WorldWideScience

Sample records for proteins ie-1 lef-3

  1. Baculovirus proteins IE-1, LEF-3, and P143 interact with DNA in vivo: a formaldehyde cross-linking study

    International Nuclear Information System (INIS)

    Ito, Emma; Sahri, Daniela; Knippers, Rolf; Carstens, Eric B.

    2004-01-01

    IE-1, LEF-3, and P143 are three of six proteins encoded by Autographa californica nucleopolyhedrovirus (AcMNPV) essential for baculovirus DNA replication in transient replication assays. IE-1 is the major baculovirus immediate early transcription regulator. LEF-3 is a single-stranded DNA binding protein (SSB) and P143 is a DNA helicase protein. To investigate their interactions in vivo, we treated AcMNPV-infected Spodoptera frugiperda cells with formaldehyde and separated soluble proteins from chromatin by cell fractionation and cesium chloride equilibrium centrifugation. Up to 70% of the total LEF-3 appeared in the fraction of soluble, probably nucleoplasmic proteins, while almost all P143 and IE-1 were associated with viral chromatin in the nucleus. This suggests that LEF-3 is produced in quantities that are higher than needed for the coverage of single stranded regions that arise during viral DNA replication and is consistent with the hypothesis that LEF-3 has other functions such as the localization of P143 to the nucleus. Using a chromatin immunoprecipitation procedure, we present the first direct evidence of LEF-3, P143, and IE-1 proteins binding to closely linked sites on viral chromatin in vivo, suggesting that they may form replication complexes on viral DNA in infected cells

  2. Depletion of Tcf3 and Lef1 maintains mouse embryonic stem cell self-renewal

    OpenAIRE

    Ye, Shoudong; Zhang, Tao; Tong, Chang; Zhou, Xingliang; He, Kan; Ban, Qian; Liu, Dahai; Ying, Qi-Long

    2017-01-01

    ABSTRACT Mouse and rat embryonic stem cell (ESC) self-renewal can be maintained by dual inhibition of glycogen synthase kinase 3 (GSK3) and mitogen-activated protein kinase kinase (MEK). Inhibition of GSK3 promotes ESC self-renewal by abrogating T-cell factor 3 (TCF3)-mediated repression of the pluripotency network. How inhibition of MEK mediates ESC self-renewal, however, remains largely unknown. Here, we show that inhibition of MEK can significantly suppress lymphoid enhancer factor 1 (LEF1...

  3. Glycogen synthase kinase 3 beta inhibits microRNA-183-96-182 cluster via the β-Catenin/TCF/LEF-1 pathway in gastric cancer cells.

    Science.gov (United States)

    Tang, Xiaoli; Zheng, Dong; Hu, Ping; Zeng, Zongyue; Li, Ming; Tucker, Lynne; Monahan, Renee; Resnick, Murray B; Liu, Manran; Ramratnam, Bharat

    2014-03-01

    Glycogen synthase kinase 3 beta (GSK3β) is a critical protein kinase that phosphorylates numerous proteins in cells and thereby impacts multiple pathways including the β-Catenin/TCF/LEF-1 pathway. MicroRNAs (miRs) are a class of noncoding small RNAs of ∼22 nucleotides in length. Both GSK3β and miR play myriad roles in cell functions including stem cell development, apoptosis, embryogenesis and tumorigenesis. Here we show that GSK3β inhibits the expression of miR-96, miR-182 and miR-183 through the β-Catenin/TCF/LEF-1 pathway. Knockout of GSK3β in mouse embryonic fibroblast cells increases expression of miR-96, miR-182 and miR-183, coinciding with increases in the protein level and nuclear translocation of β-Catenin. In addition, overexpression of β-Catenin enhances the expression of miR-96, miR-182 and miR-183 in human gastric cancer AGS cells. GSK3β protein levels are decreased in human gastric cancer tissue compared with surrounding normal gastric tissue, coinciding with increases of β-Catenin protein, miR-96, miR-182, miR-183 and primary miR-183-96-182 cluster (pri-miR-183). Furthermore, suppression of miR-183-96-182 cluster with miRCURY LNA miR inhibitors decreases the proliferation and migration of AGS cells. Knockdown of GSK3β with siRNA increases the proliferation of AGS cells. Mechanistically, we show that β-Catenin/TCF/LEF-1 binds to the promoter of miR-183-96-182 cluster gene and thereby activates the transcription of the cluster. In summary, our findings identify a novel role for GSK3β in the regulation of miR-183-96-182 biogenesis through β-Catenin/TCF/LEF-1 pathway in gastric cancer cells.

  4. The transcription factor LEF-1 induces an epithelial–mesenchymal transition in MDCK cells independent of β-catenin

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Wakako; Ozawa, Masayuki, E-mail: mozawa@m.kufm.kagoshima-u.ac.jp

    2013-12-06

    Highlights: •The transcription factor LEF-1 induces an EMT in MDCK cells. •A mutant LEF-1 that cannot interact with β-catenin retained the ability. •The nuclear function of β-catenin was not necessary for the LEF-1-induced EMT. •The mRNA levels of Slug, ZEB1, and ZEB2 increased significantly in these cells. -- Abstract: The epithelial–mesenchymal transition (EMT), a key process in the tumor metastatic cascade, is characterized by the loss of cell–cell junctions and cell polarity, as well as the acquisition of migratory and invasive properties. LEF-1 is a member of the lymphoid enhancer-binding factor/T-cell factor (LEF/TCF) family of DNA-binding transcription factors, which interact with nuclear β-catenin and act as central transcriptional mediators of Wnt signaling. To investigate the role of LEF-1 in EMT, we generated stable LEF-1 transfectants using MDCK cells. The transfectants had a spindle-shaped mesenchymal morphology, and enhanced migration and invasiveness relative to control cells. These EMT changes were accompanied by the downregulation of an epithelial marker protein, E-cadherin, and the upregulation of mesenchymal marker proteins, vimentin and N-cadherin. Consistent with these observations, the mRNA levels of Slug, ZEB1, and ZEB2—EMT-related transcription factors—increased significantly. Although the N-terminally deleted mutant LEF-1 cannot interact with β-catenin, it retained the ability to induce EMT. Consistent with these observations, neither the expression of a dominant negative β-catenin/engrailed chimera, nor the expression of a cytoplasmic domain of E-cadherin that sequesters β-catenin from binding to LEF/TCF, reversed LEF-1-induced EMT. Together, these data indicated that the nuclear function of β-catenin was not necessary for the induction of Slug, ZEB1, and ZEB2 expression leading to EMT.

  5. TCF1 and LEF1 act as T-cell intrinsic HTLV-1 antagonists by targeting Tax.

    Science.gov (United States)

    Ma, Guangyong; Yasunaga, Jun-ichirou; Akari, Hirofumi; Matsuoka, Masao

    2015-02-17

    Human T-cell leukemia virus type 1 (HTLV-1) is a delta-type retrovirus that induces malignant and inflammatory diseases during its long persistence in vivo. HTLV-1 can infect various kinds of cells; however, HTLV-1 provirus is predominantly found in peripheral CD4 T cells in vivo. Here we find that TCF1 and LEF1, two Wnt transcription factors that are specifically expressed in T cells, inhibit viral replication through antagonizing Tax functions. TCF1 and LEF1 can each interact with Tax and inhibit Tax-dependent viral expression and activation of NF-κB and AP-1. As a result, HTLV-1 replication is suppressed in the presence of either TCF1 or LEF1. On the other hand, T-cell activation suppresses the expression of both TCF1 and LEF1, and this suppression enables Tax to function as an activator. We analyzed the thymus of a simian T-cell leukemia virus type 1 (STLV-1) infected Japanese macaque, and found a negative correlation between proviral load and TCF1/LEF1 expression in various T-cell subsets, supporting the idea that TCF1 and LEF1 negatively regulate HTLV-1 replication and the proliferation of infected cells. Thus, this study identified TCF1 and LEF1 as Tax antagonistic factors in vivo, a fact which may critically influence the peripheral T-cell tropism of this virus.

  6. LEF-1 and TCF4 expression correlate inversely with survival in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Kirchner Thomas

    2010-11-01

    Full Text Available Abstract Background Most colorectal carcinomas are driven by an activation of the canonical Wnt signalling pathway, which promotes the expression of multiple target genes mediating proliferation inavasion and invasion. Upon activation of the Wnt signalling pathway its key player β-catenin translocates from the cytoplasm to the nucleus and binds to members of the T-cell factor (TCF/lymphoid enhancer factor (LEF-1 family namely LEF-1 and TCF4 which are central mediators of transcription. In this study we investigated the expression of β-Catenin, LEF1 and TCF4 in colorectal carcinomas and their prognostic significance. Methods Immunohistochemical analyses of LEF-1, TCF4 and nuclear β-Catenin were done using a tissue microarray with 214 colorectal cancer specimens. The expression patterns were compared with each other and the results were correlated with clinicopathologic variables and overall survival in univariate and multivariate analysis. Results LEF-1 expression was found in 56 (26% and TCF4 expression in 99 (46% of colorectal carcinomas and both were heterogenously distributed throughout the tumours. Comparing LEF-1, TCF4 and β-catenin expression patterns we found no correlation. In univariate analysis, TCF4 expression turned out to be a negative prognostic factor being associated with shorter overall survival (p = 0.020, whereas LEF-1 expression as well as a LEF-1/TCF4 ratio were positive prognostic factors and correlated with longer overall survival (p = 0.015 respectively p = 0.001. In multivariate analysis, LEF-1 and TCF4 expression were confirmed to be independent predictors of longer respectively shorter overall survival, when considered together with tumour stage, gender and age (risk ratio for LEF-1: 2.66; p = 0.027 risk ratio for TCF4: 2.18; p = 0.014. Conclusions This study demonstrates different prognostic values of LEF-1 and TCF4 expression in colorectal cancer patients indicating different regulation of these transcription

  7. Baculovirus LEF-11 nuclear localization signal is important for viral DNA replication.

    Science.gov (United States)

    Chen, Tingting; Dong, Zhanqi; Hu, Nan; Hu, Zhigang; Dong, Feifan; Jiang, Yaming; Li, Jun; Chen, Peng; Lu, Cheng; Pan, Minhui

    2017-06-15

    Baculovirus LEF-11 is a small nuclear protein that is involved in viral late gene transcription and DNA replication. However, the characteristics of its nuclear localization signal and its impact on viral DNA replication are unknown. In the present study, systemic bioinformatics analysis showed that the baculovirus LEF-11 contains monopartite and bipartite classical nuclear localization signal sequences (cNLSs), which were also detected in a few alphabaculovirus species. Localization of representative LEF-11 proteins of four baculovirus genera indicated that the nuclear localization characteristics of baculovirus LEF-11 coincided with the predicted results. Moreover, Bombyx mori nucleopolyhedrovirus (BmNPV) LEF-11 could be transported into the nucleus during viral infection in the absence of a cNLSs. Further investigations demonstrated that the NLS of BmNPV LEF-11 is important for viral DNA replication. The findings of the present study indicate that the characteristics of the baculovirus LEF-11 protein and the NLS is essential to virus DNA replication and nuclear transport mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Differential binding of Lef1 and Msx1/2 transcription factors to Dkk1 CNEs correlates with reporter gene expression in vivo.

    Directory of Open Access Journals (Sweden)

    Oliver Lieven

    Full Text Available Besides the active Wnt signalling itself, the extracellular inhibition by Dkk1 is important for various embryonic developmental processes, such as optic vesicle differentiation and facial outgrowth. Although a feedback crosstalk of the active Wnt/β-catenin signaling and Dkk1 regulation has been suggested, the control of Dkk1 transcription by the Tcf/Lef1 mediated Wnt signalling and its connection to additional signalling factors has not been elucidated in vivo. Here, we used a combination of transgenic mouse approaches and biochemical analyses to unravel the direct Dkk1 transcriptional regulation via Tcf/Lefs. By using site directed mutagenesis, we tested several conserved Tcf/Lef1 binding sites within Dkk1 conserved non-coding elements (CNEs and found that these are required for tissue specific reporter expression. In addition a conserved Msx1/2 binding site is required for retinal reporter expression and Msx2 but not Msx1 binds its conserved binding site within CNE195 in the optic cups. Within craniofacial expression domains, Lef1 interferes with Dkk1 directly via two conserved Tcf/Lef1 binding sites in the craniofacial enhancer CNE114, both of which are required for the general craniofacial Dkk1 reporter activation. Furthermore, these Tcf/Lef1 sites are commonly bound in the whisker hair bud mesenchyme but specifically Tcf/Lef1 (no. 2 is required for mandibular activation and repression of maxillar Dkk1 activation. Lastly, we tested the Tcf/Lef1 binding capacities of the Dkk1 promoter and found that although Lef1 binds the Dkk1 promoter, these sites are not sufficient for tissue specific Dkk1 activation. Together, we here present the importance of conserved Tcf/Lef1 and Msx1/2 sites that are required for differential Dkk1 transcriptional reporter activation in vivo. This requirement directly correlates with Lef1 and Msx1/2 interaction with these genomic loci.

  9. Lef1 haploinsufficient mice display a low turnover and low bone mass phenotype in a gender- and age-specific manner.

    Directory of Open Access Journals (Sweden)

    Tommy Noh

    Full Text Available We investigated the role of Lef1, one of the four transcription factors that transmit Wnt signaling to the genome, in the regulation of bone mass. Microcomputed tomographic analysis of 13- and 17-week-old mice revealed significantly reduced trabecular bone mass in Lef1(+/- females compared to littermate wild-type females. This was attributable to decreased osteoblast activity and bone formation as indicated by histomorphometric analysis of bone remodeling. In contrast to females, bone mass was unaffected by Lef1 haploinsufficiency in males. Similarly, females were substantially more responsive than males to haploinsufficiency in Gsk3beta, a negative regulator of the Wnt pathway, displaying in this case a high bone mass phenotype. Lef1 haploinsufficiency also led to low bone mass in males lacking functional androgen receptor (AR (tfm mutants. The protective skeletal effect of AR against Wnt-related low bone mass is not necessarily a result of direct interaction between the AR and Wnt signaling pathways, because Lef1(+/- female mice had normal bone mass at the age of 34 weeks. Thus, our results indicate an age- and gender-dependent role for Lef1 in regulating bone formation and bone mass in vivo. The resistance to Lef1 haploinsufficiency in males with active AR and in old females could be due to the reduced bone turnover in these mice.

  10. Differential binding of Lef1 and Msx1/2 transcription factors to Dkk1 CNEs correlates with reporter gene expression in vivo

    DEFF Research Database (Denmark)

    Dr Lieven, Oliver Wilm; Dronka, Julia; Burmühl, Stephan

    2014-01-01

    Besides the active Wnt signalling itself, the extracellular inhibition by Dkk1 is important for various embryonic developmental processes, such as optic vesicle differentiation and facial outgrowth. Although a feedback crosstalk of the active Wnt/β-catenin signaling and Dkk1 regulation has been...... Dkk1 reporter activation. Furthermore, these Tcf/Lef1 sites are commonly bound in the whisker hair bud mesenchyme but specifically Tcf/Lef1 (no. 2) is required for mandibular activation and repression of maxillar Dkk1 activation. Lastly, we tested the Tcf/Lef1 binding capacities of the Dkk1 promoter...

  11. LEF1 is preferentially expressed in the tubal-peritoneal junctions and is a reliable marker of tubal intraepithelial lesions.

    Science.gov (United States)

    Schmoeckel, Elisa; Odai-Afotey, Ashley A; Schleißheimer, Michael; Rottmann, Miriam; Flesken-Nikitin, Andrea; Ellenson, Lora H; Kirchner, Thomas; Mayr, Doris; Nikitin, Alexander Yu

    2017-09-01

    Recently it has been reported that serous tubal intraepithelial carcinoma (STIC), the likely precursor of ovarian/extra-uterine high-grade serous carcinoma, are frequently located in the vicinity of tubal-peritoneal junctions, consistent with the cancer-prone features of many epithelial transitional regions. To test if p53 (aka TP53)-signatures and secretory cell outgrowths (SCOUTs) also localize to tubal-peritoneal junctions, we examined these lesions in the fallopian tubes of patients undergoing salpingo-oophorectomy for sporadic high-grade serous carcinomas or as a prophylactic procedure for carriers of familial BRCA1 or 2 mutations. STICs were located closest to the tubal-peritoneal junctions with an average distance of 1.31 mm, while SCOUTs were not detected in the fimbriated end of the fallopian tube. As many epithelial transitional regions contain stem cells, we also determined the expression of stem cell markers in the normal fallopian tube, tubal intraepithelial lesions and high-grade serous carcinomas. Of those, LEF1 was consistently expressed in the tubal-peritoneal junctions and all lesions, independent of p53 status. All SCOUTs demonstrated strong nuclear expression of β-catenin consistent with the LEF1 participation in the canonical WNT pathway. However, β-catenin was preferentially located in the cytoplasm of cells comprising STICs and p53 signatures, suggesting WNT-independent function of LEF1 in those lesions. Both frequency of LEF1 expression and β-catenin nuclear expression correlated with the worst 5-year patient survival, supporting important role of both proteins in high-grade serous carcinoma. Taken together, our findings suggest the existence of stem cell niche within the tubal-peritoneal junctions. Furthermore, they support the notion that the pathogenesis of SCOUTs is distinct from that of STICs and p53 signatures. The location and discrete patterns of LEF1 and β-catenin expression may serve as highly sensitive and reliable ancillary

  12. Characterization of a baculovirus nuclear localization signal domain in the late expression factor 3 protein

    International Nuclear Information System (INIS)

    Au, Victoria; Yu Mei; Carstens, Eric B.

    2009-01-01

    The baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) single-stranded DNA binding protein LEF-3 is a multi-functional protein that is required to transport the helicase protein P143 into the nucleus of infected cells where they function to replicate viral DNA. The N-terminal 56 amino acid region of LEF-3 is required for nuclear transport. In this report, we analyzed the effect of site-specific mutagenesis of LEF-3 on its intracellular distribution. Fluorescence microscopy of expression plasmid-transfected cells demonstrated that the residues 28 to 32 formed the core nuclear localization signal, but other adjacent positively-charged residues augmented these sequences. Comparison with other group I Alphabaculoviruses suggested that this core region functionally duplicated residues including 18 and 19. This was demonstrated by the loss of nuclear localization when the equivalent residues (18 to 20) in Choristoneura fumiferana nucleopolyhedrovirus (CfMNPV) LEF-3 were mutated. The AcMNPV LEF-3 nuclear localization domain was also shown to drive nuclear transport in mammalian cells indicating that the protein nuclear import systems in insect and mammalian cells are conserved. We also demonstrated by mutagenesis that two conserved cysteine residues located at 82 and 106 were not essential for nuclear localization or for interaction with P143. However, by using a modified construct of P143 that localized on its own to the nucleus, we demonstrated that a functional nuclear localization domain on LEF-3 was required for interaction between LEF-3 and P143

  13. Future vital prospect of gene expression factors of lef-7 (baculovirus expression: Old body, young cherub

    Directory of Open Access Journals (Sweden)

    Md. Reyad-ul-ferdous

    2018-04-01

    Full Text Available Background Baculovirus; late expression factors (Lef-7 have potential roles for protein expression in insect and mammalian cells; Efficient expression of recombinant proteins to facilitate the practical and structural investigation. Aims Lef-7 might play crucial roles in transcription and translation reactions of insect cell lines. Methods Materials and Methods: All required information regards Lef-7 was generated by exploring the internet search engine like as (PubMed, Wiley, ScienceDirect, CNKI, ACS, Google Scholar, Web of Science, SciFinder, and Baidu Scholar and libraries. Results These properties issue crucial scope for DNA cloning and act as a vital vector for insect and mammalian cells. Left-7 could be the significant site in the development of the vaccine for a couple of chronic diseases. Further investigation needs to study on therapeutic vaccines with few immunologic advantages over proteins derived from mammalian sources, and animal sources. Lef-7 demonstrates the significant impact in the fields of DNA immunology research to insight into the mechanistic and utilitarian link between autoimmunity, infectious diseases, and cancer. Conclusion This review reveals Lef-7 gene function offers a workable strategy for the expression of whole viral protomers as the future prospect of Lef-7.

  14. Endothelial cells promote the proliferation of lymphocytes partly through the Wnt pathway via LEF-1

    International Nuclear Information System (INIS)

    Wang, Shu-Hong; Nan, Ke-Jun; Wang, Yao-Chun

    2009-01-01

    The function of T cells and B cells is to recognize specific 'non-self' antigens, during a process known as antigen presentation. Once they have identified an invader, the cells generate specific responses that are tailored to maximally eliminate specific pathogens or pathogen-infected cells. Endothelial cells (ECs) can trigger the activation of T cells through their class I and class II MHC molecules. In this study, we examined the effect of ECs on the proliferation of lymphocytes. We report that the proliferation of T and B cells can be improved by interaction with ECs. LEF-1 is one of the main molecular mediators in this process, and the inhibition of LEF-1 induces apoptosis. These results suggest that LEF-1 modulates positively the proliferation of lymphocytes induced by their interaction with ECs.

  15. Ligand-independent canonical Wnt activity in canine mammary tumor cell lines associated with aberrant LEF1 expression.

    Directory of Open Access Journals (Sweden)

    Ana Gracanin

    Full Text Available Pet dogs very frequently develop spontaneous mammary tumors and have been suggested as a good model organism for breast cancer research. In order to obtain an insight into underlying signaling mechanisms during canine mammary tumorigenesis, in this study we assessed the incidence and the mechanism of canonical Wnt activation in a panel of 12 canine mammary tumor cell lines. We show that a subset of canine mammary cell lines exhibit a moderate canonical Wnt activity that is dependent on Wnt ligands, similar to what has been described in human breast cancer cell lines. In addition, three of the tested canine mammary cell lines have a high canonical Wnt activity that is not responsive to inhibitors of Wnt ligand secretion. Tumor cell lines with highly active canonical Wnt signaling often carry mutations in key members of the Wnt signaling cascade. These cell lines, however, carry no mutations in the coding regions of intracellular Wnt pathway components (APC, β-catenin, GSK3β, CK1α and Axin1 and have a functional β-catenin destruction complex. Interestingly, however, the cell lines with high canonical Wnt activity specifically overexpress LEF1 mRNA and the knock-down of LEF1 significantly inhibits TCF-reporter activity. In addition, LEF1 is overexpressed in a subset of canine mammary carcinomas, implicating LEF1 in ligand-independent activation of canonical Wnt signaling in canine mammary tumors. We conclude that canonical Wnt activation may be a frequent event in canine mammary tumors both through Wnt ligand-dependent and novel ligand-independent mechanisms.

  16. The equine herpesvirus-1 IR3 gene that lies antisense to the sole immediate-early (IE) gene is trans-activated by the IE protein, and is poorly expressed to a protein

    International Nuclear Information System (INIS)

    Ahn, Byung Chul; Breitenbach, Jonathan E.; Kim, Seong K.; O'Callaghan, Dennis J.

    2007-01-01

    The unique IR3 gene of equine herpesvirus 1 (EHV-1) is expressed as a late 1.0-kb transcript. Previous studies confirmed the IR3 transcription initiation site and tentatively identified other cis-acting elements specific to IR3 such as a TATA box, a 443 base pair 5'untranslated region (UTR), a 285 base pair open reading frame (ORF), and a poly adenylation (A) signal [Holden, V.R., Harty, R.N., Yalamanchili, R.R., O'Callaghan, D.J., 1992. The IR3 gene of equine herpesvirus type 1: a unique gene regulated by sequences within the intron of the immediate-early gene. DNA Seq. 3, 143-152]. Transient transfection assays revealed that the IR3 promoter is strongly trans-activated by the IE protein (IEP) and that coexpression of the IEP with the early EICP0 and IR4 regulatory proteins results in maximal trans-activation of the IR3 promoter. Gel shift assays revealed that the IEP directly binds to the IR3 promoter region. Western blot analysis showed that the IR3 protein produced in E. coli was detected by antibodies to IR3 synthetic peptides; however, the IR3 protein was not detected in EHV-1 infected cell extracts by these same anti-IR3 antibodies, even though the IR3 transcript was detected by northern blot. These findings suggest that the IR3 may not be expressed to a protein. Expression of an IR3/GFP fusion gene was not observed, but expression of a GFP/IR3 fusion gene was detected by fluorescent microscopy. In further attempts to detect the IR3/GFP fusion protein using anti-GFP antibody, western blot analysis showed that the IR3/GFP fusion protein was not detected in vivo. Interestingly, a truncated form of the GFP/IR3 protein was synthesized from the GFP/IR3 fusion gene. However, GFP/IR3 and IR3/GFP fusion proteins of the predicted sizes were synthesized by in vitro coupled transcription and translation of the fusion genes, suggesting poor expression of the IR3 protein in vivo. The possible role of the IR3 transcript in EHV-1 infection is discussed

  17. Detection of anthrax lef with DNA-based photonic crystal sensors

    Science.gov (United States)

    Zhang, Bailin; Dallo, Shatha; Peterson, Ralph; Hussain, Syed; Weitao, Tao; Ye, Jing Yong

    2011-12-01

    Bacillus anthracis has posed a threat of becoming biological weapons of mass destruction due to its virulence factors encoded by the plasmid-borne genes, such as lef for lethal factor. We report the development of a fast and sensitive anthrax DNA biosensor based on a photonic crystal structure used in a total-internal-reflection configuration. For the detection of the lef gene, a single-stranded DNA lef probe was biotinylated and immobilized onto the sensor via biotin-streptavidin interactions. A positive control, lef-com, was the complementary strand of the probe, while a negative control was an unrelated single-stranded DNA fragment from the 16S rRNA gene of Acinetobacter baumannii. After addition of the biotinylated lef probe onto the sensor, significant changes in the resonance wavelength of the sensor were observed, resulting from binding of the probe to streptavidin on the sensor. The addition of lef-com led to another significant increase as a result of hybridization between the two DNA strands. The detection sensitivity for the target DNA reached as low as 0.1 nM. In contrast, adding the unrelated DNAs did not cause an obvious shift in the resonant wavelength. These results demonstrate that detection of the anthrax lef by the photonic crystal structure in a total-internal-reflection sensor is highly specific and sensitive.

  18. Pregnane and Xenobiotic Receptor gene expression in liver cells is modulated by Ets-1 in synchrony with transcription factors Pax5, LEF-1 and c-jun

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Sangeeta; Saradhi, Mallampati; Rana, Manjul; Chatterjee, Swagata [Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067 (India); Aumercier, Marc [IRI, CNRS USR 3078, Université de Lille-Nord de France, Parc CNRS de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d’Ascq Cedex (France); Mukhopadhyay, Gauranga [Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067 (India); Tyagi, Rakesh K., E-mail: rktyagi@yahoo.com [Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067 (India)

    2015-01-15

    Nuclear receptor PXR is predominantly expressed in liver and intestine. Expression of PXR is observed to be dysregulated in various metabolic disorders indicating its involvement in disease development. However, information available on mechanisms of PXR self-regulation is fragmentary. The present investigation identifies some of the regulatory elements responsible for its tight regulation and low cellular expression. Here, we report that the PXR-promoter is a target for some key transcription factors like PU.1/Ets-1, Pax5, LEF-1 and c-Jun. Interestingly, we observed that PXR-promoter responsiveness to Pax5, LEF-1 and c-Jun, is considerably enhanced by Ets transcription factors (PU.1 and Ets-1). Co-transfection of cells with Ets-1, LEF-1 and c-Jun increased PXR-promoter activity by 5-fold and also induced expression of endogenous human PXR. Site-directed mutagenesis and transfection studies revealed that two Ets binding sites and two of the three LEF binding sites in the PXR-promoter are functional and have a positive effect on PXR transcription. Results suggest that expression of Ets family members, in conjunction with Pax5, LEF-1 and c-Jun, lead to coordinated up-regulation of PXR gene transcription. Insights obtained on the regulation of PXR gene have relevance in offering important cues towards normal functioning as well as development of several metabolic disorders via PXR signaling. - Highlights: • The study identified cis-regulatory elements in the nuclear receptor PXR promoter. • Several trans-acting factors modulating the PXR-promoter have been identified. • PU.1/Ets-1, Pax5, LEF-1, c-Jun, LyF-VI and NF-1 act as modulators of the PXR-promoter. • Ets-1 in conjunction with LEF-1 and c-Jun exhibit 5-fold activation of the PXR-promoter. • Insights into PXR-regulation have relevance in normal and pathological conditions.

  19. Human cytomegalovirus IE1 downregulates Hes1 in neural progenitor cells as a potential E3 ubiquitin ligase.

    Directory of Open Access Journals (Sweden)

    Xi-Juan Liu

    2017-07-01

    Full Text Available Congenital human cytomegalovirus (HCMV infection is the leading cause of neurological disabilities in children worldwide, but the mechanisms underlying these disorders are far from well-defined. HCMV infection has been shown to dysregulate the Notch signaling pathway in human neural progenitor cells (NPCs. As an important downstream effector of Notch signaling, the transcriptional regulator Hairy and Enhancer of Split 1 (Hes1 is essential for governing NPC fate and fetal brain development. In the present study, we report that HCMV infection downregulates Hes1 protein levels in infected NPCs. The HCMV 72-kDa immediate-early 1 protein (IE1 is involved in Hes1 degradation by assembling a ubiquitination complex and promoting Hes1 ubiquitination as a potential E3 ubiquitin ligase, followed by proteasomal degradation of Hes1. Sp100A, an important component of PML nuclear bodies, is identified to be another target of IE1-mediated ubiquitination. A C-terminal acidic region in IE1, spanning amino acids 451 to 475, is required for IE1/Hes1 physical interaction and IE1-mediated Hes1 ubiquitination, but is dispensable for IE1/Sp100A interaction and ubiquitination. Our study suggests a novel mechanism linking downregulation of Hes1 protein to neurodevelopmental disorders caused by HCMV infection. Our findings also complement the current knowledge of herpesviruses by identifying IE1 as the first potential HCMV-encoded E3 ubiquitin ligase.

  20. The essential role of guinea pig cytomegalovirus (GPCMV) IE1 and IE2 homologs in viral replication and IE1-mediated ND10 targeting

    Energy Technology Data Exchange (ETDEWEB)

    Hornig, Julia; Choi, K. Yeon; McGregor, Alistair, E-mail: mcgregor@medicine.tamhsc.edu

    2017-04-15

    Guinea pig cytomegalovirus (GPCMV) immediate early proteins, IE1 and IE2, demonstrated structural and functional homologies with human cytomegalovirus (HCMV). GPCMV IE1 and IE2 co-localized in the nucleus with each other, the viral polymerase and guinea pig ND10 components (gpPML, gpDaxx, gpSp100, gpATRX). IE1 showed direct interaction with ND10 components by immunoprecipitation unlike IE2. Additionally, IE1 protein disrupted ND10 bodies. IE1 mutagenesis mapped the nuclear localization signal to the C-terminus and identified the core domain for gpPML interaction. Individual knockout of GPCMV GP122 or GP123 (IE2 and IE1 unique exons respectively) was lethal to the virus. However, an IE1 mutant (codons 234–474 deleted), was viable with attenuated viral growth kinetics and increased susceptibility to type I interferon (IFN-I). In HCMV, the IE proteins are important T cell target antigens. Consequently, characterization of the homologs in GPCMV provides a basis for their evaluation in candidate vaccines against congenital infection.

  1. The essential role of guinea pig cytomegalovirus (GPCMV) IE1 and IE2 homologs in viral replication and IE1-mediated ND10 targeting

    Science.gov (United States)

    Hornig, Julia; Choi, K. Yeon; McGregor, Alistair

    2017-01-01

    Guinea pig cytomegalovirus (GPCMV) immediate early proteins, IE1 and IE2, demonstrated structural and functional homologies with human cytomegalovirus (HCMV). GPCMV IE1 and IE2 co-localized in the nucleus with each other, the viral polymerase and guinea pig ND10 components (gpPML, gpDaxx, gpSp100, gpATRX). IE1 showed direct interaction with ND10 components by immunoprecipitation unlike IE2. Additionally, IE1 protein disrupted ND10 bodies. IE1 mutagenesis mapped the nuclear localization signal to the C-terminus and identified the core domain for gpPML interaction. Individual knockout of GPCMV GP122 or GP123 (IE2 and IE1 unique exons respectively) was lethal to the virus. However, an IE1 mutant (codons 234–474 deleted), was viable with attenuated viral growth kinetics and increased susceptibility to type I interferon (IFN-I). In HCMV, the IE proteins are important T cell target antigens. Consequently, characterization of the homologs in GPCMV provides a basis for their evaluation in candidate vaccines against congenital infection. PMID:28189970

  2. Direct interaction of TFIIB and the IE protein of equine herpesvirus 1 is required for maximal trans-activation function

    International Nuclear Information System (INIS)

    Albrecht, Randy A.; Jang, Hyung K.; Kim, Seong K.; O'Callaghan, Dennis J.

    2003-01-01

    Recently, we reported that the immediate-early (IE) protein of equine herpesvirus 1 (EHV-1) associates with transcription factor TFIIB [J. Virol. 75 (2001), 10219]. In the current study, the IE protein purified as a glutathione-S-transferase (GST) fusion protein was shown to interact directly with purified TFIIB in GST-pulldown assays. A panel of TFIIB mutants employed in protein-binding assays revealed that residues 125 to 174 within the first direct repeat of TFIIB mediate its interaction with the IE protein. This interaction is physiologically relevant as transient transfection assays demonstrated that (1) exogenous native TFIIB did not perturb IE protein function, and (2) ectopic expression of a TFIIB mutant that lacked the IE protein interactive domain significantly diminished the ability of the IE protein to trans-activate EHV-1 promoters. These results suggest that an interaction of the IE protein with TFIIB is an important aspect of the regulatory role of the IE protein in the trans-activation of EHV-1 promoters

  3. Homeobox protein MSX-1 inhibits expression of bone morphogenetic protein 2, bone morphogenetic protein 4, and lymphoid enhancer-binding factor 1 via Wnt/β-catenin signaling to prevent differentiation of dental mesenchymal cells during the late bell stage.

    Science.gov (United States)

    Feng, Xiao-Yu; Wu, Xiao-Shan; Wang, Jin-Song; Zhang, Chun-Mei; Wang, Song-Lin

    2018-02-01

    Homeobox protein MSX-1 (hereafter referred to as MSX-1) is essential for early tooth-germ development. Tooth-germ development is arrested at bud stage in Msx1 knockout mice, which prompted us to study the functions of MSX-1 beyond this stage. Here, we investigated the roles of MSX-1 during late bell stage. Mesenchymal cells of the mandibular first molar were isolated from mice at embryonic day (E)17.5 and cultured in vitro. We determined the expression levels of β-catenin, bone morphogenetic protein 2 (Bmp2), Bmp4, and lymphoid enhancer-binding factor 1 (Lef1) after knockdown or overexpression of Msx1. Our findings suggest that knockdown of Msx1 promoted expression of Bmp2, Bmp4, and Lef1, resulting in elevated differentiation of odontoblasts, which was rescued by blocking the expression of these genes. In contrast, overexpression of Msx1 decreased the expression of Bmp2, Bmp4, and Lef1, leading to a reduction in odontoblast differentiation. The regulation of Bmp2, Bmp4, and Lef1 by Msx1 was mediated by the Wnt/β-catenin signaling pathway. Additionally, knockdown of Msx1 impaired cell proliferation and slowed S-phase progression, while overexpression of Msx1 also impaired cell proliferation and prolonged G1-phase progression. We therefore conclude that MSX-1 maintains cell proliferation by regulating transition of cells from G1-phase to S-phase and prevents odontoblast differentiation by inhibiting expression of Bmp2, Bmp4, and Lef1 at the late bell stage via the Wnt/β-catenin signaling pathway. © 2017 Eur J Oral Sci.

  4. Papillion-Lefèvre Syndrome: Periodontists’ Perspective

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Biraggari

    2015-01-01

    Full Text Available Papillion-Lefèvre Syndrome is a very rare disorder of autosomal recessive inheritance distinguished by palmar plantar hyperkeratosis and early onset of periodontitis affecting the dentition. Genetic studies have identified a mutation in the major gene locus of chromosome 11q14 with loss of function. Cathepsin C gene is to be responsible for Papillion-Lefèvre Syndrome. The present case report describes a 13-year-old female, who visited the Department of Periodontology with the chief compliant of bleeding gums and loose teeth. She presented with the signs and symptoms of Papillion-Lefèvre Syndrome. The patient had premature shedding of her deciduous dentition. On clinical examination, extraorally, the patient presented with persistent thickening, flaking, and scaling of the skin of palms and soles. Her intraoral examination revealed gingival inflammation, abscess formation, and periodontal pockets. Her intraoral radiographs showed bone loss involving the central incisors and molars. The patient underwent periodontal therapy and is under maintenance.

  5. Wnt signaling positively regulates endothelial cell fate specification in the Fli1a-positive progenitor population via Lef1.

    Science.gov (United States)

    Hübner, Kathleen; Grassme, Kathrin S; Rao, Jyoti; Wenke, Nina K; Zimmer, Cordula L; Korte, Laura; Mu Ller, Katja; Sumanas, Saulius; Greber, Boris; Herzog, Wiebke

    2017-10-01

    During vertebrate embryogenesis, vascular endothelial cells (ECs) and primitive erythrocytes become specified within close proximity in the posterior lateral plate mesoderm (LPM) from a common progenitor. However, the signaling cascades regulating the specification into either lineage remain largely elusive. Here, we analyze the contribution of β-catenin dependent Wnt signaling to EC and erythrocyte specification during zebrafish embryogenesis. We generated novel β-catenin dependent Wnt signaling reporters which, by using destabilized fluorophores (Venus-Pest, dGFP), specifically allow us to detect Wnt signaling responses in narrow time windows as well as in spatially restricted domains, defined by Cre recombinase expression (Tg(axin2 BAC :Venus-Pest) mu288 ; Tg(14TCF:loxP-STOP-loxP-dGFP) mu202 ). We therefore can detect β-catenin dependent Wnt signaling activity in a subset of the Fli1a-positive progenitor population. Additionally, we show that mesodermal Wnt3a-mediated signaling via the transcription factor Lef1 positively regulates EC specification (defined by kdrl expression) at the expense of primitive erythrocyte specification (defined by gata1 expression) in zebrafish embryos. Using mesoderm derived from human embryonic stem cells, we identified the same principle of Wnt signaling dependent EC specification in conjunction with auto-upregulation of LEF1. Our data indicate a novel role of β-catenin dependent Wnt signaling in regulating EC specification during vasculogenesis. Copyright © 2017. Published by Elsevier Inc.

  6. Professor Antonio Branco Lefèvre: the forefather of child neurology in Brazil Professor Antonio Branco Lefèvre o pai da neurologia infantil no Brasil

    Directory of Open Access Journals (Sweden)

    Rubens Reimão

    2008-09-01

    Full Text Available OBJECTIVE: To report on the life and works of Prof. Antonio Branco Lefèvre and the relevance that led him to be considered the Forefather of Child Neurology in Brazil. METHOD: The method utilized was the historical documents research; bibliographical. RESULTS: Antonio Branco Lefèvre (1916-1981 was born in São Paulo city; graduated in 1941 from the São Paulo Medical School. The date - 1950 - can be considered when Child Neurology took shape for a fully specialty, when Lefèvre presented his two internationally acclaimed thesis. Lefèvre was recognized as he founder of Child Neurology in Brazil since the early years of his brilliant academic activities. In 1967 achieved the title of professor in the Child Neurology Clinic. His numerous trainees and Residents - from -1950 to 1981 - held today key positions in Brazilian Child Neurology. CONCLUSION: The extension and importance of the Child Neurology School of which he is the legitimate founder is recognized.OBJETIVO: Relatar a vida e obra do Prof. Antonio Branco Lefèvre e a relevância que leva a ser denominado o Pai da Neurologia Infantil no Brasil. MÉTODO: Pesquisa de documentos históricos e bibliográfica. RESULTADOS: Antonio Branco Lefèvre (1916-1981 nascido em São Paulo; formou-se na Faculdade de Medicina de São Paulo em 1941. A data de 1950 pode ser considerada quando a Neurologia Infantil tornou-se uma especialidade completa quando Lefèvre defendeu suas duas teses aclamadas internacionalmente. Lefévre foi reconhecido como o Pai da Neurologia Infantil no Brasil desde os primeiros anos de sua carreira acadêmica brilhante. Em 1967 atingiu o título de Professor de Neurologia Clínica Infantil. Seus numerosos estagiários e Residentes - de 1950 a 1981 - têm hoje posições de destaque na Neurologia Infantil brasileira. CONCLUSÃO: É reconhecida a extensão e a relevância da escola de Neurologia Infantil da qual Lefèvre é o legítimo fundador.

  7. Conserved regulatory modules in the Sox9 testis-specific enhancer predict roles for SOX, TCF/LEF, Forkhead, DMRT, and GATA proteins in vertebrate sex determination.

    Science.gov (United States)

    Bagheri-Fam, Stefan; Sinclair, Andrew H; Koopman, Peter; Harley, Vincent R

    2010-03-01

    While the primary sex determining switch varies between vertebrate species, a key downstream event in testicular development, namely the male-specific up-regulation of Sox9, is conserved. To date, only two sex determining switch genes have been identified, Sry in mammals and the Dmrt1-related gene Dmy (Dmrt1bY) in the medaka fish Oryzias latipes. In mice, Sox9 expression is evidently up-regulated by SRY and maintained by SOX9 both of which directly activate the core 1.3 kb testis-specific enhancer of Sox9 (TESCO). How Sox9 expression is up-regulated and maintained in species without Sry (i.e. non-mammalian species) is not understood. In this study, we have undertaken an in-depth comparative genomics approach and show that TESCO contains an evolutionarily conserved region (ECR) of 180 bp which is present in marsupials, monotremes, birds, reptiles and amphibians. The ECR contains highly conserved modules that predict regulatory roles for SOX, TCF/LEF, Forkhead, DMRT, and GATA proteins in vertebrate sex determination/differentiation. Our data suggest that tetrapods share common aspects of Sox9 regulation in the testis, despite having different sex determining switch mechanisms. They also suggest that Sox9 autoregulation is an ancient mechanism shared by all tetrapods, raising the possibility that in mammals, SRY evolved by mimicking this regulation. The validation of ECR regulatory sequences conserved from human to frogs will provide new insights into vertebrate sex determination. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Identification of genes involved in DNA replication of the Autographa californica baculovirus

    NARCIS (Netherlands)

    Kool, M.; Ahrens, C. H.; Goldbach, R. W.; Rohrmann, G. F.; Vlak, J. M.

    1994-01-01

    By use of a transient replication assay, nine genes involved in DNA replication were identified in the genome of the Autographa californica baculovirus. Six genes encoding helicase, DNA polymerase, IE-1, LEF-1, LEF-2, and LEF-3 are essential for DNA replication while three genes encoding P35, IE-2,

  9. Functional characterization of Bombyx mori nucleopolyhedrovirus mutant lacking late expression factor 9.

    Science.gov (United States)

    Zhang, Y; Shi, Y; Yu, H; Li, J; Quan, Y; Shu, T; Nie, Z; Zhang, Y; Yu, W

    Baculoviridae is a family of invertebrate viruses with large double-stranded DNA genomes. Proteins encoded by some late expression factor (lef ) genes are involved in the regulation of viral gene expression. Lef-9 is one of four transcription-specific Lefs, which are components of the virus-encoded RNA polymerase, and can initiate and transcribe late and very late genes. As a multifunctional protein encoded by the Bombyx mori nucleopolyhedrovirus (BmNPV), Lef-9 may be involved in the regulation of viral propagation. However, the underlying mechanism remains unclear. To determine the role of lef-9 in baculovirus infection, lef-9-knockout virus (lef-9-KO-Bacmid virus) was constructed using the Red recombination system, and the Bac-to-Bac system was used to prepare lef-9-repaired virus (lef-9-Re-Bacmid virus). The lef-9-KO virus did not produce infectious viruses or show infection activity, while the lef-9-repaired virus recovered both. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of the transcription levels in wild-type-Bacmid, lef-9-KO-Bacmid, and lef-9-Re-Bacmid viruses showed that the lef-9-KO bacmid had little effect on viral genome replication. However, the transcription levels of the early and late viral genes, lef-3, ie-1, vp39, and p10, were significantly lower in BmN cells transfected with lef-9-KO-Bacmids than in the controls. Electron microscopy showed no visible enveloped virions in cells transfected with lef-9-KO-Bacmids, while many mature virions in cells transfected with lef-9-Re-Bacmid and wt-Bacmid were present. Thus, lef-9 was not essential for viral genome replication, but significantly affected viral gene transcription and expression in all periods of cell life cycle.

  10. Identification and HLA-tetramer-validation of human CD4+ and CD8+ T cell responses against HCMV proteins IE1 and IE2.

    Science.gov (United States)

    Braendstrup, Peter; Mortensen, Bo Kok; Justesen, Sune; Osterby, Thomas; Rasmussen, Michael; Hansen, Andreas Martin; Christiansen, Claus Bohn; Hansen, Morten Bagge; Nielsen, Morten; Vindeløv, Lars; Buus, Søren; Stryhn, Anette

    2014-01-01

    Human cytomegalovirus (HCMV) is an important human pathogen. It is a leading cause of congenital infection and a leading infectious threat to recipients of solid organ transplants as well as of allogeneic hematopoietic cell transplants. Moreover, it has recently been suggested that HCMV may promote tumor development. Both CD4+ and CD8+ T cell responses are important for long-term control of the virus, and adoptive transfer of HCMV-specific T cells has led to protection from reactivation and HCMV disease. Identification of HCMV-specific T cell epitopes has primarily focused on CD8+ T cell responses against the pp65 phosphoprotein. In this study, we have focused on CD4+ and CD8+ T cell responses against the immediate early 1 and 2 proteins (IE1 and IE2). Using overlapping peptides spanning the entire IE1 and IE2 sequences, peripheral blood mononuclear cells from 16 healthy, HLA-typed, donors were screened by ex vivo IFN-γ ELISpot and in vitro intracellular cytokine secretion assays. The specificities of CD4+ and CD8+ T cell responses were identified and validated by HLA class II and I tetramers, respectively. Eighty-one CD4+ and 44 CD8+ T cell responses were identified representing at least seven different CD4 epitopes and 14 CD8 epitopes restricted by seven and 11 different HLA class II and I molecules, respectively, in total covering 91 and 98% of the Caucasian population, respectively. Presented in the context of several different HLA class II molecules, two epitope areas in IE1 and IE2 were recognized in about half of the analyzed donors. These data may be used to design a versatile anti-HCMV vaccine and/or immunotherapy strategy.

  11. Identification and HLA-tetramer-validation of human CD4+ and CD8+ T cell responses against HCMV proteins IE1 and IE2.

    Directory of Open Access Journals (Sweden)

    Peter Braendstrup

    Full Text Available Human cytomegalovirus (HCMV is an important human pathogen. It is a leading cause of congenital infection and a leading infectious threat to recipients of solid organ transplants as well as of allogeneic hematopoietic cell transplants. Moreover, it has recently been suggested that HCMV may promote tumor development. Both CD4+ and CD8+ T cell responses are important for long-term control of the virus, and adoptive transfer of HCMV-specific T cells has led to protection from reactivation and HCMV disease. Identification of HCMV-specific T cell epitopes has primarily focused on CD8+ T cell responses against the pp65 phosphoprotein. In this study, we have focused on CD4+ and CD8+ T cell responses against the immediate early 1 and 2 proteins (IE1 and IE2. Using overlapping peptides spanning the entire IE1 and IE2 sequences, peripheral blood mononuclear cells from 16 healthy, HLA-typed, donors were screened by ex vivo IFN-γ ELISpot and in vitro intracellular cytokine secretion assays. The specificities of CD4+ and CD8+ T cell responses were identified and validated by HLA class II and I tetramers, respectively. Eighty-one CD4+ and 44 CD8+ T cell responses were identified representing at least seven different CD4 epitopes and 14 CD8 epitopes restricted by seven and 11 different HLA class II and I molecules, respectively, in total covering 91 and 98% of the Caucasian population, respectively. Presented in the context of several different HLA class II molecules, two epitope areas in IE1 and IE2 were recognized in about half of the analyzed donors. These data may be used to design a versatile anti-HCMV vaccine and/or immunotherapy strategy.

  12. Disabling a Type I-E CRISPR-Cas Nuclease with a Bacteriophage-Encoded Anti-CRISPR Protein

    Directory of Open Access Journals (Sweden)

    April Pawluk

    2017-12-01

    Full Text Available CRISPR (clustered regularly interspaced short palindromic repeat-Cas adaptive immune systems are prevalent defense mechanisms in bacteria and archaea. They provide sequence-specific detection and neutralization of foreign nucleic acids such as bacteriophages and plasmids. One mechanism by which phages and other mobile genetic elements are able to overcome the CRISPR-Cas system is through the expression of anti-CRISPR proteins. Over 20 different families of anti-CRISPR proteins have been described, each of which inhibits a particular type of CRISPR-Cas system. In this work, we determined the structure of type I-E anti-CRISPR protein AcrE1 by X-ray crystallography. We show that AcrE1 binds to the CRISPR-associated helicase/nuclease Cas3 and that the C-terminal region of the anti-CRISPR protein is important for its inhibitory activity. We further show that AcrE1 can convert the endogenous type I-E CRISPR system into a programmable transcriptional repressor.

  13. Rac1 and Cdc42 GTPases regulate shear stress-driven β-catenin signaling in osteoblasts

    International Nuclear Information System (INIS)

    Wan, Qiaoqiao; Cho, Eunhye; Yokota, Hiroki; Na, Sungsoo

    2013-01-01

    Highlights: •Shear stress increased TCF/LEF activity and stimulated β-catenin nuclear localization. •Rac1, Cdc42, and RhoA displayed distinct dynamic activity patterns under flow. •Rac1 and Cdc42, but not RhoA, regulate shear stress-driven TCF/LEF activation. •Cytoskeleton did not significantly affect shear stress-induced TCF/LEF activation. -- Abstract: Beta-catenin-dependent TCF/LEF (T-cell factor/lymphocyte enhancing factor) is known to be mechanosensitive and an important regulator for promoting bone formation. However, the functional connection between TCF/LEF activity and Rho family GTPases is not well understood in osteoblasts. Herein we investigated the molecular mechanisms underlying oscillatory shear stress-induced TCF/LEF activity in MC3T3-E1 osteoblast cells using live cell imaging. We employed fluorescence resonance energy transfer (FRET)-based and green fluorescent protein (GFP)-based biosensors, which allowed us to monitor signal transduction in living cells in real time. Oscillatory (1 Hz) shear stress (10 dynes/cm 2 ) increased TCF/LEF activity and stimulated translocation of β-catenin to the nucleus with the distinct activity patterns of Rac1 and Cdc42. The shear stress-induced TCF/LEF activity was blocked by the inhibition of Rac1 and Cdc42 with their dominant negative mutants or selective drugs, but not by a dominant negative mutant of RhoA. In contrast, constitutively active Rac1 and Cdc42 mutants caused a significant enhancement of TCF/LEF activity. Moreover, activation of Rac1 and Cdc42 increased the basal level of TCF/LEF activity, while their inhibition decreased the basal level. Interestingly, disruption of cytoskeletal structures or inhibition of myosin activity did not significantly affect shear stress-induced TCF/LEF activity. Although Rac1 is reported to be involved in β-catenin in cancer cells, the involvement of Cdc42 in β-catenin signaling in osteoblasts has not been identified. Our findings in this study demonstrate

  14. Rac1 and Cdc42 GTPases regulate shear stress-driven β-catenin signaling in osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Qiaoqiao; Cho, Eunhye [Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States); Yokota, Hiroki [Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States); Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Na, Sungsoo, E-mail: sungna@iupui.edu [Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States)

    2013-04-19

    Highlights: •Shear stress increased TCF/LEF activity and stimulated β-catenin nuclear localization. •Rac1, Cdc42, and RhoA displayed distinct dynamic activity patterns under flow. •Rac1 and Cdc42, but not RhoA, regulate shear stress-driven TCF/LEF activation. •Cytoskeleton did not significantly affect shear stress-induced TCF/LEF activation. -- Abstract: Beta-catenin-dependent TCF/LEF (T-cell factor/lymphocyte enhancing factor) is known to be mechanosensitive and an important regulator for promoting bone formation. However, the functional connection between TCF/LEF activity and Rho family GTPases is not well understood in osteoblasts. Herein we investigated the molecular mechanisms underlying oscillatory shear stress-induced TCF/LEF activity in MC3T3-E1 osteoblast cells using live cell imaging. We employed fluorescence resonance energy transfer (FRET)-based and green fluorescent protein (GFP)-based biosensors, which allowed us to monitor signal transduction in living cells in real time. Oscillatory (1 Hz) shear stress (10 dynes/cm{sup 2}) increased TCF/LEF activity and stimulated translocation of β-catenin to the nucleus with the distinct activity patterns of Rac1 and Cdc42. The shear stress-induced TCF/LEF activity was blocked by the inhibition of Rac1 and Cdc42 with their dominant negative mutants or selective drugs, but not by a dominant negative mutant of RhoA. In contrast, constitutively active Rac1 and Cdc42 mutants caused a significant enhancement of TCF/LEF activity. Moreover, activation of Rac1 and Cdc42 increased the basal level of TCF/LEF activity, while their inhibition decreased the basal level. Interestingly, disruption of cytoskeletal structures or inhibition of myosin activity did not significantly affect shear stress-induced TCF/LEF activity. Although Rac1 is reported to be involved in β-catenin in cancer cells, the involvement of Cdc42 in β-catenin signaling in osteoblasts has not been identified. Our findings in this study demonstrate

  15. Papillon-Lefèvre syndrome patient reveals species-dependent requirements for neutrophil defenses

    DEFF Research Database (Denmark)

    Sørensen, Ole E.; Clemmensen, Stine N; Dahl, Sara L

    2014-01-01

    immunodeficiency. Here, we characterized a 24-year-old woman who had suffered from severe juvenile periodontal disease, but was otherwise healthy, and identified a homozygous missense mutation in CTSC indicative of PLS. Proteome analysis of patient neutrophil granules revealed that several proteins that normally......Papillon-Lefèvre syndrome (PLS) results from mutations that inactivate cysteine protease cathepsin C (CTSC), which processes a variety of serine proteases considered essential for antimicrobial defense. Despite serine protease-deficient immune cell populations, PLS patients do not exhibit marked......CAP-18 into the antibacterial peptide LL-37 in response to ionomycin. In immature myeloid cells from patient bone marrow, biosynthesis of CTSC and neutrophil serine proteases appeared normal along with initial processing and sorting to cellular storage. In contrast, these proteins were completely absent...

  16. Reliability and validity of the Persian lower extremity functional scale (LEFS) in a heterogeneous sample of outpatients with lower limb musculoskeletal disorders.

    Science.gov (United States)

    Negahban, Hossein; Hessam, Masumeh; Tabatabaei, Saeid; Salehi, Reza; Sohani, Soheil Mansour; Mehravar, Mohammad

    2014-01-01

    The aim was to culturally translate and validate the Persian lower extremity functional scale (LEFS) in a heterogeneous sample of outpatients with lower extremity musculoskeletal disorders (n = 304). This is a prospective methodological study. After a standard forward-backward translation, psychometric properties were assessed in terms of test-retest reliability, internal consistency, construct validity, dimensionality, and ceiling or floor effects. The acceptable level of intraclass correlation coefficient >0.70 and Cronbach's alpha coefficient >0.70 was obtained for the Persian LEFS. Correlations between Persian LEFS and Short-Form 36 Health Survey (SF-36) subscales of Physical Health component (rs range = 0.38-0.78) were higher than correlations between Persian LEFS and SF-36 subscales of Mental Health component (rs range = 0.15-0.39). A corrected item--total correlation of >0.40 (Spearman's rho) was obtained for all items of the Persian LEFS. Horn's parallel analysis detected a total of two factors. No ceiling or floor effects were detected for the Persian LEFS. The Persian version of the LEFS is a reliable and valid instrument that can be used to measure functional status in Persian-speaking patients with different musculoskeletal disorders of the lower extremity. Implications for Rehabilitation The Persian lower extremity functional scale (LEFS) is a reliable, internally consistent and valid instrument, with no ceiling or floor effects, to determine functional status of heterogeneous patients with musculoskeletal disorders of the lower extremity. The Persian version of the LEFS can be used in clinical and research settings to measure function in Iranian patients with different musculoskeletal disorders of the lower extremity.

  17. Human Cytomegalovirus Immediate-Early 1 Protein Rewires Upstream STAT3 to Downstream STAT1 Signaling Switching an IL6-Type to an IFNγ-Like Response.

    Directory of Open Access Journals (Sweden)

    Thomas Harwardt

    2016-07-01

    Full Text Available The human cytomegalovirus (hCMV major immediate-early 1 protein (IE1 is best known for activating transcription to facilitate viral replication. Here we present transcriptome data indicating that IE1 is as significant a repressor as it is an activator of host gene expression. Human cells induced to express IE1 exhibit global repression of IL6- and oncostatin M-responsive STAT3 target genes. This repression is followed by STAT1 phosphorylation and activation of STAT1 target genes normally induced by IFNγ. The observed repression and subsequent activation are both mediated through the same region (amino acids 410 to 445 in the C-terminal domain of IE1, and this region serves as a binding site for STAT3. Depletion of STAT3 phenocopies the STAT1-dependent IFNγ-like response to IE1. In contrast, depletion of the IL6 receptor (IL6ST or the STAT kinase JAK1 prevents this response. Accordingly, treatment with IL6 leads to prolonged STAT1 instead of STAT3 activation in wild-type IE1 expressing cells, but not in cells expressing a mutant protein (IE1dl410-420 deficient for STAT3 binding. A very similar STAT1-directed response to IL6 is also present in cells infected with a wild-type or revertant hCMV, but not an IE1dl410-420 mutant virus, and this response results in restricted viral replication. We conclude that IE1 is sufficient and necessary to rewire upstream IL6-type to downstream IFNγ-like signaling, two pathways linked to opposing actions, resulting in repressed STAT3- and activated STAT1-responsive genes. These findings relate transcriptional repressor and activator functions of IE1 and suggest unexpected outcomes relevant to viral pathogenesis in response to cytokines or growth factors that signal through the IL6ST-JAK1-STAT3 axis in hCMV-infected cells. Our results also reveal that IE1, a protein considered to be a key activator of the hCMV productive cycle, has an unanticipated role in tempering viral replication.

  18. Consumption of Bt Maize Pollen Containing Cry1Ie Does Not Negatively Affect Propylea japonica (Thunberg (Coleoptera: Coccinellidae

    Directory of Open Access Journals (Sweden)

    Yonghui Li

    2017-03-01

    Full Text Available Propylea japonica (Thunberg (Coleoptera: Coccinellidae are prevalent predators and pollen feeders in East Asian maize fields. They are therefore indirectly (via prey and directly (via pollen exposed to Cry proteins within Bt-transgenic maize fields. The effects of Cry1Ie-producing transgenic maize pollen on the fitness of P. japonica was assessed using two dietary-exposure experiments in the laboratory. In the first experiment, survival, larval developmental time, adult fresh weight, and fecundity did not differ between ladybirds consuming Bt or non-Bt maize pollen. In the second experiment, none of the tested lethal and sublethal parameters of P. japonica were negatively affected when fed a rapeseed pollen-based diet containing Cry1Ie protein at 200 μg/g dry weight of diet. In contrast, the larval developmental time, adult fresh weight, and fecundity of P. japonica were significantly adversely affected when fed diet containing the positive control compound E-64. In both experiments, the bioactivity of the Cry1Ie protein in the food sources was confirmed by bioassays with a Cry1Ie-sensitive lepidopteran species. These results indicated that P. japonica are not affected by the consumption of Cry1Ie-expressing maize pollen and are not sensitive to the Cry1Ie protein, suggesting that the growing of Bt maize expressing Cry1Ie protein will pose a negligible risk to P. japonica.

  19. Papillon-Lefèvre syndrome: a successful outcome.

    Science.gov (United States)

    Ahuja, Vanita; Shin, Richard Hochul; Mudgil, Adarsh; Nanda, Veena; Schoor, Robert

    2005-11-01

    Papillon-Lefèvre syndrome (PLS) is a rare autosomal recessive condition manifested clinically by hyperkeratosis of the palms and soles and rapidly progressive periodontitis resulting in loss of deciduous and permanent teeth. This case report describes the clinical periodontal findings and treatment of a 10-year-old male patient with PLS. The patient provided informed consent, and the study was conducted in accordance with the Helsinki Declaration of 1975, as revised in 2000. Upon initial presentation, a full periodontal examination was completed. Conventional probing depths, clinical attachment levels (CAL), gingival index (GI), and plaque index (PI) were measured prior to initial therapy, which involved oral hygiene instruction and scaling and root planing. At reevaluation, initial treatment proved unsuccessful, and a surgical approach with concomitant systemic antibiotic therapy was implemented. In addition, the patient's dermatologist treated his palmoplantar keratoderma with systemic retinoids. Subsequently, the patient was placed on a strict 3-month maintenance protocol and was evaluated over a period of 1 year. Initial treatment with mechanical therapy, oral hygiene instruction, frequent recalls, and systemic antibiotics did not yield efficacious results. However, with the addition of surgical treatment, a favorable clinical outcome was obtained. Numerous treatment regimens for the periodontal disease seen in PLS can be found in the literature. We demonstrate successful treatment of the periodontal disease seen in this condition using mechanical therapy, systemic antibiotics, and surgical modalities; over a period of 1 year, we were able to achieve significant reductions in gingival inflammation and erythema.

  20. Functional characterization of Bombyx mori nucleopolyhedrovirus late gene transcription and genome replication factors in the non-permissive insect cell line SF-21

    International Nuclear Information System (INIS)

    Berretta, Marcelo F.; Deshpande, Mandar; Crouch, Erin A.; Passarelli, A. Lorena

    2006-01-01

    We compared the abilities of late gene transcription and DNA replication machineries of the baculoviruses Autographa californica nucleopolyhedrovirus (AcMNPV) and Bombyx mori NPV (BmNPV) in SF-21 cells, an insect-derived cell line permissive for AcMNPV infection. It has been well established that 19 AcMNPV late expression factors (lefs) stimulate substantial levels of late gene promoter activity in SF-21 cells. Thus, we constructed a set of clones containing the BmNPV homologs of the AcMNPV lefs under control of the constitutive Drosophila heat shock 70 protein promoter and tested their ability to activate an AcMNPV late promoter-reporter gene cassette in SF-21 cells. We tested the potential of individual or predicted functional groups of BmNPV lefs to successfully replace the corresponding AcMNPV gene(s) in transient late gene expression assays. We found that most, but not all, BmNPV lefs were able to either fully or partially substitute for the corresponding AcMNPV homolog in the context of the remaining AcMNPV lefs with the exception of BmNPV p143, ie-2, and p35. BmNPV p143 was unable to support late gene expression or be imported into the nucleus of cells in the presence of the AcMNPV or the BmNPV LEF-3, a P143 nuclear shuttling factor. Our results suggest that host-specific factors may affect the function of homologous proteins

  1. Proportionate Dwarfism in Mice Lacking Heterochromatin Protein 1 Binding Protein 3 (HP1BP3) Is Associated With Alterations in the Endocrine IGF-1 Pathway

    OpenAIRE

    Garfinkel, Benjamin P.; Arad, Shiri; Le, Phuong T.; Bustin, Michael; Rosen, Clifford J.; Gabet, Yankel; Orly, Joseph

    2015-01-01

    Heterochromatin protein 1 binding protein 3 (HP1BP3) is a recently described histone H1-related protein with roles in chromatin structure and transcriptional regulation. To explore the potential physiological role of HP1BP3, we have previously described an Hp1bp3?/? mouse model with reduced postnatal viability and growth. We now find that these mice are proportionate dwarfs, with reduction in body weight, body length, and organ weight. In addition to their small size, microcomputed tomography...

  2. The Canonical Immediate Early 3 Gene Product pIE611 of Mouse Cytomegalovirus Is Dispensable for Viral Replication but Mediates Transcriptional and Posttranscriptional Regulation of Viral Gene Products.

    Science.gov (United States)

    Rattay, Stephanie; Trilling, Mirko; Megger, Dominik A; Sitek, Barbara; Meyer, Helmut E; Hengel, Hartmut; Le-Trilling, Vu Thuy Khanh

    2015-08-01

    Transcription of mouse cytomegalovirus (MCMV) immediate early ie1 and ie3 is controlled by the major immediate early promoter/enhancer (MIEP) and requires differential splicing. Based on complete loss of genome replication of an MCMV mutant carrying a deletion of the ie3-specific exon 5, the multifunctional IE3 protein (611 amino acids; pIE611) is considered essential for viral replication. Our analysis of ie3 transcription resulted in the identification of novel ie3 isoforms derived from alternatively spliced ie3 transcripts. Construction of an IE3-hemagglutinin (IE3-HA) virus by insertion of an in-frame HA epitope sequence allowed detection of the IE3 isoforms in infected cells, verifying that the newly identified transcripts code for proteins. This prompted the construction of an MCMV mutant lacking ie611 but retaining the coding capacity for the newly identified isoforms ie453 and ie310. Using Δie611 MCMV, we demonstrated the dispensability of the canonical ie3 gene product pIE611 for viral replication. To determine the role of pIE611 for viral gene expression during MCMV infection in an unbiased global approach, we used label-free quantitative mass spectrometry to delineate pIE611-dependent changes of the MCMV proteome. Interestingly, further analysis revealed transcriptional as well as posttranscriptional regulation of MCMV gene products by pIE611. Cytomegaloviruses are pathogenic betaherpesviruses persisting in a lifelong latency from which reactivation can occur under conditions of immunosuppression, immunoimmaturity, or inflammation. The switch from latency to reactivation requires expression of immediate early genes. Therefore, understanding of immediate early gene regulation might add insights into viral pathogenesis. The mouse cytomegalovirus (MCMV) immediate early 3 protein (611 amino acids; pIE611) is considered essential for viral replication. The identification of novel protein isoforms derived from alternatively spliced ie3 transcripts prompted

  3. Proteomic analysis of the herpes simplex virus 1 virion protein 16 transactivator protein in infected cells.

    Science.gov (United States)

    Suk, Hyung; Knipe, David M

    2015-06-01

    The herpes simplex virus 1 virion protein 16 (VP16) tegument protein forms a transactivation complex with the cellular proteins host cell factor 1 (HCF-1) and octamer-binding transcription factor 1 (Oct-1) upon entry into the host cell. VP16 has also been shown to interact with a number of virion tegument proteins and viral glycoprotein H to promote viral assembly, but no comprehensive study of the VP16 proteome has been performed at early times postinfection. We therefore performed a proteomic analysis of VP16-interacting proteins at 3 h postinfection. We confirmed the interaction of VP16 with HCF-1 and a large number of cellular Mediator complex proteins, but most surprisingly, we found that the major viral protein associating with VP16 is the infected cell protein 4 (ICP4) immediate-early (IE) transactivator protein. These results raise the potential for a new function for VP16 in associating with the IE ICP4 and playing a role in transactivation of early and late gene expression, in addition to its well-documented function in transactivation of IE gene expression. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Papillon-Lefévre Syndrome: Report of Two Cases in a Family

    Directory of Open Access Journals (Sweden)

    C Vani

    2010-01-01

    Full Text Available This report presents two cases of Papillon-Lefévre syndrome (PLS affecting two girls among five siblings belonging to a south Indian Muslim family. The patients were 12 and 14 years old. The patients presented with palmar-plantar hyperkeratosis which started around the age of two years. The elder patient was edentulous due to severe destructive periodontitis causing premature loss of teeth. The younger patient had severe destructive periodontitis with multiple periodontal abscess and loose teeth.

  5. Gene expression profiling of low-grade endometrial stromal sarcoma indicates fusion protein-mediated activation of the Wnt signaling pathway.

    Science.gov (United States)

    Przybyl, Joanna; Kidzinski, Lukasz; Hastie, Trevor; Debiec-Rychter, Maria; Nusse, Roel; van de Rijn, Matt

    2018-05-01

    Low-grade endometrial stromal sarcomas (LGESS) harbor chromosomal translocations that affect proteins associated with chromatin remodeling Polycomb Repressive Complex 2 (PRC2), including SUZ12, PHF1 and EPC1. Roughly half of LGESS also demonstrate nuclear accumulation of β-catenin, which is a hallmark of Wnt signaling activation. However, the targets affected by the fusion proteins and the role of Wnt signaling in the pathogenesis of these tumors remain largely unknown. Here we report the results of a meta-analysis of three independent gene expression profiling studies on LGESS and immunohistochemical evaluation of nuclear expression of β-catenin and Lef1 in 112 uterine sarcoma specimens obtained from 20 LGESS and 89 LMS patients. Our results demonstrate that 143 out of 310 genes overexpressed in LGESS are known to be directly regulated by SUZ12. In addition, our gene expression meta-analysis shows activation of multiple genes implicated in Wnt signaling. We further emphasize the role of the Wnt signaling pathway by demonstrating concordant nuclear expression of β-catenin and Lef1 in 7/16 LGESS. Based on our findings, we suggest that LGESS-specific fusion proteins disrupt the repressive function of the PRC2 complex similar to the mechanism seen in synovial sarcoma, where the SS18-SSX fusion proteins disrupt the mSWI/SNF (BAF) chromatin remodeling complex. We propose that these fusion proteins in LGESS contribute to overexpression of Wnt ligands with subsequent activation of Wnt signaling pathway and formation of an active β-catenin/Lef1 transcriptional complex. These observations could lead to novel therapeutic approaches that focus on the Wnt pathway in LGESS. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Structural Insight into the 14-3-3 Protein-dependent Inhibition of Protein Kinase ASK1 (Apoptosis Signal-regulating kinase 1)

    Czech Academy of Sciences Publication Activity Database

    Petrvalská, Olivia; Košek, Dalibor; Kukačka, Zdeněk; Tošner, Z.; Man, Petr; Večeř, J.; Herman, P.; Obšilová, Veronika; Obšil, Tomáš

    2016-01-01

    Roč. 291, č. 39 (2016), s. 20753-20765 ISSN 0021-9258 R&D Projects: GA ČR(CZ) GA14-10061S Institutional support: RVO:67985823 ; RVO:61388971 Keywords : 14-3-3 protein * apoptosis signal-regulating kinase 1 (ASK1) * fluorescence * nuclear magnetic resonance (NMR) * protein cross-linking * small-angle x-ray scattering (SAXS) Subject RIV: CE - Biochemistry Impact factor: 4.125, year: 2016

  7. Aggregation and network formation in self-assembly of protein (H3.1) by a coarse-grained Monte Carlo simulation

    Science.gov (United States)

    Pandey, R. B.; Farmer, B. L.

    2014-11-01

    Multi-scale aggregation to network formation of interacting proteins (H3.1) are examined by a knowledge-based coarse-grained Monte Carlo simulation as a function of temperature and the number of protein chains, i.e., the concentration of the protein. Self-assembly of corresponding homo-polymers of constitutive residues (Cys, Thr, and Glu) with extreme residue-residue interactions, i.e., attractive (Cys-Cys), neutral (Thr-Thr), and repulsive (Glu-Glu), are also studied for comparison with the native protein. Visual inspections show contrast and similarity in morphological evolutions of protein assembly, aggregation of small aggregates to a ramified network from low to high temperature with the aggregation of a Cys-polymer, and an entangled network of Glu and Thr polymers. Variations in mobility profiles of residues with the concentration of the protein suggest that the segmental characteristic of proteins is altered considerably by the self-assembly from that in its isolated state. The global motion of proteins and Cys polymer chains is enhanced by their interacting network at the low temperature where isolated chains remain quasi-static. Transition from globular to random coil transition, evidenced by the sharp variation in the radius of gyration, of an isolated protein is smeared due to self-assembly of interacting networks of many proteins. Scaling of the structure factor S(q) with the wave vector q provides estimates of effective dimension D of the mass distribution at multiple length scales in self-assembly. Crossover from solid aggregates (D ˜ 3) at low temperature to a ramified fibrous network (D ˜ 2) at high temperature is observed for the protein H3.1 and Cys polymers in contrast to little changes in mass distribution (D ˜ 1.6) of fibrous Glu- and Thr-chain configurations.

  8. Proportionate Dwarfism in Mice Lacking Heterochromatin Protein 1 Binding Protein 3 (HP1BP3) Is Associated With Alterations in the Endocrine IGF-1 Pathway.

    Science.gov (United States)

    Garfinkel, Benjamin P; Arad, Shiri; Le, Phuong T; Bustin, Michael; Rosen, Clifford J; Gabet, Yankel; Orly, Joseph

    2015-12-01

    Heterochromatin protein 1 binding protein 3 (HP1BP3) is a recently described histone H1-related protein with roles in chromatin structure and transcriptional regulation. To explore the potential physiological role of HP1BP3, we have previously described an Hp1bp3(-/-) mouse model with reduced postnatal viability and growth. We now find that these mice are proportionate dwarfs, with reduction in body weight, body length, and organ weight. In addition to their small size, microcomputed tomography analysis showed that Hp1bp3(-/-) mice present a dramatic impairment of their bone development and structure. By 3 weeks of age, mice of both sexes have severely impaired cortical and trabecular bone, and these defects persist into adulthood and beyond. Primary cultures of both osteoblasts and osteoclasts from Hp1bp3(-/-) bone marrow and splenocytes, respectively, showed normal differentiation and function, strongly suggesting that the impaired bone accrual is due to noncell autonomous systemic cues in vivo. One major endocrine pathway regulating both body growth and bone acquisition is the IGF regulatory system, composed of IGF-1, the IGF receptors, and the IGF-binding proteins (IGFBPs). At 3 weeks of age, Hp1bp3(-/-) mice exhibited a 60% reduction in circulating IGF-1 and a 4-fold increase in the levels of IGFBP-1 and IGFBP-2. These alterations were reflected in similar changes in the hepatic transcripts of the Igf1, Igfbp1, and Igfbp2 genes. Collectively, these results suggest that HP1BP3 plays a key role in normal growth and bone development by regulating transcription of endocrine IGF-1 components.

  9. Baculovirus IE2 Stimulates the Expression of Heat Shock Proteins in Insect and Mammalian Cells to Facilitate Its Proper Functioning.

    Science.gov (United States)

    Tung, Hsuan; Wei, Sung-Chan; Lo, Huei-Ru; Chao, Yu-Chan

    2016-01-01

    Baculoviruses have gained popularity as pest control agents and for protein production in insect systems. These viruses are also becoming popular for gene expression, tissue engineering and gene therapy in mammalian systems. Baculovirus infection triggers a heat shock response, and this response is crucial for its successful infection of host insect cells. However, the viral protein(s) or factor(s) that trigger this response are not yet clear. Previously, we revealed that IE2-an early gene product of the baculovirus-could form unique nuclear bodies for the strong trans-activation of various promoters in mammalian cells. Here, we purified IE2 nuclear bodies from Vero E6 cells and investigated the associated proteins by using mass spectrometry. Heat shock proteins (HSPs) were found to be one of the major IE2-associated proteins. Our experiments show that HSPs are greatly induced by IE2 and are crucial for the trans-activation function of IE2. Interestingly, blocking both heat shock protein expression and the proteasome pathway preserved the IE2 protein and its nuclear body structure, and revived its function. These observations reveal that HSPs do not function directly to assist the formation of the nuclear body structure, but may rather protect IE2 from proteasome degradation. Aside from functional studies in mammalian cells, we also show that HSPs were stimulated and required to determine IE2 protein levels, in insect cells infected with baculovirus. Upon inhibiting the expression of heat shock proteins, baculovirus IE2 was substantially suppressed, resulting in a significantly suppressed viral titer. Thus, we demonstrate a unique feature in that IE2 can function in both insect and non-host mammalian cells to stimulate HSPs, which may be associated with IE2 stabilization and lead to the protection of the its strong gene activation function in mammalian cells. On the other hand, during viral infection in insect cells, IE2 could also strongly stimulate HSPs and

  10. 14-3-3 checkpoint regulatory proteins interact specifically with DNA repair protein human exonuclease 1 (hEXO1) via a semi-conserved motif

    DEFF Research Database (Denmark)

    Andersen, Sofie Dabros; Keijzers, Guido; Rampakakis, Emmanouil

    2012-01-01

    Human exonuclease 1 (hEXO1) acts directly in diverse DNA processing events, including replication, mismatch repair (MMR), and double strand break repair (DSBR), and it was also recently described to function as damage sensor and apoptosis inducer following DNA damage. In contrast, 14-3-3 proteins...... are specifically induced by replication inhibition leading to protein ubiquitination and degradation. We demonstrate direct and robust interaction between hEXO1 and six of the seven 14-3-3 isoforms in vitro, suggestive of a novel protein interaction network between DNA repair and cell cycle control. Binding...... and most likely a second unidentified binding motif. 14-3-3 associations do not appear to directly influence hEXO1 in vitro nuclease activity or in vitro DNA replication initiation. Moreover, specific phosphorylation variants, including hEXO1 S746A, are efficiently imported to the nucleus; to associate...

  11. HIV-1 Tat protein induces glial cell autophagy through enhancement of BAG3 protein levels.

    Science.gov (United States)

    Bruno, Anna Paola; De Simone, Francesca Isabella; Iorio, Vittoria; De Marco, Margot; Khalili, Kamel; Sariyer, Ilker Kudret; Capunzo, Mario; Nori, Stefania Lucia; Rosati, Alessandra

    2014-01-01

    BAG3 protein has been described as an anti-apoptotic and pro-autophagic factor in several neoplastic and normal cells. We previously demonstrated that BAG3 expression is elevated upon HIV-1 infection of glial and T lymphocyte cells. Among HIV-1 proteins, Tat is highly involved in regulating host cell response to viral infection. Therefore, we investigated the possible role of Tat protein in modulating BAG3 protein levels and the autophagic process itself. In this report, we show that transfection with Tat raises BAG3 levels in glioblastoma cells. Moreover, BAG3 silencing results in highly reducing Tat- induced levels of LC3-II and increasing the appearance of sub G0/G1 apoptotic cells, in keeping with the reported role of BAG3 in modulating the autophagy/apoptosis balance. These results demonstrate for the first time that Tat protein is able to stimulate autophagy through increasing BAG3 levels in human glial cells.

  12. Rac1 augments Wnt signaling by stimulating β-catenin–lymphoid enhancer factor-1 complex assembly independent of β-catenin nuclear import

    Science.gov (United States)

    Jamieson, Cara; Lui, Christina; Brocardo, Mariana G.; Martino-Echarri, Estefania; Henderson, Beric R.

    2015-01-01

    ABSTRACT β-Catenin transduces the Wnt signaling pathway and its nuclear accumulation leads to gene transactivation and cancer. Rac1 GTPase is known to stimulate β-catenin-dependent transcription of Wnt target genes and we confirmed this activity. Here we tested the recent hypothesis that Rac1 augments Wnt signaling by enhancing β-catenin nuclear import; however, we found that silencing/inhibition or up-regulation of Rac1 had no influence on nuclear accumulation of β-catenin. To better define the role of Rac1, we employed proximity ligation assays (PLA) and discovered that a significant pool of Rac1–β-catenin protein complexes redistribute from the plasma membrane to the nucleus upon Wnt or Rac1 activation. More importantly, active Rac1 was shown to stimulate the formation of nuclear β-catenin–lymphoid enhancer factor 1 (LEF-1) complexes. This regulation required Rac1-dependent phosphorylation of β-catenin at specific serines, which when mutated (S191A and S605A) reduced β-catenin binding to LEF-1 by up to 50%, as revealed by PLA and immunoprecipitation experiments. We propose that Rac1-mediated phosphorylation of β-catenin stimulates Wnt-dependent gene transactivation by enhancing β-catenin–LEF-1 complex assembly, providing new insight into the mechanism of cross-talk between Rac1 and canonical Wnt/β-catenin signaling. PMID:26403202

  13. The PDZ and band 4.1 containing protein Frmpd1 regulates the subcellular location of activator of G-protein signaling 3 and its interaction with G-proteins.

    Science.gov (United States)

    An, Ningfei; Blumer, Joe B; Bernard, Michael L; Lanier, Stephen M

    2008-09-05

    Activator of G-protein signaling 3 (AGS3) is one of nine mammalian proteins containing one or more G-protein regulatory (GPR) motifs that stabilize the GDP-bound conformation of Galphai. Such proteins have revealed unexpected functional diversity for the "G-switch" in the control of events within the cell independent of the role of heterotrimeric G-proteins as transducers for G-protein-coupled receptors at the cell surface. A key question regarding this class of proteins is what controls their subcellular positioning and interaction with G-proteins. We conducted a series of yeast two-hybrid screens to identify proteins interacting with the tetratricopeptide repeat (TPR) of AGS3, which plays an important role in subcellular positioning of the protein. We report the identification of Frmpd1 (FERM and PDZ domain containing 1) as a regulatory binding partner of AGS3. Frmpd1 binds to the TPR domain of AGS3 and coimmunoprecipitates with AGS3 from cell lysates. Cell fractionation indicated that Frmpd1 stabilizes AGS3 in a membrane fraction. Upon cotransfection of COS7 cells with Frmpd1-GFP and AGS3-mRFP, AGS3-mRFP is observed in regions of the cell cortex and also in membrane extensions or processes where it appears to be colocalized with Frmpd1-GFP based upon the merged fluorescent signals. Frmpd1 knockdown (siRNA) in Cath.a-differentiated neuronal cells decreased the level of endogenous AGS3 in membrane fractions by approximately 50% and enhanced the alpha2-adrenergic receptor-mediated inhibition of forskolin-induced increases in cAMP. The coimmunoprecipitation of Frmpd1 with AGS3 is lost as the amount of Galphai3 in the cell is increased and AGS3 apparently switches its binding partner from Frmpd1 to Galphai3 indicating that the interaction of AGS3 with Frmpd1 and Galphai3 is mutually exclusive. Mechanistically, Frmpd1 may position AGS3 in a membrane environment where it then interacts with Galphai in a regulated manner.

  14. A fusion protein of HCMV IE1 exon4 and IE2 exon5 stimulates potent cellular immunity in an MVA vaccine vector

    International Nuclear Information System (INIS)

    Wang, Z.; Zhou, W.; Srivastava, T.; La Rosa, C.; Mandarino, A.; Forman, S.J.; Zaia, J.A.; Britt, W.J.; Diamond, D.J.

    2008-01-01

    A therapeutic CMV vaccine incorporating an antigenic repertoire capable of eliciting a cellular immune response has yet to be successfully implemented for patients who already have acquired an infection. To address this problem, we have developed a vaccine candidate derived from modified vaccinia Ankara (MVA) that expresses three immunodominant antigens (pp65, IE1, IE2) from CMV. The novelty of this vaccine is the fusion of two adjacent exons from the immediate-early region of CMV, their successful expression in MVA, and robust immunogenicity in both primary and memory response models. Evaluation of the immunogenicity of the viral vaccine in mouse models shows that it can stimulate primary immunity against all three antigens in both the CD4 + and CD8 + T cell subsets. Evaluation of human PBMC from healthy CMV-positive donors or patients within 6 months of receiving hematopoietic cell transplant shows robust stimulation of existing CMV-specific CD4 + and CD8 + T cell subsets

  15. Thioredoxin 1 regulation of protein S-desulfhydration

    Directory of Open Access Journals (Sweden)

    Youngjun Ju

    2016-03-01

    Full Text Available The importance of H2S in biology and medicine has been widely recognized in recent years, and protein S-sulfhydration is proposed to mediate the direct actions of H2S bioactivity in the body. Thioredoxin 1 (Trx1 is an important reducing enzyme that cleaves disulfides in proteins and acts as an S-denitrosylase. The regulation of Trx1 on protein S-sulfhydration is unclear. Here we showed that Trx1 facilitates protein S-desulfhydration. Overexpression of Trx1 attenuated the basal level and H2S-induced protein S-sulfhydration by direct interaction with S-sulfhydrated proteins, i.e., glyceraldehyde 3-phosphate dehydrogenase and pyruvate carboxylase. In contrast, knockdown of Trx1 mRNA expression by short interfering RNA or blockage of Trx1 redox activity with PX12 or 2,4-dinitrochlorobenzene enhanced protein S-sulfhydration. Mutation of cysteine-32 but not cysteine-35 in the Trp–Cys32–Gly–Pro–Cys35 motif eliminated the binding of Trx1 with S-sulfhydrated proteins and abolished the S-desulfhydrating effect of Trx1. All these data suggest that Trx1 acts as an S-desulfhydrase.

  16. Lactococcus lactis is an Efficient Expression System for Mammalian Membrane Proteins Involved in Liver Detoxification, CYP3A4, and MGST1.

    Science.gov (United States)

    Bakari, Sana; Lembrouk, Mehdi; Sourd, Laura; Ousalem, Fares; André, François; Orlowski, Stéphane; Delaforge, Marcel; Frelet-Barrand, Annie

    2016-04-01

    Despite the great importance of human membrane proteins involved in detoxification mechanisms, their wide use for biochemical approaches is still hampered by several technical difficulties considering eukaryotic protein expression in order to obtain the large amounts of protein required for functional and/or structural studies. Lactococcus lactis has emerged recently as an alternative heterologous expression system to Escherichia coli for proteins that are difficult to express. The aim of this work was to check its ability to express mammalian membrane proteins involved in liver detoxification, i.e., CYP3A4 and two isoforms of MGST1 (rat and human). Genes were cloned using two different strategies, i.e., classical or Gateway-compatible cloning, and we checked the possible influence of two affinity tags (6×-His-tag and Strep-tag II). Interestingly, all proteins could be successfully expressed in L. lactis at higher yields than those previously obtained for these proteins with classical expression systems (E. coli, Saccharomyces cerevisiae) or those of other eukaryotic membrane proteins expressed in L. lactis. In addition, rMGST1 was fairly active after expression in L. lactis. This study highlights L. lactis as an attractive system for efficient expression of mammalian detoxification membrane proteins at levels compatible with further functional and structural studies.

  17. Synergistic effects of leflunomide and benazepril in streptozotocin-induced diabetic nephropathy.

    Science.gov (United States)

    Jin, Hua; Piao, Shang Guo; Jin, Ji Zhe; Jin, Ying Shun; Cui, Zhen Hua; Jin, Hai Feng; Zheng, Hai Lan; Li, Jin Ji; Jiang, Yu Ji; Yang, Chul Woo; Li, Can

    2014-01-01

    Leflunomide (LEF) and benazepril have renoprotective effects on diabetic nephropathy (DN) through their anti-inflammatory and anti-fibrotic activities. This study investigated whether combined treatment using LEF and benazepril affords superior protection compared with the respective monotherapies. Diabetes was induced with streptozotocin (STZ, 65 mg/kg) by intraperitoneal injection in male Wistar rats. Two weeks after STZ injection, diabetic rats were treated daily for 12 weeks with LEF (10 mg/kg), benazepril (10 mg/kg), or a combination of both. Basic parameters (body weight, fasting blood glucose level, and 24 h urinary protein excretion), histopathology, inflammatory [inflammatory cell infiltration (ED-1), monocyte chemoattractant protein-1 (MCP-1), and Toll-like receptor-2 (TLR-2)] and glomerulosclerotic factors [transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF)], and oxidative stress (8-hydroxy-2'-deoxyguanosine, 8-OHdG) were studied. Benazepril or LEF treatment significantly prevented body weight loss and 24 h urinary protein excretion induced by diabetes; combined treatment with LEF and benazepril further improved these parameters compared with giving each drug alone (all p benazepril and was further reduced by the combined administration of the two drugs (p benazepril provides synergistic effects in preventing DN. 2014 S. Karger AG, Basel

  18. Establishment of a sensitive time-resolved fluoroimmunoassay for detection of Bacillus thuringiensis Cry1Ie toxin based nanobody from a phage display library.

    Science.gov (United States)

    Xu, Chongxin; Liu, Xiaoqin; Zhang, Cunzheng; Zhang, Xiao; Zhong, Jianfeng; Liu, Yuan; Hu, Xiaodan; Lin, Manman; Liu, Xianjin

    2017-02-01

    Cry1Ie toxin was an insect-resistant protein used in genetically modified crops (GMC). In this study, a large human VH gene nanobodies phage displayed library was employed to select anti-Cry1Ie toxin antibody by affinity panning. After 5 rounds of panning, total 12 positive monoclonal phage particles were obtained. One of the identified positive phage nanobody was expressed in E.coli BL21 and the purified protein was indicated as a molecular mass of approximately 20 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Then a sensitive indirect competitive time-resolved fluoroimmunoassay (IC-TRFIA) was established for detection of Cry1Ie toxin by the purified protein. The working range of detection for Cry1Ie toxin standards in the IC-TRFIA were 0.08-6.44 ng mL -1 and the medium inhibition of control (IC 50 ) was 0.73 ng mL -1 . It showed a weak cross-reactivity with Cry1Ab toxin (at 5.6%), but did not recognize Cry1B, Cry1C, Cry1F, and Cry2A toxins (were <0.1%). The average recoveries of Cry1Ie toxin from respectively spiked in rice, corn and soil samples were in the range of 83.5%-96.6% and with a coefficient of variation (CV) among 2.0%-8.6%. These results showed the IC-TRFIA was promising for detection of Cry1Ie toxin in agricultural and environmental samples. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. α2-macroglobulin can crosslink multiple Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) molecules and may facilitate adhesion of parasitized erythrocytes

    DEFF Research Database (Denmark)

    Stevenson, Liz; Laursen, Erik; Cowan, Graeme J

    2015-01-01

    -macroglobulin (α2M), which is both required and sufficient for rosetting mediated by the PfEMP1 protein HB3VAR06 and some other rosette-mediating PfEMP1 proteins. We map the α2M binding site to the C terminal end of HB3VAR06, and demonstrate that α2M can bind at least four HB3VAR06 proteins, plausibly....... Together, our results are evidence that P. falciparum parasites exploit α2M (and IgM) to expand the repertoire of host receptors available for PfEMP1-mediated IE adhesion, such as the erythrocyte carbohydrate moieties that lead to formation of rosettes. It is likely that this mechanism also affects IE...

  20. Differentiation-inducing factor-1 suppresses gene expression of cyclin D1 in tumor cells

    International Nuclear Information System (INIS)

    Yasmin, Tania; Takahashi-Yanaga, Fumi; Mori, Jun; Miwa, Yoshikazu; Hirata, Masato; Watanabe, Yutaka; Morimoto, Sachio; Sasaguri, Toshiyuki

    2005-01-01

    To determine the mechanism by which differentiation-inducing factor-1 (DIF-1), a morphogen of Dictyostelium discoideum, inhibits tumor cell proliferation, we examined the effect of DIF-1 on the gene expression of cyclin D1. DIF-1 strongly reduced the expression of cyclin D1 mRNA and correspondingly decreased the amount of β-catenin in HeLa cells and squamous cell carcinoma cells. DIF-1 activated glycogen synthase kinase-3β (GSK-3β) and inhibition of GSK-3β attenuated the DIF-1-induced β-catenin degradation, indicating the involvement of GSK-3β in this effect. Moreover, DIF-1 reduced the activities of T-cell factor (TCF)/lymphoid enhancer factor (LEF) reporter plasmid and a reporter gene driven by the human cyclin D1 promoter. Eliminating the TCF/LEF consensus site from the cyclin D1 promoter diminished the effect of DIF-1. These results suggest that DIF-1 inhibits Wnt/β-catenin signaling, resulting in the suppression of cyclin D1 promoter activity

  1. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Takahashi, Nobuhiko; Yoshizaki, Takayuki; Hiranaka, Natsumi; Suzuki, Takeshi; Yui, Tomoo; Akanuma, Masayasu; Oka, Kazuya; Kanazawa, Kaoru; Yoshida, Mika; Naito, Sumiyoshi; Fujiya, Mikihiro; Kohgo, Yutaka; Ieko, Masahiro

    2011-01-01

    Highlights: ► Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. ► Adipose lipin-1 expression is reduced in obesity. ► Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. ► Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-κB activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  2. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Nobuhiko, E-mail: ntkhs@hoku-iryo-u.ac.jp [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Yoshizaki, Takayuki [Innovation Center, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065 (Japan); Hiranaka, Natsumi; Suzuki, Takeshi [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yui, Tomoo; Akanuma, Masayasu; Oka, Kazuya [Department of Fixed Prosthodontics and Oral Implantology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Kanazawa, Kaoru [Department of Dental Anesthesiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yoshida, Mika; Naito, Sumiyoshi [Department of Clinical Laboratory, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Fujiya, Mikihiro; Kohgo, Yutaka [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Ieko, Masahiro [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan)

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. Black-Right-Pointing-Pointer Adipose lipin-1 expression is reduced in obesity. Black-Right-Pointing-Pointer Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. Black-Right-Pointing-Pointer Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-{kappa}B activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  3. Investigating CFTR and KCa3.1 Protein/Protein Interactions.

    Directory of Open Access Journals (Sweden)

    Hélène Klein

    Full Text Available In epithelia, Cl- channels play a prominent role in fluid and electrolyte transport. Of particular importance is the cAMP-dependent cystic fibrosis transmembrane conductance regulator Cl- channel (CFTR with mutations of the CFTR encoding gene causing cystic fibrosis. The bulk transepithelial transport of Cl- ions and electrolytes needs however to be coupled to an increase in K+ conductance in order to recycle K+ and maintain an electrical driving force for anion exit across the apical membrane. In several epithelia, this K+ efflux is ensured by K+ channels, including KCa3.1, which is expressed at both the apical and basolateral membranes. We show here for the first time that CFTR and KCa3.1 can physically interact. We first performed a two-hybrid screen to identify which KCa3.1 cytosolic domains might mediate an interaction with CFTR. Our results showed that both the N-terminal fragment M1-M40 of KCa3.1 and part of the KCa3.1 calmodulin binding domain (residues L345-A400 interact with the NBD2 segment (G1237-Y1420 and C- region of CFTR (residues T1387-L1480, respectively. An association of CFTR and F508del-CFTR with KCa3.1 was further confirmed in co-immunoprecipitation experiments demonstrating the formation of immunoprecipitable CFTR/KCa3.1 complexes in CFBE cells. Co-expression of KCa3.1 and CFTR in HEK cells did not impact CFTR expression at the cell surface, and KCa3.1 trafficking appeared independent of CFTR stimulation. Finally, evidence is presented through cross-correlation spectroscopy measurements that KCa3.1 and CFTR colocalize at the plasma membrane and that KCa3.1 channels tend to aggregate consequent to an enhanced interaction with CFTR channels at the plasma membrane following an increase in intracellular Ca2+ concentration. Altogether, these results suggest 1 that the physical interaction KCa3.1/CFTR can occur early during the biogenesis of both proteins and 2 that KCa3.1 and CFTR form a dynamic complex, the formation of which

  4. High basal Wnt signaling is further induced by PI3K/mTor inhibition but sensitive to cSRC inhibition in mammary carcinoma cell lines with HER2/3 overexpression

    International Nuclear Information System (INIS)

    Timmermans-Sprang, Elpetra P. M.; Gracanin, Ana; Mol, Jan A.

