WorldWideScience

Sample records for protein-restricted rats effect

  1. Effects of protein restriction, melatonin administration, and short daylength on brain benzodiazepine receptors in prepubertal male rats

    International Nuclear Information System (INIS)

    Kennaway, D.J.; Royles, P.; Webb, H.; Carbone, F.

    1988-01-01

    The possibility that there are changes in brain benzodiazepine binding sites controlled by photoperiod was investigated in two strains of male rats. The hypothesis was tested by 3H-diazepam binding studies in various brain regions of prepubertal rats maintained in 14 or 10 h of light or treated with late-afternoon injections of melatonin (50 micrograms/day). Protein restriction was applied during the experiment to sensitize the animals to the treatments. Under the conditions employed, rats kept in short daylength throughout or kept on long photoperiod and given late-afternoon melatonin injections showed evidence of delayed puberty (seminal vesicle, ventral prostate, and testis weight decreased by 45%, 55%, and 60% respectively, compared to control rats). Binding measurements were made 1 h before and 2 and 5 h after the onset of darkness in the pubertal (42-day-old) or experimentally prepubertal rats. In the rats of the Porton strain (for which protein restriction was obligatory for the gonadal response) there was no consistent treatment or time effects on specific binding of 3H-diazepam to washed membranes of the hypothalamus, midbrain, or striatum. Similarly, there were no differences in the stimulation of 3H-diazepam binding by 100 microM GABA or the inhibition of binding by 50 microM N-acetyl 5 methoxy kynurenamine. By contrast, in Wistar rats, specific binding to midbrain membranes was reduced 5 h after dark compared to 2 h (37% saline; 20% melatonin) and the extent of stimulation by GABA in the hypothalamus was increased 5 h after darkness (35.6% to 46.7% saline; 37.4% to 50% melatonin). Melatonin treatment resulted in significantly higher specific binding in the hypothalamus 2 h after dark (10%, control fed; 20%, protein restricted) but reduced the GABA induced stimulation of binding in the midbrain (35.5% to 25%, control fed; 33.7% to 23.5%, protein restricted)

  2. Protein- and tryptophan-restricted diets induce changes in rat gonadal hormone levels.

    Science.gov (United States)

    Del Angel-Meza, A R.; Feria-Velasco, A; Ontiveros-Martínez, L; Gallardo, L; Gonzalez-Burgos, I; Beas-Zárate, C

    2001-04-01

    The release of gonadotrophic hormones starts at puberty and, along with the subsequent estral cyclicity, is subject to hormonal feedback systems and to the action of diverse neuroactive substances such as gamma amino butyric acid and catecholamines. This study shows the effect of the administration during 40 days of protein-restricted and corn-based (tryptophan- and lysine-deficient) diets on the serotonin concentration in medial hypothalamic fragments as well as in follicle-stimulating luteinizing hormones, 17-beta-estradiol and progesterone serum levels, and estral cyclicity in 60- and 100-day-old rats (young, mature, and in gestation). In young rats, a delay in vaginal aperture development, and a lengthening of the estral cycle to a continuous anestral state was observed, mainly in the group fed corn. This group showed a 25% decrease in the serotonin concentration compared with the protein-restricted group, which exhibited an increase of 9% over the control group. Luteinizing hormone levels decreased in 16% and 13%, whereas follicle-stimulating hormone increased in 13% and 5% in the young animals of restricted groups, respectively, compared with the control group. Serum progesterone levels decreased only in young restricted versus control animals, and no differences were seen among adult and gestational rats. Serum levels of 17-beta-estradiol in restricted animals showed different concentration patterns, mainly in the corn group, which was higher at the 20th gestational day, falling drastically postpartum. The results obtained in this study show serotonin to be a very important factor in the release of gonadotrophic hormones and the start of puberty.

  3. Effect of dietary protein quality and feeding level on milk secretion and mammary protein synthesis in the rat

    International Nuclear Information System (INIS)

    Sampson, D.A.; Jansen, G.R.

    1985-01-01

    Protein synthesis was studied in mammary tissue of rats fed diets deficient in protein quality and/or restricted in food intake throughout gestation and lactation. Diets containing 25% wheat gluten (WG), wheat gluten plus lysine and threonine (WGLT), or casein (C) were pair-fed from conception until day 15 of lactation at 100% or 85% of WG ad libitum consumption (PF100 and PF85, respectively). A seventh group was fed C ad libitum. Rates of protein synthesis were measured in vivo at day 15 of lactation from incorporation of [3- 3 H]phenylalanine. At both PF100 and PF85, fractional and absolute rates of mammary gland protein synthesis were two- to three-fold higher in rats fed C than in those fed WG. Pup weights showed similar treatment effects. Both mammary protein synthesis rates and pup weights were significantly higher in rats fed C at PF85 than rats fed WG ad libitum. Food restriction from PF100 to PF85 depressed pup weights and mammary protein synthesis rates in rats fed WGLT, but had no effect in rats fed WG. These results demonstrate that when food intake is restricted, improvement of protein quality of the maternal diet increases milk output in the rat in association with increased rates of mammary protein synthesis

  4. The Effect of Protein Restriction in the In Vitro Metabolism of Albendazole in Rats.

    Science.gov (United States)

    Belaz, Kátia Roberta A; de O Cardoso, Josiane; da Silva, Carlos Alberto; Oliveira, Regina V

    2015-01-01

    This work presents an in vitro investigation of the effect of protein restriction on the metabolism of albendazole (ABZ). This study was conducted using liver microsomal fractions obtained from Wistar rats. For the quantitative analysis, a multidimensional High Performance Liquid Chromatography (2D HPLC) method was fully validated for the determination of the ABZ metabolites: albendazole sulfoxide, albendazole sulfone and albendazole 2-aminesulfone. The target compounds were directly extracted using a C8-RAM-BSA column (5.0x0.46 cm i.d.) and analyzed on a chromatographic chiral column containing amylose tris(3,5-dimethylphenylcarbamate) (150x4.6 mm i.d.). The in vitro biotransformation results showed that the protein restriction influenced the oxidative metabolism of ABZ. The production of R-(+)-ABZ-SO (1309 nmol/L) and S-(-)-ABZ-SO (1456 nmol/L) was higher in the control animals than in the animals fed with a diet containing 6% protein, which produced 778.7 nmol/L and 709.5 nmol/L for R-(+) and S-(-)-ABZ-SO enantiomers, respectively. These results were statistically inspected by Student´s t test and the results showed a significant difference between the two means (p0.05). Furthermore, animal nutritional condition could affect the pattern of ABZ sulphoxidation indicating that the protein nutrition affect primarily the formation of R-(+)-ABZSO and S-(-)-ABZ-SO enantiomers.

  5. Developmental Programming of Cardiovascular Disease Following Intrauterine Growth Restriction: Findings Utilising A Rat Model of Maternal Protein Restriction

    Science.gov (United States)

    Zohdi, Vladislava; Lim, Kyungjoon; Pearson, James T.; Black, M. Jane

    2014-01-01

    Over recent years, studies have demonstrated links between risk of cardiovascular disease in adulthood and adverse events that occurred very early in life during fetal development. The concept that there are embryonic and fetal adaptive responses to a sub-optimal intrauterine environment often brought about by poor maternal diet that result in permanent adverse consequences to life-long health is consistent with the definition of “programming”. The purpose of this review is to provide an overview of the current knowledge of the effects of intrauterine growth restriction (IUGR) on long-term cardiac structure and function, with particular emphasis on the effects of maternal protein restriction. Much of our recent knowledge has been derived from animal models. We review the current literature of one of the most commonly used models of IUGR (maternal protein restriction in rats), in relation to birth weight and postnatal growth, blood pressure and cardiac structure and function. In doing so, we highlight the complexity of developmental programming, with regards to timing, degree of severity of the insult, genotype and the subsequent postnatal phenotype. PMID:25551250

  6. Maternal protein restriction affects gene expression and enzyme activity of intestinal disaccharidases in adult rat offspring

    International Nuclear Information System (INIS)

    Pinheiro, D.F.; Pacheco, P.D.G.; Alvarenga, P.V.; Buratini, J. Jr; Castilho, A.C.S.; Lima, P.F.; Sartori, D.R.S.; Vicentini-Paulino, M.L.M.

    2013-01-01

    This study investigated the consequences of intrauterine protein restriction on the gastrointestinal tract and particularly on the gene expression and activity of intestinal disaccharidases in the adult offspring. Wistar rat dams were fed isocaloric diets containing 6% protein (restricted, n = 8) or 17% protein (control, n = 8) throughout gestation. Male offspring (n = 5-8 in each group) were evaluated at 3 or 16 weeks of age. Maternal protein restriction during pregnancy produced offspring with growth restriction from birth (5.7 ± 0.1 vs 6.3 ± 0.1 g; mean ± SE) to weaning (42.4 ± 1.3 vs 49.1 ± 1.6 g), although at 16 weeks of age their body weight was similar to control (421.7 ± 8.9 and 428.5 ± 8.5 g). Maternal protein restriction also increased lactase activity in the proximal (0.23 ± 0.02 vs 0.15 ± 0.02), medial (0.30 ± 0.06 vs 0.14 ± 0.01) and distal (0.43 ± 0.07 vs 0.07 ± 0.02 U·g -1 ·min -1 ) small intestine, and mRNA lactase abundance in the proximal intestine (7.96 ± 1.11 vs 2.38 ± 0.47 relative units) of 3-week-old offspring rats. In addition, maternal protein restriction increased sucrase activity (1.20 ± 0.02 vs 0.91 ± 0.02 U·g -1 ·min -1 ) and sucrase mRNA abundance (4.48 ± 0.51 vs 1.95 ± 0.17 relative units) in the duodenum of 16-week-old rats. In conclusion, the present study shows for the first time that intrauterine protein restriction affects gene expression of intestinal enzymes in offspring

  7. Maternal protein restriction affects gene expression and enzyme activity of intestinal disaccharidases in adult rat offspring

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, D.F.; Pacheco, P.D.G.; Alvarenga, P.V.; Buratini, J. Jr; Castilho, A.C.S.; Lima, P.F.; Sartori, D.R.S.; Vicentini-Paulino, M.L.M. [Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP (Brazil)

    2013-03-15

    This study investigated the consequences of intrauterine protein restriction on the gastrointestinal tract and particularly on the gene expression and activity of intestinal disaccharidases in the adult offspring. Wistar rat dams were fed isocaloric diets containing 6% protein (restricted, n = 8) or 17% protein (control, n = 8) throughout gestation. Male offspring (n = 5-8 in each group) were evaluated at 3 or 16 weeks of age. Maternal protein restriction during pregnancy produced offspring with growth restriction from birth (5.7 ± 0.1 vs 6.3 ± 0.1 g; mean ± SE) to weaning (42.4 ± 1.3 vs 49.1 ± 1.6 g), although at 16 weeks of age their body weight was similar to control (421.7 ± 8.9 and 428.5 ± 8.5 g). Maternal protein restriction also increased lactase activity in the proximal (0.23 ± 0.02 vs 0.15 ± 0.02), medial (0.30 ± 0.06 vs 0.14 ± 0.01) and distal (0.43 ± 0.07 vs 0.07 ± 0.02 U·g{sup -1}·min{sup -1}) small intestine, and mRNA lactase abundance in the proximal intestine (7.96 ± 1.11 vs 2.38 ± 0.47 relative units) of 3-week-old offspring rats. In addition, maternal protein restriction increased sucrase activity (1.20 ± 0.02 vs 0.91 ± 0.02 U·g{sup -1}·min{sup -1}) and sucrase mRNA abundance (4.48 ± 0.51 vs 1.95 ± 0.17 relative units) in the duodenum of 16-week-old rats. In conclusion, the present study shows for the first time that intrauterine protein restriction affects gene expression of intestinal enzymes in offspring.

  8. Histomorphometric evaluation of the testicular parenchyma of rats submitted to protein restriction during intrauterine and postnatal life

    OpenAIRE

    OLIVEIRA, JESSICA; SILVA, ALLUANAN; SOUZA, SANDRA; MORAIS, ROSANA; MELO, ELIZABETH NEVES; MAIA, FREDERICO; JUNIOR, VALDEMIRO SILVA

    2017-01-01

    The critical period of development is highly susceptible to disorders. Environmental contaminants, stress, and poor nutrition may permanently affect structurally and functionally an organism during adulthood. Protein restriction in intrauterine and neonatal periods may impair testicular cells and reduce steroidogenic activity. The current study investigated the effect of low protein diet during intrauterine and postnatal life on testicular function in immature and adult rats. Pregnant Wistar ...

  9. Lack of Additive Effects of Resveratrol and Energy Restriction in the Treatment of Hepatic Steatosis in Rats.

    Science.gov (United States)

    Milton-Laskibar, Iñaki; Aguirre, Leixuri; Fernández-Quintela, Alfredo; Rolo, Anabela P; Soeiro Teodoro, João; Palmeira, Carlos M; Portillo, María P

    2017-07-11

    The aims of the present study were to analyze the effect of resveratrol on liver steatosis in obese rats, to compare the effects induced by resveratrol and energy restriction and to research potential additive effects. Rats were initially fed a high-fat high-sucrose diet for six weeks and then allocated in four experimental groups fed a standard diet: a control group, a resveratrol-treated group, an energy restricted group and a group submitted to energy restriction and treated with resveratrol. We measured liver triacylglycerols, transaminases, FAS, MTP, CPT1a, CS, COX, SDH and ATP synthase activities, FATP2/FATP5, DGAT2, PPARα, SIRT1, UCP2 protein expressions, ACC and AMPK phosphorylation and PGC1α deacetylation. Resveratrol reduced triacylglycerols compared with the controls, although this reduction was lower than that induced by energy restriction. The mechanisms of action were different. Both decreased protein expression of fatty acid transporters, thus suggesting reduced fatty acid uptake from blood stream and liver triacylglycerol delivery, but only energy restriction reduced the assembly. These results show that resveratrol is useful for liver steatosis treatment within a balanced diet, although its effectiveness is lower than that of energy restriction. However, resveratrol is unable to increase the reduction in triacylglycerol content induced by energy restriction.

  10. Formation of S-(carboxymethyl)-cysteine in rat liver mitochondrial proteins: effects of caloric and methionine restriction.

    Science.gov (United States)

    Naudí, Alba; Jové, Mariona; Cacabelos, Daniel; Ayala, Victoria; Cabre, Rosanna; Caro, Pilar; Gomez, José; Portero-Otín, Manuel; Barja, Gustavo; Pamplona, Reinald

    2013-02-01

    Maillard reaction contributes to the chemical modification and cross-linking of proteins. This process plays a significant role in the aging process and determination of animal longevity. Oxidative conditions promote the Maillard reaction. Mitochondria are the primary site of oxidants due to the reactive molecular species production. Mitochondrial proteome cysteine residues are targets of oxidative attack due to their specific chemistry and localization. Their chemical, non-enzymatic modification leads to dysfunctional proteins, which entail cellular senescence and organismal aging. Previous studies have consistently shown that caloric and methionine restrictions, nutritional interventions that increase longevity, decrease the rate of mitochondrial oxidant production and the physiological steady-state levels of markers of oxidative damage to macromolecules. In this scenario, we have detected S-(carboxymethyl)-cysteine (CMC) as a new irreversible chemical modification in mitochondrial proteins. CMC content in mitochondrial proteins significantly correlated with that of the lysine-derived analog N (ε)-(carboxymethyl)-lysine. The concentration of CMC is, however, one order of magnitude lower compared with CML likely due in part to the lower content of cysteine with respect to lysine of the mitochondrial proteome. CMC concentrations decreases in liver mitochondrial proteins of rats subjected to 8.5 and 25 % caloric restriction, as well as in 40 and 80 % methionine restriction. This is associated with a concomitant and significant increase in the protein content of sulfhydryl groups. Data presented here evidence that CMC, a marker of Cys-AGE formation, could be candidate as a biomarker of mitochondrial damage during aging.

  11. Effects of long-term heat stress and dietary restriction on the expression of genes of steroidogenic pathway and small heat-shock proteins in rat testicular tissue.

    Science.gov (United States)

    Bozkaya, F; Atli, M O; Guzeloglu, A; Kayis, S A; Yildirim, M E; Kurar, E; Yilmaz, R; Aydilek, N

    2017-08-01

    The aim was to investigate the effects of long-term heat stress and dietary restriction on the expression of certain genes involving in steroidogenic pathway and small heat-shock proteins (sHSPs) in rat testis. Sprague Dawley rats (n = 24) were equally divided into four groups. Group I and II were kept at an ambient temperature of 22°C, while Groups III and IV were reared at 38°C for 9 weeks. Feed was freely available for Group I and Group III, while Group II and Group IV were fed 60% of the diet consumed by their ad libitum counterparts. At the end of 9 weeks, testicles were collected under euthanasia. Total RNA was isolated from testis tissue samples. Expression profiles of the genes encoding androgen-binding protein, follicle-stimulating hormone receptor, androgen receptor, luteinising hormone receptor, steroidogenic acute regulatory protein (StAR), cyclooxygenase-2 and sHSP genes were assessed at mRNA levels using qPCR. Long-term heat stress decreased the expression of StAR and HspB10 genes while dietary restriction upregulated StAR gene expression. The results suggested that long-term heat stress negatively affected the expression of StAR and HspB10 genes and the dietary restriction was able to reverse negative effect of heat stress on the expression of StAR gene in rat testis. © 2016 Blackwell Verlag GmbH.

  12. Maternal protein restriction compromises myocardial contractility in the young adult rat by changing proteins involved in calcium handling.

    Science.gov (United States)

    de Belchior, Aucelia C S; Freire, David D; da Costa, Carlos P; Vassallo, Dalton V; Padilha, Alessandra S; Dos Santos, Leonardo

    2016-02-01

    Maternal protein restriction (MPR) during pregnancy is associated with increased cardiovascular risk in the offspring in adulthood. In this study we evaluated the cardiac function of young male rats born from mothers subjected to MPR during pregnancy, focusing on the myocardial mechanics and calcium-handling proteins. After weaning, rats received normal diet until 3 mo old, when the following parameters were assessed: arterial and left ventricular hemodynamics and in vitro cardiac contractility in isolated papillary muscles. The body weight was lower and arterial pressure higher in the MPR group compared with young adult offspring of female rats that received standard diet (controls); and left ventricle time derivatives increased in the MPR group. The force developed by the cardiac muscle was similar; but time to peak and relaxation time were longer, and the derivatives of force were depressed in the MPR. In addition, MPR group exhibited decreased post-pause potentiation of force, suggesting reduced reuptake function of the sarcoplasmic reticulum. Corroborating, the myocardial content of SERCA-2a and phosphorylated PLB-Ser16/total PLB ratio was decreased and sodium-calcium exchanger was increased in the MPR group. The contraction dependent on transsarcolemmal influx of calcium was higher in MPR if compared with the control group. In summary, young rats born from mothers subjected to protein restriction during pregnancy exhibit changes in the myocardial mechanics with altered expression of calcium-handling proteins, reinforcing the hypothesis that maternal malnutrition is related to increased cardiovascular risk in the offspring, not only for hypertension, but also cardiac dysfunction. Copyright © 2016 the American Physiological Society.

  13. Maternal protein restriction induces alterations in insulin signaling and ATP sensitive potassium channel protein in hypothalami of intrauterine growth restriction fetal rats.

    Science.gov (United States)

    Liu, Xiaomei; Qi, Ying; Gao, Hong; Jiao, Yisheng; Gu, Hui; Miao, Jianing; Yuan, Zhengwei

    2013-01-01

    It is well recognized that intrauterine growth restriction leads to the development of insulin resistance and type 2 diabetes mellitus in adulthood. To investigate the mechanisms behind this "metabolic imprinting" phenomenon, we examined the impact of maternal undernutrition on insulin signaling pathway and the ATP sensitive potassium channel expression in the hypothalamus of intrauterine growth restriction fetus. Intrauterine growth restriction rat model was developed through maternal low protein diet. The expression and activated levels of insulin signaling molecules and K(ATP) protein in the hypothalami which were dissected at 20 days of gestation, were analyzed by western blot and real time PCR. The tyrosine phosphorylation levels of the insulin receptor substrate 2 and phosphatidylinositol 3'-kinase p85α in the hypothalami of intrauterine growth restriction fetus were markedly reduced. There was also a downregulation of the hypothalamic ATP sensitive potassium channel subunit, sulfonylurea receptor 1, which conveys the insulin signaling. Moreover, the abundances of gluconeogenesis enzymes were increased in the intrauterine growth restriction livers, though no correlation was observed between sulfonylurea receptor 1 and gluconeogenesis enzymes. Our data suggested that aberrant intrauterine milieu impaired insulin signaling in the hypothalamus, and these alterations early in life might contribute to the predisposition of the intrauterine growth restriction fetus toward the adult metabolic disorders.

  14. Antenatal taurine reduces cerebral cell apoptosis in fetal rats with intrauterine growth restriction.

    Science.gov (United States)

    Liu, Jing; Wang, Xiaofeng; Liu, Ying; Yang, Na; Xu, Jing; Ren, Xiaotun

    2013-08-15

    From pregnancy to parturition, Sprague-Dawley rats were daily administered a low protein diet to establish a model of intrauterine growth restriction. From the 12(th) day of pregnancy, 300 mg/kg rine was daily added to food until spontaneous delivery occurred. Brain tissues from normal neonatal rats at 6 hours after delivery, neonatal rats with intrauterine growth restriction, and neonatal rats with intrauterine growth restriction undergoing taurine supplement were obtained for further experiments. The terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling assay revealed that the number of apoptotic cells in the brain tissue of neonatal rats with intrauterine growth restriction significantly increased. Taurine supplement in pregnant rats reduced cell apoptosis in brain tissue from neonatal rats with intrauterine growth restriction. nohistochemical staining revealed that taurine supplement increased glial cell line-derived neurotrophic factor expression and decreased caspase-3 expression in the cerebral cortex of intrauterine growth-restricted fetal rats. These results indicate that taurine supplement reduces cell apoptosis through the glial cell line-derived neurotrophic factor-caspase-3 signaling pathway, resulting in a protective effect on the intrauterine growth-restricted fetal rat brain.

  15. The impact of maternal protein restriction during rat pregnancy upon renal expression of angiotensin receptors and vasopressin-related aquaporins

    Directory of Open Access Journals (Sweden)

    Cornock Ruth

    2010-08-01

    Full Text Available Abstract Background Maternal protein restriction during rat pregnancy is known to impact upon fetal development, growth and risk of disease in later life. It is of interest to understand how protein undernutrition influences the normal maternal adaptation to pregnancy. Here we investigated the mechanisms regulating renal haemodynamics and plasma volume during pregnancy, in the context of both normal and reduced plasma volume expansion. The study focused on expression of renal angiotensin receptors (ATR and vasopressin-related aquaporins (AQP, hypothesising that an alteration in the balance of these proteins would be associated with pregnancy per se and with compromised plasma volume expansion in rats fed a low-protein diet. Methods Female Wistar rats were mated and fed a control (18% casein or low-protein (9% casein diet during pregnancy. Animals were anaesthetised on days 5, 10, 15 and 20 of gestation (n = 8/group/time-point for determination of plasma volume using Evans Blue dye, prior to euthanasia and collection of tissues. Expression of the ATR subtypes and AQP2, 3 and 4 were assessed in maternal kidneys by PCR and western blotting. 24 non-pregnant Wistar rats underwent the same procedure at defined points of the oestrous cycle. Results As expected, pregnancy was associated with an increase in blood volume and haemodilution impacted upon red blood cell counts and haemoglobin concentrations. Expression of angiotensin II receptors and aquaporins 2, 3 and 4 was stable across all stages of the oestrus cycle. Interesting patterns of intra-renal protein expression were observed in response to pregnancy, including a significant down-regulation of AQP2. In contrast to previous literature and despite an apparent delay in blood volume expansion in low-protein fed rats, blood volume did not differ significantly between groups of pregnant animals. However, a significant down-regulation of AT2R protein expression was observed in low-protein fed animals

  16. Gestational Protein Restriction Increases Cardiac Connexin 43 mRNA levels in male adult rat offspring

    Science.gov (United States)

    Rossini, Kamila Fernanda; de Oliveira, Camila Andrea; Rebelato, Hércules Jonas; Esquisatto, Marcelo Augusto Marreto; Catisti, Rosana

    2017-01-01

    Background The dietary limitation during pregnancy influences the growth and development of the fetus and offspring and their health into adult life. The mechanisms underlying the adverse effects of gestational protein restriction (GPR) in the development of the offspring hearts are not well understood. Objectives The aim of this study was to evaluate the effects of GPR on cardiac structure in male rat offspring at day 60 after birth (d60). Methods Pregnant Wistar rats were fed a normal-protein (NP, 17% casein) or low-protein (LP, 6% casein) diet. Blood pressure (BP) values from 60-day-old male offspring were measured by an indirect tail-cuff method using an electro sphygmomanometer. Hearts (d60) were collected for assessment of connexin 43 (Cx43) mRNA expression and morphological and morphometric analysis. Results LP offspring showed no difference in body weight, although they were born lighter than NP offspring. BP levels were significantly higher in the LP group. We observed a significant increase in the area occupied by collagen fibers, a decrease in the number of cardiomyocytes by 104 µm2, and an increase in cardiomyocyte area associated with an increased Cx43 expression. Conclusion GPR changes myocardial levels of Cx43 mRNA in male young adult rats, suggesting that this mechanism aims to compensate the fibrotic process by the accumulation of collagen fibers in the heart interstitium. PMID:28678925

  17. Central and peripheral effects of chronic food restriction and weight restoration in the rat.

    Science.gov (United States)

    Kinzig, Kimberly P; Hargrave, Sara L; Tao, Erin E

    2009-02-01

    Previous studies have demonstrated that some endocrine consequences of long-term caloric restriction persist after weight restoration in human subjects. Here we evaluate effects of chronic food restriction in rats that were restricted to 70% of control kcal for 4 wk and subsequently weight restored. Measures were taken from rats at 80% (chronically restricted; CR), 90% (partially weight restored; PR), 100% (fully weight restored; FR), and after 4 wk at 100% body weight of controls (extended weight restored; ER). Plasma insulin and leptin were decreased, and ghrelin was increased in CR compared with controls. Leptin and ghrelin normalized with weight restoration at PR, FR, and ER; however, baseline insulin was not normalized until the ER state. Hypothalamic mRNA expression levels for proopiomelanocortin (POMC), agouti-related protein (AgRP), and neuropeptide Y (NPY) revealed significantly less POMC mRNA expression in CR and PR rats, and significantly less arcuate NPY mRNA in PR and FR. In the dorsomedial hypothalamus, CR, PR, and FR rats had significantly increased NPY expression that was not normalized until the ER state. In response to a test meal, insulin and ghrelin release patterns were altered through the FR stage, and ghrelin remained affected at ER. Collectively, these data demonstrate that mere weight restoration is not sufficient to normalize hypothalamic gene expression levels and endocrine responses to a meal, and that meal-related ghrelin responses persist despite weight restoration for up to 4 wk.

  18. Mammary sensitivity to protein restriction and re-alimentation.

    Science.gov (United States)

    Goodwill, M G; Jessop, N S; Oldham, J D

    1996-09-01

    The present study tested the influence of protein undernutrition and re-alimentation on mammary gland size and secretory cell activity in lactating rats. During gestation, female Sprague-Dawley rats were offered a high-protein diet (215 g crude protein (N x 6.25; CP)/kg DM; H); litters were standardized to twelve pups at parturition. During lactation, two diets were offered ad libitum, diet H and a low-protein diet (90 g CP/kg DM; L). Lactational dietary treatments were the supply ad libitum of either diet H (HHH) or diet L (LLL) for the first 12 d of lactation, or diet L transferring to diet H on either day 6 (LHH) or 9 (LLH) of lactation. On days 1, 6, 9 and 12 of lactation, rats from each group (n > or = 6) were used to estimate mammary dry mass, fat, protein, DNA and RNA; the activities of lactose synthetase (EC 2.4.1.22) enzyme and Na+,K(+)-ATPase (EC 3.6.1.37) were also measured. Rats offered a diet considered protein sufficient (H) from day 1 of lactation showed a decrease in mammary dry mass and fat but an increase in DNA, RNA and protein on day 6, after which there was no further change, except for mammary protein which continued to increase. However, rats offered diet L showed a steady loss in mammary mass and fat throughout the 12 d lactation period and no change in mammary DNA, RNA or protein. Rats previously protein restricted for either the first 6 or 9 d of lactation had their mammary dry mass and mammary fat loss halted and showed a rapid increase in mammary DNA, RNA and protein on re-alimentation. Lactose production in group HHH, as measured by lactose synthetase activity, was similar on days 1 and 6 of lactation, after which a significant increase was seen. Protein-restricted rats showed no change in lactose synthetase activity during the 12 d experimental period. Changing from diet L to diet H led to a significant increase in lactose synthetase activity to levels comparable with those offered diet H from day 1. These results show that rats

  19. L-Citrulline Supplementation Enhances Fetal Growth and Protein Synthesis in Rats with Intrauterine Growth Restriction.

    Science.gov (United States)

    Bourdon, Aurélie; Parnet, Patricia; Nowak, Christel; Tran, Nhat-Thang; Winer, Norbert; Darmaun, Dominique

    2016-03-01

    Intrauterine growth restriction (IUGR) results from either maternal undernutrition or impaired placental blood flow, exposing offspring to increased perinatal mortality and a higher risk of metabolic syndrome and cardiovascular disease during adulthood. l-Citrulline is a precursor of l-arginine and nitric oxide (NO), which regulates placental blood flow. Moreover, l-citrulline stimulates protein synthesis in other models of undernutrition. The aim of the study was to determine whether l-citrulline supplementation would enhance fetal growth in a model of IUGR induced by maternal dietary protein restriction. Pregnant rats were fed either a control (20% protein) or a low-protein (LP; 4% protein) diet. LP dams were randomly allocated to drink tap water either as such or supplemented with l-citrulline (2 g · kg(-1) · d(-1)), an isonitrogenous amount of l-arginine, or nonessential l-amino acids (NEAAs). On day 21 of gestation, dams received a 2-h infusion of l-[1-(13)C]-valine until fetuses were extracted by cesarean delivery. Isotope enrichments were measured in free amino acids and fetal muscle, liver, and placenta protein by GC-mass spectrometry. Fetal weight was ∼29% lower in the LP group (3.82 ± 0.06 g) than in the control group (5.41 ± 0.10 g) (P growth in a model of IUGR, and the effect may be mediated by enhanced fetal muscle protein synthesis and/or increased NO production. © 2016 American Society for Nutrition.

  20. Metyrapone alleviates deleterious effects of maternal food restriction on lung development and growth of rat offspring.

    Science.gov (United States)

    Paek, David S; Sakurai, Reiko; Saraswat, Aditi; Li, Yishi; Khorram, Omid; Torday, John S; Rehan, Virender K

    2015-02-01

    Maternal food restriction (MFR) causes intrauterine growth restriction, a known risk factor for developing chronic lung disease. However, it is unknown whether this negative outcome is gender specific or preventable by blocking the MFR-induced hyperglucocorticoidism. Using a well-established rat model, we used metyrapone (MTP), an inhibitor of glucocorticoid synthesis, to study the MFR-induced lung changes on postnatal day (p) 21 in a gender-specific manner. From embryonic day 10 until delivery, pregnant dams were fed either an ad libitum diet or a 50% caloric restricted diet with or without MTP supplementation. Postnatally, the offspring were fed ad libitum from healthy dams until p21. Morphometric, Western blot, and immunohistochemical analysis of the lungs demonstrated that MTP mitigated the MFR-mediated decrease in alveolar count, decrease in adipogenic protein peroxisome proliferator-activated receptor γ, increase in myogenic proteins (fibronectin, α-smooth muscle actin, and calponin), increase in Wnt signaling intermediates (lymphoid enhancer-binding factor 1 and β-catenin), and increase in glucocorticoid receptor (GR) levels. The MFR-induced lung phenotype and the effects of MTP were similar in both genders. To elucidate the mechanism of MFR-induced shift of the adipogenic-to-myogenic phenotype, lung fibroblasts were used to independently study the effects of (1) nutrient restriction and (2) excess steroid exposure. Nutrient deprivation increased myogenic proteins, Wnt signaling intermediates, and GR, all changes blocked by protein supplementation. MTP also blocked, likely by normalizing nicotinamide adenine dinucleotide phosphate levels, the corticosterone-induced increase in myogenic proteins, but had no effect on GR levels. In summary, protein restriction and increased glucocorticoid levels appear to be the key players in MFR-induced lung disease, affecting both genders. © The Author(s) 2014.

