repetition rates of up to a few Hertz becomes feasible, enabling real-time studies of protein kinetics occurring on time scales down to a few seconds

  17. Characteristics of selective fluoride adsorption by biocarbon-Mg/Al layered double hydroxides composites from protein solutions: kinetics and equilibrium isotherms study.

    Science.gov (United States)

    Ma, Wei; Lv, Tengfei; Song, Xiaoyan; Cheng, Zihong; Duan, Shibo; Xin, Gang; Liu, Fujun; Pan, Decong

    2014-03-15

    In the study, two novel applied biocarbon-Mg/Al layered double hydroxides composites (CPLDH and CPLDH-Ca) were successfully prepared and characterized by TEM, ICP-AES, XFS, EDS, FTIR, XRD, BET and pHpzc. The fluoride removal efficiency (RF) and protein recovery ratio (RP) of the adsorbents were studied in protein systems of lysozyme (LSZ) and bovine serum albumin (BSA). The results showed that the CPLDH-Ca presented remarkable performance for selective fluoride removal from protein solution. It reached the maximum RF of 92.1% and 94.8% at the CPLDH-Ca dose of 2.0g/L in LSZ and BSA system, respectively. The RP in both systems of LSZ and BSA were more than 90%. Additionally, the RP of CPLDH-Ca increased with the increase of ionic strengths, and it almost can be 100% with more than 93% RF. Fluoride adsorption by the CPLDH-Ca with different initial fluoride concentrations was found to obey the mixed surface reaction and diffusion controlled adsorption kinetic model, and the overall reaction rate is probably controlled by intra-particle diffusion, boundary layer diffusion and reaction process. The adsorption isotherms of fluoride in BSA system fit the Langmuir-Freundlich model well. The BSA has synergistic effect on fluoride adsorption and the degree increased with the increase of the initial BSA concentration. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Kinetic catalytic studies of scorpion's hemocyanin

    International Nuclear Information System (INIS)

    Queinnec, E.; Vuillaume, M.; Gardes-Albert, M.; Ferradini, C.; Ducancel, F.

    1991-01-01

    Hemocyanins are copper proteins which function as oxygen carriers in the haemolymph of Molluscs and Arthropods. They possess enzymatic properties: peroxidatic and catalatic activities, although they have neither iron nor porphyrin ring at the active site. The kinetics of the catalytic reaction is described. The reaction of superoxide anion with hemocyanin has been studied using pulse radiolysis at pH 9. The catalytic rate constant is 3.5 X 10 7 mol -1 .l.s -1 [fr

  19. Improved energy kinetics following high protein diet in McArdle's syndrome. A 31P magnetic resonance spectroscopy study

    DEFF Research Database (Denmark)

    Jensen, K E; Jakobsen, J; Thomsen, C

    1990-01-01

    weeks of high protein diet. During intravenous infusion of amino acids, no changes in working capacity could be detected. No decrease was seen in intracellular muscle pH during aerobic exercise. A significant decrease in muscle pH during aerobic exercise was detected in all controls....

  20. Study on platelet kinetics

    International Nuclear Information System (INIS)

    Yui, Tokuo

    1981-01-01

    Fundamental study: Factors influencing the labeling on human platelets were evaluated and optimal labeling conditions were chosen. Then, platelet survival times were measured and organ distribution of labeled platelets was observed in rat by four different methods. These results were compared with each other. Based on the findings of those studies, the protocol of human platelet labeling with 111 In-oxine for clinical use was established. Clinical study: In normal cases, a platelet survival time and a platelet turnover rate were quite similar to the results from 51 Cr method. In gamma camera imaging, a radioactivity on the heart decreased with the lapse of time, while that on the spleen and liver gradually increased. In patients with idiopathic thrombocytopenic purpura, platelet survival time was markedly shortened and both a platelet turnover rate and an effective production increased. In patient with congestive splenomegaly, a platelet survival time was normal, whereas a platelet pooling on the spleen markedly increased. In patients who were implanted dacron-graft for abdominal aortic aneurysm, a radioactivity accumulated to the graft and a platelet survival time shortened. In a patient with myocardial infarction, the camera imaging clearly showed the thrombus in the left ventricular aneurysm. In three patients with mitral stenosis, thrombi in left atrium were observed at the camera images. Imaging of a platelet distribution and measurement of platelet survival time using 111 In-oxine labeled platelets are considered to be an excellent method for the diagnosis and decision of treatment on various disorders with thrombocytopenia and thrombosis. (J.P.N.)

  1. Estimation of lymphatic conductance. A model based on protein-kinetic studies and haemodynamic measurements in patients with cirrhosis of the liver and in pigs

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl

    1985-01-01

    A model of lymphatic conductivity (i.e. flow rate per unit pressure difference = conductance) based on protein-kinetic and haemodynamic measurements is described. The model is applied to data from patients with cirrhosis and from pigs with different haemodynamic abnormalities in the hepatosplanch......A model of lymphatic conductivity (i.e. flow rate per unit pressure difference = conductance) based on protein-kinetic and haemodynamic measurements is described. The model is applied to data from patients with cirrhosis and from pigs with different haemodynamic abnormalities...... compatible with increased sinusoidal wall tightening and fibrosis in the interstitial space of the liver. The model presented supports the so-called 'lymph-imbalance' theory of ascites formation according to which a relatively insufficient lymph drainage is important in the pathogenesis of hepatic ascites....

  2. Course 12: Proteins: Structural, Thermodynamic and Kinetic Aspects

    Science.gov (United States)

    Finkelstein, A. V.

    1 Introduction 2 Overview of protein architectures and discussion of physical background of their natural selection 2.1 Protein structures 2.2 Physical selection of protein structures 3 Thermodynamic aspects of protein folding 3.1 Reversible denaturation of protein structures 3.2 What do denatured proteins look like? 3.3 Why denaturation of a globular protein is the first-order phase transition 3.4 "Gap" in energy spectrum: The main characteristic that distinguishes protein chains from random polymers 4 Kinetic aspects of protein folding 4.1 Protein folding in vivo 4.2 Protein folding in vitro (in the test-tube) 4.3 Theory of protein folding rates and solution of the Levinthal paradox

  3. Amyloid protein unfolding and insertion kinetics on neuronal membrane mimics

    Science.gov (United States)

    Qiu, Liming; Buie, Creighton; Vaughn, Mark; Cheng, Kwan

    2010-03-01

    Atomistic details of beta-amyloid (Aβ ) protein unfolding and lipid interaction kinetics mediated by the neuronal membrane surface are important for developing new therapeutic strategies to prevent and cure Alzheimer's disease. Using all-atom MD simulations, we explored the early unfolding and insertion kinetics of 40 and 42 residue long Aβ in binary lipid mixtures with and without cholesterol that mimic the cholesterol-depleted and cholesterol-enriched lipid nanodomains of neurons. The protein conformational transition kinetics was evaluated from the secondary structure profile versus simulation time plot. The extent of membrane disruption was examined by the calculated order parameters of lipid acyl chains and cholesterol fused rings as well as the density profiles of water and lipid headgroups at defined regions across the lipid bilayer from our simulations. Our results revealed that both the cholesterol content and the length of the protein affect the protein-insertion and membrane stability in our model lipid bilayer systems.

  4. Real-time Kinetics of High-mobility Group Box 1 (HMGB1) Oxidation in Extracellular Fluids Studied by in Situ Protein NMR Spectroscopy*

    Science.gov (United States)

    Zandarashvili, Levani; Sahu, Debashish; Lee, Kwanbok; Lee, Yong Sun; Singh, Pomila; Rajarathnam, Krishna; Iwahara, Junji

    2013-01-01

    Some extracellular proteins are initially secreted in reduced forms via a non-canonical pathway bypassing the endoplasmic reticulum and become oxidized in the extracellular space. One such protein is HMGB1 (high-mobility group box 1). Extracellular HMGB1 has different redox states that play distinct roles in inflammation. Using a unique NMR-based approach, we have investigated the kinetics of HMGB1 oxidation and the half-lives of all-thiol and disulfide HMGB1 species in serum, saliva, and cell culture medium. In this approach, salt-free lyophilized 15N-labeled all-thiol HMGB1 was dissolved in actual extracellular fluids, and the oxidation and clearance kinetics were monitored in situ by recording a series of heteronuclear 1H-15N correlation spectra. We found that the half-life depends significantly on the extracellular environment. For example, the half-life of all-thiol HMGB1 ranged from ∼17 min (in human serum and saliva) to 3 h (in prostate cancer cell culture medium). Furthermore, the binding of ligands (glycyrrhizin and heparin) to HMGB1 significantly modulated the oxidation kinetics. Thus, the balance between the roles of all-thiol and disulfide HMGB1 proteins depends significantly on the extracellular environment and can also be artificially modulated by ligands. This is important because extracellular HMGB1 has been suggested as a therapeutic target for inflammatory diseases and cancer. Our work demonstrates that the in situ protein NMR approach is powerful for investigating the behavior of proteins in actual extracellular fluids containing an enormous number of different molecules. PMID:23447529

  5. Protein digestion kinetics in pigs and poultry

    NARCIS (Netherlands)

    Chen, Hsuan

    2017-01-01

    Increasing the protein efficiency is considered a main strategy for sustainable feeding of pigs and poultry. In practice, protein in pig and poultry diets originates from different ingredients, selected in diet formulation based on their nutritional value and cost. Currently, the nutritional

  6. Ligand-promoted protein folding by biased kinetic partitioning.

    Science.gov (United States)

    Hingorani, Karan S; Metcalf, Matthew C; Deming, Derrick T; Garman, Scott C; Powers, Evan T; Gierasch, Lila M

    2017-04-01

    Protein folding in cells occurs in the presence of high concentrations of endogenous binding partners, and exogenous binding partners have been exploited as pharmacological chaperones. A combined mathematical modeling and experimental approach shows that a ligand improves the folding of a destabilized protein by biasing the kinetic partitioning between folding and alternative fates (aggregation or degradation). Computationally predicted inhibition of test protein aggregation and degradation as a function of ligand concentration are validated by experiments in two disparate cellular systems.

  7. Kinetic variation of protein metabolism in pregnant rats

    International Nuclear Information System (INIS)

    Kubo, Katsuharu

    1980-01-01

    Kinetic variation of nitrogen metabolism in the skeletal muscle and liver of rats during the course of pregnancy was studied by the use of 15 N-amino nitrogen during acclimatization on a protein-free diet. 15 N from 15 N-glycine given on day 1 of pregnancy decreased from the 1st to 2nd trimester in the liver, suggesting contribution to the N metabolic pool. In the muscle, the rate of 15 N showed a marked decrease in the 2nd trimester, indicating, along with an increased accumulation of the total muscular N content, N accumulation in muscle protein in the 2nd trimester and promoted decomposition of mobiler muscular protein in the 2nd trimester. The marked decrease in the muscle 15 N content from the 2nd trimester and the decrease in the total N content in the 3rd trimester support the serious involvement of muscular N in fetal growth. The level of 15 N from 15 N-ammonium during the course of pregnancy was significantly high in the 2nd trimester and low in the 3rd. The 2nd trimester showed amino N accumulation in the muscle, and the 3rd, a decrease in N accumulation and amino N release. In regard to the kinetics of 15 N-lysine in the cell fraction, the muscular microsomes showed a high 15 N accumulation in the 2nd trimester and a voluminous release in the 3rd trimester. In contrast, the liver microsomes showed a linear decrease of 15 N up to 2nd trimester, followed by no change. (Chiba, N.)

  8. Physical principles of filamentous protein self-assembly kinetics

    International Nuclear Information System (INIS)

    Michaels, Thomas C T; Liu, Lucie X; Meisl, Georg; Knowles, Tuomas P J

    2017-01-01

    The polymerization of proteins and peptides into filamentous supramolecular structures is an elementary form of self-organization of key importance to the functioning biological systems, as in the case of actin biofilaments that compose the cellular cytoskeleton. Aberrant filamentous protein self-assembly, however, is associated with undesired effects and severe clinical disorders, such as Alzheimer’s and Parkinson’s diseases, which, at the molecular level, are associated with the formation of certain forms of filamentous protein aggregates known as amyloids. Moreover, due to their unique physicochemical properties, protein filaments are finding extensive applications as biomaterials for nanotechnology. With all these different factors at play, the field of filamentous protein self-assembly has experienced tremendous activity in recent years. A key question in this area has been to elucidate the microscopic mechanisms through which filamentous aggregates emerge from dispersed proteins with the goal of uncovering the underlying physical principles. With the latest developments in the mathematical modeling of protein aggregation kinetics as well as the improvement of the available experimental techniques it is now possible to tackle many of these complex systems and carry out detailed analyses of the underlying microscopic steps involved in protein filament formation. In this paper, we review some classical and modern kinetic theories of protein filament formation, highlighting their use as a general strategy for quantifying the molecular-level mechanisms and transition states involved in these processes. (topical review)

  9. Physical principles of filamentous protein self-assembly kinetics

    Science.gov (United States)

    Michaels, Thomas C. T.; Liu, Lucie X.; Meisl, Georg; Knowles, Tuomas P. J.

    2017-04-01

    The polymerization of proteins and peptides into filamentous supramolecular structures is an elementary form of self-organization of key importance to the functioning biological systems, as in the case of actin biofilaments that compose the cellular cytoskeleton. Aberrant filamentous protein self-assembly, however, is associated with undesired effects and severe clinical disorders, such as Alzheimer’s and Parkinson’s diseases, which, at the molecular level, are associated with the formation of certain forms of filamentous protein aggregates known as amyloids. Moreover, due to their unique physicochemical properties, protein filaments are finding extensive applications as biomaterials for nanotechnology. With all these different factors at play, the field of filamentous protein self-assembly has experienced tremendous activity in recent years. A key question in this area has been to elucidate the microscopic mechanisms through which filamentous aggregates emerge from dispersed proteins with the goal of uncovering the underlying physical principles. With the latest developments in the mathematical modeling of protein aggregation kinetics as well as the improvement of the available experimental techniques it is now possible to tackle many of these complex systems and carry out detailed analyses of the underlying microscopic steps involved in protein filament formation. In this paper, we review some classical and modern kinetic theories of protein filament formation, highlighting their use as a general strategy for quantifying the molecular-level mechanisms and transition states involved in these processes.

  10. Kinetic studies on leucite precursors

    Czech Academy of Sciences Publication Activity Database

    Mrázová, M.; Kloužková, A.; Kohoutková, Martina

    2009-01-01

    Roč. 7, č. 2 (2009), s. 205-210 ISSN 1895-1066 R&D Projects: GA MPO 2A-1TP1/063 Institutional research plan: CEZ:AV0Z40320502 Keywords : leucite * crystallization kinetics * hydrothermal Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.065, year: 2009

  11. Liquefaction chemistry and kinetics: Hydrogen utilization studies

    Energy Technology Data Exchange (ETDEWEB)

    Rothenberger, K.S.; Warzinski, R.P.; Cugini, A.V. [Pittsburgh Energy Technology Center, PA (United States)] [and others

    1995-12-31

    The objectives of this project are to investigate the chemistry and kinetics that occur in the initial stages of coal liquefaction and to determine the effects of hydrogen pressure, catalyst activity, and solvent type on the quantity and quality of the products produced. The project comprises three tasks: (1) preconversion chemistry and kinetics, (2) hydrogen utilization studies, and (3) assessment of kinetic models for liquefaction. The hydrogen utilization studies work will be the main topic of this report. However, the other tasks are briefly described.

  12. Equilibrium amide hydrogen exchange and protein folding kinetics

    International Nuclear Information System (INIS)

    Bai Yawen

    1999-01-01

    The classical Linderstrom-Lang hydrogen exchange (HX) model is extended to describe the relationship between the HX behaviors (EX1 and EX2) and protein folding kinetics for the amide protons that can only exchange by global unfolding in a three-state system including native (N), intermediate (I), and unfolded (U) states. For these slowly exchanging amide protons, it is shown that the existence of an intermediate (I) has no effect on the HX behavior in an off-pathway three-state system (I↔U↔N). On the other hand, in an on-pathway three-state system (U↔I↔N), the existence of a stable folding intermediate has profound effect on the HX behavior. It is shown that fast refolding from the unfolded state to the stable intermediate state alone does not guarantee EX2 behavior. The rate of refolding from the intermediate state to the native state also plays a crucial role in determining whether EX1 or EX2 behavior should occur. This is mainly due to the fact that only amide protons in the native state are observed in the hydrogen exchange experiment. These new concepts suggest that caution needs to be taken if one tries to derive the kinetic events of protein folding from equilibrium hydrogen exchange experiments

  13. Kinetic Study of Curcumin on Modal Fabric

    Directory of Open Access Journals (Sweden)

    Abu Naser Md. Ahsanul Haque

    2018-03-01

    Full Text Available A kinetic study of curcumin on modal fabric was carried out using an initial dye concentration of 1 g/L at three different temperatures, 70 °C, 85 °C and 100 °C, at pH 7 and an material to liquor ratio of 1:20. Pseudo first-order and pseudo second-order kinetics were applied, and it was found that the adsorption kinetics of curcumin on modal fabric matched the pseudo second-order kinetic model. The activation energy was found to be equal to 71.14 kJ/mol, while the enthalpy and entropy of activation were 68.16 kJ/mol and –66.02 J/molK respectively.

  14. A simple theory of motor protein kinetics and energetics. II.

    Science.gov (United States)

    Qian, H

    2000-01-10

    A three-state stochastic model of motor protein [Qian, Biophys. Chem. 67 (1997) pp. 263-267] is further developed to illustrate the relationship between the external load on an individual motor protein in aqueous solution with various ATP concentrations and its steady-state velocity. A wide variety of dynamic motor behavior are obtained from this simple model. For the particular case of free-load translocation being the most unfavorable step within the hydrolysis cycle, the load-velocity curve is quasi-linear, V/Vmax = (cF/Fmax-c)/(1-c), in contrast to the hyperbolic relationship proposed by A.V. Hill for macroscopic muscle. Significant deviation from the linearity is expected when the velocity is less than 10% of its maximal (free-load) value--a situation under which the processivity of motor diminishes and experimental observations are less certain. We then investigate the dependence of load-velocity curve on ATP (ADP) concentration. It is shown that the free load Vmax exhibits a Michaelis-Menten like behavior, and the isometric Fmax increases linearly with ln([ATP]/[ADP]). However, the quasi-linear region is independent of the ATP concentration, yielding an apparently ATP-independent maximal force below the true isometric force. Finally, the heat production as a function of ATP concentration and external load are calculated. In simple terms and solved with elementary algebra, the present model provides an integrated picture of biochemical kinetics and mechanical energetics of motor proteins.

  15. Microphase Separation Controlled beta-Sheet Crystallization Kinetics in Fibrous Proteins

    International Nuclear Information System (INIS)

    Hu, X.; Lu, Q.; Kaplan, D.; Cebe, P.

    2009-01-01

    Silk is a naturally occurring fibrous protein with a multiblock chain architecture. As such, it has many similarities with synthetic block copolymers, including the possibility for e-sheet crystallization restricted within the crystallizable blocks. The mechanism of isothermal crystallization kinetics of e-sheet crystals in silk multiblock fibrous proteins is reported in this study. Kinetics theories, such as Avrami analysis which was established for studies of synthetic polymer crystal growth, are for the first time extended to investigate protein self-assembly in e-sheet rich Bombyx mori silk fibroin samples, using time-resolved Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and synchrotron real-time wide-angle X-ray scattering (WAXS). The Avrami exponent, n, was close to 2 for all methods and crystallization temperatures, indicating formation of e-sheet crystals in silk proteins is different from the 3-D spherulitic crystal growth found in synthetic polymers. Observations by scanning electron microscopy support the view that the protein structures vary during the different stages of crystal growth, and show a microphase separation pattern after chymotrypsin enzyme biodegradation. We present a model to explain the crystallization of the multiblock silk fibroin protein, by analogy to block copolymers: crystallization of e-sheets occurs under conditions of geometrical restriction caused by phase separation of the crystallizable and uncrystallizable blocks. This crystallization model could be widely applicable in other proteins with multiblock (i.e., crystallizable and noncrystallizable) domains.

  16. Kinetic studies of elementary chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Durant, J.L. Jr. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    This program concerning kinetic studies of elementary chemical reactions is presently focussed on understanding reactions of NH{sub x} species. To reach this goal, the author is pursuing experimental studies of reaction rate coefficients and product branching fractions as well as using electronic structure calculations to calculate transition state properties and reaction rate calculations to relate these properties to predicted kinetic behavior. The synergy existing between the experimental and theoretical studies allow one to gain a deeper insight into more complex elementary reactions.

  17. Lithium hydride hydrolysis: experimental and kinetic study

    International Nuclear Information System (INIS)

    Charton, S.; Maupoix, C.; Brevet, A.; Delaunay, F.; Heintz, O.; Saviot, L.

    2006-01-01

    In this work has been studied the contribution of various analyses techniques in the framework, on the one hand of revealing the mechanisms implied in lithium hydride hydrolysis, and on the other hand of studying the kinetics of hydrogen production. Among the methods recently investigated, Raman spectroscopy, XPS and SIMS seem to be particularly attractive. (O.M.)

  18. Kinetic parameters of protein metabolism in rats during protein-free feeding

    International Nuclear Information System (INIS)

    Krawielitzki, K.; Schadereit, R.; Wuensche, J.

    1987-01-01

    16 male rats of 100 g live weight were given 50 mg of a mixture containing 15 N-labelled amino acids as a single dose within a protein-free feeding period. Following this the 15 N excretion in feces and urine as well as the development of the 15 N excess in different organs and tissues were estimated over 3 days by slaughtering the animals within given 7 time intervals. Using a 3 pool model and the computer program for the interpretation of 15 N tracer experiments by Toewe et al. (1984), kinetic parameters such as the rate of protein synthesis, protein breakdown and the rate of reutilization were calculated. Despite a negative N balance (- 41.8 mg N/d) under protein-free conditions the protein metabolism of the rat shows high dynamics characterized by a high flux rate (225 mg N/d) and a high rate of body protein synthesis (181 mg/d). The reutilization was 85 %. Depending on time the 15 N excess in the tested organs and tissues showed significant differences and seems to demonstrate that under these conditions protein synthesis mainly takes place in the most important organs (e.g. intestinal tract, liver). Under protein-free feeding conditions protein synthesis and protein breakdown of the whole body seems to be slightly increased in comparison to N balanced feeding conditions. (author)

  19. Metabolic Turnover of Synaptic Proteins: Kinetics, Interdependencies and Implications for Synaptic Maintenance

    Science.gov (United States)

    Cohen, Laurie D.; Zuchman, Rina; Sorokina, Oksana; Müller, Anke; Dieterich, Daniela C.; Armstrong, J. Douglas; Ziv, Tamar; Ziv, Noam E.

    2013-01-01

    Chemical synapses contain multitudes of proteins, which in common with all proteins, have finite lifetimes and therefore need to be continuously replaced. Given the huge numbers of synaptic connections typical neurons form, the demand to maintain the protein contents of these connections might be expected to place considerable metabolic demands on each neuron. Moreover, synaptic proteostasis might differ according to distance from global protein synthesis sites, the availability of distributed protein synthesis facilities, trafficking rates and synaptic protein dynamics. To date, the turnover kinetics of synaptic proteins have not been studied or analyzed systematically, and thus metabolic demands or the aforementioned relationships remain largely unknown. In the current study we used dynamic Stable Isotope Labeling with Amino acids in Cell culture (SILAC), mass spectrometry (MS), Fluorescent Non–Canonical Amino acid Tagging (FUNCAT), quantitative immunohistochemistry and bioinformatics to systematically measure the metabolic half-lives of hundreds of synaptic proteins, examine how these depend on their pre/postsynaptic affiliation or their association with particular molecular complexes, and assess the metabolic load of synaptic proteostasis. We found that nearly all synaptic proteins identified here exhibited half-lifetimes in the range of 2–5 days. Unexpectedly, metabolic turnover rates were not significantly different for presynaptic and postsynaptic proteins, or for proteins for which mRNAs are consistently found in dendrites. Some functionally or structurally related proteins exhibited very similar turnover rates, indicating that their biogenesis and degradation might be coupled, a possibility further supported by bioinformatics-based analyses. The relatively low turnover rates measured here (∼0.7% of synaptic protein content per hour) are in good agreement with imaging-based studies of synaptic protein trafficking, yet indicate that the metabolic load

  20. Quantitative proteomics reveals the kinetics of trypsin-catalyzed protein digestion.

    Science.gov (United States)

    Pan, Yanbo; Cheng, Kai; Mao, Jiawei; Liu, Fangjie; Liu, Jing; Ye, Mingliang; Zou, Hanfa

    2014-10-01

    Trypsin is the popular protease to digest proteins into peptides in shotgun proteomics, but few studies have attempted to systematically investigate the kinetics of trypsin-catalyzed protein digestion in proteome samples. In this study, we applied quantitative proteomics via triplex stable isotope dimethyl labeling to investigate the kinetics of trypsin-catalyzed cleavage. It was found that trypsin cleaves the C-terminal to lysine (K) and arginine (R) residues with higher rates for R. And the cleavage sites surrounded by neutral residues could be quickly cut, while those with neighboring charged residues (D/E/K/R) or proline residue (P) could be slowly cut. In a proteome sample, a huge number of proteins with different physical chemical properties coexists. If any type of protein could be preferably digested, then limited digestion could be applied to reduce the sample complexity. However, we found that protein abundance and other physicochemical properties, such as molecular weight (Mw), grand average of hydropathicity (GRAVY), aliphatic index, and isoelectric point (pI) have no notable correlation with digestion priority of proteins.

  1. Protein Exposed Hydrophobicity Reduces the Kinetic Barrier for Adsorption of Ovalbumin to the Air-Water Interface

    NARCIS (Netherlands)

    Wierenga, P.A.; Meinders, M.B.J.; Egmond, M.R.; Voragen, F.A.G.J.; Jongh, H.H.J. de

    2003-01-01

    Using native and caprylated ovalbumin, the role of exposed hydrophobicity on the kinetics of protein adsorption to the air - water interface is studied. First, changes in the chemical properties of the protein upon caprylation were characterized followed by measurement of the changes in adsorption

  2. Protein exposed hydrophobicity reduces the kinetic barrier for adsoption of ovalbumin to the air-water interface.

    NARCIS (Netherlands)

    Wierenga, P.A.; Meinders, M.B.J.; Egmond, M.R.; Voragen, A.G.J.

    2003-01-01

    Using native and caprylated ovalbumin, the role of exposed hydrophobicity on the kinetics of protein adsorption to the air-water interface is studied. First, changes in the chemical properties of the protein upon caprylation were characterized followed by measurement of the changes in adsorption

  3. Kinetic modelling of the Maillard reaction between proteins and sugars

    NARCIS (Netherlands)

    Brands, C.M.J.

    2002-01-01

    Keywords: Maillard reaction, sugar isomerisation, kinetics, multiresponse modelling, brown colour formation, lysine damage, mutagenicity, casein, monosaccharides, disaccharides, aldoses, ketoses

    The aim of this thesis was to determine the kinetics of the Maillard reaction between

  4. Accuracy and precision of protein-ligand interaction kinetics determined from chemical shift titrations

    Energy Technology Data Exchange (ETDEWEB)

    Markin, Craig J.; Spyracopoulos, Leo, E-mail: leo.spyracopoulos@ualberta.ca [University of Alberta, Department of Biochemistry (Canada)

    2012-12-15

    NMR-monitored chemical shift titrations for the study of weak protein-ligand interactions represent a rich source of information regarding thermodynamic parameters such as dissociation constants (K{sub D}) in the micro- to millimolar range, populations for the free and ligand-bound states, and the kinetics of interconversion between states, which are typically within the fast exchange regime on the NMR timescale. We recently developed two chemical shift titration methods wherein co-variation of the total protein and ligand concentrations gives increased precision for the K{sub D} value of a 1:1 protein-ligand interaction (Markin and Spyracopoulos in J Biomol NMR 53: 125-138, 2012). In this study, we demonstrate that classical line shape analysis applied to a single set of {sup 1}H-{sup 15}N 2D HSQC NMR spectra acquired using precise protein-ligand chemical shift titration methods we developed, produces accurate and precise kinetic parameters such as the off-rate (k{sub off}). For experimentally determined kinetics in the fast exchange regime on the NMR timescale, k{sub off} {approx} 3,000 s{sup -1} in this work, the accuracy of classical line shape analysis was determined to be better than 5 % by conducting quantum mechanical NMR simulations of the chemical shift titration methods with the magnetic resonance toolkit GAMMA. Using Monte Carlo simulations, the experimental precision for k{sub off} from line shape analysis of NMR spectra was determined to be 13 %, in agreement with the theoretical precision of 12 % from line shape analysis of the GAMMA simulations in the presence of noise and protein concentration errors. In addition, GAMMA simulations were employed to demonstrate that line shape analysis has the potential to provide reasonably accurate and precise k{sub off} values over a wide range, from 100 to 15,000 s{sup -1}. The validity of line shape analysis for k{sub off} values approaching intermediate exchange ({approx}100 s{sup -1}), may be facilitated by

  5. Accuracy and precision of protein-ligand interaction kinetics determined from chemical shift titrations.

    Science.gov (United States)

    Markin, Craig J; Spyracopoulos, Leo

    2012-12-01

    NMR-monitored chemical shift titrations for the study of weak protein-ligand interactions represent a rich source of information regarding thermodynamic parameters such as dissociation constants (K ( D )) in the micro- to millimolar range, populations for the free and ligand-bound states, and the kinetics of interconversion between states, which are typically within the fast exchange regime on the NMR timescale. We recently developed two chemical shift titration methods wherein co-variation of the total protein and ligand concentrations gives increased precision for the K ( D ) value of a 1:1 protein-ligand interaction (Markin and Spyracopoulos in J Biomol NMR 53: 125-138, 2012). In this study, we demonstrate that classical line shape analysis applied to a single set of (1)H-(15)N 2D HSQC NMR spectra acquired using precise protein-ligand chemical shift titration methods we developed, produces accurate and precise kinetic parameters such as the off-rate (k ( off )). For experimentally determined kinetics in the fast exchange regime on the NMR timescale, k ( off ) ~ 3,000 s(-1) in this work, the accuracy of classical line shape analysis was determined to be better than 5 % by conducting quantum mechanical NMR simulations of the chemical shift titration methods with the magnetic resonance toolkit GAMMA. Using Monte Carlo simulations, the experimental precision for k ( off ) from line shape analysis of NMR spectra was determined to be 13 %, in agreement with the theoretical precision of 12 % from line shape analysis of the GAMMA simulations in the presence of noise and protein concentration errors. In addition, GAMMA simulations were employed to demonstrate that line shape analysis has the potential to provide reasonably accurate and precise k ( off ) values over a wide range, from 100 to 15,000 s(-1). The validity of line shape analysis for k ( off ) values approaching intermediate exchange (~100 s(-1)), may be facilitated by more accurate K ( D ) measurements

  6. Kinetic studies of anomalous transport

    International Nuclear Information System (INIS)

    Tang, W.M.

    1990-11-01

    Progress in achieving a physics-based understanding of anomalous transport in toroidal systems has come in large part from investigations based on the proposition that low frequency electrostatic microinstabilities are dominant in the bulk (''confinement'') region of these plasmas. Although the presence here of drift-type modes dependent on trapped particle and ion temperature gradient driven effects appears to be consistent with a number of important observed confinement trends, conventional estimates for these instabilities cannot account for the strong current (I p ) and /or q-scaling frequently found in empirically deduced global energy confinement times for auxiliary-heated discharges. The present paper deals with both linear and nonlinear physics features, ignored in simpler estimates, which could introduce an appreciable local dependence on current. It is also pointed out that while the thermal flux characteristics of drift modes have justifiably been the focus of experimental studies assessing their relevance, other transport properties associated with these microinstabilities should additionally be examined. Accordingly, the present paper provides estimates and discusses the significance of anomalous energy exchange between ions and electrons when fluctuations are present. 19 refs., 3 figs

  7. THE SURFACE-MEDIATED UNFOLDING KINETICS OF GLOBULAR PROTEINS IS DEPENDENT ON MOLECULAR WEIGHT AND TEMPERATURE

    Energy Technology Data Exchange (ETDEWEB)

    Patananan, A.N.; Goheen, S.C.

    2008-01-01

    The adsorption and unfolding pathways of proteins on rigid surfaces are essential in numerous complex processes associated with biomedical engineering, nanotechnology, and chromatography. It is now well accepted that the kinetics of unfolding are characterized by chemical and physical interactions dependent on protein deformability and structure, as well as environmental pH, temperature, and surface chemistry. Although this fundamental process has broad implications in medicine and industry, little is known about the mechanism because of the atomic lengths and rapid time scales involved. Therefore, the unfolding kinetics of myoglobin, β-glucosidase, and ovalbumin were investigated by adsorbing the globular proteins to non-porous cationic polymer beads. The protein fractions were adsorbed at different residence times (0, 9, 10, 20, and 30 min) at near-physiological conditions using a gradient elution system similar to that in high-performance liquid chromatography. The elution profi les and retention times were obtained by ultraviolet/visible spectrophotometry. A decrease in recovery was observed with time for almost all proteins and was attributed to irreversible protein unfolding on the non-porous surfaces. These data, and those of previous studies, fi t a positively increasing linear trend between percent unfolding after a fi xed (9 min) residence time (71.8%, 31.1%, and 32.1% of myoglobin, β-glucosidase, and ovalbumin, respectively) and molecular weight. Of all the proteins examined so far, only myoglobin deviated from this trend with higher than predicted unfolding rates. Myoglobin also exhibited an increase in retention time over a wide temperature range (0°C and 55°C, 4.39 min and 5.74 min, respectively) whereas ovalbumin and β-glucosidase did not. Further studies using a larger set of proteins are required to better understand the physiological and physiochemical implications of protein unfolding kinetics. This study confi rms that surface

  8. Biomarker kinetics in the prediction of VAP diagnosis: results from the BioVAP study

    NARCIS (Netherlands)

    Póvoa, Pedro; Martin-Loeches, Ignacio; Ramirez, Paula; Bos, Lieuwe D.; Esperatti, Mariano; Silvestre, Joana; Gili, Gisela; Goma, Gema; Berlanga, Eugenio; Espasa, Mateu; Gonçalves, Elsa; Torres, Antoni; Artigas, Antonio

    2016-01-01

    Prediction of diagnosis of ventilator-associated pneumonia (VAP) remains difficult. Our aim was to assess the value of biomarker kinetics in VAP prediction. We performed a prospective, multicenter, observational study to evaluate predictive accuracy of biomarker kinetics, namely C-reactive protein

  9. Protein flexibility and ligand rigidity : a thermodynamic and kinetic study of ITAM-based ligand binding to Syk tandem SH2

    NARCIS (Netherlands)

    de Mol, Nico J; Catalina, M Isabel; Dekker, Frank J; Fischer, Marcel J E; Heck, Albert J R; Liskamp, Rob M J; Dekker, Frank

    2005-01-01

    The Syk tandem Src homology 2 domain (Syk tSH2) constitutes a flexible protein module involved in the regulation of Syk kinase activity. The Syk tSH2 domain is assumed to function by adapting the distance between its two SH2 domains upon bivalent binding to diphosphotyrosine ligands. A thermodynamic

  10. Kinetic study on Iranian furfural extract hydrocracking

    Energy Technology Data Exchange (ETDEWEB)

    Zarkesh, J.; Akbarnejad, M. M. [NIOC Research Institute of Petroleum Industry, Tehran (Iran, Islamic Republic of); Khorasheh, F. [Sharif Univ. of Technology, Tehran (Iran, Islamic Republic of); Badakhshan, A. [Calgary Univ., AB (Canada)

    1998-05-01

    Upgrading heavy crude oil to light crude oil is one of the most important refining processes. Familiarity with the kinetics and related kinetic models is one of the important aspects of developing expertise in this field. This joint study between the NIOC Institute of Research of the Petroleum Industry and Sharif University was undertaken to determine the most appropriate upgrading process for Iranian heavy feed stock and to predict the conversion and product distribution in commercial hydrocracking units. The study involved the evaluation of stoichiometry of the hydrocracking process, focusing on the catalytic hydrocracking of furfural extract (a by-product of the lubricating oil plant) of the Tehran refinery. A pilot plant reactor was used. Good correspondence between model predictions and theoretical values was obtained.

  11. Effects of Polymer Hydrophobicity on Protein Structure and Aggregation Kinetics in Crowded Milieu.

    Science.gov (United States)

    Breydo, Leonid; Sales, Amanda E; Frege, Telma; Howell, Mark C; Zaslavsky, Boris Y; Uversky, Vladimir N

    2015-05-19

    We examined the effects of water-soluble polymers of various degrees of hydrophobicity on the folding and aggregation of proteins. The polymers we chose were polyethylene glycol (PEG) and UCON (1:1 copolymer of ethylene glycol and propylene glycol). The presence of additional methyl groups in UCON makes it more hydrophobic than PEG. Our earlier analysis revealed that similarly sized PEG and UCON produced different changes in the solvent properties of water in their solutions and induced morphologically different α-synuclein aggregates [Ferreira, L. A., et al. (2015) Role of solvent properties of aqueous media in macromolecular crowding effects. J. Biomol. Struct. Dyn., in press]. To improve our understanding of molecular mechanisms defining behavior of proteins in a crowded environment, we tested the effects of these polymers on secondary and tertiary structure and aromatic residue solvent accessibility of 10 proteins [five folded proteins, two hybrid proteins; i.e., protein containing ordered and disordered domains, and three intrinsically disordered proteins (IDPs)] and on the aggregation kinetics of insulin and α-synuclein. We found that effects of both polymers on secondary and tertiary structures of folded and hybrid proteins were rather limited with slight unfolding observed in some cases. Solvent accessibility of aromatic residues was significantly increased for the majority of the studied proteins in the presence of UCON but not PEG. PEG also accelerated the aggregation of protein into amyloid fibrils, whereas UCON promoted aggregation to amyloid oligomers instead. These results indicate that even a relatively small change in polymer structure leads to a significant change in the effect of this polymer on protein folding and aggregation. This is an indication that protein folding and especially aggregation are highly sensitive to the presence of other macromolecules, and an excluded volume effect is insufficient to describe their effect.

  12. Is automated kinetic measurement superior to end-point for advanced oxidation protein product?

    Science.gov (United States)

    Oguz, Osman; Inal, Berrin Bercik; Emre, Turker; Ozcan, Oguzhan; Altunoglu, Esma; Oguz, Gokce; Topkaya, Cigdem; Guvenen, Guvenc

    2014-01-01

    Advanced oxidation protein product (AOPP) was first described as an oxidative protein marker in chronic uremic patients and measured with a semi-automatic end-point method. Subsequently, the kinetic method was introduced for AOPP assay. We aimed to compare these two methods by adapting them to a chemistry analyzer and to investigate the correlation between AOPP and fibrinogen, the key molecule responsible for human plasma AOPP reactivity, microalbumin, and HbA1c in patients with type II diabetes mellitus (DM II). The effects of EDTA and citrate-anticogulated tubes on these two methods were incorporated into the study. This study included 93 DM II patients (36 women, 57 men) with HbA1c levels > or = 7%, who were admitted to the diabetes and nephrology clinics. The samples were collected in EDTA and in citrate-anticoagulated tubes. Both methods were adapted to a chemistry analyzer and the samples were studied in parallel. In both types of samples, we found a moderate correlation between the kinetic and the endpoint methods (r = 0.611 for citrate-anticoagulated, r = 0.636 for EDTA-anticoagulated, p = 0.0001 for both). We found a moderate correlation between fibrinogen-AOPP and microalbumin-AOPP levels only in the kinetic method (r = 0.644 and 0.520 for citrate-anticoagulated; r = 0.581 and 0.490 for EDTA-anticoagulated, p = 0.0001). We conclude that adaptation of the end-point method to automation is more difficult and it has higher between-run CV% while application of the kinetic method is easier and it may be used in oxidative stress studies.

  13. Studies of combustion kinetics and mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Gutman, D. [Catholic Univ. of America, Washington, DC (United States)

    1993-12-01

    The objective of the current research is to gain new quantitative knowledge of the kinetics and mechanisms of polyatomic free radicals which are important in hydrocarbon combustion processes. The special facility designed and built for these (which includes a heatable tubular reactor coupled to a photoionization mass spectrometer) is continually being improved. Where possible, these experimental studies are coupled with theoretical ones, sometimes conducted in collaboration with others, to obtain an improved understanding of the factors determining reactivity. The decomposition of acetyl radicals, isopropyl radicals, and n-propyl radicals have been studied as well as the oxidation of methylpropargyl radicals.

  14. Effective computation of stochastic protein kinetic equation by reducing stiffness via variable transformation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijin, E-mail: ljwang@ucas.ac.cn [School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-06-08

    The stochastic protein kinetic equations can be stiff for certain parameters, which makes their numerical simulation rely on very small time step sizes, resulting in large computational cost and accumulated round-off errors. For such situation, we provide a method of reducing stiffness of the stochastic protein kinetic equation by means of a kind of variable transformation. Theoretical and numerical analysis show effectiveness of this method. Its generalization to a more general class of stochastic differential equation models is also discussed.

  15. ENZYMATIC KINETIC STUDY HYDROLASE FROM CITRUS

    Directory of Open Access Journals (Sweden)

    Israel Hernández

    2015-09-01

    Full Text Available In this paper the degrading activity of enzymes derived from orange peels (Citrus x sinensis, grapefruit (Citrus paradise and pineapple (Ananas comosus on the organic matter in wastewater is evaluated. This activity is measured indirectly by quantifying the biochemical oxygen demand (COD before and after degradation process based on a period of time using the HACH DR / 2010, and then the kinetic study was performed by the differential method and integral with the experimental data, obtaining a reaction order of 1 to pectinase (orange, and order 2 for bromelain (pineapple.

  16. Effects of grain source, grain processing, and protein degradability on rumen kinetics and microbial protein synthesis in Boer kids.

    Science.gov (United States)

    Brassard, M-E; Chouinard, P Y; Berthiaume, R; Tremblay, G F; Gervais, R; Martineau, R; Cinq-Mars, D

    2015-11-01

    Microbial protein synthesis in the rumen would be optimized when dietary carbohydrates and proteins have synchronized rates and extent of degradation. The aim of this study was to evaluate the effect of varying ruminal degradation rate of energy and nitrogen sources on intake, nitrogen balance, microbial protein yield, and kinetics of nutrients in the rumen of growing kids. Eight Boer goats (38.2 ± 3.0 kg) were used. The treatments were arranged in a split-plot Latin square design with grain sources (barley or corn) forming the main plots (squares). Grain processing methods and levels of protein degradability formed the subplots in a 2 × 2 factorial arrangement for a total of 8 dietary treatments. The grain processing method was rolling for barley and cracking for corn. Levels of protein degradability were obtained by feeding untreated soybean meal (SBM) or heat-treated soybean meal (HSBM). Each experimental period lasted 21 d, consisting of a 10-d adaptation period, a 7-d digestibility determination period, and a 4-d rumen evacuation and sampling period. Kids fed with corn had higher purine derivatives (PD) excretion when coupled with SBM compared with HSBM and the opposite occurred with barley-fed kids ( ≤ 0.01). Unprocessed grain offered with SBM led to higher PD excretion than with HSBM whereas protein degradability had no effect when processed grain was fed ( ≤ 0.03). Results of the current experiment with high-concentrate diets showed that microbial N synthesis could be maximized in goat kids by combining slowly fermented grains (corn or unprocessed grains) with a highly degradable protein supplement (SBM). With barley, a more rapidly fermented grain, a greater microbial N synthesis was observed when supplementing a low-degradable protein (HSBM).

  17. The role of the C-domain of bacteriophage T4 gene 32 protein in ssDNA binding and dsDNA helix-destabilization: Kinetic, single-molecule, and cross-linking studies

    Science.gov (United States)

    Pant, Kiran; Anderson, Brian; Perdana, Hendrik; Malinowski, Matthew A.; Win, Aye T.; Williams, Mark C.

    2018-01-01

    The model single-stranded DNA binding protein of bacteriophage T4, gene 32 protein (gp32) has well-established roles in DNA replication, recombination, and repair. gp32 is a single-chain polypeptide consisting of three domains. Based on thermodynamics and kinetics measurements, we have proposed that gp32 can undergo a conformational change where the acidic C-terminal domain binds internally to or near the single-stranded (ss) DNA binding surface in the core (central) domain, blocking ssDNA interaction. To test this model, we have employed a variety of experimental approaches and gp32 variants to characterize this conformational change. Utilizing stopped-flow methods, the association kinetics of wild type and truncated forms of gp32 with ssDNA were measured. When the C-domain is present, the log-log plot of k vs. [NaCl] shows a positive slope, whereas when it is absent (*I protein), there is little rate change with salt concentration, as expected for this model.A gp32 variant lacking residues 292–296 within the C-domain, ΔPR201, displays kinetic properties intermediate between gp32 and *I. The single molecule force-induced DNA helix-destabilizing activitiesas well as the single- and double-stranded DNA affinities of ΔPR201 and gp32 truncated at residue 295 also fall between full-length protein and *I. Finally, chemical cross-linking of recombinant C-domain and gp32 lacking both N- and C-terminal domains is inhibited by increasing concentrations of a short single-stranded oligonucleotide, and the salt dependence of cross-linking mirrors that expected for the model. Taken together, these results provide the first evidence in support of this model that have been obtained through structural probes. PMID:29634784

  18. The kinetics of removal of heat-induced excess nuclear protein

    International Nuclear Information System (INIS)

    Roti, J.L.R.; Uygur, N.; Higashikubo, R.

    1984-01-01

    To investigate the role of protein content, temperature and heating time in the removal of heat-induced excess protein associated with the isolated nucleus, the kinetics of protein removal was monitored for 6 to 8 hours following exposure to 7 hyperthermic protocols. Four of these (47 0 C-7.5 min., 46 0 C-15 min., 45 0 C-30 min., and 44 0 C-60 min.) resulted in a nuclear protein content approximately twice that of nuclei from unheated cells (2.05 +- .14) following heat exposure. Three protocols (45 0 C-15 min., 44 0 C-30 min. and 43 0 C-60 min.) resulted in a nuclear protein content approximately 1.6 times normal (1.63 +- .12). If nuclear protein content were the only determinant in the recovery rate, then the same half time for nuclear protein removal would be expected within each group of protocols. Rate constants for nuclear protein removal were obtained by regression analysis. The half-time for nuclear protein removal increased with decreasing temperature and increasing heating time for the same nuclear protein content. This result suggests that the heating time and temperature are more of a determinant in the removal kinetics than protein content alone. Extended kinetics of recovery (to 36 hours) showed incomplete recovery and a secondary increase in protein associated with the isolated nucleus. These results were due to cell-cycle rearrangement (G/sub 2/ block) and unbalanced growth

  19. Kinetic studies on the hafnium nad deuterium

    International Nuclear Information System (INIS)

    Bing Wenzeng; Long Xinggui; Zhu Zuliang

    2009-04-01

    Through the method of reaction rate analysis in a constant volume reactor, the time dependence of the pressure drop of the hafnium deuteride formation are studied over a temperature range 573-873 K on a metal hydride thermodynamic and kinetic parameters measuring apparatus. The rate constants of the hafnium deuteride formation, which are 0.0530 s -1 , 0.0452 s -1 , 0.0319 s -1 , 0.0261 s -1 , are calculated at a serial temperatures of 573 K, 673 K, 773 K, 873 K and the initial pressure of 13 kPa. The activation energy of the reaction is (-10.1±1.5) kJ·mol -1 . Comparing the above results with those of titanium deuteride formation on the same measuring apparatus, the kinetic mechanism of the deuteride formation of hafnium and titanium is considered different. It is concluded that the reaction rate of hafnium absorbing deuterium may be controlled by phase transformation and surface oxidation. (authors)

  20. Glucose and protein kinetics in patients undergoing colorectal surgery: perioperative amino acid versus hypocaloric dextrose infusion.

    Science.gov (United States)

    Lugli, Andrea Kopp; Schricker, Thomas; Wykes, Linda; Lattermann, Ralph; Carli, Franco

    2010-11-01

    Surgical injury provokes a stress response that leads to a catabolic state and, when prolonged, interferes with the postoperative recovery process. This study tests the impact of 2 nutrition support regimens on protein and glucose metabolism as part of an integrated approach in the perioperative period incorporating epidural analgesia in 18 nondiabetic patients undergoing colorectal surgery. To test the hypothesis that parenteral amino acid infusion (amino acid group, n = 9) maintains glucose homeostasis while maintaining normoglycemia and reduces proteolysis compared with infusion of dextrose alone (DEX group, n = 9), glucose and protein kinetics were measured before and on the second day after surgery using a stable isotope tracer technique. Postoperatively, the rate of appearance of glucose was higher (P dextrose alone. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Kinetic evidence for a two-stage mechanism of protein denaturation by guanidinium chloride.

    Science.gov (United States)

    Jha, Santosh Kumar; Marqusee, Susan

    2014-04-01

    Dry molten globular (DMG) intermediates, an expanded form of the native protein with a dry core, have been observed during denaturant-induced unfolding of many proteins. These observations are counterintuitive because traditional models of chemical denaturation rely on changes in solvent-accessible surface area, and there is no notable change in solvent-accessible surface area during the formation of the DMG. Here we show, using multisite fluorescence resonance energy transfer, far-UV CD, and kinetic thiol-labeling experiments, that the guanidinium chloride (GdmCl)-induced unfolding of RNase H also begins with the formation of the DMG. Population of the DMG occurs within the 5-ms dead time of our measurements. We observe that the size and/or population of the DMG is linearly dependent on [GdmCl], although not as strongly as the second and major step of unfolding, which is accompanied by core solvation and global unfolding. This rapid GdmCl-dependent population of the DMG indicates that GdmCl can interact with the protein before disrupting the hydrophobic core. These results imply that the effect of chemical denaturants cannot be interpreted solely as a disruption of the hydrophobic effect and strongly support recent computational studies, which hypothesize that chemical denaturants first interact directly with the protein surface before completely unfolding the protein in the second step (direct interaction mechanism).

  2. Computational investigation of kinetics of cross-linking reactions in proteins: importance in structure prediction.

    Science.gov (United States)

    Bandyopadhyay, Pradipta; Kuntz, Irwin D

    2009-01-01

    The determination of protein structure using distance constraints is a new and promising field of study. One implementation involves attaching residues of a protein using a cross-linking agent, followed by protease digestion, analysis of the resulting peptides by mass spectroscopy, and finally sequence threading to detect the protein folds. In the present work, we carry out computational modeling of the kinetics of cross-linking reactions in proteins using the master equation approach. The rate constants of the cross-linking reactions are estimated using the pKas and the solvent-accessible surface areas of the residues involved. This model is tested with fibroblast growth factor (FGF) and cytochrome C. It is consistent with the initial experimental rate data for individual lysine residues for cytochrome C. Our model captures all observed cross-links for FGF and almost 90% of the observed cross-links for cytochrome C, although it also predicts cross-links that were not observed experimentally (false positives). However, the analysis of the false positive results is complicated by the fact that experimental detection of cross-links can be difficult and may depend on specific experimental conditions such as pH, ionic strength. Receiver operator characteristic plots showed that our model does a good job in predicting the observed cross-links. Molecular dynamics simulations showed that for cytochrome C, in general, the two lysines come closer for the observed cross-links as compared to the false positive ones. For FGF, no such clear pattern exists. The kinetic model and MD simulation can be used to study proposed cross-linking protocols.

  3. Low thermodynamic but high kinetic stability of an antifreeze protein from Rhagium mordax

    DEFF Research Database (Denmark)

    Friis, Dennis Steven; Johnsen, Johannes Lørup; Kristiansen, Erlend

    2014-01-01

    The equilibrium heat stability and the kinetic heat tolerance of a recombinant antifreeze protein (AFP) from the beetle Rhagium mordax (RmAFP1) are studied through differential scanning calorimetry and circular dichroism spectroscopy. In contrast to other insect AFPs studied with this respect......, the RmAFP1 has only one disulfide bridge. The melting temperature, Tm, of the protein is determined to be 28.5°C (pH 7.4), which is much lower than most of those reported for AFPs or globular proteins in general. Despite its low melting temperature, both biophysical and activity measurements show...

  4. Convergent synthesis of proteins by kinetically controlled ligation

    Science.gov (United States)

    Kent, Stephen; Pentelute, Brad; Bang, Duhee; Johnson, Erik; Durek, Thomas

    2010-03-09

    The present invention concerns methods and compositions for synthesizing a polypeptide using kinetically controlled reactions involving fragments of the polypeptide for a fully convergent process. In more specific embodiments, a ligation involves reacting a first peptide having a protected cysteyl group at its N-terminal and a phenylthioester at its C-terminal with a second peptide having a cysteine residue at its N-termini and a thioester at its C-termini to form a ligation product. Subsequent reactions may involve deprotecting the cysteyl group of the resulting ligation product and/or converting the thioester into a thiophenylester.

  5. Kinetics of protein adsorption/desorption mediated by pH-responsive polymer layer

    Science.gov (United States)

    Su, Xiao-Hang; Lei, Qun-Li; Ren, Chun-Lai

    2015-11-01

    We propose a new way of regulating protein adsorption by using a pH-responsive polymer. According to the theoretical results obtained from the molecular theory and kinetic approaches, both thermodynamics and kinetics of protein adsorption are verified to be well controlled by the solution pH. The kinetics and the amount of adsorbed proteins at equilibrium are greatly increased when the solution environment changes from acid to neutral. The reason is that the increased pH promotes the dissociation of the weak polyelectrolyte, resulting in more charged monomers and more stretched chains. Thus the steric repulsion within the polymer layer is weakened, which effectively lowers the barrier felt by the protein during the process of adsorption. Interestingly, we also find that the kinetics of protein desorption is almost unchanged with the variation of pH. It is because although the barrier formed by the polymer layer changes along with the change of pH, the potential at contact with the surface varies equally. Our results may provide useful insights into controllable protein adsorption/desorption in practical applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 21274062, 11474155, and 91027040).

  6. Kinetics of protein adsorption/desorption mediated by pH-responsive polymer layer

    International Nuclear Information System (INIS)

    Su Xiao-Hang; Lei Qun-Li; Ren Chun-Lai

    2015-01-01

    We propose a new way of regulating protein adsorption by using a pH-responsive polymer. According to the theoretical results obtained from the molecular theory and kinetic approaches, both thermodynamics and kinetics of protein adsorption are verified to be well controlled by the solution pH. The kinetics and the amount of adsorbed proteins at equilibrium are greatly increased when the solution environment changes from acid to neutral. The reason is that the increased pH promotes the dissociation of the weak polyelectrolyte, resulting in more charged monomers and more stretched chains. Thus the steric repulsion within the polymer layer is weakened, which effectively lowers the barrier felt by the protein during the process of adsorption. Interestingly, we also find that the kinetics of protein desorption is almost unchanged with the variation of pH. It is because although the barrier formed by the polymer layer changes along with the change of pH, the potential at contact with the surface varies equally. Our results may provide useful insights into controllable protein adsorption/desorption in practical applications. (paper)

  7. Lipid-protein interaction induced domains: Kinetics and conformational changes in multicomponent vesicles

    Science.gov (United States)

    Sreeja, K. K.; Sunil Kumar, P. B.

    2018-04-01

    The spatio-temporal organization of proteins and the associated morphological changes in membranes are of importance in cell signaling. Several mechanisms that promote the aggregation of proteins at low cell surface concentrations have been investigated in the past. We show, using Monte Carlo simulations, that the affinity of proteins for specific lipids can hasten their aggregation kinetics. The lipid membrane is modeled as a dynamically triangulated surface with the proteins defined as in-plane fields at the vertices. We show that, even at low protein concentrations, strong lipid-protein interactions can result in large protein clusters indicating a route to lipid mediated signal amplification. At high protein concentrations, the domains form buds similar to that seen in lipid-lipid interaction induced phase separation. Protein interaction induced domain budding is suppressed when proteins act as anisotropic inclusions and exhibit nematic orientational order. The kinetics of protein clustering and resulting conformational changes are shown to be significantly different for the isotropic and anisotropic curvature inducing proteins.

  8. Methane production from cellulosic wastes: kinetic studies

    Energy Technology Data Exchange (ETDEWEB)

    Goma, G; De La Torre, I; Maugheri, F; Yameogo, T

    1979-09-01

    The anaerobic fermentation is studied on lignocellulosic materials and sucrose as substrate. With the lignocellulosic material cellulolysis is rate limiting. The reducing sugar concentration in the fermentation broth is less than 15 mgl/sup -1/. With rumen bacteria, 50% of the initial polyoside are used and 12% of the lignin is solubilized. With sucrose studies on the kinetic behaviour of the mixed population responsible of the acidogenesis step permite to find the optimal temperature (40/sup 0/C) feed substrate concentration (50 gl/sup -1/) residence time (60 hours) and pH (5,5 - 6). The better technology is a plug flow fermentor with cell recycling. Modeling of the behaviour of this reactor was performed. The use of this reactor for the selection of acido resistant bacteria is discussed. For methanogenesis, in continuous culture, the ideal technology seems to be an association of two reactors. In the first step, a plug flow reactor must be used for acidogenesis, and in the second step a well mixed reactor permit the conversion of organic acids in methane.

  9. Combustion Kinetic Studies of Gasolines and Surrogates

    KAUST Repository

    Javed, Tamour

    2016-11-01

    Future thrusts for gasoline engine development can be broadly summarized into two categories: (i) efficiency improvements in conventional spark ignition engines, and (ii) development of advance compression ignition (ACI) concepts. Efficiency improvements in conventional spark ignition engines requires downsizing (and turbocharging) which may be achieved by using high octane gasolines, whereas, low octane gasolines fuels are anticipated for ACI concepts. The current work provides the essential combustion kinetic data, targeting both thrusts, that is needed to develop high fidelity gasoline surrogate mechanisms and surrogate complexity guidelines. Ignition delay times of a wide range of certified gasolines and surrogates are reported here. These measurements were performed in shock tubes and rapid compression machines over a wide range of experimental conditions (650 – 1250 K, 10 – 40 bar) relevant to internal combustion engines. Using the measured the data and chemical kinetic analyses, the surrogate complexity requirements for these gasolines in homogeneous environments are specified. For the discussions presented here, gasolines are classified into three categories: (i)\\tLow octane gasolines including Saudi Aramco’s light naphtha fuel (anti-knock index, AKI = (RON + MON)/2 = 64; Sensitivity (S) = RON – MON = 1), certified FACE (Fuels for Advanced Combustion Engines) gasoline I and J (AKI ~ 70, S = 0.7 and 3 respectively), and their Primary Reference Fuels (PRF, mixtures of n-heptane and iso-octane) and multi-component surrogates. (ii)\\t Mid octane gasolines including FACE A and C (AKI ~ 84, S ~ 0 and 1 respectively) and their PRF surrogates. Laser absorption measurements of intermediate and product species formed during gasoline/surrogate oxidation are also reported. (iii)\\t A wide range of n-heptane/iso-octane/toluene (TPRF) blends to adequately represent the octane and sensitivity requirements of high octane gasolines including FACE gasoline F and G

  10. Study of internal oxidation kinetics of molybdenum base alloys

    International Nuclear Information System (INIS)

    Krushinskij, Yu.Yu.; Belyakov, B.G.; Belomyttsev, M.Yu.

    1989-01-01

    Metallographic and microdurometric method as well as new technique were used to study kinetics of internal oxidation (IO). It is shown that study of IO kinetics on the base of metallographic measurements of layers depth is not correct because it is related with insufficient sensitivity of the method. IO kinetics under conditions of formation of molybdenum oxide layer on saturated material surface as well as IO of alloy with high carbon content were investigated. Oxide film formation does not affect the IO kinetics; decarburization observed along with oxidation increases the apparent activation energy and K exponent on time dependence of diffusion layer depth

  11. A KINETIC MODEL FOR MONO-LAYER GLOBULAR PROTEIN ADSORPTION ON SOLID/LIQUID INTERFACES

    Directory of Open Access Journals (Sweden)

    Kamal I. M. Al-Malah

    2012-12-01

    Full Text Available A kinetic model was derived for globular protein adsorption. The model takes into account the three possible scenarios of a protein molecule in solution, being exposed to an interface: adsorption step from the solution to the interface; the possible desorption back into the solution; and the surface-induced unfolding or spreading of the protein unto the substrate surface. A globular protein molecule is visualized as a sphere with radius D. In addition to the general case of protein adsorption, which portrays either the surface coverage (Theta or surface concentration (� as a function of the adsorption time, special cases, like equilibrium condition, lowsurface coverage, irreversible, and Langmuirian were also presented and treated in light of the derived model. The general model was simplified for each of the subset cases. The irreversibility versus reversibility of protein adsorption was discussed. The substrate surface energetics or effects are accounted for via the proposition of the percent relative change in D/V ratio for the adsorbing protein, called (D/VPRC parameter. (D/VPRC is calculated with respect to the monolayer surface concentration of protein, where the latter is given by D/Vratio. This can be used as a landmark to protein adsorption isotherms or even kinetics. This is visualized as an indicator for solid substrate effects on the adsorbing proteins. (D/VPRC can be zero (fresh monolayer, negative (aged monolayer, or positive (multi-layer. The reference surface concentration is reported for some selected proteins.

  12. Kinetic study of solid-state processes

    International Nuclear Information System (INIS)

    Malek, Jiri; Mitsuhashi, Takefumi

    2003-01-01

    A simple method for kinetic analysis of solid-state processes has been developed and the criteria capable of classifying different processes are explored. They provide a useful tool for the determination of the most suitable kinetic model. The method has been applied to the analysis of calorimetric data corresponding to the crystallization processes in amorphous ZrO 2 . It is found that the crystallization kinetics of amorphous powder sample exhibits a complex behavior under non-isothermal conditions. A two-parameter model provides a satisfactory description of the crystallization process for isothermal and non-isothermal conditions. This enables better control of crystallization extent in fine ZrO 2 powders that is important for preparation of zirconia ceramics with defined properties. (author)

  13. Fiber digestion kinetics and protein degradability characteristics of stockpiled Tifton 85 bermudagrass.

    Science.gov (United States)

    Sechler, S R; Mullenix, M K; Holland, C M; Muntifering, R B

    2017-09-01

    A 2-yr study was conducted to determine effects of N fertilization level on fiber digestion kinetics and protein degradability characteristics of stockpiled Tifton 85 bermudagrass (T85). Six 0.76-ha pastures of stockpiled T85 were cut to a 10-cm stubble height on August 1 of each yr and fertilized with 56 (56N), 112 (112N), or 168 (168N) kg N/ha (2 pastures/treatment). Fiber digestion kinetics included the 72-hr potential extent of NDF digestion (PED), rate of NDF digestion, and lag time. In yr 1 and 2, PED decreased over the stockpile season. Rates of NDF digestion did not differ ( > 0.05) among N fertilization treatments in either yr. In yr 1, rate of NDF digestion was greatest ( digestion decreased ( digestion rates were similar for November and January 21 sampling dates. Lag time was greater ( digestion ( = -0.60 and -0.25 in yr 1 and 2, respectively) was observed. There was a trend ( = 0.06) for lignin concentration to be positively correlated with lag time ( = 0.39) in yr 1, and a strong relationship was observed in yr 2 ( = 0.91; digestion in stockpiled T85 were influenced more by temporal changes over the stockpile season than by N fertilization level. Supplement formulations based on kinetic parameters of fiber digestion may require periodic adjustment to insure that energy-yielding components of NDF are sufficient to meet animal requirements throughout the stockpile season. The CP fraction in stockpiled T85 contains sufficient RDP to support fibrolytic activity and growth of ruminal microorganisms throughout the stockpile season. Toward the latter end of the season, supplementation with sources of digestible fiber and RDP could be expected to increase MP supply to the host animal.

  14. Kinetics of microstructure formation of high-pressure induced gel from a whey protein isolate

    Science.gov (United States)

    He, Jin-Song; Yang, Hongwei; Zhu, Wanpeng; Mu, Tai-Hua

    2010-03-01

    The kinetic process of pressure-induced gelation of whey protein isolate (WPI) solutions was studied using in situ light scattering. The relationship of the logarithm of scattered light intensity (I) versus time (t) was linear after the induced time and could be described by the Cahn-Hilliard linear theory. With increasing time, the scattered intensity deviated from the exponential relationship, and the time evolution of the scattered light intensity maximum Im and the corresponding wavenumber qm could be described in terms of the power-law relationship as Im~fβ and qm~f-α, respectively. These results indicated that phase separation occurred during the gelation of WPI solutions under high pressure.

  15. Kinetics of microstructure formation of high-pressure induced gel from a whey protein isolate

    International Nuclear Information System (INIS)

    He Jinsong; Yang Hongwei; Zhu Wanpeng; Mu Taihua

    2010-01-01

    The kinetic process of pressure-induced gelation of whey protein isolate (WPI) solutions was studied using in situ light scattering. The relationship of the logarithm of scattered light intensity (I) versus time (t) was linear after the induced time and could be described by the Cahn-Hilliard linear theory. With increasing time, the scattered intensity deviated from the exponential relationship, and the time evolution of the scattered light intensity maximum I m and the corresponding wavenumber q m could be described in terms of the power-law relationship as I m ∼f β and q m ∼f -α , respectively. These results indicated that phase separation occurred during the gelation of WPI solutions under high pressure.

  16. Kinetics of microstructure formation of high-pressure induced gel from a whey protein isolate

    Energy Technology Data Exchange (ETDEWEB)

    He Jinsong; Yang Hongwei; Zhu Wanpeng [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Mu Taihua, E-mail: mutaihuacaas@126.co [Institute of Agro-Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100094 (China)

    2010-03-01

    The kinetic process of pressure-induced gelation of whey protein isolate (WPI) solutions was studied using in situ light scattering. The relationship of the logarithm of scattered light intensity (I) versus time (t) was linear after the induced time and could be described by the Cahn-Hilliard linear theory. With increasing time, the scattered intensity deviated from the exponential relationship, and the time evolution of the scattered light intensity maximum I{sub m} and the corresponding wavenumber q{sub m} could be described in terms of the power-law relationship as I{sub m}{approx}f{sup {beta}} and q{sub m}{approx}f{sup -}{alpha}, respectively. These results indicated that phase separation occurred during the gelation of WPI solutions under high pressure.

  17. Kinetics of the association of dengue virus capsid protein with the granular component of nucleolus.

    Science.gov (United States)

    Tiwary, Ashish Kumar; Cecilia, D

    2017-02-01

    Dengue virus (DENV) replicates in the cytoplasm but translocation of the capsid protein (C) to the nucleoli of infected cells has been shown to facilitate virus multiplication for DENV-2. This study demonstrates that the nucleolar localization of C occurs with all four serotypes of DENV. The interaction of C with the nucleolus was found to be dynamic with a mobile fraction of 66% by FRAP. That the C shuttled between the nucleus and cytoplasm was suggested by FLIP and translation inhibition experiments. Colocalization with B23 indicated that DENV C targeted the granular component (GC) of the nucleolus. Presence of DENV C in the nucleolus affected the recovery kinetics of B23 in infected and transfected cells. Sub-nucleolar localization of DENV C of all serotypes to the GC, its mobility in and out of the nucleolus and its affect on the dynamics of B23 is being shown for the first time. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Role of the Disulfide Bond in Prion Protein Amyloid Formation: A Thermodynamic and Kinetic Analysis.