    2015-01-01

    Elevated basal, ligand-independent, Wnt signaling in some canine breast cancer cells is not caused by classical mutations in APC, β-Catenin or GSK3β but, at least partially, by enhanced LEF1 expression. We examined the expression and function of EGFR/HER-regulated pathways on the ligand-independent Wnt signaling. Twelve canine mammary tumor cell lines with previously reported differential basal Wnt activity were used. The expression levels of genes related to EGF-signaling were analyzed by cluster analysis. Cell lines with a combined overexpression of EGF-related genes and enhanced basal Wnt activity were treated with PI3K/mTor or cSRC inhibitors or transfected with a construct expressing wild-type PTEN. Subsequently, effects were measured on Wnt activity, cell proliferation, gene expression and protein level. High basal Wnt/LEF1 activity was associated with overexpression of HER2/3, ID1, ID2, RAC1 and HSP90 together with low to absent cMET and PTEN mRNA expression, suggesting a connection between Wnt- and HER-signaling pathways. Inhibition of the HER-regulated PI3K/mTor pathway using the dual PI3K/mTor inhibitor BEZ235 or the mTor inhibitor Everolimus® resulted in reduced cell proliferation. In the cell line with high basal Wnt activity, however, an unexpected further increased Wnt activity was found that could be greatly reduced after inhibition of the HER-regulated cSRC activity. Inhibition of the PI3K/mTor pathway was associated with enhanced expression of β-Catenin, Axin2, MUC1, cMET, EGFR and HER2 and a somewhat increased β-Catenin protein content, whereas cSRC inhibition was associated with slightly enhanced HER3 and SLUG mRNA expression. A high protein expression of HER3 was found only in a cell line with high basal Wnt activity. High basal Wnt activity in some mammary cancer cell lines is associated with overexpression of HER-receptor related genes and HER3 protein, and the absence of PTEN. Inhibition of the PI3K/mTor pathway further stimulated

  5. Characterization of Asian Corn Borer Resistance to Bt Toxin Cry1Ie

    Directory of Open Access Journals (Sweden)

    Yueqin Wang

    2017-06-01

    Full Text Available A strain of the Asian corn borer (ACB, Ostrinia furnacalis (Guenée, has evolved >800-fold resistance to Cry1Ie (ACB-IeR after 49 generations of selection. The inheritance pattern of resistance to Cry1Ie in ACB-IeR strain and its cross-resistance to other Bt toxins were determined through bioassay by exposing neonates from genetic-crosses to toxins incorporated into the diet. The response of progenies from reciprocal F1 crosses were similar (LC50s: 76.07 vs. 74.32 μg/g, which suggested the resistance was autosomal. The effective dominance (h decreased as concentration of Cry1Ie increased. h was nearly recessive or incompletely recessive on Cry1Ie maize leaf tissue (h = 0.02, but nearly dominant or incompletely dominant (h = 0.98 on Cry1Ie maize silk. Bioassay of the backcross suggested that the resistance was controlled by more than one locus. In addition, the resistant strain did not perform cross-resistance to Cry1Ab (0.8-fold, Cry1Ac (0.8-fold, Cry1F (0.9-fold, and Cry1Ah (1.0-fold. The present study not only offers the manifestation for resistance management, but also recommends that Cry1Ie will be an appropriate candidate for expression with Cry1Ab, Cry1Ac, Cry1F, or Cry1Ah for the development of Bt maize.

  6. Characterization of Asian Corn Borer Resistance to Bt Toxin Cry1Ie.

    Science.gov (United States)

    Wang, Yueqin; Yang, Jing; Quan, Yudong; Wang, Zhenying; Cai, Wanzhi; He, Kanglai

    2017-06-07

    A strain of the Asian corn borer (ACB), Ostrinia furnacalis (Guenée), has evolved >800-fold resistance to Cry1Ie (ACB-IeR) after 49 generations of selection. The inheritance pattern of resistance to Cry1Ie in ACB-IeR strain and its cross-resistance to other Bt toxins were determined through bioassay by exposing neonates from genetic-crosses to toxins incorporated into the diet. The response of progenies from reciprocal F₁ crosses were similar (LC 50 s: 76.07 vs. 74.32 μg/g), which suggested the resistance was autosomal. The effective dominance ( h ) decreased as concentration of Cry1Ie increased. h was nearly recessive or incompletely recessive on Cry1Ie maize leaf tissue ( h = 0.02), but nearly dominant or incompletely dominant ( h = 0.98) on Cry1Ie maize silk. Bioassay of the backcross suggested that the resistance was controlled by more than one locus. In addition, the resistant strain did not perform cross-resistance to Cry1Ab (0.8-fold), Cry1Ac (0.8-fold), Cry1F (0.9-fold), and Cry1Ah (1.0-fold). The present study not only offers the manifestation for resistance management, but also recommends that Cry1Ie will be an appropriate candidate for expression with Cry1Ab, Cry1Ac, Cry1F, or Cry1Ah for the development of Bt maize.

  7. A DNA Binding Protein Is Required for Viral Replication and Transcription in Bombyx mori Nucleopolyhedrovirus.

    Directory of Open Access Journals (Sweden)

    Cui Zhao

    Full Text Available A DNA-binding protein (DBP [GenBank accession number: M63416] of Bombyx mori nuclear polyhedrosis virus (BmNPV has been reported to be a regulatory factor in BmNPV, but its detailed functions remain unknown. In order to study the regulatory mechanism of DBP on viral proliferation, genome replication, and gene transcription, a BmNPV dbp gene knockout virus dbp-ko-Bacmid was generated by the means of Red recombination system. In addition, dbp-repaired virus dbp-re-Bacmid was constructed by the means of the Bac to Bac system. Then, the Bacmids were transfected into BmN cells. The results of this viral titer experiment revealed that the TCID50 of the dbp-ko-Bacmid was 0; however, the dbp-re-Bacmid was similar to the wtBacmid (p>0.05, indicating that the dbp-deficient would lead to failure in the assembly of virus particles. In the next step, Real-Time PCR was used to analyze the transcriptional phases of dbp gene in BmN cells, which had been infected with BmNPV. The results of the latter experiment revealed that the transcript of dbp gene was first detected at 3 h post-infection. Furthermore, the replication level of virus genome and the transcriptional level of virus early, late, and very late genes in BmN cells, which had been transfected with 3 kinds of Bacmids, were analyzed by Real-Time PCR. The demonstrating that the replication level of genome was lower than that of wtBacmid and dbp-re-Bacmid (p<0.01. The transcriptional level of dbp-ko-Bacmid early gene lef-3, ie-1, dnapol, late gene vp39 and very late gene p10 were statistically significantly lower than dbp-re-Bacmid and wtBacmid (p<0.01. The results presented are based on Western blot analysis, which indicated that the lack of dbp gene would lead to low expressions of lef3, vp39, and p10. In conclusion, dbp was not only essential for early viral replication, but also a viral gene that has a significant impact on transcription and expression during all periods of baculovirus life cycle.

  8. RanBP3 influences interactions between CRM1 and its nuclear protein export substrates

    OpenAIRE

    Englmeier, Ludwig; Fornerod, Maarten; Bischoff, F. Ralf; Petosa, Carlo; Mattaj, Iain W.; Kutay, Ulrike

    2001-01-01

    We investigated the role of RanBP3, a nuclear member of the Ran-binding protein 1 family, in CRM1-mediated protein export in higher eukaryotes. RanBP3 interacts directly with CRM1 and also forms a trimeric complex with CRM1 and RanGTP. However, RanBP3 does not bind to CRM1 like an export substrate. Instead, it can stabilize CRM1–export substrate interaction. Nuclear RanBP3 stimulates CRM1-dependent protein export in permeabilized cells. These data indicate that RanBP3 functions by a novel mec...

  9. ANSI/ASHRAE/IES Standard 90.1-2013 Preliminary Determination: Quantitative Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Mark A.; Rosenberg, Michael I.; Wang, Weimin; Zhang, Jian; Mendon, Vrushali V.; Athalye, Rahul A.; Xie, YuLong; Hart, Reid; Goel, Supriya

    2014-03-01

    This report provides a preliminary quantitative analysis to assess whether buildings constructed according to the requirements of ANSI/ASHRAE/IES Standard 90.1-2013 would result in energy savings compared with buildings constructed to ANSI/ASHRAE/IES Standard 90.1-2010.

  10. Regulation of cAMP Responsive Element Binding Protein 3-Like 1 (Creb3l1 Expression by Orphan Nuclear Receptor Nr4a1

    Directory of Open Access Journals (Sweden)

    Michael P. Greenwood

    2017-12-01

    Full Text Available Cyclic AMP (cAMP inducible transcription factor cAMP responsive element binding protein 3 like 1 (Creb3l1 is strongly activated in the hypothalamus in response to hyperosmotic cues such as dehydration (DH. We have recently shown that Creb3l1 expression is upregulated by cAMP pathways in vitro, however the exact mechanisms are not known. Here we show that increasing Creb3l1 transcription by raising cAMP levels in mouse pituitary AtT20 cells automatically initiates cleavage of Creb3l1, leading to a greater abundance of the transcriptionally active N-terminal portion. Inhibiting protein synthesis indicated that de novo protein synthesis of an intermediary transcription factor was required for Creb3l1 induction. Strategic mining of our microarray data from dehydrated rodent hypothalamus revealed four candidates, reduced to two by analysis of acute hyperosmotic-induced transcriptional activation profiles in the hypothalamus, and one, orphan nuclear receptor Nr4a1, by direct shRNA mediated silencing in AtT20 cells. We show that activation of Creb3l1 transcription by Nr4a1 involves interaction with a single NBRE site in the promoter region. The ability to activate Creb3l1 transcription by this pathway in vitro is dictated by the level of methylation of a CpG island within the proximal promoter/5′UTR of this gene. We thus identify a novel cAMP-Nr4a1-Creb3l1 transcriptional pathway in AtT20 cells and also, our evidence would suggest, in the hypothalamus.

  11. Lactate/pyruvate transporter MCT-1 is a direct Wnt target that confers sensitivity to 3-bromopyruvate in colon cancer.

    Science.gov (United States)

    Sprowl-Tanio, Stephanie; Habowski, Amber N; Pate, Kira T; McQuade, Miriam M; Wang, Kehui; Edwards, Robert A; Grun, Felix; Lyou, Yung; Waterman, Marian L

    2016-01-01

    There is increasing evidence that oncogenic Wnt signaling directs metabolic reprogramming of cancer cells to favor aerobic glycolysis or Warburg metabolism. In colon cancer, this reprogramming is due to direct regulation of pyruvate dehydrogenase kinase 1 ( PDK1 ) gene transcription. Additional metabolism genes are sensitive to Wnt signaling and exhibit correlative expression with PDK1. Whether these genes are also regulated at the transcriptional level, and therefore a part of a core metabolic gene program targeted by oncogenic WNT signaling, is not known. Here, we identify monocarboxylate transporter 1 (MCT-1; encoded by SLC16A1 ) as a direct target gene supporting Wnt-driven Warburg metabolism. We identify and validate Wnt response elements (WREs) in the proximal SLC16A1 promoter and show that they mediate sensitivity to Wnt inhibition via dominant-negative LEF-1 (dnLEF-1) expression and the small molecule Wnt inhibitor XAV939. We also show that WREs function in an independent and additive manner with c-Myc, the only other known oncogenic regulator of SLC16A1 transcription. MCT-1 can export lactate, the byproduct of Warburg metabolism, and it is the essential transporter of pyruvate as well as a glycolysis-targeting cancer drug, 3-bromopyruvate (3-BP). Using sulforhodamine B (SRB) assays to follow cell proliferation, we tested a panel of colon cancer cell lines for sensitivity to 3-BP. We observe that all cell lines are highly sensitive and that reduction of Wnt signaling by XAV939 treatment does not synergize with 3-BP, but instead is protective and promotes rapid recovery. We conclude that MCT-1 is part of a core Wnt signaling gene program for glycolysis in colon cancer and that modulation of this program could play an important role in shaping sensitivity to drugs that target cancer metabolism.

  12. Expression of proteins FGFR3, PI3K, AKT, p21Waf1/Cip1 and cyclins D1 and D3 in patients with T1 bladder tumours: clinical implications and prognostic significance.

    Science.gov (United States)

    Blanca Pedregosa, A M; Sánchez-González, Á; Carrasco Valiente, J; Ruiz García, J M; Gómez Gómez, E; López Beltrán, A; Requena Tapia, M J

    2017-04-01

    To determine the differential protein expression of biomarkers FGFR3, PI3K (subunits PI3Kp110α, PI3KClassIII, PI3Kp85), AKT, p21Waf1/Cip1 and cyclins D1 and D3 in T1 bladder cancer versus healthy tissue and to study their potential role as early recurrence markers. This is a prospective study that employed a total of 67 tissue samples (55 cases of T1 bladder tumours that underwent transurethral resection and 12 cases of adjacent healthy mucosa). The protein expression levels were assessed using Western blot, and the means and percentages were compared using Student's t-test and the chi-squared test. The survival analysis was conducted using the Kaplan-Meier method and the log-rank test. Greater protein expression was detected for FGFR3, PI3Kp110α, PI3KClassIII, cyclins D1 and D3 and p21Waf1/Cip1 in the tumour tissue than in the healthy mucosa. However, these differences were not significant for PI3Kp85 and AKT. We observed statistically significant correlations between early recurrence and PI3Kp110α, PI3KClassIII, PI3Kp85 and AKT (P=.003, P=.045, P=.050 and P=.028, respectively), between the tumour type (primary vs. recurrence) and cyclin D3 (P=.001), between the tumour size and FGFR3 (P=.035) and between multifocality and cyclin D1 (P=.039). The survival analysis selected FGFR3 (P=.024), PI3Kp110α (P=.014), PI3KClassIII (P=.042) and AKT (P=.008) as markers of early-recurrence-free survival. There is an increase in protein expression levels in bladder tumour tissue. The overexpression of FGFR3, PI3Kp110α, PI3KClassIII and AKT is associated with increased early-recurrence-free survival for patients with T1 bladder tumours. Copyright © 2016 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. mRNA and protein dataset of autophagy markers (LC3 and p62) in several cell lines

    Science.gov (United States)

    Gómez-Sánchez, Rubén; Yakhine-Diop, Sokhna M.S.; Rodríguez-Arribas, Mario; Bravo-San Pedro, José M.; Martínez-Chacón, Guadalupe; Uribe-Carretero, Elisabet; Pinheiro de Castro, Diana C.J.; Pizarro-Estrella, Elisa; Fuentes, José M.; González-Polo, Rosa A.

    2016-01-01

    We characterized the dynamics of autophagy in vitro using four different cell systems and analyzing markers widely used in this field, i.e. LC3 (microtubule-associated protein 1 light chain 3; protein recruited from the cytosol (LC3-I) to the autophagosomal membrane where it is lipidated (LC3-II)) and p62/SQSTM1 (adaptor protein that serves as a link between LC3 and ubiquitinated substrates), (Klionsky et al., 2016) [1]. Data provided include analyses of protein levels of LC3 and p62 by Western-blotting and endogenous immunofluorescence experiments, but also p62 mRNA levels obtained by quantitative PCR (qPCR). To monitor the turnover of these autophagy markers and, thus, measure the flux of this pathway, cells were under starvation conditions and/or treated with bafilomycin A1 (Baf. A1) to block fusion of autophagosomes with lysosomes. PMID:27054171

  14. Aqueous Solutions of the Ionic Liquid 1-butyl-3-methylimidazolium Chloride Denature Proteins

    International Nuclear Information System (INIS)

    Baker, Gary A.; Heller, William T.

    2009-01-01

    As we advance our understanding, ionic liquids (ILs) are finding ever broader scope within the chemical sciences including, most recently, pharmaceutical, enzymatic, and bioanalytical applications. With examples of enzymatic activity reported in both neat ILs and in IL/water mixtures, enzymes are frequently assumed to adopt a quasi-native conformation, even if little work has been carried out to date toward characterizing the conformation, dynamics, active-site perturbation, cooperativity of unfolding transitions, free energy of stabilization, or aggregation/oligomerization state of enzymes in the presence of an IL solvent component. In this study, human serum albumin and equine heart cytochrome c were characterized in aqueous solutions of the fully water-miscible IL 1-butyl-3-methylimidazolium chloride, (bmim)Cl, by small-angle neutron and X-ray scattering. At (bmim)Cl concentrations up to 25 vol.%, these two proteins were found to largely retain their higher-order structures whereas both proteins become highly denatured at the highest IL concentration studied here (i.e., 50 vol.% (bmim)Cl). The response of these proteins to (bmim)Cl is analogous to their behavior in the widely studied denaturants guanidine hydrochloride and urea which similarly lead to random coil conformations at excessive molar concentrations. Interestingly, human serum albumin dimerizes in response to (bmim)Cl, whereas cytochrome c remains predominantly in monomeric form. These results have important implications for enzymatic studies in aqueous IL media, as they suggest a facile pathway through which biocatalytic activity can be altered in these nascent and potentially green electrolyte systems

  15. Bone morphogenetic protein-2 (BMP-2 and transforming growth factor-β1 (TGF-β1 alter connexin 43 phosphorylation in MC3T3-E1 Cells

    Directory of Open Access Journals (Sweden)

    Rudkin George H

    2001-07-01

    Full Text Available Abstract Background Bone morphogenetic proteins (BMPs and transforming growth factor-βs (TGF-βs are important regulators of bone repair and regeneration. BMP-2 and TGF-β1 have been shown to inhibit gap junctional intercellular communication (GJIC in MC3T3-E1 cells. Connexin 43 (Cx43 has been shown to mediate GJIC in osteoblasts and it is the predominant gap junctional protein expressed in these murine osteoblast-like cells. We examined the expression, phosphorylation, and subcellular localization of Cx43 after treatment with BMP-2 or TGF-β1 to investigate a possible mechanism for the inhibition of GJIC. Results Northern blot analysis revealed no detectable change in the expression of Cx43 mRNA. Western blot analysis demonstrated no significant change in the expression of total Cx43 protein. However, significantly higher ratios of unphosphorylated vs. phosphorylated forms of Cx43 were detected after BMP-2 or TGF-β1 treatment. Immunofluorescence and cell protein fractionation revealed no detectable change in the localization of Cx43 between the cytosol and plasma membrane. Conclusions BMP-2 and TGF-β1 do not alter expression of Cx43 at the mRNA or protein level. BMP-2 and TGF-β1 may inhibit GJIC by decreasing the phosphorylated form of Cx43 in MC3T3-E1 cells.

  16. Enolase 1 (ENO1 and protein disulfide-isomerase associated 3 (PDIA3 regulate Wnt/β-catenin-driven trans-differentiation of murine alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Kathrin Mutze

    2015-08-01

    Full Text Available The alveolar epithelium represents a major site of tissue destruction during lung injury. It consists of alveolar epithelial type I (ATI and type II (ATII cells. ATII cells are capable of self-renewal and exert progenitor function for ATI cells upon alveolar epithelial injury. Cell differentiation pathways enabling this plasticity and allowing for proper repair, however, are poorly understood. Here, we applied proteomics, expression analysis and functional studies in primary murine ATII cells to identify proteins and molecular mechanisms involved in alveolar epithelial plasticity. Mass spectrometry of cultured ATII cells revealed a reduction of carbonyl reductase 2 (CBR2 and an increase in enolase 1 (ENO1 and protein disulfide-isomerase associated 3 (PDIA3 protein expression during ATII-to-ATI cell trans-differentiation. This was accompanied by increased Wnt/β-catenin signaling, as analyzed by qRT-PCR and immunoblotting. Notably, ENO1 and PDIA3, along with T1α (podoplanin; an ATI cell marker, exhibited decreased protein expression upon pharmacological and molecular Wnt/β-catenin inhibition in cultured ATII cells, whereas CBR2 levels were stabilized. Moreover, we analyzed primary ATII cells from mice with bleomycin-induced lung injury, a model exhibiting activated Wnt/β-catenin signaling in vivo. We observed reduced CBR2 significantly correlating with surfactant protein C (SFTPC, whereas ENO1 and PDIA3 along with T1α were increased in injured ATII cells. Finally, siRNA-mediated knockdown of ENO1, as well as PDIA3, in primary ATII cells led to reduced T1α expression, indicating diminished cell trans-differentiation. Our data thus identified proteins involved in ATII-to-ATI cell trans-differentiation and suggest a Wnt/β-catenin-driven functional role of ENO1 and PDIA3 in alveolar epithelial cell plasticity in lung injury and repair.

  17. A Novel Domain Cassette Identifies Plasmodium falciparum PfEMP1 Proteins Binding ICAM-1 and Is a Target of Cross-Reactive, Adhesion-Inhibitory Antibodies

    DEFF Research Database (Denmark)

    Bengtsson, Anja; Jørgensen, Louise; Rask, Thomas Salhøj

    2013-01-01

    Cerebral Plasmodium falciparum malaria is characterized by adhesion of infected erythrocytes (IEs) to the cerebral microvasculature. This has been linked to parasites expressing the structurally related group A subset of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of IE...... to ICAM-1. The ICAM-1-binding capacity of DC4 was mapped to the C-terminal third of its Duffy-binding-like beta 3 domain. DC4 was the target of broadly cross-reactive and adhesion-inhibitory IgG Abs, and levels of DC4-specific and adhesion-inhibitory IgG increased with age among P. falciparum......-exposed children. Our study challenges earlier conclusions that group A PfEMP1 proteins are not central to ICAM-1-specific IE adhesion and support the feasibility of developing a vaccine preventing cerebral malaria by inhibiting cerebral IE sequestration. The Journal of Immunology, 2013, 190: 240-249....

  18. Hepatic protein phosphatase 1 regulatory subunit 3B (Ppp1r3b) promotes hepatic glycogen synthesis and thereby regulates fasting energy homeostasis.

    Science.gov (United States)

    Mehta, Minal B; Shewale, Swapnil V; Sequeira, Raymond N; Millar, John S; Hand, Nicholas J; Rader, Daniel J

    2017-06-23

    Maintenance of whole-body glucose homeostasis is critical to glycemic function. Genetic variants mapping to chromosome 8p23.1 in genome-wide association studies have been linked to glycemic traits in humans. The gene of known function closest to the mapped region, PPP1R3B (protein phosphatase 1 regulatory subunit 3B), encodes a protein (G L ) that regulates glycogen metabolism in the liver. We therefore sought to test the hypothesis that hepatic PPP1R3B is associated with glycemic traits. We generated mice with either liver-specific deletion ( Ppp1r3b Δ hep ) or liver-specific overexpression of Ppp1r3b The Ppp1r3b deletion significantly reduced glycogen synthase protein abundance, and the remaining protein was predominantly phosphorylated and inactive. As a consequence, glucose incorporation into hepatic glycogen was significantly impaired, total hepatic glycogen content was substantially decreased, and mice lacking hepatic Ppp1r3b had lower fasting plasma glucose than controls. The concomitant loss of liver glycogen impaired whole-body glucose homeostasis and increased hepatic expression of glycolytic enzymes in Ppp1r3b Δ hep mice relative to controls in the postprandial state. Eight hours of fasting significantly increased the expression of two critical gluconeogenic enzymes, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, above the levels in control livers. Conversely, the liver-specific overexpression of Ppp1r3b enhanced hepatic glycogen storage above that of controls and, as a result, delayed the onset of fasting-induced hypoglycemia. Moreover, mice overexpressing hepatic Ppp1r3b upon long-term fasting (12-36 h) were protected from blood ketone-body accumulation, unlike control and Ppp1r3b Δ hep mice. These findings indicate a major role for Ppp1r3b in regulating hepatic glycogen stores and whole-body glucose/energy homeostasis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. SH2/SH3 adaptor proteins can link tyrosine kinases to a Ste20-related protein kinase, HPK1.

    Science.gov (United States)

    Anafi, M; Kiefer, F; Gish, G D; Mbamalu, G; Iscove, N N; Pawson, T

    1997-10-31

    Ste20-related protein kinases have been implicated as regulating a range of cellular responses, including stress-activated protein kinase pathways and the control of cytoskeletal architecture. An important issue involves the identities of the upstream signals and regulators that might control the biological functions of mammalian Ste20-related protein kinases. HPK1 is a protein-serine/threonine kinase that possesses a Ste20-like kinase domain, and in transfected cells activates a protein kinase pathway leading to the stress-activated protein kinase SAPK/JNK. Here we have investigated candidate upstream regulators that might interact with HPK1. HPK1 possesses an N-terminal catalytic domain and an extended C-terminal tail with four proline-rich motifs. The SH3 domains of Grb2 bound in vitro to specific proline-rich motifs in the HPK1 tail and functioned synergistically to direct the stable binding of Grb2 to HPK1 in transfected Cos1 cells. Epidermal growth factor (EGF) stimulation did not affect the binding of Grb2 to HPK1 but induced recruitment of the Grb2.HPK1 complex to the autophosphorylated EGF receptor and to the Shc docking protein. Several activated receptor and cytoplasmic tyrosine kinases, including the EGF receptor, stimulated the tyrosine phosphorylation of the HPK1 serine/threonine kinase. These results suggest that HPK1, a mammalian Ste20-related protein-serine/threonine kinase, can potentially associate with protein-tyrosine kinases through interactions mediated by SH2/SH3 adaptors such as Grb2. Such interaction may provide a possible mechanism for cross-talk between distinct biochemical pathways following the activation of tyrosine kinases.

  20. Combined orthodontic and periodontic treatment in a child with Papillon Lefèvre syndrome.

    Science.gov (United States)

    AlSarheed, Maha A; Al-Sehaibany, Fares S

    2015-08-01

    A 9-year-old girl with Papillon-Lefèvre syndrome (PLS) was treated orthodontically 24 months after the start of mechanical and antibiotic therapy in adjunct with periodontal treatment every 6 weeks. After achieving stable periodontal conditions, orthodontic treatment was commenced to correct the teeth position, facial profile, and maxillary protraction. Following the combination therapy and a failure to detect Actinobacillus actinomycetemcomitans from any site in the oral cavity, orthodontic treatment with a fixed appliance was performed aside from creating space for eruption of permanent teeth. We found that combined periodontal and orthodontic treatment of PLS may be successful with a complex interdisciplinary regimen and close follow up. This is a 2-year follow-up case report of a girl with PLS. Orthodontic and periodontic therapy were offered using combined treatments of orthodontic and periodontal with the benefit of prosthodontic consultation, resulting in a treatment plan.

  1. Deleting the 14-3-3 protein Bmh1 extends life span in Saccharomyces cerevisiae by increasing stress response.

    Science.gov (United States)

    Wang, Chen; Skinner, Craig; Easlon, Erin; Lin, Su-Ju

    2009-12-01

    Enhanced stress response has been suggested to promote longevity in many species. Calorie restriction (CR) and conserved nutrient-sensing target of rapamycin (TOR) and protein kinase A (PKA) pathways have also been suggested to extend life span by increasing stress response, which protects cells from age-dependent accumulation of oxidative damages. Here we show that deleting the yeast 14-3-3 protein, Bmh1, extends chronological life span (CLS) by activating the stress response. 14-3-3 proteins are highly conserved chaperone-like proteins that play important roles in many cellular processes. bmh1Delta-induced heat resistance and CLS extension require the general stress-response transcription factors Msn2, Msn4, and Rim15. The bmh1Delta mutant also displays a decreased reactive oxygen species level and increased heat-shock-element-driven transcription activity. We also show that BMH1 genetically interacts with CR and conserved nutrient-sensing TOR- and PKA-signaling pathways to regulate life span. Interestingly, the level of phosphorylated Ser238 on Bmh1 increases during chronological aging, which is delayed by CR or by reduced TOR activities. In addition, we demonstrate that PKA can directly phosphorylate Ser238 on Bmh1. The status of Bmh1 phosphorylation is therefore likely to play important roles in life-span regulation. Together, our studies suggest that phosphorylated Bmh1 may cause inhibitory effects on downstream longevity factors, including stress-response proteins. Deleting Bmh1 may eliminate the inhibitory effects of Bmh1 on these longevity factors and therefore extends life span.

  2. Comment la bonne Ligue sauva la monarchie. 1593 selon Nicolas Lefèvre de Lezeau

    Directory of Open Access Journals (Sweden)

    Fabrice Micallef

    2011-11-01

    Full Text Available Le chapitre III de la Vie de Marillac par Lefèvre de Lezeau est consacré au passé ligueur du garde des sceaux. Justifier l’appartenance au parti catholique n’est pas une chose facile dans la France du milieu du xviie qui considère majoritairement les ligueurs comme des fanatiques violents ou comme des hypocrites, vendus aux puissances étrangères, notamment l’Espagne. La réhabilitation menée par l’auteur consiste à dire que Marillac faisait partie d’une « bonne ligue », représentée notamment au parlement de Paris. C’est cette bonne ligue parlementaire qui en juin 1593, sous l’impulsion de Marillac, aurait sauvé la monarchie en promulguant le célèbre arrêt Lemaître, cassant toutes les décisions que les états généraux étaient susceptibles de prendre pour transmettre la couronne de France à un prince étranger. Nous avons choisi d’étudier cette source en posant trois questions.1 Les événements rapportés par l’auteur sont-ils crédibles ? Ces faits semblent exacts dans l’ensemble. Mais le point central de la démonstration, à savoir le rôle essentiel de Marillac, n’est à ce jour étayé par aucune autre source. 2 Que nous apprend ce document sur les pratiques d’historien de Lefèvre de Lezeau ? Plusieurs indices nous laissent penser que ce texte pourrait être à l’origine autonome, et aurait été tardivement inséré par l’auteur dans sa Vie de Marillac.3 Quelle est la stratégie d’écriture de l’auteur ? La réhabilitation de la bonne Ligue est rendue acceptable car elle se fait au miroir du parti royaliste : comme le royaliste, le bon ligueur est modéré, courageux, il a le sens de l’état, et c’est un « bon français », gallican et opposé aux ambitions espagnoles. Mais derrière ces éléments consensuels, l’auteur ne remet pas en cause la légitimité de la Ligue ; il en fait même le premier instrument de la Providence pour pacifier la France. Subrepticement

  3. Radicicol, a heat shock protein 90 inhibitor, inhibits differentiation and adipogenesis in 3T3-L1 preadipocytes

    Energy Technology Data Exchange (ETDEWEB)

    He, Yonghan [Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 (China); Li, Ying [Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Zhang, Shuocheng [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Perry, Ben [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3 (Canada); Zhao, Tiantian [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Department of Psychology, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4 (Canada); Wang, Yanwen, E-mail: yanwen.wang@nrc.ca [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3 (Canada); Sun, Changhao, E-mail: sun2002changhao@yahoo.com [Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China)

    2013-06-28

    Highlights: •Radicicol suppressed intracellular fat accumulation in 3T3-L1 adipocytes. •Radicicol inhibited the expression of FAS and FABP4. •Radicicol blocked cell cycle at the G1-S phase during cell differentiation. •Radicicol inhibited the PDK1/Akt pathway in adipocyte differentiation. -- Abstract: Heat shock protein 90 (Hsp90) is involved in various cellular processes, such as cell proliferation, differentiation and apoptosis. As adipocyte differentiation plays a critical role in obesity development, the present study investigated the effect of an Hsp90 inhibitor radicicol on the differentiation of 3T3-L1 preadipocytes and potential mechanisms. The cells were treated with different concentrations of radicicol during the first 8 days of cell differentiation. Adipogenesis, the expression of adipogenic transcriptional factors, differentiation makers and cell cycle were determined. It was found that radicicol dose-dependently decreased intracellular fat accumulation through down-regulating the expression of peroxisome proliferator-activated receptor γ (PPAR{sub γ}) and CCAAT element binding protein α (C/EBP{sub α}), fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Flow cytometry analysis revealed that radicicol blocked cell cycle at G1-S phase. Radicicol redcued the phosphorylation of Akt while showing no effect on β-catenin expression. Radicicol decreased the phosphorylation of phosphoinositide-dependent kinase 1 (PDK1). The results suggest that radicicol inhibited 3T3-L1 preadipocyte differentiation through affecting the PDK1/Akt pathway and subsequent inhibition of mitotic clonal expansion and the expression/activity of adipogenic transcriptional factors and their downstream adipogenic proteins.

  4. Radicicol, a heat shock protein 90 inhibitor, inhibits differentiation and adipogenesis in 3T3-L1 preadipocytes

    International Nuclear Information System (INIS)

    He, Yonghan; Li, Ying; Zhang, Shuocheng; Perry, Ben; Zhao, Tiantian; Wang, Yanwen; Sun, Changhao

    2013-01-01

    Highlights: •Radicicol suppressed intracellular fat accumulation in 3T3-L1 adipocytes. •Radicicol inhibited the expression of FAS and FABP4. •Radicicol blocked cell cycle at the G1-S phase during cell differentiation. •Radicicol inhibited the PDK1/Akt pathway in adipocyte differentiation. -- Abstract: Heat shock protein 90 (Hsp90) is involved in various cellular processes, such as cell proliferation, differentiation and apoptosis. As adipocyte differentiation plays a critical role in obesity development, the present study investigated the effect of an Hsp90 inhibitor radicicol on the differentiation of 3T3-L1 preadipocytes and potential mechanisms. The cells were treated with different concentrations of radicicol during the first 8 days of cell differentiation. Adipogenesis, the expression of adipogenic transcriptional factors, differentiation makers and cell cycle were determined. It was found that radicicol dose-dependently decreased intracellular fat accumulation through down-regulating the expression of peroxisome proliferator-activated receptor γ (PPAR γ ) and CCAAT element binding protein α (C/EBP α ), fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Flow cytometry analysis revealed that radicicol blocked cell cycle at G1-S phase. Radicicol redcued the phosphorylation of Akt while showing no effect on β-catenin expression. Radicicol decreased the phosphorylation of phosphoinositide-dependent kinase 1 (PDK1). The results suggest that radicicol inhibited 3T3-L1 preadipocyte differentiation through affecting the PDK1/Akt pathway and subsequent inhibition of mitotic clonal expansion and the expression/activity of adipogenic transcriptional factors and their downstream adipogenic proteins

  5. Nuclear insulin-like growth factor 1 receptor phosphorylates proliferating cell nuclear antigen and rescues stalled replication forks after DNA damage.

    Science.gov (United States)

    Waraky, Ahmed; Lin, Yingbo; Warsito, Dudi; Haglund, Felix; Aleem, Eiman; Larsson, Olle

    2017-11-03

    We have previously shown that the insulin-like growth factor 1 receptor (IGF-1R) translocates to the cell nucleus, where it binds to enhancer-like regions and increases gene transcription. Further studies have demonstrated that nuclear IGF-1R (nIGF-1R) physically and functionally interacts with some nuclear proteins, i.e. the lymphoid enhancer-binding factor 1 (Lef1), histone H3, and Brahma-related gene-1 proteins. In this study, we identified the proliferating cell nuclear antigen (PCNA) as a nIGF-1R-binding partner. PCNA is a pivotal component of the replication fork machinery and a main regulator of the DNA damage tolerance (DDT) pathway. We found that IGF-1R interacts with and phosphorylates PCNA in human embryonic stem cells and other cell lines. In vitro MS analysis of PCNA co-incubated with the IGF-1R kinase indicated tyrosine residues 60, 133, and 250 in PCNA as IGF-1R targets, and PCNA phosphorylation was followed by mono- and polyubiquitination. Co-immunoprecipitation experiments suggested that these ubiquitination events may be mediated by DDT-dependent E2/E3 ligases ( e.g. RAD18 and SHPRH/HLTF). Absence of IGF-1R or mutation of Tyr-60, Tyr-133, or Tyr-250 in PCNA abrogated its ubiquitination. Unlike in cells expressing IGF-1R, externally induced DNA damage in IGF-1R-negative cells caused G 1 cell cycle arrest and S phase fork stalling. Taken together, our results suggest a role of IGF-1R in DDT. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. A rare case of recurrent pyogenic liver abscess since childhood: A case of Papillon-Lefèvre syndrome

    Directory of Open Access Journals (Sweden)

    Somak K Das

    2013-01-01

    Full Text Available Recurrent pyogenic liver abscess since childhood is an uncommon finding in clinical medicine. Papillon-Lefèvre syndrome (PLS is a rare disease characterized by skin lesions caused by palmar-plantar hyperkeratosis, and severe periodontal destruction involving both the primary and permanent dentitions. Till date, more than 200 cases have been reported worldwide. In addition to the skin and oral findings, patients may have immune suppression and an increased susceptibility to bacteria, associated with recurrent pyogenic infections of the skin. Pyogenic liver abscess is an uncommon presentation of this rare syndrome. We present a case of PLS presenting as recurrent pyogenic liver abscess since childhood.

  7. Spindlin1, a novel nuclear protein with a role in the transformation of NIH3T3 cells

    International Nuclear Information System (INIS)

    Gao Yanhong; Yue Wen; Zhang Peng; Li Li; Xie Xiaoyan; Yuan Hongfeng; Chen Lin; Liu Daqing; Yan Fang; Pei Xuetao

    2005-01-01

    spindlin1, a novel human gene recently isolated by our laboratory, is highly homologous to mouse spindlin gene. In this study, we cloned cDNA full-length of this novel gene and send it to GenBank database as spindlin1 (Homo sapiens spindlin1) with Accession No. AF317228. In order to investigate the function of spindlin1, we studied further the subcellular localization of Spindlin1 protein and the effects of spindlin1 overexpression in NIH3T3 cells. The results showed that the fusion protein pEGFP-N1-spindlin1 was located in the nucleus and the C-terminal is correlated with nuclear localization of Spindlin1 protein. NIH3T3 cells which could stably express spindlin1 as a result of RT-PCR analysis compared with the control cells displayed a complete morphological change; made cell growth faster; and increased the percentage of cells in G 2 /M and S phase. Furthermore, overexpressed spindlin1 cells formed colonies in soft agar in vitro and formed tumors in nude mice. Our findings provide direct evidence that spindlin1 gene may contribute to tumorigenesis

  8. Influenza virus PB1-F2 protein induces cell death through mitochondrial ANT3 and VDAC1.

    Directory of Open Access Journals (Sweden)

    Dmitriy Zamarin

    2005-09-01

    Full Text Available The influenza virus PB1-F2 is an 87-amino acid mitochondrial protein that previously has been shown to induce cell death, although the mechanism of apoptosis induction has remained unclear. In the process of characterizing its mechanism of action we found that the viral PB1-F2 protein sensitizes cells to apoptotic stimuli such as tumor necrosis factor alpha, as demonstrated by increased cleavage of caspase 3 substrates in PB1-F2-expressing cells. Moreover, treatment of purified mouse liver mitochondria with recombinant PB1-F2 protein resulted in cytochrome c release, loss of the mitochondrial membrane potential, and enhancement of tBid-induced mitochondrial permeabilization, suggesting a possible mechanism for the observed cellular sensitization to apoptosis. Using glutathione-S-transferase pulldowns with subsequent mass spectrometric analysis, we identified the mitochondrial interactors of the PB1-F2 protein and showed that the viral protein uniquely interacts with the inner mitochondrial membrane adenine nucleotide translocator 3 and the outer mitochondrial membrane voltage-dependent anion channel 1, both of which are implicated in the mitochondrial permeability transition during apoptosis. Consistent with this interaction, blockers of the permeability transition pore complex (PTPC inhibited PB1-F2-induced mitochondrial permeabilization. Based on our findings, we propose a model whereby the proapoptotic PB1-F2 protein acts through the mitochondrial PTPC and may play a role in the down-regulation of the host immune response to infection.

  9. Caffeine Increases Apolipoprotein A-1 and Paraoxonase-1 but not Paraoxonase-3 Protein Levels in Human-Derived Liver (HepG2) Cells.

    Science.gov (United States)

    Sayılan Özgün, Gülben; Özgün, Eray; Tabakçıoğlu, Kıymet; Süer Gökmen, Selma; Eskiocak, Sevgi; Çakır, Erol

    2017-12-01

    Apolipoprotein A-1, paraoxonase-1 and paraoxonase-3 are antioxidant and anti-atherosclerotic structural high-density lipoprotein proteins that are mainly synthesized by the liver. No study has ever been performed to specifically examine the effects of caffeine on paraoxonase enzymes and on liver apolipoprotein A-1 protein levels. To investigate the dose-dependent effects of caffeine on liver apolipoprotein A-1, paraoxonase-1 and paraoxonase-3 protein levels. In vitro experimental study. HepG2 cells were incubated with 0 (control), 10, 50 and 200 μM of caffeine for 24 hours. Cell viability was evaluated by 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. Apolipoprotein A-1, paraoxonase-1 and paraoxonase-3 protein levels were measured by western blotting. We observed a significant increase on apolipoprotein A-1 and paraoxonase-1 protein levels in the cells incubated with 50 µM of caffeine and a significant increase on paraoxonase-1 protein level in the cells incubated with 200 µM of caffeine. Our study showed that caffeine does not change paraoxonase-3 protein level, but the higher doses used in our study do cause an increase in both apolipoprotein A-1 and paraoxonase-1 protein levels in liver cells.

  10. Identification of carbohydrate-binding domains in the attachment proteins of type 1 and type 3 reoviruses.

    Science.gov (United States)

    Chappell, J D; Duong, J L; Wright, B W; Dermody, T S

    2000-09-01

    The reovirus attachment protein, sigma1, is responsible for strain-specific patterns of viral tropism in the murine central nervous system and receptor binding on cultured cells. The sigma1 protein consists of a fibrous tail domain proximal to the virion surface and a virion-distal globular head domain. To better understand mechanisms of reovirus attachment to cells, we conducted studies to identify the region of sigma1 that binds cell surface carbohydrate. Chimeric and truncated sigma1 proteins derived from prototype reovirus strains type 1 Lang (T1L) and type 3 Dearing (T3D) were expressed in insect cells by using a baculovirus vector. Assessment of expressed protein susceptibility to proteolytic cleavage, binding to anti-sigma1 antibodies, and oligomerization indicates that the chimeric and truncated sigma1 proteins are properly folded. To assess carbohydrate binding, recombinant sigma1 proteins were tested for the capacity to agglutinate mammalian erythrocytes and to bind sialic acid presented on glycophorin, the cell surface molecule bound by type 3 reovirus on human erythrocytes. Using a panel of two wild-type and ten chimeric and truncated sigma1 proteins, the sialic acid-binding domain of type 3 sigma1 was mapped to a region of sequence proposed to form the more amino terminal of two predicted beta-sheet structures in the tail. This unit corresponds to morphologic region T(iii) observed in computer-processed electron micrographs of sigma1 protein purified from virions. In contrast, the homologous region of T1L sigma1 sequence was not implicated in carbohydrate binding; rather, sequences in the distal portion of the tail known as the neck were required. Results of these studies demonstrate that a functional receptor-binding domain, which uses sialic acid as its ligand, is contained within morphologic region T(iii) of the type 3 sigma1 tail. Furthermore, our findings indicate that T1L and T3D sigma1 proteins contain different arrangements of receptor

  11. Characterization of protein/ligand interactions by {sup 1}H/{sup 3}H exchange: application to the hAsf{sup 1}/ histone H{sup 3} complex; Caracterisation des interactions proteine / ligand par echange {sup 1}H/{sup 3}H: application au complexe entre la proteine hAsf{sup 1} et l'histone H{sup 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mousseau, G

    2007-05-15

    In the first chapter will be exposed the main current methods of identification to high debit of the interactions protein-protein. Then the methods allowing to characterize the surfaces of interaction or to determine the structures of the complexes will be listed by discussing the main advantages and the inconveniences. Our approach of characterization of the zones of interaction protein-protein is a method of 'foot-printing' 1, based on the identification and radicals' quantification formed on the residues of proteins accessible to the water. The second chapter will so discuss the development of this method of radical identification using the atom of tritium as radioactive label. Our approach will finally be validated in the third chapter by applying it to the characterization of amino acids involved in the interaction enter the human protein anti silencing factor 1 (hAsf11-156) and a fragment of the histone H{sup 3}. (N.C.)

  12. Insect cells are superior to Escherichia coli in producing malaria proteins inducing IgG targeting PfEMP1 on infected erythrocytes

    Directory of Open Access Journals (Sweden)

    Joergensen Louise

    2010-11-01

    Full Text Available Abstract Background The PFD1235w Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1 antigen is associated with severe malaria in children and can be expressed on the surface of infected erythrocytes (IE adhering to ICAM1. However, the exact three-dimensional structure of this PfEMP1 and its surface-exposed epitopes are unknown. An insect cell and Escherichia coli based system was used to express single and double domains encoded by the pfd1235w var gene. The resulting recombinant proteins have been evaluated for yield and purity and their ability to induce rat antibodies, which react with the native PFD1235w PfEMP1 antigen expressed on 3D7PFD1235w-IE. Their recognition by human anti-malaria antibodies from previously infected Tanzanian donors was also analysed. Methods The recombinant proteins were run on SDS-PAGE and Western blots for quantification and size estimation. Insect cell and E. coli-produced recombinant proteins were coupled to a bead-based Luminex assay to measure the plasma antibody reactivity of 180 samples collected from Tanzanian individuals. The recombinant proteins used for immunization of rats and antisera were also tested by flow cytometry for their ability to surface label 3D7PFD1235w-IE. Results All seven pAcGP67A constructs were successfully expressed as recombinant protein in baculovirus-infected insect cells and subsequently produced to a purity of 60-97% and a yield of 2-15 mg/L. By comparison, only three of seven pET101/D-TOPO constructs expressed in the E. coli system could be produced at all with purity and yield ranging from 3-95% and 6-11 mg/L. All seven insect cell, but only two of the E. coli produced proteins induced antibodies reactive with native PFD1235w expressed on 3D7PFD1235w-IE. The recombinant proteins were recognized in an age- and transmission intensity-dependent manner by antibodies from 180 Tanzanian individuals in a bead-based Luminex assay. Conclusions The baculovirus based insect cell

  13. BAG3 regulates total MAP1LC3B protein levels through a translational but not transcriptional mechanism.

    Science.gov (United States)

    Rodríguez, Andrea E; López-Crisosto, Camila; Peña-Oyarzún, Daniel; Salas, Daniela; Parra, Valentina; Quiroga, Clara; Morawe, Tobias; Chiong, Mario; Behl, Christian; Lavandero, Sergio

    2016-01-01

    Autophagy is mainly regulated by post-translational and lipid modifications of ATG proteins. In some scenarios, the induction of autophagy is accompanied by increased levels of certain ATG mRNAs such as MAP1LC3B/LC3B, ATG5 or ATG12. However, little is known about the regulation of ATG protein synthesis at the translational level. The cochaperone of the HSP70 system BAG3 (BCL2-associated athanogene 3) has been associated to LC3B lipidation through an unknown mechanism. In the present work, we studied how BAG3 controls autophagy in HeLa and HEK293 cells. Our results showed that BAG3 regulates the basal amount of total cellular LC3B protein by controlling its mRNA translation. This effect was apparently specific to LC3B because other ATG protein levels were not affected. BAG3 knockdown did not affect LC3B lipidation induced by nutrient deprivation or proteasome inhibition. We concluded that BAG3 maintains the basal amount of LC3B protein by controlling the translation of its mRNA in HeLa and HEK293 cells.

  14. Targeting protein-protein interaction between MLL1 and reciprocal proteins for leukemia therapy.

    Science.gov (United States)

    Wang, Zhi-Hui; Li, Dong-Dong; Chen, Wei-Lin; You, Qi-Dong; Guo, Xiao-Ke

    2018-01-15

    The mixed lineage leukemia protein-1 (MLL1), as a lysine methyltransferase, predominantly regulates the methylation of histone H3 lysine 4 (H3K4) and functions in hematopoietic stem cell (HSC) self-renewal. MLL1 gene fuses with partner genes that results in the generation of MLL1 fusion proteins (MLL1-FPs), which are frequently detected in acute leukemia. In the progress of leukemogenesis, a great deal of proteins cooperate with MLL1 to form multiprotein complexes serving for the dysregulation of H3K4 methylation, the overexpression of homeobox (HOX) cluster genes, and the consequent generation of leukemia. Hence, disrupting the interactions between MLL1 and the reciprocal proteins has been considered to be a new treatment strategy for leukemia. Here, we reviewed potential protein-protein interactions (PPIs) between MLL1 and its reciprocal proteins, and summarized the inhibitors to target MLL1 PPIs. The druggability of MLL1 PPIs for leukemia were also discussed. Copyright © 2017. Published by Elsevier Ltd.

  15. Plasma Membrane CRPK1-Mediated Phosphorylation of 14-3-3 Proteins Induces Their Nuclear Import to Fine-Tune CBF Signaling during Cold Response.

    Science.gov (United States)

    Liu, Ziyan; Jia, Yuxin; Ding, Yanglin; Shi, Yiting; Li, Zhen; Guo, Yan; Gong, Zhizhong; Yang, Shuhua

    2017-04-06

    In plant cells, changes in fluidity of the plasma membrane may serve as the primary sensor of cold stress; however, the precise mechanism and how the cell transduces and fine-tunes cold signals remain elusive. Here we show that the cold-activated plasma membrane protein cold-responsive protein kinase 1 (CRPK1) phosphorylates 14-3-3 proteins. The phosphorylated 14-3-3 proteins shuttle from the cytosol to the nucleus, where they interact with and destabilize the key cold-responsive C-repeat-binding factor (CBF) proteins. Consistent with this, the crpk1 and 14-3-3κλ mutants show enhanced freezing tolerance, and transgenic plants overexpressing 14-3-3λ show reduced freezing tolerance. Further study shows that CRPK1 is essential for the nuclear translocation of 14-3-3 proteins and for 14-3-3 function in freezing tolerance. Thus, our study reveals that the CRPK1-14-3-3 module transduces the cold signal from the plasma membrane to the nucleus to modulate CBF stability, which ensures a faithfully adjusted response to cold stress of plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Characterization of protein/ligand interactions by 1H/3H exchange: application to the hAsf1/ histone H3 complex

    International Nuclear Information System (INIS)

    Mousseau, G.

    2007-05-01

    In the first chapter will be exposed the main current methods of identification to high debit of the interactions protein-protein. Then the methods allowing to characterize the surfaces of interaction or to determine the structures of the complexes will be listed by discussing the main advantages and the inconveniences. Our approach of characterization of the zones of interaction protein-protein is a method of 'foot-printing' 1, based on the identification and radicals' quantification formed on the residues of proteins accessible to the water. The second chapter will so discuss the development of this method of radical identification using the atom of tritium as radioactive label. Our approach will finally be validated in the third chapter by applying it to the characterization of amino acids involved in the interaction enter the human protein anti silencing factor 1 (hAsf11-156) and a fragment of the histone H 3 . (N.C.)

  17. Lysosomal trafficking of {beta}-catenin induced by the tea polyphenol epigallocatechin-3-gallate

    Energy Technology Data Exchange (ETDEWEB)

    Dashwood, Wan-Mohaiza [Linus Pauling Institute, 571 Weniger Hall, Oregon State University, Corvallis, OR 97331-6512 (United States); Carter, Orianna [Linus Pauling Institute, 571 Weniger Hall, Oregon State University, Corvallis, OR 97331-6512 (United States); Al-Fageeh, Mohamed [Linus Pauling Institute, 571 Weniger Hall, Oregon State University, Corvallis, OR 97331-6512 (United States); Li, Qingjie [Linus Pauling Institute, 571 Weniger Hall, Oregon State University, Corvallis, OR 97331-6512 (United States); Dashwood, Roderick H. [Linus Pauling Institute, 571 Weniger Hall, Oregon State University, Corvallis, OR 97331-6512 (United States)]. E-mail: Rod.Dashwood@oregonstate.edu

    2005-12-11

    {beta}-Catenin is a cadherin-binding protein involved in cell-cell adhesion, which also functions as a transcriptional activator when complexed in the nucleus with members of the T-cell factor (TCF)/lymphoid enhancer factor (LEF) family of proteins. There is considerable interest in mechanisms that down-regulate {beta}-catenin, since this provides an avenue for the prevention of colorectal and other cancers in which {beta}-catenin is frequently over-expressed. We show here that physiologically relevant concentrations of the tea polyphenol epigallocatechin-3-gallate (EGCG) inhibited {beta}-catenin/TCF-dependent reporter activity in human embryonic kidney 293 cells transfected with wild type or mutant {beta}-catenins, and there was a corresponding decrease in {beta}-catenin protein levels in the nuclear, cytosolic and membrane-associated fractions. However, {beta}-catenin accumulated as punctate aggregates in response to EGCG treatment, including in human colon cancer cells over-expressing {beta}-catenin endogenously. Confocal microscopy studies revealed that the aggregated {beta}-catenin in HEK293 cells was extra-nuclear and co-localized with lysosomes, suggesting that EGCG activated a pathway involving lysosomal trafficking of {beta}-catenin. Lysosomal inhibitors leupeptin and transepoxysuccinyl-L-leucylamido(4-guanido)butane produced an increase in {beta}-catenin protein in total cell lysates, without a concomitant increase in {beta}-catenin transcriptional activity. These data provide the first evidence that EGCG facilitates the trafficking of {beta}-catenin into lysosomes, presumably as a mechanism for sequestering {beta}-catenin and circumventing further nuclear transport and activation of {beta}-catenin/TCF/LEF signaling.

  18. Lysosomal trafficking of β-catenin induced by the tea polyphenol epigallocatechin-3-gallate

    International Nuclear Information System (INIS)

    Dashwood, Wan-Mohaiza; Carter, Orianna; Al-Fageeh, Mohamed; Li, Qingjie; Dashwood, Roderick H.

    2005-01-01

    β-Catenin is a cadherin-binding protein involved in cell-cell adhesion, which also functions as a transcriptional activator when complexed in the nucleus with members of the T-cell factor (TCF)/lymphoid enhancer factor (LEF) family of proteins. There is considerable interest in mechanisms that down-regulate β-catenin, since this provides an avenue for the prevention of colorectal and other cancers in which β-catenin is frequently over-expressed. We show here that physiologically relevant concentrations of the tea polyphenol epigallocatechin-3-gallate (EGCG) inhibited β-catenin/TCF-dependent reporter activity in human embryonic kidney 293 cells transfected with wild type or mutant β-catenins, and there was a corresponding decrease in β-catenin protein levels in the nuclear, cytosolic and membrane-associated fractions. However, β-catenin accumulated as punctate aggregates in response to EGCG treatment, including in human colon cancer cells over-expressing β-catenin endogenously. Confocal microscopy studies revealed that the aggregated β-catenin in HEK293 cells was extra-nuclear and co-localized with lysosomes, suggesting that EGCG activated a pathway involving lysosomal trafficking of β-catenin. Lysosomal inhibitors leupeptin and transepoxysuccinyl-L-leucylamido(4-guanido)butane produced an increase in β-catenin protein in total cell lysates, without a concomitant increase in β-catenin transcriptional activity. These data provide the first evidence that EGCG facilitates the trafficking of β-catenin into lysosomes, presumably as a mechanism for sequestering β-catenin and circumventing further nuclear transport and activation of β-catenin/TCF/LEF signaling

  19. Molecular tweezers modulate 14-3-3 protein-protein interactions

    Science.gov (United States)

    Bier, David; Rose, Rolf; Bravo-Rodriguez, Kenny; Bartel, Maria; Ramirez-Anguita, Juan Manuel; Dutt, Som; Wilch, Constanze; Klärner, Frank-Gerrit; Sanchez-Garcia, Elsa; Schrader, Thomas; Ottmann, Christian

    2013-03-01

    Supramolecular chemistry has recently emerged as a promising way to modulate protein functions, but devising molecules that will interact with a protein in the desired manner is difficult as many competing interactions exist in a biological environment (with solvents, salts or different sites for the target biomolecule). We now show that lysine-specific molecular tweezers bind to a 14-3-3 adapter protein and modulate its interaction with partner proteins. The tweezers inhibit binding between the 14-3-3 protein and two partner proteins—a phosphorylated (C-Raf) protein and an unphosphorylated one (ExoS)—in a concentration-dependent manner. Protein crystallography shows that this effect arises from the binding of the tweezers to a single surface-exposed lysine (Lys214) of the 14-3-3 protein in the proximity of its central channel, which normally binds the partner proteins. A combination of structural analysis and computer simulations provides rules for the tweezers' binding preferences, thus allowing us to predict their influence on this type of protein-protein interactions.

  20. Mutational analysis of varicella-zoster virus (VZV) immediate early protein (IE62) subdomains and their importance in viral replication

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Mohamed I., E-mail: mkhalil2@stanford.edu [Departments of Pediatrics and Microbiology & Immunology, Stan ford University School of Medicine, Stanford, CA (United States); Department of Molecular Biology, National Research Centre, El-Buhouth St., Cairo (Egypt); Che, Xibing; Sung, Phillip; Sommer, Marvin H. [Departments of Pediatrics and Microbiology & Immunology, Stan ford University School of Medicine, Stanford, CA (United States); Hay, John [Department of Microbiology and Immunology, School of Medicine and Biomedical Science, University at Buffalo, Buffalo, NY (United States); Arvin, Ann M. [Departments of Pediatrics and Microbiology & Immunology, Stan ford University School of Medicine, Stanford, CA (United States)

    2016-05-15

    VZV IE62 is an essential, immediate-early, tegument protein and consists of five domains. We generated recombinant viruses carrying mutations in the first three IE62 domains and tested their influence on VZV replication kinetics. The mutations in domain I did not affect replication kinetics while domain II mutations, disrupting the DNA binding and dimerization domain (DBD), were lethal for VZV replication. Mutations in domain III of the nuclear localization signal (NLS) and the two phosphorylation sites S686A/S722A resulted in slower growth in early and late infection respectively and were associated with IE62 accumulation in the cytoplasm and nucleus respectively. This study mapped the functional domains of IE62 in context of viral infection, indicating that DNA binding and dimerization domain is essential for VZV replication. In addition, the correct localization of IE62, whether nuclear or cytoplasmic, at different points in the viral life cycle, is important for normal progression of VZV replication. - Highlights: • Mutation of IE62 domain I did not affect VZV replication in melanoma cells. • IE62 domain II and III are important for VZV replication in melanoma cells. • Mutations of IE62 domain II (DBD) were lethal for virus replication. • Mutations of IE62 NLS and phosphorylation sites inhibited VZV replication. • NLS and S686A/S722A mutations altered localization of IE62 during early and late infection.

  1. Mutational analysis of varicella-zoster virus (VZV) immediate early protein (IE62) subdomains and their importance in viral replication

    International Nuclear Information System (INIS)

    Khalil, Mohamed I.; Che, Xibing; Sung, Phillip; Sommer, Marvin H.; Hay, John; Arvin, Ann M.

    2016-01-01

    VZV IE62 is an essential, immediate-early, tegument protein and consists of five domains. We generated recombinant viruses carrying mutations in the first three IE62 domains and tested their influence on VZV replication kinetics. The mutations in domain I did not affect replication kinetics while domain II mutations, disrupting the DNA binding and dimerization domain (DBD), were lethal for VZV replication. Mutations in domain III of the nuclear localization signal (NLS) and the two phosphorylation sites S686A/S722A resulted in slower growth in early and late infection respectively and were associated with IE62 accumulation in the cytoplasm and nucleus respectively. This study mapped the functional domains of IE62 in context of viral infection, indicating that DNA binding and dimerization domain is essential for VZV replication. In addition, the correct localization of IE62, whether nuclear or cytoplasmic, at different points in the viral life cycle, is important for normal progression of VZV replication. - Highlights: • Mutation of IE62 domain I did not affect VZV replication in melanoma cells. • IE62 domain II and III are important for VZV replication in melanoma cells. • Mutations of IE62 domain II (DBD) were lethal for virus replication. • Mutations of IE62 NLS and phosphorylation sites inhibited VZV replication. • NLS and S686A/S722A mutations altered localization of IE62 during early and late infection.

  2. Cytoprotective role of the fatty acid binding protein 4 against oxidative and endoplasmic reticulum stress in 3T3-L1 adipocytes

    Directory of Open Access Journals (Sweden)

    Kazuaki Kajimoto

    2014-01-01

    Full Text Available The fatty acid binding protein 4 (FABP4, one of the most abundant proteins in adipocytes, has been reported to have a proinflammatory function in macrophages. However, the physiological role of FABP4, which is constitutively expressed in adipocytes, has not been fully elucidated. Previously, we demonstrated that FABP4 was involved in the regulation of interleukin-6 (IL-6 and vascular endothelial growth factor (VEGF production in 3T3-L1 adipocytes. In this study, we examined the effects of FABP4 silencing on the oxidative and endoplasmic reticulum (ER stress in 3T3-L1 adipocytes. We found that the cellular reactive oxygen species (ROS and 8-nitro-cyclic GMP levels were significantly elevated in the differentiated 3T3-L1 adipocytes transfected with a small interfering RNA (siRNA against Fabp4, although the intracellular levels or enzyme activities of antioxidants including reduced glutathione (GSH, superoxide dismutase (SOD and glutathione S-transferase A4 (GSTA4 were not altered. An in vitro evaluation using the recombinant protein revealed that FABP4 itself functions as a scavenger protein against hydrogen peroxide (H2O2. FABP4-knockdown resulted in a significant lowering of cell viability of 3T3-L1 adipocytes against H2O2 treatment. Moreover, four kinds of markers related to the ER stress response including the endoplasmic reticulum to nucleus signaling 1 (Ern1, the signal sequence receptor α (Ssr1, the ORM1-like 3 (Ormdl3, and the spliced X-box binding protein 1 (Xbp1s, were all elevated as the result of the knockdown of FABP4. Consequently, FABP4 might have a new role as an antioxidant protein against H2O2 and contribute to cytoprotection against oxidative and ER stress in adipocytes.

  3. Biochemical characterization of the prolyl 3-hydroxylase 1.cartilage-associated protein.cyclophilin B complex.

    Science.gov (United States)

    Ishikawa, Yoshihiro; Wirz, Jackie; Vranka, Janice A; Nagata, Kazuhiro; Bächinger, Hans Peter

    2009-06-26

    The rough endoplasmic reticulum-resident protein complex consisting of prolyl 3-hydroxylase 1 (P3H1), cartilage-associated protein (CRTAP), and cyclophilin B (CypB) can be isolated from chick embryos on a gelatin-Sepharose column, indicating some involvement in the biosynthesis of procollagens. Prolyl 3-hydroxylase 1 modifies a single proline residue in the alpha chains of type I, II, and III collagens to (3S)-hydroxyproline. The peptidyl-prolyl cis-trans isomerase activity of cyclophilin B was shown previously to catalyze the rate of triple helix formation. Here we show that cyclophilin B in the complex shows peptidyl-prolyl cis-trans isomerase activity and that the P3H1.CRTAP.CypB complex has another important function: it acts as a chaperone molecule when tested with two classical chaperone assays. The P3H1.CRTAP.CypB complex inhibited the thermal aggregation of citrate synthase and was active in the denatured rhodanese refolding and aggregation assay. The chaperone activity of the complex was higher than that of protein-disulfide isomerase, a well characterized chaperone. The P3H1.CRTAP.CypB complex also delayed the in vitro fibril formation of type I collagen, indicating that this complex is also able to interact with triple helical collagen and acts as a collagen chaperone.

  4. Promiscuous RNA binding ensures effective encapsidation of APOBEC3 proteins by HIV-1.

    Directory of Open Access Journals (Sweden)

    Luis Apolonia

    2015-01-01

    Full Text Available The apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3 proteins are cell-encoded cytidine deaminases, some of which, such as APOBEC3G (A3G and APOBEC3F (A3F, act as potent human immunodeficiency virus type-1 (HIV-1 restriction factors. These proteins require packaging into HIV-1 particles to exert their antiviral activities, but the molecular mechanism by which this occurs is incompletely understood. The nucleocapsid (NC region of HIV-1 Gag is required for efficient incorporation of A3G and A3F, and the interaction between A3G and NC has previously been shown to be RNA-dependent. Here, we address this issue in detail by first determining which RNAs are able to bind to A3G and A3F in HV-1 infected cells, as well as in cell-free virions, using the unbiased individual-nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP method. We show that A3G and A3F bind many different types of RNA, including HIV-1 RNA, cellular mRNAs and small non-coding RNAs such as the Y or 7SL RNAs. Interestingly, A3G/F incorporation is unaffected when the levels of packaged HIV-1 genomic RNA (gRNA and 7SL RNA are reduced, implying that these RNAs are not essential for efficient A3G/F packaging. Confirming earlier work, HIV-1 particles formed with Gag lacking the NC domain (Gag ΔNC fail to encapsidate A3G/F. Here, we exploit this system by demonstrating that the addition of an assortment of heterologous RNA-binding proteins and domains to Gag ΔNC efficiently restored A3G/F packaging, indicating that A3G and A3F have the ability to engage multiple RNAs to ensure viral encapsidation. We propose that the rather indiscriminate RNA binding characteristics of A3G and A3F promote functionality by enabling recruitment into a wide range of retroviral particles whose packaged RNA genomes comprise divergent sequences.

  5. ANSI/ASHRAE/IES Standard 90.1-2013 Preliminary Determination: Qualitative Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Mark A.; Hart, Reid; Athalye, Rahul A.; Rosenberg, Michael I.; Richman, Eric E.; Winiarski, David W.

    2014-03-01

    Section 304(b) of the Energy Conservation and Production Act (ECPA), as amended, requires the Secretary of Energy to make a determination each time a revised version of ASHRAE Standard 90.1 is published with respect to whether the revised standard would improve energy efficiency in commercial buildings. When the U.S. Department of Energy (DOE) issues an affirmative determination on Standard 90.1, states are statutorily required to certify within two years that they have reviewed and updated the commercial provisions of their building energy code, with respect to energy efficiency, to meet or exceed the revised standard. This report provides a preliminary qualitative analysis of all addenda to ANSI/ASHRAE/IES Standard 90.1-2010 (referred to as Standard 90.1-2010 or 2010 edition) that were included in ANSI/ASHRAE/IES Standard 90.1-2013 (referred to as Standard 90.1-2013 or 2013 edition).

  6. Ubiquitination and degradation of the hominoid-specific oncoprotein TBC1D3 is regulated by protein palmitoylation

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Chen; Lange, Jeffrey J.; Samovski, Dmitri [Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110 (United States); Su, Xiong [Department of Internal Medicine, Center for Human Nutrition Washington University School of Medicine, St. Louis, MO 63110 (United States); Liu, Jialiu [Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110 (United States); Sundaresan, Sinju [Department of Internal Medicine, Center for Human Nutrition Washington University School of Medicine, St. Louis, MO 63110 (United States); Stahl, Philip D., E-mail: pstahl@wustl.edu [Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110 (United States)

    2013-05-03

    Highlights: •Hominoid-specific oncogene TBC1D3 is targeted to plasma membrane by palmitoylation. •TBC1D3 is palmitoylated on two cysteine residues: 318 and 325. •TBC1D3 palmitoylation governs growth factors-induced TBC1D3 degradation. •Post-translational modifications may regulate oncogenic properties of TBC1D3. -- Abstract: Expression of the hominoid-specific oncoprotein TBC1D3 promotes enhanced cell growth and proliferation by increased activation of signal transduction through several growth factors. Recently we documented the role of CUL7 E3 ligase in growth factors-induced ubiquitination and degradation of TBC1D3. Here we expanded our study to discover additional molecular mechanisms that control TBC1D3 protein turnover. We report that TBC1D3 is palmitoylated on two cysteine residues: 318 and 325. The expression of double palmitoylation mutant TBC1D3:C318/325S resulted in protein mislocalization and enhanced growth factors-induced TBC1D3 degradation. Moreover, ubiquitination of TBC1D3 via CUL7 E3 ligase complex was increased by mutating the palmitoylation sites, suggesting that depalmitoylation of TBC1D3 makes the protein more available for ubiquitination and degradation. The results reported here provide novel insights into the molecular mechanisms that govern TBC1D3 protein degradation. Dysregulation of these mechanisms in vivo could potentially result in aberrant TBC1D3 expression and promote oncogenesis.

  7. Identification of a third protein 4.1 tumor suppressor, protein 4.1R, in meningioma pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Robb, Victoria A.; Li, Wen; Gascard, Philippe; Perry, Arie; Mohandas, Narla; Gutmann, David H.

    2003-06-11

    Meningiomas are common tumors of the central nervous system, however, the mechanisms under lying their pathogenesis are largely undefined. Two members of the Protein 4.1 super family, the neuro fibromatosis 2 (NF2) gene product (merlin/schwannomin) and Protein 4.1B have been implicated as meningioma tumor suppressors. In this report, we demonstrate that another Protein 4.1 family member, Protein 4.1R, also functions as a meningioma tumor suppressor. Based on the assignment of the Protein 4.1R gene to chromosome 1p32-36, a common region of deletion observed in meningiomas, we analyzed Protein 4.1R expression in meningioma cell lines and surgical tumor specimens. We observed loss of Protein 4.1R protein expression in two meningioma cell lines (IOMM-Lee, CH157-MN) by Western blotting as well as in 6 of 15 sporadic meningioma as by immuno histo chemistry (IHC). Analysis of a subset of these sporadic meningiomas by fluorescent in situ hybridization (FISH) with a Protein 4.1R specific probe demonstrated 100 percent concordance with the IHC results. In support of a meningioma tumor suppressor function, over expression of Protein 4.1R resulted in suppression of IOMM-Lee and CH157MN cell proliferation. Similar to the Protein 4.1B and merlin meningioma tumor suppressors, Protein 4.1R localization in the membrane fraction increased significantly under conditions of growth arrest in vitro. Lastly, Protein 4.1R interacted with some known merlin/Protein 4.1B interactors such as CD44 and bII-spectrin, but did not associate with the Protein 4.1B interactors 14-3-3 and PRMT3 or the merlin binding proteins SCHIP-1 and HRS. Collectively, these results suggest that Protein 4.1R functions as an important tumor suppressor important in the molecular pathogenesis of meningioma.

  8. Arabidopsis GCP3-interacting protein 1/MOZART 1 is an integral component of the γ-tubulin-containing microtubule nucleating complex.

    Science.gov (United States)

    Nakamura, Masayoshi; Yagi, Noriyoshi; Kato, Takehide; Fujita, Satoshi; Kawashima, Noriyuki; Ehrhardt, David W; Hashimoto, Takashi

    2012-07-01

    Microtubules in eukaryotic cells are nucleated from ring-shaped complexes that contain γ-tubulin and a family of homologous γ-tubulin complex proteins (GCPs), but the subunit composition of the complexes can vary among fungi, animals and plants. Arabidopsis GCP3-interacting protein 1 (GIP1), a small protein with no homology to the GCP family, interacts with GCP3 in vitro, and is a plant homolog of vertebrate mitotic-spindle organizing protein associated with a ring of γ-tubulin 1 (MOZART1), a recently identified component of the γ-tubulin complex in human cell lines. In this study, we characterized two closely related Arabidopsis GIP1s: GIP1a and GIP1b. Single mutants of gip1a and gip1b were indistinguishable from wild-type plants, but their double mutant was embryonic lethal, and showed impaired development of male gametophytes. Functional fusions of GIP1a with green fluorescent protein (GFP) were used to purify GIP1a-containing complexes from Arabidopsis plants, which contained all the subunits (except NEDD1) previously identified in the Arabidopsis γ-tubulin complexes. GIP1a and GIP1b interacted specifically with Arabidopsis GCP3 in yeast. GFP-GIP1a labeled mitotic microtubule arrays in a pattern largely consistent with, but partly distinct from, the localization of the γ-tubulin complex containing GCP2 or GCP3 in planta. In interphase cortical arrays, the labeled complexes were preferentially recruited to existing microtubules, from which new microtubules were efficiently nucleated. However, in contrast to complexes labeled with tagged GCP2 or GCP3, their recruitment to cortical areas with no microtubules was rarely observed. These results indicate that GIP1/MOZART1 is an integral component of a subset of the Arabidopsis γ-tubulin complexes. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  9. Molecular network including eIF1AX, RPS7, and 14-3-3γ regulates protein translation and cell proliferation in bovine mammary epithelial cells.

    Science.gov (United States)

    Yu, Cuiping; Luo, Chaochao; Qu, Bo; Khudhair, Nagam; Gu, Xinyu; Zang, Yanli; Wang, Chunmei; Zhang, Na; Li, Qingzhang; Gao, Xuejun

    2014-12-15

    14-3-3γ, an isoform of the 14-3-3 protein family, was proved to be a positive regulator of mTOR pathway. Here, we analyzed the function of 14-3-3γ in protein synthesis using bovine mammary epithelial cells (BMECs). We found that 14-3-3γ interacted with eIF1AX and RPS7 by 14-3-3γ coimmunoprecipitation (CoIP) and matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight (MALDI-TOF/TOF) peptide mass fingerprinting analysis. These interactions of 14-3-3γ with eIF1AX and RPS7 were further confirmed by colocalization and fluorescence resonance energy transfer (FRET) analysis. We also found that methionine could promote protein synthesis and trigger the protein expression levels of 14-3-3γ, eIF1AX and RPS7. Analysis of overexpression and inhibition of 14-3-3γ confirmed that it positively affected the protein expression levels of eIF1AX, RPS7, Stat5 and mTOR pathway to promote protein synthesis and cell proliferation in BMECs. We further showed that overexpression of eIF1AX and RPS7 also triggered protein translation and cell proliferation. From these results, we conclude that molecular network including eIF1AX, RPS7, and 14-3-3γ regulates protein translation and cell proliferation in BMECs. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Model of OSBP-Mediated Cholesterol Supply to Aichi Virus RNA Replication Sites Involving Protein-Protein Interactions among Viral Proteins, ACBD3, OSBP, VAP-A/B, and SAC1.

    Science.gov (United States)

    Ishikawa-Sasaki, Kumiko; Nagashima, Shigeo; Taniguchi, Koki; Sasaki, Jun

    2018-04-15

    Positive-strand RNA viruses, including picornaviruses, utilize cellular machinery for genome replication. Previously, we reported that each of the 2B, 2BC, 2C, 3A, and 3AB proteins of Aichi virus (AiV), a picornavirus, forms a complex with the Golgi apparatus protein ACBD3 and phosphatidylinositol 4-kinase IIIβ (PI4KB) at viral RNA replication sites (replication organelles [ROs]), enhancing PI4KB-dependent phosphatidylinositol 4-phosphate (PI4P) production. Here, we demonstrate AiV hijacking of the cellular cholesterol transport system involving oxysterol-binding protein (OSBP), a PI4P-binding cholesterol transfer protein. AiV RNA replication was inhibited by silencing cellular proteins known to be components of this pathway, OSBP, the ER membrane proteins VAPA and VAPB (VAP-A/B), the PI4P-phosphatase SAC1, and PI-transfer protein β. OSBP, VAP-A/B, and SAC1 were present at RNA replication sites. We also found various previously unknown interactions among the AiV proteins (2B, 2BC, 2C, 3A, and 3AB), ACBD3, OSBP, VAP-A/B, and SAC1, and the interactions were suggested to be involved in recruiting the component proteins to AiV ROs. Importantly, the OSBP-2B interaction enabled PI4P-independent recruitment of OSBP to AiV ROs, indicating preferential recruitment of OSBP among PI4P-binding proteins. Protein-protein interaction-based OSBP recruitment has not been reported for other picornaviruses. Cholesterol was accumulated at AiV ROs, and inhibition of OSBP-mediated cholesterol transfer impaired cholesterol accumulation and AiV RNA replication. Electron microscopy showed that AiV-induced vesicle-like structures were close to ER membranes. Altogether, we conclude that AiV directly recruits the cholesterol transport machinery through protein-protein interactions, resulting in formation of membrane contact sites between the ER and AiV ROs and cholesterol supply to the ROs. IMPORTANCE Positive-strand RNA viruses utilize host pathways to modulate the lipid composition of

  11. ANSI/ASHRAE/IES Standard 90.1-2013 Determination of Energy Savings: Qualitative Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Mark A.; Rosenberg, Michael I.; Hart, Philip R.; Richman, Eric E.; Athalye, Rahul A.; Winiarski, David W.

    2014-09-04

    This report provides a final qualitative analysis of all addenda to ANSI/ASHRAE/IES Standard 90.1-2010 (referred to as Standard 90.1-2010 or 2010 edition) that were included in ANSI/ASHRAE/IES Standard 90.1-2013 (referred to as Standard 90.1-2013 or 2013 edition). All addenda in creating Standard 90.1-2013 were evaluated for their projected impact on energy efficiency. Each addendum was characterized as having a positive, neutral, or negative impact on overall building energy efficiency.

  12. High basal Wnt signaling is further induced by PI3K/mTor inhibition but sensitive to cSRC inhibition in mammary carcinoma cell lines with HER2/3 overexpression

    NARCIS (Netherlands)

    Timmermans-Sprang, Elpetra P M; Gracanin, Ana; Mol, Jan A

    2015-01-01

    BACKGROUND: Elevated basal, ligand-independent, Wnt signaling in some canine breast cancer cells is not caused by classical mutations in APC, β-Catenin or GSK3β but, at least partially, by enhanced LEF1 expression. We examined the expression and function of EGFR/HER-regulated pathways on the

  13. The stress protein BAG3 stabilizes Mcl-1 protein and promotes survival of cancer cells and resistance to antagonist ABT-737.

    Science.gov (United States)

    Boiani, Mariana; Daniel, Cristina; Liu, Xueyuan; Hogarty, Michael D; Marnett, Lawrence J

    2013-03-08

    Members of the Bcl-2 family of proteins are important inhibitors of apoptosis in human cancer and are targets for novel anticancer agents such as the Bcl-2 antagonists, ABT-263 (Navitoclax), and its analog ABT-737. Unlike Bcl-2, Mcl-1 is not antagonized by ABT-263 or ABT-737 and is considered to be a major factor in resistance. Also, Mcl-1 exhibits differential regulation when compared with other Bcl-2 family members and is a target for anticancer drug discovery. Here, we demonstrate that BAG3, an Hsp70 co-chaperone, protects Mcl-1 from proteasomal degradation, thereby promoting its antiapoptotic activity. Using neuroblastoma cell lines, with a defined Bcl-2 family dependence, we found that BAG3 expression correlated with Mcl-1 dependence and ABT-737 resistance. RNA silencing of BAG3 led to a marked reduction in Mcl-1 protein levels and overcame ABT-737 resistance in Mcl-1-dependent cells. In ABT-737-resistant cells, Mcl-1 co-immunoprecipitated with BAG3, and loss of Mcl-1 after BAG3 silencing was prevented by proteasome inhibition. BAG3 and Mcl-1 were co-expressed in a panel of diverse cancer cell lines resistant to ABT-737. Silencing BAG3 reduced Mcl-1 protein levels and overcame ABT-737 resistance in several of the cell lines, including triple-negative breast cancer (MDA-MB231) and androgen receptor-negative prostate cancer (PC3) cells. These studies identify BAG3-mediated Mcl-1 stabilization as a potential target for cancer drug discovery.

  14. The Stress Protein BAG3 Stabilizes Mcl-1 Protein and Promotes Survival of Cancer Cells and Resistance to Antagonist ABT-737*

    Science.gov (United States)

    Boiani, Mariana; Daniel, Cristina; Liu, Xueyuan; Hogarty, Michael D.; Marnett, Lawrence J.

    2013-01-01

    Members of the Bcl-2 family of proteins are important inhibitors of apoptosis in human cancer and are targets for novel anticancer agents such as the Bcl-2 antagonists, ABT-263 (Navitoclax), and its analog ABT-737. Unlike Bcl-2, Mcl-1 is not antagonized by ABT-263 or ABT-737 and is considered to be a major factor in resistance. Also, Mcl-1 exhibits differential regulation when compared with other Bcl-2 family members and is a target for anticancer drug discovery. Here, we demonstrate that BAG3, an Hsp70 co-chaperone, protects Mcl-1 from proteasomal degradation, thereby promoting its antiapoptotic activity. Using neuroblastoma cell lines, with a defined Bcl-2 family dependence, we found that BAG3 expression correlated with Mcl-1 dependence and ABT-737 resistance. RNA silencing of BAG3 led to a marked reduction in Mcl-1 protein levels and overcame ABT-737 resistance in Mcl-1-dependent cells. In ABT-737-resistant cells, Mcl-1 co-immunoprecipitated with BAG3, and loss of Mcl-1 after BAG3 silencing was prevented by proteasome inhibition. BAG3 and Mcl-1 were co-expressed in a panel of diverse cancer cell lines resistant to ABT-737. Silencing BAG3 reduced Mcl-1 protein levels and overcame ABT-737 resistance in several of the cell lines, including triple-negative breast cancer (MDA-MB231) and androgen receptor-negative prostate cancer (PC3) cells. These studies identify BAG3-mediated Mcl-1 stabilization as a potential target for cancer drug discovery. PMID:23341456

  15. Irradiation Effects Test Series: Test IE-3. Test results report

    International Nuclear Information System (INIS)

    Farrar, L.C.; Allison, C.M.; Croucher, D.W.; Ploger, S.A.

    1977-10-01

    The objectives of the test reported were to: (a) determine the behavior of irradiated fuel rods subjected to a rapid power increase during which the possibility of a pellet-cladding mechanical interaction failure is enhanced and (b) determine the behavior of these fuel rods during film boiling following this rapid power increase. Test IE-3 used four 0.97-m long pressurized water reactor type fuel rods fabricated from previously irradiated fuel. The fuel rods were subjected to a preconditioning period, followed by a power ramp to 69 kW/m at a coolant mass flux of 4920 kg/s-m 2 . After a flow reduction to 2120 kg/s-m 2 , film boiling occurred on the fuel rods. One rod failed approximately 45 seconds after the reactor was shut down as a result of cladding embrittlement due to extensive cladding oxidation. Data are presented on the behavior of these irradiated fuel rods during steady-state operation, the power ramp, and film boiling operation. The effects of a power ramp and power ramp rates on pellet-cladding interaction are discussed. Test data are compared with FRAP-T3 computer model calculations and data from a previous Irradiation Effects test in which four irradiated fuel rods of a similar design were tested. Test IE-3 results indicate that the irradiated state of the fuel rods did not significantly affect fuel rod behavior during normal, abnormal (power ramp of 20 kW/m per minute), and accident (film boiling) conditions

  16. Molecular basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1

    Czech Academy of Sciences Publication Activity Database

    Alblová, Miroslava; Šmídová, Aneta; Dočekal, V.; Veselý, J.; Herman, P.; Obšilová, Veronika; Obšil, Tomáš

    2017-01-01

    Roč. 114, č. 46 (2017), E9811-E9820 ISSN 0027-8424 R&D Projects: GA ČR(CZ) GA16-02739S; GA MŠk(CZ) ED1.1.00/02.0109; GA ČR(CZ) GA17-00726S Institutional support: RVO:67985823 Keywords : 14-3-3 protein * trehalase * crystal structure * enzyme * allostery Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemical research methods Impact factor: 9.661, year: 2016

  17. Crystal Structure of Bicc1 SAM Polymer and Mapping of Interactions between the Ciliopathy-Associated Proteins Bicc1, ANKS3, and ANKS6.

    Science.gov (United States)

    Rothé, Benjamin; Leettola, Catherine N; Leal-Esteban, Lucia; Cascio, Duilio; Fortier, Simon; Isenschmid, Manuela; Bowie, James U; Constam, Daniel B

    2018-02-06

    Head-to-tail polymers of sterile alpha motifs (SAM) can scaffold large macromolecular complexes. Several SAM-domain proteins that bind each other are mutated in patients with cystic kidneys or laterality defects, including the Ankyrin (ANK) and SAM domain-containing proteins ANKS6 and ANKS3, and the RNA-binding protein Bicc1. To address how their interactions are regulated, we first determined a high-resolution crystal structure of a Bicc1-SAM polymer, revealing a canonical SAM polymer with a high degree of flexibility in the subunit interface orientations. We further mapped interactions between full-length and distinct domains of Bicc1, ANKS3, and ANKS6. Neither ANKS3 nor ANKS6 alone formed macroscopic homopolymers in vivo. However, ANKS3 recruited ANKS6 to Bicc1, and the three proteins together cooperatively generated giant macromolecular complexes. Thus, the giant assemblies are shaped by SAM domains, their flanking sequences, and SAM-independent protein-protein and protein-mRNA interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Transduced PEP-1-ribosomal protein S3 (rpS3) ameliorates 12-O-tetradecanoylphorbol-13-acetate-induced inflammation in mice

    International Nuclear Information System (INIS)

    Ahn, Eun Hee; Kim, Dae Won; Kang, Hye Won; Shin, Min Jae; Won, Moo Ho; Kim, Joon; Kim, Dong Joon; Kwon, Oh-Shin; Kang, Tae-Cheon; Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2010-01-01

    This study investigated the preventive effect of ribosomal protein S3 (rpS3) on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear edema in mice. A cell permeable expression vector PEP-1-rpS3 was constructed. Topical application of the vector markedly inhibited TPA-induced expression levels of cyclooxygenase-2 (COX-2) and pro-inflammatory cytokines. Application of PEP-1-rpS3 also resulted in a significant reduction in the activation of nuclear factor-kappa B (NF-kB) and mitogen-activated protein kinase (MAPK) in TPA-treated ears. These results indicate that PEP-1-rpS3 inhibits inflammatory response cytokines and enzymes by blocking NF-kB and MAPK, prompting the suggestion that PEP-1-rpS3 can be used as a therapeutic agent against skin inflammation.

  19. A Baculovirus immediate-early gene, ie1, promoter drives efficient expression of a transgene in both Drosophila melanogaster and Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Mika Masumoto

    Full Text Available Many promoters have been used to drive expression of heterologous transgenes in insects. One major obstacle in the study of non-model insects is the dearth of useful promoters for analysis of gene function. Here, we investigated whether the promoter of the immediate-early gene, ie1, from the Bombyx mori nucleopolyhedrovirus (BmNPV could be used to drive efficient transgene expression in a wide variety of insects. We used a piggyBac-based vector with a 3xP3-DsRed transformation marker to generate a reporter construct; this construct was used to determine the expression patterns driven by the BmNPV ie1 promoter; we performed a detailed investigation of the promoter in transgene expression pattern in Drosophila melanogaster and in B. mori. Drosophila and Bombyx belong to different insect orders (Diptera and Lepidoptera, respectively; however, and to our surprise, ie1 promoter-driven expression was evident in several tissues (e.g., prothoracic gland, midgut, and tracheole in both insects. Furthermore, in both species, the ie1 promoter drove expression of the reporter gene from a relatively early embryonic stage, and strong ubiquitous ie1 promoter-driven expression continued throughout the larval, pupal, and adult stages by surface observation. Therefore, we suggest that the ie1 promoter can be used as an efficient expression driver in a diverse range of insect species.

  20. An Optimized IES Method and Its Inhibitory Effects and Mechanisms on Food Intake and Body Weight in Diet-Induced Obese Rats: IES for Obesity.

    Science.gov (United States)

    Wan, Xinyue; Yin, Jieyun; Foreman, Robert; Chen, Jiande D Z

    2017-12-01

    This paper aims to optimize stimulation parameters and durations for intestinal electrical stimulation (IES) and to explore the effects and mechanisms of chronic IES with optimized methodology in obesity rats. Sixteen diet-induced obese (DIO) rats were tested for food intake with four different sets of IES parameters each lasting 1 week. Then, another 12 DIO rats were used to test the effect of IES on food intake with different stimulation durations. Finally, 16 DIO rats were treated with IES or sham-IES for 4 weeks. Meal patterns, food intake, and body weight were observed. Mechanisms involving gastrointestinal motility, ghrelin, and glucagon-like peptide-1 (GLP-1) were studied. (1) Acute IES with different parameters showed different inhibitory effects on food intake, and the most effective parameters were 0.6 s on, 0.9 s off, 80 Hz, 2 ms, and 4 mA with which 26.3% decrease in food intake was noted (p fasting and postprandial plasma levels of GLP-1 but not ghrelin. Twelve-hour daily IES using optimized stimulation parameters reduces food intake and body weight in DIO rats by altering gastrointestinal motility and GLP-1. The IES methodology derived in this study may have a therapeutic potential for obesity.

  1. Regulation of mitogen-activated protein kinase 3/1 activity during meiosis resumption in mammals

    Czech Academy of Sciences Publication Activity Database

    Procházka, Radek; Blaha, Milan

    2015-01-01

    Roč. 61, č. 6 (2015), s. 495-502 ISSN 0916-8818 R&D Projects: GA MZe(CZ) QJ1510138 Institutional support: RVO:67985904 Keywords : cumulus oocyte complexes * meiosis resumption * mitogen-activated protein kinase 3/1 (MAPK3/1) Subject RIV: GI - Animal Husbandry ; Breeding Impact factor: 1.453, year: 2015

  2. Evaluation of ANSI/ASHRAE/USGBC/IES Standard 189.1-2009

    Energy Technology Data Exchange (ETDEWEB)

    Long, N.; Bonnema, E.; Field, K.; Torcellini, P.

    2010-07-01

    The National Renewable Energy Laboratory (NREL) evaluated ANSI/ASHRAE/USGBC/IES Standard 189.1-2009, 'The Standard for High-Performance Green Buildings Except Low-Rise Residential Buildings'. NREL performed this evaluation by examining the results of predictions for site energy use from a comprehensive set of EnergyPlus models. NREL has conducted an 'order-of-magnitude' analysis in this study to identify the likely overall impact of adopting Standard 189.1-2009 over ANSI/ASHRAE/IESNA Standard 90.1-2007.

  3. Molecular characterization of genome segments 1 and 3 encoding two capsid proteins of Antheraea mylitta cytoplasmic polyhedrosis virus

    Directory of Open Access Journals (Sweden)

    Chakrabarti Mrinmay

    2010-08-01

    Full Text Available Abstract Background Antheraea mylitta cytoplasmic polyhedrosis virus (AmCPV, a cypovirus of Reoviridae family, infects Indian non-mulberry silkworm, Antheraea mylitta, and contains 11 segmented double stranded RNA (S1-S11 in its genome. Some of its genome segments (S2 and S6-S11 have been previously characterized but genome segments encoding viral capsid have not been characterized. Results In this study genome segments 1 (S1 and 3 (S3 of AmCPV were converted to cDNA, cloned and sequenced. S1 consisted of 3852 nucleotides, with one long ORF of 3735 nucleotides and could encode a protein of 1245 amino acids with molecular mass of ~141 kDa. Similarly, S3 consisted of 3784 nucleotides having a long ORF of 3630 nucleotides and could encode a protein of 1210 amino acids with molecular mass of ~137 kDa. BLAST analysis showed 20-22% homology of S1 and S3 sequence with spike and capsid proteins, respectively, of other closely related cypoviruses like Bombyx mori CPV (BmCPV, Lymantria dispar CPV (LdCPV, and Dendrolimus punctatus CPV (DpCPV. The ORFs of S1 and S3 were expressed as 141 kDa and 137 kDa insoluble His-tagged fusion proteins, respectively, in Escherichia coli M15 cells via pQE-30 vector, purified through Ni-NTA chromatography and polyclonal antibodies were raised. Immunoblot analysis of purified polyhedra, virion particles and virus infected mid-gut cells with the raised anti-p137 and anti-p141 antibodies showed specific immunoreactive bands and suggest that S1 and S3 may code for viral structural proteins. Expression of S1 and S3 ORFs in insect cells via baculovirus recombinants showed to produce viral like particles (VLPs by transmission electron microscopy. Immunogold staining showed that S3 encoded proteins self assembled to form viral outer capsid and VLPs maintained their stability at different pH in presence of S1 encoded protein. Conclusion Our results of cloning, sequencing and functional analysis of AmCPV S1 and S3 indicate that S3

  4. Alterations in cell growth and signaling in ErbB3 binding protein-1 (Ebp1 deficient mice

    Directory of Open Access Journals (Sweden)

    Lee Myounghee

    2008-12-01

    Full Text Available Abstract Background The ErbB3 binding protein-1 (Ebp1 belongs to a family of DNA/RNA binding proteins implicated in cell growth, apoptosis and differentiation. However, the physiological role of Ebp1 in the whole organism is not known. Therefore, we generated Ebp1-deficient mice carrying a gene trap insertion in intron 2 of the Ebp1 (pa2g4 gene. Results Ebp1-/- mice were on average 30% smaller than wild type and heterozygous sex matched littermates. Growth retardation was apparent from Day 10 until Day 30. IGF-1 production and IGBP-3 and 4 protein levels were reduced in both embryo fibroblasts and adult knock-out mice. The proliferation of fibroblasts derived from Day 12.5 knock out embryos was also decreased as compared to that of wild type cells. Microarray expression analysis revealed changes in genes important in cell growth including members of the MAPK signal transduction pathway. In addition, the expression or activation of proliferation related genes such as AKT and the androgen receptor, previously demonstrated to be affected by Ebp1 expression in vitro, was altered in adult tissues. Conclusion These results indicate that Ebp1 can affect growth in an animal model, but that the expression of proliferation related genes is cell and context specific. The Ebp1-/- mouse line represents a new in vivo model to investigate Ebp1 function in the whole organism.

  5. Three genes for mitochondrial proteins suppress null-mutations in both Afg3 and Rca1 when over-expressed.

    Science.gov (United States)

    Rep, M; Nooy, J; Guélin, E; Grivell, L A

    1996-08-01

    The AFG3 gene of Saccharomyces cerevisiae encodes a mitochondrial inner membrane protein with ATP-dependent protease activity. To gain more insight into the function of this protein, multi-copy suppressors of an afg3-null mutation were isolated. Three genes were found that restored partial growth on non-fermentable carbon sources, all of which affect the biogenesis of respiratory competent mitochondria: PIM1(LON) encodes a matrix-localized ATP-dependent protease involved in the turnover of matrix proteins; OXA1(PET1402) encodes a putative mitochondrial inner membrane protein involved in the biogenesis of the respiratory chain; and MBA1 encodes a mitochondrial protein required for optimal respiratory growth. All three genes also suppressed a null mutation in a related gene, RCA1, as well as in the combination of afg3- and rca1-null.

  6. Production of Protein Concentrate and 1,3-Propanediol by Wheat-Based Thin Stillage Fermentation.

    Science.gov (United States)

    Ratanapariyanuch, Kornsulee; Shim, Youn Young; Emami, Shahram; Reaney, Martin J T

    2017-05-17

    Fermentation of wheat with yeast produces thin stillage (W-TS) and distiller's wet grains. A subsequent fermentation of W-TS (two-stage fermentation, TSF) with endemic bacteria at 25 and 37 °C decreased glycerol and lactic acid concentrations, while 1,3-propanediol (1,3-PD) and acetic acid accumulated with greater 1,3-PD and acetic acid produced at 37 °C. During TSF, W-TS colloids coagulated and floated in the fermentation medium producing separable liquid and slurry fractions. The predominant endemic bacteria in W-TS were Lactobacillus panis, L. gallinarum, and L. helveticus, and this makeup did not change substantially as fermentation progressed. As nutrients were exhausted, floating particles precipitated. Protein contents of slurry and clarified liquid increased and decreased, respectively, as TSF progressed. The liquid was easily filtered through an ultrafiltration membrane. These results suggested that TSF is a novel method for W-TS clarification and production of protein concentrates and 1,3-PD from W-TS.