  1. Gestational Protein Restriction Impairs Glucose Disposal in the Gastrocnemius Muscles of Female Rats

    Science.gov (United States)

    Blesson, Chellakkan S.; Chinnathambi, Vijayakumar; Kumar, Sathish

    2017-01-01

    Gestational low-protein (LP) diet causes hyperglycemia and insulin resistance in adult offspring, but the mechanism is not clearly understood. In this study, we explored the role of insulin signaling in gastrocnemius muscles of gestational LP-exposed female offspring. Pregnant rats were fed a control (20% protein) or an isocaloric LP (6%) diet from gestational day 4 until delivery. Normal diet was given to mothers after delivery and to pups after weaning until necropsy. Offspring were euthanized at 4 months, and gastrocnemius muscles were treated with insulin ex vivo for 30 minutes. Messenger RNA and protein levels of molecules involved in insulin signaling were assessed at 4 months. LP females were smaller at birth but showed rapid catchup growth by 4 weeks. Glucose tolerance test in LP offspring at 3 months showed elevated serum glucose levels (P insulin levels. In gastrocnemius muscles, LP rats showed reduced tyrosine phosphorylation of insulin receptor substrate 1 upon insulin stimulation due to the overexpression of tyrosine phosphatase SHP-2, but serine phosphorylation was unaffected. Furthermore, insulin-induced phosphorylation of Akt, glycogen synthase kinase (GSK)–3α, and GSK-3β was diminished in LP rats, and they displayed an increased basal phosphorylation (inactive form) of glycogen synthase. Our study shows that gestational protein restriction causes peripheral insulin resistance by a series of phosphorylation defects in skeletal muscle in a mechanism involving insulin receptor substrate 1, SHP-2, Akt, GSK-3, and glycogen synthase causing dysfunctional GSK-3 signaling and increased stored glycogen, leading to distorted glucose homeostasis. PMID:28324067

  2. Postnatal growth velocity modulates alterations of proteins involved in metabolism and neuronal plasticity in neonatal hypothalamus in rats born with intrauterine growth restriction.

    Science.gov (United States)

    Alexandre-Gouabau, Marie-Cécile F; Bailly, Emilie; Moyon, Thomas L; Grit, Isabelle C; Coupé, Bérengère; Le Drean, Gwenola; Rogniaux, Hélène J; Parnet, Patricia

    2012-02-01

    Intrauterine growth restriction (IUGR) due to maternal protein restriction is associated in rats with an alteration in hypothalamic centers involved in feeding behaviour. In order to gain insight into the mechanism of perinatal maternal undernutrition in the brain, we used proteomics approach to identify hypothalamic proteins that are altered in their expression following protein restriction in utero. We used an animal model in which restriction of the protein intake of pregnant rats (8% vs. 20%) produces IUGR pups which were randomized to a nursing regimen leading to either rapid or slow catch-up growth. We identified several proteins which allowed, by multivariate analysis, a very good discrimination of the three groups according to their perinatal nutrition. These proteins were related to energy-sensing pathways (Eno 1, E(2)PDH, Acot 1 and Fabp5), redox status (Bcs 1L, PrdX3 and 14-3-3 protein) or amino acid pathway (Acy1) as well as neurodevelopment (DRPs, MAP2, Snca). In addition, the differential expressions of several key proteins suggested possible shunts towards ketone-body metabolism and lipid oxidation, providing the energy and carbon skeletons necessary to lipogenesis. Our results show that maternal protein deprivation during pregnancy only (IUGR with rapid catch-up growth) or pregnancy and lactation (IUGR with slow postnatal growth) modulates numerous metabolic pathways resulting in alterations of hypothalamic energy supply. As several of these pathways are involved in signalling, it remains to be determined whether hypothalamic proteome adaptation of IUGR rats in response to different postnatal growth rates could also interfere with cerebral plasticity or neuronal maturation. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Protein restriction and cancer.

    Science.gov (United States)

    Yin, Jie; Ren, Wenkai; Huang, Xingguo; Li, Tiejun; Yin, Yulong

    2018-03-26

    Protein restriction without malnutrition is currently an effective nutritional intervention known to prevent diseases and promote health span from yeast to human. Recently, low protein diets are reported to be associated with lowered cancer incidence and mortality risk of cancers in human. In murine models, protein restriction inhibits tumor growth via mTOR signaling pathway. IGF-1, amino acid metabolic programing, FGF21, and autophagy may also serve as potential mechanisms of protein restriction mediated cancer prevention. Together, dietary intervention aimed at reducing protein intake can be beneficial and has the potential to be widely adopted and effective in preventing and treating cancers. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Food restriction followed by refeeding with a casein- or whey-based diet differentially affects the gut microbiota of pre-pubertal male rats.

    Science.gov (United States)

    Masarwi, Majdi; Solnik, Hadas Isaac; Phillip, Moshe; Yaron, Sima; Shamir, Raanan; Pasmanic-Chor, Metsada; Gat-Yablonski, Galia

    2018-01-01

    Researchers are gaining an increasing understanding of host-gut microbiota interactions, but studies of the role of gut microbiota in linear growth are scarce. The aim of this study was to investigate the effect of food restriction and refeeding with different diets on gut microbiota composition in fast-growing rats. Young male Sprague-Dawley rats were fed regular rat chow ad libitum (control group) or subjected to 40% food restriction for 36 days followed by continued restriction or ad libitum refeeding for 24 days. Three different diets were used for refeeding: regular vegetarian protein chow or chow in which the sole source of protein was casein or whey. In the control group, the composition of the microbiota remained stable. Food restriction for 60 days led to a significant change in the gut microbiota at the phylum level, with a reduction in the abundance of Firmicutes and an increase in Bacteroidetes and Proteobacteria. Rats refed with the vegetarian protein diet had a different microbiota composition than rats refed the casein- or whey-based diet. Similarities in the bacterial population were found between rats refed vegetarian protein or a whey-based diet and control rats, and between rats refed a casein-based diet and rats on continued restriction. There was a significant strong correlation between the gut microbiota and growth parameters: humerus length, epiphyseal growth plate height, and levels of insulin-like growth factor 1 and leptin. In conclusion, the type of protein in the diet significantly affects the gut microbiota and, thereby, may affect animal's health. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Food restriction prevents an age-associated increase in rat liver beta-adrenergic receptors

    Energy Technology Data Exchange (ETDEWEB)

    Dax, E.M.; Ingram, D.K.; Partilla, J.S.; Gregerman, R.I.

    1989-05-01

    In male Wistar rats fed ad libitum (24% protein, 4.5 Kcal/gm), the (/sup 125/I)iodopindolol binding capacity of the beta-adrenergic receptors in liver of 24-month-old animals is 3-4 times greater than that of 6-month-old counterparts. In rats fed the same diet, on alternate days from weaning, the receptor capacity did not increase significantly between 6 and 24 months (10.20 +/- 0.55 vs 9.20 +/- 0.72 fmol/mg) or between 24 and 30 months. This was not due to acute dietary deprivation, as rats food-restricted for only 2 weeks, at 23.5 months of age, also showed elevated receptor capacities compared to 6-month-old ad libitum fed animals. Moreover, intermittent feeding produced no significant effects among 6-month-old animals, whether restricted since weaning or for two weeks prior to sacrifice. Many biochemical parameters that decrease with aging in rats fed ad libitum are prevented by dietary restriction. Our results demonstrate that a reproducible biochemical process that increases with aging is also prevented with dietary restriction. The age-related, liver beta-receptor increase may be a potentially reliable marker for studying biochemical perturbations that modify life span.

  6. Food restriction prevents an age-associated increase in rat liver beta-adrenergic receptors

    International Nuclear Information System (INIS)

    Dax, E.M.; Ingram, D.K.; Partilla, J.S.; Gregerman, R.I.

    1989-01-01

    In male Wistar rats fed ad libitum (24% protein, 4.5 Kcal/gm), the [ 125 I]iodopindolol binding capacity of the beta-adrenergic receptors in liver of 24-month-old animals is 3-4 times greater than that of 6-month-old counterparts. In rats fed the same diet, on alternate days from weaning, the receptor capacity did not increase significantly between 6 and 24 months (10.20 +/- 0.55 vs 9.20 +/- 0.72 fmol/mg) or between 24 and 30 months. This was not due to acute dietary deprivation, as rats food-restricted for only 2 weeks, at 23.5 months of age, also showed elevated receptor capacities compared to 6-month-old ad libitum fed animals. Moreover, intermittent feeding produced no significant effects among 6-month-old animals, whether restricted since weaning or for two weeks prior to sacrifice. Many biochemical parameters that decrease with aging in rats fed ad libitum are prevented by dietary restriction. Our results demonstrate that a reproducible biochemical process that increases with aging is also prevented with dietary restriction. The age-related, liver beta-receptor increase may be a potentially reliable marker for studying biochemical perturbations that modify life span

  7. Intrauterine Growth Restriction Programs the Hypothalamus of Adult Male Rats: Integrated Analysis of Proteomic and Metabolomic Data.

    Science.gov (United States)

    Pedroso, Amanda P; Souza, Adriana P; Dornellas, Ana P S; Oyama, Lila M; Nascimento, Cláudia M O; Santos, Gianni M S; Rosa, José C; Bertolla, Ricardo P; Klawitter, Jelena; Christians, Uwe; Tashima, Alexandre K; Ribeiro, Eliane B

    2017-04-07

    Programming of hypothalamic functions regulating energy homeostasis may play a role in intrauterine growth restriction (IUGR)-induced adulthood obesity. The present study investigated the effects of IUGR on the hypothalamus proteome and metabolome of adult rats submitted to 50% protein-energy restriction throughout pregnancy. Proteomic and metabolomic analyzes were performed by data independent acquisition mass spectrometry and multiple reaction monitoring, respectively. At age 4 months, the restricted rats showed elevated adiposity, increased leptin and signs of insulin resistance. 1356 proteins were identified and 348 quantified while 127 metabolites were quantified. The restricted hypothalamus showed down-regulation of 36 proteins and 5 metabolites and up-regulation of 21 proteins and 9 metabolites. Integrated pathway analysis of the proteomics and metabolomics data indicated impairment of hypothalamic glucose metabolism, increased flux through the hexosamine pathway, deregulation of TCA cycle and the respiratory chain, and alterations in glutathione metabolism. The data suggest IUGR modulation of energy metabolism and redox homeostasis in the hypothalamus of male adult rats. The present results indicated deleterious consequences of IUGR on hypothalamic pathways involved in pivotal physiological functions. These results provide guidance for future mechanistic studies assessing the role of intrauterine malnutrition in the development of metabolic diseases later in life.

  8. Can early protein restriction induce the development of binge eating?

    Science.gov (United States)

    Fechine, Madge Farias; Borba, Tássia Karin; Cabral-Filho, José Eulálio; Bolaños-Jiménez, Francisco; Lopes-de-Souza, Sandra; Manhães-de-Castro, Raul

    2016-04-01

    We tested the hypothesis that perinatal undernourishment is a factor for binge eating. At 52 days rats born from dams fed on 17% protein (Control) or 8% protein (Undernourished) were distributed into four groups, two of which continued to be fed ad libitum chow and two were submitted to three consecutive Restricted/Refeeding (R/R) cycles. According to the following schedule: Control Naïve (from mothers fed 17% protein/no restriction phase); Control Restricted (from mothers fed 17% protein/restriction phase); Undernourished Naïve (from mothers fed 8% protein/no restriction phase); and Undernourished Restricted (from mothers fed 8% protein/restriction phase). Each cycle consisted of a restriction phase (in the first four days 40% of the mean daily individual chow intake was offered for consumption), followed by a refeeding phase (4 days of chow ad libitum). After the three cycles, all animals were subjected to a feeding test (chow diet and palatable food ad libitum for 24h). During the feeding test, the Undernourished Restricted demonstrated rebound hyperphagia during 2, 4 and 6h. These results suggest the perinatal undernourishment cannot contribute to a binge eating phenotype. Copyright © 2016. Published by Elsevier B.V.

  9. Effect of triiodothyronine on rat liver chromatin protein kinase

    International Nuclear Information System (INIS)

    Kruh, J.; Tichonicky, L.

    1976-01-01

    1) Injection of triiodothyronine to rats stimulates protein kinase activity in liver chromatin nonhistone proteins. A significant increase was found after two daily injections. A 4-fold increase was observed with the purified enzyme after eight daily injections of the hormone. No variations were observed in cytosol protein kinase activity. Electrophoretic pattern, effect of heat denaturation, effect of p-hydroxymercuribenzoate seem to indicate that the enzyme present in treated rats is not identical to the enzyme in control animals, which suggests that thyroid hormone has induced nuclear protein kinase. Diiodothyronine, 3, 3', 5'-triiodothyronine have no effect on protein kinase. 2) Chromatin non-histone proteins isolated from rats injected with triiodothyronine incorporated more 32 P when incubated with [γ- 32 P]ATP than the chromatin proteins from untreated rats. Thyroidectomy reduced the in vitro 32 P incorporation. It is suggested that some of the biological activity of thyroid hormone could be mediated through its effect on chromatin non-histone proteins. (orig.) [de

  10. Null effect of dietary restriction on prostate carcinogenesis in the Wistar-Unilever rat.

    Science.gov (United States)

    McCormick, David L; Johnson, William D; Haryu, Todd M; Bosland, Maarten C; Lubet, Ronald A; Steele, Vernon E

    2007-01-01

    Chronic dietary restriction inhibits carcinogenesis in several sites in laboratory animals. To determine the effects of dietary restriction on prostate carcinogenesis, prostate cancers were induced in male Wistar-Unilever rats by a sequential regimen of cyproterone acetate (50 mg/day; 21 days); testosterone propionate (100 mg/kg/day; 3 days); N-methyl-N-nitrosourea [MNU; 30 mg/kg; single dose]; and testosterone (subcutaneous implants of 2 pellets containing 40 mg each). Dietary restriction (0% [ad libitum control], 15%, or 30%) was initiated 2 wk post-MNU, and continued until study termination at 12 mo. Dietary restriction induced a rapid suppression of body weight gain but conferred no protection against prostate carcinogenesis. 74% of carcinogen-treated ad libitum controls developed accessory sex gland cancers, versus cancer incidences of 64% and 72% in groups restricted by 15% and 30%, respectively. Similarly, 44% of dietary controls developed cancers limited to the dorsolateral/prostate, versus incidences of 45% and 53% in groups restricted by 15% and 30%. The results of the present study do not support the hypothesis that prostate carcinogenesis can be prevented by reducing caloric intake. Reducing mean body weight by up to 25% through chronic dietary restriction has no effect on the induction of prostate cancers in the Wistar-Unilever rat model.

  11. Effects of chronic REM sleep restriction on D1 receptor and related signal pathways in rat prefrontal cortex.

    Science.gov (United States)

    Han, Yan; Wen, Xiaosa; Rong, Fei; Chen, Xinmin; Ouyang, Ruying; Wu, Shuai; Nian, Hua; Ma, Wenling

    2015-01-01

    The prefrontal cortex (PFC) mediates cognitive function that is sensitive to disruption by sleep loss, and molecular mechanisms regulating neural dysfunction induced by chronic sleep restriction (CSR), particularly in the PFC, have yet to be completely understood. The aim of the present study was to investigate the effect of chronic REM sleep restriction (REM-CSR) on the D1 receptor (D1R) and key molecules in D1R' signal pathways in PFC. We employed the modified multiple platform method to create the REM-CSR rat model. The ultrastructure of PFC was observed by electron microscopy. HPLC was performed to measure the DA level in PFC. The expressions of genes and proteins of related molecules were assayed by real-time PCR and Western blot, respectively. The general state and morphology of PFC in rats were changed by CSR, and DA level and the expression of D1R in PFC were markedly decreased (P CSR rats (P CSR induced cognitive dysfunction, and the PKA pathway of D1R may play an important role in the impairment of advanced neural function.

  12. Expression of renin-angiotensin system signalling compounds in maternal protein-restricted rats: effect on renal sodium excretion and blood pressure.

    Science.gov (United States)

    Mesquita, Flávia Fernandes; Gontijo, José Antonio Rocha; Boer, Patrícia Aline

    2010-02-01

    Intrauterine growth restriction due to low maternal dietary protein during pregnancy is associated with retardation of foetal growth, renal alterations and adult hypertension. The renin-angiotensin system (RAS) is a coordinated hormonal cascade in the control of cardiovascular, renal and adrenal function that governs body fluid and electrolyte balance, as well as arterial pressure. In the kidney, all the components of the renin-angiotensin system including angiotensin II type 1 (AT1) and type 2 (AT2) receptors are expressed locally during nephrogenesis. Hence, we investigated whether low protein diet intake during pregnancy altered kidney and adrenal expression of AT1(R) and AT2(R) receptors, their pathways and if the modified expression of the RAS compounds occurs associated with changes in urinary sodium and in arterial blood pressure in sixteen-week-old males' offspring of the underfed group. The pregnancy dams were divided in two groups: with normal protein diet (pups named NP) (17% protein) or low protein diet (pups LP) (6% protein) during all pregnancy. The present data confirm a significant enhancement in arterial pressure in the LP group. Furthermore, the study showed a significantly decreased expression of RAS pathway protein and Ang II receptors in the kidney and an increased expression in the adrenal of LP rats. The detailed immunohistochemical analysis of RAS signalling proteins in the kidney confirm the immunoblotting results for both groups. The present investigation also showed a pronounced decrease in fractional urinary sodium excretion in maternal protein-restricted offspring, compared with the NP age-matched group. This occurred despite unchanged creatinine clearance. The current data led us to hypothesize that foetal undernutrition could be associated with decreased kidney expression of AT(R) resulting in the inability of renal tubules to handle the hydro-electrolyte balance, consequently causing arterial hypertension.

  13. Radioprotective effect of calorie restriction in Hela cells and SD rats

    International Nuclear Information System (INIS)

    Yang Yang; Chong Yu; Jiao Yang; Xu Jiaying; Fan Saijun

    2012-01-01

    Objective: To explore the effect of low calorie metabolism on the survival of HeLa cells exposed to X-rays, and the influence of starvation on the antioxidative factors in the blood of rats after irradiation. Methods: MTT method was used to evaluate the impact of different concentration glucose on the proliferation of HeLa cells. Colony formation assay was employed to detect the influence of glucose (1, 5, 10 and 25 mmol/L) on radiosensitivity of HeLa cells. Flow cytometry assay was used to analyze distribution of cell cycle and apoptosis. 60 male SD rats were randomly divided into 6 groups with 10 rats each. Rats in every two groups were fed ad libitum, fasted for 24 h and fasted for 48 h, respectively. Rats in one group of each approach were respectively exposed to whole-body X-rays at 11 Gy. At 2 h after irradiation,all of rats were sacrificed and their venous blood was collected. Elisa kits were used to detect superoxide dismutase (SOD) and total antioxidant capacity (T-AOC). Results: An increased viability was observed in HeLa cells treated with the glucose at low concentration (<25 mmol/L), while HeLa cell growth was inhibited by glucose at doses of >25 mmol/L. Relevant to cells treated with 1 mmoL/L glucose, SERs (sensitive enhancement ratio) in cells exposed to 5, 10 and 25 mmol/L glucose were 1.07, 1.10 and 1.23,respectively. A reduction of G 2 /M and S arrests and apoptosis caused by 6 Gy X-ray irradiation were observed [(49.68 ±1.88)% and (35.54±1.45)% at G 2 /M phase, (16.88 ±1.22)% and (10.23 ±1.65)% at S phase, t=10.42, 5.61, P<0.05] and in the cells treated with 1 mmol/L glucose compared with cells treated with 25 mmol/L glucose [(25.50 ± 0.95)% and (7.56 ± 1.07)%, t=21.72, P<0.05].Without irradiation, calorie restriction exhibited a negligible influence on SOD and T-AOC in rats. However, after 11 Gy irradiation, compared with rats fed ad libitum, the levels of SOD and T-AOC were significantly increased in rats with calorie restriction (t=40

  14. Intrauterine Growth Restriction Increases TNFα and Activates the Unfolded Protein Response in Male Rat Pups

    Directory of Open Access Journals (Sweden)

    Emily S. Riddle

    2014-01-01

    Full Text Available Intrauterine growth restriction (IUGR programs adult disease, including obesity and insulin resistance. Our group previously demonstrated that IUGR dysregulates adipose deposition in male, but not female, weanling rats. Dysregulated adipose deposition is often accompanied by the release of proinflammatory signaling molecules, such as tumor necrosis factor alpha (TNFα. TNFα contributes to adipocyte inflammation and impaired insulin signaling. TNFα has also been implicated in the activation of the unfolded protein response (UPR, which impairs insulin signaling. We hypothesized that, in male rat pups, IUGR would increase TNFα, TNFR1, and components of the UPR (Hspa5, ATF6, p-eIF2α, and Ddit3 prior to the onset of obesity. We further hypothesized that impaired glucose tolerance would occur after the onset of adipose dysfunction in male IUGR rats. To test this hypothesis, we used a well-characterized rat model of uteroplacental insufficiency-induced IUGR. Our primary findings are that, in male rats, IUGR (1 increased circulating and adipose TNFα, (2 increased mRNA levels of UPR components as well as p-eIF2a, and (3 impaired glucose tolerance after observed TNFα increased and after UPR activation. We speculate that programmed dysregulation of TNFα and UPR contributed to the development of glucose intolerance in male IUGR rats.

  15. Effect of dietary protein restriction on renal ammonia metabolism

    Science.gov (United States)

    Lee, Hyun-Wook; Osis, Gunars; Handlogten, Mary E.; Guo, Hui; Verlander, Jill W.

    2015-01-01

    Dietary protein restriction has multiple benefits in kidney disease. Because protein intake is a major determinant of endogenous acid production, it is important that net acid excretion change in parallel during protein restriction. Ammonia is the primary component of net acid excretion, and inappropriate ammonia excretion can lead to negative nitrogen balance. Accordingly, we examined ammonia excretion in response to protein restriction and then we determined the molecular mechanism of the changes observed. Wild-type C57Bl/6 mice fed a 20% protein diet and then changed to 6% protein developed an 85% reduction in ammonia excretion within 2 days, which persisted during a 10-day study. The expression of multiple proteins involved in renal ammonia metabolism was altered, including the ammonia-generating enzymes phosphate-dependent glutaminase (PDG) and phosphoenolpyruvate carboxykinase (PEPCK) and the ammonia-metabolizing enzyme glutamine synthetase. Rhbg, an ammonia transporter, increased in expression in the inner stripe of outer medullary collecting duct intercalated cell (OMCDis-IC). However, collecting duct-specific Rhbg deletion did not alter the response to protein restriction. Rhcg deletion did not alter ammonia excretion in response to dietary protein restriction. These results indicate 1) dietary protein restriction decreases renal ammonia excretion through coordinated regulation of multiple components of ammonia metabolism; 2) increased Rhbg expression in the OMCDis-IC may indicate a biological role in addition to ammonia transport; and 3) Rhcg expression is not necessary to decrease ammonia excretion during dietary protein restriction. PMID:25925252

  16. Effect of diet protein quality on growth and protein synthesis in rats

    International Nuclear Information System (INIS)

    Chinchalkar, D.V.; Mehta, S.L.

    1978-01-01

    The effect of diet protein quality on albino rats was studied by feeding normal and opaque-2 maize. The weight gain in rats was 60 percent higher on opaque-2 maize as compared to those fed on normal maize. Rats converted 1.0 g of dietary opaque-2 maize to 0.226 g weight gain as compared to 0.131 g for normal maize. The protein content per liver was higher with opaque-2 maize diet suggesting a higher net protein synthesis in opaque-2 maize fed rat livers. In vitro 14 C-phenylalanine incorporation showed that polysomes from opaque-2 maize fed rat livers were more efficient in protein synthesis than those from normal maize fed rat livers. Addition of poly-U resulted in more enhanced amino acid incorporation with polysomes from normal maize fed rats as compared to other group indicating greater limitation of mRNA in polysomes from normal maize fed rats. The total yield of liver polysomes from opaque-2 maize fed rats was substantially higher. (author)

  17. The effects of beta-adrenergic blockade on body composition in free-fed and diet-restricted rats.

    Science.gov (United States)

    Ji, L L; Doan, T D; Lennon, D L; Nagle, F J; Lardy, H A

    1987-04-01

    The effects of the non-selective beta-adrenergic blocking agent propranolol (known for its anti-lipolytic activity) on body composition were investigated in growing male rats on normal unrestricted diet (N = 7) and on diet restriction (N = 7, 95% of controls). Three animals in each group were injected i.p. with 30 mg propranolol per kg body weight (bw) dissolved in saline, 5 days/week. This dose attenuates exercising heart rate by 25% and exercise training-induced enzyme activity. The remaining animals received saline. Fat, glycogen, moisture and non-ether extractable residue were determined in the homogenized residue of the whole animal. After 9 weeks on the experimental regimen, bw gain was significantly lower in the diet restricted rats, whereas propranolol had no effect on the bw gain. The percentage of fat, moisture and non-ether extractable residue were unchanged by either propranolol or diet restriction. However, glycogen content was significantly lower in the beta-blocked rats either with or without diet restriction. These data indicated that neither beta-adrenergic blockade nor minimal diet restriction influences the percentage body fat, whereas body glycogen content is decreased under both conditions.

  18. Effect of Short-term Quercetin, Caloric Restriction and Combined Treatment on Age-related Oxidative Stress Markers in the Rat Cerebral Cortex

    Science.gov (United States)

    Alugoju, Phaniendra; Swamy, Vkd Krishan; Periyasamy, Latha

    2018-03-14

    Aging is characterized by gradual accumulation of macromolecular damage leading to progressive loss of physiological function and increased susceptibility to diverse diseases. Effective anti-aging strategies involving caloric restriction or antioxidant supplementation are receiving growing attention to attenuate macromolecular damage in age associated pathology. In the present study, we for the first time investigated the effect of quercetin, caloric restriction and combined treatment (caloric restriction with quercetin) on oxidative stress parameters, acetylcholinesterase and ATPases enzyme activities in the cerebral cortex of aged male Wistar rats. 21 months aged rats were divided into four groups (n=6-8) such as group 1-fed ad libitum (AL); group 2-quercetin supplementation of 50 mg/kg b.w/day for 45 days fed ad libitum (QUER); group 3: caloric restricted (CR) (fed 40% reduced AL for 45 days); group 4-fed 40% CR and 50 mg/kg b.w/day QUER for 45 days (CR + QUER). Group 5-three month age old rats served as young control (YOUNG). Our results demonstrate that combined treatment of caloric restriction and quercetin significantly improved the age associated decline in the activities of endogenous antioxidant enzymes [such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)] and glutathione (GSH) content and attenuated elevated levels of protein carbonyl content (PCC), lipid peroxidation, lipofuscin, reactive oxygen species (ROS), and nitric oxide (NO). Furthermore, it is also observed that combined treatment ameliorated age associated alterations in acetylcholine esterase (AChE) and adenosine triphosphatases (ATPases) such as Na+/K+-ATPase and Ca+2-ATPase (but not Mg+2- ATPase) enzyme activities. Finally, we conclude that combined treatment of caloric restriction and quercetin (but not either treatment alone) in late life is an effective anti-aging therapy to counteract the age related accumulation of oxidative macromolecular damage

  19. A low-protein diet restricts albumin synthesis in nephrotic rats.

    OpenAIRE

    Kaysen, G A; Jones, H; Martin, V; Hutchison, F N

    1989-01-01

    High-protein diets increase albumin synthesis in rats with Heymann nephritis but albuminuria increases also, causing serum albumin concentration to be suppressed further than in nephrotic animals eating a low-protein diet. Experiments were designed to determine whether dietary protein augmentation directly stimulates albumin synthesis, or whether instead increased albumin synthesis is triggered by the decrease in serum albumin concentration. Evidence is presented that dietary protein augmenta...

  20. Mechanism of protection of moderately diet restricted rats against doxorubicin-induced acute cardiotoxicity

    International Nuclear Information System (INIS)

    Mitra, Mayurranjan S.; Donthamsetty, Shashikiran; White, Brent; Latendresse, John R.; Mehendale, Harihara M.

    2007-01-01

    Clinical use of doxorubicin (Adriamycin (registered) ), an antitumor agent, is limited by its oxyradical-mediated cardiotoxicity. We tested the hypothesis that moderate diet restriction protects against doxorubicin-induced cardiotoxicity by decreasing oxidative stress and inducing cardioprotective mechanisms. Male Sprague-Dawley rats (250-275 g) were maintained on diet restriction [35% less food than ad libitum]. Cardiotoxicity was estimated by measuring biomarkers of cardiotoxicity, cardiac function, lipid peroxidation, and histopathology. A LD 100 dose of doxorubicin (12 mg/kg, ip) administered on day 43 led to 100% mortality in ad libitum rats between 7 and 13 days due to higher cardiotoxicity and cardiac dysfunction, whereas all the diet restricted rats exhibited normal cardiac function and survived. Toxicokinetic analysis revealed equal accumulation of doxorubicin and doxorubicinol (toxic metabolite) in the ad libitum and diet restricted hearts. Mechanistic studies revealed that diet restricted rats were protected due to (1) lower oxyradical stress from increased cardiac antioxidants leading to downregulation of uncoupling proteins 2 and 3, (2) induction of cardiac peroxisome proliferators activated receptor-α and plasma adiponectin increased cardiac fatty acid oxidation (666.9 ±14.0 nmol/min/g heart in ad libitum versus 1035.6 ± 32.3 nmol/min/g heart in diet restriction) and mitochondrial AMPα2 protein kinase. The changes led to 51% higher cardiac ATP levels (17.7 ± 2.1 μmol/g heart in ad libitum versus 26.7 ± 1.9 μmol/g heart in diet restriction), higher ATP/ADP ratio, and (3) increased cardiac erythropoietin and decreased suppressor of cytokine signaling 3, which upregulates cardioprotective JAK/STAT3 pathway. These findings collectively show that moderate diet restriction renders resiliency against doxorubicin cardiotoxicity by lowering oxidative stress, enhancing ATP synthesis, and inducing the JAK/STAT3 pathway

  1. Transcriptional profiling of rat skeletal muscle hypertrophy under restriction of blood flow.

    Science.gov (United States)

    Xu, Shouyu; Liu, Xueyun; Chen, Zhenhuang; Li, Gaoquan; Chen, Qin; Zhou, Guoqing; Ma, Ruijie; Yao, Xinmiao; Huang, Xiao

    2016-12-15

    Blood flow restriction (BFR) under low-intensity resistance training (LIRT) can produce similar effects upon muscles to that of high-intensity resistance training (HIRT) while overcoming many of the restrictions to HIRT that occurs in a clinical setting. However, the potential molecular mechanisms of BFR induced muscle hypertrophy remain largely unknown. Here, using a BFR rat model, we aim to better elucidate the mechanisms regulating muscle hypertrophy as induced by BFR and reveal possible clinical therapeutic targets for atrophy cases. We performed genome wide screening with microarray analysis to identify unique differentially expressed genes during rat muscle hypertrophy. We then successfully separated the differentially expressed genes from BRF treated soleus samples by comparing the Affymetrix rat Genome U34 2.0 array with the control. Using qRT-PCR and immunohistochemistry (IHC) we also analyzed other related differentially expressed genes. Results suggested that muscle hypertrophy induced by BFR is essentially regulated by the rate of protein turnover. Specifically, PI3K/AKT and MAPK pathways act as positive regulators in controlling protein synthesis where ubiquitin-proteasome acts as a negative regulator. This represents the first general genome wide level investigation of the gene expression profile in the rat soleus after BFR treatment. This may aid our understanding of the molecular mechanisms regulating and controlling muscle hypertrophy and provide support to the BFR strategies aiming to prevent muscle atrophy in a clinical setting. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Effect of calorie restriction and refeeding on skin wound healing in the rat.

    Science.gov (United States)

    Hunt, Nicole D; Li, Garrick D; Zhu, Min; Miller, Marshall; Levette, Andrew; Chachich, Mark E; Spangler, Edward L; Allard, Joanne S; Hyun, Dong-Hoon; Ingram, Donald K; de Cabo, Rafael

    2012-12-01

    Calorie restriction (CR) is a reliable anti-aging intervention that attenuates the onset of a number of age-related diseases, reduces oxidative damage, and maintains function during aging. In the current study, we assessed the effects of CR and other feeding regimens on wound healing in 7-month-old Fischer-344 rats from a larger cohort of rats that had been fed either ad libitum (AL) or 40% calorie restricted based on AL consumption. Rats were assigned to one of three diet groups that received three skin punch wounds along the dorsal interscapular region (12-mm diameter near the front limbs) of the back as follows: (1) CR (n = 8) were wounded and maintained on CR until they healed, (2) AL (n = 5) were wounded and maintained on AL until wound closure was completed, and (3) CR rats were refed (RF, n = 9) AL for 48 h prior to wounding and maintained on AL until they healed. We observed that young rats on CR healed more slowly while CR rats refed for 48 h prior to wounding healed as fast as AL fed rats, similar to a study reported in aged CR and RF mice (Reed et al. 1996). Our data suggest that CR subjects, regardless of age, fail to heal well and that provision of increased nutrition to CR subjects prior to wounding enhances the healing process.