    Science.gov (United States)

    Honda, Ryo

    2018-02-27

    Prion diseases are associated with the structural conversion of prion protein (PrP) to a β-sheet-rich aggregate, PrP Sc . Previous studies have indicated that a reduction of the disulfide bond linking C179 and C214 of PrP yields an amyloidlike β-rich aggregate in vitro. To gain mechanistic insights into the reduction-induced aggregation, here I characterized how disulfide bond reduction modulates the protein folding/misfolding landscape of PrP, by examining 1) the equilibrium stabilities of the native (N) and aggregated states relative to the unfolded (U) state, 2) the transition barrier separating the U and aggregated states, and 3) the final structure of amyloidlike misfolded aggregates. Kinetic and thermodynamic experiments revealed that disulfide bond reduction decreases the equilibrium stabilities of both the N and aggregated states by ∼3 kcal/mol, without changing either the amyloidlike aggregate structure, at least at the secondary structural level, or the transition barrier of aggregation. Therefore, disulfide bond reduction modulates the protein folding/misfolding landscape by entropically stabilizing disordered states, including the U and transition state of aggregation. This also indicates that the equilibrium stability of the N state, but not the transition barrier of aggregation, is the dominant factor determining the reduction-induced aggregation of PrP. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Kinetic Stability of Proteins in Beans and Peas: Implications for Protein Digestibility, Seed Germination, and Plant Adaptation.

    Science.gov (United States)

    Xia, Ke; Pittelli, Sandy; Church, Jennifer; Colón, Wilfredo

    2016-10-12

    Kinetically stable proteins (KSPs) are resistant to the denaturing detergent sodium dodecyl sulfate (SDS). Such resilience makes KSPs resistant to proteolytic degradation and may have arisen in nature as a mechanism for organismal adaptation and survival against harsh conditions. Legumes are well-known for possessing degradation-resistant proteins that often diminish their nutritional value. Here we applied diagonal two-dimensional (D2D) SDS-polyacrylamide gel electrophoresis (PAGE), a method that allows for the proteomics-level identification of KSPs, to a group of 12 legumes (mostly beans and peas) of agricultural and nutritional importance. Our proteomics results show beans that are more difficult to digest, such as soybean, lima beans, and various common beans, have high contents of KSPs. In contrast, mung bean, red lentil, and various peas that are highly digestible contain low amounts of KSPs. Identified proteins with high kinetic stability are associated with warm-season beans, which germinate at higher temperatures. In contrast, peas and red lentil, which are cool-season legumes, contain low levels of KSPs. Thus, our results show protein kinetic stability is an important factor in the digestibility of legume proteins and may relate to nutrition efficiency, timing of seed germination, and legume resistance to biotic stressors. Furthermore, we show D2D SDS-PAGE is a powerful method that could be applied for determining the abundance and identity of KSPs in engineered and wild legumes and for advancing basic research and associated applications.

  20. Structural and kinetic mapping of side-chain exposure onto the protein energy landscape.

    Science.gov (United States)

    Bernstein, Rachel; Schmidt, Kierstin L; Harbury, Pehr B; Marqusee, Susan

    2011-06-28

    Identification and characterization of structural fluctuations that occur under native conditions is crucial for understanding protein folding and function, but such fluctuations are often rare and transient, making them difficult to study. Native-state hydrogen exchange (NSHX) has been a powerful tool for identifying such rarely populated conformations, but it generally reveals no information about the placement of these species along the folding reaction coordinate or the barriers separating them from the folded state and provides little insight into side-chain packing. To complement such studies, we have performed native-state alkyl-proton exchange, a method analogous to NSHX that monitors cysteine modification rather than backbone amide exchange, to examine the folding landscape of Escherichia coli ribonuclease H, a protein well characterized by hydrogen exchange. We have chosen experimental conditions such that the rate-limiting barrier acts as a kinetic partition: residues that become exposed only upon crossing the unfolding barrier are modified in the EX1 regime (alkylation rates report on the rate of unfolding), while those exposed on the native side of the barrier are modified predominantly in the EX2 regime (alkylation rates report on equilibrium populations). This kinetic partitioning allows for identification and placement of partially unfolded forms along the reaction coordinate. Using this approach we detect previously unidentified, rarely populated conformations residing on the native side of the barrier and identify side chains that are modified only upon crossing the unfolding barrier. Thus, in a single experiment under native conditions, both sides of the rate-limiting barrier are investigated.

  1. Combustion Kinetic Studies of Gasolines and Surrogates

    KAUST Repository

    Javed, Tamour

    2016-01-01

    . These measurements were performed in shock tubes and rapid compression machines over a wide range of experimental conditions (650 – 1250 K, 10 – 40 bar) relevant to internal combustion engines. Using the measured the data and chemical kinetic analyses, the surrogate

  2. A calorimetric study of solute effects on the kinetic stability of a-amylase

    DEFF Research Database (Denmark)

    Olsen, Søren Nymand; Andersen, Kim Bruno; Øgendal, Lars Holm

    2009-01-01

    In this study we evaluated the applications of isothermal titration calorimetry (ITC) to Study solute effects on the kinetics of irreversible protein denaturation. More specifically, denaturation of Bacillus Halmapalus alpha-amylase (BHA) was initiated by addition of EDTA to the calorimetric cell...

  3. Heparin kinetics

    International Nuclear Information System (INIS)

    Swart, C.A.M. de.

    1983-01-01

    The author has studied the kinetics of heparin and heparin fractions after intravenous administration in humans and in this thesis the results of this study are reported. Basic knowledge about the physico-chemical properties of heparin and its interactions with proteins resulting in anticoagulant and lipolytic effects are discussed in a review (chapter II), which also comprises some clinical aspects of heparin therapy. In chapter III the kinetics of the anticoagulant effect are described after intravenous administration of five commercial heparin preparations. A mathematical model is presented that fits best to these kinetics. The kinetics of the anticoagulant and lipolytic effects after intravenous injection of various 35 S-radiolabelled heparin fractions and their relationship with the disappearance of the radiolabel are described in chapter IV. Chapter V gives a description of the kinetics of two radiolabels after injection of in vitro formed complexes consisting of purified, 125 I-radiolabelled antithrombin III and various 35 S-radiolabelled heparin fractions. (Auth.)

  4. Spatiotemporal kinetics of γ-H2AX protein on charged particles induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Niu, H., E-mail: hniu@mx.nthu.edu.tw [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, Taiwan (China); Chang, H.C. [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan (China); Cho, I.C. [Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan, Taiwan (China); Chen, C.H. [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, Taiwan (China); Liu, C.S. [Cancer Center of Taipei Veterans General Hospital, Taipei, Taiwan (China); Chou, W.T. [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan (China)

    2014-08-15

    Highlights: • Charged particles can induce more complex DNA damages, and these complex damages have higher ability to cause the cell death or cell carcinogenesis. • In this study, we used γ-H2AX protein to investigate the spatiotemporal kinetics of DNA double strand breaks in particle irradiated HeLa cells. • The HeLa cells were irradiated by 400 keV alpha-particles in four different dosages. • The result shows that a good linear relationship can be observed between foci number and radiation dose. • The data shows that the dissolution rate of γ-H2AX foci agree with the two components DNA repairing model, and it was decreasing as the radiation dose increased. • These results suggest that charged particles can induce more complex DNA damages and causing the retardation of DNA repair. - Abstract: In several researches, it has been demonstrated that charged particles can induce more complex DNA damages. These complex damages have higher ability to cause the cell death or cell carcinogenesis. For this reason, clarifying the DNA repair mechanism after charged particle irradiation plays an important role in the development of charged particle therapy and space exploration. Unfortunately, the detail spatiotemporal kinetic of DNA damage repair is still unclear. In this study, we used γ-H2AX protein to investigate the spatiotemporal kinetics of DNA double strand breaks in alpha-particle irradiated HeLa cells. The result shows that the intensity of γ-H2AX foci increased gradually, and reached to its maximum at 30 min after irradiation. A good linear relationship can be observed between foci intensity and radiation dose. After 30 min, the γ-H2AX foci intensity was decreased with time passed, but remained a large portion (∼50%) at 48 h passed. The data show that the dissolution rate of γ-H2AX foci agreed with two components DNA repairing model. These results suggest that charged particles can induce more complex DNA damages and causing the retardation of DNA

  5. Structure–kinetic relationship study of CDK8/CycC specific compounds

    Science.gov (United States)

    Schneider, Elisabeth V.; Böttcher, Jark; Huber, Robert; Maskos, Klaus; Neumann, Lars

    2013-01-01

    In contrast with the very well explored concept of structure–activity relationship, similar studies are missing for the dependency between binding kinetics and compound structure of a protein ligand complex, the structure–kinetic relationship. Here, we present a structure–kinetic relationship study of the cyclin-dependent kinase 8 (CDK8)/cyclin C (CycC) complex. The scaffold moiety of the compounds is anchored in the kinase deep pocket and extended with diverse functional groups toward the hinge region and the front pocket. These variations can cause the compounds to change from fast to slow binding kinetics, resulting in an improved residence time. The flip of the DFG motif (“DMG” in CDK8) to the inactive DFG-out conformation appears to have relatively little influence on the velocity of binding. Hydrogen bonding with the kinase hinge region contributes to the residence time but has less impact than hydrophobic complementarities within the kinase front pocket. PMID:23630251

  6. Lipo-Protein Emulsion Structure in the Diet Affects Protein Digestion Kinetics, Intestinal Mucosa Parameters and Microbiota Composition.

    Science.gov (United States)

    Oberli, Marion; Douard, Véronique; Beaumont, Martin; Jaoui, Daphné; Devime, Fabienne; Laurent, Sandy; Chaumontet, Catherine; Mat, Damien; Le Feunteun, Steven; Michon, Camille; Davila, Anne-Marie; Fromentin, Gilles; Tomé, Daniel; Souchon, Isabelle; Leclerc, Marion; Gaudichon, Claire; Blachier, François

    2018-01-01

    Food structure is a key factor controlling digestion and nutrient absorption. We test the hypothesis that protein emulsion structure in the diet may affect digestive and absorptive processes. Rats (n = 40) are fed for 3 weeks with two diets chemically identical but based on lipid-protein liquid-fine (LFE) or gelled-coarse (GCE) emulsions that differ at the macro- and microstructure levels. After an overnight fasting, they ingest a 15 N-labeled LFE or GCE test meal and are euthanized 0, 15 min, 1 h, and 5 h later. 15 N enrichment in intestinal contents and blood are measured. Gastric emptying, protein digestion kinetics, 15 N absorption, and incorporation in blood protein and urea are faster with LFE than GCE. At 15 min time point, LFE group shows higher increase in GIP portal levels than GCE. Three weeks of dietary adaptation leads to higher expression of cationic amino acid transporters in ileum of LFE compared to GCE. LFE diet raises cecal butyrate and isovalerate proportion relative to GCE, suggesting increased protein fermentation. LFE diet increases fecal Parabacteroides relative abundance but decreases Bifidobacterium, Sutterella, Parasutterella genera, and Clostridium cluster XIV abundance. Protein emulsion structure regulates digestion kinetics and gastrointestinal physiology, and could be targeted to improve food health value. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Ingestion of Casein in a Milk Matrix Modulates Dietary Protein Digestion and Absorption Kinetics but Does Not Modulate Postprandial Muscle Protein Synthesis in Older Men.

    Science.gov (United States)

    Churchward-Venne, Tyler A; Snijders, Tim; Linkens, Armand M A; Hamer, Henrike M; van Kranenburg, Janneau; van Loon, Luc J C

    2015-07-01

    The slow digestion and amino acid absorption kinetics of isolated micellar casein have been held responsible for its relatively lower postprandial muscle protein synthetic response compared with rapidly digested proteins such as isolated whey. However, casein is normally consumed within a milk matrix. We hypothesized that protein digestion and absorption kinetics and the subsequent muscle protein synthetic response after micellar casein ingestion are modulated by the milk matrix. The aim of this study was to determine the impact of a milk matrix on casein protein digestion and absorption kinetics and postprandial muscle protein synthesis in older men. In a parallel-group design, 32 healthy older men (aged 71 ± 1 y) received a primed continuous infusion of L-[ring-(2)H5]-phenylalanine, L-[ring-3,5-(2)H2]-tyrosine, and L-[1-(13)C]-leucine, and ingested 25 g intrinsically L-[1-(13)C]-phenylalanine and L-[1-(13)C]-leucine labeled casein dissolved in bovine milk serum (Cas+Serum) or water (Cas). Plasma samples and muscle biopsies were collected in the postabsorptive state and for 300 min in the postprandial period to examine whole-body and skeletal muscle protein metabolism. Casein ingestion increased plasma leucine and phenylalanine concentrations and L-[1-(13)C]-phenylalanine enrichments, with a more rapid rise after Cas vs. Cas+Serum. Nonetheless, dietary protein-derived phenylalanine availability did not differ between Cas+Serum (47 ± 2%, mean ± SEM) and Cas (46 ± 3%) when assessed over the 300-min postprandial period (P = 0.80). The milk matrix did not modulate postprandial myofibrillar protein synthesis rates from 0 to 120 min (0.038 ± 0.005 vs. 0.031 ± 0.007%/h) or from 120 to 300 min (0.052 ± 0.004 vs. 0.067 ± 0.005%/h) after Cas+Serum vs. Cas. Similarly, no treatment differences in muscle protein-bound L-[1-(13)C]-phenylalanine enrichments were observed at 120 min (0.003 ± 0.001 vs. 0.002 ± 0.001) or 300 min (0.015 ± 0.002 vs. 0.016 ± 0.002 mole

  8. Kinetic Properties of α-Galactosidase and the Localization of Total Proteins in Erwinia chrysanthemi

    Directory of Open Access Journals (Sweden)

    John Morgan Brand

    2004-01-01

    Full Text Available Erwinia chrysanthemi is an enterobacterium that causes soft-rot in plants in general, resulting in enormous economic losses annually. For the pathogen to survive in the host plant, it has to use the readily assimilable compounds from the host fluids and degrade the host tissue. To accomplish this, E. chrysanthemi produces several extracellular and intracellular enzymes. Among the intracellular enzymes there is a special digestive class, the galactosidases, which can be either periplasmic or cytoplasmic. α-Galactosidase is known to degrade melibiose and raffinose into glucose and galactose, and into galactose and sucrose respectively. The aim of the present study was to investigate the kinetic properties of α-galactosidase in E. chrysanthemi, and the localization of total proteins, after culturing it in the presence of raffinose and melibiose. The α-galactosidase that degrades melibiose seems to be the same enzyme that is also responsible for the breakdown of raffinose in E. chrysanthemi. It is localized mainly in the cytoplasm with a fraction of between 2.4 and 5.4 % localized in the periplasm. The majority of E. chrysanthemi proteins have cytoplasmic localization.

  9. Load-dependent surface diffusion model for analyzing the kinetics of protein adsorption onto mesoporous materials.

    Science.gov (United States)

    Marbán, Gregorio; Ramírez-Montoya, Luis A; García, Héctor; Menéndez, J Ángel; Arenillas, Ana; Montes-Morán, Miguel A

    2018-02-01

    The adsorption of cytochrome c in water onto organic and carbon xerogels with narrow pore size distributions has been studied by carrying out transient and equilibrium batch adsorption experiments. It was found that equilibrium adsorption exhibits a quasi-Langmuirian behavior (a g coefficient in the Redlich-Peterson isotherms of over 0.95) involving the formation of a monolayer of cyt c with a depth of ∼4nm on the surface of all xerogels for a packing density of the protein inside the pores of 0.29gcm -3 . A load-dependent surface diffusion model (LDSDM) has been developed and numerically solved to fit the experimental kinetic adsorption curves. The results of the LDSDM show better fittings than the standard homogeneous surface diffusion model. The value of the external mass transfer coefficient obtained by numerical optimization confirms that the process is controlled by the intraparticle surface diffusion of cyt c. The surface diffusion coefficients decrease with increasing protein load down to zero for the maximum possible load. The decrease is steeper in the case of the xerogels with the smallest average pore diameter (∼15nm), the limit at which the zero-load diffusion coefficient of cyt c also begins to be negatively affected by interactions with the opposite wall of the pore. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Recruitment kinetics of DNA repair proteins Mdc1 and Rad52 but not 53BP1 depend on damage complexity.

    Directory of Open Access Journals (Sweden)

    Volker Hable

    Full Text Available The recruitment kinetics of double-strand break (DSB signaling and repair proteins Mdc1, 53BP1 and Rad52 into radiation-induced foci was studied by live-cell fluorescence microscopy after ion microirradiation. To investigate the influence of damage density and complexity on recruitment kinetics, which cannot be done by UV laser irradiation used in former studies, we utilized 43 MeV carbon ions with high linear energy transfer per ion (LET = 370 keV/µm to create a large fraction of clustered DSBs, thus forming complex DNA damage, and 20 MeV protons with low LET (LET = 2.6 keV/µm to create mainly isolated DSBs. Kinetics for all three proteins was characterized by a time lag period T(0 after irradiation, during which no foci are formed. Subsequently, the proteins accumulate into foci with characteristic mean recruitment times τ(1. Mdc1 accumulates faster (T(0 = 17 ± 2 s, τ(1 = 98 ± 11 s than 53BP1 (T(0 = 77 ± 7 s, τ(1 = 310 ± 60 s after high LET irradiation. However, recruitment of Mdc1 slows down (T(0 = 73 ± 16 s, τ(1 = 1050 ± 270 s after low LET irradiation. The recruitment kinetics of Rad52 is slower than that of Mdc1, but exhibits the same dependence on LET. In contrast, the mean recruitment time τ(1 of 53BP1 remains almost constant when varying LET. Comparison to literature data on Mdc1 recruitment after UV laser irradiation shows that this rather resembles recruitment after high than low LET ionizing radiation. So this work shows that damage quality has a large influence on repair processes and has to be considered when comparing different studies.

  11. Energy and Protein Supplementation Does Not Affect Protein and Amino Acid Kinetics or Pregnancy Outcomes in Underweight Indian Women.

    Science.gov (United States)

    Dwarkanath, Pratibha; Hsu, Jean W; Tang, Grace J; Anand, Pauline; Thomas, Tinku; Thomas, Annamma; Sheela, C N; Kurpad, Anura V; Jahoor, Farook

    2016-02-01

    In India, the prevalence of low birth weight is high in women with a low body mass index (BMI), suggesting that underweight women are not capable of providing adequate energy and protein for fetal growth. Furthermore, as pregnancy progresses, there is increased need to provide methyl groups for methylation reactions associated with the synthesis of new proteins and, unlike normal-BMI American women, low-BMI Indian women are unable to increase methionine transmethylation and remethylation rates as pregnancy progresses from trimester 1 to 3. This also negatively influences birth weight. The aim was to determine the effect of dietary supplementation with energy and protein from 12 ± 1 wk of gestation to time of delivery compared with no supplement on pregnancy outcomes, protein kinetics, and the fluxes of the methyl group donors serine and glycine. Protein kinetics and serine and glycine fluxes were measured by using standard stable isotope tracer methods in the fasting and postprandial states in 24 pregnant women aged 22.9 ± 0.7 y with low BMIs [BMI (in kg/m(2)) ≤18.5] at 12 ± 1 wk (trimester 1) and 30 ± 1 wk (trimester 3) of gestation. After the first measurement, subjects were randomly assigned to either receive the supplement (300 kcal/d, 15 g protein/d) or no supplement. Supplementation had no significant effect on any variable of pregnancy outcome, and except for fasting state decreases in leucine flux (125 ± 7.14 compared with 113 ± 5.06 μmol ⋅ kg(-1) ⋅ h(-1); P = 0.04) and nonoxidative disposal (110 ± 6.97 compared with 101 ± 3.69 μmol ⋅ kg(-1) ⋅ h(-1); P = 0.02) from trimesters 1 to 3, it had no effect on any other leucine kinetic variable or urea, glycine, and serine fluxes. We conclude that in Indian women with a low BMI, supplementation with energy and protein from week 12 of pregnancy to time of delivery does not improve pregnancy outcome, whole-body protein kinetics, or serine and glycine fluxes. © 2016 American Society for Nutrition.

  12. Effect of burn and first-pass splanchnic leucine extraction on protein kinetics in rats

    International Nuclear Information System (INIS)

    Karlstad, M.D.; DeMichele, S.J.; Istfan, N.; Blackburn, G.L.; Bistrian, B.R.

    1988-01-01

    The effects of burn and first-pass splanchnic leucine extraction (FPE) on protein kinetics and energy expenditure were assessed by measuring O 2 consumption, CO 2 production, nitrogen balance, leucine kinetics, and tissue fractional protein synthetic rates (FSR-%/day) in enterally fed rats. Anesthetized male rats (200 g) were scalded on their dorsum with boiling water (25-30% body surface area) and enterally fed isovolemic diets that provided 60 kcal/day and 2.4 g of amino acids/day for 3 days. Controls were not burned. An intravenous or intragastric infusion of L-[1- 14 C]leucine was used to assess protein kinetics on day 3. FPE was taken as the ratio of intragastric to intravenous plasma leucine specific activity. There was a 69% reduction in cumulative nitrogen balance (P less than 0.001) and a 17-19% increase in leucine oxidation (P less than 0.05) and total energy expenditure (P less than 0.01) in burned rats. A 15% decrease in plasma leucine clearance (P less than 0.05) was accompanied by a 20% increase in plasma [leucine] (P less than 0.01) in burned rats. Burn decreased rectus muscle FSR from 5.0 +/- 0.4 to 3.5 +/- 0.5 (P less than 0.05) and increased liver FSR from 19.0 +/- 0.5 to 39.2 +/- 3.4 (P less than 0.01). First pass extraction of dietary leucine by the splanchnic bed was 8% in controls and 26% in burned rats. Leucine kinetics corrected for FPE showed increased protein degradation with burn that was not evident without FPE correction. This hypermetabolic burn model can be useful in the design of enteral diets that optimize rates of protein synthesis and degradation

  13. Isothermal, kinetic and thermodynamic studies on basic dye sorption ...

    African Journals Online (AJOL)

    Isothermal, kinetic and thermodynamic studies on basic dye sorption onto tartaric acid esterified wheat straw. ... African Journal of Biotechnology ... esterified wheat straw (EWS), was originally prepared by solid phase thermochemistry method.

  14. Kinetic Studies of Catalytic Oxidation of Cyclohexene Using ...

    African Journals Online (AJOL)

    acer

    Kinetic Studies of Catalytic Oxidation of Cyclohexene Using Chromium VI Oxide in. Acetic Acid ... respect to the oxidant using pseudo-order approximation method. .... making the concentration of the cyclohexene in ..... on Titanium Silicate.

  15. kinetic studies of colour and phenol removal from wastewater using

    African Journals Online (AJOL)

    user

    Kinetic studies by batch technique were carried out using activated carbon prepared from mango seed ... and the rate controlling steps of sorption which ... as follows (Lagergren, 1898): … ... plot of t /qt against t of Equation (6) should give a.

  16. Kinetics of ethylcyclohexane pyrolysis and oxidation: An experimental and detailed kinetic modeling study

    KAUST Repository

    Wang, Zhandong; Zhao, Long; Wang, Yu; Bian, Huiting; Zhang, Lidong; Zhang, Feng; Li, Yuyang; Sarathy, Mani; Qi, Fei

    2015-01-01

    species were evaluated, and good agreement was observed between the PIMS and GC data sets. Furthermore, a fuel-rich burner-stabilized laminar premixed ECH/O2/Ar flame at 30Torr was studied using synchrotron VUV PIMS. A detailed kinetic model for ECH high

  17. Time-resolved pulsed hydrogen/deuterium exchange mass spectrometry probes gaseous proteins structural kinetics.

    Science.gov (United States)

    Rajabi, Khadijeh

    2015-01-01

    A pulsed hydrogen/deuterium exchange (HDX) method has been developed for rapid monitoring of the exchange kinetics of protein ions with D2O a few milliseconds after electrospray ionization (ESI). The stepwise gradual evolution of HDX of multiply charged protein ions was monitored using the pulsed HDX mass spectrometry technique. Upon introducing a very short pulse of D2O (in the μs to ms time scale) into the linear ion trap (LIT) of a time-of-flight (TOF) mass spectrometer, bimodal distributions were detected for the ions of cytochrome c and ubiquitin. Mechanistic details of HDX reactions for ubiquitin and cytochrome c in the gas phase were uncovered and the structural transitions were followed by analyzing the kinetics of HDX.

  18. Protein folding kinetics by combined use of rapid mixing techniques and NMR observation of individual amide protons

    International Nuclear Information System (INIS)

    Roder, H.; Wuethrich, K.

    1986-01-01

    A method to be used for experimental studies of protein folding introduced by Schmid and Baldwin, which is based on the competition between amide hydrogen exchange and protein refolding, was extended by using rapid mixing techniques and 1 H NMR to provide site-resolved kinetic information on the early phases of protein structure acquisition. In this method, a protonated solution of the unfolded protein is rapidly mixed with a deuterated buffer solution at conditions assuring protein refolding in the mixture. This simultaneously initiates the exchange of unprotected amide protons with solvent deuterium and the refolding of protein segments which can protect amide groups from further exchange. After variable reaction times the amide proton exchange is quenched while folding to the native form continues to completion. By using 1 H NMR, the extent of exchange at individual amide sites is then measured in the refolded protein. Competition experiments at variable reaction times or variable pH indicate the time at which each amide group is protected in the refolding process. This technique was applied to the basic pancreatic trypsin inhibitor, for which sequence-specific assignments of the amide proton NMR lines had previously been obtained. For eight individual amide protons located in the beta-sheet and the C-terminal alpha-helix of this protein, apparent refolding rates in the range from 15 s-1 to 60 s-1 were observed. These rates are on the time scale of the fast folding phase observed with optical probes

  19. KrF laser kinetics studies

    International Nuclear Information System (INIS)

    Mandl, A.; Klimek, D.; Parks, J.H.

    1984-01-01

    A series of measurements characterizing an e beam pumped KrF* laser was carried out using a 200-nsec e-beam pulse having a rise time of 25 nsec at current densities up to 50 A/cm 2 . These pump conditions are relevent for inertial confinement fusion laser drivers. The measurements include fluorescence efficiency, sidelight suppression of the fluorescence during lasing, and laser energy output over a wide range of laser parameters including: total density 0.5--2.0 amagats, temperature 300--400 K, fluorine density 0.15%--0.5%, current density 38--50 A/cm 2 and various mirror transmissions. This data was used to verify and refine a model of KrF* kinetics which was then used to estimate the performance of an angular multiplexed power amplifier suitable for laser fusion applications

  20. Kinetics of ethylcyclohexane pyrolysis and oxidation: An experimental and detailed kinetic modeling study

    KAUST Repository

    Wang, Zhandong

    2015-07-01

    Ethylcyclohexane (ECH) is a model compound for cycloalkanes with long alkyl side-chains. A preliminary investigation on ECH (Wang et al., Proc. Combust. Inst., 35, 2015, 367-375) revealed that an accurate ECH kinetic model with detailed fuel consumption mechanism and aromatic growth pathways, as well as additional ECH pyrolysis and oxidation data with detailed species concentration covering a wide pressure and temperature range are required to understand the ECH combustion kinetics. In this work, the flow reactor pyrolysis of ECH at various pressures (30, 150 and 760Torr) was studied using synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (PIMS) and gas chromatography (GC). The mole fraction profiles of numerous major and minor species were evaluated, and good agreement was observed between the PIMS and GC data sets. Furthermore, a fuel-rich burner-stabilized laminar premixed ECH/O2/Ar flame at 30Torr was studied using synchrotron VUV PIMS. A detailed kinetic model for ECH high temperature pyrolysis and oxidation was developed and validated against the pyrolysis and flame data performed in this work. Further validation of the kinetic model is presented against literature data including species concentrations in jet-stirred reactor oxidation, ignition delay times in a shock tube, and laminar flame speeds at various pressures and equivalence ratios. The model well predicts the consumption of ECH, the growth of aromatics, and the global combustion properties. Reaction flux and sensitivity analysis were utilized to elucidate chemical kinetic features of ECH combustion under various reaction conditions. © 2015 The Combustion Institute.

  1. Glutamic Acid as Enhancer of Protein Synthesis Kinetics in Hepatocytes from Old Rats.

    Science.gov (United States)

    Brodsky, V Y; Malchenko, L A; Butorina, N N; Lazarev Konchenko, D S; Zvezdina, N D; Dubovaya, T K

    2017-08-01

    Dense cultures of hepatocytes from old rats (~2 years old, body weight 530-610 g) are different from similar cultures of hepatocytes from young rats by the low amplitude of protein synthesis rhythm. Addition of glutamic acid (0.2, 0.4, or 0.6 mg/ml) into the culture medium with hepatocytes of old rats resulted in increase in the oscillation amplitudes of the protein synthesis rhythm to the level of young rats. A similar action of glutamic acid on the protein synthesis kinetics was observed in vivo after feeding old rats with glutamic acid. Inhibition of metabotropic receptors of glutamic acid with α-methyl-4-carboxyphenylglycine (0.01 mg/ml) abolished the effect of glutamic acid. The amplitude of oscillation of the protein synthesis rhythm in a cell population characterizes synchronization of individual oscillations caused by direct cell-cell communications. Hence, glutamic acid, acting as a receptor-dependent transmitter, enhanced direct cell-cell communications of hepatocytes that were decreased with aging. As differentiated from other known membrane signaling factors (gangliosides, norepinephrine, serotonin, dopamine), glutamic acid can penetrate into the brain and thus influence the communications and protein synthesis kinetics that are disturbed with aging not only in hepatocytes, but also in neurons.

  2. Interaction between bacterial outer membrane proteins and periplasmic quality control factors: a kinetic partitioning mechanism.

    Science.gov (United States)

    Wu, Si; Ge, Xi; Lv, Zhixin; Zhi, Zeyong; Chang, Zengyi; Zhao, Xin Sheng

    2011-09-15

    The OMPs (outer membrane proteins) of Gram-negative bacteria have to be translocated through the periplasmic space before reaching their final destination. The aqueous environment of the periplasmic space and high permeability of the outer membrane engender such a translocation process inevitably challenging. In Escherichia coli, although SurA, Skp and DegP have been identified to function in translocating OMPs across the periplasm, their precise roles and their relationship remain to be elucidated. In the present paper, by using fluorescence resonance energy transfer and single-molecule detection, we have studied the interaction between the OMP OmpC and these periplasmic quality control factors. The results of the present study reveal that the binding rate of OmpC to SurA or Skp is much faster than that to DegP, which may lead to sequential interaction between OMPs and different quality control factors. Such a kinetic partitioning mechanism for the chaperone-substrate interaction may be essential for the quality control of the biogenesis of OMPs.

  3. Kinetics of oxidation of bilirubin and its protein complex by hydrogen peroxide in aqueous solutions

    Science.gov (United States)

    Solomonov, A. V.; Rumyantsev, E. V.; Antina, E. V.

    2010-12-01

    A comparative study of oxidation reactions of bilirubin and its complex with albumin was carried out in aqueous solutions under the action of hydrogen peroxide and molecular oxygen at different pH values. Free radical oxidation of the pigment in both free and bound forms at pH 7.4 was shown not to lead to the formation of biliverdin, but to be associated with the decomposition of the tetrapyrrole chromophore into monopyrrolic products. The effective and true rate constants of the reactions under study were determined. It was assumed that one possible mechanism of the oxidation reaction is associated with the interaction of peroxyl radicals and protons of the NH groups of bilirubin molecules at the limiting stage with the formation of a highly reactive radical intermediate. The binding of bilirubin with albumin was found to result in a considerable reduction in the rate of the oxidation reaction associated with the kinetic manifestation of the protein protection effect. It was found that the autoxidation of bilirubin by molecular oxygen with the formation of biliverdin at the intermediate stage can be observed with an increase in the pH of solutions.

  4. Crossed beam studies related to gas kinetics

    International Nuclear Information System (INIS)

    Buss, R.J.; Lee, Y.T.

    1979-01-01

    Recent advances in methods of quantum mechanical calculations, electronic computer capabilities, and microscopic experimental methods have put us in a position to understand, evaluate, and extend our current knowledge of elementary chemical reactions. It is certain that, in the future, information derived from first principles will become more important in understanding chemical processes, although chemistry will remain largely an experimental science. Microscopic experiments, such as molecular beam methods, are not the general means for obtaining precise data on rate constants. They are designed not only to reveal detailed information on reaction dynamics with which to gain a clear understanding of macroscopic phenomena, but also to provide a benchmark for the future development of quantum chemical methods for solving the problems of chemical kinetics. Actually, collection of rate constants alone is not sufficient to understand many chemical phenomena. For example, in the modeling of chemical lasers, it is necessary to have detailed information on reaction dynamics. We will discuss contributions which crossed molecular beams have made to our understanding of elementary chemical reactions. It is likely that the advancement of crossed beam methods will make it an important tool for obtaining new chemical information in the future

  5. Kinetic Uptake Studies of Powdered Materials in Solution

    Directory of Open Access Journals (Sweden)

    Mohamed H. Mohamed

    2015-06-01

    Full Text Available Challenges exist for the study of time dependent sorption processes for heterogeneous systems, especially in the case of dispersed nanomaterials in solvents or solutions because they are not well suited to conventional batch kinetic experiments. In this study, a comparison of batch versus a one-pot setup in two variable configurations was evaluated for the study of uptake kinetics in heterogeneous (solid/solution systems: (i conventional batch method; (ii one-pot system with dispersed adsorbent in solution with a semi-permeable barrier (filter paper or dialysis tubing for in situ sampling; and (iii one-pot system with an adsorbent confined in a semi-permeable barrier (dialysis tubing or filter paper barrier with ex situ sampling. The sorbent systems evaluated herein include several cyclodextrin-based polyurethane materials with two types of phenolic dyes: p-nitrophenol and phenolphthalein. The one-pot kinetics method with in situ (Method ii or ex situ (Method iii sampling described herein offers significant advantages for the study of heterogeneous sorption kinetics of highly dispersed sorbent materials with particles sizes across a range of dimensions from the micron to nanometer scale. The method described herein will contribute positively to the development of advanced studies for heterogeneous sorption processes where an assessment of the relative uptake properties is required at different experimental conditions. The results of this study will be advantageous for the study of nanomaterials with significant benefits over batch kinetic studies for a wide range of heterogeneous sorption processes.

  6. Kinetic studies of the yeast His-Asp phosphorelay signaling pathway

    Science.gov (United States)

    Kaserer, Alla O.; Andi, Babak; Cook, Paul F.; West, Ann H.

    2010-01-01

    For both prokaryotic and eukaryotic His-Asp phosphorelay signaling pathways, the rates of protein phosphorylation and dephosphorylation determine the stimulus-to-response time frame. Thus, kinetic studies of phosphoryl group transfer between signaling partners are important for gaining a full understanding of how the system is regulated. In many cases, the phosphotransfer reactions are too fast for rates to be determined by manual experimentation. Rapid quench flow techniques thus provide a powerful method for studying rapid reactions that occur in the millisecond time frame. In this chapter, we describe experimental design and procedures for kinetic characterization of the yeast SLN1-YPD1-SSK1 osmoregulatory phosphorelay system using a rapid quench flow kinetic instrument. PMID:20946842

  7. Spectroscopic and kinetic study of bismuth dimers

    Science.gov (United States)

    Franklin, Robert Eugene

    1997-08-01

    The spectroscopy of high rotational levels in Bi2 X(0g+) and A(0u+) was investigated for 2/le v/prime'/le5 and 0/le v/sp/prime/le4 by observing total fluorescence from laser excitation with a scanning, continuous wave, narrow linewidth ring laser. Rotational levels with J/le211 were accessed. Dunham coefficients were derived that fit all observed rotational lines to within 0.01 cm-1. From these coefficients, Franck-Condon factors were calculated that accurately reflect a set of experimentally determined Franck-Condon factors originating from the initially populated levels 0/le v/sp/prime/le5. Vibrational energy transfer in the low-lying vibrational levels (v/sp/prime/le4) of the A(0u+) state of Bi2 was investigated using spectrally resolved, continuous wave laser induced fluorescence. Spectrally resolved emissions from collisionally populated Bi2(A) vibrational levels were observed for rare gas collision partners. Vibrational transfer promoted rapid thermalization of the excited A state molecules. Landau- Teller scaling of vibrational transfer rates was found to be an acceptable model for the scaling of transfer rates with vibrational quantum number. Fundamental transfer rate coefficients ranged from kv(1,0)=5.29/pm0.73×10-12/ [ cm]3/molec-sec for helium to kv(1,0)=2.38/pm0.36×10-12/ [ cm]3/molec-sec for krypton. Electronic quenching and multi-quantum transfer rates were found to be approximately an order of magnitude slower than the corresponding single quantum transfer rates. Rotational energy transfer in high rotational levels of the A state of Bi2 was also investigated by spectrally resolved, continuous wave laser induced fluorescence. Spectrally resolved emissions from collisionally populated Bi2(A) rotational levels were observed for collisions with helium, neon and argon after laser excitation of J/sp/prime=171,201,231. Rotational energy transfer was the most efficient kinetic process in Bi2(A) and is adequately modeled by the energy based statistical

  8. Kinetic and Related Determinants of Plasma Triglyceride Concentration in Abdominal Obesity: Multicenter Tracer Kinetic Study.

    Science.gov (United States)

    Borén, Jan; Watts, Gerald F; Adiels, Martin; Söderlund, Sanni; Chan, Dick C; Hakkarainen, Antti; Lundbom, Nina; Matikainen, Niina; Kahri, Juhani; Vergès, Bruno; Barrett, P Hugh R; Taskinen, Marja-Riitta

    2015-10-01

    Patients with obesity and diabetes mellitus have increased risk of cardiovascular disease. A major cause is an atherogenic dyslipidemia related primarily to elevated plasma concentrations of triglyceride-rich lipoproteins. The aim of this study was to clarify determinants of plasma triglyceride concentration. We focused on factors that predict the kinetics of very-low density lipoprotein 1 (VLDL1) triglycerides. A multicenter study using dual stable isotopes (deuterated leucine and glycerol) and multicompartmental modeling was performed to elucidate the kinetics of triglycerides and apoB in VLDL1 in 46 subjects with abdominal obesity and additional cardiometabolic risk factors. Results showed that plasma triglyceride concentrations were dependent on both the secretion rate (r=0.44, Ptriglycerides and VLDL1-apoB. Liver fat mass was independently and directly associated with secretion rates of VLDL1-triglycerides (r=0.56, Ptriglycerides (r=0.48, Ptriglyceride concentrations in abdominal obesity are determined by the kinetics of VLDL1 subspecies, catabolism being mainly dependent on apoC-III concentration and secretion on liver fat content. Reduction in liver fat and targeting apoC-III may be an effective approach for correcting triglyceride metabolism atherogenic dyslipidemia in obesity. © 2015 American Heart Association, Inc.

  9. Kinetic study on UV-absorber photodegradation under different conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bubev, Emil, E-mail: ebubev@my.uctm.edu [University of Chemical Technology and Metallurgy, Department of Physical Chemistry (Bulgaria); Georgiev, Anton [University of Chemical Technology and Metallurgy, Department of Organic Chemistry (Bulgaria); Machkova, Maria [University of Chemical Technology and Metallurgy, Department of Physical Chemistry (Bulgaria)

    2016-09-12

    The photodegradation kinetics of two benzophenone derivative UV-absorbers (UVAs)-BP-4 (benzophenone-4) and 4-HBP (4-hydroxybenzophenone), as additives in polyvinyl acetate (PVAc) films, were studied. Solution-processed PVAc films were irradiated in different environments in order to study oxygen and atmospheric humidity influence on UVA photodegradation. Photodegradation was traced by absorption intensity loss via UV–vis spectroscopy. Both UVAs exhibited excellent photostability in an inert atmosphere. Rate constants showed that BP-4 has better permanence in absence of oxygen. Both film types experienced rapid absorption loss, when irradiated in an oxygen containing atmosphere. UVA degradation was treated as a two-stage process. The photodegradation kinetics in the first stage agreed with the adopted complex rate law, but the second stage was best described by pseudo-first order kinetics. BP-4 exhibited better stability. Oxygen was established as the main accelerating factor for photodegradation of benzophenone derivatives UV-absorbers in thin PVAc films.

  10. Studies on the kinetics and intraparticle diffusivities of BOD, colour ...

    African Journals Online (AJOL)

    Therefore, this study reveals that boiler fly ash can effectively be used as an adsorbent for POME treatment and also established the kinetic and mechanisms of the sorption process. Also, the results of this study could serve as effective design parameters for a treatment plant to further reduce BOD, colour and TSS from ...

  11. How changing the particle structure can speed up protein mass transfer kinetics in liquid chromatography.

    Science.gov (United States)

    Gritti, Fabrice; Horvath, Krisztian; Guiochon, Georges

    2012-11-09

    The mass transfer kinetics of a few compounds (uracil, 112 Da), insulin (5.5 kDa), lysozyme (13.4 kDa), and bovine serum albumin (BSA, 67 kDa) in columns packed with several types of spherical particles was investigated under non-retained conditions, in order to eliminate the poorly known contribution of surface diffusion to overall sample diffusivity across the porous particles in RPLC. Diffusivity across particles is then minimum. Based on the porosity of the particles accessible to analytes, it was accurately estimated from the elution times, the internal obstruction factor (using Pismen correlation), and the hindrance diffusion factor (using Renkin correlation). The columns used were packed with fully porous particles 2.5 μm Luna-C(18) 100 Å, core-shell particles 2.6 μm Kinetex-C(18) 100 Å, 3.6 μm Aeris Widepore-C(18) 200 Å, and prototype 2.7 μm core-shell particles (made of two concentric porous shells with 100 and 300 Å average pore size, respectively), and with 3.3 μm non-porous silica particles. The results demonstrate that the porous particle structure and the solid-liquid mass transfer resistance have practically no effect on the column efficiency for small molecules. For them, the column performance depends principally on eddy dispersion (packing homogeneity), to a lesser degree on longitudinal diffusion (effective sample diffusivity along the packed bed), and only slightly on the solid-liquid mass transfer resistance (sample diffusivity across the particle). In contrast, for proteins, this third HETP contribution, hence the porous particle structure, together with eddy dispersion govern the kinetic performance of columns. Mass transfer kinetics of proteins was observed to be fastest for columns packed with core-shell particles having either a large core-to-particle ratio or having a second, external, shell made of a thin porous layer with large mesopores (200-300 Å) and a high porosity (~/=0.5-0.7). The structure of this external shell seems

  12. Linear and nonlinear kinetic-stability studies in tokamaks

    International Nuclear Information System (INIS)

    Tang, W.M.; Chance, M.S.; Chen, L.; Krommes, J.A.; Lee, W.W.; Rewoldt, G.

    1982-09-01

    This paper presents results of theoretical investigations on important linear kinetic properties of low frequency instabilities in toroidal systems and on nonlinear processes which could significantly influence their impact on anomalous transport. Analytical and numerical methods and also particle simulations have been employed to carry out these studies. In particular, the following subjects are considered: (1) linear stability analysis of kinetic instabilities for realistic tokamak equilibria and the application of such calculations to the PDX and PLT tokamak experiments including the influence of a hot beam-ion component; (2) determination of nonlinearly saturated, statistically steady states of three interacting drift modes; and (3) gyrokinetic particle simulation of drift instabilities

  13. Kinetic-energy functionals studied by surface calculations

    DEFF Research Database (Denmark)

    Vitos, Levente; Skriver, Hans Lomholt; Kollár, J.

    1998-01-01

    The self-consistent jellium model of metal surfaces is used to study the accuracy of a number of semilocal kinetic-energy functionals for independent particles. It is shown that the poor accuracy exhibited by the gradient expansion approximation and most of the semiempirical functionals in the lo...... density, high gradient limit may be subtantially improved by including locally a von Weizsacker term. Based on this, we propose a simple one-parameter Pade's approximation, which reproduces the exact Kohn-Sham surface kinetic energy over the entire range of metallic densities....

  14. Whole body creatine and protein kinetics in healthy men and women: effects of creatine and amino acid supplementation.

    Science.gov (United States)

    Kalhan, Satish C; Gruca, Lourdes; Marczewski, Susan; Bennett, Carole; Kummitha, China

    2016-03-01

    Creatine kinetics were measured in young healthy subjects, eight males and seven females, age 20-30 years, after an overnight fast on creatine-free diet. Whole body turnover of glycine and its appearance in creatine was quantified using [1-(13)C] glycine and the rate of protein turnover was quantified using L-ring [(2)H5] phenylalanine. The creatine pool size was estimated by the dilution of a bolus [C(2)H3] creatine. Studies were repeated following a five days supplement creatine 21 g.day(-1) and following supplement amino acids 14.3 g day(-1). Creatine caused a ten-fold increase in the plasma concentration of creatine and a 50 % decrease in the concentration of guanidinoacetic acid. Plasma amino acids profile showed a significant decrease in glycine, glutamine, and taurine and a significant increase in citrulline, valine, lysine, and cysteine. There was a significant decrease in the rate of appearance of glycine, suggesting a decrease in de-novo synthesis (p = 0.006). The fractional and absolute rate of synthesis of creatine was significantly decreased by supplemental creatine. Amino acid supplement had no impact on any of the parameters. This is the first detailed analysis of creatine kinetics and the effects of creatine supplement in healthy young men and women. These methods can be applied for the analysis of creatine kinetics in different physiological states.

  15. The opposing effects of isotropic and anisotropic attraction on association kinetics of proteins and colloids

    Science.gov (United States)

    Newton, Arthur C.; Kools, Ramses; Swenson, David W. H.; Bolhuis, Peter G.

    2017-10-01

    The association and dissociation of particles via specific anisotropic interactions is a fundamental process, both in biology (proteins) and in soft matter (colloidal patchy particles). The presence of alternative binding sites can lead to multiple productive states and also to non-productive "decoy" or intermediate states. Besides anisotropic interactions, particles can experience non-specific isotropic interactions. We employ single replica transition interface sampling to investigate how adding a non-productive binding site or a nonspecific isotropic interaction alters the dimerization kinetics of a generic patchy particle model. The addition of a decoy binding site reduces the association rate constant, independent of the site's position, while adding an isotropic interaction increases it due to an increased rebinding probability. Surprisingly, the association kinetics becomes non-monotonic for a tetramer complex formed by multivalent patchy particles. While seemingly identical to two-particle binding with a decoy state, the cooperativity of binding multiple particles leads to a kinetic optimum. Our results are relevant for the understanding and modeling of biochemical networks and self-assembly processes.

  16. Kinetic Studies of Catalytic Oxidation of Cyclohexene Using ...

    African Journals Online (AJOL)

    Cyclohexene was oxidized using chromium (VI) oxide (CrO3) in pure acetic acid medium. The products of oxidation were analysed using simple qualitative analysis, IR spectroscopy and Gas chromatography-Mass spectrometry (GC/MS). Kinetics studies were carried out to determine the order of reaction, rate constant and ...

  17. Kinetic and Thermodynamic Studies on Adsorption of Sulphate from ...

    African Journals Online (AJOL)

    DELL USER

    22, No. 1, 2017. 39. Kinetic and Thermodynamic Studies on Adsorption of Sulphate from Aqueous Solution by. Magnetite ... poison catalysts, and affect the .... C for 1 h in a stainless steel reactor placed in a furnace ... N2 gas for 30 min. 50 ml of ...... adsorption for designing and evaluating the ... is the equilibrium liquid-phase.

  18. A kinetic study of solar wind electrons

    International Nuclear Information System (INIS)

    Lie-Svendsen, Oeystein; Leer, Egil

    1996-01-01

    The evolution of the distribution function for a test population of electrons in an isothermal electron-proton corona has been studied using a Fokker-Planck description. The aim is to investigate whether a suprathermal tail forms due to the energy dependence of the Coulomb cross section. We find that a Maxwellian test population, injected into this background close to the coronal base with a temperature equal to that of the background electrons, maintains its shape throughout the transition from collision-dominated to collisionless flow. No significant suprathermal tail in the electron distribution function is seen in the outer corona

  19. PROXiMATE: a database of mutant protein-protein complex thermodynamics and kinetics.

    Science.gov (United States)

    Jemimah, Sherlyn; Yugandhar, K; Michael Gromiha, M

    2017-09-01

    We have developed PROXiMATE, a database of thermodynamic data for more than 6000 missense mutations in 174 heterodimeric protein-protein complexes, supplemented with interaction network data from STRING database, solvent accessibility, sequence, structural and functional information, experimental conditions and literature information. Additional features include complex structure visualization, search and display options, download options and a provision for users to upload their data. The database is freely available at http://www.iitm.ac.in/bioinfo/PROXiMATE/ . The website is implemented in Python, and supports recent versions of major browsers such as IE10, Firefox, Chrome and Opera. gromiha@iitm.ac.in. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  20. Kinetic Studies on Trichoderna Viride Cellulase

    International Nuclear Information System (INIS)

    Saw Aung; Oo Aung; Aung Myint

    2002-02-01

    Studies on cellulase enzyme (EC 3.2.1.4), which catalyzes the hydrolysis of. cellulose to yield glucose, were made. Cellulase from a fungus source, Trichoderma viride was cultivated on Czapek's agar medium and enzyme production broth medium was employed for parameter tests. The microscopic examination and cellulase hydrolysis test on subcultured fungi were applied to confirm the T. viride species. A calibration curve for standard glucose was plotted by using visible spectroscopy. Dinitrosalicylic acid was used as enzyme reaction inhibitor and the colour intensity was measured in a UV-visible spectrophotometer at a λ max of 570 nm. The parameters such as optimum pH, optimum temperature, effect of substrate concentration, effect, of enzyme concentration, enzyme unit (EU), reaction order (n), maximum velocity (V max ), Michaelis-Menten constant (K m ) using various substrates, viz., carboxy methylcellulose, cotton fibre and filter paper determined. (author)

  1. Quantification of Protein-Induced Membrane Remodeling Kinetics In Vitro with Lipid Multilayer Gratings

    Science.gov (United States)

    Lowry, Troy W.; Hariri, Hanaa; Prommapan, Plengchart; Kusi-Appiah, Aubrey; Vafai, Nicholas; Bienkiewicz, Ewa A.; Van Winkle, David H.; Stagg, Scott M.

    2016-01-01

    The dynamic self-organization of lipids in biological systems is a highly regulated process that enables the compartmentalization of living systems at micro- and nanoscopic scales. Consequently, quantitative methods for assaying the kinetics of supramolecular remodeling such as vesicle formation from planar lipid bilayers or multilayers are needed to understand cellular self-organization. Here, a new nanotechnology-based method for quantitative measurements of lipid–protein interactions is presented and its suitability for quantifying the membrane binding, inflation, and budding activity of the membrane-remodeling protein Sar1 is demonstrated. Lipid multilayer gratings are printed onto surfaces using nanointaglio and exposed to Sar1, resulting in the inflation of lipid multilayers into unilamellar structures, which can be observed in a label-free manner by monitoring the diffracted light. Local variations in lipid multilayer volume on the surface is used to vary substrate availability in a microarray format. A quantitative model is developed that allows quantification of binding affinity (KD) and kinetics (kon and koff). Importantly, this assay is uniquely capable of quantifying membrane remodeling. Upon Sar1-induced inflation of single bilayers from surface supported multilayers, the semicylindrical grating lines are observed to remodel into semispherical buds when a critical radius of curvature is reached. PMID:26649649

  2. Cell kinetic studies on radiation induced leukemogenesis

    International Nuclear Information System (INIS)

    Nakao, Isamu; Suzuki, Gen; Imai, Yasufumi; Kawase, Yoshiko; Nose, Masako; Hirashima, Kunitake; Bessho, Masami

    1989-01-01

    The purpose of this study was threefold: (1) to determine the clonal origin of radiation-induced thymic lymphoma in mice with cellular mosaicism for phosphoglycerate kinase; (2) to determine the incidence and latent period of myeloid leukemia and thymic lymphoma induced by whole-body exposure to median doses (3.0 Gy or less) in RFM/MsNrs-2 mice; and (3) to examine the influence of human recombinant interleukin-2 (hrIL-2). Thymic lymphoma was of a single cell origin. The incidence of radiation-induced myeloid leukemia and thymic lymphoma in RFM mice increased in a dose dependent fashion. Mean latent periods of both myeloid leukemia and thymic lymphoma after irradiation became shorter in proportion to radiation doses. When hrIL-2 was injected to RFM mice receiving 3.0 Gy, mean survivals were shorter in thymoma-bearing mice than the control mice. This suggested that hrIL-2 shortens the promotion step of thymoma. Administration of hrIL-2 failed to alter the incidence of myeloid leukemia or the mean survival of mice having myeloid leukemia, indicating that the protocol of hrIL-2 administration was not so sufficient as to alter the myeloid leukemogenesis. (Namekawa, K)

  3. Kinetic study and thermal decomposition behavior of viscoelastic memory foam

    International Nuclear Information System (INIS)

    Garrido, María A.; Font, Rafael; Conesa, Juan A.

    2016-01-01

    Highlights: • The thermal degradation has been studied under three different atmospheres. • Pyrolysis and combustion kinetic models have been proposed. • Evolved products under different atmospheres have been analyzed by TG-FTIR and TG-MS. - Abstract: A systematic investigation of the thermal decomposition of viscoelastic memory foam (VMF) was performed using thermogravimetric analysis (TGA) to obtain the kinetic parameters, and thermogravimetric analysis coupled to Fourier Transformed Infrared Spectrometry (TGA-FTIR) and thermogravimetric analysis coupled to Mass Spectrometry (TGA-MS) to obtain detailed information of evolved products on pyrolysis and oxidative degradations. Two consecutive nth-order reactions were employed to correlate the experimental data from dynamic and isothermal runs performed at three different heating rates (5, 10 and 20 K/min) under an inert atmosphere. On the other hand, for the kinetic study of the oxidative decomposition, the data from combustion (synthetic air) and poor oxygen combustion (N_2:O_2 = 9:1) runs, at three heating rates and under dynamic and isothermal conditions, were correlated simultaneously. A kinetic model consisting of three consecutive reactions presented a really good correlation in all runs. TGA-FTIR analysis showed that the main gases released during the pyrolysis of VMF were determined as ether and aliphatic hydrocarbons, whereas in combustion apart from the previous gases, aldehydes, amines and CO_2 have also been detected as the main gases. These results were confirmed by the TGA-MS.

  4. Study on the agglomeration kinetics of uranium peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, M.; Mojica Rodriguez, L.A. [CEA, Centre de Marcoule, Nuclear Energy Division, RadioChemistry and Process Department, 17171, Bagnols-sur-Ceze 30207 (France); Muhr, H.; Plasari, E. [Reaction and Process Engineering Laboratory, CNRS, University of Lorraine. 1 rue Grandville, BP 20451, Nancy 54001 (France); Auger, F. [Areva Mines/SEPA. 2 route de Lavaugrasse, Bessines-sur-Gartempe 87250 (France)

    2016-07-01

    Considering the previous study dealing with thermodynamic and kinetic phenomena (nucleation and crystal growth) during the uranium peroxide precipitation, this work focuses on the agglomeration mechanism. It provides the results obtained from the experiments carried out in a mixed suspension - mixed product removal (MSMPR) mixer operating at steady state. The influence of the operating parameters on the uranium peroxide agglomerates was studied in order to identify the agglomeration kernel. The method is based on the resolution of the population balance equation using the method of moments and the experimental particle size distributions. The results lead to a size-independent kernel directly proportional to the crystal growth rate. Under the stirring conditions studied, the agglomeration appears to be significantly reduced by mixing which results in a kernel inversely proportional to the average shear rate. The agglomeration kinetic law obtained in this study will be used for the process modelling in a further study. (authors)

  5. Study on the agglomeration kinetics of uranium peroxide

    International Nuclear Information System (INIS)

    Bertrand, M.; Mojica Rodriguez, L.A.; Muhr, H.; Plasari, E.; Auger, F.

    2016-01-01

    Considering the previous study dealing with thermodynamic and kinetic phenomena (nucleation and crystal growth) during the uranium peroxide precipitation, this work focuses on the agglomeration mechanism. It provides the results obtained from the experiments carried out in a mixed suspension - mixed product removal (MSMPR) mixer operating at steady state. The influence of the operating parameters on the uranium peroxide agglomerates was studied in order to identify the agglomeration kernel. The method is based on the resolution of the population balance equation using the method of moments and the experimental particle size distributions. The results lead to a size-independent kernel directly proportional to the crystal growth rate. Under the stirring conditions studied, the agglomeration appears to be significantly reduced by mixing which results in a kernel inversely proportional to the average shear rate. The agglomeration kinetic law obtained in this study will be used for the process modelling in a further study. (authors)

  6. A Study on the Kinetic Characteristics of Transmutation Process Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hyun; You, Young Woo; Cho, Jae seon; Huh, Chang Wook; Kim, Doh Hyung [Seoul National University, Seoul (Korea, Republic of)

    1997-07-01

    The purpose of this study is to examine the transient heat transfer characteristics of liquid mental as the coolant used in accelerator-driven transmutation process reactor which is related the disposal of high-level radioactive nuclide. At current stage, the accelerator-driven transmutation process is investigated as the most appropriate method among many transmutation process methods. In this study, previous research works are investigated especially about the thermal hydraulics and kinetic behavior of coolant material including heat transfer of coolant in transmutation process reactor. A study on the heat transfer characteristics of liquid metal is performed based on the thermal hydraulic kinetic characteristics of liquid metal reactor which uses liquid metal coolant. Based on this study, the most appropriate material for the coolant of transmutation reactor will be recommended. 53 refs., 15 tabs., 33 figs. (author)

  7. Deducing the kinetics of protein synthesis in vivo from the transition rates measured in vitro.

    Directory of Open Access Journals (Sweden)

    Sophia Rudorf

    2014-10-01

    Full Text Available The molecular machinery of life relies on complex multistep processes that involve numerous individual transitions, such as molecular association and dissociation steps, chemical reactions, and mechanical movements. The corresponding transition rates can be typically measured in vitro but not in vivo. Here, we develop a general method to deduce the in-vivo rates from their in-vitro values. The method has two basic components. First, we introduce the kinetic distance, a new concept by which we can quantitatively compare the kinetics of a multistep process in different environments. The kinetic distance depends logarithmically on the transition rates and can be interpreted in terms of the underlying free energy barriers. Second, we minimize the kinetic distance between the in-vitro and the in-vivo process, imposing the constraint that the deduced rates reproduce a known global property such as the overall in-vivo speed. In order to demonstrate the predictive power of our method, we apply it to protein synthesis by ribosomes, a key process of gene expression. We describe the latter process by a codon-specific Markov model with three reaction pathways, corresponding to the initial binding of cognate, near-cognate, and non-cognate tRNA, for which we determine all individual transition rates in vitro. We then predict the in-vivo rates by the constrained minimization procedure and validate these rates by three independent sets of in-vivo data, obtained for codon-dependent translation speeds, codon-specific translation dynamics, and missense error frequencies. In all cases, we find good agreement between theory and experiment without adjusting any fit parameter. The deduced in-vivo rates lead to smaller error frequencies than the known in-vitro rates, primarily by an improved initial selection of tRNA. The method introduced here is relatively simple from a computational point of view and can be applied to any biomolecular process, for which we have

  8. A kinetic study of pyrolysis in pitch impregnated electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kocaefe, D.; Charette, A.; Ferland, J.; Couderc, P.; Saint-Romain, J.L. (Universite du Quebec a Chicoutini, Chicoutini, PQ (Canada))

    1990-12-01

    A study was conducted on carbon electrodes which were impregnated with three different pitches. The focus of the study was to investigate the pyrolysis of pitch impregnated electrodes. For the purposes of the research an experimental technique and calculation procedure were developed. A kinetic model was used to interpret the data, comparison of model predictions and experimental data showed good agreement. 17 refs., 10 figs., 2 tabs.

  9. A kinetic study of the electrochemical hydrogenation of ethylene

    International Nuclear Information System (INIS)

    Sedighi, S.; Gardner, C.L.

    2010-01-01

    In this study, we have examined the kinetics of the electrochemical hydrogenation of ethylene in a PEM reactor. While in itself this reaction is of little industrial interest, this reaction can be looked upon as a model reaction for many of the important hydrogenation processes including the refining of heavy oils and the hydrogenation of vegetable oils. To study the electrochemical hydrogenation of ethylene, several experimental techniques have been used including polarization measurements, measurement of the composition of the exit gases and potential step, transient measurements. The results show that the hydrogenation reaction proceeds rapidly and essentially to completion. By fitting the experimental transient data to the results from a zero-dimensional mathematical model of the process, a set of kinetic parameters for the reactions has been obtained that give generally good agreement with the experimental results. It seems probable that similar experimental techniques could be used to study the electrochemical hydrogenation of other unsaturated organic molecules of more industrial significance.

  10. Kinetic Study on Pyrolysis of Oil Palm Frond

    International Nuclear Information System (INIS)

    Soon, V S Y; Chin, B L F; Lim, A C R

    2016-01-01

    The pyrolysis of oil palm frond is studied using thermogravimetric analysis (TGA) equipment. The present study investigates the thermal degradation behaviour and determination of the kinetic parameters such as the activation energy (E A ) and pre-exponential factor (A) values of oil palm frond under pyrolysis condition. The kinetic data is produced based on first order rate of reaction. In this study, the experiments are conducted at different heating rates of 10, 20, 30, 40 and 50 K/min in the temperature range of 323-1173 K under non-isothermal condition. Argon gas is used as an inert gas to remove any entrapment of gases in the TGA equipment. (paper)

  11. Kinetic study of the alkaline metals oxidation by dry oxygen

    International Nuclear Information System (INIS)

    Touzain, Ph.

    1967-06-01

    The oxidation of lithium, sodium, potassium, rubidium, cesium and sodium-potassium alloys by dry oxygen is studied at several temperatures and in the oxygen pressure range 40 to 400 mmHg. One distinguishes three different oxidation behaviours (inflammation, ignition and slow combustion) whose zones are precised in function of the temperature. The slow oxidation kinetic laws, the composition of oxides and the motive of oxides colorations are determined. At least, the experimental data are construed theoretically. (author) [fr

  12. Kinetic Basis of Nucleotide Selection Employed by a Protein Template-Dependent DNA Polymerase†

    Science.gov (United States)

    Brown, Jessica A.; Fowler, Jason D.; Suo, Zucai

    2010-01-01

    Rev1, a Y-family DNA polymerase, contributes to spontaneous and DNA damage-induced mutagenic events. In this paper, we have employed pre-steady state kinetic methodology to establish a kinetic basis for nucleotide selection by human Rev1, a unique nucleotidyl transferase that uses a protein template-directed mechanism to preferentially instruct dCTP incorporation. This work demonstrated that the high incorporation efficiency of dCTP is dependent on both substrates: an incoming dCTP and a templating base dG. The extremely low base substitution fidelity of human Rev1 (100 to 10-5) was due to the preferred misincorporation of dCTP with templating bases dA, dT, and dC over correct dNTPs. Using non-natural nucleotide analogs, we showed that hydrogen bonding interactions between residue R357 of human Rev1 and an incoming dNTP are not essential for DNA synthesis. Lastly, human Rev1 discriminates between ribonucleotides and deoxyribonucleotides mainly by reducing the rate of incorporation, and the sugar selectivity of human Rev1 is sensitive to both the size and orientation of the 2′-substituent of a ribonucleotide. PMID:20518555

  13. Stochastic theory of interfacial enzyme kinetics: A kinetic Monte Carlo study

    International Nuclear Information System (INIS)

    Das, Biswajit; Gangopadhyay, Gautam

    2012-01-01

    Graphical abstract: Stochastic theory of interfacial enzyme kinetics is formulated. Numerical results of macroscopic phenomenon of lag-burst kinetics is obtained by using a kinetic Monte Carlo approach to single enzyme activity. Highlights: ► An enzyme is attached with the fluid state phospholipid molecules on the Langmuir monolayer. ► Through the diffusion, the enzyme molecule reaches the gel–fluid interface. ► After hydrolysing a phospholipid molecule it predominantly leaves the surface in the lag phase. ► The enzyme is strictly attached to the surface with scooting mode of motion and the burst phase appears. - Abstract: In the spirit of Gillespie’s stochastic approach we have formulated a theory to explore the advancement of the interfacial enzyme kinetics at the single enzyme level which is ultimately utilized to obtain the ensemble average macroscopic feature, lag-burst kinetics. We have provided a theory of the transition from the lag phase to the burst phase kinetics by considering the gradual development of electrostatic interaction among the positively charged enzyme and negatively charged product molecules deposited on the phospholipid surface. It is shown that the different diffusion time scales of the enzyme over the fluid and product regions are responsible for the memory effect in the correlation of successive turnover events of the hopping mode in the single trajectory analysis which again is reflected on the non-Gaussian distribution of turnover times on the macroscopic kinetics in the lag phase unlike the burst phase kinetics.

  14. Kinetic study of enzymatic hydrolysis of potato starch

    Directory of Open Access Journals (Sweden)

    Óscar Fernando Castellanos Domínguez

    2004-01-01

    Full Text Available This article describes the kinetic study of potato starch enzymatic hydrolysis using soluble enzymes (Novo Nordisk. Different assays divided into four groups were used: reaction time (with which it was possible to reduce the 48-72 hour duration reported in the literature to 16 hours with comparable productivity levels; selecting the set of enzymes to be used (different types were evaluated - BAN and Termamyl as alfa-amylases during dextrinisation stage, and AMG, Promozyme and Fungamyl for sacarification reaction- identifying those presenting the best performance during hydrolysis.Reaction conditions were optimised for the process's two stages (destrinisation and sacarification. Enzyme dose, calcium cofactor concentration, pH, temperature and agitation speed were studied for the first stage. Enzyme ratio, pH and agitation speed were studied for sacarification; the latter parameter reported values having no antecedents in the literature (60 rpm and 30 rpm for first and second reactions, respectively. Michaelis Menten kinetics were calculated once conditions had been optimised, varying substrate from 10-50% P/V, obtaining km and Vmax kinetic parameters for each reaction. A kinetic model was found according to local working conditions which was able to explain potato starch conversion to glucose syrup, achieving 96 dextrose equivalents by the end of the reaction, being well within the maximum range reported in the literature (94-98.Laboratory equipment was constructed prior to carrying out assays which was able to reproduce and improve the conditions reported in the literature, making it a useful, reliable tool for use in assays returning good results.

  15. Kinetic study of lithium-cadmium ternary amalgam decomposition

    International Nuclear Information System (INIS)

    Cordova, M.H.; Andrade, C.E.

    1992-01-01

    The effect of metals, which form stable lithium phase in binary alloys, on the formation of intermetallic species in ternary amalgams and their effect on thermal decomposition in contact with water is analyzed. Cd is selected as ternary metal, based on general experimental selection criteria. Cd (Hg) binary amalgams are prepared by direct contact Cd-Hg, whereas Li is formed by electrolysis of Li OH aq using a liquid Cd (Hg) cathodic well. The decomposition kinetic of Li C(Hg) in contact with 0.6 M Li OH is studied in function of ageing and temperature, and these results are compared with the binary amalgam Li (Hg) decomposition. The decomposition rate is constant during one hour for binary and ternary systems. Ageing does not affect the binary systems but increases the decomposition activation energy of ternary systems. A reaction mechanism that considers an intermetallic specie participating in the activated complex is proposed and a kinetic law is suggested. (author)

  16. Kinetic Study on Channelling of Protons in Metallic Carbon Nanotubes

    International Nuclear Information System (INIS)

    Dan, Zhao; Yuan-Hong, Song; You-Nian, Wang

    2008-01-01

    Based on the kinetic model and the dielectric response theory, a theoretical model is put forward to describe the transport of protons along nanotube axes. With the introduction of electron band structure for different nanotubes like zigzag and armchair nanotubes of metallic properties, the collective excitation of electrons on the cylinders induced by the incident ions is studied, showing several distinct peaks in the curves of the energy loss function. Furthermore, the stopping power and the self-energy are calculated as functions of ion velocities, especially taking into account the influence of damping coefficients. It is conceivable from the results that, in the kinetic formulation, plasmon excitation plays a major role in the stopping. And as the damping increases, the peaks of the stopping power shift to the lower velocities, with the broadening of the plasmon resonance. (condensed matter: structure, mechanical and thermal properties)

  17. DEFLUORIDATION OF DRINKING WATER BY ELECTROCOAGULATION/ELECTROFLOTATION - KINETIC STUDY

    Directory of Open Access Journals (Sweden)

    Bennajah Mounir

    2010-06-01

    Full Text Available A variable order kinetic (VOK model derived from the langmuir-freundlish equation was applied to determine the kinetics of fluoride removal reaction by electrocoagulation (EC. Synthetic solutions were employed to elucidate the effects of the initial fluoride concentration, the applied current and the initial acidity on the simulation results of the model. The proposed model successfully describes the fluoride removal in Airlift reactor in comparison with the experimental results. In this study two EC cells with the same capacity (V = 20 L were used to carry out fluoride removal with aluminum electrodes, the first is a stirred tank reactor (STR the second is an airlift reactor (ALR. The comparison of energy consumption demonstrates that the (ALR is advantageous for carrying out the defluoridation removal process.