  7. IE Bulletin No. 79-01: Environmental qualification of Class IE equipment

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The intent of IE Circular 78-08 was to highlight to all licensees important lessons learned from environmental qualification deficiencies reported by individual licensees. In this regard, licensees were requested to examine installed safety-related electrical equipment and determine that proper documentation existed which provided assurance that this equipment would function under postulated accident conditions. The intent of this Bulletin is to raise the threshold of IE Circular 78-08 to the level of a Bulletin; i.e., action requiring a licensee response. Inspections conducted to date by the NRC of licensees' activities in response to IE Circular 78-08 have identified one component which licensees have found to be unqualified for service within the LOCA environment. Specifically, unqualified stem mounted limit switches (SMLS), other than those identified in previously issued IE Bulletin 78-04, were found to be installed on safety-related valves inside containment at both Duane Arnold and Quad Cities 1 and 2 Nuclear Generating Stations. According to the manufacturer, these switches are designed only for general purpose applications and are not considered suitable devices for service in the LOCA environment. Consequently, switches are being replaced at the above power plants with qualified components

  8. G protein-coupled receptors (GPCRs) That Signal via Protein Kinase A (PKA) Cross-talk at Insulin Receptor Substrate 1 (IRS1) to Activate the phosphatidylinositol 3-kinase (PI3K)/AKT Pathway.

    Science.gov (United States)

    Law, Nathan C; White, Morris F; Hunzicker-Dunn, Mary E

    2016-12-30

    G protein-coupled receptors (GPCRs) activate PI3K/v-AKT thymoma viral oncoprotein (AKT) to regulate many cellular functions that promote cell survival, proliferation, and growth. However, the mechanism by which GPCRs activate PI3K/AKT remains poorly understood. We used ovarian preantral granulosa cells (GCs) to elucidate the mechanism by which the GPCR agonist FSH via PKA activates the PI3K/AKT cascade. Insulin-like growth factor 1 (IGF1) is secreted in an autocrine/paracrine manner by GCs and activates the IGF1 receptor (IGF1R) but, in the absence of FSH, fails to stimulate YXXM phosphorylation of IRS1 (insulin receptor substrate 1) required for PI3K/AKT activation. We show that PKA directly phosphorylates the protein phosphatase 1 (PP1) regulatory subunit myosin phosphatase targeting subunit 1 (MYPT1) to activate PP1 associated with the IGF1R-IRS1 complex. Activated PP1 is sufficient to dephosphorylate at least four IRS1 Ser residues, Ser 318 , Ser 346 , Ser 612 , and Ser 789 , and promotes IRS1 YXXM phosphorylation by the IGF1R to activate the PI3K/AKT cascade. Additional experiments indicate that this mechanism also occurs in breast cancer, thyroid, and preovulatory granulosa cells, suggesting that the PKA-dependent dephosphorylation of IRS1 Ser/Thr residues is a conserved mechanism by which GPCRs signal to activate the PI3K/AKT pathway downstream of the IGF1R. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Uncoupling proteins (UCP) in unicellular eukaryotes: true UCPs or UCP1-like acting proteins?

    Science.gov (United States)

    Luévano-Martínez, Luis Alberto

    2012-04-05

    Uncoupling proteins belong to the superfamily of mitochondrial anion carriers. They are apparently present throughout the Eukarya domain in which only some members have an established physiological function, i.e. UCP1 from brown adipose tissue is involved in non-shivering thermogenesis. However, the proteins responsible for the phenotype observed in unicellular organisms have not been characterized. In this report we analyzed functional evidence concerning unicellular UCPs and found that true UCPs are restricted to some taxonomical groups while proteins conferring a UCP1-like phenotype to fungi and most protists are the result of a promiscuous activity exerted by other mitochondrial anion carriers. We describe a possible evolutionary route followed by these proteins by which they acquire this promiscuous mechanism. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  10. Construction of Lactococcus lactis expressing secreted and anchored Eimeria tenella 3-1E protein and comparison of protective immunity against homologous challenge.

    Science.gov (United States)

    Ma, Chunli; Zhang, Lili; Gao, Mingyang; Ma, Dexing

    2017-07-01

    Two novel plasmids pTX8048-SP-Δ3-1E and pTX8048-SP-NAΔ3-1E-CWA were constructed. The plasmids were respectively electrotransformed into L. lactis NZ9000 to generate strain of L. lactis/pTX8048-SP-Δ3-1E in which 3-1E protein was expressed in secretion, and L. lactis/pTX8048-SP-NAΔ3-1E-CWA on which 3-1E protein was covalently anchored to the surface of bacteria cells. The expression of target proteins were examined by Western blot. The live lactococci expressing secreted 3-1E protein, anchored 3-1E protein, and cytoplasmic 3-1E protein was administered orally to chickens respectively, and the protective immunity and efficacy were compared by animal experiment. The results showed oral immunization to chickens with recombinant lactococci expressing anchored 3-1E protein elicited high 3-1E-specific serum IgG, increased high proportion of CD4 + and CD8α + cells in spleen, alleviated average lesion score in cecum, decreased the oocyst output per chicken compared to lactococci expressing cytoplasmic or secreted 3-1E protein. Taken together, these findings indicated the surface anchored Eimeria protein displayed by L. lacits can induce protective immunity and partial protection against homologous infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The vitamin D analogue ED71 but Not 1,25(OH2D3 targets HIF1α protein in osteoclasts.

    Directory of Open Access Journals (Sweden)

    Yuiko Sato

    Full Text Available Although both an active form of the vitamin D metabolite, 1,25(OH2D3, and the vitamin D analogue, ED71 have been used to treat osteoporosis, anti-bone resorbing activity is reportedly seen only in ED71- but not in 1,25(OH2D3 -treated patients. In addition, how ED71 inhibits osteoclast activity in patients has not been fully characterized. Recently, HIF1α expression in osteoclasts was demonstrated to be required for development of post-menopausal osteoporosis. Here we show that ED71 but not 1,25(OH2D3, suppress HIF1α protein expression in osteoclasts in vitro. We found that 1,25(OH2D3 or ED71 function in osteoclasts requires the vitamin D receptor (VDR. ED71 was significantly less effective in inhibiting M-CSF and RANKL-stimulated osteoclastogenesis than was 1,25(OH2D3 in vitro. Downregulation of c-Fos protein and induction of Ifnβ mRNA in osteoclasts, both of which reportedly block osteoclastogenesis induced by 1,25(OH2D3 in vitro, were both significantly higher following treatment with 1,25(OH2D3 than with ED71. Thus, suppression of HIF1α protein activity in osteoclasts in vitro, which is more efficiently achieved by ED71 rather than by 1,25(OH2D3, could be a reliable read-out in either developing or screening reagents targeting osteoporosis.

  12. The 3D protein of duck hepatitis A virus type 1 binds to a viral genomic 3' UTR and shows RNA-dependent RNA polymerase activity.

    Science.gov (United States)

    Zhang, Yu; Cao, Qianda; Wang, Mingshu; Jia, Renyong; Chen, Shun; Zhu, Dekang; Liu, Mafeng; Sun, Kunfeng; Yang, Qiao; Wu, Ying; Zhao, Xinxin; Chen, Xiaoyue; Cheng, Anchun

    2017-12-01

    To explore the RNA-dependent RNA polymerase (RdRP) function of the 3D protein of duck hepatitis A virus type 1 (DHAV-1), the gene was cloned into the pET-32a(+) vector for prokaryotic expression. The 3' untranslated region (3' UTR) of DHAV-1 together with a T7 promoter was cloned into the pMD19-T vector for in vitro transcription of 3' UTR RNA, which was further used as a template in RNA-dependent RNA polymerization. In this study, three methods were applied to analyze the RdRP function of the 3D protein: (1) ammonium molybdate spectrophotometry to detect pyrophosphate produced during polymerization; (2) quantitative reverse transcription PCR (RT-qPCR) to investigate the changes in RNA quantity during polymerization; and (3) electrophoresis mobility shift assay to examine the interaction between the 3D protein and 3' UTR. The results showed the 3D protein was successfully expressed in bacteria culture supernatant in a soluble form, which could be purified by affinity chromatography. In 3D enzymatic activity assays, pyrophosphate and RNA were produced, the amounts of which increased based on approximative kinetics, and binding of the 3D protein to the 3' UTR was observed. These results indicate that prokaryotically expressed soluble DHAV-13D protein can bind to a viral genomic 3' UTR and exhibit RdRP activity.

  13. CSN1S2 protein of goat milk inhibits the decrease of viability and increases the proliferation of MC3T3E1 pre-osteoblast cell in methyl glyoxal exposure

    Directory of Open Access Journals (Sweden)

    Choirunil Chotimah

    2015-03-01

    Full Text Available Objective: To investigate whether the CNS1S2 protein of goat milk is able to inhibit the toxicity of methyl glyoxal (MG towards MC3T3E1 pre-osteoblast cells. Methods: At confluency, pre-osteoblast cells were divided into five groups which included control (untreated, pre-osteoblast cells exposed to 5 µmol/L MG, pre-osteoblast cells exposed to MG in the presence of CSN1S2 protein at doses of 0.025, 0.050, and 0.100 mg/L, respectively. Analysis of reactive oxygen species was done with 2,7-dichlorodihydrofluorescein diacetate fluorochrome. The proliferation and viability of MC3T3E1 cells were measured by trypan blue staining. Malondialdehyde analysis was done colorimetrically. Results: Cell's viabilities were significantly lower in MG+0.050 mg/L CSN1S2 protein of goat milk compared to MG group (P<0.05. MG+0.100 mg/L CSN1S2 protein of goat milk significantly increased the cells viability compared to MG group (P<0.05. The levels of proliferation were significantly higher in MG+0.100 mg/L CSN1S2 protein of goat milk compared to control group and all treatment groups, respectively (P<0.05. Conclusions: High dose of CSN1S2 protein of goat milk (0.100 mg/L in high MG environment inhibits the decrease of viability due to the increases of the proliferation of MC3T3E1 preosteoblast cell.

  14. BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L).

    Science.gov (United States)

    Maiuri, Maria Chiara; Criollo, Alfredo; Tasdemir, Ezgi; Vicencio, José Miguel; Tajeddine, Nicolas; Hickman, John A; Geneste, Olivier; Kroemer, Guido

    2007-01-01

    Beclin 1 has recently been identified as novel BH3-only protein, meaning that it carries one Bcl-2-homology-3 (BH3) domain. As other BH3-only proteins, Beclin 1 interacts with anti-apoptotic multidomain proteins of the Bcl-2 family (in particular Bcl-2 and its homologue Bcl-X(L)) by virtue of its BH3 domain, an amphipathic alpha-helix that binds to the hydrophobic cleft of Bcl-2/Bcl-X(L). The BH3 domains of other BH3-only proteins such as Bad, as well as BH3-mimetic compounds such as ABT737, competitively disrupt the inhibitory interaction between Beclin 1 and Bcl-2/Bcl-X(L). This causes autophagy of mitochondria (mitophagy) but not of the endoplasmic reticulum (reticulophagy). Only ER-targeted (not mitochondrion-targeted) Bcl-2/Bcl-X(L) can inhibit autophagy induced by Beclin 1, and only Beclin 1-Bcl-2/Bcl-X(L) complexes present in the ER (but not those present on heavy membrane fractions enriched in mitochondria) are disrupted by ABT737. These findings suggest that the Beclin 1-Bcl-2/Bcl-X(L) complexes that normally inhibit autophagy are specifically located in the ER and point to an organelle-specific regulation of autophagy. Furthermore, these data suggest a spatial organization of autophagy and apoptosis control in which BH3-only proteins exert two independent functions. On the one hand, they can induce apoptosis, by (directly or indirectly) activating the mitochondrion-permeabilizing function of pro-apoptotic multidomain proteins from the Bcl-2 family. On the other hand, they can activate autophagy by liberating Beclin 1 from its inhibition by Bcl-2/Bcl-X(L) at the level of the endoplasmic reticulum.

  15. Pyridones as NNRTIs against HIV-1 mutants: 3D-QSAR and protein informatics

    Science.gov (United States)

    Debnath, Utsab; Verma, Saroj; Jain, Surabhi; Katti, Setu B.; Prabhakar, Yenamandra S.

    2013-07-01

    CoMFA and CoMSIA based 3D-QSAR of HIV-1 RT wild and mutant (K103, Y181C, and Y188L) inhibitory activities of 4-benzyl/benzoyl pyridin-2-ones followed by protein informatics of corresponding non-nucleoside inhibitors' binding pockets from pdbs 2BAN, 3MED, 1JKH, and 2YNF were analysed to discover consensus features of the compounds for broad-spectrum activity. The CoMFA/CoMSIA models indicated that compounds with groups which lend steric-cum-electropositive fields in the vicinity of C5, hydrophobic field in the vicinity of C3 of pyridone region and steric field in aryl region produce broad-spectrum anti-HIV-1 RT activity. Also, a linker rendering electronegative field between pyridone and aryl moieties is common requirement for the activities. The protein informatics showed considerable alteration in residues 181 and 188 characteristics on mutation. Also, mutants' isoelectric points shifted in acidic direction. The study offered fresh avenues for broad-spectrum anti-HIV-1 agents through designing new molecules seeded with groups satisfying common molecular fields and concerns of mutating residues.

  16. Biochemical Characterization of the Prolyl 3-Hydroxylase 1·Cartilage-associated Protein·Cyclophilin B Complex*

    Science.gov (United States)

    Ishikawa, Yoshihiro; Wirz, Jackie; Vranka, Janice A.; Nagata, Kazuhiro; Bächinger, Hans Peter

    2009-01-01

    The rough endoplasmic reticulum-resident protein complex consisting of prolyl 3-hydroxylase 1 (P3H1), cartilage-associated protein (CRTAP), and cyclophilin B (CypB) can be isolated from chick embryos on a gelatin-Sepharose column, indicating some involvement in the biosynthesis of procollagens. Prolyl 3-hydroxylase 1 modifies a single proline residue in the α chains of type I, II, and III collagens to (3S)-hydroxyproline. The peptidyl-prolyl cis-trans isomerase activity of cyclophilin B was shown previously to catalyze the rate of triple helix formation. Here we show that cyclophilin B in the complex shows peptidyl-prolyl cis-trans isomerase activity and that the P3H1·CRTAP·CypB complex has another important function: it acts as a chaperone molecule when tested with two classical chaperone assays. The P3H1·CRTAP·CypB complex inhibited the thermal aggregation of citrate synthase and was active in the denatured rhodanese refolding and aggregation assay. The chaperone activity of the complex was higher than that of protein-disulfide isomerase, a well characterized chaperone. The P3H1·CRTAP·CypB complex also delayed the in vitro fibril formation of type I collagen, indicating that this complex is also able to interact with triple helical collagen and acts as a collagen chaperone. PMID:19419969

  17. Noise and Vibration Monitoring for Premium Efficiency IE 3 Three-Phase Induction Motors

    Directory of Open Access Journals (Sweden)

    NISTOR, C. G.

    2015-08-01

    Full Text Available The paper presents the original SV-100 platform that enables low-cost and very high accuracy determinations of noise and vibration levels. The aim of the proposed platform is to achieve an effective integration of the two topics of this analysis: vibrations and noises. To the best of our knowledge, no low price, dedicated compact platform with embedded measuring instruments exists. For proving the practical utility of the proposed platform, two induction motors of 7.5 kW and 11 kW, respectively, in single-layer winding, at 1000 rpm, with IE3 premium efficiency were analyzed. This analysis is required because, according to IEC60034-30 standard, the IE3 efficiency standard has become mandatory for induction motors of rated power greater than 7.5 kW. Therefore, in order to improve the motor operating efficiency, the power losses caused by noises and vibrations have to be reduced. Several variants of supply were studied, i.e., by the three-phase 50 Hz network and by a three-phase inverter at 40, 50 and 60 Hz, respectively. The experimental determinations of noises are presented comparatively, by using a Bruel&Kjaer sonometer and by using the new platform SV-100. The results are compared with the IEC60034 standard.

  18. Some epitopes conservation in non structural 3 protein dengue virus serotype 4

    Directory of Open Access Journals (Sweden)

    Tegar A. P. Siregar

    2016-03-01

    conservation ofT and B cell epitope in NS3 protein among DENV-4 strains and four serotypes DENV of Indonesia strains.Methods: Research was held at the Department of Microbiology, Faculty of Medicine, UniversitasIndonesia, June 2013 to April 2014. NS3 amino acid sequence of DENV-4 081 strain was obtained afterNS3 gene of DENV-4 081 PCR products were sequenced. T and B cell epitopes of NS3 protein of DENV-4081 strain were analysed and compared to NS3 proteins of 124 DENV-4 strains around the world and fourserotypes of Indonesia strains. World strains were isolated from America (i.e. Venezuela, Colombia, etc.and Asia (i.e. China, Singapore, etc.. For the comparison, T and B cell epitope positions of NS3 proteinwere obtained from published report.Results: Eight positions of T cell epitopes and two positions of B cell epitopes of NS3 DENV-4 081 wereidentical and conserved to NS3 protein of 124 DENV-4 strains around the world. B cell epitope of NS3 DENV-4 081 protein at aa 537-544 was found identical and conserved to four serotypes DENV of Indonesia strains.Conclusion: This wide conservation of T and B epitopes in almost all DENV-4 strains around the worldand all serotypes of Indonesia strains. (Health Science Journal of Indonesia 2015;6:126-31Keywords: dengue virus, NS3 protein, T cell epitope, B cell epitope

  19. Irradiation Effects Test Series: Test IE-3. Test results report. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, L. C.; Allison, C. M.; Croucher, D. W.; Ploger, S. A.

    1977-10-01

    The objectives of the test reported were to: (a) determine the behavior of irradiated fuel rods subjected to a rapid power increase during which the possibility of a pellet-cladding mechanical interaction failure is enhanced and (b) determine the behavior of these fuel rods during film boiling following this rapid power increase. Test IE-3 used four 0.97-m long pressurized water reactor type fuel rods fabricated from previously irradiated fuel. The fuel rods were subjected to a preconditioning period, followed by a power ramp to 69 kW/m at a coolant mass flux of 4920 kg/s-m/sup 2/. After a flow reduction to 2120 kg/s-m/sup 2/, film boiling occurred on the fuel rods. One rod failed approximately 45 seconds after the reactor was shut down as a result of cladding embrittlement due to extensive cladding oxidation. Data are presented on the behavior of these irradiated fuel rods during steady-state operation, the power ramp, and film boiling operation. The effects of a power ramp and power ramp rates on pellet-cladding interaction are discussed. Test data are compared with FRAP-T3 computer model calculations and data from a previous Irradiation Effects test in which four irradiated fuel rods of a similar design were tested. Test IE-3 results indicate that the irradiated state of the fuel rods did not significantly affect fuel rod behavior during normal, abnormal (power ramp of 20 kW/m per minute), and accident (film boiling) conditions.

  20. Molecular interactions of mussel protective coating protein, mcfp-1, from Mytilus californianus.

    Science.gov (United States)

    Lu, Qingye; Hwang, Dong Soo; Liu, Yang; Zeng, Hongbo

    2012-02-01

    Protective coating of the byssus of mussels (Mytilus sp.) has been suggested as a new paradigm of medical coating due to its high extensibility and hardness co-existence without their mutual detriment. The only known biomacromolecule in the extensible and tough coating on the byssus is mussel foot protein-1 (mfp-1), which is made up with positively charged residues (~20 mol%) and lack of negatively charged residues. Here, adhesion and molecular interaction mechanisms of Mytilus californianus foot protein-1 (mcfp-1) from California blue mussel were investigated using a surface forces apparatus (SFA) in buffer solutions of different ionic concentrations (0.2-0.7 M) and pHs (3.0-5.5). Strong and reversible cohesion between opposed positively charged mcfp-1 films was measured in 0.1 M sodium acetate buffer with 0.1 M KNO(3). Cohesion of mcfp-1 was gradually reduced with increasing the ionic strength, but was not changed with pH variations. Oxidation of 3,4-dihydroxyphenylalanine (DOPA) residues of mcfp-1, a key residue for adhesive and coating proteins of mussel, didn't change the cohesion strength of mcfp-1 films, but the addition of chemicals with aromatic groups (i.e., aspirin and 4-methylcatechol) increased the cohesion. These results suggest that the cohesion of mcfp-1 films is mainly mediated by cation-π interactions between the positively charged residues and benzene rings of DOPA and other aromatic amino acids (~20 mol% of total amino acids of mcfp-1), and π-π interactions between the phenyl groups in mcfp-1. The adhesion mechanism obtained for the mcfp-1 proteins provides important insight into the design and development of functional biomaterials and coatings mimicking the extensible and robust mussel cuticle coating. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. The Plasmodium falciparum exported protein PF3D7_0402000 binds to erythrocyte ankyrin and band 4.1

    Energy Technology Data Exchange (ETDEWEB)

    Shakya, Bikash; Penn, Wesley D.; Nakayasu, Ernesto S.; Lacount, Douglas J.

    2017-09-01

    Plasmodium falciparum extensively modifies the infected red blood cell (RBC), resulting in changes in deformability, shape and surface properties. These alterations suggest that the RBC cytoskeleton is a major target for modification during infection. However, the molecular mechanisms leading to these changes are largely unknown. To begin to address this question, we screened for exported P. falciparum proteins that bound to the erythrocyte cytoskeleton proteins ankyrin 1 (ANK1) and band 4.1 (4.1R), which form critical interactions with other cytoskeletal proteins that contribute to the deformability and stability of RBCs. Yeast two-hybrid screens with ANK1 and 4.1R identified eight interactions with P. falciparum exported proteins, including an interaction between 4.1R and PF3D7_0402000 (PFD0090c). This interaction was first identified in a large-scale screen (Vignali et al., Malaria J, 7:211, 2008), which also reported an interaction between PF3D7_0402000 and ANK1. We confirmed the interactions of PF3D7_0402000 with 4.1R and ANK1 in pair-wise yeast two-hybrid and co-precipitation assays. In both cases, an intact PHIST domain in PF3D7_0402000 was required for binding. Complex purification followed by mass spectrometry analysis provided additional support for the interaction of PF3D7_0402000 with ANK1 and 4.1R. RBC ghost cells loaded with maltose-binding protein (MBP)-PF3D7_0402000 passed through a metal microsphere column less efficiently than mock- or MBP-loaded controls, consistent with an effect of PF3D7_0402000 on RBC rigidity or membrane stability. This study confirmed the interaction of PF3D7_0402000 with 4.1R in multiple independent assays, provided the first evidence that PF3D7_0402000 also binds to ANK1, and suggested that PF3D7_0402000 affects deformability or membrane stability of uninfected RBC ghosts.

  2. Differentially expressed proteins on postoperative 3

    Directory of Open Access Journals (Sweden)

    Jialili Ainuer

    2011-04-01

    Full Text Available 【Abstract】Objectives: Surgical repair of Achilles tendon (AT rupture should immediately be followed by active tendon mobilization. The optimal time as to when the mobilization should begin is important yet controversial. Early kinesitherapy leads to reduced rehabilitation period. However, an insight into the detailed mechanism of this process has not been gained. Proteomic technique can be used to separate and purify the proteins by differential expression profile which is related to the function of different proteins, but research in the area of proteomic analysis of AT 3 days after repair has not been studied so far. Methods: Forty-seven New Zealand white rabbits were randomized into 3 groups. Group A (immobilization group, n=16 received postoperative cast immobilization; Group B (early motion group, n=16 received early active motion treatments immediately following the repair of AT rupture from tenotomy. Another 15 rabbits served as control group (Group C. The AT samples were prepared 3 days following the microsurgery. The proteins were separated employing twodimensional polyacrylamide gel electrophoresis (2D-PAGE. PDQuest software version 8.0 was used to identify differentially expressed proteins, followed by peptide mass fingerprint (PMF and tandem mass spectrum analysis, using the National Center for Biotechnology Information (NCBI protein database retrieval and then for bioinformatics analysis. Results: A mean of 446.33, 436.33 and 462.67 protein spots on Achilles tendon samples of 13 rabbits in Group A, 14 rabbits in Group B and 13 rabbits in Group C were successfully detected in the 2D-PAGE. There were 40, 36 and 79 unique proteins in Groups A, B and C respectively. Some differentially expressed proteins were enzyme with the gel, matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS. We successfully identified 9 and 11 different proteins in Groups A and B, such as GAPDH, phosphoglycerate kinase 1

  3. Regulation of bone morphogenetic protein signalling and cranial osteogenesis by Gpc1 and Gpc3.

    Science.gov (United States)

    Dwivedi, Prem P; Grose, Randall H; Filmus, Jorge; Hii, Charles S T; Xian, Cory J; Anderson, Peter J; Powell, Barry C

    2013-08-01

    From birth, the vault of the skull grows at a prodigious rate, driven by the activity of osteoblastic cells at the fibrous joints (sutures) that separate the bony calvarial plates. One in 2500 children is born with a medical condition known as craniosynostosis because of premature bony fusion of the calvarial plates and a cessation of bone growth at the sutures. Bone morphogenetic proteins (BMPs) are potent growth factors that promote bone formation. Previously, we found that Glypican-1 (GPC1) and Glypican-3 (GPC3) are expressed in cranial sutures and are decreased during premature suture fusion in children. Although glypicans are known to regulate BMP signalling, a mechanistic link between GPC1, GPC3 and BMPs and osteogenesis has not yet been investigated. We now report that human primary suture mesenchymal cells coexpress GPC1 and GPC3 on the cell surface and release them into the media. We show that they inhibit BMP2, BMP4 and BMP7 activities, which both physically interact with BMP2 and that immunoblockade of endogenous GPC1 and GPC3 potentiates BMP2 activity. In contrast, increased levels of GPC1 and GPC3 as a result of overexpression or the addition of recombinant protein, inhibit BMP2 signalling and BMP2-mediated osteogenesis. We demonstrate that BMP signalling in suture mesenchymal cells is mediated by both SMAD-dependent and SMAD-independent pathways and that GPC1 and GPC3 inhibit both pathways. GPC3 inhibition of BMP2 activity is independent of attachment of the glypican on the cell surface and post-translational glycanation, and thus appears to be mediated by the core glypican protein. The discovery that GPC1 and GPC3 regulate BMP2-mediated osteogenesis, and that inhibition of endogenous GPC1 and GPC3 potentiates BMP2 responsiveness of human suture mesenchymal cells, indicates how downregulation of glypican expression could lead to the bony suture fusion that characterizes craniosynostosis. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. [Effect of ginsenoside Rg3 on Pim-3 and Bad proteins in human pancreatic cancer cell line PANC-1].

    Science.gov (United States)

    Jian, Jie; Hu, Zhi-Fang; Huang, Yuan

    2009-05-01

    Ginsenoside Rg3 is a traditional Chinese medicine monomer which possesses anticancer effects. This study was to investigate the effects of ginsenoside Rg3 on Pim-3 and phosphorylated Bad (pBad) proteins, pBad (Ser112) and pBad (Ser136) in human pancreatic cancer cell line PANC-1. PANC-1 cells were exposed to 10, 20, 40 and 80 micromol/L ginsenoside Rg3 for 24 h. A short hairpin RNA (shRNA) of Pim-3 was cloned and inserted into a eukaryotic expression vector pSilencer 3.1-H1 Neo to construct pSilencer 3.1-H1 Neo-Pim-3. pSilencer 3.1-H1 Neo-Pim-3 was then transfected into PANC-1 cells. Cell proliferation was measured by MTT assay; cell apoptosis was observed under an invert microscope and measured by flow cytometry with Annexin V/PI staining; protein expressions of Pim-3, Bad, pBad (Ser112) and pBad (Ser136) were measured by Western blot. The inhibitory rates of 10, 20, 40 and 80 micromol/L ginsenoside Rg3 on PANC-1 cells were 20.2%, 33.4%, 52.8% and 65.3%, respectively. Typical morphological changes in apoptosis were induced by ginsenoside Rg3. The apoptotic rate of PANC-1 cells was significantly higher in the ginsenoside Rg3 treatment group (80 micromol/L) than in the control group (12.2% vs. 3.3%, PPANC-1 cells. Compared with the control group, the percentages of early and total apoptotic cells were significantly increased in PANC-1 cells transfected with pim-3-shRNA [(11.5+/-3.7)% vs. (5.8+/-2.2)%,P<0.01;(20.8+/-2.6)% vs.(13.0+/-4.1)%,P<0.05], while the expressions of pim-3 and pBad (Ser112) were both decreased. The anti-tumor effect of ginsenoside Rg3 may be associated with the decrease of Pim-3 and pBad (Ser112).

  5. On the calculation of {sup 3}J{sub {alpha}{beta}}-coupling constants for side chains in proteins

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Denise [Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH (Switzerland); Allison, Jane R. [Massey University Albany, Centre for Theoretical Chemistry and Physics, Institute for Natural Sciences (New Zealand); Eichenberger, Andreas P.; Gunsteren, Wilfred F. van, E-mail: wfvgn@igc.phys.chem.ethz.ch [Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH (Switzerland)

    2012-07-15

    Structural knowledge about proteins is mainly derived from values of observables, measurable in NMR spectroscopic or X-ray diffraction experiments, i.e. absorbed or scattered intensities, through theoretically derived relationships between structural quantities such as atom positions or torsional angles on the one hand and observable quantities such as squared structure factor amplitudes, NOE intensities or {sup 3}J-coupling constants on the other. The standardly used relation connecting {sup 3}J-couplings to torsional angles is the Karplus relation, which is used in protein structure refinement as well as in the evaluation of simulated properties of proteins. The accuracy of the simple and generalised Karplus relations is investigated using side-chain structural and {sup 3}J{sub {alpha}{beta}}-coupling data for three different proteins, Plastocyanin, Lysozyme, and FKBP, for which such data are available. The results show that the widely used Karplus relations are only a rough estimate for the relation between {sup 3}J{sub {alpha}{beta}}-couplings and the corresponding {chi}{sub 1}-angle in proteins.

  6. Brain-derived neurotrophic factor modulation of Kv1.3 channel is disregulated by adaptor proteins Grb10 and nShc

    Directory of Open Access Journals (Sweden)

    Marks David R

    2009-01-01

    Full Text Available Abstract Background Neurotrophins are important regulators of growth and regeneration, and acutely, they can modulate the activity of voltage-gated ion channels. Previously we have shown that acute brain-derived neurotrophic factor (BDNF activation of neurotrophin receptor tyrosine kinase B (TrkB suppresses the Shaker voltage-gated potassium channel (Kv1.3 via phosphorylation of multiple tyrosine residues in the N and C terminal aspects of the channel protein. It is not known how adaptor proteins, which lack catalytic activity, but interact with members of the neurotrophic signaling pathway, might scaffold with ion channels or modulate channel activity. Results We report the co-localization of two adaptor proteins, neuronal Src homology and collagen (nShc and growth factor receptor-binding protein 10 (Grb10, with Kv1.3 channel as demonstrated through immunocytochemical approaches in the olfactory bulb (OB neural lamina. To further explore the specificity and functional ramification of adaptor/channel co-localization, we performed immunoprecipitation and Western analysis of channel, kinase, and adaptor transfected human embryonic kidney 293 cells (HEK 293. nShc formed a direct protein-protein interaction with Kv1.3 that was independent of BDNF-induced phosphorylation of Kv1.3, whereas Grb10 did not complex with Kv1.3 in HEK 293 cells. Both adaptors, however, co-immunoprecipitated with Kv1.3 in native OB. Grb10 was interestingly able to decrease the total expression of Kv1.3, particularly at the membrane surface, and subsequently eliminated the BDNF-induced phosphorylation of Kv1.3. To examine the possibility that the Src homology 2 (SH2 domains of Grb10 were directly binding to basally phosphorylated tyrosines in Kv1.3, we utilized point mutations to substitute multiple tyrosine residues with phenylalanine. Removal of the tyrosines 111–113 and 449 prevented Grb10 from decreasing Kv1.3 expression. In the absence of either adaptor protein

  7. Respiratory Syncytial Virus Nonstructural Proteins Upregulate SOCS1 and SOCS3 in the Different Manner from Endogenous IFN Signaling

    Directory of Open Access Journals (Sweden)

    Junwen Zheng

    2015-01-01

    Full Text Available Respiratory syncytial virus (RSV infection upregulates genes of the suppressor of cytokine signaling (SOCS family, which utilize a feedback loop to inhibit type I interferon dependent antiviral signaling pathway. Here, we reconstituted RSV nonstructural (NS protein expression plasmids (pNS1, pNS2, and pNS1/2 and tested whether NS1 or NS2 would trigger SOCS1 and SOCS3 protein expression. These NS proteins inhibited interferon- (IFN- α signaling through a mechanism involving the induction of SOCS1 and SOCS3, which appeared to be different from autocrine IFN dependent. NS1 induced both SOCS1 and SOCS3 upregulation, while NS2 only induced SOCS1 expression. The induced expression of SOCS1 and SOCS3 preceded endogenous IFN-signaling activation and inhibited the IFN-inducible antiviral response as well as chemokine induction. Treatments with INF-α and NS proteins both induced SOCS1 expression; however, they had opposing effects on IFN-α-dependent antiviral gene expression. Our results indicate that NS1 and NS2, which induce the expression of SOCS1 or SOCS3, might represent an independent pathway of stimulating endogenous IFN signaling.

  8. PI3K/AKT signaling modulates transcriptional expression of EWS/FLI1 through specificity protein 1.

    Science.gov (United States)

    Giorgi, Chiara; Boro, Aleksandar; Rechfeld, Florian; Lopez-Garcia, Laura A; Gierisch, Maria E; Schäfer, Beat W; Niggli, Felix K

    2015-10-06

    Ewing sarcoma (ES) is the second most frequent bone cancer in childhood and is characterized by the presence of the balanced translocation t(11;22)(q24;q12) in more than 85% of cases, generating a dysregulated transcription factor EWS/FLI1. This fusion protein is an essential oncogenic component of ES development which is necessary for tumor cell maintenance and represents an attractive therapeutic target. To search for modulators of EWS/FLI1 activity we screened a library of 153 targeted compounds and identified inhibitors of the PI3K pathway to directly modulate EWS/FLI1 transcription. Surprisingly, treatment of four different ES cell lines with BEZ235 resulted in down regulation of EWS/FLI1 mRNA and protein by ~50% with subsequent modulation of target gene expression. Analysis of the EWS/FLI1 promoter region (-2239/+67) using various deletion constructs identified two 14 bp minimal elements as being important for EWS/FLI1 transcription. We identified SP1 as modulator of EWS/FLI1 gene expression and demonstrated direct binding to one of these regions in the EWS/FLI1 promoter by EMSA and ChIP experiments. These results provide the first insights on the transcriptional regulation of EWS/FLI1, an area that has not been investigated so far, and offer an additional molecular explanation for the known sensitivity of ES cell lines to PI3K inhibition.

  9. Protein secretion in human mammary epithelial cells following HER1 receptor activation: influence of HER2 and HER3 expression

    International Nuclear Information System (INIS)

    Zhang, Yi; Gonzalez, Rachel M; Zangar, Richard C

    2011-01-01

    Protein secretion by mammary cells results in autocrine and paracrine signaling that defines cell growth, migration and the extracellular environment. Even so, we have a limited understanding of the cellular processes that regulate protein secretion. In this study, we utilize human epithelial mammary cell (HMEC) lines that were engineered to express different levels of HER1, HER2 and HER3. Using an ELISA microarray platform, we evaluate the effects of epidermal growth factor family receptor (HER) expression on protein secretion in the HMEC lines upon initiation of HER1 receptor activation. The secreted proteins include three HER1 ligands, interleukins 1α and 18, RANTES, vascular-endothelial and platelet-derived growth factors, matrix metalloproteases 1, 2 and 9, and the extracellular portion of the HER1 and HER2 proteins. In addition, we investigate whether MAPK/Erk and PI3K/Akt signaling regulate protein secretion in these cell lines and if so, whether the involvement of HER2 or HER3 receptor alters their response to MAPK/Erk and PI3K/Akt signal pathway inhibition in terms of protein secretion. Differential expression of HER2 and HER3 receptors alters the secretion of a variety of growth factors, cytokines, and proteases. Some alterations in protein secretion are still observed when MAPK/Erk or PI3K/Akt signaling is inhibited. This study suggests that HER overexpression orchestrates broad changes in the tumor microenvironment by altering the secretion of a diverse variety of biologically active proteins

  10. Cables1 controls p21/Cip1 protein stability by antagonizing proteasome subunit alpha type 3.

    Science.gov (United States)

    Shi, Z; Li, Z; Li, Z J; Cheng, K; Du, Y; Fu, H; Khuri, F R

    2015-05-07

    The cyclin-dependent kinase (CDK) inhibitor 1A, p21/Cip1, is a vital cell cycle regulator, dysregulation of which has been associated with a large number of human malignancies. One critical mechanism that controls p21 function is through its degradation, which allows the activation of its associated cell cycle-promoting kinases, CDK2 and CDK4. Thus delineating how p21 is stabilized and degraded will enhance our understanding of cell growth control and offer a basis for potential therapeutic interventions. Here we report a novel regulatory mechanism that controls the dynamic status of p21 through its interaction with Cdk5 and Abl enzyme substrate 1 (Cables1). Cables1 has a proposed role as a tumor suppressor. We found that upregulation of Cables1 protein was correlated with increased half-life of p21 protein, which was attributed to Cables1/p21 complex formation and supported by their co-localization in the nucleus. Mechanistically, Cables1 interferes with the proteasome (Prosome, Macropain) subunit alpha type 3 (PSMA3) binding to p21 and protects p21 from PSMA3-mediated proteasomal degradation. Moreover, silencing of p21 partially reverses the ability of Cables1 to induce cell death and inhibit cell proliferation. In further support of a potential pathophysiological role of Cables1, the expression level of Cables1 is tightly associated with p21 in both cancer cell lines and human lung cancer patient tumor samples. Together, these results suggest Cables1 as a novel p21 regulator through maintaining p21 stability and support the model that the tumor-suppressive function of Cables1 occurs at least in part through enhancing the tumor-suppressive activity of p21.

  11. The potency of STAT (signal transducers and activators of transcription) 3 protein as growth promoter for chicken

    Science.gov (United States)

    Ma'ruf, Anwar; Iswati, Sri; Hidajati, Nove; Damayanti, Ratna

    2017-09-01

    The long-term objective of this study was to produce STAT synthetic protein in chicken during growth period resulting from the increase of growth hormone (GH) as growth promoter. This study used ten male chicken Lohman from PT. Multibreeder Indonesia. The chicken were kept within batteried cage, with a capacity of one chicken in each cage. The chickens were fed twice a day, at 6 a.m. and 6 p.m. with the amount of feed 10% less than standard. On day 21 the chicken were slaughtered to obtain the samples, i.e., adipose, liver and muscles for the following examinations (1) isolation of STAT-3 signaling protein from adipose, liver and muscles of the chicken, (2) analysis of STAT-3 signaling protein using SDS-PAGE method, and (3) identification of STAT-3 signaling protein using Western blot method by means of protein detection using electrophoresis with polyacrylamide gels. Results of examination on protein in hepatic, muscle and adipose of chickens in growth period revealed that STAT protein was positively present in those tissues. This finding was followed-up with SDS-PAGE examination, from which we found the presence of protein band between the markers of 116 kDa and 14.4 kDa. The protein band was supposedly the STAT-3 protein. To prove that protein band formed was the STAT-3, Western blot examination was conducted using rabbit polyclonal antibody STAT-3. The result showed the formation of the protein band, indicating the presence of reaction between antigen (STAT-3 protein) and STAT-3 protein antibody. In conclusion, STAT-3 protein is present in hepatic, muscular, and adipose tissues, with molecular weight of 59.4 kDa.

  12. The expression of FAT1 is associated with overall survival in children with medulloblastoma.

    Science.gov (United States)

    Yu, Jianzhong; Li, Hao

    2017-01-21

    The FAT1 gene is involved in some cancers; however, its role in medulloblastoma is less clear. This study investigated the effects of FAT1 expression on the prognosis of medulloblastoma patients. Whole exome sequencing was undertaken in 40 medulloblastoma patient samples. FAT1 mRNA and protein expression levels in normal and brain tumor tissues were determined by fluorescence quantitative PCR and immunohistochemistry, respectively. The association of FAT1 expression with overall survival (OS) was examined by Kaplan-Meier curve analysis with a log-rank test. Following lentiviral-mediated FAT1 knockdown using shRNA in Daoy cells, proliferation, Wnt signaling, and β-catenin protein expression were determined. Eight FAT1 missense mutations were detected in 7 patients. FAT1 mRNA expression in tumors was significantly lower than in adjacent normal tissue (p = 0.043). The OS of patients with high FAT1 protein expression was significantly longer than that of patients with low FAT1 protein expression (median survival time: 24.3 vs 4.8 months, respectively; p = 0.002). shFAT1 cells had significantly higher proliferation rates than shControl cells (p≤0.028). Furthermore, the mRNA expression of LEF1, β-catenin, and cyclin D1 was significantly upregulated in shFAT1-Daoy cells (p≤0.018). Low FAT1 expression was associated with poor prognosis in children with medulloblastoma. Furthermore, FAT1 may act on Wnt signaling pathway to exert its antitumor effect.

  13. Smad3 induces atrogin-1, inhibits mTOR and protein synthesis, and promotes muscle atrophy in vivo.

    Science.gov (United States)

    Goodman, Craig A; McNally, Rachel M; Hoffmann, F Michael; Hornberger, Troy A

    2013-11-01

    Myostatin, a member of the TGF superfamily, is sufficient to induce skeletal muscle atrophy. Myostatin-induced atrophy is associated with increases in E3-ligase atrogin-1 expression and protein degradation and decreases in Akt/mechanistic target of rapamycin (mTOR) signaling and protein synthesis. Myostatin signaling activates the transcription factor Smad3 (Small Mothers Against Decapentaplegic), which has been shown to be necessary for myostatin-induced atrogin-1 expression and atrophy; however, it is not known whether Smad3 is sufficient to induce these events or whether Smad3 simply plays a permissive role. Thus, the aim of this study was to address these questions with an in vivo model. To accomplish this goal, in vivo transfection of plasmid DNA was used to create transient transgenic mouse skeletal muscles, and our results show for the first time that Smad3 expression is sufficient to stimulate atrogin-1 promoter activity, inhibit Akt/mTOR signaling and protein synthesis, and induce muscle fiber atrophy. Moreover, we propose that Akt/mTOR signaling is inhibited by a Smad3-induced decrease in microRNA-29 (miR-29) expression and a subsequent increase in the translation of phosphatase and tensin homolog (PTEN) mRNA. Smad3 is also sufficient to inhibit peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) promoter activity and to increase FoxO (Forkhead Box Protein, Subclass O)-mediated signaling and the promoter activity of plasminogen activator inhibitor 1 (PAI-1). Combined, this study provides the first evidence that Smad3 is sufficient to regulate many of the events associated with myostatin-induced atrophy and therefore suggests that Smad3 signaling may be a viable target for therapies aimed at preventing myostatin-induced muscle atrophy.

  14. Src homology domain 2-containing protein-tyrosine phosphatase-1 (SHP-1) binds and dephosphorylates G(alpha)-interacting, vesicle-associated protein (GIV)/Girdin and attenuates the GIV-phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway.

    Science.gov (United States)

    Mittal, Yash; Pavlova, Yelena; Garcia-Marcos, Mikel; Ghosh, Pradipta

    2011-09-16

    GIV (Gα-interacting vesicle-associated protein, also known as Girdin) is a bona fide enhancer of PI3K-Akt signals during a diverse set of biological processes, e.g. wound healing, macrophage chemotaxis, tumor angiogenesis, and cancer invasion/metastasis. We recently demonstrated that tyrosine phosphorylation of GIV by receptor and non-receptor-tyrosine kinases is a key step that is required for GIV to directly bind and enhance PI3K activity. Here we report the discovery that Src homology 2-containing phosphatase-1 (SHP-1) is the major protein-tyrosine phosphatase that targets two critical phosphotyrosines within GIV and antagonizes phospho-GIV-dependent PI3K enhancement in mammalian cells. Using phosphorylation-dephosphorylation assays, we demonstrate that SHP-1 is the major and specific protein-tyrosine phosphatase that catalyzes the dephosphorylation of tyrosine-phosphorylated GIV in vitro and inhibits ligand-dependent tyrosine phosphorylation of GIV downstream of both growth factor receptors and GPCRs in cells. In vitro binding and co-immunoprecipitation assays demonstrate that SHP-1 and GIV interact directly and constitutively and that this interaction occurs between the SH2 domain of SHP-1 and the C terminus of GIV. Overexpression of SHP-1 inhibits tyrosine phosphorylation of GIV and formation of phospho-GIV-PI3K complexes, and specifically suppresses GIV-dependent activation of Akt. Consistently, depletion of SHP-1 enhances peak tyrosine phosphorylation of GIV, which coincides with an increase in peak Akt activity. We conclude that SHP-1 antagonizes the action of receptor and non-receptor-tyrosine kinases on GIV and down-regulates the phospho-GIV-PI3K-Akt axis of signaling.

  15. Epstein-Barr virus-encoded EBNA-5 binds to Epstein-Barr virus-induced Fte1/S3a protein

    International Nuclear Information System (INIS)

    Kashuba, Elena; Yurchenko, Mariya; Szirak, Krisztina; Stahl, Joachim; Klein, George; Szekely, Laszlo

    2005-01-01

    Epstein-Barr virus (EBV) transforms resting human B cells into immortalized immunoblasts. EBV-encoded nuclear antigens EBNA-5 (also called EBNA-LP) is one of the earliest viral proteins expressed in freshly infected B cells. We have recently shown that EBNA-5 binds p14ARF, a nucleolar protein that regulates the p53 pathway. Here, we report the identification of another protein with partially nucleolar localization, the v-fos transformation effector Fte-1 (Fte-1/S3a), as an EBNA-5 binding partner. In transfected cells, Fte-1/S3a and EBNA-5 proteins showed high levels of colocalization in extranucleolar inclusions. Fte-1/S3a has multiple biological functions. It enhances v-fos-mediated cellular transformation and is part of the small ribosomal subunit. It also interacts with the transcriptional factor CHOP and apoptosis regulator poly(ADP-ribose) polymerase (PARP). Fte-1/S3a is regularly expressed at high levels in both tumors and cancer cell lines. Its high expression favors the maintenance of malignant phenotype and undifferentiated state, whereas its down-regulation is associated with cellular differentiation and growth arrest. Here, we show that EBV-induced B cell transformation leads to the up-regulation of Fte-1/S3a. We suggest that EBNA-5 through binding may influence the growth promoting, differentiation inhibiting, or apoptosis regulating functions of Fte-1/S3a

  16. Epstein-Barr virus BRLF1 inhibits transcription of IRF3 and IRF7 and suppresses induction of interferon-β

    International Nuclear Information System (INIS)

    Bentz, Gretchen L.; Liu Renshui; Hahn, Angela M.; Shackelford, Julia; Pagano, Joseph S.

    2010-01-01

    Activation of interferon regulatory factors (IRFs) 3 and 7 is essential for the induction of Type I interferons (IFN) and innate antiviral responses, and herpesviruses have evolved mechanisms to evade such responses. We previously reported that Epstein-Barr virus BZLF1, an immediate-early (IE) protein, inhibits the function of IRF7, but the role of BRLF1, the other IE transactivator, in IRF regulation has not been examined. We now show that BRLF1 expression decreased induction of IFN-β, and reduced expression of IRF3 and IRF7; effects were dependent on N- and C-terminal regions of BRLF1 and its nuclear localization signal. Endogenous IRF3 and IRF7 RNA and protein levels were also decreased during cytolytic EBV infection. Finally, production of IFN-β was decreased during lytic EBV infection and was associated with increased susceptibility to superinfection with Sendai virus. These data suggest a new role for BRLF1 with the ability to evade host innate immune responses.

  17. Tomato leaf curl Kerala virus (ToLCKeV AC3 protein forms a higher order oligomer and enhances ATPase activity of replication initiator protein (Rep/AC1

    Directory of Open Access Journals (Sweden)

    Mukherjee Sunil K

    2010-06-01

    Full Text Available Abstract Background Geminiviruses are emerging plant viruses that infect a wide variety of vegetable crops, ornamental plants and cereal crops. They undergo recombination during co-infections by different species of geminiviruses and give rise to more virulent species. Antiviral strategies targeting a broad range of viruses necessitate a detailed understanding of the basic biology of the viruses. ToLCKeV, a virus prevalent in the tomato crop of Kerala state of India and a member of genus Begomovirus has been used as a model system in this study. Results AC3 is a geminiviral protein conserved across all the begomoviral species and is postulated to enhance viral DNA replication. In this work we have successfully expressed and purified the AC3 fusion proteins from E. coli. We demonstrated the higher order oligomerization of AC3 using sucrose gradient ultra-centrifugation and gel-filtration experiments. In addition we also established that ToLCKeV AC3 protein interacted with cognate AC1 protein and enhanced the AC1-mediated ATPase activity in vitro. Conclusions Highly hydrophobic viral protein AC3 can be purified as a fusion protein with either MBP or GST. The purification method of AC3 protein improves scope for the biochemical characterization of the viral protein. The enhancement of AC1-mediated ATPase activity might lead to increased viral DNA replication.

  18. Proteomics-based identification of midgut proteins correlated with Cry1Ac resistance in Plutella xylostella (L.).

    Science.gov (United States)

    Xia, Jixing; Guo, Zhaojiang; Yang, Zezhong; Zhu, Xun; Kang, Shi; Yang, Xin; Yang, Fengshan; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Xu, Weijun; Zhang, Youjun

    2016-09-01

    The diamondback moth, Plutella xylostella (L.), is a worldwide pest of cruciferous crops and can rapidly develop resistance to many chemical insecticides. Although insecticidal crystal proteins (i.e., Cry and Cyt toxins) derived from Bacillus thuringiensis (Bt) have been useful alternatives to chemical insecticides for the control of P. xylostella, resistance to Bt in field populations of P. xylostella has already been reported. A better understanding of the resistance mechanisms to Bt should be valuable in delaying resistance development. In this study, the mechanisms underlying P. xylostella resistance to Bt Cry1Ac toxin were investigated using two-dimensional differential in-gel electrophoresis (2D-DIGE) and ligand blotting for the first time. Comparative analyses of the constitutive expression of midgut proteins in Cry1Ac-susceptible and -resistant P. xylostella larvae revealed 31 differentially expressed proteins, 21 of which were identified by mass spectrometry. Of these identified proteins, the following fell into diverse eukaryotic orthologous group (KOG) subcategories may be involved in Cry1Ac resistance in P. xylostella: ATP-binding cassette (ABC) transporter subfamily G member 4 (ABCG4), trypsin, heat shock protein 70 (HSP70), vacuolar H(+)-ATPase, actin, glycosylphosphatidylinositol anchor attachment 1 protein (GAA1) and solute carrier family 30 member 1 (SLC30A1). Additionally, ligand blotting identified the following midgut proteins as Cry1Ac-binding proteins in Cry1Ac-susceptible P. xylostella larvae: ABC transporter subfamily C member 1 (ABCC1), solute carrier family 36 member 1 (SLC36A1), NADH dehydrogenase iron-sulfur protein 3 (NDUFS3), prohibitin and Rap1 GTPase-activating protein 1. Collectively, these proteomic results increase our understanding of the molecular resistance mechanisms to Bt Cry1Ac toxin in P. xylostella and also demonstrate that resistance to Bt Cry1Ac toxin is complex and multifaceted. Copyright © 2016 Elsevier B.V. All

  19. Contrasting Pathology of the Stress Granule Proteins TIA-1 and G3BP in Tauopathies

    Science.gov (United States)

    Vanderweyde, Tara; Yu, Haung; Varnum, Megan; Liu-Yesucevitz, Liqun; Citro, Allison; Ikezu, Tsuneya; Duff, Karen; Wolozin, Benjamin

    2012-01-01

    Stress induces aggregation of RNA-binding proteins to form inclusions, termed stress granules (SGs). Recent evidence suggests that SG proteins also colocalize with neuropathological structures, but whether this occurs in Alzheimer’s disease is unknown. We examined the relationship between SG proteins and neuropathology in brain tissue from P301L Tau transgenic mice, as well as in cases of Alzheimer’s disease and FTDP-17. The pattern of SG pathology differs dramatically based on the RNA-binding protein examined. SGs positive for T-cell intracellular antigen-1 (TIA-1) or tristetraprolin (TTP) initially do not colocalize with tau pathology, but then merge with tau inclusions as disease severity increases. In contrast, G3BP (ras GAP-binding protein) identifies a novel type of molecular pathology that shows increasing accumulation in neurons with increasing disease severity, but often is not associated with classic markers of tau pathology. TIA-1 and TTP both bind phospho-tau, and TIA-1 overexpression induces formation of inclusions containing phospho-tau. These data suggest that SG formation might stimulate tau pathophysiology. Thus, study of RNA-binding proteins and SG biology highlights novel pathways interacting with the pathophysiology of AD, providing potentially new avenues for identifying diseased neurons and potentially novel mechanisms regulating tau biology. PMID:22699908

  20. The cochaperone BAG3 coordinates protein synthesis and autophagy under mechanical strain through spatial regulation of mTORC1.

    Science.gov (United States)

    Kathage, Barbara; Gehlert, Sebastian; Ulbricht, Anna; Lüdecke, Laura; Tapia, Victor E; Orfanos, Zacharias; Wenzel, Daniela; Bloch, Wilhelm; Volkmer, Rudolf; Fleischmann, Bernd K; Fürst, Dieter O; Höhfeld, Jörg

    2017-01-01

    The cochaperone BAG3 is a central protein homeostasis factor in mechanically strained mammalian cells. It mediates the degradation of unfolded and damaged forms of the actin-crosslinker filamin through chaperone-assisted selective autophagy (CASA). In addition, BAG3 stimulates filamin transcription in order to compensate autophagic disposal and to maintain the actin cytoskeleton under strain. Here we demonstrate that BAG3 coordinates protein synthesis and autophagy through spatial regulation of the mammalian target of rapamycin complex 1 (mTORC1). The cochaperone utilizes its WW domain to contact a proline-rich motif in the tuberous sclerosis protein TSC1 that functions as an mTORC1 inhibitor in association with TSC2. Interaction with BAG3 results in a recruitment of TSC complexes to actin stress fibers, where the complexes act on a subpopulation of mTOR-positive vesicles associated with the cytoskeleton. Local inhibition of mTORC1 is essential to initiate autophagy at sites of filamin unfolding and damage. At the same time, BAG3-mediated sequestration of TSC1/TSC2 relieves mTORC1 inhibition in the remaining cytoplasm, which stimulates protein translation. In human muscle, an exercise-induced association of TSC1 with the cytoskeleton coincides with mTORC1 activation in the cytoplasm. The spatial regulation of mTORC1 exerted by BAG3 apparently provides the basis for a simultaneous induction of autophagy and protein synthesis to maintain the proteome under mechanical strain. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. The SARS Coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor.

    Directory of Open Access Journals (Sweden)

    Rinki Minakshi

    2009-12-01

    Full Text Available The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV is reported to cause apoptosis of infected cells and several of its proteins including the 3a accessory protein, are pro-apoptotic. Since the 3a protein localizes to the endoplasmic reticulum (ER-Golgi compartment, its role in causing ER stress was investigated in transiently transfected cells. Cells expressing the 3a proteins showed ER stress based on activation of genes for the ER chaperones GRP78 and GRP94. Since ER stress can cause differential modulation of the unfolded protein response (UPR, which includes the inositol-requiring enzyme 1 (IRE-1, activating transcription factor 6 (ATF6 and PKR-like ER kinase (PERK pathways, these were individually tested in 3a-expressing cells. Only the PERK pathway was found to be activated in 3a-expressing cells based on (1 increased phosphorylation of eukaryotic initiation factor 2 alpha (eIF2alpha and inhibitory effects of a dominant-negative form of eIF2alpha on GRP78 promoter activity, (2 increased translation of activating transcription factor 4 (ATF4 mRNA, and (3 ATF4-dependent activation of the C/EBP homologous protein (CHOP gene promoter. Activation of PERK affects innate immunity by suppression of type 1 interferon (IFN signaling. The 3a protein was found to induce serine phosphorylation within the IFN alpha-receptor subunit 1 (IFNAR1 degradation motif and to increase IFNAR1 ubiquitination. Confocal microscopic analysis showed increased translocation of IFNAR1 into the lysosomal compartment and flow cytometry showed reduced levels of IFNAR1 in 3a-expressing cells. These results provide further mechanistic details of the pro-apoptotic effects of the SARS-CoV 3a protein, and suggest a potential role for it in attenuating interferon responses and innate immunity.

  2. Salivary protein histatin 3 regulates cell proliferation by enhancing p27{sup Kip1} and heat shock cognate protein 70 ubiquitination

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, Yasuhiro, E-mail: yimamura@po.mdu.ac.jp [Department of Pharmacology, Matsumoto Dental University, Shiojiri, Nagano 399-0781 (Japan); Wang, Pao-Li [Department of Bacteriology, Osaka Dental University, Hirakata, Osaka 573-1121 (Japan); Masuno, Kazuya [Department of Dental Education Innovation, Osaka Dental University, Hirakata, Osaka 573-1121 (Japan); Sogawa, Norio [Department of Pharmacology, Matsumoto Dental University, Shiojiri, Nagano 399-0781 (Japan)

    2016-02-05

    Histatins are salivary proteins with antimicrobial activities. We previously reported that histatin 3 binds to heat shock cognate protein 70 (HSC70), which is constitutively expressed, and induces DNA synthesis stimulation and promotes human gingival fibroblast (HGF) survival. However, the underlying mechanisms of histatin 3 remain largely unknown. Here, we found that the KRHH sequence of histatin 3 at the amino acid positions 5–8 was essential for enhancing p27{sup Kip1} (a cyclin-dependent kinase inhibitor) binding to HSC70 that occurred in a dose-dependent manner; histatin 3 enhanced the binding between p27{sup Kip1} and HSC70 during the G{sub 1}/S transition of HGFs as opposed to histatin 3-M(5–8) (substitution of KRHH for EEDD in histatin 3). Histatin 3, but not histatin 3-M(5–8), stimulated DNA synthesis and promoted HGF survival. Histatin 3 dose-dependently enhanced both p27{sup Kip1} and HSC70 ubiquitination, whereas histatin 3-M(5–8) did not. These findings provide further evidence that histatin 3 may be involved in the regulation of cell proliferation, particularly during G{sub 1}/S transition, via the ubiquitin–proteasome system of p27{sup Kip1} and HSC70. - Highlights: • KRHH amino acid sequence was required in histatin 3 to bind HSC70. • Histatin 3 enhanced HSC70 binding to p27{sup Kip1} during the G{sub 1}/S transition in HGFs. • KRHH sequence stimulated DNA synthesis and promoted cell survival. • Histatin 3 dose-dependently enhanced both p27{sup Kip1} and HSC70 ubiquitination. • Histatin 3 stimulates cell proliferation via the ubiquitin–proteasome system.

  3. Insulin-Like Growth Factor (IGF Binding Protein-2, Independently of IGF-1, Induces GLUT-4 Translocation and Glucose Uptake in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Biruhalem Assefa

    2017-01-01

    Full Text Available Insulin-like growth factor binding protein-2 (IGFBP-2 is the predominant IGF binding protein produced during adipogenesis and is known to increase the insulin-stimulated glucose uptake (GU in myotubes. We investigated the IGFBP-2-induced changes in basal and insulin-stimulated GU in adipocytes and the underlying mechanisms. We further determined the role of insulin and IGF-1 receptors in mediating the IGFBP-2 and the impact of IGFBP-2 on the IGF-1-induced GU. Fully differentiated 3T3-L1 adipocytes were treated with IGFBP-2 in the presence and absence of insulin and IGF-1. Insulin, IGF-1, and IGFBP-2 induced a dose-dependent increase in GU. IGFBP-2 increased the insulin-induced GU after long-term incubation. The IGFBP-2-induced impact on GU was neither affected by insulin or IGF-1 receptor blockage nor by insulin receptor knockdown. IGFBP-2 significantly increased the phosphorylation of PI3K, Akt, AMPK, TBC1D1, and PKCζ/λ and induced GLUT-4 translocation. Moreover, inhibition of PI3K and AMPK significantly reduced IGFBP-2-stimulated GU. In conclusion, IGFBP-2 stimulates GU in 3T3-L1 adipocytes through activation of PI3K/Akt, AMPK/TBC1D1, and PI3K/PKCζ/λ/GLUT-4 signaling. The stimulatory effect of IGFBP-2 on GU is independent of its binding to IGF-1 and is possibly not mediated through the insulin or IGF-1 receptor. This study highlights the potential role of IGFBP-2 in glucose metabolism.

  4. HIV-1 protein induced modulation of primary human osteoblast differentiation and function via a Wnt/β-catenin-dependent mechanism.

    LENUS (Irish Health Repository)

    Butler, Joseph S

    2013-02-01

    HIV infection is associated with metabolic bone disease resulting in bone demineralization and reduced bone mass. The molecular mechanisms driving this disease process have yet to be elucidated. Wnt\\/β-catenin signaling plays a key role in bone development and remodeling. We attempted to determine the effects of the HIV-1 protein, gp120, on Wnt\\/β-catenin signaling at an intracellular and transcriptional level in primary human osteoblasts (HOBs). This work, inclusive of experimental controls, was part of a greater project assessing the effects of a variety of different agents on Wnt\\/β-catenin signaling (BMC Musculoskelet Disord 2010;11:210).We examined the phenotypic effects of silencing and overexpressing the Wnt antagonist, Dickkopf-1 (Dkk1) in HOBs treated with gp120. HOBs exposed to gp120 displayed a significant reduction in alkaline phosphatase activity (ALP) activity and cell proliferation and increased cellular apoptosis over a 48 h time course. Immunocytochemistry demonstrated a significant reduction in intracytosolic and intranuclear β-catenin in response to HIV-1 protein exposure. These changes were associated with a reduction of TCF\\/LEF-mediated transcription, the transcriptional outcome of canonical Wnt β-catenin signaling. Silencing Dkk1 expression in HOBs exposed to gp120 resulted in increased ALP activity and cell proliferation, and decreased cellular apoptosis relative to scrambled control. Dkk1 overexpression exacerbated the inhibitory effect of gp120 on HOB function, with decreases in ALP activity and cell proliferation and increased cellular apoptosis relative to vector control. Wnt\\/β-catenin signaling plays a key regulatory role in HIV-associated bone loss, with Dkk1, aputative central mediator in this degenerative process. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31: 218-226, 2013.

  5. Genetic polymorphism of horse serum protein 3 (SP3).

    Science.gov (United States)

    Juneja, R K; Sandberg, K; Kuryl, J; Gahne, B

    1989-01-01

    Two-dimensional agarose gel (pH 8.6)-horizontal polyacrylamide gel (pH 9.0) electrophoresis of horse serum samples, followed by general protein staining, revealed genetic polymorphism of an unidentified protein tentatively designated serum protein 3 (SP3). The SP3 fractions appeared distinctly when a 14% concentration of acrylamide was used in the separation gels. The 2-D mobilities of SP3 fractions were quite similar to that of albumin. Family data were consistent with the hypothesis that the observed SP3 phenotypes were controlled by four co-dominant, autosomal alleles (D, F, I, S). Evidence was provided that the F allele can be further divided into two alleles (F1 and F2); the mobilities of F1 and F2 variants were very similar. Each of the SP3 alleles gave rise to one fraction and each of the heterozygous types showed two fractions. More than 600 horses representing five different breeds (Swedish Trotter, North-Swedish Trotter, Thoroughbred, Arab and Polish Tarpan) were typed for SP3, and allele frequency estimates were calculated. SP3 was highly polymorphic in all breeds studied.

  6. Human-technology interaction for standoff IED detection

    Science.gov (United States)

    Zhang, Evan; Zou, Yiyang; Zachrich, Liping; Fulton, Jack

    2011-03-01

    IEDs kill our soldiers and innocent people every day. Lessons learned from Iraq and Afghanistan clearly indicated that IEDs cannot be detected/defeated by technology alone; human-technology interaction must be engaged. In most cases, eye is the best detector, brain is the best computer, and technologies are tools, they must be used by human being properly then can achieve full functionality. In this paper, a UV Raman/fluorescence, CCD and LWIR 3 sensor fusion system for standoff IED detection and a handheld fusion system for close range IED detection are developed and demonstrated. We must train solders using their eyes or CCD/LWIR cameras to do wide area search while on the move to find small suspected area first then use the spectrometer because the laser spot is too small, to scan a one-mile long and 2-meter wide road needs 185 days although our fusion system can detect the IED in 30m with 1s interrogating time. Even if the small suspected area (e.g., 0.5mx0.5m) is found, human eyes still cannot detect the IED, soldiers must use or interact with the technology - laser based spectrometer to scan the area then they are able to detect and identify the IED in 10 minutes not 185 days. Therefore, the human-technology interaction approach will be the best solution for IED detection.

  7. The β3-Integrin Binding Protein β3-Endonexin Is a Novel Negative Regulator of Hypoxia-Inducible Factor-1

    Science.gov (United States)

    Kračun, Damir; Rieß, Florian; Kanchev, Ivan; Gawaz, Meinrad

    2014-01-01

    Abstract Aims: Integrins are multifunctional heterodimeric adhesion receptors that mediate the attachment between a cell and the extracellular matrix or other surrounding cells. In endothelial cells, integrins can modulate cell migration and motility. In particular, β3-integrin is expressed in angiogenic vessels. Signal transduction by β3-integrins requires the recruitment of intracellular signaling molecules. β3-endonexin is a highly spliced molecule that has been identified as a β3-integrin binding protein. β3-endonexin isoforms are expressed in endothelial cells and have been suggested to act as shuttle proteins between the membrane and the nucleus. However, their functional role in angiogenesis is unclear. In this study, we investigated whether β3-endonexin isoforms are involved in endothelial angiogenic processes under hypoxia. Results: The overexpression of β3-endonexin isoforms decreased endothelial proliferation and tube formation under hypoxia, while the depletion of β3-endonexin by RNAi promoted angiogenic responses in vitro and in vivo. In hypoxia, β3-endonexin accumulated in the nucleus, and prevention of this response by depletion of β3-endonexin increased hypoxic activation and induction of the hypoxia-inducible factor (HIF)-1 and its target genes VEGF and PAI-1. β3-endonexin diminished nuclear factor kappa B (NFκB) activation and decreased NFκB binding to the HIF-1α promoter under hypoxia, subsequently diminishing NFκB-dependent transcription of HIF-1α under hypoxia. Innovation: Our results indicate for the first time that the overexpression of β3-endonexin can decrease hypoxic induction and activation of HIF-1α and can prevent hypoxic endothelial proliferation and angiogenic responses. Conclusion: β3-endonexin can act as a novel anti-angiogenic factor specifically in the response to hypoxia due to its negative impact on the activation of HIF-1. Antioxid. Redox Signal. 20, 1964–1976. PMID:24386901

  8. Proteomic analysis of tissue from α1,3-galactosyltransferase knockout mice reveals that a wide variety of proteins and protein fragments change expression level.

    Directory of Open Access Journals (Sweden)

    Louise Thorlacius-Ussing

    Full Text Available A barrier in a pig-to-man xenotransplantation is that the Galα1-3Galβ1-4GlcNAc-R carbohydrate (α-Gal epitope expressed on pig endothelial cells reacts with naturally occurring antibodies in the recipient's blood leading to rejection. Deletion of the α1,3-galactosyltransferase gene prevents the synthesis of the α-Gal epitope. Therefore, knockout models of the α1,3-galactosyltransferase gene are widely used to study xenotransplantation. We have performed proteomic studies on liver and pancreas tissues from wild type and α1,3-galactosyltransferase gene knockout mice. The tissues were analyzed by two-dimensional polyacrylamide gel electrophoresis and liquid chromatography-tandem mass spectrometry. The analyses revealed that a wide variety of proteins and protein fragments are differentially expressed suggesting that knockout of the α1,3-galactosyltransferase gene affects the expression of several other genes.

  9. Synergism and Antagonism between Bacillus thuringiensis Vip3A and Cry1 Proteins in Heliothis virescens, Diatraea saccharalis and Spodoptera frugiperda

    Science.gov (United States)

    Lemes, Ana Rita Nunes; Davolos, Camila Chiaradia; Legori, Paula Cristina Brunini Crialesi; Fernandes, Odair Aparecido; Ferré, Juan; Lemos, Manoel Victor Franco; Desiderio, Janete Apparecida

    2014-01-01

    Second generation Bt crops (insect resistant crops carrying Bacillus thuringiensis genes) combine more than one gene that codes for insecticidal proteins in the same plant to provide better control of agricultural pests. Some of the new combinations involve co-expression of cry and vip genes. Because Cry and Vip proteins have different midgut targets and possibly different mechanisms of toxicity, it is important to evaluate possible synergistic or antagonistic interactions between these two classes of toxins. Three members of the Cry1 class of proteins and three from the Vip3A class were tested against Heliothis virescens for possible interactions. At the level of LC50, Cry1Ac was the most active protein, whereas the rest of proteins tested were similarly active. However, at the level of LC90, Cry1Aa and Cry1Ca were the least active proteins, and Cry1Ac and Vip3A proteins were not significantly different. Under the experimental conditions used in this study, we found an antagonistic effect of Cry1Ca with the three Vip3A proteins. The interaction between Cry1Ca and Vip3Aa was also tested on two other species of Lepidoptera. Whereas antagonism was observed in Spodoptera frugiperda, synergism was found in Diatraea saccharalis. In all cases, the interaction between Vip3A and Cry1 proteins was more evident at the LC90 level than at the LC50 level. The fact that the same combination of proteins may result in a synergistic or an antagonistic interaction may be an indication that there are different types of interactions within the host, depending on the insect species tested. PMID:25275646

  10. Structure and Calcium Binding Properties of a Neuronal Calcium-Myristoyl Switch Protein, Visinin-Like Protein 3.

    Science.gov (United States)

    Li, Congmin; Lim, Sunghyuk; Braunewell, Karl H; Ames, James B

    2016-01-01

    Visinin-like protein 3 (VILIP-3) belongs to a family of Ca2+-myristoyl switch proteins that regulate signal transduction in the brain and retina. Here we analyze Ca2+ binding, characterize Ca2+-induced conformational changes, and determine the NMR structure of myristoylated VILIP-3. Three Ca2+ bind cooperatively to VILIP-3 at EF2, EF3 and EF4 (KD = 0.52 μM and Hill slope of 1.8). NMR assignments, mutagenesis and structural analysis indicate that the covalently attached myristoyl group is solvent exposed in Ca2+-bound VILIP-3, whereas Ca2+-free VILIP-3 contains a sequestered myristoyl group that interacts with protein residues (E26, Y64, V68), which are distinct from myristate contacts seen in other Ca2+-myristoyl switch proteins. The myristoyl group in VILIP-3 forms an unusual L-shaped structure that places the C14 methyl group inside a shallow protein groove, in contrast to the much deeper myristoyl binding pockets observed for recoverin, NCS-1 and GCAP1. Thus, the myristoylated VILIP-3 protein structure determined in this study is quite different from those of other known myristoyl switch proteins (recoverin, NCS-1, and GCAP1). We propose that myristoylation serves to fine tune the three-dimensional structures of neuronal calcium sensor proteins as a means of generating functional diversity.

  11. The BH3 α-Helical Mimic BH3-M6 Disrupts Bcl-XL, Bcl-2, and MCL-1 Protein-Protein Interactions with Bax, Bak, Bad, or Bim and Induces Apoptosis in a Bax- and Bim-dependent Manner*

    Science.gov (United States)

    Kazi, Aslamuzzaman; Sun, Jiazhi; Doi, Kenichiro; Sung, Shen-Shu; Takahashi, Yoshinori; Yin, Hang; Rodriguez, Johanna M.; Becerril, Jorge; Berndt, Norbert; Hamilton, Andrew D.; Wang, Hong-Gang; Sebti, Saïd M.

    2011-01-01

    A critical hallmark of cancer cell survival is evasion of apoptosis. This is commonly due to overexpression of anti-apoptotic proteins such as Bcl-2, Bcl-XL, and Mcl-1, which bind to the BH3 α-helical domain of pro-apoptotic proteins such as Bax, Bak, Bad, and Bim, and inhibit their function. We designed a BH3 α-helical mimetic BH3-M6 that binds to Bcl-XL and Mcl-1 and prevents their binding to fluorescently labeled Bak- or Bim-BH3 peptides in vitro. Using several approaches, we demonstrate that BH3-M6 is a pan-Bcl-2 antagonist that inhibits the binding of Bcl-XL, Bcl-2, and Mcl-1 to multi-domain Bax or Bak, or BH3-only Bim or Bad in cell-free systems and in intact human cancer cells, freeing up pro-apoptotic proteins to induce apoptosis. BH3-M6 disruption of these protein-protein interactions is associated with cytochrome c release from mitochondria, caspase-3 activation and PARP cleavage. Using caspase inhibitors and Bax and Bak siRNAs, we demonstrate that BH3-M6-induced apoptosis is caspase- and Bax-, but not Bak-dependent. Furthermore, BH3-M6 disrupts Bcl-XL/Bim, Bcl-2/Bim, and Mcl-1/Bim protein-protein interactions and frees up Bim to induce apoptosis in human cancer cells that depend for tumor survival on the neutralization of Bim with Bcl-XL, Bcl-2, or Mcl-1. Finally, BH3-M6 sensitizes cells to apoptosis induced by the proteasome inhibitor CEP-1612. PMID:21148306

  12. Doxazosin stimulates galectin-3 expression and collagen synthesis in HL-1 cardiomyocytes independent of protein kinase C pathway

    Directory of Open Access Journals (Sweden)

    Xiaoqian Qian

    2016-12-01

    Full Text Available Doxazosin, a drug commonly prescribed for hypertension and prostate disease, increases heart failure risk. However, the underlying mechanism remains unclear. Galectin-3 is an important mediator that plays a pathogenic role in cardiac hypertrophy and heart failure. In the present study, we investigated whether doxazosin could stimulate galectin-3 expression and collagen synthesis in cultured HL-1 cardiomyocytes. We found that doxazosin dose-dependently induced galectin-3 protein expression, with a statistically significant increase in expression with a dose as low as 0.01 μM. Doxazosin upregulated collagen I and α-smooth muscle actin (α-SMA protein levels and also induced apoptotic protein caspase-3 in HL-1 cardiomyocytes. Although we previously reported that activation of protein kinase C (PKC stimulates galectin-3 expression, blocking the PKC pathway with the PKC inhibitor chelerythrine did not prevent doxazosin-induced galectin-3 and collagen expression. Consistently, doxazosin treatment did not alter total and phosphorylated PKC. These results suggest that doxazosin-stimulated galectin-3 is independent of PKC pathway. To determine if the α1-adrenergic pathway is involved, we pretreated the cells with the irreversible α-adrenergic receptor blocker phenoxybenzamine and found that doxazosin-stimulated galectin-3 and collagen expression was similar to controls, suggesting that doxazosin acts independently of α1-adrenergic receptor blockade. Collectively, we show a novel effect of doxazosin on cardiomycytes by stimulating heart fibrosis factor galectin-3 expression. The mechanism of action of doxazosin is not mediated through either activation of the PKC pathway or antagonism of α1-adrenergic receptors.

  13. SIRT3 deacetylates ATP synthase F1 complex proteins in response to nutrient- and exercise-induced stress.

    Science.gov (United States)

    Vassilopoulos, Athanassios; Pennington, J Daniel; Andresson, Thorkell; Rees, David M; Bosley, Allen D; Fearnley, Ian M; Ham, Amy; Flynn, Charles Robb; Hill, Salisha; Rose, Kristie Lindsey; Kim, Hyun-Seok; Deng, Chu-Xia; Walker, John E; Gius, David

    2014-08-01

    Adenosine triphosphate (ATP) synthase uses chemiosmotic energy across the inner mitochondrial membrane to convert adenosine diphosphate and orthophosphate into ATP, whereas genetic deletion of Sirt3 decreases mitochondrial ATP levels. Here, we investigate the mechanistic connection between SIRT3 and energy homeostasis. By using both in vitro and in vivo experiments, we demonstrate that ATP synthase F1 proteins alpha, beta, gamma, and Oligomycin sensitivity-conferring protein (OSCP) contain SIRT3-specific reversible acetyl-lysines that are evolutionarily conserved and bind to SIRT3. OSCP was further investigated and lysine 139 is a nutrient-sensitive SIRT3-dependent deacetylation target. Site directed mutants demonstrate that OSCP(K139) directs, at least in part, mitochondrial ATP production and mice lacking Sirt3 exhibit decreased ATP muscle levels, increased ATP synthase protein acetylation, and an exercise-induced stress-deficient phenotype. This work connects the aging and nutrient response, via SIRT3 direction of the mitochondrial acetylome, to the regulation of mitochondrial energy homeostasis under nutrient-stress conditions by deacetylating ATP synthase proteins. Our data suggest that acetylome signaling contributes to mitochondrial energy homeostasis by SIRT3-mediated deacetylation of ATP synthase proteins.

  14. Shiga toxin 1 interaction with enterocytes causes apical protein mistargeting through the depletion of intracellular galectin-3

    Energy Technology Data Exchange (ETDEWEB)

    Laiko, Marina; Murtazina, Rakhilya; Malyukova, Irina [Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Zhu, Chengru; Boedeker, Edgar C. [Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131 (United States); Gutsal, Oksana [Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); O' Malley, Robert; Cole, Robert N. [Department of Biochemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Tarr, Phillip I. [Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110 (United States); Murray, Karen F. [Department of Pediatrics, Children' s Hospital and Regional Medical Center, Seattle, WA 98105 (United States); Kane, Anne [The Tufts New England Medical Center, Boston, MA 02111 (United States); Donowitz, Mark [Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Kovbasnjuk, Olga, E-mail: okovbas1@jhmi.edu [Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States)

    2010-02-15

    Shiga toxins (Stx) 1 and 2 are responsible for intestinal and systemic sequelae of infection by enterohemorrhagic Escherichia coli (EHEC). However, the mechanisms through which enterocytes are damaged remain unclear. While secondary damage from ischemia and inflammation are postulated mechanisms for all intestinal effects, little evidence excludes roles for more primary toxin effects on intestinal epithelial cells. We now document direct pathologic effects of Stx on intestinal epithelial cells. We study a well-characterized rabbit model of EHEC infection, intestinal tissue and stool samples from EHEC-infected patients, and T84 intestinal epithelial cells treated with Stx1. Toxin uptake by intestinal epithelial cells in vitro and in vivo causes galectin-3 depletion from enterocytes by increasing the apical galectin-3 secretion. This Shiga toxin-mediated galectin-3 depletion impairs trafficking of several brush border structural proteins and transporters, including villin, dipeptidyl peptidase IV, and the sodium-proton exchanger 2, a major colonic sodium absorptive protein. The mistargeting of proteins responsible for the absorptive function might be a key event in Stx1-induced diarrhea. These observations provide new evidence that human enterocytes are directly damaged by Stx1. Conceivably, depletion of galectin-3 from enterocytes and subsequent apical protein mistargeting might even provide a means whereby other pathogens might alter intestinal epithelial absorption and produce diarrhea.

  15. Functional interaction between type III-secreted protein IncA of Chlamydophila psittaci and human G3BP1.

    Science.gov (United States)

    Borth, Nicole; Litsche, Katrin; Franke, Claudia; Sachse, Konrad; Saluz, Hans Peter; Hänel, Frank

    2011-01-31

    Chlamydophila (Cp.) psittaci, the causative agent of psittacosis in birds and humans, is the most important zoonotic pathogen of the family Chlamydiaceae. These obligate intracellular bacteria are distinguished by a unique biphasic developmental cycle, which includes proliferation in a membrane-bound compartment termed inclusion. All Chlamydiaceae spp. possess a coding capacity for core components of a Type III secretion apparatus, which mediates specific delivery of anti-host effector proteins either into the chlamydial inclusion membrane or into the cytoplasm of target eukaryotic cells. Here we describe the interaction between Type III-secreted protein IncA of Cp. psittaci and host protein G3BP1 in a yeast two-hybrid system. In GST-pull down and co-immunoprecipitation experiments both in vitro and in vivo interaction between full-length IncA and G3BP1 were shown. Using fluorescence microscopy, the localization of G3BP1 near the inclusion membrane of Cp. psittaci-infected Hep-2 cells was demonstrated. Notably, infection of Hep-2 cells with Cp. psittaci and overexpression of IncA in HEK293 cells led to a decrease in c-Myc protein concentration. This effect could be ascribed to the interaction between IncA and G3BP1 since overexpression of an IncA mutant construct disabled to interact with G3BP1 failed to reduce c-Myc concentration. We hypothesize that lowering the host cell c-Myc protein concentration may be part of a strategy employed by Cp. psittaci to avoid apoptosis and scale down host cell proliferation.

  16. Glycosylation analysis and protein structure determination of murine fetal antigen 1 (mFA1)--the circulating gene product of the delta-like protein (dlk), preadipocyte factor 1 (Pref-1) and stromal-cell-derived protein 1 (SCP-1) cDNAs

    DEFF Research Database (Denmark)

    Krogh, T N; Bachmann, E; Teisner, B

    1997-01-01

    By means of sequence analysis, murine fetal antigen 1 (mFA1) isolated from Mus musculus amniotic fluid was shown to be the circulating protein of the delta-like protein, stromal-cell-derived protein 1 (SCP-1) and preadipocyte factor 1 (Pref-1) gene products. The protein contains 36 cysteine...... residues arranged in six epidermal-growth-factor-like domains. The purification of several C-terminal peptides of varying lengths showed mFA1 to be C-terminal heterogeneous. O-linked glycosylations of the NeuNAc alpha2-3Gal beta1-3(NeuNAc alpha2-6)GalNAc type were present on all C-terminal peptides...... at residues Thr235, Thr244 and Thr248, although glycosylation on Thr244 was only partial. Three N-linked glycosylations were localized in mFA1 (Asn77, Asn142 and Asn151), two of which (Asn142 and Asn151) were in the unusual Asn-Xaa-Cys motif. Fucosylated biantennary complex-type and small amounts (less than 5...

  17. Human Adenovirus Infection Causes Cellular E3 Ubiquitin Ligase MKRN1 Degradation Involving the Viral Core Protein pVII.

    Science.gov (United States)

    Inturi, Raviteja; Mun, Kwangchol; Singethan, Katrin; Schreiner, Sabrina; Punga, Tanel

    2018-02-01

    Human adenoviruses (HAdVs) are common human pathogens encoding a highly abundant histone-like core protein, VII, which is involved in nuclear delivery and protection of viral DNA as well as in sequestering immune danger signals in infected cells. The molecular details of how protein VII acts as a multifunctional protein have remained to a large extent enigmatic. Here we report the identification of several cellular proteins interacting with the precursor pVII protein. We show that the cellular E3 ubiquitin ligase MKRN1 is a novel precursor pVII-interacting protein in HAdV-C5-infected cells. Surprisingly, the endogenous MKRN1 protein underwent proteasomal degradation during the late phase of HAdV-C5 infection in various human cell lines. MKRN1 protein degradation occurred independently of the HAdV E1B55K and E4orf6 proteins. We provide experimental evidence that the precursor pVII protein binding enhances MKRN1 self-ubiquitination, whereas the processed mature VII protein is deficient in this function. Based on these data, we propose that the pVII protein binding promotes MKRN1 self-ubiquitination, followed by proteasomal degradation of the MKRN1 protein, in HAdV-C5-infected cells. In addition, we show that measles virus and vesicular stomatitis virus infections reduce the MKRN1 protein accumulation in the recipient cells. Taken together, our results expand the functional repertoire of the HAdV-C5 precursor pVII protein in lytic virus infection and highlight MKRN1 as a potential common target during different virus infections. IMPORTANCE Human adenoviruses (HAdVs) are common pathogens causing a wide range of diseases. To achieve pathogenicity, HAdVs have to counteract a variety of host cell antiviral defense systems, which would otherwise hamper virus replication. In this study, we show that the HAdV-C5 histone-like core protein pVII binds to and promotes self-ubiquitination of a cellular E3 ubiquitin ligase named MKRN1. This mutual interaction between the pVII and

  18. HIV-1 accessory proteins VPR and Vif modulate antiviral response by targeting IRF-3 for degradation

    International Nuclear Information System (INIS)

    Okumura, Atsushi; Alce, Tim; Lubyova, Barbora; Ezelle, Heather; Strebel, Klaus; Pitha, Paula M.

    2008-01-01

    The activation of IRF-3 during the early stages of viral infection is critical for the initiation of the antiviral response; however the activation of IRF-3 in HIV-1 infected cells has not yet been characterized. We demonstrate that the early steps of HIV-1 infection do not lead to the activation and nuclear translocation of IRF-3; instead, the relative levels of IRF-3 protein are decreased due to the ubiquitin-associated proteosome degradation. Addressing the molecular mechanism of this effect we show that the degradation is independent of HIV-1 replication and that virion-associated accessory proteins Vif and Vpr can independently degrade IRF-3. The null mutation of these two genes reduced the capacity of the HIV-1 virus to down modulate IRF-3 levels. The degradation was associated with Vif- and Vpr-mediated ubiquitination of IRF-3 and was independent of the activation of IRF-3. N-terminal lysine residues were shown to play a critical role in the Vif- and Vpr-mediated degradation of IRF-3. These data implicate Vif and Vpr in the disruption of the initial antiviral response and point to the need of HIV-1 to circumvent the antiviral response during the very early phase of replication

  19. Protein 3D structure computed from evolutionary sequence variation.

    Directory of Open Access Journals (Sweden)

    Debora S Marks

    Full Text Available The evolutionary trajectory of a protein through sequence space is constrained by its function. Collections of sequence homologs record the outcomes of millions of evolutionary experiments in which the protein evolves according to these constraints. Deciphering the evolutionary record held in these sequences and exploiting it for predictive and engineering purposes presents a formidable challenge. The potential benefit of solving this challenge is amplified by the advent of inexpensive high-throughput genomic sequencing.In this paper we ask whether we can infer evolutionary constraints from a set of sequence homologs of a protein. The challenge is to distinguish true co-evolution couplings from the noisy set of observed correlations. We address this challenge using a maximum entropy model of the protein sequence, constrained by the statistics of the multiple sequence alignment, to infer residue pair couplings. Surprisingly, we find that the strength of these inferred couplings is an excellent predictor of residue-residue proximity in folded structures. Indeed, the top-scoring residue couplings are sufficiently accurate and well-distributed to define the 3D protein fold with remarkable accuracy.We quantify this observation by computing, from sequence alone, all-atom 3D structures of fifteen test proteins from different fold classes, ranging in size from 50 to 260 residues, including a G-protein coupled receptor. These blinded inferences are de novo, i.e., they do not use homology modeling or sequence-similar fragments from known structures. The co-evolution signals provide sufficient information to determine accurate 3D protein structure to 2.7-4.8 Å C(α-RMSD error relative to the observed structure, over at least two-thirds of the protein (method called EVfold, details at http://EVfold.org. This discovery provides insight into essential interactions constraining protein evolution and will facilitate a comprehensive survey of the universe of

  20. Sequestration of latent TGF-β binding protein 1 into CADASIL-related Notch3-ECD deposits.

    Science.gov (United States)

    Kast, Jessica; Hanecker, Patrizia; Beaufort, Nathalie; Giese, Armin; Joutel, Anne; Dichgans, Martin; Opherk, Christian; Haffner, Christof

    2014-08-13

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) represents the most common hereditary form of cerebral small vessel disease characterized by early-onset stroke and premature dementia. It is caused by mutations in the transmembrane receptor Notch3, which promote the aggregation and accumulation of the Notch3 extracellular domain (Notch3-ECD) within blood vessel walls. This process is believed to mediate the abnormal recruitment and dysregulation of additional factors including extracellular matrix (ECM) proteins resulting in brain vessel dysfunction. Based on recent evidence indicating a role for the transforming growth factor-β (TGF-β) pathway in sporadic and familial small vessel disease we studied fibronectin, fibrillin-1 and latent TGF-β binding protein 1 (LTBP-1), three ECM constituents involved in the regulation of TGF-β bioavailability, in post-mortem brain tissue from CADASIL patients and control subjects. Fibronectin and fibrillin-1 were found to be enriched in CADASIL vessels without co-localizing with Notch3-ECD deposits, likely as a result of fibrotic processes secondary to aggregate formation. In contrast, LTBP-1 showed both an accumulation and a striking co-localization with Notch3-ECD deposits suggesting specific recruitment into aggregates. We also detected increased levels of the TGF-β prodomain (also known as latency-associated peptide, LAP) indicating dysregulation of the TGF-β pathway in CADASIL development. In vitro analyses revealed a direct interaction between LTBP-1 and Notch3-ECD and demonstrated a specific co-aggregation of LTBP-1 with mutant Notch3. We propose LTBP-1 as a novel component of Notch3-ECD deposits and suggest its involvement in pathological processes triggered by Notch3-ECD aggregation.

  1. The heterotrimeric G protein1 interacts with the catalytic subunit of protein phosphatase 1 and modulates G protein-coupled receptor signaling in platelets.

    Science.gov (United States)

    Pradhan, Subhashree; Khatlani, Tanvir; Nairn, Angus C; Vijayan, K Vinod

    2017-08-11

    Thrombosis is caused by the activation of platelets at the site of ruptured atherosclerotic plaques. This activation involves engagement of G protein-coupled receptors (GPCR) on platelets that promote their aggregation. Although it is known that protein kinases and phosphatases modulate GPCR signaling, how serine/threonine phosphatases integrate with G protein signaling pathways is less understood. Because the subcellular localization and substrate specificity of the catalytic subunit of protein phosphatase 1 (PP1c) is dictated by PP1c-interacting proteins, here we sought to identify new PP1c interactors. GPCRs signal via the canonical heterotrimeric Gα and Gβγ subunits. Using a yeast two-hybrid screen, we discovered an interaction between PP1cα and the heterotrimeric G protein1 subunit. Co-immunoprecipitation studies with epitope-tagged PP1c and Gβ 1 revealed that Gβ 1 interacts with the PP1c α, β, and γ1 isoforms. Purified PP1c bound to recombinant Gβ 1 -GST protein, and PP1c co-immunoprecipitated with Gβ 1 in unstimulated platelets. Thrombin stimulation of platelets induced the dissociation of the PP1c-Gβ 1 complex, which correlated with an association of PP1c with phospholipase C β3 (PLCβ3), along with a concomitant dephosphorylation of the inhibitory Ser 1105 residue in PLCβ3. siRNA-mediated depletion of GNB1 (encoding Gβ 1 ) in murine megakaryocytes reduced protease-activated receptor 4, activating peptide-induced soluble fibrinogen binding. Thrombin-induced aggregation was decreased in PP1cα -/- murine platelets and in human platelets treated with a small-molecule inhibitor of Gβγ. Finally, disruption of PP1c-Gβ 1 complexes with myristoylated Gβ 1 peptides containing the PP1c binding site moderately decreased thrombin-induced human platelet aggregation. These findings suggest that Gβ 1 protein enlists PP1c to modulate GPCR signaling in platelets.

  2. The human adenovirus E4-ORF1 protein subverts discs large 1 to mediate membrane recruitment and dysregulation of phosphatidylinositol 3-kinase.

    Directory of Open Access Journals (Sweden)

    Kathleen Kong

    2014-05-01

    Full Text Available Adenoviruses infect epithelial cells lining mucous membranes to cause acute diseases in people. They are also utilized as vectors for vaccination and for gene and cancer therapy, as well as tools to discover mechanisms of cancer due to their tumorigenic potential in experimental animals. The adenovirus E4-ORF1 gene encodes an oncoprotein that promotes viral replication, cell survival, and transformation by activating phosphatidylinositol 3-kinase (PI3K. While the mechanism of activation is not understood, this function depends on a complex formed between E4-ORF1 and the membrane-associated cellular PDZ protein Discs Large 1 (Dlg1, a common viral target having both tumor suppressor and oncogenic functions. Here, we report that in human epithelial cells, E4-ORF1 interacts with the regulatory and catalytic subunits of PI3K and elevates their levels. Like PI3K activation, PI3K protein elevation by E4-ORF1 requires Dlg1. We further show that Dlg1, E4-ORF1, and PI3K form a ternary complex at the plasma membrane. At this site, Dlg1 also co-localizes with the activated PI3K effector protein Akt, indicating that the ternary complex mediates PI3K signaling. Signifying the functional importance of the ternary complex, the capacity of E4-ORF1 to induce soft agar growth and focus formation in cells is ablated either by a mutation that prevents E4-ORF1 binding to Dlg1 or by a PI3K inhibitor drug. These results demonstrate that E4-ORF1 interacts with Dlg1 and PI3K to assemble a ternary complex where E4-ORF1 hijacks the Dlg1 oncogenic function to relocate cytoplasmic PI3K to the membrane for constitutive activation. This novel mechanism of Dlg1 subversion by adenovirus to dysregulate PI3K could be used by other pathogenic viruses, such as human papillomavirus, human T-cell leukemia virus type 1, and influenza A virus, which also target Dlg1 and activate PI3K in cells.

  3. Differential Protein Pathways in 1,25-Dihydroxyvitamin D-3 and Dexamethasone Modulated Tolerogenic Human Dendritic Cells

    DEFF Research Database (Denmark)

    Ferreira, Gabriela Bomfim; Kleijwegt, Fleur S.; Waelkens, Etienne

    2012-01-01

    spots (p MALDI-TOF/TOF analysis. In parallel, morphological and phenotypical analyses were performed, revealing that 1,25(OH)(2)D-3- and combi-mDCs are closer related to each other than DEX-mDCs. This was translated in their protein profile, indicating that 1,25(OH)(2)D-3...

  4. RESEARCH ARTICLE Co-overexpression of EpCAM and c-myc ...

    Indian Academy of Sciences (India)

    Purpose:The overexpression of epithelial cell adhesion molecule (EpCAM) ... Half LIM domain protein2), and the transcription factor Lef1 that is cleaved by presenilin-2 ..... and self-renewal capability, producing a rapidly dividing tumor mass.