  3. The effect of protein restriction on the progression of renal insufficiency

    International Nuclear Information System (INIS)

    Ihle, B.U.; Becker, G.J.; Whitworth, J.A.; Charlwood, R.A.; Kincaid-Smith, P.S.

    1989-01-01

    Dietary protein intake may be an important determinant of the rate of decline in renal function in patients with chronic renal insufficiency. We conducted a prospective, randomized study of the efficacy of protein restriction in slowing the rate of progression of renal impairment. The study lasted 18 months and included 64 patients with serum creatinine concentrations ranging from 350 to 1000 micromol per liter. The patients were randomly assigned to follow either a regular diet or an isocaloric protein-restricted diet (0.4 g of protein per kilogram of the body weight per day). Blood-pressure levels and the balance between calcium and phosphate were similar in the two groups. End-stage renal failure developed in 9 of the 33 patients (27 percent) who followed the regular diet during the study, as compared with 2 of the 31 patients (6 percent) who followed the protein-restricted diet (P less than 0.05). The mean (+/- SE) glomerular filtration rate, as measured by the clearance of 51Cr bound to EDTA, fell from 0.25 +/- 0.03 to 0.10 +/- 0.05 ml per second (P less than 0.01) in the group on the regular diet, whereas it fell from 0.23 +/- 0.04 to 0.20 +/- 0.05 ml per second (P not significant) in the group on the protein-restricted diet. We conclude that dietary protein restriction is effective in slowing the rate of progression of chronic renal failure

  4. Calorie Restricted High Protein Diets Downregulate Lipogenesis and Lower Intrahepatic Triglyceride Concentrations in Male Rats

    Directory of Open Access Journals (Sweden)

    Lee M. Margolis

    2016-09-01

    Full Text Available The purpose of this investigation was to assess the influence of calorie restriction (CR alone, higher-protein/lower-carbohydrate intake alone, and combined CR higher-protein/lower-carbohydrate intake on glucose homeostasis, hepatic de novo lipogenesis (DNL, and intrahepatic triglycerides. Twelve-week old male Sprague Dawley rats consumed ad libitum (AL or CR (40% restriction, adequate (10%, or high (32% protein (PRO milk-based diets for 16 weeks. Metabolic profiles were assessed in serum, and intrahepatic triglyceride concentrations and molecular markers of de novo lipogenesis were determined in liver. Independent of calorie intake, 32% PRO tended to result in lower homeostatic model assessment of insulin resistance (HOMA-IR values compared to 10% PRO, while insulin and homeostatic model assessment of β-cell function (HOMA-β values were lower in CR than AL, regardless of protein intake. Intrahepatic triglyceride concentrations were 27.4 ± 4.5 and 11.7 ± 4.5 µmol·g−1 lower (p < 0.05 in CR and 32% PRO compared to AL and 10% PRO, respectively. Gene expression of fatty acid synthase (FASN, stearoyl-CoA destaurase-1 (SCD1 and pyruvate dehydrogenase kinase, isozyme 4 (PDK4 were 45% ± 1%, 23% ± 1%, and 57% ± 1% lower (p < 0.05, respectively, in CR than AL, regardless of protein intake. Total protein of FASN and SCD were 50% ± 1% and 26% ± 1% lower (p < 0.05 in 32% PRO compared to 10% PRO, independent of calorie intake. Results from this investigation provide evidence that the metabolic health benefits associated with CR—specifically reduction in intrahepatic triglyceride content—may be enhanced by consuming a higher-protein/lower-carbohydrate diet.

  5. High fat diet and food restriction differentially modify the behavioral effects of quinpirole and raclopride in rats.

    Science.gov (United States)

    Baladi, Michelle G; France, Charles P

    2009-05-21

    Nutritional status can impact dopamine systems in a manner that might be important to understanding possible common neurobiological mechanisms that mediate abnormal compulsive food (e.g., obesity) and drug taking. Limiting food intake, for example, can increase sensitivity to the behavioral effects of indirect-acting dopamine receptor agonists. Much less is known regarding possible diet-induced changes in sensitivity to direct-acting dopamine receptor drugs. The present study investigated the effects of a high fat diet and of food restriction on sensitivity of rats to the behavioral effects of a direct-acting dopamine receptor agonist and a dopamine receptor antagonist. Free access to high fat chow increased sensitivity to quinpirole-induced yawning without changing sensitivity to raclopride-induced catalepsy or quinpirole-induced hypothermia. Food restriction (10 g/day) decreased sensitivity to quinpirole-induced yawning and raclopride-induced catalepsy without affecting sensitivity to quinpirole-induced hypothermia. Free access to a standard chow restored sensitivity to the behavioral effects of both drugs in rats that were previously food-restricted but not in rats that previously ate a high fat diet. These data confirm that food restriction can decrease sensitivity to behavioral effects of direct-acting dopamine receptor drugs, they provide evidence (i.e., no change in hypothermic effects) indicating that these changes are not due to pharmacokinetic mechanisms, and they provide initial evidence showing enhanced sensitivity to behavioral effects of dopamine receptor drugs in rats eating a high fat diet. These changes in sensitivity of dopamine systems could be relevant to understanding the impact of nutrition on therapeutic and recreational drug use.

  6. Dietary protein effects on irradiated rat kidney function

    International Nuclear Information System (INIS)

    Mahler, P.A.; Yatuin, M.B.

    1984-01-01

    The authors have previously reported that unilaterally nephrectomized, kidney irradiated young male S-D rats have an increased median survival when placed on a low (4%) protein diet, as compared to a normal (20%) or high (50%) protein diet (200, 103, and 59 days respectively for 14 Gy irradiation). They have expanded these studies to examine the effects of irradiation and dietary protein levels on kidney function, by examining the parameters of blood urea nitrogen, serum creatinine, urine urea nitrogen, urine creatinine, urine osmolarity, urine volume, and water consumption. Irradiated 20% protein diet animals show an increase in water consumption and urine production and also a decrease in urine osmolarity, urine urea concentration and urine creatinine concentration. These changes all support the hypothesis the kidney irradiated rats fed a normal protein diet have a reduced capability to concentrate urine compared to nonirradiated control rats. Evaluation of the same parameters in irradiated rats fed a 4% protein diet does not indicate a similar loss of concentrating capability. Whether this protection is due to the growth inhibition of the 4% protein diet or some other phenomena remains to be determined

  7. Gestational Protein Restriction in Wistar Rats; Effect of Taurine Supplementation on Properties of Newborn Skeletal Muscle

    DEFF Research Database (Denmark)

    Larsen, Lea Hüche; Sandø-Pedersen, Sofie; Ørstrup, Laura Kofoed Hvidsten

    2017-01-01

    Taurine ameliorates changes occurring in newborn skeletal muscle as a result of gestational protein restriction in C57BL/6 mice, but taurine supplementation effects may be exaggerated in C57BL/6 mice due to their inherent excessive taurinuria.We examined if maternal taurine supplementation could...... by taurine supplementation (LP-Tau). LP-Tau offspring had significantly lower birth weight compared to controls. Gene expression profiling revealed 895 significantly changed genes, mainly an LP-induced down-regulation of genes involved in protein translation. Taurine fully or partially rescued 32......% of these changes, but with no distinct pattern as to which genes were rescued.Skeletal muscle taurine content in LP-Tau offspring was increased, but no changes in mRNA levels of the taurine synthesis pathway were observed. Taurine transporter mRNA levels, but not protein levels, were increased by LP diet...

  8. Maternal protein restriction during pregnancy and lactation alters central leptin signalling, increases food intake, and decreases bone mass in 1 year old rat offspring.

    Science.gov (United States)

    Qasem, Rani J; Li, Jing; Tang, Hee Man; Pontiggia, Laura; D'mello, Anil P

    2016-04-01

    The effects of perinatal nutrition on offspring physiology have mostly been examined in young adult animals. Aging constitutes a risk factor for the progressive loss of metabolic flexibility and development of disease. Few studies have examined whether the phenotype programmed by perinatal nutrition persists in aging offspring. Persistence of detrimental phenotypes and their accumulative metabolic effects are important for disease causality. This study determined the effects of maternal protein restriction during pregnancy and lactation on food consumption, central leptin sensitivity, bone health, and susceptibility to high fat diet-induced adiposity in 1-year-old male offspring. Sprague-Dawley rats received either a control or a protein restricted diet throughout pregnancy and lactation and pups were weaned onto laboratory chow. One-year-old low protein (LP) offspring exhibited hyperphagia. The inability of an intraperitoneal (i.p.) leptin injection to reduce food intake indicated that the hyperphagia was mediated by decreased central leptin sensitivity. Hyperphagia was accompanied by lower body weight suggesting increased energy expenditure in LP offspring. Bone density and bone mineral content that are negatively regulated by leptin acting via the sympathetic nervous system (SNS), were decreased in LP offspring. LP offspring did not exhibit increased susceptibility to high fat diet induced metabolic effects or adiposity. The results presented here indicate that the programming effects of perinatal protein restriction are mediated by specific decreases in central leptin signalling to pathways involved in the regulation of food intake along with possible enhancement of different CNS leptin signalling pathways acting via the SNS to regulate bone mass and energy expenditure. © 2016 John Wiley & Sons Australia, Ltd.

  9. Food restriction modulates β-adrenergic-sensitive adenylate cyclase in rat liver during aging

    International Nuclear Information System (INIS)

    Katz, M.S.

    1988-01-01

    Adenylate cyclase activities were studied in rat liver during postmaturational aging of male Fischer 344 rats fed ad libitum or restricted to 60% of the ad libitum intake. Catecholamine-stimulated adenylate cyclase activity increased by 200-300% between 6 and 24-27 mo of age in ad libitum-fed rats, whereas in food-restricted rats catecholamine response increased by only 58-84% between 6 and 30 mo. In ad libitum-fed rats, glucagon-stimulated enzyme activity also increased by 40% between 6 and 12 mo and in restricted rats a similar age-related increase was delayed until 18 mo. β-Adrenergic receptor density increased by 50% between 6 and 24 mo in livers from ad libitum-fed but not food-restricted rats and showed a highly significant correlation with maximal isoproterenol-stimulated adenylate cyclase activity over the postmaturational life span. Age-related increases in unstimulated (basal) adenylate cyclase activity and nonreceptor-mediated enzyme activation were retarded by food restriction. The results demonstrate that food restriction diminishes a marked age-related increase in β-adrenergic-sensitive adenylate cyclase activity of rat liver. Alterations of adrenergic-responsive adenylate cyclase with age and the modulatory effects of food restriction appear to be mediated by changes in both receptor and nonreceptor components of adenylate cyclase

  10. Visceral organ mass and hepatic protein synthetic capacity in fed and fasted rats

    International Nuclear Information System (INIS)

    Burrin, D.G.; Britton, R.A.; Ferrell, C.L.

    1986-01-01

    Forty-two male rats (avg wt. = 320 g) were used to assess the effect of severe nutrient restriction (72 h fast) on visceral organ mass and hepatic protein synthetic capacity as measured by in vitro incorporation of U- 14 -C-VALINE ( 14 C-VAL) into isolated hepatocytes. Organ weights expressed as a percent of empty body weight for fed vs. fasted rats were; liver (5.21 +/- .54 vs 3.82 +/- .46), kidney (.87 +/- 0.6 vs .89 +/- .05), stomach (.60 +/- .06 vs .61 +/- .06), intestines (3.70 +/- .44 vs 3.41 +/- .37). No differences were observed in in vitro oxygen consumption (15.7 +/- 3.1 vs 16.1 +/- 3.3, umole min -1 g -1 dry tissue) or 14 -C VAL incorporation (4.93 +/- 1.28 vs 4.31 +/- 1.48, dpm min -1 mg -1 dry tissue) for hepatocytes from fed vs. fasted rats. Analysis of perfused liver tissue indicated fed rats had higher protein (152.1 +/- 16.3 vs 136.6 +/- 29.6, mg/g tissue) and RNA (8.81 +/- 1.66 vs 5.97 +/- 1.87, mg/g tissue) with lower DNA (2.19 +/- .31 vs 3.19 +/- .54, mg/g tissue) compared to fasted rats. Protein-nucleic acid ratios suggest liver tissue from fed rats had a greater capacity for protein synthesis compared to fasted rats, however, this was not evident from in vitro hepatocyte 14 -C VAL incorporation estimates. These data indicate that severe nutrient restriction (72 h fast) affects visceral organ mass largely by reduced liver and gut size as well as decreased hepatic protein synthetic capacity

  11. Protein restriction in chronic renal failure

    NARCIS (Netherlands)

    ECHTEN, JEKT; NAUTA, J; HOP, WCJ; de Jong, MCJ; REITSMABIERENS, WCC; VANAMSTEL, SLBP; VANACKER, KJ; NOORDZIJ, CM; WOLFF, ED

    The aim of the study was to investigate the effect of a protein restricted diet on renal function and growth of children with chronic renal failure. In a multicentre prospective study 56 children (aged 2-18 years) with chronic renal failure were randomly assigned to the protein restricted (0.8-1.1

  12. Effect of long-term caloric restriction on brain monoamines in aging male and female Fischer 344 rats.

    Science.gov (United States)

    Kolta, M G; Holson, R; Duffy, P; Hart, R W

    1989-05-01

    The present study examines the changes in central monoamines and their metabolites in aged male and female rats after long-term caloric restriction. Fischer 344 rats of both sexes (n = 5-10/group) were maintained on one of two dietary regimens: ad libitum NIH 31 diet or 60% by weight of the ad lib. intake (restricted), supplemented with vitamins and minerals. Animals received these diets from the age of 14 weeks until killed at 22.25 months of age. Caudate nucleus (CN), hypothalamus (HYPO), olfactory bulb (OB) and nucleus accumbens (NA) were assayed for content of norepinephrine (NE), dopamine (DA) and its metabolites (dihydroxyphenylacetic acid, DOPAC, and homovanillic acid, HVA) and serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) using HPLC/EC. Relative to the ad lib. group, restricted rats of both sex showed significant decreases in NE content in CN, HYPO and OB. DA and 5-HT content were decreased significantly in the CN and HYPO. No significant changes were found in the levels of DA metabolites in all brain regions studied. While the 5-HIAA level was significantly reduced in the HYPO and NA of the female restricted rats, it was increased several-fold in the OB of the male restricted animals. These preliminary results suggest that long-term caloric restriction alters brain monoamine concentrations, an effect which may in turn modify the normal rate of aging.

  13. Differential effects of fasting vs food restriction on liver thyroid hormone metabolism in male rats.

    Science.gov (United States)

    de Vries, E M; van Beeren, H C; Ackermans, M T; Kalsbeek, A; Fliers, E; Boelen, A

    2015-01-01

    A variety of illnesses that leads to profound changes in the hypothalamus-pituitary-thyroid (HPT) are axis collectively known as the nonthyroidal illness syndrome (NTIS). NTIS is characterized by decreased tri-iodothyronine (T3) and thyroxine (T4) and inappropriately low TSH serum concentrations, as well as altered hepatic thyroid hormone (TH) metabolism. Spontaneous caloric restriction often occurs during illness and may contribute to NTIS, but it is currently unknown to what extent. The role of diminished food intake is often studied using experimental fasting models, but partial food restriction might be a more physiologically relevant model. In this comparative study, we characterized hepatic TH metabolism in two models for caloric restriction: 36 h of complete fasting and 21 days of 50% food restriction. Both fasting and food restriction decreased serum T4 concentration, while after 36-h fasting serum T3 also decreased. Fasting decreased hepatic T3 but not T4 concentrations, while food restriction decreased both hepatic T3 and T4 concentrations. Fasting and food restriction both induced an upregulation of liver D3 expression and activity, D1 was not affected. A differential effect was seen in Mct10 mRNA expression, which was upregulated in the fasted rats but not in food-restricted rats. Other metabolic pathways of TH, such as sulfation and UDP-glucuronidation, were also differentially affected. The changes in hepatic TH concentrations were reflected by the expression of T3-responsive genes Fas and Spot14 only in the 36-h fasted rats. In conclusion, limited food intake induced marked changes in hepatic TH metabolism, which are likely to contribute to the changes observed during NTIS. © 2015 Society for Endocrinology.

  14. Excess of methyl donor in the perinatal period reduces postnatal leptin secretion in rat and interacts with the effect of protein content in diet.

    Directory of Open Access Journals (Sweden)

    Fanny Giudicelli

    Full Text Available Methionine, folic acid, betaine and choline interact in the one-carbon metabolism which provides methyl groups for methylation reactions. An optimal intake of these nutrients during pregnancy is required for successful completion of fetal development and evidence is growing that they could be involved in metabolic long-term programming. However, the biological pathways involved in the action of these nutrients are still poorly known. This study investigated the interaction between methyl donors and protein content in maternal diet during the preconceptual, pregnancy and lactation periods and the consequences on the rat offspring in the short and long term. Methyl donor supplementation reduced leptin secretion in offspring, whereas insulin levels were mostly affected by protein restriction. The joint effect of protein restriction and methyl donor excess strongly impaired postnatal growth in both gender and long term weight gain in male offspring only, without affecting food intake. In addition, rats born from protein restricted and methyl donor supplemented dams gained less weight when fed a hypercaloric diet. Methylation of the leptin gene promoter in adipose tissue was increased in methyl donor supplemented groups but not affected by protein restriction only. These results suggest that maternal methyl donor supplementation may influence energy homeostasis in a gender-dependent manner, without affecting food intake. Moreover, we showed that macronutrients and micronutrients in maternal diet interact to influence the programming of the offspring.

  15. The effect of food restriction on learning and memory of male Wistar rats: A behavioral analysis

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Vaez Mahdavi

    2010-01-01

    Full Text Available Introduction: Social inequality may have a significant negative effect on health. There are some evidences that social inequality and stressful conditions could lead to development and progression of various disorders. On the other hand, the results of some research studies have shown that reducing the consumed calorie could prolong the lifetime. In addition, limiting the consumed calorie could produce beneficial changes in the level of some hormones including blood insulin and may reduce body temperature. Meanwhile, food restriction could reduce genetic damage and may have protective effect against external toxins. Therefore, the aim of the present study was to evaluate the effect of food restriction on learning and memory of male rats using passive avoidance and Y-maze tests. Methods: For this purpose, male Wistar rats (n = 48 were divided into control, 3 experimental, and two negative and positive control groups. Control group received normal rat regimen for 6 weeks. The group with full restriction and non-isolated received 1/3 of the food regimen. The group with full restriction and isolation received 1/3 of the food regimen. The experimental group with two-weeks food restriction and non-isolated received 1/3 of the food regimen only for two weeks. Streptozotocin-diabetic rats with blood glucose higher than 250 mg/dl was considered as negative and positive control received vitamin E (10 mg/kg/day i.p. as an antioxidant. For evaluation of learning and memory, initial and step-through latencies and alternation behavior were analyzed using passive avoidance and Y-maze tests. Results: Regarding initial latency, there was a reduction in diabetic, vitamin-E treated, and group with 2-weeks food restriction and there was an increase in groups with full restriction and isolated and with full restriction as compared to control. Meanwhile, there were no significant differences among the groups, indicating that there were no changes in behavior

  16. A novel dietary restriction method for group-housed rats: weight gain and clinical chemistry characterization.

    Science.gov (United States)

    Kasanen, I H E; Inhilä, K J; Nevalainen, J I; Väisänen, S B; Mertanen, A M O; Mering, S M; Nevalainen, T O

    2009-04-01

    Laboratory rodents are usually fed ad libitum. Moderate dietary restriction decreases mortality and morbidity compared with ad libitum feeding. There are, however, problems in achieving dietary restriction. Traditional methods of restricted feeding may interfere with the diurnal rhythms of the animals and are not compatible with group-housing of rodents. We have invented a novel method, the diet board, for restricting the feed intake of laboratory rats. The use of the diet board moderately decreased weight gain of rats when compared with ad libitum-fed animals. The diet board retarded skeletal growth only minimally, whereas major differences were found in body fat depositions. Serum free fatty acid, triglyceride and cholesterol values were lower in diet-restricted rats, while the opposite was true for serum creatine kinase. There were no differences in total protein, albumin or alanine aminotransferase. Moreover, differences in interindividual variances in parameters were not detected between the groups; hence this study could not combine the diet board with reduction potential. The diet board provides mild to moderate dietary restriction for group-housed rats and is unlikely to interfere with the diurnal eating rhythm. The diet board can also be seen as a cage furniture item, dividing the open cage space and increasing the structural complexity of the environment. In conclusion, the diet board appears to possess refinement potential when compared with traditional methods of dietary restriction.

  17. Modified lingguizhugan decoction incorporated with dietary restriction and exercise ameliorates hyperglycemia, hyperlipidemia and hypertension in a rat model of the metabolic syndrome.

    Science.gov (United States)

    Yao, Limei; Wei, Jingjing; Shi, Si; Guo, Kunbin; Wang, Xiangyu; Wang, Qi; Chen, Dingsheng; Li, Weirong

    2017-02-28

    Modified Lingguizhugan Decoction (MLD) came from famous Chinese medicine Linggui Zhugan Decoction. The MLD is used for the treatment of metabolic syndrome in the clinical setting. Our study focuses on the comprehensive treatment of MLD incorporated with dietary restriction and exercise in a rat model of the metabolic syndrome (MS). Rats were divided into five groups: control group (Cont), high-fat diet group (HFD), high-fat diet incorporated with dietary restriction group (HFD-DR), exercise incorporated with dietary restriction group (HFD-DR-Ex) and MLD incorporated with dietary restriction and exercise group (HFD-DR-Ex-MLD). Treatments were conducted for 1 week after feeding high-fat diet for 12 weeks. The effects of treatments on high fat diet-induced obesity, hyperglycemia, hyperlipidemia, hypertension, hepatic injury and insulin resistance in rats of MS were examined. In addition, the tumor necrosis factor-α (TNF-α), leptin and protein kinase B (PKB) in rats serum and liver were also examined by enzyme-linked immunosorbent assay (ELISA). After a week's intervention by dietary restriction, dietary restriction incorporated with exercise or MLD, compared with HFD rats, the relative weight of liver and fat, levels of triglyceride, total cholesterol, low-density lipoprotein, free fatty acid, aspartate aminotransferase, glutamic-pyruvic transaminase and alkaline phosphatase, insulin, were significantly decreased (p exercise treatment exhibit effects in alleviating high-fat diet-induced obesity, hyperglycemia, hyperlipidemia, hypertension, hepatic injury and insulin resistance, which are possibly due to the down-regulation of TNF-α, leptin and PKB.

  18. Effects of age and caloric restriction in the vascular response of renal arteries to endothelin-1 in rats.

    Science.gov (United States)

    Amor, Sara; García-Villalón, Angel Luis; Rubio, Carmen; Carrascosa, Jose Ma; Monge, Luis; Fernández, Nuria; Martín-Carro, Beatriz; Granado, Miriam

    2017-02-01

    Cardiovascular alterations are the most prevalent cause of impaired physiological function in aged individuals with kidney being one the most affected organs. Aging-induced alterations in renal circulation are associated with a decrease in endothelium-derived relaxing factors such as nitric oxide (NO) and with an increase in contracting factors such as endothelin-1(ET-1). As caloric restriction (CR) exerts beneficial effects preventing some of the aging-induced alterations in cardiovascular system, the aim of this study was to analyze the effects of age and caloric restriction in the vascular response of renal arteries to ET-1 in aged rats. Vascular function was studied in renal arteries from 3-month-old Wistar rats fed ad libitum (3m) and in renal arteries from 8-and 24-month-old Wistar rats fed ad libitum (8m and 24m), or subjected to 20% caloric restriction during their three last months of life (8m-CR and 24m-CR). The contractile response to ET-1 was increased in renal arteries from 8m and 24m compared to 3m rats. ET-1-induced contraction was mediated by ET-A receptors in all experimental groups and also by ET-B receptors in 24m rats. Caloric restriction attenuated the increased contraction to ET-1 in renal arteries from 8m but not from 24m rats possibly through NO release proceeding from ET-B endothelial receptors. In 24m rats, CR did not attenuate the aging-increased response of renal arteries to ET-1, but it prevented the aging-induced increase in iNOS mRNA levels and the aging-induced decrease in eNOS mRNA levels in arterial tissue. In conclusion, aging is associated with an increased response to ET-1 in renal arteries that is prevented by CR in 8m but not in 24m rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Effect of behavior training on learning and memory of young rats with fetal growth restriction

    Institute of Scientific and Technical Information of China (English)

    Li Xuelan; Gou Wenli; Huang Pu; Li Chunfang; Sun Yunping

    2008-01-01

    Objective: To investigate the effect of behavior training on the learning and memory of young rats with fetal growth restriction (FGR). Methods: The model of FGR was established by passive smoking method to pregnant rats.The new-born rats were divided into FGR group and normal group, and then randomly subdivided into trained and untrained group respectively. Morris water maze behavior training was performed on postnatal months 2 and 4, then learning and memory abilities of young rats were measured by dark-avoidance testing and step-down testing. Results: In the dark-avoidance and step-down testing, the young rats' performance of FGR group was worse than that of control group, and the trained group was better than the untrained group significantly. Conclusion: FGR young rats have descended learning and memory abilities. Behavior training could improve the young rats' learning and memory abilities, especially for the FGR young rats.

  20. Leucine Supplementation in a Chronically Protein-Restricted Diet Enhances Muscle Weight and Postprandial Protein Synthesis of Skeletal Muscle by Promoting the mTOR Pathway in Adult Rats

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-10-01

    Full Text Available Low protein intake causes a decrease in protein deposition in most animal tissues. The purpose of this study was to investigate whether leucine supplementation would increase the synthesis rate of protein and muscle weight in adult rats, which chronically consume only 58.8% of their protein requirements. Thirty-six male Sprague-Dawley rats were assigned to one of three dietary treatments including a 20% casein diet (CON, a 10% casein + 0.44% alanine diet (R, and a 10% casein + 0.87% leucine diet (RL. After a 10 d dietary treatment, plasma amino acid levels were measured after feeding, the gastrocnemius muscles and soleus muscles were harvested and weighed, and the fractional synthesis rate (FSR and mammalian target of rapamycin (mTOR signaling proteins in skeletal muscle were measured. Regarding the plasma amino acid level, the RL group had the highest concentration of leucine (P < 0.05 and the lowest concentration of isoleucine (P < 0.05 among the three groups, and the CON group had a lower concentration of valine (P < 0.05 than the R and RL groups. Compared with the R and RL groups, the CON group diet significantly increased (P < 0.05 feed intake, protein synthesis rate, and the phosphorylation of eukaryotic initiation factor 4E binding protein 1 (4E-BP1, and decreased the weight of abdominal adipose. Compared with the R group, the RL group significantly increased in gastrocnemius muscle weight, protein synthesis rate, and phosphorylation of both ribosomal protein S6 kinase 1 (S6K1 and 4E-BP1. In conclusion, when protein is chronically restricted in adult rat diets, leucine supplementation moderately improves body weight gain and increases muscle protein synthesis through mTOR activation.

  1. The comparative effect of fasting with and without caloric restriction in Rat on oxidative stress parameters

    Directory of Open Access Journals (Sweden)

    Nurina Tyagita

    2016-09-01

    Full Text Available Introduction: Fasting, like Islamic Ramadan Fasting, has been associated with health benefits. Islamic Ramadan fasting, a form of caloric restriction (CR or alternate day fasting that. Studies suggest a comparable effect of ADF and caloric restriction. Despite the fact that fasting can be considered as a form of dietary restriction, fasters tend to have difficulty to reduce their food intake during non-fasting period by overeating leading to the excessive calorie intake. To compare the effect of fasting with and without caloric restriction in Sprague Dawley rats. Methods: The rats were assigned to one of three groups: ADF with 70 % calorie intake (30% CR, ADF with 100 % calorie intake (0% CR, and ADF with 140 % calorie intake (excessive calorie intake and AL (fed ad libitum. All groups were subjected to 6 hour fasting per day (9 a.m. until 3 p.m. or 15 days. The plasma sample was taken for MDA level assessment. Urinary 8-oxodG levels were determined by using ELISA. Results: ADF with 30% calorie restriction (F70 group had the lowest MDA level. Measurement of 8-oxodG level showed that group F70 had the highest production of 8-oxodG. There was an inverse relationship between MDA level and 8-oxodG level meaning the lower MDA level, the lower 8-oxodG levels were produced. Conclusion: ADF fasting with 30% caloric restriction reduce the MDA level but increase 8-oxodG levels. This study suggest the beneficial effect of fasting requires decrease in overall caloric intake.

  2. Effects of Long-Term Protein Restriction on Meat Quality, Muscle Amino Acids, and Amino Acid Transporters in Pigs.

    Science.gov (United States)

    Yin, Jie; Li, Yuying; Zhu, Xiaotong; Han, Hui; Ren, Wenkai; Chen, Shuai; Bin, Peng; Liu, Gang; Huang, Xingguo; Fang, Rejun; Wang, Bin; Wang, Kai; Sun, Liping; Li, Tiejun; Yin, Yulong

    2017-10-25

    This study aimed to investigate the long-term effects of protein restriction from piglets to finishing pigs for 16 weeks on meat quality, muscle amino acids, and amino acid transporters. Thirty-nine piglets were randomly divided into three groups: a control (20-18-16% crude protein, CP) and two protein restricted groups (17-15-13% CP and 14-12-10% CP). The results showed that severe protein restriction (14-12-10% CP) inhibited feed intake and body weight, while moderate protein restriction (17-15-13% CP) had little effect on growth performance in pigs. Meat quality (i.e., pH, color traits, marbling, water-holding capacity, and shearing force) were tested, and the results exhibited that 14-12-10% CP treatment markedly improved muscle marbling score and increased yellowness (b*). pH value (45 min) was significantly higher in 17-15-13% CP group than that in other groups. In addition, protein restriction reduced muscle histone, arginine, valine, and isoleucine abundances and enhanced glycine and lysine concentrations compared with the control group, while the RT-PCR results showed that protein restriction downregulated amino acids transporters. Mechanistic target of rapamycin (mTOR) signaling pathway was inactivated in the moderate protein restricted group (17-15-13% CP), while severe protein restriction with dietary 14-12-10% CP markedly enhanced mTOR phosphorylation. In conclusion, long-term protein restriction affected meat quality and muscle amino acid metabolism in pigs, which might be associated with mTOR signaling pathway.

  3. Low-protein diet does not alter reproductive, biochemical, and hematological parameters in pregnant Wistar rats

    Directory of Open Access Journals (Sweden)

    M.A.V. Barros

    2018-05-01

    Full Text Available The aim of this study was to investigate the reproductive, biochemical, and hematological outcomes of pregnant rats exposed to protein restriction. Wistar rat dams were fed a control normal-protein (NP, 17% protein, n=8 or a low-protein (LP, 8% protein, n=14 diet from the 1st to the 20th day of pregnancy. On the 20th day, the clinical signs of toxicity were evaluated. The pregnant rats were then anesthetized and blood samples were collected for biochemical-hematological analyses, and laparotomy was performed to evaluate reproductive parameters. No sign of toxicity, or differences (P>0.05 in body weight gain and biochemical parameters (urea, creatinine, albumin, globulin, and total protein between NP and LP pregnant dams were observed. Similarly, hematological data, including red blood cell count, white blood cell count, hemoglobin, hematocrit, red blood cell distribution width (coefficient of variation, mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, % lymphocytes, absolute lymphocyte count, platelet count, and mean platelet volume were similar (P>0.05 at the end of pregnancy. Reproductive parameters (the dam-offspring relationship, ovary mass, placenta mass, number of corpora lutea, implantation index, resorption index, and the pre- and post-implantation loss rates were also not different (P>0.05 between NP and LP pregnant dams. The present data showed that a protein-restricted diet during pregnancy did not alter reproductive, biochemical, and hematological parameters and seems not to have any toxic effect on pregnant Wistar rats.

  4. Protein-energy malnutrition at mid-adulthood does not imprint long-term metabolic consequences in male rats.

    Science.gov (United States)

    Malta, Ananda; de Moura, Egberto Gaspar; Ribeiro, Tatiane Aparecida; Tófolo, Laize Peron; Abdennebi-Najar, Latifa; Vieau, Didier; Barella, Luiz Felipe; de Freitas Mathias, Paulo Cezar; Lisboa, Patrícia Cristina; de Oliveira, Júlio Cezar

    2016-06-01

    The long-term effects of the development of chronic metabolic diseases such as type 2 diabetes and obesity have been associated with nutritional insults in critical life stages. In this study, we evaluated the effect of a low-protein diet on metabolism in mid-adulthood male rats. At 90 days of age, Wistar male rats were fed a low-protein diet (4.0 %, LP group) for 30 days, whereas control rats were fed a normal-protein diet (20.5 %, NP group) throughout their lifetimes. To allow for dietary rehabilitation, from 120 to 180 days of age, the LP rats were fed a normal-protein diet. Then, we measured body composition, fat stores, glucose-insulin homeostasis and pancreatic islet function. At 120 days of age, just after low-protein diet treatment, the LP rats displayed a strong lean phenotype, hypoinsulinemia, as assessed under fasting and glucose tolerance test conditions, as well as weak pancreatic islet insulinotropic response to glucose and acetylcholine (p protein diet rehabilitation, the LP rats displayed a slight lean phenotype (p  0.05). Taken together, the present data suggest that the effects of dietary restriction as a stressor in adulthood are reversible with dietary rehabilitation, indicating that adulthood is not a sensitive or critical time window for metabolic programming.