  18. Evaluation of dilatometric techniques for studies of sintering kinetics

    International Nuclear Information System (INIS)

    El-Sayed Ali, M.; Toft Soerensen, O.

    1985-04-01

    The kinetics of the initial sintering stage of CeO 2 is evaluated by three different techniques: constant heating rate dilatometry, constant shrinkage rate dilatometry and a new technique recently introduced by the authors called Stepwise Isothermal Dilatometry (SID). Comparative measurements with these techniques showed that too high activation energies were obtained with the two first techniques, both of which can be termed as nonisothermal, whereas activation energies comparable to those reported for cation diffusion in other fluorite oxides were obtained with the latter technique. Of the three techniques SID is thus considered to be the most accurate for studies of the sintering kinetics. In contrast to the two nonisothermal techniques SID has the further advantage that both the controlling mechanism and its activation energy can be determined in a single experiment. From the SID-measurement it was concluded that the initial sintering stage of CeO 2 is controlled by grain-boundary diffusion. (author)

  19. Early Events, Kinetic Intermediates and the Mechanism of Protein Folding in Cytochrome c

    Directory of Open Access Journals (Sweden)

    David S. Kliger

    2009-04-01

    Full Text Available Kinetic studies of the early events in cytochrome c folding are reviewed with a focus on the evidence for folding intermediates on the submillisecond timescale. Evidence from time-resolved absorption, circular dichroism, magnetic circular dichroism, fluorescence energy and electron transfer, small-angle X-ray scattering and amide hydrogen exchange studies on the t £ 1 ms timescale reveals a picture of cytochrome c folding that starts with the ~ 1-ms conformational diffusion dynamics of the unfolded chains. A fractional population of the unfolded chains collapses on the 1 – 100 ms timescale to a compact intermediate IC containing some native-like secondary structure. Although the existence and nature of IC as a discrete folding intermediate remains controversial, there is extensive high time-resolution kinetic evidence for the rapid formation of IC as a true intermediate, i.e., a metastable state separated from the unfolded state by a discrete free energy barrier. Final folding to the native state takes place on millisecond and longer timescales, depending on the presence of kinetic traps such as heme misligation and proline mis-isomerization. The high folding rates observed in equilibrium molten globule models suggest that IC may be a productive folding intermediate. Whether it is an obligatory step on the pathway to the high free energy barrier associated with millisecond timescale folding to the native state, however, remains to be determined.

  20. Kinetic study of ozonation of molasses fermentation wastewater

    International Nuclear Information System (INIS)

    Coca, M.; Pena, M.; Gonzalez, G.

    2007-01-01

    A kinetic study of molasses wastewater ozonation was carried out in a stirred tank reactor to obtain the rate constants for the decolorization reaction and the regime through which ozone is absorbed. First, fundamental mass transfer parameters such as ozone solubility, volumetric mass transfer coefficients and ozone decomposition kinetics were determined from semi-batch experiments in organic-free solutions with an ionic composition similar that of industrial wastewater. The influence of operating variables such as the stirring rate and gas flow rate on the kinetic and mass transfer parameters was also studied. The application of film theory allows to establish that the reactions between ozone and colored compounds in wastewater take place in the fast and pseudo-first-order regime, within the liquid film. The decolorization rate constants were evaluated at pH 8.7 and 25 deg. C, varying from 0.6 x 10 7 to 3.8 x 10 7 L mol -1 s -1 , depending on the stirring rate and the inlet gas flow

  1. A novel microfluidic mixer based on dual-hydrodynamic focusing for interrogating the kinetics of DNA-protein interaction.

    Science.gov (United States)

    Li, Ying; Xu, Fei; Liu, Chao; Xu, Youzhi; Feng, Xiaojun; Liu, Bi-Feng

    2013-08-21

    Kinetic measurement of biomacromolecular interaction plays a significant role in revealing the underlying mechanisms of cellular activities. Due to the small diffusion coefficient of biomacromolecules, it is difficult to resolve the rapid kinetic process with traditional analytical methods such as stopped-flow or laminar mixers. Here, we demonstrated a unique continuous-flow laminar mixer based on microfluidic dual-hydrodynamic focusing to characterize the kinetics of DNA-protein interactions. The time window of this mixer for kinetics observation could cover from sub-milliseconds to seconds, which made it possible to capture the folding process with a wide dynamic range. Moreover, the sample consumption was remarkably reduced to <0.55 μL min⁻¹, over 1000-fold saving in comparison to those reported previously. We further interrogated the interaction kinetics of G-quadruplex and the single-stranded DNA binding protein, indicating that this novel micromixer would be a useful approach for analyzing the interaction kinetics of biomacromolecules.

  2. Kinetic analysis of the reactions of hypobromous acid with protein components

    DEFF Research Database (Denmark)

    Pattison, David I; Davies, Michael Jonathan

    2004-01-01

    available for HOBr. In this study, rate constants for reaction of HOBr with protein components have been determined. The second-order rate constants (22 degrees C, pH 7.4) for reaction with protein sites vary by 8 orders of magnitude and decrease in the order Cys > Trp approximately Met approximately His...

  3. Modeling of kinetics of the inducible protein complexes of the SOS system in bacteria E. coli which realize TLS process

    International Nuclear Information System (INIS)

    Belov, O.V.

    2008-01-01

    The mathematical model describing kinetics of the inducible genes of the protein complexes, formed during SOS response in bacteria Escherichia coli is developed. Within the bounds of developed approaches the auxiliary mathematical model describing changes in concentrations of the dimers, which are the components of final protein complexes, is developed. The solutions of both models are based on the experimental data concerning expression of the basic genes of the SOS system in bacteria Escherichia coli

  4. Cardiovascular Small Heat Shock Protein HSPB7 Is a Kinetically Privileged Reactive Electrophilic Species (RES) Sensor.

    Science.gov (United States)

    Surya, Sanjna L; Long, Marcus J C; Urul, Daniel A; Zhao, Yi; Mercer, Emily J; EIsaid, Islam M; Evans, Todd; Aye, Yimon

    2018-02-08

    Small heat shock protein (sHSP)-B7 (HSPB7) is a muscle-specific member of the non-ATP-dependent sHSPs. The precise role of HSPB7 is enigmatic. Here, we disclose that zebrafish Hspb7 is a kinetically privileged sensor that is able to react rapidly with native reactive electrophilic species (RES), when only substoichiometric amounts of RES are available in proximity to Hspb7 expressed in living cells. Among the two Hspb7-cysteines, this RES sensing is fulfilled by a single cysteine (C117). Purification and characterizations in vitro reveal that the rate for RES adduction is among the most efficient reported for protein-cysteines with native carbonyl-based RES. Covalent-ligand binding is accompanied by structural changes (increase in β-sheet-content), based on circular dichroism analysis. Among the two cysteines, only C117 is conserved across vertebrates; we show that the human ortholog is also capable of RES sensing in cells. Furthermore, a cancer-relevant missense mutation reduces this RES-sensing property. This evolutionarily conserved cysteine-biosensor may play a redox-regulatory role in cardioprotection.

  5. Analyses of intricate kinetics of the serum proteome during and after colon surgery by protein expression time series

    NARCIS (Netherlands)

    Roelofsen, Johan; Alvarez Llamas, Gloria; Dijkstra, Martijn; Breitling, Rainer; Havenga, Klaas; Bijzet, Johannes; Zandbergen, Wouter; de Vries, Marcel; Ploeg, Rutger J.; Vonk, Roel J.

    Analyses of intricate kinetics of the serum proteome during and after colon surgery by protein expression time series.Roelofsen H, Alvarez-Llamas G, Dijkstra M, Breitling R, Havenga K, Bijzet J, Zandbergen W, de Vries MP, Ploeg RJ, Vonk RJ. Centre for Medical Biomics, University Medical Centre

  6. Experimental kinetic study and modeling of calcium oxide carbonation

    International Nuclear Information System (INIS)

    Rouchon, L.

    2012-01-01

    Anthropogenic carbon dioxide (CO 2 ) emissions, major contributors to the greenhouse effect, are considered as the main cause of global warming. So, decrease of CO 2 emitted by large industrial combustion sources or power plants, is an important scientific goal. One of the approaches is based on CO 2 separation and capture from flue gas, followed by sequestration in a wide range of geological formations. In this aim, CO 2 is captured by sorbents like calcium oxide (CaO) in multi-cycle process of carbonation/de-carbonation. However, it was shown that the most important limitations of such process are related to the reversibility of reaction. CaO rapidly loses activity towards CO 2 , so the maximum extent of carbonation decreases as long as the number of cycles increases. In order to well understand the processes and parameters influencing the capture capacity of CaO-based sorbents, it appears important to get details on the kinetic law governing the reaction, which have not been really studied up to now. To investigate this reaction, CaO carbonation kinetics was followed by means of thermogravimetric analysis (TGA) on divided materials. Special care was given to the validation of the usual kinetic assumptions such as steady state and rate-determining step assumptions. The aim was to obtain a model describing the reaction in order to explain the influence of intensive variables such as carbonation temperature and CO 2 partial pressure. TGA curves obtained under isothermal and isobaric conditions showed an induction period linked to the nucleation process and a strong slowing down of the reaction rate once a given fractional conversion was reached. Both phenomena were observed to depend on carbonation temperature and CO 2 partial pressure. To explain these results, the evolution of texture and microstructure of the solid during the reaction was regarded as essential. Reaction at the grain scale induces a volume increase from CaO to CaCO 3 which causes a change in the

  7. Study of kinetics of extraction of actinides in processes of reprocessing of nuclear fuels

    International Nuclear Information System (INIS)

    Lamotte, Claude

    1978-01-01

    This research thesis reports a bibliographical study on extraction kinetics. After some generalities on solvent-based extraction, and on the chemistry of actinides in solution, on the methods of kinetics study which are generally used and their mathematical treatments, the author compares the published results for the extraction kinetics of nitric acid, uranium VI, uranium IV, neptunium IV and plutonium IV [fr

  8. Kinetic study of an alcoholic fermentation, using honey like substrate

    International Nuclear Information System (INIS)

    Gomez, Jose Angel; Castano, Hader Ivan; Arias Mario

    1997-01-01

    The paper describes a kinetic study of an alcoholic fermentation using honey like substrate; for this effect they were carried out nine fermentations in discontinuous process with a volume, of 10 L, following the behavior of the substrate concentrations, biomass and product in the time. It was evaluated the convenience of factors like the agitation and the addition of nutritious, also, it was observed the effect of the initial concentrations of substrate and inoculate and the type of honey looking for the best conditions of the process for the obtaining of an alcoholic drink

  9. Kinetic Studies on Microbial Production of Tannase Using Redgram Husk

    OpenAIRE

    S. K. Mohan; T. Viruthagiri; C. Arunkumar

    2015-01-01

    Tannase (tannin acyl hydrolase, E.C.3.1.1.20) is an important hydrolysable enzyme with innumerable applications and industrial potential. In the present study, a kinetic model has been developed for the batch fermentation used for the production of tannase by A.flavus MTCC 3783. Maximum tannase activity of 143.30 U/ml was obtained at 96 hours under optimum operating conditions at 35oC, an initial pH of 5.5 and with an inducer tannic acid concentration of 3% (w/v) for a fe...

  10. Kinetic studies of acid inactivation of alpha-amylase from Aspergillus oryzae

    DEFF Research Database (Denmark)

    Carlsen, Morten; Nielsen, Jens Bredal; Villadsen, John

    1996-01-01

    The stability of alpha-amylase from Aspergillus oryzae has been studied at different pH. The enzyme is extremely stable at neutral pH (pH 5-8), whereas outside this pH-range a substantial loss of activity is observed. The acid-inactivation of alpha-amylase from A. oryzae was monitored on...... regains part of its activity, and the reactivation process also follows first-order kinetics. The irreversible loss of activity is found not to result from a protease contamination of the protein samples. A proposed model, where irreversibly inactivated a-amylase is formed both directly from the active...

  11. Isotherm, kinetic, and thermodynamic study of ciprofloxacin sorption on sediments.

    Science.gov (United States)

    Mutavdžić Pavlović, Dragana; Ćurković, Lidija; Grčić, Ivana; Šimić, Iva; Župan, Josip

    2017-04-01

    In this study, equilibrium isotherms, kinetics and thermodynamics of ciprofloxacin on seven sediments in a batch sorption process were examined. The effects of contact time, initial ciprofloxacin concentration, temperature and ionic strength on the sorption process were studied. The K d parameter from linear sorption model was determined by linear regression analysis, while the Freundlich and Dubinin-Radushkevich (D-R) sorption models were applied to describe the equilibrium isotherms by linear and nonlinear methods. The estimated K d values varied from 171 to 37,347 mL/g. The obtained values of E (free energy estimated from D-R isotherm model) were between 3.51 and 8.64 kJ/mol, which indicated a physical nature of ciprofloxacin sorption on studied sediments. According to obtained n values as measure of intensity of sorption estimate from Freundlich isotherm model (from 0.69 to 1.442), ciprofloxacin sorption on sediments can be categorized from poor to moderately difficult sorption characteristics. Kinetics data were best fitted by the pseudo-second-order model (R 2  > 0.999). Thermodynamic parameters including the Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were calculated to estimate the nature of ciprofloxacin sorption. Results suggested that sorption on sediments was a spontaneous exothermic process.

  12. Study of water vapour adsorption kinetics on aluminium oxide materials

    Science.gov (United States)

    Livanova, Alesya; Meshcheryakov, Evgeniy; Reshetnikov, Sergey; Kurzina, Irina

    2017-11-01

    Adsorbents on the basis of active aluminum oxide are still of demand on the adsorbent-driers market. Despite comprehensive research of alumina adsorbents, and currently is an urgent task to improve their various characteristics, and especially the task of increasing the sorption capacity. In the present work kinetics of the processes of water vapours' adsorption at room temperature on the surface of desiccant samples has been studied. It was obtained on the basis of bayerite and pseudoboehmite experimentally. The samples of pseudoboehmite modified with sodium and potassium ions were taken as study objects. The influence of an adsorbent's grain size on the kinetics of water vapours' adsorption was studied. The 0.125-0.25 mm and 0.5-1.0 mm fractions of this sample were used. It has been revealed that the saturation water vapor fine powder (0.125-0.25 mm) is almost twofold faster in comparison with the sample of fraction 0.5-1.0 mm due to the decrease in diffusion resistance in the pores of the samples when moving from the sample of larger fraction to the fine-dispersed sample. It has been established that the adsorption capacity of the pseudoboehmite samples, modified by alkaline ions, is higher by ˜40 %, than for the original samples on the basis of bayerite and pseudoboehmite.

  13. Ruminal degradation kinetics of protein foods by in vitro gas production technique

    Directory of Open Access Journals (Sweden)

    Ivone Yurika Mizubuti

    2014-02-01

    Full Text Available Chemical analysis of carbohydrates and nitrogen fractions, as well as, determination their carbohydrates digestion rates in soyben meal (SM, crambe meal (CM, radish meal (RM, wet brewery residue (WBR and dehydrated silkworm chrysalis (SCD were accomplished. The kinetics parameters of non-fibrous carbohydrates (NFC and B2 fraction were estimated using cumulative gas production technique. Among the foods studied there was considerable variation in chemical composition. The crambe meal was the only food that did not present synchronism between carbohydrate and nitrogen fractions. In this food there was predominance of A+B1 carbohydrates fractions and B1+B2 nitrogen compounds fraction, and for the other predominated B2 carbohydrate fraction and B1+ B2 nitrogen compounds fraction. There were differences among the digestive kinetic parameters for all foods. The greater participation in gas production due to non-fibrous carbohydrates was found in the crambe meal and oilseed radish meal. The fermentation of fibrous carbohydrates provided higher gas volume in the wet brewery residue and in the soybean meal, however, the soybean meal was food with higher total gas volume. Non fibrous carbohydrates degradation rates of wet brewery residue and dehydrated silkworm chrysalis were far below the limits of degradation of this fraction. Due to the parameters obtained by the cumulative gas production, the soybean meal was the best food, however, all others have potential for use in animal nutrition. The cumulative gas production technique allows the estimative of degradation rates and provides further information about the ruminal fermentation kinetics of foods.

  14. Effect of feeding aflatoxin on nitrogen kinetics in crossbred and buffalo calves fed different levels of protein

    International Nuclear Information System (INIS)

    Dass, R.S.; Arora, S.P.

    1989-01-01

    The studies were conducted to elucidate the effect of feeding aflatoxin on nitrogen kinetics in rumen fistulated calves. One calf each in groups 1, 2, 5 and 6 and one bufffalo calf each, in groups 3, 4, 7 and 8 were alloted. Calves of groups 5 to 8 were provided optimum protein (OP) while those in groups 1 to 4 were given 42.5 per cent more protein (HP) in their diets. In addition, animals in groups 2, 4, 6 and 8 were given an oral dose of aflatoxin at the rate of 1.0 ppm of drymatter intake. Subsequent to digestibility trial, 2 hourly feeding was practised for 10 days, after which 15 N-ammonium sulphate and 51 Cr-EDTA were infused intra-ruminally. Results indicated that there was no effect of feeding aflatoxin on the digestibility of nutrients except crude protein. Nitrogen balances were better with groups fed OP diets as compared to HP diets, more in crossbreds than the buffalo. The estimated rumen volume ranged from 37.70 to 56.00 litres and rumen fluid outflow rates varied from 87.34 to 123.70 litres per day. Ruminal ammonia pool size, ruminal ammonia entry rates and irreversible loss rates were higher in HP fed groups without showing any effect of afflatoxins. Ruminal ammonia-N was better utilized for incorporation into bacterial protein and for transfer to plasma urea-N with OP fed groups, again without showing aflatoxin toxicity effect. Ruminal ammonia-N excretion pattern through urine was greater as a result of aflatoxin toxicity, more in crossbreds as compared to buffalo. (author). 19 refs. 5 tabs

  15. The kinetic study of oxidation of iodine by hydrogen peroxide

    International Nuclear Information System (INIS)

    Cantrel, L.; Chopin, J.

    1996-01-01

    Iodine chemistry is one of the most important subjects of research in the field of reactor safety because this element can form volatile species which represent a biological hazard for environment. As the iodine and the peroxide are both present in the sump of the containment in the event of a severe accident on a light water nuclear reactor, it can be important to improve the knowledge on the reaction of oxidation of iodine by hydrogen peroxide. The kinetics of iodine by hydrogen peroxide has been studied in acid solution using two different analytical methods. The first is a UV/Vis spectrophotometer which records the transmitted intensity at 460 nm as a function of time to follow the decrease of iodine concentration, the second is an amperometric method which permits to record the increase of iodine+1 with time thanks to the current of reduction of iodine+1 to molecular iodine. The iodine was generated by Dushman reaction and the series of investigations were made at 40 o C in a continuous stirring tank reactor. The influence of the initial concentrations of iodine, iodate, hydrogen peroxide, H + ions has been determined. The kinetics curves comprise two distinct chemical phases both for molecular iodine and for iodine+1. The relative importance of the two processes is connected to the initial concentrations of [I 2 ], [IO 3 - ], [H 2 O 2 ] and [H + ]. A rate law has been determined for the two steps for molecular iodine. (author) figs., tabs., 22 refs

  16. Kinetic studies of ICF target dynamics with ePLAS

    Science.gov (United States)

    Mason, R. J.

    2016-10-01

    The ePLAS code was recently used1 to show that a modeling change from artificial to real viscosity can result in a decrease of the predicted performance of ICF targets. This code typically follows either fluid or PIC electrons with fluid ions in self-consistent E - and B - fields computed by the Implicit Moment Method2. For the present study the ions have instead been run as PIC particles undergoing Krook-like self-collisions. The ePLAS collision model continually redistributes the ion particle properties toward a local Maxwellian, while conserving the mean density, momentum and energy. Whereas the use of real viscosity captures large Knudsen Number effects as the active target dimensions shrink below the ion mean-free-path, the new kinetic modeling can manifest additional effects such as collisional shock precursors3 from the escape and streaming of the fastest particle ions. In 2D cylindrical geometry we will explore how such kinetic shock extensions might affect shell and core compression dynamics in ICF target implosions.

  17. Kinetics study of antimony adsorption on Si(1 1 1)

    International Nuclear Information System (INIS)

    Lapena, L.; Mueller, P.; Quentel, G.; Guesmi, H.; Treglia, G.

    2003-01-01

    In this paper, we use mass spectrometry (MS) and reflection high-energy electron (RHEED) to study the kinetics of adsorption of Sb on Si(1 1 1) surface and its relation to the corresponding surface structure. At high temperature (T>800 deg. C) all the impinging Sb 4 molecules completely dissociate at the silicon surface and a 2D gas of Sb monomers reversibly adsorbs on the (1x1) surface. At low temperature (T 4 molecules act as precursors and can be partially reflected or desorbed while a 2D stable layer of Sb monomers irreversibly adsorbs. The surface continuously shifts from a blurred (7x7) surface to a (1x1) structure near completion of the 2D layer. In the intermediate range (600 deg. C< T<800 deg. C) provided that the coverage is large enough (θ ∼ 2/3) the condensation of the 2D gas leads to a 2D (5√3 x 5√3) reconstruction. We show that introducing the formation of a condensed phase in a kinetics model allows us to reproduce our experimental data. Finally, we determine the adsorption geometry from ab initio calculations: Sb is adsorbed on top positions, somewhat passivating the Si surface dangling bonds

  18. Kinetics of immobilisation and release of tryptophan, riboflavin and peptides from whey protein microbeads.

    Science.gov (United States)

    O'Neill, Graham J; Egan, Thelma; Jacquier, Jean Christophe; O'Sullivan, Michael; Dolores O'Riordan, E

    2015-08-01

    This study investigated the kinetics of immobilisation and release of riboflavin, amino acids and peptides from whey microbeads. Blank whey microbeads were placed in solutions of the compounds. As the volume of microbeads added to the solution was increased, the uptake of the compounds increased, to a maximum of 95% for the pentapeptide and 56%, 57% and 45% for the dipeptide, riboflavin and tryptophan respectively, however, the rate of uptake remained constant. The rate of uptake increased with increasing molecule hydrophobicity. The opposite was observed in the release studies, the more hydrophobic compounds had lower release rate constants (kr). When whey microbeads are used as sorbents, they show excellent potential to immobilise small hydrophobic molecules and minimise subsequent diffusion, even in high moisture environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Kinetic study of hydrolysis of coconut fiber into glucose

    Science.gov (United States)

    Muhaimin, Sudiono, Sri

    2017-03-01

    Kinetic study of hydrolysis of coconut fiber into glucose has been done. The aim of this research was to study of the effect of time and temperature to the glucose as the result of the conversion of coconut fiber. The various temperature of the hydrolysis process were 30 °C, 48 °C, 72 °C and 95 °C and the various time of the hydrolysis process were 0, 15, 30, 60, 120, 180, 240, 300 minutes. A quantitative analysis was done by measured the concentration of the glucose as the result of the conversion of coconut fiber. The result showed that the rate constant from the various temperature were 3.10-4 minute-1; 8.10-4 minutees-1; 84.10-4 minute-1, and 205.10-4 minute-1, and the energy activation was 7,69. 103 kJ/mol.

  20. Developmental block and programmed cell death in Bos indicus embryos: effects of protein supplementation source and developmental kinetics.

    Directory of Open Access Journals (Sweden)

    Sheila Merlo Garcia

    Full Text Available The aims of this study were to determine if the protein source of the medium influences zebu embryo development and if developmental kinetics, developmental block and programmed cell death are related. The culture medium was supplemented with either fetal calf serum or bovine serum albumin. The embryos were classified as Fast (n = 1,235 or Slow (n = 485 based on the time required to reach the fourth cell cycle (48 h and 90 h post insemination - hpi -, respectively. The Slow group was further separated into two groups: those presenting exactly 4 cells at 48 hpi (Slow/4 cells and those that reached the fourth cell cycle at 90 hpi (Slow. Blastocyst quality, DNA fragmentation, mitochondrial membrane potential and signs of apoptosis or necrosis were evaluated. The Slow group had higher incidence of developmental block than the Fast group. The embryos supplemented with fetal calf serum had lower quality. DNA fragmentation and mitochondrial membrane potential were absent in embryos at 48 hpi but present at 90 hpi. Early signs of apoptosis were more frequent in the Slow and Slow/4 cell groups than in the Fast group. We concluded that fetal calf serum reduces blastocyst development and quality, but the mechanism appears to be independent of DNA fragmentation. The apoptotic cells detected at 48 hpi reveal a possible mechanism of programmed cell death activation prior to genome activation. The apoptotic cells observed in the slow-developing embryos suggested a relationship between programmed cell death and embryonic developmental kinetics in zebu in vitro-produced embryos.

  1. Kinetic Study of Denatonium Sorption to Smectite Clay Minerals.

    Science.gov (United States)

    Crosson, Garry S; Sandmann, Emily

    2013-06-01

    The denatonium cation, as a benzoate salt, is the most bitter cation known to modern society and is frequently added to consumer products to reduce accidental and intentional consumption by humans and animals. Denatonium can enter the environment by accidental discharges, potentially rendering water supplies undrinkable. Interactions of denatonium with soil components ( i.e. , smectite minerals) ultimately control the environmental fate of denatonium, but the current literature is devoid of studies that evaluate denatonium sorption to smectite minerals. This study investigated the mechanism and kinetics of denatonium sorption to smectite clay minerals as a function of smectite type, temperature, pH and ionic strength. Uptake by synthetic mica montmorillonite (Syn-1), Wyoming montmorillonite (SWy-2), and Texas montmorillonite (STx-1b) at 305K was rapid, with equilibrium being reached within 2 min for all clays. Complete removal of denatonium was observed for STx-1b at pH 6.9, while partial removal was observed for Syn-1 and SWy-2. Kinetic behavior of SWy-2 and Syn-1 is consistent with a pseudo-second-order model at 305K. An activation energy of +25.9 kJ/mol was obtained for sorption to Syn-1 and was independent of temperature between 286K and 338K. Activation-free energy (Δ G *), activation enthalpy (Δ H *), and activation entropy (Δ S *) for Syn-1 were found to be +62.91 kJ/mol, +23.36 kJ/mol, and -0.130 kJ/(K·mol), respectively. Sorption capacities at pH 3.6, 6.9, and 8.2 were constant at 1.3×10 -2 g denatonium/g clay; however, the kinetic rate constant increased by 56%, going from acidic to basic solution conditions. Distribution coefficients were negatively correlated with ionic strength, suggesting cation exchange. Collectively, results suggested that smectite minerals can serve as efficient sinks for denatonium cations. This is much-needed information for agencies developing regulations regarding denatonium usage and for water treatment professionals

  2. Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics.

    Science.gov (United States)

    Wang, Xun; Hu, Mian; Hu, Wanyong; Chen, Zhihua; Liu, Shiming; Hu, Zhiquan; Xiao, Bo

    2016-11-01

    Pyrolytic kinetic of an agricultural residue (AR) feedstock, a mixture of plants (cotton, wheat, rich, corn) stems, was investigated based on combined kinetics. The most suitable mechanism for AR one-step pyrolysis was f(α)=(1-α)(1.1816)α(-1.8428) with kinetic parameters of: apparent activation energy 221.7kJ/mol, pre-exponential factor 4.17E16s(-1). Pyrolysis of AR feedstock could not be described by one-step reaction attributes to heterogeneous features of pyrolysis processes. Combined kinetics three-parallel-reaction (CK-TPR) model fitted the pyrolysis experimental data very well. Reaction mechanisms for pseudo hemicelluloses, cellulose, lignin in CK-TPR model was f(α)=(1-α)(1.6244)α(-0.3371)[-ln(1-α)](-0.0515), f(α)=(1-α)(1.0597)α(-0.6909)[-ln(1-α)](0.9026) and f(α)=(1-α)(2.9577)α(-4.7719), respectively. Apparent activation energy of three pseudo components followed the order of Elignin(197.3kJ/mol)>Ecellulose(176.3kJ/mol)>Ehemicelluloses (151.1kJ/mol). Mechanism of hemicelluloses pyrolysis could be further expressed as f(α)=(1-α)(1.4). The pyrolytic mechanism of cellulose met the Nucleation well. However, mechanism of lignin pyrolysis was complex, which possibly was the combined effects of Nucleation, Diffusion, Geometrical contraction, and Power law. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Kinetics studies of solvent extraction of rare earths into DEHPA

    International Nuclear Information System (INIS)

    Lim, T.M.; Tran, T.

    1996-01-01

    The kinetics of rare earth solvent extraction into di(2-ethylhexyl) phosphoric acid have been studied using radiotracers ( 141 Ce, 152 Eu, 153 Gd, 160 Tb and 88 Y) in a modified Lewis cell. The experimental procedure involved continuous monitoring of both aqueous and organic phases using an automated γ- counting system. Using this method, highly reproducible results were obtained without chemical analysis or disturbance of the system. The initial rate extraction was first order with respect to individual rare earth concentration. At low acidities ([H+] < 0.01 M), the extraction rates of rare earths were equal and independent of pH. However, at high acidities, the extraction rate was strongly dependent on pH and varied between the rare earths. Similarly, differences in the extraction rate of individual rare earths were apparent at low DEHPA concentration. (authors)

  4. Carbohydrate deficient transferrin (CDT) in alcoholic cirrhosis: a kinetic study

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik; Grønbaek, M; Møller, Søren

    1997-01-01

    BACKGROUND/AIMS: Carbohydrate deficient transferrin has been introduced as a marker of excessive alcohol intake. The present study was undertaken in order to measure the circulating level of carbohydrate deficient transferrin in patients with alcoholic cirrhosis and to assess arteriovenous kinetics...... of carbohydrate deficient transferrin in liver and kidney. METHODS/RESULTS: The median value of serum carbohydrate deficient transferrin was 16.0 U/l in patients with alcoholic cirrhosis (n = 41), and this value was not significantly different from that of a normal control group (median 17.4 U/l, n = 55, ns......). Carbohydrate deficient transferrin was significantly higher in patients with cirrhosis and high current alcohol intake than in abstaining patients (20 vs. 14 U/l, p 50 g/day) had a significantly higher carbohydrate deficient transferrin...

  5. Prospects in the Study of Stem-Cell Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Till, J. E. [Department of Medical Biophysics, University of Toronto (Canada); Ontario Cancer Instute, Toronto, ON (Canada)

    1968-08-15

    The recent rapid progress in the field of stem-cell kinetics has been due in large part to the development of reliable in-vivo assays for the functions of haemopoietic stem cells. As a direct result of the availability of these assays, several novel and interesting phenomena have been described. What is now needed is not so much further search for new phenomena as an understanding of the phenomena that have already been uncovered. It is postulated that new approaches will be required for the analysis of these phenomena, and that future progress in the field will be strongly dependent on the development of methods suitable for the detailed study of the growth and differentiation of populations of haemopoietic cells in culture systems. (author)

  6. Study of kinetics of the tetroxane thermolysis by UV spectrophotometry

    International Nuclear Information System (INIS)

    Jorge, N.L.; Leiva, L.C.; Castellanos, M.G.; Cafferata, L.F.R.; Gomez V, M.E.

    2002-01-01

    The 3,3,6,6-tetramethyl-1,2,4,5-tetroxane (ACDP) in methanol solution shows an absorbance peak at low wave length in UV spectrum and follows the Lambert Beer law until 10-2 M concentration at 209 nm. The ACDP thermal decomposition have been studied by the UV spectroscopy like an alternative method to find out the kinetic parameters from the thermolysis of these compounds. The rate constants at the temperatures and initial concentration ranges of 130-166 and 0,003-0,013 mol / L, respectively, and the activation parameters were similar to the corresponding values found by other methodology, verifying this analytic technique. Acetone produced during reaction no interference in ACDP quantification by UV analysis. (Author)

  7. A study of butyl acetate synthesis. 4-reaction kinetics

    Directory of Open Access Journals (Sweden)

    Álvaro Orjuela Londoño

    2006-05-01

    Full Text Available This work was aimed at studying liquid-phase acetic acid and butyl alcohol esterification reaction (P atm =0.76 Bar,using an ion exchange resin (Lewatit K-2431 as catalyst. The effect of the absence of internal and external mass transport on catalyst particles was established in the research conditions used here. A set of assays to determine the effect of catalyst load (0.5%, 1%, 2% w/w temperature (73°C, 80°C, 87°C and molar ratio (1:2, 1:1, 2:1 acid/alcohol on reaction rate was carried out and both LHHW and pseudo-homogeneous kinetic expressions were obtained, these being in good agreement with the experimental data.

  8. In vitro studies of ante-mortem proliferation kinetics

    International Nuclear Information System (INIS)

    McBride, W.H.; Withers, H.R.

    1986-01-01

    Using K562 human erythroblastoid cells, it was concluded that dose fractionation has no discrepant effect on the ante-mortem proliferation kinetics of doomed cells as opposed to clonogenic cell survival and that effects on ante-mortem proliferation kinetics cannot be solely responsible for the differences in fractionation response between early and late responding tissues. (UK)

  9. Kinetic study and syngas production from pyrolysis of forestry waste

    International Nuclear Information System (INIS)

    Hu, Mian; Wang, Xun; Chen, Jian; Yang, Ping; Liu, Cuixia; Xiao, Bo; Guo, Dabin

    2017-01-01

    Highlights: • Pyrolysis process can be divided into three stages using differential DTG method. • A modified discrete DAEM model fitted experimental data well. • Fe/biochar catalyst showed a good performance on catalytic reforming process. - Abstract: Kinetic study and syngas production from pyrolysis of forestry waste (pine sawdust (PS)) were investigated using a thermogravimetric analyzer (TGA) and a fixed-bed reactor, respectively. In TGA, it was found that the pyrolysis of PS could be divided into three stages and stage II was the major mass reduction stage with mass loss of 73–74%. The discrete distributed activation energy model (DAEM) with discrete 200 first-order reactions was introduced to study the pyrolysis kinetic. The results indicated that the DAEM with 200 first-order reactions could approximate the pyrolysis process with an excellent fit between experimental and calculated data. The apparent activation energies of PS ranged from 147.86 kJ·mol −1 to 395.76 kJ·mol −1 , with corresponding pre-exponential factors of 8.30 × 10 13 s −1 to 3.11 × 10 25 s −1 . In the fixed-bed reactor, char supported iron catalyst was prepared for tar cracking. Compared with no catalyst which the gas yield and tar yield were 0.58 N m 3 /kg biomass and 201.23 g/kg biomass, the gas yield was markedly increased to 1.02 N m 3 /kg biomass and the tar yield was decreased to only 26.37 g/kg biomass in the presence of char supported iron catalyst. These results indicated that char supported iron catalyst could potentially be used to catalytically decompose tar molecules in syngas generated via biomass pyrolysis.

  10. Impact of the lipid bilayer on energy transfer kinetics in the photosynthetic protein LH2.

    Science.gov (United States)

    Ogren, John I; Tong, Ashley L; Gordon, Samuel C; Chenu, Aurélia; Lu, Yue; Blankenship, Robert E; Cao, Jianshu; Schlau-Cohen, Gabriela S

    2018-03-28

    Photosynthetic purple bacteria convert solar energy to chemical energy with near unity quantum efficiency. The light-harvesting process begins with absorption of solar energy by an antenna protein called Light-Harvesting Complex 2 (LH2). Energy is subsequently transferred within LH2 and then through a network of additional light-harvesting proteins to a central location, termed the reaction center, where charge separation occurs. The energy transfer dynamics of LH2 are highly sensitive to intermolecular distances and relative organizations. As a result, minor structural perturbations can cause significant changes in these dynamics. Previous experiments have primarily been performed in two ways. One uses non-native samples where LH2 is solubilized in detergent, which can alter protein structure. The other uses complex membranes that contain multiple proteins within a large lipid area, which make it difficult to identify and distinguish perturbations caused by protein-protein interactions and lipid-protein interactions. Here, we introduce the use of the biochemical platform of model membrane discs to study the energy transfer dynamics of photosynthetic light-harvesting complexes in a near-native environment. We incorporate a single LH2 from Rhodobacter sphaeroides into membrane discs that provide a spectroscopically amenable sample in an environment more physiological than detergent but less complex than traditional membranes. This provides a simplified system to understand an individual protein and how the lipid-protein interaction affects energy transfer dynamics. We compare the energy transfer rates of detergent-solubilized LH2 with those of LH2 in membrane discs using transient absorption spectroscopy and transient absorption anisotropy. For one key energy transfer step in LH2, we observe a 30% enhancement of the rate for LH2 in membrane discs compared to that in detergent. Based on experimental results and theoretical modeling, we attribute this difference to

  11. A single cysteine post-translational oxidation suffices to compromise globular proteins kinetic stability and promote amyloid formation

    Directory of Open Access Journals (Sweden)

    Patrizia Marinelli

    2018-04-01

    Full Text Available Oxidatively modified forms of proteins accumulate during aging. Oxidized protein conformers might act as intermediates in the formation of amyloids in age-related disorders. However, it is not known whether this amyloidogenic conversion requires an extensive protein oxidative damage or it can be promoted just by a discrete, localized post-translational modification of certain residues. Here, we demonstrate that the irreversible oxidation of a single free Cys suffices to severely perturb the folding energy landscape of a stable globular protein, compromise its kinetic stability, and lead to the formation of amyloids under physiological conditions. Experiments and simulations converge to indicate that this specific oxidation-promoted protein aggregation requires only local unfolding. Indeed, a large scale analysis indicates that many cellular proteins are at risk of undergoing this kind of deleterious transition; explaining how oxidative stress can impact cell proteostasis and subsequently lead to the onset of pathological states. Keywords: Protein oxidation, Protein misfolding, Protein aggregation, Oxidative stress, Post-translational modification

  12. The kinetic study of oxidation of iodine by hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Cantrel, L [Institut de Protection et de Surete Nucleaire, IPNS, CEN Cadarache, Saint Paul lez Durance (France); Chopin, J [Laboratoire d` Electrochimie Inorganique, ENSSPICAM, Marseille (France)

    1996-12-01

    Iodine chemistry is one of the most important subjects of research in the field of reactor safety because this element can form volatile species which represent a biological hazard for environment. As the iodine and the peroxide are both present in the sump of the containment in the event of a severe accident on a light water nuclear reactor, it can be important to improve the knowledge on the reaction of oxidation of iodine by hydrogen peroxide. The kinetics of iodine by hydrogen peroxide has been studied in acid solution using two different analytical methods. The first is a UV/Vis spectrophotometer which records the transmitted intensity at 460 nm as a function of time to follow the decrease of iodine concentration, the second is an amperometric method which permits to record the increase of iodine+1 with time thanks to the current of reduction of iodine+1 to molecular iodine. The iodine was generated by Dushman reaction and the series of investigations were made at 40{sup o}C in a continuous stirring tank reactor. The influence of the initial concentrations of iodine, iodate, hydrogen peroxide, H{sup +} ions has been determined. The kinetics curves comprise two distinct chemical phases both for molecular iodine and for iodine+1. The relative importance of the two processes is connected to the initial concentrations of [I{sub 2}], [IO{sub 3}{sup -}], [H{sub 2}O{sub 2}] and [H{sup +}]. A rate law has been determined for the two steps for molecular iodine. (author) figs., tabs., 22 refs.

  13. Structural and kinetic analysis of the unnatural fusion protein 4-coumaroyl-CoA ligase::stilbene synthase

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yechun; Yi, Hankuil; Wang, Melissa; Yu, Oliver; Jez, Joseph M. (WU); (Danforth)

    2012-10-24

    To increase the biochemical efficiency of biosynthetic systems, metabolic engineers have explored different approaches for organizing enzymes, including the generation of unnatural fusion proteins. Previous work aimed at improving the biosynthesis of resveratrol, a stilbene associated a range of health-promoting activities, in yeast used an unnatural engineered fusion protein of Arabidopsis thaliana (thale cress) 4-coumaroyl-CoA ligase (At4CL1) and Vitis vinifera (grape) stilbene synthase (VvSTS) to increase resveratrol levels 15-fold relative to yeast expressing the individual enzymes. Here we present the crystallographic and biochemical analysis of the 4CL::STS fusion protein. Determination of the X-ray crystal structure of 4CL::STS provides the first molecular view of an artificial didomain adenylation/ketosynthase fusion protein. Comparison of the steady-state kinetic properties of At4CL1, VvSTS, and 4CL::STS demonstrates that the fusion protein improves catalytic efficiency of either reaction less than 3-fold. Structural and kinetic analysis suggests that colocalization of the two enzyme active sites within 70 {angstrom} of each other provides the basis for enhanced in vivo synthesis of resveratrol.

  14. Fibrin related antigens: assay development, clinical and kinetic studies

    Energy Technology Data Exchange (ETDEWEB)

    Kruskal, J B

    1987-08-01

    This thesis describes an assay which is able to measure and to determine the proportions of fibrin- and fibrinogen-related antigens (FRA) present in clinical samples. No assay exists at present which is capable of distinguishing between fibrin and fibrinogen degradation products concurrently and in a clinical setting. The assay may be used as a tool with which to gain further insight to pathophysiology of disorders characterized by activation of the coagulation and fibrinolytic pathways. This study provides and analysis of the FRA profiles in patients with disorders characterised by possible enhanced fibrinolytic activity. Studies have been undertaken on patients with acute and chronic liver diseases, on patients with the various syndromes of coronary artery disease and on patients with insulin-dependent diabetes mellitus with and without evidence of microvascular disease. Certain observations made it evident that further studies were required in order to explain previously undocumented fibrinolytic abnormalities in certain patient groups. Data obtained from patients with liver disease provided information compatible with the activation of their fibrinolytic pathways. The initial scope of this study was then extended to further investigate the deranged haemostatic mechanisms in patients with severe liver diseases. Kinetic studies were performed which required the development of specific technology to be able to measure certain previously undertermined parameters. Mathematical models describing the rates of fibrin formation and lysis were developed for human studies. Fibrin-derived D-dimer was radiolabelled and its validity as and intravenous tracer and maker of fibrin degradation established.

  15. In-Situ Optical Studies of Oxidation/Reduction Kinetics on SOFC Cermet Anodes

    Science.gov (United States)

    2010-12-28

    DATES COVERED (From - To) 1/29/10-9/30/10 4. TITLE AND SUBTITLE In situ optical studies of oxidation/reduction kinetics on SOFC cermet anodes 5a...0572 In-situ Optical Studies of Oxidation/Reduction Kinetics on SOFC Cermet Anodes Department of Chemistry and Biochemistry Montana State University...of Research In-situ Optical Studies of Oxidation/Reduction Kinetics on SOFC Cermet Anodes Principal Investigator Robert Walker Organization

  16. Comparative analysis of the folding dynamics and kinetics of an engineered knotted protein and its variants derived from HP0242 of Helicobacter pylori

    Science.gov (United States)

    Wang, Liang-Wei; Liu, Yu-Nan; Lyu, Ping-Chiang; Jackson, Sophie E.; Hsu, Shang-Te Danny

    2015-09-01

    Understanding the mechanism by which a polypeptide chain thread itself spontaneously to attain a knotted conformation has been a major challenge in the field of protein folding. HP0242 is a homodimeric protein from Helicobacter pylori with intertwined helices to form a unique pseudo-knotted folding topology. A tandem HP0242 repeat has been constructed to become the first engineered trefoil-knotted protein. Its small size renders it a model system for computational analyses to examine its folding and knotting pathways. Here we report a multi-parametric study on the folding stability and kinetics of a library of HP0242 variants, including the trefoil-knotted tandem HP0242 repeat, using far-UV circular dichroism and fluorescence spectroscopy. Equilibrium chemical denaturation of HP0242 variants shows the presence of highly populated dimeric and structurally heterogeneous folding intermediates. Such equilibrium folding intermediates retain significant amount of helical structures except those at the N- and C-terminal regions in the native structure. Stopped-flow fluorescence measurements of HP0242 variants show that spontaneous refolding into knotted structures can be achieved within seconds, which is several orders of magnitude faster than previously observed for other knotted proteins. Nevertheless, the complex chevron plots indicate that HP0242 variants are prone to misfold into kinetic traps, leading to severely rolled-over refolding arms. The experimental observations are in general agreement with the previously reported molecular dynamics simulations. Based on our results, kinetic folding pathways are proposed to qualitatively describe the complex folding processes of HP0242 variants.

  17. A computational study on kinetics, mechanism and thermochemistry ...

    Indian Academy of Sciences (India)

    level procedure employing the optimization at .... for a better understanding of mechanistic pathways, kinetics and thermochemistry we must rely on quantum chemical methods. The aim of this paper is to have .... The search was made along.

  18. Kinetic Study of Calcination of Jakura Limestone Using Power Rate ...

    African Journals Online (AJOL)

    National Research Institute for Chemical Technology, P.M. B 1052, Zaria, ... calcination of Jakura limestone was also found to be first order reaction with respect to CaCO3 ... Keywords: Jakura, limestone, calcination, kinetics, power law model.

  19. Study of growth kinetic and modeling of ethanol production by ...

    African Journals Online (AJOL)

    ... coefficient (0.96299). Based on Leudking-Piret model, it could be concluded that ethanol batch fermentation is a non-growth associated process. Key words: Kinetic parameters, simulation, cell growth, ethanol, Saccharomyces cerevisiae.

  20. Kinetics of radiation-induced apoptosis in neonatal urogenital tissues with and without protein synthesis inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Gobe, G.C.; Harmon, B.; Schoch, E.; Allan, D.J. [Queensland Univ., St. Lucia, QLD (Australia). Dept. of Chemistry

    1996-12-31

    The difference in incidence of radiation-induced apoptosis between two neonatal urogenital tissues, kidney and testis, was analysed over a 24h period. Concurrent administration of cycloheximide (10mg/kg body weight), a protein synthesis inhibitor, with radiation treatment was used to determine whether new protein synthesis had a role in induction of apoptosis in this in vivo model. Many chemotherapeutic drugs act via protein synthesis inhibition, and we believe that the results of this latter analysis may provide information for the planning of concurrent radio and chemotherapy. Apoptosis was quantified using morphological parameters, and verified by DNA gel electrophoresis for the typical banding pattern, and by electron microscopy. The proliferative index in tissues was studied, using [6-{sup 3}H]-thymidine uptake ( 1h prior to euthanasia and collection of tissues) and autoradiography as indicators of cell proliferation (S-phase). Tissue was collected 2, 4, 6, 8, and 24h after radiation treatment. Expression of one of the apoptosis-associated genes, Bcl-2 (an apoptosis inhibitor/cell survival gene), was studied using immunohistochemistry. Apoptosis peaked at 4h in the testis and 6h in the kidney, emphasising the necessity of knowing tissue differences in radiation response if comparing changes at a particular time. A higher proportion (almost five fold) of the apoptotic cells died in S-phase in the kidney than the testis, over the 24h. Protein synthesis inhibition completely negated induction of apoptosis in both tissues. Necrosis was not identified at any time. Cycloheximide treatment greatly diminished Bcl-2 expression. The differences in response of the two tissues to irradiation relates to their innate cell (genetic) controls, which may be determined by their state of differentiation at time of treatment, or the tissue type. This in vivo study also suggests the model may be useful for analysis of other cancer therapies for example polychemotherapies or chemo

  1. Kinetics of radiation-induced apoptosis in neonatal urogenital tissues with and without protein synthesis inhibition

    International Nuclear Information System (INIS)

    Gobe, G.C.; Harmon, B.; Schoch, E.; Allan, D.J.

    1996-01-01

    The difference in incidence of radiation-induced apoptosis between two neonatal urogenital tissues, kidney and testis, was analysed over a 24h period. Concurrent administration of cycloheximide (10mg/kg body weight), a protein synthesis inhibitor, with radiation treatment was used to determine whether new protein synthesis had a role in induction of apoptosis in this in vivo model. Many chemotherapeutic drugs act via protein synthesis inhibition, and we believe that the results of this latter analysis may provide information for the planning of concurrent radio and chemotherapy. Apoptosis was quantified using morphological parameters, and verified by DNA gel electrophoresis for the typical banding pattern, and by electron microscopy. The proliferative index in tissues was studied, using [6- 3 H]-thymidine uptake ( 1h prior to euthanasia and collection of tissues) and autoradiography as indicators of cell proliferation (S-phase). Tissue was collected 2, 4, 6, 8, and 24h after radiation treatment. Expression of one of the apoptosis-associated genes, Bcl-2 (an apoptosis inhibitor/cell survival gene), was studied using immunohistochemistry. Apoptosis peaked at 4h in the testis and 6h in the kidney, emphasising the necessity of knowing tissue differences in radiation response if comparing changes at a particular time. A higher proportion (almost five fold) of the apoptotic cells died in S-phase in the kidney than the testis, over the 24h. Protein synthesis inhibition completely negated induction of apoptosis in both tissues. Necrosis was not identified at any time. Cycloheximide treatment greatly diminished Bcl-2 expression. The differences in response of the two tissues to irradiation relates to their innate cell (genetic) controls, which may be determined by their state of differentiation at time of treatment, or the tissue type. This in vivo study also suggests the model may be useful for analysis of other cancer therapies for example polychemotherapies or chemo

  2. 3D studies of coarserning kinetics of individual grains

    DEFF Research Database (Denmark)

    Poulsen, Stefan Othmar

    Techniques for fast, non-destructive characterization of the microstructure of materials using synchrotron X-ray radiation have in recent years become an important tool in materials science. The non-destructive nature of the techniques allows for time-resolved characterization of three-dimensiona......Techniques for fast, non-destructive characterization of the microstructure of materials using synchrotron X-ray radiation have in recent years become an important tool in materials science. The non-destructive nature of the techniques allows for time-resolved characterization of three......-dimensional microstructures, i.e. direct probing of the evolution of specific microstructural features. Synchrotron X-ray radiation techniques have in the present work been employed for experimental characterization of microstructural evolution in individual grains during isothermal annealing: For a study of individual...... grains during recrystallization, where the recrystallization kinetics of individual grains and the temperature dependence of the recrystallization rate is examined, and for a study of grain structure and grain growth, where growth predictions are put forth in terms of the grain size and topology...

  3. NMR Studies of Protein Hydration and Protein-Ligand Interactions

    Science.gov (United States)

    Chong, Yuan

    Water on the surface of a protein is called hydration water. Hydration water is known to play a crucial role in a variety of biological processes including protein folding, enzymatic activation, and drug binding. Although the significance of hydration water has been recognized, the underlying mechanism remains far from being understood. This dissertation employs a unique in-situ nuclear magnetic resonance (NMR) technique to study the mechanism of protein hydration and the role of hydration in alcohol-protein interactions. Water isotherms in proteins are measured at different temperatures via the in-situ NMR technique. Water is found to interact differently with hydrophilic and hydrophobic groups on the protein. Water adsorption on hydrophilic groups is hardly affected by the temperature, while water adsorption on hydrophobic groups strongly depends on the temperature around 10 C, below which the adsorption is substantially reduced. This effect is induced by the dramatic decrease in the protein flexibility below 10 C. Furthermore, nanosecond to microsecond protein dynamics and the free energy, enthalpy, and entropy of protein hydration are studied as a function of hydration level and temperature. A crossover at 10 C in protein dynamics and thermodynamics is revealed. The effect of water at hydrophilic groups on protein dynamics and thermodynamics shows little temperature dependence, whereas water at hydrophobic groups has stronger effect above 10 C. In addition, I investigate the role of water in alcohol binding to the protein using the in-situ NMR detection. The isotherms of alcohols are first measured on dry proteins, then on proteins with a series of controlled hydration levels. The free energy, enthalpy, and entropy of alcohol binding are also determined. Two distinct types of alcohol binding are identified. On the one hand, alcohols can directly bind to a few specific sites on the protein. This type of binding is independent of temperature and can be

  4. Structure, Dynamics, and Kinetics of Weak Protein-Protein Complexes from NMR Spin Relaxation Measurements of Titrated Solutions

    International Nuclear Information System (INIS)

    Salmon, L.; Licinio, A.; Jensen, M.R.; Blackledge, M.; Ortega Roldan, J.L.; Van Nuland, N.; Lescop, E.

    2011-01-01

    We have recently presented a titration approach for the determination of residual dipolar couplings (RDCs) from experimentally inaccessible complexes. Here, we extend this approach to the measurement of 15 N spin relaxation rates and demonstrate that this can provide long-range structural, dynamic, and kinetic information about these elusive systems. (authors)

  5. Hydrodenitrogenation mechanism of aromatic amines. Kinetic study and simulation

    International Nuclear Information System (INIS)

    D'Araujo, P.A.P.

    1994-06-01

    The decomposition of model molecules reacting alone or in competition was studied in a fixed bed reactor at 623 K and 7 MPa over a sulfided NiMo/Al 2 O 3 catalyst. The inhibiting effect of H 2 S and some nitrogen molecules, namely quinoline type compounds plays a major role in the transformation of anilines intermediates. On the other hand H 2 S acts as a cocatalyst and promote carbon-nitrogen bond cleavage, specially at low H 2 S partial pressure. When the H 2 S partial pressure is greater than the nitrogen compound partial pressure an inhibiting effect of H 2 S occurs and its promoting effect on carbon-nitrogen bond cleavage is cancelled. Hydrogen has a positive but moderate effect in hydrogenation steps. The mechanism of carbon-nitrogen bond scission depends on the structure of the nitrogen molecule namely on the hybridization of the carbon atom bearing the nitrogen atom. If the carbon a with respect to the nitrogen is monosubstituted the mechanism is essentially a nucleophilic substitution. When the degree of substitution increases the elimination mechanism becomes more important and the two mechanisms are in competition. With a sulfided catalyst, H 2 S from the gas phase doesn't change the importance of each mechanism, it just increases the rate of the reaction. In the presence of an oxide catalyst the contribution of the two mechanisms change. This result shows the importance of the sulphur species from the surface. Using isotopic exchange we could demonstrate that the sites able to dissociate H 2 S and H 2 are the same, and that the dissociation is of heterolytic nature. The kinetic modeling of hydrotreatment reactions using the CHEMKIN/SURFACE CHEMKIN package seems to be a convenient method in order to understand the kinetic and mechanistic phenomena in hydrodenitrogenation. The preliminary simulations in the case of 2.6 diethylaniline showed that only one type of site is not sufficient in order to account for the experimental results. Further simulations

  6. Selection for Protein Kinetic Stability Connects Denaturation Temperatures to Organismal Temperatures and Provides Clues to Archaean Life.

    Directory of Open Access Journals (Sweden)

    M Luisa Romero-Romero

    Full Text Available The relationship between the denaturation temperatures of proteins (Tm values and the living temperatures of their host organisms (environmental temperatures: TENV values is poorly understood. Since different proteins in the same organism may show widely different Tm's, no simple universal relationship between Tm and TENV should hold, other than Tm≥TENV. Yet, when analyzing a set of homologous proteins from different hosts, Tm's are oftentimes found to correlate with TENV's but this correlation is shifted upward on the Tm axis. Supporting this trend, we recently reported Tm's for resurrected Precambrian thioredoxins that mirror a proposed environmental cooling over long geological time, while remaining a shocking ~50°C above the proposed ancestral ocean temperatures. Here, we show that natural selection for protein kinetic stability (denaturation rate can produce a Tm↔TENV correlation with a large upward shift in Tm. A model for protein stability evolution suggests a link between the Tm shift and the in vivo lifetime of a protein and, more specifically, allows us to estimate ancestral environmental temperatures from experimental denaturation rates for resurrected Precambrian thioredoxins. The TENV values thus obtained match the proposed ancestral ocean cooling, support comparatively high Archaean temperatures, and are consistent with a recent proposal for the environmental temperature (above 75°C that hosted the last universal common ancestor. More generally, this work provides a framework for understanding how features of protein stability reflect the environmental temperatures of the host organisms.

  7. Detailed kinetic modeling study of n-pentanol oxidation

    KAUST Repository

    Heufer, Karl Alexander; Sarathy, Mani; Curran, Henry J.; Davis, Alexander C.; Westbrook, Charles K.; Pitz, William J.

    2012-01-01

    To help overcome the world's dependence upon fossil fuels, suitable biofuels are promising alternatives that can be used in the transportation sector. Recent research on internal combustion engines shows that short alcoholic fuels (e.g., ethanol or n-butanol) have reduced pollutant emissions and increased knock resistance compared to fossil fuels. Although higher molecular weight alcohols (e.g., n-pentanol and n-hexanol) exhibit higher reactivity that lowers their knock resistance, they are suitable for diesel engines or advanced engine concepts, such as homogeneous charge compression ignition (HCCI), where higher reactivity at lower temperatures is necessary for engine operation. The present study presents a detailed kinetic model for n-pentanol based on modeling rules previously presented for n-butanol. This approach was initially validated using quantum chemistry calculations to verify the most stable n-pentanol conformation and to obtain C-H and C-C bond dissociation energies. The proposed model has been validated against ignition delay time data, speciation data from a jet-stirred reactor, and laminar flame velocity measurements. Overall, the model shows good agreement with the experiments and permits a detailed discussion of the differences between alcohols and alkanes. © 2012 American Chemical Society.

  8. Kinetic study of uranium carburization by different carbonated gases

    International Nuclear Information System (INIS)

    Feron, Guy

    1963-01-01

    The kinetic study of the reaction U + CO 2 and U + CO has been performed by a thermogravimetric method on a spherical uranium powder, in temperature ranges respectively from 460 to 690 deg. C and from 570 to 850 deg. C. The reaction with carbon dioxide leads to uranium dioxide. A carbon deposition takes place at the same time. The global reactions is the result of two reactions: U + 2 CO 2 → UO 2 + 2 CO U + CO 2 → UO 2 + C The reaction with carbon monoxide leads to a mixture of dioxide UO 2 , dicarbide UC 2 and free carbon. The main reaction can be written. U + CO → 1/2 UO 2 + 1/2 UC 2 The free carbon results of the disproportionation of the carbon monoxide. A remarkable separation of the two phases UO 2 and UC 2 can be observed. A mechanism accounting for the phenomenon has been proposed. The two reactions U + CO 2 and U + CO begin with a long germination period, after which, the reaction velocity seems to be limited in both cases by the ionic diffusion of oxygen through the uranium dioxide. (author) [fr

  9. Kinetic Study of Nonequilibrium Plasma-Assisted Methane Steam Reforming

    Directory of Open Access Journals (Sweden)

    Hongtao Zheng

    2014-01-01

    Full Text Available To develop a detailed reaction mechanism for plasma-assisted methane steam reforming, a comprehensive numerical and experimental study of effect laws on methane conversion and products yield is performed at different steam to methane molar ratio (S/C, residence time s, and reaction temperatures. A CHEMKIN-PRO software with sensitivity analysis module and path flux analysis module was used for simulations. A set of comparisons show that the developed reaction mechanism can accurately predict methane conversion and the trend of products yield in different operating conditions. Using the developed reaction mechanism in plasma-assisted kinetic model, the reaction path flux analysis was carried out. The result shows that CH3 recombination is the limiting reaction for CO production and O is the critical species for CO production. Adding 40 wt.% Ni/SiO2 in discharge region has significantly promoted the yield of H2, CO, or CO2 in dielectric packed bed (DPB reactor. Plasma catalytic hybrid reforming experiment verifies the reaction path flux analysis tentatively.

  10. Kinetic studies on a repetitively pulsed fast reactor

    International Nuclear Information System (INIS)

    Das, S.

    1982-01-01

    Neutronic analysis of an earlier proposed periodically pulsed fast reactor at Kalpakkam (KPFR) has been carried out numerically under equilibrium and transient conditions using the one-point model of reactor kinetics and the experimentally measured total worth of reactivity modulator, the parabolic coefficient of reactivity of the movable reflector and the mean prompt neutron lifetime. Results of steady-state calculations - treated on the basis of delayed neutron precursor and energy balances during a period of operation - have been compared with the analytical formulae of Larrimore for a parabolic reactivity input. Empirical relations for half-width of the fast neutron pulse, the peak pulse power and the power at first crossing of prompt criticality have been obtained and shown to be accurate enough for predicting steady-state power pulse characteristics of a periodically pulsed fast reactor. The concept of a subprompt-critical reactor has been used to calculate the fictitious delayed neutron fraction, β of the KPFR through a numerical experiment. Relative pulse height stability and pulse shape sensitivity to changes of maximum reactivity is discussed. With the aid of new safety concepts, the Power Amplification Factor (PAF) and the Pulse Growth Factor (Rsub(p)), the dynamics KPFR under accidental conditions has been studied for step and ramp reactivity perturbations. All the analysis has been done without taking account of reactivity feedback. (orig.)

  11. Aqueous photodegradation of antibiotic florfenicol: kinetics and degradation pathway studies.

    Science.gov (United States)

    Zhang, Ya; Li, Jianhua; Zhou, Lei; Wang, Guoqing; Feng, Yanhong; Wang, Zunyao; Yang, Xi

    2016-04-01

    The occurrence of antibacterial agents in natural environment was of scientific concern in recent years. As endocrine disrupting chemicals, they had potential risk on ecology system and human beings. In the present study, the photodegradation kinetics and pathways of florfenicol were investigated under solar and xenon lamp irradiation in aquatic systems. Direct photolysis half-lives of florfenicol were determined as 187.29 h under solar irradiation and 22.43 h under xenon lamp irradiation, respectively. Reactive oxygen species (ROS), such as hydroxyl radical (·OH) and singlet oxygen ((1)O2) were found to play an important role in indirect photolysis process. The presence of nitrate and dissolved organic matters (DOMs) could affect photolysis of florfenicol in solutions through light screening effect, quenching effect, and photoinduced oxidization process. Photoproducts of florfenicol in DOMs solutions were identified by solid phase extraction-liquid chromatography-mass spectrometry (SPE-LC-MS) analysis techniques, and degradation pathways were proposed, including photoinduced hydrolysis, oxidation by (1)O2 and ·OH, dechlorination, and cleavage of the side chain.

  12. KINETIC MODELS STUDY OF HYDRODESULPHURIZATION VACUUM DISTILLATE REACTION

    Directory of Open Access Journals (Sweden)

    AbdulMunem A. Karim

    2013-05-01

    Full Text Available    This study deals with  kinetics of hydrodesulphurization (HDS reaction of vacuum gas oil (611-833 K which was distillated from Kirkuk crude oil and which was obtained by blending the fractions, light vacuum gas oil (611 - 650 K, medium vacuum gas oil (650-690 K, heavy vacuum gas oil (690-727 K and very heavy vacuum gas oil (727-833 K.   The vacuum gas oil was hydrotreated on a commercial cobalt-molybdenum alumina catalyst presulfied at specified conditions in a laboratory trickle bed reactor. The reaction temperature range (583-643 K,liquid hourly space velocity range (1.5-3.75 h-1 and hydrogen pressure was kept constant at 3.5 MPa with hydrogen to oil ratio about 250 lt/lt.           The conversion results for desulphurization reaction appeared to obey the second order reaction. According to this model, the rate constants for desulphurization reaction were determined. Finally, the apparent activation energy (Ea, enthalpy of activation ( H* and entropy ( S* were calculated based on the values of rate constant (k2 and were equal 80.3792 KJ/mole, 75.2974 KJ/mole and 197.493 J/mole, respectively.

  13. Contributions to the study of positive ion kinetics in gases

    International Nuclear Information System (INIS)

    Popescu, A.

    1978-01-01

    Extensive studies on cesium ion kinetics in cesium and cesium-noble gas mixtures were performed. The obtained data are correlated with the measured parameters of the thermionic diodes. The mobility of atomic and molecular cesium ions at low electric fields, including zero electric field, in cesium and cesium krypton mixtures were measured using the time of flight method and a special thermionic ion detector. The atomic ion conversion into molecular ions is theoretically considered in the diffusion equation of the charged particles and the obtained analytical relation is in good agreement with the experimental cesium measured data. The reaction rate of the ion conversion in cesium is considered from these measurements. Measurements on the diffused plasma through the anode (provided with holes) of the cesium thermionic diode supply data on the anode sheath, the ratio of electronic and ionic current, electron temperature and the nature of the cesium ions (atomic or molecular) for various modes of the low voltage arc discharge. The obtained data have been used for the optimization of the thermionic diode parameters, as well as for the development of a new type of device for the detection of impurities in the air. (author)

  14. Kinetic study of ultrasonic antisolvent crystallization of sirolimus

    Energy Technology Data Exchange (ETDEWEB)

    Gandhi, P.J. [Chemical Engineering Department, S. V. National Institute of Technology, Surat 395007, Gujarat (India); Concept Medical Research Pvt. Ltd., Ground Floor, Narayan Darshan, Nr. Rupam Cinema, Salabatpura, Surat 395003, Gujarat (India); Murthy, Z.V.P.

    2010-03-15

    Sirolimus, generally used in organ transplantation, is derived from bacterium Streptomyces hygroscopicus. Mass transfer controlled ultrasonic antisolvent method was used for determining the precipitation kinetics of sirolimus. The effect of temperature was determined on the particles size, percentage recovery, critical radius of nucleus, mass transfer coefficient, etc. for sirolimus dissolved in methanol and antisolvent water using ultrasonic treatment. The study was done using classical nucleation theory, which can also be applied to precipitation processes. Experiments were carried out at various temperatures; viz: 45, 50, 60 and 70 C and the percentage recoveries of sirolimus were found to be 90.74, 91.5, 92.64 and 93.61%, respectively, for initial amount of 8 mg dissolved in 1 mL of solvent and further introduced into 12 mL of HPLC water. The final average diameters of crystals observed for the temperatures were 1371, 1287, 1063 and 863 nm, respectively. The systems were found to be mass transfer controlling and that the mass diffusivities were found to be about 3.97 x 10{sup -9}, 4.00 x 10{sup -9}, 3.01 x 10{sup -9} and 1.92 x 10{sup -9} m{sup 2}/s, respectively. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Studies on drying kinetics of olive foot cake

    Directory of Open Access Journals (Sweden)

    Hamlat, M. S.

    2002-06-01

    Full Text Available The olive foot cake is a very important by-product of olive oil industry since it can contain until 12 % of oil which can be extracted using solvent. The used solvent is often immiscible with water. This is the reason why its effect is limited by the moisture of olive foot cake making its drying imperative. In this paper, we present the behaviour of olive foot cake subjected to convective drying. The experimental results show that the drying rate versus moisture presents only one period of decreasing rate. The influence of the main parameters on drying kinetics is studied.El orujo es un importante subproducto de la industria del aceite de oliva ya que puede contener hasta el 12 % del aceite, el cual puede ser extraído usando un disolvente apropiado. El uso del disolvente es a menudo inmiscible con el agua. Esta es la razón por la que su efecto está limitado por la humedad del orujo, haciendo su secado imperativo. En este artículo se presenta el comportamiento del orujo sometido a un secado por convección. Los resultados experimentales mostraron que la velocidad de secado frente a la humedad, presenta un solo período de disminución de dicha velocidad. Se ha estudiado la influencia de los principales parámetros sobre la cinética de secado.

  16. Kinetic study of seawater reverse osmosis membrane fouling

    KAUST Repository

    Khan, Muhammad

    2013-10-01

    Reverse osmosis (RO) membrane fouling is not a static state but a dynamic phenomenon. The investigation of fouling kinetics and dynamics of change in the composition of the foulant mass is essential to elucidate the mechanism of fouling and foulant-foulant interactions. The aim of this work was to study at a lab scale the fouling process with an emphasis on the changes in the relative composition of foulant material as a function of operating time. Fouled membrane samples were collected at 8 h, and 1, 2, and 4 weeks on a lab-scale RO unit operated in recirculation mode. Foulant characterization was performed by CLSM, AFM, ATR-FTIR, pyrolysis GC-MS, and ICP-MS techniques. Moreover, measurement of active biomass and analysis of microbial diversity were performed by ATP analysis and DNA extraction, followed by pyro-sequencing, respectively. A progressive increase in the abundance of almost all the foulant species was observed, but their relative proportion changed over the age of the fouling layer. Microbial population in all the membrane samples was dominated by specific groups/species belonging to Proteobacteria and Actinobacteria phyla; however, similar to abiotic foulant, their relative abundance also changed with the biofilm age. © 2013 American Chemical Society.