  5. Sustainable livestock production: Low emission farm – The innovative combination of nutrient, emission and waste management with special emphasis on Chinese pig production

    Directory of Open Access Journals (Sweden)

    Thomas Kaufmann

    2015-09-01

    Full Text Available Global livestock production is going to be more and more sophisticated in order to improve efficiency needed to supply the rising demand for animal protein of a growing, more urban and affluent population. To cope with the rising public importance of sustainability is a big challenge for all animal farmers and more industrialized operations especially. Confined animal farming operations (CAFO are seen very critical by many consumers with regard to their sustainability performance, however, the need to improve the sustainability performance especially in the ecological and social dimension exists at both ends of the intensity, i.e., also for the small holder and family owned animal farming models. As in livestock operations, feed and manure contribute the majority to the three most critical environmental impact categories global warming potential (GWP, acidification (AP and eutrophication potential (EP any effort for improvement should start there. Intelligent combination of nutrient-, emission- and waste management in an integrated low emission farm (LEF concept not only significantly reduces the environmental footprint in the ecological dimension of sustainability, but by producing renewable energy (heat, electricity, biomethane with animal manure as major feedstock in an anaerobic digester also the economic dimension can be improved. Model calculations using new software show the ecological improvement potential of low protein diets using more supplemented amino acids for the Chinese pig production. The ecological impact of producing biogas or upgraded biomethane, of further treatment of the digestate and producing defined fertilizers is discussed. Finally, the LEF concept allows the integration of an insect protein plant module which offers additional ecological and economical sustainability improvement potential in the future. Active stakeholder communication about implementation steps of LEF examples improves also the social aspect of

  6. Impairment of interferon regulatory factor-3 activation by hepatitis C virus core protein basic amino acid region 1.

    Science.gov (United States)

    Inoue, Kazuaki; Tsukiyama-Kohara, Kyoko; Matsuda, Chiho; Yoneyama, Mitsutoshi; Fujita, Takashi; Kuge, Shusuke; Yoshiba, Makoto; Kohara, Michinori

    2012-11-30

    Interferon regulatory factor-3 (IRF-3), a key transcriptional factor in the type I interferon system, is frequently impaired by hepatitis C virus (HCV), in order to establish persistent infection. However, the exact mechanism by which the virus establishes persistent infection has not been fully understood yet. The present study aimed to investigate the effects of various HCV proteins on IRF-3 activation, and elucidate the underlying mechanisms. To achieve this, full-length HCV and HCV subgenomic constructs corresponding to structural and each of the nonstructural proteins were transiently transfected into HepG2 cells. IFN-β induction, plaque formation, and IRF-3 dimerization were elicited by Newcastle disease virus (NDV) infection. The expressions of IRF-3 homodimer and its monomer, Ser386-phosphorylated IRF-3, and HCV core protein were detected by immunofluorescence and western blotting. IFN-β mRNA expression was quantified by real-time PCR (RT-PCR), and IRF-3 activity was measured by the levels of IRF-3 dimerization and phosphorylation, induced by NDV infection or polyriboinosinic:polyribocytidylic acid [poly(I:C)]. Switching of the expression of the complete HCV genome as well as the core proteins, E1, E2, and NS2, suppressed IFN-β mRNA levels and IRF-3 dimerization, induced by NDV infection. Our study revealed a crucial region of the HCV core protein, basic amino acid region 1 (BR1), to inhibit IRF-3 dimerization as well as its phosphorylation induced by NDV infection and poly (I:C), thus interfering with IRF-3 activation. Therefore, our study suggests that rescue of the IRF-3 pathway impairment may be an effective treatment for HCV infection. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. In vitro translocation experiments with RxLR-reporter fusion proteins of Avr1b from Phytophthora sojae and AVR3a from Phytophthora infestans fail to demonstrate specific autonomous uptake in plant and animal cells.

    Science.gov (United States)

    Wawra, Stephan; Djamei, Armin; Albert, Isabell; Nürnberger, Thorsten; Kahmann, Regine; van West, Pieter

    2013-05-01

    Plant-pathogenic oomycetes have a large set of secreted effectors that can be translocated into their host cells during infection. One group of these effectors are the RxLR effectors for which it has been shown, in a few cases, that the RxLR motif is important for their translocation. It has been suggested that the RxLR-leader sequences alone are enough to translocate the respective effectors into eukaryotic cells through binding to surface-exposed phosphoinositol-3-phosphate. These conclusions were primary based on translocation experiments conducted with recombinant fusion proteins whereby the RxLR leader of RxLR effectors (i.e., Avr1b from Phytophthora sojae) were fused to the green fluorescent protein reporter-protein. However, we failed to observe specific cellular uptake for a comparable fusion protein where the RxLR leader of the P. infestans AVR3a was fused to monomeric red fluorescent protein. Therefore, we reexamined the ability of the reported P. sojae AVR1b RxLR leader to enter eukaryotic cells. Different relevant experiments were performed in three independent laboratories, using fluorescent reporter fusion constructs of AVR3a and Avr1b proteins in a side-by-side comparative study on plant tissue and human and animal cells. We report that we were unable to obtain conclusive evidence for specific RxLR-mediated translocation.

  8. The BH3 alpha-helical mimic BH3-M6 disrupts Bcl-X(L), Bcl-2, and MCL-1 protein-protein interactions with Bax, Bak, Bad, or Bim and induces apoptosis in a Bax- and Bim-dependent manner.

    Science.gov (United States)

    Kazi, Aslamuzzaman; Sun, Jiazhi; Doi, Kenichiro; Sung, Shen-Shu; Takahashi, Yoshinori; Yin, Hang; Rodriguez, Johanna M; Becerril, Jorge; Berndt, Norbert; Hamilton, Andrew D; Wang, Hong-Gang; Sebti, Saïd M

    2011-03-18

    A critical hallmark of cancer cell survival is evasion of apoptosis. This is commonly due to overexpression of anti-apoptotic proteins such as Bcl-2, Bcl-X(L), and Mcl-1, which bind to the BH3 α-helical domain of pro-apoptotic proteins such as Bax, Bak, Bad, and Bim, and inhibit their function. We designed a BH3 α-helical mimetic BH3-M6 that binds to Bcl-X(L) and Mcl-1 and prevents their binding to fluorescently labeled Bak- or Bim-BH3 peptides in vitro. Using several approaches, we demonstrate that BH3-M6 is a pan-Bcl-2 antagonist that inhibits the binding of Bcl-X(L), Bcl-2, and Mcl-1 to multi-domain Bax or Bak, or BH3-only Bim or Bad in cell-free systems and in intact human cancer cells, freeing up pro-apoptotic proteins to induce apoptosis. BH3-M6 disruption of these protein-protein interactions is associated with cytochrome c release from mitochondria, caspase-3 activation and PARP cleavage. Using caspase inhibitors and Bax and Bak siRNAs, we demonstrate that BH3-M6-induced apoptosis is caspase- and Bax-, but not Bak-dependent. Furthermore, BH3-M6 disrupts Bcl-X(L)/Bim, Bcl-2/Bim, and Mcl-1/Bim protein-protein interactions and frees up Bim to induce apoptosis in human cancer cells that depend for tumor survival on the neutralization of Bim with Bcl-X(L), Bcl-2, or Mcl-1. Finally, BH3-M6 sensitizes cells to apoptosis induced by the proteasome inhibitor CEP-1612.

  9. A library of 7TM receptor C-terminal tails - Interactions with the proposed post-endocytic sorting proteins ERM-binding phosphoprotein 50 (EBP50), N-ethylmaleimide-sensitive factor (NSF), sorting nexin 1 (SNX1), and G protein-coupled receptor-associated sorting protein (GASP)

    DEFF Research Database (Denmark)

    Heydorn, A.; Sondergaard, B.P.; Ersbøll, Bjarne Kjær

    2004-01-01

    Adaptor and scaffolding proteins determine the cellular targeting, the spatial, and thereby the functional association of G protein-coupled seven-transmembrane receptors with co-receptors, transducers, and downstream effectors and the adaptors determine post-signaling events such as receptor...... only a single receptor tail, i.e. the beta(2)-adrenergic receptor, whereas N-ethylmaleimide-sensitive factor bound 11 of the tail-fusion proteins. Of the two proteins proposed to target receptors for lysosomal degradation, sorting nexin 1 (SNX1) bound 10 and the C-terminal domain of G protein...... the expected nanomolar affinities for interaction with SNX1. Truncations of the NK1 receptor revealed that an extended binding epitope is responsible for the interaction with both SNX1 and G protein-coupled receptor-associated sorting protein as well as with N-ethylmaleimide-sensitive factor. It is concluded...

  10. A library of 7TM receptor C-terminal tails. Interactions with the proposed post-endocytic sorting proteins ERM-binding phosphoprotein 50 (EBP50), N-ethylmaleimide-sensitive factor (NSF), sorting nexin 1 (SNX1), and G protein-coupled receptor-associated sorting protein (GASP)

    DEFF Research Database (Denmark)

    Heydorn, Arne; Søndergaard, Birgitte P; Ersbøll, Bjarne

    2004-01-01

    Adaptor and scaffolding proteins determine the cellular targeting, the spatial, and thereby the functional association of G protein-coupled seven-transmembrane receptors with co-receptors, transducers, and downstream effectors and the adaptors determine post-signaling events such as receptor...... only a single receptor tail, i.e. the beta(2)-adrenergic receptor, whereas N-ethylmaleimide-sensitive factor bound 11 of the tail-fusion proteins. Of the two proteins proposed to target receptors for lysosomal degradation, sorting nexin 1 (SNX1) bound 10 and the C-terminal domain of G protein...... the expected nanomolar affinities for interaction with SNX1. Truncations of the NK(1) receptor revealed that an extended binding epitope is responsible for the interaction with both SNX1 and G protein-coupled receptor-associated sorting protein as well as with N-ethylmaleimide-sensitive factor. It is concluded...

  11. FINE SPECIFICITY OF CELLULAR IMMUNE-RESPONSES IN HUMANS TO HUMAN CYTOMEGALOVIRUS IMMEDIATE-EARLY 1-PROTEIN

    NARCIS (Netherlands)

    ALP, NJ; ALLPORT, TD; VANZANTEN, J; RODGERS, B; SISSONS, JGP; BORYSIEWICZ, LK

    Cell-mediated immunity is important in maintaining the virus-host equilibrium in persistent human cytomegalovirus (HCMV) infection. The HCMV 72-kDa major immediate early 1 protein (IE1) is a target for CD8+ cytotoxic T cells in humans, as is the equivalent 89-kDa protein in mouse. Less is known

  12. Tcf3 represses Wnt-β-catenin signaling and maintains neural stem cell population during neocortical development.

    Directory of Open Access Journals (Sweden)

    Atsushi Kuwahara

    Full Text Available During mouse neocortical development, the Wnt-β-catenin signaling pathway plays essential roles in various phenomena including neuronal differentiation and proliferation of neural precursor cells (NPCs. Production of the appropriate number of neurons without depletion of the NPC population requires precise regulation of the balance between differentiation and maintenance of NPCs. However, the mechanism that suppresses Wnt signaling to prevent premature neuronal differentiation of NPCs is poorly understood. We now show that the HMG box transcription factor Tcf3 (also known as Tcf7l1 contributes to this mechanism. Tcf3 is highly expressed in undifferentiated NPCs in the mouse neocortex, and its expression is reduced in intermediate neuronal progenitors (INPs committed to the neuronal fate. We found Tcf3 to be a repressor of Wnt signaling in neocortical NPCs in a reporter gene assay. Tcf3 bound to the promoter of the proneural bHLH gene Neurogenin1 (Neurog1 and repressed its expression. Consistent with this, Tcf3 repressed neuronal differentiation and increased the self-renewal activity of NPCs. We also found that Wnt signal stimulation reduces the level of Tcf3, and increases those of Tcf1 (also known as Tcf7 and Lef1, positive mediators of Wnt signaling, in NPCs. Together, these results suggest that Tcf3 antagonizes Wnt signaling in NPCs, thereby maintaining their undifferentiated state in the neocortex and that Wnt signaling promotes the transition from Tcf3-mediated repression to Tcf1/Lef1-mediated enhancement of Wnt signaling, constituting a positive feedback loop that facilitates neuronal differentiation.

  13. 14-3-3 proteins in plant brassinosteroid signaling

    NARCIS (Netherlands)

    Vries, de S.C.

    2007-01-01

    Brassinosteroid (BR) signaling requires the BIN2 kinase-promoted interaction of 14-3-3 proteins with the transcriptional regulators BZR1 and BZR2, which are subsequently redistributed to the cytoplasm by BRs. In this issue of Developmental Cell, Gampala et al. show that this redistribution may

  14. Ursolic acid inhibits adipogenesis in 3T3-L1 adipocytes through LKB1/AMPK pathway.

    Directory of Open Access Journals (Sweden)

    Yonghan He

    Full Text Available BACKGROUND: Ursolic acid (UA is a triterpenoid compound with multiple biological functions. This compound has recently been reported to possess an anti-obesity effect; however, the mechanisms are less understood. OBJECTIVE: As adipogenesis plays a critical role in obesity, the present study was conducted to investigate the effect of UA on adipogenesis and mechanisms of action in 3T3-L1 preadipocytes. METHODS AND RESULTS: The 3T3-L1 preadipocytes were induced to differentiate in the presence or absence of UA for 6 days. The cells were determined for proliferation, differentiation, fat accumulation as well as the protein expressions of molecular targets that regulate or are involved in fatty acid synthesis and oxidation. The results demonstrated that ursolic acid at concentrations ranging from 2.5 µM to 10 µM dose-dependently attenuated adipogenesis, accompanied by reduced protein expression of CCAAT element binding protein β (C/EBPβ, peroxisome proliferator-activated receptor γ (PPARγ, CCAAT element binding protein α (C/EBPα and sterol regulatory element binding protein 1c (SREBP-1c, respectively. Ursolic acid increased the phosphorylation of acetyl-CoA carboxylase (ACC and protein expression of carnitine palmitoyltransferase 1 (CPT1, but decreased protein expression of fatty acid synthase (FAS and fatty acid-binding protein 4 (FABP4. Ursolic acid increased the phosphorylation of AMP-activated protein kinase (AMPK and protein expression of (silent mating type information regulation 2, homolog 1 (Sirt1. Further studies demonstrated that the anti-adipogenic effect of UA was reversed by the AMPK siRNA, but not by the Sirt1 inhibitor nicotinamide. Liver kinase B1 (LKB1, the upstream kinase of AMPK, was upregulated by UA. When LKB1 was silenced with siRNA or the inhibitor radicicol, the effect of UA on AMPK activation was diminished. CONCLUSIONS: Ursolic acid inhibited 3T3-L1 preadipocyte differentiation and adipogenesis through the LKB1/AMPK

  15. Sparse "1"3C labelling for solid-state NMR studies of P. pastoris expressed eukaryotic seven-transmembrane proteins

    International Nuclear Information System (INIS)

    Liu, Jing; Liu, Chang; Fan, Ying; Munro, Rachel A.; Ladizhansky, Vladimir; Brown, Leonid S.; Wang, Shenlin

    2016-01-01

    We demonstrate a novel sparse "1"3C labelling approach for methylotrophic yeast P. pastoris expression system, towards solid-state NMR studies of eukaryotic membrane proteins. The labelling scheme was achieved by co-utilizing natural abundance methanol and specifically "1"3C labelled glycerol as carbon sources in the expression medium. This strategy improves the spectral resolution by 1.5 fold, displays site-specific labelling patterns, and has advantages for collecting long-range distance restraints for structure determination of large eukaryotic membrane proteins by solid-state NMR.

  16. Expression and Clinical Significance of the Autophagy Proteins BECLIN 1 and LC3 in Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Guido Valente

    2014-01-01

    Full Text Available Autophagy is dysregulated in cancer and might be involved in ovarian carcinogenesis. BECLIN-1, a protein that interacts with either BCL-2 or PI3k class III, plays a critical role in the regulation of both autophagy and cell death. Induction of autophagy is associated with the presence of vacuoles characteristically labelled with the protein LC3. We have studied the biological and clinical significance of BECLIN 1 and LC3 in ovary tumours of different histological types. The positive expression of BECLIN 1 was well correlated with the presence of LC3-positive autophagic vacuoles and was inversely correlated with the expression of BCL-2. The latter inhibits the autophagy function of BECLIN 1. We found that type I tumours, which are less aggressive than type II, were more frequently expressing high level of BECLIN 1. Of note, tumours of histologic grade III expressed low level of BECLIN 1. Consistently, high level of expression of BECLIN 1 and LC3 in tumours is well correlated with the overall survival of the patients. The present data are compatible with the hypotheses that a low level of autophagy favours cancer progression and that ovary cancer with upregulated autophagy has a less aggressive behaviour and is more responsive to chemotherapy.

  17. Bis(1,3-dithiole) Compounds

    DEFF Research Database (Denmark)

    Andersen, Jan Rud; Engler, E. M.; Green, D. C.

    1977-01-01

    There is described the preparation of bis-1,3-dithiole compounds (I) which are key synthetic precursors for the preparation of new polymeric metal bis(dithiolene) (i.e., II) and tetrathiafulvalene compounds (i.e., III): (Image Omitted)...

  18. Proteomic profiling of antibody-inducing immunogens in tumor tissue identifies PSMA1, LAP3, ANXA3, and maspin as colon cancer markers

    Science.gov (United States)

    Yang, Qian; Roehrl, Michael H.; Wang, Julia Y.

    2018-01-01

    We hypothesized that cancer tissue immunogens – antigens capable of inducing specific antibody production in patients – are promising targets for development of precision diagnostics and humoral immunotherapies. We developed an innovative immuno-proteomic strategy and identified new immunogenic markers of colon cancer. Proteins from cancers and matched normal tissues were separated by 2D gel electrophoresis and blotted with serum antibodies from the same patients. Antibody-reactive proteins were sequenced by mass spectrometry and validated by Western blotting and immunohistochemistry. 170 serum antibody-reactive proteins were identified only in cancerous but not matched normal. Among these, proteasome subunit alpha type 1 (PSA1), leucine aminopeptidase 3 (LAP3), annexin A3 (ANXA3), and maspin (serpin B5) were reproducibly found in tissues from three patients. Differential expression patterns were confirmed in samples from eight patients with various stages of colon adenocarcinoma and liver metastases. These tumor-resident proteins and/or their associated serum antibodies may be promising markers for colon cancer screening and early diagnosis. Furthermore, tumor tissue-specific antibodies could potentially be exploited as immunotherapeutic targets against cancer. More generally, proteomic profiling of antibody-inducing cancer-associated immunogens represents a powerful generic method for uncovering the tumor antigen-ome, i.e., the totality of immunogenic tumor-associated proteins. PMID:29423100

  19. Differentiation to adipocytes in accompanied by an increase in the amounts of Gi- and Go-proteins in 3T3-L1 cells

    International Nuclear Information System (INIS)

    Watkins, D.C.; Northup, J.K.; Malbon, C.C.

    1986-01-01

    Treatment of cultures of 3T3-L1 cells with methylisobutyl-xanthine and dexamethasone has been shown to result in accumulation of lipid and conversion to the morphology of adipocytes in more than 90% of the cells. The status of the stimulatory (Gs), inhibitory (Gi) and Go-proteins during the course of 3T3-L1 differentiation was examined. The amount of alpha subunit of Gs (αGs), assayed by radiolabeling in the presence of cholera toxin and [ 32 P]NAD + , increased upon differentiation as previously described by others. The amounts of αGi and αGo assayed by radiolabeling in the presence of pertussis toxin and [ 32 P]NAD + increased 3-fold upon differentiation. Immunoblots of cell membranes subjected to gel electrophoresis in sodium dodecyl sulfate were probed with two rabbit antisera raised against bovine brain αGo and with one raised against theβ-subunit of the bovine rod-outer-segment G-protein, referred to as transducin. The immunoblotting data confirm the increase upon differentiation of αGo and also demonstrate an increase in the amount of the β-subunit. Thus differentiation of 3T3-L1 cells is accompanied by dramatic changes in the complexion of G-proteins in the membranes

  20. DSS1/Sem1, a multifunctional and intrinsically disordered protein

    DEFF Research Database (Denmark)

    Kragelund, Birthe Brandt; Schenstrøm, Signe Marie; Rebula, Caio A.

    2016-01-01

    DSS1/Sem1 is a versatile intrinsically disordered protein. Besides being a bona fide subunit of the 26S proteasome, DSS1 associates with other protein complexes, including BRCA2-RPA, involved in homologous recombination; the Csn12-Thp3 complex, involved in RNA splicing; the integrator, involved...

  1. Role of individual phosphorylation sites for the 14-3-3-protein-dependent activation of yeast neutral trehalase Nth1

    Czech Academy of Sciences Publication Activity Database

    Veisová, Dana; Macáková, Eva; Řežábková, Lenka; Šulc, Miroslav; Vácha, Petr; Sychrová, Hana; Obšil, T.; Obšilová, Veronika

    2012-01-01

    Roč. 443, č. 3 (2012), s. 663-670 ISSN 0264-6021 R&D Projects: GA ČR(CZ) GAP207/11/0455; GA AV ČR(CZ) IAA500110801 Grant - others:Univerzita Karlova(CZ) 350111 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z50200510 Keywords : 14-3-3 protein * Bmh * neutral trehalase (Nth1) * enzymatic activity * phosphorylation * Saccharomyces cerevisiae Subject RIV: CE - Biochemistry Impact factor: 4.654, year: 2012

  2. In-silico determination of insecticidal potential of Vip3Aa-Cry1Ac fusion protein against Lepidopteran targets using molecular docking

    Directory of Open Access Journals (Sweden)

    Aftab eAhmad

    2015-12-01

    Full Text Available Study and research of Bt (Bacillus thuringiensis transgenic plants have opened new ways to combat insect pests. Over the decades, however, insect pests, especially the Lepidopteran, have developed tolerance against Bt delta-endotoxins. Such issues can be addressed through the development of novel toxins with greater toxicity and affinity against a broad range of insect receptors. In this computational study, functional domains of Bacillus thuringiensis crystal delta-endotoxin (Cry1Ac insecticidal protein and vegetative insecticidal protein (Vip3Aa have been fused to develop a broad-range Vip3Aa-Cry1Ac fusion protein. Cry1Ac and Vip3Aa are non-homologous insecticidal proteins possessing receptors against different targets within the midgut of insects. The insecticidal proteins were fused to broaden the insecticidal activity. Molecular docking analysis of the fusion protein against aminopeptidase-N (APN and cadherin receptors of five Lepidopteran insects (Agrotis ipsilon, Helicoverpa armigera, Pectinophora gossypiella, Spodoptera exigua and Spodoptera litura revealed that the Ser290, Ser293, Leu337, Thr340 and Arg437 residues of the fusion protein are involved in the interaction with insect receptors. The Helicoverpa armigera cadherin receptor, however, showed no interaction, which might be due to either loss or burial of interactive residues inside the fusion protein. These findings revealed that the Vip3Aa-Cry1Ac fusion protein has a strong affinity against Lepidopteran insect receptors and hence has a potential to be an efficient broad-range insecticidal protein.

  3. Domain analyses of Usher syndrome causing Clarin-1 and GPR98 protein models.

    Science.gov (United States)

    Khan, Sehrish Haider; Javed, Muhammad Rizwan; Qasim, Muhammad; Shahzadi, Samar; Jalil, Asma; Rehman, Shahid Ur

    2014-01-01

    Usher syndrome is an autosomal recessive disorder that causes hearing loss, Retinitis Pigmentosa (RP) and vestibular dysfunction. It is clinically and genetically heterogeneous disorder which is clinically divided into three types i.e. type I, type II and type III. To date, there are about twelve loci and ten identified genes which are associated with Usher syndrome. A mutation in any of these genes e.g. CDH23, CLRN1, GPR98, MYO7A, PCDH15, USH1C, USH1G, USH2A and DFNB31 can result in Usher syndrome or non-syndromic deafness. These genes provide instructions for making proteins that play important roles in normal hearing, balance and vision. Studies have shown that protein structures of only seven genes have been determined experimentally and there are still three genes whose structures are unavailable. These genes are Clarin-1, GPR98 and Usherin. In the absence of an experimentally determined structure, homology modeling and threading often provide a useful 3D model of a protein. Therefore in the current study Clarin-1 and GPR98 proteins have been analyzed for signal peptide, domains and motifs. Clarin-1 protein was found to be without any signal peptide and consists of prokar lipoprotein domain. Clarin-1 is classified within claudin 2 super family and consists of twelve motifs. Whereas, GPR98 has a 29 amino acids long signal peptide and classified within GPCR family 2 having Concanavalin A-like lectin/glucanase superfamily. It was found to be consists of GPS and G protein receptor F2 domains and twenty nine motifs. Their 3D structures have been predicted using I-TASSER server. The model of Clarin-1 showed only α-helix but no beta sheets while model of GPR98 showed both α-helix and β sheets. The predicted structures were then evaluated and validated by MolProbity and Ramachandran plot. The evaluation of the predicted structures showed 78.9% residues of Clarin-1 and 78.9% residues of GPR98 within favored regions. The findings of present study has resulted in the

  4. InterProScan Result: AV399409 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available 429 Baculovirus LEF-11 Biological Process: viral infectious cycle (GO:0019058)|Biological Process: regulation of transcription (GO:0045449) ... ...AV399409 AV399409_1_ORF2 07DC81A7C7B2FA42 PFAM PF06385 Baculo_LEF-11 3e-33 T IPR009

  5. Eldecalcitol (ED-71), an analog of 1α,25(OH)2D3, inhibits the growth of squamous cell carcinoma (SCC) cells in vitro and in vivo by down-regulating expression of heparin-binding protein 17/fibroblast growth factor-binding protein-1 (HBp17/FGFBP-1) and FGF-2.

    Science.gov (United States)

    Shintani, T; Takatsu, F; Rosli, S N Z; Usui, E; Hamada, A; Sumi, K; Hayashido, Y; Toratani, S; Okamoto, Tetsuji

    2017-10-01

    Heparin-binding protein 17 (HBp17)/fibroblast growth factor-binding protein-1 (FGFBP-1) was first purified from medium conditioned by A431 cells for its capacity to bind to fibroblast growth factors 1 and 2 (FGF-1 and -2). Among FGF family members, FGF-2 is a potent mitogen for various cell types, including vascular endothelial cells, fibroblasts, and cancer cells such as oral squamous cell carcinoma (OSCC) cells. Besides being well known in bone metabolism, the active form of vitamin D 3 , i.e., 1α,25(OH) 2 D 3 (1,25D 3 ), was reported to have protective effects for heart disease and cancer. Previously, we reported that 1,25D 3 inhibited HBp17/FGFBP-1 expression in OSCC cell lines through NF-κB inhibition (IκBα activation) and resulted in the inactivation of FGF-2. In this study, we examined the potential anti-tumor effect of ED-71, an analog of 1α,25(OH) 2 D 3 , for squamous cell carcinoma cells in vitro and in vivo. The cell lines used were OSCC cell lines (NA-HO-1-n-1 and UE-HO-1-u-1), established from oral cancer patients in our laboratory, and an epidermoid carcinoma/SCC cell line (A431). The growth assay in serum-free culture revealed that ED-71 inhibited the growth of the cancer cell lines in a dose-dependent manner. In addition, ED-71 suppressed HBp17/FGFBP-1 expression by inhibiting the NF-κB pathway as did 1,25D 3 . Furthermore, a luciferase reporter assay revealed that the promoter activity of HBp17/FGFBP-1 (region between -217 and +61) was down-regulated by ED-71. Oral administration of ED-71 significantly inhibited the growth of A431-derived tumors in athymic nude mice. Immunohistochemical analysis revealed that the expression of HBp17/FGFBP-1, FGF-2, CD31, and Ki-67 in the tumors of ED71-treated group was down-regulated in comparison to control. These results suggest that ED-71 possesses potential anti-tumor activity for SCCs both in vitro and in vivo. This compound may act directly on the tumor cells or on endothelial cells by modulating the

  6. Senp1 Is Essential for Desumoylating Sumo1-Modified Proteins but Dispensable for Sumo2 and Sumo3 Deconjugation in the Mouse Embryo

    Directory of Open Access Journals (Sweden)

    Prashant Sharma

    2013-05-01

    Full Text Available Posttranslational modification with small ubiquitin-like modifier (Sumo regulates numerous cellular and developmental processes. Sumoylation is dynamic with deconjugation by Sumo-specific proteases (Senps regulating steady-state levels. Different Senps are found in distinct subcellular domains, which may limit their deconjugation activity to colocalizing Sumo-modified proteins. In vitro, Senps can discriminate between the different Sumo paralogs: Sumo1 versus the highly related Sumo2 and Sumo3 (Sumo2/3, which can form poly-Sumo chains. However, a full understanding of Senp specificity in vivo is still lacking. Here, using biochemical and genetic approaches, we establish that Senp1 has an essential, nonredundant function to desumoylate Sumo1-modified proteins during mouse embryonic development. Senp1 specificity for Sumo1 conjugates represents an intrinsic function and not simply a product of colocalization. In contrast, Senp1 has only a limited role in Sumo2/3 desumoylation, although it may regulate Sumo1-mediated termination of poly-Sumo2/3 chains.

  7. 3-Phosphoinositide-dependent PDK1 negatively regulates transforming growth factor-beta-induced signaling in a kinase-dependent manner through physical interaction with Smad proteins.

    Science.gov (United States)

    Seong, Hyun-A; Jung, Haiyoung; Kim, Kyong-Tai; Ha, Hyunjung

    2007-04-20

    We have reported previously that PDK1 physically interacts with STRAP, a transforming growth factor-beta (TGF-beta) receptor-interacting protein, and enhances STRAP-induced inhibition of TGF-beta signaling. In this study we show that PDK1 coimmunoprecipitates with Smad proteins, including Smad2, Smad3, Smad4, and Smad7, and that this association is mediated by the pleckstrin homology domain of PDK1. The association between PDK1 and Smad proteins is increased by insulin treatment but decreased by TGF-beta treatment. Analysis of the interacting proteins shows that Smad proteins enhance PDK1 kinase activity by removing 14-3-3, a negative regulator of PDK1, from the PDK1-14-3-3 complex. Knockdown of endogenous Smad proteins, including Smad3 and Smad7, by transfection with small interfering RNA produced the opposite trend and decreased PDK1 activity, protein kinase B/Akt phosphorylation, and Bad phosphorylation. Moreover, coexpression of Smad proteins and wild-type PDK1 inhibits TGF-beta-induced transcription, as well as TGF-beta-mediated biological functions, such as apoptosis and cell growth arrest. Inhibition was dose-dependent on PDK1, but no inhibition was observed in the presence of an inactive kinase-dead PDK1 mutant. In addition, confocal microscopy showed that wild-type PDK1 prevents translocation of Smad3 and Smad4 from the cytoplasm to the nucleus, as well as the redistribution of Smad7 from the nucleus to the cytoplasm in response to TGF-beta. Taken together, our results suggest that PDK1 negatively regulates TGF-beta-mediated signaling in a PDK1 kinase-dependent manner via a direct physical interaction with Smad proteins and that Smad proteins can act as potential positive regulators of PDK1.

  8. CXCL1 and CXCL2 Regulate NLRP3 Inflammasome Activation via G-Protein-Coupled Receptor CXCR2.

    Science.gov (United States)

    Boro, Monoranjan; Balaji, Kithiganahalli Narayanaswamy

    2017-09-01

    Inflammation is an extensively concerted process that confers protection to the host encountering immune insult. The major inflammatory mediators include IL-1 family members, such as IL-1β, and the functional activation of such molecules is arbitrated by their regulated cleavage brought about by components of a multiprotein complex called inflammasome. In this context, NLR family pyrin domain containing 3 (NLRP3) inflammasome activation often acts as a rate-limiting step in regulating critical cell-fate decisions in various inflammatory scenarios. In this study, we identify the G-protein-coupled receptor CXCR2 (recognizing chemokines CXCL1 and CXCL2) as another arm feeding into the regulated activation of NLRP3 inflammasome in macrophages. We demonstrate that in vivo blocking of CXCL1 and CXCL2 can significantly reduce the Mycobacterium tuberculosis -induced bioactive IL-1β production. Further, CXCL1 could amplify the inflammasome activation in in vivo mouse models of carrageenan-induced inflammation in footpads and air pouches. The mechanistic insights revealed CXCR2-driven protein kinase C μ-dependent integrin-linked kinase to be essential for CXCL1-mediated activation of NLRP3 inflammasome. Blocking the activity of integrin-linked kinase or protein kinase C μ either by small interfering RNA-mediated knockdown or pharmacological inhibitor compromised inflammasome activation and subsequent production of bioactive IL-1β. Taken together, our study demonstrates CXCR2-driven activation of NLRP3 inflammasome in macrophages and indicates a potential host-directed therapeutic target to limit the damaging inflammation associated with overt production of proinflammatory IL-1β. Copyright © 2017 by The American Association of Immunologists, Inc.

  9. 14-3-3 proteins in plant physiology.

    Science.gov (United States)

    Denison, Fiona C; Paul, Anna-Lisa; Zupanska, Agata K; Ferl, Robert J

    2011-09-01

    Plant 14-3-3 isoforms, like their highly conserved homologues in mammals, function by binding to phosphorylated client proteins to modulate their function. Through the regulation of a diverse range of proteins including kinases, transcription factors, structural proteins, ion channels and pathogen defense-related proteins, they are being implicated in an expanding catalogue of physiological functions in plants. 14-3-3s themselves are affected, both transcriptionally and functionally, by the extracellular and intracellular environment of the plant. They can modulate signaling pathways that transduce inputs from the environment and also the downstream proteins that elicit the physiological response. This review covers some of the key emerging roles for plant 14-3-3s including their role in the response to the plant extracellular environment, particularly environmental stress, pathogens and light conditions. We also address potential key roles in primary metabolism, hormone signaling, growth and cell division. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Modular organization of proteins containing C1q-like globular domain.

    Science.gov (United States)

    Kishore, U; Reid, K B

    1999-05-01

    The first step in the activation of the classical pathway of complement cascade by immune complexes involves the binding of the six globular heads of C1q to the Fc regions of immunoglobulin G (IgG) or immunoglobulin M (IgM). The globular heads of C1q are located C-terminal to the six triple-helical stalks present in the molecule, each head is considered to be composed of the C-terminal halves (3 x 135 residues) of one A-, one B- and one C-chain. It is not known if the C-terminal globular regions, present in each of the three types of chains, are independently folded modules (with each chain having distinct binding properties towards immunoglobulins) or whether the different binding functions of C1q are dependent upon a globular structure which relies on contributions from all three chains. Recent reports of recombinant production and characterisation of soluble globular head regions of all the three chains indicate that the globular regions of C1q may adopt a modular organization, i.e., each globular head of C1q may be composed of three, structurally and functionally, independent domains, thus retaining multivalency in the form of a heterotrimer. Modules of the same type as the C1q C-terminal module are also found in a variety of noncomplement proteins that include the C-terminal regions of the human type VIII and type X collagens, precerebellin, the chipmunk hibernation proteins, the human endothelial cell protein, multimerin, the serum protein, Acrp-30 which is secreted from mouse adipocytes, and the sunfish inner-ear specific structural protein. The C1q molecule is the only one of these proteins for which, to date, a function has been ascribed to the module. The existence of a shared structural region between C1q and certain collagens may suggest an evolutionarily common ancestral precursor. Various structural and biochemical data suggest that these modules may be responsible for multimerisation through patches of aromatic residues within them.

  11. Activation of AMP-Activated Protein Kinase Attenuates Tumor Necrosis Factor-α-Induced Lipolysis via Protection of Perilipin in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Seok-Woo Hong

    2014-12-01

    Full Text Available BackgroundTumor necrosis factor (TNF-α and AMP-activated protein kinase (AMPK are known to stimulate and repress lipolysis in adipocytes, respectively; however, the mechanisms regulating these processes have not been completely elucidated.MethodsThe key factors and mechanism of action of TNF-α and AMPK in lipolysis were investigated by evaluating perilipin expression and activity of protein kinase RNA-like endoplasmic reticulum kinase (PERK/eukaryotic initiation factor 2 α (eIF2α by Western blot and an immunofluorescence assay in 24-hour TNF-α-treated 3T3-L1 adipocytes with artificial manipulation of AMPK activation.ResultsEnhancement of AMPK activity by the addition of activator minoimidazole carboxamide ribonucleotide (AICAR suppressed TNF-α-induced lipolysis, whereas the addition of compound C, an inhibitor of AMPK phosphorylation, enhanced lipolysis. Perilipin, a lipid droplet-associated protein, was decreased by TNF-α and recovered following treatment with AICAR, showing a correlation with the antilipolytic effect of AICAR. Significant activation of PERK/eIF2α, a component of the unfolded protein response signaling pathway, was observed in TNF-α or vesicle-treated 3T3-L1 adipocytes. The antilipolytic effect and recovery of perilipin expression by AICAR in TNF-α-treated 3T3-L1 adipocytes were significantly diminished by treatment with 2-aminopurine, a specific inhibitor of eIF2α.ConclusionThese data indicated that AICAR-induced AMPK activation attenuates TNF-α-induced lipolysis via preservation of perilipin in 3T3-L1 adipocytes. In addition, PERK/eIF2α activity is a novel mechanism of the anti-lipolytic effect of AICAR.

  12. Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses1[OPEN

    Science.gov (United States)

    Waadt, Rainer; Manalansan, Bianca; Rauniyar, Navin; Munemasa, Shintaro; Booker, Matthew A.; Brandt, Benjamin; Waadt, Christian; Nusinow, Dmitri A.; Kay, Steve A.; Kunz, Hans-Henning; Schumacher, Karin; DeLong, Alison; Yates, John R.; Schroeder, Julian I.

    2015-01-01

    The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. These analyses, which were confirmed using bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. These analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases. PMID:26175513

  13. ANSI/ASHRAE/IES Standard 90.1-2016 Performance Rating Method Reference Manual

    Energy Technology Data Exchange (ETDEWEB)

    Goel, Supriya [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Eley, Charles [Eley and Associates, Hobe Sound, FL (United States)

    2017-09-29

    This document is intended to be a reference manual for the Appendix G Performance Rating Method (PRM) of ANSI/ASHRAE/IES Standard 90.1-2016 (Standard 90.1-2016). The PRM can be used to demonstrate compliance with the standard and to rate the energy efficiency of commercial and high-rise residential buildings with designs that exceed the requirements of Standard 90.1. Use of the PRM for demonstrating compliance with Standard 90.1 is a new feature of the 2016 edition. The procedures and processes described in this manual are designed to provide consistency and accuracy by filling in gaps and providing additional details needed by users of the PRM.

  14. Crystal structure of secretory protein Hcp3 from Pseudomonas aeruginosa.

    Science.gov (United States)

    Osipiuk, Jerzy; Xu, Xiaohui; Cui, Hong; Savchenko, Alexei; Edwards, Aled; Joachimiak, Andrzej

    2011-03-01

    The Type VI secretion pathway transports proteins across the cell envelope of Gram-negative bacteria. Pseudomonas aeruginosa, an opportunistic Gram-negative bacterial pathogen infecting humans, uses the type VI secretion pathway to export specific effector proteins crucial for its pathogenesis. The HSI-I virulence locus encodes for several proteins that has been proposed to participate in protein transport including the Hcp1 protein, which forms hexameric rings that assemble into nanotubes in vitro. Two Hcp1 paralogues have been identified in the P. aeruginosa genome, Hsp2 and Hcp3. Here, we present the structure of the Hcp3 protein from P. aeruginosa. The overall structure of the monomer resembles Hcp1 despite the lack of amino-acid sequence similarity between the two proteins. The monomers assemble into hexamers similar to Hcp1. However, instead of forming nanotubes in head-to-tail mode like Hcp1, Hcp3 stacks its rings in head-to-head mode forming double-ring structures.

  15. Molecular characterization of amino acid deletion in VP1 (1D) protein and novel amino acid substitutions in 3D polymerase protein of foot and mouth disease virus subtype A/Iran87.

    Science.gov (United States)

    Esmaelizad, Majid; Jelokhani-Niaraki, Saber; Hashemnejad, Khadije; Kamalzadeh, Morteza; Lotfi, Mohsen

    2011-12-01

    The nucleotide sequence of the VP1 (1D) and partial 3D polymerase (3D(pol)) coding regions of the foot and mouth disease virus (FMDV) vaccine strain A/Iran87, a highly passaged isolate (~150 passages), was determined and aligned with previously published FMDV serotype A sequences. Overall analysis of the amino acid substitutions revealed that the partial 3D(pol) coding region contained four amino acid alterations. Amino acid sequence comparison of the VP1 coding region of the field isolates revealed deletions in the highly passaged Iranian isolate (A/Iran87). The prominent G-H loop of the FMDV VP1 protein contains the conserved arginine-glycine-aspartic acid (RGD) tripeptide, which is a well-known ligand for a specific cell surface integrin. Despite losing the RGD sequence of the VP1 protein and an Asp(26)→Glu substitution in a beta sheet located within a small groove of the 3D(pol) protein, the virus grew in BHK 21 suspension cell cultures. Since this strain has been used as a vaccine strain, it may be inferred that the RGD deletion has no critical role in virus attachment to the cell during the initiation of infection. It is probable that this FMDV subtype can utilize other pathways for cell attachment.

  16. 200 area liquid effluent facility quality assurance program plan. Revision 1

    International Nuclear Information System (INIS)

    Sullivan, N.J.

    1995-01-01

    Direct revision of Supporting Document WHC-SD-LEF-QAPP-001, Rev. 0. 200 Area Liquid Effluent Facilities Quality Assurance Program Plan. Incorporates changes to references in tables. Revises test to incorporate WHC-SD-LEF-CSCM-001, Computer Software Configuration Management Plan for 200 East/West Liquid Effluent Facilities

  17. Fusion of the BCL9 HD2 domain to E1A increases the cytopathic effect of an oncolytic adenovirus that targets colon cancer cells

    Directory of Open Access Journals (Sweden)

    Pittet Anne-Laure

    2006-10-01

    Full Text Available Abstract Background The Wnt signaling pathway is activated by mutations in the APC and β-catenin genes in many types of human cancer. β-catenin is stabilized by these mutations and activates transcription in part by acting as a bridge between Tcf/LEF proteins and the HD2 domain of the BCL9 coactivator. We have previously described oncolytic adenoviruses with binding sites for Tcf/LEF transcription factors inserted into the early viral promoters. These viruses replicate selectively in cells with activation of the Wnt pathway. To increase the activity of these viruses we have fused the viral transactivator E1A to the BCL9 HD2 domain. Methods Luciferase assays, co-immunoprecipitation and Western blotting, immunofluorescent cell staining and cytopathic effect assays were used to characterize the E1A-HD2 fusion protein and virus in vitro. Growth curves of subcutaneous SW620 colon cancer xenografts were used to characterize the virus in vivo. Results The E1A-HD2 fusion protein binds to β-catenin in vivo and activates a Tcf-regulated luciferase reporter better than wild-type E1A in cells with activated Wnt signaling. Expression of the E1A-HD2 protein promotes nuclear import of β-catenin, mediated by the strong nuclear localization signal in E1A. Tcf-regulated viruses expressing the fusion protein show increased expression of viral proteins and a five-fold increase in cytopathic effect (CPE in colorectal cancer cell lines. There was no change in viral protein expression or CPE in HeLa cells, indicating that E1A-HD2 viruses retain selectivity for cells with activation of the Wnt signaling pathway. Despite increasing the cytopathic effect of the virus in vitro, fusion of the HD2 domain to E1A did not increase the burst size of the virus in vitro or the anti-tumor effect of the virus in an SW620 xenograft model in vivo. Conclusion Despite an increase in the nuclear pool of β-catenin, the effects on viral activity in colon cancer cells were small

  18. Protein Profiling Reveals Novel Proteins in Pollen and Pistil of W22 (ga1; Ga1 in Maize

    Directory of Open Access Journals (Sweden)

    Jin Yu

    2014-05-01

    Full Text Available Gametophytic factors mediate pollen-pistil interactions in maize (Zea mays L. and play active roles in limiting gene flow among maize populations and between maize and teosinte. This study was carried out to identify proteins and investigate the mechanism of gametophytic factors using protein analysis. W22 (ga1; which did not carry a gametophytic factor and W22 (Ga1, a near iso-genic line, were used for the proteome investigation. SDS-PAGE was executed to investigate proteins in the pollen and pistil of W22 (ga1 and W22 (Ga1. A total of 44 differentially expressed proteins were identified in the pollen and pistil on SDS-PAGE using LTQ-FTICR MS. Among the 44 proteins, a total of 24 proteins were identified in the pollen of W22 (ga1 and W22 (Ga1 whereas 20 differentially expressed proteins were identified from the pistil of W22 (ga1 and W22 (Ga1. However, in pollen, 2 proteins were identified only in the W22 (ga1 and 12 proteins only in the W22 (Ga1 whereas 10 proteins were confirmed from the both of W22 (ga1 and W22 (Ga1. In contrary, 10 proteins were appeared only in the pistil of W22 (ga1 and 7 proteins from W22 (Ga1 while 3 proteins confirmed in the both of W22 (ga1 and W22 (Ga1. Moreover, the identified proteins were generally involved in hydrolase activity, nucleic acid binding and nucleotide binding. These results help to reveal the mechanism of gametophytic factors and provide a valuable clue for the pollen and pistil research in maize.

  19. Cooverexpression of EpCAM and c-myc genes in malignant breast ...

    Indian Academy of Sciences (India)

    SAMIRA SADEGHI

    Samira Sadeghi et al. domain protein2), and the transcription factor Lef1 that is ... antibody approved in. European Market in 2009, to reduce the rate of metastasis in .... Real-Time PCR. System and Maxima SYBR Green/ROX qPCR Master Mix.

  20. Protective CD8+ T-cell responses to cytomegalovirus driven by rAAV/GFP/IE1 loading of dendritic cells

    Directory of Open Access Journals (Sweden)

    Dalle-Donne Isabella

    2008-10-01

    Full Text Available Abstract Background Recent studies demonstrate that recombinant adeno-associated virus (rAAV-based antigen loading of dendritic cells (DCs generates in vitro, significant and rapid cytotoxic T-lymphocyte (CTL responses against viral antigens. Methods We used the rAAV system to induce specific CTLs against CVM antigens for the development of cytomegalovirus HCMV gene therapy. As an extension of the versatility of the rAAV system, we incorporated immediate-early 1 (IE1, expressed in HCMV. Our rAAV vector induced a strong stimulation of CTLs directed against the HCMV antigen IE1. We then investigated the efficiency of the CTLs in killing IE1 targeted cells. Results A significant MHC Class I-restricted, anti-IE1-specific CTL killing was demonstrated against IE1 positive peripheral blood mononuclear cells (PBMC after one, in vitro, stimulation. Conclusion In summary, single PBMC stimulation with rAAV/IE1 pulsed DCs induces strong antigen specific-CTL generation. CTLs were capable to lyse low doses of peptides pulsed into target cells. These data suggest that AAV-based antigen loading of DCs is highly effective for generating human CTL responses against HCMV antigens.

  1. Evaluation of expression of the Wnt signaling components in canine mammary tumors via RT2 Profiler PCR Array and immunochemistry assays.

    Science.gov (United States)

    Yu, Fang; Rasotto, Roberta; Zhang, Hong; Pei, Shimin; Zhou, Bin; Yang, Xu; Jin, Yipeng; Zhang, Di; Lin, Degui

    2017-09-30

    The Wnt signaling pathway and its key component β-catenin have critical roles in the development of diseases such as tumors in mammals. However, little has been reported about involvement of the Wnt/β-catenin signaling pathway in canine mammary tumors (CMTs). The present study detected expression of 30 Wnt signaling pathway-related genes in CMTs; the results are potentially useful for molecular-based diagnosis of CMTs and the development of new targeted therapies. Significant upregulations of dickkopf-1 protein, secreted frizzled-related sequence protein 1 (SFRP1), frizzled 3, β-catenin, and lymphoid enhancer-binding factor 1 (LEF1) were detected in highly malignant CMTs compared to levels in normal mammary gland tissues; moreover, highly significant upregulation of WNT5A was observed in low malignancy CMTs. Downregulation was only detected for SFRP4 in malignant CMT samples. The subcellular location of β-catenin and cyclin D1 in 100 CMT samples was investigated via immunohistochemical analysis, and significantly increased expressions of β-catenin in cytoplasm and cyclin D1 in nuclei were revealed. Western blotting analysis revealed that the expression of β-catenin and LEF1 increased in in the majority of CMT samples. Taken together, the results provide important evidence of the activation status of the Wnt pathway in CMTs and valuable clues to identifying biomarkers for molecular-based diagnosis of CMT.

  2. Loss of Cln3 impacts protein secretion in the social amoeba Dictyostelium.

    Science.gov (United States)

    Huber, Robert J

    2017-07-01

    Neuronal ceroid lipofuscinosis (NCL), also referred to as Batten disease, is the most common form of childhood neurodegeneration. Mutations in CLN3 cause the most prevalent subtype of the disease, which manifests during early childhood and is currently untreatable. The precise function of the CLN3 protein is still not known, which has inhibited the development of targeted therapies. In the social amoeba Dictyostelium discoideum, loss of the CLN3 homolog, Cln3, reduces adhesion during early development, which delays streaming and aggregation. The results of the present study indicate that this phenotype may be at least partly due to aberrant protein secretion in cln3 - cells. It is well-established that Cln3 localizes primarily to the contractile vacuole (CV) system in Dictyostelium, and to a lesser extent, compartments of the endocytic pathway. Intriguingly, the CV system has been linked to the secretion of proteins that do not contain a signal peptide for secretion (i.e., unconventional protein secretion). Proteins that do contain a signal peptide are secreted via a conventional mechanism involving the endoplasmic reticulum, transport through the Golgi, and secretion via vesicle release. In this study, Cln3 was observed to co-localize with the Golgi marker wheat germ agglutinin suggesting that Cln3 participates in both secretion mechanisms. Chimeras of wild-type (WT) and cln3 - cells displayed delayed streaming and aggregation, and interestingly, cln3 - cells starved in conditioned media (CM) harvested from starving WT cells showed near normal timing of streaming and aggregation suggesting aberrant protein secretion in Cln3-deficient cells. Based on these observations, LC-MS/MS was used to reveal the protein content of CM from starved cells (mass spectrometry data are available via ProteomeXchange with identifier PXD004897). A total of 450 proteins were detected in WT and cln3 - CM, of which 3 were absent in cln3 - CM. Moreover, 12 proteins that were present in

  3. Protein: FBA3 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBA3 Ubiquitination CBLB RNF56 CBLB E3 ubiquitin-protein ligase CBL-B Casitas B-lineage lymphoma pr...oto-oncogene b, RING finger protein 56, SH3-binding protein CBL-B, Signal transduction prote

  4. 14-3-3 Proteins in Brain Development: Neurogenesis, Neuronal Migration and Neuromorphogenesis

    Directory of Open Access Journals (Sweden)

    Brett Cornell

    2017-10-01

    Full Text Available The 14-3-3 proteins are a family of highly conserved, multifunctional proteins that are highly expressed in the brain during development. Cumulatively, the seven 14-3-3 isoforms make up approximately 1% of total soluble brain protein. Over the last decade, evidence has accumulated implicating the importance of the 14-3-3 protein family in the development of the nervous system, in particular cortical development, and have more recently been recognized as key regulators in a number of neurodevelopmental processes. In this review we will discuss the known roles of each 14-3-3 isoform in the development of the cortex, their relation to human neurodevelopmental disorders, as well as the challenges and questions that are left to be answered. In particular, we focus on the 14-3-3 isoforms and their involvement in the three key stages of cortical development; neurogenesis and differentiation, neuronal migration and neuromorphogenesis and synaptogenesis.

  5. New insights into potential functions for the protein 4.1superfamily of proteins in kidney epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Calinisan, Venice; Gravem, Dana; Chen, Ray Ping-Hsu; Brittin,Sachi; Mohandas, Narla; Lecomte, Marie-Christine; Gascard, Philippe

    2005-06-17

    Members of the protein 4.1 family of adapter proteins are expressed in a broad panel of tissues including various epithelia where they likely play an important role in maintenance of cell architecture and polarity and in control of cell proliferation. We have recently characterized the structure and distribution of three members of the protein 4.1 family, 4.1B, 4.1R and 4.1N, in mouse kidney. We describe here binding partners for renal 4.1 proteins, identified through the screening of a rat kidney yeast two-hybrid system cDNA library. The identification of putative protein 4.1-based complexes enables us to envision potential functions for 4.1 proteins in kidney: organization of signaling complexes, response to osmotic stress, protein trafficking, and control of cell proliferation. We discuss the relevance of these protein 4.1-based interactions in kidney physio-pathology in the context of their previously identified functions in other cells and tissues. Specifically, we will focus on renal 4.1 protein interactions with beta amyloid precursor protein (beta-APP), 14-3-3 proteins, and the cell swelling-activated chloride channel pICln. We also discuss the functional relevance of another member of the protein 4.1 superfamily, ezrin, in kidney physiopathology.

  6. Structure of the putative 32 kDa myrosinase-binding protein from Arabidopsis (At3g16450.1) determined by SAIL-NMR.

    Science.gov (United States)

    Takeda, Mitsuhiro; Sugimori, Nozomi; Torizawa, Takuya; Terauchi, Tsutomu; Ono, Akira M; Yagi, Hirokazu; Yamaguchi, Yoshiki; Kato, Koichi; Ikeya, Teppei; Jee, Jungoo; Güntert, Peter; Aceti, David J; Markley, John L; Kainosho, Masatsune

    2008-12-01

    The product of gene At3g16450.1 from Arabidopsis thaliana is a 32 kDa, 299-residue protein classified as resembling a myrosinase-binding protein (MyroBP). MyroBPs are found in plants as part of a complex with the glucosinolate-degrading enzyme myrosinase, and are suspected to play a role in myrosinase-dependent defense against pathogens. Many MyroBPs and MyroBP-related proteins are composed of repeated homologous sequences with unknown structure. We report here the three-dimensional structure of the At3g16450.1 protein from Arabidopsis, which consists of two tandem repeats. Because the size of the protein is larger than that amenable to high-throughput analysis by uniform (13)C/(15)N labeling methods, we used stereo-array isotope labeling (SAIL) technology to prepare an optimally (2)H/(13)C/(15)N-labeled sample. NMR data sets collected using the SAIL protein enabled us to assign (1)H, (13)C and (15)N chemical shifts to 95.5% of all atoms, even at a low concentration (0.2 mm) of protein product. We collected additional NOESY data and determined the three-dimensional structure using the cyana software package. The structure, the first for a MyroBP family member, revealed that the At3g16450.1 protein consists of two independent but similar lectin-fold domains, each composed of three beta-sheets.

  7. Bacillus thuringiensis Cry1Ia10 and Vip3Aa protein interactions and their toxicity in Spodoptera spp. (Lepidoptera).

    Science.gov (United States)

    Bergamasco, V B; Mendes, D R P; Fernandes, O A; Desidério, J A; Lemos, M V F

    2013-02-01

    The polyphagous pests belonging to the genus Spodoptera are considered to be among the most important causes of damage and are widely distributed throughout the Americas'. Due to the extensive use of genetically modified plants containing Bacillus thuringiensis genes that code for insecticidal proteins, resistant insects may arise. To prevent the development of resistance, pyramided plants, which express multiple insecticidal proteins that act through distinct mode of actions, can be used. This study analyzed the mechanisms of action for the proteins Cry1Ia10 and Vip3Aa on neonatal Spodoptera frugiperda, Spodoptera albula, Spodoptera eridania and Spodoptera cosmioides larvae. The interactions of these toxins with receptors on the intestinal epithelial membrane were also analyzed by binding biotinylated toxins to brush border membrane vesicles (BBMVs) from the intestines of these insects. A putative receptor of approximately 65 kDa was found by ligand blotting in all of these species. In vitro competition assays using biotinylated proteins have indicated that Vip3Aa and Cry1Ia10 do not compete for the same receptor for S. frugiperda, S. albula and S. cosmioides and that Vip3Aa was more efficient than Cry1Ia10 when tested individually, by bioassays. A synergistic effect of the toxins in S. frugiperda, S. albula and S. cosmioides was observed when they were combined. However, in S. eridania, Cry1Ia10 and Vip3Aa might compete for the same receptor and through bioassays Cry1Ia10 was more efficient than Vip3Aa and showed an antagonistic effect when the proteins were combined. These results suggest that using these genes to develop pyramided plants may not prove effective in preventing the development of resistance in S. eridiana. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. IGF-1 receptor and IGF binding protein-3 might predict prognosis of patients with resectable pancreatic cancer

    International Nuclear Information System (INIS)

    Hirakawa, Toshiki; Yashiro, Masakazu; Murata, Akihiro; Hirata, Keiichiro; Kimura, Kenjiro; Amano, Ryosuke; Yamada, Nobuya; Nakata, Bunzo; Hirakawa, Kosei

    2013-01-01

    The present study aimed to elucidate the clinicopathologic role of insulin-like growth factor-1 receptor (IGF1R) and IGF binding protein-3 (IGFBP3) in patients with pancreatic cancer. The function of IGFBP3 is controversial, because both inhibition and facilitation of the action of IGF as well as IGF-independent effects have been reported. In this study, IGF1R and IGFBP3 expression was examined, and their potential roles as prognostic markers in patients with pancreatic cancer were evaluated. Clinicopathological features of 122 patients with curatively resected pancreatic cancer were retrospectively reviewed, and expression of IGF1R and IGFBP3 was immunohistochemically analyzed. Expression of IGF1R and IGFBP3 was observed in 50 (41.0%) and 37 (30.3%) patients, respectively. IGF1R expression was significantly associated with histological grade (p = 0.037). IGFBP3 expression had a significant association with tumor location (p = 0.023), and a significant inverse association with venous invasion (p = 0.037). Tumors with IGF1R-positive and IGFBP3-negative expression (n = 32) were significantly frequently Stage II and III (p = 0.011). The prognosis for IGF1R positive patients was significantly poorer than that for IGF1R negative patients (p = 0.0181). IGFBP3 protein expression did not correlate significantly with patient survival. The subset of patients with both positive IGF1R and negative IGFBP3 had worse overall survival (8.8 months versus 12.6 months, respectively, p < 0.001). IGF1R signaling might be associated with tumor aggressiveness, and IGFBP3 might show antiproliferative effects in pancreatic cancer. Both high IGF1R expression and low IGFBP3 expression represent useful prognostic markers for patients with curatively resected pancreatic cancer

  9. New approach to 3-D, high sensitivity, high mass resolution space plasma composition measurements

    International Nuclear Information System (INIS)

    McComas, D.J.; Nordholt, J.E.

    1990-01-01

    This paper describes a new type of 3-D space plasma composition analyzer. The design combines high sensitivity, high mass resolution measurements with somewhat lower mass resolution but even higher sensitivity measurements in a single compact and robust design. While the lower resolution plasma measurements are achieved using conventional straight-through time-of-flight mass spectrometry, the high mass resolution measurements are made by timing ions reflected in a linear electric field (LEF), where the restoring force that an ion experiences is proportional to the depth it travels into the LEF region. Consequently, the ion's equation of motion in that dimension is that of a simple harmonic oscillator and its travel time is simply proportional to the square root of the ion's mass/charge (m/q). While in an ideal LEF, the m/q resolution can be arbitrarily high, in a real device the resolution is limited by the field linearity which can be achieved. In this paper we describe how a nearly linear field can be produced and discuss how the design can be optimized for various different plasma regimes and spacecraft configurations

  10. FOXC1 modulates MYOC secretion through regulation of the exocytic proteins RAB3GAP1, RAB3GAP2 and SNAP25.

    Directory of Open Access Journals (Sweden)

    Alexandra Rasnitsyn

    Full Text Available The neurodegenerative disease glaucoma is one of the leading causes of blindness in the world. Glaucoma is characterized by progressive visual field loss caused by retinal ganglion cell (RGC death. Both surgical glaucoma treatments and medications are available, however, they only halt glaucoma progression and are unable to reverse damage. Furthermore, many patients do not respond well to treatments. It is therefore important to better understand the mechanisms involved in glaucoma pathogenesis. Patients with Axenfeld-Rieger syndrome (ARS offer important insight into glaucoma progression. ARS patients are at 50% risk of developing early onset glaucoma and respond poorly to treatments, even when surgical treatments are combined with medications. Mutations in the transcription factor FOXC1 cause ARS. Alterations in FOXC1 levels cause ocular malformations and disrupt stress response in ocular tissues, thereby contributing to glaucoma progression. In this study, using biochemical and molecular techniques, we show that FOXC1 regulates the expression of RAB3GAP1, RAB3GAP2 and SNAP25, three genes with central roles in both exocytosis and endocytosis, responsible for extracellular trafficking. FOXC1 positively regulates RAB3GAP1 and RAB3GAP2, while either increase or decrease in FOXC1 levels beyond its normal range results in decreased SNAP25. In addition, we found that FOXC1 regulation of RAB3GAP1, RAB3GAP2 and SNAP25 affects secretion of Myocilin (MYOC, a protein associated with juvenile onset glaucoma and steroid-induced glaucoma. The present work reveals that FOXC1 is an important regulator of exocytosis and establishes a new link between FOXC1 and MYOC-associated glaucoma.

  11. SIRT1 promotes N-Myc oncogenesis through a positive feedback loop involving the effects of MKP3 and ERK on N-Myc protein stability.

    Directory of Open Access Journals (Sweden)

    Glenn M Marshall

    2011-06-01

    Full Text Available The N-Myc oncoprotein is a critical factor in neuroblastoma tumorigenesis which requires additional mechanisms converting a low-level to a high-level N-Myc expression. N-Myc protein is stabilized when phosphorylated at Serine 62 by phosphorylated ERK protein. Here we describe a novel positive feedback loop whereby N-Myc directly induced the transcription of the class III histone deacetylase SIRT1, which in turn increased N-Myc protein stability. SIRT1 binds to Myc Box I domain of N-Myc protein to form a novel transcriptional repressor complex at gene promoter of mitogen-activated protein kinase phosphatase 3 (MKP3, leading to transcriptional repression of MKP3, ERK protein phosphorylation, N-Myc protein phosphorylation at Serine 62, and N-Myc protein stabilization. Importantly, SIRT1 was up-regulated, MKP3 down-regulated, in pre-cancerous cells, and preventative treatment with the SIRT1 inhibitor Cambinol reduced tumorigenesis in TH-MYCN transgenic mice. Our data demonstrate the important roles of SIRT1 in N-Myc oncogenesis and SIRT1 inhibitors in the prevention and therapy of N-Myc-induced neuroblastoma.

  12. RKIP phosphorylation–dependent ERK1 activation stimulates adipogenic lipid accumulation in 3T3-L1 preadipocytes overexpressing LC3

    Energy Technology Data Exchange (ETDEWEB)

    Hahm, Jong Ryeal [Department of Internal Medicine, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Institute of Health Sciences, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Ahmed, Mahmoud [Department of Biochemistry and Convergence Medical Science, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Institute of Health Sciences, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Kim, Deok Ryong, E-mail: drkim@gnu.ac.kr [Department of Biochemistry and Convergence Medical Science, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Institute of Health Sciences, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of)

    2016-09-09

    3T3-L1 preadipocytes undergo adipogenesis in response to treatment with dexamethaxone, 1-methyl-3-isobutylxanthine, and insulin (DMI) through activation of several adipogenic transcription factors. Many autophagy-related proteins are also highly activated in the earlier stages of adipogenesis, and the LC3 conjugation system is required for formation of lipid droplets. Here, we investigated the effect of overexpression of green fluorescent protein (GFP)-LC3 fusion protein on adipogenesis. Overexpression of GFP-LC3 in 3T3-L1 preadipocytes using poly-L-lysine-assisted adenoviral GFP-LC3 transduction was sufficient to produce intracellular lipid droplets. Indeed, GFP-LC3 overexpression stimulated expression of some adipogenic transcription factors (e.g., C/EBPα or β, PPARγ, SREBP2). In particular, SREBP2 was highly activated in preadipocytes transfected with adenoviral GFP-LC3. Also, phosphorylation of Raf kinase inhibitory protein (RKIP) at serine 153, consequently stimulating extracellular-signal regulated kinase (ERK)1 activity, was significantly increased during adipogenesis induced by either poly-L-lysine-assisted adenoviral GFP-LC3 transduction or culture in the presence of dexamethasone, 1-methyl-3-isobutylxanthine, and insulin. Furthermore, RKIP knockdown promoted ERK1 and PPARγ activation, and significantly increased the intracellular accumulation of triacylglycerides in DMI-induced adipogenesis. In conclusion, GFP-LC3 overexpression in 3T3-L1 preadipocytes stimulates adipocyte differentiation via direct modulation of RKIP-dependent ERK1 activity. - Highlights: • Overexpression of GFP-LC3 in 3T3-L1 cells produces intracellular lipid droplets. • SREBP2 is highly activated in preadipocytes transfected with adenoviral GFP-LC3. • RKIP phosphorylation at serine 153 is significantly increased during adipogenesis. • RKIP knockdown promotes ERK1 and PPARγ activation during adipogenesis. • RKIP-dependent ERK1 activation increases triacylglycerides in

  13. The NMDAR subunit NR3A interacts with microtubule-associated protein 1S in the brain

    DEFF Research Database (Denmark)

    Eriksson, Maria; Samuelsson, Helena; Samuelsson, Eva-Britt

    2007-01-01

    -proximal part of the NR3A C-terminus. MAP1S belongs to the same family as MAP1A and MAP1B, and was found to be abundant in both postnatal and adult rat brain. In hippocampal neurons the distribution-pattern of MAP1S resembled that of beta-tubulin III, but a fraction of the protein colocalized with synaptic...

  14. [Contribution of leflunomide to the cost effectiveness of sequential DMARD therapy of rheumatoid arthritis in Germany].

    Science.gov (United States)

    Schädlich, P K; Zeidler, H; Zink, A; Gromnica-Ihle, E; Schneider, M; Straub, C; Brecht, J G; Huppertz, E

    2004-02-01

    Since November 1999, leflunomide (LEF), an innovative disease-modifying antirheumatic drug (DMARD), is available in Germany for treatment of rheumatoid arthritis (RA). LEF slows radiographic disease progression and improves functional capacity as well as healthrelated quality of life of RA patients. Resources for health care of the patients are limited in Germany as in all other countries. The purpose of the analysis therefore was to compare the cost effectiveness of the following alternatives: LEF in sequential monotherapy with other DMARDs versus sequential monotherapy of other DMARDs. The target variables of this cost-effectiveness comparison were additional direct costs per ACR20-response year (ACR20RY) gained and per quality-adjusted life year (QALY) gained, respectively, each after three years of treatment. The cost-effectiveness comparison was carried out using a modeling study after secondary analysis of relevant data. Oral methotrexate (MTX), sulphasalazine (SSZ), antimalarials (CQ/HCQ), intramuscular gold (IMG), and azathioprine (AZA) were selected as "other" DMARDs representing the current status of sequential monotherapy. Based on health care regulation in Germany-Guidelines on the Prescription of Drugs amended by the Federal Commission of Medical Practitioners and Health Insurance Funds on 10 December 1999-LEF was exclusively considered second within a DMARD sequence. Direct costs were given by outpatient and inpatient treatment, long-term care, and rehabilitation treatment. Prices relate to the period of 1998 to 2001 and were converted to Euro (euro), according to the official exchange rate of 1 euro = 1.95583 DM (1 euro approximately 0.90 US dollars; 2001 values). The comparative cost-effectiveness analysis covered a treatment period of more than one year. To estimate the net present value of future costs and effectiveness, a discount rate of 5% per year was applied. In the case of DMARD-naïve patients with RA, the sequence MTX, LEF, SSZ, IMG, AZA

  15. Delivery of the autofluorescent protein R-phycoerythrin by calcium phosphate nanoparticles into four different eukaryotic cell lines (HeLa, HEK293T, MG-63, MC3T3: Highly efficient, but leading to endolysosomal proteolysis in HeLa and MC3T3 cells.

    Directory of Open Access Journals (Sweden)

    Mathis Kopp

    Full Text Available Nanoparticles can be used as carriers to transport biomolecules like proteins and synthetic molecules across the cell membrane because many molecules are not able to cross the cell membrane on their own. The uptake of nanoparticles together with their cargo typically occurs via endocytosis, raising concerns about the possible degradation of the cargo in the endolysosomal system. As the tracking of a dye-labelled protein during cellular uptake and processing is not indicative of the presence of the protein itself but only for the fluorescent label, a label-free tracking was performed with the red-fluorescing model protein R-phycoerythrin (R-PE. Four different eukaryotic cell lines were investigated: HeLa, HEK293T, MG-63, and MC3T3. Alone, the protein was not taken up by any cell line; only with the help of calcium phosphate nanoparticles, an efficient uptake occurred. After the uptake into HeLa cells, the protein was found in early endosomes (shown by the marker EEA1 and lysosomes (shown by the marker Lamp1. There, it was still intact and functional (i.e. properly folded as its red fluorescence was detected. However, a few hours after the uptake, proteolysis started as indicated by the decreasing red fluorescence intensity in the case of HeLa and MC3T3 cells. 12 h after the uptake, the protein was almost completely degraded in HeLa cells and MC3T3 cells. In HEK293T cells and MG-63 cells, no degradation of the protein was observed. In the presence of Bafilomycin A1, an inhibitor of acidification and protein degradation in lysosomes, the fluorescence of R-PE remained intact over the whole observation period in the four cell lines. These results indicate that despite an efficient nanoparticle-mediated uptake of proteins by cells, a rapid endolysosomal degradation may prevent the desired (e.g. therapeutic effect of a protein inside a cell.

  16. Delivery of the autofluorescent protein R-phycoerythrin by calcium phosphate nanoparticles into four different eukaryotic cell lines (HeLa, HEK293T, MG-63, MC3T3): Highly efficient, but leading to endolysosomal proteolysis in HeLa and MC3T3 cells.

    Science.gov (United States)

    Kopp, Mathis; Rotan, Olga; Papadopoulos, Chrisovalantis; Schulze, Nina; Meyer, Hemmo; Epple, Matthias

    2017-01-01

    Nanoparticles can be used as carriers to transport biomolecules like proteins and synthetic molecules across the cell membrane because many molecules are not able to cross the cell membrane on their own. The uptake of nanoparticles together with their cargo typically occurs via endocytosis, raising concerns about the possible degradation of the cargo in the endolysosomal system. As the tracking of a dye-labelled protein during cellular uptake and processing is not indicative of the presence of the protein itself but only for the fluorescent label, a label-free tracking was performed with the red-fluorescing model protein R-phycoerythrin (R-PE). Four different eukaryotic cell lines were investigated: HeLa, HEK293T, MG-63, and MC3T3. Alone, the protein was not taken up by any cell line; only with the help of calcium phosphate nanoparticles, an efficient uptake occurred. After the uptake into HeLa cells, the protein was found in early endosomes (shown by the marker EEA1) and lysosomes (shown by the marker Lamp1). There, it was still intact and functional (i.e. properly folded) as its red fluorescence was detected. However, a few hours after the uptake, proteolysis started as indicated by the decreasing red fluorescence intensity in the case of HeLa and MC3T3 cells. 12 h after the uptake, the protein was almost completely degraded in HeLa cells and MC3T3 cells. In HEK293T cells and MG-63 cells, no degradation of the protein was observed. In the presence of Bafilomycin A1, an inhibitor of acidification and protein degradation in lysosomes, the fluorescence of R-PE remained intact over the whole observation period in the four cell lines. These results indicate that despite an efficient nanoparticle-mediated uptake of proteins by cells, a rapid endolysosomal degradation may prevent the desired (e.g. therapeutic) effect of a protein inside a cell.

  17. Functional selectivity of allosteric interactions within G protein-coupled receptor oligomers: the dopamine D1-D3 receptor heterotetramer.

    Science.gov (United States)

    Guitart, Xavier; Navarro, Gemma; Moreno, Estefania; Yano, Hideaki; Cai, Ning-Sheng; Sánchez-Soto, Marta; Kumar-Barodia, Sandeep; Naidu, Yamini T; Mallol, Josefa; Cortés, Antoni; Lluís, Carme; Canela, Enric I; Casadó, Vicent; McCormick, Peter J; Ferré, Sergi

    2014-10-01

    The dopamine D1 receptor-D3 receptor (D1R-D3R) heteromer is being considered as a potential therapeutic target for neuropsychiatric disorders. Previous studies suggested that this heteromer could be involved in the ability of D3R agonists to potentiate locomotor activation induced by D1R agonists. It has also been postulated that its overexpression plays a role in L-dopa-induced dyskinesia and in drug addiction. However, little is known about its biochemical properties. By combining bioluminescence resonance energy transfer, bimolecular complementation techniques, and cell-signaling experiments in transfected cells, evidence was obtained for a tetrameric stoichiometry of the D1R-D3R heteromer, constituted by two interacting D1R and D3R homodimers coupled to Gs and Gi proteins, respectively. Coactivation of both receptors led to the canonical negative interaction at the level of adenylyl cyclase signaling, to a strong recruitment of β-arrestin-1, and to a positive cross talk of D1R and D3R agonists at the level of mitogen-activated protein kinase (MAPK) signaling. Furthermore, D1R or D3R antagonists counteracted β-arrestin-1 recruitment and MAPK activation induced by D3R and D1R agonists, respectively (cross-antagonism). Positive cross talk and cross-antagonism at the MAPK level were counteracted by specific synthetic peptides with amino acid sequences corresponding to D1R transmembrane (TM) domains TM5 and TM6, which also selectively modified the quaternary structure of the D1R-D3R heteromer, as demonstrated by complementation of hemiproteins of yellow fluorescence protein fused to D1R and D3R. These results demonstrate functional selectivity of allosteric modulations within the D1R-D3R heteromer, which can be involved with the reported behavioral synergism of D1R and D3R agonists. U.S. Government work not protected by U.S. copyright.

  18. Plasma Protein Profiles Differ Between Women Diagnosed with Cervical Intraepithelial Neoplasia (CIN 1 and 3

    Directory of Open Access Journals (Sweden)

    Edward E. Partridge

    2006-01-01

    Full Text Available Early detection of precancerous cells in the cervix and their clinical management is the main purpose of cervical cancer prevention and treatment programs. Cytological findings or testing for high risk (HR-human papillomavirus (HPV are inadequately sensitive for use in triage of women at high risk for cervical cancer. The current study is an exploratory study to identify candidate surface-enhanced laser desorption/ionization (SELDI time of flight (TOF mass spectrometry (MS protein profiles in plasma that may distinguish cervical intraepithelial neoplasia (CIN 3 from CIN 1 among women infected with HR-HPV. We evaluated the SELDI-TOF-MS plasma protein profiles of HR-HPV positive 32 women with CIN 3 (cases and 28 women with CIN1 (controls. Case-control status was kept blinded and triplicates of each sample and quality control plasma samples were randomized and after robotic sample preparations were run on WCX2 chips. After alignment of mass/charge (m-z values, an iterative method was used to develop a classifier on a training data set that had 28 cases and 22 controls. The classifier developed was used to classify the subjects in a test data set that has six cases and six controls. The classifier separated the cases from controls in the test set with 100% sensitivity and 100% specificity suggesting the possibility of using plasma SELDI protein profiles to identify women who are likely to have CIN 3 lesions.

  19. Photoaffinity labeling of serum vitamin D binding protein by 3-deoxy-3-azido-25-hydroxyvitamin D3

    International Nuclear Information System (INIS)

    Link, R.P.; Kutner, A.; Schnoes, H.K.; DeLuca, H.F.

    1987-01-01

    3-Deoxy-3-azido-25-hydroxyvitamin D3 was covalently incorporated in the 25-hydroxyvitamin D3 binding site of purified human plasma vitamin D binding protein. Competition experiments showed that 3-deoxy-3-azido-25-hydroxyvitamin D3 and 25-hydroxyvitamin D3 bind at the same site on the protein. Tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was synthesized from tritiated 25-hydroxyvitamin D3, retaining the high specific activity of the parent compound. The tritiated azido label bound reversibly to human vitamin D binding protein in the dark and covalently to human vitamin D binding protein after exposure to ultraviolet light. Reversible binding of tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was compared to tritiated 25-hydroxyvitamin D3 binding to human vitamin D binding protein. Scatchard analysis of the data indicated equivalent maximum density binding sites with a KD,app of 0.21 nM for 25-hydroxyvitamin D3 and a KD,app of 1.3 nM for the azido derivative. Covalent binding was observed only after exposure to ultraviolet irradiation, with an average of 3% of the reversibly bound label becoming covalently bound to vitamin D binding protein. The covalent binding was reduced 70-80% when 25-hydroxyvitamin D3 was present, indicating strong covalent binding at the vitamin D binding site of the protein. When tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was incubated with human plasma in the absence and presence of 25-hydroxyvitamin D3, 12% of the azido derivative was reversibly bound to vitamin D binding protein. After ultraviolet irradiation, four plasma proteins covalently bound the azido label, but vitamin D binding protein was the only protein of the four that was unlabeled in the presence of 25-hydroxyvitamin D3

  20. Vaccinia virus protein C6 is a virulence factor that binds TBK-1 adaptor proteins and inhibits activation of IRF3 and IRF7.

    Directory of Open Access Journals (Sweden)

    Leonie Unterholzner

    2011-09-01

    Full Text Available Recognition of viruses by pattern recognition receptors (PRRs causes interferon-β (IFN-β induction, a key event in the anti-viral innate immune response, and also a target of viral immune evasion. Here the vaccinia virus (VACV protein C6 is identified as an inhibitor of PRR-induced IFN-β expression by a functional screen of select VACV open reading frames expressed individually in mammalian cells. C6 is a member of a family of Bcl-2-like poxvirus proteins, many of which have been shown to inhibit innate immune signalling pathways. PRRs activate both NF-κB and IFN regulatory factors (IRFs to activate the IFN-β promoter induction. Data presented here show that C6 inhibits IRF3 activation and translocation into the nucleus, but does not inhibit NF-κB activation. C6 inhibits IRF3 and IRF7 activation downstream of the kinases TANK binding kinase 1 (TBK1 and IκB kinase-ε (IKKε, which phosphorylate and activate these IRFs. However, C6 does not inhibit TBK1- and IKKε-independent IRF7 activation or the induction of promoters by constitutively active forms of IRF3 or IRF7, indicating that C6 acts at the level of the TBK1/IKKε complex. Consistent with this notion, C6 immunoprecipitated with the TBK1 complex scaffold proteins TANK, SINTBAD and NAP1. C6 is expressed early during infection and is present in both nucleus and cytoplasm. Mutant viruses in which the C6L gene is deleted, or mutated so that the C6 protein is not expressed, replicated normally in cell culture but were attenuated in two in vivo models of infection compared to wild type and revertant controls. Thus C6 contributes to VACV virulence and might do so via the inhibition of PRR-induced activation of IRF3 and IRF7.

  1. L-4F Inhibits Oxidized Low-density Lipoprotein-induced Inflammatory Adipokine Secretion via Cyclic AMP/Protein Kinase A-CCAAT/Enhancer Binding Protein β Signaling Pathway in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Xiang-Zhu Xie

    2016-01-01

    Conclusions: OxLDL induces C/EBPβ protein synthesis in a time-dependent manner and enhances MCP-1 secretion and expression in 3T3-L1 adipocytes. L-4F dose-dependently counterbalances the pro-inflammatory effect of oxLDL, and cyclic AMP/PKA-C/EBPβ signaling pathway may participate in it.

  2. Effects of C-reactive protein on adipokines genes expression in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Guoyue, E-mail: yuanguoyue@hotmail.com [Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Jia, Jue; Di, Liangliang [Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Zhou, Libin [Ruijin Hospital, Center of Molecular Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University Medical School, 197, Ruijin Road II, Shanghai 200025 (China); Dong, Sijing; Ye, Jingjing; Wang, Dong; Yang, Ling; Wang, Jifang [Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Li, Lianxi [Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, 600, Yishan Road, Shanghai 200233 (China); Yang, Ying [Ruijin Hospital, Center of Molecular Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University Medical School, 197, Ruijin Road II, Shanghai 200025 (China); Mao, Chaoming [Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Chen, Mingdao, E-mail: mingdaochensh@yahoo.com [Ruijin Hospital, Center of Molecular Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University Medical School, 197, Ruijin Road II, Shanghai 200025 (China)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer CRP increases TNF-{alpha} and IL-6 genes expression in matured 3T3-L1 adipocytes. Black-Right-Pointing-Pointer CRP suppresses adiponectin, leptin and PPAR-{gamma} mRNA levels in matured 3T3-L1 cells. Black-Right-Pointing-Pointer Wortmannin reverses effects of CRP on adiponectin, TNF-{alpha} and leptin mRNA levels. Black-Right-Pointing-Pointer CRP may regulate IR, obesity and metabolic syndrome by this mechanism. -- Abstract: Adipose tissue is now recognized to be an important endocrine organ, secreting a variety of adipokines that are involved in the regulation of energy metabolism, insulin resistance and metabolic syndrome. C-reactive protein (CRP) is considered as one of the most sensitive markers of inflammation. A number of studies have shown that elevation of CRP concentrations is an independent predictive parameter of type 2 diabetes mellitus, which is also strongly associated with various components of the metabolic syndrome. The aim of the present study is to investigate the effects of CRP on adipokines genes expression in 3T3-L1 adipocytes. Quantitative real-time PCR analysis revealed that CRP inhibited adiponectin, leptin and peroxisome proliferator-activated receptor-gamma (PPAR-{gamma}) genes expression and raised tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) mRNA levels in matured 3T3-L1 adipocytes in a dose and time-dependent manner. Pharmacological inhibition of phosphatidylinositol (PI)-3 kinase by wortmannin partially reversed the effects of CRP on adiponectin, TNF-{alpha} and leptin genes expression. These results collectively suggest that CRP regulates adiponectin, TNF-{alpha}, leptin, IL-6 and PPAR-{gamma} genes expression, and that might represent a mechanism by which CRP regulates insulin resistance, obesity and metabolic syndrome.

  3. Effects of C-reactive protein on adipokines genes expression in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Yuan, Guoyue; Jia, Jue; Di, Liangliang; Zhou, Libin; Dong, Sijing; Ye, Jingjing; Wang, Dong; Yang, Ling; Wang, Jifang; Li, Lianxi; Yang, Ying; Mao, Chaoming; Chen, Mingdao

    2012-01-01

    Highlights: ► CRP increases TNF-α and IL-6 genes expression in matured 3T3-L1 adipocytes. ► CRP suppresses adiponectin, leptin and PPAR-γ mRNA levels in matured 3T3-L1 cells. ► Wortmannin reverses effects of CRP on adiponectin, TNF-α and leptin mRNA levels. ► CRP may regulate IR, obesity and metabolic syndrome by this mechanism. -- Abstract: Adipose tissue is now recognized to be an important endocrine organ, secreting a variety of adipokines that are involved in the regulation of energy metabolism, insulin resistance and metabolic syndrome. C-reactive protein (CRP) is considered as one of the most sensitive markers of inflammation. A number of studies have shown that elevation of CRP concentrations is an independent predictive parameter of type 2 diabetes mellitus, which is also strongly associated with various components of the metabolic syndrome. The aim of the present study is to investigate the effects of CRP on adipokines genes expression in 3T3-L1 adipocytes. Quantitative real-time PCR analysis revealed that CRP inhibited adiponectin, leptin and peroxisome proliferator-activated receptor-gamma (PPAR-γ) genes expression and raised tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) mRNA levels in matured 3T3-L1 adipocytes in a dose and time-dependent manner. Pharmacological inhibition of phosphatidylinositol (PI)-3 kinase by wortmannin partially reversed the effects of CRP on adiponectin, TNF-α and leptin genes expression. These results collectively suggest that CRP regulates adiponectin, TNF-α, leptin, IL-6 and PPAR-γ genes expression, and that might represent a mechanism by which CRP regulates insulin resistance, obesity and metabolic syndrome.

  4. Eff1, IE3. And what then? Pt. 3. Types of motors. Idle power; Eff1, IE3. Und was dann? T. 3. Motorarten. Blindleistung

    Energy Technology Data Exchange (ETDEWEB)

    Fassbinder, Stefan [Deutsches Kupferinstitut, Duesseldorf (Germany); Steins, Dieter

    2012-07-01

    The authors of the contribution under consideration report on motors using permanent magnets for electric driven automobiles. Especially, the authors try to give an answer to the question on how to enhance the efficiency of engines. A possibility is the switch to rotors consisting of copper.

  5. Two Tetrahymena G-DNA-binding proteins, TGP1 and TGP3, share novel motifs and may play a role in micronuclear division

    OpenAIRE

    Lu, Quan; Henderson, Eric

    2000-01-01

    G-DNA is a four-stranded DNA structure with diverse putative biological roles. We have previously purified and cloned a novel G-DNA-binding protein TGP1 from the ciliate Tetrahymena thermophila. Here we report the molecular cloning of TGP3, an additional G-DNA-binding protein from the same organism. The TGP3 cDNA encodes a 365 amino acid protein that is homologous to TGP1 (34% identity and 44% similarity). The proteins share a sequence pattern that contains two novel repetitive and homologous...

  6. Infrared and optical pulsations from HZ hercules and possible 3.5 second infrared pulsations from IE 2259+586

    International Nuclear Information System (INIS)

    Middleditch, J.; Pennypacker, C.R.; Burns, M.S.

    1983-01-01

    The spectrum of the pulsed optical and infrared flux from HZ Her has been measured to be flat by simultaneous observations with the NASA IRTF 3.0 m and the Lick Crossley 91 cm telescopes. The pulsed fluxes in the 3200-7500 A bandpass and the 1.0-2.5 μm bandpass were both measured to be consistent with 27 μJy and indicate that the reprocessed pulsation spectrum may be optically thin thermal bremsstrahlung radiation, modulated in intensity. However, the temperature required for a good fit is > or =30,000 K. The results of a search for periodic infrared pulsations from other X-ray and radio pulsars, supernova remnants, and the galactic center source IRS 16, are also reported. We have possibly detected 3.5 s infrared pulsations from the X-ray binary pulsar, IE 2259+586. The 285.7 mHz infrared pulsation frequency from IE 2259+586 is consistent with the 286.6 mHz second harmonic X-ray pulsations reprocessed from a companion star in the close binary orbit whose period has been tentatively established to be approx.2300 s

  7. Structure of the Putative 32 kDa Myrosinase Binding Protein from Arabidopsis (At3g16450.1) Determined by SAIL-NMR

    Science.gov (United States)

    Takeda, Mitsuhiro; Sugimori, Nozomi; Torizawa, Takuya; Terauchi, Tsutomu; Ono, Akira Mei; Yagi, Hirokazu; Yamaguchi, Yoshiki; Kato, Koichi; Ikeya, Teppei; Jee, JunGoo; Güntert, Peter; Aceti, David J.; Markley, John L.; Kainosho, Masatsune

    2009-01-01

    The product of gene At3g16450.1 from Arabidopsis thaliana is a 32 kDa, 299-residue protein classified as resembling a myrosinase-binding protein (MyroBP). MyroBPs are found in plants as part of a complex with the glucosinolate-degrading enzyme, myrosinase, and are suspected to play a role in myrosinase-dependent defense against pathogens. Many MyroBPs and MyroBP-related proteins are composed of repeated homologous sequences with unknown structure. We report here the three-dimensional structure of the At3g16450.1 protein from Arabidopsis, which consists of two tandem repeats. Because the size of the protein is larger than that amenable to high-throughput analysis by uniformly 13C/15N labeling methods, we used our stereo-array isotope labeling (SAIL) technology to prepare an optimally 2H/13C/15N-labeled sample. NMR data sets collected with the SAIL-protein enabled us to assign 1H, 13C and 15N chemical shifts to 95.5% of all atoms, even at the low concentration (0.2 mM) of the protein product. We collected additional NOESY data and solved the three-dimensional structure with the CYANA software package. The structure, the first for a MyroBP family member, revealed that the At3g16450.1 protein consists of two independent, but similar, lectin-fold domains composed of three β-sheets. PMID:19021763

  8. Defective chemokine signal integration in leukocytes lacking activator of G protein signaling 3 (AGS3).

    Science.gov (United States)

    Branham-O'Connor, Melissa; Robichaux, William G; Zhang, Xian-Kui; Cho, Hyeseon; Kehrl, John H; Lanier, Stephen M; Blumer, Joe B

    2014-04-11

    Activator of G-protein signaling 3 (AGS3, gene name G-protein signaling modulator-1, Gpsm1), an accessory protein for G-protein signaling, has functional roles in the kidney and CNS. Here we show that AGS3 is expressed in spleen, thymus, and bone marrow-derived dendritic cells, and is up-regulated upon leukocyte activation. We explored the role of AGS3 in immune cell function by characterizing chemokine receptor signaling in leukocytes from mice lacking AGS3. No obvious differences in lymphocyte subsets were observed. Interestingly, however, AGS3-null B and T lymphocytes and bone marrow-derived dendritic cells exhibited significant chemotactic defects as well as reductions in chemokine-stimulated calcium mobilization and altered ERK and Akt activation. These studies indicate a role for AGS3 in the regulation of G-protein signaling in the immune system, providing unexpected venues for the potential development of therapeutic agents that modulate immune function by targeting these regulatory mechanisms.

  9. 14-3-3 Proteins in Guard Cell Signaling.

    Science.gov (United States)

    Cotelle, Valérie; Leonhardt, Nathalie

    2015-01-01

    Guard cells are specialized cells located at the leaf surface delimiting pores which control gas exchanges between the plant and the atmosphere. To optimize the CO2 uptake necessary for photosynthesis while minimizing water loss, guard cells integrate environmental signals to adjust stomatal aperture. The size of the stomatal pore is regulated by movements of the guard cells driven by variations in their volume and turgor. As guard cells perceive and transduce a wide array of environmental cues, they provide an ideal system to elucidate early events of plant signaling. Reversible protein phosphorylation events are known to play a crucial role in the regulation of stomatal movements. However, in some cases, phosphorylation alone is not sufficient to achieve complete protein regulation, but is necessary to mediate the binding of interactors that modulate protein function. Among the phosphopeptide-binding proteins, the 14-3-3 proteins are the best characterized in plants. The 14-3-3s are found as multiple isoforms in eukaryotes and have been shown to be involved in the regulation of stomatal movements. In this review, we describe the current knowledge about 14-3-3 roles in the regulation of their binding partners in guard cells: receptors, ion pumps, channels, protein kinases, and some of their substrates. Regulation of these targets by 14-3-3 proteins is discussed and related to their function in guard cells during stomatal movements in response to abiotic or biotic stresses.

  10. 3DProIN: Protein-Protein Interaction Networks and Structure Visualization.

    Science.gov (United States)

    Li, Hui; Liu, Chunmei

    2014-06-14

    3DProIN is a computational tool to visualize protein-protein interaction networks in both two dimensional (2D) and three dimensional (3D) view. It models protein-protein interactions in a graph and explores the biologically relevant features of the tertiary structures of each protein in the network. Properties such as color, shape and name of each node (protein) of the network can be edited in either 2D or 3D views. 3DProIN is implemented using 3D Java and C programming languages. The internet crawl technique is also used to parse dynamically grasped protein interactions from protein data bank (PDB). It is a java applet component that is embedded in the web page and it can be used on different platforms including Linux, Mac and Window using web browsers such as Firefox, Internet Explorer, Chrome and Safari. It also was converted into a mac app and submitted to the App store as a free app. Mac users can also download the app from our website. 3DProIN is available for academic research at http://bicompute.appspot.com.

  11. The Role of DN-GSK3b in Mammary Tumorigenesis

    Science.gov (United States)

    2007-07-01

    transcription factors and dramatically increases their transcriptional activity. Genes up- regulated by TCF/LEF include embryologic genes, such as siamois...in transgenic mice that overexpress Axin, the expression of cyclin D1 is attenuated and increased apoptosis occurs in the mammary epithelia (33

  12. Interleukin-1 beta induced synthesis of protein kinase C-delta and protein kinase C-epsilon in EL4 thymoma cells: possible involvement of phosphatidylinositol 3-kinase.

    Science.gov (United States)

    Varley, C L; Royds, J A; Brown, B L; Dobson, P R

    2001-01-01

    We present evidence here that the proinflammatory cytokine, interleukin-1 beta (IL-1 beta) stimulates a significant increase in protein kinase C (PKC)-epsilon and PKC-delta protein levels and increases PKC-epsilon, but not PKC-delta, transcripts in EL4 thymoma cells. Incubation of EL4 cells with IL-1 beta induced protein synthesis of PKC-epsilon (6-fold increase) by 7 h and had a biphasic effect on PKC-delta levels with peaks at 4 h (2-fold increase) and 24 h (4-fold increase). At the level of mRNA, PKC-epsilon, but not PKC-delta levels, were induced after incubation of EL4 cells with IL-1 beta. The signalling mechanisms utilized by IL-1 beta to induce the synthesis of these PKC isoforms were investigated. Two phosphatidylinositol (PI) 3-kinase-specific inhibitors, wortmannin and LY294002, inhibited IL-1 beta-induced synthesis of PKC-epsilon. However, the PI 3-kinase inhibitors had little effect on the IL-1 beta-induced synthesis of PKC-delta in these cells. Our results indicate that IL-1 beta induced both PKC-delta and PKC-epsilon expression over different time periods. Furthermore, our evidence suggests that IL-1 beta induction of PKC-epsilon, but not PKC-delta, may occur via the PI 3-kinase pathway. Copyright 2001 S. Karger AG, Basel

  13. Evidence for in vitro and in vivo expression of the conserved VAR3 (type 3) plasmodium falciparum erythrocyte membrane protein 1

    DEFF Research Database (Denmark)

    Wang, Christian W; Lavstsen, Thomas; Bengtsson, Dominique C

    2012-01-01

    ABSTRACT: BACKGROUND: Members of the Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion antigen family are major contributors to the pathogenesis of P. falciparum malaria infections. The PfEMP1-encoding var genes are among the most diverse sequences in nature, but three genes......, var1, var2csa and var3 are found conserved in most parasite genomes. The most severe forms of malaria disease are caused by parasites expressing a subset of antigenically conserved PfEMP1 variants. Thus the ubiquitous and conserved VAR3 PfEMP1 is of particular interest to the research field. Evidence...... of VAR3 expression on the infected erythrocyte surface has never been presented, and var3 genes have been proposed to be transcribed and expressed differently from the rest of the var gene family members. METHODS: In this study, parasites expressing VAR3 PfEMP1 were generated using anti-VAR3 antibodies...

  14. Characterization of the CLASP2 Protein Interaction Network Identifies SOGA1 as a Microtubule-Associated Protein

    DEFF Research Database (Denmark)

    Sørensen, Rikke Kruse; Krantz, James; Barker, Natalie

    2017-01-01

    . The GTPase-activating proteins AGAP1 and AGAP3 were also enriched in the CLASP2 interactome, although subsequent AGAP3 and CLIP2 interactome analysis suggests a preference of AGAP3 for CLIP2. Follow-up MARK2 interactome analysis confirmed reciprocal co-IP of CLASP2 and also revealed MARK2 can co-IP SOGA1......, glycogen synthase, and glycogenin. Investigating the SOGA1 interactome confirmed SOGA1 can reciprocal co-IP both CLASP2 and MARK2 as well as glycogen synthase and glycogenin. SOGA1 was confirmed to colocalize with CLASP2 and also with tubulin, which identifies SOGA1 as a new microtubule-associated protein....... These results introduce the metabolic function of these proposed novel protein networks and their relationship with microtubules as new fields of cytoskeleton-associated protein biology....