  5. Effects of electroacupuncture on leukocytes and plasma protein in the X-irradiated rats

    International Nuclear Information System (INIS)

    Hau, D.M.

    1984-01-01

    The effects of electroacupuncture on leukocytes and plasma protein on the X ray-irradiated rats were investigated in the present study. The results showed that X-irradiation had an evident inhibitory effect on the counts of total leukocytes, lymphocytes and neutrocytes, and the concentration of the total plasma protein, plasma albumin, globulin and alpha- and beta-globulin in X-irradiated rats. The electroacupuncture was able to help the X-irradiated rats to recover the counts of the total leukocyte, lymphocyte and neutrocyte. The electroacupuncture had a helpful tendency to recover the concentration of the total plasma protein, albumin, globulin, and alpha- and beta-globulin in the irradiated rats

  6. Effects of electroacupuncture on leukocytes and plasma protein in the X-irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Hau, D.M.

    The effects of electroacupuncture on leukocytes and plasma protein on the X ray-irradiated rats were investigated in the present study. The results showed that X-irradiation had an evident inhibitory effect on the counts of total leukocytes, lymphocytes and neutrocytes, and the concentration of the total plasma protein, plasma albumin, globulin and alpha- and beta-globulin in X-irradiated rats. The electroacupuncture was able to help the X-irradiated rats to recover the counts of the total leukocyte, lymphocyte and neutrocyte. The electroacupuncture had a helpful tendency to recover the concentration of the total plasma protein, albumin, globulin, and alpha- and beta-globulin in the irradiated rats.

  7. Hypocaloric high-protein diet improves fatty liver and hypertriglyceridemia in sucrose-fed obese rats via two pathways.

    Science.gov (United States)

    Uebanso, Takashi; Taketani, Yutaka; Fukaya, Makiko; Sato, Kazusa; Takei, Yuichiro; Sato, Tadatoshi; Sawada, Naoki; Amo, Kikuko; Harada, Nagakatsu; Arai, Hidekazu; Yamamoto, Hironori; Takeda, Eiji

    2009-07-01

    The mechanism by which replacement of some dietary carbohydrates with protein during weight loss favors lipid metabolism remains obscure. In this study, we investigated the effect of an energy-restricted, high-protein/low-carbohydrate diet on lipid metabolism in obese rats. High-sucrose-induced obese rats were assigned randomly to one of two energy-restricted dietary interventions: a carbohydrate-based control diet (CD) or a high-protein diet (HPD). Lean rats of the same age were assigned as normal control. There was significantly greater improvement in fatty liver and hypertriglyceridemia with the HPD diet relative to the CD diet. Expression of genes regulated by fibroblast growth factor-21 (FGF21) and involved in liver lipolysis and lipid utilitization, such as lipase and acyl-CoA oxidase, increased in obese rats fed the HPD. Furthermore, there was an inverse correlation between levels of FGF21 gene expression (regulated by glucagon/insulin balance) and increased triglyceride concentrations in liver from obese rats. Expression of hepatic stearoyl-CoA desaturase-1 (SCD1), regulated primarily by the dietary carbohydrate, was also markedly reduced in the HPD group (similar to plasma triglyceride levels in fasting animals) relative to the CD group. In conclusion, a hypocaloric high-protein diet improves fatty liver and hypertriglyceridemia effectively relative to a carbohydrate diet. The two cellular pathways at work behind these benefits include stimulation of hepatic lipolysis and lipid utilization mediated by FGF21 and reduction of hepatic VLDL-TG production by SCD1 regulation.

  8. Effect of pinealectomy and prolonged melatonin administration on circadian testicular function in food restricted rats

    International Nuclear Information System (INIS)

    Ostrowska, Z.; Zwirska-Korczala, K.; Kajdaniuk, D.; Gorski, J.; Buntner, B.

    1995-01-01

    The effect of pinealectomy and exogenous melatonin on the circadian testosterone variations was investigated (using the radioimmunoassay method) after 3 weeks of 50% food restriction in sexually mature male Wistar rats at 3-h intervals under 12:12 light-dark cycle. The circadian periodicity of testosterone secretion was maintained after caloric deprivation, however its mean 24-h concentration was lower and rhythm disturbances appeared in the form of acrophase shifts from 18.00 to 0.50 h. In pinealectomized animals the mean 24-h testosterone level and amplitude values were significantly increased without the rhythm disturbances. As compared to the control animals, underfed pinealectomized rats had a partial recovery of reduced testosterone levels during the 24-h cycle and showed a normalization of the rhythm acrophase. Melatonin administration was found to inhibit the testosterone mesor value in pinealectomized rats with acrophase shifts from 16.58 to 14.51 h. In comparison with the pinealectomized ones the underfed pinealectomized rats had a greater reduction of the mesor and amplitude values after the melatonin administration. These findings indicate that long-term food restriction sensitizes the circadian testicular axis to antigonadotropic action of the pineal gland. (author). 42 refs, 3 figs, 1 tab

  9. Decreased liver triglyceride content in adult rats exposed to protein restriction during gestation and lactation: role of hepatic triglyceride utilization.

    Science.gov (United States)

    Qasem, Rani J; Li, Jing; Tang, Hee Man; Browne, Veron; Mendez-Garcia, Claudia; Yablonski, Elizabeth; Pontiggia, Laura; D'Mello, Anil P

    2015-04-01

    We have previously demonstrated that protein restriction throughout gestation and lactation reduces liver triglyceride content in adult rat offspring. However, the mechanisms mediating the decrease in liver triglyceride content are not understood. The aim of the current study was to use a new group of pregnant animals and their offspring and determine the contribution of increased triglyceride utilization via the hepatic fatty-acid oxidation and triglyceride secretory pathways to the reduction in liver triglyceride content. Pregnant Sprague-Dawley rats received either a control or a low protein diet throughout pregnancy and lactation. Pups were weaned onto laboratory chow on day 28 and killed on day 65. Liver triglyceride content was reduced in male, but not female, low-protein offspring, both in the fed and fasted states. The reduction was accompanied by a trend towards higher liver carnitine palmitoyltransferase-1a activity, suggesting increased fatty-acid transport into the mitochondrial matrix. However, medium-chain acyl coenzyme A dehydrogenase activity within the mitochondrial matrix, expression of nuclear peroxisome proliferator activated receptor-α, and plasma levels of β-hydroxybutyrate were similar between low protein and control offspring, indicating a lack of change in fatty-acid oxidation. Hepatic triglyceride secretion, assessed by blocking peripheral triglyceride utilization and measuring serum triglyceride accumulation rate, and the activity of microsomal transfer protein, were similar between low protein and control offspring. Because enhanced triglyceride utilization is not a significant contributor, the decrease in liver triglyceride content in male low-protein offspring is likely due to alterations in liver fatty-acid transport or triglyceride biosynthesis. © 2015 Wiley Publishing Asia Pty Ltd.

  10. [Effect of antepartum taurine supplementation in regulating the activity of Rho family factors and promoting the proliferation of neural stem cells in neonatal rats with fetal growth restriction].

    Science.gov (United States)

    Li, Xiang-Wen; Li, Fang; Liu, Jing; Wang, Yan; Fu, Wei

    2016-11-01

    To study the possible effect of antepartum taurine supplementation in regulating the activity of Rho family factors and promoting the proliferation of neural stem cells in neonatal rats with fetal growth restriction (FGR), and to provide a basis for antepartum taurine supplementation to promote brain development in children with FGR. A total of 24 pregnant Sprague-Dawley rats were randomly divided into three groups: control, FGR, and taurine (n=8 each ). A rat model of FGR was established by food restriction throughout pregnancy. RT-PCR, immunohistochemistry, and Western blot were used to measure the expression of the specific intracellular markers for neural stem cells fatty acid binding protein 7 (FABP7), Rho-associated coiled-coil containing protein kinase 2 (ROCK2), ras homolog gene family, member A (RhoA), and Ras-related C3 botulinum toxin substrate (Rac). The FGR group had significantly lower OD value of FABP7-positive cells and mRNA and protein expression of FABP7 than the control group, and the taurine group had significantly higher OD value of FABP7-positive cells and mRNA and protein expression of FABP7 than the FGR group (Ptaurine group had significantly higher mRNA expression of RhoA and ROCK2 than the control group and significantly lower expression than the FGR group (Ptaurine group had significantly higher mRNA expression of Rac than the FGR and control groups (Ptaurine group had significantly lower protein expression of RhoA and ROCK2 than the FGR group (Ptaurine supplementation can promote the proliferation of neural stem cells in rats with FGR, and its mechanism may be related to the regulation of the activity of Rho family factors.

  11. Application of spectroscopy (1HMRS) to assess liver metabolite concentrations in rats with intrauterine growth restriction.

    Science.gov (United States)

    Wang, Tao; Chen, Pingyang; Bian, Dujun; Chen, Juncao

    2017-04-01

    Proton magnetic resonance spectroscopy ( 1 H-MRS) measurement of liver metabolism in intrauterine growth restriction rats has seldom been reported. This study investigated the application of 1 H-MRS in assessing liver metabolism in newborn pups that experienced intrauterine growth restriction. Intra-uterine growth restriction was established by feeding rats low-protein diets during pregnancy. Newborn pups received conventional magnetic resonance imaging and 1 H-MRS using a 3.0T whole body MR scanner at 3, 8 and 12 weeks post birth. The success rate of 1 H-MRS was 83.33%. Significantly lower body weight, BMI and body length at 3 weeks as well as significantly lower body weight, BMI and waist circumference at 8 and 12 weeks were observed in newborn pups of IUGR rats compared with pups of control rats. Significant differences in ACho/H 2 O, ACr/H 2 O, AGlx/H 2 O and ALipid/H 2 O at 3 and 8 weeks as well as significant differences in ACr/H 2 O, ALipid/H 2 O and AGlx/H 2 O at 12 weeks were observed between pups of control rats and pups of IUGR rats. 1 H-MRS allows noninvasive assessment of liver metabolism in the rat and demonstrated the poor liver development of rats that experienced IUGR.

  12. Reduced effectiveness of escitalopram in the forced swimming test is associated with increased serotonin clearance rate in food restricted rats

    Science.gov (United States)

    France, CP; Li, J-X; Owens, WA; Koek, W; Toney, GM; Daws, LC

    2012-01-01

    Efficacy of antidepressant drugs is often limited. One of the limiting factors may be diet. This study shows that the effect of escitalopram in the forced swimming test is diminished in rats by food restriction that decreased body weight by 8%. The primary target for escitalopram is the serotonin (5-HT) transporter. Using high-speed chronoamperometry to measure 5-HT clearance in vivo in rats fed the same food restricted diet, the rate of 5-HT clearance from extracellular fluid in brain was dramatically increased. Increased 5-HT transporter function under conditions of dietary restriction might contribute to the decreased effect of escitalopram. These results suggest that diet plays an integral role in determining efficacy of antidepressant drugs, and might well generalize to other psychoactive drugs that impinge upon the 5-HT transporter. PMID:19419596

  13. Maternal protein restriction induced-hypertension is associated to oxidative disruption at transcriptional and functional levels in the medulla oblongata.

    Science.gov (United States)

    de Brito Alves, José L; de Oliveira, Jéssica M D; Ferreira, Diorginis J S; Barros, Monique A de V; Nogueira, Viviane O; Alves, Débora S; Vidal, Hubert; Leandro, Carol G; Lagranha, Cláudia J; Pirola, Luciano; da Costa-Silva, João H

    2016-12-01

    Maternal protein restriction during pregnancy and lactation predisposes the adult offspring to sympathetic overactivity and arterial hypertension. Although the underlying mechanisms are poorly understood, dysregulation of the oxidative balance has been proposed as a putative trigger of neural-induced hypertension. The aim of the study was to evaluate the association between the oxidative status at transcriptional and functional levels in the medulla oblongata and maternal protein restriction induced-hypertension. Wistar rat dams were fed a control (normal protein; 17% protein) or a low protein ((Lp); 8% protein) diet during pregnancy and lactation, and male offspring was studied at 90 days of age. Direct measurements of baseline arterial blood pressure (ABP) and heart rate (HR) were recorded in awakened offspring. In addition, quantitative RT-PCR was used to assess the mRNA expression of superoxide dismutase 1 (SOD1) and 2 (SOD2), catalase (CAT), glutathione peroxidase (GPx), Glutamatergic receptors (Grin1, Gria1 and Grm1) and GABA(A)-receptor-associated protein like 1 (Gabarapl1). Malondialdehyde (MDA) levels, CAT and SOD activities were examined in ventral and dorsal medulla. Lp rats exhibited higher ABP. The mRNA expression levels of SOD2, GPx and Gabarapl1 were down regulated in medullary tissue of Lp rats (Pmedulla. Taken together, our data suggest that maternal protein restriction induced-hypertension is associated with medullary oxidative dysfunction at transcriptional level and with impaired antioxidant capacity in the ventral medulla. © 2016 John Wiley & Sons Australia, Ltd.

  14. Effects of protein-calorie restriction on mechanical function of hypertrophied cardiac muscle

    Directory of Open Access Journals (Sweden)

    Antônio Carlos Cicogna

    1999-04-01

    Full Text Available OBJECTIVE: To assess the effect of food restriction (FR on hypertrophied cardiac muscle in spontaneously hypertensive rats (SHR. METHODS: Isolated papillary muscle preparations of the left ventricle (LV of 60-day-old SHR and of normotensive Wistar-Kyoto (WKY rats were studied. The rats were fed either an unrestricted diet or FR diet (50% of the intake of the control diet for 30 days. The mechanical function of the muscles was evaluated through monitoring isometric and isotonic contractions. RESULTS: FR caused: 1 reduction in the body weight and LV weight of SHR and WKY rats; 2 increase in the time to peak shortening and the time to peak developed tension (DT in the hypertrophied myocardium of the SHR; 3 diverging changes in the mechanical function of the normal cardiac muscles of WKY rats with reduction in maximum velocity of isotonic shortening and of the time for DT to decrease 50% of its maximum value, and increase of the resting tension and of the rate of tension decline. CONCLUSION: Short-term FR causes prolongation of the contraction time of hypertrophied muscles and paradoxal changes in mechanical performance of normal cardiac fibers, with worsening of the shortening indices and of the resting tension, and improvement of the isometric relaxation.

  15. Basal and β-Adrenergic Cardiomyocytes Contractility Dysfunction Induced by Dietary Protein Restriction is Associated with Downregulation of SERCA2a Expression and Disturbance of Endoplasmic Reticulum Ca2+ Regulation in Rats

    Directory of Open Access Journals (Sweden)

    Arlete R. Penitente

    2014-07-01

    Full Text Available Background: The mechanisms responsible for the cardiac dysfunction associated with dietary protein restriction (PR are poorly understood. Thus, this study was designed to evaluate the effects of PR on calcium kinetics, basal and β-adrenergic contractility in murine ventricular cardiomyocytes. Methods: After breastfeeding male Fisher rats were distributed into a control group (CG, n = 20 and a protein-restricted group (PRG, n = 20, receiving isocaloric diets for 35 days containing 15% and 6% protein, respectively. Biometric and hemodynamic variables were measured. After euthanasia left ventricles (LV were collected for histopathological evaluation, SERCA2a expression, cardiomyocytes contractility and Ca2+sparks analysis. Results: PRG animals showed reduced general growth, increased heart rate and arterial pressure. These animals presented extracellular matrix expansion and disorganization, cardiomyocytes hypotrophy, reduced amplitudes of shortening and maximum velocity of contraction and relaxation at baseline and after β-adrenergic stimulation. Reduced SERCA2a expression as well as higher frequency and lower amplitude of Ca2+sparks were observed in PRG cardiomyocytes. Conclusion: The observations reveal that protein restriction induces marked myocardial morphofunctional damage. The pathological changes of cardiomyocyte mechanics suggest the potential involvement of the β-adrenergic system, which is possibly associated with changes in SERCA2a expression and disturbances in Ca2+ intracellular kinetics.

  16. Effects of elevated temperature on protein breakdown in muscles from septic rats

    International Nuclear Information System (INIS)

    Hall-Angeras, M.A.; Angeras, U.H.; Hasselgren, P.O.; Fischer, J.E.

    1990-01-01

    Elevated temperature has been proposed to contribute to accelerated muscle protein degradation during fever and sepsis. The present study examined the effect of increased temperature in vitro on protein turnover in skeletal muscles from septic and control rats. Sepsis was induced by cecal ligation and puncture (CLP); control rats were sham operated. After 16 h, the extensor digitorum longus (EDL) and soleus (SOL) muscles were incubated at 37 or 40 degrees C. Protein synthesis was determined by measuring incorporation of [14C]phenylalanine into protein. Total and myofibrillar protein breakdown was assessed from release of tyrosine and 3-methylhistidine (3-MH), respectively. Total protein breakdown was increased at 40 degrees C by 15% in EDL and by 29% in SOL from control rats, whereas 3-MH release was not affected. In muscles from septic rats, total and myofibrillar protein breakdown was increased by 22 and 30%, respectively, at 40 degrees C in EDL but was not altered in SOL. Protein synthesis was unaffected by high temperature both in septic and nonseptic muscles. The present results suggest that high temperature is not the primary mechanism of increased muscle protein breakdown in sepsis because the typical response to sepsis, i.e., a predominant increase in myofibrillar protein breakdown, was not induced by elevated temperature in normal muscle. It is possible, however, that increased temperature may potentiate protein breakdown that is already stimulated by sepsis because elevated temperature increased both total and myofibrillar protein breakdown in EDL from septic rats

  17. Intrauterine Growth Restriction Alters the Postnatal Development of the Rat Cerebellum.

    Science.gov (United States)

    McDougall, Annie R A; Wiradjaja, Vanny; Azhan, Aminath; Li, Anqi; Hale, Nadia; Wlodek, Mary E; Hooper, Stuart B; Wallace, Megan J; Tolcos, Mary

    2017-01-01

    Intrauterine growth restriction (IUGR) is a major cause of antenatal brain injury. We aimed to characterize cerebellar deficits following IUGR and to investigate the potential underlying cellular and molecular mechanisms. At embryonic day 18, pregnant rats underwent either sham surgery (controls; n = 23) or bilateral uterine vessel ligation to restrict blood flow to fetuses (IUGR; n = 20). Offspring were collected at postnatal day 2 (P2), P7, and P35. Body weights were reduced at P2, P7, and P35 in IUGR offspring (p < 0.05) compared with controls. At P7, the width of the external granule layer (EGL) was 30% greater in IUGR than control rats (p < 0.05); there was no difference in the width of the proliferative zone or in the density of Ki67-positive cells in the EGL. Bergmann glia were disorganized at P7 and P35 in IUGR pups, and by P35, there was a 10% decrease in Bergmann glial fiber density (p < 0.05) compared with controls. At P7, trophoblast antigen-2 (Trop2) mRNA and protein levels in the cerebellum were decreased by 88 and 40%, respectively, and astrotactin 1 mRNA levels were increased by 20% in the IUGR rats (p < 0.05) compared with controls; there was no difference in ASTN1 protein. The expressions of other factors known to regulate cerebellar development (astrotactin 2, brain-derived neurotrophic factor, erb-b2 receptor tyrosine kinase 4, neuregulin 1, sonic hedgehog and somatostatin) were not different between IUGR and control rats at P7 or P35. These data suggest that damage to the migratory scaffold (Bergmann glial fibers) and alterations in the genes that influence migration (Trop2 and Astn1) may underlie the deficits in postnatal cerebellar development following IUGR. © 2017 S. Karger AG, Basel.

  18. Caloric restriction in lean and obese strains of laboratory rat: effects on body composition, metabolism, growth and overall health

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data related to obese and lean strains of rat commonly used in the laboratory that are calorically restricted and its effects on physiologic parameters (Body...

  19. Insulin sensitivity is normalized in the third generation (F3 offspring of developmentally programmed insulin resistant (F2 rats fed an energy-restricted diet

    Directory of Open Access Journals (Sweden)

    Martin John F

    2008-10-01

    Full Text Available Abstract Background/Aims The offspring and grandoffspring of female rats fed low protein diets during pregnancy and lactation, but fed nutritionally adequate diets thereafter, have been shown to exhibit altered insulin sensitivity in adulthood. The current study investigates the insulin sensitivity of the offspring and grandoffspring of female rats fed low protein diets during pregnancy, and then maintained on energy-restricted diets post weaning over three generations. Methods Female Sprague Dawley rats (F0 were mated with control males and protein malnourished during pregnancy/lactation. F1 offspring were then weaned to adequate but energy-restricted diets into adulthood. F1 dams were fed energy-restricted diets throughout pregnancy/lactation. F2 offspring were also fed energy-restricted diets post weaning. F2 pregnant dams were maintained as described above. Their F3 offspring were split into two groups; one was maintained on the energy-restricted diet, the other was maintained on an adequate diet consumed ad libitum post weaning. Results F2 animals fed energy-restricted diets were insulin resistant (p ad libitum postweaning diets (p Conclusion Maternal energy-restriction did not consistently program reduced insulin sensitivity in offspring over three consecutive generations. The reasons for this remain unclear. It is possible that the intergenerational transmission of developmentally programmed insulin resistance is determined in part by the relative insulin sensitivity of the mother during pregnancy/lactation.

  20. Effect of insulin-like growth factor-I during the early postnatal period in intrauterine growth-restricted rats.

    Science.gov (United States)

    Ikeda, Naho; Shoji, Hiromichi; Suganuma, Hiroki; Ohkawa, Natsuki; Kantake, Masato; Murano, Yayoi; Sakuraya, Koji; Shimizu, Toshiaki

    2016-05-01

    Insulin-like growth factor-I (IGF-I) is essential for perinatal growth and development; low serum IGF-I has been observed during intrauterine growth restriction (IUGR). We investigated the effects of recombinant human (rh) IGF-I in IUGR rats during the early postnatal period. Intrauterine growth restriction was induced by bilateral uterine artery ligation in pregnant rats. IUGR pups were divided into two groups injected daily with rhIGF-I (2 mg/kg; IUGR/IGF-I, n = 16) or saline (IUGR/physiologic saline solution (PSS), n = 16) from postnatal day (PND) 7 to 13. Maternal sham-operated pups injected with saline were used as controls (control, n = 16). Serum IGF-I and IGF binding proteins (IGFBP) 3 and 5 were measured on PND25. The expression of Igf-i, IGF-I receptor (Igf-ir), Igfbp3, and 5 mRNA in the liver and brain was measured using real-time polymerase chain reaction on PND25. Immunohistochemical staining of the liver for IGF expression was performed. Mean bodyweight on PND3 and PND25 in the IUGR pups (IUGR/IGF-I and IUGR/PSS) was significantly lower than that of the control pups. Serum IGF-I and hepatic Igf-ir mRNA in the IUGR pups were significantly lower than those in the control pups. In the IUGR/IGF-I group, hepatic Igfbp3 mRNA and liver immunohistochemical staining were increased. In the IUGR/PSS and control pups, there were no significant differences between these two groups in serum IGFBP3 and IGFBP5, hepatic Igf-i and Igfbp-5 mRNA, or brain Igf mRNA. No benefits on body and brain weight gain but an effective increase in hepatic IGFBP-3 was observed after treatment with 2 mg/kg rhIGF-I during the early postnatal period. © 2015 Japan Pediatric Society.

  1. Effects of dietary protein quality and quantity on albino rat tissue ...

    African Journals Online (AJOL)

    Effects of dietary protein quality and quantity on albino rat tissue serum protein, erythrocyte fragility and bone mineral content. ... The 20% protein diet was a commercial diet better in nutrient composition and quality than the diet containing 17 and 15% protein formulated in our laboratory. At the end of 21 days, kidney, testes, ...

  2. Effect of soy protein on obesity-linked renal and pancreatic disorders in female rats

    International Nuclear Information System (INIS)

    Osman, H.F.; El-Sherbiny, E.M.

    2006-01-01

    The purpose of this study was to identify the effect of soy protein based diet on renal and pancreatic disorders in female obese rats. Animals assigned into group I in which 30 rats fed on a balanced diet. Group II contained 30 rats fed on a diet containing 30% fats for 4 weeks. At the end of the 4 th week, one-half of each group was treated as group III which contain 15 rats (half of group I) fed on diet containing 25% soy protein for 3 weeks and represents soy protein group, and the other half served as control. Group IV contained 15 rats (half of group II) fed on a diet containing 25% soy protein for 3 weeks and served as obese + soy protein group, and the other half fed on a normal balanced diet for 3 weeks and represents the obese group. Body weights of rats were recorded every week during the experimental period. Renal and pancreatic functions were measured as urea, creatinine, glomerular filtration rate (creatinine clearance), ammonia, sodium and potassium ions, total protein, albumin, globulin, glucose, insulin and alpha-amylase activity. Feeding with soy protein led to a very high significant increase in urea while creatinine was significantly decreased and creatinine clearance was significantly increased in the groups fed on soy protein. Ammonia concentration was increased in all groups and there was non-significant alteration in sodium and potassium ion concentrations. In soy protein groups (groups III and IV), total protein, albumin and globulin levels were increased. Glucose level was increased in obese rats and significantly decreased in groups III and IV. In group IV, insulin level was decreased which implicated to insulin excess in obesity. Soy protein decreased alpha-amylase activity in groups III and IV as compared to control rats. From these results, soy protein have a direct and protective effect on glomerular disorders and pancreatic secretions. This may be due to isoflavone contents in soy which can modulate the disturbance in metabolism

  3. Prevention of early postnatal hyperalimentation protects against activation of transforming growth factor-β/bone morphogenetic protein and interleukin-6 signaling in rat lungs after intrauterine growth restriction.

    Science.gov (United States)

    Alcázar, Miguel Angel Alejandre; Dinger, Katharina; Rother, Eva; Östreicher, Iris; Vohlen, Christina; Plank, Christian; Dötsch, Jörg

    2014-12-01

    Intrauterine growth restriction (IUGR) is intimately linked with postnatal catch-up growth, leading to impaired lung structure and function. However, the impact of catch-up growth induced by early postnatal hyperalimentation (HA) on the lung has not been addressed to date. The aim of this study was to investigate whether prevention of HA subsequent to IUGR protects the lung from 1) deregulation of the transforming growth factor-β(TGF-β)/bone morphogenetic protein (BMP) pathway, 2) activation of interleukin (IL)-6 signaling, and 3) profibrotic processes. IUGR was induced in Wistar rats by isocaloric protein restriction during gestation by feeding a control (Co) or a low-protein diet with 17% or 8% casein, respectively. On postnatal day 1 (P1), litters from both groups were randomly reduced to 6 pups per dam to induce HA or adjusted to 10 pups and fed with standard diet: Co, Co with HA (Co-HA), IUGR, and IUGR with HA (IUGR-HA). Birth weights in rats after IUGR were lower than in Co rats (P < 0.05). HA during lactation led to accelerated body weight gain from P1 to P23 (Co vs. Co-HA, IUGR vs. IUGR-HA; P < 0.05). At P70, prevention of HA after IUGR protected against the following: 1) activation of both TGF-β [phosphorylated SMAD (pSMAD) 2; plasminogen activator inhibitor 1 (Pai1)] and BMP signaling [pSMAD1; inhibitor of differentiation (Id1)] compared with Co (P < 0.05) and Co or IUGR (P < 0.05) rats, respectively; 2) greater mRNA expression of interleukin (Il) 6 and Il13 (P < 0.05) as well as activation of signal transducer and activator of transcription 3 (STAT3) signaling (P < 0.05) after IUGR-HA; and 3) greater gene expression of collagen Iα1 and osteopontin (P < 0.05) and increased deposition of bronchial subepithelial connective tissue in IUGR-HA compared with Co and IUGR rats. Moreover, HA had a significant additive effect (P < 0.05) on the increased enhanced pause (indicator of airway resistance) in the IUGR group (P < 0.05) at P70. This study demonstrates

  4. Antenatal Corticosteroids and Postnatal Fluid Restriction Produce Differential Effects on AQP3 Expression, Water Handling, and Barrier Function in Perinatal Rat Epidermis

    Directory of Open Access Journals (Sweden)

    Johan Agren

    2010-01-01

    Full Text Available Loss of water through the immature skin can lead to hypothermia and dehydration in preterm infants. The water and glycerol channel aquaglyceroporin-3 (AQP3 is abundant in fetal epidermis and might influence epidermal water handling and transepidermal water flux around birth. To investigate the role of AQP3 in immature skin, we measured in vivo transepidermal water transport and AQP3 expression in rat pups exposed to clinically relevant fluid homeostasis perturbations. Preterm (E18 rat pups were studied after antenatal corticosteroid exposure (ANS, and neonatal (P1 rat pups after an 18 h fast. Transepidermal water loss (TEWL and skin hydration were determined, AQP3 mRNA was quantified by RT-PCR, and in-situ hybridization and immunocytochemistry were applied to map AQP3 expression. ANS resulted in an improved skin barrier (lower TEWL and skin hydration, while AQP3 mRNA and protein increased. Fasting led to loss of barrier integrity along with an increase in skin hydration. These alterations were not paralleled by any changes in AQP3. To conclude, antenatal corticosteroids and early postnatal fluid restriction produce differential effects on skin barrier function and epidermal AQP3 expression in the rat. In perinatal rats, AQP3 does not directly determine net water transport through the skin.

  5. The mTORC1-Signaling Pathway and Hepatic Polyribosome Profile Are Enhanced after the Recovery of a Protein Restricted Diet by a Combination of Soy or Black Bean with Corn Protein.

    Science.gov (United States)

    Márquez-Mota, Claudia C; Rodriguez-Gaytan, Cinthya; Adjibade, Pauline; Mazroui, Rachid; Gálvez, Amanda; Granados, Omar; Tovar, Armando R; Torres, Nimbe

    2016-09-20

    Between 6% and 11% of the world's population suffers from malnutrition or undernutrition associated with poverty, aging or long-term hospitalization. The present work examined the effect of different types of proteins on the mechanistic target of rapamycin (mTORC1)-signaling pathway in: (1) healthy; and (2) protein restricted rats. (1) In total, 200 rats were divided into eight groups and fed one of the following diets: 20% casein (C), soy (S), black bean (B), B + Corn (BCr), Pea (P), spirulina (Sp), sesame (Se) or Corn (Cr). Rats fed C or BCr had the highest body weight gain; rats fed BCr had the highest pS6K1/S6K1 ratio; rats fed B, BCr or P had the highest eIF4G expression; (2) In total, 84 rats were fed 0.5% C for 21 day and protein rehabilitated with different proteins. The S, soy + Corn (SCr) and BCr groups had the highest body weight gain. Rats fed SCr and BCr had the highest eIF4G expression and liver polysome formation. These findings suggest that the quality of the dietary proteins modulate the mTORC1-signaling pathway. In conclusion, the combination of BCr or SCr are the best proteins for dietary protein rehabilitation due to the significant increase in body weight, activation of the mTORC1-signaling pathway in liver and muscle, and liver polysome formation.

  6. Effect of 60Co-irradiation on normal and low protein diet fed rat brain

    International Nuclear Information System (INIS)

    Hasan, S.S.; Habibullah, M.