  17. Kinetic studies following state-selective laser excitation

    International Nuclear Information System (INIS)

    Keto, J.W.

    1992-01-01

    We have made measurements of state-to-state deactivation cross sections and radiative lifetimes for Xe*(6p,6p',7p) and Kr*(5p) states in xenon and krypton buffer gases. These results are relevant to kinetic models and both excimer lasers and the infrared xenon laser; and they are a significant improvement in the precision of the known radiative lifetimes. This type of experiment can now be compared with recent calculations of state-to-state collisional relaxation in rare-gases by Hickman, Huestis, and Saxon. We have also made significant progress in the study of the electronic spectra of small molecules of the rare gases. Spectra have been obtained for Xe 2 , Xe 3 , Xe 4 , and larger clusters. As guidance for the larger clusters of the rare gases we have obtained the first multiphoton spectra for excitons in condensed xenon. In collaboration with research on the multiphoton spectra of the rare gases, we have continued experiments using synchrotron radiation in collaboration with the University of Hamburg. In experiments there we have observed excitation and fluorescence spectra for single xenon atoms at the surface, within the second layer, and within the bulk of large argon clusters

  18. Detailed kinetic modeling study of n-pentanol oxidation

    KAUST Repository

    Heufer, Karl Alexander

    2012-10-18

    To help overcome the world\\'s dependence upon fossil fuels, suitable biofuels are promising alternatives that can be used in the transportation sector. Recent research on internal combustion engines shows that short alcoholic fuels (e.g., ethanol or n-butanol) have reduced pollutant emissions and increased knock resistance compared to fossil fuels. Although higher molecular weight alcohols (e.g., n-pentanol and n-hexanol) exhibit higher reactivity that lowers their knock resistance, they are suitable for diesel engines or advanced engine concepts, such as homogeneous charge compression ignition (HCCI), where higher reactivity at lower temperatures is necessary for engine operation. The present study presents a detailed kinetic model for n-pentanol based on modeling rules previously presented for n-butanol. This approach was initially validated using quantum chemistry calculations to verify the most stable n-pentanol conformation and to obtain C-H and C-C bond dissociation energies. The proposed model has been validated against ignition delay time data, speciation data from a jet-stirred reactor, and laminar flame velocity measurements. Overall, the model shows good agreement with the experiments and permits a detailed discussion of the differences between alcohols and alkanes. © 2012 American Chemical Society.

  19. Protein folding and protein metallocluster studies using synchrotron small angler X-ray scattering

    International Nuclear Information System (INIS)

    Eliezer, D.

    1994-06-01

    Proteins, biological macromolecules composed of amino-acid building blocks, possess unique three dimensional shapes or conformations which are intimately related to their biological function. All of the information necessary to determine this conformation is stored in a protein's amino acid sequence. The problem of understanding the process by which nature maps protein amino-acid sequences to three-dimensional conformations is known as the protein folding problem, and is one of the central unsolved problems in biophysics today. The possible applications of a solution are broad, ranging from the elucidation of thousands of protein structures to the rational modification and design of protein-based drugs. The scattering of X-rays by matter has long been useful as a tool for the characterization of physical properties of materials, including biological samples. The high photon flux available at synchrotron X-ray sources allows for the measurement of scattering cross-sections of dilute and/or disordered samples. Such measurements do not yield the detailed geometrical information available from crystalline samples, but do allow for lower resolution studies of dynamical processes not observable in the crystalline state. The main focus of the work described here has been the study of the protein folding process using time-resolved small-angle x-ray scattering measurements. The original intention was to observe the decrease in overall size which must accompany the folding of a protein from an extended conformation to its compact native state. Although this process proved too fast for the current time-resolution of the technique, upper bounds were set on the probable compaction times of several small proteins. In addition, an interesting and unexpected process was detected, in which the folding protein passes through an intermediate state which shows a tendency to associate. This state is proposed to be a kinetic molten globule folding intermediate

  20. Protein folding: Defining a standard set of experimental conditions and a preliminary kinetic data set of two-state proteins

    DEFF Research Database (Denmark)

    Maxwell, Karen L.; Wildes, D.; Zarrine-Afsar, A.

    2005-01-01

    Recent years have seen the publication of both empirical and theoretical relationships predicting the rates with which proteins fold. Our ability to test and refine these relationships has been limited, however, by a variety of difficulties associated with the comparison of folding and unfolding ...... efforts is to set uniform standards for the experimental community and to initiate an accumulating, self-consistent data set that will aid ongoing efforts to understand the folding process....... constructs. The lack of a single approach to data analysis and error estimation, or even of a common set of units and reporting standards, further hinders comparative studies of folding. In an effort to overcome these problems, we define here a consensus set of experimental conditions (25°C at pH 7.0, 50 m...... rates, thermodynamics, and structure across diverse sets of proteins. These difficulties include the wide, potentially confounding range of experimental conditions and methods employed to date and the difficulty of obtaining correct and complete sequence and structural details for the characterized...

  1. A study of redox kinetic in silicate melt

    International Nuclear Information System (INIS)

    Magnien, V.

    2005-12-01

    The aim of this thesis is to understand better iron redox reactions and mechanisms in silicate glasses and melts. Particular interest has been paid to the influence of temperature and chemical composition. For this purpose, the influence of alkali element content, iron content and network formers on the kinetics of redox reactions has been determined through XANES and Raman spectroscopy experiments performed either near the glass transition or above the liquidus temperature. As a complement, electrical conductivity and RBS spectroscopy experiments have been made to characterize the diffusivity of the species that transport electrical charges and the reaction morphology, respectively. Temperature and composition variations can induce changes in the dominating redox mechanism. At a given temperature, the parameters that exert the strongest influence on redox mechanisms are the presence or lack of divalent cations and the existing decoupling between the mobility of network former and modifier elements. Near Tg, the diffusion of divalent cations, when present in the melt, controls the kinetics of iron redox reactions along with a flux of electron holes. Composition, through the degree of polymerization and the silicate network structure, influences the kinetics and the nature of the involved cations, but not the mechanisms of the reaction. Without alkaline earth elements, the kinetics of redox reactions are controlled by the diffusion of oxygen species. With increasing temperatures, the diffusivities of all ionic species tend to become similar. The decoupling between ionic fluxes then is reduced so that several mechanisms become kinetically equivalent and can thus coexist. (author)

  2. Adsorptive removal of Auramine-O: Kinetic and equilibrium study

    International Nuclear Information System (INIS)

    Mall, Indra Deo; Srivastava, Vimal Chandra; Agarwal, Nitin Kumar

    2007-01-01

    Present study deals with the adsorption of Auramine-O (AO) dye by bagasse fly ash (BFA) and activated carbon-commercial grade (ACC) and laboratory grade (ACL). BFA is a solid waste obtained from the particulate collection equipment attached to the flue gas line of the bagasse fired boilers of cane sugar mills. Batch studies were performed to evaluate the influences of various experimental parameters like initial pH (pH 0 ), contact time, adsorbent dose and initial concentration (C 0 ) for the removal of AO. Optimum conditions for AO removal were found to be pH 0 ∼ 7.0 and equilibrium time ∼30 min for BFA and ∼120 min for activated carbons. Optimum BFA, ACC and ACL dosages were found to be 1, 20 and 2 g/l, respectively. Adsorption of AO followed pseudo-second order kinetics with the initial sorption rate for adsorption on BFA being the highest followed by those on ACL and ACC. The sorption process was found to be controlled by both film and pore diffusion with film diffusion at the earlier stages followed by pore diffusion at the later stages. Equilibrium isotherms for the adsorption of AO on BFA, ACC and ACL were analyzed by Freundlich, Langmuir, Dubinin-Radushkevich, and Temkin isotherm equations using linear correlation coefficient. Langmuir isotherm gave the best correlation of adsorption for all the adsorbents studied. Thermodynamic study showed that adsorption of AO on ACC (with a more negative Gibbs free energy value) is more favoured. BFA which was used without any pretreatment showed high surface area, pore volume and pore size exhibiting its potential to be used as an adsorbent for the removal of AO

  3. Kinetic Studies on Ni-YSZ Composite Electrodes

    DEFF Research Database (Denmark)

    Njodzefon, Jean-Claude; Sudireddy, Bhaskar Reddy; Hjelm, Johan

    2015-01-01

    AC and DC techniques were applied to investigate the electrochemical reaction kinetics of porous composite Ni/8-mol% yttria-stabilized zirconia (Ni/8YSZ) solid oxide cell (SOC) electrodes using a novel pseudo-3-electrode cell geometry. From OCV impedance spectra an activation energy Ea of 1.13 e......V, prefactor yan of 3.7·105·T, hydrogen and steam partial pressure dependencies a and b respectively of -0.07 and 0.22 were determined. DC current density vs. overpotential curves compared with those predicted using the determined kinetic parameters. Apparent Butler-Volmer charge transfer coefficients α were...... branch and the need for different α values for each branch suggests that a simple BV model of the measured electrode kinetics is insufficient and/or different reaction mechanisms might be occurring in anodic vs cathodic polarization....

  4. The Study of a Simple Redox Reaction as an Experimental Approach to Chemical Kinetics.

    Science.gov (United States)

    Elias, Horst; Zipp, Arden P.

    1988-01-01

    Recommends using iodide ions and peroxodisulfate ions for studying rate laws instead of the standard iodine clock for kinetic study. Presents the methodology and a discussion of the kinetics involved for a laboratory experiment for a high school or introductory college course. (ML)

  5. Kinetic and equilibrium study for the sorption of Pb(II) ions from ...

    African Journals Online (AJOL)

    Kinetic and equilibrium study for the sorption of Pb(II) ions from aqueous phase by water hyacinth ( Eichhornia crassipes ) ... Bulletin of the Chemical Society of Ethiopia ... Abstract. This paper reports the kinetic and equilibrium studies of Eichhornia crassipes root biomass as a biosorbent for Pb(II) ions from aqueous system.

  6. Study of the interactions between riboflavin and protein

    International Nuclear Information System (INIS)

    Zhao Hongwei; Zhang Zhaoxia; Zhu Hongping; Ge Min; Miao Jinling; Wang Wenfeng; Yao Side

    2006-01-01

    Riboflavin (VB 2 ), a vitamin that is a natural constituent of living organisms, plays an important role in the process of metabolism and it is essential for normal cellular functions and growth. As an endogenous photosensitizer, riboflavin induces photooxidation damages to cells of skin and eye, causing inflammation, accelerated aging and mutation. The photodynamic actions of riboflavin on DNA have been studied extensively, however, its photodynamic actions on protein and enzyme are less studied due to the complex types and structures of proteins, and less attentions have been paid to photosensitive protein damages than DNA. In our lab, the interactions between riboflavin and serum albumin and lysozyme have been carried out by using transient absorption spectrometry, emission spectrometer analysis and electrophoresis techniques. It was found that stable state products and transient process of photosensitive damage to proteins were closely relative to concentration of riboflavin, time of irradiation and the atmosphere of the solutions. The results indicates that proteins can be photosensitive damaged by riboflavin irradiated by UV lights. Riboflavin can quench the intrinsic fluorescence of protein. Both dynamic and static quenching are simultaneous involved. The binding constants, the kinetics and spectroscopic properties of riboflavin interaction with albumin and lysozyme have also been investigated. Mechanisms of the photosensitive damages to proteins were discussed. The experiments also indicated that antioxidants such as melatonin and chlorogenic acid can reduce the damage of lysozyme effectively. (authors)

  7. Study of the oxidation kinetics of the MA 956 superalloy

    International Nuclear Information System (INIS)

    Garcia-Alonso, M.C.; Gonzalez-Carrasco, J.L.; Escudero, M.L.

    1998-01-01

    This work deals with the oxidation kinetics of the MA 956 superalloy in the temperature range of 800-1,200 degree centigree for up to 200 h exposure. During oxidation the alloy develops a fine, compact and very well adhered α-alumina layer, the thickness of which increases with increasing time and temperature. The oxidation kinetics obeys a sub parabolic type behaviour. The scale growth seems to occur by two different oxidation mechanisms; above 1,050 degree centigree, the oxidation process would be controlled by α-alumina, and below 900 degree centigree by γ-alumina. (Author) 17 refs

  8. Cell-Free Protein Synthesis Enhancement from Real-Time NMR Metabolite Kinetics: Redirecting Energy Fluxes in Hybrid RRL Systems.

    Science.gov (United States)

    Panthu, Baptiste; Ohlmann, Théophile; Perrier, Johan; Schlattner, Uwe; Jalinot, Pierre; Elena-Herrmann, Bénédicte; Rautureau, Gilles J P

    2018-01-19

    A counterintuitive cell-free protein synthesis (CFPS) strategy, based on reducing the ribosomal fraction in rabbit reticulocyte lysate (RRL), triggers the development of hybrid systems composed of RRL ribosome-free supernatant complemented with ribosomes from different mammalian cell-types. Hybrid RRL systems maintain translational properties of the original ribosome cell types, and deliver protein expression levels similar to RRL. Here, we show that persistent ribosome-associated metabolic activity consuming ATP is a major obstacle for maximal protein yield. We provide a detailed picture of hybrid CFPS systems energetic metabolism based on real-time nuclear magnetic resonance (NMR) investigation of metabolites kinetics. We demonstrate that protein synthesis capacity has an upper limit at native ribosome concentration and that lower amounts of the ribosomal fraction optimize energy fluxes toward protein translation, consequently increasing CFPS yield. These results provide a rationalized strategy for further mammalian CFPS developments and reveal the potential of real-time NMR metabolism phenotyping for optimization of cell-free protein expression systems.

  9. Influencing factors and kinetic studies of imidacloprid degradation by ozonation.

    Science.gov (United States)

    Chen, Shi; Deng, Jing; Deng, Yang; Gao, Naiyun

    2018-03-02

    Batch kinetic tests in ozonation of imidacloprid from water were performed in this study. The pseudo-first-order rate constant of imidacloprid degradation was increased from 0.079 to 0.326 min -1 with the increasing pH from 6.02 to 8.64 at an average ozone dose of 1.149 mg L -1 . When the alkalinity was increased from 0 to 250 mg L -1 NaHCO 3 , the pseudo-first-order rate constants decreased from 0.121 to 0.034 min -1 . These results suggested that the predominant oxidant gradually switched from ozone to hydroxyl radicals ([Formula: see text]) with the increase in solution pH. The secondary rate constant [Formula: see text] (10.92 ± 0.12 M -1 s -1 ) for the reaction of imidacloprid and molecular ozone was determined at pH 2.0 and in the presence of 50 mM ter-butyl alcohol (p-chlorobenzoic acid, pCBA), respectively. An indirect competition method was used to determine the secondary rate constant for [Formula: see text] oxidation of imidacloprid in the presence of pCBA as the reference compound. The rate constants [Formula: see text] were estimated to range 2.65-3.79 M -1 s -1 at pH 6.02-8.64. Results obtained from this study demonstrate that ozonation appears to be an effective method to remove imidacloprid from water.

  10. Kinetics of inclusion body formation and its correlation with the characteristics of protein aggregates in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Arun K Upadhyay

    Full Text Available The objective of the research was to understand the structural determinants governing protein aggregation into inclusion bodies during expression of recombinant proteins in Escherichia coli. Recombinant human growth hormone (hGH and asparaginase were expressed as inclusion bodies in E.coli and the kinetics of aggregate formation was analyzed in details. Asparaginase inclusion bodies were of smaller size (200 nm and the size of the aggregates did not increase with induction time. In contrast, the seeding and growth behavior of hGH inclusion bodies were found to be sequential, kinetically stable and the aggregate size increased from 200 to 800 nm with induction time. Human growth hormone inclusion bodies showed higher resistance to denaturants and proteinase K degradation in comparison to those of asparaginase inclusion bodies. Asparaginase inclusion bodies were completely solubilized at 2-3 M urea concentration and could be refolded into active protein, whereas 7 M urea was required for complete solubilization of hGH inclusion bodies. Both hGH and asparaginase inclusion bodies showed binding with amyloid specific dyes. In spite of its low β-sheet content, binding with dyes was more prominent in case of hGH inclusion bodies than that of asparaginase. Arrangements of protein molecules present in the surface as well as in the core of inclusion bodies were similar. Hydrophobic interactions between partially folded amphiphillic and hydrophobic alpha-helices were found to be one of the main determinants of hGH inclusion body formation. Aggregation behavior of the protein molecules decides the nature and properties of inclusion bodies.

  11. Kinetics of Inclusion Body Formation and Its Correlation with the Characteristics of Protein Aggregates in Escherichia coli

    Science.gov (United States)

    Upadhyay, Arun K.; Murmu, Aruna; Singh, Anupam; Panda, Amulya K.

    2012-01-01

    The objective of the research was to understand the structural determinants governing protein aggregation into inclusion bodies during expression of recombinant proteins in Escherichia coli. Recombinant human growth hormone (hGH) and asparaginase were expressed as inclusion bodies in E.coli and the kinetics of aggregate formation was analyzed in details. Asparaginase inclusion bodies were of smaller size (200 nm) and the size of the aggregates did not increase with induction time. In contrast, the seeding and growth behavior of hGH inclusion bodies were found to be sequential, kinetically stable and the aggregate size increased from 200 to 800 nm with induction time. Human growth hormone inclusion bodies showed higher resistance to denaturants and proteinase K degradation in comparison to those of asparaginase inclusion bodies. Asparaginase inclusion bodies were completely solubilized at 2–3 M urea concentration and could be refolded into active protein, whereas 7 M urea was required for complete solubilization of hGH inclusion bodies. Both hGH and asparaginase inclusion bodies showed binding with amyloid specific dyes. In spite of its low β-sheet content, binding with dyes was more prominent in case of hGH inclusion bodies than that of asparaginase. Arrangements of protein molecules present in the surface as well as in the core of inclusion bodies were similar. Hydrophobic interactions between partially folded amphiphillic and hydrophobic alpha-helices were found to be one of the main determinants of hGH inclusion body formation. Aggregation behavior of the protein molecules decides the nature and properties of inclusion bodies. PMID:22479486

  12. Studies on the kinetics and intraparticle diffusivities of BOD, colour ...

    African Journals Online (AJOL)

    EJIRO

    The kinetics and intraparticle diffusivities of BOD, TSS and colour reduction from palm oil mill effluent (POME) using ... discharged (Asia et al., 2006). The oil palm ... biological treatment methods, anaerobic digestion is often the most ... and lower capital cost. ... was then rinsed with distilled water and air dried, ready for the.

  13. Kinetic modelling and thermodynamic studies on purification of ...

    African Journals Online (AJOL)

    Adsorbent capacities have been determined by mathematical fitting of equilibrium data using the most common isotherms: Freundlich isotherm and Langmuir isotherm. Several kinetic models have been applied to the process. Thermodynamic parameters: △So, △Ho, △Go and Ea (kJ/mol) have been determined.

  14. Kinetic, Equilibrium and thermodynamic studies on the biosorption ...

    African Journals Online (AJOL)

    The kinetics, equilibrium and thermodynamics of the biosorption of Cd (II) from aqueous solution by the leaf biomass of Calotropis procera popularly known in western Nigeria as 'bom bom'and genrally known as Sodom apple were investigated at different experimental conditions. Optimum conditions of pH, contact time, ...

  15. Ab initio and kinetic modeling studies of formic acid oxidation

    DEFF Research Database (Denmark)

    Marshall, Paul; Glarborg, Peter

    2015-01-01

    A detailed chemical kinetic model for oxidation of formic acid (HOCHO) in flames has been developed, based on theoretical work and data from literature. Ab initio calculations were used to obtain rate coefficients for reactions of HOCHO with H, O, and HO2. Modeling predictions with the mechanism...

  16. Penicillin Hydrolysis: A Kinetic Study of a Multistep, Multiproduct Reaction.

    Science.gov (United States)

    McCarrick, Thomas A.; McLafferty, Fred W.

    1984-01-01

    Background, procedures used, and typical results are provided for an experiment in which students carry out the necessary measurements on the acid-catalysis of penicillin in two hours. By applying kinetic theory to the data obtained, the reaction pathways for the hydrolysis of potassium benzyl penicillin are elucidated. (JN)

  17. Kinetic study on anaerobic oxidation of methane coupled to denitrification.

    Science.gov (United States)

    Yu, Hou; Kashima, Hiroyuki; Regan, John M; Hussain, Abid; Elbeshbishy, Elsayed; Lee, Hyung-Sool

    2017-09-01

    Monod kinetic parameters provide information required for kinetic analysis of anaerobic oxidation of methane coupled to denitrification (AOM-D). This information is critical for engineering AOM-D processes in wastewater treatment facilities. We first experimentally determined Monod kinetic parameters for an AOM-D enriched culture and obtained the following values: maximum specific growth rate (μ max ) 0.121/d, maximum substrate-utilization rate (q max ) 28.8mmol CH 4 /g cells-d, half maximum-rate substrate concentration (K s ) 83μΜ CH 4 , growth yield (Y) 4.76gcells/mol CH 4 , decay coefficient (b) 0.031/d, and threshold substrate concentration (S min ) 28.8μM CH 4 . Clone library analysis of 16S rRNA and mcrA gene fragments suggested that AOM-D reactions might have occurred via the syntrophic interaction between denitrifying bacteria (e.g., Ignavibacterium, Acidovorax, and Pseudomonas spp.) and hydrogenotrophic methanogens (Methanobacterium spp.), supporting reverse methanogenesis-dependent AOM-D in our culture. High μ max and q max , and low K s for the AOM-D enrichment imply that AOM-D could play a significant role in mitigating atmospheric methane efflux. In addition, these high kinetic features suggest that engineered AOM-D systems may provide a sustainable alternative to nitrogen removal in wastewater treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Kinetic study of sphingomyelin hydrolysis for ceramide production

    DEFF Research Database (Denmark)

    Zhang, Long; Hellgren, Lars; Xu, Xuebing

    2008-01-01

    in cosmetic and pharmaceutical industries such as in hair and skin care products. The enzymatic hydrolysis of sphingomyelin has been proved to be a feasible method to produce ceramide. The kinetic performance of sphingomyelin hydrolysis in the optimal two-phase (water:organic solvent) reaction system...

  19. Kinetic studies of alkaline phosphatase extracted from rabbit (Lepus ...

    African Journals Online (AJOL)

    user

    activity, and the kinetic constants-maximum enzyme velocity (Vmax) and Michealis-Menten constant (Km) were evaluated. ... the enzyme a readily available parameter for diagnostic and research .... procedure while treatment means were separated by the least .... mammalian enzymes are responsible for this increase in ...

  20. Modularity in protein structures: study on all-alpha proteins.

    Science.gov (United States)

    Khan, Taushif; Ghosh, Indira

    2015-01-01

    Modularity is known as one of the most important features of protein's robust and efficient design. The architecture and topology of proteins play a vital role by providing necessary robust scaffolds to support organism's growth and survival in constant evolutionary pressure. These complex biomolecules can be represented by several layers of modular architecture, but it is pivotal to understand and explore the smallest biologically relevant structural component. In the present study, we have developed a component-based method, using protein's secondary structures and their arrangements (i.e. patterns) in order to investigate its structural space. Our result on all-alpha protein shows that the known structural space is highly populated with limited set of structural patterns. We have also noticed that these frequently observed structural patterns are present as modules or "building blocks" in large proteins (i.e. higher secondary structure content). From structural descriptor analysis, observed patterns are found to be within similar deviation; however, frequent patterns are found to be distinctly occurring in diverse functions e.g. in enzymatic classes and reactions. In this study, we are introducing a simple approach to explore protein structural space using combinatorial- and graph-based geometry methods, which can be used to describe modularity in protein structures. Moreover, analysis indicates that protein function seems to be the driving force that shapes the known structure space.

  1. Coevolution study of mitochondria respiratory chain proteins: toward the understanding of protein--protein interaction.

    Science.gov (United States)

    Yang, Ming; Ge, Yan; Wu, Jiayan; Xiao, Jingfa; Yu, Jun

    2011-05-20

    Coevolution can be seen as the interdependency between evolutionary histories. In the context of protein evolution, functional correlation proteins are ever-present coordinated evolutionary characters without disruption of organismal integrity. As to complex system, there are two forms of protein--protein interactions in vivo, which refer to inter-complex interaction and intra-complex interaction. In this paper, we studied the difference of coevolution characters between inter-complex interaction and intra-complex interaction using "Mirror tree" method on the respiratory chain (RC) proteins. We divided the correlation coefficients of every pairwise RC proteins into two groups corresponding to the binary protein--protein interaction in intra-complex and the binary protein--protein interaction in inter-complex, respectively. A dramatical discrepancy is detected between the coevolution characters of the two sets of protein interactions (Wilcoxon test, p-value = 4.4 × 10(-6)). Our finding reveals some critical information on coevolutionary study and assists the mechanical investigation of protein--protein interaction. Furthermore, the results also provide some unique clue for supramolecular organization of protein complexes in the mitochondrial inner membrane. More detailed binding sites map and genome information of nuclear encoded RC proteins will be extraordinary valuable for the further mitochondria dynamics study. Copyright © 2011. Published by Elsevier Ltd.

  2. Fluorescent Protein Voltage Probes Derived from ArcLight that Respond to Membrane Voltage Changes with Fast Kinetics

    Science.gov (United States)

    Han, Zhou; Jin, Lei; Platisa, Jelena; Cohen, Lawrence B.; Baker, Bradley J.; Pieribone, Vincent A.

    2013-01-01

    We previously reported the discovery of a fluorescent protein voltage probe, ArcLight, and its derivatives that exhibit large changes in fluorescence intensity in response to changes of plasma membrane voltage. ArcLight allows the reliable detection of single action potentials and sub-threshold activities in individual neurons and dendrites. The response kinetics of ArcLight (τ1-on ~10 ms, τ2-on ~ 50 ms) are comparable with most published genetically-encoded voltage probes. However, probes using voltage-sensing domains other than that from the Ciona intestinalis voltage sensitive phosphatase exhibit faster kinetics. Here we report new versions of ArcLight, in which the Ciona voltage-sensing domain was replaced with those from chicken, zebrafish, frog, mouse or human. We found that the chicken and zebrafish-based ArcLight exhibit faster kinetics, with a time constant (τ) less than 6ms for a 100 mV depolarization. Although the response amplitude of these two probes (8-9%) is not as large as the Ciona-based ArcLight (~35%), they are better at reporting action potentials from cultured neurons at higher frequency. In contrast, probes based on frog, mouse and human voltage sensing domains were either slower than the Ciona-based ArcLight or had very small signals. PMID:24312287

  3. Fluorescent protein voltage probes derived from ArcLight that respond to membrane voltage changes with fast kinetics.

    Directory of Open Access Journals (Sweden)

    Zhou Han

    Full Text Available We previously reported the discovery of a fluorescent protein voltage probe, ArcLight, and its derivatives that exhibit large changes in fluorescence intensity in response to changes of plasma membrane voltage. ArcLight allows the reliable detection of single action potentials and sub-threshold activities in individual neurons and dendrites. The response kinetics of ArcLight (τ1-on ~10 ms, τ2-on ~ 50 ms are comparable with most published genetically-encoded voltage probes. However, probes using voltage-sensing domains other than that from the Ciona intestinalis voltage sensitive phosphatase exhibit faster kinetics. Here we report new versions of ArcLight, in which the Ciona voltage-sensing domain was replaced with those from chicken, zebrafish, frog, mouse or human. We found that the chicken and zebrafish-based ArcLight exhibit faster kinetics, with a time constant (τ less than 6 ms for a 100 mV depolarization. Although the response amplitude of these two probes (8-9% is not as large as the Ciona-based ArcLight (~35%, they are better at reporting action potentials from cultured neurons at higher frequency. In contrast, probes based on frog, mouse and human voltage sensing domains were either slower than the Ciona-based ArcLight or had very small signals.

  4. Novel swirl-flow reactor for kinetic studies of semiconductor photocatalysis

    NARCIS (Netherlands)

    Ray, A.K; Beenackers, A.A C M

    1997-01-01

    A new two-phase swirl-flow monolithic-type reactor was designed to study the kinetics of heterogeneous photocatalytic processes on immobilized semiconductor catalysts. True kinetic rate constants for destruction of a textile dye were measured as a function of wavelength of light intensity and angle

  5. Oxidation of L-cystine by chromium(VI) - a kinetic study | Kumar ...

    African Journals Online (AJOL)

    The kinetics of the title reaction was studied spectrophotometrically in HClO4 medium at 380 nm. The data suggested that the order with respect to cystine is fractional, whereas chromium(VI) follows first order kinetics. The reaction was second order in [H+]. Cysteic acid was found to be the main product of oxidation.

  6. Synthesis, structural investigation and kinetic studies of uranyl(VI) unsymmetrical Schiff base complexes

    Czech Academy of Sciences Publication Activity Database

    Asadi, Z.; Asadi, M.; Zeinali, A.; Ranjkeshshorkaei, M.; Fejfarová, Karla; Eigner, Václav; Dušek, Michal; Dehnokhalaji, A.

    2014-01-01

    Roč. 126, č. 6 (2014), s. 1673-1683 ISSN 0974-3626 R&D Projects: GA ČR(CZ) GAP204/11/0809 Institutional support: RVO:68378271 Keywords : uranyl schiff base complexes * kinetic study * kinetics of thermal decomposition * X-ray crystallography * cyclic voltammetry Subject RIV: CA - Inorganic Chemistry Impact factor: 1.191, year: 2014

  7. Fouling kinetics in microfiltration of protein solutions using different membrane configurations

    DEFF Research Database (Denmark)

    Jakobsen, Sune; Jonsson, Gunnar Eigil

    1997-01-01

    Protein fouling in microfiltration has a large impact on the permeate flux and observed retention of the proteins despite the fact that the protein molecule is several times smaller than the average pore size in microfiltration membranes. This is due to adsorption and deposition of protein...... molecules and aggregates. The effect of membrane configuration upon protein fouling was investigated in crossflow filtration with asymmetric membranes either in a normal mode or in a reverse mode. It was observed by Jonsson et al. [1] that beer filtration in a reverse mode results in a smaller decrease...... in the flux compared to beer filtration in a normal mode. Similar results for protein filtration were observed by Bowen et al. [2]. One possible way to avoid fouling is the novel backshock technique (see Jonsson et al. [1]). The effect of backshock on protein filtration was investigated using a hollow fiber...

  8. Hydrogen exchange kinetics in a membrane protein determined by 15N NMR spectroscopy: Use of the INEPT [insensitive nucleus enhancement by polarization transfer] experiment to follow individual amides in detergent-solubilized M13 coat protein

    International Nuclear Information System (INIS)

    Henry, G.D.; Sykes, B.D.

    1990-01-01

    The coat protein of the filamentous coliphage M13 is a 50-residue polypeptide which spans the inner membrane of the Escherichia coli host upon infection. Amide hydrogen exchange kinetics have been used to probe the structure and dynamics of M13 coat protein which has been solubilized in sodium dodecyl sulfate (SDS) micelles. In a previous 1 H nuclear magnetic resonance (NMR) study, multiple exponential analysis of the unresolved amide proton envelope revealed the existence of two slow kinetic sets containing a total of about 30 protons. The slower set (15-20 amides) originates from the hydrophobic membrane-spanning region and exchanges at least 10 5 -fold slower than the unstructured, non-H-bonded model polypeptide poly(DL-alanine). Herein the authors use 15 N NMR spectroscopy of biosynthetically labeled coat protein to follow individual, assigned, slowly exchanging amides in or near the hydrophobic segment. The INEPT (insensitive nucleus enhancement by polarization transfer) experiments can be used to transfer magnetization to the 15 N nucleus from a coupled proton; when 15 N-labeled protonated protein is dissolved in 2 H 2 O, the INEPT signal disappears with time as the amide protons are replaced by solvent deuterons. Amide hydrogen exchange is catalyzed by both H + and OH - ions. The time-dependent exchange-out experiment is suitable for slow exchange rates (k ex ). The INEPT experiment was also adapted to measure some of the more rapidly exchanging amides in the coat protein using either saturation transfer from water or exchange effects on the polarization transfer step itself. The results of all of these experiments are consistent with previous models of the coat protein in which a stable segment extends from the hydrophobic membrane-spanning region through to the C-terminus, whereas the N-terminal region is undergoing more extensive dynamic fluctuations

  9. Atmospheric degradation of 3-methylfuran: kinetic and products study

    Directory of Open Access Journals (Sweden)

    A. Tapia

    2011-04-01

    Full Text Available A study of the kinetics and products obtained from the reactions of 3-methylfuran with the main atmospheric oxidants has been performed. The rate coefficients for the gas-phase reaction of 3-methylfuran with OH and NO3 radicals have been determined at room temperature and atmospheric pressure (air and N2 as bath gases, using a relative method with different experimental techniques. The rate coefficients obtained for these reactions were (in units cm3 molecule−1 s−1 kOH = (1.13 ± 0.22 × 10−10 and kNO3 = (1.26 ± 0.18 × 10−11. Products from the reaction of 3-methylfuran with OH, NO3 and Cl atoms in the absence and in the presence of NO have also been determined. The main reaction products obtained were chlorinated methylfuranones and hydroxy-methylfuranones in the reaction of 3-methylfuran with Cl atoms, 2-methylbutenedial, 3-methyl-2,5-furanodione and hydroxy-methylfuranones in the reaction of 3-methylfuran with OH and NO3 radicals and also nitrated compounds in the reaction with NO3 radicals. The results indicate that, in all cases, the main reaction path is the addition to the double bond of the aromatic ring followed by ring opening in the case of OH and NO3 radicals. The formation of 3-furaldehyde and hydroxy-methylfuranones (in the reactions of 3-methylfuran with Cl atoms and NO3 radicals confirmed the H-atom abstraction from the methyl group and from the aromatic ring, respectively. This study represents the first product determination for Cl atoms and NO3 radicals in reactions with 3-methylfuran. The reaction mechanisms and atmospheric implications of the reactions under consideration are also discussed.

  10. Recognition of damaged DNA by Escherichia coli Fpg protein: insights from structural and kinetic data

    International Nuclear Information System (INIS)

    Zharkov, Dmitry O.; Ishchenko, Alexander A.; Douglas, Kenneth T.; Nevinsky, Georgy A.

    2003-01-01

    Formamidopyrimidine-DNA glycosylase (Fpg) excises oxidized purines from damaged DNA. The recent determination of the three-dimensional structure of the covalent complex of DNA with Escherichia coli Fpg, obtained by reducing the Schiff base intermediate formed during the reaction [Gilboa et al., J. Biol. Chem. 277 (2002) 19811] has revealed a number of potential specific and non-specific interactions between Fpg and DNA. We analyze the structural data for Fpg in the light of the kinetic and thermodynamic data obtained by the method of stepwise increase in ligand complexity to estimate relative contributions of individual nucleotide units of lesion-containing DNA to its total affinity for this enzyme [Ishchenko et al., Biochemistry 41 (2002) 7540]. Stopped-flow kinetic analysis that has allowed the dissection of Fpg catalysis in time [Fedorova et al., Biochemistry 41 (2002) 1520] is also correlated with the structural data

  11. Analysis of residuals from enzyme kinetic and protein folding experiments in the presence of correlated experimental noise.

    Science.gov (United States)

    Kuzmic, Petr; Lorenz, Thorsten; Reinstein, Jochen

    2009-12-01

    Experimental data from continuous enzyme assays or protein folding experiments often contain hundreds, or even thousands, of densely spaced data points. When the sampling interval is extremely short, the experimental data points might not be statistically independent. The resulting neighborhood correlation invalidates important theoretical assumptions of nonlinear regression analysis. As a consequence, certain goodness-of-fit criteria, such as the runs-of-signs test and the autocorrelation function, might indicate a systematic lack of fit even if the experiment does agree very well with the underlying theoretical model. A solution to this problem is to analyze only a subset of the residuals of fit, such that any excessive neighborhood correlation is eliminated. Substrate kinetics of the HIV protease and the unfolding kinetics of UMP/CMP kinase, a globular protein from Dictyostelium discoideum, serve as two illustrative examples. A suitable data-reduction algorithm has been incorporated into software DYNAFIT [P. Kuzmic, Anal. Biochem. 237 (1996) 260-273], freely available to all academic researchers from http://www.biokin.com.

  12. A study of kinetic friction: The Timoshenko oscillator

    Science.gov (United States)

    Henaff, Robin; Le Doudic, Gabriel; Pilette, Bertrand; Even, Catherine; Fischbach, Jean-Marie; Bouquet, Frédéric; Bobroff, Julien; Monteverde, Miguel; Marrache-Kikuchi, Claire A.

    2018-03-01

    Friction is a complex phenomenon that is of paramount importance in everyday life. We present an easy-to-build and inexpensive experiment illustrating Coulomb's law of kinetic friction. The so-called friction, or Timoshenko, oscillator consists of a plate set into periodic motion through the competition between gravity and friction on its rotating supports. The period of such an oscillator gives a measurement of the coefficient of kinetic friction μk between the plate and the supports. Our prototype is mainly composed of a motor, LEGO blocks, and a low-cost microcontroller, but despite its simplicity, the results obtained are in good agreement with values of μk found in the literature (enhanced online).

  13. Hydroxylamine nitrate self-catalytic kinetics study with adiabatic calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Liu Lijun [Mary Kay O' Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A and M University System, College Station, TX 77843-3122 (United States); Wei Chunyang [BASF Corporation, Wyandotte, MI 48192 (United States); Guo Yuyan; Rogers, William J. [Mary Kay O' Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A and M University System, College Station, TX 77843-3122 (United States); Sam Mannan, M. [Mary Kay O' Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A and M University System, College Station, TX 77843-3122 (United States)], E-mail: mannan@tamu.edu

    2009-03-15

    Hydroxylamine nitrate (HAN) is an important member of the hydroxylamine compound family with applications that include equipment decontamination in the nuclear industry and aqueous or solid propellants. Due to its instability and autocatalytic behavior, HAN has been involved in several incidents at the Hanford and Savannah River Site (SRS) [Technical Report on Hydroxylamine Nitrate, US Department of Energy, 1998]. Much research has been conducted on HAN in different areas, such as combustion mechanism, decomposition mechanism, and runaway behavior. However, the autocatalytic decomposition behavior of HAN at runaway stage has not been fully addressed due to its highly exothermic and rapid decomposition behavior. This work is focused on extracting HAN autocatalytic kinetics and analyzing HAN critical behavior from adiabatic calorimetry measurements. A lumped autocatalytic kinetic model for HAN and associated model parameters are determined. Also the storage and handling critical conditions of diluted HAN solution without metal presence are quantified.

  14. Hydroxylamine nitrate self-catalytic kinetics study with adiabatic calorimetry

    International Nuclear Information System (INIS)

    Liu Lijun; Wei Chunyang; Guo Yuyan; Rogers, William J.; Sam Mannan, M.

    2009-01-01

    Hydroxylamine nitrate (HAN) is an important member of the hydroxylamine compound family with applications that include equipment decontamination in the nuclear industry and aqueous or solid propellants. Due to its instability and autocatalytic behavior, HAN has been involved in several incidents at the Hanford and Savannah River Site (SRS) [Technical Report on Hydroxylamine Nitrate, US Department of Energy, 1998]. Much research has been conducted on HAN in different areas, such as combustion mechanism, decomposition mechanism, and runaway behavior. However, the autocatalytic decomposition behavior of HAN at runaway stage has not been fully addressed due to its highly exothermic and rapid decomposition behavior. This work is focused on extracting HAN autocatalytic kinetics and analyzing HAN critical behavior from adiabatic calorimetry measurements. A lumped autocatalytic kinetic model for HAN and associated model parameters are determined. Also the storage and handling critical conditions of diluted HAN solution without metal presence are quantified

  15. Molecular Dynamics Simulations and Kinetic Measurements to Estimate and Predict Protein-Ligand Residence Times.

    Science.gov (United States)

    Mollica, Luca; Theret, Isabelle; Antoine, Mathias; Perron-Sierra, Françoise; Charton, Yves; Fourquez, Jean-Marie; Wierzbicki, Michel; Boutin, Jean A; Ferry, Gilles; Decherchi, Sergio; Bottegoni, Giovanni; Ducrot, Pierre; Cavalli, Andrea

    2016-08-11

    Ligand-target residence time is emerging as a key drug discovery parameter because it can reliably predict drug efficacy in vivo. Experimental approaches to binding and unbinding kinetics are nowadays available, but we still lack reliable computational tools for predicting kinetics and residence time. Most attempts have been based on brute-force molecular dynamics (MD) simulations, which are CPU-demanding and not yet particularly accurate. We recently reported a new scaled-MD-based protocol, which showed potential for residence time prediction in drug discovery. Here, we further challenged our procedure's predictive ability by applying our methodology to a series of glucokinase activators that could be useful for treating type 2 diabetes mellitus. We combined scaled MD with experimental kinetics measurements and X-ray crystallography, promptly checking the protocol's reliability by directly comparing computational predictions and experimental measures. The good agreement highlights the potential of our scaled-MD-based approach as an innovative method for computationally estimating and predicting drug residence times.

  16. Studying pressure denaturation of a protein by molecular dynamics simulations.

    Science.gov (United States)

    Sarupria, Sapna; Ghosh, Tuhin; García, Angel E; Garde, Shekhar

    2010-05-15

    Many globular proteins unfold when subjected to several kilobars of hydrostatic pressure. This "unfolding-up-on-squeezing" is counter-intuitive in that one expects mechanical compression of proteins with increasing pressure. Molecular simulations have the potential to provide fundamental understanding of pressure effects on proteins. However, the slow kinetics of unfolding, especially at high pressures, eliminates the possibility of its direct observation by molecular dynamics (MD) simulations. Motivated by experimental results-that pressure denatured states are water-swollen, and theoretical results-that water transfer into hydrophobic contacts becomes favorable with increasing pressure, we employ a water insertion method to generate unfolded states of the protein Staphylococcal Nuclease (Snase). Structural characteristics of these unfolded states-their water-swollen nature, retention of secondary structure, and overall compactness-mimic those observed in experiments. Using conformations of folded and unfolded states, we calculate their partial molar volumes in MD simulations and estimate the pressure-dependent free energy of unfolding. The volume of unfolding of Snase is negative (approximately -60 mL/mol at 1 bar) and is relatively insensitive to pressure, leading to its unfolding in the pressure range of 1500-2000 bars. Interestingly, once the protein is sufficiently water swollen, the partial molar volume of the protein appears to be insensitive to further conformational expansion or unfolding. Specifically, water-swollen structures with relatively low radii of gyration have partial molar volume that are similar to that of significantly more unfolded states. We find that the compressibility change on unfolding is negligible, consistent with experiments. We also analyze hydration shell fluctuations to comment on the hydration contributions to protein compressibility. Our study demonstrates the utility of molecular simulations in estimating volumetric properties

  17. Chemical kinetics studies at high temperatures using shock tubes

    OpenAIRE

    Rajakumar, B; Anandraj, D; Reddy, KPJ; Arunan, E

    2002-01-01

    Shock tube is an unique facility to create temperature gradients exceeding million degrees Kelvin per second. We have established two shock tubes for measuring the kinetic reaction rates at high temperatures with two different but complementary detection techniques. The first one is a single pulse shock tube, in which the reflected shock is used to heat the molecules. The equilibrated products are analyzed by gas chromatograph and infrared spectrometer. The second one uses laser-schlieren sys...

  18. Kinetic studies following state-selective laser excitation

    International Nuclear Information System (INIS)

    Keto, J.W.

    1991-01-01

    During the past year, we have made measurements of state-to-state energy transfer cross sections and radiative lifetimes for Xe*(6p,6p',7p) and Kr*(5p) states in xenon and krypton buffer gases. These results are relevant to kinetic models of both excimer lasers and the infrared xenon laser; and they are a significant improvement in the precision of the known radiative lifetimes. 3 refs., 2 figs., 2 tabs

  19. An experimental and kinetic modeling study of glycerol pyrolysis

    International Nuclear Information System (INIS)

    Fantozzi, F.; Frassoldati, A.; Bartocci, P.; Cinti, G.; Quagliarini, F.; Bidini, G.; Ranzi, E.M.

    2016-01-01

    Highlights: • Glycerol pyrolysis can produce about 44–48%v hydrogen at 750–800 °C. • A simplified 452 reactions kinetic model of glycerol pyrolysis has been developed. • The model has good agreement with experimental data. • Non condensable gas yields can reach 70%. - Abstract: Pyrolysis of glycerol, a by-product of the biodiesel industry, is an important potential source of hydrogen. The obtained high calorific value gas can be used either as a fuel for combined heat and power (CHP) generation or as a transportation fuel (for example hydrogen to be used in fuel cells). Optimal process conditions can improve glycerol pyrolysis by increasing gas yield and hydrogen concentration. A detailed kinetic mechanism of glycerol pyrolysis, which involves 137 species and more than 4500 reactions, was drastically simplified and reduced to a new skeletal kinetic scheme of 44 species, involved in 452 reactions. An experimental campaign with a batch pyrolysis reactor was properly designed to further validate the original and the skeletal mechanisms. The comparisons between model predictions and experimental data strongly suggest the presence of a catalytic process promoting steam reforming of methane. High pyrolysis temperatures (750–800 °C) improve process performances and non-condensable gas yields of 70%w can be achieved. Hydrogen mole fraction in pyrolysis gas is about 44–48%v. The skeletal mechanism developed can be easily used in Computational Fluid Dynamic software, reducing the simulation time.

  20. How Four Scientists Integrate Thermodynamic and Kinetic Theory, Context, Analogies, and Methods in Protein-Folding and Dynamics Research: Implications for Biochemistry Instruction.

    Science.gov (United States)

    Jeffery, Kathleen A; Pelaez, Nancy; Anderson, Trevor R

    2018-01-01

    To keep biochemistry instruction current and relevant, it is crucial to expose students to cutting-edge scientific research and how experts reason about processes governed by thermodynamics and kinetics such as protein folding and dynamics. This study focuses on how experts explain their research into this topic with the intention of informing instruction. Previous research has modeled how expert biologists incorporate research methods, social or biological context, and analogies when they talk about their research on mechanisms. We used this model as a guiding framework to collect and analyze interview data from four experts. The similarities and differences that emerged from analysis indicate that all experts integrated theoretical knowledge with their research context, methods, and analogies when they explained how phenomena operate, in particular by mapping phenomena to mathematical models; they explored different processes depending on their explanatory aims, but readily transitioned between different perspectives and explanatory models; and they explained thermodynamic and kinetic concepts of relevance to protein folding in different ways that aligned with their particular research methods. We discuss how these findings have important implications for teaching and future educational research. © 2018 K. A. Jeffery et al. CBE—Life Sciences Education © 2018 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Autophagosome Proteins LC3A, LC3B and LC3C Have Distinct Subcellular Distribution Kinetics and Expression in Cancer Cell Lines.

    Directory of Open Access Journals (Sweden)

    Michael I Koukourakis

    Full Text Available LC3s (MAP1-LC3A, B and C are structural proteins of autophagosomal membranes, widely used as biomarkers of autophagy. Whether these three LC3 proteins have a similar biological role in autophagy remains obscure. We examine in parallel the subcellular expression patterns of the three LC3 proteins in a panel of human cancer cell lines, as well as in normal MRC5 fibroblasts and HUVEC, using confocal microscopy and western blot analysis of cell fractions. In the cytoplasm, there was a minimal co-localization between LC3A, B and C staining, suggesting that the relevant autophagosomes are formed by only one out of the three LC3 proteins. LC3A showed a perinuclear and nuclear localization, while LC3B was equally distributed throughout the cytoplasm and localized in the nucleolar regions. LC3C was located in the cytoplasm and strongly in the nuclei (excluding nucleoli, where it extensively co-localized with the LC3A and the Beclin-1 autophagy initiating protein. Beclin 1 is known to contain a nuclear trafficking signal. Blocking nuclear export function by Leptomycin B resulted in nuclear accumulation of all LC3 and Beclin-1 proteins, while Ivermectin that blocks nuclear import showed reduction of accumulation, but not in all cell lines. Since endogenous LC3 proteins are used as major markers of autophagy in clinical studies and cell lines, it is essential to check the specificity of the antibodies used, as the kinetics of these molecules are not identical and may have distinct biological roles. The distinct subcellular expression patterns of LC3s provide a basis for further studies.

  2. Differences in kinetic variables between injured and noninjured novice runners : A prospective cohort study

    NARCIS (Netherlands)

    Bredeweg, Steef W.; Kluitenberg, Bas; Bessem, Bram; Buist, Ida

    Objectives: This prospective study examined differences in kinetic variables between injured and noninjured novice female and male runners and their potential contribution to RRIs. Design: A prospective cohort study. Methods: At baseline vertical ground reaction forces were assessed with an

  3. Protein kinase A governs oxidative phosphorylation kinetics and oxidant emitting potential at complex I

    Directory of Open Access Journals (Sweden)

    Daniel Stephen Lark

    2015-11-01

    Full Text Available The mitochondrial electron transport system (ETS is responsible for setting and maintaining both the energy and redox charges throughout the cell. Reversible phosphorylation of mitochondrial proteins, particularly via the soluble adenylyl cyclase (sAC/cyclic AMP (cAMP/Protein kinase A (PKA axis, has recently been revealed as a potential mechanism regulating the ETS. However, the governance of cAMP/PKA signaling and its implications on ETS function are incompletely understood. In contrast to prior reports using exogenous bicarbonate, we provide evidence that endogenous CO2 produced by increased tricarboxylic acid (TCA cycle flux is insufficient to increase mitochondrial cAMP levels, and that exogenous addition of membrane permeant 8Br-cAMP does not enhance mitochondrial respiratory capacity. We also report important non-specific effects of commonly used inhibitors of sAC which preclude their use in studies of mitochondrial function. In isolated liver mitochondria, inhibition of PKA reduces complex I-, but not complex II-supported respiratory capacity. In permeabilized myofibers, inhibition of PKA lowers both the Km and Vmax for complex I-supported respiration as well as succinate-supported H2O2 emitting potential. In summary, the data provided here improve our understanding of how mitochondrial cAMP production is regulated, illustrate a need for better tools to examine the impact of sAC activity on mitochondrial biology, and suggest that cAMP/PKA signaling contributes to the governance of electron flow through complex I of the ETS.

  4. Radioactive Lysine in Protein Metabolism Studies

    Science.gov (United States)

    Miller, L. L.; Bale, W. F.; Yuile, C. L.; Masters, R. E.; Tishkoff, G. H.; Whipple,, G. H.

    1950-01-09

    Studies of incorporation of DL-lysine in various body proteins of the dog; the time course of labeled blood proteins; and apparent rate of disappearance of labeled plasma proteins for comparison of behavior of the plasma albumin and globulin fractions; shows more rapid turn over of globulin fraction.

  5. Kinetics of proton transfer in a green fluorescent protein: A laser ...

    Indian Academy of Sciences (India)

    Unknown

    therefore implicates bulk solvent-controlled protein dynamics in the protonation process. ... recently to protein–protein interactions in the bacterial response regulator SpoOF. NMR ..... molecular mechanism for redox-driven proton transfer to a buried iron–sulphur cluster ... Dynamic simulations of proton transfer from bulk.

  6. AFM study of adsorption of protein A on a poly(dimethylsiloxane) surface

    International Nuclear Information System (INIS)

    Yu Ling; Lu Zhisong; Gan Ye; Liu Yingshuai; Li, C M

    2009-01-01

    In this paper, the morphology and kinetics of adsorption of protein A on a PDMS surface is studied by AFM. The results of effects of pH, protein concentration and contact time of the adsorption reveal that the morphology of adsorbed protein A is significantly affected by pH and adsorbed surface concentration, in which the pH away from the isoelectric point (IEP) of protein A could produce electrical repulsion to change the protein conformation, while the high adsorbed surface protein volume results in molecular networks. Protein A can form an adsorbed protein film on PDMS with a maximum volume of 2.45 x 10 -3 μm 3 . This work enhances our fundamental understanding of protein A adsorption on PDMS, a frequently used substrate component in miniaturized immunoassay devices.

  7. Kinetic Studies of Alkaline Phosphatase from the Liver of Agama ...

    African Journals Online (AJOL)

    group of catalytic proteins (enzymes) that have the ability to ... was determined by the method of Biuret (Gornall et al.,. 1949) using ... The result indicate that the enzyme has an optimum. pH of 9.9. ... Total protein (mg) Total activity. (x10-4).

  8. Identifiability study of the proteins degradation model, based on ADM1, using simultaneous batch experiments

    DEFF Research Database (Denmark)

    Flotats, X.; Palatsi, J.; Ahring, Birgitte Kiær

    2006-01-01

    are not inhibiting the hydrolysis process. The ADM1 model adequately expressed the consecutive steps of hydrolysis and acidogenesis, with estimated kinetic values corresponding to a fast acidogenesis and slower hydrolysis. The hydrolysis was found to be the rate limiting step of anaerobic degradation. Estimation...... of yield coefficients based on the relative initial slopes of VFA profiles obtained in a simple batch experiment produced satisfactory results. From the identification study, it was concluded that it is possible to determine univocally the related kinetic parameter values for protein degradation...... if the evolution of amino acids is measured in simultaneous batch experiments, with different initial protein and amino acids concentrations....

  9. Lipo-protein emulsion structure in the diet affects protein digestion kinetics, intestinal mucosa parameters and microbiota composition

    OpenAIRE

    Oberli, Marion; Douard, Véronique; Beaumont, Martin; Jaoui, Daphné; Devime, Fabienne; Laurent, Sandy; Chaumontet, Catherine; Mat, Damien; Le Feunteun, Steven; Michon, Camille; Davila, Anne-Marie; Fromentin, Gilles; Tomé, Daniel; Souchon, Isabelle; Leclerc, Marion

    2017-01-01

    SCOPE: Food structure is a key factor controlling digestion and nutrient absorption. We tested the hypothesis that protein emulsion structure in the diet may affect digestive and absorptive processes. METHODS & RESULTS: Rats (n = 40) were fed for 3 weeks two diets chemically identical but based on lipid-protein liquid-fine (LFE) or gelled-coarse (GCE) emulsions that differ at the macro- and micro-structure levels. After an overnight fasting, they ingested a 15 N-labeled LFE or GCE te...

  10. Kinetics of Internal-Loop Formation in Polypeptide Chains: A Simulation Study

    Science.gov (United States)

    Doucet, Dana; Roitberg, Adrian; Hagen, Stephen J.

    2007-01-01

    The speed of simple diffusional motions, such as the formation of loops in the polypeptide chain, places one physical limit on the speed of protein folding. Many experimental studies have explored the kinetics of formation of end-to-end loops in polypeptide chains; however, protein folding more often requires the formation of contacts between interior points on the chain. One expects that, for loops of fixed contour length, interior loops will form more slowly than end-to-end loops, owing to the additional excluded volume associated with the “tails”. We estimate the magnitude of this effect by generating ensembles of randomly coiled, freely jointed chains, and then using the theory of Szabo, Schulten, and Schulten to calculate the corresponding contact formation rates for these ensembles. Adding just a few residues, to convert an end-to-end loop to an internal loop, sharply decreases the contact rate. Surprisingly, the relative change in rate increases for a longer loop; sufficiently long tails, however, actually reverse the effect and accelerate loop formation slightly. Our results show that excluded volume effects in real, full-length polypeptides may cause the rates of loop formation during folding to depart significantly from the values derived from recent loop-formation experiments on short peptides. PMID:17208979

  11. Kinetic study of UV-irradiated amorphous sulfur by EPR spectroscopy

    International Nuclear Information System (INIS)

    El Mkami, H.; Smith, G.M.

    2005-01-01

    Electron paramagnetic resonance (EPR) spectroscopy is used to investigate UV-irradiation damage in amorphous sulfur by examining post-irradiation kinetics as a function of UV-exposure time. The kinetic study is described by first-order concurrent reactions where the sulfur, as reactant, undergoes two parallel processes leading to the formation of two distinct defects called S 1 * and S 2 *. The temperature dependence of the EPR intensities of the signals, related to these defects, is used in the kinetic study

  12. Study of the stochastic point reactor kinetic equation

    International Nuclear Information System (INIS)

    Gotoh, Yorio

    1980-01-01

    Diagrammatic technique is used to solve the stochastic point reactor kinetic equation. The method gives exact results which are derived from Fokker-Plank theory. A Green's function dressed with the clouds of noise is defined, which is a transfer function of point reactor with fluctuating reactivity. An integral equation for the correlation function of neutron power is derived using the following assumptions: 1) Green's funntion should be dressed with noise, 2) The ladder type diagrams only contributes to the correlation function. For a white noise and the one delayed neutron group approximation, the norm of the integral equation and the variance to mean-squared ratio are analytically obtained. (author)

  13. Effect of resistance training and protein intake pattern on myofibrillar protein synthesis and proteome kinetics in older men in energy restriction.

    Science.gov (United States)

    Murphy, Caoileann H; Shankaran, Mahalakshmi; Churchward-Venne, Tyler A; Mitchell, Cameron J; Kolar, Nathan M; Burke, Louise M; Hawley, John A; Kassis, Amira; Karagounis, Leonidas G; Li, Kelvin; King, Chelsea; Hellerstein, Marc; Phillips, Stuart M

    2018-06-01

    Strategies to enhance the loss of fat while preserving muscle mass during energy restriction are of great importance to prevent sarcopenia in overweight older adults. We show for the first time that the integrated rate of synthesis of numerous individual contractile, cytosolic and mitochondrial skeletal muscle proteins was increased by resistance training (RT) and unaffected by dietary protein intake pattern during energy restriction in free-living, obese older men. We observed a correlation between the synthetic rates of skeletal muscle-derived proteins obtained in serum (creatine kinase M-type, carbonic anhydrase 3) and the synthetic rates of proteins obtained via muscle sampling; and that the synthesis rates of these proteins in serum revealed the stimulatory effects of RT. These results have ramifications for understanding the influence of RT on skeletal muscle and are consistent with the role of RT in maintaining muscle protein synthesis and potentially supporting muscle mass preservation during weight loss. We determined how the pattern of protein intake and resistance training (RT) influenced longer-term (2 weeks) integrated myofibrillar protein synthesis (MyoPS) during energy restriction (ER). MyoPS and proteome kinetics were measured during 2 weeks of ER alone and 2 weeks of ER plus RT (ER + RT) in overweight/obese older men. Participants were randomized to consume dietary protein in a balanced (BAL: 25% daily protein per meal × 4 meals) or skewed (SKEW: 7:17:72:4% daily protein per meal) pattern (n = 10 per group). Participants ingested deuterated water during the consecutive 2-week periods, and skeletal muscle biopsies and serum were obtained at the beginning and conclusion of ER and ER + RT. Bulk MyoPS (i.e. synthesis of the myofibrillar protein sub-fraction) and the synthetic rates of numerous individual skeletal muscle proteins were quantified. Bulk MyoPS was not affected by protein distribution during ER or ER + RT (ER: BAL = 1.24

  14. Derivation of kinetic coefficients by atomistic methods for studying defect behavior in Mo

    International Nuclear Information System (INIS)

    Insepov, Z.; Rest, J.; Yacout, A.M.; Kuksin, A.Yu.; Norman, G.E.; Stegailov, V.V.; Starikov, S.V.; Yanilkin, A.V.

    2012-01-01

    Highlights: ► A multiscale concept couples molecular dynamics (MD) with ab initio and kinetic rate theory. ► Evolution of a system of self-interstitial atoms and vacancies in Mo is studied by MD. ► Formation of di-SIA clusters and SIA–vacancy recombination is analyzed. ► 1D diffusion of self-interstitials at various temperature and defect concentrations were studied. ► This paper provides a powerful predictive tool for simulating irradiation of nuclear materials. - Abstract: A multiscale concept for irradiated materials simulation is formulated based on coupling molecular dynamics simulations (MD) where the potential was obtained from ab initio data of energies of the basic defect structures, with kinetic mesoscale models. The evolution of a system containing self-interstitial atoms (SIAs) and vacancies in crystalline molybdenum is investigated by means of MD. The kinetics of formation of di-SIA clusters and SIA–vacancy recombination is analyzed via approaches used in the kinetic theory of radiation ageing. The effects of 1D diffusion of SIAs, temperature, and defect concentrations on the reaction rates are also studied. This approach can validate both the kinetic mechanisms and the appropriate kinetic coefficients, offering the potential to significantly reduce the uncertainty of the kinetic methodology and providing a powerful predictive tool for simulating irradiation behavior of nuclear materials.

  15. Kinetic Modeling of Methionine Oxidation in Monoclonal Antibodies from Hydrogen Peroxide Spiking Studies.

    Science.gov (United States)

    Hui, Ada; Lam, Xanthe M; Kuehl, Christopher; Grauschopf, Ulla; Wang, Y John

    2015-01-01

    When isolator technology is applied to biotechnology drug product fill-finish process, hydrogen peroxide (H2O2) spiking studies for the determination of the sensitivity of protein to residual peroxide in the isolator can be useful for assessing a maximum vapor phase hydrogen peroxide (VPHP) level. When monoclonal antibody (mAb) drug products were spiked with H2O2, an increase in methionine (Met 252 and Met 428) oxidation in the Fc region of the mAbs with a decrease in H2O2 concentration was observed for various levels of spiked-in peroxide. The reaction between Fc-Met and H2O2 was stoichiometric (i.e., 1:1 molar ratio), and the reaction rate was dependent on the concentrations of mAb and H2O2. The consumption of H2O2 by Fc-Met oxidation in the mAb followed pseudo first-order kinetics, and the rate was proportional to mAb concentration. The extent of Met 428 oxidation was half of that of Met 252, supporting that Met 252 is twice as reactive as Met 428. Similar results were observed for free L-methionine when spiked with H2O2. However, mAb formulation excipients may affect the rate of H2O2 consumption. mAb formulations containing trehalose or sucrose had faster H2O2 consumption rates than formulations without the sugars, which could be the result of impurities (e.g., metal ions) present in the excipients that may act as catalysts. Based on the H2O2 spiking study results, we can predict the amount Fc-Met oxidation for a given protein concentration and H2O2 level. Our kinetic modeling of the reaction between Fc-Met oxidation and H2O2 provides an outline to design a H2O2 spiking study to support the use of VPHP isolator for antibody drug product manufacture. Isolator technology is increasing used in drug product manufacturing of biotherapeutics. In order to understand the impact of residual vapor phase hydrogen peroxide (VPHP) levels on protein product quality, hydrogen peroxide (H2O2) spiking studies may be performed to determine the sensitivity of monoclonal antibody

  16. Analytical techniques for the study of polyphenol-protein interactions.

    Science.gov (United States)

    Poklar Ulrih, Nataša

    2017-07-03

    This mini review focuses on advances in biophysical techniques to study polyphenol interactions with proteins. Polyphenols have many beneficial pharmacological properties, as a result of which they have been the subject of intensive studies. The most conventional techniques described here can be divided into three groups: (i) methods used for screening (in-situ methods); (ii) methods used to gain insight into the mechanisms of polyphenol-protein interactions; and (iii) methods used to study protein aggregation and precipitation. All of these methods used to study polyphenol-protein interactions are based on modifications to the physicochemical properties of the polyphenols or proteins after binding/complex formation in solution. To date, numerous review articles have been published in the field of polyphenols. This review will give a brief insight in computational methods and biosensors and cell-based methods, spectroscopic methods including fluorescence emission, UV-vis adsorption, circular dichroism, Fourier transform infrared and mass spectrometry, nuclear magnetic resonance, X-ray diffraction, and light scattering techniques including small-angle X-ray scattering and small-angle neutron scattering, and calorimetric techniques (isothermal titration calorimetry and differential scanning calorimetry), microscopy, the techniques which have been successfully used for polyphenol-protein interactions. At the end the new methods based on single molecule detection with high potential to study polyphenol-protein interactions will be presented. The advantages and disadvantages of each technique will be discussed as well as the thermodynamic, kinetic or structural parameters, which can be obtained. The other relevant biophysical experimental techniques that have proven to be valuable, such electrochemical methods, hydrodynamic techniques and chromatographic techniques will not be described here.

  17. A Novel Approach to Experimental Studies of Mineral Dissolution Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhu

    2006-08-31

    Currently, DOE is conducting pilot CO{sub 2} injection tests to evaluate the concept of geological sequestration. One strategy that potentially enhances CO{sub 2} solubility and reduces the risk of CO{sub 2} leak back to the surface is dissolution of indigenous minerals in the geological formation and precipitation of secondary carbonate phases, which increases the brine pH and immobilizes CO{sub 2}. Clearly, the rates at which these dissolution and precipitation reactions occur directly determine the efficiency of this strategy. However, one of the fundamental problems in modern geochemistry is the persistent two to five orders of magnitude discrepancy between laboratory measured and field derived feldspar dissolution rates. To date, there is no real guidance as to how to predict silicate reaction rates for use in quantitative models. Current models for assessment of geological carbon sequestration have generally opted to use laboratory rates, in spite of the dearth of such data for compositionally complex systems, and the persistent disconnect between laboratory and field applications. Therefore, a firm scientific basis for predicting silicate reaction kinetics in CO2 injected geological formations is urgently needed to assure the reliability of the geochemical models used for the assessments of carbon sequestration strategies. The funded experimental and theoretical study attempts to resolve this outstanding scientific issue by novel experimental design and theoretical interpretation to measure silicate dissolution rates and iron carbonate precipitation rates at conditions pertinent to geological carbon sequestration. In the second year of the project, we completed CO{sub 2}-Navajo sandstone interaction batch and flow-through experiments and a Navajo sandstone dissolution experiment without the presence of CO{sub 2} at 200 C and 250-300 bars, and initiated dawsonite dissolution and solubility experiments. We also performed additional 5-day experiments at the

  18. Experimental and Chemical Kinetic Modeling Study of Dimethylcyclohexane Oxidation and Pyrolysis

    KAUST Repository

    Eldeeb, Mazen A.; Jouzdani, Shirin; Wang, Zhandong; Sarathy, Mani; Akih-Kumgeh, Benjamin

    2016-01-01

    A combined experimental and chemical kinetic modeling study of the high-temperature ignition and pyrolysis of 1,3-dimethylcyclohexane (13DMCH) is presented. Ignition delay times are measured behind reflected shock waves over a temperature range

  19. Stable isotope studies of nicotine kinetics and bioavailability

    International Nuclear Information System (INIS)

    Benowitz, N.L.; Jacob, P. III; Denaro, C.; Jenkins, R.

    1991-01-01

    The stable isotope-labeled compound 3',3'-dideuteronicotine was used to investigate the disposition kinetics of nicotine in smokers, the systemic absorption of nicotine from cigarette smoke, and the bioavailability of nicotine ingested as oral capsules. Blood levels of labeled nicotine could be measured for 9 hours after a 30-minute intravenous infusion. Analysis of disposition kinetics in 10 healthy men revealed a multiexponential decline after the end of an infusion, with an elimination half-life averaging 203 minutes. This half-life was longer than that previously reported, indicating the presence of a shallow elimination phase. Plasma clearance averaged 14.6 ml/min/kg. The average intake of nicotine per cigarette was 2.29 mg. A cigarette smoke-monitoring system that directly measured particulate matter in smoke was evaluated in these subjects. Total particulate matter, number of puffs on the cigarette, total puff volume, and time of puffing correlated with the intake of nicotine from smoking. The oral bioavailability of nicotine averaged 44%. This bioavailability is higher than expected based on the systemic clearance of nicotine and suggests that there may be significant extrahepatic metabolism of nicotine

  20. Kinetic study of oil extraction from olive foot cake

    Directory of Open Access Journals (Sweden)

    Lamrous, O.