  15. Shared epitopes of glycoprotein A and protein 4.1 defined by antibody NaM10-3C10.

    Science.gov (United States)

    Rasamoelisolo, M; Czerwinski, M; Willem, C; Blanchard, D

    1998-06-01

    We have produced the murine monoclonal antibody (MAb) NaM70-3C10 (IgM) from splenocytes of mice immunized with human red blood cells (RBCs). The MAb agglutinated untreated as well as trypsin, chymotrypsin, neuraminidase, or ficin-treated RBCs from controls. In contrast, control RBCs treated with papaine or bromelaine were not agglutinated. On immunoblots, the MAb bound to glycophorin A (GPA) and to a 80 kDa protein identified as protein 4.1. Analysis by agglutination of variant RBCs carrying hybrid glycophorins made of the N-terminus (amino acids 1-58) of GPA and of the C-terminus (amino acids 27-72) of glycophorin B (GPB) and competition-inhibition test using purified GPA and a synthetic peptide corresponding to the amino acid sequence 48-58 of GPA demonstrated that the epitope is located within residues 48-58 of GPA. Epitope analysis with immobilized peptides showed that the MAb recognizes the sequence 53Pro-Pro-Glu-Glu-GIu58 of GPA. A homologous sequence is also present within amino acids 395 to 405 of protein 4.1. Finally, the MAb bound to 16 kDa chymotryptic peptide of protein 4.1, which carries the above amino acid sequence. In conclusion, it may be assumed that NaM70-3C10 specifically recognizes a common epitope on the extracellular domain of GPA and on the intracellular protein 4.1; this specificity explains the persistence of the 80 kDa band on blots when RBCs are treated with papain.

  16. The helicase, DDX3X, interacts with poly(A)-binding protein 1 (PABP1) and caprin-1 at the leading edge of migrating fibroblasts and is required for efficient cell spreading.

    Science.gov (United States)

    Copsey, Alice C; Cooper, Simon; Parker, Robert; Lineham, Ella; Lapworth, Cuzack; Jallad, Deema; Sweet, Steve; Morley, Simon J

    2017-08-30

    DDX3X, a helicase, can interact directly with mRNA and translation initiation factors, regulating the selective translation of mRNAs that contain a structured 5' untranslated region. This activity modulates the expression of mRNAs controlling cell cycle progression and mRNAs regulating actin dynamics, contributing to cell adhesion and motility. Previously, we have shown that ribosomes and translation initiation factors localise to the leading edge of migrating fibroblasts in loci enriched with actively translating ribosomes, thereby promoting steady-state levels of ArpC2 and Rac1 proteins at the leading edge of cells during spreading. As DDX3X can regulate Rac1 levels, cell motility and metastasis, we have examined DDX3X protein interactions and localisation using many complementary approaches. We now show that DDX3X can physically interact and co-localise with poly(A)-binding protein 1 and caprin-1 at the leading edge of spreading cells. Furthermore, as depletion of DDX3X leads to decreased cell motility, this provides a functional link between DDX3X, caprin-1 and initiation factors at the leading edge of migrating cells to promote cell migration and spreading. © 2017 The Author(s).

  17. 3D Protein Dynamics in the Cell Nucleus.

    Science.gov (United States)

    Singh, Anand P; Galland, Rémi; Finch-Edmondson, Megan L; Grenci, Gianluca; Sibarita, Jean-Baptiste; Studer, Vincent; Viasnoff, Virgile; Saunders, Timothy E

    2017-01-10

    The three-dimensional (3D) architecture of the cell nucleus plays an important role in protein dynamics and in regulating gene expression. However, protein dynamics within the 3D nucleus are poorly understood. Here, we present, to our knowledge, a novel combination of 1) single-objective based light-sheet microscopy, 2) photoconvertible proteins, and 3) fluorescence correlation microscopy, to quantitatively measure 3D protein dynamics in the nucleus. We are able to acquire >3400 autocorrelation functions at multiple spatial positions within a nucleus, without significant photobleaching, allowing us to make reliable estimates of diffusion dynamics. Using this tool, we demonstrate spatial heterogeneity in Polymerase II dynamics in live U2OS cells. Further, we provide detailed measurements of human-Yes-associated protein diffusion dynamics in a human gastric cancer epithelial cell line. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Fibulin-1C, C1 Esterase Inhibitor and Glucose Regulated Protein 75 Interact with the CREC Proteins, Calumenin and Reticulocalbin.

    Directory of Open Access Journals (Sweden)

    Gry Aune Westergaard Hansen

    Full Text Available Affinity purification, immunoprecipitation, gel electrophoresis and mass spectrometry were used to identify fibulin-1C, C1 esterase inhibitor and glucose regulated protein 75, grp75, as binding partners of the CREC proteins, calumenin and reticulocalbin. Surface plasmon resonance was used to verify the interaction of all three proteins with each of the CREC proteins. Fibulin-1C interacts with calumenin and reticulocalbin with an estimated dissociation constant around 50-60 nM. The interaction, at least for reticulocalbin, was not dependent upon the presence of Ca2+. C1 esterase inhibitor interacted with both proteins with an estimated dissociation constant at 1 μM for reticulocalbin and 150 nM for calumenin. The interaction, at least for calumenin, was dependent upon the presence of Ca2+ with strong interaction at 3.5 mM while no detectable interaction could be found at 0.1 mM. Grp75 binds with an affinity of approximately 3-7 nM with reticulocalbin as well as with calumenin. These interactions suggest functional participation of the CREC proteins in chaperone activity, cell proliferation and transformation, cellular aging, haemostasis and thrombosis as well as modulation of the complement system in fighting bacterial infection.

  19. Oxidative inactivation of the endogenous antioxidant protein DJ-1 by the food contaminants 3-MCPD and 2-MCPD.

    Science.gov (United States)

    Buhrke, Thorsten; Voss, Linn; Briese, Anja; Stephanowitz, Heike; Krause, Eberhard; Braeuning, Albert; Lampen, Alfonso

    2018-01-01

    3-Chloro-1,2-propanediol (3-MCPD) and 2-chloro-1,3-propanediol (2-MCPD) are heat-induced food contaminants being present either as free substances or as fatty acid esters in numerous foods. 3-MCPD was classified to be possibly carcinogenic to humans (category 2B) with kidney and testis being the primary target organs according to animal studies. A previous 28-day oral feeding study with rats revealed that the endogenous antioxidant protein DJ-1 was strongly deregulated at the protein level in kidney, liver, and testis of the experimental animals that had been treated either with 3-MCPD, 2-MCPD or their dipalmitate esters. Here we show that this deregulation is due to the oxidation of a conserved, redox-active cysteine residue (Cys106) of DJ-1 to a cysteine sulfonic acid which is equivalent to loss of function of DJ-1. Irreversible oxidation of DJ-1 is associated with a number of oxidative stress-related diseases such as Parkinson, cancer, and type II diabetes. It is assumed that 3-MCPD or 2-MCPD do not directly oxidize DJ-1, but that these substances induce the formation of reactive oxygen species (ROS) which in turn trigger DJ-1 oxidation. The implications of 3-MCPD/2-MCPD-mediated ROS formation in vivo for the ongoing risk assessment of these compounds as well as the potential of oxidized DJ-1 to serve as a novel effect biomarker for 3-MCPD/2-MCPD toxicity are being discussed.

  20. Hepatitis C virus nonstructural protein-5A activates sterol regulatory element-binding protein-1c through transcription factor Sp1

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Zhonghua; Qiao, Ling; Zhou, Yan [Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3 (Canada); Babiuk, Lorne A. [University of Alberta, Edmonton, Alberta (Canada); Liu, Qiang, E-mail: qiang.liu@usask.ca [Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3 (Canada)

    2010-11-19

    Research highlights: {yields} A chimeric subgenomic HCV replicon expresses HCV-3a NS5A in an HCV-1b backbone. {yields} HCV-3a NS5A increases mature SREBP-1c protein level. {yields} HCV-3a NS5A activates SREBP-1c transcription. {yields} Domain II of HCV-3a NS5A is more effective in SREBP-1c promoter activation. {yields} Transcription factor Sp1 is required for SREBP-1c activation by HCV-3a NS5A. -- Abstract: Steatosis is an important clinical manifestation of hepatitis C virus (HCV) infection. The molecular mechanisms of HCV-associated steatosis are not well understood. Sterol regulatory element-binding protein-1c (SREBP-1c) is a key transcription factor which activates the transcription of lipogenic genes. Here we showed that the nuclear, mature SREBP-1c level increases in the nucleus of replicon cells expressing HCV-3a nonstructural protein-5A (NS5A). We further showed that HCV-3a NS5A up-regulates SREBP-1c transcription. Additional analysis showed that transcriptional factor Sp1 is involved in SREBP-1c activation by HCV-3a NS5A because inhibition of Sp1 activity by mithramycin A or a dominant-negative Sp1 construct abrogated SREBP-1c promoter activation by HCV-3a NS5A. In addition, chromatin immunoprecipitation (ChIP) assay demonstrated enhanced binding of Sp1 on the SREBP-1c promoter in HCV-3a NS5A replicon cells. These results showed that HCV-3a NS5A activates SREBP-1c transcription through Sp1. Taken together, our results suggest that HCV-3a NS5A is a contributing factor for steatosis caused by HCV-3a infection.

  1. Hepatitis C virus nonstructural protein-5A activates sterol regulatory element-binding protein-1c through transcription factor Sp1

    International Nuclear Information System (INIS)

    Xiang, Zhonghua; Qiao, Ling; Zhou, Yan; Babiuk, Lorne A.; Liu, Qiang

    2010-01-01

    Research highlights: → A chimeric subgenomic HCV replicon expresses HCV-3a NS5A in an HCV-1b backbone. → HCV-3a NS5A increases mature SREBP-1c protein level. → HCV-3a NS5A activates SREBP-1c transcription. → Domain II of HCV-3a NS5A is more effective in SREBP-1c promoter activation. → Transcription factor Sp1 is required for SREBP-1c activation by HCV-3a NS5A. -- Abstract: Steatosis is an important clinical manifestation of hepatitis C virus (HCV) infection. The molecular mechanisms of HCV-associated steatosis are not well understood. Sterol regulatory element-binding protein-1c (SREBP-1c) is a key transcription factor which activates the transcription of lipogenic genes. Here we showed that the nuclear, mature SREBP-1c level increases in the nucleus of replicon cells expressing HCV-3a nonstructural protein-5A (NS5A). We further showed that HCV-3a NS5A up-regulates SREBP-1c transcription. Additional analysis showed that transcriptional factor Sp1 is involved in SREBP-1c activation by HCV-3a NS5A because inhibition of Sp1 activity by mithramycin A or a dominant-negative Sp1 construct abrogated SREBP-1c promoter activation by HCV-3a NS5A. In addition, chromatin immunoprecipitation (ChIP) assay demonstrated enhanced binding of Sp1 on the SREBP-1c promoter in HCV-3a NS5A replicon cells. These results showed that HCV-3a NS5A activates SREBP-1c transcription through Sp1. Taken together, our results suggest that HCV-3a NS5A is a contributing factor for steatosis caused by HCV-3a infection.

  2. [Roles of Y box-binding protein 1 in SK-BR-3 breast cancer proliferation].

    Science.gov (United States)

    Shi, Jianhong; Lü, Xinrui; Wang, Bing; Daudan, Lin; Yanan, Wang; Yuhui, Bu; Zhenfeng, Ma

    2014-09-30

    To explore the roles of Y box-binding protein 1 (YB-1) in breast cancer cell proliferation. Twenty cases of surgical removal of breast cancer tissue (diagnosed with invasive ductal carcinoma, stage II, by postoperative paraffin pathology) and normal breast tissues adjacent to carcinoma were collected during June 2013 to August 2013.Quantitative real-time PCR (qRT-PCR) was performed to detect the YB1 mRNA levels. Cultured mammary epithelial cells (HBL-100) and breast cancer cells (MCF7, MDA-MB-231 & SK-BR-3 cells) were harvested and qRT-PCR was performed to detect the YB1 mRNA levels.SK-BR-3 cells were stimulated with various concentrations of PDGF-BB and YB1 expression levels were detected by qRT-PCR. Down-regulation or over-expression of YB1 by si-YB1 or Ad-GFP-YB1 was detected in SK-BR-3 cells. And MTS cell proliferation assay kit was used to detect cell proliferation. YB1 mRNA levels were significantly higher in breast cancer tissues and MDA-MB-231 and SK-BR-3 breast cancer cell lines than that in adjacent normal breast tissues and HBL-100 mammary epithelial cells respectively (P BR-3 cells in a dose-dependent manner. A down-regulation of endogenous YB1 decreases and an over-expression of exogenous YB1 promotes the proliferation activity in SK-BR-3 cells.

  3. The Role of the Multifunctional BAG3 Protein in Cellular Protein Quality Control and in Disease.

    Science.gov (United States)

    Stürner, Elisabeth; Behl, Christian

    2017-01-01

    In neurons, but also in all other cells the complex proteostasis network is monitored and tightly regulated by the cellular protein quality control (PQC) system. Beyond folding of newly synthesized polypeptides and their refolding upon misfolding the PQC also manages the disposal of aberrant proteins either by the ubiquitin-proteasome machinery or by the autophagic-lysosomal system. Aggregated proteins are primarily degraded by a process termed selective macroautophagy (or aggrephagy). One such recently discovered selective macroautophagy pathway is mediated by the multifunctional HSP70 co-chaperone BAG3 ( BCL-2-associated athanogene 3 ). Under acute stress and during cellular aging, BAG3 in concert with the molecular chaperones HSP70 and HSPB8 as well as the ubiquitin receptor p62/SQSTM1 specifically targets aggregation-prone proteins to autophagic degradation. Thereby, BAG3-mediated selective macroautophagy represents a pivotal adaptive safeguarding and emergency system of the PQC which is activated under pathophysiological conditions to ensure cellular proteostasis. Interestingly, BAG3-mediated selective macroautophagy is also involved in the clearance of aggregated proteins associated with age-related neurodegenerative disorders, like Alzheimer's disease (tau-protein), Huntington's disease (mutated huntingtin/polyQ proteins), and amyotrophic lateral sclerosis (mutated SOD1). In addition, based on its initial description BAG3 is an anti-apoptotic protein that plays a decisive role in other widespread diseases, including cancer and myopathies. Therefore, in the search for novel therapeutic intervention avenues in neurodegeneration, myopathies and cancer BAG3 is a promising candidate.

  4. The Type II Hsp40 Sis1 cooperates with Hsp70 and the E3 ligase Ubr1 to promote degradation of terminally misfolded cytosolic protein.

    Directory of Open Access Journals (Sweden)

    Daniel W Summers

    Full Text Available Mechanisms for cooperation between the cytosolic Hsp70 system and the ubiquitin proteasome system during protein triage are not clear. Herein, we identify new mechanisms for selection of misfolded cytosolic proteins for degradation via defining functional interactions between specific cytosolic Hsp70/Hsp40 pairs and quality control ubiquitin ligases. These studies revolved around the use of S. cerevisiae to elucidate the degradation pathway of a terminally misfolded reporter protein, short-lived GFP (slGFP. The Type I Hsp40 Ydj1 acts with Hsp70 to suppress slGFP aggregation. In contrast, the Type II Hsp40 Sis1 is required for proteasomal degradation of slGFP. Sis1 and Hsp70 operate sequentially with the quality control E3 ubiquitin ligase Ubr1 to target slGFP for degradation. Compromise of Sis1 or Ubr1 function leads slGFP to accumulate in a Triton X-100-soluble state with slGFP degradation intermediates being concentrated into perinuclear and peripheral puncta. Interestingly, when Sis1 activity is low the slGFP that is concentrated into puncta can be liberated from puncta and subsequently degraded. Conversely, in the absence of Ubr1, slGFP and the puncta that contain slGFP are relatively stable. Ubr1 mediates proteasomal degradation of slGFP that is released from cytosolic protein handling centers. Pathways for proteasomal degradation of misfolded cytosolic proteins involve functional interplay between Type II Hsp40/Hsp70 chaperone pairs, PQC E3 ligases, and storage depots for misfolded proteins.

  5. Proteomic analysis of human norepinephrine transporter complexes reveals associations with protein phosphatase 2A anchoring subunit and 14-3-3 proteins

    International Nuclear Information System (INIS)

    Sung, Uhna; Jennings, Jennifer L.; Link, Andrew J.; Blakely, Randy D.

    2005-01-01

    The norepinephrine transporter (NET) terminates noradrenergic signals by clearing released NE at synapses. NET regulation by receptors and intracellular signaling pathways is supported by a growing list of associated proteins including syntaxin1A, protein phosphatase 2A (PP2A) catalytic subunit (PP2A-C), PICK1, and Hic-5. In the present study, we sought evidence for additional partnerships by mass spectrometry-based analysis of proteins co-immunoprecipitated with human NET (hNET) stably expressed in a mouse noradrenergic neuroblastoma cell line. Our initial proteomic analyses reveal multiple peptides derived from hNET, peptides arising from the mouse PP2A anchoring subunit (PP2A-Ar) and peptides derived from 14-3-3 proteins. We verified physical association of NET with PP2A-Ar via co-immunoprecipitation studies using mouse vas deferens extracts and with 14-3-3 via a fusion pull-down approach, implicating specifically the hNET NH 2 -terminus for interactions. The transporter complexes described likely support mechanisms regulating transporter activity, localization, and trafficking

  6. (5'-32P)-8-azidoguanosine-3',5'-monophosphate. I. Synthesis and properties. II. Interaction with E. coli proteins

    International Nuclear Information System (INIS)

    Owens, J.R.

    1983-01-01

    Under certain conditions of nutritional deprivation, microorganisms produce the magic spot nucleotides guanosine-3'-diphosphate-5'-triphosphate(pppGpp) and the tetraphosphate ppGpp. The latter is known to be a pleiotypic effector, i.e. it inhibits (and sometimes stimulates) many biological processes including transcription, translation, and metabolic pathways. It is unknown whether pppGpp, ppGp, pGpp, and pGp, other members of this family of guanosine-3',5'-phosphates, also have regulatory properties. To begin to investigate this question, a radioactive photoaffinity analog of pGp was prepared: (5' 32 P)pN 3 Gp. The interaction of this photoprobe with E. coli sonicates and a purified protein (RNA polymerase) was examined. At physiological salt concentrations two proteins (RNA polymerase) was examined. At physiological salt concentrations two proteins of 86,000 and 65,000 daltons (p86 and p65) were primarily photolabeled. Competition studies with guanosine and adenosine nucleotides indicated (5 32 P)pN 3 Gp was labeling a ppGpp binding site on p86, and a pGp (or GMP) site on p65. ATP phosphorylation of p86 increased photoincorporation, while it decreased labeling of p65. The data also provide evidence of a different type of regulatory mechanism, i.e. phosphorylation modulates binding of an allosteric effector (ppGpp) to a protein(enzyme). Both ATP and GTP were found to phosphorylate the same proteins, although GTP was the preferred substrate in some cases

  7. 5-hydroxy-2-methyl-1,4-naphthoquinone, a vitamin K3 analogue, suppresses STAT3 activation pathway through induction of protein tyrosine phosphatase, SHP-1: potential role in chemosensitization.

    Science.gov (United States)

    Sandur, Santosh K; Pandey, Manoj K; Sung, Bokyung; Aggarwal, Bharat B

    2010-01-01

    The activation of signal transducers and activators of transcription 3 (STAT3) has been linked with carcinogenesis through survival, proliferation, and angiogenesis of tumor cells. Agents that can suppress STAT3 activation have potential not only for prevention but also for treatment of cancer. In the present report, we investigated whether 5-hydroxy-2-methyl-1,4-naphthoquinone (plumbagin), an analogue of vitamin K, and isolated from chitrak (Plumbago zeylanica), an Ayurvedic medicinal plant, can modulate the STAT3 pathway. We found that plumbagin inhibited both constitutive and interleukin 6-inducible STAT3 phosphorylation in multiple myeloma (MM) cells and this correlated with the inhibition of c-Src, Janus-activated kinase (JAK)1, and JAK2 activation. Vanadate, however, reversed the plumbagin-induced downregulation of STAT3 activation, suggesting the involvement of a protein tyrosine phosphatase. Indeed, we found that plumbagin induced the expression of the protein tyrosine phosphatase, SHP-1, and silencing of the SHP-1 abolished the effect of plumbagin. This agent also downregulated the expression of STAT3-regulated cyclin D1, Bcl-xL, and vascular endothelial growth factor; activated caspase-3; induced poly (ADP ribose) polymerase cleavage; and increased the sub-G(1) population of MM cells. Consistent with these results, overexpression of constitutive active STAT3 significantly reduced the plumbagin-induced apoptosis. When compared with AG490, a rationally designed STAT3/JAK2 inhibitor, plumbagin was found more potent in suppressing the proliferation of cells. Plumbagin also significantly potentiated the apoptotic effects of thalidomide and bortezomib in MM cells. Overall, these results suggest that the plumbagin inhibits STAT3 activation pathway through the induction of SHP-1 and this may mediate the sensitization of STAT3 overexpressing cancers to chemotherapeutic agents.

  8. Scaffold protein harmonin (USH1C) provides molecular links between Usher syndrome type 1 and type 2.

    Science.gov (United States)

    Reiners, Jan; van Wijk, Erwin; Märker, Tina; Zimmermann, Ulrike; Jürgens, Karin; te Brinke, Heleen; Overlack, Nora; Roepman, Ronald; Knipper, Marlies; Kremer, Hannie; Wolfrum, Uwe

    2005-12-15

    Usher syndrome (USH) is the most frequent cause of combined deaf-blindness in man. USH is clinically and genetically heterogeneous with at least 11 chromosomal loci assigned to the three USH types (USH1A-G, USH2A-C, USH3A). Although the different USH types exhibit almost the same phenotype in human, the identified USH genes encode for proteins which belong to very different protein classes and families. We and others recently reported that the scaffold protein harmonin (USH1C-gene product) integrates all identified USH1 molecules in a USH1-protein network. Here, we investigated the relationship between the USH2 molecules and this USH1-protein network. We show a molecular interaction between the scaffold protein harmonin (USH1C) and the USH2A protein, VLGR1 (USH2C) and the candidate for USH2B, NBC3. We pinpoint these interactions to interactions between the PDZ1 domain of harmonin and the PDZ-binding motifs at the C-termini of the USH2 proteins and NBC3. We demonstrate that USH2A, VLGR1 and NBC3 are co-expressed with the USH1-protein harmonin in the synaptic terminals of both retinal photoreceptors and inner ear hair cells. In hair cells, these USH proteins are also localized in the signal uptaking stereocilia. Our data indicate that the USH2 proteins and NBC3 are further partners in the supramolecular USH-protein network in the retina and inner ear which shed new light on the function of USH2 proteins and the entire USH-protein network. These findings provide first evidence for a molecular linkage between the pathophysiology in USH1 and USH2. The organization of USH molecules in a mutual 'interactome' related to the disease can explain the common phenotype in USH.

  9. Genome-wide identification, sequence characterization, and protein-protein interaction properties of DDB1 (damaged DNA binding protein-1)-binding WD40-repeat family members in Solanum lycopersicum.

    Science.gov (United States)

    Zhu, Yunye; Huang, Shengxiong; Miao, Min; Tang, Xiaofeng; Yue, Junyang; Wang, Wenjie; Liu, Yongsheng

    2015-06-01

    One hundred DDB1 (damaged DNA binding protein-1)-binding WD40-repeat domain (DWD) family genes were identified in the S. lycopersicum genome. The DWD genes encode proteins presumably functioning as the substrate recognition subunits of the cullin4-ring ubiquitin E3 ligase complex. These findings provide candidate genes and a research platform for further gene functionality and molecular breeding study. A subclass of DDB1 (damaged DNA binding protein-1)-binding WD40-repeat domain (DWD) family proteins has been demonstrated to function as the substrate recognition subunits of the cullin4-ring ubiquitin E3 ligase complex. However, little information is available about the cognate subfamily genes in tomato (S. lycopersicum). In this study, based on the recently released tomato genome sequences, 100 tomato genes encoding DWD proteins that potentially interact with DDB1 were identified and characterized, including analyses of the detailed annotations, chromosome locations and compositions of conserved amino acid domains. In addition, a phylogenetic tree, which comprises of three main groups, of the subfamily genes was constructed. The physical interaction between tomato DDB1 and 14 representative DWD proteins was determined by yeast two-hybrid and co-immunoprecipitation assays. The subcellular localization of these 14 representative DWD proteins was determined. Six of them were localized in both nucleus and cytoplasm, seven proteins exclusively in cytoplasm, and one protein either in nucleus and cytoplasm, or exclusively in cytoplasm. Comparative genomic analysis demonstrated that the expansion of these subfamily members in tomato predominantly resulted from two whole-genome triplication events in the evolution history.

  10. Characterization of PPMUCL1/2/3, three members of a new oomycete-specific mucin-like protein family residing in Phytophthora parasitica biofilm.

    Science.gov (United States)

    Larousse, Marie; Govetto, Benjamin; Séassau, Aurélie; Etienne, Catherine; Industri, Benoit; Theodorakopoulos, Nicolas; Deleury, Emeline; Ponchet, Michel; Panabières, Franck; Galiana, Eric

    2014-05-01

    The plant pathogen Phytophthora parasitica forms a biofilm on the host surface. The biofilm transcriptome is characterized by the expression of PPMUCL1/2/3 (PHYTOPHTHORA PARASITICA MUCIN-LIKE) genes, which we report here to be members of a new, large mucin-like gene family restricted to the oomycete lineage. These genes encode secreted proteins organized into two domains. The NH2-terminal domain is highly conserved, but of unknown function. The second domain is a mucin-like domain enriched in threonine and serine residues, with a large number of putative O-glycosylation sites and a repeated motif defining 15 subgroups among the 315 members of the family. The second domain was found to be glycosylated in the recombinant rPPMUCL1 and rPPMUCL2 proteins. An analysis of PPMUCL1/2/3 gene expression indicated that these genes were expressed in a specific and coordinated manner in the biofilm. A novel cis-motif (R) bound to nuclear proteins, suggesting a possible role in PPMUCL1/2/3 gene regulation. Immunohistochemical staining revealed that the PPMUCL1/2 proteins were secreted and accumulated on the surface of the biofilm. Our data demonstrate that PPMUCL1/2/3 belong to a new oomycete-specific family of mucin-like proteins playing a structural role in the biofilm extracellular matrix. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. Wogonin induced G1 cell cycle arrest by regulating Wnt/β-catenin signaling pathway and inactivating CDK8 in human colorectal cancer carcinoma cells

    International Nuclear Information System (INIS)

    He, Licheng; Lu, Na; Dai, Qinsheng; Zhao, Yue; Zhao, Li; Wang, Hu; Li, Zhiyu; You, Qidong; Guo, Qinglong

    2013-01-01

    Highlights: • Wogonin inhibited HCT116 cells growth and arrested at G1 phase of the cell cycle. • Wogonin down-regulated the canonical Wnt/β-catenin signaling pathway. • Wogonin interfered in the combination of β-catenin and TCF/Lef. • Wogonin limited the kinase activity of CDK8. - Abstract: Wogonin, a naturally occurring mono-flavonoid, has been reported to have tumor therapeutic potential and good selectivity both in vitro and in vivo. Herein, we investigated the anti-proliferation effects and associated mechanisms of wogonin in human colorectal cancer in vitro. The flow-cytometric analysis showed that wogonin induced a G1 phase cell cycle arrest in HCT116 cells in a concentration- and time-dependent manner. Meanwhile, the cell cycle-related proteins, such as cyclin A, E, D1, and CDK2, 4 were down-regulated in wogonin-induced G1 cell cycle arrest. Furthermore, we showed that the anti-proliferation and G1 arrest effect of wogonin on HCT116 cells was associated with deregulation of Wnt/β-catenin signaling pathway. Wogonin-treated cells showed decreased intracellular levels of Wnt proteins, and activated degradation complex to phosphorylated and targeted β-catenin for proteasomal degradation. Wogonin inhibited β-catenin-mediated transcription by interfering in the transcriptional activity of TCF/Lef, and repressing the kinase activity of CDK8 which has been considered as an oncogene involving in the development of colorectal cancers. Moreover, CDK8 siRNA-transfected HCT116 cells showed similar results to wogonin treated cells. Thus, our data suggested that wogonin induced anti-proliferation and G1 arrest via Wnt/β-catenin signaling pathway and it can be developed as a therapeutic agent against human colorectal cancer

  12. Pre-apoptotic response to therapeutic DNA damage involves protein modulation of Mcl-1, Hdm2 and Flt3 in acute myeloid leukemia cells

    Directory of Open Access Journals (Sweden)

    Hovland Randi

    2007-05-01

    Full Text Available Abstract Background Acute myeloid leukemia (AML cells are characterized by non-mutated TP53, high levels of Hdm2, and frequent mutation of the Flt3 receptor tyrosine kinase. The juxtamembrane mutation of FLT3 is the strongest independent marker for disease relapse and is associated with elevated Bcl-2 protein and p53 hyper-phosphorylation in AML. DNA damage forms the basic mechanism of cancer cell eradication in current therapy of AML. Hdm2 and pro-apoptotic Bcl-2 members are among the most intensely induced genes immediately after chemotherapy and Hdm2 is proposed a role in receptor tyrosine kinase regulation. Thus we examined the DNA damage related modulation of these proteins in relation to FLT3 mutational status and induction of apoptosis. Results Within one hour after exposure to ionizing radiation (IR, the AML cells (NB4, MV4-11, HL-60, primary AML cells showed an increase in Flt3 protein independent of mRNA levels, while the Hdm2 protein decreased. The FLT3 mutant MV4-11 cells were resistant to IR accompanied by presence of both Mcl-1 and Hdm2 protein three hours after IR. In contrast, the FLT3 wild type NB4 cells responded to IR with apoptosis and pre-apoptotic Mcl-1 down regulation. Daunorubicin (DNR induced continuing down regulation of Hdm2 and Mcl-1 in both cell lines followed by apoptosis. Conclusion Both IR and DNR treatment resulted in concerted protein modulations of Mcl-1, Hdm2 and Flt3. Cell death induction was associated with persistent attenuation of Mcl-1 and Hdm2. These observations suggest that defining the pathway(s modulating Flt3, Hdm2 and Mcl-1 may propose new strategies to optimize therapy for the relapse prone FLT3 mutated AML patients.

  13. Upregulated expression of human neutrophil peptides 1, 2 and 3 (HNP 1-3) in colon cancer serum and tumours: a biomarker study

    International Nuclear Information System (INIS)

    Albrethsen, Jakob; Bøgebo, Rikke; Gammeltoft, Steen; Olsen, Jesper; Winther, Benny; Raskov, Hans

    2005-01-01

    Molecular markers for localized colon tumours and for prognosis following therapy are needed. Proteomics research is currently producing numerous biomarker studies with clinical potential. We investigate the protein composition of plasma and of tumour extracts with the aim of identifying biomarkers for colon cancer. By Surface Enhanced Laser Desorption/Ionisation – Time Of Flight / Mass spectrometry (SELDI-TOF/MS) we compare the protein profiles of colon cancer serum with serum from healthy individuals and the protein profiles of colon tumours with normal colon tissue. By size exclusion chromatography, we investigate the binding of HNP 1-3 to high mass plasma proteins. By microflow we investigate the effect of HNP 1-3 on mammalian cells. Human Neutrophil Peptides -1, -2 and -3 (HNP 1-3), also known as alfa-defensin-1, -2 and -3, are present in elevated concentrations in serum from colon cancer patients and in protein extracts from colon tumours. A fraction of HNP 1-3 in serum is bound to unidentified high mass plasma proteins. HNP 1-3 purified from colon tumours are lethal to mammalian cells. HNP 1-3 may serve as blood markers for colon cancer in combination with other diagnostic tools. We propose that HNP 1-3 are carried into the bloodstream by attaching to high mass plasma proteins in the tumour microenvironment. We discuss the effect of HNP 1-3 on tumour progression

  14. Expression of ErbB3-binding protein-1 (EBP1 during primordial follicle formation: role of estradiol-17ß.

    Directory of Open Access Journals (Sweden)

    Anindit Mukherjee

    Full Text Available The formation of primordial follicles involves the interaction between the oocytes and surrounding somatic cells, which differentiate into granulosa cells. Estradiol-17ß (E promotes primordial follicle formation in vivo and in vitro; however, the underlying mechanisms are poorly understood. The expression of an ERBB3-binding protein 1 (EBP1 is downregulated in 8-day old hamster ovaries concurrent with the increase in serum estradiol levels and the formation of primordial follicles. The objectives of the present study were to determine the spatio-temporal expression and putative E regulation of EBP1 in ovarian cells during perinatal development with respect to primordial follicle formation. Hamster EBP1 nucleic acid and amino acid sequences were more than 93% and 98% similar, respectively, to those of mouse and human, and contained nucleolar localization signal, RNA-binding domain and several phosphorylation sites. EBP1 protein was present in somatic cells and oocytes from E15, and declined in oocytes by P1 and in somatic cells by P5. Thereafter, EBP1 expression increased through P7 with a transient decline on P8 primarily in interstitial cells. EBP1 mRNA levels mirrored protein expression pattern. E treatment on P1 and P4 upregulated EBP1 expression by P8 whereas E treatment on P4 downregulated it by 72 h suggesting a compensatory upregulation due to E pretreatment. Treatment with an FSH-antiserum, which suppressed primordial follicle formation, prevented the decline in EBP1 levels, and the effect was reversed by E treatment. Therefore, the results provide the first evidence that EBP1 may play an important role in mediating the effect of E in the differentiation of somatic cells into granulosa cells during primordial follicle formation.

  15. The Role of the Multifunctional BAG3 Protein in Cellular Protein Quality Control and in Disease

    Directory of Open Access Journals (Sweden)

    Elisabeth Stürner

    2017-06-01

    Full Text Available In neurons, but also in all other cells the complex proteostasis network is monitored and tightly regulated by the cellular protein quality control (PQC system. Beyond folding of newly synthesized polypeptides and their refolding upon misfolding the PQC also manages the disposal of aberrant proteins either by the ubiquitin-proteasome machinery or by the autophagic-lysosomal system. Aggregated proteins are primarily degraded by a process termed selective macroautophagy (or aggrephagy. One such recently discovered selective macroautophagy pathway is mediated by the multifunctional HSP70 co-chaperone BAG3 (BCL-2-associated athanogene 3. Under acute stress and during cellular aging, BAG3 in concert with the molecular chaperones HSP70 and HSPB8 as well as the ubiquitin receptor p62/SQSTM1 specifically targets aggregation-prone proteins to autophagic degradation. Thereby, BAG3-mediated selective macroautophagy represents a pivotal adaptive safeguarding and emergency system of the PQC which is activated under pathophysiological conditions to ensure cellular proteostasis. Interestingly, BAG3-mediated selective macroautophagy is also involved in the clearance of aggregated proteins associated with age-related neurodegenerative disorders, like Alzheimer’s disease (tau-protein, Huntington’s disease (mutated huntingtin/polyQ proteins, and amyotrophic lateral sclerosis (mutated SOD1. In addition, based on its initial description BAG3 is an anti-apoptotic protein that plays a decisive role in other widespread diseases, including cancer and myopathies. Therefore, in the search for novel therapeutic intervention avenues in neurodegeneration, myopathies and cancer BAG3 is a promising candidate.

  16. Oncofetal protein IMP3, a new cancer biomarker.

    Science.gov (United States)

    Gong, Yuna; Woda, Bruce A; Jiang, Zhong

    2014-05-01

    IMP3 is a member of a family of RNA-binding proteins that consists of IMP1, IMP2 and IMP3. These proteins contain 2 RNA recognition motifs and 4 K-homology domains that allow them to bind RNAs strongly and specifically. IMP3 is an oncofetal protein involved in embryogenesis and its expression is associated with a number of malignant neoplasms. IMP3 is associated with aggressive and advanced cancers and is specifically expressed in malignant tumors but is not found in adjacent benign tissues. Moreover, in vitro studies have shown that IMP3 promotes tumor cell proliferation, adhesion, and invasion. This review focuses on the studies of IMP3 expression in different cancers and emphasizes the potential utility of IMP3 in routine surgical pathology practice. We also discuss IMP3 as a prognostic biomarker for cancer patients' outcomes.

  17. A comprehensive protein-protein interactome for yeast PAS kinase 1 reveals direct inhibition of respiration through the phosphorylation of Cbf1.

    Science.gov (United States)

    DeMille, Desiree; Bikman, Benjamin T; Mathis, Andrew D; Prince, John T; Mackay, Jordan T; Sowa, Steven W; Hall, Tacie D; Grose, Julianne H

    2014-07-15

    Per-Arnt-Sim (PAS) kinase is a sensory protein kinase required for glucose homeostasis in yeast, mice, and humans, yet little is known about the molecular mechanisms of its function. Using both yeast two-hybrid and copurification approaches, we identified the protein-protein interactome for yeast PAS kinase 1 (Psk1), revealing 93 novel putative protein binding partners. Several of the Psk1 binding partners expand the role of PAS kinase in glucose homeostasis, including new pathways involved in mitochondrial metabolism. In addition, the interactome suggests novel roles for PAS kinase in cell growth (gene/protein expression, replication/cell division, and protein modification and degradation), vacuole function, and stress tolerance. In vitro kinase studies using a subset of 25 of these binding partners identified Mot3, Zds1, Utr1, and Cbf1 as substrates. Further evidence is provided for the in vivo phosphorylation of Cbf1 at T211/T212 and for the subsequent inhibition of respiration. This respiratory role of PAS kinase is consistent with the reported hypermetabolism of PAS kinase-deficient mice, identifying a possible molecular mechanism and solidifying the evolutionary importance of PAS kinase in the regulation of glucose homeostasis. © 2014 DeMille et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Identification of a novel herpes simplex virus type 1 transcript and protein (AL3) expressed during latency.

    Science.gov (United States)

    Jaber, Tareq; Henderson, Gail; Li, Sumin; Perng, Guey-Chuen; Carpenter, Dale; Wechsler, Steven L; Jones, Clinton

    2009-10-01

    The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) is abundantly expressed in latently infected sensory neurons. In small animal models of infection, expression of the first 1.5 kb of LAT coding sequences is necessary and sufficient for wild-type reactivation from latency. The ability of LAT to inhibit apoptosis is important for reactivation from latency. Within the first 1.5 kb of LAT coding sequences and LAT promoter sequences, additional transcripts have been identified. For example, the anti-sense to LAT transcript (AL) is expressed in the opposite direction to LAT from the 5' end of LAT and LAT promoter sequences. In addition, the upstream of LAT (UOL) transcript is expressed in the LAT direction from sequences in the LAT promoter. Further examination of the first 1.5 kb of LAT coding sequences revealed two small ORFs that are anti-sense with respect to LAT (AL2 and AL3). A transcript spanning AL3 was detected in productively infected cells, mouse neuroblastoma cells stably expressing LAT and trigeminal ganglia (TG) of latently infected mice. Peptide-specific IgG directed against AL3 specifically recognized a protein migrating near 15 kDa in cells stably transfected with LAT, mouse neuroblastoma cells transfected with a plasmid containing the AL3 ORF and TG of latently infected mice. The inability to detect the AL3 protein during productive infection may have been because the 5' terminus of the AL3 transcript was downstream of the first in-frame methionine of the AL3 ORF during productive infection.

  19. Tumor protein 53-induced nuclear protein 1 (TP53INP1 enhances p53 function and represses tumorigenesis

    Directory of Open Access Journals (Sweden)

    Jeyran eShahbazi

    2013-05-01

    Full Text Available Tumor protein 53-induced nuclear protein 1 (TP53INP1 is a stress-induced p53 target gene whose expression is modulated by transcription factors such as p53, p73 and E2F1. TP53INP1 gene encodes two isoforms of TP53INP1 proteins, TP53INP1α and TP53INP1β, both of which appear to be key elements in p53 function. When associated with homeodomain-interacting protein kinase-2 (HIPK2, TP53INP1 phosphorylates p53 protein at Serine 46, enhances p53 protein stability and its transcriptional activity, leading to transcriptional activation of p53 target genes such as p21, PIG-3 and MDM2, cell growth arrest and apoptosis upon DNA damage stress. The anti-proliferative and pro-apoptotic activities of TP53INP1 indicate that TP53INP1 has an important role in cellular homeostasis and DNA damage response. Deficiency in TP53INP1 expression results in increased tumorigenesis; while TP53INP1 expression is repressed during early stages of cancer by factors such as miR-155. This review aims to summarize the roles of TP53INP1 in blocking tumor progression through p53-dependant and p53-independent pathways, as well as the elements which repress TP53INP1 expression, hence highlighting its potential as a therapeutic target in cancer treatment.

  20. The protein phosphatase-1/inhibitor-2 complex differentially regulates GSK3 dephosphorylation and increases sarcoplasmic/endoplasmic reticulum calcium ATPase 2 levels

    International Nuclear Information System (INIS)

    King, Taj D.; Gandy, Johanna C.; Bijur, Gautam N.

    2006-01-01

    The ubiquitously expressed protein glycogen synthase kinase-3 (GSK3) is constitutively active, however its activity is markedly diminished following phosphorylation of Ser21 of GSK3α and Ser9 of GSK3β. Although several kinases are known to phosphorylate Ser21/9 of GSK3, for example Akt, relatively much less is known about the mechanisms that cause the dephosphorylation of GSK3 at Ser21/9. In the present study KCl-induced plasma membrane depolarization of SH-SY5Y cells, which increases intracellular calcium concentrations caused a transient decrease in the phosphorylation of Akt at Thr308 and Ser473, and GSK3 at Ser21/9. Overexpression of the selective protein phosphatase-1 inhibitor protein, inhibitor-2, increased basal GSK3 phosphorylation at Ser21/9 and significantly blocked the KCl-induced dephosphorylation of GSK3β, but not GSK3α. The phosphorylation of Akt was not affected by the overexpression of inhibitor-2. GSK3 activity is known to affect sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) levels. Overexpression of inhibitor-2 or treatment of cells with the GSK3 inhibitors lithium and SB216763 increased the levels of SERCA2. These results indicate that the protein phosphatase-1/inhibitor-2 complex differentially regulates GSK3 dephosphorylation induced by KCl and that GSK3 activity regulates SERCA2 levels

  1. Effects of ubiquilin 1 on the unfolded protein response.

    Science.gov (United States)

    Lu, Alice; Hiltunen, Mikko; Romano, Donna M; Soininen, Hilkka; Hyman, Bradley T; Bertram, Lars; Tanzi, Rudolph E

    2009-05-01

    Previous studies have implicated the unfolded protein response (UPR) in the pathogenesis of Alzheimer's disease (AD). We previously reported that DNA variants in the ubiquilin 1 (UBQLN1) gene increase the risk for AD. Since UBQLN1 has been shown to play a role in the UPR, we assessed the effects of overexpression and downregulation of UBQLN1 splice variants during tunicamycin-induced ER stress. In addition to previously described transcript variants, TV1 and TV2, we identified two novel transcript variants of UBQLN1 in brain: TV3 (lacking exons 2-4) and TV4 (lacking exon 4). Overexpression of TV1-3, but not TV4 significantly decreased the mRNA induction of UPR-inducible genes, C/EBP homologous protein (CHOP), BiP/GRP78, and protein disulfide isomerase (PDI) during the UPR. Stable overexpression of TV1-3, but not TV4, also significantly decreased the induction of CHOP protein and increased cell viability during the UPR. In contrast, downregulation of UBQLN1 did not affect CHOP mRNA induction, but instead increased PDI mRNA levels. These findings suggest that overexpression UBQLN1 transcript variants TV1-3, but not TV4, exert a protective effect during the UPR by attenuating CHOP induction and potentially increasing cell viability.

  2. miR-21-3p is a positive regulator of L1CAM in several human carcinomas.

    Science.gov (United States)

    Doberstein, Kai; Bretz, Niko P; Schirmer, Uwe; Fiegl, Heidi; Blaheta, Roman; Breunig, Christian; Müller-Holzner, Elisabeth; Reimer, Dan; Zeimet, Alain G; Altevogt, Peter

    2014-11-28

    Expression of L1 cell adhesion molecule (L1CAM) occurs frequently in human cancers and is associated with poor prognosis in cancers such as ovarian, endometrial, breast, renal cell carcinoma and pancreatic ductal adenocarcinoma. L1CAM promotes cell motility, invasion, chemoresistance and metastasis formation. Elucidating genetic processes involved in the expression of L1CAM in cancers is of considerable importance. Transcription factors such as SLUG, β-catenin/TCF-LEF, PAX8 and VHL have been implicated in the re-activation of L1CAM in various types of cancers. There is increasing evidence that micro-RNAs can also have strong effects on gene expression. Here we have identified miR-21-3p as a positive regulator of L1CAM expression. Over-expression of miR-21-3p (miR-21*) but not the complementary sequence miR-21-5p (miR-21) could strongly augment L1CAM expression in renal, endometrial and ovarian carcinoma derived cell lines by an unknown mechanism involving transcriptional activation of the L1CAM gene. In patient cohorts from renal, endometrial and ovarian cancers we observed a strong positive correlation of L1CAM and miR-21-3p expressions. Although L1CAM alone was a reliable marker for overall and disease free survival, the combination of L1CAM and miR-21-3p expressions strongly enhanced the predictive power. Our findings shed new light on the complex regulation of L1CAM in cancers and advocate the use of L1CAM/miR-21-3p for diagnostic application. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. The Secreted Protein C1QL1 and Its Receptor BAI3 Control the Synaptic Connectivity of Excitatory Inputs Converging on Cerebellar Purkinje Cells

    Directory of Open Access Journals (Sweden)

    Séverine M. Sigoillot

    2015-02-01

    Full Text Available Precise patterns of connectivity are established by different types of afferents on a given target neuron, leading to well-defined and non-overlapping synaptic territories. What regulates the specific characteristics of each type of synapse, in terms of number, morphology, and subcellular localization, remains to be understood. Here, we show that the signaling pathway formed by the secreted complement C1Q-related protein C1QL1 and its receptor, the adhesion-GPCR brain angiogenesis inhibitor 3 (BAI3, controls the stereotyped pattern of connectivity established by excitatory afferents on cerebellar Purkinje cells. The BAI3 receptor modulates synaptogenesis of both parallel fiber and climbing fiber afferents. The restricted and timely expression of its ligand C1QL1 in inferior olivary neurons ensures the establishment of the proper synaptic territory for climbing fibers. Given the broad expression of C1QL and BAI proteins in the developing mouse brain, our study reveals a general mechanism contributing to the formation of a functional brain.

  4. Reduced hepatotoxicity by total glucosides of paeony in combination treatment with leflunomide and methotrexate for patients with active rheumatoid arthritis.

    Science.gov (United States)

    Chen, Zhu; Li, Xiang-Pei; Li, Zhi-Jun; Xu, Liang; Li, Xiao-Mei

    2013-03-01

    Combination use of methotrexate (MTX) and leflunomide (LEF) has been proved effective in the treatment of active rheumatoid arthritis (RA). However, previous trials have documented that both are associated with increased incidence of liver toxicity. As active compounds extracted from the roots of the traditional Chinese herb Paeonia lactiflora Pall, total glucosides of paeony (TGP) have been shown to have anti-inflammatory, hepatoprotective and immuno-regulatory activities, without evident toxicity or side effects. In this 24-week, open label, randomized multicenter clinical trial, we investigated the efficacy of TGP and the protective effect on hepatotoxicity in the combination treatment with LEF and MTX for patients with active RA. A total of 204 patients with active RA (DAS28>3.2) recruited from 3 regional referral centers were enrolled and received MTX and LEF combination therapy (MTX 10 mg/week plus LEF 20 mg/day) with or without TGP for up to 24 weeks by randomization. Hepatotoxicity was defined as an increase of at least 1.5-fold the upper limits of normal (ULN) of alanine aminotransferase (ALT) or aspartate aminotransferase (AST). Significantly less frequent hepatotoxicity was observed in patients with TGP than those without (9.5% vs 34.8%, p 1.5 to ≤2 times and >2 to ≤3 times the ULN were lower in TGP group than the control (1.9% vs 10.1%, 2.9% vs 12.4%, p TGP group achieved a European League Against Rheumatism (EULAR) good response or moderate response at 12 weeks, although there is no statistical significance. Similar results were observed at 24 weeks. Our preliminary study demonstrates the hepatoprotective and additive role of TGP in combination with MTX and LEF in the treatment of active RA. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Syncytin-1, an endogenous retroviral protein, triggers the activation of CRP via TLR3 signal cascade in glial cells.

    Science.gov (United States)

    Wang, Xiuling; Liu, Zhongchun; Wang, Peigang; Li, Shan; Zeng, Jie; Tu, Xiaoning; Yan, Qiujin; Xiao, Zheman; Pan, Mengxian; Zhu, Fan

    2018-01-01

    Schizophrenia is a devastating psychiatric disorder that impacts on social functioning and quality of life, and there is accumulating evidence that inflammation is a potential pathogenic mechanism of schizophrenia. However, the mechanism of inflammation possibly occurred in schizophrenia has not been well understood. The endogenous retroviral protein syncytin-1 and inflammatory marker CRP are both abnormally expressed in schizophrenia patients. CRP is one of the markers of bacterial infection generally. Less clear is whether virus or viral protein can trigger the activation of CRP. Here, we detected a robust increase of the levels of syncytin-1 and CRP in schizophrenia patients, and displayed a positive correlation and marked consistency between expressions of syncytin-1 and CRP in schizophrenia patients. Furthermore, overexpression of syncytin-1 significantly elevated the levels of CRP, TLR3, and IL-6 in both human microglia and astrocytes. TLR3 deficiency impaired the expressions of CRP and IL-6 induced by syncytin-1. Importantly, we observed a cellular co-localization and a direct interaction between syncytin-1 and TLR3. Additionally, knockdown of IL-6 inhibited the syncytin-1-induced CRP expression. Thus, the totality of these results showed that viral protein syncytin-1 could trigger the activation of CRP, which might explain the elevated CRP in sterile inflammation and exhibit a novel mechanism for regulation of inflammation by syncytin-1 in schizophrenia. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. SH2/SH3 signaling proteins.

    Science.gov (United States)

    Schlessinger, J

    1994-02-01

    SH2 and SH3 domains are small protein modules that mediate protein-protein interactions in signal transduction pathways that are activated by protein tyrosine kinases. SH2 domains bind to short phosphotyrosine-containing sequences in growth factor receptors and other phosphoproteins. SH3 domains bind to target proteins through sequences containing proline and hydrophobic amino acids. SH2 and SH3 domain containing proteins, such as Grb2 and phospholipase C gamma, utilize these modules in order to link receptor and cytoplasmic protein tyrosine kinases to the Ras signaling pathway and to phosphatidylinositol hydrolysis, respectively. The three-dimensional structures of several SH2 and SH3 domains have been determined by NMR and X-ray crystallography, and the molecular basis of their specificity is beginning to be unveiled.

  7. Photoaffinity labeling of human serum vitamin D binding protein and chemical cleavage of the labeled protein: Identification of an 11.5-kDa peptide containing the putative 25-hydroxyvitamin D3 binding site

    International Nuclear Information System (INIS)

    Ray, R.; Holick, M.F.; Bouillon, R.; Baelen, H.V.

    1991-01-01

    In this paper, the authors describe photoaffinity labeling and related studies of human serum vitamin D binding protein (hDBP) with 25-hydroxyvitamin D 3 3β-3'-[N-(4-azido-2-nitrophenyl)amino]propyl ether (25-ANE) and its radiolabeled counterpart, i.e., 25-hydroxyvitamin D 3 3β-3'-[N-(4-azido-2-nitro-[3,5- 3 H]phenyl)amino]propyl ether ( 3 H-25-ANE). They have carried out studies to demonstrate that (1) 25-ANE competes with 25-OH-D 3 for the binding site of the latter in hDBP and (2) 3 H-25-ANE is capable of covalently labeling the hDBP molecule when exposed ot UV light. Treatment of a sample of purified hDBP, labeled with 3 H-25-ANE, with BNPS-skatole produced two Coomassie Blue stained peptide fragments, and the majority of the radioactivity was assoicated with the smaller of the two peptide fragments (16.5 kDa). On the other hand, cleavage of the labeled protein with cyanogen bromide produced a peptide (11.5 kDa) containing most of the covalently attached radioactivity. Considering the primary amino acid structure of hDBP, this peptide fragment (11.5 kDa) represents the N-terminus through residue 108 of the intact protein. Thus, the results tentatively identify this segment of the protein containing the binding pocket for 25-OH-D 3

  8. WO3 Nanofiber-Based Biomarker Detectors Enabled by Protein-Encapsulated Catalyst Self-Assembled on Polystyrene Colloid Templates.

    Science.gov (United States)

    Choi, Seon-Jin; Kim, Sang-Joon; Cho, Hee-Jin; Jang, Ji-Soo; Lin, Yi-Min; Tuller, Harry L; Rutledge, Gregory C; Kim, Il-Doo

    2016-02-17

    A novel catalyst functionalization method, based on protein-encapsulated metallic nanoparticles (NPs) and their self-assembly on polystyrene (PS) colloid templates, is used to form catalyst-loaded porous WO3 nanofibers (NFs). The metallic NPs, composed of Au, Pd, or Pt, are encapsulated within a protein cage, i.e., apoferritin, to form unagglomerated monodispersed particles with diameters of less than 5 nm. The catalytic NPs maintain their nanoscale size, even following high-temperature heat-treatment during synthesis, which is attributed to the discrete self-assembly of NPs on PS colloid templates. In addition, the PS templates generate open pores on the electrospun WO3 NFs, facilitating gas molecule transport into the sensing layers and promoting active surface reactions. As a result, the Au and Pd NP-loaded porous WO3 NFs show superior sensitivity toward hydrogen sulfide, as evidenced by responses (R(air)/R(gas)) of 11.1 and 43.5 at 350 °C, respectively. These responses represent 1.8- and 7.1-fold improvements compared to that of dense WO3 NFs (R(air)/R(gas) = 6.1). Moreover, Pt NP-loaded porous WO3 NFs exhibit high acetone sensitivity with response of 28.9. These results demonstrate a novel catalyst loading method, in which small NPs are well-dispersed within the pores of WO3 NFs, that is applicable to high sensitivity breath sensors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The CENP-T C-Terminus Is Exclusively Proximal to H3.1 and not to H3.2 or H3.3

    Science.gov (United States)

    Abendroth, Christian; Hofmeister, Antje; Hake, Sandra B.; Kamweru, Paul K.; Miess, Elke; Dornblut, Carsten; Küffner, Isabell; Deng, Wen; Leonhardt, Heinrich; Orthaus, Sandra; Hoischen, Christian; Diekmann, Stephan

    2015-01-01

    The kinetochore proteins assemble onto centromeric chromatin and regulate DNA segregation during cell division. The inner kinetochore proteins bind centromeres while most outer kinetochore proteins assemble at centromeres during mitosis, connecting the complex to microtubules. The centromere–kinetochore complex contains specific nucleosomes and nucleosomal particles. CENP-A replaces canonical H3 in centromeric nucleosomes, defining centromeric chromatin. Next to CENP-A, the CCAN multi-protein complex settles which contains CENP-T/W/S/X. These four proteins are described to form a nucleosomal particle at centromeres. We had found the CENP-T C-terminus and the CENP-S termini next to histone H3.1 but not to CENP-A, suggesting that the Constitutive Centromere-Associated Network (CCAN) bridges a CENP-A- and a H3-containing nucleosome. Here, we show by in vivo FRET that this proximity between CENP-T and H3 is specific for H3.1 but neither for the H3.1 mutants H3.1C96A and H3.1C110A nor for H3.2 or H3.3. We also found CENP-M next to H3.1 but not to these H3.1 mutants. Consistently, we detected CENP-M next to CENP-S. These data elucidate the local molecular neighborhood of CCAN proteins next to a H3.1-containing centromeric nucleosome. They also indicate an exclusive position of H3.1 clearly distinct from H3.2, thus documenting a local, and potentially also functional, difference between H3.1 and H3.2. PMID:25775162

  10. The CENP-T C-Terminus Is Exclusively Proximal to H3.1 and not to H3.2 or H3.3

    Directory of Open Access Journals (Sweden)

    Christian Abendroth

    2015-03-01

    Full Text Available The kinetochore proteins assemble onto centromeric chromatin and regulate DNA segregation during cell division. The inner kinetochore proteins bind centromeres while most outer kinetochore proteins assemble at centromeres during mitosis, connecting the complex to microtubules. The centromere–kinetochore complex contains specific nucleosomes and nucleosomal particles. CENP-A replaces canonical H3 in centromeric nucleosomes, defining centromeric chromatin. Next to CENP-A, the CCAN multi-protein complex settles which contains CENP-T/W/S/X. These four proteins are described to form a nucleosomal particle at centromeres. We had found the CENP-T C-terminus and the CENP-S termini next to histone H3.1 but not to CENP-A, suggesting that the Constitutive Centromere-Associated Network (CCAN bridges a CENP-A- and a H3-containing nucleosome. Here, we show by in vivo FRET that this proximity between CENP-T and H3 is specific for H3.1 but neither for the H3.1 mutants H3.1C96A and H3.1C110A nor for H3.2 or H3.3. We also found CENP-M next to H3.1 but not to these H3.1 mutants. Consistently, we detected CENP-M next to CENP-S. These data elucidate the local molecular neighborhood of CCAN proteins next to a H3.1-containing centromeric nucleosome. They also indicate an exclusive position of H3.1 clearly distinct from H3.2, thus documenting a local, and potentially also functional, difference between H3.1 and H3.2.

  11. BTB-BACK Domain Protein POB1 Suppresses Immune Cell Death by Targeting Ubiquitin E3 ligase PUB17 for Degradation.

    Directory of Open Access Journals (Sweden)

    Beatriz Orosa

    2017-01-01

    Full Text Available Hypersensitive response programmed cell death (HR-PCD is a critical feature in plant immunity required for pathogen restriction and prevention of disease development. The precise control of this process is paramount to cell survival and an effective immune response. The discovery of new components that function to suppress HR-PCD will be instrumental in understanding the regulation of this fundamental mechanism. Here we report the identification and characterisation of a BTB domain E3 ligase protein, POB1, that functions to suppress HR-PCD triggered by evolutionarily diverse pathogens. Nicotiana benthamiana and tobacco plants with reduced POB1 activity show accelerated HR-PCD whilst those with increased POB1 levels show attenuated HR-PCD. We demonstrate that POB1 dimerization and nuclear localization are vital for its function in HR-PCD suppression. Using protein-protein interaction assays, we identify the Plant U-Box E3 ligase PUB17, a well established positive regulator of plant innate immunity, as a target for POB1-mediated proteasomal degradation. Using confocal imaging and in planta immunoprecipitation assays we show that POB1 interacts with PUB17 in the nucleus and stimulates its degradation. Mutated versions of POB1 that show reduced interaction with PUB17 fail to suppress HR-PCD, indicating that POB1-mediated degradation of PUB17 U-box E3 ligase is an important step for negative regulation of specific immune pathways in plants. Our data reveals a new mechanism for BTB domain proteins in suppressing HR-PCD in plant innate immune responses.

  12. Irradiation effects test series test IE-1 test results report

    International Nuclear Information System (INIS)

    Quapp, W.J.; Allison, C.M.; Farrar, L.C.; Mehner, A.S.

    1977-03-01

    The report describes the results of the first programmatic test in the Nuclear Regulatory Commission Irradiation Effects Test Series. This test (IE-1) used four 0.97m long PWR-type fuel rods fabricated from previously irradiated Saxton fuel. The objectives of this test were to evaluate the effect of fuel pellet density on pellet-cladding interaction during a power ramp and to evaluate the influence of the irradiated state of the fuel and cladding on rod behavior during film boiling operation. Data are presented on the behavior of irradiated fuel rods during steady-state operation, a power ramp, and film boiling operation. The effects of as-fabricated gap size, as-fabricated fuel density, rod power, and power ramp rate on pellet-cladding interaction are discussed. Test data are compared with FRAP-T2 computer model predictions, and comments on the consequences of sustained film boiling operation on irradiated fuel rod behavior are provided

  13. Fast kinase domain-containing protein 3 is a mitochondrial protein essential for cellular respiration

    Energy Technology Data Exchange (ETDEWEB)

    Simarro, Maria [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Gimenez-Cassina, Alfredo [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Kedersha, Nancy [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Lazaro, Jean-Bernard; Adelmant, Guillaume O.; Marto, Jarrod A. [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Rhee, Kirsten [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Tisdale, Sarah; Danial, Nika [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Benarafa, Charaf [Theodor Kocher Institute, University of Bern, 3012 Bern (Switzerland); Orduna, Anonio [Unidad de Investigacion, Hospital Clinico Universitario de Valladolid, 47005 Valladolid (Spain); Anderson, Paul, E-mail: panderson@rics.bwh.harvard.edu [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States)

    2010-10-22

    Research highlights: {yields} Five members of the FAST kinase domain-containing proteins are localized to mitochondria in mammalian cells. {yields} The FASTKD3 interactome includes proteins involved in various aspects of mitochondrial metabolism. {yields} Targeted knockdown of FASTKD3 significantly reduces basal and maximal mitochondrial oxygen consumption. -- Abstract: Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated with reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration.

  14. Fast kinase domain-containing protein 3 is a mitochondrial protein essential for cellular respiration

    International Nuclear Information System (INIS)

    Simarro, Maria; Gimenez-Cassina, Alfredo; Kedersha, Nancy; Lazaro, Jean-Bernard; Adelmant, Guillaume O.; Marto, Jarrod A.; Rhee, Kirsten; Tisdale, Sarah; Danial, Nika; Benarafa, Charaf; Orduna, Anonio; Anderson, Paul

    2010-01-01

    Research highlights: → Five members of the FAST kinase domain-containing proteins are localized to mitochondria in mammalian cells. → The FASTKD3 interactome includes proteins involved in various aspects of mitochondrial metabolism. → Targeted knockdown of FASTKD3 significantly reduces basal and maximal mitochondrial oxygen consumption. -- Abstract: Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated with reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration.

  15. Chondroitin Sulfate Inhibits Monocyte Chemoattractant Protein-1 Release From 3T3-L1 Adipocytes: A New Treatment Opportunity for Obesity-Related Inflammation?

    Directory of Open Access Journals (Sweden)

    Thomas V Stabler

    2017-08-01

    Full Text Available Monocyte chemoattractant protein-1 (MCP-1 overproduction from inflamed adipose tissue is a major contributor to obesity-related metabolic syndromes. 3T3-L1 embryonic fibroblasts were cultured and differentiated into adipocytes using an established protocol. Adipocytes were treated with lipopolysaccharide (LPS to induce inflammation and thus MCP-1 release. At the same time, varying concentrations of chondroitin sulfate (CS were added in a physiologically relevant range (10-200 µg/mL to determine its impact on MCP-1 release. Chondroitin sulfate, a natural glycosaminoglycan of connective tissue including the cartilage extracellular matrix, was chosen on the basis of our previous studies demonstrating its anti-inflammatory effect on macrophages. Because the main action of MCP-1 is to induce monocyte migration, cultured THP-1 monocytes were used to test whether CS at the highest physiologically relevant concentration could inhibit cell migration induced by human recombinant MCP-1. Chondroitin sulfate (100-200 µg/mL inhibited MCP-1 release from inflamed adipocytes in a dose-dependent manner ( P  < .01, 95% confidence interval [CI]: −5.89 to −3.858 at 100 µg/mL and P  < .001, 95% CI: −6.028 to −3.996 at 200 µg/mL but had no effect on MCP-1–driven chemotaxis of THP-1 monocytes. In summary, CS could be expected to reduce macrophage infiltration into adipose tissue by reduction in adipocyte expression and release of MCP-1 and as such might reduce adipose tissue inflammation in response to pro-inflammatory stimuli such as LPS, now increasingly recognized to be relevant in vivo.

  16. Concurrent acetylation of FoxO1/3a and p53 due to sirtuins inhibition elicit Bim/PUMA mediated mitochondrial dysfunction and apoptosis in berberine-treated HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Shatrunajay [Herbal Research Section, CSIR — Indian Institute of Toxicology Research, Post Box No. 80, Mahatma Gandhi Marg, Lucknow‐226001 (India); Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi ‐110062 (India); Sharma, Ankita [Herbal Research Section, CSIR — Indian Institute of Toxicology Research, Post Box No. 80, Mahatma Gandhi Marg, Lucknow‐226001 (India); Pandey, Vivek Kumar [Herbal Research Section, CSIR — Indian Institute of Toxicology Research, Post Box No. 80, Mahatma Gandhi Marg, Lucknow‐226001 (India); Academy of Scientific and Innovative Research (India); Raisuddin, Sheikh [Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi ‐110062 (India); Kakkar, Poonam, E-mail: kakkarp59@gmail.com [Herbal Research Section, CSIR — Indian Institute of Toxicology Research, Post Box No. 80, Mahatma Gandhi Marg, Lucknow‐226001 (India); Academy of Scientific and Innovative Research (India)

    2016-01-15

    Post-translational modifications i.e. phosphorylation and acetylation are pivotal requirements for proper functioning of eukaryotic proteins. The current study aimed to decode the impact of acetylation/deacetylation of non-histone targets i.e. FoxO1/3a and p53 of sirtuins (NAD{sup +} dependent enzymes with lysine deacetylase activity) in berberine treated human hepatoma cells. Berberine (100 μM) inhibited sirtuins significantly (P < 0.05) at transcriptional level as well as at translational level. Combination of nicotinamide (sirtuin inhibitor) with berberine potentiated sirtuins inhibition and increased the expression of FoxO1/3a and phosphorylation of p53 tumor suppressor protein. As sirtuins deacetylate non-histone targets including FoxO1/3a and p53, berberine increased the acetylation load of FoxO1/3a and p53 proteins. Acetylated FoxO and p53 proteins transcriptionally activate BH3-only proteins Bim and PUMA (3.89 and 3.87 fold respectively, P<0.001), which are known as direct activator of pro-apoptotic Bcl-2 family protein Bax that culminated into mitochondria mediated activation of apoptotic cascade. Bim/PUMA knock-down showed no changes in sirtuins' expression while cytotoxicity induced by berberine and nicotinamide was curtailed up to 28.3% (P < 0.001) and it restored pro/anti apoptotic protein ratio in HepG2 cells. Sirtuins inhibition was accompanied by decline in NAD{sup +}/NADH ratio, ATP generation, enhanced ROS production and decreased mitochondrial membrane potential. TEM analysis confirmed mitochondrial deterioration and cell damage. SRT-1720 (1–10 μM), a SIRT-1 activator, when pre-treated with berberine (25 μM), reversed sirtuins expression comparable to control and significantly restored the cell viability (P < 0.05). Thus, our findings suggest that berberine mediated sirtuins inhibition resulting into FoxO1/3a and p53 acetylation followed by BH3-only protein Bim/PUMA activation may in part be responsible for mitochondria

  17. ANSI/ASHRAE/IES Standard 90.1-2013 Determination of Energy Savings: Quantitative Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Mark A.; Athalye, Rahul A.; Rosenberg, Michael I.; Xie, YuLong; Wang, Weimin; Hart, Philip R.; Zhang, Jian; Goel, Supriya; Mendon, Vrushali V.

    2014-09-04

    This report provides a final quantitative analysis to assess whether buildings constructed according to the requirements of ANSI/ASHRAE/IES Standard 90.1-2013 would result in improved energy efficiency in commercial buildings. The final analysis considered each of the 110 addenda to Standard 90.1-2010 that were included in Standard 90.1-2013. PNNL reviewed all addenda included by ASHRAE in creating Standard 90.1-2013 from Standard 90.1-2010, and considered their combined impact on a suite of prototype building models across all U.S. climate zones. Most addenda were deemed to have little quantifiable impact on building efficiency for the purpose of DOE’s final determination. However, out of the 110 total addenda, 30 were identified as having a measureable and quantifiable impact.

  18. Bluetongue virus non-structural protein 1 is a positive regulator of viral protein synthesis

    Directory of Open Access Journals (Sweden)

    Boyce Mark

    2012-08-01

    Full Text Available Abstract Background Bluetongue virus (BTV is a double-stranded RNA (dsRNA virus of the Reoviridae family, which encodes its genes in ten linear dsRNA segments. BTV mRNAs are synthesised by the viral RNA-dependent RNA polymerase (RdRp as exact plus sense copies of the genome segments. Infection of mammalian cells with BTV rapidly replaces cellular protein synthesis with viral protein synthesis, but the regulation of viral gene expression in the Orbivirus genus has not been investigated. Results Using an mRNA reporter system based on genome segment 10 of BTV fused with GFP we identify the protein characteristic of this genus, non-structural protein 1 (NS1 as sufficient to upregulate translation. The wider applicability of this phenomenon among the viral genes is demonstrated using the untranslated regions (UTRs of BTV genome segments flanking the quantifiable Renilla luciferase ORF in chimeric mRNAs. The UTRs of viral mRNAs are shown to be determinants of the amount of protein synthesised, with the pre-expression of NS1 increasing the quantity in each case. The increased expression induced by pre-expression of NS1 is confirmed in virus infected cells by generating a replicating virus which expresses the reporter fused with genome segment 10, using reverse genetics. Moreover, NS1-mediated upregulation of expression is restricted to mRNAs which lack the cellular 3′ poly(A sequence identifying the 3′ end as a necessary determinant in specifically increasing the translation of viral mRNA in the presence of cellular mRNA. Conclusions NS1 is identified as a positive regulator of viral protein synthesis. We propose a model of translational regulation where NS1 upregulates the synthesis of viral proteins, including itself, and creates a positive feedback loop of NS1 expression, which rapidly increases the expression of all the viral proteins. The efficient translation of viral reporter mRNAs among cellular mRNAs can account for the observed

  19. Bluetongue virus non-structural protein 1 is a positive regulator of viral protein synthesis.

    Science.gov (United States)

    Boyce, Mark; Celma, Cristina C P; Roy, Polly

    2012-08-29

    Bluetongue virus (BTV) is a double-stranded RNA (dsRNA) virus of the Reoviridae family, which encodes its genes in ten linear dsRNA segments. BTV mRNAs are synthesised by the viral RNA-dependent RNA polymerase (RdRp) as exact plus sense copies of the genome segments. Infection of mammalian cells with BTV rapidly replaces cellular protein synthesis with viral protein synthesis, but the regulation of viral gene expression in the Orbivirus genus has not been investigated. Using an mRNA reporter system based on genome segment 10 of BTV fused with GFP we identify the protein characteristic of this genus, non-structural protein 1 (NS1) as sufficient to upregulate translation. The wider applicability of this phenomenon among the viral genes is demonstrated using the untranslated regions (UTRs) of BTV genome segments flanking the quantifiable Renilla luciferase ORF in chimeric mRNAs. The UTRs of viral mRNAs are shown to be determinants of the amount of protein synthesised, with the pre-expression of NS1 increasing the quantity in each case. The increased expression induced by pre-expression of NS1 is confirmed in virus infected cells by generating a replicating virus which expresses the reporter fused with genome segment 10, using reverse genetics. Moreover, NS1-mediated upregulation of expression is restricted to mRNAs which lack the cellular 3' poly(A) sequence identifying the 3' end as a necessary determinant in specifically increasing the translation of viral mRNA in the presence of cellular mRNA. NS1 is identified as a positive regulator of viral protein synthesis. We propose a model of translational regulation where NS1 upregulates the synthesis of viral proteins, including itself, and creates a positive feedback loop of NS1 expression, which rapidly increases the expression of all the viral proteins. The efficient translation of viral reporter mRNAs among cellular mRNAs can account for the observed replacement of cellular protein synthesis with viral protein

  20. Analysis of Select Herpes Simplex Virus 1 (HSV-1) Proteins for Restriction of Human Immunodeficiency Virus Type 1 (HIV-1): HSV-1 gM Protein Potently Restricts HIV-1 by Preventing Intracellular Transport and Processing of Env gp160.

    Science.gov (United States)

    Polpitiya Arachchige, Sachith; Henke, Wyatt; Pramanik, Ankita; Kalamvoki, Maria; Stephens, Edward B

    2018-01-15

    Virus-encoded proteins that impair or shut down specific host cell functions during replication can be used as probes to identify potential proteins/pathways used in the replication of viruses from other families. We screened nine proteins from herpes simplex virus 1 (HSV-1) for the ability to enhance or restrict human immunodeficiency virus type 1 (HIV-1) replication. We show that several HSV-1 proteins (glycoprotein M [gM], US3, and UL24) potently restricted the replication of HIV-1. Unlike UL24 and US3, which reduced viral protein synthesis, we observed that gM restriction of HIV-1 occurred through interference with the processing and transport of gp160, resulting in a significantly reduced level of mature gp120/gp41 released from cells. Finally, we show that an HSV-1 gM mutant lacking the majority of the C-terminal domain (HA-gM[Δ345-473]) restricted neither gp160 processing nor the release of infectious virus. These studies identify proteins from heterologous viruses that can restrict viruses through novel pathways. IMPORTANCE HIV-1 infection of humans results in AIDS, characterized by the loss of CD4 + T cells and increased susceptibility to opportunistic infections. Both HIV-1 and HSV-1 can infect astrocytes and microglia of the central nervous system (CNS). Thus, the identification of HSV-1 proteins that directly restrict HIV-1 or interfere with pathways required for HIV-1 replication could lead to novel antiretroviral strategies. The results of this study show that select viral proteins from HSV-1 can potently restrict HIV-1. Further, our results indicate that the gM protein of HSV-1 restricts HIV-1 through a novel pathway by interfering with the processing of gp160 and its incorporation into virus maturing from the cell. Copyright © 2018 American Society for Microbiology.

  1. C3HC4-type RING finger protein NbZFP1 is involved in growth and fruit development in Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Wenxian Wu

    Full Text Available C3HC4-type RING finger proteins constitute a large family in the plant kingdom and play important roles in various physiological processes of plant life. In this study, a C3HC4-type zinc finger gene was isolated from Nicotiana benthamiana. Sequence analysis indicated that the gene encodes a 24-kDa protein with 191 amino acids containing one typical C3HC4-type zinc finger domain; this gene was named NbZFP1. Transient expression of pGDG-NbZFP1 demonstrated that NbZFP1 was localized to the chloroplast, especially in the chloroplasts of cells surrounding leaf stomata. Virus-induced gene silencing (VIGS analysis indicated that silencing of NbZFP1 hampered fruit development, although the height of the plants was normal. An overexpression construct was then designed and transferred into Nicotiana benthamiana, and PCR and Southern blot showed that the NbZFP1 gene was successfully integrated into the Nicotiana benthamiana genome. The transgenic lines showed typical compactness, with a short internode length and sturdy stems. This is the first report describing the function of a C3HC4-type RING finger protein in tobacco.

  2. Yeast 14-3-3 proteins participate in the regulation of cell cation homeostasis via interaction with Nha1 alkali-metal-cation/proton antiporter

    Czech Academy of Sciences Publication Activity Database

    Zahrádka, Jaromír; Van Heusden, G.P.H.; Sychrová, Hana

    2012-01-01

    Roč. 1820, č. 7 (2012), s. 849-858 ISSN 0304-4165 R&D Projects: GA MŠk(CZ) LC531; GA MŠk(CZ) OC10012; GA AV ČR(CZ) IAA500110801 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : yeast * 14-3-3 proteins * ion homeostasis * Nha1 antiporter Subject RIV: CE - Biochemistry Impact factor: 3.848, year: 2012

  3. Breast Regression Protein-39/Chitinase 3-Like 1 Promotes Renal Fibrosis after Kidney Injury via Activation of Myofibroblasts.

    Science.gov (United States)

    Montgomery, Tinika A; Xu, Leyuan; Mason, Sherene; Chinnadurai, Amirtha; Lee, Chun Geun; Elias, Jack A; Cantley, Lloyd G

    2017-11-01

    The normal response to kidney injury includes a robust inflammatory infiltrate of PMNs and macrophages. We previously showed that the small secreted protein breast regression protein-39 (BRP-39), also known as chitinase 3-like 1 (CHI3L1) and encoded by the Chi3l1 gene, is expressed at high levels by macrophages during the early stages of kidney repair and promotes tubular cell survival via IL-13 receptor α 2 (IL13R α 2)-mediated signaling. Here, we investigated the role of BRP-39 in profibrotic responses after AKI. In wild-type mice, failure to resolve tubular injury after unilateral ischemia-reperfusion injury (U-IRI) led to sustained low-level Chi3l1 mRNA expression by renal cells and promoted macrophage persistence and severe interstitial fibrosis. Analysis of macrophages isolated from wild-type kidneys 14 days after U-IRI revealed high-level expression of the profibrotic BRP-39 receptor Ptgdr2 / Crth2 and expression of the profibrotic markers Lgals3 , Pdgfb , Egf , and Tgfb In comparison, injured kidneys from mice lacking BRP-39 had significantly fewer macrophages, reduced expression of profibrotic growth factors, and decreased accumulation of extracellular matrix. BRP-39 depletion did not affect myofibroblast accumulation but did attenuate myofibroblast expression of Col1a1 , Col3a1 , and Fn1 Together, these results identify BRP-39 as an important activator of macrophage-myofibroblast crosstalk and profibrotic signaling in the setting of maladaptive kidney repair. Copyright © 2017 by the American Society of Nephrology.

  4. Nuclear localization of human DNA mismatch repair protein exonuclease 1 (hEXO1)

    DEFF Research Database (Denmark)

    Knudsen, Nina Østergaard; Nielsen, Finn Cilius; Vinther, Lena

    2007-01-01

    interaction with hMLH1 and we show that defective nuclear localization of hEXO1 mutant proteins could be rescued by hMLH1 or hMSH2. Both hEXO1 and hMLH1 form complexes with the nuclear import factors importin beta/alpha1,3,7 whereas hMSH2 specifically recognizes importin beta/alpha3. Taken together, we infer...... that hEXO1, hMLH1 and hMSH2 form complexes and are imported to the nucleus together, and that redundant NLS import signals in the proteins may safeguard nuclear import and thereby MMR activity....

  5. Reliability, validity, and sensitivity to change of the lower extremity functional scale in individuals affected by stroke.

    Science.gov (United States)

    Verheijde, Joseph L; White, Fred; Tompkins, James; Dahl, Peder; Hentz, Joseph G; Lebec, Michael T; Cornwall, Mark

    2013-12-01

    To investigate reliability, validity, and sensitivity to change of the Lower Extremity Functional Scale (LEFS) in individuals affected by stroke. The secondary objective was to test the validity and sensitivity of a single-item linear analog scale (LAS) of function. Prospective cohort reliability and validation study. A single rehabilitation department in an academic medical center. Forty-three individuals receiving neurorehabilitation for lower extremity dysfunction after stroke were studied. Their ages ranged from 32 to 95 years, with a mean of 70 years; 77% were men. Test-retest reliability was assessed by calculating the classical intraclass correlation coefficient, and the Bland-Altman limits of agreement. Validity was assessed by calculating the Pearson correlation coefficient between the instruments. Sensitivity to change was assessed by comparing baseline scores with end of treatment scores. Measurements were taken at baseline, after 1-3 days, and at 4 and 8 weeks. The LEFS, Short-Form-36 Physical Function Scale, Berg Balance Scale, Six-Minute Walk Test, Five-Meter Walk Test, Timed Up-and-Go test, and the LAS of function were used. The test-retest reliability of the LEFS was found to be excellent (ICC = 0.96). Correlated with the 6 other measures of function studied, the validity of the LEFS was found to be moderate to high (r = 0.40-0.71). Regarding the sensitivity to change, the mean LEFS scores from baseline to study end increased 1.2 SD and for LAS 1.1 SD. LEFS exhibits good reliability, validity, and sensitivity to change in patients with lower extremity impairments secondary to stroke. Therefore, the LEFS can be a clinically efficient outcome measure in the rehabilitation of patients with subacute stroke. The LAS is shown to be a time-saving and reasonable option to track changes in a patient's functional status. Copyright © 2013 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  6. Protein: FEA3 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FEA3 AREB pathway: Signaling proteins At4g11890/T26M18_100 At4g11890, Protein kinase family pr...otein, Putative uncharacterized protein At4g11890/T26M18_100 3702 Arabidopsis thaliana 826796 Q8GY82 22225700 ...

  7. The End of the Line: Can Ferredoxin and Ferredoxin NADP(H) Oxidoreductase Determine the Fate of Photosynthetic Electrons?

    Science.gov (United States)

    Goss, Tatjana; Hanke, Guy

    2014-01-01

    At the end of the linear photosynthetic electron transfer (PET) chain, the small soluble protein ferredoxin (Fd) transfers electrons to Fd:NADP(H) oxidoreductase (FNR), which can then reduce NADP+ to support C assimilation. In addition to this linear electron flow (LEF), Fd is also thought to mediate electron flow back to the membrane complexes by different cyclic electron flow (CEF) pathways: either antimycin A sensitive, NAD(P)H complex dependent, or through FNR located at the cytochrome b6f complex. Both Fd and FNR are present in higher plant genomes as multiple gene copies, and it is now known that specific Fd iso-proteins can promote CEF. In addition, FNR iso-proteins vary in their ability to dynamically interact with thylakoid membrane complexes, and it has been suggested that this may also play a role in CEF. We will highlight work on the different Fd-isoproteins and FNR-membrane association found in the bundle sheath (BSC) and mesophyll (MC) cell chloroplasts of the C4 plant maize. These two cell types perform predominantly CEF and LEF, and the properties and activities of Fd and FNR in the BSC and MC are therefore specialized for CEF and LEF respectively. A diversity of Fd isoproteins and dynamic FNR location has also been recorded in C3 plants, algae and cyanobacteria. This indicates that the principles learned from the extreme electron transport situations in the BSC and MC of maize might be usefully applied to understanding the dynamic transition between these states in other systems. PMID:24678667

  8. Pelota interacts with HAX1, EIF3G and SRPX and the resulting protein complexes are associated with the actin cytoskeleton

    Directory of Open Access Journals (Sweden)

    Hoyer-Fender Sigrid

    2010-04-01

    Full Text Available Abstract Background Pelota (PELO is an evolutionary conserved protein, which has been reported to be involved in the regulation of cell proliferation and stem cell self-renewal. Recent studies revealed the essential role of PELO in the No-Go mRNA decay, by which mRNA with translational stall are endonucleotically cleaved and degraded. Further, PELO-deficient mice die early during gastrulation due to defects in cell proliferation and/or differentiation. Results We show here that PELO is associated with actin microfilaments of mammalian cells. Overexpression of human PELO in Hep2G cells had prominent effect on cell growth, cytoskeleton organization and cell spreading. To find proteins interacting with PELO, full-length human PELO cDNA was used as a bait in a yeast two-hybrid screening assay. Partial sequences of HAX1, EIF3G and SRPX protein were identified as PELO-interacting partners from the screening. The interactions between PELO and HAX1, EIF3G and SRPX were confirmed in vitro by GST pull-down assays and in vivo by co-immunoprecipitation. Furthermore, the PELO interaction domain was mapped to residues 268-385 containing the c-terminal and acidic tail domain. By bimolecular fluorescence complementation assay (BiFC, we found that protein complexes resulting from the interactions between PELO and either HAX1, EIF3G or SRPX were mainly localized to cytoskeletal filaments. Conclusion We could show that PELO is subcellularly localized at the actin cytoskeleton, interacts with HAX1, EIF3G and SRPX proteins and that this interaction occurs at the cytoskeleton. Binding of PELO to cytoskeleton-associated proteins may facilitate PELO to detect and degrade aberrant mRNAs, at which the ribosome is stalled during translation.

  9. Targeted mass spectrometry analysis of the proteins IGF1, IGF2, IBP2, IBP3 and A2GL by blood protein precipitation

    DEFF Research Database (Denmark)

    Such-Sanmartín, Gerard; Bache, Nicolai; Callesen, Anne K

    2015-01-01

    aggravated when using fast high-throughput methods, which are necessary for analysis of hundreds and thousands of samples in clinical laboratories. The blood proteins IGF1, IGF2, IBP2, IBP3 and A2GL have been proposed as indirect biomarkers for detection of GH administration and as putative biomarkers...

  10. The Kinase STK3 Interacts with the Viral Structural Protein VP1 and Inhibits Foot-and-Mouth Disease Virus Replication

    Science.gov (United States)

    Xue, Qiao

    2017-01-01

    Foot-and-mouth disease virus (FMDV) is the etiological agent of FMD, which affects domestic and wild cloven-hoofed animals. The structural protein VP1 plays an important role in FMDV pathogenesis. However, the interacting partners of VP1 in host cells and the effects of these interactions in FMDV replication remain incompletely elucidated. Here, we identified a porcine cell protein, serine/threonine kinase 3 (STK3), which interacts with FMDV VP1 using the yeast two-hybrid system. The VP1-STK3 interaction was further confirmed by coimmunoprecipitation experiments in human embryonic kidney 293T and porcine kidney 15 (PK-15) cells. The carboxyl-terminal region (amino acids 180–214) of VP1 was essential for its interaction with STK3. The effects of overexpression and underexpressing of STK3 in PK-15 cells were assessed, and the results indicated that STK3 significantly inhibited FMDV replication. Our data expand the role of STK3 during viral infection, provide new information regarding the host cell kinases that are involved in viral replication, and identify potential targets for future antiviral strategies. PMID:29226127

  11. Compare the Difference of B-cell Epitopes of EgAgB1 and EgAgB3 Proteins Selected through Bioinformatic Analysis

    Science.gov (United States)

    An, Mengting; Zhang, Fengbo; Zhu, Yuejie; Zhao, Xiao; Ding, Jianbing

    2018-01-01

    Cystic echinococcosis, as a zoonosis, seriously endangers humans and animals, so early diagnosis of this disease is particularly important. Therefore, this study is to predict B-cell epitopes of EgAgB1 and EgAgB3 proteins by bioinformatics software. B-cell epitopes of EgAgB1 and EgAgB3 proteins are predicted using DNAStar and IEDB software. The results suggest that there are two potential B-cell epitopes in EgAgB1, which located in the 8-15 and 31-37 amino acid residue segments. And two potential B-cell epitopes in EgAgB2, located in the 20∼27 and 47∼53 amino acid residue segments. This study predicted the B-cell epitopes of EgAgB1 and EgAgB3 proteins, which laid the foundation for the early diagnosis of Cystic echinococcosis.

  12. Modulation of Protein S-Nitrosylation by Isoprene Emission in Poplar1

    Science.gov (United States)

    Vanzo, Elisa; Velikova, Violeta; Ghirardo, Andrea; Lindermayr, Christian; Hauck, Stefanie M.; Riedel, Katharina; Durner, Jörg

    2016-01-01

    Researchers have been examining the biological function(s) of isoprene in isoprene-emitting (IE) species for two decades. There is overwhelming evidence that leaf-internal isoprene increases the thermotolerance of plants and protects them against oxidative stress, thus mitigating a wide range of abiotic stresses. However, the mechanisms of abiotic stress mitigation by isoprene are still under debate. Here, we assessed the impact of isoprene on the emission of nitric oxide (NO) and the S-nitroso-proteome of IE and non-isoprene-emitting (NE) gray poplar (Populus × canescens) after acute ozone fumigation. The short-term oxidative stress induced a rapid and strong emission of NO in NE compared with IE genotypes. Whereas IE and NE plants exhibited under nonstressful conditions only slight differences in their S-nitrosylation pattern, the in vivo S-nitroso-proteome of the NE genotype was more susceptible to ozone-induced changes compared with the IE plants. The results suggest that the nitrosative pressure (NO burst) is higher in NE plants, underlining the proposed molecular dialogue between isoprene and the free radical NO. Proteins belonging to the photosynthetic light and dark reactions, the tricarboxylic acid cycle, protein metabolism, and redox regulation exhibited increased S-nitrosylation in NE samples compared with IE plants upon oxidative stress. Because the posttranslational modification of proteins via S-nitrosylation often impacts enzymatic activities, our data suggest that isoprene indirectly regulates the production of reactive oxygen species (ROS) via the control of the S-nitrosylation level of ROS-metabolizing enzymes, thus modulating the extent and velocity at which the ROS and NO signaling molecules are generated within a plant cell. PMID:26850277

  13. Mpn1, Mutated in Poikiloderma with Neutropenia Protein 1, Is a Conserved 3′-to-5′ RNA Exonuclease Processing U6 Small Nuclear RNA

    Directory of Open Access Journals (Sweden)

    Vadim Shchepachev

    2012-10-01

    Full Text Available Clericuzio-type poikiloderma with neutropenia (PN is a rare genodermatosis associated with mutations in the C16orf57 gene, which codes for the uncharacterized protein hMpn1. We show here that, in both fission yeasts and humans, Mpn1 processes the spliceosomal U6 small nuclear RNA (snRNA posttranscriptionally. In Mpn1-deficient cells, U6 molecules carry 3′ end polyuridine tails that are longer than those in normal cells and lack a terminal 2′,3′ cyclic phosphate group. In mpn1Δ yeast cells, U6 snRNA and U4/U6 di-small nuclear RNA protein complex levels are diminished, leading to precursor messenger RNA splicing defects, which are reverted by expression of either yeast or human Mpn1 and by overexpression of U6. Recombinant hMpn1 is a 3′-to-5′ RNA exonuclease that removes uridines from U6 3′ ends, generating terminal 2′,3′ cyclic phosphates in vitro. Finally, U6 degradation rates increase in mpn1Δ yeasts and in lymphoblasts established from individuals affected by PN. Our data indicate that Mpn1 promotes U6 stability through 3′ end posttranscriptional processing and implicate altered U6 metabolism as a potential mechanism for PN pathogenesis.

  14. Exogenous Expressions of FTO Wild-Type and R316Q Mutant Proteins Caused an Increase in HNRPK Levels in 3T3-L1 Cells as Demonstrated by DIGE Analysis

    Directory of Open Access Journals (Sweden)

    Nil Guzel

    2017-01-01

    Full Text Available Fat mass and obesity-associated protein is an enzyme that oxidatively demethylates DNA. Although there are numerous studies regarding the catalytic function of FTO, the overall existence or absence of FTO on cellular proteome has not been investigated. This study investigated the changes in the soluble proteome of 3T3-L1 cells upon expression of the WT and the mutant (R316Q FTO proteins. Protein extracts prepared from 3T3-L1 cells expressing either the WT or the mutant FTO proteins were used in DIGE experiments. Analysis of the data revealed the number of spots matched to every member and there were 350 ± 20 spots with 30.5% overall mean coefficient of variation. Eleven regulated protein spots were excised from the gels and identified by MALDI-TOF/TOF. One of the identified proteins was heterogeneous nuclear ribonucleoprotein K, which displayed more than 2.6- and 3.7-fold increases in its abundance in the WT and the mutant FTO expressing cells, respectively. Western blot analysis validated these observations. This is the first study revealing the presence of a parallel increase in expressions of FTO and HNRNPK proteins. This increase may codictate the metabolic changes occurring in the cell and may attribute a significance to HNRNPK in FTO-associated transformations.

  15. Synthesis, characterization, antioxidant and brine shrimp cytotoxic activity of novel 3-benzothioyl-1-(3-hydroxy-3-phenyl -3-propyl)-1-methylthiourea.

    Science.gov (United States)

    Shoaib, Mohammad; Ullah, Abid; Shah, Syed Wadood Ali; Tahir, Muhammad Nawaz

    2017-07-01

    In the present research work novel ephedrine based thiourea derivative, 3-benzothioyl-1-(3-hydroxy-3-phenyl -3-propyl)-1-methylthiourea 4is synthesized and then characterized elemental analyzed via various techniques i.e., Proton NMR, carbon13 NMR and fatherly confirmed via X-ray crystallography. Compound 4 was then screened for their possible antioxidant and cytotoxic potentials. Benzoyl chloride was treated with an equimolar potassium thiocyanate in acetone to achieve benzoyl isothiocyantes. It was then treated with an equimolar (1R, 2S)-(-)-Ephedrine to obtain the 3-benzothioyl-1-(3-hydroxy-3-phenyl-3-propyl)-1-methyl thiourea4. It was then screened for antioxidant and cytotoxic potentials. The compound 4 showed excellent antioxidant activity almost comparable to ascorbic acid (standard) and have significant cytotoxic activity with LC 50 value 05±0.58 ppm.

  16. Engineering [Ln(DPA){sub 3}]{sup 3-} binding sites in proteins: a widely applicable method for tagging proteins with lanthanide ions

    Energy Technology Data Exchange (ETDEWEB)

    Jia Xinying; Yagi, Hiromasa; Su Xuncheng; Stanton-Cook, Mitchell; Huber, Thomas; Otting, Gottfried, E-mail: gottfried.otting@anu.edu.au [Australian National University, Research School of Chemistry (Australia)

    2011-08-15

    Paramagnetic relaxation enhancements from unpaired electrons observed in nuclear magnetic resonance (NMR) spectra present powerful long-range distance restraints. The most frequently used paramagnetic tags, however, are tethered to the protein via disulfide bonds, requiring proteins with single cysteine residues for covalent attachment. Here we present a straightforward strategy to tag proteins site-specifically with paramagnetic lanthanides without a tether and independent of cysteine residues. It relies on preferential binding of the complex between three dipicolinic acid molecules (DPA) and a lanthanide ion (Ln{sup 3+}), [Ln(DPA){sub 3}]{sup 3-}, to a pair of positively charged amino acids whose charges are not compensated by negatively charged residues nearby. This situation rarely occurs in wild-type proteins, allowing the creation of specific binding sites simply by introduction of positively charged residues that are positioned far from glutamate or aspartate residues. The concept is demonstrated with the hnRNPLL RRM1 domain. In addition, we show that histidine- and arginine-tags present binding sites for [Ln(DPA){sub 3}]{sup 3-}.

  17. PKD1 mediates negative feedback of PI3K/Akt activation in response to G protein-coupled receptors.

    Directory of Open Access Journals (Sweden)

    Yang Ni

    Full Text Available We examined whether protein kinase D1 (PKD1 mediates negative feeback of PI3K/Akt signaling in intestinal epithelial cells stimulated with G protein-coupled receptor (GPCR agonists. Exposure of intestinal epithelial IEC-18 cells to increasing concentrations of the PKD family inhibitor kb NB 142-70, at concentrations that inhibited PKD1 activation, strikingly potentiated Akt phosphorylation at Thr(308 and Ser(473 in response to the mitogenic GPCR agonist angiotensin II (ANG II. Enhancement of Akt activation by kb NB 142-70 was also evident in cells with other GPCR agonists, including vasopressin and lysophosphatidic acid. Cell treatment with the structurally unrelated PKD family inhibitor CRT0066101 increased Akt phosphorylation as potently as kb NB 142-70 [corrected]. Knockdown of PKD1 with two different siRNAs strikingly enhanced Akt phosphorylation in response to ANG II stimulation in IEC-18 cells. To determine whether treatment with kb NB 142-70 enhances accumulation of phosphatidylinositol (3,4,5-trisphosphate (PIP3 in the plasma membrane, we monitored the redistribution of Akt-pleckstrin homology domain-green fluorescent protein (Akt-PH-GFP in single IEC-18 cells. Exposure to kb NB 142-70 strikingly increased membrane accumulation of Akt-PH-GFP in response to ANG II. The translocation of the PIP3 sensor to the plasma membrane and the phosphorylation of Akt was completed prevented by prior exposure to the class I p110α specific inhibitor A66. ANG II markedly increased the phosphorylation of p85α detected by a PKD motif-specific antibody and enhanced the association of p85α with PTEN. Transgenic mice overexpressing PKD1 showed a reduced phosphorylation of Akt at Ser(473 in intestinal epithelial cells compared to wild type littermates. Collectively these results indicate that PKD1 activation mediates feedback inhibition of PI3K/Akt signaling in intestinal epithelial cells in vitro and in vivo.