    1980-01-01

    The effect of whole-body irradiation (Co-60) on the brain tissue in Holtzmann strain adult male rats was studied. Two doses of irradiation (450 R,950 R) were tried on animals which were fed on normal as well as low protein diets over a period of 10 generations. In the normal rats, 450 R initially caused a lowered total protein. DNA and RNA content in the brain. After 7 days a tendency towards normalcy was observed. In the 950 R irradiated normal rats the diminution of protein content appeared irreversible. In malnourished 450 R irradiated rats, the protein content rose less steeply over the 7 days of observation. A higher dose of 950 R enhanced this effect on protein and also lowered the DNA content on day 5. The RNA content in the 950 R group with malnutrition showed a marked increase towards or beyond control perhaps as an expression of uncoupled feedback control. The paper gives evidence that protein deficiency may interfere with cellular regeneration in irradiated brain. (orig.) [de

  7. Repeated Sleep Restriction in Adolescent Rats Altered Sleep Patterns and Impaired Spatial Learning/Memory Ability

    Science.gov (United States)

    Yang, Su-Rong; Sun, Hui; Huang, Zhi-Li; Yao, Ming-Hui; Qu, Wei-Min

    2012-01-01

    Study Objectives: To investigate possible differences in the effect of repeated sleep restriction (RSR) during adolescence and adulthood on sleep homeostasis and spatial learning and memory ability. Design: The authors examined electroencephalograms of rats as they were subjected to 4-h daily sleep deprivation that continued for 7 consecutive days and assessed the spatial learning and memory by Morris water maze test (WMT). Participants: Adolescent and adult rats. Measurements and Results: Adolescent rats exhibited a similar amount of rapid eye movement (REM) and nonrapid eye movement (NREM) sleep with higher slow wave activity (SWA, 0.5-4 Hz) and fewer episodes and conversions with prolonged durations, indicating they have better sleep quality than adult rats. After RSR, adult rats showed strong rebound of REM sleep by 31% on sleep deprivation day 1; this value was 37% on sleep deprivation day 7 in adolescents compared with 20-h baseline level. On sleep deprivation day 7, SWA in adult and adolescent rats increased by 47% and 33%, and such elevation lasted for 5 h and 7 h, respectively. Furthermore, the authors investigated the effects of 4-h daily sleep deprivation immediately after the water maze training sessions on spatial cognitive performance. Adolescent rats sleep-restricted for 7 days traveled a longer distance to find the hidden platform during the acquisition training and had fewer numbers of platform crossings in the probe trial than those in the control group, something that did not occur in the sleep-deprived adult rats. Conclusions: Repeated sleep restriction (RSR) altered sleep profiles and mildly impaired spatial learning and memory capability in adolescent rats. Citation: Yang SR; Sun H; Huang ZL; Yao MH; Qu WM. Repeated sleep restriction in adolescent rats altered sleep patterns and impaired spatial learning/memory ability. SLEEP 2012;35(6):849-859. PMID:22654204

  8. Effect of a hyper-protein diet on Wistar rats development and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-04

    May 4, 2009 ... studied possible presence of anti milk-protein seric IgG induced by the .... when administrating long term hyper-protein diets for humans. Reactivity to the ... adipose tissue without major side effects in Wistar male rats. Am. J.

  9. Dietary restriction alters fine motor function in rats.

    Science.gov (United States)

    Smith, Lori K; Metz, Gerlinde A

    2005-08-07

    A number of standard behavioral tasks in animal research utilize food rewards for positive reinforcement. In order to enhance the motivation to participate in these tasks, animals are usually placed on a restricted diet. While dietary restriction (DR) has been shown to have beneficial effects on recovery after brain injury, life span and aging processes, it might also represent a stressor. Since stress can influence a broad range of behaviors, the purpose of this study was to assess whether DR may have similar effects on skilled movement. Adult male Long-Evans rats were trained and tested in a skilled reaching task both prior to and during a mild food restriction regimen that maintained their body weights at 90-95% of baseline weight for eight days. The observations revealed that DR decreased reaching success and increased the number of attempts to grasp a single food pellet. The animals appeared to be more frantic when attempting to reach for food pellets, and the time taken to reach for 20 pellets decreased following the onset of DR. A second experiment investigating behaviors that do not require food rewards, including a ladder rung walking task and an open field test, confirmed that rats on DR display deficits in skilled movements and are hyperactive. These findings suggest that results obtained in motor tasks using food rewards need to be interpreted with caution. The findings are discussed with respect to stress associated with DR.

  10. Can overeating induce conditioned taste avoidance in previously food restricted rats?

    Science.gov (United States)

    Hertel, Amanda; Eikelboom, Roelof

    2010-03-30

    While feeding is rewarding, the feeling of satiation has been theorized to have a mixed affect. Using a food restriction model of overeating we examined whether bingeing was capable of supporting conditioned taste avoidance (CTA). Adult male Sprague-Dawley rats were maintained on either an ad lib (n=8) or restricted (50% of regular consumption; n=24) food access for 20 days. On Days 9, 14, and 19 all rats were given access to a novel saccharin solution in place of water, and two groups of food restricted rats were given access to either 100% of regular food consumption or ad lib food. Ad lib access in the restricted rats induced significant overeating on all three exposures. After all rats were returned to ad lib feeding, a 24h two-bottle saccharin/water choice test displayed significantly reduced saccharin consumption in the overeating rats, compared to those in the other 3 groups. To determine whether this avoidance was due to a learned association, a second experiment used a latent inhibition paradigm, familiarizing half the rats with the saccharin for 8 days prior to pairing it with overeating. Using the design of Experiment 1, with only the continuously ad lib and the restricted to ad lib feeding groups, it was found that the overeating-induced saccharin avoidance was attenuated by the pre-exposure. These results suggest that self-induced overeating is capable of supporting a learned avoidance of a novel solution suggestive of a conditioned satiety or taste avoidance. (c) 2009 Elsevier Inc. All rights reserved.

  11. Effects of the group I metabotropic glutamate receptor agonist, DHPG, and injection stress on striatal cell signaling in food-restricted and ad libitum fed rats

    Directory of Open Access Journals (Sweden)

    Carr Kenneth D

    2004-12-01

    Full Text Available Abstract Background Chronic food restriction augments the rewarding effect of centrally administered psychostimulant drugs and this effect may involve a previously documented upregulation of D-1 dopamine receptor-mediated MAP kinase signaling in nucleus accumbens (NAc and caudate-putamen (CPu. Psychostimulants are known to induce striatal glutamate release, and group I metabotropic glutamate receptors (mGluR have been implicated in the cellular and behavioral responses to amphetamine. The purpose of the present study was to evaluate whether chronic food restriction increases striatal MAP kinase signaling in response to the group I mGluR agonist, DHPG. Results Western immunoblotting was used to demonstrate that intracerebroventricular (i.c.v. injection of DHPG (500 nmol produces greater activation of ERK1/2 and CREB in CPu and NAc of food-restricted as compared to ad libitum fed rats. Fos-immunostaining induced by DHPG was also stronger in CPu and NAc core of food-restricted relative to ad libitum fed rats. However, i.c.v. injection of saline-vehicle produced greater activation of ERK1/2 and CREB in CPu and NAc of food-restricted relative to ad libitum fed rats, and this difference was not seen when subjects received no i.c.v. injection prior to sacrifice. In addition, although DHPG activated Akt, there was no difference in Akt activation between feeding groups. To probe whether the augmented ERK1/2 and CREB activation in vehicle-injected food-restricted rats are mediated by one or more GluR types, effects of an NMDA antagonist (MK-801, 100 nmol, AMPA antagonist (DNQX, 10 nmol, and group I mGluR antagonist (AIDA, 100 nmol were compared to saline-vehicle. Antagonist injections did not diminish activation of ERK1/2 or CREB. Conclusions These results indicate that a group I mGluR agonist induces phosphorylation of Akt, ERK1/2 and CREB in both CPu and NAc. However, group I mGluR-mediated signaling may not be upregulated in food-restricted rats

  12. Gestational Protein Restriction Increases Cardiac Connexin 43 mRNA levels in male adult rat offspring.

    Science.gov (United States)

    Rossini, Kamila Fernanda; Oliveira, Camila Andrea de; Rebelato, Hércules Jonas; Esquisatto, Marcelo Augusto Marreto; Catisti, Rosana

    2017-07-01

    The dietary limitation during pregnancy influences the growth and development of the fetus and offspring and their health into adult life. The mechanisms underlying the adverse effects of gestational protein restriction (GPR) in the development of the offspring hearts are not well understood. The aim of this study was to evaluate the effects of GPR on cardiac structure in male rat offspring at day 60 after birth (d60). Pregnant Wistar rats were fed a normal-protein (NP, 17% casein) or low-protein (LP, 6% casein) diet. Blood pressure (BP) values from 60-day-old male offspring were measured by an indirect tail-cuff method using an electro sphygmomanometer. Hearts (d60) were collected for assessment of connexin 43 (Cx43) mRNA expression and morphological and morphometric analysis. LP offspring showed no difference in body weight, although they were born lighter than NP offspring. BP levels were significantly higher in the LP group. We observed a significant increase in the area occupied by collagen fibers, a decrease in the number of cardiomyocytes by 104 µm2, and an increase in cardiomyocyte area associated with an increased Cx43 expression. GPR changes myocardial levels of Cx43 mRNA in male young adult rats, suggesting that this mechanism aims to compensate the fibrotic process by the accumulation of collagen fibers in the heart interstitium. A limitação dietética durante a gravidez influencia o crescimento e desenvolvimento do feto e da prole e sua saúde na vida adulta. Os mecanismos subjacentes dos efeitos adversos da restrição proteica gestacional (RPG) no desenvolvimento dos corações da prole não são bem compreendidos. Avaliar os efeitos da RPG sobre a estrutura cardíaca em filhotes machos de ratas aos 60 dias após o nascimento (d60). Ratos fêmeas Wistar grávidas foram alimentadas com uma dieta de proteína normal (PN, 17% caseína) ou de baixa proteína (BP, caseína 6%). Os valores de pressão arterial (PA) de descendentes do sexo masculino de

  13. Skeletal effect of casein and whey protein intake during catch-up growth in young male Sprague-Dawley rats.

    Science.gov (United States)

    Masarwi, Majdi; Gabet, Yankel; Dolkart, Oleg; Brosh, Tamar; Shamir, Raanan; Phillip, Moshe; Gat-Yablonski, Galia

    2016-07-01

    The aim of the present study was to determine whether the type of protein ingested influences the efficiency of catch-up (CU) growth and bone quality in fast-growing male rats. Young male Sprague-Dawley rats were either fed ad libitum (controls) or subjected to 36 d of 40 % food restriction followed by 24 or 40 d of re-feeding with either standard rat chow or iso-energetic, iso-protein diets containing milk proteins - casein or whey. In terms of body weight, CU growth was incomplete in all study groups. Despite their similar food consumption, casein-re-fed rats had a significantly higher body weight and longer humerus than whey-re-fed rats in the long term. The height of the epiphyseal growth plate (EGP) in both casein and whey groups was greater than that of rats re-fed normal chow. Microcomputed tomography yielded significant differences in bone microstructure between the casein and whey groups, with the casein-re-fed animals having greater cortical thickness in both the short and long term in addition to a higher trabecular bone fraction in the short term, although this difference disappeared in the long term. Mechanical testing confirmed the greater bone strength in rats re-fed casein. Bone quality during CU growth significantly depends on the type of protein ingested. The higher EGP in the casein- and whey-re-fed rats suggests a better growth potential with milk-based diets. These results suggest that whey may lead to slower bone growth with reduced weight gain and, as such, may serve to circumvent long-term complications of CU growth.

  14. Human and rat gut microbiome composition is maintained following sleep restriction.

    Science.gov (United States)

    Zhang, Shirley L; Bai, Lei; Goel, Namni; Bailey, Aubrey; Jang, Christopher J; Bushman, Frederic D; Meerlo, Peter; Dinges, David F; Sehgal, Amita

    2017-02-21

    Insufficient sleep increasingly characterizes modern society, contributing to a host of serious medical problems. Loss of sleep is associated with metabolic diseases such as obesity and diabetes, cardiovascular disorders, and neurological and cognitive impairments. Shifts in gut microbiome composition have also been associated with the same pathologies; therefore, we hypothesized that sleep restriction may perturb the gut microbiome to contribute to a disease state. In this study, we examined the fecal microbiome by using a cross-species approach in both rat and human studies of sleep restriction. We used DNA from hypervariable regions (V1-V2) of 16S bacteria rRNA to define operational taxonomic units (OTUs) of the microbiome. Although the OTU richness of the microbiome is decreased by sleep restriction in rats, major microbial populations are not altered. Only a single OTU, TM7-3a, was found to increase with sleep restriction of rats. In the human microbiome, we find no overt changes in the richness or composition induced by sleep restriction. Together, these results suggest that the microbiome is largely resistant to changes during sleep restriction.

  15. Calorie restricted high protein diets downregulate lipogenesis and lower intrahepatic triglyceride concentrations in male rats

    Science.gov (United States)

    The purpose of this investigation was to assess the influence of calorie restriction (CR) alone, higher-protein/lower-carbohydrate intake alone, and combined CR higher-protein/lower-carbohydrate intake on glucose homeostasis, hepatic de novo lipogenesis (DNL), and intrahepatic triglycerides. Twelve-...

  16. Effect of /sup 60/Co-irradiation on normal and low protein diet fed rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, S S [Garhwal Univ., Srinagar, Uttar Pradesh (India). Dept. of Zoology; Habibullah, M [Jawaharlal Nehru Univ., New Delhi (India). Neurobiology Lab.

    1980-06-01

    The effect of whole-body irradiation (Co-60) on the brain tissue in Holtzmann strain adult male rats was studied. Two doses of irradiation (450 R,950 R) were tried on animals which were fed on normal as well as low protein diets over a period of 10 generations. In the normal rats, 450 R initially caused a lowered total protein. DNA and RNA content in the brain. After 7 days a tendency towards normalcy was observed. In the 950 R irradiated normal rats the diminution of protein content appeared irreversible. In malnourished 450 R irradiated rats, the protein content rose less steeply over the 7 days of observation. A higher dose of 950 R enhanced this effect on protein and also lowered the DNA content on day 5. The RNA content in the 950 R group with malnutrition showed a marked increase towards or beyond control perhaps as an expression of uncoupled feedback control. The paper gives evidence that protein deficiency may interfere with cellular regeneration in irradiated brain.

  17. Sex differences in the enhanced responsiveness to acute angiotensin II in growth-restricted rats: role of fasudil, a Rho kinase inhibitor.

    Science.gov (United States)

    Ojeda, Norma B; Royals, Thomas P; Alexander, Barbara T

    2013-04-01

    This study tested the hypothesis that Rho kinase contributes to the enhanced pressor response to acute angiotensin II in intact male growth-restricted and gonadectomized female growth-restricted rats. Mean arterial pressure (MAP) and renal function were determined in conscious animals pretreated with enalapril (250 mg/l in drinking water) for 1 wk to block the endogenous renin-angiotensin system and normalize blood pressure (baseline). Blood pressure and renal hemodynamics did not differ at baseline. Acute Ang II (100 ng·kg(-1)·min(-1)) induced a greater increase in MAP and renal vascular resistance and enhanced reduction in glomerular filtration rate in intact male growth-restricted rats compared with intact male controls (P back to baseline in male growth-restricted rats, and yet glomerular filtration rate remained significantly reduced (P < 0.05). Thus, these data suggest a role for enhanced renal sensitivity to acute Ang II in the developmental programming of hypertension in male growth-restricted rats. However, inhibition of Rho kinase had no effect on the basal or enhanced increase in blood pressure induced by acute Ang II in the gonadectomized female growth-restricted rat. Therefore, these studies suggest that Rho kinase inhibition exerts a sex-specific effect on blood pressure sensitivity to acute Ang II in growth-restricted rats.

  18. Calorigenic effect of adrenaline in rats under conditions of restricted motor activity

    Science.gov (United States)

    Tomaszewska, L.; Kaciuba-Uscilko, H.; Kozlowski, S.

    1980-01-01

    In previous studies, it was demonstrated that long term restricted motor activity in rats induces a decrease in body weight, an increase in release of adrenaline, and a decrease in the release of noradrenaline with the urine, as well as a reduction in activity of the thymus gland and level of thyroxin in the blood. At the same time, a decrease was found in the internal body temperature that was accompanied by an increase in the rate of metabolism in the state of rest. An investigation is presented which attempts to clarify whether the calorigenic effect of adrenaline under conditions of increased metabolism in the period of immobility is exposed to changes.

  19. Effect of dietary protein on the excretion of. cap alpha. /sub 2u/, the sex-dependent protein of the adult male rat

    Energy Technology Data Exchange (ETDEWEB)

    Neuhaus, O W; Flory, W

    1975-01-01

    Adult male rates were maintained on normal (20 percent casein), protein-free (0 percent casein), high protein (50 percent casein), deficient protein (20 percent zein), and a supplemented, deficient protein (20 percent zein plus L-lysine and L-tryptophan) diets. Rats on a protein-free diet excreted approximately 1 mg ..cap alpha../sub 2u//24 h compared with a normal of 10-15 mg/24 h. Depleted rats placed on the normal diet showed a rapid restoration of the normal ..cap alpha../sub 2u/ excretion as well as total urinary proteins. Accumulation of ..cap alpha../sub 2u/ in the blood serum was measured in nephrectomized rats. Rats on the protein free diet accumulated only 30 percent of the ..cap alpha../sub 2u/ compared to normals. On a 50 precent casein diet, rats excreted 30-50 mg ..cap alpha../sub 2u//24 h. However, the accumulation was normal in the serum of nephrectomized rats. A high protein diet did not stimulate ..cap alpha../sub 2u/ synthesis but probably increased the renal loss of all urinary proteins. The excretion of ..cap alpha../sub 2u/ on a zein diet was reduced to the same degree as with the protein-free diet. Supplementation with lysine and tryptophan restored the capacity to eliminate ..cap alpha../sub 2u/ to near normal levels. Accumulation of ..cap alpha../sub 2u/ in the serum of nephrectomized rats kept on the zein diets showed that the effect was to suppress the synthesis of the ..cap alpha../sub 2u/. Supplementation restored the biosynthesis of ..cap alpha../sub 2u/. It is concluded that the effect of dietary protein on the excretion of urinary proteins in the adult male rat is caused in a large part by an influence on the hepatic biosynthesis of ..cap alpha../sub 2u/. The biosynthesis of this protein, which represents approximately 30 percent of the total urinary proteins, is dependent on an adequate supply of dietary protein.

  20. Antioxidative effects of pumpkin seed (Cucurbita pepo) protein isolate in CCl4-induced liver injury in low-protein fed rats.

    Science.gov (United States)

    Nkosi, C Z; Opoku, A R; Terblanche, S E

    2006-11-01

    The effects of pumpkin seed (Cucurbita pepo) protein isolate on the plasma activity levels of catalase (CA), superoxide dismutase (SOD), glutathione peroxidase (GSHpx) and total antioxidant capacity (TAC) as well as glucose-6-phosphatase (G6Pase) in liver homogenates and lipid peroxidation (LPO-malondialdehyde-MDA) levels in liver homogenates and liver microsomal fractions against carbon tetrachloride (CCl(4))-induced acute liver injury in low-protein fed Sprague-Dawley rats (Rattus norvegicus) were investigated. A group of male Sprague-Dawley rats maintained on a low-protein diet for 5 days were divided into three subgroups. Two subgroups were injected with carbon tetrachloride and the other group with an equivalent amount of olive oil. Two hours after CCl(4) intoxication one of the two subgroups was administered with pumpkin seed protein isolate and thereafter switched onto a 20% pumpkin seed protein isolate diet. The other two groups of rats were maintained on the low-protein diet for the duration of the investigation. Groups of rats from the different subgroups were killed at 24, 48 and 72 h after their respective treatments. After 5 days on the low-protein diet the activity levels of all the enzymes as well as antioxidant levels were significantly lower than their counterparts on a normal balanced diet. However, a low-protein diet resulted in significantly increased levels of lipid peroxidation. The CCl(4) intoxicated rats responded in a similar way, regarding all the variables investigated, to their counterparts on a low-protein diet. The administration of pumpkin seed protein isolate after CCl(4) intoxication resulted in significantly increased levels of all the variables investigated, with the exception of the lipid peroxidation levels which were significantly decreased. From the results of the present study it is concluded that pumpkin seed protein isolate administration was effective in alleviating the detrimental effects associated with protein

  1. Harmful effect of protein difficiency on lipids, glucose, insulin and estradiol levels in female albino rats

    International Nuclear Information System (INIS)

    El-Mahdy, A.A.; El-Sherbiny, E.M.; Bayomi, M.M.

    2005-01-01

    The present study was undertaken to investigate the harmful effect of protein deficient diet on some biochemical activities in serum of female rats. Protein malnutrition is a well known socioeconomic problem in different parts of the world. Many studies were investigated on the biological parameters following protein malnutrition in human and experimental animals. Forty albino female rats were divided into 3 groups. The first group (10 rats) fed 18% protein diet and served as normal control and the other two groups, each contains 15 rats, fed 5% protein for 21 and 45 days, respectively, and served as malnourished groups. The results showed significant decrease in total body weight, serum glucose, insulin and estradiol levels in the third group as well as decrease in the total cholesterol, HDL-cholesterol, LDL-cholesterol and VLDL-cholesterol and triglycerides concentrations that compared to normal control rats

  2. Restriction fragment polymorphisms in the major histocompatibility complex of diabetic BB rats

    DEFF Research Database (Denmark)

    Kastern, W.; Dyrberg, T.; Scholler, J.

    1984-01-01

    DNA isolated from diabetic BB (BB/Hagedorn) rats was examined for restriction fragment length differences within the major histocompatibility complex (MHC) as compared with nondiabetic (W-subline) BB rats. Polymorphisms were detected using a mouse class I MHC gene as probe. Specifically, a 2-kb Bam......HI fragment was present in all the nondiabetic rats examined, but absent in the diabetic rats. Similar polymorphisms were observed with various other restriction enzymes, particularly XbaI, HindII, and SacI. There were no polymorphisms detected using either a human DR-alpha (class II antigen heavy chain...

  3. Differential effects of calorie restriction and involuntary wheel running on body composition and bone structure in diet-induced obese rats

    Science.gov (United States)

    Weight reduction is recommended to reduce obesity-related health disorders. This study investigated the differential effects of weight reduction through caloric restriction and/or physical activity on bone structure and molecular characteristics of bone metabolism in an obese rat model. We tested th...

  4. Middle age onset short-term intermittent fasting dietary restriction prevents brain function impairments in male Wistar rats.

    Science.gov (United States)

    Singh, Rumani; Manchanda, Shaffi; Kaur, Taranjeet; Kumar, Sushil; Lakhanpal, Dinesh; Lakhman, Sukhwinder S; Kaur, Gurcharan

    2015-12-01

    Intermittent fasting dietary restriction (IF-DR) is recently reported to be an effective intervention to retard age associated disease load and to promote healthy aging. Since sustaining long term caloric restriction regimen is not practically feasible in humans, so use of alternate approach such as late onset short term IF-DR regimen which is reported to trigger similar biological pathways is gaining scientific interest. The current study was designed to investigate the effect of IF-DR regimen implemented for 12 weeks in middle age rats on their motor coordination skills and protein and DNA damage in different brain regions. Further, the effect of IF-DR regimen was also studied on expression of energy regulators, cell survival pathways and synaptic plasticity marker proteins. Our data demonstrate that there was an improvement in motor coordination and learning response with decline in protein oxidative damage and recovery in expression of energy regulating neuropeptides. We further observed significant downregulation in nuclear factor kappa B (NF-κB) and cytochrome c (Cyt c) levels and moderate upregulation of mortalin and synaptophysin expression. The present data may provide an insight on how a modest level of short term IF-DR, imposed in middle age, can slow down or prevent the age-associated impairment of brain functions and promote healthy aging by involving multiple regulatory pathways aimed at maintaining energy homeostasis.

  5. Dietary salt restriction improves cardiac and adipose tissue pathology independently of obesity in a rat model of metabolic syndrome.

    Science.gov (United States)

    Hattori, Takuya; Murase, Tamayo; Takatsu, Miwa; Nagasawa, Kai; Matsuura, Natsumi; Watanabe, Shogo; Murohara, Toyoaki; Nagata, Kohzo

    2014-12-02

    Metabolic syndrome (MetS) enhances salt sensitivity of blood pressure and is an important risk factor for cardiovascular disease. The effects of dietary salt restriction on cardiac pathology associated with metabolic syndrome remain unclear. We investigated whether dietary salt restriction might ameliorate cardiac injury in DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, which are derived from a cross between Dahl salt-sensitive and Zucker rats and represent a model of metabolic syndrome. DS/obese rats were fed a normal-salt (0.36% NaCl in chow) or low-salt (0.0466% NaCl in chow) diet from 9 weeks of age and were compared with similarly treated homozygous lean littermates (DahlS.Z-Lepr(+)/Lepr(+), or DS/lean rats). DS/obese rats fed the normal-salt diet progressively developed hypertension and showed left ventricular hypertrophy, fibrosis, and diastolic dysfunction at 15 weeks. Dietary salt restriction attenuated all of these changes in DS/obese rats. The levels of cardiac oxidative stress and inflammation and the expression of cardiac renin-angiotensin-aldosterone system genes were increased in DS/obese rats fed the normal-salt diet, and dietary salt restriction downregulated these parameters in both DS/obese and DS/lean rats. In addition, dietary salt restriction attenuated the increase in visceral adipose tissue inflammation and the decrease in insulin signaling apparent in DS/obese rats without reducing body weight or visceral adipocyte size. Dietary salt restriction did not alter fasting serum glucose levels but it markedly decreased the fasting serum insulin concentration in DS/obese rats. Dietary salt restriction not only prevents hypertension and cardiac injury but also ameliorates insulin resistance, without reducing obesity, in this model of metabolic syndrome. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  6. Effects of immunosuppressive treatment on protein expression in rat kidney

    Directory of Open Access Journals (Sweden)

    Kędzierska K

    2014-09-01

    Full Text Available Karolina Kędzierska,1 Katarzyna Sporniak-Tutak,2 Krzysztof Sindrewicz,2 Joanna Bober,3 Leszek Domański,1 Mirosław Parafiniuk,4 Elżbieta Urasińska,5 Andrzej Ciechanowicz,6 Maciej Domański,1 Tomasz Smektała,2 Marek Masiuk,5 Wiesław Skrzypczak,6 Małgorzata Ożgo,6 Joanna Kabat-Koperska,1 Kazimierz Ciechanowski1 1Department of Nephrology, Transplantology, and Internal Medicine, 2Department of Dental Surgery, 3Department of Medical Chemistry, 4Department of Forensic Medicine, 5Department of Pathomorphology, Pomeranian Medical University, 6Department of Physiology, Cytobiology, and Proteomics, West Pomeranian University of Technology, Szczecin, Poland Abstract: The structural proteins of renal tubular epithelial cells may become a target for the toxic metabolites of immunosuppressants. These metabolites can modify the properties of the proteins, thereby affecting cell function, which is a possible explanation for the mechanism of immunosuppressive agents' toxicity. In our study, we evaluated the effect of two immunosuppressive strategies on protein expression in the kidneys of Wistar rats. Fragments of the rat kidneys were homogenized after cooling in liquid nitrogen and then dissolved in lysis buffer. The protein concentration in the samples was determined using a protein assay kit, and the proteins were separated by two-dimensional electrophoresis. The obtained gels were then stained with Coomassie Brilliant Blue, and their images were analyzed to evaluate differences in protein expression. Identification of selected proteins was then performed using mass spectrometry. We found that the immunosuppressive drugs used in popular regimens induce a series of changes in protein expression in target organs. The expression of proteins involved in drug, glucose, amino acid, and lipid metabolism was pronounced. However, to a lesser extent, we also observed changes in nuclear, structural, and transport proteins' synthesis. Very slight differences

  7. The reno-protective effects of dietary caloric restriction against ...

    African Journals Online (AJOL)

    Studies have shown that dietary caloric restriction (CR) without malnutrition can increase longevity. This study aims to evaluate the protective effects of CR on oxidative stress, lipid peroxidation and inflammatory cytokines in the kidney of streptozotocin-induced diabetic rats. Forty 12-week old male Wistar rats, weighing ...

  8. Decrease in Circulating Fatty Acids Is Associated with Islet Dysfunction in Chronically Sleep-Restricted Rats

    Directory of Open Access Journals (Sweden)

    Shanshan Zhan

    2016-12-01

    Full Text Available Previous studies have shown that sleep restriction-induced environmental stress is associated with abnormal metabolism, but the underlying mechanism is poorly understood. In the current study, we investigated the possible lipid and glucose metabolism patterns in chronically sleep-restricted rat. Without changes in food intake, body weight was decreased and energy expenditure was increased in sleep-restricted rats. The effects of chronic sleep disturbance on metabolites in serum were examined using 1H NMR metabolomics and GC-FID/MS analysis. Six metabolites (lipoproteins, triglycerides, isoleucine, valine, choline, and phosphorylcholine exhibited significant alteration, and all the fatty acid components were decreased, which suggested fatty acid metabolism was impaired after sleep loss. Moreover, increased blood glucose, reduced serum insulin, decreased glucose tolerance, and impaired glucose-stimulated insulin secretion of islets were also observed in sleep-restricted rats. The islet function of insulin secretion could be partially restored by increasing dietary fat to sleep-disturbed rats suggested that a reduction in circulating fatty acids was related to islet dysfunction under sleep deficiency-induced environmental stress. This study provides a new perspective on the relationship between insufficient sleep and lipid/glucose metabolism, which offers insights into the role of stressful challenges in a healthy lifestyle.

  9. Effect of two models of intrauterine growth restriction on alveolarization in rat lungs: morphometric and gene expression analysis.

    Directory of Open Access Journals (Sweden)

    Elodie Zana-Taieb

    Full Text Available Intrauterine growth restriction (IUGR in preterm infants increases the risk of bronchopulmonary dysplasia, characterized by arrested alveolarization. We evaluated the impact of two different rat models (nitric oxide synthase inhibition or protein deprivation of IUGR on alveolarization, before, during, and at the end of this postnatal process. We studied IUGR rat pups of dams fed either a low protein (LPD or a normal diet throughout gestation and pups of dams treated by continuous infusion of Nω-nitro-L-arginine methyl ester (L-NAME or its diluent on the last four days of gestation. Morphometric parameters, alveolar surface (Svap, mean linear intercept (MLI and radial alveolar count (RAC and transcriptomic analysis were determined with special focus on genes involved in alveolarization. IUGR pups regained normal weight at day 21 in the two treated groups. In the LPD group, Svap, MLI and RAC were not different from those of controls at day 4, but were significantly decreased at day 21, indicating alveolarization arrest. In the L-NAME group, Svap and RAC were significantly decreased and MLI was increased at day 4 with complete correction at day 21. In the L-NAME model, several factors involved in alveolarization, VEGF, VEGF-R1 and -R2, MMP14, MMP16, FGFR3 and 4, FGF18 and 7, were significantly decreased at day 4 and/or day 10, while the various factors studied were not modified in the LPD group. These results demonstrate that only maternal protein deprivation leads to sustained impairment of alveolarization in rat pups, whereas L-NAME impairs lung development before alveolarization. Known growth factors involved in lung development do not seem to be involved in LPD-induced alveolarization disorders, raising the question of a possible programming of altered alveolarization.

  10. Similar metabolic responses to calorie restriction in lean and obese Zucker rats.

    Science.gov (United States)

    Chiba, Takuya; Komatsu, Toshimitsu; Nakayama, Masahiko; Adachi, Toshiyuki; Tamashiro, Yukari; Hayashi, Hiroko; Yamaza, Haruyoshi; Higami, Yoshikazu; Shimokawa, Isao

    2009-10-15

    Calorie restriction (CR), which is thought to be largely dependent on the neuroendocrine system modulated by insulin/insulin-like growth factor-I (IGF-I) and leptin signaling, decreases morbidity and increases lifespan in many organisms. To elucidate whether insulin and leptin sensitivities are indispensable in the metabolic adaptation to CR, we investigated the effects of CR on obese Zucker (fa/fa) rats and lean control (+/+) rats. CR did not fully improve insulin resistance in (fa/fa) rats. Nonetheless, CR induced neuropeptide Y (NPY) expression in the hypothalamic arcuate nucleus and metabolism related gene expression changes in the liver in (fa/fa) rats and (+/+) rats. Up-regulation of NPY augmented plasma corticosterone levels and suppressed pituitary growth hormone (GH) expression, thereby modulating adipocytokine production to induce tissue-specific insulin sensitivity. Thus, central NPY activation via peripheral signaling might play a crucial role in the effects of CR, even in insulin resistant and leptin receptor deficient conditions.

  11. Identification of Differentially Abundant Proteins of Edwardsiella ictaluri during Iron Restriction.

    Directory of Open Access Journals (Sweden)

    Pradeep R Dumpala

    Full Text Available Edwardsiella ictaluri is a Gram-negative facultative anaerobe intracellular bacterium that causes enteric septicemia in channel catfish. Iron is an essential inorganic nutrient of bacteria and is crucial for bacterial invasion. Reduced availability of iron by the host may cause significant stress for bacterial pathogens and is considered a signal that leads to significant alteration in virulence gene expression. However, the precise effect of iron-restriction on E. ictaluri protein abundance is unknown. The purpose of this study was to identify differentially abundant proteins of E. ictaluri during in vitro iron-restricted conditions. We applied two-dimensional difference in gel electrophoresis (2D-DIGE for determining differentially abundant proteins and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF/TOF MS for protein identification. Gene ontology and pathway-based functional modeling of differentially abundant proteins was also conducted. A total of 50 unique differentially abundant proteins at a minimum of 2-fold (p ≤ 0.05 difference in abundance due to iron-restriction were detected. The numbers of up- and down-regulated proteins were 37 and 13, respectively. We noted several proteins, including EsrB, LamB, MalM, MalE, FdaA, and TonB-dependent heme/hemoglobin receptor family proteins responded to iron restriction in E. ictaluri.