    2006-06-01

    Full Text Available The kinetics of oil extraction from olive foot cake can be explained by a model based on two stages. The first step corresponds to a simple washing of the oil from the particle surface. In the second step, the extraction is controlled by two mechanisms: slow diffusion from broken cells and very slow diffusion from intact cells.The kinetic coefficients of this mathematical model are calculated using the experimental results obtained from hexane and commercial ethyl alcohol for different particle sizes.La cinética de extracción de aceite de orujo puede ser explicada por un modelo basado en dos etapas. La primera etapa corresponde a un simple lavado del aceite de la superficie de las partículas. En la segunda etapa, la extracción esta controlada por dos mecanismos: difusión lenta desde las células rotas y difusión muy lenta desde las células intactas.Los coeficientes cinéticas de este modelo matemático se calculan usando los resultados experimentales obtenidos con hexano y alcohol etílico comercial para diferentes tamaños de partícula.

  1. Non-equilibrium coupling of protein structure and function to translation-elongation kinetics.

    Science.gov (United States)

    Sharma, Ajeet K; O'Brien, Edward P

    2018-04-01

    Protein folding research has been dominated by the assumption that thermodynamics determines protein structure and function. And that when the folding process is compromised in vivo the proteostasis machinery-chaperones, deaggregases, the proteasome-work to restore proteins to their soluble, functional form or degrade them to maintain the cellular pool of proteins in a quasi-equilibrium state. During the past decade, however, more and more proteins have been identified for which altering only their speed of synthesis alters their structure and function, the efficiency of the down-stream processes they take part in, and cellular phenotype. Indeed, evidence has emerged that evolutionary selection pressures have encoded translation-rate information into mRNA molecules to coordinate diverse co-translational processes. Thus, non-equilibrium physics can play a fundamental role in influencing nascent protein behavior, mRNA sequence evolution, and disease. Here, we discuss how our understanding of this phenomenon is being advanced by the application of theoretical tools from the physical sciences. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. A comparison of pine and spruce in recovery from winter stress; changes in recovery kinetics, and the abundance and phosphorylation status of photosynthetic proteins during winter.

    Science.gov (United States)

    Merry, Ryan; Jerrard, Jacob; Frebault, Julia; Verhoeven, Amy

    2017-09-01

    During winter evergreens maintain a sustained form of thermal energy dissipation that results in reduced photochemical efficiency measured using the chlorophyll fluorescence parameter Fv/Fm. Eastern white pine (Pinus strobus L.) and white spruce [Picea glauca (Moench) Voss] have been shown to differ in their rate of recovery of Fv/Fm from winter stress. The goal of this study was to monitor changes in photosynthetic protein abundance and phosphorylation status during winter recovery that accompany these functional changes. An additional goal was to determine whether light-dependent changes in light harvesting complex II (LHCII) phosphorylation occur during winter conditions. We used a combination of field measurements and recovery experiments to monitor chlorophyll fluorescence and photosynthetic protein content and phosphorylation status. We found that pine recovered three times more slowly than spruce, and that the kinetics of recovery in spruce included a rapid and slow component, while in pine there was only a rapid component to recovery. Both species retained relatively high amounts of the light harvesting protein Lhcb5 (CP26) and the PsbS protein during winter, suggesting a role for these proteins in sustained thermal dissipation. Both species maintained high phosphorylation of LHCII and the D1 protein in darkness during winter. Pine and spruce differed in the kinetics of the dephosphorylation of LHCII and D1 upon warming, suggesting the rate of dephosphorylation of LHCII and D1 may be important in the rapid component of recovery from winter stress. Finally, we demonstrated that light-dependent changes in LHII phosphorylation do not continue to occur on subzero winter days and that needles are maintained in a phosphorylation pattern consistent with the high light conditions to which those needles are exposed. Our results suggest a role for retained phosphorylation of both LHCII and D1 in maintenance of the photosynthetic machinery in a winter conformation

  3. Ignition characteristics of 2-methyltetrahydrofuran: An experimental and kinetic study

    KAUST Repository

    Tripathi, Rupali

    2016-10-15

    The present paper elucidates oxidation behavior of 2-methyltetrahydrofuran (2-MTHF), a novel second-generation biofuel. New experimental data sets for 2-MTHF including ignition delay time measurements in two different combustion reactors, i.e. rapid compression machine and high-pressure shock tube, are presented. Measurements for 2-MTHF/oxidizer/diluent mixtures were performed in the temperature range of . 639-1413 K, at pressures of 10, 20, and 40 bar, and at three different equivalence ratios of 0.5, 1.0, and 2.0. A detailed chemical kinetic model describing both low-and high-temperature chemistry of 2-MTHF was developed and validated against new ignition delay measurements and already existing flame species profiles and ignition delay measurements. The mechanism provides satisfactory agreement with the experimental data. For identifying key reactions at various combustion conditions and to attain a better understanding of the combustion behavior, reaction path and sensitivity analyses were performed.

  4. Kinetics and thermodynamics studies on the BMP-2 adsorption onto hydroxyapatite surface with different multi-morphological features

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhiwei; Huangfu, Changxin; Wang, Yanying; Ge, Hongwei; Yao, Yao; Zou, Ping; Wang, Guangtu [College of Science, Sichuan Agricultural University, Ya' an 625014 (China); He, Hua [Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Wenjiang, Sichuan 611130 (China); Rao, Hanbing, E-mail: rhbscu@gmail.com [College of Science, Sichuan Agricultural University, Ya' an 625014 (China)

    2015-07-01

    The effect of the surface topography on protein adsorption process is of great significance for designing hydroxyapatite (HA) ceramic material surfaces. In this work, three different topographies of HA materials HA-sheet, HA-rod, and HA-whisker were synthesized and testified by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Brunauer–Emmett–Teller (BET) and a field emission scanning electron microscopy (FE-SEM). We have systematically investigated the adsorption kinetics and thermodynamics of bone morphogenetic proteins (BMP-2) on the three different topography surfaces of HA, respectively. The results showed that the maximum adsorption capacities of HA-sheet, HA-rod and HA-whisker were (219.96 ± 10.18), (247.13 ± 12.35), and (354.67 ± 17.73) μg · g{sup −1}, respectively. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated as well as discussed. It demonstrated that the adsorption of BMP-2 onto HA could be described by the pseudo second-order equation. Adsorption of BMP-2 onto HA followed the Langmuir isotherm. It confirmed that compared with other samples HA-whisker had more adsorption sites for its high specific surface area which could provide more opportunities for protein molecules. The adsorption processes were endothermic (ΔH > 0), spontaneous (ΔG < 0) and entropy increasing (ΔS > 0). A possible adsorption mechanism has been proposed. In addition, the BMP-2 could be adsorbed to the surface which existed slight conformational changes by FT-IR. - Highlights: • A novel protein adsorption studies based on sheet, rod and whisker of HA were designed. • Kinetic and thermodynamics parameters of BMP-2 and HA bonded materials were evaluated. • Surface topographies of the HA effect BMP-2 adsorption • The HA-whisker material had excellent adsorption performance for protein enrichment. • The electrostatic interaction is responsible for the

  5. Kinetics and thermodynamics studies on the BMP-2 adsorption onto hydroxyapatite surface with different multi-morphological features

    International Nuclear Information System (INIS)

    Lu, Zhiwei; Huangfu, Changxin; Wang, Yanying; Ge, Hongwei; Yao, Yao; Zou, Ping; Wang, Guangtu; He, Hua; Rao, Hanbing

    2015-01-01

    The effect of the surface topography on protein adsorption process is of great significance for designing hydroxyapatite (HA) ceramic material surfaces. In this work, three different topographies of HA materials HA-sheet, HA-rod, and HA-whisker were synthesized and testified by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Brunauer–Emmett–Teller (BET) and a field emission scanning electron microscopy (FE-SEM). We have systematically investigated the adsorption kinetics and thermodynamics of bone morphogenetic proteins (BMP-2) on the three different topography surfaces of HA, respectively. The results showed that the maximum adsorption capacities of HA-sheet, HA-rod and HA-whisker were (219.96 ± 10.18), (247.13 ± 12.35), and (354.67 ± 17.73) μg · g −1 , respectively. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated as well as discussed. It demonstrated that the adsorption of BMP-2 onto HA could be described by the pseudo second-order equation. Adsorption of BMP-2 onto HA followed the Langmuir isotherm. It confirmed that compared with other samples HA-whisker had more adsorption sites for its high specific surface area which could provide more opportunities for protein molecules. The adsorption processes were endothermic (ΔH > 0), spontaneous (ΔG < 0) and entropy increasing (ΔS > 0). A possible adsorption mechanism has been proposed. In addition, the BMP-2 could be adsorbed to the surface which existed slight conformational changes by FT-IR. - Highlights: • A novel protein adsorption studies based on sheet, rod and whisker of HA were designed. • Kinetic and thermodynamics parameters of BMP-2 and HA bonded materials were evaluated. • Surface topographies of the HA effect BMP-2 adsorption • The HA-whisker material had excellent adsorption performance for protein enrichment. • The electrostatic interaction is responsible for the BMP-2

  6. Kinetic study of formation of sodalite from a kaolin waste of Jari river - PA, Brazil

    International Nuclear Information System (INIS)

    Silva, L.N. da; Paz, S.P.A. da; Angelica, R.S.; Neves, R.F.

    2011-01-01

    Zeolites are materials with a wide industrial application, which has motivated the development of a large number of scientific papers on this topic. This work presents a kinetic study of the formation process of sodalite produced from the reaction of the kaolin waste in the presence of sodium hydroxide solution (5M) performed at temperatures of 80, 100, 120 and 150 ° C. The process was conducted in batch, static, and autoclaves lined with Teflon, and monitoring the kinetics was performed by ex situ XRD analysis of the materials obtained in the time interval from 2 to 24 hours. The kinetic model that best describes this transformation is zero-order homogeneous reaction. Finally, we conclude that the technique of X-ray diffraction is a powerful tool to study the kinetics of phase transformation ex situ. (author)

  7. Flow-Based Systems for Rapid and High-Precision Enzyme Kinetics Studies

    Directory of Open Access Journals (Sweden)

    Supaporn Kradtap Hartwell

    2012-01-01

    Full Text Available Enzyme kinetics studies normally focus on the initial rate of enzymatic reaction. However, the manual operation of steps of the conventional enzyme kinetics method has some drawbacks. Errors can result from the imprecise time control and time necessary for manual changing the reaction cuvettes into and out of the detector. By using the automatic flow-based analytical systems, enzyme kinetics studies can be carried out at real-time initial rate avoiding the potential errors inherent in manual operation. Flow-based systems have been developed to provide rapid, low-volume, and high-precision analyses that effectively replace the many tedious and high volume requirements of conventional wet chemistry analyses. This article presents various arrangements of flow-based techniques and their potential use in future enzyme kinetics applications.

  8. Study of kinetics and mechanism of diazo compound reactions using nuclear chemical polarization

    International Nuclear Information System (INIS)

    Gragerov, I.P.; Levit, A.F.; Kiprianova, L.A.; Buchachenko, A.L.; Sterleva, T.G.

    1975-01-01

    It has been established that at the rate-determining steps of the radical reactions in which aniline interacts with isoamyl nitrite and substituted diazo salts interact with sodium methylate, tertiary fatty amines, or phosphinic acid, no transfer of a single electron occurs. The processes of single electron transfer do not seem to play a decisive role in the kinetics of most transformations of diazo compounds. Chemical nuclear polarization is shown to be suitable for kinetic studies of fast radical processes

  9. Gravimetric and conductometric studies of the sedimentation kinetics in aqueous dispersions of kaoline

    International Nuclear Information System (INIS)

    Bulavyin, L.A.; Khrapatij, S.V.; Koval'chuk, V.Yi.; Klepko, V.V.; Lebovka, M.Yi.

    2006-01-01

    Using gravimetric and conductometric methods, the sedimentation kinetics in aqueous suspensions of Alekseev kaoline has been studied for pH value range from 4 to 10. It has been found that pH increasing leads to the decreasing of mean radii of flocks linearly. We found that sedimentation kinetics for intermediate pH values can be described by scaling equations that crossover time defined transition from a gravitational mechanism of deposition to the diffusion one

  10. A study of sodium oxide crystallization mechanisms and kinetics in cold traps

    International Nuclear Information System (INIS)

    Latge, C.

    1984-04-01

    After showing up the present lack of data on crystallization mechanisms and kinetics, a number of tests were conducted on a sodium test loop equipped with two experimental cold traps. The effects of several geometric and thermohydraulic parameters on purification efficiency were also studied. The test results were used to develop a simulation model. An optimization code based on the model can be used to determine the nucleation and growth kinetics

  11. Functional studies on the phosphatidychloride transfer protein

    NARCIS (Netherlands)

    Brouwer, A.P.M. de

    2002-01-01

    The phosphatidylcholine transfer protein (PC-TP) has been studied for over 30 years now. Despite extensive research concerning the biochemical, biophysical and structural properties of PC-TP, the function of this protein is still elusive. We have studied in vitro the folding and the mechanism of PC

  12. Endocytosis of the major yolk proteins of the silkmoth, Hyalophora cecropia: Uptake kinetics and interactions

    International Nuclear Information System (INIS)

    Kulakosky, P.C.

    1989-01-01

    The oocytes of Lepidopteran insects take up several yolk proteins in defined proportions even though their relative availability in the hemolymph changes during the several days required to complete yolk formation in all the eggs. There are three hemolymph yolk precursors, vitellogenin, microvitellogenin and lipophorin; one precursor, paravitellogenin is produced in the ovary. The control mechanism for their proportional endocytosis is not known. In this thesis, the author describe the purification of all four proteins and the radiolabeling of the hemolymph precursors. The radiolabeled proteins were tested with an in vitro incubation system to assess the biological activity of the proteins and the reliability of the incubation methods. All of the labeled probes were transferred from the incubation medium to yolk spheres within the oocyte in a saturable, energy-dependent, and stage-specific manner. The rates of uptake were similar to the estimated rates of uptake in situ. The concentration dependence of in vitro uptake was investigated and found to be consistent with in situ concentrations and the composition of yolk in mature eggs. Two precursors, vitellogenin and lipophorin, competed for uptake indicating that they share a common binding site while the third, microvitellin, did not compete with the others. Though vitellogenin and lipophorin competed for uptake, only vitellogenin displayed the unique ability to increase the uptake rate of microvitellin and fluid in vitro

  13. Thermogravimetric analysis and kinetic study of formation of lithium titanate by solid state route

    International Nuclear Information System (INIS)

    Sonak, Sagar; Jain, Uttam; Sahu, Ashok Kumar; Kumar, Sanjay; Krishnamurthy, Nagaiyar

    2015-01-01

    The kinetics of formation of lithium titanate from the solid state reaction of lithium carbonate and titanium oxide was studied using non-isothermal thermogravimetric technique. Thermogravimetric data for the reaction of lithium carbonate and titanium oxide was obtained at various heating rates. The methods such as Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose were used to estimate the kinetic parameters from the obtained thermogravimetric data. The average activation energy for the formation of lithium titanate by solid state route was found to be 243 kJ/mol K. The reaction mechanism was determined by the method given by Malek. It was found that the three dimensional diffusion model best describes the reaction kinetics. A kinetic equation describing the reaction is proposed and reaction mechanism is discussed

  14. Kinetic Study on the Esterification of Palm Fatty Acid Distillate (PFAD) Using Heterogeneous Catalyst

    Science.gov (United States)

    Rofiqah, U.; Djalal, R. A.; Sutrisno, B.; Hidayat, A.

    2018-05-01

    Esterification with heterogeneous catalysts is believed to have advantages compared to homogeneous catalysts. Palm Fatty Acid Distillate (PFAD) was esterified by ZrO2 -SO4 2-/natural zeolite at temperature variation of 55°C, 60°C, and 65°C to produce biodiesel. Determination of reaction kinetics was done by experiment and modeling. Kinetic study was approached using pseudo-homogeneous model of first order. For experiment, reaction kinetics were 0.0031 s-1, 0.0054 s-1, and 0.00937 s-1 for a temperature of 55 °C, 60 °C and 65 °C, respectively. For modelling, reaction kinetics were 0.0030 s-1, 0.0055 s-1, and 0.0090 s-1 for a temperature of 55°C, 60°C and 65°C, respectively. Rate and conversion of reaction are getting increased by increasing temperature.

  15. Studies of the kinetics of radiation induced spurs

    International Nuclear Information System (INIS)

    Green, N.J.B.

    1982-12-01

    This thesis addresses two major unresolved problems of diffusion-controlled reaction kinetics: diffusion and reaction in a system containing a small number of particles and the geminate recombination of ions. The few particle system is approached from the assumption that all pair distances evolve independently. From this assumption a Master equation is set up with which the discrete nature of the reaction process in removing particles in pairs is described. The independent pairs assumption gives an expression for the time-dependent rate of transition between states of the process. The model is compared with direct Monte Carlo simulations of the diffusion-reaction process for systems where the initial distribution of particles is Gaussian. Several gross effects are accounted for quantitatively. Minor discrepancies are resolved by further comparison with a Monte Carlo formulation of the independent pairs model which accounts for all initial correlations. Several extensions of the model are discussed, in particular the extensions to systems of charged particles and scavenging reactions. In order to make the extension to account for Coulomb forces, the recombination of a geminate charged pair must be analysed. The analysis is made in terms of the mathematical theory of diffusion. (author)

  16. Study on the numerical analysis of nuclear reactor kinetics equations

    International Nuclear Information System (INIS)

    Yang, J.C.

    1980-01-01

    A two-step alternating direction explict method is proposed for the solution of the space-and time-dependent diffusion theory reactor kinetics equations in two space dimensions as a special case of the general class of alternating direction implicit method and the truncation error of this method is estimated. To test the validity of this method it is applied to the Pressurized Water Reactor and CANDU-PHW reactor which have been operating and underconstructing in Korea. The time dependent neutron flux of the PWR reactor during control rod insertion and time dependent neutronic power of CANDU-PHW reactor in the case of postulated loss of coolant accident are obtained from the numerical calculation results. The results of the PWR reactor problem are shown the close agreement between implicit-difference method used in the TWIGL program and this method, and the results of the CANDU-PHW reactor are compared with the results of improved quasistic method and modal method. (Author)

  17. Binding of Cimetidine to Balb/C Mouse Liver Catalase; Kinetics and Conformational Studies.

    Science.gov (United States)

    Jahangirvand, Mahboubeh; Minai-Tehrani, Dariush; Yazdi, Fatemeh; Minai-Tehrani, Arash; Razmi, Nematollah

    2016-01-01

    Catalase is responsible for converting hydrogen peroxide (H2O2) into water and oxygen in cells. This enzyme has high affinity for hydrogen peroxide and can protect the cells from oxidative stress damage. Catalase is a tetramer protein and each monomer contains a heme group. Cimetidine is a histamine H2 receptor blocker which inhibits acid release from stomach and is used for gasterointestinal diseases. In this research, effect of cimetidine on the activity of liver catalase was studied and the kinetic parameters of this enzyme and its conformational changes were investigated. Cell free extract of mouse liver was used for the catalase assay. The activity of the catalase was detected in the absence and presence of cimetidine by monitoring hydrogen peroxide reduction absorbance at 240 nm. The purified enzyme was used for conformational studies by Fluorescence spectrophotometry. The data showed that cimetidine could inhibit the enzyme in a non-competitive manner. Ki and IC50 values of the drug were determined to be about 0.75 and 0.85 uM, respectively. The Arrhenius plot showed that activation energy was 6.68 and 4.77 kJ/mol in the presence and absence of the drug, respectively. Fluorescence spectrophotometry revealed that the binding of cimetidine to the purified enzyme induced hyperchromicity and red shift which determined the conformational change on the enzyme. Cimetidine could non-competitively inhibit the liver catalase with high affinity. Binding of cimetidine to the enzyme induced conformational alteration in the enzyme.

  18. A kinetic study of the in vivo incorporation of 65Zn into the rat hippocampus

    International Nuclear Information System (INIS)

    Sato, S.M.; Frazier, J.M.; Goldberg, A.M.

    1984-01-01

    Previous autoradiographical studies utilizing 65 Zn demonstrated an apparent concentration of 65 Zn in the mossy fiber boutons of the hippocampus. To examine the speciation of the 65 Zn pool found in this neuronal pathway, we investigated the in vivo incorporation of systemic 65 Zn into rat hippocampus compared with other brain regions. We were especially interested in kinetically assessing the zinc associated with three previously identified cytosolic zinc-binding species found in the hippocampus. The hypothesis that two of these cytosolic zinc-binding species, a metallothionein-like protein and a putative zinc-glutathione complex, may be responsible for the sequestration of zinc in the hippocampus was tested. It was confirmed that the t 1/2 of hippocampal zinc is longer than other brain regions that were studied. Furthermore, we observed that 65 Zn is incorporated into three cytosolic zinc-binding species in the hippocampus as resolved using Ultrogel AcA 34 gel permeation chromatography. One of these species, the putative zinc-glutathione complex, accumulates zinc more slowly than the other species. The data suggest that the putative zinc-glutathione complex may represent an important 65 Zn pool in the hippocampus. This finding is in accordance with out hypothesis that a zinc-binding species, specifically, the putative zinc-glutathione complex, may be responsible for the sequestration of zinc in the hippocampal mossy boutons

  19. Glutamic Acid Signal Synchronizes Protein Synthesis Kinetics in Hepatocytes from Old Rats for the Following Several Days. Cell Metabolism Memory.

    Science.gov (United States)

    Brodsky, V Y; Malchenko, L A; Lazarev, D S; Butorina, N N; Dubovaya, T K; Zvezdina, N D

    2018-03-01

    The kinetics of protein synthesis was investigated in primary cultures of hepatocytes from old rats in serum-free medium. The rats were fed mixed fodder supplemented with glutamic acid and then transferred to a regular mixed fodder. The amplitude of protein synthesis rhythm in hepatocytes isolated from these rats increased on average 2-fold in comparison with the rats not receiving glutamic acid supplement. Based on this indicator reflecting the degree of cell-cell interactions, the cells from old rats were not different from those of young rats. The effect was preserved for 3-4 days. These results are discussed in connection with our previous data on preservation of the effect of single administration of gangliosides, noradrenaline, serotonin, and other synchronizers on various cell populations. In contrast to the other investigated factors, glutamic acid is capable of penetrating the blood-brain barrier, which makes its effect possible not only in the case of hepatocytes and other non-brain cells, but also in neurons.

  20. Periodic protein adsorption at the gold/biotin aqueous solution interface: evidence of kinetics with time delay

    Science.gov (United States)

    Neff, H.; Laborde, H. M.; Lima, A. M. N.

    2016-11-01

    An oscillatory molecular adsorption pattern of the protein neutravidin from aqueous solution onto gold, in presence of a pre-deposited self assembled mono-molecular biotin film, is reported. Real time surface Plasmon resonance sensing was utilized for evaluation of the adsorption kinetics. Two different fractions were identified: in the initial phase, protein molecules attach irreversibly onto the Biotin ligands beneath towards the jamming limit, forming a neutravidin-biotin fraction. Afterwards, the growth rate exhibits distinct, albeit damped adsorption-desorption oscillations over an extended time span, assigned to a quasi reversibly bound fraction. These findings agree with, and firstly confirm a previously published model, proposing macro-molecular adsorption with time delay. The non-linear dynamic model is applicable to and also resembles non-damped oscillatory binding features of the hetero-catalytic oxidation of carbon monoxide molecules on platinum in the gas phase. An associated surface residence time can be linked to the dynamics and time scale required for self-organization.

  1. c-SRC mediates neurite outgrowth through recruitment of Crk to the scaffolding protein Sin/Efs without altering the kinetics of ERK activation

    DEFF Research Database (Denmark)

    Yang, Liang-Tung; Alexandropoulos, Konstantina; Sap, Jan

    2002-01-01

    moderate activation of endogenous SRC by receptor-protein-tyrosine phosphatase alpha (a physiological SRC activator). We show that such a qualitative change in the response to EGF is not accompanied by changes in the extent or kinetics of ERK induction in response to this factor. Instead, the pathway...

  2. Pyrolysis of Waste Castor Seed Cake: A Thermo-Kinetics Study

    Directory of Open Access Journals (Sweden)

    Abdullahi Muhammad Sokoto

    2018-03-01

    Full Text Available Biomass pyrolysis is a thermo-chemical conversion process that is of both industrial and ecological importance. The efficient chemical transformation of waste biomass to numerous products via pyrolysis reactions depends on process kinetic rates; hence the need for kinetic models to best design and operate the pyrolysis. Also, for an efficient design of an environmentally sustainable pyrolysis process of a specific lignocellulosic waste, a proper understanding of its thermo-kinetic behavior is imperative. Thus, pyrolysis kinetics of castor seed de-oiled cake (Ricinus communis using thermogravimetric technique was studied. The decomposition of the cake was carried out in a nitrogen atmosphere with a flow rate of 100mL min-1 from ambient temperature to 900 °C. The results of the thermal profile showed moisture removal and devolatilization stages, and maximum decomposition of the cake occurred at a temperature of 200-400 °C. The kinetic parameters such as apparent activation energy, pre-exponential factor, and order of reaction were determined using Friedman (FD, Kissinger-Akahira-Sunose (KAS, and Flynn-Wall-Ozawa (FWO kinetic models. The average apparent activation energy values of 124.61, 126.95 and 129.80 kJmol-1 were calculated from the slopes of the respective models. The apparent activation energy values obtained depends on conversion, which is an evidence of multi-step kinetic process during the pyrolytic decomposition of the cake. The kinetic data would be of immense benefit to model, design and develop a suitable thermo-chemical system for the conversion of waste de-oil cake to energy carrier.

  3. Experimental and Chemical Kinetic Modeling Study of Dimethylcyclohexane Oxidation and Pyrolysis

    KAUST Repository

    Eldeeb, Mazen A.

    2016-08-30

    A combined experimental and chemical kinetic modeling study of the high-temperature ignition and pyrolysis of 1,3-dimethylcyclohexane (13DMCH) is presented. Ignition delay times are measured behind reflected shock waves over a temperature range of 1049–1544 K and pressures of 3.0–12 atm. Pyrolysis is investigated at average pressures of 4.0 atm at temperatures of 1238, 1302, and 1406 K. By means of mid-infrared direct laser absorption at 3.39 μm, fuel concentration time histories are measured under ignition and pyrolytic conditions. A detailed chemical kinetic model for 13DMCH combustion is developed. Ignition measurements show that the ignition delay times of 13DMCH are longer than those of its isomer, ethylcyclohexane. The proposed chemical kinetic model predicts reasonably well the effects of equivalence ratio and pressure, with overall good agreement between predicted and measured ignition delay times, except at low dilution levels and high pressures. Simulated fuel concentration profiles agree reasonably well with the measured profiles, and both highlight the influence of pyrolysis on the overall ignition kinetics at high temperatures. Sensitivity and reaction pathway analyses provide further insight into the kinetic processes controlling ignition and pyrolysis. The work contributes toward improved understanding and modeling of the oxidation and pyrolysis kinetics of cycloalkanes.

  4. Equilibrium, kinetic and thermodynamic studies of uranium biosorption by calcium alginate beads

    International Nuclear Information System (INIS)

    Bai, Jing; Fan, Fangli; Wu, Xiaolei; Tian, Wei; Zhao, Liang; Yin, Xiaojie; Fan, Fuyou; Li, Zhan; Tian, Longlong; Wang, Yang; Qin, Zhi; Guo, Junsheng

    2013-01-01

    Calcium alginate beads are potential biosorbent for radionuclides removal as they contain carboxyl groups. However, until now limited information is available concerning the uptake behavior of uranium by this polymer gel, especially when sorption equilibrium, kinetics and thermodynamics are concerned. In present work, batch experiments were carried out to study the equilibrium, kinetics and thermodynamics of uranium sorption by calcium alginate beads. The effects of initial solution pH, sorbent amount, initial uranium concentration and temperature on uranium sorption were also investigated. The determined optimal conditions were: initial solution pH of 3.0, added sorbent amount of 40 mg, and uranium sorption capacity increased with increasing initial uranium concentration and temperature. Equilibrium data obtained under different temperatures were fitted better with Langmuir model than Freundlich model, uranium sorption was dominated by a monolayer way. The kinetic data can be well depicted by the pseudo-second-order kinetic model. The activation energy derived from Arrhenius equation was 30.0 kJ/mol and the sorption process had a chemical nature. Thermodynamic constants such as ΔH 0 , ΔS 0 and ΔG 0 were also evaluated, results of thermodynamic study showed that the sorption process was endothermic and spontaneous. -- Highlights: • Equilibrium, kinetics and thermodynamics of uranium sorption by CaAlg were studied. • Equilibrium studies show that Langmuir isotherm better fit with experimental data. • Pseudo-second-order kinetics model is found to be well depicting the kinetic data. • Thermodynamic study shows that the sorption process is endothermic and spontaneous

  5. Studying protein assembly with reversible Brownian dynamics of patchy particles

    International Nuclear Information System (INIS)

    Klein, Heinrich C. R.; Schwarz, Ulrich S.

    2014-01-01

    Assembly of protein complexes like virus shells, the centriole, the nuclear pore complex, or the actin cytoskeleton is strongly determined by their spatial structure. Moreover, it is becoming increasingly clear that the reversible nature of protein assembly is also an essential element for their biological function. Here we introduce a computational approach for the Brownian dynamics of patchy particles with anisotropic assemblies and fully reversible reactions. Different particles stochastically associate and dissociate with microscopic reaction rates depending on their relative spatial positions. The translational and rotational diffusive properties of all protein complexes are evaluated on-the-fly. Because we focus on reversible assembly, we introduce a scheme which ensures detailed balance for patchy particles. We then show how the macroscopic rates follow from the microscopic ones. As an instructive example, we study the assembly of a pentameric ring structure, for which we find excellent agreement between simulation results and a macroscopic kinetic description without any adjustable parameters. This demonstrates that our approach correctly accounts for both the diffusive and reactive processes involved in protein assembly

  6. Studying protein assembly with reversible Brownian dynamics of patchy particles

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Heinrich C. R. [Institute for Theoretical Physics, Heidelberg University, 69120 Heidelberg (Germany); Schwarz, Ulrich S., E-mail: ulrich.schwarz@bioquant.uni-heidelberg.de [Institute for Theoretical Physics, Heidelberg University, 69120 Heidelberg (Germany); BioQuant, Heidelberg University, 69120 Heidelberg (Germany)

    2014-05-14

    Assembly of protein complexes like virus shells, the centriole, the nuclear pore complex, or the actin cytoskeleton is strongly determined by their spatial structure. Moreover, it is becoming increasingly clear that the reversible nature of protein assembly is also an essential element for their biological function. Here we introduce a computational approach for the Brownian dynamics of patchy particles with anisotropic assemblies and fully reversible reactions. Different particles stochastically associate and dissociate with microscopic reaction rates depending on their relative spatial positions. The translational and rotational diffusive properties of all protein complexes are evaluated on-the-fly. Because we focus on reversible assembly, we introduce a scheme which ensures detailed balance for patchy particles. We then show how the macroscopic rates follow from the microscopic ones. As an instructive example, we study the assembly of a pentameric ring structure, for which we find excellent agreement between simulation results and a macroscopic kinetic description without any adjustable parameters. This demonstrates that our approach correctly accounts for both the diffusive and reactive processes involved in protein assembly.

  7. Structural, kinetic and proteomic characterization of acetyl phosphate-dependent bacterial protein acetylation.

    Directory of Open Access Journals (Sweden)

    Misty L Kuhn

    Full Text Available The emerging view of Nε-lysine acetylation in eukaryotes is of a relatively abundant post-translational modification (PTM that has a major impact on the function, structure, stability and/or location of thousands of proteins involved in diverse cellular processes. This PTM is typically considered to arise by the donation of the acetyl group from acetyl-coenzyme A (acCoA to the ε-amino group of a lysine residue that is reversibly catalyzed by lysine acetyltransferases and deacetylases. Here, we provide genetic, mass spectrometric, biochemical and structural evidence that Nε-lysine acetylation is an equally abundant and important PTM in bacteria. Applying a recently developed, label-free and global mass spectrometric approach to an isogenic set of mutants, we detected acetylation of thousands of lysine residues on hundreds of Escherichia coli proteins that participate in diverse and often essential cellular processes, including translation, transcription and central metabolism. Many of these acetylations were regulated in an acetyl phosphate (acP-dependent manner, providing compelling evidence for a recently reported mechanism of bacterial Nε-lysine acetylation. These mass spectrometric data, coupled with observations made by crystallography, biochemistry, and additional mass spectrometry showed that this acP-dependent acetylation is both non-enzymatic and specific, with specificity determined by the accessibility, reactivity and three-dimensional microenvironment of the target lysine. Crystallographic evidence shows acP can bind to proteins in active sites and cofactor binding sites, but also potentially anywhere molecules with a phosphate moiety could bind. Finally, we provide evidence that acP-dependent acetylation can impact the function of critical enzymes, including glyceraldehyde-3-phosphate dehydrogenase, triosephosphate isomerase, and RNA polymerase.

  8. Kinetics of corneal epithelium turnover in vivo. Studies of lovastatin

    International Nuclear Information System (INIS)

    Cenedella, R.J.; Fleschner, C.R.

    1990-01-01

    The authors developed a direct chemical approach for estimating the rate of turnover of the corneal epithelium in vivo. The method was used to examine the effects of lovastatin, a potent inhibitor of cholesterol biosynthesis, on proliferation and turnover of the epithelium. Corneal DNA was labeled by pulse injection (IP) of the rat with 3H-thymidine, and 3H-labeled DNA was recovered from peripheral and central corneas over the next 15 days. Only the epithelium became labeled, and the loss of label by cell desquamation began 3 days after injection. The loss of 3H-DNA from the cornea (peripheral plus central region) followed first-order kinetics. The half-life of the disappearance was about 3 days. The peripheral cornea became more highly labeled than the central cornea and began to lose 3H-DNA before the central cornea. These observations support the possibility of a higher mitotic rate in the peripheral region and the centripetal movement of a population of peripheral epithelial cells in the normal cornea. The half-lives of the disappearance of 3H-DNA from peripheral and central corneas measured between days 5 and 15 postinjection were identical, both at 3 days. Complete turnover of the corneal epithelium would, therefore, require about 2 weeks (4-5 half-lives). Treatment of the rat with lovastatin had no obvious effects upon the proliferation or turnover of the corneal epithelium. Although lovastatin inhibited corneal 3-hydroxy-3-methylglutaryl coenzyme A reductase, the key regulatory enzyme of cholesterol synthesis, the cornea compensated by induction of this enzyme so that there was no net inhibition of cholesterol synthesis in the cornea

  9. Analysis of cannabinoids in commercial hemp seed oil and decarboxylation kinetics studies of cannabidiolic acid (CBDA).

    Science.gov (United States)

    Citti, Cinzia; Pacchetti, Barbara; Vandelli, Maria Angela; Forni, Flavio; Cannazza, Giuseppe

    2018-02-05

    Hemp seed oil from Cannabis sativa L. is a very rich natural source of important nutrients, not only polyunsaturated fatty acids and proteins, but also terpenes and cannabinoids, which contribute to the overall beneficial effects of the oil. Hence, it is important to have an analytical method for the determination of these components in commercial samples. At the same time, it is also important to assess the safety of the product in terms of amount of any psychoactive cannabinoid present therein. This work presents the development and validation of a highly sensitive, selective and rapid HPLC-UV method for the qualitative and quantitative determination of the main cannabinoids, namely cannabidiolic acid (CBDA), tetrahydrocannabinolic acid (THCA), cannabidiol (CBD), tetrahydrocannabinol (THC), cannabinol (CBN), cannabigerol (CBG) and cannabidivarin (CBDV), present in 13 commercial hemp seed oils. Moreover, since decomposition of cannabinoid acids generally occurs with light, air and heat, decarboxylation studies of the most abundant acid (CBDA) were carried out in both open and closed reactor and the kinetics parameters were evaluated at different temperatures in order to evaluate the stability of hemp seed oil in different storage conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Protein fiber linear dichroism for structure determination and kinetics in a low-volume, low-wavelength couette flow cell.

    Science.gov (United States)

    Dafforn, Timothy R; Rajendra, Jacindra; Halsall, David J; Serpell, Louise C; Rodger, Alison

    2004-01-01

    High-resolution structure determination of soluble globular proteins relies heavily on x-ray crystallography techniques. Such an approach is often ineffective for investigations into the structure of fibrous proteins as these proteins generally do not crystallize. Thus investigations into fibrous protein structure have relied on less direct methods such as x-ray fiber diffraction and circular dichroism. Ultraviolet linear dichroism has the potential to provide additional information on the structure of such biomolecular systems. However, existing systems are not optimized for the requirements of fibrous proteins. We have designed and built a low-volume (200 microL), low-wavelength (down to 180 nm), low-pathlength (100 microm), high-alignment flow-alignment system (couette) to perform ultraviolet linear dichroism studies on the fibers formed by a range of biomolecules. The apparatus has been tested using a number of proteins for which longer wavelength linear dichroism spectra had already been measured. The new couette cell has also been used to obtain data on two medically important protein fibers, the all-beta-sheet amyloid fibers of the Alzheimer's derived protein Abeta and the long-chain assemblies of alpha1-antitrypsin polymers.

  11. Evaporation kinetics in the hanging drop method of protein crystal growth

    Science.gov (United States)

    Baird, James K.; Frieden, Richard W.; Meehan, E. J., Jr.; Twigg, Pamela J.; Howard, Sandra B.; Fowlis, William A.

    1987-01-01

    An engineering analysis of the rate of evaporation of solvent in the hanging drop method of protein crystal growth is presented; these results are applied to 18 different drop and well arrangements commonly encountered in the laboratory, taking into account the chemical nature of the salt, the drop size and shape, the drop concentration, the well size, the well concentration, and the temperature. It is found that the rate of evaporation increases with temperature, drop size, and with the salt concentration difference between the drop and the well. The evaporation possesses no unique half-life. Once the salt in the drop achieves about 80 percent of its final concentration, further evaporation suffers from the law of diminishing returns.

  12. Laboratory studies on the adsorption kinetics of 137Cs in sediment

    International Nuclear Information System (INIS)

    Jaison, T.J.; Patra, A.K.; Ravi, P.M.; Sarkar, P.K.

    2012-01-01

    During the operation of a nuclear reactor, extreme care is taken to minimize the release of radionuclides to the environment. Low level radioactive liquid waste generated is treated and released to the nearest water body after monitoring to ensure that the activity levels are well within the regulatory limits. Environmental Survey Laboratories (ESL) attached to power plants carry out a systematic environmental monitoring and impact assessment to ensure that the dose to the member of public is well within the limits. This paper presents the results of a systematic laboratory study carried out at ESL, Kakrapar Atomic Power Station (KAPS) on the adsorption kinetics of 137 Cs in sediment. The study is to evaluate the sorption kinetics of 137 Cs + onto site specific sediment. Sets of adsorption experiments were conducted at specific time intervals for two different 137 Cs + concentrations, keeping other experimental conditions same. The kinetics of 137 Cs + adsorption on sediment is analyzed using pseudo first order, pseudo second order, and intra-particle diffusion kinetic models. The pseudo-second order kinetic model is better correlated with the kinetics data compared with the pseudo first-order model. This indicates 137 Cs + ions can be involved in chemical bonding during the adsorption process to the analysed sediment. This chemi-sorption processes show a good compliance with the pseudo-second order kinetic model. It is also evident that lower concentration exhibits greater adsorption rate (k 2 value is 1.85 x 10 -5 Bq g -1 min -1 for 1245 Bq sets and 1.05 x 10 -5 Bq g -1 min -1 for 2456 Bq sets) from the pseudo second order model. Intra-particle diffusion rate constants (K id ) were also obtained by two different models for both the concentrations and found to be higher for higher concentration. (author)

  13. Kinetic study of the dehydration reaction of lithium sulfate monohydrate crystals using microscopy and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Shuiquan [Department of Mechanical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612AZ Eindhoven (Netherlands); Zondag, Herbert [Department of Mechanical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612AZ Eindhoven (Netherlands); Energy research Center of the Netherlands – ECN, P.O. Box 1, 1755ZG Petten (Netherlands); Steenhoven, Anton van [Department of Mechanical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612AZ Eindhoven (Netherlands); Rindt, Camilo, E-mail: c.c.m.rindt@tue.nl [Department of Mechanical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612AZ Eindhoven (Netherlands)

    2015-12-10

    Highlights: • Kinetics of Li{sub 2}SO{sub 4}·H{sub 2}O single crystals were modeled based on elementary processes. • Kinetics of nucleation and nuclei growth were studied by using optical microscopy. • A novel experiment was designed to visualize the reaction front into crystal bulk. • Fractional conversion was calculated and compared with TGA-experiments. - Abstract: Simulation of gas–solid reactions occurring in industrial processes requires a robust kinetic model to be applicable in a wide range of complicated reaction conditions. However, in literature it is often seen that even the same reaction under specific controlled conditions is interpreted with different kinetic models. In the present work, a phenomenological model based on nucleation and nuclei growth processes is presented to study the kinetics of the dehydration reaction of lithium sulfate monohydrate single crystals. The two elementary processes of the reaction, nucleation and nuclei growth, are characterized and quantified as a function of temperature by using optical microscopy experiments. The in-situ measured characteristics of the dehydration reaction provided confirmatory evidence that the rate of nucleation obeys an exponential law and the rate of nuclei growth is approximately constant. With knowledge acquired from the optical observations as inputs of the kinetic model, the fractional conversion of the dehydration reaction was calculated and compared with experimental results from thermogravimetric analysis (TGA). A satisfactory comparison was found both in isothermal and non-isothermal conditions. It is demonstrated that this knowledge-based model has a great potential to represent the gas–solid reaction kinetics in a wide range of process conditions regarding temperature, pressure and particle geometry.

  14. Observing Protein & Energy Nutrition (OPEN) Study

    Science.gov (United States)

    The Observing Protein and Energy Nutrition (OPEN) Study was designed to assess dietary measurement error by comparing results from self-reported dietary intake data with four dietary biomarkers: doubly labeled water and urinary nitrogen, sodium, and potassium.

  15. Studying Catabolism of Protein ADP-Ribosylation.

    Science.gov (United States)

    Palazzo, Luca; James, Dominic I; Waddell, Ian D; Ahel, Ivan

    2017-01-01

    Protein ADP-ribosylation is a conserved posttranslational modification that regulates many major cellular functions, such as DNA repair, transcription, translation, signal transduction, stress response, cell division, aging, and cell death. Protein ADP-ribosyl transferases catalyze the transfer of an ADP-ribose (ADPr) group from the β-nicotinamide adenine dinucleotide (β-NAD + ) cofactor onto a specific target protein with the subsequent release of nicotinamide. ADP-ribosylation leads to changes in protein structure, function, stability, and localization, thus defining the appropriate cellular response. Signaling processes that are mediated by modifications need to be finely tuned and eventually silenced and one of the ways to achieve this is through the action of enzymes that remove (reverse) protein ADP-ribosylation in a timely fashion such as PARG, TARG1, MACROD1, and MACROD2. Here, we describe several basic methods used to study the enzymatic activity of de-ADP-ribosylating enzymes.

  16. Shock wave, fluid instability and implosion studies with a kinetic particle approach

    Science.gov (United States)

    Sagert, Irina; Even, Wesley P.; Strother, Terrance T.

    2016-10-01

    Many problems in laboratory plasma physics are subject to flows that move between the continuum and the kinetic regime. The correct description of these flows is crucial in order to capture their impact on the system's dynamical evolution. Examples are capsule implosions in inertial confinement fusion (ICF). Although their dynamics is predominantly shaped by shock waves and fluid instabilities, non-equilibrium flows in form of deuterium/tritium ions have been shown to play a significant role. We present recent studies with our Monte Carlo kinetic particle code that is designed to capture continuum and kinetic flows in large physical systems with possible applications in ICF studies. Discussed results will include standard shock wave and fluid instability tests and simulations that are adapted towards future ICF studies with comparisons to hydrodynamic simulations. This work used the Wolf TriLAB Capacity Cluster at LANL. I.S. acknowledges support through a Director's fellowship (20150741PRD3) from Los Alamos National Laboratory.

  17. Peptide models of protein metastable binding sites: competitive kinetics of isomerization and hydrolysis.

    Science.gov (United States)

    Khan, S A; Sekulski, J M; Erickson, B W

    1986-09-09

    alpha 2-Macroglobulin and the complement components C3 and C4 each contain a metastable binding site that is essential for covalent attachment. Two cyclic peptides are useful models of these unusual protein sites. Five-membered lactam 1 (CH3CO-Gly-Cys-Gly-Glu-Glp-Asn-NH2) contains an internal residue of pyroglutamic acid (Glp). Fifteen-membered thiolactone 2 (CH3CO-Gly-Cys-Gly-Glu-Glu-Asn-NH2 15-thiolactone) contains a thiol ester bond between Cys-2 and Glu-5. These isomeric hexapeptides are spontaneously interconverted in water. Competing with the two isomerization reactions are three reactions involving hydrolysis of 1 and 2. These five processes were found to occur simultaneously under physiologic conditions (phosphate-buffered saline, pH 7.3, 37 degrees C). Best estimates of the five rate constants for these apparent first-order reactions were obtained by comparing the observed molar percentages of peptides 1-4 with those calculated from a set of exponential equations. Both isomerization reactions (ring expansion of 1 to 2, k1 = 6.4 X 10(-5) s-1; ring contraction of 2 to 1, k-1 = 69 X 10(-5) s-1) proceeded faster than any of the hydrolysis reactions: alpha-cleavage of 1 with fragmentation to form dipeptide 3 (k2 = 3.3 X 10(-5) s-1), gamma-cleavage of 1 with ring opening to yield mercapto acid 4 (k3 = 0.35 X 10(-5) s-1), and hydrolysis of 2 with ring opening to give 4 (k4 = 1.9 X 10(-5) s-1). The isomerization rate ratio (k1/k-1 = 10.9) agreed with the isomer ratio at equilibrium (1:2 = 11 starting from 1 and 10 starting from 2). The alpha/gamma regioselectivity ratio (k2/k3 = 9.7) for hydrolysis of the internal Glp residue of 1 was consistent with results for model tripeptides. Part of the chemistry of the protein metastable binding sites can be explained by similar isomerization and hydrolysis reactions.

  18. Modifications in cell cycle kinetics and in expression of G1 phase-regulating proteins in human amniotic cells after exposure to electromagnetic fields and ionizing radiation.

    Science.gov (United States)

    Lange, S; Viergutz, T; Simkó, M

    2004-10-01

    Low-frequency electromagnetic fields are suspected of being involved in carcinogenesis, particularly in processes that could be related to cancer promotion. Because development of cancer is associated with deregulated cell growth and we previously observed a magnetic field-induced decrease in DNA synthesis [Lange et al. (2002) Alterations in the cell cycle and in the protein level of cyclin D1p, 21CIP1, and p16INK4a after exposure to 50 HZ. MF in human cells. Radiat. Environ. Biophys.41, 131], this study aims to document the influence of 50 Hz, 1 mT magnetic fields (MF), with or without initial gamma-ionizing radiation (IR), on the following cell proliferation-relevant parameters in human amniotic fluid cells (AFC): cell cycle distribution, expression of the G1 phase-regulating proteins Cdk4, cyclin D1, p21CIP1 and p16INK4a, and Cdk4 activity. While IR induced a G1 delay and a dose-dependent G2 arrest, no discernible changes in cell cycle kinetics were observed due to MF exposure. However, a significant decrease in the protein expression of cyclin D1 and an increase in p21CIP1- and p16INK4a-expression could be detected after exposure to MF alone. IR-exposure caused an augmentation of p21CIP1- and p16INK4a- levels as well, but did not alter cyclin D1 expression. A slight diminution of Cdk4 activity was noticed after MF exposure only, indicating that Cdk4 appears not to act as a mediator of MF- or IR-induced changes in the cell cycle of AFC cells. Co-exposure to MF/IR affected neither cell cycle distribution nor protein expression or kinase activity additionally or synergistically, and therefore MF seems not to modify the mutagenic potency of IR.

  19. Construction of a biodynamic model for Cry protein production studies.

    Science.gov (United States)

    Navarro-Mtz, Ana Karin; Pérez-Guevara, Fermín

    2014-12-01

    Mathematical models have been used from growth kinetic simulation to gen regulatory networks prediction for B. thuringiensis culture. However, this culture is a time dependent dynamic process where cells physiology suffers several changes depending on the changes in the cell environment. Therefore, through its culture, B. thuringiensis presents three phases related with the predominance of three major metabolic pathways: vegetative growth (Embded-Meyerhof-Parnas pathway), transition (γ-aminobutiric cycle) and sporulation (tricarboxylic acid cycle). There is not available a mathematical model that relates the different stages of cultivation with the metabolic pathway active on each one of them. Therefore, in the present study, and based on published data, a biodynamic model was generated to describe the dynamic of the three different phases based on their major metabolic pathways. The biodynamic model is used to study the interrelation between the different culture phases and their relationship with the Cry protein production. The model consists of three interconnected modules where each module represents one culture phase and its principal metabolic pathway. For model validation four new fermentations were done showing that the model constructed describes reasonably well the dynamic of the three phases. The main results of this model imply that poly-β-hydroxybutyrate is crucial for endospore and Cry protein production. According to the yields of dipicolinic acid and Cry from poly-β-hydroxybutyrate, calculated with the model, the endospore and Cry protein production are not just simultaneous and parallel processes they are also competitive processes.

  20. Adsorption of saturated fatty acid in urea complexation: Kinetics and equilibrium studies

    Science.gov (United States)

    Setyawardhani, Dwi Ardiana; Sulistyo, Hary; Sediawan, Wahyudi Budi; Fahrurrozi, Mohammad

    2018-02-01

    Urea complexation is fractionation process for concentrating poly-unsaturated fatty acids (PUFAs) from vegetable oil or animal fats. For process design and optimization in commercial industries, it is necessary to provide kinetics and equilibrium data. Urea inclusion compounds (UICs) as the product is a unique complex form which one molecule (guest) is enclosed within another molecule (host). In urea complexation, the guest-host bonding exists between saturated fatty acids (SFAs) and crystalline urea. This research studied the complexation is analogous to an adsorption process. The Batch adsorption process was developed to obtain the experimental data. The ethanolic urea solution was mixed with SFA in certain compositions and adsorption times. The mixture was heated until it formed homogenous and clear solution, then it cooled very slowly until the first numerous crystal appeared. Adsorption times for the kinetic data were determined since the crystal formed. The temperature was maintained constant at room temperature. Experimental sets of data were observed with adsorption kinetics and equilibrium models. High concentration of saturated fatty acid (SFA) was used to represent adsorption kinetics and equilibrium parameters. Kinetic data were examined with pseudo first-order, pseudo second-order and intra particle diffusion models. Linier, Freundlich and Langmuir isotherm were used to study the equilibrium model of this adsorption. The experimental data showed that SFA adsorption in urea crystal followed pseudo second-order model. The compatibility of the data with Langmuir isotherm showed that urea complexation was a monolayer adsorption.

  1. Fluctuations in protein synthesis from a single RNA template: stochastic kinetics of ribosomes.

    Science.gov (United States)

    Garai, Ashok; Chowdhury, Debashish; Ramakrishnan, T V

    2009-01-01

    Proteins are polymerized by cyclic machines called ribosomes, which use their messenger RNA (mRNA) track also as the corresponding template, and the process is called translation. We explore, in depth and detail, the stochastic nature of the translation. We compute various distributions associated with the translation process; one of them--namely, the dwell time distribution--has been measured in recent single-ribosome experiments. The form of the distribution, which fits best with our simulation data, is consistent with that extracted from the experimental data. For our computations, we use a model that captures both the mechanochemistry of each individual ribosome and their steric interactions. We also demonstrate the effects of the sequence inhomogeneities of real genes on the fluctuations and noise in translation. Finally, inspired by recent advances in the experimental techniques of manipulating single ribosomes, we make theoretical predictions on the force-velocity relation for individual ribosomes. In principle, all our predictions can be tested by carrying out in vitro experiments.

  2. Protein kinase CK2 mutants defective in substrate recognition. Purification and kinetic analysis

    DEFF Research Database (Denmark)

    Sarno, S; Vaglio, P; Meggio, F

    1996-01-01

    Five mutants of protein kinase CK2 alpha subunit in which altogether 14 basic residues were singly to quadruply replaced by alanines (K74A,K75A,K76A,K77A; K79A, R80A,K83A; R191A,R195A,K198A; R228A; and R278A, K279A,R280A) have been purified to near homogeneity either as such or after addition...... of the recombinant beta subunit. By this latter procedure five mutated tetrameric holoenzymes were obtained as judged from their subunit composition, sedimentation coefficient on sucrose gradient ultracentrifugation, and increased activity toward a specific peptide substrate as compared with the isolated alpha......191A,R195A, K198A; K79A,R80A,K83A; and K74A,K75A, K76A,K77A are assayed with the peptides RRRADDSADDDD, RRRADDSDDADD, and RRRADDSDDDAA, respectively. In contrast, the phosphorylation efficiencies of the other substituted peptides decrease more markedly with these mutants than with CK2 wild type...

  3. Method-Unifying View of Loop-Formation Kinetics in Peptide and Protein Folding.

    Science.gov (United States)

    Jacob, Maik H; D'Souza, Roy N; Schwarzlose, Thomas; Wang, Xiaojuan; Huang, Fang; Haas, Elisha; Nau, Werner M

    2018-04-26

    Protein folding can be described as a probabilistic succession of events in which the peptide chain forms loops closed by specific amino acid residue contacts, herein referred to as loop nodes. To measure loop rates, several photophysical methods have been introduced where a pair of optically active probes is incorporated at selected chain positions and the excited probe undergoes contact quenching (CQ) upon collision with the second probe. The quenching mechanisms involved triplet-triplet energy transfer, photoinduced electron transfer, and collision-induced fluorescence quenching, where the fluorescence of Dbo, an asparagine residue conjugated to 2,3-diazabicyclo[2.2.2]octane, is quenched by tryptophan. The discrepancy between the loop rates afforded from these three CQ techniques has, however, remained unresolved. In analyzing this discrepancy, we now report two short-distance FRET methods where Dbo acts as an energy acceptor in combination with tryptophan and naphtylalanine, two donors with largely different fluorescence lifetimes of 1.3 and 33 ns, respectively. Despite the different quenching mechanisms, the rates from FRET and CQ methods were, surprisingly, of comparable magnitude. This combination of FRET and CQ data led to a unifying physical model and to the conclusion that the rate of loop formation in folding reactions varies not only with the kind and number of residues that constitute the chain but also in particular with the size and properties of the residues that constitute the loop node.

  4. An experimental and kinetic modeling study of premixed nitroethane flames at low pressure

    DEFF Research Database (Denmark)

    Zhang, Kuiwen; Zhang, Lidong; Xie, Mingfeng

    2013-01-01

    An experimental and kinetic modeling study is reported on three premixed nitroethane/oxygen/argon flames at low pressure (4.655kPa) with the equivalence ratios (Φ) of 1.0, 1.5 and 2.0. Over 30 flame species were identified with tunable synchrotron vacuum ultraviolet photoionization mass spectrome......An experimental and kinetic modeling study is reported on three premixed nitroethane/oxygen/argon flames at low pressure (4.655kPa) with the equivalence ratios (Φ) of 1.0, 1.5 and 2.0. Over 30 flame species were identified with tunable synchrotron vacuum ultraviolet photoionization mass...

  5. The kinetics of multi-compartmentalized systems, studied by radioactive tracers

    International Nuclear Information System (INIS)

    Gouveia, A.S. de.

    1978-01-01

    The use of compartmental models to investigate kinetic problems is presented. This use is restricted, however, to linear models. As an application of different methods, the kinetic behaviour of haemaccel labelled with iodine 131 is studied, the interval of the physically viable solutions being established. The existence of a class of solutions is explained as a result of lack of knowledge of a complete data set. The possibility of obtaining a single solution is also discussed. The formalism of the program SAAM (Simulation, Analysis and modelling) now judged very important for the study of multi-compartimental analysis is presented. (I.C.R) [pt

  6. Inactivation disinfection property of Moringa Oleifera seed extract: optimization and kinetic studies

    Science.gov (United States)

    Idris, M. A.; Jami, M. S.; Hammed, A. M.

    2017-05-01

    This paper presents the statistical optimization study of disinfection inactivation parameters of defatted Moringa oleifera seed extract on Pseudomonas aeruginosa bacterial cells. Three level factorial design was used to estimate the optimum range and the kinetics of the inactivation process was also carried. The inactivation process involved comparing different disinfection models of Chicks-Watson, Collins-Selleck and Homs models. The results from analysis of variance (ANOVA) of the statistical optimization process revealed that only contact time was significant. The optimum disinfection range of the seed extract was 125 mg/L, 30 minutes and 120rpm agitation. At the optimum dose, the inactivation kinetics followed the Collin-Selleck model with coefficient of determination (R2) of 0.6320. This study is the first of its kind in determining the inactivation kinetics of pseudomonas aeruginosa using the defatted seed extract.

  7. Kinetics Studies on citric acid production by gamma ray induced mutant of Aspergillus niger

    International Nuclear Information System (INIS)

    Begum, A.A.; Choudhury, N.; Islam, M.S.

    1991-01-01

    Effect of cultural pH and incubation temperature on citric acid yield and kinetic patterns of citric acid fermentation by a natural isolate of aspergillus niger as CA16 and one of its gamma ray induced mutants were studied using cane molasses as growth and fermentation substrate. Mutant strain, 277/30 gave maximum citric acid yield of 85 g/l at pH 3.5 and 28 degree centigrade in molasses medium adjusted to 16% sugar and 25% prescott salt in the medium. Parent strain, CA16 gave a maximum yield of 34 g/l at pH 4.0 and 26 degree centigrade in molasses medium adjusted to 16% sugar and 100% prescott salt in the medium. In kinetic studies, strains showed combination kinetics of citric acid fermentation where product formation is directly related to growth and cell mass and indirectly related to carbohydrate uptake

  8. Removal Rate of Organic Matter Using Natural Cellulose via Adsorption Isotherm and Kinetic Studies.

    Science.gov (United States)

    Din, Mohd Fadhil Md; Ponraj, Mohanadoss; Low, Wen-Pei; Fulazzaky, Mohamad Ali; Iwao, Kenzo; Songip, Ahmad Rahman; Chelliapan, Shreeshivadasan; Ismail, Zulhilmi; Jamal, Mohamad Hidayat

    2016-02-01

    In this study, the removal of natural organic matter (NOM) using coconut fiber (CF) and palm oil fiber (POF) was investigated. Preliminary analysis was performed using a jar test for the selection of optimal medium before the fabricated column model experiment. The equilibrium studies on isotherms and kinetic models for NOM adsorption were analyzed using linearized correlation coefficient. Results showed that the equilibrium data were fitted to Langmuir isotherm model for both CF and POF. The most suitable adsorption model was the pseudo-first-order kinetic model for POF and pseudo-second-order kinetic model for CF. The adsorption capacities achieved by the CF and POF were 15.67 and 30.8 mg/g respectively. Based on this investigation, it can be concluded that the POF is the most suitable material for the removal of NOM in semi polluted river water.

  9. Copper adsorption on magnetite-loaded chitosan microspheres: A kinetic and equilibrium study

    Energy Technology Data Exchange (ETDEWEB)

    Podzus, P.E., E-mail: ppodzus@gmail.com [Grupo de Aplicaciones de Materiales Biocompatibles, Departamento de Quimica, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, C1063ACV Buenos Aires (Argentina); Debandi, M.V. [Grupo de Aplicaciones de Materiales Biocompatibles, Departamento de Quimica, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, C1063ACV Buenos Aires (Argentina); Daraio, M.E., E-mail: medit@fi.uba.ar [Grupo de Aplicaciones de Materiales Biocompatibles, Departamento de Quimica, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, C1063ACV Buenos Aires (Argentina)

    2012-08-15

    A composite of Fe{sub 3}O{sub 4} nanoparticles and the biopolymer chitosan, chemically crosslinked, was prepared as microspheres and used to adsorb copper ions, which were chosen as a model of contaminant metal in water. The adsorption of copper on the magnetic microspheres was studied in a batch process, with different aqueous solutions of Cu (II) at concentrations ranging from 40 to 1100 ppm. Kinetic and equilibrium aspects of the adsorption process were studied. The time-dependent Cu (II) adsorption data were well described by a pseudo-second-order kinetic model. It was found that the equilibrium data follow the Langmuir isotherm, with a maximum adsorption capacity of around 500 mg Cu/g chitosan. The used microspheres were removed and after desorption the material was able to be reused as an adsorbent. The prepared microspheres proved efficient in the removal of copper ions through an adsorption process whose kinetic and equilibrium characteristics were analyzed.

  10. Mechanism, kinetics and application studies on enhanced activated sludge by interior microelectrolysis.

    Science.gov (United States)

    Yang, Xiaoyi; Xue, Yu; Wang, Wenna

    2009-01-01

    Enhanced activated sludge by interior microelectrolysis (EAIM) was studied to treat textile wastewater, kinetics, mechanism and application of which were also discussed in comparison with traditional activated sludge and interior microelectrolysis, respectively. The results of kinetics study indicated three different processes all followed first-order kinetics well. In EAIM, three impact factors take effects on COD removal, which are flocculation, activated sludge and electrophoresis and redox. In terms of assumption of no interaction among three COD removal mechanisms, 49.6% of the total COD removal is ascribed to flocculation, 30.1% to activated sludge and 20.3% to electrophoresis and redox. EAIM showed its advantages in COD removal efficiency, extensive adaptability to complex composition and wide range of pH. EAIM-aerobic process provided an efficient and economic performance for dealing with textile wastewater.

  11. Copper adsorption on magnetite-loaded chitosan microspheres: A kinetic and equilibrium study

    International Nuclear Information System (INIS)

    Podzus, P.E.; Debandi, M.V.; Daraio, M.E.

    2012-01-01

    A composite of Fe 3 O 4 nanoparticles and the biopolymer chitosan, chemically crosslinked, was prepared as microspheres and used to adsorb copper ions, which were chosen as a model of contaminant metal in water. The adsorption of copper on the magnetic microspheres was studied in a batch process, with different aqueous solutions of Cu (II) at concentrations ranging from 40 to 1100 ppm. Kinetic and equilibrium aspects of the adsorption process were studied. The time-dependent Cu (II) adsorption data were well described by a pseudo-second-order kinetic model. It was found that the equilibrium data follow the Langmuir isotherm, with a maximum adsorption capacity of around 500 mg Cu/g chitosan. The used microspheres were removed and after desorption the material was able to be reused as an adsorbent. The prepared microspheres proved efficient in the removal of copper ions through an adsorption process whose kinetic and equilibrium characteristics were analyzed.

  12. Batch study, equilibrium and kinetics of adsorption of naphthalene using waste tyre rubber granules

    Directory of Open Access Journals (Sweden)

    Felix A. Aisien

    2014-04-01

    Full Text Available The potential use of waste tyre rubber granules (WTRG for the batch adsorption of naphthalene from aqueous solutions was investigated. The effect of various operational variables such as contact time, initial naphthalene concentration, adsorbent dose, size of adsorbent particles, and temperature of solution on the adsorption capacity of WTRG was evaluated. The adsorption of naphthalene by WTRG was a fast kinetic process with an equilibrium contact time of 60 min. A low temperature (5°C, small adsorbent particle size (0.212 mm and higher adsorbent dosage favored the adsorption process. Results of isotherm studies revealed that adsorption of naphthalene was best described by the Langmuir isotherm equation (R2=0.997 while the kinetics of the process was best described by the Lagergren pseudofirst order kinetic equation (R2=0.998. This study has demonstrated the suitability of WTRG for the removal of naphthalene from aqueous solution.

  13. Biophysical EPR Studies Applied to Membrane Proteins

    Science.gov (United States)

    Sahu, Indra D; Lorigan, Gary A

    2015-01-01

    Membrane proteins are very important in controlling bioenergetics, functional activity, and initializing signal pathways in a wide variety of complicated biological systems. They also represent approximately 50% of the potential drug targets. EPR spectroscopy is a very popular and powerful biophysical tool that is used to study the structural and dynamic properties of membrane proteins. In this article, a basic overview of the most commonly used EPR techniques and examples of recent applications to answer pertinent structural and dynamic related questions on membrane protein systems will be presented. PMID:26855825

  14. Numerical Simulations of Kinetic Alfvén Waves to Study Spectral ...

    Indian Academy of Sciences (India)

    Numerical Simulations of Kinetic Alfvén Waves to Study Spectral. Index in Solar Wind Turbulence and Particle Heating. R. P. Sharma. ∗. & H. D. Singh. Center for Energy Studies, Indian Institute of Technology, Delhi 110 016, India. ∗ e-mail: rpsharma@ces.iitd.ernet.in. Abstract. We present numerical simulations of the ...

  15. Study of strength kinetics of sand concrete system of accelerated hardening

    Science.gov (United States)

    Sharanova, A. V.; Lenkova, D. A.; Panfilova, A. D.

    2018-04-01

    Methods of calorimetric analysis are used to study the dynamics of the hydration processes of concretes with different accelerator contents. The efficiency of the isothermal calorimetry method is shown for study of strength kinetics of concrete mixtures of accelerated hardening, promising for additive technologies in civil engineering.

  16. Mixtures of rubber tyre and plastic wastes pyrolysis: A kinetic study

    International Nuclear Information System (INIS)

    Miranda, Miguel; Cabrita, I.; Pinto, Filomena; Gulyurtlu, I.

    2013-01-01

    The study performed aimed at analysing possible routes for pyrolysis reaction mechanisms of polymeric materials namely RT (rubber tyre) and plastic wastes (PE (polyethylene), PP (polypropylene) and PS (polystyrene)). Consequently, and seeking sustainable transformation of waste streams into valuable chemicals and renewable liquid fuels, mixture of 30% RT, 20% PE, 30% PP and 20% PS was subjected to pyrolysis. Different kinetic models were studied using experimental data. None of the mechanisms found in literature led to a numerical adjustment and different pathways were investigated. Kinetic studies were performed aiming to evaluate direct conversions into new solid, liquid and gaseous products and if parallel reactions and/or reversible elementary steps should be included. Experiments were performed in batch system at different temperatures and reaction times. Kinetic models were evaluated and reaction pathways were proposed. Models reasonably fit experimental data, allow explaining wastes thermal degradation. Kinetic parameters were estimated for all temperatures and dependence of Ea and pre-exponential factor on temperature was evaluated. The rate constant of some reactions exhibited nonlinear temperature dependence on the logarithmic form of Arrhenius law. This fact strongly suggests that temperature has a significant effect on reaction mechanism of pyrolysis of mixtures of rubber tyre and plastic wastes. - Highlights: • Kinetic study of rubber tyre (RT) and different plastic wastes (PE, PP and PS) was performed in batch reactor. • Definition of possible pathways taken into account for the formation of final products. • Kinetic parameters were estimated. • The effect of reaction temperature and reaction time on liquid composition was performed

  17. Predicting the binding patterns of hub proteins: a study using yeast protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Carson M Andorf

    Full Text Available Protein-protein interactions are critical to elucidating the role played by individual proteins in important biological pathways. Of particular interest are hub proteins that can interact with large numbers of partners and often play essential roles in cellular control. Depending on the number of binding sites, protein hubs can be classified at a structural level as singlish-interface hubs (SIH with one or two binding sites, or multiple-interface hubs (MIH with three or more binding sites. In terms of kinetics, hub proteins can be classified as date hubs (i.e., interact with different partners at different times or locations or party hubs (i.e., simultaneously interact with multiple partners.Our approach works in 3 phases: Phase I classifies if a protein is likely to bind with another protein. Phase II determines if a protein-binding (PB protein is a hub. Phase III classifies PB proteins as singlish-interface versus multiple-interface hubs and date versus party hubs. At each stage, we use sequence-based predictors trained using several standard machine learning techniques.Our method is able to predict whether a protein is a protein-binding protein with an accuracy of 94% and a correlation coefficient of 0.87; identify hubs from non-hubs with 100% accuracy for 30% of the data; distinguish date hubs/party hubs with 69% accuracy and area under ROC curve of 0.68; and SIH/MIH with 89% accuracy and area under ROC curve of 0.84. Because our method is based on sequence information alone, it can be used even in settings where reliable protein-protein interaction data or structures of protein-protein complexes are unavailable to obtain useful insights into the functional and evolutionary characteristics of proteins and their interactions.We provide a web server for our three-phase approach: http://hybsvm.gdcb.iastate.edu.