  18. Co regulation of srGAP1 by Wnt and androgen receptor signaling: a new target for treatment of CRPC

    Science.gov (United States)

    2016-12-01

    and TCF/LEFs, but also can adopt an α-helical conformation for nuclear receptor binding proteins [33]. Using a yeast two-hybrid system, Yang et al...It has been suggested that AR signaling in CRPC is sus- tained by development of AR amplication, mutation , alternate spilcing, and several alter...addition, β-catenin can function as a coactivator with altered ARs with mutations W741C and T877A in prostate cancer cell lines [33]. These AR

  19. Identification of Atg2 and ArfGAP1 as Candidate Genetic Modifiers of the Eye Pigmentation Phenotype of Adaptor Protein-3 (AP-3) Mutants in Drosophila melanogaster.

    Science.gov (United States)

    Rodriguez-Fernandez, Imilce A; Dell'Angelica, Esteban C

    2015-01-01

    The Adaptor Protein (AP)-3 complex is an evolutionary conserved, molecular sorting device that mediates the intracellular trafficking of proteins to lysosomes and related organelles. Genetic defects in AP-3 subunits lead to impaired biogenesis of lysosome-related organelles (LROs) such as mammalian melanosomes and insect eye pigment granules. In this work, we have performed a forward screening for genetic modifiers of AP-3 function in the fruit fly, Drosophila melanogaster. Specifically, we have tested collections of large multi-gene deletions--which together covered most of the autosomal chromosomes-to identify chromosomal regions that, when deleted in single copy, enhanced or ameliorated the eye pigmentation phenotype of two independent AP-3 subunit mutants. Fine-mapping led us to define two non-overlapping, relatively small critical regions within fly chromosome 3. The first critical region included the Atg2 gene, which encodes a conserved protein involved in autophagy. Loss of one functional copy of Atg2 ameliorated the pigmentation defects of mutants in AP-3 subunits as well as in two other genes previously implicated in LRO biogenesis, namely Blos1 and lightoid, and even increased the eye pigment content of wild-type flies. The second critical region included the ArfGAP1 gene, which encodes a conserved GTPase-activating protein with specificity towards GTPases of the Arf family. Loss of a single functional copy of the ArfGAP1 gene ameliorated the pigmentation phenotype of AP-3 mutants but did not to modify the eye pigmentation of wild-type flies or mutants in Blos1 or lightoid. Strikingly, loss of the second functional copy of the gene did not modify the phenotype of AP-3 mutants any further but elicited early lethality in males and abnormal eye morphology when combined with mutations in Blos1 and lightoid, respectively. These results provide genetic evidence for new functional links connecting the machinery for biogenesis of LROs with molecules implicated in

  20. Identification of Atg2 and ArfGAP1 as Candidate Genetic Modifiers of the Eye Pigmentation Phenotype of Adaptor Protein-3 (AP-3 Mutants in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Imilce A Rodriguez-Fernandez

    Full Text Available The Adaptor Protein (AP-3 complex is an evolutionary conserved, molecular sorting device that mediates the intracellular trafficking of proteins to lysosomes and related organelles. Genetic defects in AP-3 subunits lead to impaired biogenesis of lysosome-related organelles (LROs such as mammalian melanosomes and insect eye pigment granules. In this work, we have performed a forward screening for genetic modifiers of AP-3 function in the fruit fly, Drosophila melanogaster. Specifically, we have tested collections of large multi-gene deletions--which together covered most of the autosomal chromosomes-to identify chromosomal regions that, when deleted in single copy, enhanced or ameliorated the eye pigmentation phenotype of two independent AP-3 subunit mutants. Fine-mapping led us to define two non-overlapping, relatively small critical regions within fly chromosome 3. The first critical region included the Atg2 gene, which encodes a conserved protein involved in autophagy. Loss of one functional copy of Atg2 ameliorated the pigmentation defects of mutants in AP-3 subunits as well as in two other genes previously implicated in LRO biogenesis, namely Blos1 and lightoid, and even increased the eye pigment content of wild-type flies. The second critical region included the ArfGAP1 gene, which encodes a conserved GTPase-activating protein with specificity towards GTPases of the Arf family. Loss of a single functional copy of the ArfGAP1 gene ameliorated the pigmentation phenotype of AP-3 mutants but did not to modify the eye pigmentation of wild-type flies or mutants in Blos1 or lightoid. Strikingly, loss of the second functional copy of the gene did not modify the phenotype of AP-3 mutants any further but elicited early lethality in males and abnormal eye morphology when combined with mutations in Blos1 and lightoid, respectively. These results provide genetic evidence for new functional links connecting the machinery for biogenesis of LROs with

  1. Photosystem II-cyclic electron flow powers exceptional photoprotection and record growth in the microalga Chlorella ohadii.

    Science.gov (United States)

    Ananyev, Gennady; Gates, Colin; Kaplan, Aaron; Dismukes, G Charles

    2017-11-01

    The desert microalga Chlorella ohadii was reported to grow at extreme light intensities with minimal photoinhibition, tolerate frequent de/re-hydrations, yet minimally employs antenna-based non-photochemical quenching for photoprotection. Here we investigate the molecular mechanisms by measuring Photosystem II charge separation yield (chlorophyll variable fluorescence, Fv/Fm) and flash-induced O 2 yield to measure the contributions from both linear (PSII-LEF) and cyclic (PSII-CEF) electron flow within PSII. Cells grow increasingly faster at higher light intensities (μE/m 2 /s) from low (20) to high (200) to extreme (2000) by escalating photoprotection via shifting from PSII-LEF to PSII-CEF. This shifts PSII charge separation from plastoquinone reduction (PSII-LEF) to plastoquinol oxidation (PSII-CEF), here postulated to enable proton gradient and ATP generation that powers photoprotection. Low light-grown cells have unusually small antennae (332 Chl/PSII), use mainly PSII-LEF (95%) and convert 40% of PSII charge separations into O 2 (a high O 2 quantum yield of 0.06mol/mol PSII/flash). High light-grown cells have smaller antenna and lower PSII-LEF (63%). Extreme light-grown cells have only 42 Chl/PSII (no LHCII antenna), minimal PSII-LEF (10%), and grow faster than any known phototroph (doubling time 1.3h). Adding a synthetic quinone in excess to supplement the PQ pool fully uncouples PSII-CEF from its natural regulation and produces maximum PSII-LEF. Upon dark adaptation PSII-LEF rapidly reverts to PSII-CEF, a transient protection mechanism to conserve water and minimize the cost of antenna biosynthesis. The capacity of the electron acceptor pool (plastoquinone pool), and the characteristic times for exchange of (PQH 2 ) B with PQ pool and reoxidation of (PQH 2 ) pool were determined. Copyright © 2017. Published by Elsevier B.V.

  2. Regulation of the interaction between protein kinase C-related protein kinase 2 (PRK2) and its upstream kinase, 3-phosphoinositide-dependent protein kinase 1 (PDK1)

    DEFF Research Database (Denmark)

    Dettori, Rosalia; Sonzogni, Silvina; Meyer, Lucas

    2009-01-01

    of numerous AGC kinases, including the protein kinase C-related protein kinases (PRKs). Here we studied the docking interaction between PDK1 and PRK2 and analyzed the mechanisms that regulate this interaction. In vivo labeling of recombinant PRK2 by (32)P(i) revealed phosphorylation at two sites......, the activation loop and the Z/TM in the C-terminal extension. We provide evidence that phosphorylation of the Z/TM site of PRK2 inhibits its interaction with PDK1. Our studies further provide a mechanistic model to explain different steps in the docking interaction and regulation. Interestingly, we found...... that the mechanism that negatively regulates the docking interaction of PRK2 to the upstream kinase PDK1 is directly linked to the activation mechanism of PRK2 itself. Finally, our results indicate that the mechanisms underlying the regulation of the interaction between PRK2 and PDK1 are specific for PRK2 and do...

  3. Adenovirus Protein E4-ORF1 activation of PI3 kinase reveals differential regulation of downstream effector pathways in adipocytes

    OpenAIRE

    Chaudhary, Natasha; Gonzalez, Eva; Chang, Sung-Hee; Geng, Fuqiang; Rafii, Shahin; Altorki, Nasser K.; McGraw, Timothy E.

    2016-01-01

    Insulin activation of phosphatidylinositol 3-kinase (PI3K) regulates metabolism, including the translocation of the Glut4 glucose transporter to the plasma membrane and inactivation of the FoxO1 transcription factor. Adenoviral protein E4-ORF1 stimulates cellular glucose metabolism by mimicking growth-factor activation of PI3K. We have used E4-ORF1 as a tool to dissect PI3K-mediated signaling in adipocytes. E4-ORF1 activation of PI3K in adipocytes recapitulates insulin regulation of FoxO1 but...

  4. Investigating the function of Fc -specific binding of IgM to Plasmodium falciparum erythrocyte membrane protein 1 mediating erythrocyte rosetting

    DEFF Research Database (Denmark)

    Stevenson, Liz; Huda, Pie; Jeppesen, Anine

    2015-01-01

    of opsonized infected erythrocytes (IEs) without compromising the placental IE adhesion mediated by this PfEMP1 type. IgM also binds via Fc to several other PfEMP1 proteins, where it has been proposed to facilitate rosetting (binding of uninfected erythrocytes to a central IE). To further dissect...

  5. Prostaglandin E1 and Its Analog Misoprostol Inhibit Human CML Stem Cell Self-Renewal via EP4 Receptor Activation and Repression of AP-1.

    Science.gov (United States)

    Li, Fengyin; He, Bing; Ma, Xiaoke; Yu, Shuyang; Bhave, Rupali R; Lentz, Steven R; Tan, Kai; Guzman, Monica L; Zhao, Chen; Xue, Hai-Hui

    2017-09-07

    Effective treatment of chronic myelogenous leukemia (CML) largely depends on the eradication of CML leukemic stem cells (LSCs). We recently showed that CML LSCs depend on Tcf1 and Lef1 factors for self-renewal. Using a connectivity map, we identified prostaglandin E1 (PGE1) as a small molecule that partly elicited the gene expression changes in LSCs caused by Tcf1/Lef1 deficiency. Although it has little impact on normal hematopoiesis, we found that PGE1 treatment impaired the persistence and activity of LSCs in a pre-clinical murine CML model and a xenograft model of transplanted CML patient CD34 + stem/progenitor cells. Mechanistically, PGE1 acted on the EP4 receptor and repressed Fosb and Fos AP-1 factors in a β-catenin-independent manner. Misoprostol, an FDA-approved EP4 agonist, conferred similar protection against CML. These findings suggest that activation of this PGE1-EP4 pathway specifically targets CML LSCs and that the combination of PGE1/misoprostol with conventional tyrosine-kinase inhibitors could provide effective therapy for CML. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Structure of the human-heart fatty-acid-binding protein 3 in complex with the fluorescent probe 1-anilinonaphthalene-8-sulphonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Mika; Sugiyama, Shigeru, E-mail: sugiyama@chem.eng.osaka-u.ac.jp [Lipid Active Structure Project, 1-1 Machikaneyama-cho, Toyonaka 560-0043 (Japan); Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043 (Japan); Ishida, Hanako; Niiyama, Mayumi [Lipid Active Structure Project, 1-1 Machikaneyama-cho, Toyonaka 560-0043 (Japan); Osaka University, 2-1 Yamadaoka, Suita 565-0871 (Japan); Matsuoka, Daisuke; Hara, Toshiaki [Lipid Active Structure Project, 1-1 Machikaneyama-cho, Toyonaka 560-0043 (Japan); Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043 (Japan); Mizohata, Eiichi [Osaka University, 2-1 Yamadaoka, Suita 565-0871 (Japan); Murakami, Satoshi [Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagaw 226-8501 (Japan); Inoue, Tsuyoshi [Osaka University, 2-1 Yamadaoka, Suita 565-0871 (Japan); Matsuoka, Shigeru; Murata, Michio [Lipid Active Structure Project, 1-1 Machikaneyama-cho, Toyonaka 560-0043 (Japan); Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043 (Japan)

    2013-11-01

    The crystal structure of human-heart-type fatty-acid-binding protein in complex with anilinonaphthalene-8-sulfonate was solved at 2.15 Å resolution revealing the detailed binding mechanism of the fluorescent probe 1-anilinonaphthalene-8-sulfonate. Heart-type fatty-acid-binding protein (FABP3), which is a cytosolic protein abundantly found in cardiomyocytes, plays a role in trafficking fatty acids throughout cellular compartments by reversibly binding intracellular fatty acids with relatively high affinity. The fluorescent probe 1-anilinonaphthalene-8-sulfonate (ANS) is extensively utilized for examining the interaction of ligands with fatty-acid-binding proteins. The X-ray structure of FABP3 was determined in the presence of ANS and revealed the detailed ANS-binding mechanism. Furthermore, four water molecules were clearly identified in the binding cavity. Through these water molecules, the bound ANS molecule forms indirect hydrogen-bond interactions with FABP3. The adipocyte-type fatty-acid-binding protein (FABP4) exhibits 67% sequence identity with FABP3 and its crystal structure is almost the same as that of FABP3. However, FABP4 can bind with a higher affinity to ANS than FABP3. To understand the difference in their ligand specificities, a structural comparison was performed between FABP3–ANS and FABP4–ANS complexes. The result revealed that the orientation of ANS binding to FABP3 is completely opposite to that of ANS binding to FABP4, and the substitution of valine in FABP4 to leucine in FABP3 may result in greater steric hindrance between the side-chain of Leu115 and the aniline ring of ANS.

  7. Structure of the human-heart fatty-acid-binding protein 3 in complex with the fluorescent probe 1-anilinonaphthalene-8-sulphonic acid

    International Nuclear Information System (INIS)

    Hirose, Mika; Sugiyama, Shigeru; Ishida, Hanako; Niiyama, Mayumi; Matsuoka, Daisuke; Hara, Toshiaki; Mizohata, Eiichi; Murakami, Satoshi; Inoue, Tsuyoshi; Matsuoka, Shigeru; Murata, Michio

    2013-01-01

    The crystal structure of human-heart-type fatty-acid-binding protein in complex with anilinonaphthalene-8-sulfonate was solved at 2.15 Å resolution revealing the detailed binding mechanism of the fluorescent probe 1-anilinonaphthalene-8-sulfonate. Heart-type fatty-acid-binding protein (FABP3), which is a cytosolic protein abundantly found in cardiomyocytes, plays a role in trafficking fatty acids throughout cellular compartments by reversibly binding intracellular fatty acids with relatively high affinity. The fluorescent probe 1-anilinonaphthalene-8-sulfonate (ANS) is extensively utilized for examining the interaction of ligands with fatty-acid-binding proteins. The X-ray structure of FABP3 was determined in the presence of ANS and revealed the detailed ANS-binding mechanism. Furthermore, four water molecules were clearly identified in the binding cavity. Through these water molecules, the bound ANS molecule forms indirect hydrogen-bond interactions with FABP3. The adipocyte-type fatty-acid-binding protein (FABP4) exhibits 67% sequence identity with FABP3 and its crystal structure is almost the same as that of FABP3. However, FABP4 can bind with a higher affinity to ANS than FABP3. To understand the difference in their ligand specificities, a structural comparison was performed between FABP3–ANS and FABP4–ANS complexes. The result revealed that the orientation of ANS binding to FABP3 is completely opposite to that of ANS binding to FABP4, and the substitution of valine in FABP4 to leucine in FABP3 may result in greater steric hindrance between the side-chain of Leu115 and the aniline ring of ANS

  8. Protein arginine methyltransferase 6 specifically methylates the nonhistone chromatin protein HMGA1a

    International Nuclear Information System (INIS)

    Miranda, Tina Branscombe; Webb, Kristofor J.; Edberg, Dale D.; Reeves, Raymond; Clarke, Steven

    2005-01-01

    The HMGA family proteins HMGA1a and HMGA1b are nuclear nonhistone species implicated in a wide range of cellular processes including inducible gene transcription, modulation of chromosome structure through nucleosome and chromosome remodeling, and neoplastic transformation. HMGA proteins are highly modified, and changes in their phosphorylation states have been correlated with the phase of the cell cycle and changes in their transcriptional activity. HMGA1a is also methylated in the first DNA-binding AT-hook at Arg25 and other sites, although the enzyme or enzymes responsible have not been identified. We demonstrate here that a GST fusion of protein arginine methyltransferase 6 (PRMT6) specifically methylates full-length recombinant HMGA1a protein in vitro. Although GST fusions of PRMT1 and PRMT3 were also capable of methylating the full-length HMGA1a polypeptide, they recognize its proteolytic degradation products much better. GST fusions of PRMT4 or PRMT7 were unable to methylate the full-length protein or its degradation products. We conclude that PRMT6 is a good candidate for the endogenous enzyme responsible for HGMA1a methylation

  9. Autophagosome Proteins LC3A, LC3B and LC3C Have Distinct Subcellular Distribution Kinetics and Expression in Cancer Cell Lines.

    Directory of Open Access Journals (Sweden)

    Michael I Koukourakis

    Full Text Available LC3s (MAP1-LC3A, B and C are structural proteins of autophagosomal membranes, widely used as biomarkers of autophagy. Whether these three LC3 proteins have a similar biological role in autophagy remains obscure. We examine in parallel the subcellular expression patterns of the three LC3 proteins in a panel of human cancer cell lines, as well as in normal MRC5 fibroblasts and HUVEC, using confocal microscopy and western blot analysis of cell fractions. In the cytoplasm, there was a minimal co-localization between LC3A, B and C staining, suggesting that the relevant autophagosomes are formed by only one out of the three LC3 proteins. LC3A showed a perinuclear and nuclear localization, while LC3B was equally distributed throughout the cytoplasm and localized in the nucleolar regions. LC3C was located in the cytoplasm and strongly in the nuclei (excluding nucleoli, where it extensively co-localized with the LC3A and the Beclin-1 autophagy initiating protein. Beclin 1 is known to contain a nuclear trafficking signal. Blocking nuclear export function by Leptomycin B resulted in nuclear accumulation of all LC3 and Beclin-1 proteins, while Ivermectin that blocks nuclear import showed reduction of accumulation, but not in all cell lines. Since endogenous LC3 proteins are used as major markers of autophagy in clinical studies and cell lines, it is essential to check the specificity of the antibodies used, as the kinetics of these molecules are not identical and may have distinct biological roles. The distinct subcellular expression patterns of LC3s provide a basis for further studies.

  10. Tissue-specific expression and regulation by 1,25(OH)2D3 of chick protein kinase inhibitor (PKI) mRNA.

    Science.gov (United States)

    Marchetto, G S; Henry, H L

    1997-02-01

    The heat-stable protein kinase inhibitor (PKI) protein is a specific and potent competitive inhibitor of the catalytic subunit of cAMP-dependent protein kinase (PKA). Previously, it has been shown that vitamin D status affects chick kidney PKI activity: a 5- to 10-fold increase in PKI activity was observed in kidneys of chronically vitamin D-deficient chicks and treatment with 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) in cultured kidney cells resulted in a 95% decrease in PKI activity. The authors have recently cloned the cDNA for chick kidney PKI and have used the coding sequence to study the regulation of PKI mRNA. Northern analysis showed the expression of two PKI messages, which are 2.7 and 3.3 kb in size. These mRNAs are expressed in brain, muscle, testis, and kidney, but not in pancreas, liver, or intestine. PKI mRNA steady-state levels are downregulated by 47% in kidneys from vitamin D-replete chicks as compared to vitamin D-deficient chicks. PKI mRNA levels in brain, muscle, and testis are not affected by vitamin D status. Treatment of primary chick kidney cultures treated with 10(-7) M 1,25(OH)2D3 for 24h resulted in a 20-30% decrease in PKI mRNA. 1,25(OH)2D3 treatment does not affect the stability of PKI mRNA as determined by treatment of cell cultures with actinomycin D. This study shows that 1,25(OH)2D3 directly and tissue-specifically downregulates PKI mRNA in the chick kidney.

  11. Reduced protein oxidation in Wistar rats supplemented with marine ω3 PUFAs.

    Science.gov (United States)

    Méndez, Lucía; Pazos, Manuel; Gallardo, José M; Torres, Josep L; Pérez-Jiménez, Jara; Nogués, Rosa; Romeu, Marta; Medina, Isabel

    2013-02-01

    The potential effects of various dietary eicosapentaenoic acid (EPA; 20:5) and docosahexaenoic acid (DHA; 22:6) ratios (1:1, 2:1, and 1:2, respectively) on protein redox states from plasma, kidney, skeletal muscle, and liver were investigated in Wistar rats. Dietary fish oil groups were compared with animals fed soybean and linseed oils, vegetable oils enriched in ω6 linoleic acid (LA; 18:2) and ω3 α-linolenic acid (ALA; 18:3), respectively. Fish oil treatments were effective at reducing the level of total fatty acids in plasma and enriching the plasmatic free fatty acid fraction and erythrocyte membranes in EPA and DHA. A proteomic approach consisting of fluorescein 5-thiosemicarbazide (FTSC) labeling of protein carbonyls, FTSC intensity visualization on 1-DE or 2-DE gels, and protein identification by MS/MS was used for the protein oxidation assessment. Albumin was found to be the most carbonylated protein in plasma for all dietary groups, and its oxidation level was significantly modulated by dietary interventions. Supplementation with an equal EPA:DHA ratio (1:1) showed the lowest oxidation score for plasma albumin, followed in increasing order of carbonylation by 1:2 proteins and cytosolic proteins from kidney and liver also indicated a protective effect on proteins for the fish oil treatments, the 1:1 ratio exhibiting the lowest protein oxidation scores. The effect of fish oil treatments at reducing carbonylation on specific proteins from plasma (albumin), skeletal muscle (actin), and liver (albumin, argininosuccinate synthetase, 3-α-hydroxysteroid dehydrogenase) was remarkable. This investigation highlights the efficiency of dietary fish oil at reducing in vivo oxidative damage of proteins compared to oils enriched in the 18-carbon polyunsaturated fatty acids ω3 ALA and ω6 LA, and such antioxidant activity may differ among different fish oil sources because of variations in EPA/DHA content. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Brain transcriptome-wide screen for HIV-1 Nef protein interaction partners reveals various membrane-associated proteins.

    Directory of Open Access Journals (Sweden)

    Ellen C Kammula

    Full Text Available HIV-1 Nef protein contributes essentially to the pathology of AIDS by a variety of protein-protein-interactions within the host cell. The versatile functionality of Nef is partially attributed to different conformational states and posttranslational modifications, such as myristoylation. Up to now, many interaction partners of Nef have been identified using classical yeast two-hybrid screens. Such screens rely on transcriptional activation of reporter genes in the nucleus to detect interactions. Thus, the identification of Nef interaction partners that are integral membrane proteins, membrane-associated proteins or other proteins that do not translocate into the nucleus is hampered. In the present study, a split-ubiquitin based yeast two-hybrid screen was used to identify novel membrane-localized interaction partners of Nef. More than 80% of the hereby identified interaction partners of Nef are transmembrane proteins. The identified hits are GPM6B, GPM6A, BAP31, TSPAN7, CYB5B, CD320/TCblR, VSIG4, PMEPA1, OCIAD1, ITGB1, CHN1, PH4, CLDN10, HSPA9, APR-3, PEBP1 and B3GNT, which are involved in diverse cellular processes like signaling, apoptosis, neurogenesis, cell adhesion and protein trafficking or quality control. For a subfraction of the hereby identified proteins we present data supporting their direct interaction with HIV-1 Nef. We discuss the results with respect to many phenotypes observed in HIV infected cells and patients. The identified Nef interaction partners may help to further elucidate the molecular basis of HIV-related diseases.

  13. Royal Jelly-Mediated Prolongevity and Stress Resistance in Caenorhabditis elegans Is Possibly Modulated by the Interplays of DAF-16, SIR-2.1, HCF-1, and 14-3-3 Proteins.

    Science.gov (United States)

    Wang, Xiaoxia; Cook, Lauren F; Grasso, Lindsay M; Cao, Min; Dong, Yuqing

    2015-07-01

    Recent studies suggest that royal jelly (RJ) and its related substances may have antiaging properties. However, the molecular mechanisms underlying the beneficial effects remain elusive. We report that the effects of RJ and enzyme-treated RJ (eRJ) on life span and health span in Caenorhabditis elegans (C elegans) are modulated by the sophisticated interplays of DAF-16, SIR-2.1, HCF-1, and 14-3-3 proteins. Dietary supplementation with RJ or eRJ increased C. elegans life span in a dose-dependent manner. The RJ and eRJ consumption increased the tolerance of C elegans to oxidative stress, ultraviolet irradiation, and heat shock stress. Our genetic analyses showed that RJ/eRJ-mediated life-span extension requires insulin/IGF-1 signaling and the activities of DAF-16, SIR-2.1, HCF-1, and FTT-2, a 14-3-3 protein. Earlier studies reported that DAF-16/FOXO, SIR-2.1/SIRT1, FTT-2, and HCF-1 have extensive interplays in worms and mammals. Our present findings suggest that RJ/eRJ-mediated promotion of longevity and stress resistance in C elegans is dependent on these conserved interplays. From an evolutionary point of view, this study not only provides new insights into the molecular mechanisms of RJ's action on health span promotion in C elegans, but also has imperative implications in using RJ/eRJ as nutraceuticals to delay aging and age-related disorders. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Protein design and engineering of a de novo pathway for microbial production of 1,3-propanediol from glucose.

    Science.gov (United States)

    Chen, Zhen; Geng, Feng; Zeng, An-Ping

    2015-02-01

    Protein engineering to expand the substrate spectrum of native enzymes opens new possibilities for bioproduction of valuable chemicals from non-natural pathways. No natural microorganism can directly use sugars to produce 1,3-propanediol (PDO). Here, we present a de novo route for the biosynthesis of PDO from sugar, which may overcome the mentioned limitations by expanding the homoserine synthesis pathway. The accomplishment of pathway from homoserine to PDO is achieved by protein engineering of glutamate dehydrogenase (GDH) and pyruvate decarboxylase to sequentially convert homoserine to 4-hydroxy-2-ketobutyrate and 3-hydroxypropionaldehyde. The latter is finally converted to PDO by using a native alcohol dehydrogenase. In this work, we report on experimental accomplishment of this non-natural pathway, especially by protein engineering of GDH for the key step of converting homoserine to 4-hydroxy-2-ketobutyrate. These results show the feasibility and significance of protein engineering for de novo pathway design and overproduction of desired industrial products. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Chemical-wet Synthesis and Electrochemistry of LiNi1/3Co1/3Mn1/3O2 Cathode Materials for Li-ion Batteries

    International Nuclear Information System (INIS)

    Hsieh, Chien-Te; Mo, Chung-Yu; Chen, Yu-Fu; Chung, Yi-Jou

    2013-01-01

    LiNi 1/3 Co 1/3 Mn 1/3 O 2 (LNCM) with a well-ordered layered structure, confirmed by X-ray diffraction, was synthesized by the chemical-wet synthesis incorporated with (i) a pulse microwave-assisted heating of LNCM precursors and (ii) a carbon coating technique. The microwave irradiation periods (i.e., 5–20 min) and amount of carbon additive (i.e., glucose content: 0.1–0.75%) served as key factors in modifying as-prepared LNCM powders. The electrochemical performance of as-prepared LNCM cathodes was well characterized by cyclic voltammetry and charge–discharge cycling at 0.1–5C. Both appropriate microwave heating and carbon coating significantly improve discharge capacity, rate capability, and cycling stability of LNCM cathodes. This improved performance can be attributed to the facts that an appropriate microwave heating of LNCM precursors induces low cation mixing of the layered lattices and the carbon coating enables the creation of outer circuit of charge-transfer pathway, preventing cathode corrosion from direct contact to the electrolyte. The C-coated LNCM cathode shows the increased capacity retention from 70.2 to 93.3% after 50 cycles at 1C. On the basis of the experimental results, both the microwave heating and the carbon coating provide a feasible potential way to improve the electrochemical performance of LNCM cathode, benefiting the development of Li-ion batteries

  16. Methylated DNMT1 and E2F1 are targeted for proteolysis by L3MBTL3 and CRL4DCAF5 ubiquitin ligase.

    Science.gov (United States)

    Leng, Feng; Yu, Jiekai; Zhang, Chunxiao; Alejo, Salvador; Hoang, Nam; Sun, Hong; Lu, Fei; Zhang, Hui

    2018-04-24

    Many non-histone proteins are lysine methylated and a novel function of this modification is to trigger the proteolysis of methylated proteins. Here, we report that the methylated lysine 142 of DNMT1, a major DNA methyltransferase that preserves epigenetic inheritance of DNA methylation patterns during DNA replication, is demethylated by LSD1. A novel methyl-binding protein, L3MBTL3, binds the K142-methylated DNMT1 and recruits a novel CRL4 DCAF5 ubiquitin ligase to degrade DNMT1. Both LSD1 and PHF20L1 act primarily in S phase to prevent DNMT1 degradation by L3MBTL3-CRL4 DCAF5 . Mouse L3MBTL3/MBT-1 deletion causes accumulation of DNMT1 protein, increased genomic DNA methylation, and late embryonic lethality. DNMT1 contains a consensus methylation motif shared by many non-histone proteins including E2F1, a key transcription factor for S phase. We show that the methylation-dependent E2F1 degradation is also controlled by L3MBTL3-CRL4 DCAF5 . Our studies elucidate for the first time a novel mechanism by which the stability of many methylated non-histone proteins are regulated.

  17. The Scaffolding Protein IQGAP1 Interacts with NLRC3 and Inhibits Type I IFN Production.

    Science.gov (United States)

    Tocker, Aaron M; Durocher, Emily; Jacob, Kimberly D; Trieschman, Kate E; Talento, Suzanna M; Rechnitzer, Alma A; Roberts, David M; Davis, Beckley K

    2017-10-15

    Sensing of cytosolic nucleotides is a critical initial step in the elaboration of type I IFN. One of several upstream receptors, cyclic GMP-AMP synthase, binds to cytosolic DNA and generates dicyclic nucleotides that act as secondary messengers. These secondary messengers bind directly to stimulator of IFN genes (STING). STING recruits TNFR-associated NF-κB kinase-binding kinase 1 which acts as a critical node that allows for efficient activation of IFN regulatory factors to drive the antiviral transcriptome. NLRC3 is a recently characterized nucleotide-binding domain, leucine-rich repeat containing protein (NLR) that negatively regulates the type I IFN pathway by inhibiting subcellular redistribution and effective signaling of STING, thus blunting the transcription of type I IFNs. NLRC3 is predominantly expressed in lymphoid and myeloid cells. IQGAP1 was identified as a putative interacting partner of NLRC3 through yeast two-hybrid screening. In this article, we show that IQGAP1 associates with NLRC3 and can disrupt the NLRC3-STING interaction in the cytosol of human epithelial cells. Furthermore, knockdown of IQGAP1 in THP1 and HeLa cells causes significantly more IFN-β production in response to cytosolic nucleic acids. This result phenocopies NLRC3-deficient macrophages and fibroblasts and short hairpin RNA knockdown of NLRC3 in THP1 cells. Our findings suggest that IQGAP1 is a novel regulator of type I IFN production, possibly via interacting with NLRC3 in human monocytic and epithelial cells. Copyright © 2017 by The American Association of Immunologists, Inc.

  18. ANSI/ASHRAE/IES Standard 90.1-2010 Performance Rating Method Reference Manual

    Energy Technology Data Exchange (ETDEWEB)

    Goel, Supriya [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-05-01

    This document is intended to be a reference manual for the Appendix G Performance Rating Method (PRM) of ANSI/ASHRAE/IES Standard 90.1- 2010 (Standard 90.1-2010).The PRM is used for rating the energy efficiency of commercial and high-rise residential buildings with designs that exceed the requirements of Standard 90.1. The procedures and processes described in this manual are designed to provide consistency and accuracy by filling in gaps and providing additional details needed by users of the PRM. It should be noted that this document is created independently from ASHRAE and SSPC 90.1 and is not sanctioned nor approved by either of those entities . Potential users of this manual include energy modelers, software developers and implementers of “beyond code” energy programs. Energy modelers using ASHRAE Standard 90.1-2010 for beyond code programs can use this document as a reference manual for interpreting requirements of the Performance Rating method. Software developers, developing tools for automated creation of the baseline model can use this reference manual as a guideline for developing the rules for the baseline model.

  19. Regulation of the interaction between the neuronal BIN1 isoform 1 and Tau proteins - role of the SH3 domain.

    Science.gov (United States)

    Malki, Idir; Cantrelle, François-Xavier; Sottejeau, Yoann; Lippens, Guy; Lambert, Jean-Charles; Landrieu, Isabelle

    2017-10-01

    Bridging integrator 1 (bin1) gene is a genetic determinant of Alzheimer's disease (AD) and has been reported to modulate Alzheimer's pathogenesis through pathway(s) involving Tau. The functional impact of Tau/BIN1 interaction as well as the molecular details of this interaction are still not fully resolved. As a consequence, how BIN1 through its interaction with Tau affects AD risk is also still not determined. To progress in this understanding, interaction of Tau with two BIN1 isoforms was investigated using Nuclear Magnetic Resonance spectroscopy. 1 H, 15 N spectra showed that the C-terminal SH3 domain of BIN1 isoform 1 (BIN1Iso1) is not mobile in solution but locked with the core of the protein. In contrast, the SH3 domain of BIN1 isoform 9 (BIN1Iso9) behaves as an independent mobile domain. This reveals an equilibrium between close and open conformations for the SH3 domain. Interestingly, a 334-376 peptide from the clathrin and AP-2-binding domain (CLAP) domain of BIN1Iso1, which contains a SH3-binding site, is able to compete with BIN1-SH3 intramolecular interaction. For both BIN1 isoforms, the SH3 domain can interact with Tau(210-240) sequence. Tau(210-240) peptide can indeed displace the intramolecular interaction of the BIN1-SH3 of BIN1Iso1 and form a complex with the released domain. The measured K d were in agreement with a stronger affinity of Tau peptide. Both CLAP and Tau peptides occupied the same surface on the BIN1-SH3 domain, showing that their interaction is mutually exclusive. These results emphasize an additional level of complexity in the regulation of the interaction between BIN1 and Tau dependent of the BIN1 isoforms. © 2017 Federation of European Biochemical Societies.

  20. Mining Proteomic Data to Expose Protein Modifications in Methanosarcina mazei strain Gö1

    Directory of Open Access Journals (Sweden)

    Deborah eLeon

    2015-03-01

    Full Text Available Proteomic tools identify constituents of complex mixtures, often delivering long lists of identified proteins. The high-throughput methods excel at matching tandem mass spectrometry data to spectra predicted from sequence databases. Unassigned mass spectra are ignored, but could, in principle, provide valuable information on unanticipated modifications and improve protein annotations while consuming limited quantities of material. Strategies to mine information from these discards are presented, along with discussion of features that, when present, provide strong support for modifications. In this study we mined LC-MS/MS datasets of proteolytically-digested concanavalin A pull down fractions from Methanosarcina mazei Gö1 cell lysates. Analyses identified 154 proteins. Many of the observed proteins displayed post-translationally modified forms, including O-formylated and methyl-esterified segments that appear biologically relevant (i.e., not artifacts of sample handling. Interesting cleavages and modifications (e.g., S-cyanylation and trimethylation were observed near catalytic sites of methanogenesis enzymes. Of 31 Methanosarcina protein N-termini recovered by concanavalin A binding or from a previous study, only M. mazei S-layer protein MM1976 and its M. acetivorans C2A orthologue, MA0829, underwent signal peptide excision. Experimental results contrast with predictions from algorithms SignalP 3.0 and Exprot, which were found to over-predict the presence of signal peptides. Proteins MM0002, MM0716, MM1364, and MM1976 were found to be glycosylated, and employing chromatography tailored specifically for glycopeptides will likely reveal more.This study supplements limited, existing experimental datasets of mature archaeal N-termini, including presence or absence of signal peptides, translation initiation sites, and other processing. Methanosarcina surface and membrane proteins are richly modified.

  1. Glycogen Synthase Kinase 3 Inactivation Induces Cell Senescence through Sterol Regulatory Element Binding Protein 1-Mediated Lipogenesis in Chang Cells.

    Science.gov (United States)

    Kim, You-Mie; Song, Insun; Seo, Yong-Hak; Yoon, Gyesoon

    2013-12-01

    Enhanced lipogenesis plays a critical role in cell senescence via induction of expression of the mature form of sterol regulatory element binding protein 1 (SREBP1), which contributes to an increase in organellar mass, one of the indicators of senescence. We investigated the molecular mechanisms by which signaling molecules control SREBP1-mediated lipogenesis and senescence. We developed cellular models for stress-induced senescence, by exposing Chang cells, which are immortalized human liver cells, to subcytotoxic concentrations (200 µM) of deferoxamine (DFO) and H2O2. In this model of stress-induced cell senescence using DFO and H2O2, the phosphorylation profile of glycogen synthase kinase 3α (GSK3α) and β corresponded closely to the expression profile of the mature form of SREBP-1 protein. Inhibition of GSK3 with a subcytotoxic concentration of the selective GSK3 inhibitor SB415286 significantly increased mature SREBP1 expression, as well as lipogenesis and organellar mass. In addition, GSK3 inhibition was sufficient to induce senescence in Chang cells. Suppression of GSK3 expression with siRNAs specific to GSK3α and β also increased mature SREBP1 expression and induced senescence. Finally, blocking lipogenesis with fatty acid synthase inhibitors (cerulenin and C75) and siRNA-mediated silencing of SREBP1 and ATP citrate lyase (ACL) significantly attenuated GSK3 inhibition-induced senescence. GSK3 inactivation is an important upstream event that induces SREBP1-mediated lipogenesis and consequent cell senescence.

  2. Aspartame downregulates 3T3-L1 differentiation.

    Science.gov (United States)

    Pandurangan, Muthuraman; Park, Jeongeun; Kim, Eunjung

    2014-10-01

    Aspartame is an artificial sweetener used as an alternate for sugar in several foods and beverages. Since aspartame is 200 times sweeter than traditional sugar, it can give the same level of sweetness with less substance, which leads to lower-calorie food intake. There are reports that consumption of aspartame-containing products can help obese people lose weight. However, the potential role of aspartame in obesity is not clear. The present study investigated whether aspartame suppresses 3T3-L1 differentiation, by downregulating phosphorylated peroxisome proliferator-activated receptor γ (p-PPARγ), peroxisome proliferator-activated receptor γ (PPARγ), fatty acid-binding protein 4 (FABP4), CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein 1 (SREBP1), which are critical for adipogenesis. The 3T3-L1 adipocytes were cultured and differentiated for 6 d in the absence and presence of 10 μg/ml of aspartame. Aspartame reduced lipid accumulation in differentiated adipocytes as evidenced by Oil Red O staining. qRT-PCR analysis showed that the PPARγ, FABP4, and C/EBPα mRNA expression was significantly reduced in the aspartame-treated adipocytes. Western blot analysis showed that the induction of p-PPARγ, PPARγ, SREBP1, and adipsin was markedly reduced in the aspartame-treated adipocytes. Taken together, these data suggest that aspartame may be a potent substance to alter adipocyte differentiation and control obesity.

  3. Insect peptide CopA3-induced protein degradation of p27Kip1 stimulates proliferation and protects neuronal cells from apoptosis

    International Nuclear Information System (INIS)

    Nam, Seung Taek; Kim, Dae Hong; Lee, Min Bum; Nam, Hyo Jung; Kang, Jin Ku; Park, Mi Jung; Lee, Ik Hwan; Seok, Heon; Lee, Dong Gun; Hwang, Jae Sam; Kim, Ho

    2013-01-01

    Highlights: •CopA3 peptide isolated from the Korean dung beetle has antimicrobial activity. •Our study reported that CopA3 has anticancer and immunosuppressive effects. •We here demonstrated that CopA3 has neurotropic and neuroprotective effects. •CopA3 degrades p27Kip1 protein and this mediates effects of CopA3 on neuronal cells. -- Abstract: We recently demonstrated that the antibacterial peptide, CopA3 (a D-type disulfide dimer peptide, LLCIALRKK), inhibits LPS-induced macrophage activation and also has anticancer activity in leukemia cells. Here, we examined whether CopA3 could affect neuronal cell proliferation. We found that CopA3 time-dependently increased cell proliferation by up to 31 ± 2% in human neuroblastoma SH-SY5Y cells, and up to 29 ± 2% in neural stem cells isolated from neonatal mouse brains. In both cell types, CopA3 also significantly inhibited the apoptosis and viability losses caused by 6-hydroxy dopamine (a Parkinson disease-mimicking agent) and okadaic acid (an Alzheimer’s disease-mimicking agent). Immunoblotting revealed that the p27Kip1 protein (a negative regulator of cell cycle progression) was markedly degraded in CopA3-treated SH-SY5Y cells. Conversely, an adenovirus expressing p27Kip1 significantly inhibited the antiapoptotic effects of CopA3 against 6-hydroxy dopamine- and okadaic acid-induced apoptosis, and decreased the neurotropic effects of CopA3. These results collectively suggest that CopA3-mediated protein degradation of p27Kip1 may be the main mechanism through which CopA3 exerts neuroprotective and neurotropic effects

  4. Insect peptide CopA3-induced protein degradation of p27Kip1 stimulates proliferation and protects neuronal cells from apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Taek; Kim, Dae Hong; Lee, Min Bum; Nam, Hyo Jung; Kang, Jin Ku; Park, Mi Jung; Lee, Ik Hwan [Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711 (Korea, Republic of); Seok, Heon [Department of Biomedical Science, Jungwon University, Goesan, Chungcheongbukdo 367-700 (Korea, Republic of); Lee, Dong Gun [School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Hwang, Jae Sam [Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Suwon 441-707 (Korea, Republic of); Kim, Ho, E-mail: hokim@daejin.ac.kr [Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711 (Korea, Republic of)

    2013-07-19

    Highlights: •CopA3 peptide isolated from the Korean dung beetle has antimicrobial activity. •Our study reported that CopA3 has anticancer and immunosuppressive effects. •We here demonstrated that CopA3 has neurotropic and neuroprotective effects. •CopA3 degrades p27Kip1 protein and this mediates effects of CopA3 on neuronal cells. -- Abstract: We recently demonstrated that the antibacterial peptide, CopA3 (a D-type disulfide dimer peptide, LLCIALRKK), inhibits LPS-induced macrophage activation and also has anticancer activity in leukemia cells. Here, we examined whether CopA3 could affect neuronal cell proliferation. We found that CopA3 time-dependently increased cell proliferation by up to 31 ± 2% in human neuroblastoma SH-SY5Y cells, and up to 29 ± 2% in neural stem cells isolated from neonatal mouse brains. In both cell types, CopA3 also significantly inhibited the apoptosis and viability losses caused by 6-hydroxy dopamine (a Parkinson disease-mimicking agent) and okadaic acid (an Alzheimer’s disease-mimicking agent). Immunoblotting revealed that the p27Kip1 protein (a negative regulator of cell cycle progression) was markedly degraded in CopA3-treated SH-SY5Y cells. Conversely, an adenovirus expressing p27Kip1 significantly inhibited the antiapoptotic effects of CopA3 against 6-hydroxy dopamine- and okadaic acid-induced apoptosis, and decreased the neurotropic effects of CopA3. These results collectively suggest that CopA3-mediated protein degradation of p27Kip1 may be the main mechanism through which CopA3 exerts neuroprotective and neurotropic effects.

  5. LncRNA NEAT1 promotes autophagy in MPTP-induced Parkinson's disease through stabilizing PINK1 protein.

    Science.gov (United States)

    Yan, Wang; Chen, Zhao-Ying; Chen, Jia-Qi; Chen, Hui-Min

    2018-02-19

    Long non-coding RNA nuclear paraspeckle assembly transcript 1 (lncRNA NEAT1) was found to be closely related to the pathological changes in brain and nervous system. However, the role of NEAT1 and its potential mechanism in Parkinson's disease (PD) largely remain uncharacterized. In this study, PD mouse model was established by intraperitoneal injection of MPTP. The numbers of TH + neurons, NEAT1 expression and the level of PINK1, LC3-II, LC3-I protein were assessed in PD mice. SH-SY5Y cells were treated with MPP + as PD cell model. RNA pull-down assay was used to identify the interaction between NEAT1 and PINK1 in vitro. The endogenous expression of NEAT1 was modified by lentiviral vector carrying interference sequence for NEAT1 in vivo. The numbers of TH + neurons significantly decreased in PD mice compared with the control. The expressions of NEAT1, PINK1 protein and LC3-II/LC3-I level were increased by MPTP in vitro and in vivo. Moreover, NEAT1 positively regulated the protein level of PINK1 through inhibition of PINK1 protein degradation. And NEAT1 mediated the effects of MPP + on SH-SY5Y cells through stabilization of PINK1 protein. The results of in vivo experiments revealed that NEAT1 knockdown could effectively suppress MPTP-induced autophagy in vivo that alleviated dopaminergic neuronal injury. LncRNA NEAT1 promoted the MPTP-induced autophagy in PD through stabilization of PINK1 protein. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. BIGH3 protein and macrophages in retinal endothelial cell apoptosis.

    Science.gov (United States)

    Mondragon, Albert A; Betts-Obregon, Brandi S; Moritz, Robert J; Parvathaneni, Kalpana; Navarro, Mary M; Kim, Hong Seok; Lee, Chi Fung; LeBaron, Richard G; Asmis, Reto; Tsin, Andrew T

    2015-01-01

    Diabetes is a pandemic disease with a higher occurrence in minority populations. The molecular mechanism to initiate diabetes-associated retinal angiogenesis remains largely unknown. We propose an inflammatory pathway of diabetic retinopathy in which macrophages in the diabetic eye provide TGFβ to retinal endothelial cells (REC) in the retinal microvasculature. In response to TGFβ, REC synthesize and secrete a pro-apoptotic BIGH3 (TGFβ-Induced Gene Human Clone 3) protein, which acts in an autocrine loop to induce REC apoptosis. Rhesus monkey retinal endothelial cells (RhREC) were treated with dMCM (cell media of macrophages treated with high glucose and LDL) and assayed for apoptosis (TUNEL), BIGH3 mRNA (qPCR), and protein (Western blots) expressions. Cells were also treated with ΤGFβ1 and 2 for BIGH3 mRNA and protein expression. Inhibition assays were carried out using antibodies for TGFβ1 and for BIGH3 to block apoptosis and mRNA expression. BIGH3 in cultured RhREC cells were identified by immunohistochemistry (IHC). Distribution of BIGH3 and macrophages in the diabetic mouse retina was examined with IHC. RhRECs treated with dMCM or TGFβ showed a significant increase in apoptosis and BIGH3 protein expression. Recombinant BIGH3 added to RhREC culture medium led to a dose-dependent increase in apoptosis. Antibodies (Ab) directed against BIGH3 and TGFβ, as well as TGFβ receptor blocker resulted in a significant reduction in apoptosis induced by either dMCM, TGFβ or BIGH3. IHC showed that cultured RhREC constitutively expressed BIGH3. Macrophage and BIGH3 protein were co-localized to the inner retina of the diabetic mouse eye. Our results support a novel inflammatory pathway for diabetic retinopathy. This pathway is initiated by TGFβ released from macrophages, which promotes synthesis and release of BIGH3 protein by REC and REC apoptosis.

  7. Autism and Intellectual Disability-Associated KIRREL3 Interacts with Neuronal Proteins MAP1B and MYO16 with Potential Roles in Neurodevelopment.

    Directory of Open Access Journals (Sweden)

    Ying F Liu

    Full Text Available Cell-adhesion molecules of the immunoglobulin superfamily play critical roles in brain development, as well as in maintaining synaptic plasticity, the dysfunction of which is known to cause cognitive impairment. Recently dysfunction of KIRREL3, a synaptic molecule of the immunoglobulin superfamily, has been implicated in several neurodevelopmental conditions including intellectual disability, autism spectrum disorder, and in the neurocognitive delay associated with Jacobsen syndrome. However, the molecular mechanisms of its physiological actions remain largely unknown. Using a yeast two-hybrid screen, we found that the KIRREL3 extracellular domain interacts with brain expressed proteins MAP1B and MYO16 and its intracellular domain can potentially interact with ATP1B1, UFC1, and SHMT2. The interactions were confirmed by co-immunoprecipitation and colocalization analyses of proteins expressed in human embryonic kidney cells, mouse neuronal cells, and rat primary neuronal cells. Furthermore, we show KIRREL3 colocalization with the marker for the Golgi apparatus and synaptic vesicles. Previously, we have shown that KIRREL3 interacts with the X-linked intellectual disability associated synaptic scaffolding protein CASK through its cytoplasmic domain. In addition, we found a genomic deletion encompassing MAP1B in one patient with intellectual disability, microcephaly and seizures and deletions encompassing MYO16 in two unrelated patients with intellectual disability, autism and microcephaly. MAP1B has been previously implicated in synaptogenesis and is involved in the development of the actin-based membrane skeleton. MYO16 is expressed in hippocampal neurons and also indirectly affects actin cytoskeleton through its interaction with WAVE1 complex. We speculate KIRREL3 interacting proteins are potential candidates for intellectual disability and autism spectrum disorder. Moreover, our findings provide further insight into understanding the molecular

  8. Modulation of mitogen-activated protein kinase-activated protein kinase 3 by hepatitis C virus core protein

    DEFF Research Database (Denmark)

    Ngo, HT; Pham, Long; Kim, JW

    2013-01-01

    Hepatitis C virus (HCV) is highly dependent on cellular proteins for its own propagation. In order to identify the cellular factors involved in HCV propagation, we performed protein microarray assays using the HCV core protein as a probe. Of ~9,000 host proteins immobilized in a microarray...... inducers. Binding of HCV core to MAPKAPK3 was confirmed by in vitro pulldown assay and further verified by coimmunoprecipitation assay. HCV core protein interacted with MAPKAPK3 through amino acid residues 41 to 75 of core and the N-terminal half of kinase domain of MAPKAPK3. In addition, both RNA...... increased HCV IRES-mediated translation and MAPKAPK3-dependent HCV IRES activity was further increased by core protein. These data suggest that HCV core may modulate MAPKAPK3 to facilitate its own propagation....

  9. GABARAPL1 antibodies: target one protein, get one free!

    Science.gov (United States)

    Le Grand, Jaclyn Nicole; Chakrama, Fatima Zahra; Seguin-Py, Stéphanie; Fraichard, Annick; Delage-Mourroux, Régis; Jouvenot, Michèle; Risold, Pierre-Yves; Boyer-Guittaut, Michaël

    2011-11-01

    Atg8 is a yeast protein involved in the autophagic process and in particular in the elongation of autophagosomes. In mammals, several orthologs have been identified and are classed into two subfamilies: the LC3 subfamily and the GABARAP subfamily, referred to simply as the LC3 or GABARAP families. GABARAPL1 (GABARAP-like protein 1), one of the proteins belonging to the GABARAP (GABA(A) receptor-associated protein) family, is highly expressed in the central nervous system and implicated in processes such as receptor and vesicle transport as well as autophagy. The proteins that make up the GABARAP family demonstrate conservation of their amino acid sequences and protein structures. In humans, GABARAPL1 shares 86% identity with GABARAP and 61% with GABARAPL2 (GATE-16). The identification of the individual proteins is thus very limited when working in vivo due to a lack of unique peptide sequences from which specific antibodies can be developed. Actually, and to our knowledge, there are no available antibodies on the market that are entirely specific to GABARAPL1 and the same may be true of the anti-GABARAP antibodies. In this study, we sought to examine the specificity of three antibodies targeted against different peptide sequences within GABARAPL1: CHEM-CENT (an antibody raised against a short peptide sequence within the center of the protein), PTG-NTER (an antibody raised against the N-terminus of the protein) and PTG-FL (an antibody raised against the full-length protein). The results described in this article demonstrate the importance of testing antibody specificity under the conditions for which it will be used experimentally, a caution that should be taken when studying the expression of the GABARAP family proteins.

  10. Chick Hairy1 protein interacts with Sap18, a component of the Sin3/HDAC transcriptional repressor complex

    Directory of Open Access Journals (Sweden)

    Andrade Raquel P

    2007-07-01

    Full Text Available Abstract Background The vertebrate adult axial skeleton, trunk and limb skeletal muscles and dermis of the back all arise from early embryonic structures called somites. Somites are symmetrically positioned flanking the embryo axial structures (neural tube and notochord and are periodically formed in a anterior-posterior direction from the presomitic mesoderm. The time required to form a somite pair is constant and species-specific. This extraordinary periodicity is proposed to depend on an underlying somitogenesis molecular clock, firstly evidenced by the cyclic expression of the chick hairy1 gene in the unsegmented presomitic mesoderm with a 90 min periodicity, corresponding to the time required to form a somite pair in the chick embryo. The number of hairy1 oscillations at any given moment is proposed to provide the cell with both temporal and positional information along the embryo's anterior-posterior axis. Nevertheless, how this is accomplished and what biological processes are involved is still unknown. Aiming at understanding the molecular events triggered by the somitogenesis clock Hairy1 protein, we have employed the yeast two-hybrid system to identify Hairy1 interaction partners. Results Sap18, an adaptor molecule of the Sin3/HDAC transcriptional repressor complex, was found to interact with the C-terminal portion of the Hairy1 protein in a yeast two-hybrid assay and the Hairy1/Sap18 interaction was independently confirmed by co-immunoprecipitation experiments. We have characterized the expression patterns of both sap18 and sin3a genes during chick embryo development, using in situ hybridization experiments. We found that both sap18 and sin3a expression patterns co-localize in vivo with hairy1 expression domains in chick rostral presomitic mesoderm and caudal region of somites. Conclusion Hairy1 belongs to the hairy-enhancer-of-split family of transcriptional repressor proteins. Our results indicate that during chick somitogenesis

  11. NS1-binding protein abrogates the elevation of cell viability by the influenza A virus NS1 protein in association with CRKL

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Masaya [Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan); Nishihara, Hiroshi, E-mail: hnishihara@med.hokudai.ac.jp [Department of Translational Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan); Hasegawa, Hideki [Department of Pathology, National Institute of Infectious Diseases, Sinjuku-ku, Tokyo (Japan); Tashiro, Masato [Influenza Virus Research Center, National Institute of Infectious Diseases, Sinjuku-ku, Tokyo (Japan); Wang, Lei [Department of Translational Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan); Kimura, Taichi; Tanino, Mishie; Tsuda, Masumi [Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan); Tanaka, Shinya [Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan); Department of Translational Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan)

    2013-11-29

    Highlights: •NS1 induced excessive phosphorylation of ERK and elevated cell viability. •NS1-BP expression and CRKL knockdown abolished survival effect of NS1. •NS1-BP and NS1 formed the complex through the interaction with CRKL-SH3(N). -- Abstract: The influenza A virus non-structural protein 1 (NS1) is a multifunctional virulence factor consisting of an RNA binding domain and several Src-homology (SH) 2 and SH3 binding motifs, which promotes virus replication in the host cell and helps to evade antiviral immunity. NS1 modulates general host cell physiology in association with various cellular molecules including NS1-binding protein (NS1-BP) and signaling adapter protein CRK-like (CRKL), while the physiological role of NS1-BP during influenza A virus infection especially in association with NS1 remains unclear. In this study, we analyzed the intracellular association of NS1-BP, NS1 and CRKL to elucidate the physiological roles of these molecules in the host cell. In HEK293T cells, enforced expression of NS1 of A/Beijing (H1N1) and A/Indonesia (H5N1) significantly induced excessive phosphorylation of ERK and elevated cell viability, while the over-expression of NS1-BP and the abrogation of CRKL using siRNA abolished such survival effect of NS1. The pull-down assay using GST-fusion CRKL revealed the formation of intracellular complexes of NS1-BP, NS1 and CRKL. In addition, we identified that the N-terminus SH3 domain of CRKL was essential for binding to NS1-BP using GST-fusion CRKL-truncate mutants. This is the first report to elucidate the novel function of NS1-BP collaborating with viral protein NS1 in modulation of host cell physiology. In addition, an alternative role of adaptor protein CRKL in association with NS1 and NS1-BP during influenza A virus infection is demonstrated.

  12. Protein-protein docking using region-based 3D Zernike descriptors.

    Science.gov (United States)

    Venkatraman, Vishwesh; Yang, Yifeng D; Sael, Lee; Kihara, Daisuke

    2009-12-09

    Protein-protein interactions are a pivotal component of many biological processes and mediate a variety of functions. Knowing the tertiary structure of a protein complex is therefore essential for understanding the interaction mechanism. However, experimental techniques to solve the structure of the complex are often found to be difficult. To this end, computational protein-protein docking approaches can provide a useful alternative to address this issue. Prediction of docking conformations relies on methods that effectively capture shape features of the participating proteins while giving due consideration to conformational changes that may occur. We present a novel protein docking algorithm based on the use of 3D Zernike descriptors as regional features of molecular shape. The key motivation of using these descriptors is their invariance to transformation, in addition to a compact representation of local surface shape characteristics. Docking decoys are generated using geometric hashing, which are then ranked by a scoring function that incorporates a buried surface area and a novel geometric complementarity term based on normals associated with the 3D Zernike shape description. Our docking algorithm was tested on both bound and unbound cases in the ZDOCK benchmark 2.0 dataset. In 74% of the bound docking predictions, our method was able to find a near-native solution (interface C-alphaRMSD 3D Zernike descriptors are adept in capturing shape complementarity at the protein-protein interface and useful for protein docking prediction. Rigorous benchmark studies show that our docking approach has a superior performance compared to existing methods.

  13. Local intelligent electronic device (IED) rendering templates over limited bandwidth communication link to manage remote IED

    Science.gov (United States)

    Bradetich, Ryan; Dearien, Jason A; Grussling, Barry Jakob; Remaley, Gavin

    2013-11-05

    The present disclosure provides systems and methods for remote device management. According to various embodiments, a local intelligent electronic device (IED) may be in communication with a remote IED via a limited bandwidth communication link, such as a serial link. The limited bandwidth communication link may not support traditional remote management interfaces. According to one embodiment, a local IED may present an operator with a management interface for a remote IED by rendering locally stored templates. The local IED may render the locally stored templates using sparse data obtained from the remote IED. According to various embodiments, the management interface may be a web client interface and/or an HTML interface. The bandwidth required to present a remote management interface may be significantly reduced by rendering locally stored templates rather than requesting an entire management interface from the remote IED. According to various embodiments, an IED may comprise an encryption transceiver.

  14. An initial event in the insect innate immune response: structural and biological studies of interactions between β-1,3-glucan and the N-terminal domain of β-1,3-glucan recognition protein.

    Science.gov (United States)

    Dai, Huaien; Hiromasa, Yasuaki; Takahashi, Daisuke; VanderVelde, David; Fabrick, Jeffrey A; Kanost, Michael R; Krishnamoorthi, Ramaswamy

    2013-01-08

    In response to invading microorganisms, insect β-1,3-glucan recognition protein (βGRP), a soluble receptor in the hemolymph, binds to the surfaces of bacteria and fungi and activates serine protease cascades that promote destruction of pathogens by means of melanization or expression of antimicrobial peptides. Here we report on the nuclear magnetic resonance (NMR) solution structure of the N-terminal domain of βGRP (N-βGRP) from Indian meal moth (Plodia interpunctella), which is sufficient to activate the prophenoloxidase (proPO) pathway resulting in melanin formation. NMR and isothermal calorimetric titrations of N-βGRP with laminarihexaose, a glucose hexamer containing β-1,3 links, suggest a weak binding of the ligand. However, addition of laminarin, a glucose polysaccharide (~6 kDa) containing β-1,3 and β-1,6 links that activates the proPO pathway, to N-βGRP results in the loss of NMR cross-peaks from the backbone (15)N-(1)H groups of the protein, suggesting the formation of a large complex. Analytical ultracentrifugation (AUC) studies of formation of the N-βGRP-laminarin complex show that ligand binding induces self-association of the protein-carbohydrate complex into a macro structure, likely containing six protein and three laminarin molecules (~102 kDa). The macro complex is quite stable, as it does not undergo dissociation upon dilution to submicromolar concentrations. The structural model thus derived from this study for the N-βGRP-laminarin complex in solution differs from the one in which a single N-βGRP molecule has been proposed to bind to a triple-helical form of laminarin on the basis of an X-ray crystallographic structure of the N-βGRP-laminarihexaose complex [Kanagawa, M., Satoh, T., Ikeda, A., Adachi, Y., Ohno, N., and Yamaguchi, Y. (2011) J. Biol. Chem. 286, 29158-29165]. AUC studies and phenoloxidase activation measurements conducted with the designed mutants of N-βGRP indicate that electrostatic interactions involving Asp45, Arg54

  15. Cysteine-rich secretory protein 3 is a ligand of alpha1B-glycoprotein in human plasma

    DEFF Research Database (Denmark)

    Udby, Lene; Sørensen, Ole E; Pass, Jesper

    2004-01-01

    Human cysteine-rich secretory protein 3 (CRISP-3; also known as SGP28) belongs to a family of closely related proteins found in mammals and reptiles. Some mammalian CRISPs are known to be involved in the process of reproduction, whereas some of the CRISPs from reptiles are neurotoxin...

  16. A high protein diet (3.4 g/kg/d) combined with a heavy resistance training program improves body composition in healthy trained men and women--a follow-up investigation.

    Science.gov (United States)

    Antonio, Jose; Ellerbroek, Anya; Silver, Tobin; Orris, Steve; Scheiner, Max; Gonzalez, Adriana; Peacock, Corey A

    2015-01-01

    for FFM; however, there was a non-significant time by group effect for FFM (change: +1.5 ± 1.8 NP, +1.5 ± 2.2 HP). Furthermore, a significant time effect (p ≤ 0.05) was seen in both groups vis a vis improvements in maximal strength (i.e., 1-RM squat and bench) vertical jump and pull-ups; however, there were no significant time by group effects (p ≥ 0.05) for all exercise performance measures. Additionally, there were no changes in any of the blood parameters (i.e., basic metabolic panel). Consuming a high protein diet (3.4 g/kg/d) in conjunction with a heavy resistance-training program may confer benefits with regards to body composition. Furthermore, there is no evidence that consuming a high protein diet has any deleterious effects.

  17. L-Cysteine supplementation increases adiponectin synthesis and secretion, and GLUT4 and glucose utilization by upregulating disulfide bond A-like protein expression mediated by MCP-1 inhibition in 3T3-L1 adipocytes exposed to high glucose.

    Science.gov (United States)

    Achari, Arunkumar Elumalai; Jain, Sushil K

    2016-03-01

    Adiponectin is an anti-diabetic and anti-atherogenic adipokine; its plasma levels are decreased in obesity, insulin resistance, and type 2 diabetes. An adiponectin-interacting protein named disulfide bond A-like protein (DsbA-L) plays an important role in the assembly of adiponectin. This study examined the hypothesis that L-cysteine (LC) regulates glucose homeostasis through the DsbA-L upregulation and synthesis and secretion of adiponectin in diabetes. 3T3L1 adipocytes were treated with LC (250 and 500 µM, 2 h) and high glucose (HG, 25 mM, 20 h). Results showed that LC supplementation significantly (p L, adiponectin, and GLUT-4 protein expression and glucose utilization in HG-treated adipocytes. LC supplementation significantly (p L expression and adiponectin levels in 3T3-L1 cells. Treatment with LC prevented the decrease in DsbA-L, adiponectin, and GLUT-4 expression in 3T3L1 adipocyte cells exposed to MCP-1. Thus, this study demonstrates that DsbA-L and adiponectin upregulation mediates the beneficial effects of LC on glucose utilization by inhibiting MCP-1 secretion in adipocytes and provides a novel mechanism by which LC supplementation can improve insulin sensitivity in diabetes.

  18. Comprehensive comparison of two protein family of P-ATPases (13A1 and 13A3) in insects.

    Science.gov (United States)

    Seddigh, Samin

    2017-06-01

    The P-type ATPases (P-ATPases) are present in all living cells where they mediate ion transport across membranes on the expense of ATP hydrolysis. Different ions which are transported by these pumps are protons like calcium, sodium, potassium, and heavy metals such as manganese, iron, copper, and zinc. Maintenance of the proper gradients for essential ions across cellular membranes makes P-ATPases crucial for cell survival. In this study, characterization of two families of P-ATPases including P-ATPase 13A1 and P-ATPase 13A3 protein was compared in two different insect species from different orders. According to the conserved motifs found with MEME, nine motifs were shared by insects of 13A1 family but eight in 13A3 family. Seven different insect species from 13A1 and five samples from 13A3 family were selected as the representative samples for functional and structural analyses. The structural and functional analyses were performed with ProtParam, SOPMA, SignalP 4.1, TMHMM 2.0, ProtScale and ProDom tools in the ExPASy database. The tertiary structure of Bombus terrestris as a sample of each family of insects were predicted by the Phyre2 and TM-score servers and their similarities were verified by SuperPose server. The tertiary structures were predicted via the "c3b9bA" model (PDB Accession Code: 3B9B) in P-ATPase 13A1 family and "c2zxeA" model (PDB Accession Code: 2ZXE) in P-ATPase 13A3 family. A phylogenetic tree was constructed with MEGA 6.06 software using the Neighbor-joining method. According to the results, there was a high identity of P-ATPase families so that they should be derived from a common ancestor however they belonged to separate groups. In protein-protein interaction analysis by STRING 10.0, six common enriched pathways of KEGG were identified in B. terrestris in both families. The obtained data provide a background for bioinformatic studies of the function and evolution of other insects and organisms. Copyright © 2017 Elsevier Ltd. All rights

  19. Y-box-binding protein 1 interacts with hepatitis C virus NS3/4A and influences the equilibrium between viral RNA replication and infectious particle production.

    Science.gov (United States)

    Chatel-Chaix, Laurent; Melançon, Pierre; Racine, Marie-Ève; Baril, Martin; Lamarre, Daniel

    2011-11-01

    The hepatitis C virus (HCV) NS3/4A protein has several essential roles in the virus life cycle, most probably through dynamic interactions with host factors. To discover cellular cofactors that are co-opted by HCV for its replication, we elucidated the NS3/4A interactome using mass spectrometry and identified Y-box-binding protein 1 (YB-1) as an interacting partner of NS3/4A protein and HCV genomic RNA. Importantly, silencing YB-1 expression decreased viral RNA replication and severely impaired the propagation of the infectious HCV molecular clone JFH-1. Immunofluorescence studies further revealed a drastic HCV-dependent redistribution of YB-1 to the surface of the lipid droplets, an important organelle for HCV assembly. Core and NS3 protein-dependent polyprotein maturation were shown to be required for YB-1 relocalization. Unexpectedly, YB-1 knockdown cells showed the increased production of viral infectious particles while HCV RNA replication was impaired. Our data support that HCV hijacks YB-1-containing ribonucleoparticles and that YB-1-NS3/4A-HCV RNA complexes regulate the equilibrium between HCV RNA replication and viral particle production.

  20. Protein 4.1, a component of the erythrocyte membrane skeleton and its related homologue proteins forming the protein 4.1/FERM superfamily.

    Directory of Open Access Journals (Sweden)

    Aleksander F Sikorski

    2007-01-01

    Full Text Available The review is focused on the domain structure and function of protein 4.1, one of the proteins belonging to the membrane skeleton. The protein 4.1 of the red blood cells (4.1R is a multifunctional protein that localizes to the membrane skeleton and stabilizes erythrocyte shape and membrane mechanical properties, such as deformability and stability, via lateral interactions with spectrin, actin, glycophorin C and protein p55. Protein 4.1 binding is modulated through the action of kinases and/or calmodulin-Ca2+. Non-erythroid cells express the 4.1R homologues: 4.1G (general type, 4.1B (brain type, and 4.1N (neuron type, and the whole group belongs to the protein 4.1 superfamily, which is characterized by the presence of a highly conserved FERM domain at the N-terminus of the molecule. Proteins 4.1R, 4.1G, 4.1N and 4.1B are encoded by different genes. Most of the 4.1 superfamily proteins also contain an actin-binding domain. To date, more than 40 members have been identified. They can be divided into five groups: protein 4.1 molecules, ERM proteins, talin-related molecules, protein tyrosine phosphatase (PTPH proteins and NBL4 proteins. We have focused our attention on the main, well known representatives of 4.1 superfamily and tried to choose the proteins which are close to 4.1R or which have distinct functions. 4.1 family proteins are not just linkers between the plasma membrane and membrane skeleton; they also play an important role in various processes. Some, such as focal adhesion kinase (FAK, non-receptor tyrosine kinase that localizes to focal adhesions in adherent cells, play the role in cell adhesion. The other members control or take part in tumor suppression, regulation of cell cycle progression, inhibition of cell proliferation, downstream signaling of the glutamate receptors, and establishment of cell polarity; some are also involved in cell proliferation, cell motility, and/or cell-to-cell communication.

  1. Protein phosphatase PPM1G regulates protein translation and cell growth by dephosphorylating 4E binding protein 1 (4E-BP1).

    Science.gov (United States)

    Liu, Jianyu; Stevens, Payton D; Eshleman, Nichole E; Gao, Tianyan

    2013-08-09

    Protein translation initiation is a tightly controlled process responding to nutrient availability and mitogen stimulation. Serving as one of the most important negative regulators of protein translation, 4E binding protein 1 (4E-BP1) binds to translation initiation factor 4E and inhibits cap-dependent translation in a phosphorylation-dependent manner. Although it has been demonstrated previously that the phosphorylation of 4E-BP1 is controlled by mammalian target of rapamycin in the mammalian target of rapamycin complex 1, the mechanism underlying the dephosphorylation of 4E-BP1 remains elusive. Here, we report the identification of PPM1G as the phosphatase of 4E-BP1. A coimmunoprecipitation experiment reveals that PPM1G binds to 4E-BP1 in cells and that purified PPM1G dephosphorylates 4E-BP1 in vitro. Knockdown of PPM1G in 293E and colon cancer HCT116 cells results in an increase in the phosphorylation of 4E-BP1 at both the Thr-37/46 and Ser-65 sites. Furthermore, the time course of 4E-BP1 dephosphorylation induced by amino acid starvation or mammalian target of rapamycin inhibition is slowed down significantly in PPM1G knockdown cells. Functionally, the amount of 4E-BP1 bound to the cap-dependent translation initiation complex is decreased when the expression of PPM1G is depleted. As a result, the rate of cap-dependent translation, cell size, and protein content are increased in PPM1G knockdown cells. Taken together, our study has identified protein phosphatase PPM1G as a novel regulator of cap-dependent protein translation by negatively controlling the phosphorylation of 4E-BP1.

  2. Structural aspects of protein kinase ASK1 regulation

    Czech Academy of Sciences Publication Activity Database

    Obšil, Tomáš; Obšilová, Veronika

    2017-01-01

    Roč. 66, 1 Dec (2017), s. 31-36 ISSN 2212-4926 R&D Projects: GA ČR(CZ) GA16-02739S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 Keywords : ASK1 kinase * apoptosis * thioredoxin * 14-3-3 protein Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology

  3. Endurance training blocks uncoupling protein 1 up-regulation in brown adipose tissue while increasing uncoupling protein 3 in the muscle tissue of rats fed with a high-sugar diet.

    Science.gov (United States)

    de Queiroz, Karina Barbosa; Rodovalho, Gisele Vieira; Guimarães, Juliana Bohnen; de Lima, Daniel Carvalho; Coimbra, Cândido Celso; Evangelista, Elísio Alberto; Guerra-Sá, Renata

    2012-09-01

    The mitochondrial uncoupling proteins (UCPs) of interscapular brown adipose tissue (iBAT) and of muscles play important roles in energy balance. For instance, the expression of UCP1 and UCP3 are modulated by free fatty acid gradients induced by high-sugar diets and acute exercise that is dependent on sympathetic stimulation. However, the effects of endurance training in animals fed with high-sugar diets are unknown. This study aims to evaluate the long-term effects of diet and exercise on UCP1 and UCP3 levels and energy balance efficiency. Rats fed with standard or high-sugar (HSD) diets were simultaneously subjected to running training over an 8-week period. After the training period, the rats were decapitated, and the iBAT and gastrocnemius muscle tissues were removed for evaluation of the β₃-receptor, Ucp1, and Ucp3 mRNA and protein expression, which were analyzed by quantitative reverse transcriptase polymerase chain reaction and Western blot, respectively. Groups fed with an HSD displayed a higher adiposity index and iBAT weight (P < .05), whereas exhibited an up-regulation of Ucp1 mRNA and protein levels (P < .05). Training increased β₃-receptor mRNA in iBAT and reduced the Ucp3 mRNA in muscle tissues. In association with an HSD, training restored the increasing β₃-receptor mRNA and greatly up-regulated the levels of Ucp3 mRNA. Therefore, training blocked the HSD-induced up-regulation of UCP1 expression in iBAT, whereas it up-regulated the expression of Ucp3 mRNA in muscle. These results suggest that training enhances the relationship between Ucp1/Ucp3 mRNA levels, which could result in higher energy efficiency, but not when HSD-induced elevated sympathetic activity is maintained. Copyright © 2012. Published by Elsevier Inc.

  4. SOS2-LIKE PROTEIN KINASE5, an SNF1-RELATED PROTEIN KINASE3-Type Protein Kinase, Is Important for Abscisic Acid Responses in Arabidopsis through Phosphorylation of ABSCISIC ACID-INSENSITIVE51[OPEN

    Science.gov (United States)

    Zhou, Xiaona; Hao, Hongmei; Zhang, Yuguo; Bai, Yili; Zhu, Wenbo; Qin, Yunxia; Yuan, Feifei; Zhao, Feiyi; Wang, Mengyao; Hu, Jingjiang; Xu, Hong; Guo, Aiguang; Zhao, Huixian; Zhao, Yang; Cao, Cuiling; Yang, Yongqing; Schumaker, Karen S.; Guo, Yan; Xie, Chang Gen

    2015-01-01

    Abscisic acid (ABA) plays an essential role in seed germination. In this study, we demonstrate that one SNF1-RELATED PROTEIN KINASE3-type protein kinase, SOS2-LIKE PROTEIN KINASE5 (PKS5), is involved in ABA signal transduction via the phosphorylation of an interacting protein, ABSCISIC ACID-INSENSITIVE5 (ABI5). We found that pks5-3 and pks5-4, two previously identified PKS5 superactive kinase mutants with point mutations in the PKS5 FISL/NAF (a conserved peptide that is necessary for interaction with SOS3 or SOS3-LIKE CALCIUM BINDING PROTEINs) motif and the kinase domain, respectively, are hypersensitive to ABA during seed germination. PKS5 was found to interact with ABI5 in yeast (Saccharomyces cerevisiae), and this interaction was further confirmed in planta using bimolecular fluorescence complementation. Genetic studies revealed that ABI5 is epistatic to PKS5. PKS5 phosphorylates a serine (Ser) residue at position 42 in ABI5 and regulates ABA-responsive gene expression. This phosphorylation was induced by ABA in vivo and transactivated ABI5. Expression of ABI5, in which Ser-42 was mutated to alanine, could not fully rescue the ABA-insensitive phenotypes of the abi5-8 and pks5-4abi5-8 mutants. In contrast, mutating Ser-42 to aspartate rescued the ABA insensitivity of these mutants. These data demonstrate that PKS5-mediated phosphorylation of ABI5 at Ser-42 is critical for the ABA regulation of seed germination and gene expression in Arabidopsis (Arabidopsis thaliana). PMID:25858916

  5. Structure of a 14-3-3σ–YAP phosphopeptide complex at 1.15 Å resolution

    International Nuclear Information System (INIS)

    Schumacher, Benjamin; Skwarczynska, Malgorzata; Rose, Rolf; Ottmann, Christian

    2010-01-01

    The first structure of a 14-3-3 protein–phosphopeptide complex is reported at 1.15 Å resolution. The YAP 14-3-3-binding motif is revealed for the first time using crystallographic tools. The 14-3-3 proteins are a class of eukaryotic acidic adapter proteins, with seven isoforms in humans. 14-3-3 proteins mediate their biological function by binding to target proteins and influencing their activity. They are involved in pivotal pathways in the cell such as signal transduction, gene expression, enzyme activation, cell division and apoptosis. The Yes-associated protein (YAP) is a WW-domain protein that exists in two transcript variants of 48 and 54 kDa in humans. By transducing signals from the cytoplasm to the nucleus, YAP is important for transcriptional regulation. In both variants, interaction with 14-3-3 proteins after phosphorylation of Ser127 is important for nucleocytoplasmic trafficking, via which the localization of YAP is controlled. In this study, 14-3-3σ has been cloned, purified and crystallized in complex with a phosphopeptide from the YAP 14-3-3-binding domain, which led to a crystal that diffracted to 1.15 Å resolution. The crystals belonged to space group C222 1 , with unit-cell parameters a = 82.3, b = 112.1, c = 62.9 Å

  6. Dephosphorylation of chicken cardiac myofibril C-protein by protein phosphatases 1 and 2A

    International Nuclear Information System (INIS)

    Thysseril, T.J.; Hegazy, M.G.; Schlender, K.K.

    1987-01-01

    C-Protein, which is a regulatory component of cardiac muscle myofibrils, is phosphorylated in response to β-adrenergic agonists by a cAMP-dependent mechanism and dephosphorylated in response to cholinergic agonists. It is believed that the cAMP-dependent phosphorylation is due to cAMP-dependent protein kinase. The protein phosphatase(s) involved in the dephosphorylation of C-protein has not been determined. In this study, chicken cardiac C-protein was phosphorylated with the cAMP-dependent protein kinase to about 3 mol phosphate/mol C-protein. Incubation of [ 32 P]C-protein with the catalytic subunit of protein phosphatase 1 or 2A rapidly removed 30-40% of 32 [P]. Phosphopeptide maps and phosphoamino acid analysis revealed that the major site(s) dephosphorylated by either phosphatase was a phosphothreonine residue(s) located on the same tryptic peptide and on the same CNBr fragment. Increasing the incubation period or the phosphatase concentration did not result in any further dephosphorylation of C-protein by phosphatase 1, but phosphatase 2A completely dephosphorylated C-protein. Preliminary studies showed that the major protein phosphatase associated with the myofibril was phosphatase 2A. These results indicate the phosphatase 2A may be important in the regulation of the phosphorylation state of C-protein

  7. Synthesis and functioning of the colicin E1 lysis protein: Comparison with the colicin A lysis protein

    International Nuclear Information System (INIS)

    Cavard, D.

    1991-01-01

    The colicin E1 lysis protein, CelA, was identified as a 3-kDa protein in induced cells of Escherichia coli K-12 carrying pColE1 by pulse-chase labeling with either [ 35 S]cysteine or [ 3 H]lysine. This 3-kDa protein was acylated, as shown by [2- 3 H]glycerol labeling, and seemed to correspond to the mature CelA protein. The rate of modification and processing of CelA was different from that observed for Cal, the colicin A lysis protein. In contrast to Cal, no intermediate form was detected for CelA, no signal peptide accumulated, and no modified precursor form was observed after globomycin treatment. Thus, the rate of synthesis would not be specific to lysis proteins. Solubilization in sodium dodecyl sulfate of the mature forms of both CelA and Cal varied similarly at the time of colicin release, indicating a change in lysis protein structure. This particular property would play a role in the mechanism of colicin export. The accumulation of the signal peptide seems to be a factor determining the toxicity of the lysis proteins since CelA provoked less cell damage than Cal. Quasi-lysis and killing due to CelA were higher in degP mutants than in wild-type cells. They were minimal in pldA mutants

  8. C1q/Tumor Necrosis Factor-related Protein-3 Attenuates Brain Injury after Intracerebral Hemorrhage via AMPK-dependent pathway in Rat

    Directory of Open Access Journals (Sweden)

    Shaohua Wang

    2016-10-01

    Full Text Available C1q/tumor necrosis factor-related protein-3 (CTRP3 is a recently discovered adiponectin paralog with established metabolic regulatory properties. However, the role of CTRP3 in intracerebral hemorrhage (ICH is still mostly unresolved. The aim of the present report was to explore the possible neuroprotective effect of CTRP3 in an ICH rat model and to elucidate the fundamental mechanisms. ICH was induced in rats by intracerebral infusion of autologous arterial blood. The effects of exogenous CTRP3 (recombinant or lentivirus CTRP3 on brain injury were explored on day 7. Treatment with CTRP3 reduced brain edema, protected against disruption of the blood-brain barrier, improved neurological functions, and promoted angiogenesis. Furthermore, CTRP3 greatly intensified phosphorylation of AMP-activated protein kinase (AMPK in addition to expression of hypoxia inducing factor-1α (HIF-1α and vascular endothelial growth factor (VEGF. Finally, the protective effects of CTRP3 could be blocked by either AMPK or VEGF inhibitors. Our findings give the first evidence that CTRP3 is a new proangiogenic and neuroprotective adipokine, which may exert its protective effects at least partly through an AMPK/HIF-1α/ VEGF-dependent pathway, and suggest that CTRP3 may provide a new therapeutic strategy for ICH.

  9. Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana.

    Science.gov (United States)

    Chang, Ing-Feng; Curran, Amy; Woolsey, Rebekah; Quilici, David; Cushman, John C; Mittler, Ron; Harmon, Alice; Harper, Jeffrey F

    2009-06-01

    In eukaryotes, 14-3-3 dimers regulate hundreds of functionally diverse proteins (clients), typically in phosphorylation-dependent interactions. To uncover new clients, 14-3-3 omega (At1g78300) from Arabidopsis was engineered with a "tandem affinity purification" tag and expressed in transgenic plants. Purified complexes were analyzed by tandem MS. Results indicate that 14-3-3 omega can dimerize with at least 10 of the 12 14-3-3 isoforms expressed in Arabidopsis. The identification here of 121 putative clients provides support for in vivo 14-3-3 interactions with a diverse array of proteins, including those involved in: (i) Ion transport, such as a K(+) channel (GORK), a Cl(-) channel (CLCg), Ca(2+) channels belonging to the glutamate receptor family (1.2, 2.1, 2.9, 3.4, 3.7); (ii) hormone signaling, such as ACC synthase (isoforms ACS-6, -7 and -8 involved in ethylene synthesis) and the brassinolide receptors BRI1 and BAK1; (iii) transcription, such as 7 WRKY family transcription factors; (iv) metabolism, such as phosphoenol pyruvate carboxylase; and (v) lipid signaling, such as phospholipase D (beta and gamma). More than 80% (101) of these putative clients represent previously unidentified 14-3-3 interactors. These results raise the number of putative 14-3-3 clients identified in plants to over 300.

  10. Irradiation of porcine plasma protein powder, 1

    International Nuclear Information System (INIS)

    Hayashi, Toru; Saito, Masayoshi; Todoroki, Setsuko; Tajima, Makoto; Biagio, R.

    1987-01-01

    Recently interest in the use of animal blood protein as a food ingradient has been increasing. A study was conducted on the decontamination effect of gamma rays and electrons beam on plasma protein powder prepared from slaughtered porcine blood. Non irradiated sample was mainly contaminated with heat-resistant becterial spores (B. subtilis) and the total mocrobial count was 9.6 x 10 3 per 1 g of dried powder. The D 10 values of total microbial count for gamma rays and electrons beam were 0.82 kGy and 1.06 kGy, respectively. For B. subtilis, the D 10 values obtained under aerobic condition were 1.40 kGy for gamma rays and 1.45 kGy for electrons beam, with the survival curve for electrons beam showing a shoulder until 0.1 kGy. From these results, both types of irradiation were effective for the decotamination of plasma proteins. (author)

  11. The bone morphogenetic protein antagonist gremlin 1 is overexpressed in human cancers and interacts with YWHAH protein

    International Nuclear Information System (INIS)

    Namkoong, Hong; Shin, Seung Min; Kim, Hyun Kee; Ha, Seon-Ah; Cho, Goang Won; Hur, Soo Young; Kim, Tae Eung; Kim, Jin Woo

    2006-01-01

    Basic studies of oncogenesis have demonstrated that either the elevated production of particular oncogene proteins or the occurrence of qualitative abnormalities in oncogenes can contribute to neoplastic cellular transformation. The purpose of our study was to identify an unique gene that shows cancer-associated expression, and characterizes its function related to human carcinogenesis. We used the differential display (DD) RT-PCR method using normal cervical, cervical cancer, metastatic cervical tissues, and cervical cancer cell lines to identify genes overexpressed in cervical cancers and identified gremlin 1 which was overexpressed in cervical cancers. We determined expression levels of gremlin 1 using Northern blot analysis and immunohistochemical study in various types of human normal and cancer tissues. To understand the tumorigenesis pathway of identified gremlin 1 protein, we performed a yeast two-hybrid screen, GST pull down assay, and immunoprecipitation to identify gremlin 1 interacting proteins. DDRT-PCR analysis revealed that gremlin 1 was overexpressed in uterine cervical cancer. We also identified a human gremlin 1 that was overexpressed in various human tumors including carcinomas of the lung, ovary, kidney, breast, colon, pancreas, and sarcoma. PIG-2-transfected HEK 293 cells exhibited growth stimulation and increased telomerase activity. Gremlin 1 interacted with homo sapiens tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, eta polypeptide (14-3-3 eta; YWHAH). YWHAH protein binding site for gremlin 1 was located between residues 61–80 and gremlin 1 binding site for YWHAH was found to be located between residues 1 to 67. Gremlin 1 may play an oncogenic role especially in carcinomas of the uterine cervix, lung, ovary, kidney, breast, colon, pancreas, and sarcoma. Over-expressed gremlin 1 functions by interaction with YWHAH. Therefore, Gremlin 1 and its binding protein YWHAH could be good targets for developing diagnostic and

  12. Total glucosides of paeony can reduce the hepatotoxicity caused by Methotrexate and Leflunomide combination treatment of active rheumatoid arthritis.

    Science.gov (United States)

    Xiang, Nan; Li, Xiao-Mei; Zhang, Miao-Jia; Zhao, Dong-Bao; Zhu, Ping; Zuo, Xiao-Xia; Yang, Min; Su, Yin; Li, Zhan-Guo; Chen, Zhu; Li, Xiang-Pei

    2015-09-01

    Total glucosides of paeony (TGP) have been confirmed to exert anti-inflammatory and hepatoprotective effects. Methotrexate (MTX) and Leflunomide (LEF) combination has a better efficacy in the treatment of active rheumatoid arthritis (RA), but hepatotoxicity was observed. In this study, we investigated the effect of TGP on hepatic dysfunction caused by MTX and LEF in patients with active RA. A total of 268 patients with active RA (disease activity score in 28 joints, DAS28>3.2) were enrolled in this study. All patients were randomly assigned to two groups, the therapeutic group in which patients were treated with TGP (1.8 g/day) combined with MTX and LEF (MTX 10mg/week plus LEF 20mg/day) while in the control group, patients were treated without TGP up to 12 weeks. The efficacy and liver abnormalities were observed. The incidence of abnormal liver function within 12 weeks in TGP group was significantly lower than that in control group (11.38% vs 23.26%, P=0.013). The proportion of patients with ALT/AST >3 times ULN (upper limits of normal) was significantly lower in TGP group than control group (1.63% vs 7.75%, P=0.022). More patients achieved remission, good and moderate response in TGP group than control group at 4, 8 and 12 weeks, but the difference was not significant (P>0.05). The proportions of all adverse events were comparable in the two groups except for diarrhea. Our study demonstrates that TGP can significantly reduce the incidence and severity of liver damage caused by MTX+LEF in the treatment of active RA patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Arabidopsis Yak1 protein (AtYak1) is a dual specificity protein kinase

    KAUST Repository

    Kim, Dongjin; Ntui, Valentine Otang; Zhang, Nianshu; Xiong, Liming

    2015-01-01

    Yak1 is a member of dual-specificity Tyr phosphorylation-regulated kinases (DYRKs) that are evolutionarily conserved. The downstream targets of Yak1 and their functions are largely unknown. Here, a homologous protein AtYAK1 was identified in Arabidopsis thaliana and the phosphoprotein profiles of the wild type and an atyak1 mutant were compared on two-dimensional gel following Pro-Q Diamond phosphoprotein gel staining. Annexin1, Annexin2 and RBD were phosphorylated at serine/ threonine residues by the AtYak1 kinase. Annexin1, Annexin2 and Annexin4 were also phosphorylated at tyrosine residues. Our study demonstrated that AtYak1 is a dual specificity protein kinase in Arabidopsis that may regulate the phosphorylation status of the annexin family proteins.

  14. Arabidopsis Yak1 protein (AtYak1) is a dual specificity protein kinase

    KAUST Repository

    Kim, Dongjin

    2015-10-09

    Yak1 is a member of dual-specificity Tyr phosphorylation-regulated kinases (DYRKs) that are evolutionarily conserved. The downstream targets of Yak1 and their functions are largely unknown. Here, a homologous protein AtYAK1 was identified in Arabidopsis thaliana and the phosphoprotein profiles of the wild type and an atyak1 mutant were compared on two-dimensional gel following Pro-Q Diamond phosphoprotein gel staining. Annexin1, Annexin2 and RBD were phosphorylated at serine/ threonine residues by the AtYak1 kinase. Annexin1, Annexin2 and Annexin4 were also phosphorylated at tyrosine residues. Our study demonstrated that AtYak1 is a dual specificity protein kinase in Arabidopsis that may regulate the phosphorylation status of the annexin family proteins.

  15. Protein disulfide isomerase-like protein 1-1 controls endosperm development through regulation of the amount and composition of seed proteins in rice.

    Directory of Open Access Journals (Sweden)

    Yeon Jeong Kim

    Full Text Available Protein disulfide isomerase (PDI is a chaperone protein involved in oxidative protein folding by acting as a catalyst and assisting folding in the endoplasmic reticulum (ER. A genome database search showed that rice contains 19 PDI-like genes. However, their functions are not clearly identified. This paper shows possible functions of rice PDI-like protein 1-1 (PDIL1-1 during seed development. Seeds of the T-DNA insertion PDIL1-1 mutant, PDIL1-1Δ, identified by genomic DNA PCR and western blot analysis, display a chalky phenotype and a thick aleurone layer. Protein content per seed was significantly lower and free sugar content higher in PDIL1-1Δ mutant seeds than in the wild type. Proteomic analysis of PDIL1-1Δ mutant seeds showed that PDIL1-1 is post-translationally regulated, and its loss causes accumulation of many types of seed proteins including glucose/starch metabolism- and ROS (reactive oxygen species scavenging-related proteins. In addition, PDIL1-1 strongly interacts with the cysteine protease OsCP1. Our data indicate that the opaque phenotype of PDIL1-1Δ mutant seeds results from production of irregular starch granules and protein body through loss of regulatory activity for various proteins involved in the synthesis of seed components.

  16. Interaction between a plasma membrane-localized ankyrin-repeat protein ITN1 and a nuclear protein RTV1

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Hikaru [Department of Bioproduction, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri-shi, Hokkaido 093-2422 (Japan); Sakata, Keiko; Kusumi, Kensuke [Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Kojima, Mikiko; Sakakibara, Hitoshi [RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045 (Japan); Iba, Koh, E-mail: koibascb@kyushu-u.org [Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer ITN1, a plasma membrane ankyrin protein, interacts with a nuclear DNA-binding protein RTV1. Black-Right-Pointing-Pointer The nuclear transport of RTV1 is partially inhibited by interaction with ITN1. Black-Right-Pointing-Pointer RTV1 can promote the nuclear localization of ITN1. Black-Right-Pointing-Pointer Both overexpression of RTV1 and the lack of ITN1 increase salicylic acids sensitivity in plants. -- Abstract: The increased tolerance to NaCl 1 (ITN1) protein is a plasma membrane (PM)-localized protein involved in responses to NaCl stress in Arabidopsis. The predicted structure of ITN1 is composed of multiple transmembrane regions and an ankyrin-repeat domain that is known to mediate protein-protein interactions. To elucidate the molecular functions of ITN1, we searched for interacting partners using a yeast two-hybrid assay, and a nuclear-localized DNA-binding protein, RTV1, was identified as a candidate. Bimolecular fluorescence complementation analysis revealed that RTV1 interacted with ITN1 at the PM and nuclei in vivo. RTV1 tagged with red fluorescent protein localized to nuclei and ITN1 tagged with green fluorescent protein localized to PM; however, both proteins localized to both nuclei and the PM when co-expressed. These findings suggest that RTV1 and ITN1 regulate the subcellular localization of each other.

  17. Inhibition of protein kinase CK2 reduces CYP24A1 expression and enhances 1,25-dihydroxyvitamin D3 anti-tumor activity in human prostate cancer cells

    Science.gov (United States)

    Luo, Wei; Yu, Wei-Dong; Ma, Yingyu; Chernov, Mikhail; Trump, Donald L.; Johnson, Candace S.

    2013-01-01

    Vitamin D has broad range of physiological functions and anti-tumor effects. 24-hydroxylase, encoded by the CYP24A1 gene, is the key enzyme for degrading many forms of vitamin D including the most active form, 1,25D3. Inhibition of CYP24A1 enhances 1,25D3 anti-tumor activity. In order to isolate regulators of CYP24A1 expression in prostate cancer cells, we established a stable prostate cancer cell line PC3 with CYP24A1 promoter driving luciferase expression to screen a small molecular library for compounds that inhibit CYP24A1 promoter activity. From this screening, we identified, 4,5,6,7-tetrabromobenzimidazole (TBBz), a protein kinase CK2 selective inhibitor as a disruptor of CYP24A1 promoter activity. We show that TBBz inhibits CYP24A1 promoter activity induced by 1,25D3 in prostate cancer cells. In addition, TBBz downregulates endogenous CYP24A1 mRNA level in TBBz treated PC3 cells. Furthermore, siRNA-mediated CK2 knockdown reduces 1,25D3 induced CYP24A1 mRNA expression in PC3 cells. These results suggest that CK2 contributes to 1,25D3 mediated target gene expression. Lastly, inhibition of CK2 by TBBz or CK2 siRNA significantly enhanced 1,25D3 mediated anti-proliferative effect in vitro and in vivo in a xenograft model. In summary, our findings reveal that protein kinase CK2 is involved in the regulation of CYP24A1 expression by 1,25D3 and CK2 inhibitor enhances 1,25D3 mediated anti-tumor effect. PMID:23358686

  18. The Hsp70 homolog Ssb and the 14-3-3 protein Bmh1 jointly regulate transcription of glucose repressed genes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Hübscher, Volker; Mudholkar, Kaivalya; Chiabudini, Marco; Fitzke, Edith; Wölfle, Tina; Pfeifer, Dietmar; Drepper, Friedel; Warscheid, Bettina; Rospert, Sabine

    2016-07-08

    Chaperones of the Hsp70 family interact with a multitude of newly synthesized polypeptides and prevent their aggregation. Saccharomyces cerevisiae cells lacking the Hsp70 homolog Ssb suffer from pleiotropic defects, among others a defect in glucose-repression. The highly conserved heterotrimeric kinase SNF1/AMPK (AMP-activated protein kinase) is required for the release from glucose-repression in yeast and is a key regulator of energy balance also in mammalian cells. When glucose is available the phosphatase Glc7 keeps SNF1 in its inactive, dephosphorylated state. Dephosphorylation depends on Reg1, which mediates targeting of Glc7 to its substrate SNF1. Here we show that the defect in glucose-repression in the absence of Ssb is due to the ability of the chaperone to bridge between the SNF1 and Glc7 complexes. Ssb performs this post-translational function in concert with the 14-3-3 protein Bmh, to which Ssb binds via its very C-terminus. Raising the intracellular concentration of Ssb or Bmh enabled Glc7 to dephosphorylate SNF1 even in the absence of Reg1. By that Ssb and Bmh efficiently suppressed transcriptional deregulation of Δreg1 cells. The findings reveal that Ssb and Bmh comprise a new chaperone module, which is involved in the fine tuning of a phosphorylation-dependent switch between respiration and fermentation. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Alk2/ACVR1 and Alk3/BMPR1A Provide Essential Function for Bone Morphogenetic Protein-Induced Retinal Angiogenesis.