  12. Calorie restriction attenuates cardiac remodeling and diastolic dysfunction in a rat model of metabolic syndrome.

    Science.gov (United States)

    Takatsu, Miwa; Nakashima, Chieko; Takahashi, Keiji; Murase, Tamayo; Hattori, Takuya; Ito, Hiromi; Murohara, Toyoaki; Nagata, Kohzo

    2013-11-01

    Calorie restriction (CR) can modulate the features of obesity-related metabolic and cardiovascular diseases. We have recently characterized DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, derived from a cross between Dahl salt-sensitive and Zucker rats, as a new animal model of metabolic syndrome. DS/obese rats develop hypertension and manifest left ventricular remodeling and diastolic dysfunction, as well as increased cardiac oxidative stress and inflammation. We have now investigated the effects of CR on cardiac pathophysiology in DS/obese rats. DS/obese rats were fed either normal laboratory chow ad libitum or a calorie-restricted diet (65% of the average food intake for ad libitum) from 9 to 13 weeks. Age-matched homozygous lean (DahlS.Z-Lepr(+)/Lepr(+) or DS/lean) littermates served as controls. CR reduced body weight in both DS/obese and DS/lean rats, as well as attenuated the development of hypertension in DS/obese rats without affecting blood pressure in DS/lean rats. CR also reduced body fat content, ameliorated left ventricular hypertrophy, fibrosis, and diastolic dysfunction, and attenuated cardiac oxidative stress and inflammation in DS/obese rats. In addition, it increased serum adiponectin concentration, as well as downregulated the expression of angiotensin-converting enzyme and angiotensin II type 1A receptor genes in the heart of DS/obese rats. Our results thus show that CR attenuated obesity and hypertension, as well as left ventricular remodeling and diastolic dysfunction in DS/obese rats, with these latter effects being associated with reduced cardiac oxidative stress and inflammation.

  13. Chronic sleep restriction induces changes in the mandibular condylar cartilage of rats: roles of Akt, Bad and Caspase-3.

    Science.gov (United States)

    Zhu, Yong; Wu, Gaoyi; Zhu, Guoxiong; Ma, Chuan; Zhao, Huaqiang

    2014-01-01

    The aim of the present study was to observe changes in the temporomandibular joint (TMJ) of rats that had been subjected to chronic sleep restriction and to investigate whether Akt, Bad and Caspase3 play a role in the mechanism underlying the changes. One hundred and eighty male Wistar rats were randomly divided into three groups (n = 60 in each): cage control group, large-platform control group, and sleep restriction group. Each group was divided into three subgroups (n = 20 in each) of three different time points (7, 14 and 21 days), respectively. The modified multiple platform method was used to induce chronic sleep restriction. The TMJ tissue histology was studied by staining with haematoxylin and eosin. The expression of Akt, p-Aktser473, Bad, p-Badser136 and Caspase3 proteins was detected by immunohistochemistry and western blotting. The expression of Akt, Bad and Caspase3 mRNAs was measured by real-time quantitative polymerase chain reaction (RT-qPCR). Compared with the large-platform and cage control groups, condylar cartilage pathological alterations were found in the sleep restriction group. There were significantly decreased expression levels of Akt, p-Aktser473 and p-Badser136 and significantly increased expression levels of Bad and Caspase3 after sleep restriction. These data suggest that sleep restriction may induce pathological alterations in the condylar cartilage of rats. Alterations in Akt, Bad and Caspase3 may be associated with the potential mechanism by which chronic sleep restriction influences the condylar cartilage.

  14. Calorie restriction: A new therapeutic intervention for age-related dry eye disease in rats

    International Nuclear Information System (INIS)

    Kawashima, Motoko; Kawakita, Tetsuya; Okada, Naoko; Ogawa, Yoko; Murat, Dogru; Nakamura, Shigeru; Nakashima, Hideo; Shimmura, Shigeto; Shinmura, Ken; Tsubota, Kazuo

    2010-01-01

    A decrease in lacrimal gland secretory function is closely related to aging and leads to an increased prevalence of dry eye syndrome. Since calorie restriction (CR) is considered to prevent functional decline of various organs due to aging, we hypothesized that CR could prevent age-related lacrimal dysfunction. Six-month-old male Fischer 344 rats were randomly divided into ad libitum (AL) and CR (-35%) groups. After 6 months of CR, tear function was examined under conscious state. After euthanasia, lacrimal glands were subjected to histological examination, tear protein secretion stimulation test with Carbachol, and assessment of oxidative stress with 8-hydroxy-2 deoxyguanosine (8-OHdG) and 4-hydroxynonenal (HNE) antibodies. CR significantly improved tear volume and tended to increase tear protein secretion volume after stimulation with Carbachol compared to AL. The acinar unit density was significantly higher in the CR rats compared to AL rats. Lacrimal glands in the CR rats showed a lesser degree of interstitial fibrosis. CR reduced the concentration of 8-OHdG and the extent of staining with HNE in the lacrimal gland, compared to AL. Furthermore, our electron microscopic observations showed that mitochondrial structure of the lacrimal gland obtained from the middle-aged CR rats was preserved in comparison to the AL rats. Collectively, these results demonstrate for the first time that CR may attenuate oxidative stress related damage in the lacrimal gland with preservation of lacrimal gland functions. Although molecular mechanism(s) by which CR maintains lacrimal gland function remains to be resolved, CR might provide a novel therapeutic strategy for treating dry eye syndrome.

  15. Calorie restriction: A new therapeutic intervention for age-related dry eye disease in rats

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, Motoko; Kawakita, Tetsuya; Okada, Naoko; Ogawa, Yoko [Department of Ophthalmology, Keio University School of Medicine, Tokyo (Japan); Murat, Dogru [Department of Ocular Surface and Visual Optics, Keio University School of Medicine, Tokyo (Japan); Nakamura, Shigeru; Nakashima, Hideo [Research Center, Ophtecs Corporation, Hyogo (Japan); Shimmura, Shigeto [Department of Ophthalmology, Keio University School of Medicine, Tokyo (Japan); Shinmura, Ken [Division of Geriatric Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo (Japan); Tsubota, Kazuo, E-mail: tsubota@sc.itc.keio.ac.jp [Department of Ophthalmology, Keio University School of Medicine, Tokyo (Japan)

    2010-07-09

    A decrease in lacrimal gland secretory function is closely related to aging and leads to an increased prevalence of dry eye syndrome. Since calorie restriction (CR) is considered to prevent functional decline of various organs due to aging, we hypothesized that CR could prevent age-related lacrimal dysfunction. Six-month-old male Fischer 344 rats were randomly divided into ad libitum (AL) and CR (-35%) groups. After 6 months of CR, tear function was examined under conscious state. After euthanasia, lacrimal glands were subjected to histological examination, tear protein secretion stimulation test with Carbachol, and assessment of oxidative stress with 8-hydroxy-2 deoxyguanosine (8-OHdG) and 4-hydroxynonenal (HNE) antibodies. CR significantly improved tear volume and tended to increase tear protein secretion volume after stimulation with Carbachol compared to AL. The acinar unit density was significantly higher in the CR rats compared to AL rats. Lacrimal glands in the CR rats showed a lesser degree of interstitial fibrosis. CR reduced the concentration of 8-OHdG and the extent of staining with HNE in the lacrimal gland, compared to AL. Furthermore, our electron microscopic observations showed that mitochondrial structure of the lacrimal gland obtained from the middle-aged CR rats was preserved in comparison to the AL rats. Collectively, these results demonstrate for the first time that CR may attenuate oxidative stress related damage in the lacrimal gland with preservation of lacrimal gland functions. Although molecular mechanism(s) by which CR maintains lacrimal gland function remains to be resolved, CR might provide a novel therapeutic strategy for treating dry eye syndrome.

  16. Influence of various carbohydrates on the utilization of low protein diet by the adult rat

    International Nuclear Information System (INIS)

    Khan, M. Akmal.

    1975-01-01

    The effect of different dietary carbohydrates on food intake, body weight and nitrogen balance of adult rats fed 5 per cent protein diet ad-libitum for 14, 24, and 45 days or restricted to 70 per cent of their normal food intake for 10 and 31 days was studied. No significant difference in food intake and body weight on either of treatments was observed. Nitrogen balance studies indicated that rats fed ad-libitum or restricted diet having starch as a source of dietary carbohydrate utilized nitrogen more efficiently than sucrose fed animals. Possible explanations have been discussed. Regression equations were calculated and it was found from the regression lines that minimum calories and nitrogen intake to maintain nitrogen equilibrium under experimental conditions were 123 kcal and 270 mg N per kg 3/4/day on starch based diet compared with 136 kcal and 295 mg N per kg 3/4/day on sucrose diet respectively

  17. Effects of Vitamin D Restricted Diet Administered during Perinatal and Postnatal Periods on the Penis of Wistar Rats

    Directory of Open Access Journals (Sweden)

    Flávia Fernandes-Lima

    2018-01-01

    Full Text Available Vitamin D deficiency is common in pregnant women and infants. The present study aimed to investigate the effects of vitamin D restricted diet on the Wistar rats offspring penis morphology. Mother rats received either standard diet (SC or vitamin D restricted (VitD diet. At birth, offspring were divided into SC/SC (from SC mothers, fed with SC diet and VitD/VitD (from VitD mothers, fed with VitD diet. After euthanasia the penises were processed for histomorphometric analysis. The VitD/VitD offspring displayed metabolic changes and reduction in the cross-sectional area of the penis, corpus cavernosum, tunica albuginea, and increased area of the corpus spongiosum. The connective tissue, smooth muscle, and cell proliferation percentages were greater in the corpus cavernosum and corpus spongiosum in the VitD/VitD offspring. The percentages of sinusoidal spaces and elastic fibers in the corpus cavernosum decreased. The elastic fibers in the tunica albuginea of the corpus spongiosum in the VitD/VitD offspring were reduced. Vitamin D restriction during perinatal and postnatal periods induced metabolic and structural changes and represented important risk factors for erectile dysfunction in the penis of the adult offspring. These findings suggest that vitamin D is an important micronutrient in maintaining the cytoarchitecture of the penis.

  18. The Effect of Moderate Dietary Protein and Phosphate Restriction on Calcium-Phosphate Homeostasis in Healthy Older Cats.

    Science.gov (United States)

    Geddes, R F; Biourge, V; Chang, Y; Syme, H M; Elliott, J

    2016-09-01

    Dietary phosphate and protein restriction decreases plasma PTH and FGF-23 concentrations and improves survival time in azotemic cats, but has not been examined in cats that are not azotemic. Feeding a moderately protein- and phosphate-restricted diet decreases PTH and FGF-23 in healthy older cats and thereby slows progression to azotemic CKD. A total of 54 healthy, client-owned cats (≥ 9 years). Prospective double-blinded randomized placebo-controlled trial. Cats were assigned to test diet (protein 76 g/Mcal and phosphate 1.6 g/Mcal) or control diet (protein 86 g/Mcal and phosphate 2.6 g/Mcal) and monitored for 18 months. Changes in variables over time and effect of diet were assessed by linear mixed models. A total of 26 cats ate test diet and 28 cats ate control diet. There was a significant effect of diet on urinary fractional excretion of phosphate (P = 0.045), plasma PTH (P = 0.005), and ionized calcium concentrations (P = 0.018), but not plasma phosphate, FGF-23, or creatinine concentrations. Plasma PTH concentrations did not significantly change in cats fed the test diet (P = 0.62) but increased over time in cats fed the control diet (P = 0.001). There was no significant treatment effect of the test diet on development of azotemic CKD (3 of 26 (12%) test versus 3 of 28 (11%) control, odds ratio 1.09 (95% CI 0.13-8.94), P = 0.92). Feeding a moderately protein- and phosphate-restricted diet has effects on calcium-phosphate homeostasis in healthy older cats and is well tolerated. This might have an impact on renal function and could be useful in early chronic kidney disease. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  19. Glucose intolerance develops prior to increased adiposity and accelerated cessation of estrous cyclicity in female growth-restricted rats

    Science.gov (United States)

    Intapad, Suttira; Dasinger, John Henry; Brown, Andrew D.; Fahling, Joel M.; Esters, Joyee; Alexander, Barbara T.

    2015-01-01

    Background The incidence of metabolic disease increases in early menopause. Low birth weight influences the age at menopause. Thus, this study tested the hypothesis that intrauterine growth restriction programs early reproductive aging and impaired glucose homeostasis in female rats. Methods Estrous cyclicity, body composition, and glucose homeostasis were determined in female control and growth-restricted rats at 6 and 12 months of age; sex steroids at 12 months. Results Glucose intolerance was present at 6 months of age prior to cessation of estrous cyclicity and increased adiposity in female growth-restricted rats. However, female growth-restricted rats exhibited persistent estrus and a significant increase in adiposity, fasting glucose and testosterone at 12 months of age (Pgrowth-restricted rats (Pgrowth programmed glucose intolerance that developed prior to early estrous acyclicity; yet, fasting glucose levels were elevated in conjunction with increased adiposity, accelerated cessation of estrous cyclicity and a shift towards testosterone excess at 12 months of age in female growth-restricted rats. PMID:26854801

  20. Caloric Restriction in Lean and Obese Strains of Laboratory Rat: Effects on Body Composition, Metabolism, Growth, and Overall Health

    Science.gov (United States)

    NEW FINDINGS: What is the central question of this study? How do lean and obese rats respond physiologically to caloric restriction? What is the main finding and its importance? Obese rats show marked benefits compared with lean animals. Reduced body fat is associated with improv...

  1. [Effect of protein intervention on amino acid metabolism spectrum of Qi and Yin deficiency type 2 diabetic rats].

    Science.gov (United States)

    Ma, Li-Na; Mao, Xin-Min; Ma, Xiao-Li; Li, Lin-Lin; Wang, Ye; Tao, Yi-Cun; Wang, Jing-Wei; Guo, Jia-Jia; Lan, Yi

    2016-11-01

    To study the effect of plant protein and animal protein on amino acid metabolism spectrum of Qi and Yin deficiency type 2 diabetic rats. 110 male SD rats were randomly divided into blank group (n=10), diabetic model group (n=20), disease-symptoms group (n=80). The rats of blank group received ordinary feeding, while other groups were fed with high sugar and fat diets. During the whole process of feeding, rats of disease-symptoms group were given with Qingpi-Fuzi (15.75 g•kg⁻¹) once a day through oral administration. Five weeks later, the rats were given with a low dose of STZ (40 mg•kg⁻¹) by intraperitoneal injection to establish experimental diabetic models. Then the models were randomly divided into disease-symptoms group 1 (Qi and Yin deficiency diabetic group, 15.75 g•kg⁻¹), disease-symptoms group 2 (plant protein group, 0.5 g•kg⁻¹), disease-symptoms group 3 (animal protein group, 0.5 g•kg⁻¹), disease-symptoms group 4 (berberine group, 0.1 g•kg⁻¹). The drugs were given for 4 weeks by gavage administration. After 4 weeks of protein intervention, the abdominal aortic blood was collected and serum was isolated to analyze its free amino acid by using AQC pre-column derivatization HPLC and fluorescence detector. Four weeks after the protein intervention, plant protein, animal protein and berberine had no obvious effect on body weight and blood sugar in type 2 diabetic rats. As compared with animal protein group, histidine and proline(PYin deficiency type 2 diabetic SD rats. Symbolic differential compounds could be found through metabonomics technology, providing experimental basis for early warning of type 2 diabetes and diagnosis of Qi and Yin deficiency syndrome. Copyright© by the Chinese Pharmaceutical Association.

  2. Food restriction increases acquisition, persistence and drug prime-induced expression of a cocaine-conditioned place preference in rats.

    Science.gov (United States)

    Zheng, Danielle; Cabeza de Vaca, Soledad; Carr, Kenneth D

    2012-01-01

    Cocaine conditioned place preference (CPP) is more persistent in food-restricted than ad libitum fed rats. This study assessed whether food restriction acts during conditioning and/or expression to increase persistence. In Experiment 1, rats were food-restricted during conditioning with a 7.0 mg/kg (i.p.) dose of cocaine. After the first CPP test, half of the rats were switched to ad libitum feeding for three weeks, half remained on food restriction, and this was followed by CPP testing. Rats tested under the ad libitum feeding condition displayed extinction by the fifth test. Their CPP did not reinstate in response to overnight food deprivation or a cocaine prime. Rats maintained on food restriction displayed a persistent CPP. In Experiment 2, rats were ad libitum fed during conditioning with the 7.0 mg/kg dose. In the first test only a trend toward CPP was displayed. Rats maintained under the ad libitum feeding condition did not display a CPP during subsequent testing and did not respond to a cocaine prime. Rats tested under food-restriction also did not display a CPP, but expressed a CPP following a cocaine prime. In Experiment 3, rats were ad libitum fed during conditioning with a 12.0 mg/kg dose. After the first test, half of the rats were switched to food restriction for three weeks. Rats that were maintained under the ad libitum condition displayed extinction by the fourth test. Their CPP was not reinstated by a cocaine prime. Rats tested under food-restriction displayed a persistent CPP. These results indicate that food restriction lowers the threshold dose for cocaine CPP and interacts with a previously acquired CPP to increase its persistence. In so far as CPP models Pavlovian conditioning that contributes to addiction, these results suggest the importance of diet and the physiology of energy balance as modulatory factors. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Calorie restriction: A new therapeutic intervention for age-related dry eye disease in rats.

    Science.gov (United States)

    Kawashima, Motoko; Kawakita, Tetsuya; Okada, Naoko; Ogawa, Yoko; Murat, Dogru; Nakamura, Shigeru; Nakashima, Hideo; Shimmura, Shigeto; Shinmura, Ken; Tsubota, Kazuo

    2010-07-09

    A decrease in lacrimal gland secretory function is closely related to aging and leads to an increased prevalence of dry eye syndrome. Since calorie restriction (CR) is considered to prevent functional decline of various organs due to aging, we hypothesized that CR could prevent age-related lacrimal dysfunction. Six-month-old male Fischer 344 rats were randomly divided into ad libitum (AL) and CR (-35%) groups. After 6months of CR, tear function was examined under conscious state. After euthanasia, lacrimal glands were subjected to histological examination, tear protein secretion stimulation test with Carbachol, and assessment of oxidative stress with 8-hydroxy-2 deoxyguanosine (8-OHdG) and 4-hydroxynonenal (HNE) antibodies. CR significantly improved tear volume and tended to increase tear protein secretion volume after stimulation with Carbachol compared to AL. The acinar unit density was significantly higher in the CR rats compared to AL rats. Lacrimal glands in the CR rats showed a lesser degree of interstitial fibrosis. CR reduced the concentration of 8-OHdG and the extent of staining with HNE in the lacrimal gland, compared to AL. Furthermore, our electron microscopic observations showed that mitochondrial structure of the lacrimal gland obtained from the middle-aged CR rats was preserved in comparison to the AL rats. Collectively, these results demonstrate for the first time that CR may attenuate oxidative stress related damage in the lacrimal gland with preservation of lacrimal gland functions. Although molecular mechanism(s) by which CR maintains lacrimal gland function remains to be resolved, CR might provide a novel therapeutic strategy for treating dry eye syndrome. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Effects of organic and conventional rice on protein efficiency ratio and pesticide residue in rats

    Directory of Open Access Journals (Sweden)

    Wanpen Mesomya

    2012-11-01

    Full Text Available The comparative effects of organic rice and conventional rice on the protein efficiency ratio (PER in rats were investigated by feeding 40 male Sprague-Dawley rats for four weeks with three experimental diets containing polished conventional rice (PCR, unpolished conventional rice (UCR, unpolished organic rice (UOR and a control protein diet (casein under standardised conditions. All diets were prepared according to AOAC guidelines. The results showed no statistically significant difference (P > 0.05 among the values of PER (2.75 ± 0.14 - 2.80 ± 0.09 in rats fed with diets containing PCR, UCR or UOR. Similar growth was also observed among the three groups fed with different experimental diets. Additionally, residues of pesticides, viz. carbofuran, methyl parathion, p-nitrophenol and -cyfluthrin, in rat blood and rice samples were determined using liquid chromatography–electrospray ionisation tandem mass spectrometry. Pesticide residues were not detected in all serum samples of experimental rats and only p-nitrophenol was found (8.23 ± 0.65 - 12.84 ± 2.58 mg/kg in all samples of the cooked rice diets, indicating that organic rice produced similar effect as conventional rice on PER and growth in rats.

  5. Radio frequency radiation effects on protein kinase C activity in rats' brain

    International Nuclear Information System (INIS)

    Paulraj, R.; Behari, J.

    2004-01-01

    The present work describes the effect of amplitude modulated radio frequency (rf) radiation (112 MHz amplitude-modulated at 16 Hz) on calcium-dependent protein kinase C (PKC) activity on developing rat brain. Thirty-five days old Wistar rats were used for this study. The rats were exposed 2 h per day for 35 days at a power density of 1.0 mW/cm 2 (SAR=1.48 W/kg). After exposure, rats were sacrificed and PKC was determined in whole brain, hippocampus and whole brain minus hippocampus separately. A significant decrease in the enzyme level was observed in the exposed group as compared to the sham exposed group. These results indicate that this type of radiation could affect membrane bound enzymes associated with cell signaling, proliferation and differentiation. This may also suggest an affect on the behavior of chronically exposed rats

  6. Perinatal supplementation of 4-phenylbutyrate and glutamine attenuates endoplasmic reticulum stress and improves colonic epithelial barrier function in rats born with intrauterine growth restriction.

    Science.gov (United States)

    Désir-Vigné, Axel; Haure-Mirande, Vianney; de Coppet, Pierre; Darmaun, Dominique; Le Dréan, Gwenola; Segain, Jean-Pierre

    2018-05-01

    Intrauterine growth restriction (IUGR) can affect the structure and function of the intestinal barrier and increase digestive disease risk in adulthood. Using the rat model of maternal dietary protein restriction (8% vs. 20%), we found that the colon of IUGR offspring displayed decreased mRNA expression of epithelial barrier proteins MUC2 and occludin during development. This was associated with increased mRNA expression of endoplasmic reticulum (ER) stress marker XBP1s and increased colonic permeability measured in Ussing chambers. We hypothesized that ER stress contributes to colonic barrier alterations and that perinatal supplementation of dams with ER stress modulators, phenylbutyrate and glutamine (PG) could prevent these defects in IUGR offspring. We first demonstrated that ER stress induction by tunicamycin or thapsigargin increased the permeability of rat colonic tissues mounted in Ussing chamber and that PG treatment prevented this effect. Therefore, we supplemented the diet of control and IUGR dams with PG during gestation and lactation. Real-time polymerase chain reaction and histological analysis of colons from 120-day-old offspring revealed that perinatal PG treatment partially prevented the increased expression of ER stress markers but reversed the reduction of crypt depth and goblet cell number in IUGR rats. In dextran sodium sulfate-induced injury and recovery experiments, the colon of IUGR rats without perinatal PG treatment showed higher XBP1s mRNA levels and histological scores of inflammation than IUGR rats with perinatal PG treatment. In conclusion, these data suggest that perinatal supplementation with PG could alleviate ER stress and prevent epithelial barrier dysfunction in IUGR offspring. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Regulation of longevity and oxidative stress by nutritional interventions: role of methionine restriction.

    Science.gov (United States)

    Sanchez-Roman, Ines; Barja, Gustavo

    2013-10-01

    Comparative studies indicate that long-lived mammals have low rates of mitochondrial reactive oxygen species production (mtROSp) and oxidative damage in their mitochondrial DNA (mtDNA). Dietary restriction (DR), around 40%, extends the mean and maximum life span of a wide range of species and lowers mtROSp and oxidative damage to mtDNA, which supports the mitochondrial free radical theory of aging (MFRTA). Regarding the dietary factor responsible for the life extension effect of DR, neither carbohydrate nor lipid restriction seems to modify maximum longevity. However protein restriction (PR) and methionine restriction (at least 80% MetR) increase maximum lifespan in rats and mice. Interestingly, only 7weeks of 40% PR (at least in liver) or 40% MetR (in all the studied organs, heart, brain, liver or kidney) is enough to decrease mtROSp and oxidative damage to mtDNA in rats, whereas neither carbohydrate nor lipid restriction changes these parameters. In addition, old rats also conserve the capacity to respond to 7weeks of 40% MetR with these beneficial changes. Most importantly, 40% MetR, differing from what happens during both 40% DR and 80% MetR, does not decrease growth rate and body size of rats. All the available studies suggest that the decrease in methionine ingestion that occurs during DR is responsible for part of the aging-delaying effect of this intervention likely through the decrease of mtROSp and ensuing DNA damage that it exerts. We conclude that lowering mtROS generation is a conserved mechanism, shared by long-lived species and dietary, protein, and methionine restricted animals, that decreases damage to macromolecules situated near the complex I mtROS generator, especially mtDNA. This would decrease the accumulation rate of somatic mutations in mtDNA and maybe finally also in nuclear DNA. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Lead Intoxication On Protein Fractions, Testicular Tissues And Ameliorative Effect Of ANTOX On Male Albino Rats

    International Nuclear Information System (INIS)

    HASSANIN, M.M.; EL-MAHDY, A.A.; ZAKI, Z.T.; EMARAH, E.A.M.; HUSSEIN, A.M.M.

    2010-01-01

    Lead (heavy metal) was given as lead acetate for two groups of adult male albino rats (Rattus rattus) in drinking water at dose level of 100 mg/litre for 3 and 6 weeks to evaluate its toxic effects on protein and its fractions by using electrophoresis technique, serum testosterone using radioimmunoassay and histological investigation of the testis of male rats.Administration of 100 mg/L lead acetate in drinking water for 3 and 6 weeks induced fluctuated changes in serum total proteins, protein fractions and significant decrease in serum testosterone hormone.Histopathological examination showed cellular changes and degeneration of the seminiferous tubules after 3 and 6 weeks of administration of lead acetate.The treatment of rats with antox (10 mg/kg) during the experimental period caused improvement in protein fraction and testosterone level, and the testes sections appeared more or less normal.

  9. Study of Anti-Fatigue Effect in Rats of Ferrous Chelates Including Hairtail Protein Hydrolysates

    Directory of Open Access Journals (Sweden)

    Saibo Huang

    2015-12-01

    Full Text Available The ability of ferrous chelates including hairtail protein hydrolysates to prevent and reduce fatigue was studied in rats. After hydrolysis of hairtail surimi with papain, the hairtail protein hydrolysates (HPH were separated into three groups by range of relative molecular weight using ultrafiltration membrane separation. Hairtail proteins were then chelated with ferrous ions, and the antioxidant activity, the amino acid composition and chelation rate of the three kinds of ferrous chelates including hairtail protein hydrolysates (Fe-HPH were determined. Among the three groups, the Fe-HPH chelate showing the best conditions was selected for the anti-fatigue animal experiment. For it, experimental rats were randomly divided into seven groups. Group A was designated as the negative control group given distilled water. Group B, the positive control group, was given glutathione. Groups C, D and E were designated as the Fe-HPH chelate treatment groups and given low, medium, and high doses, respectively. Group F was designated as HPH hydrolysate treatment group, and Group G was designated as FeCl2 treatment group. The different diets were orally administered to rats for 20 days. After that time, rats were subjected to forced swimming training after 1 h of gavage. Rats given Fe-FPH chelate had higher haemoglobin regeneration efficiency (HRE, longer exhaustive swimming time and higher SOD activity. Additionally, Fe-FPH chelate was found to significantly decrease the malondialdehyde content, visibly enhance the GSH-Px activity in liver and reduce blood lactic acid of rats. Fe-HPH chelate revealed an anti-fatigue effect, similar to or better than the positive control substance and superior to HPH or Fe when provided alone.

  10. The effect of ZMS on the coupling of muscarinic receptor to G-proteins activation in rat brain

    International Nuclear Information System (INIS)

    Fang Cailong; Hu Yaer; Gao Ruxue; Xia Zongqin

    1999-01-01

    The carbachol-stimulated [ 35 S]GTP γ S binding method was used to observe the effect of ZMS, an active component from Zhimu, on the coupling of M-receptor to G-protein. the effect of ZMS on the ability of learning and memory in aged rats was also observed. It was shown that the carbachol-stimulated elevation of [ 35 S]GTPγS binding was significantly decreased in aged rats as compared with young rats. The carbachol-induced [ 35 S]STPγS binding showed that administration of ZMS at median or high dose have a definite elevation effect on the coupling activity of M-receptors to G-protein in brain, and this elevation was accompanied by an improvement of learning and memory ability

  11. Effects of protein and energy deficiency on the incorporation of 14C-Chlorella protein hydrolysate into body constituents of adult rats

    International Nuclear Information System (INIS)

    Yamamoto, Shigeru; Wakabayashi, Kazuo; Niiyama, Yoshiaki; Inoue, Goro

    1974-01-01

    The effects of protein and/or energy deficiency on 14 C incorporation into body constituents and 14 C output in expired air and urine were investigated in adult rats using 14 C-Chlorella protein hydrolysate. Rats were given a protein-free diet (PFD) for 2 weeks and conrol rats were fed ad libitum or pari-fed with the PFD group on a 12% lactalbumin diet (LA and Pair-fed, respectively). On the 15th day, animals received 14 C-Chlorella protein hydolysate with 5 g of their respective diet. One group of PFD animals was given tracer by stomach tube without food (PFD-fast). Normal control rats ate about twice as much diet as the PFD group. The respiratory 14 C output in the PFD group was identical with those in the LA and Pair-fed groups and was less than that in the PFD-fast group. The rate of protein synthesis, provisionally expressed as relative specific radioactivity, was more in the PFD group than in the normal group in the liver and less than the latter in the muscle. The LA group retained less total radioactivity in the body than the Pair-fed or PFD group, indicating high capability to hold the body protein in protein deficiency. In addition, decreased conversion of amino acids to lipids and glycogen was observed in the PFD group. All these differences are interpreted as adaptations to protein shortage. On prolonged fasting (PFD-fast group), gluconeogenesis in the liver increased to provide energy, despite the protein deficiency. The relative importances of protein and energy for tissue protein synthesis are briefly discussed. (author)

  12. Effect of nigella sativa seeds extract on serum c-reactive protein in albino rats

    International Nuclear Information System (INIS)

    Bashir, M.U.; Qureshi, H.

    2014-01-01

    C-reactive protein (CRP) is an acute phase protein. It predicts future risk of cardiovascular diseases. Different medicinal plants and their active ingredients possess the ability to reduce serum CRP levels and hence inflammatory disorders and cardiovascular diseases. In our study, ethanolic extract of Nigella sativa seeds was evaluated in albino rats for its possible effect on serum CRP levels. Objective: The objective of this study was to determine the effect of ethanolic extract of Nigella sativa seeds on an acute inflammatory biomarker/mediator, C-reactive protein (CRP) in albino rats. Study Design: Randomized controlled trial (RCT). Place and Duration of Study: Physiology Department, Services Institute of Medical Sciences (SIMS), Lahore; from September to November, 2009. Subjects and Methods: The study was carried out on 90 male albino rats. Five percent (5%) formalin in a dose of 50 meu1 was injected into sub-plantar surface of right hind paw of each rat to produce inflammation. The rats were randomly divided into three groups of thirty each. Group A was given normal saline (control); group B was given Nigella sativa seed extract; and group C received diclofenac sodium, as a reference drug. CRP levels in each group were measured from blood samples taken 25 hours after giving formalin. Results: The ethanolic extract of Nigella sativa seeds, given intraperitoneally, caused highly significant (p<0.001) reduction in serum CRP levels as compared to control group. The reduction in CRP levels by ethanolic extract of Nigella sativa was also significantly (p<0.05) more than that produced by diclofenac sodium. Conclusion: Our results suggest that Nigella sativa possesses ability to reduce serum CRP levels significantly, after production of artificial inflammation, in albino rats. (author)

  13. Total proteins and protein fractions levels in pregnant rats subjected to whole-body gamma irradiation

    International Nuclear Information System (INIS)

    Mansour, M.A.; Roushdy, H.M.; Mazhar, F.M.; Abu-Gabal, H.A.

    1986-01-01

    A total number of 180 mature rats (120 females and 60 males) weighing from 120-140 g were used to study the effect of two doses (2 and 4 Gy) whole-body gamma irradiation on the level of total protein and protein fractions in serum of pregnant rats during the period of organogenesis. It was found that the levels of total protein, albumin and gamma globulins significantly decreased according to the doses of exposure. The levels of alpha and beta globulins significantly increased more in the serum of rats exposed to 2 Gy than in rats exposed to 4 Gy. The level of A/G ratio significantly decreased more in the serum of rats exposed to 2Gy than in those exposed to 4 Gy

  14. Hypoxia activates muscle-restricted coiled-coil protein (MURC) expression via transforming growth factor-β in cardiac myocytes.