  18. Diagonal chromatography to study plant protein modifications.

    Science.gov (United States)

    Walton, Alan; Tsiatsiani, Liana; Jacques, Silke; Stes, Elisabeth; Messens, Joris; Van Breusegem, Frank; Goormachtig, Sofie; Gevaert, Kris

    2016-08-01

    An interesting asset of diagonal chromatography, which we have introduced for contemporary proteome research, is its high versatility concerning proteomic applications. Indeed, the peptide modification or sorting step that is required between consecutive peptide separations can easily be altered and thereby allows for the enrichment of specific, though different types of peptides. Here, we focus on the application of diagonal chromatography for the study of modifications of plant proteins. In particular, we show how diagonal chromatography allows for studying proteins processed by proteases, protein ubiquitination, and the oxidation of protein-bound methionines. We discuss the actual sorting steps needed for each of these applications and the obtained results. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Ultrasound Pretreatment as an Useful Tool to Enhance Egg White Protein Hydrolysis: Kinetics, Reaction Model, and Thermodinamics.

    Science.gov (United States)

    Jovanović, Jelena R; Stefanović, Andrea B; Šekuljica, Nataša Ž; Tanasković, Sonja M Jakovetić; Dojčinović, Marina B; Bugarski, Branko M; Knežević-Jugović, Zorica D

    2016-09-28

    The impact of ultrasound waves generated by probe-type sonicator and ultrasound cleaning bath on egg white protein susceptibility to hydrolysis by alcalase compared to both thermal pretreatment and conventional enzymatic hydrolysis was quantitatively investigated. A series of hydrolytic reactions was carried out in a stirred tank reactor at different substrate concentrations, enzyme concentrations, and temperatures using untreated, and pretreated egg white proteins (EWPs). The kinetic model based on substrate inhibition and second-order enzyme deactivation successfully predicts the experimental behavior providing an effective tool for comparison and optimization. The ultrasound pretreatments appear to greatly improve the enzymatic hydrolysis of EWPs under different conditions when compare to other methods. The apparent reaction rate constants for proteolysis (k 2 ) are 0.009, 0.011, 0.053, and 0.045 min -1 for untreated EWPs, and those pretreated with heat, probe-type sonicator, and ultrasound cleaning bath technologies, respectively. The ultrasound pretreatment also decreases hydrolysis activation (E a ) and enzyme deactivation (E d ) energy, enthalpy (ΔH), and entropy (ΔS) of activation and for the probe-type sonication this decrease is 61.7%, 61.6%, 63.6%, and 32.2%, respectively, but ultrasound has little change in Gibbs free energy value in the temperature range of 318 to 338 K. The content of sulfhydryl groups and ζ potential show a significant increase (P < 0.05) for both applied ultrasound pretreatments and the reduction of particle size distribution are achieved, providing some evidence that the ultrasound causes EWP structural changes affecting the proteolysis rate. © 2016 Institute of Food Technologists®

  20. Kinetic study on ferulic acid production from banana stem waste via mechanical extraction

    Science.gov (United States)

    Zainol, Norazwina; Masngut, Nasratun; Khairi Jusup, Muhamad

    2018-04-01

    Banana is the tropical plants associated with lots of medicinal properties. It has been reported to be a potential source of phenolic compounds such as ferulic acid (FA). FA has excellent antioxidant properties higher than vitamin C and E. FA also have a wide range of biological activities, such as antioxidant activities and anti-microbial activities. This paper presents an experimental and kinetic study on ferulic acid (FA) production from banana stem waste (BSW) via mechanical extraction. The objective of this research is to determine the kinetic parameters in the ferulic acid production. The banana stem waste was randomly collected from the local banana plantation in Felda Lepar Hilir, Pahang. The banana stem juice was mechanically extracted by using sugarcane press machine (KR3176) and further analyzed in high performance liquid chromatography. The differential and integral method was applied to determine the kinetic parameter of the extraction process and the data obtained were fitted into the 0th, 1st and 2nd order of extraction process. Based on the results, the kinetic parameter and R2 value from were 0.05 and 0.93, respectively. It was determined that the 0th kinetic order fitted the reaction processes to best represent the mechanical extraction.

  1. Mechanistic study of manganese-substituted glycerol dehydrogenase using a kinetic and thermodynamic analysis.

    Science.gov (United States)

    Fang, Baishan; Niu, Jin; Ren, Hong; Guo, Yingxia; Wang, Shizhen

    2014-01-01

    Mechanistic insights regarding the activity enhancement of dehydrogenase by metal ion substitution were investigated by a simple method using a kinetic and thermodynamic analysis. By profiling the binding energy of both the substrate and product, the metal ion's role in catalysis enhancement was revealed. Glycerol dehydrogenase (GDH) from Klebsiella pneumoniae sp., which demonstrated an improvement in activity by the substitution of a zinc ion with a manganese ion, was used as a model for the mechanistic study of metal ion substitution. A kinetic model based on an ordered Bi-Bi mechanism was proposed considering the noncompetitive product inhibition of dihydroxyacetone (DHA) and the competitive product inhibition of NADH. By obtaining preliminary kinetic parameters of substrate and product inhibition, the number of estimated parameters was reduced from 10 to 4 for a nonlinear regression-based kinetic parameter estimation. The simulated values of time-concentration curves fit the experimental values well, with an average relative error of 11.5% and 12.7% for Mn-GDH and GDH, respectively. A comparison of the binding energy of enzyme ternary complex for Mn-GDH and GDH derived from kinetic parameters indicated that metal ion substitution accelerated the release of dioxyacetone. The metal ion's role in catalysis enhancement was explicated.

  2. Mechanistic study of manganese-substituted glycerol dehydrogenase using a kinetic and thermodynamic analysis.

    Directory of Open Access Journals (Sweden)

    Baishan Fang

    Full Text Available Mechanistic insights regarding the activity enhancement of dehydrogenase by metal ion substitution were investigated by a simple method using a kinetic and thermodynamic analysis. By profiling the binding energy of both the substrate and product, the metal ion's role in catalysis enhancement was revealed. Glycerol dehydrogenase (GDH from Klebsiella pneumoniae sp., which demonstrated an improvement in activity by the substitution of a zinc ion with a manganese ion, was used as a model for the mechanistic study of metal ion substitution. A kinetic model based on an ordered Bi-Bi mechanism was proposed considering the noncompetitive product inhibition of dihydroxyacetone (DHA and the competitive product inhibition of NADH. By obtaining preliminary kinetic parameters of substrate and product inhibition, the number of estimated parameters was reduced from 10 to 4 for a nonlinear regression-based kinetic parameter estimation. The simulated values of time-concentration curves fit the experimental values well, with an average relative error of 11.5% and 12.7% for Mn-GDH and GDH, respectively. A comparison of the binding energy of enzyme ternary complex for Mn-GDH and GDH derived from kinetic parameters indicated that metal ion substitution accelerated the release of dioxyacetone. The metal ion's role in catalysis enhancement was explicated.

  3. A new study of the kinetics of curd production in the process of cheese manufacture.

    Science.gov (United States)

    Muñoz, Susana Vargas; Torres, Maykel González; Guerrero, Francisco Quintanilla; Talavera, Rogelio Rodríguez

    2017-11-01

    We studied the role played by temperature and rennet concentration in the coagulation process for cheese manufacture and the evaluation of their kinetics. We concluded that temperature is the main factor that determines the kinetics. The rennet concentration was unimportant probably due to the fast action of the enzyme chymosin. The Dynamic light scattering technique allowed measuring the aggregate's size and their formation kinetics. The volume fraction of solids was determined from viscosity measurements, showing profiles that are in agreement with the size profiles. The results indicate that the formation of the aggregates for rennet cheese is strongly dependent on temperature and rennet concentration. The results revealed that at 35·5 °C the volume fraction of solids has the maximum slope, indicating that at this temperature the curd is formed rapidly. The optimal temperature throughout the process was established. Second-order kinetics were obtained for the process. We observed a quadratic dependence between the rennet volume and the volume fraction of solids (curd), thereby indicating that the kinetics of the curd production should be of order two.

  4. Computational Studies of Protein Hydration Methods

    Science.gov (United States)

    Morozenko, Aleksandr

    It is widely appreciated that water plays a vital role in proteins' functions. The long-range proton transfer inside proteins is usually carried out by the Grotthuss mechanism and requires a chain of hydrogen bonds that is composed of internal water molecules and amino acid residues of the protein. In other cases, water molecules can facilitate the enzymes catalytic reactions by becoming a temporary proton donor/acceptor. Yet a reliable way of predicting water protein interior is still not available to the biophysics community. This thesis presents computational studies that have been performed to gain insights into the problems of fast and accurate prediction of potential water sites inside internal cavities of protein. Specifically, we focus on the task of attainment of correspondence between results obtained from computational experiments and experimental data available from X-ray structures. An overview of existing methods of predicting water molecules in the interior of a protein along with a discussion of the trustworthiness of these predictions is a second major subject of this thesis. A description of differences of water molecules in various media, particularly, gas, liquid and protein interior, and theoretical aspects of designing an adequate model of water for the protein environment are widely discussed in chapters 3 and 4. In chapter 5, we discuss recently developed methods of placement of water molecules into internal cavities of a protein. We propose a new methodology based on the principle of docking water molecules to a protein body which allows to achieve a higher degree of matching experimental data reported in protein crystal structures than other techniques available in the world of biophysical software. The new methodology is tested on a set of high-resolution crystal structures of oligopeptide-binding protein (OppA) containing a large number of resolved internal water molecules and applied to bovine heart cytochrome c oxidase in the fully

  5. Kinetic Study of Acetone-Butanol-Ethanol Fermentation in Continuous Culture

    Science.gov (United States)

    Buehler, Edward A.; Mesbah, Ali

    2016-01-01

    Acetone-butanol-ethanol (ABE) fermentation by clostridia has shown promise for industrial-scale production of biobutanol. However, the continuous ABE fermentation suffers from low product yield, titer, and productivity. Systems analysis of the continuous ABE fermentation will offer insights into its metabolic pathway as well as into optimal fermentation design and operation. For the ABE fermentation in continuous Clostridium acetobutylicum culture, this paper presents a kinetic model that includes the effects of key metabolic intermediates and enzymes as well as culture pH, product inhibition, and glucose inhibition. The kinetic model is used for elucidating the behavior of the ABE fermentation under the conditions that are most relevant to continuous cultures. To this end, dynamic sensitivity analysis is performed to systematically investigate the effects of culture conditions, reaction kinetics, and enzymes on the dynamics of the ABE production pathway. The analysis provides guidance for future metabolic engineering and fermentation optimization studies. PMID:27486663

  6. A kinetic study of textile dyeing wastewater degradation by Penicillium chrysogenum.

    Science.gov (United States)

    Durruty, Ignacio; Fasce, Diana; González, Jorge Froilán; Wolski, Erika Alejandra

    2015-06-01

    The potential of Penicillium chrysogenum to decolorize azo dyes and a real industrial textile wastewater was studied. P. chrysogenum was able to decolorize and degrade three azo dyes (200 mg L(-1)), either independently or in a mixture of them, using glucose as a carbon source. A kinetic model for degradation was developed and it allowed predicting the degradation kinetics of the mixture of the three azo dyes. In addition, P. chrysogenum was able to decolorize real industrial wastewater. The kinetic model proposed was also able to predict the decolorization of the real wastewater. The calibration of the proposed model makes it a useful tool for future wastewater facilities' design and for practical applications.

  7. Kinetic studies on the degradation of crystal violet by the Fenton oxidation process.

    Science.gov (United States)

    Wu, H; Fan, M M; Li, C F; Peng, M; Sheng, L J; Pan, Q; Song, G W

    2010-01-01

    The degradation of dye crystal violet (CV) by Fenton oxidation process was investigated. The UV-Vis spectrogram has shown that CV can be degraded effectively by Fenton oxidation process. Different system variables namely initial H(2)O(2) concentration, initial Fe(2 + ) concentration and reaction temperature, which have effect on the degradation of CV by Fenton oxidation process, have been studied systematically. The degradation kinetics of CV was also elucidated based on the experimental data. The degradation of CV obeys the first-order reaction kinetics. The kinetic model can be described as k=1.5 exp(-(7.5)/(RT))[H(2)O(2)](0)(0.8718)[Fe(2+)](0)(0.5062). According to the IR spectrogram, it is concluded that the benzene ring of crystal violet has been destroyed by Fenton oxidation. The result will be useful in treating dyeing wastewater containing CV by Fenton oxidation process.

  8. Study of kinetics, equilibrium and isotope exchange in ion exchange systems Pt. 6

    International Nuclear Information System (INIS)

    Plicka, J.; Stamberg, K.; Cabicar, J.; Gosman, A.

    1986-01-01

    The description of kinetics of ion exchange in ternary system was based upon three Nernst-Planck equations, each of them describing the particle diffusion flux of a given counterion as an independent process. For experimental verification, the strongly acidic cation exchanger OSTION KS 08 the shallow-bed technique, and 0.2 mol x dm -3 aqueous nitrate solutions were chosen. The kinetics of ion exchange in the system of cations Na + - Mg 2+ - UO 2 2+ was studied. The values of diffusion coefficients obtained by evaluating of kinetics of isotope exchange and binary ion exchange were used for calculation. The comparison of calculated exchange rate curves with the experimental ones was made. It was found that the exchanging counterions were affected by each other. (author)

  9. Kinetic study of corn straw pyrolysis: comparison of two different three-pseudocomponent models.

    Science.gov (United States)

    Li, Zhengqi; Zhao, Wei; Meng, Baihong; Liu, Chunlong; Zhu, Qunyi; Zhao, Guangbo

    2008-11-01

    With heating rates of 20, 50 and 100 K min(-1), the thermal decomposition of corn straw samples (corn stalks skins, corn stalks cores, corn bracts and corn leaves) were studied using thermogravimetric analysis. The maximum pyrolysis rates increased with the heating rate increasing and the temperature at the peak pyrolysis rate also increased. Assuming the addition of three independent parallel reactions, corresponding to three pseudocomponents linked to the hemicellulose, cellulose and lignin, two different three-pseudocomponent models were used to simulate the corn straw pyrolysis. Model parameters of pyrolysis were given. It was found that the three-pseudocomponent model with n-order kinetics was more accurate than the model with first-order kinetics at most cases. It showed that the model with n-order kinetics was more accurate to describe the pyrolysis of the hemicellulose.

  10. Characteristics and kinetic studies of Hydrilla verticillata pyrolysis via thermogravimetric analysis.

    Science.gov (United States)

    Hu, Zhiquan; Chen, Zhihua; Li, Genbao; Chen, Xiaojuan; Hu, Mian; Laghari, Mahmood; Wang, Xun; Guo, Dabin

    2015-10-01

    The pyrolysis characteristics and kinetic of Hydrilla verticillata (HV) have been investigated using non-isothermal thermogravimetric analysis. The results showed that the pyrolysis behavior of HV can be divided into two independent stages. The kinetics of Stage I was investigated using a distributed activation energy model (DAEM) with discrete 99 first-order reactions. Stage II was an independent stage which corresponds to the decomposition of calcium oxalate, whose kinetics was studied using iso-conversional method together with compensation effect and master-plots method. The activation energies ranged from 92.39 to 506.17 and 190.42 to 222.48 kJ/mol for the first and second stages respectively. Calculated data gave very good fit to the experimental data. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Tracer kinetics: Modelling of tracer behaviour in nonlinear and nonsteady state systems exemplified by the evaluation of protein turnover in plant organs

    International Nuclear Information System (INIS)

    Winkler, E.

    1991-01-01

    If nonlinear biological processes are investigated by means of tracer experiments they can be modelled with linear kinetic equations (compartment equations) as long as the total system is in a stationary state. But if nonstationary behaviour is included considerations on the kinetics of the individual processes are necessary. Within the range of biological and agricultural investigations especially first order reactions (constant fraction processes), zero order reactions (constant amount process) and saturation reactions (Michaelis-Menten-kinetics) are to be taken into account. A rigorous treatment of data based on system theory can be preceeded by graphic-algebraic procedure which may be more or less uncertain in its results but which can easily be handled. An example is given of methodological considerations concerning the combination of evaluation procedures and the discrimination between different reaction mechanisms. It treats protein turnover in 2 different parts of growing wheat plants investigated by means of an 15 N-tracer experiment. Whereas in a stationary system (upper stalk section) linear tracer equations were sufficient irrespective of the true reaction mechanism, for protein synthesis in the upper leaf as a nonstationary system it was necessary to decide between the hypotheses of a zero order and a first order reaction. In accordance with statements in the literature the unambiguous result was a combination of protein synthesis as a zero order process and of protein degradation as a first order process. (orig.) [de

  12. [18F]-2-FDG as a tool for studying hexokinase kinetics

    International Nuclear Information System (INIS)

    Mertens, J.; Gysemans, M.

    1990-01-01

    In the basic research related to the development of radiolabelled glucose analogues or to sugar metabolism, the measurement of hexokinase kinetics is very important. The article of S. J. Gatley et al about the quality control of [ 18 F]-2-FDG preparations using the hexokinase reaction in vitro was the basic idea of the method proposed in this paper dealing with the direct measurement of hexokinase kinetics by the measurement of the activity related to [ 18 F]-2-FDG-6-phosphate. Experimental results indicate that the method is appropriate for hexokinase studies

  13. Kinetics of Iodine 131 labelled fibrinogen in cancerous patients. Pharmacological study

    International Nuclear Information System (INIS)

    Boneu-Valmalette, Andree; Bugat, Roland; David, J.-F.; Combes, P.-F.

    1977-01-01

    The results obtained in a previous study using 131 I fibrinogen in cancerous patients suggested a local intravascular clotting process. In order to elucidate the mechanism of fibrinogen kinetic abnormalities different drugs including heparin, prednisone, ticlopidin, aspirin and indomethacin were administred in 68 patients and their effects evaluated by change in the 131 I fibrinogen disappearance rate. The results suggest that these drugs may counteract with the early stages of coagulation (kinin-forming system, factor XII) and that abnormal 131 I fibrinogen kinetic in cancer would be a non specific phenomenon [fr

  14. Contribution to the study of the kinetics of maraging steel aging

    International Nuclear Information System (INIS)

    Santos Victor, O.B. dos.

    1990-01-01

    Maraging steels are materials with very low contents of C and with Ni, Co, Mo and T1 additions, that can reach very high mechanical strength values by combinations of heat treatment operations. Three 18% Ni Maraging steels have had some aspects of their aging kinetics investigated by experimental procedures using electrical resistivity, internal friction and hardness measurement techniques, in samples aged from 30 seconds to several hours. Finally, it was verified that the techniques employed were very adequate to the purposes of the present kinetics studies. (author)

  15. Kinetic Study on Ultrasound Assisted Biodiesel Production from Waste Cooking Oil

    Directory of Open Access Journals (Sweden)

    Widayat

    2015-09-01

    Full Text Available The objective of this research was to study a kinetic model of biodiesel production from waste cooking oil assisted by ultrasound power. The model considered the biodiesel production process as a 2nd order reversible reaction, while its kinetic parameters were estimated using MATLAB, based on data extracted from Hingu, et al. [1]. The data represented experiments under low-frequency ultrasonic wave (20 kHz and variations of temperature, power, catalyst concentration, and alcohol-oil molar ratio. Statistical analysis showed that the proposed model fits well to the experimental data with a determination coefficient (R2 higher than 0.9.

  16. STUDY ON THE KINETICS OF POLYMERIZATION OF MMA BY COPPER(Ⅱ) CHELATING RESINS

    Institute of Scientific and Technical Information of China (English)

    WangHongzuo; JiangYuanzhang; 等

    1993-01-01

    The polymerization of MMA initiated by copper(Ⅱ) chelating resins/CCl4 system was studied.From the kinetic data,the kinetic equation of polymerization can be expressed as Rp=Ke-56400/RT[MMA]1.57[CCl4]m[RESIN-Cu]0.18 where m:3-4.5,when[CCl4] 0.1-6.93M.The free radical polymerization mechanism is proposed.The primary radicals are formed by the process of complexation-chlorine transformation among the copper(Ⅱ) chelating resin,CCl4 and methacrylate.

  17. Kinetic study of the annealing reactions in Cu-Ni-Fe alloys

    International Nuclear Information System (INIS)

    Donoso, E.

    2014-01-01

    The thermal aging of a Cu-45Ni-4Fe, Cu-34Ni-11Fe and Cu-33Ni-22Fe alloys tempered from 1173 K have been studied from Differential Scanning Calorimetry (DSC) and microhardness measurements. The analysis of DSC curves, from room temperature to 950 K, shows the presence of one exothermic reaction associated to the formation of FeNi 3 phase nucleating from a modulate structure, and one endothermic peak attributed to dissolution of this phase. Kinetic parameters were obtained using the usual Avrami-Erofeev equation, modified Kissinger method and integrated kinetic functions. Microhardness measurements confirmed the formation and dissolution of the FeNi 3 phase. (Author)

  18. Ergonomics, anthropometrics, and kinetic evaluation of gait: A case study

    OpenAIRE

    Lima, Rosa; Fontes, Liliana Magalhães Campos; Arezes, P.; Carvalho, Miguel

    2015-01-01

    This study aimed to develop appropriate changes in a pair of shoes in order to improve the gait of an individual selected for this case study. This analysis took into account ergonomic aspects, namely those relating to the individual’s anthropometrics. Gait analysis was done with the adapted footwear both before and after intervention.A conventional X-ray was performed, which revealed a 29-mm left lower limb shortening and possible foot adduction. The anthropometric assessment confir...

  19. A Kinetic Study of the Diels-Alder Reaction. An Experiment Illustrating Simple Second-Order Reaction Kinetics.

    Science.gov (United States)

    Silvestri, Michael G.; Dills, Charles E.

    1989-01-01

    Describes an organic chemistry experiment for teaching the basic concepts of chemical kinetics. Provides background information about first- and second-order reactions, experimental procedures of the Diels-Alder reaction between cyclopentadiene and dimethyl fumarate, and the experimental results. (YP)

  20. Kinetic Monte Carlo studies of the reaction kinetics of crystal defects that diffuse one-dimensionally with occasional transverse migration

    DEFF Research Database (Denmark)

    Heinisch, H.L.; Trinkaus, H.; Singh, Bachu Narain

    2007-01-01

    The reaction kinetics of the various species of mobile defects in irradiated materials are crucially dependent on the dimensionality of their migration. Sink strengths for one-dimensionally (1D) gliding interstitial loops undergoing occasional direction changes have been described analytically...

  1. A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid

    NARCIS (Netherlands)

    Girisuta, B.; Janssen, L. P. B. M.; Heeres, H. J.

    2006-01-01

    Levulinic acid (LA), accessible by the acid catalyzed degradation of biomass, is potentially a very versatile green intermediate chemical for the synthesis of various (bulk) chemicals for applications like fuel additives, polymers, and resin precursors. We report here a kinetic study on one of the

  2. A kinetic study of 1,3-dipolar cycloadditions in micellar media

    NARCIS (Netherlands)

    Rispens, T; Engberts, JBFN

    2003-01-01

    The kinetics of the 1,3-dipolar cycloadditions (DC) of benzonitrile oxide with a series of N-substituted maleimides in micellar media have been investigated. Surfactants studied include anionic sodium dodecyl sulfate, cationic cetyltrimethylammonium bromide, and a series of nonionic alkyl

  3. Stability and kinetic studies of supported ionic liquid phase catalysts for hydroformylation of propene

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Haumann, Marco

    2005-01-01

    Supported ionic liquid phase (SILP) catalysts have been studied with regard to their long-term stability in the continuous gas-phase hydroformylation of propene. Kinetic data have been acquired by variation of temperature, pressure, syngas composition, substrate concentration, and residence time...

  4. A calculational study on neutron kinetics and thermodynamics of a gaseous core fission reactor

    International Nuclear Information System (INIS)

    Kuijper, J.C.

    1992-06-01

    A numerical and analytical study of the static and dynamic properties of a GCFR with oscillating fuel gas (uranium and carbon fluorides) is presented. Neutron kinetics parts of combined GCFR models are introduced. Thermodynamic properties of the GCFR and of the fuel gas are treated. (HP)

  5. Dissolution kinetics of volatile organic compound vapors in water : An integrated experimental and computational study

    NARCIS (Netherlands)

    G. Mahmoodlu, Mojtaba; Pontedeiro, Elizabeth M.; Pérez Guerrero, Jesús S.; Raoof, Amir; Hassanizadeh, S. Majid; van Genuchten, Martinus Th

    In this study we performed batch experiments to investigate the dissolution kinetics of trichloroethylene (TCE) and toluene vapors in water at room temperature and atmospheric pressure. The batch systems consisted of a water reservoir and a connected headspace, the latter containing a small glass

  6. A Kinetic Degradation Study of Curcumin in Its Free Form and Loaded in Polymeric Micelles

    NARCIS (Netherlands)

    Naksuriya, Ornchuma; van Steenbergen, Mies J.; Sastre Torano, Javier; Okonogi, Siriporn; Hennink, Wim E.

    Curcumin, a phenolic compound, possesses many pharmacological activities and is under clinical evaluation to treat different diseases. However, conflicting data about its stability have been reported. In this study, the kinetic degradation of curcumin from a natural curcuminoid mixture under various

  7. Flow chemistry kinetic studies reveal reaction conditions for ready access to unsymmetrical trehalose analogues.

    Science.gov (United States)

    Patel, Mitul K; Davis, Benjamin G

    2010-10-07

    Monofunctionalization of trehalose, a widely-found symmetric plant disaccharide, was studied in a microreactor to give valuable kinetic insights that have allowed improvements in desymmetrization yields and the development of a reaction sequence for large scale monofunctionalizations that allow access to probes of trehalose's biological function.

  8. Application of point kinetic model in the study of fluidized bed reactor dynamic

    International Nuclear Information System (INIS)

    Borges, Volnei; Vilhena, Marco Tullio de; Streck, Elaine E.

    1995-01-01

    In this work the dynamical behavior of the fluidized bed nuclear reactor is analysed. The main goal consist to study the effect of the acceleration term in the point kinetic equations. Numerical simulations are reported considering constant acceleration. (author). 7 refs, 4 figs

  9. A kinetic study on the conversion of glucose to levulinic acid

    NARCIS (Netherlands)

    Girisuta, B; Janssen, LPBM; Heeres, HJ

    Levulinic acid has been identified as a promising green. biomass derived platform chemical. A kinetic study oil one of the key steps in the conversion of biomass to levulinic acid, i.e., the acid catalysed decomposition of glucose to levulinic acid has been performed. The experiments were Performed

  10. Green chemicals : A Kinetic Study on the Conversion of Glucose to Levulinic Acid

    NARCIS (Netherlands)

    Girisuta, B.; Janssen, L.P.B.M.; Heeres, H.J.

    2006-01-01

    Levulinic acid has been identified as a promising green, biomass derived platform chemical. A kinetic study on one of the key steps in the conversion of biomass to levulinic acid, i.e., the acid catalysed decomposition of glucose to levulinic acid has been performed. The experiments were performed

  11. The Nature of the Micellar Stern Region As Studied by Reaction Kinetics. 2

    NARCIS (Netherlands)

    Buurma, Niklaas J.; Serena, Paola; Blandamer, Michael J.; Engberts, Jan B.F.N.

    2004-01-01

    The nature of rate-retarding effects of cationic micelles on the water-catalyzed hydrolyses of a series of para-substituted 1-benzoyl-1,2,4-triazoles (1a-f) and 1-benzoyl-3-phenyl-1,2,4-triazole (2) has been studied using kinetic methods. A comparison is drawn between medium effects in the micellar

  12. Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid

    NARCIS (Netherlands)

    Girisuta, B.; Janssen, L. P. B. M.; Heeres, H. J.

    2007-01-01

    A variety of interesting bulk chemicals is accessible by the acid-catalyzed hydrolysis of cellulose. An interesting example is levulinic acid, a versatile precursor for fuel additives, polymers, and resins. A detailed kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid is

  13. The kinetics of the methanol synthesis on a copper catalyst: An experimental study

    NARCIS (Netherlands)

    Bos, A.N.R.; Borman, P.C.; Kuczynski, M.; Westerterp, K.R.

    1989-01-01

    The kinetics of the low pressure of methanol from feed gases containing solely CO and H2 were studied in an internally recycled gradientless reactor. As experimental accuracy impeded the application of high CO contents, the experimental range of mole fraction of CO was limited to 0.04 to 0.22. The

  14. The renneting of milk : a kinetic study of the enzymic and aggregation reactions

    NARCIS (Netherlands)

    Hooydonk, van A.C.M.

    1987-01-01

    The rennet-induced clotting of milk was studied under various conditions. The kinetics of the enzymic and aggregation reactions was analysed separately and, where possible, related to the physico-chemical properties of the casein micelle and its environment.

    The effects of important

  15. A note on the use of ellipsometry for studying the kinetics of ...

    Indian Academy of Sciences (India)

    Unknown

    encountered in organic monolayer films, as would occur for example in ... dology advanced is applied to the kinetics of formation of a self-assembled monolayer of a well-studied ... Colvin et al 1992), this aspect of research assumes greater.

  16. Chemical modification of protein A chromatography ligands with polyethylene glycol. I: Effects on IgG adsorption equilibrium, kinetics, and transport.

    Science.gov (United States)

    Weinberg, Justin; Zhang, Shaojie; Crews, Gillian; Carta, Giorgio; Przybycien, Todd

    2018-04-20

    Chemical modification of Protein A (ProA) chromatography ligands with polyethylene glycol (PEGylation) has been proposed as a strategy to increase the process selectivity and resin robustness by providing the ligand with a steric repulsion barrier against non-specific binding. This article comprises a comprehensive study of IgG adsorption and transport in Repligen CaptivA PriMAB resin with PEGylated ProA ligands that are modified using 5.2 and 21.5 kDa PEG chains. We studied the impact of the molecular weight of the PEG as well as the extent of PEGylation for the 5.2 kDa PEG modification. In all cases, PEGylation of ProA ligands decreases the resin average pore size, particle porosity, and static binding capacity for IgG proportional to the volume of conjugated PEG in the resin. Resin batch uptake experiments conducted in bulk via a stirred-tank system and with individual resin particles under confocal laser scanning microscopy suggests that PEGylation introduces heterogeneity into IgG binding kinetics: a fraction of the IgG binding sites are transformed from typical fast association kinetic behavior to slow kinetic behavior. pH gradient elution experiments of an IgG molecule on the modified resins show an increase in IgG elution pH for all modified resins, implying a decrease in IgG-ProA binding affinity on modification. Despite losses in static binding capacity for all resins with PEGylated ligands, the loss of dynamic binding capacity at 10% breakthrough (DBC 10% ) ranged more broadly from almost 0-47% depending on the PEG molecular weight and the extent of PEGylation. Minimal losses in DBC 10% were observed with a low extent of PEGylation with a smaller molecular weight PEG, while higher losses were observed at higher extents of PEGylation and with higher molecular weight PEG due to decreased static binding capacity and increased mass transfer resistance. This work provides insight into the practical implications for resin performance if PEGylation is

  17. Kinetic and Thermodynamic Studies of Charge-Transfer Complex ...

    African Journals Online (AJOL)

    NICOLAAS

    aFaculty of Chemistry, Bu-Ali Sina University, Hamedan, 65174, Iran. bFaculty of ... tially ionic structure D+A–, and pointed out that a low ionization potential for the ... fering to the re-uptake of norepinephrine or serotonin.17 The study of CT ...

  18. Theoretical Studies in Chemical Kinetics - Annual Report, 1970.

    Science.gov (United States)

    Karplus, Martin

    1970-10-01

    The research performed includes (a) Alkali-Halide, Alkali-Halide (MX, M?X?) Exchange Reactions; (b) Inversion Problem; (c) Quantum Mechanics of Scattering Processes, (d) Transition State Analysis of Classical Trajectories, (e) Differential Cross Sections from Classical Trajectories; and (f) Other Studies.

  19. Equilibrium and kinetics studies of metal ion adsorption on dyed ...

    African Journals Online (AJOL)

    Batch equilibration studies were conducted to determine the nature of adsorption of Zn (II) and Cu (II) onto dyed coconut pollens. The nature of adsorption of metal ions was explained using the Langmuir equation. The calculated values of equilibrium parameter indicated favourable adsorption by the adsorbents. Also the ...

  20. Kinetics studies of fungal biogas production from certain agricultural ...

    African Journals Online (AJOL)

    Anaerobic degradation of sugar cane and rice husk by cellulolytic fungus was studied respectively at optimum operational condition of concentration, 1:5 w/v of the lignocelluloses: water and temperature of 33oC. The average rates of biogas production determined for sugar cane and rice husk were 57cm3per day and ...

  1. Inventory Control: A Small Electronic Device for Studying Chemical Kinetics.

    Science.gov (United States)

    Perez-Rodriguez, A. L.; Calvo-Aguilar, J. L.

    1984-01-01

    Shows how the rate of reaction can be studied using a simple electronic device that overcomes the difficulty students encounter in solving the differential equations describing chemical equilibrium. The device, used in conjunction with an oscilloscope, supplies the voltages that represent the chemical variables that take part in the equilibrium.…

  2. Study on kinetic of strain-aging in zircaloy-4

    International Nuclear Information System (INIS)

    Gomes, P.A.

    1977-01-01

    The strain-aging in zircaloy-4 has been investigated in this work and a study of the general problems involving this phenomenon has been realized in Zirconium and its alloys. It has been verified that a yield point appears in the Zircaloy-4, when it is submitted to strain-aging treatment between the temperatures 200 0 C and 400 0 C. (author)

  3. Radical-induced oxidation of RAFT agents : a kinetic study

    NARCIS (Netherlands)

    Li, Changxi; He, Junpo; Zhou, Yanwu; Gu, Yuankai; Yang, Yuliang

    2011-01-01

    Radical-induced oxidn. of reversible addn.-fragmentation chain transfer (RAFT) agents is studied with respect to the effect of mol. structure on oxidn. rate. The radicals are generated by homolysis of either azobisisobutyronitrile or alkoxyamine and transformed in situ immediately into peroxy

  4. KINETIC STUDY OF LIQUID-PHASE ADSORPTIVE REMOVAL OF ...

    African Journals Online (AJOL)

    The results from this study have revealed that the ATL waste, which is hitherto an environmental nuisance, has the ability to adsorb metal ions from solution and the data are relevant for optimal design of wastewater treatment plants. The low cost and easy availability of ATL waste make potential industrial application a ...

  5. Chemical kinetics on thermal decompositions of cumene hydroperoxide in cumene studied by calorimetry: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Duh, Yih-Shing, E-mail: yihshingduh@yahoo.com.tw [Department of Occupation Safety and Health, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, 35664, Taiwan, ROC (China); Department of Safety, Health and Environmental Engineering, National United University, No. 1 Lien-Da, Miaoli, 36052, Taiwan, ROC (China)

    2016-08-10

    Highlights: • Chemical kinetics on thermal decompositions of CHP are conducted and summarized. • Kinetics agrees well between data from DSC and adiabatic calorimetry. • Ea is determined to be about 120 kJ mol{sup −1} by various calorimetry. • LogA (A in s{sup −1}) is determined to be about 11.8 by various calorimetry. - Abstract: Study on chemical kinetics related to the thermal decomposition of cumene hydoperoxide (CHP) in cumene is summarized in this work. It is of great importance to gather and compare the differences between these kinetic parameters for further substantial applications in the chemical industry and process safety. CHP has been verified to possess an autocatalytic behavior by using microcalorimetry (such as TAM and C-80) operated at isothermal mode in the temperature range from 70 °C to 120 °C. However, it exhibits a reaction of n-th order detected by non-isothermal DSC scanning and adiabatic calorimeter. By the isothermal aging tests, activation energy and frequency factor in logA(s{sup −1}) were averaged to be (117.3 ± 5.9) kJ mol{sup −1}and (11.4 ± 0.3), respectively. Kinetic parameters acquired from data of interlaboratories by using heat-flow calorimetry, the averaged activation energy and frequency factor in logA(s{sup −1}) were (119.3 ± 11.3) kJ mol{sup −1}and (12.0 ± 0.2), respectively. On the analogy of results from adiabatic calorimetry, the activation energy and frequency factor in logA(s{sup −1}) were respectively averaged to be (122.4 ± 9.2) kJ mol{sup −1}and (11.8 ± 0.8). Five sets of kinetic models in relation to autocatalytic reactions are collected and discussed as well.

  6. Bench-scale Kinetics Study of Mercury Reactions in FGD Liquors

    Energy Technology Data Exchange (ETDEWEB)

    Gary Blythe; John Currie; David DeBerry

    2008-03-31

    This document is the final report for Cooperative Agreement DE-FC26-04NT42314, 'Kinetics Study of Mercury Reactions in FGD Liquors'. The project was co-funded by the U.S. DOE National Energy Technology Laboratory and EPRI. The objective of the project has been to determine the mechanisms and kinetics of the aqueous reactions of mercury absorbed by wet flue gas desulfurization (FGD) systems, and develop a kinetics model to predict mercury reactions in wet FGD systems. The model may be used to determine optimum wet FGD design and operating conditions to maximize mercury capture in wet FGD systems. Initially, a series of bench-top, liquid-phase reactor tests were conducted and mercury species concentrations were measured by UV/visible light spectroscopy to determine reactant and byproduct concentrations over time. Other measurement methods, such as atomic absorption, were used to measure concentrations of vapor-phase elemental mercury, that cannot be measured by UV/visible light spectroscopy. Next, a series of bench-scale wet FGD simulation tests were conducted. Because of the significant effects of sulfite concentration on mercury re-emission rates, new methods were developed for operating and controlling the bench-scale FGD experiments. Approximately 140 bench-scale wet FGD tests were conducted and several unusual and pertinent effects of process chemistry on mercury re-emissions were identified and characterized. These data have been used to develop an empirically adjusted, theoretically based kinetics model to predict mercury species reactions in wet FGD systems. The model has been verified in tests conducted with the bench-scale wet FGD system, where both gas-phase and liquid-phase mercury concentrations were measured to determine if the model accurately predicts the tendency for mercury re-emissions. This report presents and discusses results from the initial laboratory kinetics measurements, the bench-scale wet FGD tests, and the kinetics modeling

  7. Kinetic study of ion exchange in phosphoric acid chelating resin

    International Nuclear Information System (INIS)

    Brikci-Nigassa, Mounir; Hamouche, Hafida

    1995-11-01

    Uranium may be recovered as a by product of wet phosphoric acid using a method based on specific ion exchange resins. These resins called chelates contain amino-phosphonic functional groups. The resin studied in this work is a purolite S-940; uranium may be loaded on this resin from 30% P2O5 phosphoric acid in its reduced state. The influence of different parameters on the successive steps of the process have been studied in batch experiments: uranium reduction, loading and oxydation. Uranium may be eluted with ammonium carbonate and the resin regeneration may be done with hydrochloric acid.Ferric ions reduce the effective resin capacity considerably and inert fixation conditions are proposed to enhance uranium loading

  8. PIXE study of the kinetics of biomaterials ossification

    Science.gov (United States)

    Weber, G.; Robaye, G.; Braye, F.; Oudadesse, H.; Irigaray, J. L.

    1994-05-01

    Biomaterials are frequently implanted in bones. This implantation is followed by a phenomenon of ossification. The purpose of this work was to study the time evolution of the gradient of characteristic atomic element's concentrations in the bone, the implant and the bone-implant interface. We have studied two types of neutral biomaterials: pure synthetic hydroxyapatite and porite's asteroid coral. The animal implantations have been made on sheep of the same age and sex having received the same basic diet. The implantations have been made in the cortical femur. On both sides of the implant, at the same distance, two screws were placed to allow further determination of the position of the implant. The PIXE method is particularly suitable here because of the possibility to analyze directly the samples without any preparation and to choose easily the dimensions of beam used for the gradient study. The X-rays have been detected with an ultra LEGe instead of the usual Si(Li) device to avoid the Si escape peak associated with the K α X-ray of calcium, the major constituent of bone. This peak is particularly disturbing here because its energy corresponds to the K α line of phosphorus, an important constituent of bone. The results of these determinations are presented and discussed.

  9. Kinetic studies of sulfide mineral oxidation and xanthate adsorption

    Science.gov (United States)

    Mendiratta, Neeraj K.

    2000-10-01

    Sulfide minerals are a major source of metals; however, certain sulfide minerals, such as pyrite and pyrrhotite, are less desirable. Froth flotation is a commonly used separation technique, which requires the use of several reagents to float and depress different sulfide minerals. Xanthate, a thiol collector, has gained immense usage in sulfide minerals flotation. However, some sulfides are naturally hydrophobic and may float without a collector. Iron sulfides, such as pyrite and pyrrhotite, are few of the most abundant minerals, yet economically insignificant. Their existence with other sulfide minerals leads to an inefficient separation process as well as environmental problems, such as acid mine drainage during mining and processing and SO 2 emissions during smelting process. A part of the present study is focused on understanding their behavior, which leads to undesired flotation and difficulties in separation. The major reasons for the undesired flotation are attributed to the collectorless hydrophobicity and the activation with heavy metal ions. To better understand the collectorless hydrophobicity of pyrite, Electrochemical Impedance Spectroscopy (EIS) of freshly fractured pyrite electrodes was used to study the oxidation and reduction of the mineral. The EIS results showed that the rate of reaction increases with oxidation and reduction. At moderate oxidizing potentials, the rate of reaction is too slow to replenish hydrophilic iron species leaving hydrophobic sulfur species on the surface. However, at higher potentials, iron species are replaced fast enough to depress its flotation. Effects of pH and polishing were also explored using EIS. Besides collectorless hydrophobicity, the activation of pyrrhotite with nickel ions and interaction with xanthate ions makes the separation more difficult. DETA and SO2 are commonly used as pyrrhotite depressants; however, the mechanism is not very well understood. Contact angle measurements, cyclic voltammetry and Tafel

  10. Inhibition of protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase by xanthones from Cratoxylum cochinchinense, and their kinetic characterization.

    Science.gov (United States)

    Li, Zuo Peng; Song, Yeong Hun; Uddin, Zia; Wang, Yan; Park, Ki Hun

    2018-02-01

    Cratoxylum cochinchinense displayed significant inhibition against protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase, both of which are key target enzymes to attenuate diabetes and obesity. The compounds responsible for both enzymes inhibition were identified as twelve xanthones (1-12) among which compounds 1 and 2 were found to be new ones. All of them simultaneously inhibited PTP1B with IC 50 s of (2.4-52.5 µM), and α-glucosidase with IC 50 values of (1.7-72.7 µM), respectively. Cratoxanthone A (3) and γ-mangostin (7) were estimated to be most active inhibitors against both PTP1B (IC 50  = 2.4 µM for 3, 2.8 µM for 7) and α-glucosidase (IC 50  = 4.8 µM for 3, 1.7 µM for 7). In kinetic studies, all isolated xanthones emerged to be mixed inhibitors of α-glucosidase, whereas they behaved as competitive inhibitors of PTP1B. In time dependent experiments, compound 3 showed isomerization inhibitory behavior with following kinetic parameters: K i app  = 2.4 µM; k 5  = 0.05001 µM -1  S -1 and k 6  = 0.02076 µM -1  S -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Kinetics studies following state-selective laser excitation

    International Nuclear Information System (INIS)

    Keto, J.W.

    1994-04-01

    The objective of this contract was the study of state-to-state, electronic energy transfer reactions relevant to the excited state chemistry observed in discharges. We studied deactivation reactions and excitation transfer in collisions of excited states of xenon and krypton atoms with Ar, Kr, Xe and chlorine. The reactant states were excited selectively in two-photon transitions using tunable u.v. and v.u.v. lasers. Excited states produced by the collision were observed by their fluorescence. Reaction rates were measured by observing the time dependent decay of signals from reactant and product channels. In addition we measured interaction potentials of the reactants by laser spectroscopy where the laser induced fluorescence or ionization is measured as a function of laser wavelength (excitation spectra) or by measuring fluorescence spectra at fixed laser frequencies with monochromators. The spectra were obtained in the form of either lineshapes or individual lines from rovibrational transitions of bound states. Our research then required several categories of experiments in order to fully understand a reaction process: 1. High resolution laser spectroscopy of bound molecules or lineshapes of colliding pairs is used to determine potential curves for reactants. 2. Direct measurements of state-to-state reaction rates were measured by studying the time dependent loss of excited reactants and the time dependent formation of products. 3. The energy selectivity of a laser can be used to excite reactants on an excited surface with controlled internuclear configurations. For free states of reactants (as exist in a gas cell) this has been termed laser assisted reactions, while for initially bound states (as chemically bound reactants or dimers formed in supersonic beams) the experiments have been termed photo-fragmentation spectroscopy

  12. A Kinetic Study of the Emulsion Polymerization of Vinyl Acetate

    DEFF Research Database (Denmark)

    Friis, N.; Nyhagen, L.

    1973-01-01

    The emulsion polymerization of vinyl acetate was studied at 50°C. It was found that the rate of polymerization was proportional to the 0.5 power of the initiator concentration and the 0.25 power of the number of particles. The number of particles was proportional to the power 0.5 ± 0.......05 of the emulsifier concentration, but independent of the initiator concentration. The limiting viscosity number of the polymers produced was independent of the initiator concentration and number of polymer particles. It is suggested that the mechanism of vinyl acetate emulsion polymerization is similar...

  13. A study of butyl acetate synthesis. 4-reaction kinetics

    OpenAIRE

    Álvaro Orjuela Londoño; Fernando Leiva Lenis; Luis Alejandro Boyacá Mendivelso; Gerardo Rodríguez Niño; Luis María Carballo Suárez

    2006-01-01

    This work was aimed at studying liquid-phase acetic acid and butyl alcohol esterification reaction (P atm =0.76 Bar),using an ion exchange resin (Lewatit K-2431) as catalyst. The effect of the absence of internal and external mass transport on catalyst particles was established in the research conditions used here. A set of assays to determine the effect of catalyst load (0.5%, 1%, 2% w/w) temperature (73°C, 80°C, 87°C) and molar ratio (1:2, 1:1, 2:1 acid/alcohol) on reaction rate was carrie...

  14. Removal of mercury(II) from aqueous media using eucalyptus bark: Kinetic and equilibrium studies

    International Nuclear Information System (INIS)

    Ghodbane, Ilhem; Hamdaoui, Oualid

    2008-01-01

    In this study, eucalyptus camaldulensis bark, a forest solid waste, is proposed as a novel material for the removal of mercury(II) from aqueous phase. The operating variables studied were sorbent dosage, ionic strength, stirring speed, temperature, solution pH, contact time, and initial metal concentration. Sorption experiments indicated that the sorption capacity was dependent on operating variables and the process was strongly pH-dependent. Kinetic measurements showed that the process was uniform and rapid. In order to investigate the mechanism of sorption, kinetic data were modeled using the pseudo-first-order and pseudo-second-order kinetic equations, and intraparticle diffusion model. Among the kinetic models studied, the pseudo-second-order equation was the best applicable model to describe the sorption process. Equilibrium isotherm data were analyzed using the Langmuir and the Freundlich isotherms. The Langmuir model yields a much better fit than the Freundlich model. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy, and entropy of sorption. The maximum sorption capacity was 33.11 mg g -1 at 20 deg. C and the negative value of free energy change indicated the spontaneous nature of sorption. These results demonstrate that eucalyptus bark is very effective in the removal of Hg(II) from aqueous solutions

  15. Degradation kinetics of fisetin and quercetin in solutions affected by medium pH, temperature and co-existed proteins

    Directory of Open Access Journals (Sweden)

    Wang Jing

    2016-01-01

    Full Text Available Impacts of medium pH, temperature and coexisted proteins on the degradation of two flavonoids fisetin and quercetin were assessed by spectroscopic method in the present study. Based on the measured degradation rate constants (k, fisetin was more stable than quercetin in all cases. Increasing medium pH from 6.0 to 7.5 at 37°C enhanced respective k values of fisetin and quercetin from 8.30x10−3 and 2.81x10−2 to 0.202 and 0.375 h-1 (P<0.05. In comparison with their degradation at 37°C, fisetin and quercetin showed larger k values at higher temperature (0.124 and 0.245 h−1 at 50°C, or 0.490 and 1.42 h−1 at 65°C. Four protein products in medium could stabilize the two flavonoids (P<0.05, as these proteins at 0.10 g L-1 decreased respective k values of fisetin and quercetin to 2.28x10−2-2.98x10−2 and 4.37´10−2-5.97x10−2 h−1. Hydrophobic interaction between the proteins and the two flavonoids was evidenced responsible for the stabilization, as sodium dodecyl sulfate could destroy the stabilization significantly (P<0.05. Casein and soybean protein provided greater stabilization than whey protein isolate. It is thus concluded that higher temperature and alkaline pH can enhance flavonoid loss, whereas coexisted proteins as flavonoid stabilizers can inhibit flavonoid degradation.

  16. Experimental studies on plutonium kinetics in marine biota

    International Nuclear Information System (INIS)

    Fowler, S.; Heyraud, M.; Beasley, T.M.

    1975-01-01

    Laboratory experiments were undertaken to measure plutonium flux through marine organisms and to clarify the pathways by which this important element is cycled in the marine environment. The use of a specially prepared isotope, plutonium-237, allowed measurements to be made with standard NaI(Tl) scintillation techniques. Mussels, shrimp and worms were allowed to accumulate plutonium-237 from seawater for up to 25 days. Accumulation by shrimp was relatively slow and the degree of uptake was strongly influenced by moulting. Cast moults contained large fractions of the shrimps' plutonium content, indicating the high affinity of plutonium for surface areas. Only small amounts of the isotope in the moult are lost to water; hence, moulting is considered to be an important biological parameter in the biogeochemical cycling of plutonium. Mussels attained higher concentration factors than shrimp with most of the accumulated isotope (>80%) located in the shell. Byssus threads often contained large fractions of the mussels' plutonium-237 content and reached concentration factors as high as 4100. Worms readily accumulated plutonium-237 in either the +4 or +6 state, reaching concentration factors of approximately 200. Retention studies indicated a relatively slow loss of plutonium-237 from all animals studied. In the case of mussels, a computed half-time for a large fraction of the animals' plutonium content was of the order of 2 years. The more rapid loss from shrimp (Tbsub(1/2)=1.5 months) was due principally to the large fraction of plutonium lost at moult. Food chain studies with shrimp indicated that tissue build-up via plutonium ingestion would be a slow process. Total excretion was not entirely a result of passing contaminated food through the gut; approximately 15% of the ingested plutonium was removed from the contaminated food and subsequently excreted by processes other than defaecation of labelled food. Ratios of four different plutonium isotopes used in the

  17. Experimental Studies on Plutonium Kinetics in Marine Biota

    International Nuclear Information System (INIS)

    Fowler, S.; Heyraud, M.; Beasley, T.M.

    1976-01-01

    Laboratory experiments were undertaken to measure plutonium flux through marine organisms and to clarify the pathways by which this important element is cycled in the marine environment. The use of a specially prepared isotope, plutonium-237, allowed measurements to be made with standard Nal(Tl) scintillation techniques. Mussels, shrimp and worms were allowed to accumulate plutonium-237 from sea water for up to 25 days. Accumulation by shrimp was relatively slow and the degree of uptake was strongly influenced by moulting. Cast moults contained large fractions of the shrimps ' plutonium content, indicating the high affinity of plutonium for surface areas. Only small amounts of the isotope in the moult are lost to water; hence, moulting is considered to be an important biological parameter in the biogeochemical cycling of plutonium. Mussels attained higher concentration factors than shrimp with most of the accumulated isotope (> 80%) located in the shell. Byssus threads often contained large fractions of the mussels' plutonium-237 content and reached concentration factors as high as 4100. Worms readily accumulated plutonium-237 in either the +4 or +6 state, reaching concentration factors of approximately 200, Retention studies indicated a relatively slow loss of plutonium-237 from all animals studied. In the case of mussels, a computed half-time for a large fraction of the animals plutonium content was of the order of 2 years. The more rapid loss from shrimp (Tb 1/2 = 1.5 months) was due principally to the large fraction of plutonium lost at moult. Food chain studies with shrimp indicated that tissue build-up via plutonium ingestion would be a slow process. Total excretion was not entirely a result of passing contaminated food through the gut; approximately 15% of the ingested plutonium was removed from the contaminated food and subsequently excreted by processes other than defaecation of labelled food. Ratios of four different plutonium isotopes used in

  18. Electrophoretic studies on rape seed proteins

    International Nuclear Information System (INIS)

    Chaudry, M.A.; Starr, A.; Bibi, N.

    1992-07-01

    Electrophoresis is a technique which separates biological molecules on the basis of charge and mass properties. The technique is used for separation, purification, characterization and identification of molecules/ compounds. Two major objectives for applications of electrophoresis have been studied in this report i.e. characterization of rape seed proteins and enzymes and identification of rape seed cultivars by polyacrylamide gel electrophoresis (PAGE). Gamma irradiation is being successfully used to create genetic variability and germination which brought about definite changes in the rape seed proteins reflected in different bands. These differences could be used to study variability in crop plants. (A.B.)

  19. Variation in ruminal in situ degradation of crude protein and starch from maize grains compared to in vitro gas production kinetics and physical and chemical characteristics.

    Science.gov (United States)

    Seifried, Natascha; Steingaß, Herbert; Schipprack, Wolfgang; Rodehutscord, Markus

    2016-10-01

    The objectives of this study were (1) to evaluate in situ ruminal dry matter (DM), crude protein (CP) and starch degradation characteristics and in vitro gas production (GP) kinetics using a set of 20 different maize grain genotypes and (2) to predict the effective degradation (ED) of CP and starch from chemical and physical characteristics alone or in combination with in vitro GP measurements. Maize grains were characterised by different chemical and physical characteristics. Ruminal in situ degradation was measured in three lactating Jersey cows. Ground grains (sieve size: 2 mm) were incubated in bags for 1, 2, 4, 8, 16, 24, 48 and 72 h. Bag residues were analysed for CP and starch content. Degradation kinetics was determined and the ED of DM, CP and starch calculated using a ruminal passage rate of 5%/h and 8%/h. The GP of the grains (sieve size: 1 mm) was recorded after 2, 4, 6, 8, 12, 24, 48 and 72 h incubation in buffered rumen fluid and fitted to an exponential equation to determine GP kinetics. Correlations and stepwise multiple linear regressions were evaluated for the prediction of ED calculated for a passage rate of 5%/h (ED5) for CP (EDCP5) and starch (EDST5). The in situ parameters and ED5 varied widely between genotypes with average values (±SD) of 64% ± 4.2, 62% ± 4.1 and 65% ± 5.2 for ED5 of DM, EDCP5 and EDST5 and were on average 10 percentage points lower for a passage rate of 8%/h. Degradation rates varied between 4.8%/h and 7.4%/h, 4.1%/h and 6.5%/h and 5.3%/h and 8.9%/h for DM, CP and starch, respectively. These rates were in the same range as GP rates (6.0-8.3%/h). The EDCP5 and EDST5 were related to CP concentration and could be evaluated in detail using CP fractions and specific amino acids. In vitro GP measurements and GP rates correlated well with EDCP5 and EDST5 and predicted EDCP5 and EDST5 in combination with the chemical characteristics of the samples. Equations can be used to obtain quick and cost effective information

  20. An experimental study on drying kinetics of some herbal leaves

    International Nuclear Information System (INIS)

    Kaya, Ahmet; Aydin, Orhan

    2009-01-01

    In this study, thin-layer drying characteristics of some herbal leaves, mainly nettle and mint leaves, are investigated experimentally in a convective drier. Effects of the drying air parameters including temperature, velocity and relative humidity on the total drying time are determined. Initially, sorption isotherms of the dried leaves are determined for different temperatures and equilibrium relative humidity (e.r.h.). Experiments are conducted for air temperatures at 35, 45 and 55 deg. C, velocities at 0.2, 0.4 and 0.6 m/s and, relative humidity values at 40%, 55% and 70%. In the ranges that covered, the values of the moisture diffusivity D eff are obtained between 1.744 x 10 -9 and 4.992 x 10 -9 m 2 /s for nettle leaves and 1.975 x 10 -9 and 6.172 x 10 -9 m 2 /s for mint leaves from the Fick's diffusion model. Using D eff , the value of E a is determined assuming the Arrhenius-type temperature relationship, which varies from 79.873 to 109.003 kJ/mol for nettle leaves and 66.873 to 71.987 kJ/mol for mint leaves

  1. An experimental study on drying kinetics of some herbal leaves

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Ahmet; Aydin, Orhan [Karadeniz Technical University, Department of Mechanical Engineering, 61080 Trabzon (Turkey)

    2009-01-15

    In this study, thin-layer drying characteristics of some herbal leaves, mainly nettle and mint leaves, are investigated experimentally in a convective drier. Effects of the drying air parameters including temperature, velocity and relative humidity on the total drying time are determined. Initially, sorption isotherms of the dried leaves are determined for different temperatures and equilibrium relative humidity (e.r.h.). Experiments are conducted for air temperatures at 35, 45 and 55 C, velocities at 0.2, 0.4 and 0.6 m/s and, relative humidity values at 40%, 55% and 70%. In the ranges that covered, the values of the moisture diffusivity D{sub eff} are obtained between 1.744 x 10{sup -9} and 4.992 x 10{sup -9} m{sup 2}/s for nettle leaves and 1.975 x 10{sup -9} and 6.172 x 10{sup -9} m{sup 2}/s for mint leaves from the Fick's diffusion model. Using D{sub eff}, the value of E{sub a} is determined assuming the Arrhenius-type temperature relationship, which varies from 79.873 to 109.003 kJ/mol for nettle leaves and 66.873 to 71.987 kJ/mol for mint leaves. (author)

  2. Application of Elovich equation on uptake kinetics of 137Cs by living freshwater macrophytes - a short duration laboratory study

    International Nuclear Information System (INIS)

    Jaison, T.J.; Patra, A.K.; Ravi, P.M.; Tripathi, R.M.

    2014-01-01

    Application of Elovich equation on uptake kinetics of 137 Cs by two living macrophytes during controlled experiments on short duration exposure is studied. Compliance to 2 nd order kinetics indicates the mechanism could be chemi-sorption, involving polar functional groups present on the extracelluar surface of the macrophytes. Data analysis suggests that Myriophyllum s. exhibits faster adsorption rate than Hydrilla v. As Myriophyllum s. exhibits better kinetics than Hydrilla v., former could be a better natural adsorbing media for 137 Cs. (author)

  3. Whey Protein Supplementation Enhances Whole Body Protein Metabolism and Performance Recovery after Resistance Exercise: A Double-Blind Crossover Study.

    Science.gov (United States)

    West, Daniel W D; Abou Sawan, Sidney; Mazzulla, Michael; Williamson, Eric; Moore, Daniel R

    2017-07-11

    No study has concurrently measured changes in free-living whole body protein metabolism and exercise performance during recovery from an acute bout of resistance exercise. We aimed to determine if whey protein ingestion enhances whole body net protein balance and recovery of exercise performance during overnight (10 h) and 24 h recovery after whole body resistance exercise in trained men. In a double-blind crossover design, 12 trained men (76 ± 8 kg, 24 ± 4 years old, 14% ± 5% body fat; means ± standard deviation (SD)) performed resistance exercise in the evening prior to consuming either 25 g of whey protein (PRO; MuscleTech 100% Whey) or an energy-matched placebo (CHO) immediately post-exercise (0 h), and again the following morning (~10 h of recovery). A third randomized trial, completed by the same participants, involving no exercise and no supplement served as a rested control trial (Rest). Participants ingested [ 15 N]glycine to determine whole body protein kinetics and net protein balance over 10 and 24 h of recovery. Performance was assessed pre-exercise and at 0, 10, and 24 h of recovery using a battery of tests. Net protein balance tended to improve in PRO ( P = 0.064; effect size (ES) = 0.61, PRO vs. CHO) during overnight recovery. Over 24 h, net balance was enhanced in PRO ( P = 0.036) but not in CHO ( P = 0.84; ES = 0.69, PRO vs. CHO), which was mediated primarily by a reduction in protein breakdown (PRO protein supplementation improved MVC (ES = 0.76), REP (ES = 0.44), and peak power (ES = 0.55). In conclusion, whey protein supplementation enhances whole body anabolism, and may improve acute recovery of exercise performance after a strenuous bout of resistance exercise.

  4. Impact of contamination with long-lived radionuclides on PET kinetics modelling in multitracer studies

    DEFF Research Database (Denmark)

    Jødal, Lars; Hansen, Søren Baarsgaard; Jensen, Svend B

    2016-01-01

    Introduction: An important issue in multitracer studies is the separation of signals from the different radiotracers. This is especially the case when an early tracer has a long physical half-life and kinetic modelling has to be performed, because the early tracer can confer a long-lived contamin......Introduction: An important issue in multitracer studies is the separation of signals from the different radiotracers. This is especially the case when an early tracer has a long physical half-life and kinetic modelling has to be performed, because the early tracer can confer a long...... of subsequent PET tracers. Blood sample counts were corrected by recounting the samples a few days later. A more optimal choice of energy window was also explored. The effect of correction versus noncorrection was investigated using a two-tissue kinetic model with irreversible uptake (K1, k2, k3). Results: K1...... counting of blood samples can lead to a contaminating background not observed in PET imaging and this background can affect kinetic modelling. If the contaminating tracer has a much longer half-life than the foreground tracer, then the problem can be solved by late recounting of the samples....

  5. Kinetic Study of Iron (III) Salicyl Hydroxamate Complexes

    International Nuclear Information System (INIS)

    Ali, K.; Ashiq, U.; Ara, R.; Kazmi, R.

    2005-01-01

    The formation of Salicylhydroxamic acid iron (III) complexes were studied at different pH. The reaction at pH 8 and 6 between iron nitrate and salicylhydroxamic acid is very fast and reddish brown colour with iron at 425 nm appears within seconds i.e. within mixing time. The concentration of salicylhydroxamic acid was 20-80 times higher than the concentration of iron (III) solution in order to fulfill pseudo first order conditions. The reddish brown colour appears within mixing time and further change in colour was very slow and observed at 425 nm wave length. The rate constant at pH 8 is 0.1886 sec and at pH 6 is 1.472 sec. The sharp appearance of colour is due to formation of 1:1 and 1:2 complexes while the observed slow change in colour may be due to rearrangement of salicylhydroxamic acid from bidentate to tridentate or it may be due to the formation of 1:3 complex. In the next set of reactions the 1:1 complex of salicylhydroxamic acid iron (III) was prepared by mixing iron (III) and salicylhydroxamic acid in 1:1 mole ratio and then the formation of 1:2 complex was observed at pH 5, 4.5 and 4. The concentration of salicylhydroxamic acid solution was 2-10 times higher than the 1:1 complex of salicylhydroxamic acid iron (III) complex. The observed reactions were very fast and were not truly a first order reaction. The rate constant is 24.85 sec at pH 4.5 and 16.98 sec at pH4. The reaction of 1:1 complex with salicylhydroxamic acid at pH3 was very fast. The lamda max of iron complex is 500 nm and of final mixture is 476 nm. The reaction was assumed to be reversible. The absorbance of both species at a particular wavelength is additive. Using this property the equilibrium constant was calculated which was not constant at different ratios of 1:1 complex and salicylhydroxamic acid, which further indicate the possibility of rearrangement reaction. (author)

  6. Kinetic, spectroscopic and chemical modification study of iron release from transferrin; iron(III) complexation to adenosine triphosphate

    International Nuclear Information System (INIS)

    Thompson, C.P.

    1985-01-01

    Amino acids other than those that serve as ligands have been found to influence the chemical properties of transferrin iron. The catalytic ability of pyrophosphate to mediate transferrin iron release to a terminal acceptor is largely quenched by modification non-liganded histine groups on the protein. The first order rate constants of iron release for several partially histidine modified protein samples were measured. A statistical method was employed to establish that one non-liganded histidine per metal binding domain was responsible for the reduction in rate constant. These results imply that the iron mediated chelator, pyrophosphate, binds directly to a histidine residue on the protein during the iron release process. EPR spectroscopic results are consistent with this interpretation. Kinetic and amino acid sequence studies of ovotransferrin and lactoferrin, in addition to human serum transferrin, have allowed the tentative assignment of His-207 in the N-terminal domain and His-535 in the C-terminal domain as the groups responsible for the reduction in rate of iron release. The above concepts have been extended to lysine modified transferrin. Complexation of iron(II) to adenosine triphosphate (ATP) was also studied to gain insight into the nature of iron-ATP species present at physiological pH. 31 P NMR spectra are observed when ATP is presented in large excess

  7. Study of the dissolution velocity of dispersed solid particles. Development of a calculation method for analyzing the kinetic curves. Extension to the study of composed kinetics

    International Nuclear Information System (INIS)

    Jorda, Michel.

    1976-01-01

    The dissolution of a solid in an aqueous phase is studied, the solid consisting of dispersed particles. A continuous colorimetric analysis method is developed to study the dissolution process and a two-parameter optimization method is established to investigate the kinetic curves obtained. This method is based on the differential equation dx/dt=K(1-x)sup(n). (n being the decrease in the dissolution velocity when the dissolved part increases and K a velocity parameter). The dissolution of SO 4 Cu and MnO 4 K in water and UO 3 in SO 4 H 2 is discussed. It is shown that the dissolution velocity of UO 3 is proportional to the concentration of the H + ions in the solution as far as this one is not higher than 0.25N. The study of the temperature dependence of the UO 3 dissolution reaction shows that a transition phase takes place from 25 to 65 0 C between a phase in which the dissolution is controlled by the diffusion of the H + ions and the chemical reaction at the interface and a phase in which the kinetics is only controlled by the diffusion [fr

  8. A study of the static to kinetic friction transition of polymers

    OpenAIRE

    Lee, Edward Chungjen

    1995-01-01

    This study investigates the transition from static to kinetic friction for structural polymers and continues previous research conducted by Dr. N. S. Eiss, B. McCann, and R. Molique. A new test apparatus which simultaneously measures friction, normal load, and relative velocity was developed to study this transition. The polymers used in this study were nylon, ABS, polycarbonate, and fiberglass filled and unfilled polypropylene. Creep effects of polymers on the static coefficie...

  9. Kinetic study of Chromium VI adsorption onto palm kernel shell activated carbon

    Science.gov (United States)

    Mohammad, Masita; Sadeghi Louyeh, Shiva; Yaakob, Zahira

    2018-04-01

    Heavy metal contamination of industrial effluent is one of the significant environmental problems due to their toxicity and its accumulation throughout the food chain. Adsorption is one of the promising methods for removal of heavy metals from aqua solution because of its simple technique, efficient, reliable and low-cost due to the utilization of residue from the agricultural industry. In this study, activated carbon from palm kernel shells has been produced through chemical activation process using zinc chloride as an activating agent and carbonized at 800 °C. Palm kernel shell activated carbon, PAC was assessed for its efficiency to remove Chromium (VI) ions from aqueous solutions through a batch adsorption process. The kinetic mechanisms have been analysed using Lagergren first-order kinetics model, second-order kinetics model and intra-particle diffusion model. The characterizations such as BET surface area, surface morphology, SEM-EDX have been done. The result shows that the activation process by ZnCl2 was successfully improved the porosity and modified the functional group of palm kernel shell. The result shows that the maximum adsorption capacity of Cr is 11.40mg/g at 30ppm initial metal ion concentration and 0.1g/50mL of adsorbent concentration. The adsorption process followed the pseudo second orders kinetic model.