    Science.gov (United States)

    Lee, Heon-Woo; Chong, Diana C; Ola, Roxana; Dunworth, William P; Meadows, Stryder; Ka, Jun; Kaartinen, Vesa M; Qyang, Yibing; Cleaver, Ondine; Bautch, Victoria L; Eichmann, Anne; Jin, Suk-Won

    2017-04-01

    Increasing evidence suggests that bone morphogenetic protein (BMP) signaling regulates angiogenesis. Here, we aimed to define the function of BMP receptors in regulating early postnatal angiogenesis by analysis of inducible, endothelial-specific deletion of the BMP receptor components Bmpr2 (BMP type 2 receptor), Alk1 (activin receptor-like kinase 1), Alk2 , and Alk3 in mouse retinal vessels. Expression analysis of several BMP ligands showed that proangiogenic BMP ligands are highly expressed in postnatal retinas. Consistently, BMP receptors are also strongly expressed in retina with a distinct pattern. To assess the function of BMP signaling in retinal angiogenesis, we first generated mice carrying an endothelial-specific inducible deletion of Bmpr2 . Postnatal deletion of Bmpr2 in endothelial cells substantially decreased the number of angiogenic sprouts at the vascular front and branch points behind the front, leading to attenuated radial expansion. To identify critical BMPR1s (BMP type 1 receptors) associated with BMPR2 in retinal angiogenesis, we generated endothelial-specific inducible deletion of 3 BMPR1s abundantly expressed in endothelial cells and analyzed the respective phenotypes. Among these, endothelial-specific deletion of either Alk2 / acvr1 or Alk3 / Bmpr1a caused a delay in radial expansion, reminiscent of vascular defects associated with postnatal endothelial-specific deletion of BMPR2, suggesting that ALK2/ACVR1 and ALK3/BMPR1A are likely to be the critical BMPR1s necessary for proangiogenic BMP signaling in retinal vessels. Our data identify BMP signaling mediated by coordination of ALK2/ACVR1, ALK3/BMPR1A, and BMPR2 as an essential proangiogenic cue for retinal vessels. © 2017 The Authors.

  20. BIG1, a brefeldin A-inhibited guanine nucleotide-exchange protein regulates neurite development via PI3K-AKT and ERK signaling pathways.

    Science.gov (United States)

    Zhou, C; Li, C; Li, D; Wang, Y; Shao, W; You, Y; Peng, J; Zhang, X; Lu, L; Shen, X

    2013-12-19

    The elongation of neuron is highly dependent on membrane trafficking. Brefeldin A (BFA)-inhibited guanine nucleotide-exchange protein 1 (BIG1) functions in the membrane trafficking between the Golgi apparatus and the plasma membrane. BFA, an uncompetitive inhibitor of BIG1 can inhibit neurite outgrowth and polarity development. In this study, we aimed to define the possible role of BIG1 in neurite development and to further investigate the potential mechanism. By immunostaining, we found that BIG1 was extensively colocalized with synaptophysin, a marker for synaptic vesicles in soma and partly in neurites. The amount of both protein and mRNA of BIG1 were up-regulated during rat brain development. BIG1 depletion significantly decreased the neurite length and inhibited the phosphorylation of phosphatidylinositide 3-kinase (PI3K) and protein kinase B (AKT). Inhibition of BIG1 guanine nucleotide-exchange factor (GEF) activity by BFA or overexpression of the dominant-negative BIG1 reduced PI3K and AKT phosphorylation, indicating regulatory effects of BIG1 on PI3K-AKT signaling pathway is dependent on its GEF activity. BIG1 siRNA or BFA treatment also significantly reduced extracellular signal-regulated kinase (ERK) phosphorylation. Overexpression of wild-type BIG1 significantly increased ERK phosphorylation, but the dominant-negative BIG1 had no effect on ERK phosphorylation, indicating the involvement of BIG1 in ERK signaling regulation may not be dependent on its GEF activity. Our result identified a novel function of BIG1 in neurite development. The newly recognized function integrates the function of BIG1 in membrane trafficking with the activation of PI3K-AKT and ERK signaling pathways which are critical in neurite development. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. The course of health status and (health-related) quality of life following fracture of the lower extremity: a 6-month follow-up study.

    Science.gov (United States)

    Van Son, M A C; De Vries, J; Roukema, J A; Gosens, T; Verhofstad, M H J; Den Oudsten, B L

    2016-05-01

    The aim of this prospective study was to describe the course of health status (HS), health-related quality of life, and quality of life (QOL) in patients with lower extremity fractures (LEF) up to 6 months post-fracture. Patients (n = 171; age range 18-100 years) completed the World Health Organization Quality of Life assessment instrument-Bref (WHOQOL-Bref) and the Short Musculoskeletal Function Assessment questionnaire (SMFA) at time of diagnosis (i.e., pre-injury status), 1 week, and 6 months post-fracture. Linear mixed modeling was performed. Interaction effects of time with treatment were detected for the WHOQOL-Bref facet Overall QOL and General health (p = .002) and Physical health (p = .003). Patients did not return to their pre-injury Physical health, Psychological health, and Environment 6 months post-fracture (p choice of the questionnaire influences the derived conclusions. LEF did not affect satisfaction with social relationships.

  2. Wnt signaling pathway involvement in genotypic and phenotypic variations in Waardenburg syndrome type 2 with MITF mutations.

    Science.gov (United States)

    Wang, Xue-Ping; Liu, Ya-Lan; Mei, Ling-Yun; He, Chu-Feng; Niu, Zhi-Jie; Sun, Jie; Zhao, Yu-Lin; Feng, Yong; Zhang, Hua

    2018-05-01

    Mutation in the gene encoding microphthalmia-associated transcription factor (MITF) lead to Waardenburg syndrome 2 (WS2), an autosomal dominantly inherited syndrome with auditory-pigmentary abnormalities, which is clinically and genetically heterogeneous. Haploinsufficiency may be the underlying mechanism for WS2. However, the mechanisms explaining the genotypic and phenotypic variations in WS2 caused by MITF mutations are unclear. A previous study revealed that MITF interacts with LEF-1, an important factor in the Wnt signaling pathway, to regulate its own transcription through LEF-1-binding sites on the MITF promoter. In this study, four different WS2-associated MITF mutations (p.R217I, p.R217G, p.R255X, p.R217del) that are associated with highly variable clinical features were chosen. According to the results, LEF-1 can activate the expression of MITF on its own, but MITF proteins inhibited the activation. This inhibition weakens when the dosage of MITF is reduced. Except for p.R217I, p.R255X, p.R217G, and p.R217del lose the ability to activate TYR completely and do not inhibit the LEF-1-mediated activation of the MITF-M promoter, and the haploinsufficiency created by mutant MITF can be overcome; correspondingly, the mutants' associated phenotypes are less severe than that of p.R217I. The dominant negative of p.R217del made it have a second-most severe phenotype. This study's data imply that MITF has a negative feedback loop of regulation to stabilize MITF gene dosage that involves the Wnt signaling pathway and that the interaction of MITF mutants with this pathway drives the genotypic and phenotypic differences observed in Waardenburg syndrome type 2 associated with MITF mutations.

  3. Coating extracellular matrix proteins on a (3-aminopropyl)triethoxysilane-treated glass substrate for improved cell culture.

    Science.gov (United States)

    Masuda, Hiro-taka; Ishihara, Seiichiro; Harada, Ichiro; Mizutani, Takeomi; Ishikawa, Masayori; Kawabata, Kazushige; Haga, Hisashi

    2014-01-01

    We demonstrate that a (3-aminopropyl)triethoxysilane-treated glass surface is superior to an untreated glass surface for coating with extracellular matrix (ECM) proteins when used as a cell culture substrate to observe cell physiology and behavior. We found that MDCK cells cultured on untreated glass coated with ECM removed the coated ECM protein and secreted different ECM proteins. In contrast, the cells did not remove the coated ECM protein when seeded on (3-aminopropyl)triethoxysilane-treated (i.e., silanized) glass coated with ECM. Furthermore, the morphology and motility of cells grown on silanized glass differed from those grown on non-treated glass, even when both types of glass were initially coated with laminin. We also found that cells on silanized glass coated with laminin had higher motility than those on silanized glass coated with fibronectin. Based on our results, we suggest that silanized glass is a more suitable cell culture substrate than conventional non-treated glass when coated by ECM for observations of ECM effects on cell physiology.

  4. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3

    OpenAIRE

    Halfter, Ursula; Ishitani, Manabu; Zhu, Jian-Kang

    2000-01-01

    The Arabidopsis thaliana SOS2 and SOS3 genes are required for intracellular Na+ and K+ homeostasis and plant tolerance to high Na+ and low K+ environments. SOS3 is an EF hand type calcium-binding protein having sequence similarities with animal neuronal calcium sensors and the yeast calcineurin B. SOS2 is a serine/threonine protein kinase in the SNF1/AMPK family. We report here that SOS3 physically interacts with and activates SOS2 protein kinase. Genetically, sos2sos3 double mutant analysis ...

  5. The TEL-AML1 fusion protein of acute lymphoblastic leukemia modulates IRF3 activity during early B-cell differentiation.

    Science.gov (United States)

    de Laurentiis, A; Hiscott, J; Alcalay, M

    2015-12-03

    The t(12;21) translocation is the most common genetic rearrangement in childhood acute lymphoblastic leukemia (ALL) and gives rise to the TEL-AML1 fusion gene. Many studies on TEL-AML1 describe specific properties of the fusion protein, but a thorough understanding of its function is lacking. We exploited a pluripotent hematopoietic stem/progenitor cell line, EML1, and generated a cell line (EML-TA) stably expressing the TEL-AML1 fusion protein. EML1 cells differentiate to mature B-cells following treatment with IL7; whereas EML-TA display an impaired differentiation capacity and remain blocked at an early stage of maturation. Global gene expression profiling of EML1 cells at different stages of B-lymphoid differentiation, compared with EML-TA, identified the interferon (IFN)α/β pathway as a primary target of repression by TEL-AML1. In particular, expression and phosphorylation of interferon-regulatory factor 3 (IRF3) was decreased in EML-TA cells; strikingly, stable expression of IRF3 restored the capacity of EML-TA cells to differentiate into mature B-cells. Similarly, IRF3 silencing in EML1 cells by siRNA was sufficient to block B-lymphoid differentiation. The ability of TEL-AML1 to block B-cell differentiation and downregulate the IRF3-IFNα/β pathway was confirmed in mouse and human primary hematopoietic precursor cells (Lin- and CD34+ cells, respectively), and in a patient-derived cell line expressing TEL-AML1 (REH). Furthermore, treatment of TEL-AML1 expressing cells with IFNα/β was sufficient to overcome the maturation block. Our data provide new insight on TEL-AML1 function and may offer a new therapeutic opportunity for B-ALL.

  6. Mcl-1 Ubiquitination: Unique Regulation of an Essential Survival Protein

    Directory of Open Access Journals (Sweden)

    Barbara Mojsa

    2014-05-01

    Full Text Available Mcl-1 is an anti-apoptotic protein of the Bcl-2 family that is essential for the survival of multiple cell lineages and that is highly amplified in human cancer. Under physiological conditions, Mcl-1 expression is tightly regulated at multiple levels, involving transcriptional, post-transcriptional and post-translational processes. Ubiquitination of Mcl-1, that targets it for proteasomal degradation, allows for rapid elimination of the protein and triggering of cell death, in response to various cellular events. In the last decade, a number of studies have elucidated different pathways controlling Mcl-1 ubiquitination and degradation. Four different E3 ubiquitin-ligases (e.g., Mule, SCFβ-TrCP, SCFFbw7 and Trim17 and one deubiquitinase (e.g., USP9X, that respectively mediate and oppose Mcl-1 ubiquitination, have been formerly identified. The interaction between Mule and Mcl-1 can be modulated by other Bcl-2 family proteins, while recognition of Mcl-1 by the other E3 ubiquitin-ligases and deubiquitinase is influenced by phosphorylation of specific residues in Mcl-1. The protein kinases and E3 ubiquitin-ligases that are involved in the regulation of Mcl-1 stability vary depending on the cellular context, highlighting the complexity and pivotal role of Mcl-1 regulation. In this review, we attempt to recapitulate progress in understanding Mcl-1 regulation by the ubiquitin-proteasome system.

  7. Protein: MPA1 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPA1 TLR signaling molecules MAVS IPS1, KIAA1271, VISA VISA_(gene) Mitochondrial antiviral-signaling pr...otein CARD adapter inducing interferon beta, Interferon beta promoter stimulator protein... 1, Putative NF-kappa-B-activating protein 031N, Virus-induced-signaling adapter 9606 Homo sapiens Q7Z434 57506 2VGQ 57506 ...

  8. Huntingtin-associated protein-1 (HAP1) regulates endocytosis and interacts with multiple trafficking-related proteins.

    Science.gov (United States)

    Mackenzie, Kimberly D; Lim, Yoon; Duffield, Michael D; Chataway, Timothy; Zhou, Xin-Fu; Keating, Damien J

    2017-07-01

    Huntingtin-associated protein 1 (HAP1) was initially identified as a binding partner of huntingtin, mutations in which underlie Huntington's disease. Subcellular localization and protein interaction data indicate that HAP1 may be important in vesicle trafficking, cell signalling and receptor internalization. In this study, a proteomics approach was used for the identification of novel HAP1-interacting partners to attempt to shed light on the physiological function of HAP1. Using affinity chromatography with HAP1-GST protein fragments bound to Sepharose columns, this study identified a number of trafficking-related proteins that bind to HAP1. Interestingly, many of the proteins that were identified by mass spectrometry have trafficking-related functions and include the clathrin light chain B and Sec23A, an ER to Golgi trafficking vesicle coat component. Using co-immunoprecipitation and GST-binding assays the association between HAP1 and clathrin light chain B has been validated in vitro. This study also finds that HAP1 co-localizes with clathrin light chain B. In line with a physiological function of the HAP1-clathrin interaction this study detected a dramatic reduction in vesicle retrieval and endocytosis in adrenal chromaffin cells. Furthermore, through examination of transferrin endocytosis in HAP1 -/- cortical neurons, this study has determined that HAP1 regulates neuronal endocytosis. In this study, the interaction between HAP1 and Sec23A was also validated through endogenous co-immunoprecipitation in rat brain homogenate. Through the identification of novel HAP1 binding partners, many of which have putative trafficking roles, this study provides us with new insights into the mechanisms underlying the important physiological function of HAP1 as an intracellular trafficking protein through its protein-protein interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Neutrino masses and superheavy dark matter in the 3-3-1-1 model

    Energy Technology Data Exchange (ETDEWEB)

    Huong, D.T.; Dong, P.V. [Vietnam Academy of Science and Technology, Institute of Physics, Hanoi (Viet Nam)

    2017-04-15

    In this work, we interpret the 3-3-1-1 model when the B - L and 3-3-1 breaking scales behave simultaneously as the inflation scale. This setup not only realizes the previously achieved consequences of inflation and leptogenesis, but also provides new insights in superheavy dark matter and neutrino masses. We argue that the 3-3-1-1 model can incorporate a scalar sextet, which induces both small masses for the neutrinos via a combined type I and II seesaw and large masses for the new neutral fermions. Additionally, all the new particles have large masses in the inflation scale. The lightest particle among the W-particles that have abnormal (i.e., wrong) B - L number in comparison to those of the standard model particles may be superheavy dark matter as it is stabilized by W-parity. The dark matter candidate may be a Majorana fermion, a neutral scalar, or a neutral gauge boson, which was properly created in the early universe due to gravitational effects on the vacuum or thermal production after cosmic inflation. (orig.)

  10. Deletion of Smgpi1 encoding a GPI-anchored protein suppresses sterility of the STRIPAK mutant ΔSmmob3 in the filamentous ascomycete Sordaria macrospora.

    Science.gov (United States)

    Frey, Stefan; Lahmann, Yasmine; Hartmann, Thomas; Seiler, Stephan; Pöggeler, Stefanie

    2015-08-01

    The striatin interacting phosphatase and kinase (STRIPAK) complex, which is composed of striatin, protein phosphatase PP2A and kinases, is required for fruiting-body development and cell fusion in the filamentous ascomycete Sordaria macrospora. Here, we report on the interplay of the glycosylphosphatidylinositol (GPI)-anchored protein SmGPI1 with the kinase activator SmMOB3, a core component of human and fungal STRIPAK complexes. SmGPI1 is conserved among filamentous ascomycetes and was first identified in a yeast two-hybrid screen using SmMOB3 as bait. The physical interaction of SmMOB3 and SmGPI1 was verified by co-immunoprecipitation. In vivo localization and differential centrifugation revealed that SmGPI1 is predominantly secreted and attached to the cell wall but is also associated with mitochondria and appears to be a dual-targeted protein. Deletion of Smgpi1 led to an increased number of fruiting bodies that were normally shaped but reduced in size. In addition, Smmob3 and Smgpi1 genetically interact. In the sterile ΔSmmob3 background deletion of Smgpi1 restores fertility, vegetative growth as well as hyphal-fusion defects. The suppression effect was specific for the ΔSmmob3 mutant as deletion of Smgpi1 in other STRIPAK mutants does not restore fertility. © 2015 John Wiley & Sons Ltd.

  11. Measurement Properties of the Lower Extremity Functional Scale: A Systematic Review.

    Science.gov (United States)

    Mehta, Saurabh P; Fulton, Allison; Quach, Cedric; Thistle, Megan; Toledo, Cesar; Evans, Neil A

    2016-03-01

    Systematic review of measurement properties. Many primary studies have examined the measurement properties, such as reliability, validity, and sensitivity to change, of the Lower Extremity Functional Scale (LEFS) in different clinical populations. A systematic review summarizing these properties for the LEFS may provide an important resource. To locate and synthesize evidence on the measurement properties of the LEFS and to discuss the clinical implications of the evidence. A literature search was conducted in 4 databases (PubMed, MEDLINE, Embase, and CINAHL), using predefined search terms. Two reviewers performed a critical appraisal of the included studies using a standardized assessment form. A total of 27 studies were included in the review, of which 18 achieved a very good to excellent methodological quality level. The LEFS scores demonstrated excellent test-retest reliability (intraclass correlation coefficients ranging between 0.85 and 0.99) and demonstrated the expected relationships with measures assessing similar constructs (Pearson correlation coefficient values of greater than 0.7). The responsiveness of the LEFS scores was excellent, as suggested by consistently high effect sizes (greater than 0.8) in patients with different lower extremity conditions. Minimal detectable change at the 90% confidence level (MDC90) for the LEFS scores varied between 8.1 and 15.3 across different reassessment intervals in a wide range of patient populations. The pooled estimate of the MDC90 was 6 points and the minimal clinically important difference was 9 points in patients with lower extremity musculoskeletal conditions, which are indicative of true change and clinically meaningful change, respectively. The results of this review support the reliability, validity, and responsiveness of the LEFS scores for assessing functional impairment in a wide array of patient groups with lower extremity musculoskeletal conditions.

  12. 14-3-3 theta binding to cell cycle regulatory factors is enhanced by HIV-1 Vpr

    Directory of Open Access Journals (Sweden)

    Sakai Keiko

    2008-04-01

    Full Text Available Abstract Background Despite continuing advances in our understanding of AIDS pathogenesis, the mechanism of CD4+ T cell depletion in HIV-1-infected individuals remains unclear. The HIV-1 Vpr accessory protein causes cell death, likely through a mechanism related to its ability to arrest cells in the G2,M phase. Recent evidence implicated the scaffold protein, 14-3-3, in Vpr cell cycle blockade. Results We found that in human T cells, 14-3-3 plays an active role in mediating Vpr-induced cell cycle arrest and reveal a dramatic increase in the amount of Cdk1, Cdc25C, and CyclinB1 bound to 14-3-3 θ during Vprv-induced G2,M arrest. By contrast, a cell-cycle-arrest-dead Vpr mutant failed to augment 14-3-3 θ association with Cdk1 and CyclinB1. Moreover, G2,M arrest caused by HIV-1 infection strongly correlated with a disruption in 14-3-3 θ binding to centrosomal proteins, Plk1 and centrin. Finally, Vpr caused elevated levels of CyclinB1, Plk1, and Cdk1 in a complex with the nuclear transport and spindle assembly protein, importin β. Conclusion Thus, our data reveal a new facet of Vpr-induced cell cycle arrest involving previously unrecognized abnormal rearrangements of multiprotein assemblies containing key cell cycle regulatory proteins. Reviewers This article was reviewed by David Kaplan, Nathaniel R. Landau and Yan Zhou.

  13. Nebivolol stimulates mitochondrial biogenesis in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chenglin; Chen, Dongrui; Xie, Qihai [State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Vascular Biology, Department of Hypertension, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025 (China); Yang, Ying, E-mail: yangying_sh@yahoo.com [Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025 (China); Shen, Weili, E-mail: weili_shen@hotmail.com [State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Vascular Biology, Department of Hypertension, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025 (China)

    2013-08-16

    Highlights: •Nebivolol may act as a partial agonist of β3-adrenergic receptor (AR). •Nebivolol stimulates mitochondrial DNA replication and protein expression. •Nebivolol promotes mitochondrial synthesis via activation of eNOS by β3-AR. -- Abstract: Nebivolol is a third-generation β-adrenergic receptor (β-AR) blocker with additional beneficial effects, including the improvement of lipid and glucose metabolism in obese individuals. However, the underlying mechanism of nebivolol’s role in regulating the lipid profile remains largely unknown. In this study, we investigated the role of nebivolol in mitochondrial biogenesis in 3T3-L1 adipocytes. Exposure of 3T3-L1 cells to nebivolol for 24 h increased mitochondrial DNA copy number, mitochondrial protein levels and the expression of transcription factors involved in mitochondrial biogenesis, including PPAR-γ coactivator-1α (PGC-1α), Sirtuin 3 (Sirt3), mitochondrial transcription factor A (Tfam) and nuclear related factor 1 (Nrf1). These changes were accompanied by an increase in oxygen consumption and in the expression of genes involved in fatty acid oxidation and antioxidant enzymes in 3T3-L1 adipocytes, including nebivolol-induced endothelial nitric oxide synthase (eNOS), as well as an increase in the formation of cyclic guanosine monophosphate (cGMP). Pretreatment with NG-nitro-L-arginine methyl ester (l-NAME) attenuated nebivolol-induced mitochondrial biogenesis, as did the soluble guanylate cyclase inhibitor, ODQ. Treatment with nebivolol and β3-AR blocker SR59230A markedly attenuated PGC-1α, Sirt3 and manganese superoxide dismutase (MnSOD) protein levels in comparison to treatment with nebivolol alone. These data indicate that the mitochondrial synthesis and metabolism in adipocytes that is promoted by nebivolol is primarily mediated through the eNOS/cGMP-dependent pathway and is initiated by the activation of β3-AR receptors.

  14. Effects of an endurance cycling competition on resting serum insulin-like growth factor I (IGF-I) and its binding proteins IGFBP-1 and IGFBP-3

    Science.gov (United States)

    Chicharro, J; Lopez-Calderon, A; Hoyos, J; Martin-Velasco, A; Villa, G; Villanua, M; Lucia, A

    2001-01-01

    Objectives—To determine whether consecutive bouts of intense endurance exercise over a three week period alters serum concentrations of insulin-like growth factor I (IGF-I) and/or its binding proteins. Methods—Seventeen professional cyclists (mean (SEM) VO2MAX, 74.7 (2.1) ml/kg/min; age, 27 (1) years) competing in a three week tour race were selected as subjects. Blood samples were collected at each of the following time points: t0 (control, before the start of competition), t1 (end of first week), and t3 (end of third week). Serum levels of both total and free IGF-I and IGF binding proteins 1 and 3 (IGFBP-1 and IGFBP-3) were measured in each of the samples. Cortisol levels were measured in nine subjects. Results—A significant (p<0.01) increase was found in total IGF-I and IGFBP-1 at both t1 and t3 compared with to (IGF-I: 110.9 (17.7), 186.8 (12.0), 196.9 (14.7) ng/ml at t0, t1, and t3 respectively; IGFBP-1: 54.6 (6.6), 80.6 (8.0), and 89.2 (7.9) ng/ml at t0, t1, and t3 respectively). A significant (p<0.01) decrease was noted in free IGF-I at t3 compared with both to and t1 (t0: 0.9 (0.1) ng/ml; t1: 0.9 (0.1) ng/ml; t3: 0.7 (0.1) ng/ml); in contrast, IGFBP-3 levels remained stable throughout the race. Conclusions—It would appear that the increase in circulating levels of both IGF-I and its binding protein IGFBP-1 is a short term (one week) endocrine adaptation to endurance exercise. After three weeks of training, total IGF-I and IGFBP-1 remained stable, whereas free IGF-I fell below starting levels. Key Words: cycling; insulin-like growth factor; exercise; endurance; binding proteins PMID:11579061

  15. Effect of gamma irradiation on nutritional components and Cry1Ab protein in the transgenic rice with a synthetic cry1Ab gene from Bacillus thuringiensis

    International Nuclear Information System (INIS)

    Wu Dianxing; Ye Qingfu; Wang Zhonghua; Xia Yingwu

    2004-01-01

    The effects of gamma irradiation on the transgenic rice containing a synthetic cry1Ab gene from Bacillus thuringiensis were investigated. There was almost no difference in the content of the major nutritional components, i.e. crude protein, crude lipid, eight essential amino acids and total ash between the irradiated grains and the non-irradiated transgenic rice. However, the amounts of Cry1Ab protein and apparent amylose in the irradiated transgenic rice were reduced significantly by the doses higher than 200 Gy. In vivo observation showed that Cry1Ab protein contents also decreased in the fresh leaf tissues of survival seedlings after irradiation with 200 Gy or higher doses and showed inhibition of seedling growth. The results indicate that gamma irradiation might improve the quality of transgenic rice due to removal of the toxic Cry1Ab protein

  16. 14-3-3σ induces heat shock protein 70 expression in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Liu, Chia-Chia; Wang, John; Shyue, Song-Kun; Sung, Li-Ying; Liou, Jun-Yang; Jan, Yee-Jee; Ko, Bor-Sheng; Wu, Yao-Ming; Liang, Shu-Man; Chen, Shyh-Chang; Lee, Yen-Ming; Liu, Tzu-An; Chang, Tzu-Ching

    2014-01-01

    14-3-3σ is implicated in promoting tumor development of various malignancies. However, the clinical relevance of 14-3-3σ in hepatocellular carcinoma (HCC) tumor progression and modulation and pathway elucidation remain unclear. We investigated 14-3-3σ expression in 109 HCC tissues by immunohistochemistry. Overexpression and knockdown experiments were performed by transfection with cDNA or siRNA. Protein expression and cell migration were determined by Western blot and Boyden chamber assay. In this study, we found that 14-3-3σ is abundantly expressed in HCC tumors. Stable or transient overexpression of 14-3-3σ induces the expression of heat shock factor-1α (HSF-1α) and heat shock protein 70 (HSP70) in HCC cells. Moreover, expression of 14-3-3σ significantly correlates with HSF-1α/HSP70 in HCC tumors and both 14-3-3σ and HSP70 overexpression are associated with micro-vascular thrombi in HCC patients, suggesting that 14-3-3σ/HSP70 expression is potentially involved in cell migration/invasion. Results of an in vitro migration assay indicate that 14-3-3σ promotes cell migration and that 14-3-3σ-induced cell migration is impaired by siRNA knockdown of HSP70. Finally, 14-3-3σ-induced HSF-1α/HSP70 expression is abolished by the knockdown of β-catenin or activation of GSK-3β. Our findings indicate that 14-3-3σ participates in promoting HCC cell migration and tumor development via β-catenin/HSF-1α/HSP70 pathway regulation. Thus, 14-3-3σ alone or combined with HSP70 are potential prognostic biomarkers for HCC

  17. Role of the EF-hand-like Motif in the 14-3-3 Protein- mediated Activation of Yeast Neutral Trehalase Nth1

    Czech Academy of Sciences Publication Activity Database

    Kopecká, Miroslava; Košek, Dalibor; Kukačka, Zdeněk; Řežábková, Lenka; Man, Petr; Novák, Petr; Obšil, T.; Obšilová, Veronika

    2014-01-01

    Roč. 289, č. 20 (2014), s. 13948-13961 ISSN 0021-9258 R&D Projects: GA ČR(CZ) GAP207/11/0455 Grant - others:Univerzita Karlova(CZ) 644313; Univerzita Karlova(CZ) 800413 Institutional support: RVO:67985823 ; RVO:61388971 Keywords : calcium * enzyme mechanisms * mass spectrometry (MS) * protein cross-linking * protein structure * 14-3-3 * Bmh * H/D exchange * neutral trehalase * SAXS Subject RIV: CE - Biochemistry Impact factor: 4.573, year: 2014

  18. A Novel Apoptosis Correlated Molecule: Expression and Characterization of Protein Latcripin-1 from Lentinula edodes C91–3

    Directory of Open Access Journals (Sweden)

    Min Huang

    2012-05-01

    Full Text Available An apoptosis correlated molecule—protein Latcripin-1 of Lentinula edodes C91-3—was expressed and characterized in Pichia pastoris GS115. The total RNA was obtained from Lentinula edodes C91–3. According to the transcriptome, the full-length gene of Latcripin-1 was isolated with 3'-Full Rapid Amplification of cDNA Ends (RACE and 5'-Full RACE methods. The full-length gene was inserted into the secretory expression vector pPIC9K. The protein Latcripin-1 was expressed in Pichia pastoris GS115 and analyzed by Sodium Dodecylsulfonate Polyacrylate Gel Electrophoresis (SDS-PAGE and Western blot. The Western blot showed that the protein was expressed successfully. The biological function of protein Latcripin-1 on A549 cells was studied with flow cytometry and the 3-(4,5-Dimethylthiazol-2-yl-2,5-Diphenyl-tetrazolium Bromide (MTT method. The toxic effect of protein Latcripin-1 was detected with the MTT method by co-culturing the characterized protein with chick embryo fibroblasts. The MTT assay results showed that there was a great difference between protein Latcripin-1 groups and the control group (p < 0.05. There was no toxic effect of the characterized protein on chick embryo fibroblasts. The flow cytometry showed that there was a significant difference between the protein groups of interest and the control group according to apoptosis function (p < 0.05. At the same time, cell ultrastructure observed by transmission electron microscopy supported the results of flow cytometry. The work demonstrates that protein Latcripin-1 can induce apoptosis of human lung cancer cells A549 and brings new insights into and advantages to finding anti-tumor proteins.

  19. Possibly similar genetic basis of resistance to Bacillus thuringiensis Cry1Ab protein in 3 resistant colonies of the sugarcane borer collected from Louisiana, USA.

    Science.gov (United States)

    Yang, Fei; Chen, Mao; Gowda, Anilkumar; Kerns, David L; Huang, Fangneng

    2018-04-01

    The sugarcane borer, Diatraea saccharalis (F.), is a major maize borer pest and a target of transgenic maize expressing Bacillus thuringiensis (Bt) proteins in South America and the mid-southern region of the United States. Evolution of resistance in target pest populations is a great threat to the long-term efficacy of Bt crops. In this study, we compared the genetic basis of resistance to Cry1Ab protein in 3 resistant colonies of sugarcane borer established from field populations in Louisiana, USA. Responses of larvae to the Cry1Ab protein for the parental and 10 other cross colonies were assayed in a diet-incorporated bioassay. All 3 resistant colonies were highly resistant to the Cry1Ab protein with a resistance ratio of >555.6 fold. No maternal effect or sex linkage was evident for the resistance in the 3 colonies; and the resistance was functionally nonrecessive at the Cry1Ab concentrations of ≤ 3.16 μg/g, but it became recessive at ≥10 μg/g. In an interstrain complementation test for allelism, the F 1 progeny from crosses between any 2 of the 3 resistant colonies exhibited the similar resistance levels as their parental colonies, indicating that the 3 colonies most likely shared a locus of Cry1Ab resistance. Results generated from this study should provide useful information in developing effective strategies for managing Bt resistance in the insect. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  20. Human and pneumococcal cell surface glyceraldehyde-3-phosphate dehydrogenase (GAPDH) proteins are both ligands of human C1q protein.

    Science.gov (United States)

    Terrasse, Rémi; Tacnet-Delorme, Pascale; Moriscot, Christine; Pérard, Julien; Schoehn, Guy; Vernet, Thierry; Thielens, Nicole M; Di Guilmi, Anne Marie; Frachet, Philippe

    2012-12-14

    C1q, a key component of the classical complement pathway, is a major player in the response to microbial infection and has been shown to detect noxious altered-self substances such as apoptotic cells. In this work, using complementary experimental approaches, we identified the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a C1q partner when exposed at the surface of human pathogenic bacteria Streptococcus pneumoniae and human apoptotic cells. The membrane-associated GAPDH on HeLa cells bound the globular regions of C1q as demonstrated by pulldown and cell surface co-localization experiments. Pneumococcal strains deficient in surface-exposed GAPDH harbored a decreased level of C1q recognition when compared with the wild-type strains. Both recombinant human and pneumococcal GAPDHs interacted avidly with C1q as measured by surface plasmon resonance experiments (K(D) = 0.34-2.17 nm). In addition, GAPDH-C1q complexes were observed by transmission electron microscopy after cross-linking. The purified pneumococcal GAPDH protein activated C1 in an in vitro assay unlike the human form. Deposition of C1q, C3b, and C4b from human serum at the surface of pneumococcal cells was dependent on the presence of surface-exposed GAPDH. This ability of C1q to sense both human and bacterial GAPDHs sheds new insights on the role of this important defense collagen molecule in modulating the immune response.

  1. Human and Pneumococcal Cell Surface Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) Proteins Are Both Ligands of Human C1q Protein*

    Science.gov (United States)

    Terrasse, Rémi; Tacnet-Delorme, Pascale; Moriscot, Christine; Pérard, Julien; Schoehn, Guy; Vernet, Thierry; Thielens, Nicole M.; Di Guilmi, Anne Marie; Frachet, Philippe

    2012-01-01

    C1q, a key component of the classical complement pathway, is a major player in the response to microbial infection and has been shown to detect noxious altered-self substances such as apoptotic cells. In this work, using complementary experimental approaches, we identified the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a C1q partner when exposed at the surface of human pathogenic bacteria Streptococcus pneumoniae and human apoptotic cells. The membrane-associated GAPDH on HeLa cells bound the globular regions of C1q as demonstrated by pulldown and cell surface co-localization experiments. Pneumococcal strains deficient in surface-exposed GAPDH harbored a decreased level of C1q recognition when compared with the wild-type strains. Both recombinant human and pneumococcal GAPDHs interacted avidly with C1q as measured by surface plasmon resonance experiments (KD = 0.34–2.17 nm). In addition, GAPDH-C1q complexes were observed by transmission electron microscopy after cross-linking. The purified pneumococcal GAPDH protein activated C1 in an in vitro assay unlike the human form. Deposition of C1q, C3b, and C4b from human serum at the surface of pneumococcal cells was dependent on the presence of surface-exposed GAPDH. This ability of C1q to sense both human and bacterial GAPDHs sheds new insights on the role of this important defense collagen molecule in modulating the immune response. PMID:23086952

  2. Inhibition of platelet [3H]- imipramine binding by human plasma protein fractions

    International Nuclear Information System (INIS)

    Strijewski, A.; Chudzik, J.; Tang, S.W.

    1988-01-01

    Inhibition of high-affinity [ 3 H]-imipramine binding to platelet membranes by human plasma fractions and isolated plasma proteins was investigated. Several plasma proteins were found to contribute to the observed apparent inhibition and this contribution was assessed in terms of inhibitor units. Alpha 1 acid glycoprotein, high density and low density lipoprotein, IgG and α 1 -antitrypsin were identified as effective non-specific inhibitors. Alpha-1-acid glycoprotein was confirmed to be the most potent plasma protein inhibitor. Cohn fractions were evaluated for the presence of the postulated endocoid of [ 3 H]-imipramine binding site

  3. TC10 is regulated by caveolin in 3T3-L1 adipocytes.

    Directory of Open Access Journals (Sweden)

    Dave Bridges

    Full Text Available TC10 is a small GTPase found in lipid raft microdomains of adipocytes. The protein undergoes activation in response to insulin, and plays a key role in the regulation of glucose uptake by the hormone.TC10 requires high concentrations of magnesium in order to stabilize guanine nucleotide binding. Kinetic analysis of this process revealed that magnesium acutely decreased the nucleotide release and exchange rates of TC10, suggesting that the G protein may behave as a rapidly exchanging, and therefore active protein in vivo. However, in adipocytes, the activity of TC10 is not constitutive, indicating that mechanisms must exist to maintain the G protein in a low activity state in untreated cells. Thus, we searched for proteins that might bind to and stabilize TC10 in the inactive state. We found that Caveolin interacts with TC10 only when GDP-bound and stabilizes GDP binding. Moreover, knockdown of Caveolin 1 in 3T3-L1 adipocytes increased the basal activity state of TC10.Together these data suggest that TC10 is intrinsically active in vivo, but is maintained in the inactive state by binding to Caveolin 1 in 3T3-L1 adipocytes under basal conditions, permitting its activation by insulin.

  4. PRELP (proline/arginine-rich end leucine-rich repeat protein) promotes osteoblastic differentiation of preosteoblastic MC3T3-E1 cells by regulating the β-catenin pathway

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haiying; Cui, Yazhou; Luan, Jing [School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Science, Ji' nan, Shandong (China); Key Laboratory for Rare Disease Research of Shandong Province, Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Ji' nan, Shandong (China); Zhang, Xiumei [School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Science, Ji' nan, Shandong (China); Li, Chengzhi; Zhou, Xiaoyan; Shi, Liang [School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Science, Ji' nan, Shandong (China); Key Laboratory for Rare Disease Research of Shandong Province, Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Ji' nan, Shandong (China); Wang, Huaxin [Shandong University of Traditional Chinese Medicine, Ji' an, Shandong (China); Han, Jinxiang, E-mail: jxhan9888@aliyun.com [School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Science, Ji' nan, Shandong (China); Key Laboratory for Rare Disease Research of Shandong Province, Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Ji' nan, Shandong (China)

    2016-02-12

    Proline/arginine-rich end leucine-rich repeat protein (PRELP) is a collagen-binding proteoglycan highly expressed in the developing bones. Recent studies indicated that PRELP could inhibit osteoclastogenesis as a NF-κB inhibitor. However, its role during osteoblast differentiation is still unclear. In this study, we confirmed that the expression of PRELP increased with the osteogenesis induction of preosteoblastic MC3T3-E1 cells. Down-regulation of PRELP expression by shRNA reduced ALP activity, mineralization and expression of osteogenic marker gene Runx2. Our microarray analysis data suggested that β-catenin may act as a hub gene in the PRELP-mediated gene network. We validated furtherly that PRELP knockdown could inhibit the level of connexin43, a key regulator of osteoblast differentiation by affecting β-catenin protein expression, and its nuclear translocation in MC3T3-E1 preosteoblasts. Therefore, this study established a new role of PRELP in modulating β-catenin/connexin43 pathway and osteoblast differentiation.

  5. RNA and Proteins: Mutual Respect [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Kathleen B. Hall

    2017-03-01

    Full Text Available Proteins and RNA are often found in ribonucleoprotein particles (RNPs, where they function in cellular processes to synthesize proteins (the ribosome, chemically modify RNAs (small nucleolar RNPs, splice pre-mRNAs (the spliceosome, and, on a larger scale, sequester RNAs, degrade them, or process them (P bodies, Cajal bodies, and nucleoli. Each RNA–protein interaction is a story in itself, as both molecules can change conformation, compete for binding sites, and regulate cellular functions. Recent studies of Xist long non-coding RNP, the U4/5/6 tri-small nuclear RNP complex, and an activated state of a spliceosome reveal new features of RNA interactions with proteins, and, although their stories are incomplete, they are already fascinating.

  6. Combination therapy of leflunomide and glucocorticoids for the maintenance of remission in patients with IgG4-related disease: a retrospective study and literature review.

    Science.gov (United States)

    Wang, Yiwen; Li, Kunpeng; Gao, Dai; Luo, Gui; Zhao, Yurong; Wang, Xiuru; Zhang, Jie; Jin, Jingyu; Zhao, Zheng; Yang, Chunhua; Zhu, Jian; Zhang, Jianglin; Huang, Feng

    2017-06-01

    Although glucocorticoids are effective in IgG4-related disease (IgG4-RD), patients may relapse during or after glucocorticoid tapering. Immunosuppressive agents, including leflunomide (LEF), are regarded as steroid-sparing agents in other autoimmune disorders and need to be discussed in the management of IgG4-RD. To identify the efficacy and safety of combination therapy of LEF and glucocorticoids in IgG4-RD. We retrospectively summarised data of patients diagnosed with IgG4-RD between November 2012 and November 2015. Only patients treated with LEF plus glucocorticoids and had been followed up for more than three visits and 6 months were analysed with clinical symptoms, laboratory and imaging findings, treatment protocol, LEF-related adverse events and disease activity reflected by IgG4-RD Responder Index (IgG4-RD RI). A total of 18 patients, including 14 untreated patients and 4 relapsing patients, was included. The mean (SD) onset age was 54.0 (9.6) years. The mean (SD) follow-up period was 12.1 (7.4) months. All patients had active disease with mean (SD) IgG4-RD RI of 15.0 (5.6) at baseline and experienced improvements at 1 month. At the last follow up, the mean (SD) IgG4-RD Responder Index declined to 3.1 (1.7) in all patients and to 2.5 (1.2) in patients without relapse. The mean (SD) dose of GC declined to 6.9 (2.7) mg/day. A total of 12 (66.7%) and 11 (61.1%) patients were in remission at 6 months and the last follow up respectively. Three (16.7%) patients relapsed in clinical course. Two reversible adverse events were observed. The combination therapy of LEF and glucocoticoids is effective and safe in IgG4-RD. © 2017 Royal Australasian College of Physicians.

  7. Nat1 promotes translation of specific proteins that induce differentiation of mouse embryonic stem cells.

    Science.gov (United States)

    Sugiyama, Hayami; Takahashi, Kazutoshi; Yamamoto, Takuya; Iwasaki, Mio; Narita, Megumi; Nakamura, Masahiro; Rand, Tim A; Nakagawa, Masato; Watanabe, Akira; Yamanaka, Shinya

    2017-01-10

    Novel APOBEC1 target 1 (Nat1) (also known as "p97," "Dap5," and "Eif4g2") is a ubiquitously expressed cytoplasmic protein that is homologous to the C-terminal two thirds of eukaryotic translation initiation factor 4G (Eif4g1). We previously showed that Nat1-null mouse embryonic stem cells (mES cells) are resistant to differentiation. In the current study, we found that NAT1 and eIF4G1 share many binding proteins, such as the eukaryotic translation initiation factors eIF3 and eIF4A and ribosomal proteins. However, NAT1 did not bind to eIF4E or poly(A)-binding proteins, which are critical for cap-dependent translation initiation. In contrast, compared with eIF4G1, NAT1 preferentially interacted with eIF2, fragile X mental retardation proteins (FMR), and related proteins and especially with members of the proline-rich and coiled-coil-containing protein 2 (PRRC2) family. We also found that Nat1-null mES cells possess a transcriptional profile similar, although not identical, to the ground state, which is established in wild-type mES cells when treated with inhibitors of the ERK and glycogen synthase kinase 3 (GSK3) signaling pathways. In Nat1-null mES cells, the ERK pathway is suppressed even without inhibitors. Ribosome profiling revealed that translation of mitogen-activated protein kinase kinase kinase 3 (Map3k3) and son of sevenless homolog 1 (Sos1) is suppressed in the absence of Nat1 Forced expression of Map3k3 induced differentiation of Nat1-null mES cells. These data collectively show that Nat1 is involved in the translation of proteins that are required for cell differentiation.

  8. Protein-protein docking using region-based 3D Zernike descriptors

    Directory of Open Access Journals (Sweden)

    Sael Lee

    2009-12-01

    Full Text Available Abstract Background Protein-protein interactions are a pivotal component of many biological processes and mediate a variety of functions. Knowing the tertiary structure of a protein complex is therefore essential for understanding the interaction mechanism. However, experimental techniques to solve the structure of the complex are often found to be difficult. To this end, computational protein-protein docking approaches can provide a useful alternative to address this issue. Prediction of docking conformations relies on methods that effectively capture shape features of the participating proteins while giving due consideration to conformational changes that may occur. Results We present a novel protein docking algorithm based on the use of 3D Zernike descriptors as regional features of molecular shape. The key motivation of using these descriptors is their invariance to transformation, in addition to a compact representation of local surface shape characteristics. Docking decoys are generated using geometric hashing, which are then ranked by a scoring function that incorporates a buried surface area and a novel geometric complementarity term based on normals associated with the 3D Zernike shape description. Our docking algorithm was tested on both bound and unbound cases in the ZDOCK benchmark 2.0 dataset. In 74% of the bound docking predictions, our method was able to find a near-native solution (interface C-αRMSD ≤ 2.5 Å within the top 1000 ranks. For unbound docking, among the 60 complexes for which our algorithm returned at least one hit, 60% of the cases were ranked within the top 2000. Comparison with existing shape-based docking algorithms shows that our method has a better performance than the others in unbound docking while remaining competitive for bound docking cases. Conclusion We show for the first time that the 3D Zernike descriptors are adept in capturing shape complementarity at the protein-protein interface and useful for

  9. The identification and characterization of nucleic acid chaperone activity of human enterovirus 71 nonstructural protein 3AB.

    Science.gov (United States)

    Tang, Fenfen; Xia, Hongjie; Wang, Peipei; Yang, Jie; Zhao, Tianyong; Zhang, Qi; Hu, Yuanyang; Zhou, Xi

    2014-09-01

    Human enterovirus 71 (EV71) belongs to the genus Enterovirus in the family Picornaviridae and has been recognized as one of the most important pathogens that cause emerging infectious disease. Despite of the importance of EV71, the nonstructural protein 3AB from this virus is little understood for its function during EV71 replication. Here we expressed EV71 3AB protein as recombinant protein in a eukaryotic expression system and uncovered that this protein possesses a nucleic acid helix-destabilizing and strand annealing acceleration activity in a dose-dependent manner, indicating that EV71 3AB is a nucleic acid chaperone protein. Moreover, we characterized the RNA chaperone activity of EV71 3AB, and revealed that divalent metal ions, such as Mg(2+) and Zn(2+), were able to inhibit the RNA helix-destabilizing activity of 3AB to different extents. Moreover, we determined that 3B plus the last 7 amino acids at the C-terminal of 3A (termed 3B+7) possess the RNA chaperone activity, and five amino acids, i.e. Lys-80, Phe-82, Phe-85, Tyr-89, and Arg-103, are critical and probably the active sites of 3AB for its RNA chaperone activity. This report reveals that EV71 3AB displays an RNA chaperone activity, adds a new member to the growing list of virus-encoded RNA chaperones, and provides novel knowledge about the virology of EV71. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Arabidopsis protein phosphatase DBP1 nucleates a protein network with a role in regulating plant defense.

    Directory of Open Access Journals (Sweden)

    José Luis Carrasco

    Full Text Available Arabidopsis thaliana DBP1 belongs to the plant-specific family of DNA-binding protein phosphatases. Although recently identified as a novel host factor mediating susceptibility to potyvirus, little is known about DBP1 targets and partners and the molecular mechanisms underlying its function. Analyzing changes in the phosphoproteome of a loss-of-function dbp1 mutant enabled the identification of 14-3-3λ isoform (GRF6, a previously reported DBP1 interactor, and MAP kinase (MAPK MPK11 as components of a small protein network nucleated by DBP1, in which GRF6 stability is modulated by MPK11 through phosphorylation, while DBP1 in turn negatively regulates MPK11 activity. Interestingly, grf6 and mpk11 loss-of-function mutants showed altered response to infection by the potyvirus Plum pox virus (PPV, and the described molecular mechanism controlling GRF6 stability was recapitulated upon PPV infection. These results not only contribute to a better knowledge of the biology of DBP factors, but also of MAPK signalling in plants, with the identification of GRF6 as a likely MPK11 substrate and of DBP1 as a protein phosphatase regulating MPK11 activity, and unveils the implication of this protein module in the response to PPV infection in Arabidopsis.

  11. 3DSwap: Curated knowledgebase of proteins involved in 3D domain swapping

    KAUST Repository

    Shameer, Khader

    2011-09-29

    Three-dimensional domain swapping is a unique protein structural phenomenon where two or more protein chains in a protein oligomer share a common structural segment between individual chains. This phenomenon is observed in an array of protein structures in oligomeric conformation. Protein structures in swapped conformations perform diverse functional roles and are also associated with deposition diseases in humans. We have performed in-depth literature curation and structural bioinformatics analyses to develop an integrated knowledgebase of proteins involved in 3D domain swapping. The hallmark of 3D domain swapping is the presence of distinct structural segments such as the hinge and swapped regions. We have curated the literature to delineate the boundaries of these regions. In addition, we have defined several new concepts like \\'secondary major interface\\' to represent the interface properties arising as a result of 3D domain swapping, and a new quantitative measure for the \\'extent of swapping\\' in structures. The catalog of proteins reported in 3DSwap knowledgebase has been generated using an integrated structural bioinformatics workflow of database searches, literature curation, by structure visualization and sequence-structure-function analyses. The current version of the 3DSwap knowledgebase reports 293 protein structures, the analysis of such a compendium of protein structures will further the understanding molecular factors driving 3D domain swapping. The Author(s) 2011.

  12. Inhibition of the pore-forming protein perforin by a series of aryl-substituted isobenzofuran-1(3H)-ones.

    Science.gov (United States)

    Spicer, Julie A; Huttunen, Kristiina M; Miller, Christian K; Denny, William A; Ciccone, Annette; Browne, Kylie A; Trapani, Joseph A

    2012-02-01

    An aryl-substituted isobenzofuran-1(3H)-one lead compound was identified from a high throughput screen designed to find inhibitors of the lymphocyte pore-forming protein perforin. A series of analogs were then designed and prepared, exploring structure-activity relationships through variation of 2-thioxoimidazolidin-4-one and furan subunits on an isobenzofuranone core. The ability of the resulting compounds to inhibit the lytic activity of both isolated perforin protein and perforin delivered in situ by intact KHYG-1 natural killer effector cells was determined. Several compounds showed excellent activity at concentrations that were non-toxic to the killer cells. This series represents a significant improvement on previous classes of compounds, being substantially more potent and largely retaining activity in the presence of serum. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Protein binding of N-2-mercaptoethyl-1,3-diaminopropane via mixed disulfide formation after oral administration of WR 2721

    Energy Technology Data Exchange (ETDEWEB)

    Tabachnik, N.F.; Blackburn, P.; Peterson, C.M.; Cerami, A.

    1982-02-01

    Earlier studies have shown that WR 2721 (H2N-(CH2)3-NH(CH2)2SPO3H2) is converted to its free thiol form, N-2-mercaptoethyl-1,3-diaminopropane (MDP), at the acidic pH of the stomach. MDP is a radioprotective compound and a mucolytic agent capable of decreasing sputum viscosity in the lungs of patients with cystic fibrosis. Conversion of WR 2721 and MDP to the corresponding sulfonic acid (MDP-SO3H) permits quantitative determination of these compounds in physiological fluids by use of an automatic amino acid analyzer. After oral administration of WR 2721 to human patients and rabbits it is converted to MDP and the free thiol form of the drug associates with plasma proteins by mixed disulfide linkage. The plasma proteins serve as a depot and reservoir of MDP for potential exchange at the tissues. When incubated with whole sputum or with purified mucin solutions in vitro, MDP decreased the viscosity of these solutions by reduction of the accessible disulfide bonds of the mucin molecule and was subsequently found in mixed disulfide association with the mucin molecule. The association of MDP with proteins via mixed disulfide linkage has important implications for the development of optimal dose regimens for administration of WR 2721 to patients.

  14. Protein binding of N-2-mercaptoethyl-1,3-diaminopropane via mixed disulfide formation after oral administration of WR 2721

    International Nuclear Information System (INIS)

    Tabachnik, N.F.; Blackburn, P.; Peterson, C.M.; Cerami, A.

    1982-01-01

    Earlier studies have shown that WR 2721 [H2N-(CH2)3-NH(CH2)2SPO3H2] is converted to its free thiol form, N-2-mercaptoethyl-1,3-diaminopropane (MDP), at the acidic pH of the stomach. MDP is a radioprotective compound and a mucolytic agent capable of decreasing sputum viscosity in the lungs of patients with cystic fibrosis. Conversion of WR 2721 and MDP to the corresponding sulfonic acid (MDP-SO3H) permits quantitative determination of these compounds in physiological fluids by use of an automatic amino acid analyzer. After oral administration of WR 2721 to human patients and rabbits it is converted to MDP and the free thiol form of the drug associates with plasma proteins by mixed disulfide linkage. The plasma proteins serve as a depot and reservoir of MDP for potential exchange at the tissues. When incubated with whole sputum or with purified mucin solutions in vitro, MDP decreased the viscosity of these solutions by reduction of the accessible disulfide bonds of the mucin molecule and was subsequently found in mixed disulfide association with the mucin molecule. The association of MDP with proteins via mixed disulfide linkage has important implications for the development of optimal dose regimens for administration of WR 2721 to patients

  15. 3-Phosphoinositide-dependent Protein Kinase-1 (PDK1) promotes invasion and activation of matrix metalloproteinases

    International Nuclear Information System (INIS)

    Xie, Zhihui; Yuan, Hongyan; Yin, Yuzhi; Zeng, Xiao; Bai, Renkui; Glazer, Robert I

    2006-01-01

    Metastasis is a major cause of morbidity and mortality in breast cancer with tumor cell invasion playing a crucial role in the metastatic process. PDK1 is a key molecule that couples PI3K to cell proliferation and survival signals in response to growth factor receptor activation, and is oncogenic when expressed in mouse mammary epithelial cells. We now present evidence showing that PDK1-expressing cells exhibit enhanced anchorage-dependent and -independent cell growth and are highly invasive when grown on Matrigel. These properties correlate with induction of MMP-2 activity, increased MT1-MMP expression and a unique gene expression profile. Invasion assays in Matrigel, MMP-2 zymogram analysis, gene microarray analysis and mammary isografts were used to characterize the invasive and proliferative function of cells expressing PDK1. Tissue microarray analysis of human breast cancers was used to measure PDK1 expression in invasive tumors by IHC. Enhanced invasion on Matrigel in PDK1-expressing cells was accompanied by increased MMP-2 activity resulting from stabilization against proteasomal degradation. Increased MMP-2 activity was accompanied by elevated levels of MT1-MMP, which is involved in generating active MMP-2. Gene microarray analysis identified increased expression of the ECM-associated genes decorin and type I procollagen, whose gene products are substrates of MT1-MMP. Mammary fat pad isografts of PDK1-expressing cells produced invasive adenocarcinomas. Tissue microarray analysis of human invasive breast cancer indicated that PDK1pSer241 was strongly expressed in 90% of samples. These results indicate that PDK1 serves as an important effector of mammary epithelial cell growth and invasion in the transformed phenotype. PDK1 mediates its effect in part by MT1-MMP induction, which in turn activates MMP-2 and modulates the ECM proteins decorin and collagen. The presence of increased PDK1 expression in the majority of invasive breast cancers suggests its

  16. Identification of novel putative-binding proteins for cellular prion protein and a specific interaction with the STIP1 homology and U-Box-containing protein 1

    Science.gov (United States)

    Gimenez, Ana Paula Lappas; Richter, Larissa Morato Luciani; Atherino, Mariana Campos; Beirão, Breno Castello Branco; Fávaro, Celso; Costa, Michele Dietrich Moura; Zanata, Silvio Marques; Malnic, Bettina; Mercadante, Adriana Frohlich

    2015-01-01

    ABSTRACT Prion diseases involve the conversion of the endogenous cellular prion protein, PrPC, into a misfolded infectious isoform, PrPSc. Several functions have been attributed to PrPC, and its role has also been investigated in the olfactory system. PrPC is expressed in both the olfactory bulb (OB) and olfactory epithelium (OE) and the nasal cavity is an important route of transmission of diseases caused by prions. Moreover, Prnp−/− mice showed impaired behavior in olfactory tests. Given the high PrPC expression in OE and its putative role in olfaction, we screened a mouse OE cDNA library to identify novel PrPC-binding partners. Ten different putative PrPC ligands were identified, which were involved in functions such as cellular proliferation and apoptosis, cytoskeleton and vesicle transport, ubiquitination of proteins, stress response, and other physiological processes. In vitro binding assays confirmed the interaction of PrPC with STIP1 homology and U-Box containing protein 1 (Stub1) and are reported here for the first time. Stub1 is a co-chaperone with ubiquitin E3-ligase activity, which is associated with neurodegenerative diseases characterized by protein misfolding and aggregation. Physiological and pathological implications of PrPC-Stub1 interaction are under investigation. The PrPC-binding proteins identified here are not exclusive to the OE, suggesting that these interactions may occur in other tissues and play general biological roles. These data corroborate the proposal that PrPC is part of a multiprotein complex that modulates several cellular functions and provide a platform for further studies on the physiological and pathological roles of prion protein. PMID:26237451

  17. Bacterial protein meal in diets for pigs and minks

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Skrede, Anders

    2007-01-01

    The effect of increasing the dietary content of bacterial protein meal (BPM) on protein turnover rate, and on nucleic acid and creatinine metabolism in growing minks and pigs was investigated in two experiments. In each experiment, 16 animals were allocated to four experimental diets. The diets...... containing no BPM served as controls, i.e. for minks diet M1, for pigs P1; the experimental diets contained increasing levels of BPM to replace fish meal (minks) or soybean meal (pigs), so that up to 17% (P2), 20% (M2), 35% (P3), 40% (M3), 52% (P4), and 60% (M4) of digestible N was BPM derived. Protein...... turnover rate was measured by means of the end-product method using [15N]glycine as tracer and urinary nitrogen as end-product. In minks, protein flux, synthesis, and breakdown increased significantly with increasing dietary BPM. In pigs, diet had no observed effect on protein turnover rate. The intake...

  18. Identification of Interferon-Stimulated Gene Proteins That Inhibit Human Parainfluenza Virus Type 3.

    Science.gov (United States)

    Rabbani, M A G; Ribaudo, Michael; Guo, Ju-Tao; Barik, Sailen

    2016-12-15

    A major arm of cellular innate immunity is type I interferon (IFN), represented by IFN-α and IFN-β. Type I IFN transcriptionally induces a large number of cellular genes, collectively known as IFN-stimulated gene (ISG) proteins, which act as antivirals. The IFIT (interferon-induced proteins with tetratricopeptide repeats) family proteins constitute a major subclass of ISG proteins and are characterized by multiple tetratricopeptide repeats (TPRs). In this study, we have interrogated IFIT proteins for the ability to inhibit the growth of human parainfluenza virus type 3 (PIV3), a nonsegmented negative-strand RNA virus of the Paramyxoviridae family and a major cause of respiratory disease in children. We found that IFIT1 significantly inhibited PIV3, whereas IFIT2, IFIT3, and IFIT5 were less effective or not at all. In further screening a set of ISG proteins we discovered that several other such proteins also inhibited PIV3, including IFITM1, IDO (indoleamine 2,3-dioxygenase), PKR (protein kinase, RNA activated), and viperin (virus inhibitory protein, endoplasmic reticulum associated, interferon inducible)/Cig5. The antiviral effect of IDO, the enzyme that catalyzes the first step of tryptophan degradation, could be counteracted by tryptophan. These results advance our knowledge of diverse ISG proteins functioning as antivirals and may provide novel approaches against PIV3. The innate immunity of the host, typified by interferon (IFN), is a major antiviral defense. IFN inhibits virus growth by inducing a large number of IFN-stimulated gene (ISG) proteins, several of which have been shown to have specific antiviral functions. Parainfluenza virus type 3 (PIV3) is major pathogen of children, and no reliable vaccine or specific antiviral against it currently exists. In this article, we report several ISG proteins that strongly inhibit PIV3 growth, the use of which may allow a better antiviral regimen targeting PIV3. Copyright © 2016, American Society for Microbiology

  19. 14-3-3 Proteins in Plant Hormone Signaling: Doing Several Things at Once

    Directory of Open Access Journals (Sweden)

    Lorenzo Camoni

    2018-03-01

    Full Text Available In this review we highlight the advances achieved in the investigation of the role of 14-3-3 proteins in hormone signaling, biosynthesis, and transport. 14-3-3 proteins are a family of conserved molecules that target a number of protein clients through their ability to recognize well-defined phosphorylated motifs. As a result, they regulate several cellular processes, ranging from metabolism to transport, growth, development, and stress response. High-throughput proteomic data and two-hybrid screen demonstrate that 14-3-3 proteins physically interact with many protein clients involved in the biosynthesis or signaling pathways of the main plant hormones, while increasing functional evidence indicates that 14-3-3-target interactions play pivotal regulatory roles. These advances provide a framework of our understanding of plant hormone action, suggesting that 14-3-3 proteins act as hubs of a cellular web encompassing different signaling pathways, transducing and integrating diverse hormone signals in the regulation of physiological processes.

  20. Structural Basis for the 14-3-3 Protein-Dependent Inhibition of Phosducin Function

    Czech Academy of Sciences Publication Activity Database

    Kacířová, Miroslava; Nováček, J.; Man, Petr; Obšilová, Veronika; Obšil, Tomáš

    2017-01-01

    Roč. 112, č. 7 (2017), s. 1339-1349 ISSN 0006-3495 R&D Projects: GA ČR(CZ) GA16-02739S; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 ; RVO:61388971 Keywords : phosducin * 14-3-3 protein * NMR spectroscopy * limited proteolysis Subject RIV: EB - Genetics ; Molecular Biology; CE - Biochemistry (MBU-M) OBOR OECD: Biochemical research methods; Biochemistry and molecular biology (MBU-M) Impact factor: 3.656, year: 2016

  1. A chemical approach for site-specific identification of NMR signals from protein side-chain NH3+ groups forming intermolecular ion pairs in protein–nucleic acid complexes

    International Nuclear Information System (INIS)

    Anderson, Kurtis M.; Nguyen, Dan; Esadze, Alexandre; Zandrashvili, Levani; Gorenstein, David G.; Iwahara, Junji

    2015-01-01

    Protein–nucleic acid interactions involve intermolecular ion pairs of protein side-chain and DNA or RNA phosphate groups. Using three protein–DNA complexes, we demonstrate that site-specific oxygen-to-sulfur substitution in phosphate groups allows for identification of NMR signals from the protein side-chain NH 3 + groups forming the intermolecular ion pairs. A characteristic change in their 1 H and 15 N resonances upon this modification (i.e., substitution of phosphate to phosphorodithioate) can represent a signature of an intermolecular ion pair. Hydrogen-bond scalar coupling between protein side-chain 15 N and DNA phosphorodithiaote 31 P nuclei provides direct confirmation of the intermolecular ion pair. The same approach is likely applicable to protein–RNA complexes as well

  2. SUN family proteins Sun4p, Uth1p and Sim1p are secreted from Saccharomyces cerevisiae and produced dependently on oxygen level.

    Directory of Open Access Journals (Sweden)

    Evgeny Kuznetsov

    Full Text Available The SUN family is comprised of proteins that are conserved among various yeasts and fungi, but that are absent in mammals and plants. Although the function(s of these proteins are mostly unknown, they have been linked to various, often unrelated cellular processes such as those connected to mitochondrial and cell wall functions. Here we show that three of the four Saccharomyces cerevisiae SUN family proteins, Uth1p, Sim1p and Sun4p, are efficiently secreted out of the cells in different growth phases and their production is affected by the level of oxygen. The Uth1p, Sim1p, Sun4p and Nca3p are mostly synthesized during the growth phase of both yeast liquid cultures and colonies. Culture transition to slow-growing or stationary phases is linked with a decreased cellular concentration of Sim1p and Sun4p and with their efficient release from the cells. In contrast, Uth1p is released mainly from growing cells. The synthesis of Uth1p and Sim1p, but not of Sun4p, is repressed by anoxia. All four proteins confer cell sensitivity to zymolyase. In addition, Uth1p affects cell sensitivity to compounds influencing cell wall composition and integrity (such as Calcofluor white and Congo red differently when growing on fermentative versus respiratory carbon sources. In contrast, Uth1p is essential for cell resistance to boric acids irrespective of carbon source. In summary, our novel findings support the hypothesis that SUN family proteins are involved in the remodeling of the yeast cell wall during the various phases of yeast culture development and under various environmental conditions. The finding that Uth1p is involved in cell sensitivity to boric acid, i.e. to a compound that is commonly used as an important antifungal in mycoses, opens up new possibilities of investigating the mechanisms of boric acid's action.

  3. Regulation and function of the CD3¿ DxxxLL motif: a binding site for adaptor protein-1 and adaptor protein-2 in vitro

    DEFF Research Database (Denmark)

    Dietrich, J; Kastrup, J; Nielsen, B L

    1997-01-01

    /CD3gamma chimeras; and in vitro by binding CD3gamma peptides to clathrin-coated vesicle adaptor proteins (APs). We find that the CD3gamma D127xxxLL131/132 sequence represents one united motif for binding of both AP-1 and AP-2, and that this motif functions as an active sorting motif in monomeric CD4...... and for AP binding in vitro. Furthermore, we provide evidence indicating that phosphorylation of CD3gamma S126 in the context of the complete TCR induces a conformational change that exposes the DxxxLL sequence for AP binding. Exposure of the DxxxLL motif causes an increase in the TCR internalization rate...

  4. Bioinformatics analysis identifies several intrinsically disordered human E3 ubiquitin-protein ligases

    Directory of Open Access Journals (Sweden)

    Wouter Boomsma

    2016-02-01

    Full Text Available The ubiquitin-proteasome system targets misfolded proteins for degradation. Since the accumulation of such proteins is potentially harmful for the cell, their prompt removal is important. E3 ubiquitin-protein ligases mediate substrate ubiquitination by bringing together the substrate with an E2 ubiquitin-conjugating enzyme, which transfers ubiquitin to the substrate. For misfolded proteins, substrate recognition is generally delegated to molecular chaperones that subsequently interact with specific E3 ligases. An important exception is San1, a yeast E3 ligase. San1 harbors extensive regions of intrinsic disorder, which provide both conformational flexibility and sites for direct recognition of misfolded targets of vastly different conformations. So far, no mammalian ortholog of San1 is known, nor is it clear whether other E3 ligases utilize disordered regions for substrate recognition. Here, we conduct a bioinformatics analysis to examine >600 human and S. cerevisiae E3 ligases to identify enzymes that are similar to San1 in terms of function and/or mechanism of substrate recognition. An initial sequence-based database search was found to detect candidates primarily based on the homology of their ordered regions, and did not capture the unique disorder patterns that encode the functional mechanism of San1. However, by searching specifically for key features of the San1 sequence, such as long regions of intrinsic disorder embedded with short stretches predicted to be suitable for substrate interaction, we identified several E3 ligases with these characteristics. Our initial analysis revealed that another remarkable trait of San1 is shared with several candidate E3 ligases: long stretches of complete lysine suppression, which in San1 limits auto-ubiquitination. We encode these characteristic features into a San1 similarity-score, and present a set of proteins that are plausible candidates as San1 counterparts in humans. In conclusion, our work

  5. Endoplasmic reticulum proteins SDF2 and SDF2L1 act as components of the BiP chaperone cycle to prevent protein aggregation.

    Science.gov (United States)

    Fujimori, Tsutomu; Suno, Ryoji; Iemura, Shun-Ichiro; Natsume, Tohru; Wada, Ikuo; Hosokawa, Nobuko

    2017-08-01

    The folding of newly synthesized proteins in the endoplasmic reticulum (ER) is assisted by ER-resident chaperone proteins. BiP (immunoglobulin heavy-chain-binding protein), a member of the HSP70 family, plays a central role in protein quality control. The chaperone function of BiP is regulated by its intrinsic ATPase activity, which is stimulated by ER-resident proteins of the HSP40/DnaJ family, including ERdj3. Here, we report that two closely related proteins, SDF2 and SDF2L1, regulate the BiP chaperone cycle. Both are ER-resident, but SDF2 is constitutively expressed, whereas SDF2L1 expression is induced by ER stress. Both luminal proteins formed a stable complex with ERdj3 and potently inhibited the aggregation of different types of misfolded ER cargo. These proteins associated with non-native proteins, thus promoting the BiP-substrate interaction cycle. A dominant-negative ERdj3 mutant that inhibits the interaction between ERdj3 and BiP prevented the dissociation of misfolded cargo from the ERdj3-SDF2L1 complex. Our findings indicate that SDF2 and SDF2L1 associate with ERdj3 and act as components in the BiP chaperone cycle to prevent the aggregation of misfolded proteins, partly explaining the broad folding capabilities of the ER under various physiological conditions. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  6. BAG1: the guardian of anti-apoptotic proteins in acute myeloid leukemia.

    Directory of Open Access Journals (Sweden)

    Sanja Aveic

    Full Text Available BCL2 associated Athano-Gene 1 (BAG1 is a multifunctional protein that has been described to be involved in different cell processes linked to cell survival. It has been reported as deregulated in diverse cancer types. Here, BAG1 protein was found highly expressed in children with acute myeloid leukemia at diagnosis, and in a cohort of leukemic cell lines. A silencing approach was used for determining BAG1's role in AML, finding that its down-regulation decreased expression of BCL2, BCL-XL, MCL1, and phospho-ERK1/2, all proteins able to sustain leukemia, without affecting the pro-apoptotic protein BAX. BAG1 down-regulation was also found to increase expression of BAG3, whose similar activity was able to compensate the loss of function of BAG1. BAG1/BAG3 co-silencing caused an enhanced cell predisposition to death in cell lines and also in primary AML cultures, affecting the same proteins. Cell death was CASPASE-3 dependent, was accompanied by PARP cleavage and documented by an increased release of pro-apoptotic molecules Smac/DIABLO and Cytochrome c. BAG1 was found to directly maintain BCL2 and to protect MCL1 from proteasomal degradation by controlling USP9X expression, which appeared to be its novel target. Finally, BAG1 was found able to affect leukemia cell fate by influencing the expression of anti-apoptotic proteins crucial for AML maintenance.

  7. Insulin-like growth factor-1 (IGF-1) promotes primordial follicle growth and reduces DNA fragmentation through the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signalling pathway.

    Science.gov (United States)

    Bezerra, Maria É S; Barberino, Ricássio S; Menezes, Vanúzia G; Gouveia, Bruna B; Macedo, Taís J S; Santos, Jamile M S; Monte, Alane P O; Barros, Vanessa R P; Matos, Maria H T

    2018-05-30

    We investigated the effects of insulin-like growth factor 1 (IGF-1) on the morphology and follicular activation of ovine preantral follicles cultured in situ and whether the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway is involved in IGF-1 action in the sheep ovary. Ovine ovarian fragments were fixed for histological and terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) analyses (fresh control) or cultured in supplemented alpha-minimum essential medium (α-MEM+; control) or α-MEM+ with IGF-1 (1, 10, 50, 100 or 200ngmL-1) for 7 days. Follicles were classified as normal or atretic, primordial or growing and the oocyte and follicle diameters were measured. DNA fragmentation was evaluated by TUNEL assay. Proliferating cell nuclear antigen (PCNA) immunohistochemistry was performed on the fresh control, α-MEM+ and 100ngmL-1 IGF-1 samples. Inhibition of PI3K activity was performed through pretreatment with the PI3K inhibitor LY294002 and phosphorylated AKT (pAKT) expression was analysed after culture in the absence or presence of LY294002. IGF-1 at 100ngmL-1 increased (PIGF-1. LY294002 significantly inhibited follicular activation stimulated by α-MEM+ and 100ngmL-1 IGF-1 and reduced pAKT expression in follicles. Overall, IGF-1 at 100ngmL-1 promoted primordial follicle activation, cell proliferation and reduced DNA fragmentation after in situ culture through the PI3K/AKT pathway.

  8. Alk2/ACVR1 and Alk3/BMPR1A Provide Essential Function for Bone Morphogenetic Protein Induced Retinal Angiogenesis

    Science.gov (United States)

    Lee, Heon-Woo; Chong, Diana C.; Ola, Roxana; Dunworth, William P.; Meadows, Stryder; Ka, Jun; Kaartinen, Vesa M.; Qyang, Yibing; Cleaver, Ondine; Bautch, Victoria L.; Eichmann, Anne; Jin, Suk-Won

    2017-01-01

    Objective Increasing evidence suggests that Bone Morphogenetic Protein (BMP) signaling regulates angiogenesis. Here, we aimed to define the function of BMP receptors in regulating early post-natal angiogenesis by analysis of inducible, endothelial specific deletion of the BMP receptor components Bmpr2, Alk1, Alk2 and Alk3 in mouse retinal vessels. Approach and Results Expression analysis of several BMP ligands showed that pro-angiogenic BMP ligands are highly expressed in postnatal retinas. Consistently, BMP receptors are also strongly expressed in retina with a distinct pattern. To assess the function of BMP signaling in retinal angiogenesis, we first generated mice carrying an endothelial-specific inducible deletion of BMP Type 2 receptor (Bmpr2). Postnatal deletion of Bmpr2 in endothelial cells substantially decreased the number of angiogenic sprouts at the vascular front and branchpoints behind the front, leading to attenuated radial expansion. To identify critical BMPR1s associated with BMPR2 in retinal angiogenesis, we generated endothelial-specific inducible deletion of three BMPR1s abundantly expressed in endothelial cells and analyzed the respective phenotypes. Among these, endothelial specific deletion of either Alk2/acvr1 or Alk3/Bmpr1a caused a delay in radial expansion, reminiscent of vascular defects associated with postnatal endothelial specific deletion of BMPR2, suggesting that ALK2/ACVR1 and ALK3/BMPR1A are likely to be the critical BMPR1s necessary for pro-angiogenic BMP signaling in retinal vessels. Conclusions Our data identify BMP signaling mediated by coordination of ALK2/ACVR1, ALK3/BMPR1A, and BMPR2 as an essential pro-angiogenic cue for retinal vessels. PMID:28232325

  9. Regulation of protease-activated receptor 1 signaling by the adaptor protein complex 2 and R4 subfamily of regulator of G protein signaling proteins.

    Science.gov (United States)

    Chen, Buxin; Siderovski, David P; Neubig, Richard R; Lawson, Mark A; Trejo, Joann

    2014-01-17

    The G protein-coupled protease-activated receptor 1 (PAR1) is irreversibly proteolytically activated by thrombin. Hence, the precise regulation of PAR1 signaling is important for proper cellular responses. In addition to desensitization, internalization and lysosomal sorting of activated PAR1 are critical for the termination of signaling. Unlike most G protein-coupled receptors, PAR1 internalization is mediated by the clathrin adaptor protein complex 2 (AP-2) and epsin-1, rather than β-arrestins. However, the function of AP-2 and epsin-1 in the regulation of PAR1 signaling is not known. Here, we report that AP-2, and not epsin-1, regulates activated PAR1-stimulated phosphoinositide hydrolysis via two different mechanisms that involve, in part, a subset of R4 subfamily of "regulator of G protein signaling" (RGS) proteins. A significantly greater increase in activated PAR1 signaling was observed in cells depleted of AP-2 using siRNA or in cells expressing a PAR1 (420)AKKAA(424) mutant with defective AP-2 binding. This effect was attributed to AP-2 modulation of PAR1 surface expression and efficiency of G protein coupling. We further found that ectopic expression of R4 subfamily members RGS2, RGS3, RGS4, and RGS5 reduced activated PAR1 wild-type signaling, whereas signaling by the PAR1 AKKAA mutant was minimally affected. Intriguingly, siRNA-mediated depletion analysis revealed a function for RGS5 in the regulation of signaling by the PAR1 wild type but not the AKKAA mutant. Moreover, activation of the PAR1 wild type, and not the AKKAA mutant, induced Gαq association with RGS3 via an AP-2-dependent mechanism. Thus, AP-2 regulates activated PAR1 signaling by altering receptor surface expression and through recruitment of RGS proteins.

  10. Expression, purification, characterization and subcellular localization of the goose parvovirus rep1 protein.

    Science.gov (United States)

    Chen, Zongyan; Li, Chuanfeng; Peng, Gaojing; Liu, Guangqing

    2013-07-01

    The goose parvovirus (GPV) Rep1 protein is both essential for viral replication and a potential target for GPV diagnosis, but its protein characterization and intracellular localization is not clear. We constructed a recombinant plasmid, pET28a/GPV-Rep1, and expressed the Rep1 gene in BL21 (DE3) Escherichia coli. A protein approximately 75 kDa in size was obtained from lysates of E. coli cells expressing the recombinant plasmid. SDS-PAGE analysis showed that after induction with 0.6 mM isopropyl β-D-thiogalactosidase (IPTG) at 30°C for 5 h, the Rep1 protein was highly overexpressed. Two methods used to purify proteins, a salinity-gradient elution and Ni-NTA affinity chromatography, were performed. The amount of Rep1 protein obtained by Ni-NTA affinity chromatography was 41.23 mg, while 119.9 mg of Rep1 protein was obtained by a salinity-gradient elution from a 1 L E. coli BL21 (DE3) culture. An immunogenicity analysis showed that the protein could significantly elicit a specific antibody response in immunized goslings compared to control groups. Antibody titers peaked to 1:5120 (optical density (OD) 450 = 3.9) on day 28 after immunization but had mean titers of 1:10,240 (OD450 = 4.2) in gosling groups immunized with a commercially available GPV-attenuated vaccine strain. Experiments examining subcellular localization showed that the Rep1 protein appeared to associate predominantly with the nuclear membrane, especially during later times of infection. This work provides a basis for biochemical and structural studies on the GPV Rep1 protein.

  11. Regulation of Human γδ T Cells by BTN3A1 Protein Stability and ATP-Binding Cassette Transporters

    Directory of Open Access Journals (Sweden)

    David A. Rhodes

    2018-04-01

    Full Text Available Activation of human Vγ9/Vδ2 T cells by “phosphoantigens” (pAg, the microbial metabolite (E-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP and the endogenous isoprenoid intermediate isopentenyl pyrophosphate, requires expression of butyrophilin BTN3A molecules by presenting cells. However, the precise mechanism of activation of Vγ9/Vδ2 T cells by BTN3A molecules remains elusive. It is not clear what conformation of the three BTN3A isoforms transmits activation signals nor how externally delivered pAg accesses the cytosolic B30.2 domain of BTN3A1. To approach these problems, we studied two HLA haplo-identical HeLa cell lines, termed HeLa-L and HeLa-M, which showed marked differences in pAg-dependent stimulation of Vγ9/Vδ2 T cells. Levels of IFN-γ secretion by Vγ9/Vδ2 T cells were profoundly increased by pAg loading, or by binding of the pan-BTN3A specific agonist antibody CD277 20.1, in HeLa-M compared to HeLa-L cells. IL-2 production from a murine hybridoma T cell line expressing human Vγ9/Vδ2 T cell receptor (TCR transgenes confirmed that the differential responsiveness to HeLa-L and HeLa-M was TCR dependent. By tissue typing, both HeLa lines were shown to be genetically identical and full-length transcripts of the three BTN3A isoforms were detected in equal abundance with no sequence variation. Expression of BTN3A and interacting molecules, such as periplakin or RhoB, did not account for the functional variation between HeLa-L and HeLa-M cells. Instead, the data implicate a checkpoint controlling BTN3A1 stability and protein trafficking, acting at an early time point in its maturation. In addition, plasma membrane profiling was used to identify proteins upregulated in HMB-PP-treated HeLa-M. ABCG2, a member of the ATP-binding cassette (ABC transporter family was the most significant candidate, which crucially showed reduced expression in HeLa-L. Expression of a subset of ABC transporters, including ABCA1 and ABCG1, correlated

  12. Regulation of Human γδ T Cells by BTN3A1 Protein Stability and ATP-Binding Cassette Transporters

    Science.gov (United States)

    Rhodes, David A.; Chen, Hung-Chang; Williamson, James C.; Hill, Alfred; Yuan, Jack; Smith, Sam; Rhodes, Harriet; Trowsdale, John; Lehner, Paul J.; Herrmann, Thomas; Eberl, Matthias

    2018-01-01

    Activation of human Vγ9/Vδ2 T cells by “phosphoantigens” (pAg), the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP) and the endogenous isoprenoid intermediate isopentenyl pyrophosphate, requires expression of butyrophilin BTN3A molecules by presenting cells. However, the precise mechanism of activation of Vγ9/Vδ2 T cells by BTN3A molecules remains elusive. It is not clear what conformation of the three BTN3A isoforms transmits activation signals nor how externally delivered pAg accesses the cytosolic B30.2 domain of BTN3A1. To approach these problems, we studied two HLA haplo-identical HeLa cell lines, termed HeLa-L and HeLa-M, which showed marked differences in pAg-dependent stimulation of Vγ9/Vδ2 T cells. Levels of IFN-γ secretion by Vγ9/Vδ2 T cells were profoundly increased by pAg loading, or by binding of the pan-BTN3A specific agonist antibody CD277 20.1, in HeLa-M compared to HeLa-L cells. IL-2 production from a murine hybridoma T cell line expressing human Vγ9/Vδ2 T cell receptor (TCR) transgenes confirmed that the differential responsiveness to HeLa-L and HeLa-M was TCR dependent. By tissue typing, both HeLa lines were shown to be genetically identical and full-length transcripts of the three BTN3A isoforms were detected in equal abundance with no sequence variation. Expression of BTN3A and interacting molecules, such as periplakin or RhoB, did not account for the functional variation between HeLa-L and HeLa-M cells. Instead, the data implicate a checkpoint controlling BTN3A1 stability and protein trafficking, acting at an early time point in its maturation. In addition, plasma membrane profiling was used to identify proteins upregulated in HMB-PP-treated HeLa-M. ABCG2, a member of the ATP-binding cassette (ABC) transporter family was the most significant candidate, which crucially showed reduced expression in HeLa-L. Expression of a subset of ABC transporters, including ABCA1 and ABCG1, correlated with

  13. Tunable paramagnetic relaxation enhancements by [Gd(DPA)3]3- for protein structure analysis

    International Nuclear Information System (INIS)

    Yagi, Hiromasa; Loscha, Karin V.; Su, Xun-Cheng; Stanton-Cook, Mitchell; Huber, Thomas; Otting, Gottfried

    2010-01-01

    Paramagnetic relaxation enhancements (PRE) present a powerful source of structural information in nuclear magnetic resonance (NMR) studies of proteins and protein-ligand complexes. In contrast to conventional PRE reagents that are covalently attached to the protein, the complex between gadolinium and three dipicolinic acid (DPA) molecules, [Gd(DPA) 3 ] 3- , can bind to proteins in a non-covalent yet site-specific manner. This offers straightforward access to PREs that can be scaled by using different ratios of [Gd(DPA) 3 ] 3- to protein, allowing quantitative distance measurements for nuclear spins within about 15 A of the Gd 3+ ion. Such data accurately define the metal position relative to the protein, greatly enhancing the interpretation of pseudocontact shifts induced by [Ln(DPA) 3 ] 3- complexes of paramagnetic lanthanide (Ln 3+ ) ions other than gadolinium. As an example we studied the quaternary structure of the homodimeric GCN4 leucine zipper.

  14. Structural basis of O-GlcNAc recognition by mammalian 14-3-3 proteins.

    Science.gov (United States)

    Toleman, Clifford A; Schumacher, Maria A; Yu, Seok-Ho; Zeng, Wenjie; Cox, Nathan J; Smith, Timothy J; Soderblom, Erik J; Wands, Amberlyn M; Kohler, Jennifer J; Boyce, Michael

    2018-05-21

    O-GlcNAc is an intracellular posttranslational modification that governs myriad cell biological processes and is dysregulated in human diseases. Despite this broad pathophysiological significance, the biochemical effects of most O-GlcNAcylation events remain uncharacterized. One prevalent hypothesis is that O-GlcNAc moieties may be recognized by "reader" proteins to effect downstream signaling. However, no general O-GlcNAc readers have been identified, leaving a considerable gap in the field. To elucidate O-GlcNAc signaling mechanisms, we devised a biochemical screen for candidate O-GlcNAc reader proteins. We identified several human proteins, including 14-3-3 isoforms, that bind O-GlcNAc directly and selectively. We demonstrate that 14-3-3 proteins bind O-GlcNAc moieties in human cells, and we present the structures of 14-3-3β/α and γ bound to glycopeptides, providing biophysical insights into O-GlcNAc-mediated protein-protein interactions. Because 14-3-3 proteins also bind to phospho-serine and phospho-threonine, they may integrate information from O-GlcNAc and O-phosphate signaling pathways to regulate numerous physiological functions.

  15. AKAP3 synthesis is mediated by RNA binding proteins and PKA signaling during mouse spermiogenesis.

    Science.gov (United States)

    Xu, Kaibiao; Yang, Lele; Zhao, Danyun; Wu, Yaoyao; Qi, Huayu

    2014-06-01

    Mammalian spermatogenesis is regulated by coordinated gene expression in a spatiotemporal manner. The spatiotemporal regulation of major sperm proteins plays important roles during normal development of the male gamete, of which the underlying molecular mechanisms are poorly understood. A-kinase anchoring protein 3 (AKAP3) is one of the major components of the fibrous sheath of the sperm tail that is formed during spermiogenesis. In the present study, we analyzed the expression of sperm-specific Akap3 and the potential regulatory factors of its protein synthesis during mouse spermiogenesis. Results showed that the transcription of Akap3 precedes its protein synthesis by about 2 wk. Nascent AKAP3 was found to form protein complex with PKA and RNA binding proteins (RBPs), including PIWIL1, PABPC1, and NONO, as revealed by coimmunoprecipitation and protein mass spectrometry. RNA electrophoretic gel mobility shift assay showed that these RBPs bind sperm-specific mRNAs, of which proteins are synthesized during the elongating stage of spermiogenesis. Biochemical and cell biological experiments demonstrated that PIWIL1, PABPC1, and NONO interact with each other and colocalize in spermatids' RNA granule, the chromatoid body. In addition, NONO was found in extracytoplasmic granules in round spermatids, whereas PIWIL1 and PABPC1 were diffusely localized in cytoplasm of elongating spermatids, indicating their participation at different steps of mRNA metabolism during spermatogenesis. Interestingly, type I PKA subunits colocalize with PIWIL1 and PABPC1 in the cytoplasm of elongating spermatids and cosediment with the RBPs in polysomal fractions on sucrose gradients. Further biochemical analyses revealed that activation of PKA positively regulates AKAP3 protein synthesis without changing its mRNA level in elongating spermatids. Taken together, these results indicate that PKA signaling directly participates in the regulation of protein translation in postmeiotic male germ cells

  16. Hepatitis C virus non-structural protein 3 interacts with cytosolic 5'(3'-deoxyribonucleotidase and partially inhibits its activity.

    Directory of Open Access Journals (Sweden)

    Chiu-Ping Fang

    Full Text Available Infection with hepatitis C virus (HCV is etiologically involved in liver cirrhosis, hepatocellular carcinoma and B-cell lymphomas. It has been demonstrated previously that HCV non-structural protein 3 (NS3 is involved in cell transformation. In this study, a yeast two-hybrid screening experiment was conducted to identify cellular proteins interacting with HCV NS3 protein. Cytosolic 5'(3'-deoxyribonucleotidase (cdN, dNT-1 was found to interact with HCV NS3 protein. Binding domains of HCV NS3 and cellular cdN proteins were also determined using the yeast two-hybrid system. Interactions between HCV NS3 and cdN proteins were further demonstrated by co-immunoprecipitation and confocal analysis in cultured cells. The cellular cdN activity was partially repressed by NS3 protein in both the transiently-transfected and the stably-transfected systems. Furthermore, HCV partially repressed the cdN activity while had no effect on its protein expression in the systems of HCV sub-genomic replicons and infectious HCV virions. Deoxyribonucleotidases are present in most mammalian cells and involve in the regulation of intracellular deoxyribonucleotides pools by substrate cycles. Control of DNA precursor concentration is essential for the maintenance of genetic stability. Reduction of cdN activity would result in the imbalance of DNA precursor concentrations. Thus, our results suggested that HCV partially reduced the cdN activity via its NS3 protein and this may in turn cause diseases.

  17. BAG3: a multifaceted protein that regulates major cell pathways

    Science.gov (United States)

    Rosati, A; Graziano, V; De Laurenzi, V; Pascale, M; Turco, M C

    2011-01-01

    Bcl2-associated athanogene 3 (BAG3) protein is a member of BAG family of co-chaperones that interacts with the ATPase domain of the heat shock protein (Hsp) 70 through BAG domain (110–124 amino acids). BAG3 is the only member of the family to be induced by stressful stimuli, mainly through the activity of heat shock factor 1 on bag3 gene promoter. In addition to the BAG domain, BAG3 contains also a WW domain and a proline-rich (PXXP) repeat, that mediate binding to partners different from Hsp70. These multifaceted interactions underlie BAG3 ability to modulate major biological processes, that is, apoptosis, development, cytoskeleton organization and autophagy, thereby mediating cell adaptive responses to stressful stimuli. In normal cells, BAG3 is constitutively present in a very few cell types, including cardiomyocytes and skeletal muscle cells, in which the protein appears to contribute to cell resistance to mechanical stress. A growing body of evidence indicate that BAG3 is instead expressed in several tumor types. In different tumor contexts, BAG3 protein was reported to sustain cell survival, resistance to therapy, and/or motility and metastatization. In some tumor types, down-modulation of BAG3 levels was shown, as a proof-of-principle, to inhibit neoplastic cell growth in animal models. This review attempts to outline the emerging mechanisms that can underlie some of the biological activities of the protein, focusing on implications in tumor progression. PMID:21472004

  18. Lower Circulating C1q/TNF-Related Protein-3 (CTRP3 Levels Are Associated with Obesity: A Cross-Sectional Study.

    Directory of Open Access Journals (Sweden)

    Risa M Wolf

    Full Text Available C1q/TNF-related protein-3 (CTRP3 is a novel adipokine that lowers blood glucose levels, reduces liver triglyceride synthesis, and is protective against hepatic steatosis in diet-induced obese mouse models. We hypothesized that higher circulating serum levels of CTRP3 would be associated with a lean body mass index (BMI and a more favorable metabolic profile in humans. The aim of this study was to investigate CTRP3 levels in lean individuals compared to obese individuals.This was a cross-sectional study of obese (n=44 and lean control patients (n=60. Fasting metabolic parameters were measured in all patients and serum CTRP3 levels were measured by ELISA.BMI of the lean group was 21.9 ± 0.2 kg/m2 and obese group was 45.2 ± 1.1 kg/m2. We found significantly lower circulating levels of CTRP3 in obese individuals (405 ± 8.3 vs. 436 ± 6.7 ng/mL, p=0.004 compared to the lean group. Serum CTRP3 levels were inversely correlated with BMI (p=0.001, and triglycerides (p<0.001, and significantly associated with gender (p<0.01, ethnicity (p=0.05, HDL-cholesterol (p<0.01, and adiponectin (p<0.01. We found BMI (p<0.01, gender (p<0.01, and ethnicity (p<0.05 to be significant predictors of CTRP3 levels when controlling for age in multiple regression analysis.CTRP3 is a beneficial adipokine whose circulating levels are significantly lower in obese individuals. Obesity causes dysregulation in adipokine production, including the down-regulation of CTRP3. Lower CTRP3 levels may contribute to the pathophysiology of metabolic disorders associated with obesity. Optimizing CTRP3 levels through novel therapies may improve obesity and its comorbidities.

  19. Identification of E2F1 as a positive transcriptional regulator for δ-catenin

    International Nuclear Information System (INIS)

    Kim, Kwonseop; Oh, Minsoo; Ki, Hyunkyoung; Wang Tao; Bareiss, Sonja; Fini, M. Elizabeth.; Li Dawei; Lu Qun

    2008-01-01

    δ-Catenin is upregulated in human carcinomas. However, little is known about the potential transcriptional factors that regulate δ-catenin expression in cancer. Using a human δ-catenin reporter system, we have screened several nuclear signaling modulators to test whether they can affect δ-catenin transcription. Among β-catenin/LEF-1, Notch1, and E2F1, E2F1 dramatically increased δ-catenin-luciferase activities while β-catenin/LEF-1 induced only a marginal increase. Rb suppressed the upregulation of δ-catenin-luciferase activities induced by E2F1 but did not interact with δ-catenin. RT-PCR and Western blot analyses in 4 different prostate cancer cell lines revealed that regulation of δ-catenin expression is controlled mainly at the transcriptional level. Interestingly, the effects of E2F1 on δ-catenin expression were observed only in human cancer cells expressing abundant endogenous δ-catenin. These studies identify E2F1 as a positive transcriptional regulator for δ-catenin, but further suggest the presence of strong negative regulator(s) for δ-catenin in prostate cancer cells with minimal endogenous δ-catenin expression

  20. Crystal structure of methyl (S-2-{(R-4-[(tert-butoxycarbonylamino]-3-oxo-1,2-thiazolidin-2-yl}-3-methylbutanoate: a chemical model for oxidized protein tyrosine phosphatase 1B (PTP1B

    Directory of Open Access Journals (Sweden)

    Kasi Viswanatharaju Ruddraraju

    2015-07-01

    Full Text Available The asymmetric unit of the title compound, C14H24N2O5S, contains two independent molecules (A and B. In each molecule, the isothiazolidin-3-one ring adopts an envelope conformation with the methylene C atom as the flap. In the crystal, the A molecules are linked to one another by N—H...O hydrogen bonds, forming columns along [010]. The B molecules are also linked to one another by N—H...O hydrogen bonds, forming columns along the same direction, i.e. [010]. Within the individual columns, there are also C—H...S and C—H...O hydrogen bonds present. The columns of A and B molecules are linked by C—H...O hydrogen bonds, forming sheets parallel to (10-1. The absolute structure was determined by resonant scattering [Flack parameter = 0.00 (3].