    Science.gov (United States)

    Shyu, Kou-Gi; Cheng, Wen-Pin; Wang, Bao-Wei; Chang, Hang

    2014-03-01

    The expression of MURC (muscle-restricted coiled-coil protein), a hypertrophy-regulated gene, increases during pressure overload. Hypoxia can cause myocardial hypertrophy; however, how hypoxia affects the regulation of MURC in cardiomyocytes undergoing hypertrophy is still unknown. The aim of the present study was to test the hypothesis that hypoxia induces MURC expression in cardiomyocytes during hypertrophy. The expression of MURC was evaluated in cultured rat neonatal cardiomyocytes subjected to hypoxia and in an in vivo model of AMI (acute myocardial infarction) to induce myocardial hypoxia in adult rats. MURC protein and mRNA expression were significantly enhanced by hypoxia. MURC proteins induced by hypoxia were significantly blocked after the addition of PD98059 or ERK (extracellular-signal-regulated kinase) siRNA 30 min before hypoxia. Gel-shift assay showed increased DNA-binding activity of SRF (serum response factor) after hypoxia. PD98059, ERK siRNA and an anti-TGF-β (transforming growth factor-β) antibody abolished the SRF-binding activity enhanced by hypoxia or exogenous administration of TGF-β. A luciferase promoter assay demonstrated increased transcriptional activity of SRF in cardiomyocytes by hypoxia. Increased βMHC (β-myosin heavy chain) and BNP (B-type natriuretic peptide) protein expression and increased protein synthesis was identified after hypoxia with the presence of MURC in hypertrophic cardiomyocytes. MURC siRNA inhibited the hypertrophic marker protein expression and protein synthesis induced by hypoxia. AMI in adult rats also demonstrated increased MURC protein expression in the left ventricular myocardium. In conclusion, hypoxia in cultured rat neonatal cardiomyocytes increased MURC expression via the induction of TGF-β, SRF and the ERK pathway. These findings suggest that MURC plays a role in hypoxia-induced hypertrophy in cardiomyocytes.

  15. Sleep restriction in rats leads to changes in operant behaviour indicative of reduced prefrontal cortex function

    NARCIS (Netherlands)

    Kamphuis, Jeanine; Baichel, Swetlana; Lancel, Marike; De Boer, Sietse F.; Koolhaas, Jaap M.; Meerlo, Peter

    Sleep deprivation has profound effects on cognitive performance, and some of these effects may be mediated by impaired prefrontal cortex function. In search of an animal model to investigate this relationship we studied the influence of restricted sleep on operant conditioning in rats, particularly

  16. Effects of caloric restriction on learning and recovery of a spatial task in rats exposed to acute stress

    Directory of Open Access Journals (Sweden)

    Lamprea Rodríguez, Marisol

    2009-06-01

    Full Text Available The purpose of the present study was to describe the effects of caloric restriction on spatial learning and recovery in the Barnes maze in animals experimentally stressed before recovery of the spatial task. Male Wistar rats were exposed for two months to one of two conditions: ad libitum (AL or intermittent fasting (IF. Both groups were exposed then to an experimental form of acute stress, induced by movement restriction for 4 hours. IF subjects had better performance in learning tasks during the acquisition trials but required more time to complete the task after the stressor was applied. These results are discussed in light of previous data reported in the literature emphasizing differences in the instruments used to evaluate spatial learning and its interaction with experimentally induced stress.

  17. Effects of toluene on protein synthesis and the interaction with ethanol in hepatocytes isolated from fed and fasted rats

    International Nuclear Information System (INIS)

    Smith-Kielland, A.; Ripel, Aa.; Gadeholt, G.

    1989-01-01

    The effects of three different concentrations (about 20, 100 and 1000 μM) of toluene on protein synthesis were studied in hepatocytes isolated from fed and fasted rats after 60 and 120 min. of incubation. The interaction between ethanol (60 mM) and the low and high toluene concentrations were also tested. To measure protein synthesis, 14 C-valine was used as the precursor amino acid. Total valine concentration was 2 mM to ensure near-constant specific radioactivity of precursor. Toluene concentrations were measured by head-space gas chromatography. Protein synthesis was unchanged in the presence of low toluene concentrations. Intermediate toluene concentration decreased protein synthesis by about 20% and high toluene concentration decreased protein synthesis by about 60%. Protein synthesis was similar in cells from fed and fasted rats. Ethanol alone inhibited protein synthesis by 20-30%, more in fasted than in fed rats. Toluene and ethanol in combination inhibited protein synthesis additively. The high toluene concentration with or without ethanol appeared to inhibit synthesis/secretion of export proteins in hepatocytes from fasted rats. In conclusion, our study indicates that toluene in relatively high concentrations inhibits general protein synthesis in isolated rat hepatocytes. Toluene and ethanol seems to inhibit protein synthesis additively. (author)

  18. Effects of toluene on protein synthesis and the interaction with ethanol in hepatocytes isolated from fed and fasted rats

    Energy Technology Data Exchange (ETDEWEB)

    Smith-Kielland, A.; Ripel, Aa.; Gadeholt, G.

    1989-01-01

    The effects of three different concentrations (about 20, 100 and 1000 ..mu..M) of toluene on protein synthesis were studied in hepatocytes isolated from fed and fasted rats after 60 and 120 min. of incubation. The interaction between ethanol (60 mM) and the low and high toluene concentrations were also tested. To measure protein synthesis, /sup 14/C-valine was used as the precursor amino acid. Total valine concentration was 2 mM to ensure near-constant specific radioactivity of precursor. Toluene concentrations were measured by head-space gas chromatography. Protein synthesis was unchanged in the presence of low toluene concentrations. Intermediate toluene concentration decreased protein synthesis by about 20% and high toluene concentration decreased protein synthesis by about 60%. Protein synthesis was similar in cells from fed and fasted rats. Ethanol alone inhibited protein synthesis by 20-30%, more in fasted than in fed rats. Toluene and ethanol in combination inhibited protein synthesis additively. The high toluene concentration with or without ethanol appeared to inhibit synthesis/secretion of export proteins in hepatocytes from fasted rats. In conclusion, our study indicates that toluene in relatively high concentrations inhibits general protein synthesis in isolated rat hepatocytes. Toluene and ethanol seems to inhibit protein synthesis additively.

  19. Protein and Amino Acid Restriction, Aging and Disease: from yeast to humans

    OpenAIRE

    Mirzaei, Hamed; Suarez, Jorge A.; Longo, Valter D.

    2014-01-01

    Many of the effects of dietary restriction (DR) on longevity and health span in model organisms have been linked to reduced protein and amino acid (AA) intake and the stimulation of specific nutrient signaling pathways. Studies in yeast have shown that addition of serine, threonine, and valine in media promotes cellular sensitization and aging by activating different but connected pathways. Protein or essential AA restriction extends both lifespan and healthspan in rodent models. In humans, p...

  20. Mitochondrial Respiration Is Decreased in Rat Kidney Following Fetal Exposure to a Maternal Low-Protein Diet

    Directory of Open Access Journals (Sweden)

    Sarah Engeham

    2012-01-01

    Full Text Available Maternal protein restriction in rat pregnancy is associated with impaired renal development and age-related loss of renal function in the resulting offspring. Pregnant rats were fed either control or low-protein (LP diets, and kidneys from their male offspring were collected at 4, 13, or 16 weeks of age. Mitochondrial state 3 and state 4 respiratory rates were decreased by a third in the LP exposed adults. The reduction in mitochondrial function was not explained by complex IV deficiency or altered expression of the complex I subunits that are typically associated with mitochondrial dysfunction. Similarly, there was no evidence that LP-exposure resulted in greater oxidative damage to the kidney, differential expression of ATP synthetase β-subunit, and ATP-ADP translocase 1. mRNA expression of uncoupling protein 2 was increased in adult rats exposed to LP in utero, but there was no evidence of differential expression at the protein level. Exposure to maternal undernutrition is associated with a decrease in mitochondrial respiration in kidneys of adult rats. In the absence of gross disturbances in respiratory chain protein expression, programming of coupling efficiency may explain the long-term impact of the maternal diet.

  1. Short- and long-term reproductive effects of prenatal and lactational growth restriction caused by maternal diabetes in male rats

    Directory of Open Access Journals (Sweden)

    Amorim Elaine MP

    2011-12-01

    Full Text Available Abstract Background A suboptimal intrauterine environment may have a detrimental effect on gonadal development and thereby increases the risk for reproductive disorders and infertility in adult life. Here, we used uncontrolled maternal diabetes as a model to provoke pre- and perinatal growth restriction and evaluate the sexual development of rat male offspring. Methods Maternal diabetes was induced in the dams through administration of a single i.v. dose of 40 mg/kg streptozotocin, 7 days before mating. Female rats presenting glycemic levels above 200 mg/dL after the induction were selected for the experiment. The male offspring was analyzed at different phases of sexual development, i.e., peripuberty, postpuberty and adulthood. Results Body weight and blood glucose levels of pups, on the third postnatal day, were lower in the offspring of diabetic dams compared to controls. Maternal diabetes also provoked delayed testicular descent and preputial separation. In the offspring of diabetic dams the weight of reproductive organs at 40, 60 and 90 days-old was lower, as well as sperm reserves and sperm transit time through the epididymis. However the plasma testosterone levels were not different among experimental groups. Conclusions It is difficult to isolate the effects directly from diabetes and those from IUGR. Although the exposure to hyperglycemic environment during prenatal life and lactation delayed the onset of puberty in male rats, the IUGR, in the studied model, did not influenced the structural organization of the male gonads of the offspring at any point during sexual development. However the decrease in sperm reserves in epididymal cauda and the acceleration in sperm transit time in this portion of epididymis may lead to an impairment of sperm quality and fertility potential in these animals. Additional studies are needed in attempt to investigate the fertility of animals with intrauterine growth restriction by maternal diabetes and

  2. Effect of burn and first-pass splanchnic leucine extraction on protein kinetics in rats

    International Nuclear Information System (INIS)

    Karlstad, M.D.; DeMichele, S.J.; Istfan, N.; Blackburn, G.L.; Bistrian, B.R.

    1988-01-01

    The effects of burn and first-pass splanchnic leucine extraction (FPE) on protein kinetics and energy expenditure were assessed by measuring O 2 consumption, CO 2 production, nitrogen balance, leucine kinetics, and tissue fractional protein synthetic rates (FSR-%/day) in enterally fed rats. Anesthetized male rats (200 g) were scalded on their dorsum with boiling water (25-30% body surface area) and enterally fed isovolemic diets that provided 60 kcal/day and 2.4 g of amino acids/day for 3 days. Controls were not burned. An intravenous or intragastric infusion of L-[1- 14 C]leucine was used to assess protein kinetics on day 3. FPE was taken as the ratio of intragastric to intravenous plasma leucine specific activity. There was a 69% reduction in cumulative nitrogen balance (P less than 0.001) and a 17-19% increase in leucine oxidation (P less than 0.05) and total energy expenditure (P less than 0.01) in burned rats. A 15% decrease in plasma leucine clearance (P less than 0.05) was accompanied by a 20% increase in plasma [leucine] (P less than 0.01) in burned rats. Burn decreased rectus muscle FSR from 5.0 +/- 0.4 to 3.5 +/- 0.5 (P less than 0.05) and increased liver FSR from 19.0 +/- 0.5 to 39.2 +/- 3.4 (P less than 0.01). First pass extraction of dietary leucine by the splanchnic bed was 8% in controls and 26% in burned rats. Leucine kinetics corrected for FPE showed increased protein degradation with burn that was not evident without FPE correction. This hypermetabolic burn model can be useful in the design of enteral diets that optimize rates of protein synthesis and degradation

  3. Effect of low carbohydrate high protein (LCHP) diet on lipid metabolism, liver and kidney function in rats.

    Science.gov (United States)

    Kostogrys, Renata B; Franczyk-Żarów, Magdalena; Maślak, Edyta; Topolska, Kinga

    2015-03-01

    The objective of this study was to compare effects of Western diet (WD) with low carbohydrate high protein (LCHP) diet on lipid metabolism, liver and kidney function in rats. Eighteen rats were randomly assigned to three experimental groups and fed for the next 2 months. The experimental diets were: Control (7% of soybean oil, 20% protein), WD (21% of butter, 20% protein), and LCHP (21% of butter and 52.4% protein) diet. The LCHP diet significantly decreased the body weight of the rats. Diet consumption was differentiated among groups, however significant changes were observed since third week of the experiment duration. Rats fed LCHP diet ate significantly less (25.2g/animal/day) than those from Control (30.2g/animal/day) and WD (27.8 g/animal/day) groups. Additionally, food efficiency ratio (FER) tended to decrease in LCHP fed rats. Serum homocysteine concentration significantly decreased in rats fed WD and LCHP diets. Liver weights were significantly higher in rats fed WD and LCHP diets. At the end of the experiment (2 months) the triacylglycerol (TAG) was significantly decreased in animals fed LCHP compared to WD. qRT-PCR showed that SCD-1 and FAS were decreased in LCHP fed rats, but WD diet increased expression of lipid metabolism genes. Rats receiving LCHP diet had two fold higher kidney weight and 54.5% higher creatinin level compared to Control and WD diets. In conclusion, LCHP diet decreased animal's body weight and decreased TAG in rat's serum. However, kidney damage in LCHP rats was observed. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Effects of peptides derived from dietary proteins on mucus secretion in rat jejunum.

    Science.gov (United States)

    Claustre, Jean; Toumi, Férial; Trompette, Aurélien; Jourdan, Gérard; Guignard, Henri; Chayvialle, Jean Alain; Plaisancié, Pascale

    2002-09-01

    The hypothesis that dietary proteins or their hydrolysates may regulate intestinal mucin discharge was investigated in the isolated vascularly perfused rat jejunum using an enzyme-linked immunosorbent assay for rat intestinal mucins. On luminal administration, casein hydrolysate [0.05-5% (wt/vol)] stimulated mucin secretion in rat jejunum (maximal response at 417% of controls). Lactalbumin hydrolysate (5%) also evoked mucin discharge. In contrast, casein, and a mixture of amino acids was without effect. Chicken egg albumin and its hydrolysate or meat hydrolysate also did not modify mucin release. Interestingly, casein hydrolysate-induced mucin secretion was abolished by intra-arterial TTX or naloxone (an opioid antagonist). beta-Casomorphin-7, an opioid peptide released from beta-casein on milk ingestion, induced a strong mucin secretion (response at 563% of controls) that was inhibited by naloxone. Intra-arterial beta-casomorphin-7 also markedly increased mucin secretion (410% of controls). In conclusion, two enzymatic milk protein hydrolysates (casein and lactalbumin hydrolysates) and beta-casomorphin-7, specifically, induced mucin release in rat jejunum. The casein hydrolysate-induced mucin secretion is triggered by a neural pathway and mediated by opioid receptor activation.

  5. Essential nutrient supplementation prevents heritable metabolic disease in multigenerational intrauterine growth-restricted rats

    Science.gov (United States)

    Goodspeed, Danielle; Seferovic, Maxim D.; Holland, William; Mcknight, Robert A.; Summers, Scott A.; Branch, D. Ware; Lane, Robert H.; Aagaard, Kjersti M.

    2015-01-01

    Intrauterine growth restriction (IUGR) confers heritable alterations in DNA methylation, rendering risk of adult metabolic syndrome (MetS). Because CpG methylation is coupled to intake of essential nutrients along the one-carbon pathway, we reasoned that essential nutrient supplementation (ENS) may abrogate IUGR-conferred multigenerational MetS. Pregnant Sprague-Dawley rats underwent bilateral uterine artery ligation causing IUGR in F1. Among the F2 generation, IUGR lineage rats were underweight at birth (6.7 vs. 8.0 g, P 30% elevated, P 5-fold less central fat mass, normal hepatic glucose efflux, and >70% reduced circulating triglycerides and very-LDLs compared with IUGR control-fed F2 offspring (P intrauterine growth-restricted rats. PMID:25395450

  6. Effect of administration of high-protein diet in rats submitted to resistance training.

    Science.gov (United States)

    da Rosa Lima, Thiago; Ávila, Eudes Thiago Pereira; Fraga, Géssica Alves; de Souza Sena, Mariana; de Souza Dias, Arlyson Batista; de Almeida, Paula Caroline; Dos Santos Trombeta, Joice Cristina; Junior, Roberto Carlos Vieira; Damazo, Amílcar Sabino; Navalta, James Wilfred; Prestes, Jonato; Voltarelli, Fabrício Azevedo

    2018-04-01

    Although there is limited evidence regarding the pathophysiological effects of a high-protein diet (HD), it is believed that this type of diet could overload the body and cause damage to the organs directly involved with protein metabolism and excretion. The aim of this study was to verify the effects of HD on biochemical and morphological parameters of rats that completed a resistance training protocol (RT; aquatic jump) for 8 weeks. Thirty-two adult male Wistar rats were divided into four groups (n = 8 for each group): sedentary normal protein diet (SN-14%), sedentary high-protein diet (SH-35%), trained normal protein diet (TN-14%), and trained high-protein diet (TH-35%). Biochemical, tissue, and morphological measurements were made. Kidney (1.91 ± 0.34) and liver weights (12.88 ± 1.42) were higher in the SH. Soleus muscle weight was higher in the SH (0.22 ± 0.03) when compared to all groups. Blood glucose (123.2 ± 1.8), triglycerides (128.5 ± 44.0), and HDL cholesterol levels (65.7 ± 20.9) were also higher in the SH compared with the other experimental groups. Exercise reduced urea levels in the trained groups TN and TH (31.0 ± 4.1 and 36.8 ± 6.6), respectively. Creatinine levels were lower in TH and SH groups (0.68 ± 0.12; 0.54 ± 0.19), respectively. HD negatively altered renal morphology in SH, but when associated with RT, the apparent damage was partially reversed. In addition, the aquatic jump protocol reversed the damage to the gastrocnemius muscle caused by the HD. A high-protein diet promoted negative metabolic and morphological changes, while RT was effective in reversing these deleterious effects.

  7. Effects of protein and energy deficiency on the incorporation of /sup 14/C-Chlorella protein hydrolysate into body constituents of adult rats

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, S; Wakabayashi, K; Niiyama, Y; Inoue, G [Tokushima Univ. (Japan). School of Medicine

    1974-12-01

    The effects of protein and/or energy deficiency on /sup 14/C incorporation into body constituents and /sup 14/C output in expired air and urine were investigated in adult rats using /sup 14/C-Chlorella protein hydrolysate. Rats were given a protein-free diet (PFD) for 2 weeks and conrol rats were fed ad libitum or pari-fed with the PFD group on a 12% lactalbumin diet (LA and Pair-fed, respectively). On the 15th day, animals received /sup 14/C-Chlorella protein hydolysate with 5 g of their respective diet. One group of PFD animals was given tracer by stomach tube without food (PFD-fast). Normal control rats ate about twice as much diet as the PFD group. The respiratory /sup 14/C output in the PFD group was identical with those in the LA and Pair-fed groups and was less than that in the PFD-fast group. The rate of protein synthesis, provisionally expressed as relative specific radioactivity, was more in the PFD group than in the normal group in the liver and less than the latter in the muscle. The LA group retained less total radioactivity in the body than the Pair-fed or PFD group, indicating high capability to hold the body protein in protein deficiency. In addition, decreased conversion of amino acids to lipids and glycogen was observed in the PFD group. All these differences are interpreted as adaptations to protein shortage. On prolonged fasting (PFD-fast group), gluconeogenesis in the liver increased to provide energy, despite the protein deficiency. The relative importances of protein and energy for tissue protein synthesis are briefly discussed.

  8. Effects of β-estradiol on cold-sensitive receptor channel TRPM8 in ovariectomized rats.

    Science.gov (United States)

    Kubo, Takuro; Tsuji, Shunichiro; Amano, Tsukuru; Yoshino, Fumi; Niwa, Yoko; Kasahara, Kyoko; Yoshida, Saori; Mukaisho, Ken-Ichi; Sugihara, Hiroyuki; Tanaka, Sachiko; Kimura, Fuminori; Takahashi, Kentaro; Murakami, Takashi

    2017-10-30

    Transient receptor potential cation channel subfamily M member 8 (TRPM8) is associated with sensitivity to cold sensation in mammals. A previous study demonstrated that TRPM8 was overexpressed in the skin of ovariectomized (OVX) rats due to the loss of estrogen. In the present study, we investigated whether estrogen replacement restricts overexpression of the TRPM8 channel in the skin of OVX rats. We divided 15 Sprague Dawley rats into three groups: a non-operated group (NON-OPE), an ovariectomy group (OVX), and a group subjected to estrogen replacement during 4 weeks beginning 7 days after ovariectomy (OVX + E2). Five weeks later, TRPM8 channel mRNA and protein in lumbar skin were quantified by real-time RT-PCR, protein ELISA, and immunohistochemistry. The OVX + E2 group exhibited a trend for decreased expression of the TRPM8 channel in the lumbar skin in comparison with the OVX group, whereas ELISA data and immunohistochemistry data and immunohistochemistry graphs relating to TRPM8 protein did not show any obvious differences between the OVX group and the OVX + E2 group. Estrogen replacement may restrict the overexpression of TRPM8 in the dermis of OVX rats.

  9. Effect of the herbal formulation Jianpijiedu on the TCRVβCDR3 repertoire in rats with hepatocellular carcinoma and subjected to food restriction combined with laxative.

    Science.gov (United States)

    Sun, Baoguo; Meng, Jun; Xiang, Ting; Zhang, Lei; Deng, Liuxiang; Chen, Yan; Luo, Haoxuan; Yang, Zhangbin; Chen, Zexiong; Zhang, Shijun

    2016-03-01

    The aim of this study was to investigate the effects of the Chinese herbal formulation Jianpijiedu (JPJD) in a rat model of orthotopic hepatocellular carcinoma (OHC). The tumor-bearing rats underwent food restriction combined with laxative (FRL) treatment in order to model the nutritional and digestive symptoms of patients with hepatocellular carcinoma. In addition, the study aimed to elucidate the effect of JPJD on the T cell receptor Vβ-chain complementarity-determining region 3 (TCRVβCDR3) repertoire and the underlying mechanism. The FRL rat model was established by alternate-day food restriction and the oral administration of Glauber's salt (sodium sulfate), based on which the OHC model was then established. Subsequently, the FRL-OHC induced animals received JPJD or thymopentin-5 (TP5) for 17 days. Differences in the TCRVβCDR3 repertoire in the rat thymus, liver and hepatocellular carcinoma tissues were analyzed by polymerase chain reaction. Compared with the FRL-OHC model animals without any treatment, those treated with JPJD exhibited significantly inhibited hepatocellular carcinoma growth (PSimpsons diversity index (Ds) values and the quasi-Gaussian distribution rate of the TCRVβCDR3 repertoire in the thymus, liver and hepatocellular carcinoma tissues. However, no anti-hepatoma effects were evident in the rats treated with TP5. In addition, TP5 increased the Ds values and the quasi-Gaussian distribution rate of the TCRVβCDR3 repertoire in hepatocellular carcinoma tissues compared with those in the JPJD-treated group. The anti-hepatoma effects of JPJD in FRL-OHC-induced animals may be due to the promotion of the Ds values of the TCRVβCDR3 repertoire.

  10. Hippocampal synapsin I, growth-associated protein-43, and microtubule-associated protein-2 immunoreactivity in learned helplessness rats and antidepressant-treated rats.

    Science.gov (United States)

    Iwata, M; Shirayama, Y; Ishida, H; Kawahara, R

    2006-09-01

    Learned helplessness rats are thought to be an animal model of depression. To study the role of synapse plasticity in depression, we examined the effects of learned helplessness and antidepressant treatments on synapsin I (a marker of presynaptic terminals), growth-associated protein-43 (GAP-43; a marker of growth cones), and microtubule-associated protein-2 (MAP-2; a marker of dendrites) in the hippocampus by immunolabeling. (1) Learned helplessness rats showed significant increases in the expression of synapsin I two days after the attainment of learned helplessness, and significant decreases in the protein expression eight days after the achievement of learned helplessness. Subchronic treatment of naïve rats with imipramine or fluvoxamine significantly decreased the expression of synapsin I. (2) Learned helplessness increased the expression of GAP-43 two days and eight days after learned helplessness training. Subchronic treatment of naïve rats with fluvoxamine but not imipramine showed a tendency to decrease the expression of synapsin I. (3) Learned helplessness rats showed increased expression of MAP-2 eight days after the attainment of learned helplessness. Naïve rats subchronically treated with imipramine showed a tendency toward increased expression of MAP-2, but those treated with fluvoxamine did not. These results indicate that the neuroplasticity-related proteins synapsin I, GAP-43, and MAP-2 may play a role in the pathophysiology of depression and the mechanisms of antidepressants.

  11. Estrogenic suppression of binge-like eating elicited by cyclic food restriction and frustrative-nonreward stress in female rats

    Science.gov (United States)

    Di Bonaventura, Maria Vittoria Micioni; Lutz, Thomas A.; Romano, Adele; Pucci, Mariangela; Geary, Nori; Asarian, Lori; Cifani, Carlo

    2017-01-01

    Objective Because binge eating and emotional eating vary through the menstrual cycle in human females, we investigated cyclic changes in binge-like eating in female rats and their control by estrogens. Method Binge-like eating was elicited by three cycles of 4 days of food restriction and 4 days of free feeding followed by a single frustrative nonreward-stress episode (15 min visual and olfactory exposure to a familiar palatable food) immediately before presentation of the palatable food. Results Intact rats showed binge-like eating during the diestrous and proestrous phases of the ovarian cycle, but not during the estrous (peri-ovulatory) phase. Ovariectomized (OVX) rats not treated with estradiol (E2) displayed binge-like eating, whereas E2-treated OVX rats did not. The procedure did not increase signs of anxiety in an open-field test. OVX rats not treated with E2 that were subjected to food restriction and sacrificed immediately after frustrative nonreward had increased numbers of cells expressing phosphorylated extracellular signal-regulated kinases (ERK) in the central nucleus of the amygdala (CeA), paraventricular nucleus of hypothalamus (PVN), and dorsal and ventral bed nucleus of the stria terminalis (BNST) compared with non-restricted or E2-treated rats. Discussion These data suggest that this female rat model is appropriate for mechanistic studies of some aspects of menstrual-cycle effects on emotional and binge eating in human females, that anxiety is not a sufficient cause of binge-like eating, and that the PVN, CeA and BNST may contribute to information processing underlying binge-like eating. PMID:28230907

  12. Vildagliptin and caloric restriction for cardioprotection in pre-diabetic rats.

    Science.gov (United States)

    Tanajak, Pongpan; Pintana, Hiranya; Siri-Angkul, Natthaphat; Khamseekaew, Juthamas; Apaijai, Nattayaporn; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2017-02-01

    Long-term high-fat diet (HFD) consumption causes cardiac dysfunction. Although calorie restriction (CR) has been shown to be useful in obesity, we hypothesized that combined CR with dipeptidyl peptidase-4 (DPP-4) inhibitor provides greater efficacy than monotherapy in attenuating cardiac dysfunction and metabolic impairment in HFD-induced obese-insulin resistant rats. Thirty male Wistar rats were divided into 2 groups to be fed on either a normal diet (ND, n = 6) or a HFD (n = 24) for 12 weeks. Then, HFD rats were divided into 4 subgroups (n = 6/subgroup) to receive just the vehicle, CR diet (60% of mean energy intake and changed to ND), vildagliptin (3 mg/kg/day) or combined CR and vildagliptin for 4 weeks. Metabolic parameters, heart rate variability (HRV), cardiac mitochondrial function, left ventricular (LV) and fibroblast growth factor (FGF) 21 signaling pathway were determined. Rats on a HFD developed insulin and FGF21 resistance, oxidative stress, cardiac mitochondrial dysfunction and impaired LV function. Rats on CR alone showed both decreased body weight and visceral fat accumulation, whereas vildagliptin did not alter these parameters. Rats in CR, vildagliptin and CR plus vildagliptin subgroups had improved insulin sensitivity and oxidative stress. However, vildagliptin improved heart rate variability (HRV), cardiac mitochondrial function and LV function better than the CR. Chronic HFD consumption leads to obese-insulin resistance and FGF21 resistance. Although CR is effective in improving metabolic regulation, vildagliptin provides greater efficacy in preventing cardiac dysfunction by improving anti-apoptosis and FGF21 signaling pathways and attenuating cardiac mitochondrial dysfunction in obese-insulin-resistant rats. © 2017 Society for Endocrinology.

  13. Temporary dietary iron restriction affects the process of thrombus resolution in a rat model of deep vein thrombosis.

    Directory of Open Access Journals (Sweden)

    Makiko Oboshi

    Full Text Available Deep vein thrombosis (DVT is a major cause of pulmonary thromboembolism and sudden death. Thus, it is important to consider the pathophysiology of DVT. Recently, iron has been reported to be associated with thrombotic diseases. Hence, in this study, we investigate the effects of dietary iron restriction on the process of thrombus resolution in a rat model of DVT.We induced DVT in 8-week-old male Sprague-Dawley rats by performing ligations of their inferior venae cavae. The rats were then given either a normal diet (DVT group or an iron-restricted diet (DVT+IR group. Thrombosed inferior venae cavae were harvested at 5 days after ligation.The iron-restricted diet reduced venous thrombus size compared to the normal diet. Intrathrombotic collagen content was diminished in the DVT+IR group compared to the DVT group. In addition, intrathrombotic gene expression and the activity of matrix metalloproteinase-9 were increased in the DVT+IR group compared to the DVT group. Furthermore, the DVT+IR group had greater intrathrombotic neovascularization as well as higher gene expression levels of urokinase-type plasminogen activator and tissue-type plasminogen activator than the DVT group. The iron-restricted diet decreased intrathrombotic superoxide production compared to the normal diet.These results suggest that dietary iron restriction affects the process of thrombus resolution in DVT.

  14. Temporary dietary iron restriction affects the process of thrombus resolution in a rat model of deep vein thrombosis.

    Science.gov (United States)

    Oboshi, Makiko; Naito, Yoshiro; Sawada, Hisashi; Hirotani, Shinichi; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Morisawa, Daisuke; Eguchi, Akiyo; Nishimura, Koichi; Fujii, Kenichi; Mano, Toshiaki; Ishihara, Masaharu; Masuyama, Tohru

    2015-01-01

    Deep vein thrombosis (DVT) is a major cause of pulmonary thromboembolism and sudden death. Thus, it is important to consider the pathophysiology of DVT. Recently, iron has been reported to be associated with thrombotic diseases. Hence, in this study, we investigate the effects of dietary iron restriction on the process of thrombus resolution in a rat model of DVT. We induced DVT in 8-week-old male Sprague-Dawley rats by performing ligations of their inferior venae cavae. The rats were then given either a normal diet (DVT group) or an iron-restricted diet (DVT+IR group). Thrombosed inferior venae cavae were harvested at 5 days after ligation. The iron-restricted diet reduced venous thrombus size compared to the normal diet. Intrathrombotic collagen content was diminished in the DVT+IR group compared to the DVT group. In addition, intrathrombotic gene expression and the activity of matrix metalloproteinase-9 were increased in the DVT+IR group compared to the DVT group. Furthermore, the DVT+IR group had greater intrathrombotic neovascularization as well as higher gene expression levels of urokinase-type plasminogen activator and tissue-type plasminogen activator than the DVT group. The iron-restricted diet decreased intrathrombotic superoxide production compared to the normal diet. These results suggest that dietary iron restriction affects the process of thrombus resolution in DVT.

  15. High-protein diets and renal status in rats

    OpenAIRE

    Aparicio, V. A.; Nebot, E.; García-del Moral, R.; Machado-Vílchez, M.; Porres, J. M.; Sánchez, C.; Aranda, P.

    2013-01-01

    Introduction: High-protein (HP) diets might affect renal status. We aimed to examine the effects of a HP diet on plasma, urinary and morphological renal parameters in rats. Material and methods: Twenty Wistar rats were randomly distributed in 2 experimental groups with HP or normal-protein (NP) diets over 12 weeks. Results and discussion: Final body weight was a 10% lower in the HP group (p < 0.05) whereas we have not observed differences on food intake, carcass weight and muscle ashes conten...

  16. Early postnatal gentamicin and ceftazidime treatment in normal and food restricted neonatal wistar rats: Implications for kidney development.

    Science.gov (United States)

    Bueters, Ruud R G; Jeronimus-Klaasen, Annelies; Brüggemann, Roger J M; van den Heuvel, Lambertus P; Schreuder, Michiel F

    2017-09-01

    Up to two-thirds of premature born neonates are treated for infections with aminoglycosides such as gentamicin. Although acute toxicities are well described, there is uncertainty on developmental changes after treatment of premature born neonates. We studied the effect of gentamicin and ceftazidime on kidney development in the rat. Additionally, we evaluated the modulating effect of extrauterine growth restriction. On postnatal day (PND) 2, Wistar rats were cross-fostered into normal sized litters (12 pups) or large litters (20 pups) to create normal food (NF) or food restricted (FR) litters to simulate growth restriction and dosed daily intraperitoneally with placebo, 4 mg/kg of gentamicin or 50 mg/kg ceftazidime until PND 8. Gentamicin pharmacokinetics were studied in a separate group of animals. Kidneys were weighed. Renal expression of 18 developmental genes was evaluated by quantitative PCR on PND 8. On PND 35, glomerular number was assessed by stereology and glomerular generations were counted. Food restricted litters showed 22% less body weight compared with controls by day 35 (p kidney development, ceftazidime can affect Renin expression, and extrauterine growth restriction impairs kidney development, but did not modulate potential drug toxicity. Birth Defects Research 109:1228-1235, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Effects of diets with different content in protein and fiber on embryotoxicity induced by experimental diabetes in rats.