  10. Prediction of vapour-liquid equilibria for the kinetic study of processes based on synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Di Serio, M.; Tesser, R.; Cozzolino, M.; Santacesaria, E. [Naples Univ., Napoli (Italy). Dept. of Chemistry

    2006-07-01

    Syngas is normally used in the production of a broad range of chemicals and fuels. In many of these processes multiphase reactors, gas-liquid or gas-liquid-solid are used. Kinetic studies in multiphase systems are often complicated by the non-ideal behaviour of reagents and/or products that are consistently partitioned between the liquid and the vapour phase. Moreover, as often kinetic data are collected in batch conditions for the liquid phase, activity coefficients of the partitioned components can consistently change during the time as a consequence of changing the composition of the reaction mixture. Therefore, it is necessary, in these cases, to known the vapor-liquid equilibria (VLE) in order to collect and to interpret correctly the kinetic data. The description of phase equilibria, at high pressures, is usually performed by means of an EOS (Equation of State) allowing the calculation of fugacity coefficients, for each component, in both phases and determining the partition coefficients but the EOS approach involves the experimental determination of the interaction parameters for all the possible binary system of the mixture. For multicomponent mixtures a complete experimental determination of vapourliquid equilibria is very hard, also considering the high pressure and temperatures used. Some predictive group contribution methods have been recently developed. In this paper, we will describe in detail the application of these methods to the methanol homologation, as an example, with the scope of determining more reliable kinetic parameters for this reaction. (orig.)

  11. In-situ study of hydriding kinetics in Pd-based thin film systems

    Energy Technology Data Exchange (ETDEWEB)

    Delmelle, Renaud; Proost, Joris [Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium). Div. of Materials and Process Engineering

    2010-07-01

    The hydriding kinetics of Pd thin films has been investigated in detail. The key experimental technique used in this work consists of a high resolution curvature measurement setup, which continuously monitors the reflections of multiple laser beams coming off a cantilevered sample. After mounting the sample inside a vacuum chamber, a H-containing gas mixture is introduced to instantaneously generate a given hydrogen partial pressure (p{sub H2}) inside the chamber. The resulting interaction of H with the Pd layer then leads to a volume expansion of the thin film system. This induces in turn changes in the sample curvature as a result of internal stresses developing in the Pd film during a hydriding cycle. Based on such curvature date obtained in-situ at different p{sub H2}, a two-step model for the kinetics of Pd-hydride formation has been proposed and expressions for the hydrogen adsorption and absorption velocities have been derived. The rate-limiting steps have been identified by studying the p{sub H2}-dependence of these velocities. Furthermore, from our in-situ experimental data, relevant kinetic parameters have been calculated. The effect of dry air exposure of the Pd films on the hydriding kinetics has been considered as well. (orig.)

  12. Kinetic Study of Hydroxyl and Sulfate Radical-Mediated Oxidation of Pharmaceuticals in Wastewater Effluents.

    Science.gov (United States)

    Lian, Lushi; Yao, Bo; Hou, Shaodong; Fang, Jingyun; Yan, Shuwen; Song, Weihua

    2017-03-07

    Advanced oxidation processes (AOPs), such as hydroxyl radical (HO • )- and sulfate radical (SO 4 •- )-mediated oxidation, are alternatives for the attenuation of pharmaceuticals and personal care products (PPCPs) in wastewater effluents. However, the kinetics of these reactions needs to be investigated. In this study, kinetic models for 15 PPCPs were built to predict the degradation of PPCPs in both HO • - and SO 4 •- -mediated oxidation. In the UV/H 2 O 2 process, a simplified kinetic model involving only steady state concentrations of HO • and its biomolecular reaction rate constants is suitable for predicting the removal of PPCPs, indicating the dominant role of HO • in the removal of PPCPs. In the UV/K 2 S 2 O 8 process, the calculated steady state concentrations of CO 3 •- and bromine radicals (Br • , Br 2 •- and BrCl •- ) were 600-fold and 1-2 orders of magnitude higher than the concentrations of SO 4 •- , respectively. The kinetic model, involving both SO 4 •- and CO 3 •- as reactive species, was more accurate for predicting the removal of the 9 PPCPs, except for salbutamol and nitroimidazoles. The steric and ionic effects of organic matter toward SO 4 •- could lead to overestimations of the removal efficiencies of the SO 4 •- -mediated oxidation of nitroimidazoles in wastewater effluents.

  13. The shock tube as wave reactor for kinetic studies and material systems

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskaran, K.A. [Indian Institute of Technology, Chennai (India). Department of Mechanical Engineering; Roth, P. [Gerhard Mercator Universitat, Duisberg (Germany). Institut fur Verbrennung und Gasdynamik

    2002-07-01

    Several important reviews of shock tube kinetics have appeared earlier, prominent among them being 'Shock Tube Technique in Chemical Kinetics' by Belford and Strehlow (Ann Rev Phys Chem 20 (1969) 247), 'Chemical Reaction of Shock Waves' by Wagner (Proceedings of the Eighth International Shock Tube Symposium (1971) 4/1), 'Shock Tube and Shock Wave Research' by Bauer and Lewis (Proceedings of the 11th International Symposium on Shock Tubes and Waves (1977) 269), 'Shock Waves in Chemistry' edited by Assa Lifshitz (Shock Waves in Chemistry, 1981) and 'Shock Tube Techniques in Chemical Kinetics' by Wing Tsang and Assa Lifshitz (Annu Rev Phys Chem 41 (1990) 559). A critical analysis of the different shock tube techniques, their limitations and suggestions to improve the accuracy of the data produced are contained in these reviews. The purpose of this article is to present the current status of kinetic research with emphasis on the diagnostic techniques. Selected studies on homogeneous and dispersed systems are presented to bring out the versatility of the shock tube technique. The use of the shock tube as high temperature wave reactor for gas phase material synthesis is also highlighted. (author)

  14. Study of physical mechanisms and their influence on dry anaerobic digestion kinetics: experimentations and modelization

    International Nuclear Information System (INIS)

    Bollon, Julien

    2012-01-01

    Anaerobic digestion is a biological process that converts organic matter into a methane rich gas (biogas). Among industrial technologies, dry processes (above 15 % total solid content) are more and more used because of their advantages in comparison with conventional wet processes. However, dry anaerobic digestion processes are poorly known and studied because of the 'pasty' nature of digestion media (rheological behavior, equilibria, transfers, biological kinetics). This thesis focuses on two major aspects: i) the nature of the chemical equilibria (sorption, diffusion) involved in digestion media, ii) the establishment and application of a kinetic model adapted to dry media. We first demonstrated that the diffusional mass transfer is highly reduced with increasing total solid without any agitation. One of the consequences is the importance of the liquid-gas transfer for the production of biogas. Then, we have developed a dedicated kinetic model that enables to understand the variability of the kinetic with total solid content. The impacts of this work are both at the laboratory scale, especially for the operation of Specific Methanogenic Activity tests, and at industrial scale, with the need to control total solid content for optimal efficiency, and to adapt the agitation to improve degradation yields. The developed model can be useful for the design and operation of bio-methanization facilities. (author) [fr

  15. Experimental study and kinetic modeling of the hydro-fluorination of uranium dioxide

    International Nuclear Information System (INIS)

    Pages, Simon

    2014-01-01

    A kinetic study of hydro-fluorination of uranium dioxide was performed between 375 and 475 C under partial pressures of HF between 42 and 720 mbar. The reaction was followed by thermogravimetry in isothermal and isobaric conditions. The kinetic data obtained coupled with a characterization of the powder before, during and after reaction by SEM, EDS, BET and XRD showed that the powder grains of UO 2 are transformed according a model of instantaneous germination, anisotropic growth and internal development. The rate limiting step of the growth process is the diffusion of HF in the UF 4 layer. A mechanism of growth of the UF 4 layer has been proposed. In the temperature and pressure range studied, the reaction is of first order with respect to HF and follows an Arrhenius law. A rate equation was determined and used to perform kinetic simulations which have shown a very good correlation with experience. Coupling of this rate equation with heat and mass transport phenomena allowed to perform simulations at the scale of a powder's agglomerate. They have shown that some structures of agglomerates influence the rate of diffusion of the gases in the porous medium and thereby influence the reaction rate. Finally kinetic simulations on powder's beds and pellets were carried out and compared with experimental rates. The experimental and simulated kinetic curves have the same paces, but improvements in the simulations are needed to accurately predict rates: the coupling between the three scales (grain, agglomerate, oven) would be a good example. (author) [fr

  16. Comparison of electron beam and gamma ray irradiations effects on ruminal crude protein and amino acid degradation kinetics, and in vitro digestibility of cottonseed meal

    International Nuclear Information System (INIS)

    Ghanbari, F.; Ghoorchi, T.; Shawrang, P.; Mansouri, H.; Torbati-Nejad, N.M.

    2012-01-01

    This study was conducted to compare effects of electron beam (EB) and gamma ray (GR) treatments at doses of 25, 50 and 75 kGy on ruminal degradation kinetics of crude protein (CP), amino acid (AA), and in vitro digestibility of cottonseed meal (CSM). Ionizing radiations of EB and GR had significant effects (P 0.05). Irradiation processing caused decrement in AA degradation after 16 h of ruminal incubation (P<0.05). EB irradiation was more effective than GR irradiation in lessening the ruminal degradability of AA (P<0.05). EB and GR treatments at a dose of 75 kGy increased in vitro digestibility of CSM numerically. This study showed that EB could cause CP and AA bypass rumen as well as GR. Therefore, ionizing irradiation processing can be used as an efficient method in improving nutritional value of CSM. - Highlights: ► Irradiation was effective on reducing ruminal degradability of cottonseed meal. ► Ionizing radiations, especially electron beam, lessened ruminal degradability of amino acid substantially. ► Irradiation processing could be used as a safe and efficient method in improving nutritional value of cottonseed meal.

  17. A Critical Appraisal of Quantitative Studies of Protein Degradation in the Framework of Cellular Proteostasis

    Directory of Open Access Journals (Sweden)

    Beatriz Alvarez-Castelao

    2012-01-01

    Full Text Available Protein homeostasis, proteostasis, is essential to understand cell function. Protein degradation is a crucial component of the proteostatic mechanisms of the cell. Experiments on protein degradation are nowadays present in many investigations in the field of molecular and cell biology. In the present paper, we focus on the different experimental approaches to study protein degradation and present a critical appraisal of the results derived from steady-state and kinetic experiments using detection of unlabelled and labelled protein methodologies with a proteostatic perspective. This perspective allows pinpointing the limitations in interpretation of results and the need of further experiments and/or controls to establish “definitive evidence” for the role of protein degradation in the proteostasis of a given protein or the entire proteome. We also provide a spreadsheet for simple calculations of mRNA and protein decays for mimicking different experimental conditions and a checklist for the analysis of experiments dealing with protein degradation studies that may be useful for researchers interested in the area of protein turnover.

  18. Study of the thermoluminescence properties and kinetics of local natural calcium fluoride in Saudi Arabia

    International Nuclear Information System (INIS)

    Zarie, K.A.

    2006-01-01

    Thermoluminescence (TL) characteristics of local natural calcium fluoride that show light yellowish appearance obtained from a fluoride mine west of Saudi Arabia have been studied. TL glow peaks were observed at 160, 260 and 334 degree C. Thermal treatment and fading effects had been studied. The TL response was observed to increase with increasing dose, as expected, over the dose range used. The kinetic parameters were calculated to satisfy the feasibility of using the present sample as gamma -ray dosimetry

  19. Panus tigrinus as a potential biomass source for Reactive Blue decolorization: Isotherm and kinetic study

    Directory of Open Access Journals (Sweden)

    Monawar Munjid Mustafa

    2017-03-01

    Conclusion: The biosorption process provided vital information on the process parameters required to obtain the optimum level of dye removal. The isotherm study indicated the homogeneous distribution of active sites on the biomass surface, and the kinetic study suggested that chemisorption is the rate-limiting step that controlled the biosorption process. According to the obtained results, P. tigrinus biomass can be used effectively to decolorize textile dyes and tackle the pollution problems in the environment.

  20. Kinetics and mechanical stability of the fibril state control fibril formation time of polypeptide chains: A computational study

    Science.gov (United States)

    Kouza, Maksim; Co, Nguyen Truong; Li, Mai Suan; Kmiecik, Sebastian; Kolinski, Andrzej; Kloczkowski, Andrzej; Buhimschi, Irina Alexandra

    2018-06-01

    Fibril formation resulting from protein misfolding and aggregation is a hallmark of several neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Despite much progress in the understanding of the protein aggregation process, the factors governing fibril formation rates and fibril stability have not been fully understood. Using lattice models, we have shown that the fibril formation time is controlled by the kinetic stability of the fibril state but not by its energy. Having performed all-atom explicit solvent molecular dynamics simulations with the GROMOS43a1 force field for full-length amyloid beta peptides Aβ40 and Aβ42 and truncated peptides, we demonstrated that kinetic stability can be accessed via mechanical stability in such a way that the higher the mechanical stability or the kinetic stability, the faster the fibril formation. This result opens up a new way for predicting fibril formation rates based on mechanical stability that may be easily estimated by steered molecular dynamics.

  1. Succinate overproduction: A case study of computational strain design using a comprehensive Escherichia coli kinetic model

    Directory of Open Access Journals (Sweden)

    Ali eKhodayari

    2015-01-01

    Full Text Available Computational strain design prediction accuracy has been the focus for many recent efforts through the selective integration of kinetic information into metabolic models. In general, kinetic model prediction quality is determined by the range and scope of genetic and/or environmental perturbations used during parameterization. In this effort, we apply the k-OptForce procedure on a kinetic model of E. coli core metabolism constructed using the Ensemble Modeling (EM method and parameterized using multiple mutant strains data under aerobic respiration with glucose as the carbon source. Minimal interventions are identified that improve succinate yield under both aerobic and anaerobic conditions to test the fidelity of model predictions under both genetic and environmental perturbations. Under aerobic condition, k-OptForce identifies interventions that match existing experimental strategies pointing at a number of unexplored flux redirections such as routing glyoxylate flux through the glycerate metabolism to improve succinate yield. Many of the identified interventions rely on the kinetic descriptions and would not be discoverable by a purely stoichiometric description. In contrast, under fermentative (anaerobic conditions, k-OptForce fails to identify key interventions including up-regulation of anaplerotic reactions and elimination of competitive fermentative products. This is due to the fact that the pathways activated under anaerobic conditions were not properly parameterized as only aerobic flux data were used in the model construction. This study shed light on the importance of condition-specific model parameterization and provides insight onto how to augment kinetic models so as to correctly respond to multiple environmental perturbations.

  2. Kinetic Degradation and Controlled Drug Delivery System Studies for Sensitive Hydrogels Prepared by Gamma Irradiation

    International Nuclear Information System (INIS)

    Eid, M.; El-Arnaouty, M.B.

    2008-01-01

    Ternary mixtures of N-vinyle-2-pyrrolidone(NVP ), itaconic acid (IA) and gelatin (G) were gamma irradiated to prepared poly(NVP/IA/G) hydrogels. The equilibrium kinetic swelling, drug release behavior, Scan Electron Microscope (SEM) and the swelling-degradation kinetics were studied. Both the diffusion exponent and the diffusion coefficient increase with increasing content of (IA). Also, the swelling behavior of copolymer hydrogels in response to ph value of the external media was studied, it is noted that the highest swelling values at ph 4. The in vitro drug release behavior of these hydrogels was examined by quantification analysis with a UV/VIS spectrophotometers. Chlorpromazine hydrochloride was loaded into dried hydrogels to investigate the stimuli-sensitive property at the specific ph. The release studies show that the highest value of release was at ph 4 which can be used for drug delivery system

  3. Solid-state reaction kinetics and optical studies of cadmium doped magnesium hydrogen phosphate crystals

    Science.gov (United States)

    Verma, Madhu; Gupta, Rashmi; Singh, Harjinder; Bamzai, K. K.

    2018-04-01

    The growth of cadmium doped magnesium hydrogen phosphate was successfully carried out by using room temperature solution technique i.e., gel encapsulation technique. Grown crystals were confirmed by single crystal X-ray diffraction (XRD). The structure of the grown crystal belongs to orthorhombic crystal system and crystallizes in centrosymmetric space group. Kinetics of the decomposition of the grown crystals were studied by non-isothermal analysis. Thermo gravimetric / differential thermo analytical (TG/DTA) studies revealed that the grown crystal is stable upto 119 °C. The various steps involved in the thermal decomposition of the material have been analysed using Horowitz-Metzger, Coats-Redfern and Piloyan-Novikova equations for evaluating various kinetic parameters. The optical studies shows that the grown crystals possess wide transmittance in the visible region and significant optical band gap of 5.5ev with cut off wavelength of 260 nm.

  4. Benchmark studies of the gyro-Landau-fluid code and gyro-kinetic codes on kinetic ballooning modes

    Energy Technology Data Exchange (ETDEWEB)

    Tang, T. F. [Dalian University of Technology, Dalian 116024 (China); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Xu, X. Q. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Ma, C. H. [Fusion Simulation Center, School of Physics, Peking University, Beijing (China); Bass, E. M.; Candy, J. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Holland, C. [University of California San Diego, La Jolla, California 92093-0429 (United States)

    2016-03-15

    A Gyro-Landau-Fluid (GLF) 3 + 1 model has been recently implemented in BOUT++ framework, which contains full Finite-Larmor-Radius effects, Landau damping, and toroidal resonance [Ma et al., Phys. Plasmas 22, 055903 (2015)]. A linear global beta scan has been conducted using the JET-like circular equilibria (cbm18 series), showing that the unstable modes are kinetic ballooning modes (KBMs). In this work, we use the GYRO code, which is a gyrokinetic continuum code widely used for simulation of the plasma microturbulence, to benchmark with GLF 3 + 1 code on KBMs. To verify our code on the KBM case, we first perform the beta scan based on “Cyclone base case parameter set.” We find that the growth rate is almost the same for two codes, and the KBM mode is further destabilized as beta increases. For JET-like global circular equilibria, as the modes localize in peak pressure gradient region, a linear local beta scan using the same set of equilibria has been performed at this position for comparison. With the drift kinetic electron module in the GYRO code by including small electron-electron collision to damp electron modes, GYRO generated mode structures and parity suggest that they are kinetic ballooning modes, and the growth rate is comparable to the GLF results. However, a radial scan of the pedestal for a particular set of cbm18 equilibria, using GYRO code, shows different trends for the low-n and high-n modes. The low-n modes show that the linear growth rate peaks at peak pressure gradient position as GLF results. However, for high-n modes, the growth rate of the most unstable mode shifts outward to the bottom of pedestal and the real frequency of what was originally the KBMs in ion diamagnetic drift direction steadily approaches and crosses over to the electron diamagnetic drift direction.

  5. Study and discretization of kinetic models and fluid models at low Mach number

    International Nuclear Information System (INIS)

    Dellacherie, Stephane

    2011-01-01

    This thesis summarizes our work between 1995 and 2010. It concerns the analysis and the discretization of Fokker-Planck or semi-classical Boltzmann kinetic models and of Euler or Navier-Stokes fluid models at low Mach number. The studied Fokker-Planck equation models the collisions between ions and electrons in a hot plasma, and is here applied to the inertial confinement fusion. The studied semi-classical Boltzmann equations are of two types. The first one models the thermonuclear reaction between a deuterium ion and a tritium ion producing an α particle and a neutron particle, and is also in our case used to describe inertial confinement fusion. The second one (known as the Wang-Chang and Uhlenbeck equations) models the transitions between electronic quantified energy levels of uranium and iron atoms in the AVLIS isotopic separation process. The basic properties of these two Boltzmann equations are studied, and, for the Wang-Chang and Uhlenbeck equations, a kinetic-fluid coupling algorithm is proposed. This kinetic-fluid coupling algorithm incited us to study the relaxation concept for gas and immiscible fluids mixtures, and to underline connections with classical kinetic theory. Then, a diphasic low Mach number model without acoustic waves is proposed to model the deformation of the interface between two immiscible fluids induced by high heat transfers at low Mach number. In order to increase the accuracy of the results without increasing computational cost, an AMR algorithm is studied on a simplified interface deformation model. These low Mach number studies also incited us to analyse on cartesian meshes the inaccuracy at low Mach number of Godunov schemes. Finally, the LBM algorithm applied to the heat equation is justified

  6. Studies of U(4) oxidation kinetics in nitric acid and TBP phases

    International Nuclear Information System (INIS)

    Taylor, R.J.; Denniss, I.S.; Koltunov, V.S.; Marchenko, V.I.; Dvoeglazov, K.N.; Savilova, O.A.; Broan, C.J.

    2000-01-01

    U(IV) is an important reagent in current reprocessing plants since it is used to reduce Pu(IV) to Pu(III), therefore, allowing the efficient separation of U and Pu in multi-stage counter-current solvent extraction contactors. The benefits of U(IV) are that it is a kinetically fast reductant and it is a salt free reagent, since U(IV) is oxidised to U(VI) and so does not add to the aqueous waste volumes. Many kinetic reactions of U(IV) have been studied in the past and these are used by BNFL to model the behaviour of U(IV) in process flowsheets. However, some reactions have either not been studied or have been studied many times without conclusive resolution. Therefore, to expand our understanding of U(IV) in the process and to generate data that underpins process models, we are studying a series of U(IV) reactions, and this paper will summarize the results of our kinetic and mechanistic studies. (authors)

  7. Effects of replacing soybean meal with canola meal differing in rumen-undegradable protein content on ruminal fermentation and gas production kinetics using 2 in vitro systems.

    Science.gov (United States)

    Paula, E M; Monteiro, H F; Silva, L G; Benedeti, P D B; Daniel, J L P; Shenkoru, T; Broderick, G A; Faciola, A P

    2017-07-01

    Previous research indicated that there were significant differences in rumen-undegradable protein (RUP) among canola meals (CM), which could influence the nutritional value of CM. The objectives of this study were to (1) evaluate the effects of feeding CM with different RUP contents on ruminal fermentation, nutrient digestion, and microbial growth using a dual-flow continuous culture system (experiment 1) and (2) evaluate ruminal gas production kinetics, in vitro organic matter (OM) digestibility, and methane (CH 4 ) production of soybean meal (SBM) and CM with low or high RUP in the diet or as a sole ingredient using a gas production system (experiments 2 and 3). In experiment 1, diets were randomly assigned to 6 fermentors in a replicated 3 × 3 Latin square. The only ingredient that differed among diets was the protein supplement. The treatments were (1) solvent-extracted SBM, (2) low-RUP solvent-extracted CM (38% RUP as a percentage of crude protein), and (3) high-RUP solvent-extracted CM (50% RUP). Diets were prepared as 3 concentrate mixtures that were combined with 25% orchardgrass hay and 15% wheat straw (dry matter basis). Experiments 2 and 3 had the same design with 24 bottles incubated 3 times for 48 h each. During the 48-h incubation, the cumulative pressure was recorded to determine gas production kinetics, in vitro OM digestibility, and CH 4 production. In experiment 1, N flow (g/d), efficiency of N use, efficiency of bacterial N synthesis, total volatile fatty acids (mM), and molar proportion of acetate, propionate, and isobutyrate were not affected by treatments. There were tendencies for a decrease in ruminal NH 3 -N and an increase in molar proportion of butyrate for the SBM diet compared with both CM diets. The molar proportion of valerate was greater in both CM diets, whereas the molar proportion of isovalerate and total branched-chain volatile fatty acids was lower for the CM diets compared with the SBM diet. In experiments 2 and 3, the SBM

  8. Using Beads and Divided Containers to Study Kinetic and Equilibrium Isotope Effects in the Laboratory and in the Classroom

    Science.gov (United States)

    Campbell, Dean J.; Brewer, Emily R.; Martinez, Keri A.; Fitzjarrald, Tamara J.

    2017-01-01

    The purpose of this laboratory experiment is to study fundamental concepts of kinetics and equilibria and the isotope effects associated with both of these concepts. The concepts of isotopes in introductory and general chemistry courses are typically used within the contexts of atomic weights and radioactivity. Kinetic and equilibrium isotope…

  9. Study of kinetics of 2,3-diphosphoglycerate degradation by 31P-NMR technique in depleted human erythrocytes

    International Nuclear Information System (INIS)

    Ataullakhanov, F.I.; Vitvitskii, V.M.; Dubinskaya, E.I.; Dubinskii, V.Z.

    1986-01-01

    The kinetics of 2,3-diphosphoglycerate degradation in depleted human erythrocytes was studied by the high-resolution 31 P-NMR technique. A plateau was found on the kinetic curve in the first 1.5-2 h after the beginning of depletion. The mechanisms that may be responsible for the existence of such a plateau are discussed

  10. Biomarkers kinetics in the assessment of ventilator-associated pneumonia response to antibiotics - results from the BioVAP study

    NARCIS (Netherlands)

    Póvoa, Pedro; Martin-Loeches, Ignacio; Ramirez, Paula; Bos, Lieuwe D.; Esperatti, Mariano; Silvestre, Joana; Gili, Gisela; Goma, Gemma; Berlanga, Eugenio; Espasa, Mateu; Gonçalves, Elsa; Torres, Antoni; Artigas, Antonio

    2017-01-01

    Purpose: Our aim was to evaluate the role of biomarker kinetics in the assessment of ventilator-associated pneumonia (VAP) response to antibiotics. Materials and methods: We performed a prospective, multicenter, observational study to evaluate in 37 microbiologically documented VAP, the kinetics of

  11. Study of the effect of anions and mixed solvents on the kinetics of reduction of Eu(III)

    International Nuclear Information System (INIS)

    Chandrasekaran, V.R.; Sundaram, A.K.

    1983-01-01

    The kinetics of reduction of Eu(III) to Eu(II) in aqueous solutions of perchlorate, chloride, sulphate, acetate and lactate anions and water-methanol and water-acetone mixtures containing potassium chloride as the inert electrolyte is reported and the effect of anions and solvent on the kinetics is studied. (author)

  12. Isolation and Characterization of Protein Tyrosine Phosphatase 1B (PTP1B Inhibitory Polyphenolic Compounds From Dodonaea viscosa and Their Kinetic Analysis

    Directory of Open Access Journals (Sweden)

    Zia Uddin

    2018-03-01

    Full Text Available Diabetes mellitus is one of a major worldwide concerns, regulated by either defects in secretion or action of insulin, or both. Insulin signaling down-regulation has been related with over activity of protein tyrosine phosphatase 1B (PTP1B enzyme, which has been a promising target for the treatment of diabetes mellitus. Herein, activity guided separation of methanol extract (95% of Dodonaea viscosa aerial parts afforded nine (1-9 polyphenolic compounds, all of them were identified through spectroscopic data including 2D NMR and HREIMS. Subsequently, their PTP1B inhibitory potentials were evaluated, in which all of the isolates exhibited significant dose-dependent inhibition with IC50 13.5–57.9 μM. Among them, viscosol (4 was found to be the most potent compound having IC50 13.5 μM. In order to unveil the mechanistic behavior, detailed kinetic study was carried out, in which compound 4 was observed as a reversible, and mixed type I inhibitor of PTP1B with inhibitory constant (Ki value of 4.6 μM. Furthermore, we annotated the major metabolites through HPLC-DAD-ESI/MS analysis, in which compounds 3, 6, 7, and 9 were found to be the most abundant metabolites in D. viscosa extract.

  13. Isolation and characterization of protein tyrosine phosphatase 1B (PTP1B) inhibitory polyphenolic compounds from Dodonaea viscosa and their kinetic analysis

    Science.gov (United States)

    Uddin, Zia; Song, Yeong Hun; Ullah, Mahboob; Li, Zuopeng; Kim, Jeong Yoon; Park, Ki Hun

    2018-03-01

    Diabetes mellitus is one of a major worldwide concerns, regulated by either defects in secretion or action of insulin, or both. Insulin signaling down-regulation has been related with over activity of protein tyrosine phosphatase 1B (PTP1B) enzyme, which has been a promising target for the treatment of diabetes mellitus. Herein, activity guided separation of methanol extract (95%) of Dodonaea viscosa aerial parts afforded nine (1-9) polyphenolic compounds, all of them were identified through spectroscopic data including 2D NMR and HREIMS. Subsequently, their PTP1B inhibitory potentials were evaluated, in which all of the isolates exhibited significant dose-dependent inhibition with IC50 13.5-57.9 μM. Among them, viscosol (4) was found to be the most potent compound having IC50 13.5 μM. In order to unveil the mechanistic behavior, detailed kinetic study was carried out, in which compound 4 was observed as a reversible, and mixed type I inhibitor of PTP1B with inhibitory constant (Ki) value of 4.6 μM. Furthermore, we annotated the major metabolites through HPLC-DAD-ESI/MS analysis, in which compounds 3, 6, 7 and 9 were found to be the most abundant metabolites in D.viscosa extract.

  14. Kinetic and biochemical studies on tumor growth. Comprehensive progress report, October 1, 1967--April 1, 1975

    International Nuclear Information System (INIS)

    Dethlefsen, L.A.

    1975-01-01

    The growth kinetics of four lines of the C3H mammary tumor have been studied by standard autoradiographic procedures in combination with volumetric growth curve analysis. Thus, such parameters as volumetric doubling time, mean cell generation time, growth fraction, and cell loss have been measured. Two of these lines (Slow and S102F) are currently being used for studying hormone responsiveness both in vivo and in vitro and the perturbed kinetics following insults with therapeutic agents. The respective values for the above parameters are: Slow; 21.0 days, 34 hours, 0.20, 9 percent per day, and S102F; 2.5 days, 17 hours, 0.60, 27 percent per day. A direct method ( 125 I-IUdR Method) for measuring cell loss has also been developed. This method consists of injecting mice with 125 I-IUdR and then measuring the loss of 125 I-activity from the tumor. The antigenic status of these tumors has been studied as one possible factor underlying the different growth kinetics. The mouse's immunological system was either suppressed (thymectomy and whole-body x-irradiation) or stimulated (previous exposure to tumor cells) and the percent takes, latent period, and growth rates measured. There was no evidence for a strong antigenic factor in any of these tumors. Hydroxyurea is being used as a tool for studying the perturbed cellular kinetics of the duodenum and the Slow and S102F tumors. The methods used are autoradiography, volumetric growth curve analysis, and measurements of the rates of DNA synthesis. Hormone effects on growth have been studied. Insulin had no effect but large doses of corticosterone (20 μg/ml and greater) were inhibitory and prolactin appeared to partially reverse these effects in the Slow line. (U.S.)

  15. Theoretical study of thin metallic deposit layers: from electronic structure to kinetics

    International Nuclear Information System (INIS)

    Senhaji, Abdelali

    1993-01-01

    We have studied the relation between the equilibrium surface segregation in an alloy A c B 1-c and the kinetics of dissolution of a few metallic layers of A (or B) deposited on a B (or A) substrate. We used an energetic model derived from the electronic structure (T.B.I.M.) allowing us to study the surface segregation both in disordered and in ordered alloys. Moreover we have developed a kinetic model (K.T.B.I.M.) consistent with the TBIM energetic model to study the kinetics both of segregation and dissolution. This process has been applied to the Cu-Pt system for which Auger, LEED and photoemission experiments are in progress at L.U.R.E. Concerning the equilibrium surface segregation in the ordered state we have studied all the possible terminations for the (111) and (100) faces in the various ordered structures occurring on the F.C.C. lattice (L1 0 , L1 1 - L1 2 and L'). In particular we have determined the domain of (meta)stability of each termination, which is very useful to understand the competition between single and double steps in ordered alloys. Studying the kinetics of dissolution of a few layers of Cu (or Pt) deposited on the (111) or (100) face of a Pt (or Cu) substrate, we have shown the formation of surface compounds with a great variety of behaviours depending on the face or on the temperature. All these behaviours can be rationalized with the local equilibrium concept, which we have defined accurately within our model and which allows to connect the dissolution mode with the equilibrium segregation. (author) [fr

  16. Domain-growth kinetics and aspects of pinning: A Monte Carlo simulation study

    DEFF Research Database (Denmark)

    Castán, T.; Lindgård, Per-Anker

    1991-01-01

    By means of Monte Carlo computer simulations we study the domain-growth kinetics after a quench across a first-order line to very low and moderate temperatures in a multidegenerate system with nonconserved order parameter. The model is a continuous spin model relevant for martensitic transformati......By means of Monte Carlo computer simulations we study the domain-growth kinetics after a quench across a first-order line to very low and moderate temperatures in a multidegenerate system with nonconserved order parameter. The model is a continuous spin model relevant for martensitic...... to cross over from n = 1/4 at T approximately 0 to n = 1/2 with temperature for models with pinnings of types (a) and (b). For topological pinnings at T approximately 0, n is consistent with n = 1/8, a value conceivable for several levels of hierarchically interrelated domain-wall movement. When...

  17. Kinetic study on the inhibition of xanthine oxidase by acylated derivatives of flavonoids synthesised enzymatically.

    Science.gov (United States)

    de Araújo, Maria Elisa Melo Branco; Franco, Yollanda Edwirges Moreira; Alberto, Thiago Grando; Messias, Marcia Cristina Fernandes; Leme, Camila Wielewski; Sawaya, Alexandra Christine Helena Frankland; Carvalho, Patricia de Oliveira

    2017-12-01

    Studies have reported that flavonoids inhibit xanthine oxidase (XO) activity; however, poor solubility and stability in lipophilic media limit their bioavailability and applications. This study evaluated the kinetic parameters of XO inhibition and partition coefficients of flavonoid esters biosynthesised from hesperidin, naringin, and rutin via enzymatic acylation with hexanoic, octanoic, decanoic, lauric, and oleic acids catalysed by Candida antarctica lipase B (CALB). Quantitative determination by ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) showed higher conversion yields (%) for naringin and rutin esters using acyl donors with 8C and 10C. Rutin decanoate had higher partition coefficients (0.95), and naringin octanoate and naringin decanoate showed greater inhibitory effects on XO (IC 50 of 110.35 and 117.51 μM, respectively). Kinetic analysis showed significant differences (p flavonoids before and after acylation regarding K m values, whereas the values for V max were the same, implying the competitive nature of XO inhibition.

  18. DSC and curing kinetics study of epoxy grouting diluted with furfural -acetone slurry

    Science.gov (United States)

    Yin, H.; Sun, D. W.; Li, B.; Liu, Y. T.; Ran, Q. P.; Liu, J. P.

    2016-07-01

    The use of furfural-acetone slurry as active diluents of Bisphenol-A epoxy resin (DGEBA) groutings has been studied by dynamic and non-isothermal DSC for the first time. Curing kinetics study was investigated by non-isothermal differential scanning calorimetries at different heating rates. Activation enery (Ea) was calculated based on Kissinger and Ozawa Methods, and the results showed that Ea increased from 58.87 to 71.13KJ/mol after the diluents were added. The furfural-acetone epoxy matrix could cure completely at the theoretical curing temperature of 365.8K and the curing time of 139mins, which were determined by the kinetic model parameters.

  19. Physicochemical analysis and nonisothermal kinetic study of sertraline–lactose binary mixtures

    Directory of Open Access Journals (Sweden)

    Faranak Ghaderi

    2017-07-01

    Full Text Available In the present study the physicochemical stability of sertraline with lactose was evaluated in drug-excipient binary mixtures. Different physicochemical methods such as differential scanning calorimetry (DSC, Fourier-transform infrared spectroscopy, and mass spectrometry were applied to confirm the incompatibility. The final aim of this study was to evaluate the kinetic parameters using a fast and sensitive DSC method. Solid-state kinetic parameters were derived from nonisothermally stressed physical mixtures using different thermal models such as Friedman, Flynn–Wall–Ozawa, and Kissinger–Akahira–Sunose. Overall, the instability of sertraline with lactose was successfully evaluated. Further confirmation was made by tracking the Maillard reaction product of sertraline and lactose by mass spectrometry. DSC scans provided important information about the stability of sertraline in solid-state condition and also revealed the related thermokinetic parameters in order to understand the nature of the chemical instability.

  20. Kinetic modeling of receptor-ligand binding applied to positron emission tomographic studies with neuroleptic tracers

    Energy Technology Data Exchange (ETDEWEB)

    Logan, J; Wolf, A P; Shiue, C Y; Fowler, J S

    1987-01-01

    Positron emission tomography (PET) with labeled neuroleptics has made possible the study of neurotransmitter-receptor systems in vivo. In this study we investigate the kinetics of the 3,4-dihydroxyphenylethylamine (dopamine) receptor-ligand binding using PET data from a series of experiments in the baboon with the /sup 18/F-labeled drugs spiperone, haloperidol, and benperidol. Models used to describe these systems are based on first-order kinetics which applies at high specific activity (low receptor occupancy). The parameters governing the uptake and loss of drug from the brain were found by fitting PET data from regions with little or no receptor concentration (cerebellum) and from experiments in which specific binding was blocked by pretreatment with the drug (+)-butaclamol. Receptor constants were determined by fitting data from receptor-containing structures. Correcting the arterial plasma activities (the model driving function) for the presence of drug metabolites was found to be important in the modeling of these systems.

  1. Physicochemical analysis and nonisothermal kinetic study of sertraline-lactose binary mixtures.

    Science.gov (United States)

    Ghaderi, Faranak; Nemati, Mahboob; Siahi-Shadbad, Mohammad Reza; Valizadeh, Hadi; Monajjemzadeh, Farnaz

    2017-07-01

    In the present study the physicochemical stability of sertraline with lactose was evaluated in drug-excipient binary mixtures. Different physicochemical methods such as differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy, and mass spectrometry were applied to confirm the incompatibility. The final aim of this study was to evaluate the kinetic parameters using a fast and sensitive DSC method. Solid-state kinetic parameters were derived from nonisothermally stressed physical mixtures using different thermal models such as Friedman, Flynn-Wall-Ozawa, and Kissinger-Akahira-Sunose. Overall, the instability of sertraline with lactose was successfully evaluated. Further confirmation was made by tracking the Maillard reaction product of sertraline and lactose by mass spectrometry. DSC scans provided important information about the stability of sertraline in solid-state condition and also revealed the related thermokinetic parameters in order to understand the nature of the chemical instability. Copyright © 2016. Published by Elsevier B.V.

  2. Glycerol acetals, kinetic study of the reaction between glycerol and formaldehyde

    International Nuclear Information System (INIS)

    Agirre, I.; Garcia, I.; Requies, J.; Barrio, V.L.; Gueemez, M.B.; Cambra, J.F.; Arias, P.L.

    2011-01-01

    The acetalization reaction between glycerol and formaldehyde using Amberlyst 47 acidic ion exchange resin was studied. These acetals can be obtained from renewable sources (bioalcohols and bioalcohol derived aldehydes) and seem to be good candidates for different applications such as oxygenated diesel additives. A preliminary kinetic study was performed in a batch stirred tank reactor studying the influence of different process parameters like temperature, feed composition and the stirring speed. A pseudo homogenous kinetic model able to explain the reaction mechanism was adjusted. Thus, the corresponding order of reaction was determined. Amberlyst 47 acidic ion exchange resin showed a fairly good behavior allowing 100% of selectivity towards acetals formation. However, the studied acetalization reaction showed high thermodynamic limitations achieving glycerol conversions around 50% using a stoichiometric feed ratio at 353 K. The product is a mixture of two isomers (1,3-Dioxan-5-ol and 1,3-dioxolane-4-methanol) and the conversion of 1,3-dioxolane-4-methanol into 1,3-Dioxan-5-ol was also observed. -- Highlights: → The reaction between glycerol and acetaldehyde shows thermodynamic limitations. → Amberlyst 47 ion exchange resins show 100% of selectivity. → A pseudo-homogeneous kinetic model is able to predict the reaction progress. → Isomerization reactions were observed from dioxalanes to dioxanes.

  3. Kinetic study on the effect of temperature on biogas production using a lab scale batch reactor.

    Science.gov (United States)

    Deepanraj, B; Sivasubramanian, V; Jayaraj, S

    2015-11-01

    In the present study, biogas production from food waste through anaerobic digestion was carried out in a 2l laboratory-scale batch reactor operating at different temperatures with a hydraulic retention time of 30 days. The reactors were operated with a solid concentration of 7.5% of total solids and pH 7. The food wastes used in this experiment were subjected to characterization studies before and after digestion. Modified Gompertz model and Logistic model were used for kinetic study of biogas production. The kinetic parameters, biogas yield potential of the substrate (B), the maximum biogas production rate (Rb) and the duration of lag phase (λ), coefficient of determination (R(2)) and root mean square error (RMSE) were estimated in each case. The effect of temperature on biogas production was evaluated experimentally and compared with the results of kinetic study. The results demonstrated that the reactor with operating temperature of 50°C achieved maximum cumulative biogas production of 7556ml with better biodegradation efficiency. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. ELECTRODEPOSITION OF COPPER IONS ON FIXED BED ELECTRODES: KINETIC AND HYDRODYNAMIC STUDY

    Directory of Open Access Journals (Sweden)

    L.A.M. Ruotolo

    2002-03-01

    Full Text Available The kinetic and hydrodynamic behaviour of a fixed-bed electrochemical reactor was studied in terms of current efficiency (CE and energy efficiency (EE. In the kinetic experiments the effects of fixed bed thickness (L, current density (i and initial concentration of copper (C0 were studied. In the hydrodynamic experiments the permeability (k of the electrode and the coefficient for inertial forces (c were also studied as functions of the applied current density. At low current densities and bed thicknesses greater than 1.0 cm, negative CE and EE were observed as a consequence of the dissolution of the porous matrix. At high current densities low CE and EE were observed and a powdery deposit was formed on the surface of the particles. From the results of the kinetic study bed thickness and the range of current densities employed in the hydrodynamic experiments were chosen. In these experiments the electrodeposition process continued until the whole electrode had been clogged and no more electrolyte could pass through it. The relationship between pressure drop and flow rate was well described by the Forchheimer equation. It was observed that the reduction in porosity due to copper electrodeposition causes the flow rate to decrease because of the decrease in electrode permeability, but it had no influence on current efficiency.

  5. Insilico study of the A(2A)R-D (2)R kinetics and interfacial contact surface for heteromerization.

    Science.gov (United States)

    Prakash, Amresh; Luthra, Pratibha Mehta

    2012-10-01

    G-protein-coupled receptors (GPCRs) are cell surface receptors. The dynamic property of receptor-receptor interactions in GPCRs modulates the kinetics of G-protein signaling and stability. In the present work, the structural and dynamic study of A(2A)R-D(2)R interactions was carried to acquire the understanding of the A(2A)R-D(2)R receptor activation and deactivation process, facilitating the design of novel drugs and therapeutic target for Parkinson's disease. The structure-based features (Alpha, Beta, SurfAlpha, and SurfBeta; GapIndex, Leakiness and Gap Volume) and slow mode model (ENM) facilitated the prediction of kinetics (K (off), K (on), and K (d)) of A(2A)R-D(2)R interactions. The results demonstrated the correlation coefficient 0.294 for K (d) and K (on) and the correlation coefficient 0.635 for K (d) and K (off), and indicated stable interfacial contacts in the formation of heterodimer. The coulombic interaction involving the C-terminal tails of the A(2A)R and intracellular loops (ICLs) of D(2)R led to the formation of interfacial contacts between A(2A)R-D(2)R. The properties of structural dynamics, ENM and KFC server-based hot-spot analysis illustrated the stoichiometry of A(2A)R-D(2)R contact interfaces as dimer. The propensity of amino acid residues involved in A(2A)R-D(2)R interaction revealed the presence of positively (R, H and K) and negatively (E and D) charged structural motif of TMs and ICL3 of A(2A)R and D(2)R at interface of dimer contact. Essentially, in silico structural and dynamic study of A(2A)R-D(2)R interactions will provide the basic understanding of the A(2A)R-D(2)R interfacial contact surface for activation and deactivation processes, and could be used as constructive model to recognize the protein-protein interactions in receptor assimilations.

  6. Kinetic study of the reaction of chlorine atoms with hydroxyacetone in gas-phase

    Science.gov (United States)

    Stoeffler, Clara; Joly, Lilian; Durry, Georges; Cousin, Julien; Dumelié, Nicolas; Bruyant, Aurélien; Roth, Estelle; Chakir, Abdelkhaleq

    2013-12-01

    In this letter the kinetics of the reaction of hydroxyacetone CH3C(O)CH2OH with Cl atoms is investigated using the relative rate technique. Experiments are carried out in a 65 L multipass photoreactor in the temperature range of 281-350 K. A mid-infrared spectrometer based on a quantum cascade laser in external cavity emitting at 9.5 μm is used to analyze the reactants. The determined rate coefficient for the investigated reaction is (1.7 ± 0.3) × 10-11exp(381.5 ± 57.3/T). The results are presented and discussed in terms of precision and compared with those obtained previously. The impact of Cl atoms on the atmospheric life time of hydroxyacetone is also discussed. Developing analytical techniques to quantify this compound in the atmosphere. Several methods of measurement have been used including the technique of proton transfer mass spectrometry (PTR-MS) [2] and derivatization with a chemical agent such as dinitrophenylhydrazine (DNPH) [3,4] followed by GC/MS or HPLC analyses. The HA amount in the troposphere was found to be in the order of a few hundred parts per trillion by volume [4], Performing laboratory experiments in order to study the HA reactivity with atmospheric oxidants. The first study on the kinetic of the reaction between OH radicals and HA was made by Dagault et al. [5] whose work was performed at room temperature by flash photolysis-resonance fluorescence. The determined rate constant implies a lifetime of a few days for HA relative to oxidation by OH radicals. Orlando et al. performed mechanistic and kinetics studies of the reaction of HA with OH radicals and Cl atoms at room temperature using a relative method [6]. Products detection was performed using FTIR spectroscopy. Moreover, these authors studied the photolysis of HA to determine its quantum yield and UV absorption spectrum. These studies showed that HA is principally removed from the atmosphere by reaction with OH radicals. Kinetic studies of the reaction of OH radicals with HA as a

  7. Kinetic study of indium-111 labelled platelets in idiopathic thrombocytopenic purpura

    International Nuclear Information System (INIS)

    Reiffers, J.; Vuillemin, L.; Broustet, A.; Ducassou, D.

    1982-01-01

    Labelling platelets with 111 Indium-oxine has advantages over the conventional 51 chromium method: labelling is more efficient and the radiations emitted almost exclusively consist of gamma-rays. Owing to these advantages, autologous platelets can be used for kinetic studies in patients with idiopathic thrombocytopenic purpura, even when thrombocytopenia is severe. 111 Indium labelling also provides accurate information on the sites of platelet destruction, which may help to predict the patient's response to splenectomy [fr

  8. Effect of Polarization on the Mobility of C60: A Kinetic Monte Carlo Study.

    Science.gov (United States)

    Volpi, Riccardo; Kottravel, Sathish; Nørby, Morten Steen; Stafström, Sven; Linares, Mathieu

    2016-02-09

    We present a study of mobility field and temperature dependence for C60 with Kinetic Monte Carlo simulations. We propose a new scheme to take into account polarization effects in organic materials through atomic induced dipoles on nearby molecules. This leads to an energy correction for the single site energies and to an external reorganization happening after each hopping. The inclusion of polarization allows us to obtain a good agreement with experiments for both mobility field and temperature dependence.

  9. Mobility field and mobility temperature dependence in PC61BM: A kinetic Monte-Carlo study

    Science.gov (United States)

    Sousa, Leonardo; Volpi, Riccardo; da Silva Filho, Demétrio Antônio; Linares, Mathieu

    2017-12-01

    A study of electron mobility in a PCBM system is performed by means of analytical considerations and Kinetic Monte Carlo simulations. Orbital energies are calculated at the ZINDO level of theory and successively corrected considering contributions from permanent charges and polarization interactions. The relative importance of these environmental effects is analyzed in details, furthermore the predicted mobilities are compared with experimental results and similar simulations performed in C60.

  10. Kinetic study of nucleation and crystal growth during oxalic precipitation in the nuclear industry

    International Nuclear Information System (INIS)

    Andrieu, Murielle

    1999-01-01

    In spite of an extensive use in chemical industry, most of precipitation processes are based on global and empirical knowledge. However, in the recent years, fundamental and phenomenological theories have been developed and they can be used to better understand the mechanisms of precipitation of plutonium IV oxalate, which is a significant stage of the irradiated fuel reprocessing. For this reason, appropriate methods were developed to study nucleation and crystal growth kinetics in a nuclear environment under a wide range of operating conditions. Each phenomena was studied individually in order to reduce the free parameters of the System. This study bears on the oxalates of plutonium and elements which simulate plutonium behaviour during the precipitation, neodymium III and uranium IV. A compact apparatus of a specific construction was used for nucleation measurements in accordance with the Nielsen's method. The state of the mixing was characterised at the reactor scale (macro-mixing) and at molecular scale (micro-mixing). The experimental results for the studied oxalates are in good agreement with the Volmer and Weber's theory. We propose primary nucleation kinetic laws over a wide range of operating conditions (temperature, non-stoichiometric conditions, acidity...). An original method, using a high seed charge, was developed for the determination of crystal growth kinetics, in a batch crystallizer. The crystal growth rate is first order with respect to the supersaturation and the kinetic constant follows an Arrhenius type relation with activation energies of 14, 29 and 36 kJ.mol -1 for respectively neodymium III, uranium IV and plutonium IV oxalates. The overall growth process is surface integration controlled, with a screw dislocation mechanism. [fr

  11. Kinetic analysis of the translocator protein positron emission tomography ligand [{sup 18}F]GE-180 in the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Feeney, Claire [Imperial College London, Division of Brain Sciences, Hammersmith Hospital Campus, London (United Kingdom); Hammersmith Hospital, Computational, Cognitive and Clinical Neuroimaging Laboratory, London (United Kingdom); Scott, Gregory; Raffel, Joel; Roberts, S.; Coello, Christopher; Jolly, Amy; Searle, Graham; Goldstone, A.P.; Nicholas, Richard S.; Gunn, Roger N.; Sharp, David J. [Imperial College London, Division of Brain Sciences, Hammersmith Hospital Campus, London (United Kingdom); Brooks, David J. [Imperial College London, Division of Brain Sciences, Hammersmith Hospital Campus, London (United Kingdom); Aarhus University, Institute of Clinical Medicine, Aarhus (Denmark); Trigg, William [GE Healthcare Ltd, Amersham (United Kingdom)

    2016-11-15

    PET can image neuroinflammation by targeting the translocator protein (TSPO), which is upregulated in activated microglia. The high nonspecific binding of the first-generation TSPO radioligand [{sup 11}C]PK-11195 limits accurate quantification. [{sup 18}F]GE-180, a novel TSPO ligand, displays superior binding to [{sup 11}C]PK-11195 in vitro. Our objectives were to: (1) evaluate tracer characteristics of [{sup 18}F]GE-180 in the brains of healthy human subjects; and (2) investigate whether the TSPO Ala147Thr polymorphism influences outcome measures. Ten volunteers (five high-affinity binders, HABs, and five mixed-affinity binders, MABs) underwent a dynamic PET scan with arterial sampling after injection of [{sup 18}F]GE-180. Kinetic modelling of time-activity curves with one-tissue and two-tissue compartment models and Logan graphical analysis was applied to the data. The primary outcome measure was the total volume of distribution (V{sub T}) across various regions of interest (ROIs). Secondary outcome measures were the standardized uptake values (SUV), the distribution volume and SUV ratios estimated using a pseudoreference region. The two-tissue compartment model was the best model. The average regional delivery rate constant (K{sub 1}) was 0.01 mL cm{sup -3} min{sup -1} indicating low extraction across the blood-brain barrier (1 %). The estimated median V{sub T} across all ROIs was also low, ranging from 0.16 mL cm{sup -3} in the striatum to 0.38 mL cm{sup -3} in the thalamus. There were no significant differences in V{sub T} between HABs and MABs across all ROIs. A reversible two-tissue compartment model fitted the data well and determined that the tracer has a low first-pass extraction (approximately 1 %) and low V{sub T} estimates in healthy individuals. There was no observable dependency on the rs6971 polymorphism as compared to other second-generation TSPO PET tracers. Investigation of [{sup 18}F]GE-180 in populations with neuroinflammatory disease is needed

  12. A kinetic study of the mechanism of radiation induced agglomeration of ovalbumin in aqueous solution

    International Nuclear Information System (INIS)

    Tuce, Zorana; Janata, Eberhard; Radojcic, Marija; Milosavljevic, B.H.

    2001-01-01

    The effect of concentration on the protein radiolytic damage resulting in a change in molecular mass was measured in the concentration range from 0.2 to 2 mmolxdm -3 ovalbumin in phosphate buffered solutions saturated with N 2 O. The electrophoretic analysis of samples on discontinuous SDS-polyacrylamide gels in the presence or absence of 5% β-mercaptoethanol showed an expected result, i.e. that the protein scission did not take place in the absence of oxygen. Only ovalbumin agglomerates, bonded by covalent bonds other than S-S bridges, were observed. The G-value for the formation of ovalbumin agglomerates increased linearly from 1.1 to 2.4 by increasing the ovalbumin concentration from 0.2 to 2 mmolxdm -3 . The result is interpreted as to be owing to the competition between ovalbumin agglomeration and some intramolecular reactions which did not lead to the change in the molecular mass. It was also found that the G-value is independent of irradiation dose rate. The result was rationalized as a kinetic evidence that the agglomeration is not a cross-linking process, i.e. it does not occur via recombination of the protein radicals produced in the interaction of ovalbumin and · OH radical. The result suggested that the agglomeration takes place via the process of grafting, i.e. it occurs in the reaction of ovalbumin radical and an intact ovalbumin molecule. The time-resolved light scattering experiments provided an additional proof, supporting the reaction scheme of radiation-induced protein agglomeration. The biological consequences of the proposed mechanism of protein agglomeration are also discussed

  13. Equilibrium, kinetic and thermodynamic studies of adsorption of Th(IV) from aqueous solution onto kaolin

    International Nuclear Information System (INIS)

    Hongxia Zhang; Zhiwei Niu; Zhi Liu; Zhaodong Wen; Weiping Li; Xiaoyun Wang; Wangsuo Wu

    2015-01-01

    The kinetics and thermodynamics of the adsorption of Th(IV) on the kaolin were studied by using batch method. In addition, the experimental data were studied by dynamic and thermodynamic models. The results showed that the adsorption capacity of the adsorbent increased with increasing temperature and solid liquid ratio, but decreased with increasing initial Th(IV) ion concentration, and the best fit was obtained for the pseudo-second-order kinetics model. The calculated activation energy for adsorption was about 45 kJ/mol, which indicated the adsorption process to be chemisorption. The adsorption isotherm data could be well described by the Langmuir as well as Dubinin-Radushkevich model. The mean free energy (E) of adsorption was calculated to be about 15 kJ/mol. The thermodynamic data calculated showed that the adsorption was spontaneous and enhanced at higher temperature. Considering kinetics and equilibrium studies, the adsorption on the sites was the rate-limiting step and that adsorption was mainly a chemisorption process through cation exchange. (author)

  14. Fragment molecular orbital method for studying lanthanide interactions with proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tsushima, Satoru [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biophysics; Komeiji, Y. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan); Mochizuki, Y. [Rikkyo Univ., Tokyo (Japan)

    2017-06-01

    The binding affinity of the calcium-binding protein calmodulin towards Eu{sup 3+} was studied as a model for lanthanide protein interactions in the large family of ''EF-hand'' calcium-binding proteins.

  15. Kinetic study and growth behavior of template-based electrodeposited platinum nanotubes controlled by overpotential

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, E. [Department of Materials Science and Engineering, Sharif University of Technology, Azadi Ave., P.O.Box 11155-9466, Tehran (Iran, Islamic Republic of); Dolati, A., E-mail: dolati@sharif.edu [Department of Materials Science and Engineering, Sharif University of Technology, Azadi Ave., P.O.Box 11155-9466, Tehran (Iran, Islamic Republic of); Imanieh, I. [Department of Materials Science and Engineering, Sharif University of Technology, Azadi Ave., P.O.Box 11155-9466, Tehran (Iran, Islamic Republic of); Yashiro, H.; Kure-Chu, S.-Z. [Department of Chemistry and Bioengineering, Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate, 020-8551 (Japan)

    2017-02-01

    Platinum nanotubes (PtNTs) are fabricated by potentiostatic electrodeposition at various overpotentials (−200 up to −400 mV versus SCE) in polycarbonate templates (PCTs) with pore diameter of 200 nm in a solution containing 5 mM H{sub 2}PtCl{sub 6} and 0.1 M H{sub 2}SO{sub 4}. The synthesized PtNTs are characterized by field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The electrochemical growth mechanism within nanoscopic pores and the relationship between morphological variations and kinetic parameters are investigated for the first time. It is shown that more porous structure of nanotubes forms at high overpotentials possibly due to preferably nucleation. The kinetics of electrodeposition process is studied by electrochemical techniques such as voltammetry and chronoamperometry. The linear diffusion coefficient at the early stage of the deposition and the radial diffusion coefficients at steady state regime are calculated as D = 8.39 × 10{sup −5} and 2.33–13.26 × 10{sup −8} cm{sup 2}/s, respectively. The synthesized PtNT electrode is tested as electrocatalyst for hydrogen peroxide oxidation in phosphate buffer solution (PBS) and shows a sensitivity as high as 2.89 mA per 1 μM that is an indication to its enlarged electrochemical surface area. - Highlights: • PtNT is electrodeposited in a 3-aminopropyltrimethoxysilane-modified PCT. • The electrochemical growth mechanism within nanoscopic pores is discussed. • The kinetics of PtNT electrodeposition is studied based on models for UME arrays. • Relationship between morphological variations vs. kinetic parameters is studied.

  16. Thermogravimetric Analysis and Kinetic Study on Pyrolysis of Veteri-narian Solid Waste

    Directory of Open Access Journals (Sweden)

    Andrés Felipe Rojas González

    2016-10-01

    Full Text Available Context: Institutional waste from clinical centers can be classified as those coming from health institutions dedicated to human attention and those coming from centers for animal veterinary care. The latter are mainly hazardous wastes, hence their disposal requires incineration. Most of such waste is organic, and it is possible, therefore, to take advantage of their energetic power in combustion or pyrolysis processes. This work is motivated because no literature was found on the pyrolysis kinetics veterinary waste, as this kind of studies are mainly focused on hospital waste of human health care. Method: The kinetics of pyrolysis is characterized and studied by means of thermogravimetric analysis of 6 major veterinary waste (gauze, cotton swabs, cotton, nails, hair, plastic syringes. The characterization is performed by proximate and elemental analysis, and thermogravimetric analysis. Reactivity characteristics and pyrolytic capability of wastes are established. The kinetics study on pyrolysis was carried out by determining the kinetic triplet by isoconversional Starink method. Results: It was established that the pyrolysis index increases with the heating rate and that the thermal degradation depends on the material type of the waste. Similarly, it was found that the temperature (ΔT = Tf - Ti for the thermal decomposition of veterinary waste is: ΔTnails> ΔThair > ΔTcotton swabs > ΔTgauze > ΔTcotton > ΔTplastic syringes; the activation energy is Enails> E hair > Eplastic syringes > Ecotton swabs > E gauze > Ecotton, and the reaction order is: n hair > nnails > ncotton swabs > ncotton > n gauze > n plastic syringes. Conclusions: These results suggest the possibility of using veterinary wastes for power generation, providing an alternative for sustainable energy development to cities in continuous growth, from both, energetic and environmental points of view.

  17. A comparative spectroscopic and kinetic study of photoexcitations in detergent-isolated and membrane-embedded LH2 light-harvesting complexes.

    Science.gov (United States)

    Freiberg, Arvi; Rätsep, Margus; Timpmann, Kõu

    2012-08-01

    Integral membrane proteins constitute more than third of the total number of proteins present in organisms. Solubilization with mild detergents is a common technique to study the structure, dynamics, and catalytic activity of these proteins in purified form. However beneficial the use of detergents may be for protein extraction, the membrane proteins are often denatured by detergent solubilization as a result of native lipid membrane interactions having been modified. Versatile investigations of the properties of membrane-embedded and detergent-isolated proteins are, therefore, required to evaluate the consequences of the solubilization procedure. Herein, the spectroscopic and kinetic fingerprints have been established that distinguish excitons in individual detergent-solubilized LH2 light-harvesting pigment-protein complexes from them in the membrane-embedded complexes of purple photosynthetic bacteria Rhodobacter sphaeroides. A wide arsenal of spectroscopic techniques in visible optical range that include conventional broadband absorption-fluorescence, fluorescence anisotropy excitation, spectrally selective hole burning and fluorescence line-narrowing, and transient absorption-fluorescence have been applied over broad temperature range between physiological and liquid He temperatures. Significant changes in energetics and dynamics of the antenna excitons upon self-assembly of the proteins into intracytoplasmic membranes are observed, analyzed, and discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial. Copyright © 2011. Published by Elsevier B.V.

  18. Kinetics and

    Directory of Open Access Journals (Sweden)

    Mojtaba Ahmadi

    2016-11-01

    Full Text Available The aqueous degradation of Reactive Yellow 84 (RY84 by potassium peroxydisulfate (K2S2O8 has been studied in laboratory scale experiments. The effect of the initial concentrations of potassium peroxydisulfate and RY84, pH and temperature on RY84 degradation were also examined. Experimental data were analyzed using first and second-order kinetics. The degradation kinetics of RY84 of the potassium peroxydisulfate process followed the second-order reaction kinetics. These rate constants have an extreme values similar to of 9.493 mM−1min−1 at a peroxydisulfate dose of 4 mmol/L. Thermodynamic parameters such as activation (Ea and Gibbs free energy (ΔG° were also evaluated. The negative value of ΔGo and Ea shows the spontaneous reaction natural conditions and exothermic nature.

  19. Granulocyte kinetics

    International Nuclear Information System (INIS)

    Peters, A.M.; Lavender, J.P.; Saverymuttu, S.H.

    1985-01-01

    By using density gradient materials enriched with autologous plasma, the authors have been able to isolate granulocutes from other cellular elements and label them with In-111 without separation from a plasma environment. The kinetic behavior of these cells suggests that phenomena attributed to granulocyte activation are greatly reduced by this labeling. Here, they review their study of granulocyte kinetics in health and disease in hope of quantifying sites of margination and identifying principal sites of destruction. The three principle headings of the paper are distribution, life-span, and destruction

  20. Biosorption of lead ions on biosorbent prepared from plumb shells (spondias mombin): kinetics and equilibrium studies

    International Nuclear Information System (INIS)

    Adeogen, A.I.; Bello, O.S.; Adeboye, M.D.

    2010-01-01

    Plumb shell was used to prepare an adsorbent for biosorption of lead ions in aqueous solution at 25 degree C. The adsorption capacity of the adsorbent at equilibrium was found to increase from 2.8 to 49.0 mg/g with an increase in the initial lead ion concentration from 50 to 200 mg/L. Using the equilibrium and kinetics studies, isotherm of the lead ions on the biosorbent was determined and correlated with common isotherm equations. The equilibrium data for lead ion adsorption fitted well into the Freundlich equation, with a value of 0.76 (R2 = 0.9), with distribution coefficient of 4.90. The biosorption of lead ions on the adsorbent from plumb shells could best be described by the pseudo-second-order equation. The kinetic parameters of this best-fit model were calculated and discussed. (author)

  1. Study on the Hydrolysis Kinetics of Xylan on Different Acid Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Na, Byeong-Il; Lee, Jae-Won [Chonnam National University, Gwangju (Korea, Republic of)

    2014-04-15

    In this study, we investigated kinetic model for the acid-catalyzed xylan hydrolysis at temperature 120-150 .deg. C. Also, we analyzed the kinetic parameters for xylose production and furfural decomposition. The hydrolysis of xylan and the degradation of xylose were promoted by high reaction temperature and acid concentration. The optimal hydrolysis condition for the highest reaction rate constants (k{sub 1}) was different depending on the acid catalysts. Among sulfuric, oxalic and maleic acid, the xylan reaction rate constants (k{sub 1}) to xylose had the highest value of 0.0241 min{sup -1} when 100 mM sulfuric acid was used at 120 .deg. C. However, sulfuric acid induced more xylose degradation compared to oxalic and maleic acid hydrolysis. The activation energy for xylan degradation was the highest when sulfuric acid was used.

  2. Kinetic studies on purification capability of channel flow type wastewater treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, S [Fukui Institute of Technology, Fukui (Japan); Furukawa, K; Kim, J [Osaka Univ., Osaka (Japan). Faculty of Engineering

    1990-10-01

    In order to develop a wastewater treatment process of secondary effluent and a wastewater treatment process of a farm village, some experiments have been carried out using bench scale and full scale hydroponic type wastewater treatment plant. This wastewater treatment system mainly consists of water channels and hydroponic water tanks. The authors carried out of a kinetic study for purification capability of the water channels while assuring the growth of microorganism in the treatment scheme. It was shown experimentally that the channel flow type wastewater treatment plant had a high TOC removal capability regardless of the kind of contact material and treatment time. Activated sludge microorganism concentration in water channels was obtained by kinetic estimation from the measured effluent suspended solid concentration. Estimated amount of activated sludge in water channels comprised only 11.5-37.4 percent of the measured amounts of withdrawn sludge, indicating high photosynthesis production of algae in water channels. 8 refs., 4 figs., 5 tabs.

  3. Thermodynamics and kinetics of graphene chemistry: a graphene hydrogenation prototype study.

    Science.gov (United States)

    Pham, Buu Q; Gordon, Mark S

    2016-12-07

    The thermodynamic and kinetic controls of graphene chemistry are studied computationally using a graphene hydrogenation reaction and polyaromatic hydrocarbons to represent the graphene surface. Hydrogen atoms are concertedly chemisorped onto the surface of graphene models of different shapes (i.e., all-zigzag, all-armchair, zigzag-armchair mixed edges) and sizes (i.e., from 16-42 carbon atoms). The second-order Z-averaged perturbation theory (ZAPT2) method combined with Pople double and triple zeta basis sets are used for all calculations. It is found that both the net enthalpy change and the barrier height of graphene hydrogenation at graphene edges are lower than at their interior surfaces. While the thermodynamic product distribution is mainly determined by the remaining π-islands of functionalized graphenes (Phys. Chem. Chem. Phys., 2013, 15, 3725-3735), the kinetics of the reaction is primarily correlated with the localization of the electrostatic potential of the graphene surface.

  4. A kinetic study on non-catalytic reactions in hydroprocessing Boscan crude oil

    Energy Technology Data Exchange (ETDEWEB)

    A. Marafi; E. Kam; A. Stanislaus [Kuwait Institute for Scientific Research, Safat (Kuwait). Petroleum Refining Department, Petroleum Research and Studies Center

    2008-08-15

    Non-catalytic hydrothermal cracking reactions are known to associate with catalytic hydrocracking reactions. In a recent study on hydroprocessing of Boscan crude over a specific catalyst system containing three distinct catalysts, it was found that hydrodesulfurization (HDS) and hydrodemetallation (HDM) reactions continued even when the catalyst is severely deactivated. Since the reactor was packed with considerable amount of inert material besides the three catalysts, it will be advantage to determine if the inert materials can also facilitate hydroprocessing reactions. A series of kinetic experiments for the inert particles was undertaken under different space velocity and temperature conditions. The extent of catalytic and non-catalytic hydroprocessing reactions was assessed. Through statistical analysis, the initial reaction rate constant, reaction order and activation energy for various hydroprocessing reactions were then determined. The absolute average deviations (AAD) of the kinetics values obtained for inert materials are less than 10%. 25 refs., 7 figs., 4 tabs.

  5. Conductometric Studies Of Kinetics Of Ionic Reaction Between Ag And Cl- In Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Md. Rezwan Miah

    2017-01-01

    Full Text Available In the present report conductometric studies on the kinetic of formation of AgCl by ionic reaction between Ag and Clamp61485 in aqueous solution have been presented. The order of the mentioned reaction was determined by a new conductometric approach using half-life method. The obtained result showed that the reaction follows a second-order kinetics. The second-order rate constant of the reaction was obtained conductometrically using different initial concentrations of the reactants in the range of 2.5-5.0 mM. The average value of the rate constant was obtained as 20.648 L molamp614851 samp614851 at 25 amp61616C.