  1. 3.3 Å structure of Niemann–Pick C1 protein reveals insights into the function of the C-terminal luminal domain in cholesterol transport

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaochun; Lu, Feiran; Trinh, Michael N.; Schmiege, Philip; Seemann, Joachim; Wang, Jiawei; Blobel, Günter

    2017-08-07

    Niemann–Pick C1 (NPC1) and NPC2 proteins are indispensable for the export of LDL-derived cholesterol from late endosomes. Mutations in these proteins result in Niemann–Pick type C disease, a lysosomal storage disease. Despite recent reports of the NPC1 structure depicting its overall architecture, the function of its C-terminal luminal domain (CTD) remains poorly understood even though 45% of NPC disease-causing mutations are in this domain. Here, we report a crystal structure at 3.3 Å resolution of NPC1* (residues 314–1,278), which—in contrast to previous lower resolution structures—features the entire CTD well resolved. Notably, all eight cysteines of the CTD form four disulfide bonds, one of which (C909–C914) enforces a specific loop that in turn mediates an interaction with a loop of the N-terminal domain (NTD). Importantly, this loop and its interaction with the NTD were not observed in any previous structures due to the lower resolution. Our mutagenesis experiments highlight the physiological relevance of the CTD–NTD interaction, which might function to keep the NTD in the proper orientation for receiving cholesterol from NPC2. Additionally, this structure allows us to more precisely map all of the disease-causing mutations, allowing future molecular insights into the pathogenesis of NPC disease.

  2. Protein Kinase R Degradation Is Essential for Rift Valley Fever Virus Infection and Is Regulated by SKP1-CUL1-F-box (SCF)FBXW11-NSs E3 Ligase.

    Science.gov (United States)

    Mudhasani, Rajini; Tran, Julie P; Retterer, Cary; Kota, Krishna P; Whitehouse, Chris A; Bavari, Sina

    2016-02-01

    Activated protein kinase R (PKR) plays a vital role in antiviral defense primarily by inhibiting protein synthesis and augmenting interferon responses. Many viral proteins have adopted unique strategies to counteract the deleterious effects of PKR. The NSs (Non-structural s) protein which is encoded by Rift Valley fever virus (RVFV) promotes early PKR proteasomal degradation through a previously undefined mechanism. In this study, we demonstrate that NSs carries out this activity by assembling the SCF (SKP1-CUL1-F-box)(FBXW11) E3 ligase. NSs binds to the F-box protein, FBXW11, via the six amino acid sequence DDGFVE called the degron sequence and recruits PKR through an alternate binding site to the SCF(FBXW11) E3 ligase. We further show that disrupting the assembly of the SCF(FBXW11-NSs) E3 ligase with MLN4924 (a small molecule inhibitor of SCF E3 ligase activity) or NSs degron viral mutants or siRNA knockdown of FBXW11 can block PKR degradation. Surprisingly, under these conditions when PKR degradation was blocked, NSs was essential and sufficient to activate PKR causing potent inhibition of RVFV infection by suppressing viral protein synthesis. These antiviral effects were antagonized by the loss of PKR expression or with a NSs deleted mutant virus. Therefore, early PKR activation by disassembly of SCF(FBXW11-NSs) E3 ligase is sufficient to inhibit RVFV infection. Furthermore, FBXW11 and BTRC are the two homologues of the βTrCP (Beta-transducin repeat containing protein) gene that were previously described to be functionally redundant. However, in RVFV infection, among the two homologues of βTrCP, FBXW11 plays a dominant role in PKR degradation and is the limiting factor in the assembly of the SCF(FBXW11) complex. Thus, FBXW11 serves as a master regulator of RVFV infection by promoting PKR degradation. Overall these findings provide new insights into NSs regulation of PKR activity and offer potential opportunities for therapeutic intervention of RVFV infection.

  3. Multidrug resistance-associated protein-1 (MRP1 genetic variants, MRP1 protein levels and severity of COPD

    Directory of Open Access Journals (Sweden)

    Rutgers Bea

    2010-05-01

    Full Text Available Abstract Background Multidrug resistance-associated protein-1 (MRP1 protects against oxidative stress and toxic compounds generated by cigarette smoking, which is the main risk factor for chronic obstructive pulmonary disease (COPD. We have previously shown that single nucleotide polymorphisms (SNPs in MRP1 significantly associate with level of FEV1 in two independent population based cohorts. The aim of our study was to assess the associations of MRP1 SNPs with FEV1 level, MRP1 protein levels and inflammatory markers in bronchial biopsies and sputum of COPD patients. Methods Five SNPs (rs212093, rs4148382, rs504348, rs4781699, rs35621 in MRP1 were genotyped in 110 COPD patients. The effects of MRP1 SNPs were analyzed using linear regression models. Results One SNP, rs212093 was significantly associated with a higher FEV1 level and less airway wall inflammation. Another SNP, rs4148382 was significantly associated with a lower FEV1 level, higher number of inflammatory cells in induced sputum and with a higher MRP1 protein level in bronchial biopsies. Conclusions This is the first study linking MRP1 SNPs with lung function and inflammatory markers in COPD patients, suggesting a role of MRP1 SNPs in the severity of COPD in addition to their association with MRP1 protein level in bronchial biopsies.

  4. Cry1Ab protein from Bt transgenic rice does not residue in rhizosphere soil

    International Nuclear Information System (INIS)

    Wang Haiyan; Ye Qingfu; Wang Wei; Wu Licheng; Wu Weixiang

    2006-01-01

    Expression of Cry1Ab protein in Bt transgenic rice (KMD) and its residue in the rhizosphere soil during the whole growth in field, as well as degradation of the protein from KMD straw in five soils under laboratory incubation were studied. The residue of Cry1Ab protein in KMD rhizosphere soil was undetectable (below the limit of 0.5 ng/g air-dried soil). The Cry1Ab protein contents in the shoot and root of KMD were 3.23-8.22 and 0.68-0.89 μg/g (fresh weight), respectively. The half-lives of the Cry1Ab protein in the soils amended with KMD straw (4%, w/w) ranged from 11.5 to 34.3 d. The residence time of the protein varied significantly in a Fluvio-marine yellow loamy soil amended with KMD straw at the rate of 3, 4 and 7%, with half-lives of 9.9, 13.8 and 18 d, respectively. In addition, an extraction method for Cry1Ab protein in soil was developed, with extraction efficiencies of 46.4-82.3%. - Cry1Ab protein was not detected in the rhizosphere soil of field-grown Bt transgenic rice

  5. Negative Regulation of STAT3 Protein-mediated Cellular Respiration by SIRT1 Protein

    DEFF Research Database (Denmark)

    Bernier, Michel; Paul, Rajib K; Martin-Montalvo, Alejandro

    2011-01-01

    those of wild-type controls. Comparison of profiles of phospho-antibody array data indicated that the deletion of SirT1 was accompanied by constitutive activation of the pro-inflammatory NF-¿B pathway, which is key for STAT3 induction and increased cellular respiration in Sirt1-KO cells. Thus, SIRT1...... cells exhibited higher mitochondrial respiration as compared with wild-type MEFs. Two independent approaches, including ectopic expression of SIRT1 and siRNA-mediated knockdown of STAT3, led to reduction in intracellular ATP levels and increased lactate production in Sirt1-KO cells that were approaching...

  6. Eukaryotic translation initiator protein 1A isoform, CCS-3, enhances the transcriptional repression of p21CIP1 by proto-oncogene FBI-1 (Pokemon/ZBTB7A).

    Science.gov (United States)

    Choi, Won-Il; Kim, Youngsoo; Kim, Yuri; Yu, Mi-young; Park, Jungeun; Lee, Choong-Eun; Jeon, Bu-Nam; Koh, Dong-In; Hur, Man-Wook

    2009-01-01

    FBI-1, a member of the POK (POZ and Kruppel) family of transcription factors, plays a role in differentiation, oncogenesis, and adipogenesis. eEF1A is a eukaryotic translation elongation factor involved in several cellular processes including embryogenesis, oncogenic transformation, cell proliferation, and cytoskeletal organization. CCS-3, a potential cervical cancer suppressor, is an isoform of eEF1A. We found that eEF1A forms a complex with FBI-1 by co-immunoprecipitation, SDS-PAGE, and MALDI-TOF Mass analysis of the immunoprecipitate. GST fusion protein pull-downs showed that FBI-1 directly interacts with eEF1A and CCS-3 via the zinc finger and POZ-domain of FBI-1. FBI-1 co-localizes with either eEF1A or CCS-3 at the nuclear periplasm. CCS-3 enhances transcriptional repression of the p21CIP1 gene (hereafter referred to as p21) by FBI-1. The POZ-domain of FBI-1 interacts with the co-repressors, SMRT and BCoR. We found that CCS-3 also interacts with the co-repressors independently. The molecular interaction between the co-repressors and CCS-3 at the POZ-domain of FBI-1 appears to enhance FBI-1 mediated transcriptional repression. Our data suggest that CCS-3 may be important in cell differentiation, tumorigenesis, and oncogenesis by interacting with the proto-oncogene FBI-1 and transcriptional co-repressors. Copyright 2009 S. Karger AG, Basel.

  7. Effects of SIRT1 gene knock-out via activation of SREBP2 protein-mediated PI3K/AKT signaling on osteoarthritis in mice.

    Science.gov (United States)

    Yu, Fei; Zeng, Hui; Lei, Ming; Xiao, De-Ming; Li, Wei; Yuan, Hao; Lin, Jian-Jing

    2016-10-01

    This study investigated the effects of SIRT1 gene knock-out on osteoarthritis in mice, and the possible roles of SREBP2 protein and the PI3K/AKT signaling pathway in the effects. Mice were randomly divided into a normal group and a SIRT1 gene knock-out group (6 mice in each group). In these groups, one side of the knee anterior cruciate ligament was traversed, and the ipsilateral medial meniscus was cut to establish an osteoarthritis model of knee joint. The countralateral synovial bursa was cut out, serving as controls. The knee joint specimens were then divided into four groups: SIRT1 +/+ control group (group A, n=6); SIRT1 +/+ osteoarthritis group (group B, n=6); SIRT1 -/- control group (group C, n=6); SIRT1 -/- osteoarthritis group (group D, n=6). HE staining, Masson staining, Safranin O-Fast Green staining and Van Gieson staining were used to observe the morphological changes in the articular cartilage of the knee. Immunohistochemical staining was employed to detect the expression of SIRT1, SREBP2, VEGF, AKT, HMGCR and type II collagen proteins. SA-β-gal staining was utilized to evaluate chondrocyte aging. The results showed clear knee joint cartilage destruction and degeneration in the SIRT1 -/- osteoarthritis group. The tidal line was twisted and displaced anteriorly. Type II collagen was destroyed and distributed unevenly. Compared with the SIRT1 +/+ osteoarthritis group and SIRT1 -/- control group, SIRT1 protein expression was not obviously changed in the SIRT1 -/- osteoarthritis group (P>0.05), while the expression levels of the SREBP2, VEGF and HMGCR proteins were significantly increased (Pknock-out may aggravate cartilage degeneration in osteoarthritis by activating the SREBP2 protein-mediated PI3K/AKT signalling pathway, suggesting that SIRT1 gene may play a protective role against osteoarthritis.

  8. Structural and biophysical characterization of the PI4KB:14-3-3 protein complex

    Czech Academy of Sciences Publication Activity Database

    Chalupská, Dominika; Eisenreichová, Andrea; Rozycki, B.; Řežábková, L.; Humpolíčková, Jana; Klíma, Martin; Bouřa, Evžen

    2017-01-01

    Roč. 284, Suppl 1 (2017), s. 191 ISSN 1742-464X. [FEBS Congress /42./ From Molecules to Cells and Back. 10.09.2017-14.09.2017, Jerusalem] Institutional support: RVO:61388963 Keywords : PI4KB * 14-3-3 proteins Subject RIV: CE - Biochemistry

  9. A novel interactive educational system in the operating room--the IE system.

    Science.gov (United States)

    Nakayama, Takayuki; Numao, Noboru; Yoshida, Soichiro; Ishioka, Junichiro; Matsuoka, Yoh; Saito, Kazutaka; Fujii, Yasuhisa; Kihara, Kazunori

    2016-02-02

    The shortage of surgeon is one of the serious problems in Japan. To solve the problem, various efforts have been undertaken to improve surgical education and training. However, appropriate teaching methods in the operating room have not been well established. The aim of this study is to assess the utility of a novel interactive educational (IE) system for surgical education on urologic surgeries in the operating room. A total of 20 Japanese medical students were educated on urologic surgery using the IE system in the operating room. The IE system consists of two parts. The first is three-dimensional (3D) magnified vision of the operative field using a 3D head-mounted display and a 3D endoscope. The second is interactive educative communication between medical students and surgeons using a small-sized wireless communication device. The satisfaction level with the IE system and the physical burden on medical students was examined via questionnaire. All students utilized the IE system in urologic surgery and responded to the survey. Most students were satisfied with the IE system. They also felt more welcomed by the surgeon when using the IE system than when not using it. No major unpleasant symptoms were observed but five students (25 %) experienced mild eye fatigue as a result of viewing the medical images. The IE system has the potential to motivate students to become interested in surgery and could be an efficient method of surgical education in the operating room.

  10. Msp1 Is a Membrane Protein Dislocase for Tail-Anchored Proteins.

    Science.gov (United States)

    Wohlever, Matthew L; Mateja, Agnieszka; McGilvray, Philip T; Day, Kasey J; Keenan, Robert J

    2017-07-20

    Mislocalized tail-anchored (TA) proteins of the outer mitochondrial membrane are cleared by a newly identified quality control pathway involving the conserved eukaryotic protein Msp1 (ATAD1 in humans). Msp1 is a transmembrane AAA-ATPase, but its role in TA protein clearance is not known. Here, using purified components reconstituted into proteoliposomes, we show that Msp1 is both necessary and sufficient to drive the ATP-dependent extraction of TA proteins from the membrane. A crystal structure of the Msp1 cytosolic region modeled into a ring hexamer suggests that active Msp1 contains a conserved membrane-facing surface adjacent to a central pore. Structure-guided mutagenesis of the pore residues shows that they are critical for TA protein extraction in vitro and for functional complementation of an msp1 deletion in yeast. Together, these data provide a molecular framework for Msp1-dependent extraction of mislocalized TA proteins from the outer mitochondrial membrane. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Phosphatidylserine Lateral Organization Influences the Interaction of Influenza Virus Matrix Protein 1 with Lipid Membranes.

    Science.gov (United States)

    Bobone, Sara; Hilsch, Malte; Storm, Julian; Dunsing, Valentin; Herrmann, Andreas; Chiantia, Salvatore

    2017-06-15

    Influenza A virus matrix protein 1 (M1) is an essential component involved in the structural stability of the virus and in the budding of new virions from infected cells. A deeper understanding of the molecular basis of virion formation and the budding process is required in order to devise new therapeutic approaches. We performed a detailed investigation of the interaction between M1 and phosphatidylserine (PS) (i.e., its main binding target at the plasma membrane [PM]), as well as the distribution of PS itself, both in model membranes and in living cells. To this end, we used a combination of techniques, including Förster resonance energy transfer (FRET), confocal microscopy imaging, raster image correlation spectroscopy, and number and brightness (N&B) analysis. Our results show that PS can cluster in segregated regions in the plane of the lipid bilayer, both in model bilayers constituted of PS and phosphatidylcholine and in living cells. The viral protein M1 interacts specifically with PS-enriched domains, and such interaction in turn affects its oligomerization process. Furthermore, M1 can stabilize PS domains, as observed in model membranes. For living cells, the presence of PS clusters is suggested by N&B experiments monitoring the clustering of the PS sensor lactadherin. Also, colocalization between M1 and a fluorescent PS probe suggest that, in infected cells, the matrix protein can specifically bind to the regions of PM in which PS is clustered. Taken together, our observations provide novel evidence regarding the role of PS-rich domains in tuning M1-lipid and M1-M1 interactions at the PM of infected cells. IMPORTANCE Influenza virus particles assemble at the plasma membranes (PM) of infected cells. This process is orchestrated by the matrix protein M1, which interacts with membrane lipids while binding to the other proteins and genetic material of the virus. Despite its importance, the initial step in virus assembly (i.e., M1-lipid interaction) is still

  12. Activation of the PI3K/Akt pathway mediates bone morphogenetic protein 2-induced invasion of pancreatic cancer cells Panc-1.

    Science.gov (United States)

    Chen, Xiong; Liao, Jie; Lu, YeBin; Duan, XiaoHui; Sun, WeiJia

    2011-06-01

    Bone morphogenetic proteins (BMPs) signaling has an emerging role in pancreatic cancer. However, because of the multiple effects of different BMPs, no final conclusions have been made as to the role of BMPs in pancreatic cancer. In our studies, we have focused on bone morphogenetic protein 2(BMP-2) because it induces an epithelial to mesenchymal transition (EMT) and accelerates invasion in the human pancreatic cancer cell line Panc-1. It has been reported that the phosphatidylinositol 3-kinase (PI3K)/Akt pathway mediates invasion of gastric and colon cancer cells, which is unrevealed in pancreatic cancer cells. The objective of our study was to investigate whether BMP-2 mediated invasion might pass through the PI3K/Akt pathway. Our results show that expression of phosphorylation of Akt was increased by treatment with BMP-2, but not Noggin, a BMP-2 antagonist. Then pretreatment of Panc-1 cells with LY294002, an inhibitor of the PI3K/AKT pathway, significantly inhibited BMP-2-induced EMT and invasiveness. The data suggest that BMP-2 accelerates invasion of panc-1 cells via the PI3K/AKT pathway in panc-1 cells, which gives clues to searching new therapy targets in advanced pancreatic cancer.

  13. In vivo binding properties of SH2 domains from GTPase-activating protein and phosphatidylinositol 3-kinase.

    Science.gov (United States)

    Cooper, J A; Kashishian, A

    1993-01-01

    We have used a transient expression system and mutant platelet-derived growth factor (PDGF) receptors to study the binding specificities of the Src homology 2 (SH2) regions of the Ras GTPase-activator protein (GAP) and the p85 alpha subunit of phosphatidylinositol 3-kinase (PI3 kinase). A number of fusion proteins, each tagged with an epitope allowing recognition by a monoclonal antibody, were expressed at levels comparable to those of endogenous GAP. Fusion proteins containing the central SH2-SH3-SH2 region of GAP or the C-terminal region of p85 alpha, which includes two SH2 domains, bound to PDGF receptors in response to PDGF stimulation. Both fusion proteins showed the same requirements for tyrosine phosphorylation sites in the PDGF receptor as the full-length proteins from which they were derived, i.e., binding of the GAP fusion protein was reduced by mutation of Tyr-771, and binding of the p85 fusion protein was reduced by mutation of Tyr-740, Tyr-751, or both residues. Fusion proteins containing single SH2 domains from either GAP or p85 alpha did not bind detectably to PDGF receptors in this system, suggesting that two SH2 domains in a single polypeptide cooperate to raise the affinity of binding. The sequence specificities of individual SH2 domains were deduced from the binding properties of fusion proteins containing one SH2 domain from GAP and another from p85. The results suggest that the C-terminal GAP SH2 domain specifies binding to Tyr-771, the C-terminal p85 alpha SH2 domain binds to either Tyr-740 or Tyr-751, and each protein's N-terminal SH2 domain binds to unidentified phosphorylation sites.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8382774

  14. Tenebrio molitor Gram-negative-binding protein 3 (TmGNBP3) is essential for inducing downstream antifungal Tenecin 1 gene expression against infection with Beauveria bassiana JEF-007.

    Science.gov (United States)

    Yang, Yi-Ting; Lee, Mi Rong; Lee, Se Jin; Kim, Sihyeon; Nai, Yu-Shin; Kim, Jae Su

    2017-05-23

    The Toll signaling pathway is responsible for defense against both Gram-positive bacteria and fungi. Gram-negative binding protein 3 (GNBP3) has a strong affinity for the fungal cell wall component, β-1,3-glucan, which can activate the prophenoloxidase (proPO) cascade and induce the Toll signaling pathway. Myeloid differentiation factor 88 (MyD88) is an intracellular adaptor protein involved in the Toll signaling pathway. In this study, we monitored the response of 5 key genes (TmGNBP3, TmMyD88, and Tenecin 1, 2, and 3) in the Toll pathway of the mealworm Tenebrio molitor immune system against the fungus Beauveria bassiana JEF-007 using RT-PCR. TmGNBP3, Tenecin 1, and Tenecin 2 were significantly upregulated after fungal infection. To better understand the roles of the Toll signaling pathway in the mealworm immune system, TmGNBP3 and TmMyD88 were knocked down by RNAi silencing. Target gene expression levels decreased at 2 d postknockdown and were dramatically reduced at 6 d post-dsRNA injection. Therefore, mealworms were compromised by B. bassiana JEF-007 at 6 d post-dsRNA injection. Silencing of TmMyD88 and TmGNBP3 resulted in reduced resistance of the host to fungal infection. Particularly, reducing TmGNBP3 levels obviously downregulated Tenecin 1 and Tenecin 2 expression levels, whereas silencing TmMyD88 expression resulted in decreased Tenecin 2 expression. These results indicate that TmGNBP3 is essential to induce downstream antifungal peptide Tenecin 1 expression against B. bassiana JEF-007. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  15. Hyperglycemia decreases expression of 14-3-3 proteins in an animal model of stroke.

    Science.gov (United States)

    Jeon, Seong-Jun; Sung, Jin-Hee; Koh, Phil-Ok

    2016-07-28

    Diabetes is a severe metabolic disorder and a major risk factor for stroke. Stroke severity is worse in patients with diabetes compared to the non-diabetic population. The 14-3-3 proteins are a family of conserved acidic proteins that are ubiquitously expressed in cells and tissues. These proteins are involved in many cellular processes including metabolic pathways, signal transduction, protein trafficking, protein synthesis, and cell cycle control. This study investigated 14-3-3 proteins expression in the cerebral cortex of animals with diabetes, cerebral ischemic injury and a combination of both diabetes and cerebral ischemic injury. Diabetes was induced by intraperitoneal injection of streptozotocin (40mg/kg) in adult male rats. After 4 weeks of treatment, middle cerebral artery occlusion (MCAO) was performed for the induction of focal cerebral ischemia and cerebral cortex tissue was collected 24h after MCAO. We confirmed that diabetes increases infarct volume following MCAO compared to non-diabetic animals. In diabetic animals with MCAO injury, reduction of 14-3-3 β/α, 14-3-3 ζ/δ, 14-3-3 γ, and 14-3-3 ε isoforms was detected. The expression of these proteins was significantly decreased in diabetic animals with MCAO injury compared to diabetic-only and MCAO-only animals. Moreover, Western blot analysis ascertained the decreased expression of 14-3-3 family proteins in diabetic animals with MCAO injury, including β/α, ζ/δ, γ, ε, τ, and η isoforms. These results show the changes of 14-3-3 proteins expression in streptozotocin-induced diabetic animals with MCAO injury. Thus, these findings suggest that decreases in 14-3-3 proteins might be involved in the regulation of 14-3-3 proteins under the presence of diabetes following MCAO. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Overexpression of α-catenin increases osteoblastic differentiation in mouse mesenchymal C3H10T1/2 cells

    International Nuclear Information System (INIS)

    Kim, Dohee; Yang, Jae-Yeon; Shin, Chan Soo

    2009-01-01

    α- and β-Catenin link cadherins to the actin-based cytoskeleton at adherens junctions and regulate cell-cell adhesion. Although roles of cadherins and canonical Wnt-/β-catenin-signaling in osteoblastic differentiation have been extensively studied, the role of α-catenin is not known. Murine embryonic mesenchymal stem cells, C3H10T1/2 cells, were transduced with retrovirus encoding α-catenin (MSCV-α-catenin-HA-GFP). In the presence of Wnt-3A conditioned medium or osteogenic medium (β-glycerol phosphate and ascorbic acid), cells overexpressing α-catenin showed enhanced osteoblastic differentiation as measured by alkaline phosphatase (ALP) staining and ALP activity assay compared to cells transduced with empty virus (MSCV-GFP). In addition, mRNA expression of osteocalcin and Runx2 was significantly increased compared to control. Cell aggregation assay revealed that α-catenin overexpression has significantly increased cell-cell aggregation. However, cellular β-catenin levels (total, cytoplasmic-nuclear ratio) and β-catenin-TCF/LEF transcriptional activity did not change by overexpression of α-catenin. Knock-down of α-catenin using siRNA decreased osteoblastic differentiation as measured by ALP assay. These results suggest that α-catenin overexpression increases osteoblastic differentiation by increasing cell-cell adhesion rather than Wnt-/β-catenin-signaling.

  17. Ethacrynic acid exhibits selective toxicity to chronic lymphocytic leukemia cells by inhibition of the Wnt/beta-catenin pathway.

    Directory of Open Access Journals (Sweden)

    Desheng Lu

    Full Text Available BACKGROUND: Aberrant activation of Wnt/beta-catenin signaling promotes the development of several cancers. It has been demonstrated that the Wnt signaling pathway is activated in chronic lymphocytic leukemia (CLL cells, and that uncontrolled Wnt/beta-catenin signaling may contribute to the defect in apoptosis that characterizes this malignancy. Thus, the Wnt signaling pathway is an attractive candidate for developing targeted therapies for CLL. METHODOLOGY/PRINCIPAL FINDINGS: The diuretic agent ethacrynic acid (EA was identified as a Wnt inhibitor using a cell-based Wnt reporter assay. In vitro assays further confirmed the inhibitory effect of EA on Wnt/beta-catenin signaling. Cell viability assays showed that EA selectively induced cell death in primary CLL cells. Exposure of CLL cells to EA decreased the expression of Wnt/beta-catenin target genes, including LEF-1, cyclin D1 and fibronectin. Immune co-precipitation experiments demonstrated that EA could directly bind to LEF-1 protein and destabilize the LEF-1/beta-catenin complex. N-acetyl-L-cysteine (NAC, which can react with the alpha, beta-unsaturated ketone in EA, but not other anti-oxidants, prevented the drug's inhibition of Wnt/beta-catenin activation and its ability to induce apoptosis in CLL cells. CONCLUSIONS/SIGNIFICANCE: Our studies indicate that EA selectively suppresses CLL survival due to inhibition of Wnt/beta-catenin signaling. Antagonizing Wnt signaling in CLL with EA or related drugs may represent an effective treatment of this disease.

  18. Discovery of the 3-Imino-1,2,4-thiadiazinane 1,1-Dioxide Derivative Verubecestat (MK-8931)–A β-Site Amyloid Precursor Protein Cleaving Enzyme 1 Inhibitor for the Treatment of Alzheimer’s Disease

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Jack D.; Li, Sarah W.; Brunskill, Andrew P.J.; Chen, Xia; Cox, Kathleen; Cumming, Jared N.; Forman, Mark; Gilbert, Eric J.; Hodgson, Robert A.; Hyde, Lynn A.; Jiang, Qin; Iserloh, Ulrich; Kazakevich, Irina; Kuvelkar, Reshma; Mei, Hong; Meredith, John; Misiaszek, Jeffrey; Orth, Peter; Rossiter, Lana M.; Slater, Meagan; Stone, Julie; Strickland, Corey O.; Voigt, Johannes H.; Wang, Ganfeng; Wang, Hongwu; Wu, Yusheng; Greenlee, William J.; Parker, Eric M.; Kennedy, Matthew E.; Stamford, Andrew W. (Merck)

    2016-12-08

    Verubecestat 3 (MK-8931), a diaryl amide-substituted 3-imino-1,2,4-thiadiazinane 1,1-dioxide derivative, is a high-affinity β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitor currently undergoing Phase 3 clinical evaluation for the treatment of mild to moderate and prodromal Alzheimer’s disease. Although not selective over the closely related aspartyl protease BACE2, verubecestat has high selectivity for BACE1 over other key aspartyl proteases, notably cathepsin D, and profoundly lowers CSF and brain Aβ levels in rats and nonhuman primates and CSF Aβ levels in humans. In this annotation, we describe the discovery of 3, including design, validation, and selected SAR around the novel iminothiadiazinane dioxide core as well as aspects of its preclinical and Phase 1 clinical characterization.

  19. Plant plasma membrane 14-3-3 proteins differ in solubility and form fusicoccin-dependent complexes

    NARCIS (Netherlands)

    Korthout, H.A.A.J.; de Boer, A.H.

    1998-01-01

    The binding protein for the phytotoxin fusicoccin belongs to the class of highly conserved 14-3-3 proteins. A general principle for the mode of action of 14-3-3 proteins is that they serve as docking clamps in order to facilitate protein interactions. This implies that 14-3-3 proteins may behave

  20. IBR5 Modulates Temperature-Dependent, R Protein CHS3-Mediated Defense Responses in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jingyan Liu

    2015-10-01

    Full Text Available Plant responses to low temperature are tightly associated with defense responses. We previously characterized the chilling-sensitive mutant chs3-1 resulting from the activation of the Toll and interleukin 1 receptor-nucleotide binding-leucine-rich repeat (TIR-NB-LRR-type resistance (R protein harboring a C-terminal LIM (Lin-11, Isl-1 and Mec-3 domains domain. Here we report the identification of a suppressor of chs3, ibr5-7 (indole-3-butyric acid response 5, which largely suppresses chilling-activated defense responses. IBR5 encodes a putative dual-specificity protein phosphatase. The accumulation of CHS3 protein at chilling temperatures is inhibited by the IBR5 mutation. Moreover, chs3-conferred defense phenotypes were synergistically suppressed by mutations in HSP90 and IBR5. Further analysis showed that IBR5, with holdase activity, physically associates with CHS3, HSP90 and SGT1b (Suppressor of the G2 allele of skp1 to form a complex that protects CHS3. In addition to the positive role of IBR5 in regulating CHS3, IBR5 is also involved in defense responses mediated by R genes, including SNC1 (Suppressor of npr1-1, Constitutive 1, RPS4 (Resistance to P. syringae 4 and RPM1 (Resistance to Pseudomonas syringae pv. maculicola 1. Thus, the results of the present study reveal a role for IBR5 in the regulation of multiple R protein-mediated defense responses.

  1. Influenza A H3N2 subtype virus NS1 protein targets into the nucleus and binds primarily via its C-terminal NLS2/NoLS to nucleolin and fibrillarin

    Science.gov (United States)

    2012-01-01

    Background Influenza A virus non-structural protein 1 (NS1) is a virulence factor, which is targeted into the cell cytoplasm, nucleus and nucleolus. NS1 is a multi-functional protein that inhibits host cell pre-mRNA processing and counteracts host cell antiviral responses. Previously, we have shown that the NS1 protein of the H3N2 subtype influenza viruses possesses a C-terminal nuclear localization signal (NLS) that also functions as a nucleolar localization signal (NoLS) and targets the protein into the nucleolus. Results Here, we show that the NS1 protein of the human H3N2 virus subtype interacts in vitro primarily via its C-terminal NLS2/NoLS and to a minor extent via its N-terminal NLS1 with the nucleolar proteins, nucleolin and fibrillarin. Using chimeric green fluorescence protein (GFP)-NS1 fusion constructs, we show that the nucleolar retention of the NS1 protein is determined by its C-terminal NLS2/NoLS in vivo. Confocal laser microscopy analysis shows that the NS1 protein colocalizes with nucleolin in nucleoplasm and nucleolus and with B23 and fibrillarin in the nucleolus of influenza A/Udorn/72 virus-infected A549 cells. Since some viral proteins contain NoLSs, it is likely that viruses have evolved specific nucleolar functions. Conclusion NS1 protein of the human H3N2 virus interacts primarily via the C-terminal NLS2/NoLS and to a minor extent via the N-terminal NLS1 with the main nucleolar proteins, nucleolin, B23 and fibrillarin. PMID:22909121

  2. Solution structure of a Plasmodium falciparum AMA-1/MSP 1 chimeric protein vaccine candidate (PfCP-2.9 for malaria

    Directory of Open Access Journals (Sweden)

    Jin Changwen

    2010-03-01

    Full Text Available Abstract Background The Plasmodium falciparum chimeric protein PfCP-2.9 is a promising asexual-stage malaria vaccine evaluated in clinical trials. This chimeric protein consists of two cysteine-rich domains: domain III of the apical membrane antigen 1 (AMA-1 [III] and the C-terminal region of the merozoite surface protein 1 (MSP1-19. It has been reported that the fusion of these two antigens enhanced their immunogenicity and antibody-mediated inhibition of parasite growth in vitro. Methods The 15N-labeled and 13C/15N-labeled PfCP-2.9 was produced in Pichia pastoris for nuclear magnetic resonance (NMR structure analysis. The chemical shift assignments of PfCP-2.9 were compared with those previously reported for the individual domains (i.e., PfAMA-1(III or PfMSP 1-19. The two-dimensional spectra and transverse relaxation rates (R2 of the PfMSP1-19 alone were compared with that of the PfCP-2.9. Results Confident backbone assignments were obtained for 122 out of 241 residues of PfCP-2.9. The assigned residues in PfCP-2.9 were very similar to those previously reported for the individual domains. The conformation of the PfMSP1-19 in different constructs is essentially the same. Comparison of transverse relaxation rates (R2 strongly suggests no weak interaction between the domains. Conclusions These data indicate that the fusion of AMA-1(III and MSP1-19 as chimeric protein did not change their structures, supporting the use of the chimeric protein as a potential malaria vaccine.

  3. Increasing the inspiratory time and I:E ratio during mechanical ventilation aggravates ventilator-induced lung injury in mice.

    Science.gov (United States)

    Müller-Redetzky, Holger C; Felten, Matthias; Hellwig, Katharina; Wienhold, Sandra-Maria; Naujoks, Jan; Opitz, Bastian; Kershaw, Olivia; Gruber, Achim D; Suttorp, Norbert; Witzenrath, Martin

    2015-01-28

    Lung-protective ventilation reduced acute respiratory distress syndrome (ARDS) mortality. To minimize ventilator-induced lung injury (VILI), tidal volume is limited, high plateau pressures are avoided, and positive end-expiratory pressure (PEEP) is applied. However, the impact of specific ventilatory patterns on VILI is not well defined. Increasing inspiratory time and thereby the inspiratory/expiratory ratio (I:E ratio) may improve oxygenation, but may also be harmful as the absolute stress and strain over time increase. We thus hypothesized that increasing inspiratory time and I:E ratio aggravates VILI. VILI was induced in mice by high tidal-volume ventilation (HVT 34 ml/kg). Low tidal-volume ventilation (LVT 9 ml/kg) was used in control groups. PEEP was set to 2 cm H2O, FiO2 was 0.5 in all groups. HVT and LVT mice were ventilated with either I:E of 1:2 (LVT 1:2, HVT 1:2) or 1:1 (LVT 1:1, HVT 1:1) for 4 hours or until an alternative end point, defined as mean arterial blood pressure below 40 mm Hg. Dynamic hyperinflation due to the increased I:E ratio was excluded in a separate group of animals. Survival, lung compliance, oxygenation, pulmonary permeability, markers of pulmonary and systemic inflammation (leukocyte differentiation in lung and blood, analyses of pulmonary interleukin-6, interleukin-1β, keratinocyte-derived chemokine, monocyte chemoattractant protein-1), and histopathologic pulmonary changes were analyzed. LVT 1:2 or LVT 1:1 did not result in VILI, and all individuals survived the ventilation period. HVT 1:2 decreased lung compliance, increased pulmonary neutrophils and cytokine expression, and evoked marked histologic signs of lung injury. All animals survived. HVT 1:1 caused further significant worsening of oxygenation, compliance and increased pulmonary proinflammatory cytokine expression, and pulmonary and blood neutrophils. In the HVT 1:1 group, significant mortality during mechanical ventilation was observed. According to the "baby lung

  4. Mutations in type 3 reovirus that determine binding to sialic acid are contained in the fibrous tail domain of viral attachment protein sigma1.

    Science.gov (United States)

    Chappell, J D; Gunn, V L; Wetzel, J D; Baer, G S; Dermody, T S

    1997-03-01

    The reovirus attachment protein, sigma1, determines numerous aspects of reovirus-induced disease, including viral virulence, pathways of spread, and tropism for certain types of cells in the central nervous system. The sigma1 protein projects from the virion surface and consists of two distinct morphologic domains, a virion-distal globular domain known as the head and an elongated fibrous domain, termed the tail, which is anchored into the virion capsid. To better understand structure-function relationships of sigma1 protein, we conducted experiments to identify sequences in sigma1 important for viral binding to sialic acid, a component of the receptor for type 3 reovirus. Three serotype 3 reovirus strains incapable of binding sialylated receptors were adapted to growth in murine erythroleukemia (MEL) cells, in which sialic acid is essential for reovirus infectivity. MEL-adapted (MA) mutant viruses isolated by serial passage in MEL cells acquired the capacity to bind sialic acid-containing receptors and demonstrated a dependence on sialic acid for infection of MEL cells. Analysis of reassortant viruses isolated from crosses of an MA mutant virus and a reovirus strain that does not bind sialic acid indicated that the sigma1 protein is solely responsible for efficient growth of MA mutant viruses in MEL cells. The deduced sigma1 amino acid sequences of the MA mutant viruses revealed that each strain contains a substitution within a short region of sequence in the sigma1 tail predicted to form beta-sheet. These studies identify specific sequences that determine the capacity of reovirus to bind sialylated receptors and suggest a location for a sialic acid-binding domain. Furthermore, the results support a model in which type 3 sigma1 protein contains discrete receptor binding domains, one in the head and another in the tail that binds sialic acid.

  5. A constraint logic programming approach to associate 1D and 3D structural components for large protein complexes.

    Science.gov (United States)

    Dal Palù, Alessandro; Pontelli, Enrico; He, Jing; Lu, Yonggang

    2007-01-01

    The paper describes a novel framework, constructed using Constraint Logic Programming (CLP) and parallelism, to determine the association between parts of the primary sequence of a protein and alpha-helices extracted from 3D low-resolution descriptions of large protein complexes. The association is determined by extracting constraints from the 3D information, regarding length, relative position and connectivity of helices, and solving these constraints with the guidance of a secondary structure prediction algorithm. Parallelism is employed to enhance performance on large proteins. The framework provides a fast, inexpensive alternative to determine the exact tertiary structure of unknown proteins.

  6. Macrophage inflammatory protein-1alpha: a link between innate immunity and familial Mediterranean fever?

    Science.gov (United States)

    Dizdar, Omer; Kalyoncu, Umut; Karadag, Omer; Akdogan, Ali; Kiraz, Sedat; Ertenli, Ihsan; Barista, Ibrahim; Calguneri, Meral

    2007-01-01

    The aim of this study is to investigate the relationship between chemokines and the inflammation in Familial Mediterranean Fever (FMF). Forty-nine patients with FMF (41 in remission and 8 in acute attack period) and 20 healthy controls were included in the study. Serum levels of macrophage inflammatory protein-1alpha (MIP-1alpha) were assessed in the patients and the controls, along with other parameters of disease activity, i.e., fibrinogen, C-reactive protein and erythrocyte sedimentation rate. Serum MIP-1alpha levels of the patients with FMF in acute attack period were significantly higher than the patients in remission and healthy controls (p=0.02 and p=0.038, respectively). MIP-1alpha levels were weakly correlated with CRP (r=0.32, p=0.032) levels. MIP-1alpha may have a role in the pathogenesis of FMF attacks. MIP-1alpha and other chemokines may constitute a link between the innate immune system and FMF.

  7. Human kidney anion exchanger 1 interacts with adaptor-related protein complex 1 μ1A (AP-1 mu1A)

    International Nuclear Information System (INIS)

    Sawasdee, Nunghathai; Junking, Mutita; Ngaojanlar, Piengpaga; Sukomon, Nattakan; Ungsupravate, Duangporn; Limjindaporn, Thawornchai; Akkarapatumwong, Varaporn; Noisakran, Sansanee; Yenchitsomanus, Pa-thai

    2010-01-01

    Research highlights: → Trafficking defect of kAE1 is a cause of dRTA but trafficking pathway of kAE1 has not been clearly described. → Adaptor-related protein complex 1 μ1A (AP-1 mu1A) was firstly reported to interact with kAE1. → The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. → AP-1 mu1A knockdown showed a marked reduction of kAE1 on the cell membrane and its accumulation in endoplasmic reticulum. → AP-1 mu1A has a critical role in kAE1 trafficking to the plasma membrane. -- Abstract: Kidney anion exchanger 1 (kAE1) mediates chloride (Cl - ) and bicarbonate (HCO 3 - ) exchange at the basolateral membrane of kidney α-intercalated cells. Impaired trafficking of kAE1 leads to defect of the Cl - /HCO 3 - exchange at the basolateral membrane and failure of proton (H + ) secretion at the apical membrane, causing a kidney disease - distal renal tubular acidosis (dRTA). To gain a better insight into kAE1 trafficking, we searched for proteins physically interacting with the C-terminal region of kAE1 (Ct-kAE1), which contains motifs crucial for intracellular trafficking, by a yeast two-hybrid (Y2H) system. An adaptor-related protein complex 1 μ1A (AP-1 mu1A) subunit was found to interact with Ct-kAE1. The interaction between either Ct-kAE1 or full-length kAE1 and AP-1 mu1A were confirmed in human embryonic kidney (HEK) 293T by co-immunoprecipitation, affinity co-purification, co-localization, yellow fluorescent protein (YFP)-based protein fragment complementation assay (PCA) and GST pull-down assay. The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. Interestingly, suppression of endogenous AP-1 mu1A in HEK 293T by small interfering RNA (siRNA) decreased membrane localization of kAE1 and increased its intracellular accumulation, suggesting for the first time that AP-1 mu1A is involved in the kAE1 trafficking of kidney α-intercalated cells.

  8. Human kidney anion exchanger 1 interacts with adaptor-related protein complex 1 {mu}1A (AP-1 mu1A)

    Energy Technology Data Exchange (ETDEWEB)

    Sawasdee, Nunghathai; Junking, Mutita [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Ngaojanlar, Piengpaga [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Department of Immunology and Graduate Program in Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Sukomon, Nattakan; Ungsupravate, Duangporn [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Limjindaporn, Thawornchai [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Akkarapatumwong, Varaporn [Institute of Molecular Biosciences, Mahidol University at Salaya Campus, Nakorn Pathom 73170 (Thailand); Noisakran, Sansanee [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Yenchitsomanus, Pa-thai, E-mail: grpye@mahidol.ac.th [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand)

    2010-10-08

    Research highlights: {yields} Trafficking defect of kAE1 is a cause of dRTA but trafficking pathway of kAE1 has not been clearly described. {yields} Adaptor-related protein complex 1 {mu}1A (AP-1 mu1A) was firstly reported to interact with kAE1. {yields} The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. {yields} AP-1 mu1A knockdown showed a marked reduction of kAE1 on the cell membrane and its accumulation in endoplasmic reticulum. {yields} AP-1 mu1A has a critical role in kAE1 trafficking to the plasma membrane. -- Abstract: Kidney anion exchanger 1 (kAE1) mediates chloride (Cl{sup -}) and bicarbonate (HCO{sub 3}{sup -}) exchange at the basolateral membrane of kidney {alpha}-intercalated cells. Impaired trafficking of kAE1 leads to defect of the Cl{sup -}/HCO{sub 3}{sup -} exchange at the basolateral membrane and failure of proton (H{sup +}) secretion at the apical membrane, causing a kidney disease - distal renal tubular acidosis (dRTA). To gain a better insight into kAE1 trafficking, we searched for proteins physically interacting with the C-terminal region of kAE1 (Ct-kAE1), which contains motifs crucial for intracellular trafficking, by a yeast two-hybrid (Y2H) system. An adaptor-related protein complex 1 {mu}1A (AP-1 mu1A) subunit was found to interact with Ct-kAE1. The interaction between either Ct-kAE1 or full-length kAE1 and AP-1 mu1A were confirmed in human embryonic kidney (HEK) 293T by co-immunoprecipitation, affinity co-purification, co-localization, yellow fluorescent protein (YFP)-based protein fragment complementation assay (PCA) and GST pull-down assay. The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. Interestingly, suppression of endogenous AP-1 mu1A in HEK 293T by small interfering RNA (siRNA) decreased membrane localization of kAE1 and increased its intracellular accumulation, suggesting for the first time that AP-1 mu1A is involved in the kAE1

  9. D IE NEDERLANDSEGELOOFSBEL YDEN IS ASS IM BOL IE SEGE ...

    African Journals Online (AJOL)

    Test

    M aar aan die ander kant, as dit vir U blyk dat ons onskuldig is, wees ons dan n steun en n toevlug teen die geweld van onse vyande. W ant helaas, genadigste Heer, as mens alleen maar kan beskuldig terwyl aan die beskuldigde elke weg en middel van verdediging ontneem word, wie sal dan regverdig bevind word? W ie.

  10. Insulin-like growth factor binding protein-3 induces angiogenesis through IGF-I- and SphK1-dependent mechanisms.

    Science.gov (United States)

    Granata, R; Trovato, L; Lupia, E; Sala, G; Settanni, F; Camussi, G; Ghidoni, R; Ghigo, E

    2007-04-01

    Angiogenesis is critical for development and repair, and is a prominent feature of many pathological conditions. Based on evidence that insulin-like growth factor binding protein (IGFBP)-3 enhances cell motility and activates sphingosine kinase (SphK) in human endothelial cells, we have investigated whether IGFBP-3 plays a role in promoting angiogenesis. IGFBP-3 potently induced network formation by human endothelial cells on Matrigel. Moreover, it up-regulated proangiogenic genes, such as vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMP)-2 and -9. IGFBP-3 even induced membrane-type 1 MMP (MT1-MMP), which regulates MMP-2 activation. Decreasing SphK1 expression by small interfering RNA (siRNA), blocked IGFBP-3-induced network formation and inhibited VEGF, MT1-MMP but not IGF-I up-regulation. IGF-I activated SphK, leading to sphingosine-1-phosphate (S1P) formation. The IGF-I effect on SphK activity was blocked by specific inhibitors of IGF-IR, PI3K/Akt and ERK1/2 phosphorylation. The disruption of IGF-I signaling prevented the IGFBP-3 effect on tube formation, SphK activity and VEGF release. Blocking ERK1/2 signaling caused the loss of SphK activation and VEGF and IGF-I up-regulation. Finally, IGFBP-3 dose-dependently stimulated neovessel formation into subcutaneous implants of Matrigel in vivo. Thus, IGFBP-3 positively regulates angiogenesis through involvement of IGF-IR signaling and subsequent SphK/S1P activation.

  11. The RecJ2 protein in the thermophilic archaeon Thermoplasma acidophilum is a 3'-5' exonuclease that associates with a DNA replication complex.

    Science.gov (United States)

    Ogino, Hiromi; Ishino, Sonoko; Kohda, Daisuke; Ishino, Yoshizumi

    2017-05-12

    RecJ/cell division cycle 45 (Cdc45) proteins are widely conserved in the three domains of life, i.e. in bacteria, Eukarya, and Archaea. Bacterial RecJ is a 5'-3' exonuclease and functions in DNA repair pathways by using its 5'-3' exonuclease activity. Eukaryotic Cdc45 has no identified enzymatic activity but participates in the CMG complex, so named because it is composed of Cdc45, minichromosome maintenance protein complex (MCM) proteins 2-7, and GINS complex proteins (Sld5, Psf11-3). Eukaryotic Cdc45 and bacterial/archaeal RecJ share similar amino acid sequences and are considered functional counterparts. In Archaea, a RecJ homolog in Thermococcus kodakarensis was shown to associate with GINS and accelerate its nuclease activity and was, therefore, designated GAN ( G INS- a ssociated n uclease); however, to date, no archaeal RecJ·MCM·GINS complex has been isolated. The thermophilic archaeon Thermoplasma acidophilum has two RecJ-like proteins, designated TaRecJ1 and TaRecJ2. TaRecJ1 exhibited DNA-specific 5'-3' exonuclease activity, whereas TaRecJ2 had 3'-5' exonuclease activity and preferred RNA over DNA. TaRecJ2, but not TaRecJ1, formed a stable complex with TaGINS in a 2:1 molar ratio. Furthermore, the TaRecJ2·TaGINS complex stimulated activity of TaMCM ( T. acidophilum MCM) helicase in vitro , and the TaRecJ2·TaMCM·TaGINS complex was also observed in vivo However, TaRecJ2 did not interact with TaMCM directly and was not required for the helicase activation in vitro These findings suggest that the function of archaeal RecJ in DNA replication evolved divergently from Cdc45 despite conservation of the CMG-like complex formation between Archaea and Eukarya. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Lipoprotein(a) and dietary proteins: casein lowers lipoprotein(a) concentrations as compared with soy protein1-3

    DEFF Research Database (Denmark)

    Nilausen, Karin Johanne; Meinertz, H.

    1999-01-01

    Lipoprotein(a), plasma lipoproteins, dietary proteins, soy protein, casein, liquid-formula, coronary artery disease, men, Denmark......Lipoprotein(a), plasma lipoproteins, dietary proteins, soy protein, casein, liquid-formula, coronary artery disease, men, Denmark...

  13. Establishment of a Wheat Cell-Free Synthesized Protein Array Containing 250 Human and Mouse E3 Ubiquitin Ligases to Identify Novel Interaction between E3 Ligases and Substrate Proteins.

    Directory of Open Access Journals (Sweden)

    Hirotaka Takahashi

    Full Text Available Ubiquitination is a key post-translational modification in the regulation of numerous biological processes in eukaryotes. The primary roles of ubiquitination are thought to be the triggering of protein degradation and the regulation of signal transduction. During protein ubiquitination, substrate specificity is mainly determined by E3 ubiquitin ligase (E3. Although more than 600 genes in the human genome encode E3, the E3s of many target proteins remain unidentified owing to E3 diversity and the instability of ubiquitinated proteins in cell. We demonstrate herein a novel biochemical analysis for the identification of E3s targeting specific proteins. Using wheat cell-free protein synthesis system, a protein array containing 227 human and 23 mouse recombinant E3s was synthesized. To establish the high-throughput binding assay using AlphaScreen technology, we selected MDM2 and p53 as the model combination of E3 and its target protein. The AlphaScreen assay specifically detected the binding of p53 and MDM2 in a crude translation mixture. Then, a comprehensive binding assay using the E3 protein array was performed. Eleven of the E3s showed high binding activity, including four previously reported E3s (e.g., MDM2, MDM4, and WWP1 targeting p53. This result demonstrated the reliability of the assay. Another interactors, RNF6 and DZIP3-which there have been no report to bind p53-were found to ubiquitinate p53 in vitro. Further analysis showed that RNF6 decreased the amount of p53 in H1299 cells in E3 activity-dependent manner. These results suggest the possibility that the RNF6 ubiquitinates and degrades p53 in cells. The novel in vitro screening system established herein is a powerful tool for finding novel E3s of a target protein.

  14. Nuclear localization of CPI-17, a protein phosphatase-1 inhibitor protein, affects histone H3 phosphorylation and corresponds to proliferation of cancer and smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Masumi, E-mail: masumi.eto@jefferson.edu [Department of Molecular Physiology and Biophysics, and Kimmel Cancer Center, Thomas Jefferson University, 1020 Locust Street, PA 19107 (United States); Kirkbride, Jason A.; Chugh, Rishika; Karikari, Nana Kofi [Department of Molecular Physiology and Biophysics, and Kimmel Cancer Center, Thomas Jefferson University, 1020 Locust Street, PA 19107 (United States); Kim, Jee In [Department of Molecular Physiology and Biophysics, and Kimmel Cancer Center, Thomas Jefferson University, 1020 Locust Street, PA 19107 (United States); Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu 700-422 (Korea, Republic of)

    2013-04-26

    Highlights: •Non-canonical roles of the myosin phosphatase inhibitor (CPI-17) were studied. •CPI-17 is localized in the nucleus of hyperplastic cancer and smooth muscle cells. •CPI-17 Ser12 phosphorylation may regulate the nuclear import. •CPI-17 regulates histone H3 phosphorylation and cell proliferation. •The nuclear CPI-17-PP1 axis plays a proliferative role in cells. -- Abstract: CPI-17 (C-kinase-activated protein phosphatase-1 (PP1) inhibitor, 17 kDa) is a cytoplasmic protein predominantly expressed in mature smooth muscle (SM) that regulates the myosin-associated PP1 holoenzyme (MLCP). Here, we show CPI-17 expression in proliferating cells, such as pancreatic cancer and hyperplastic SM cells. Immunofluorescence showed that CPI-17 was concentrated in nuclei of human pancreatic cancer (Panc1) cells. Nuclear accumulation of CPI-17 was also detected in the proliferating vascular SM cell culture and cells at neointima of rat vascular injury model. The N-terminal 21-residue tail domain of CPI-17 was necessary for the nuclear localization. Phospho-mimetic Asp-substitution of CPI-17 at Ser12 attenuated the nuclear import. CPI-17 phosphorylated at Ser12 was not localized at nuclei, suggesting a suppressive role of Ser12 phosphorylation in the nuclear import. Activated CPI-17 bound to all three isoforms of PP1 catalytic subunit in Panc1 nuclear extracts. CPI-17 knockdown in Panc1 resulted in dephosphorylation of histone H3 at Thr3, Ser10 and Thr11, whereas it had no effects on the phosphorylation of myosin light chain and merlin, the known targets of MLCP. In parallel, CPI-17 knockdown suppressed Panc1 proliferation. We propose that CPI-17 accumulated in the nucleus through the N-terminal tail targets multiple PP1 signaling pathways regulating cell proliferation.

  15. Geophysical and Geotechnical Characterization of Beta-1,3/1,6-glucan Biopolymer treated Soil

    Science.gov (United States)

    Chang, I.; Cho, G.

    2012-12-01

    Bacteria or microbes in soil excrete hydrocarbon (e.g. polysaccharide) by-products which are called biopolymers. These biopolymers (or sometime biofilms) recently begun to make a mark on soil erosion control, aggregate stabilization, and drilling enhancement. However, the biological effect on soil behavior (e.g. bio-clogging or bio-cementation) has been poorly understood. In this study, the bio-cementation and bio-clogging effect induced by the existence of β-1,3/1,6-glucan biopolymers in soil were evaluated through a series of geophysical and geotechnical characterization tests in laboratory. According to the experimental test results, as the β-1,3/1,6-glucan content in soil increases, the compressive strength and shear wave velocity increase (i.e., bio-cementation) while the hydraulic conductivity decreases (i.e., bio-clogging) but the electrical conductivity increases due to the high electrical conductivity characteristic of β-1,3/1,6-glucan fibers. Coefficient of consolidation variation with the increases of β-1,3/1,6-glucan content in soil. SEM image of β-1,3/1,6-glucan treated soil. Fibers are form matices with soil particles.

  16. Transgenic rice plants expressing a fused protein of Cry1Ab/Vip3H has resistance to rice stem borers under laboratory and field conditions.

    Science.gov (United States)

    Chen, Yang; Tian, Jun-Ce; Shen, Zhi-Chen; Peng, Yu-Fa; Hu, Cui; Guo, Yu-Yuan; Ye, Gong-Yin

    2010-08-01

    Six transgenic rice, Oryza sativa L., lines (G6H1, G6H2, G6H3, G6H4, G6H5, and G6H6) expressing a fused Cry1Ab/Vip3H protein, were evaluated for resistance against the Asiatic rice borer, Chilo suppressalis (Walker) (Lepidoptera: Crambidae), and the stem borer Sesamia inferens (Walker) (Lepidoptera: Noctuidae) in the laboratory and field. The bioassay results indicated that the mortality of Asiatic rice borer and S. inferens neonate larvae on six transgenic lines from seedling to filling stage was up to 100% at 168 h after infestation. The cumulative feeding area by Asiatic rice borer neonate larvae on all transgenic lines was significantly reduced compared with the untransformed parental 'Xiushui 110' rice. A 2-yr field evaluation showed that damage during the vegetative stage (deadheart) or during the reproductive stage (whitehead) caused by Asiatic rice borer and S. inferens for transgenic lines was much lower than the control. For three lines (G6H1, G6H2, and G6H6), no damage was found during the entire growing period. Estimation of fused Cry1Ab/Vip3H protein concentrations using PathoScreen kit for Bt-Cry1Ab/1Ac protein indicated that the expression levels of Cry1Ab protein both in main stems (within the average range of 0.006-0.073% of total soluble protein) and their flag leaves (within the average range of 0.001-0.038% of total soluble protein) were significantly different among six transgenic lines at different developmental stages. Both laboratory and field researches suggested that the transgenic rice lines have considerable potential for protecting rice from attack by both stem borers.

  17. Heme Oxygenase-1 Induction by Carbon Monoxide Releasing Molecule-3 Suppresses Interleukin-1β-Mediated Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Chih-Chung Lin

    2017-11-01

    Full Text Available Neurodegenerative disorders and brain damage are initiated by excessive production of reactive oxygen species (ROS, which leads to tissue injury, cellular death and inflammation. In cellular anti-oxidant systems, heme oxygenase-1 (HO-1 is an oxidative-sensor protein induced by ROS generation or carbon monoxide (CO release. CO releasing molecules (CORMs, including CORM-3, exert anti-oxidant and anti-inflammatory effects. However, the molecular mechanisms of CORM-3-induced HO-1 expression and protection against interleukin (IL-1β-induced inflammatory responses have not been fully elucidated in rat brain astrocytes (RBA-1. To study the regulation of CORM-3-induced HO-1 expression, signaling pathways, promoter activity, mRNA and protein expression were assessed following treatment with pharmacological inhibitors and gene-specific siRNA knockdown. We found that CORM-3 mediated HO-1 induction via transcritional and translational processes. Furthermore, CORM-3-induced HO-1 expression was mediated by phosphorylation of several protein kinases, such as c-Src, Pyk2, protein kinase Cα (PKCα and p42/p44 mitogen-activated protein kinase (MAPK, which were inhibited by respective pharmacological inhibitors or by gene-specific knockdown with siRNA transfections. Next, we found that CORM-3 sequentially activated the c-Src/Pyk2/PKCα/p42/p44 MAPK pathway, thereby up-regulating mRNA for the activator protein (AP-1 components c-Jun and c-Fos; these effects were attenuated by an AP-1 inhibitor (Tanshinone IIA; TSIIA and other relevant inhibitors. Moreover, CORM-3-induced upregulation of HO-1 attenuated the IL-1β-induced cell migration and matrix metallopeptidase-9 mRNA expression in RBA-1 cells. These effects were reversed by an matrix metalloproteinase (MMP2/9 inhibitor or by transfection with HO-1 siRNA.

  18. The expression of selenium-binding protein 1 is decreased in uterine leiomyoma

    Directory of Open Access Journals (Sweden)

    Quddus M Ruhul

    2010-12-01

    Full Text Available Abstract Background Selenium has been shown to inhibit cancer development and growth through the mediation of selenium-binding proteins. Decreased expression of selenium-binding protein 1 has been reported in cancers of the prostate, stomach, colon, and lungs. No information, however, is available concerning the roles of selenium-binding protein 1 in uterine leiomyoma. Methods Using Western Blot analysis and immunohistochemistry, we examined the expression of selenium-binding protein 1 in uterine leiomyoma and normal myometrium in 20 patients who had undergone hysterectomy for uterine leiomyoma. Results and Discussion The patient age ranged from 34 to 58 years with a mean of 44.3 years. Proliferative endometrium was seen in 8 patients, secretory endometrium in 7 patients, and atrophic endometrium in 5 patients. Two patients showed solitary leiomyoma, and eighteen patients revealed 2 to 5 tumors. Tumor size ranged from 1 to 15.5 cm with a mean of 4.3 cm. Both Western Blot analysis and immunohistochemistry showed a significant lower level of selenium-binding protein 1 in leiomyoma than in normal myometrium. Larger tumors had a tendency to show a lower level of selenium-binding protein 1 than smaller ones, but the difference did not reach a statistical significance. The expression of selenium-binding protein 1 was the same among patients with proliferative, secretory, and atrophic endometrium in either leiomyoma or normal myometrium. Also, we did not find a difference of selenium-binding protein 1 level between patients younger than 45 years and older patients in either leiomyoma or normal myometrium. Conclusions Decreased expression of selenium-binding protein 1 in uterine leiomyoma may indicate a role of the protein in tumorigenesis. Our findings may provide a basis for future studies concerning the molecular mechanisms of selenium-binding protein 1 in tumorigenesis as well as the possible use of selenium in prevention and treatment of uterine

  19. Crosstalk between mTORC1 and cAMP Signaling

    Science.gov (United States)

    2016-09-01

    whether bidirectional inhibition of trafficking be- tween the endoplasmic reticulum (ER) and Golgi would affect Gln-induced activation of mTORC1 (23). We...Shimizu N, Matsumoto K, Itoh M, Ishitani T. 2012. NLK positively regulates Wnt/β-catenin signalling by phosphorylating LEF1 in neural progenitor...L, Pan D, Edgar BA. 2003. Rheb promotes cell growth as a component of the insulin/ TOR signalling network . Nat Cell Biol 5: 566–571. Sengupta S

  20. Adaptor proteins intersectin 1 and 2 bind similar proline-rich ligands but are differentially recognized by SH2 domain-containing proteins.

    Directory of Open Access Journals (Sweden)

    Olga Novokhatska

    Full Text Available BACKGROUND: Scaffolding proteins of the intersectin (ITSN family, ITSN1 and ITSN2, are crucial for the initiation stage of clathrin-mediated endocytosis. These proteins are closely related but have implications in distinct pathologies. To determine how these proteins could be separated in certain cell pathways we performed a comparative study of ITSNs. METHODOLOGY/PRINCIPAL FINDINGS: We have shown that endogenous ITSN1 and ITSN2 colocalize and form a complex in cells. A structural comparison of five SH3 domains, which mediated most ITSNs protein-protein interactions, demonstrated a similarity of their ligand-binding sites. We showed that the SH3 domains of ITSN2 bound well-established interactors of ITSN1 as well as newly identified ITSNs protein partners. A search for a novel interacting interface revealed multiple tyrosines that could be phosphorylated in ITSN2. Phosphorylation of ITSN2 isoforms but not ITSN1 short isoform was observed in various cell lines. EGF stimulation of HeLa cells enhanced tyrosine phosphorylation of ITSN2 isoforms and enabled their recognition by the SH2 domains of the Fyn, Fgr and Abl1 kinases, the regulatory subunit of PI3K, the adaptor proteins Grb2 and Crk, and phospholipase C gamma. The SH2 domains mentioned were unable to bind ITSN1 short isoform. CONCLUSIONS/SIGNIFICANCE: Our results indicate that during evolution of vertebrates ITSN2 acquired a novel protein-interaction interface that allows its specific recognition by the SH2 domains of signaling proteins. We propose that these data could be important to understand the functional diversity of paralogous ITSN proteins.

  1. Insect cells are superior to Escherichia coli in producing malaria proteins inducing IgG targeting PfEMP1 on infected erythrocytes

    DEFF Research Database (Denmark)

    Victor, Michala E; Bengtsson, Anja; Andersen, Gorm

    2010-01-01

    -exposed epitopes are unknown. An insect cell and Escherichia coli based system was used to express single and double domains encoded by the pfd1235w var gene. The resulting recombinant proteins have been evaluated for yield and purity and their ability to induce rat antibodies, which react with the native PFD1235w...... PfEMP1 antigen expressed on 3D7PFD1235w-IE. Their recognition by human anti-malaria antibodies from previously infected Tanzanian donors was also analysed....

  2. Id1 and Id3 expression is associated with increasing grade of prostate cancer: Id3 preferentially regulates CDKN1B

    International Nuclear Information System (INIS)

    Sharma, Pankaj; Patel, Divya; Chaudhary, Jaideep

    2012-01-01

    As transcriptional regulators of basic helix–oop–helix (bHLH) transcription and non-bHLH factors, the inhibitor of differentiation (Id1, Id2, Id3, and Id4) proteins play a critical role in coordinated regulation of cell growth, differentiation, tumorigenesis, and angiogenesis. Id1 regulates prostate cancer (PCa) cell proliferation, apoptosis, and androgen independence, but its clinical significance in PCa remains controversial. Moreover, there is lack of evidence on the expression of Id2 and Id3 in PCa progression. In this study we investigated the expression of Id2 and Id3 and reevaluated the expression of Id1 in PCa. We show that increased Id1 and Id3 protein expression is strongly associated with increasing grade of PCa. At the molecular level, we report that silencing either Id1 or Id3 attenuates cell cycle. Although structurally and mechanistically similar, our results show that both these proteins are noncompensatory at least in PCa progression. Moreover, through gene silencing approaches we show that Id1 and Id3 primarily attenuates CDKN1A (p21) and CDKN1B (p27), respectively. We also demonstrate that silencing Id3 alone significantly attenuates proliferation of PCa cells as compared with Id1. We propose that increased Id1 and Id3 expression attenuates all three cyclin-dependent kinase inhibitors (CDKN2B, -1A, and -1B) resulting in a more aggressive PCa phenotype

  3. The role of uncoupling protein 3 regulating calcium ion uptake into mitochondria during sarcopenia

    Science.gov (United States)

    Nikawa, Takeshi; Choi, Inho; Haruna, Marie; Hirasaka, Katsuya; Maita Ohno, Ayako; Kondo Teshima, Shigetada

    Overloaded mitochondrial calcium concentration contributes to progression of mitochondrial dysfunction in aged muscle, leading to sarcopenia. Uncoupling protein 3 (UCP3) is primarily expressed in the inner membrane of skeletal muscle mitochondria. Recently, it has been reported that UCP3 is associated with calcium uptake into mitochondria. However, the mechanisms by which UCP3 regulates mitochondrial calcium uptake are not well understood. Here we report that UCP3 interacts with HS-1 associated protein X-1 (Hax-1), an anti-apoptotic protein that is localized in mitochondria, which is involved in cellular responses to calcium ion. The hydrophilic sequences within the loop 2, matrix-localized hydrophilic domain of mouse UCP3 are necessary for binding to Hax-1 of the C-terminal domain in adjacent to mitochondrial innermembrane. Interestingly, these proteins interaction occur the calcium-dependent manner. Indeed, overexpression of UCP3 significantly enhanced calcium uptake into mitochondria on Hax-1 endogenously expressing C2C12 myoblasts. In addition, Hax-1 knock-down enhanced calcium uptake into mitochondria on both UCP3 and Hax-1 endogenously expressing C2C12 myotubes, but not myoblasts. Finally, the dissociation of UCP3 and Hax-1 enhances calcium uptake into mitochondria in aged muscle. These studies identify a novel UCP3-Hax-1 complex regulates the influx of calcium ion into mitochondria in muscle. Thus, the efficacy of UCP3-Hax-1 in mitochondrial calcium regulation may provide a novel therapeutic approach against mitochondrial dysfunction-related disease containing sarcopenia.

  4. Genetic and Dietary Determinants of Insulin-Like Growth Factor (IGF)-1 and IGF Binding Protein (BP)-3 Levels among Chinese Women

    Science.gov (United States)

    Li, Hui; McCullough, Lauren E.; Qi, Ya-na; Li, Jia-yuan; Zhang, Jing; Miller, Erline; Yang, Chun-xia; Smith, Jennifer S.

    2014-01-01

    Background Higher insulin-like growth factor (IGF)-1 and lower IGF binding protein (BP)-3 levels have been associated with higher commoncancer risk, including breast cancer. Dietary factors, genetic polymorphisms, and the combination of both may influence circulating IGF-1 and IGFBP-3 serum concentrations. Methods From September 2011 to July 2012, we collected demographic, reproductive and dietary data on 143 women (≥40 years). We genotyped IGF-1 rs1520220 and IGFBP-3 rs2854744 and measured circulating IGF-1 and IGFBP-3 levels in serum. Covariance analyses were used to estimate the associations of serum levels of IGF-1 and IGFBP-3, and the molar ratio of IGF-1to IGFBP-3 with IGF-1 rs1520220 and IGFBP-3 rs2854744 genotypes. We subsequently assessed the combined influence of genetics and diet (daily intake of protein, fat and soy isoflavones) on IGF-1 and IGFBP-3 levels. Results Among women aged less than 50 years, circulating IGF-1 serum levels were significantly lower for those with CC genotype for IGF-1 rs1520220 than levels for those with the GC or GG genotypes (in recessive model: P = 0.007).In gene-diet analyses among these women, we found carrying CC genotype for IGF-1 rs1520220 and high soy isoflavone intake tend to be associated with lower circulating IGF-1 levels synthetically (P = 0.002). Women with GG or GC genotypes for IGF-1 rs1520220 and with low intake of soy isoflavones had the highest levels of circulating IGF-1 (geometric mean [95% CI]: 195 [37, 1021] µg/L). Comparatively, women with both the CC genotype and high soy intake had the lowest levels of circulating IGF-1 (geometric mean [95% CI]: 120 [38,378] µg/L). Conclusions IGF-1 serum levels are significantly lower among women with the CC genotype for IGF-1-rs1520220. High soy isoflavone intake may interact with carrying CC genotype for IGF-1-rs1520220 to lower women's serum IGF-1 levels more. PMID:25285521

  5. Clinical features, neurogenetics and neuropathology of the polyglutamine spinocerebellar ataxias type 1, 2, 3, 6 and 7.

    Science.gov (United States)

    Rüb, Udo; Schöls, Ludger; Paulson, Henry; Auburger, Georg; Kermer, Pawel; Jen, Joanna C; Seidel, Kay; Korf, Horst-Werner; Deller, Thomas

    2013-05-01

    The spinocerebellar ataxias type 1 (SCA1), 2 (SCA2), 3 (SCA3), 6 (SCA6) and 7 (SCA7) are genetically defined autosomal dominantly inherited progressive cerebellar ataxias (ADCAs). They belong to the group of CAG-repeat or polyglutamine diseases and share pathologically expanded and meiotically unstable glutamine-encoding CAG-repeats at distinct gene loci encoding elongated polyglutamine stretches in the disease proteins. In recent years, progress has been made in the understanding of the pathogenesis of these currently incurable diseases: Identification of underlying genetic mechanisms made it possible to classify the different ADCAs and to define their clinical and pathological features. Furthermore, advances in molecular biology yielded new insights into the physiological and pathophysiological role of the gene products of SCA1, SCA2, SCA3, SCA6 and SCA7 (i.e. ataxin-1, ataxin-2, ataxin-3, α-1A subunit of the P/Q type voltage-dependent calcium channel, ataxin-7). In the present review we summarize our current knowledge about the polyglutamine ataxias SCA1, SCA2, SCA3, SCA6 and SCA7 and compare their clinical and electrophysiological features, genetic and molecular biological background, as well as their brain pathologies. Furthermore, we provide an overview of the structure, interactions and functions of the different disease proteins. On the basis of these comprehensive data, similarities, differences and possible disease mechanisms are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Association of 3BP2 with SHP-1 regulates SHP-1-mediated production of TNF-α in RBL-2H3 cells.

    Science.gov (United States)

    Chihara, Kazuyasu; Nakashima, Kenji; Takeuchi, Kenji; Sada, Kiyonao

    2011-12-01

    Adaptor protein 3BP2, a c-Abl Src homology 3 (SH3) domain-binding protein, is tyrosine phosphorylated and positively regulates mast cell signal transduction after the aggregation of the high affinity IgE receptor (FcεRI). Overexpression of the Src homology 2 (SH2) domain of 3BP2 results in the dramatic suppression of antigen-induced degranulation in rat basophilic leukemia RBL-2H3 cells. Previously, a linker for activation of T cells (LAT) was identified as one of the 3BP2 SH2 domain-binding protein. In this report, to further understand the functions of 3BP2 in FcεRI-mediated activation of mast cell, we explored the protein that associates with the SH2 domain of 3BP2 and found that SH2 domain-containing phosphatase-1 (SHP-1) inducibly interacts with the SH2 domain of 3BP2 after the aggregation of FcεRI. The phosphorylation of Tyr(564) in the carboxy (C)-terminal tail region of SHP-1 is required for the direct interaction of SHP-1 to the SH2 domain of 3BP2. The expression of the mutant form of SHP-1 which was unable to interact with 3BP2 resulted in the significant reduction in SHP-1-mediated tumor necrosis factor-α (TNF-α) production without any effects on the degranulation in antigen-stimulated RBL-2H3 cells. These findings suggest that 3BP2 directly interacts with Tyr(564) -phosphorylated form of SHP-1 and positively regulates the function of SHP-1 in FcεRI-mediated signaling in mast cells. © 2011 The Authors. Journal compilation © 2011 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  7. Matrix proteins of Nipah and Hendra viruses interact with beta subunits of AP-3 complexes.

    Science.gov (United States)

    Sun, Weina; McCrory, Thomas S; Khaw, Wei Young; Petzing, Stephanie; Myers, Terrell; Schmitt, Anthony P

    2014-11-01

    Paramyxoviruses and other negative-strand RNA viruses encode matrix proteins that coordinate the virus assembly process. The matrix proteins link the viral glycoproteins and the viral ribonucleoproteins at virus assembly sites and often recruit host machinery that facilitates the budding process. Using a co-affinity purification strategy, we have identified the beta subunit of the AP-3 adapter protein complex, AP3B1, as a binding partner for the M proteins of the zoonotic paramyxoviruses Nipah virus and Hendra virus. Binding function was localized to the serine-rich and acidic Hinge domain of AP3B1, and a 29-amino-acid Hinge-derived polypeptide was sufficient for M protein binding in coimmunoprecipitation assays. Virus-like particle (VLP) production assays were used to assess the relationship between AP3B1 binding and M protein function. We found that for both Nipah virus and Hendra virus, M protein expression in the absence of any other viral proteins led to the efficient production of VLPs in transfected cells, and this VLP production was potently inhibited upon overexpression of short M-binding polypeptides derived from the Hinge region of AP3B1. Both human and bat (Pteropus alecto) AP3B1-derived polypeptides were highly effective at inhibiting the production of VLPs. VLP production was also impaired through small interfering RNA (siRNA)-mediated depletion of AP3B1 from cells. These findings suggest that AP-3-directed trafficking processes are important for henipavirus particle production and identify a new host protein-virus protein binding interface that could become a useful target in future efforts to develop small molecule inhibitors to combat paramyxoviral infections. Henipaviruses cause deadly infections in humans, with a mortality rate of about 40%. Hendra virus outbreaks in Australia, all involving horses and some involving transmission to humans, have been a continuing problem. Nipah virus caused a large outbreak in Malaysia in 1998, killing 109 people

  8. The Reg1-interacting proteins, Bmh1, Bmh2, Ssb1, and Ssb2, have roles in maintaining glucose repression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Dombek, Kenneth M; Kacherovsky, Nataly; Young, Elton T

    2004-09-10

    In Saccharomyces cerevisiae, a type 1 protein phosphatase complex composed of the Glc7 catalytic subunit and the Reg1 regulatory subunit represses expression of many glucose-regulated genes. Here we show that the Reg1-interacting proteins Bmh1, Bmh2, Ssb1, and Ssb2 have roles in glucose repression. Deleting both BMH genes causes partially constitutive ADH2 expression without significantly increasing the level of Adr1 protein, the major activator of ADH2 expression. Adr1 and Bcy1, the regulatory subunit of cAMP-dependent protein kinase, are both required for this effect indicating that constitutive expression in Deltabmh1Deltabmh2 cells uses the same activation pathway that operates in Deltareg1 cells. Deletion of both BMH genes and REG1 causes a synergistic relief from repression, suggesting that Bmh proteins also act independently of Reg1 during glucose repression. A two-hybrid interaction with the Bmh proteins was mapped to amino acids 187-232, a region of Reg1 that is conserved in different classes of fungi. Deleting this region partially releases SUC2 from glucose repression. This indicates a role for the Reg1-Bmh interaction in glucose repression and also suggests a broad role for Bmh proteins in this process. An in vivo Reg1-Bmh interaction was confirmed by copurification of Bmh proteins with HA(3)-TAP-tagged Reg1. The nonconventional heat shock proteins Ssb1 and Ssb2 are also copurified with HA(3)-TAP-tagged Reg1. Deletion of both SSB genes modestly decreases repression of ADH2 expression in the presence of glucose, suggesting that Ssb proteins, perhaps through their interaction with Reg1, play a minor role in glucose repression.

  9. Blocking an N-terminal acetylation–dependent protein interaction inhibits an E3 ligase

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Daniel C.; Hammill, Jared T.; Min, Jaeki; Rhee, David Y.; Connelly, Michele; Sviderskiy, Vladislav O.; Bhasin, Deepak; Chen, Yizhe; Ong, Su-Sien; Chai, Sergio C.; Goktug, Asli N.; Huang, Guochang; Monda, Julie K.; Low, Jonathan; Kim, Ho Shin; Paulo, Joao A.; Cannon, Joe R.; Shelat, Anang A.; Chen, Taosheng; Kelsall, Ian R.; Alpi, Arno F.; Pagala, Vishwajeeth; Wang, Xusheng; Peng, Junmin; Singh , Bhuvanesh; Harper, J. Wade; Schulman, Brenda A.; Guy, R. Kip (MSKCC); (Dundee); (SJCH); (Harvard-Med); (MXPL)

    2017-06-05

    N-terminal acetylation is an abundant modification influencing protein functions. Because ~80% of mammalian cytosolic proteins are N-terminally acetylated, this modification is potentially an untapped target for chemical control of their functions. Structural studies have revealed that, like lysine acetylation, N-terminal acetylation converts a positively charged amine into a hydrophobic handle that mediates protein interactions; hence, this modification may be a druggable target. We report the development of chemical probes targeting the N-terminal acetylation–dependent interaction between an E2 conjugating enzyme (UBE2M or UBC12) and DCN1 (DCUN1D1), a subunit of a multiprotein E3 ligase for the ubiquitin-like protein NEDD8. The inhibitors are highly selective with respect to other protein acetyl-amide–binding sites, inhibit NEDD8 ligation in vitro and in cells, and suppress anchorage-independent growth of a cell line with DCN1 amplification. Overall, our data demonstrate that N-terminal acetyl-dependent protein interactions are druggable targets and provide insights into targeting multiprotein E2–E3 ligases.

  10. PDGF activates K-Cl cotransport through phosphoinositide 3-kinase and protein phosphatase-1 in primary cultures of vascular smooth muscle cells.

    Science.gov (United States)

    Zhang, Jing; Lauf, Peter K; Adragna, Norma C

    2005-07-15

    K-Cl cotransport (K-Cl COT, KCC) is an electroneutrally coupled movement of K and Cl present in most cells. In this work, we studied the pathways of regulation of K-Cl COT by platelet-derived growth factor (PDGF) in primary cultures of vascular smooth muscle cells (VSMCs). Wortmannin and LY 294002 blocked the PDGF-induced K-Cl COT activation, indicating that the phosphoinositide 3-kinase (PI 3-K) pathway is involved. However, PD 98059 had no effect on K-Cl COT activation by PDGF, suggesting that the mitogen-activated protein kinase pathway is not involved under the experimental conditions tested. Involvement of phosphatases was also examined. Sodium orthovanadate, cyclosporin A and okadaic acid had no effect on PDGF-stimulated K-Cl COT. Calyculin A blocked the PDGF-stimulated K-Cl COT by 60%, suggesting that protein phosphatase-1 (PP-1) is a mediator in the PDGF signaling pathway/s. In conclusion, our results indicate that the PDGF-mediated pathways of K-Cl COT regulation involve the signaling molecules PI 3-K and PP-1.

  11. Contrasting HIV phylogenetic relationships and V3 loop protein similarities

    Energy Technology Data Exchange (ETDEWEB)

    Korber, B. (Los Alamos National Lab., NM (United States) Santa Fe Inst., NM (United States)); Myers, G. (Los Alamos National Lab., NM (United States))

    1992-01-01

    At least five distinct sequence subtypes of HIV-I can be identified from the major centers of the AMS pandemic. While it is too early to tell whether these subtypes are serologically or phenotypically similar or distinct in terms of properties such as pathogenicity and transmissibility, we can begin to investigate their potential for phenotypic divergence at the protein sequence level. Phylogenetic analysis of HIV DNA sequences is being widely used to examine lineages of different viral strains as they evolve and spread throughout the globe. We have identified five distinct HIV-1 subtypes (designated A-E), or clades, based on phylogenetic clustering patterns generated from genetic information from both the gag and envelope (env) genes from a spectrum of international isolates. Our initial observations concerning both HIV-1 and HIV-2 sequences indicate that conserved patterns in protein chemistry may indeed exist across distant lineages. Such patterns in V3 loop amino acid chemistry may be indicative of stable lineages or convergence within this highly variable, though functionally and immunologically critical, region. We think that there may be parallels between the apparently stable HIV-2 V3 lineage and the previously mentioned HIV-1 V3 loops which are very similar at the protein level despite being distant by cladistic analysis, and which do not possess the distinctive positively charged residues. Highly conserved V3 loop protein sequences are also encountered in SIVAGMs and CIVs (chimpanzee viral strains), which do not appear to be pathogenic in their wild-caught natural hosts.

  12. Contrasting HIV phylogenetic relationships and V3 loop protein similarities

    Energy Technology Data Exchange (ETDEWEB)

    Korber, B. [Los Alamos National Lab., NM (United States)]|[Santa Fe Inst., NM (United States); Myers, G. [Los Alamos National Lab., NM (United States)

    1992-12-31

    At least five distinct sequence subtypes of HIV-I can be identified from the major centers of the AMS pandemic. While it is too early to tell whether these subtypes are serologically or phenotypically similar or distinct in terms of properties such as pathogenicity and transmissibility, we can begin to investigate their potential for phenotypic divergence at the protein sequence level. Phylogenetic analysis of HIV DNA sequences is being widely used to examine lineages of different viral strains as they evolve and spread throughout the globe. We have identified five distinct HIV-1 subtypes (designated A-E), or clades, based on phylogenetic clustering patterns generated from genetic information from both the gag and envelope (env) genes from a spectrum of international isolates. Our initial observations concerning both HIV-1 and HIV-2 sequences indicate that conserved patterns in protein chemistry may indeed exist across distant lineages. Such patterns in V3 loop amino acid chemistry may be indicative of stable lineages or convergence within this highly variable, though functionally and immunologically critical, region. We think that there may be parallels between the apparently stable HIV-2 V3 lineage and the previously mentioned HIV-1 V3 loops which are very similar at the protein level despite being distant by cladistic analysis, and which do not possess the distinctive positively charged residues. Highly conserved V3 loop protein sequences are also encountered in SIVAGMs and CIVs (chimpanzee viral strains), which do not appear to be pathogenic in their wild-caught natural hosts.

  13. Immunohistochemical detection of autophagy-related microtubule-associated protein 1 light chain 3 (LC3) in the cerebellums of dogs naturally infected with canine distemper virus.

    Science.gov (United States)

    Kabak, Y B; Sozmen, M; Yarim, M; Guvenc, T; Karayigit, M O; Gulbahar, M Y

    2015-01-01

    We investigated the expression of microtubule-associated protein 1 light chain 3 (LC3) protein in the cerebellums of dogs infected with canine distemper virus (CDV) using immunohistochemistry to detect autophagy. The cerebellums of 20 dogs infected with CDV were used. Specimens showing demyelination of white matter were considered to have an acute infection, whereas specimens showing signs of severe perivascular cuffing and demyelination of white matter were classified as having chronic CDV. Cerebellar sections were immunostained with CDV and LC3 antibodies. The cytoplasm of Purkinje cells, granular layer cells, motor neurons in large cerebellar ganglia and some neurons in white matter were positive for the LC3 antibody in both the control and CDV-infected dogs. In the infected cerebellums, however, white matter was immunostained more intensely, particularly the neurons and gemistocytic astrocytes in the demyelinated areas, compared to controls. Autophagy also was demonstrated in CDV-positive cells using double immunofluorescence staining. Our findings indicate that increased autophagy in the cerebellum of dogs naturally infected with CDV may play a role in transferring the virus from cell to cell.

  14. Phosphoproteomic insights into processes influenced by the kinase-like protein DIA1/C3orf58

    Directory of Open Access Journals (Sweden)

    Agnieszka Hareza

    2018-04-01

    Full Text Available Many kinases are still ‘orphans,’ which means knowledge about their substrates, and often also about the processes they regulate, is lacking. Here, DIA1/C3orf58, a member of a novel predicted kinase-like family, is shown to be present in the endoplasmic reticulum and to influence trafficking via the secretory pathway. Subsequently, DIA1 is subjected to phosphoproteomics analysis to cast light on its signalling pathways. A liquid chromatography–tandem mass spectrometry proteomic approach with phosphopeptide enrichment is applied to membrane fractions of DIA1-overexpressing and control HEK293T cells, and phosphosites dependent on the presence of DIA1 are elucidated. Most of these phosphosites belonged to CK2- and proline-directed kinase types. In parallel, the proteomics of proteins immunoprecipitated with DIA1 reported its probable interactors. This pilot study provides the basis for deeper studies of DIA1 signalling.

  15. Phosphoproteomic insights into processes influenced by the kinase-like protein DIA1/C3orf58.

    Science.gov (United States)

    Hareza, Agnieszka; Bakun, Magda; Świderska, Bianka; Dudkiewicz, Małgorzata; Koscielny, Alicja; Bajur, Anna; Jaworski, Jacek; Dadlez, Michał; Pawłowski, Krzysztof

    2018-01-01

    Many kinases are still 'orphans,' which means knowledge about their substrates, and often also about the processes they regulate, is lacking. Here, DIA1/C3orf58, a member of a novel predicted kinase-like family, is shown to be present in the endoplasmic reticulum and to influence trafficking via the secretory pathway. Subsequently, DIA1 is subjected to phosphoproteomics analysis to cast light on its signalling pathways. A liquid chromatography-tandem mass spectrometry proteomic approach with phosphopeptide enrichment is applied to membrane fractions of DIA1-overexpressing and control HEK293T cells, and phosphosites dependent on the presence of DIA1 are elucidated. Most of these phosphosites belonged to CK2- and proline-directed kinase types. In parallel, the proteomics of proteins immunoprecipitated with DIA1 reported its probable interactors. This pilot study provides the basis for deeper studies of DIA1 signalling.

  16. PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice

    Science.gov (United States)

    Zinker, Bradley A.; Rondinone, Cristina M.; Trevillyan, James M.; Gum, Rebecca J.; Clampit, Jill E.; Waring, Jeffrey F.; Xie, Nancy; Wilcox, Denise; Jacobson, Peer; Frost, Leigh; Kroeger, Paul E.; Reilly, Regina M.; Koterski, Sandra; Opgenorth, Terry J.; Ulrich, Roger G.; Crosby, Seth; Butler, Madeline; Murray, Susan F.; McKay, Robert A.; Bhanot, Sanjay; Monia, Brett P.; Jirousek, Michael R.

    2002-01-01

    The role of protein-tyrosine phosphatase 1B (PTP1B) in diabetes was investigated using an antisense oligonucleotide in ob/ob and db/db mice. PTP1B antisense oligonucleotide treatment normalized plasma glucose levels, postprandial glucose excursion, and HbA1C. Hyperinsulinemia was also reduced with improved insulin sensitivity. PTP1B protein and mRNA were reduced in liver and fat with no effect in skeletal muscle. Insulin signaling proteins, insulin receptor substrate 2 and phosphatidylinositol 3 (PI3)-kinase regulatory subunit p50α, were increased and PI3-kinase p85α expression was decreased in liver and fat. These changes in protein expression correlated with increased insulin-stimulated protein kinase B phosphorylation. The expression of liver gluconeogenic enzymes, phosphoenolpyruvate carboxykinase, and fructose-1,6-bisphosphatase was also down-regulated. These findings suggest that PTP1B modulates insulin signaling in liver and fat, and that therapeutic modalities targeting PTP1B inhibition may have clinical benefit in type 2 diabetes. PMID:12169659

  17. HCV core protein promotes hepatocyte proliferation and chemoresistance by inhibiting NR4A1

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Yongsheng, E-mail: yongshengtanwhu@126.com; Li, Yan, E-mail: liyansd2@163.com

    2015-10-23

    This study investigated the effect of HCV core protein on the proliferation of hepatocytes and hepatocellular carcinoma cells (HCC), the influence of HCV core protein on HCC apoptosis induced by the chemotherapeutic agent cisplatin, and the mechanism through which HCV core protein acts as a potential oncoprotein in HCV-related HCC by measuring the levels of NR4A1 and Runt-related transcription factor 3 (RUNX3), which are associated with tumor suppression and chemotherapy resistance. In the present study, PcDNA3.1-core and RUNX3 siRNA were transfected into LO2 and HepG2 cells using Lipofectamine 2000. LO2-core, HepG2-core, LO2-RUNX3 {sup low} and control cells were treated with different concentrations of cisplatin for 72 h, and cell proliferation and apoptosis were assayed using the CellTiter 96{sup ®}Aqueous Non-Radioactive Cell Proliferation Assay Kit. Western blot and real time PCR analyses were used to detect NR4A1, RUNX3, smad7, Cyclin D1 and BAX. Confocal microscopy was used to determine the levels of NR4A1 in HepG2 and HepG2-core cells. The growth rate of HepG2-core cells was considerably greater than that of HepG2 cells. HCV core protein increased the expression of cyclin D1 and decreased the expressions of NR4A1 and RUNX3. In LO2 – RUNX3 {sup low}, the rate of cell proliferation and the level of cisplatin resistance were the same as in the LO2 -core. These results suggest that HCV core protein decreases the sensitivity of hepatocytes to cisplatin by inhibiting the expression of NR4A1 and promoting the expression of smad7, which negatively regulates the TGF-β pathway. This effect results in down regulation of RUNX3, a target of the TGF-β pathway. Taken together, these findings indicate that in hepatocytes, HCV core protein increases drug resistance and inhibits cell apoptosis by inhibiting the expressions of NR4A1 and RUNX3. - Highlights: • HCV core protein inhibits HepG2 cell sensitivity to cisplatin. • Core expression in HepG2 decreases

  18. HCV core protein promotes hepatocyte proliferation and chemoresistance by inhibiting NR4A1

    International Nuclear Information System (INIS)

    Tan, Yongsheng; Li, Yan

    2015-01-01

    This study investigated the effect of HCV core protein on the proliferation of hepatocytes and hepatocellular carcinoma cells (HCC), the influence of HCV core protein on HCC apoptosis induced by the chemotherapeutic agent cisplatin, and the mechanism through which HCV core protein acts as a potential oncoprotein in HCV-related HCC by measuring the levels of NR4A1 and Runt-related transcription factor 3 (RUNX3), which are associated with tumor suppression and chemotherapy resistance. In the present study, PcDNA3.1-core and RUNX3 siRNA were transfected into LO2 and HepG2 cells using Lipofectamine 2000. LO2-core, HepG2-core, LO2-RUNX3 "l"o"w and control cells were treated with different concentrations of cisplatin for 72 h, and cell proliferation and apoptosis were assayed using the CellTiter 96"®Aqueous Non-Radioactive Cell Proliferation Assay Kit. Western blot and real time PCR analyses were used to detect NR4A1, RUNX3, smad7, Cyclin D1 and BAX. Confocal microscopy was used to determine the levels of NR4A1 in HepG2 and HepG2-core cells. The growth rate of HepG2-core cells was considerably greater than that of HepG2 cells. HCV core protein increased the expression of cyclin D1 and decreased the expressions of NR4A1 and RUNX3. In LO2 – RUNX3 "l"o"w, the rate of cell proliferation and the level of cisplatin resistance were the same as in the LO2 -core. These results suggest that HCV core protein decreases the sensitivity of hepatocytes to cisplatin by inhibiting the expression of NR4A1 and promoting the expression of smad7, which negatively regulates the TGF-β pathway. This effect results in down regulation of RUNX3, a target of the TGF-β pathway. Taken together, these findings indicate that in hepatocytes, HCV core protein increases drug resistance and inhibits cell apoptosis by inhibiting the expressions of NR4A1 and RUNX3. - Highlights: • HCV core protein inhibits HepG2 cell sensitivity to cisplatin. • Core expression in HepG2 decreases expression of NR4A1

  19. Role of Bovine Adenovirus-3 33K protein in viral replication

    International Nuclear Information System (INIS)

    Kulshreshtha, Vikas; Babiuk, Lorne A.; Tikoo, Suresh K.

    2004-01-01

    The L6 region of bovine adenovirus type (BAdV)-3 encodes a nonstructural protein named 33K. To identify and characterize the 33K protein, rabbit polyclonal antiserum was raised against a 33K-GST fusion protein expressed in bacteria. Anti-33K serum immunoprecipitated a protein of 42 kDa in in vitro translated and transcribed mRNA of 33K. However, three proteins of 42, 38, and 33 kDa were detected in BAdV-3 infected cells. To determine the role of this protein in virus replication, a recombinant BAV-33S1 containing insertional inactivation of 33K (a stop codon created at the seventh amino acid of 33K ORF) was constructed. Although BAV-33S1 could be isolated, the mutant showed a severe defect in the production of progeny virus. Inactivation of the 33K gene showed no effect on early and late viral gene expression in cells infected with BAV-33S1. However, formation of mature virions was significantly reduced in cells infected with BAV-33S1. Surprisingly, insertional inactivation of 33K at amino acid 97 (pFBAV-33.KS2) proved lethal for virus production. Although expression of early or late genes was not affected, no capsid formation could be observed in mutant DNA-transfected cells. These results suggest that 33K is required for capsid assembly and efficient DNA capsid interaction

  20. Expression of IGF-I, IGF-I receptor and IGF binding proteins-1, -2, -3, -4 and -5 in human atherectomy specimens.

    Science.gov (United States)

    Grant, M B; Wargovich, T J; Ellis, E A; Tarnuzzer, R; Caballero, S; Estes, K; Rossing, M; Spoerri, P E; Pepine, C

    1996-12-17

    The molecular and cellular processes that induce rapid atherosclerotic plaque progression in patients with unstable angina and initiate restenosis following coronary interventional procedures are uncertain. We examined primary (de novo) and restenotic lesions retrieved at the time of directional coronary atherectomy for expression of insulin-like-growth factor-I (IGF-I). IGF-I receptor, and five IGF binding proteins (IGFBPs), IGFBP-1, IGFBP-2, IGFBP-3, IGFBP-4, and IGFBP-5 in smooth muscle cells (SMCs) using colloidal gold immunocytochemistry. IGF-1, its receptor and binding proteins were not detected in SMCs of normal coronary arteries. IGF-I localized primarily in synthetic smooth muscle cells (sSMCs) in both de novo and restenotic plaques. IGF-I receptor localized on sSMCs and their processes and colocalized with IGF-I. Although morphometric analysis of IGF-I and IGF-I receptor immunoreactivity in sSMCs of de novo and restenotic lesions showed comparable levels of IGF-I (3.2 +/- 1.0 and 2.9 +/- 0.9, respectively). IGF-I receptor was significantly higher in de novo lesions as compared to restenotic lesions (10.7 +/- 2.5 and 4.2 +/- 1.3, P system.