  6. Kinetic Modelling and Experimental Study of Small Esters: Methyl Acetate and Ethyl Acetate

    KAUST Repository

    Ahmed, Ahfaz; Mehl, Marco; Lokachari, Nitin; Nilsson, Elna J.K.; Konnov, Alexander A.; Wagnon, Scott W.; Pitz, William J.; Curran, Henry J.; Roberts, William L.; Sarathy, Mani

    2017-01-01

    A detailed chemical kinetic mechanism comprising methyl acetate and ethyl acetate has been developed based on the previous work by Westbrook et al. [1]. The newly developed kinetic mechanism has been updated with new reaction rates from recent theoretical studies. To validate this model, shock tube experiments measuring ignition delay time have been conducted at 15 & 30 bar and equivalence ratio 0.5, 1.0 and 2.0. Another set of experiments measuring laminar burning velocity was also performed on a heat flux burner at atmospheric pressure over wide range of equivalence ratios [~0.7-1.4]. The new mechanism shows significant improvement in prediction of experimental data over earlier model across the range of experiments.

  7. Kinetics study of the fluorination of uranium tetrafluoride in a fluidized bed reactor

    International Nuclear Information System (INIS)

    Khani, M.H.; Pahlavanzadeh, H.; Ghannadi, M.

    2008-01-01

    The kinetics of reaction of the uranium tetrafluoride conversion to the uranium hexafluoride with fluorine gas taking place in a fluidized bed reactor operating in industrial conditions have been studied. The external and internal diffusion effects are investigated by Mears and Weisz-Prater criterions. The kinetic equation for the fluorination of uranium tetrafluoride is developed in the absence of diffusional limitation using an integral method by assuming that the gas flow is of plug or perfectly mixed type. A good agreement is observed between the experimental data and a first-order model with respect to fluorine in the CSTR system. The activation energy of the reaction and the pre-exponential factor are obtained using analytical results from a better model

  8. Kinetic and isotherm studies of Cu(II) biosorption onto valonia tannin resin

    Energy Technology Data Exchange (ETDEWEB)

    Sengil, I. Ayhan [Department of Environmental Engineering, Engineering Faculty, Sakarya University, 54100 Sakarya (Turkey)], E-mail: asengil@sakarya.edu.tr; Ozacar, Mahmut [Department of Chemistry, Science and Arts Faculty, Sakarya University, 54100 Sakarya (Turkey); Tuerkmenler, Harun [Institute of Sciences and Technology, Sakarya University, 54040 Sakarya (Turkey)

    2009-03-15

    The biosorption of Cu(II) from aqueous solutions by valonia tannin resin was investigated as a function of particle size, initial pH, contact time and initial metal ion concentration. The aim of this study was to understand the mechanisms that govern copper removal and find a suitable equilibrium isotherm and kinetic model for the copper removal in a batch reactor. The experimental isotherm data were analysed using the Langmuir, Freundlich and Temkin equations. The equilibrium data fit well in the Langmuir isotherm. The experimental data were analysed using four sorption kinetic models - the pseudo-first- and second-order equations, the Elovich and the intraparticle diffusion model equation - to determine the best fit equation for the biosorption of copper ions onto valonia tannin resin. Results show that the pseudo-second-order equation provides the best correlation for the biosorption process, whereas the Elovich equation also fits the experimental data well.

  9. Kinetic Modelling and Experimental Study of Small Esters: Methyl Acetate and Ethyl Acetate

    KAUST Repository

    Ahmed, Ahfaz

    2017-12-14

    A detailed chemical kinetic mechanism comprising methyl acetate and ethyl acetate has been developed based on the previous work by Westbrook et al. [1]. The newly developed kinetic mechanism has been updated with new reaction rates from recent theoretical studies. To validate this model, shock tube experiments measuring ignition delay time have been conducted at 15 & 30 bar and equivalence ratio 0.5, 1.0 and 2.0. Another set of experiments measuring laminar burning velocity was also performed on a heat flux burner at atmospheric pressure over wide range of equivalence ratios [~0.7-1.4]. The new mechanism shows significant improvement in prediction of experimental data over earlier model across the range of experiments.

  10. A kinetic study of the enhancement of solution chemiluminescence of glyoxylic acid oxidation by manganese species.

    Science.gov (United States)

    Otamonga, Jean-Paul; Abdel-Mageed, Amal; Agater, Irena B; Jewsbury, Roger A

    2015-08-01

    In order to study the mechanism of the enhancement of solution chemiluminescence, the kinetics of the decay of the oxidant and the chemiluminescence emission were followed for oxidations by permanganate, manganese dioxide sol and Mn(3+) (aq) of glyoxylic acid, using stopped-flow spectrophotometry. Results are reported for the glyoxylic acid oxidized under pseudo first-order conditions and in an acidic medium at 25 °C. For permanganate under these conditions, the decay is sigmoidal, consistent with autocatalysis, and for manganese dioxide sol and Mn(3+) it is pseudo first order. The effects of the presence of aqueous formaldehyde and Mn(2+) were observed and a fit to a simple mechanism is discussed. It is concluded that chemiluminescent enhancement in these systems is best explained by reaction kinetics. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Slow coarsening of B2-ordered domains at low temperatures: A kinetic Monte Carlo study

    International Nuclear Information System (INIS)

    Le Floc'h, D.; Bellon, P.; Athenes, M.

    2000-01-01

    The kinetics of the ordering and coarsening of B2-ordered domains is studied using atomistic kinetic Monte Carlo simulations. Special emphasis is put on the effect of annealing temperature, alloy composition, and atom dynamics on the coarsening behavior. When atomic diffusion proceeds by vacancy jumps to nearest-neighbor sites, a transient slow coarsening regime is observed at temperatures below half the order-disorder transition temperature T c . It results in apparent coarsening exponents that decrease with decreasing the annealing temperature. Values as low as 0.14 are measured at 0.25T c . Slow transients take place in both stoichiometric and nonstoichiometric alloys. These regimes are correlated with the transient creation of excess antisites during domain disappearance. Since antiphase boundary mobility decreases with increasing antisite concentration, this transient excess results in the slow coarsening observed in simulations. (c) 2000 The American Physical Society

  12. Kinetics of marine surfactant adsorption at an air water interface. Baltic Sea studies

    Directory of Open Access Journals (Sweden)

    Stanis³aw J. Pogorzelski

    2001-12-01

    Full Text Available The paper contains the results of studies of natural surface film adsorption kinetics carried out in inland waters and in shallow offshore regions of the Baltic Sea during 2000-01 under calm sea conditions. The novel approach presented here for the adsorption dynamics is based on the mixed kinetic-diffusion model and analyses of the surface pressure-time plots at short (t ->0 and long( t -> ∞ adsorption time intervals. Values of the effective relative diffusion coefficient Deff / D (= 0.008-0.607 and energy barrier for adsorption Ea / RT (= 0.49-7.10 agree well with the data reported for model non-ionic surfactant solutions of pre-cmc concentrations. Wind speed is one of the factors affecting the adsorption barrier via the increased surface pressure of the natural film exposed to wind shear stress (~ U102, and enters the relation Ea / RT = 1.70 U101/3.

  13. Thermogravimetric study on pyrolysis kinetics of Chlorella pyrenoidosa and bloom-forming cyanobacteria.

    Science.gov (United States)

    Hu, Mian; Chen, Zhihua; Guo, Dabin; Liu, Cuixia; Xiao, Bo; Hu, Zhiquan; Liu, Shiming

    2015-02-01

    The pyrolysis process of two microalgae, Chlorella pyrenoidosa (CP) and bloom-forming cyanobacteria (CB) was examined by thermo-gravimetry to investigate their thermal decomposition behavior under non-isothermal conditions. It has found that the pyrolysis of both microalgae consists of three stages and stage II is the major mass reduction stage with mass loss of 70.69% for CP and 64.43% for CB, respectively. The pyrolysis kinetics of both microalgae was further studied using single-step global model (SSGM) and distributed activation energy model (DAEM). The mean apparent activation energy of CP and CB in SSGM was calculated as 143.71 and 173.46 kJ/mol, respectively. However, SSGM was not suitable for modeling pyrolysis kinetic of both microalgae due to the mechanism change during conversion. The DAEM with 200 first-order reactions showed an excellent fit between simulated data and experimental results. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Kinetic study of hydrogen peroxide decomposition by catalase in a flow-mix microcalorimetric system

    International Nuclear Information System (INIS)

    Fidaleo, Marcello; Lavecchia, Roberto

    2003-01-01

    The kinetics of hydrogen peroxide decomposition by the enzyme catalase was studied at pH 7.4 in the temperature range 10-30 deg. C. Experiments were performed by the LKB-2277 Thermal Activity Monitor equipped with a flow-mix cylinder. The calorimetric reaction unit was schematised as a tubular reactor operating under plug-flow conditions. A first-order kinetic expression, with respect to both the substrate and the enzyme, was used to describe the rate of hydrogen peroxide decomposition. Regression analysis of calorimetric data provided a molar reaction enthalpy of -87.55 kJ mol -1 and an activation energy of 11 kJ mol -1 . Analysis of model residuals and the normal probability plot indicated that the results obtained were statistically significant

  15. Synchrotron Study on Crystallization Kinetics of Milk Fat under Shear Flow

    International Nuclear Information System (INIS)

    Mazzanti, G.; Marangoni, A.; Idziak, S.

    2009-01-01

    A detailed synchrotron X-ray diffraction study on the kinetics of crystallization of anhydrous milk fat (AMF) and milk fat triacylglycerols (MFT) was done in a Couette cell at 17 C, 17.5 C and 20 C under shear rates between 0 and 2880 s-1. We observed shear-induced acceleration of the transition from phase ? to ?? and the presence of crystalline orientation, but no effect of shear on the onset time of phase ? was observed. A two stage regime was observed for the growth of phase ??. The first stage follows a series-parallel system of differential equations describing the conversion between liquid and crystalline phases. The second stage follows a diffusion-controlled regime. These mechanisms are consistent with the crystalline orientation, the growth of the crystalline domains and the observed displacement of the diffraction peak positions. The absence of the polar lipids explains the faster kinetics of MFT.

  16. Adsorption removal of tartrazine by chitosan/polyaniline composite: Kinetics and equilibrium studies.

    Science.gov (United States)

    Sahnoun, Sousna; Boutahala, Mokhtar

    2018-02-24

    The present work focused on the performance of chitosan/polyaniline (Cht-PANI) composite for removing tartrazine dye from aqueous solutions. The adsorbent was characterized using SEM, XRD, FTIR, and TGA/DTA techniques. The effects of pH, initial dye concentration, contact time, and temperature on azo dye removal were studied. The kinetics and isotherm of tartrazine removal follow pseudo-second-order kinetics and the Freundlich isotherm, respectively. The Langmiur isotherm model exhibted a maximum adsorption capacity of 584.0 mg/g. The thermodynamic parameters were calculated and the negative values of ΔG° and positive value of ΔH° indicate that the adsorption processes are spontaneous and endothermic in nature. In addition, the resulting adsorbent reusability was demonstrated over four cycles, indicating that the Cht-PANI is a very promising adsorbent for removal of toxic pollutants from aqueous solutions. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Photo-assisted Fenton type processes for the degradation of phenol: A kinetic study

    International Nuclear Information System (INIS)

    Kusic, Hrvoje; Koprivanac, Natalija; Bozic, Ana Loncaric; Selanec, Iva

    2006-01-01

    In this study the application of advanced oxidation processes (AOPs), dark Fenton and photo-assisted Fenton type processes; Fe 2+ /H 2 O 2 , Fe 3+ /H 2 O 2 , Fe 0 /H 2 O 2 , UV/Fe 2+ /H 2 O 2 , UV/Fe 3+ /H 2 O 2 and UV/Fe 0 /H 2 O 2 , for degradation of phenol as a model organic pollutant in the wastewater was investigated. A detail kinetic modeling which describes the degradation of phenol was performed. Mathematical models which predict phenol decomposition and formation of primary oxidation by-products: catechol, hydroquinone and benzoquinone, by applied processes were developed. The study also consist the modeling of mineralization kinetic of the phenol solution by applied AOPs. This part, besides well known reactions of Fenton and photo-Fenton chemistry, involves additional reactions which describe removal of iron from catalytic cycle through formation of ferric complexes and its regeneration induced by UV radiation. Phenol decomposition kinetic was monitored by HPLC analysis and total organic carbon content measurements (TOC). Complete phenol removal was obtained by all applied processes. Residual TOC by applied Fenton type processes ranged between 60.2 and 44.7%, while the efficiency of those processes was significantly enhanced in the presence of UV light, where residual TOC ranged between 15.2 and 2.4%

  18. Multi-Spacecraft Study of Kinetic scale Turbulence Using MMS Observations in the Solar Wind

    Science.gov (United States)

    Chasapis, A.; Matthaeus, W. H.; Parashar, T.; Fuselier, S. A.; Maruca, B.; Burch, J.; Moore, T. E.; Phan, T.; Pollock, C. J.; Gershman, D. J.; Torbert, R. B.; Russell, C. T.; Strangeway, R. J.

    2017-12-01

    We present a study investigating kinetic scale turbulence in the solar wind. Most previous studies relied on single spacecraft measurements, employing the Taylor hypothesis in order to probe different scales. The small separation of MMS spacecraft, well below the ion inertial scale, allow us for the first time to directly probe turbulent fluctuations at the kinetic range. Using multi-spacecraft measurements, we are able to measure the spatial characteristics of turbulent fluctuations and compare with the traditional Taylor-based single spacecraft approach. Meanwhile, combining observations from Cluster and MMS data we were able to cover a wide range of scales from the inertial range where the turbulent cascade takes place, down to the kinetic range where the energy is eventually dissipated. These observations present an important step in understanding the nature of solar wind turbulence and the processes through which turbulent energy is dissipated into particle heating and acceleration. We compute statistical quantities such as the second order structure function and the scale-dependent kurtosis, along with their dependence on the parameters such as the mean magnetic field direction. Overall, we observe an overall agreement between the single spacecraft and the multi-spacecraft approach. However, a small but significant deviation is observed at the smaller scales near the electron inertial scale. The high values of the scale dependent kurtosis at very small scales, observed via two-point measurements, open up a compelling avenue of investigation for theory and numerical modelling.

  19. A kinetic study of mercury(II transport through a membrane assisted by new transport reagent

    Directory of Open Access Journals (Sweden)

    Görgülü Ahmet

    2011-07-01

    Full Text Available Abstract Background A new organodithiophosphorus derivative, namely O-(1,3-Bispiperidino-2-propyl-4-methoxy phenyldithiophosphonate, was synthesized and then the kinetic behavior of the transport process as a function of concentration, temperature, stirring rate and solvents was investigated. Results The compound 1 was characterized by elemental analysis, IR, 1H and 31P NMR spectroscopies. The transport of mercury(II ion by a zwitterionic dithiophosphonate 1 in the liquid membrane was studied and the kinetic behavior of the transport process as a function of concentration, temperature, stirring rate and solvents was investigated. The compound 1 is expected to serve as a model liquid membrane transport with mercury(II ions. Conclusion A kinetic study of mercury(II transport through a membrane assisted by O-(1,3-Bispiperidino-2-propyl-4-methoxy phenyldithiophosphonate was performed. It can be concluded that the compound 1 can be provided a general and straightforward route to remove toxic metals ions such as mercury(II ion from water or other solution.

  20. Cellular recovery kinetic studies relevant to combined-modality research and therapy

    International Nuclear Information System (INIS)

    Dethlefsen, L.A.

    1979-01-01

    The relevance of cellular recovery kinetics to combined-modality therapy is evaluated within the framework of an idealized experimental flow chart and published adriamycin data. Within this context, limitations for both experimental design and data interpretations are discussed. The effects of adriamycin have been documented extensively at the molecular and cellular level and its interactions with x-irradiation have been studied, both in vitro and in vivo. The limited in vivo results suggest that the end results of a given protocol correlate with cellular recovery kinetics; however, definitive experiments simply have not been done. For example, no one has used single-dose drug and irradiation data to predict the outcome and then confirm or refute the prediction even in a relatively simple 2-dose drug + 2-dose drug + 2-dose x-ray protocol. Thus, at this time, the extent of the correlations between cellular recovery kinetics and clinical response for either normal or malignant tissues is not known and the possible relevance of such studies cannot be discounted

  1. Kinetic analysis and mathematical modeling of growth parameters of Lactobacillus plantarum in protein-rich isolates from tomato seed.

    Science.gov (United States)

    Mechmeche, Manel; Kachouri, Faten; Yaghlane, Hana B; Ksontini, Hamida; Setti, Khaoula; Hamdi, Moktar

    2017-03-01

    The aim of the present study was to evaluate the applicability of using protein-rich isolates from tomato seed as a sole source of nutrition for the growth of lactic acid bacteria. Unstructured mathematical and logistic models were proposed to describe growth, pH drop, lactic acid production and nutriment consumption by Lactobacillus plantarum in whole and defatted isolates in order to compare their suitability for the production of a fermented beverage. These media have considerable good quantities of nutriment that allowed the growth of L. plantarum, after which the cell numbers begin to decline. The maximum biomass was observed in defatted isolate (1.42 g L -1 ) followed by the whole isolate (1.24 g L -1 ). The lactic acid increased by about 5.5 and 6.5 times respectively in whole and defatted protein isolates. However, significant nutriment consumption occurred during the growth phase as well as stationary phase. A reduction of 61.90% and 95.88% in sugar content, as well as 21.91% and 16.93% reduction in protein content were observed respectively in whole and defatted isolates. In most cases, the proposed models adequately describe the biochemical changes taking place during fermentation and are a promising approach for the formulation of tomato seed-based functional foods.

  2. Kinetic Study on Catalytic Cracking of Rubber Seed (Hevea brasiliensis Oil to Liquid Fuels

    Directory of Open Access Journals (Sweden)

    Wara Dyah Pita Rengga

    2015-03-01

    Full Text Available Reaction kinetics of catalytic cracking of rubber seed oil to liquid fuels has been investigated. The reac-tion was performed with sulfuric acid as catalyst at temperatures of 350-450 oC and the ratio of oil-catalyst of 0-2 wt.% for 30-90 minutes. Kinetics was studied using the model of 6-lump parameters. The parameters were rubber seed oil, gasoline, kerosene, diesel, gas, and coke. Analysis of experimen-tal data using regression models to obtain reaction rate constants. Activation energies and pre-exponential factors were then calculated based on the Arrhenius equation. The simulation result illus-trated that the six-lump kinetic model can well predict the product yields of rubber seed oil catalytic cracking. The product has high selectivity for gasoline fraction as liquid fuel and the smallest amount of coke. The constant indicates that secondary reactions occurred in diesel products compared to gaso-line and kerosene. The predicted results indicate that catalytic cracking of rubber seed oil had better be conducted at 450 oC for 90 minutes using 0.5 wt.% catalyst. © 2015 BCREC UNDIP. All rights reservedReceived: 3rd December 2013; Revised: 5th December 2014; Accepted: 7th December 2014How to Cite: Rengga, W.D.P., Handayani, P.A., Kadarwati, S., Feinnudin, A.(2015. Kinetic Study on Catalytic Cracking of Rubber Seed (Hevea brasiliensis Oil  to Liquid Fuels. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (1: 50-60. (doi:10.9767/bcrec.10.1.5852.50-60Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.1.5852.50-60

  3. Kinetic studies on the oxidation of oxyhemoglobin by biologically active iron thiosemicarbazone complexes: relevance to iron-chelator-induced methemoglobinemia.

    Science.gov (United States)

    Basha, Maram T; Rodríguez, Carlos; Richardson, Des R; Martínez, Manuel; Bernhardt, Paul V

    2014-03-01

    The oxidation of oxyhemoglobin to methemoglobin has been found to be facilitated by low molecular weight iron(III) thiosemicarbazone complexes. This deleterious reaction, which produces hemoglobin protein units unable to bind dioxygen and occurs during the administration of iron chelators such as the well-known 3-aminopyridine-2-pyridinecarbaldehyde thiosemicarbazone (3-AP; Triapine), has been observed in the reaction with Fe(III) complexes of some members of the 3-AP structurally-related thiosemicarbazone ligands derived from di-2-pyridyl ketone (HDpxxT series). We have studied the kinetics of this oxidation reaction in vitro using human hemoglobin and found that the reaction proceeds with two distinct time-resolved steps. These have been associated with sequential oxidation of the two different oxyheme cofactors in the α and β protein chains. Unexpected steric and hydrogen-bonding effects on the Fe(III) complexes appear to be the responsible for the observed differences in the reaction rate across the series of HDpxxT ligand complexes used in this study.

  4. Kinetics of the H 2O 2-dependent ligninase-catalyzed oxidation of veratryl alcohol in the presence of cationic surfactant studied by spectrophotometric technique

    Science.gov (United States)

    Liu, Airong; Huang, Xirong; Song, Shaofang; Wang, Dan; Lu, Xuemei; Qu, Yinbo; Gao, Peiji

    2003-09-01

    The kinetics of ligninase-catalyzed oxidation of veratryl alcohol (VA) by H 2O 2 in the aqueous medium containing cationic surfactant cetyltrimethylammonium bromide (CTAB) has been investigated using spectrophotometric technique. Steady-state kinetic studies at different concentrations of CTAB indicate that the reaction follows a ping pong mechanism and the mechanism always holds but the kinetic parameters vary with CTAB concentrations. CTAB is a weak inhibitor for ligninase; it lowers the maximum initial velocity. CTAB also causes the Michaelis constant of H 2O 2 to decrease dramatically and that of VA to increase markedly. Based on the changes in kinetic parameters of the enzyme-catalyzed reaction at different CTAB concentrations (lower than, near to and larger than its critical micelle concentration) and the effects of the CTAB monomer and the micelles on the spectra of VA and its corresponding aldehyde, a conclusion could be made that modification of the enzymatic protein by the surfactant monomer should be responsible for the above-mentioned results.

  5. Kinetics of antibodies against pneumococcal proteins and their relationship to nasopharyngeal carriage in the first two months of life.

    Directory of Open Access Journals (Sweden)

    Awa L Mendy

    Full Text Available The currently used Streptococcus pneumoniae vaccines have had a significant impact on the pneumococcal diseases caused by the serotypes they cover. Their limitations have stimulated a search for alternate vaccines that will cover all serotypes, be affordable and effective in young children. Pneumococcal protein antigens are potential vaccine candidates that may meet some of the shortfalls of the current vaccines. Thus, this study aimed to determine the relationship between antibodies against pneumococcal protein antigens and nasopharyngeal carriage in infants.One hundred and twenty mother-infant pairs were enrolled into the study. They had nasopharyngeal swabs(NPS taken at birth and every two weeks for the first eight weeks after delivery, and blood samples were obtained at birth and every four weeks for the first eight weeks after delivery. Nasopharyngeal carriage of S. pneumoniae was determined from the NPS and antibodies against the pneumococcal proteins CbpA, PspA and rPly were measured in the blood samples.The S. pneumoniae carriage rate in infants increased to that of mothers by eight weeks of age. The odds of carriage in infants was 6.2 times (95% CI: 2.0-18.9 higher when their mothers were also carriers. Bacterial density in infants was lower at birth compared to their mothers (p = 0.004, but increased with age and became higher than that of their mothers at weeks 4 (p = 0.009, 6 (p = 0.002 and 8 (p<0.0001. At birth, the infants' antibodies against CbpA, and rPly pneumococcal protein antigens were similar, but that of PspA was lower (p<0.0001, compared to their mothers. Higher antibody concentrations to CbpA [OR (95% CI: 0.49 (0.26-0.92, p = 0.03], but not PspA and rPly, were associated with protection against carriage in the infants.Naturally induced antibodies against the three pneumococcal protein antigens were transferred from mother to child. The proportion of infants with nasopharyngeal carriage and the bacterial density of S

  6. A Study of the Optimal Model of the Flotation Kinetics of Copper Slag from Copper Mine BOR

    Science.gov (United States)

    Stanojlović, Rodoljub D.; Sokolović, Jovica M.

    2014-10-01

    In this study the effect of mixtures of copper slag and flotation tailings from copper mine Bor, Serbia on the flotation results of copper recovery and flotation kinetics parameters in a batch flotation cell has been investigated. By simultaneous adding old flotation tailings in the ball mill at the rate of 9%, it is possible to increase copper recovery for about 20%. These results are compared with obtained copper recovery of pure copper slag. The results of batch flotation test were fitted by MatLab software for modeling the first-order flotation kinetics in order to determine kinetics parameters and define an optimal model of the flotation kinetics. Six kinetic models are tested on the batch flotation copper recovery against flotation time. All models showed good correlation, however the modified Kelsall model provided the best fit.

  7. Mechanistic studies with solubilized rat liver steroid 5 alpha-reductase: Elucidation of the kinetic mechanism

    International Nuclear Information System (INIS)

    Levy, M.A.; Brandt, M.; Greway, A.T.

    1990-01-01

    A solubilized preparation of steroid 5 alpha-reductase from rat liver has been used in studies focused toward an understanding of the kinetic mechanism associated with enzyme catalysis. From the results of analyses with product and dead-end inhibitors, a preferentially ordered binding of substrates and release of products from the surface of the enzyme is proposed. The observations from these experiments were identical with those using the steroid 5 alpha-reductase activity associated with rat liver microsomes. The primary isotope effects on steady-state kinetic parameters when [4S-2H]NADPH was used also were consistent with an ordered kinetic mechanism. Normal isotope effects were observed for all three kinetic parameters (Vm/Km for both testosterone and NADPH and Vm) at all substrate concentrations used experimentally. Upon extrapolation to infinite concentration of testosterone, the isotope effect on Vm/Km for NADPH approached unity, indicating that the nicotinamide dinucleotide phosphate is the first substrate binding to and the second product released from the enzyme. The isotope effects on Vm/Km for testosterone at infinite concentration of cofactor and on Vm were 3.8 +/- 0.5 and 3.3 +/- 0.4, respectively. Data from the pH profiles of these three steady-state parameters and the inhibition constants (1/Ki) of competitive inhibitors versus both substrates indicate that the binding of nicotinamide dinucleotide phosphate involves coordination of its anionic 2'-phosphate to a protonated enzyme-associated base with an apparent pK near 8.0. From these results, relative limits have been placed on several of the internal rate constants used to describe the ordered mechanism of the rat liver steroid 5 alpha-reductase

  8. Electrochemical oxidation of COD from real textile wastewaters: Kinetic study and energy consumption.

    Science.gov (United States)

    Zou, Jiaxiu; Peng, Xiaolan; Li, Miao; Xiong, Ying; Wang, Bing; Dong, Faqin; Wang, Bin

    2017-03-01

    In the present study, the electrochemical oxidation of real wastewaters discharged by textile industry was carried out using a boron-doped diamond (BDD) anode. The effect of operational variables, such as applied current density (20-100 mA·cm -2 ), NaCl concentration added to the real wastewaters (0-3 g·L -1 ), and pH value (2.0-10.0), on the kinetics of COD oxidation and on the energy consumption was carefully investigated. The obtained experimental results could be well matched with a proposed kinetic model, in which the indirect oxidation mediated by electrogenerated strong oxidants would be described through a pseudo-first-order kinetic constant k. Values of k exhibited a linear increase with increasing applied current density and decreasing pH value, and an exponential increase with NaCl concentration. Furthermore, high oxidation kinetics resulted in low specific energy consumption, but this conclusion was not suitable to the results obtained under different applied current density. Under the optimum operational conditions, it only took 3 h to complete remove the COD in the real textile wastewaters and the specific energy consumption could be as low as 11.12 kWh·kg -1  COD. The obtained results, low energy consumption and short electrolysis time, allowed to conclude that the electrochemical oxidation based on BDD anodes would have practical industrial application for the treatment of real textile wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A Three-Dimensional Kinematic and Kinetic Study of the College-Level Female Softball Swing

    Science.gov (United States)

    Milanovich, Monica; Nesbit, Steven M.

    2014-01-01

    This paper quantifies and discusses the three-dimensional kinematic and kinetic characteristics of the female softball swing as performed by fourteen female collegiate amateur subjects. The analyses were performed using a three-dimensional computer model. The model was driven kinematically from subject swings data that were recorded with a multi-camera motion analysis system. Each subject used two distinct bats with significantly different inertial properties. Model output included bat trajectories, subject/bat interaction forces and torques, work, and power. These data formed the basis for a detailed analysis and description of fundamental swing kinematic and kinetic quantities. The analyses revealed that the softball swing is a highly coordinated and individual three-dimensional motion and subject-to-subject variations were significant in all kinematic and kinetic quantities. In addition, the potential effects of bat properties on swing mechanics are discussed. The paths of the hands and the centre-of-curvature of the bat relative to the horizontal plane appear to be important trajectory characteristics of the swing. Descriptions of the swing mechanics and practical implications are offered based upon these findings. Key Points The female softball swing is a highly coordinated and individual three-dimensional motion and subject-to-subject variations were significant in all kinematic and kinetic quantities. The paths of the grip point, bat centre-of-curvature, CG, and COP are complex yet reveal consistent patterns among subjects indicating that these patterns are fundamental components of the swing. The most important mechanical quantity relative to generating bat speed is the total work applied to the bat from the batter. Computer modeling of the softball swing is a viable means for study of the fundamental mechanics of the swing motion, the interactions between the batter and the bat, and the energy transfers between the two. PMID:24570623

  10. Kinetics study of levulinic acid production from corncobs by tin tetrachloride as catalyst.

    Science.gov (United States)

    Qing, Qing; Guo, Qi; Wang, Pengbo; Qian, Hongjia; Gao, Xiaohang; Zhang, Yue

    2018-07-01

    Levulinic acid (LA) is an ideal platform chemical that can be produced through acid-catalyzed dehydration and hydrolysis of hexose sugars obtained from lignocellulosic materials. In this study, SnCl 4 was identified as an efficient catalyst for LA production and the reaction kinetics was investigated in a single water phase under different reaction conditions. The Box-Behnken design response surface methodology (RSM) was applied to determine the optimized reaction conditions and three individual variables including reaction temperature, duration, and catalyst concentration were evaluated. An appealing LA yield of 76.0% was achieved at 193 °C and 17 min with 82 mM SnCl 4 catalyst. A kinetics model was developed to predict the yields of glucose, HMF, and LA, which are tally with the experimental results. The analysis of the related kinetic parameters and the results of the RSM experiment helped to provide insights into the interplay between various reaction steps with SnCl 4 as catalysts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Study the oxidation kinetics of uranium using XRD and Rietveld method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yanzhi; Guan Weijun; Wang Qinguo; Wang Xiaolin; Lai Xinchun; Shuai Maobing, E-mail: yanzhizh@163.com [China Academy of Engineering Physics, PO Box 919-71, Mianyang, Sichuan, 621900 (China)

    2010-03-15

    The surface oxidation of uranium metal has been studied by X-ray diffraction (XRD) and Rietveld method in the range of 50{approx}300deg. C in air. The oxidation processes are analyzed by XRD to determine the extent of surface oxidation and the oxide structure. The dynamics expression for the formation of UO{sub 2} was derived. At the beginning, the dynamic expression was nonlinear, but switched to linear subsequently for uranium in air and humid oxygen. That is, the growth kinetics of UO{sub 2} can be divided into two stages: nonlinear portion and linear portion. Using the kinetic data of linear portion, the activation energy of reaction between uranium and air was calculated about 46.0 kJ/mol. However the content of oxide as a function of time was linear in humid helium ambience. Contrast the dynamics results, it prove that the absence of oxygen would accelerate the corrosion rate of uranium in the humid gas. We can find that the XRD and Rietveld method are a useful convenient method to estimate the kinetics and thermodynamics of solid-gas reaction.

  12. Comparative studies of the pyrolytic and kinetic characteristics of maize straw and the seaweed Ulva pertusa.

    Directory of Open Access Journals (Sweden)

    Naihao Ye

    Full Text Available Seaweed has attracted considerable attention as a potential biofuel feedstock. The pyrolytic and kinetic characteristics of maize straw and the seaweed Ulva pertusa were studied and compared using heating rates of 10, 30 and 50°C min(-1 under an inert atmosphere. The activation energy, and pre-exponential factors were calculated by the Flynn-Wall-Ozawa (FWO, Kissinger-Akahira-Sunose (KAS and Popescu methods. The kinetic mechanism was deduced by the Popescu method. The results indicate that there are three stages to the pyrolysis; dehydration, primary devolatilization and residual decomposition. There were significant differences in average activation energy, thermal stability, final residuals and reaction rates between the two materials. The primary devolatilization stage of U. pertusa can be described by the Avramic-Erofeev equation (n=3, whereas that of maize straw can be described by the Mampel Power Law (n=2. The average activation energy of maize straw and U. pertusa were 153.0 and 148.7 KJ mol(-1, respectively. The pyrolysis process of U.pertusa would be easier than maize straw. And co-firing of the two biomass may be require less external heat input and improve process stability. There were minor kinetic compensation effects between the pre-exponential factors and the activation energy.

  13. Lipase-catalyzed synthesis of palmitanilide: Kinetic model and antimicrobial activity study.

    Science.gov (United States)

    Liu, Kuan-Miao; Liu, Kuan-Ju

    2016-01-01

    Enzymatic syntheses of fatty acid anilides are important owing to their wide range of industrial applications in detergents, shampoo, cosmetics, and surfactant formulations. The amidation reaction of Mucor miehei lipase Lipozyme IM20 was investigated for direct amidation of triacylglycerol in organic solvents. The process parameters (reaction temperature, substrate molar ratio, enzyme amount) were optimized to achieve the highest yield of anilide. The maximum yield of palmitanilide (88.9%) was achieved after 24 h of reaction at 40 °C at an enzyme concentration of 1.4% (70 mg). Kinetics of lipase-catalyzed amidation of aniline with tripalmitin has been investigated. The reaction rate could be described in terms of the Michaelis-Menten equation with a Ping-Pong Bi-Bi mechanism and competitive inhibition by both the substrates. The kinetic constants were estimated by using non-linear regression method using enzyme kinetic modules. The enzyme operational stability study showed that Lipozyme IM20 retained 38.1% of the initial activity for the synthesis of palmitanilide (even after repeated use for 48 h). Palmitanilide, a fatty acid amide, exhibited potent antimicrobial activity toward Bacillus cereus. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Kinetic studies on phosphorus sorption by selected soil amendments for septic tank effluent renovation.

    Science.gov (United States)

    Cheung, K C; Venkitachalam, T H

    2006-01-01

    A systematic kinetic study of phosphorus (P) sorption by various materials in the soil infiltration system of septic tanks was undertaken by following the time course of P sorption by sorbents in contact with various P solutions over periods up to 360 days. Uptake of P seemed to consist of two distinct stages. Initial uptake was very rapid and this phase was completed in 4 days or less. A slower removal stage followed for some materials over many months. Phosphorus sorption during the fast reaction stage appeared to be associated with the soluble Ca content of the materials. The fast reaction of calcareous materials accounted for the bulk (>70%) of the total P removed. Merribrook loamy sand exhibited the highest proportion of P sorption during the slow phase. It should be noted, however, that for solution P concentrations in the range found in typical effluents (approximately 20 mg L(-1)) the fast reaction phase seemed to be responsible for virtually all P removed. None of the six kinetic formulae examined possessed the sophistication and detail needed to portray accurately the time course of P sorption for all the sorbents investigated. The Elovich equation and the kinetic modification of the Freundlich isotherm expression appeared to provide a reasonable fit of the experimental data.

  15. Study the oxidation kinetics of uranium using XRD and Rietveld method

    Science.gov (United States)

    Zhang, Yanzhi; Guan, Weijun; Wang, Qinguo; Wang, Xiaolin; Lai, Xinchun; Shuai, Maobing

    2010-03-01

    The surface oxidation of uranium metal has been studied by X-ray diffraction (XRD) and Rietveld method in the range of 50~300°C in air. The oxidation processes are analyzed by XRD to determine the extent of surface oxidation and the oxide structure. The dynamics expression for the formation of UO2 was derived. At the beginning, the dynamic expression was nonlinear, but switched to linear subsequently for uranium in air and humid oxygen. That is, the growth kinetics of UO2 can be divided into two stages: nonlinear portion and linear portion. Using the kinetic data of linear portion, the activation energy of reaction between uranium and air was calculated about 46.0 kJ/mol. However the content of oxide as a function of time was linear in humid helium ambience. Contrast the dynamics results, it prove that the absence of oxygen would accelerate the corrosion rate of uranium in the humid gas. We can find that the XRD and Rietveld method are a useful convenient method to estimate the kinetics and thermodynamics of solid-gas reaction.

  16. Optimization and kinetic studies of sea mango (Cerbera odollam) oil for biodiesel production via supercritical reaction

    International Nuclear Information System (INIS)

    Ang, Gaik Tin; Ooi, San Nee; Tan, Kok Tat; Lee, Keat Teong; Mohamed, Abdul Rahman

    2015-01-01

    Highlights: • Sea mango oil as feedstock for biodiesel via non-catalytic supercritical reaction. • Extracted sea mango oil with high FFA could produce high yield of FAME. • Employment of Response Surface Methodology for optimization of FAME. • Kinetic study for reversible transesterification and esterification reactions. - Abstract: Sea mango (Cerbera odollam) oil, which is rich in free fatty acids, was utilized to produce fatty acid methyl esters (FAME) via supercritical transesterification reaction. Sea mango oil was extracted from seeds and was subsequently reacted with methanol in a batch-type supercritical reactor. Response surface methodology (RSM) analysis was used to optimize important parameters, including reaction temperature, reaction time and the molar ratio of methanol to oil. The optimum conditions were found as 380 °C, 40 min and 45:1 mol/mol, respectively, to achieve 78% biodiesel content. The first kinetic modelling of FAME production from sea mango oil incorporating reversible transesterification and reversible esterification was verified simultaneously. The kinetic parameters, including reaction rate constants, k, the pre-exponential constant, A, and the activation energy, Ea, for transesterification and esterification were determined using an ordinary differential equation (ODE45) solver. The highest activation energy of 40 kJ/mol and the lowest reaction rate constant of 2.50 × 10 −5 dm 3 /mol s verified that the first stepwise reaction of TG to produce DG was the rate-limiting step

  17. Kinetics of enzymatic high-solid hydrolysis of lignocellulosic biomass studied by calorimetry.

    Science.gov (United States)

    Olsen, Søren N; Lumby, Erik; McFarland, Kc; Borch, Kim; Westh, Peter

    2011-03-01

    Enzymatic hydrolysis of high-solid biomass (>10% w/w dry mass) has become increasingly important as a key step in the production of second-generation bioethanol. To this end, development of quantitative real-time assays is desirable both for empirical optimization and for detailed kinetic analysis. In the current work, we have investigated the application of isothermal calorimetry to study the kinetics of enzymatic hydrolysis of two substrates (pretreated corn stover and Avicel) at high-solid contents (up to 29% w/w). It was found that the calorimetric heat flow provided a true measure of the hydrolysis rate with a detection limit of about 500 pmol glucose s(-1). Hence, calorimetry is shown to be a highly sensitive real-time method, applicable for high solids, and independent on the complexity of the substrate. Dose-response experiments with a typical cellulase cocktail enabled a multidimensional analysis of the interrelationships of enzyme load and the rate, time, and extent of the reaction. The results suggest that the hydrolysis rate of pretreated corn stover is limited initially by available attack points on the substrate surface (conversion) but becomes proportional to enzyme dosage (excess of attack points) at later stages (>10% conversion). This kinetic profile is interpreted as an increase in polymer end concentration (substrate for CBH) as the hydrolysis progresses, probably due to EG activity in the enzyme cocktail. Finally, irreversible enzyme inactivation did not appear to be the source of reduced hydrolysis rate over time.

  18. Pulsed IR Heating Studies of Single-Molecule DNA Duplex Dissociation Kinetics and Thermodynamics

    Science.gov (United States)

    Holmstrom, Erik D.; Dupuis, Nicholas F.; Nesbitt, David J.

    2014-01-01

    Single-molecule fluorescence spectroscopy is a powerful technique that makes it possible to observe the conformational dynamics associated with biomolecular processes. The addition of precise temperature control to these experiments can yield valuable thermodynamic information about equilibrium and kinetic rate constants. To accomplish this, we have developed a microscopy technique based on infrared laser overtone/combination band absorption to heat small (≈10−11 liter) volumes of water. Detailed experimental characterization of this technique reveals three major advantages over conventional stage heating methods: 1), a larger range of steady-state temperatures (20–100°C); 2), substantially superior spatial (≤20 μm) control; and 3), substantially superior temporal (≈1 ms) control. The flexibility and breadth of this spatial and temporally resolved laser-heating approach is demonstrated in single-molecule fluorescence assays designed to probe the dissociation of a 21 bp DNA duplex. These studies are used to support a kinetic model based on nucleic acid end fraying that describes dissociation for both short (10 bp) DNA duplexes. These measurements have been extended to explore temperature-dependent kinetics for the 21 bp construct, which permit determination of single-molecule activation enthalpies and entropies for DNA duplex dissociation. PMID:24411254

  19. Comparative studies of the pyrolytic and kinetic characteristics of maize straw and the seaweed Ulva pertusa.

    Science.gov (United States)

    Ye, Naihao; Li, Demao; Chen, Limei; Zhang, Xiaowen; Xu, Dong

    2010-09-10

    Seaweed has attracted considerable attention as a potential biofuel feedstock. The pyrolytic and kinetic characteristics of maize straw and the seaweed Ulva pertusa were studied and compared using heating rates of 10, 30 and 50°C min(-1) under an inert atmosphere. The activation energy, and pre-exponential factors were calculated by the Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS) and Popescu methods. The kinetic mechanism was deduced by the Popescu method. The results indicate that there are three stages to the pyrolysis; dehydration, primary devolatilization and residual decomposition. There were significant differences in average activation energy, thermal stability, final residuals and reaction rates between the two materials. The primary devolatilization stage of U. pertusa can be described by the Avramic-Erofeev equation (n=3), whereas that of maize straw can be described by the Mampel Power Law (n=2). The average activation energy of maize straw and U. pertusa were 153.0 and 148.7 KJ mol(-1), respectively. The pyrolysis process of U.pertusa would be easier than maize straw. And co-firing of the two biomass may be require less external heat input and improve process stability. There were minor kinetic compensation effects between the pre-exponential factors and the activation energy.

  20. A guide to ancient protein studies

    DEFF Research Database (Denmark)

    Hendy, Jessica; Welker, Frido; Demarchi, Beatrice

    2018-01-01

    Palaeoproteomics is an emerging neologism used to describe the application of mass spectrometry-based approaches to the study of ancient proteomes. As with palaeogenomics (the study of ancient DNA), it intersects evolutionary biology, archaeology and anthropology, with applications ranging from....... Additionally, in contrast to the ancient DNA community, no consolidated guidelines have been proposed by which researchers, reviewers and editors can evaluate palaeoproteomics data, in part due to the novelty of the field. Here we present a series of precautions and standards for ancient protein research...

  1. Influence of lysozyme on the precipitation of calcium carbonate: a kinetic and morphologic study

    Science.gov (United States)

    Jimenez-Lopez, Concepcion; Rodriguez-Navarro, Alejandro; Dominguez-Vera, Jose M.; Garcia-Ruiz, Juan M.

    2003-05-01

    Several mechanisms have been proposed to explain the interactions between proteins and mineral surfaces, among them a combination of electrostatic, stereochemical interactions and molecular recognition between the protein and the crystal surface. To identify the mechanisms of interaction in the lysozyme-calcium carbonate model system, the effect of this protein on the precipitation kinetics and morphology of calcite crystals was examined. The solution chemistry and morphology of the solid were monitored over time in a set of time-series free-drift experiments in which CaCO 3 was precipitated from solution in a closed system at 25°C and 1 atm total pressure, in the presence and absence of lysozyme. The precipitation of calcite was preceded by the precipitation of a metastable phase that later dissolved and gave rise to calcite as the sole phase. With increasing lysozyme concentration, the nucleation of both the metastable phase and calcite occurred at lower Ω calcite, indicating that lysozyme favored the nucleation of both phases. Calcite growth rate was not affected by the presence of lysozyme, at least at protein concentrations ranging from 0 mg/mL to 10 mg/mL. Lysozyme modified the habit of calcite crystals. The degree of habit modification changed with protein concentration. At lower concentrations of lysozyme, the typical rhombohedral habit of calcite crystals was modified by the expression of {110} faces, which resulted from the preferential adsorption of protein on these faces. With increasing lysozyme concentration, the growth of {110}, {100}, and finally {001} faces was sequentially inhibited. This adsorption sequence may be explained by an electrostatic interaction between lysozyme and calcite, in which the inhibition of the growth of {110}, {100}, and {001} faces could be explained by a combined effect of the density of carbonate groups in the calcite face and the specific orientation (perpendicular) of these carbonate groups with respect to the calcite

  2. Computational and theoretical studies of globular proteins

    Science.gov (United States)

    Pagan, Daniel L.

    Protein crystallization is often achieved in experiment through a trial and error approach. To date, there exists a dearth of theoretical understanding of the initial conditions necessary to promote crystallization. While a better understanding of crystallization will help to create good crystals suitable for structure analysis, it will also allow us to prevent the onset of certain diseases. The core of this thesis is to model and, ultimately, understand the phase behavior of protein particles in solution. Toward this goal, we calculate the fluid-fluid coexistence curve in the vicinity of the metastable critical point of the modified Lennard-Jones potential, where it has been shown that nucleation is increased by many orders of magnitude. We use finite-size scaling techniques and grand canonical Monte Carlo simulation methods. This has allowed us to pinpoint the critical point and subcritical region with high accuracy in spite of the critical fluctuations that hinder sampling using other Monte Carlo techniques. We also attempt to model the phase behavior of the gamma-crystallins, mutations of which have been linked to genetic cataracts. The complete phase behavior of the square well potential at the ranges of attraction lambda = 1.15 and lambda = 1.25 is calculated and compared with that of the gammaII-crystallin. The role of solvent is also important in the crystallization process and affects the phase behavior of proteins in solution. We study a model that accounts for the contribution of the solvent free-energy to the free-energy of globular proteins. This model allows us to model phase behavior that includes solvent.

  3. Kinetic studies of uranyl ion adsorption on acrylonitrile (AN)/polyethylene glycol (PEG) interpenetrating networks (IPN)

    International Nuclear Information System (INIS)

    Aycik, G.A.; Gurellier, R.

    2004-01-01

    Full text: The kinetics of the adsorption of uranyl ions on amidoximated acrylonitrile (AN)/ polyethylene glycol (PEG) interpenetrating network (IPNs) from aqueous solutions was studied as a function of time and temperature. The IPNs were prepared by irradiation initiated gamma polymerisation using Co-60 gamma source. Adsorption capacities were performed for definite uranyl ion concentrations of 1x10 -2 M and at four different temperatures as 290K, 298K, 308K and 318K by gamma spectrometer. Adsorption time was increased from zero to 48 hours. The results indicate that adsorption capacity increases linearly with increasing temperature. Temperature and agitation hardly influence equilibrium and kinetics and decreasing of temperature results in a slightly greater time to reach equilibrium. The adsorption of uranyl ions has been studied in a multi step mechanism processes thus comparing chemical sorption and diffusion sorption processes. The experimental data was analysed using various kinetic models to determine the best-fit equation for the adsorption mechanisms. However, it was shown that all models, in general according to the reaction time and uranyl ion concentration in the solution, could describe the adsorption of uranyl ion onto amidoximated IPN, the adsorption kinetics was best described by zeroth order and intraparticle diffusion model whereas that of in increasing time by pseudo first and pseudo second order response respectively. External-intraparticle diffusion and zeroth order process in the IPN structure is proposed as a mass transfer mechanism and the results indicate a diffusion-controlled process. The Mean Activation Energy Of Uranyl Ions Adsorption Was Found As 4,1 Kj/Mole By Using Arrhenius Equation. The Rate Constant, The Equilibrium Adsorption Capacity And The Initial Adsorption Rate Were Calculated For All Models At Each Temperature. Kinetic Parameters Of All Models And The Normalized Standard Deviations Between The Measured And Predicted

  4. Pyrolysis behaviors and kinetic studies on Eucalyptus residues using thermogravimetric analysis

    International Nuclear Information System (INIS)

    Chen, Zhihua; Zhu, Quanjie; Wang, Xun; Xiao, Bo; Liu, Shiming

    2015-01-01

    Highlights: • The first study on pyrolysis characteristics and kinetic of Eucalyptus residues. • Pyrolysis process can be divided into three stages using differential DTG method. • A new modified discrete DAEM showed better than Gaussian DAEM for kinetic studies. • Variations of activation energy reveal the mechanism change during pyrolysis process. - Abstract: The pyrolysis behaviors and kinetics of Eucalyptus leaves (EL), Eucalyptus bark (EB) and Eucalyptus sawdust (ESD) were investigated by using thermogravimetric analysis (TGA) technique. Three stages for EL, EB and ESD pyrolysis have been divided using differential derivative thermogravimetric (DDTG) method and the second stage is the main pyrolysis process with approximately 86.93% (EL), 88.96% (EB) and 97.84% (ESD) weight loss percentages. Kinetic parameters of Gaussian distributed activation energy model (DAEM) for EL, EB and ESD pyrolysis are: distributed centers (E_0) of 141.15 kJ/mol (EL), 149.21 kJ/mol (EB), 175.79 kJ/mol (ESD), standard deviations (σ) of 18.35 kJ/mol (EL), 18.37 kJ/mol (EB), 14.41 kJ/mol (ESD) and pre-exponential factors (A) of 1.15E+10 s"−"1 (EL), 4.34E+10 s"−"1 (EB), 7.44E+12 s"−"1 (ESD). A new modified discrete DAEM was performed and showed excellent fits to experimental data than Gaussian DAEM. According to the modified discrete DAEM, the activation energies are in ranges of 122.67–308.64 kJ/mol, 118.72–410.80 kJ/mol and 108.39–192.93 kJ/mol for EL, EB and ESD pyrolysis, respectively. The pre-exponential factors of discrete DAEM have wide ranges of 4.84E+13–6.12E+22 s"−"1 (EL), 1.91E+12–4.51E+25 s"−"1 (EB) and 63.43–4.36E+11 s"−"1 (ESD). The variation of activation energy versus conversion reveals the mechanism change during pyrolysis process. The kinetic data would be of immense benefit to model, design and develop suitable thermo-chemical systems for the application of Eucalyptus residues.

  5. Design of tryptophan-containing mutants of the symmetrical Pizza protein for biophysical studies.

    Science.gov (United States)

    Noguchi, Hiroki; Mylemans, Bram; De Zitter, Elke; Van Meervelt, Luc; Tame, Jeremy R H; Voet, Arnout

    2018-03-18

    β-propeller proteins are highly symmetrical, being composed of a repeated motif with four anti-parallel β-sheets arranged around a central axis. Recently we designed the first completely symmetrical β-propeller protein, Pizza6, consisting of six identical tandem repeats. Pizza6 is expected to prove a useful building block for bionanotechnology, and also a tool to investigate the folding and evolution of β-propeller proteins. Folding studies are made difficult by the high stability and the lack of buried Trp residues to act as monitor fluorophores, so we have designed and characterized several Trp-containing Pizza6 derivatives. In total four proteins were designed, of which three could be purified and characterized. Crystal structures confirm these mutant proteins maintain the expected structure, and a clear redshift of Trp fluorescence emission could be observed upon denaturation. Among the derivative proteins, Pizza6-AYW appears to be the most suitable model protein for future folding/unfolding kinetics studies as it has a comparable stability as natural β-propeller proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Protein fiber linear dichroism for structure determination and kinetics in a low-volume, low-wavelength couette flow cell

    OpenAIRE

    Dafforn, Tim; Rajendra, Jacindra; Halsall, David J.; Serpell, Louise C.; Rodger, Alison

    2004-01-01

    High-resolution structure determination of soluble globular proteins relies heavily on x-ray crystallography techniques. Such an approach is often ineffective for investigations into the structure of fibrous proteins as these proteins generally do not crystallize. Thus investigations into fibrous protein structure have relied on less direct methods such as x-ray fiber diffraction and circular dichroism. Ultraviolet linear dichroism has the potential to provide additional information on the st...

  7. Kinetic studies of adsorption of Cu (II) from aqueous solution by coriander seeds (Coriandrum Sativum)

    Science.gov (United States)

    Kadiri, L.; Lebkiri, A.; Rifi, E. H.; Ouass, A.; Essaadaoui, Y.; Lebkiri, I.; Hamad, H.

    2018-05-01

    The adsorption of copper ions Cu2+ by Coriandrum Sativum seeds (CSS) from aqueous solution was studied in order to highlight the importance of coriander seeds as a potential tool in the treatment of wastewaters containing heavy metals. The kinetic studies of adsorption of Cu (II) were discussed using the spectroscopic technique "Inducting Coupled Plasma" (ICP). The effects of initial copper ion concentration and contact time were determined. All results show that coriander seeds have, over their culinary and medicinal benefits, a significant adsorbent power of copper ions.

  8. A Study on the T L-Properties and Kinetics of Local Natural Calcium Fluoride

    International Nuclear Information System (INIS)

    Al-Saleh, F.S.

    2006-01-01

    Thermoluminescence characteristics of local natural calcium fluoride which is obtained from a flouride mine in the west of saudi arabia (shows a light purple appearance) have been studied. T L glow peaks are observed at 100,177,238 and 300 C.Thermal treatment and fading effects had been studied . the T L response is observed to increase with increasing dose, as expected, over the used dose range. the kinetic parameters were calculated to satisfy the feasibility of using the present sample as γ -ray dosimetry

  9. The kinetics of ulvoespinel reduction - Synthetic study and applications to lunar rocks.

    Science.gov (United States)

    Mccallister, R. H.; Taylor, L. A.

    1973-01-01

    The kinetics of Fe2TiO4 reduction to FeTiO3 + Fe were studied using CO-CO2 gas mixtures with fO2 measured by a solid ceramic (calcia-zirconia) oxygen electrolyte cell. Isothermal rate studies at 900 C suggest that the mechanism of Fe2TiO4 reduction is one of nucleation and growth, where the growth stage may be controlled by the diffusion of the reactant through the product layer or volume diffusion. The activation energy for the growth stage of the process was determined to be 46 plus or minus 4 kcal/mole.

  10. Implementing atomic force microscopy (AFM) for studying kinetics of gold nanoparticle's growth

    DEFF Research Database (Denmark)

    Georgiev, P.; Bojinova, A.; Kostova, B.

    2013-01-01

    In a novel experimental approach Atomic Force Microscopy (AFM) was applied as a tool for studying the kinetics of gold nanoparticle growth. The gold nanoparticles were obtained by classical Turkevich citrate synthesis at two different temperatures. From the analysis of AFM images during...... the synthesis process the nanoparticle s' sizes were obtained. To demonstrate the applicability and the reliability of the proposed experimental approach we studied the nanoparticles growth at two different temperatures by spectrophotometric measurements and compared them with the results from AFM experimental...

  11. Kinetic study of the hydration of propylene oxide in the presence of heterogeneous catalyst

    Directory of Open Access Journals (Sweden)

    Akyalcin Sema

    2017-01-01

    Full Text Available The kinetics of the hydration of propylene oxide was studied using a pressurized batch reactor for both uncatalyzed and heterogeneously catalyzed reactions. Lewatit MonoPlus M500/HCO3 - was used as heterogeneous catalyst, which showed better performance than Dowex Marathon A/HCO3 -. The effects of the parameters, namely internal and external diffusion resistances, temperature, catalyst loading and mole ratios of reactants, on the reaction rate were studied. The uncatalyzed and heterogeneously catalyzed reactions were proven to follow a series-parallel irreversible homogeneous mechanism. The temperature dependencies of the rate constants appearing in the rate expressions were determined.

  12. Immunochemical studies of yellowjacket venom proteins.

    Science.gov (United States)

    King, T P; Alagon, A C; Kuan, J; Sobotka, A K; Lichtenstein, L M

    1983-03-01

    The major proteins of yellowjacket venoms have been isolated and characterized immuno-chemically. They consist of hyaluronidase, phospholipase, and antigen 5. Venoms from three species of yellowjacket were studied. Vespula germanica, V. maculifrons, and V. vulgaris. The phospholipases could be isolated in good yield only when affinity chromatography was used to minimize limited proteolysis. A kallikrein-like peptidase was found present in the yellowjacket venom. Phospholipases from these three species were immunochemically indistinguishable from each other, as were their antigen 5s. Sera from individuals sensitive to yellowjacket venom contained IgE and IgG specific for antigen 5 and phospholipase.

  13. Crystallographic and kinetic study of riboflavin synthase from Brucella abortus, a chemotherapeutic target with an enhanced intrinsic flexibility

    Energy Technology Data Exchange (ETDEWEB)

    Serer, María I.; Bonomi, Hernán R. [IIBBA–CONICET, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires (Argentina); Guimarães, Beatriz G. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin BP 48, 91192 Gif-sur-Yvette CEDEX (France); Rossi, Rolando C. [Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires (Argentina); Goldbaum, Fernando A.; Klinke, Sebastián, E-mail: sklinke@leloir.org.ar [IIBBA–CONICET, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires (Argentina)

    2014-05-01

    This work reports crystal structures of trimeric riboflavin synthase from the pathogen B. abortus both as the apo protein and in complex with several ligands of interest. It is shown that ligand binding drives the assembly of the unique active site of the trimer, and these findings are complemented by a detailed kinetic study on this enzyme, in which marked inhibition by substrate and product was observed. Riboflavin synthase (RS) catalyzes the last step of riboflavin biosynthesis in microorganisms and plants, which corresponds to the dismutation of two molecules of 6,7-dimethyl-8-ribityllumazine to yield one molecule of riboflavin and one molecule of 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione. Owing to the absence of this enzyme in animals and the fact that most pathogenic bacteria show a strict dependence on riboflavin biosynthesis, RS has been proposed as a potential target for antimicrobial drug development. Eubacterial, fungal and plant RSs assemble as homotrimers lacking C{sub 3} symmetry. Each monomer can bind two substrate molecules, yet there is only one active site for the whole enzyme, which is located at the interface between two neighbouring chains. This work reports the crystallographic structure of RS from the pathogenic bacterium Brucella abortus (the aetiological agent of the disease brucellosis) in its apo form, in complex with riboflavin and in complex with two different product analogues, being the first time that the structure of an intact RS trimer with bound ligands has been solved. These crystal models support the hypothesis of enhanced flexibility in the particle and also highlight the role of the ligands in assembling the unique active site. Kinetic and binding studies were also performed to complement these findings. The structural and biochemical information generated may be useful for the rational design of novel RS inhibitors with antimicrobial activity.

  14. Crystallographic and kinetic study of riboflavin synthase from Brucella abortus, a chemotherapeutic target with an enhanced intrinsic flexibility

    International Nuclear Information System (INIS)

    Serer, María I.; Bonomi, Hernán R.; Guimarães, Beatriz G.; Rossi, Rolando C.; Goldbaum, Fernando A.; Klinke, Sebastián

    2014-01-01

    This work reports crystal structures of trimeric riboflavin synthase from the pathogen B. abortus both as the apo protein and in complex with several ligands of interest. It is shown that ligand binding drives the assembly of the unique active site of the trimer, and these findings are complemented by a detailed kinetic study on this enzyme, in which marked inhibition by substrate and product was observed. Riboflavin synthase (RS) catalyzes the last step of riboflavin biosynthesis in microorganisms and plants, which corresponds to the dismutation of two molecules of 6,7-dimethyl-8-ribityllumazine to yield one molecule of riboflavin and one molecule of 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione. Owing to the absence of this enzyme in animals and the fact that most pathogenic bacteria show a strict dependence on riboflavin biosynthesis, RS has been proposed as a potential target for antimicrobial drug development. Eubacterial, fungal and plant RSs assemble as homotrimers lacking C 3 symmetry. Each monomer can bind two substrate molecules, yet there is only one active site for the whole enzyme, which is located at the interface between two neighbouring chains. This work reports the crystallographic structure of RS from the pathogenic bacterium Brucella abortus (the aetiological agent of the disease brucellosis) in its apo form, in complex with riboflavin and in complex with two different product analogues, being the first time that the structure of an intact RS trimer with bound ligands has been solved. These crystal models support the hypothesis of enhanced flexibility in the particle and also highlight the role of the ligands in assembling the unique active site. Kinetic and binding studies were also performed to complement these findings. The structural and biochemical information generated may be useful for the rational design of novel RS inhibitors with antimicrobial activity

  15. Study of the kinetics of beta-alpha transformation in uranium; Doprinos proucavanju kinetike beta-alfa transformacije u uranijumu

    Energy Technology Data Exchange (ETDEWEB)

    Drobnjak, Dj; Mihajlovic, A [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-11-15

    The objective of this task was to study the influence of cooling rate, heating temperature and the time of spent in beta state on the kinetics of the beta {yields} alpha transformation. The experimental results are presented in this report.

  16. Kinetic and equilibrium study of adsorption of di-azo dyes on commercial activated carbon

    International Nuclear Information System (INIS)

    Hyali, E.A.S.A.; Abady, T.G.A.

    2013-01-01

    This research work is concerned with studying the adsorption of a number of di-azo dyes on commercial activated carbon (CAC). The synthesized dyes vary in their structures by the central parts. which are either ortho, meta or para phenvlene diamine. This variation affects the linearity of molecules, their spatial arrangement and electron movement throughout the molecule by resonance. Factors a fleeting adsorption process, such as the efiect of contact time, initial concentration, p1-I of the adsorption medium, adsorbent dose, effect of solvent and temperature were studied. The results indicated that, the adsorption process is fast in the first 10 mm, then gradually decreased with time and approaches maximum within 70-80 min for all the studied dyes. The increase of initial concentration and temperature decreased the adsorption efficiency. The results also shows that, the adsorption is found to be more efficient at low Ph value. The increase of the adsorbent dose increases the adsorption efficiency and decreases its capacity. The variation of solvent (ethanol-water ratio) indicates that the decrease of dielectric constant lowers the adsorption efficiency. The study included application of three adsorption isotherms, Freundlich, Langmuir and Tempkin on the experimental data of the studied systems. The results indicated that, Freundlich isotherm fits better the adsorption data. Kinetic analysis of the adsorption data was also conducted by employing 4 kinetic models; pseudo first order and pseudo second order, Elovich and intra particle diffusion equations. The results obtained conclude that, the studied systems follow the Pseudo second order model. (author)

  17. Photo-Darkening Kinetics and Structural Anisotropic Modifications in the Chalcogenide Glass Arsenic Trisulfide: a Study of Kinetic X-Ray Absorption Spectroscopy

    Science.gov (United States)

    Lee, Jay Min

    1990-08-01

    The purpose of the study is to investigate the mechanisms involved with photo-induced atomic structural modifications in the chalcogenide glass As_2 S_3. This glass exhibits the reversible effects of photo-darkening followed by thermal bleaching. We observed the time behavior of photo-induced properties under the influence of linearly polarized band -gap light. In a macroscopic optical investigation, we monitor optical changes in the photo-darkening process, and in a local structural probe we study kinetic (or time -resolved dispersive) x-ray absorption spectroscopy. Our observations center on kinetic phenomena and structural modifications induced by polarized excitation of lone-pair orbitals in the chalcogenide glass. Experimental results include the following observations: (i) The polarity of the optically induced anisotropy is critically dependent on the intensity and the polarization of the band-gap irradiation beam. (ii) The near edge peak height in x-ray absorption spectra shows subtle but sensitive change during the photo-darkening process. (iii) Photon intensity dependent dichroic kinetics reflect a connection between the optically probed macroscopic property and the x-ray probed local anisotropic structure. Analysis of the x-ray absorption results includes a computer simulation of the polarized absorption spectra. These results suggest that specific structural units tend to orient themselves with respect to the photon polarization. A substantial part of the analysis involves a major effort in dealing with the x-ray kinetic data manipulation and the experimental difficulties caused by a synchrotron instability problem. Based on our observations, we propose a possible mechanism for the observed photo-structural modifications. Through a model of computer relaxed photo-darkening kinetics, we support the notion that a twisting of a specific intermediate range order structure is responsible for local directional variations and global network distortions. In the

  18. Removal of ibuprofen, naproxen and carbamazepine in aqueous solution onto natural clay: equilibrium, kinetics, and thermodynamic study

    Science.gov (United States)

    Khazri, Hassen; Ghorbel-Abid, Ibtissem; Kalfat, Rafik; Trabelsi-Ayadi, Malika

    2017-10-01

    This study aimed to describe the adsorption of three pharmaceuticals compounds (ibuprofen, naproxen and carbamazepine) onto natural clay on the basis of equilibrium parameters such as a function of time, effect of pH, varying of the concentration and the temperature. Adsorption kinetic data were modeled using the Lagergren's first-order and the pseudo-second-order kinetic equations. The kinetic results of adsorption are described better using the pseudo-second order model. The isotherm results were tested in the Langmuir, Freundlich and Dubinin-Radushkevich models. The thermodynamic parameters obtained indicate that the adsorption of pharmaceuticals on the clay is a spontaneous and endothermic process.

  19. Parametric and kinetic study of adsorptive removal of dyes from aqueous solutions using an agriculture waste

    Science.gov (United States)

    Bencheikh, imane; el hajjaji, souad; abourouh, imane; Kitane, Said; Dahchour, Abdelmalek; El M'Rabet, Mohammadine

    2017-04-01

    Wastewater treatment is the subject of several studies through decades. Interest is continuously oriented to provide cheaper and efficient methods of treatment. Several methods of treatment exit including coagulation flocculation, filtration, precipitation, ozonation, ion exchange, reverse osmosis, advanced oxidation process. The use of these methods proved limited because of their high investment and operational cost. Adsorption can be an efficient low-cost process to remove pollutants from wastewater. This method of treatment calls for an solid adsorbent which constitutes the purification tool. Agricultural wastes have been widely exploited in this case .As we know the agricultural wastes are an important source of water pollution once discharged into the aquatic environment (river, sea ...). The valorization of such wastes and their use allows the prevention of this problem with an economic and environment benefits. In this context our study aimed testing the wastewater treatment capacity by adsorption onto holocellulose resulting from the valorization of an agriculture waste. In this study, methylene blue (MB) and methyl orange (MO) are selected as models pollutants for evaluating the holocellulose adsorbent capacity. The kinetics of adsorption is performed using UV-visible spectroscopy. In order to study the effect of the main parameters for the adsorption process and their mutual interaction, a full factorial design (type nk) has been used.23 full factorial design analysis was performed to screen the parameters affecting dye removal efficiency. Using the experimental results, a linear mathematical model representing the influence of the different parameters and their interactions was obtained. The parametric study showed that efficiency of the adsorption system (Dyes/ Holocellulose) is mainly linked to pH variation. The best yields were observed for MB at pH=10 and for MO at pH=2.The kinetic data was analyzed using different models , namely , the pseudo

  20. Powder X-ray diffraction studies of structural and kinetic aspects of polymorphism

    International Nuclear Information System (INIS)

    Chan, F.C.

    1999-01-01

    Polymorphism is a poorly understood phenomenon that is of considerable technological interest to the pharmaceutical industry. The polymorph selected can influence the bioavailability, processing and stability of the pharmaceutical dosage form. In this study structural, kinetic and thermodynamics aspects of polymorphism and polymorphic phase transformations have been examined using powder X-ray diffraction (PXRD). The compound sulphathiazole is a well-studied model in the investigation of polymorphism and crystal growth. There are five known polymorphic forms and the structure of form V was unknown until this study. The difficulty has been that it has not been possibly to prepare crystals of appropriate size and quality for single crystal diffraction. Furthermore, structure solution from powder data for organic molecules is almost impossible. Despite the challenge the structure of sulphathiazole form V have been solved ab initio from powder data using direct methods. With 16 non-hydrogen atoms in the molecule and two molecules in the asymmetric unit, this structure represents a significant advance in terms of the complexity of an organic structure solved from PXRD data. The structural data should be invaluable for rationalizing experimental observations and the development of theoretical ideas regarding polymorphism and crystal growth. The second part of the study, has examined kinetics of polymorphic phase transformations as a function of pressure combined with temperature using real-time synchrotron PXRD. The significance of pressure arises from the fact that phase transitions can be induced in pharmaceuticals during tabletting. The phase transformation behaviour of rubidium iodide (chosen as a simple test model) has been investigated as a function of isobaric pressure at ambient and elevated temperatures. The kinetics have been characterized by using the Johnson-Melil-Avrami equation. The effect of successive cycling across the transition pressure was also