    Science.gov (United States)

    Giavini, E; Airoldi, L; Broccia, M L; Roversi, G D; Prati, M

    1993-01-01

    Three groups of streptozotocin-diabetic rats were maintained during pregnancy on three hyperproteic diets with different protein contents. These differences were compensated by an equal quantity of fiber (group 1: protein 55.0%, fiber 4.5%; group 2: 45.0%, 14.0%; group 3: 35.0%, 24.0%). Three groups of nondiabetic pregnant rats were fed with the same diets and served as control. The differences of the daily protein intake among the diabetic groups were less pronounced than those expected on the basis of the diet composition, and the embryopathic effects (reduced fetal weight, increased in malformation and resorption rate) were not statistically different among the three groups of diabetic animals. The frequency of congenital malformations was higher than that observed in a previous experiment in diabetic rats maintained on a standard diet, but much lower than that observed in animals fed on a purified, fiber-poor, normoproteic diet. When the caloric intake of the diabetic rats in the different groups was determined it was found to be similar for all of them and also similar to the caloric intake of the rats given a standard nonteratogenic diet (in previous experiments), while the rats maintained on a normoproteic, teratogenic diet increased their caloric intake. These results seem to indicate that the diet composition greatly influences the intake of food and calories of pregnant diabetic rats and this may play a role in modulating the embryopathic effect of diabetes.

  18. Effect of resistance training and protein intake pattern on myofibrillar protein synthesis and proteome kinetics in older men in energy restriction.

    Science.gov (United States)

    Murphy, Caoileann H; Shankaran, Mahalakshmi; Churchward-Venne, Tyler A; Mitchell, Cameron J; Kolar, Nathan M; Burke, Louise M; Hawley, John A; Kassis, Amira; Karagounis, Leonidas G; Li, Kelvin; King, Chelsea; Hellerstein, Marc; Phillips, Stuart M

    2018-06-01

    Strategies to enhance the loss of fat while preserving muscle mass during energy restriction are of great importance to prevent sarcopenia in overweight older adults. We show for the first time that the integrated rate of synthesis of numerous individual contractile, cytosolic and mitochondrial skeletal muscle proteins was increased by resistance training (RT) and unaffected by dietary protein intake pattern during energy restriction in free-living, obese older men. We observed a correlation between the synthetic rates of skeletal muscle-derived proteins obtained in serum (creatine kinase M-type, carbonic anhydrase 3) and the synthetic rates of proteins obtained via muscle sampling; and that the synthesis rates of these proteins in serum revealed the stimulatory effects of RT. These results have ramifications for understanding the influence of RT on skeletal muscle and are consistent with the role of RT in maintaining muscle protein synthesis and potentially supporting muscle mass preservation during weight loss. We determined how the pattern of protein intake and resistance training (RT) influenced longer-term (2 weeks) integrated myofibrillar protein synthesis (MyoPS) during energy restriction (ER). MyoPS and proteome kinetics were measured during 2 weeks of ER alone and 2 weeks of ER plus RT (ER + RT) in overweight/obese older men. Participants were randomized to consume dietary protein in a balanced (BAL: 25% daily protein per meal × 4 meals) or skewed (SKEW: 7:17:72:4% daily protein per meal) pattern (n = 10 per group). Participants ingested deuterated water during the consecutive 2-week periods, and skeletal muscle biopsies and serum were obtained at the beginning and conclusion of ER and ER + RT. Bulk MyoPS (i.e. synthesis of the myofibrillar protein sub-fraction) and the synthetic rates of numerous individual skeletal muscle proteins were quantified. Bulk MyoPS was not affected by protein distribution during ER or ER + RT (ER: BAL = 1.24

  19. Involvement of the cannabinoid CB1 receptor in modulation of dopamine output in the prefrontal cortex associated with food restriction in rats.

    Directory of Open Access Journals (Sweden)

    Laura Dazzi

    Full Text Available Increase in dopamine output on corticolimbic structures, such as medial prefrontal cortex (mPFC and nucleus accumbens, has been related to reward effects associated with palatable food or food presentation after a fasting period. The endocannabinoid system regulates feeding behavior through a modulatory action on different neurotransmitter systems, including the dopaminergic system. To elucidate the involvement of type 1 cannabinoid receptors in the regulation of dopamine output in the mPFC associated with feeding in hungry rats, we restricted the food availability to a 2-h period daily for 3 weeks. In food-restricted rats the extracellular dopamine concentration in the mPFC increased starting 80 min before food presentation and returned to baseline after food removal. These changes were attenuated in animals treated with the CB1 receptor antagonist SR141716. To better understand how food restriction can change the response of mesocortical dopaminergic neurons, we studied several components of the neuronal circuit that regulates dopamine output in the mPFC. Patch-clamp experiments revealed that the inhibitory effect of the CB1 receptor agonist WIN 55,212-2 on GABAergic sIPSC frequency was diminished in mPFC neurons of FR compared to fed ad libitum rats. The basal sIPSC frequency resulted reduced in mPFC neurons of food-restricted rats, suggestive of an altered regulation of presynaptic GABA release; these changes were accompanied by an enhanced excitability of mPFC and ventral tegmental area neurons. Finally, type 1 cannabinoid receptor expression in the mPFC was reduced in food-restricted rats. Together, our data support an involvement of the endocannabinoid system in regulation of dopamine release in the mPFC through changes in GABA inhibitory synapses and suggest that the emphasized feeding-associated increase in dopamine output in the mPFC of food-restricted rats might be correlated with an altered expression and function of type 1

  20. Involvement of the cannabinoid CB1 receptor in modulation of dopamine output in the prefrontal cortex associated with food restriction in rats.

    Science.gov (United States)

    Dazzi, Laura; Talani, Giuseppe; Biggio, Francesca; Utzeri, Cinzia; Lallai, Valeria; Licheri, Valentina; Lutzu, Stefano; Mostallino, Maria Cristina; Secci, Pietro Paolo; Biggio, Giovanni; Sanna, Enrico

    2014-01-01

    Increase in dopamine output on corticolimbic structures, such as medial prefrontal cortex (mPFC) and nucleus accumbens, has been related to reward effects associated with palatable food or food presentation after a fasting period. The endocannabinoid system regulates feeding behavior through a modulatory action on different neurotransmitter systems, including the dopaminergic system. To elucidate the involvement of type 1 cannabinoid receptors in the regulation of dopamine output in the mPFC associated with feeding in hungry rats, we restricted the food availability to a 2-h period daily for 3 weeks. In food-restricted rats the extracellular dopamine concentration in the mPFC increased starting 80 min before food presentation and returned to baseline after food removal. These changes were attenuated in animals treated with the CB1 receptor antagonist SR141716. To better understand how food restriction can change the response of mesocortical dopaminergic neurons, we studied several components of the neuronal circuit that regulates dopamine output in the mPFC. Patch-clamp experiments revealed that the inhibitory effect of the CB1 receptor agonist WIN 55,212-2 on GABAergic sIPSC frequency was diminished in mPFC neurons of FR compared to fed ad libitum rats. The basal sIPSC frequency resulted reduced in mPFC neurons of food-restricted rats, suggestive of an altered regulation of presynaptic GABA release; these changes were accompanied by an enhanced excitability of mPFC and ventral tegmental area neurons. Finally, type 1 cannabinoid receptor expression in the mPFC was reduced in food-restricted rats. Together, our data support an involvement of the endocannabinoid system in regulation of dopamine release in the mPFC through changes in GABA inhibitory synapses and suggest that the emphasized feeding-associated increase in dopamine output in the mPFC of food-restricted rats might be correlated with an altered expression and function of type 1 cannabinoid receptor in this

  1. Post-Weaning Protein Malnutrition Increases Blood Pressure and Induces Endothelial Dysfunctions in Rats

    Science.gov (United States)

    Siman, Fabiana D. M.; Silveira, Edna A.; Meira, Eduardo F.; da Costa, Carlos P.; Vassallo, Dalton V.; Padilha, Alessandra S.

    2012-01-01

    Malnutrition during critical periods in early life may increase the subsequent risk of hypertension and metabolic diseases in adulthood, but the underlying mechanisms are still unclear. We aimed to evaluate the effects of post-weaning protein malnutrition on blood pressure and vascular reactivity in aortic rings (conductance artery) and isolated-perfused tail arteries (resistance artery) from control (fed with Labina®) and post-weaning protein malnutrition rats (offspring that received a diet with low protein content for three months). Systolic and diastolic blood pressure and heart rate increased in the post-weaning protein malnutrition rats. In the aortic rings, reactivity to phenylephrine (10−10–3.10−4 M) was similar in both groups. Endothelium removal or L-NAME (10−4 M) incubation increased the response to phenylephrine, but the L-NAME effect was greater in the aortic rings from the post-weaning protein malnutrition rats. The protein expression of the endothelial nitric oxide isoform increased in the aortic rings from the post-weaning protein malnutrition rats. Incubation with apocynin (0.3 mM) reduced the response to phenylephrine in both groups, but this effect was higher in the post-weaning protein malnutrition rats, suggesting an increase of superoxide anion release. In the tail artery of the post-weaning protein malnutrition rats, the vascular reactivity to phenylephrine (0.001–300 µg) and the relaxation to acetylcholine (10−10–10−3 M) were increased. Post-weaning protein malnutrition increases blood pressure and induces vascular dysfunction. Although the vascular reactivity in the aortic rings did not change, an increase in superoxide anion and nitric oxide was observed in the post-weaning protein malnutrition rats. However, in the resistance arteries, the increased vascular reactivity may be a potential mechanism underlying the increased blood pressure observed in this model. PMID:22529948

  2. Effect of protein malnutrition on the metabolism of bone collagen in albino rats

    Energy Technology Data Exchange (ETDEWEB)

    Rao, J S; Rao, V H [Central Leather Research Inst., Madras (India)

    1981-01-01

    The effect of protein malnutrition on the metabolism of collagen in bone was studied in young female albino rats after a single injection of /sup 3/H-proline. Both specific and total radioactivities of hydroxyproline in the total collagen of the bone were found to decrease in the protein-deficient animals, indicating decreased rate of collagen synthesis. In the urine the amount of hydroxyproline excreted and total radioactivity of /sup 3/H-hydroxyproline were greatly decreased. The results of the present investigation therefore clearly indicate decreased synthesis and catabolism of collagen in bones of protein deficient animals compared to controls.

  3. Muscle and liver glycogen, protein, and triglyceride in the rat

    DEFF Research Database (Denmark)

    Richter, Erik; Sonne, Bente; Joensen Mikines, Kari

    1984-01-01

    in skeletal muscle was accompanied by increased breakdown of triglyceride and/or protein. Thus, the effect of exhausting swimming and of running on concentrations of glycogen, protein, and triglyceride in skeletal muscle and liver were studied in rats with and without deficiencies of the sympatho......-adrenal system. In control rats, both swimming and running decreased the concentration of glycogen in fast-twitch red and slow-twitch red muscle whereas concentrations of protein and triglyceride did not decrease. In the liver, swimming depleted glycogen stores but protein and triglyceride concentrations did...... not decrease. In exercising rats, muscle glycogen breakdown was impaired by adrenodemedullation and restored by infusion of epinephrine. However, impaired glycogen breakdown during exercise was not accompanied by a significant net breakdown of protein or triglyceride. Surgical sympathectomy of the muscles did...

  4. Resveratrol and caloric restriction prevent hepatic steatosis by regulating SIRT1-autophagy pathway and alleviating endoplasmic reticulum stress in high-fat diet-fed rats.

    Science.gov (United States)

    Ding, Shibin; Jiang, Jinjin; Zhang, Guofu; Bu, Yongjun; Zhang, Guanghui; Zhao, Xiangmei

    2017-01-01

    Studies have demonstrated that resveratrol (a natural polyphenol) and caloric restriction activate Sirtuin-1 (SIRT1) and induce autophagy. Furthermore, autophagy is induced by the SIRT1-FoxO signaling pathway and was recently shown to be a critical protective mechanism against non-alcoholic fatty liver disease (NAFLD) development. We aimed to compare the effects of resveratrol and caloric restriction on hepatic lipid metabolism and elucidate the mechanism by which resveratrol supplementation and caloric restriction alleviate hepatosteatosis by examining the molecular interplay between SIRT1 and autophagy. Eight-week-old male Wistar rats (40) were divided into four groups: the STD group, which was fed a standard chow diet; the HFD group, which was fed a high-fat diet; HFD-RES group, which was fed a high-fat diet plus resveratrol (200 mg/kg.bw); and the HFD-CR group, which was fed a high-fat diet in portions containing 70% of the mean intake of the HFD group rats. The groups were maintained for 18 weeks. Metabolic parameters, Oil Red O and hematoxylin-eosin staining of the liver, and the mRNA and protein expression of SIRT1, autophagy markers and endoplasmic reticulum(ER) stress-associated genes in the liver were assessed after the 18-week treatment. We found that resveratrol (200 mg/kg bw) and caloric restriction (30%) partially prevented hepatic steatosis and hepatocyte ballooning, increased the expression of SIRT1 and autophagy markers while decreasing ER stress markers in the liver and alleviated lipid metabolism disorder. Moreover, caloric restriction provided superior protection against HFD-induced hepatic fatty accumulation compared with resveratrol and the effects were associated with decreased total energy intake and body weight. We conclude that the SIRT1-autophagy pathway and decreased ER stress are universally required for the protective effects of moderate caloric restriction (30%) and resveratrol (a pharmacological SIRT1 activator) supplementation

  5. Resveratrol and caloric restriction prevent hepatic steatosis by regulating SIRT1-autophagy pathway and alleviating endoplasmic reticulum stress in high-fat diet-fed rats.

    Directory of Open Access Journals (Sweden)

    Shibin Ding

    Full Text Available Studies have demonstrated that resveratrol (a natural polyphenol and caloric restriction activate Sirtuin-1 (SIRT1 and induce autophagy. Furthermore, autophagy is induced by the SIRT1-FoxO signaling pathway and was recently shown to be a critical protective mechanism against non-alcoholic fatty liver disease (NAFLD development. We aimed to compare the effects of resveratrol and caloric restriction on hepatic lipid metabolism and elucidate the mechanism by which resveratrol supplementation and caloric restriction alleviate hepatosteatosis by examining the molecular interplay between SIRT1 and autophagy.Eight-week-old male Wistar rats (40 were divided into four groups: the STD group, which was fed a standard chow diet; the HFD group, which was fed a high-fat diet; HFD-RES group, which was fed a high-fat diet plus resveratrol (200 mg/kg.bw; and the HFD-CR group, which was fed a high-fat diet in portions containing 70% of the mean intake of the HFD group rats. The groups were maintained for 18 weeks. Metabolic parameters, Oil Red O and hematoxylin-eosin staining of the liver, and the mRNA and protein expression of SIRT1, autophagy markers and endoplasmic reticulum(ER stress-associated genes in the liver were assessed after the 18-week treatment. We found that resveratrol (200 mg/kg bw and caloric restriction (30% partially prevented hepatic steatosis and hepatocyte ballooning, increased the expression of SIRT1 and autophagy markers while decreasing ER stress markers in the liver and alleviated lipid metabolism disorder. Moreover, caloric restriction provided superior protection against HFD-induced hepatic fatty accumulation compared with resveratrol and the effects were associated with decreased total energy intake and body weight.We conclude that the SIRT1-autophagy pathway and decreased ER stress are universally required for the protective effects of moderate caloric restriction (30% and resveratrol (a pharmacological SIRT1 activator

  6. Food restriction causes low bone strength and microarchitectural deterioration in exercised growing male rats.

    Science.gov (United States)

    Hattori, Satoshi; Park, Jong-Hoon; Agata, Umon; Oda, Masaya; Higano, Michito; Aikawa, Yuki; Akimoto, Takayuki; Nabekura, Yoshiharu; Yamato, Hideyuki; Ezawa, Ikuko; Omi, Naomi

    2014-01-01

    The pathogenesis of bone disorders in young male athletes has not been well understood. We hypothesized that bone fragility is caused by low energy availability, due to insufficient food intake and excessive exercise energy expenditure in young male athletes. To examine this hypothesis, we investigated the influence of food restriction on bone strength and bone morphology in exercised growing male rats, using three-point bending test, dual-energy X-ray absormetry, and micro-computed tomography. Four-week-old male Sprague-Dawley rats were divided randomly into the following groups: the control (Con) group, exercise (Ex) group, food restriction (R) group, and food restriction plus exercise (REx) group after a 1-wk acclimatization period. Thirty-percent food restriction in the R and REx groups was carried out in comparison with that in the Con group. Voluntary running exercise was performed in the Ex and REx groups. The experimental period lasted 13 wk. At the endpoint of this experiment, the bone strength of the femurs and tibial BMD in the REx group were significantly lower than those in the Con group. Moreover, trabecular bone volume and cortical bone volume in the REx group were also significantly lower than those in the Con group. These findings indicate that food restriction causes low bone strength and microarchitectural deterioration in exercised growing male rats.

  7. Variable effects of dexamethasone on protein synthesis in clonal rat osteosarcoma cells

    International Nuclear Information System (INIS)

    Hodge, B.O.; Kream, B.E.

    1988-01-01

    We examined the effects of dexamethasone on protein synthesis in clonal rat osteoblastic osteosarcoma (ROS) cell lines by measuring the incorporation of [ 3 H]proline into collagenase-digestible and noncollagen protein in the cell layer and medium of the cultures. In ROS 17/2 and subclone C12 of ROS 17/2.8, dexamethasone decreased collagen synthesis with no change in DNA content of the cultures. In ROS 17/2.8 and its subclone G2, dexamethasone stimulated collagen and noncollagen protein synthesis, with a concomitant decrease in the DNA content of the cells. These data indicate that ROS cell lines are phenotypically heterogeneous and suggest that in normal bone there may be distinct subpopulations of osteoblasts with varying phenotypic traits with respect to the regulation of protein synthesis

  8. Prolonged calorie restriction downregulates skeletal muscle mTORC1 signaling independent of dietary protein intake and associated microRNA expression

    Directory of Open Access Journals (Sweden)

    Lee M Margolis

    2016-10-01

    Full Text Available Short-term (5-10 days calorie restriction (CR downregulates muscle protein synthesis, with consumption of a high protein-based diet attenuating this decline. Benefit of increase protein intake is believed to be due to maintenance of amino acid-mediated anabolic signaling through the mechanistic target of rapamycin complex 1 (mTORC1, however, there is limited evidence to support this contention. The purpose of this investigation was to determine the effects of prolonged CR and high protein diets on skeletal muscle mTORC1 signaling and expression of associated microRNA (miR. 12-wk old male Sprague Dawley rats consumed ad libitum (AL or calorie restricted (CR; 40% adequate (10%, AIN-93M or high (32% protein milk-based diets for 16 weeks. Body composition was determined using dual energy X-ray absorptiometry and muscle protein content was calculated from muscle homogenate protein concentrations expressed relative to fat-free mass to estimate protein content. Western blot and RT-qPCR were used to determine mTORC1 signaling and mRNA and miR expression in fasted mixed gastrocnemius. Independent of dietary protein intake, muscle protein content was 38% lower (P < 0.05 in CR compared to AL. Phosphorylation and total Akt, mTOR, rpS6 and p70S6K were lower (P < 0.05 in CR versus AL, and total rpS6 was associated with muscle protein content (r = 0.64, r2 = 0.36. Skeletal muscle miR expression was not altered by either energy or protein intake. This study provides evidence that chronic CR attenuates muscle protein content by downregulating mTORC1 signaling. This response is independent of skeletal muscle miR and dietary protein.

  9. RELATION BETWEEN GLUCOLIPID PROFILE AND SMALL INTESTINE HISTOLOGICAL PATTERNS IN DIABETIC RATS EXPOSED TO AN INTERMITTENT DIETARY RESTRICTION

    Directory of Open Access Journals (Sweden)

    Noriyuki Hisano

    2009-01-01

    Full Text Available The effects of an intermittent and prolonged dietary restriction on biochemical variables and histological small intestinal patterns in 12-month-old male eSMT rats are examined. These spontaneously diabetic animals were separated in two groups after weaning: 10 rats fed ad libitum with standard rat chow and 10 rats fed a restricted diet by deprivation of the same food for 24 hours every 72. At 12 months of age, animals were weighed and euthanized after tail vein bleeding for plasma analysis (glycemia- both fasting and 120 minutes after an oral glucose challenge-, triglyceridemia and total cholesterolemia. Small intestines were removed, weighed and measured in length.Intestinal specimens were fixed, embedded in paraffin, semi serially cut at 6 µm and stained with PAS-Hematoxilyn and Hematoxilyn-Eosin. Histometry was performed through a linear devise attached to ocular lens and lectin histochemistry was accomplished employing Canavalis ensiformis, Dolichos biflorus, Arachis hypogea, Ulex europaeus-I, Triticum vulgaris, Ricinus communis and Soy Bean (Glicine Max Agglutinin. Essentially, eSMT rats, a suitable animal model for studying diabetes and/or its complications, revealed at 12 months of age after undergoing the dietary restriction: 1.- An expected improvement in body weight and determined biochemical variables (fasting and after glucose overload glycemias, triglyceridemia and total cholesterolemia without reaching euglycemic values. 2.- Changes in most of the analyzed histometric patterns with no relevant reflection on morphometric ones, and 3.- No modifications in lectinhistochemical patterns.

  10. Bee Pollen Improves Muscle Protein and Energy Metabolism in Malnourished Old Rats through Interfering with the Mtor Signaling Pathway and Mitochondrial Activity

    Directory of Open Access Journals (Sweden)

    Jérôme Salles

    2014-12-01

    Full Text Available Although the management of malnutrition is a priority in older people, this population shows a resistance to refeeding. Fresh bee pollen contains nutritional substances of interest for malnourished people. The aim was to evaluate the effect of fresh bee pollen supplementation on refeeding efficiency in old malnourished rats. Male 22-month-old Wistar rats were undernourished by reducing food intake for 12 weeks. The animals were then renourished for three weeks with the same diet supplemented with 0%, 5% or 10% of fresh monofloral bee pollen. Due to changes in both lean mass and fat mass, body weight decreased during malnutrition and increased after refeeding with no between-group differences (p < 0.0001. Rats refed with the fresh bee pollen-enriched diets showed a significant increase in muscle mass compared to restricted rats (p < 0.05. The malnutrition period reduced the muscle protein synthesis rate and mTOR/p70S6kinase/4eBP1 activation, and only the 10%-pollen diet was able to restore these parameters. Mitochondrial activity was depressed with food restriction and was only improved by refeeding with the fresh bee pollen-containing diets. In conclusion, refeeding diets that contain fresh monofloral bee pollen improve muscle mass and metabolism in old, undernourished rats.

  11. Effect of the combinations between pea proteins and soluble fibres on cholesterolaemia and cholesterol metabolism in rats.

    Science.gov (United States)

    Parolini, Cinzia; Manzini, Stefano; Busnelli, Marco; Rigamonti, Elena; Marchesi, Marta; Diani, Erika; Sirtori, Cesare R; Chiesa, Giulia

    2013-10-01

    Many functional foods and dietary supplements have been reported to be beneficial for the management of dyslipidaemia, one of the major risk factors for CVD. Soluble fibres and legume proteins are known to be a safe and practical approach for cholesterol reduction. The present study aimed at investigating the hypocholesterolaemic effect of the combinations of these bioactive vegetable ingredients and their possible effects on the expression of genes regulating cholesterol homeostasis. A total of six groups of twelve rats each were fed, for 28 d, Nath's hypercholesterolaemic diets, differing in protein and fibre sources, being, respectively, casein and cellulose (control), pea proteins and cellulose (pea), casein and oat fibres (oat), casein and apple pectin (pectin), pea proteins and oat fibres (pea+oat) and pea proteins and apple pectin (pea+pectin). Administration of each vegetable-containing diet was associated with lower total cholesterol concentrations compared with the control. The combinations (pea+oat and pea+pectin) were more efficacious than fibres alone in modulating cholesterolaemia ( - 53 and - 54%, respectively, at 28 d; Ppea proteins, a lower hepatic cholesterol content (Ppea proteins and oat fibres or apple pectin are extremely effective in lowering plasma cholesterol concentrations in rats and affect cellular cholesterol homeostasis by up-regulating genes involved in hepatic cholesterol turnover.

  12. Early postnatal low-protein nutrition, metabolic programming and the autonomic nervous system in adult life

    Directory of Open Access Journals (Sweden)

    de Oliveira Júlio

    2012-09-01

    Full Text Available Abstract Protein restriction during lactation has been used as a rat model of metabolic programming to study the impact of perinatal malnutrition on adult metabolism. In contrast to protein restriction during fetal life, protein restriction during lactation did not appear to cause either obesity or the hallmarks of metabolic syndrome, such as hyperinsulinemia, when individuals reached adulthood. However, protein restriction provokes body underweight and hypoinsulinemia. This review is focused on the regulation of insulin secretion and the influence of the autonomic nervous system (ANS in adult rats that were protein-malnourished during lactation. The data available on the topic suggest that the perinatal phase of lactation, when insulted by protein deficit, imprints the adult metabolism and thereby alters the glycemic control. Although hypoinsulinemia programs adult rats to maintain normoglycemia, pancreatic β-cells are less sensitive to secretion stimuli, such as glucose and cholinergic agents. These pancreatic dysfunctions may be attributed to an imbalance of ANS activity recorded in adult rats that experienced maternal protein restriction.

  13. High Whey Protein Intake Delayed the Loss of Lean Body Mass in Healthy Old Rats, whereas Protein Type and Polyphenol/Antioxidant Supplementation Had No Effects

    Science.gov (United States)

    Mosoni, Laurent; Gatineau, Eva; Gatellier, Philippe; Migné, Carole; Savary-Auzeloux, Isabelle; Rémond, Didier; Rocher, Emilie; Dardevet, Dominique

    2014-01-01

    Our aim was to compare and combine 3 nutritional strategies to slow down the age-related loss of muscle mass in healthy old rats: 1) increase protein intake, which is likely to stimulate muscle protein anabolism; 2) use leucine rich, rapidly digested whey proteins as protein source (whey proteins are recognized as the most effective proteins to stimulate muscle protein anabolism). 3) Supplement animals with a mixture of chamomile extract, vitamin E, vitamin D (reducing inflammation and oxidative stress is also effective to improve muscle anabolism). Such comparisons and combinations were never tested before. Nutritional groups were: casein 12% protein, whey 12% protein, whey 18% protein and each of these groups were supplemented or not with polyphenols/antioxidants. During 6 months, we followed changes of weight, food intake, inflammation (plasma fibrinogen and alpha-2-macroglobulin) and body composition (DXA). After 6 months, we measured muscle mass, in vivo and ex-vivo fed and post-absorptive muscle protein synthesis, ex-vivo muscle proteolysis, and oxidative stress parameters (liver and muscle glutathione, SOD and total antioxidant activities, muscle carbonyls and TBARS). We showed that although micronutrient supplementation reduced inflammation and oxidative stress, the only factor that significantly reduced the loss of lean body mass was the increase in whey protein intake, with no detectable effect on muscle protein synthesis, and a tendency to reduce muscle proteolysis. We conclude that in healthy rats, increasing protein intake is an effective way to delay sarcopenia. PMID:25268515

  14. The Effect Of Reversed Light-Dark Cycle And Restricted Feeding Regime On The Circadian Rhythm Of Cortisol And Serotonin In Male Rats

    International Nuclear Information System (INIS)

    Abdel-Rahman, M.; El-Masry, H.; El-Hennamy, R.E.; Abdel-Kader, S.

    2013-01-01

    Biological clock plays an important role in the regulation of different physiological processes and behaviour. The present study aimed to investigate the effect of the reversed light-dark cycle and restricted feeding regime for one and two weeks on the circadian rhythm of cortisol and serotonin in male rats. Serum cortisol and brain serotonin levels were delayed after exposing rats to a reversed light-dark cycle for one week which may be due to the action of the gene Per2 that delay the phase of the clock. On the other hand, their levels highly elevated and peaked at the same time after two weeks which may be due to continuous stressful events. The serum cortisol reached its highest level at the meal time after one week of restricted feeding while after two weeks, its level was higher at several time intervals, which may be due to the need of the body to energy. The peak of the brain serotonin rhythm was delayed during the day after one week while after two weeks, it exhibited the same pattern of the circadian rhythm of control group. From the present results and previous studies, it could be concluded that the reversed light-dark cycle and restricted feeding regime are able to shift the phase of the circadian rhythm of the studied physiological parameters which led to many mental and physiological disorders

  15. Protein synthesis in the growing rat lung

    International Nuclear Information System (INIS)

    Kelley, J.; Chrin, L.

    1986-01-01

    Developmental control of protein synthesis in the postnatal growth of the lung has not been systematically studied. In male Fischer 344 rats, lung growth continues linearly as a function of body weight (from 75 to 450 g body weight). To study total protein synthesis in lungs of growing rats, we used the technique of constant intravenous infusion of tritiated leucine, an essential amino acid. Lungs of sacrificed animals were used to determine the leucine incorporation rate into newly synthesized protein. The specific radioactivity of the leucine associated with tRNA extracted from the same lungs served as an absolute index of the precursor leucine pool used for lung protein synthesis. On the basis of these measurements, we were able to calculate the fractional synthesis rate (the proportion of total protein destroyed and replaced each day) of pulmonary proteins for each rat. Under the conditions of isotope infusion, leucyl-tRNA very rapidly equilibrates with free leucine of the plasma and of the extracellular space of the lung. Infusions lasting 30 minutes or less yielded linear rates of protein synthesis without evidence of contamination of lung proteins by newly labeled intravascular albumin. The fractional synthesis rate is considerably higher in juvenile animals (55% per day) than in adult rats (20% per day). After approximately 12 weeks of age, the fractional synthesis rate remains extremely constant in spite of continued slow growth of the lung. It is apparent from these data that in both young and adult rats the bulk of total protein synthesis is devoted to rapidly turning over proteins and that less than 4 percent of newly made protein is committed to tissue growth

  16. Pre- and/or postnatal protein restriction in rats impairs learning and motivation in male offspring.

    Science.gov (United States)

    Reyes-Castro, L A; Rodriguez, J S; Rodríguez-González, G L; Wimmer, R D; McDonald, T J; Larrea, F; Nathanielsz, P W; Zambrano, E

    2011-04-01

    Suboptimal developmental environments program offspring to lifelong health complications including affective and cognitive disorders. Little is known about the effects of suboptimal intra-uterine environments on associative learning and motivational behavior. We hypothesized that maternal isocaloric low protein diet during pregnancy and lactation would impair offspring associative learning and motivation as measured by operant conditioning and the progressive ratio task, respectively. Control mothers were fed 20% casein (C) and restricted mothers (R) 10% casein to provide four groups: CC, RR, CR, and RC (first letter pregnancy diet and second letter lactation diet), to evaluate effects of maternal diet on male offspring behavior. Impaired learning was observed during fixed ratio-1 operant conditioning in RC offspring that required more sessions to learn vs. the CC offspring (9.4±0.8 and 3.8±0.3 sessions, respectively, pmotivational effects during the progressive ratio test revealed less responding in the RR (48.1±17), CR (74.7±8.4), and RC (65.9±11.2) for positive reinforcement vs. the CC offspring (131.5±7.5, plearning and motivation behavior with the nutritional challenge in the prenatal period showing more vulnerability in offspring behavior. Copyright © 2010 ISDN. Published by Elsevier Ltd. All rights reserved.

  17. Effects of dietary level of tannic acid and protein on internal organ weights and biochemical blood parameters of rats.

    Directory of Open Access Journals (Sweden)

    Marcin Barszcz

    Full Text Available Tannic acid (TA is a polyphenolic compound with a health-promoting potential for humans. It is hypothesised that TA effects on the relative weight of internal organs and biochemical blood indices are modified by dietary protein level in rats. The study involved 72 rats divided into 12 groups fed diets with 10 or 18% of crude protein (CP and supplemented with 0, 0.25, 0.5, 1, 1.5 or 2% of TA. After 3 weeks of feeding, the relative weight of the caecum was greater in rats fed TA diets, while feeding diets with 10% of CP increased the relative weight of the stomach, small intestine and caecum, but decreased that of kidneys and spleen. Albumin concentration was higher in rats fed 0.25% and 0.5% TA diets than in rats given the 2% TA diets. The 2% TA diets reduced creatine kinase (CK activity compared to non-supplemented diets and those with 0.5, 1 and 1.5% of TA. Rats fed the 10% CP diets had a higher activity of alkaline phosphatase, amylase, and γ-glutamyltransferase as well as the concentration of iron and cholesterol, but lower that of urea and uric acid. The interaction affected only cholinesterase activity. In conclusion, TA induced caecal hypertrophy and could act as a cardioprotective agent, as demonstrated by reduced CK activity, but these effects were not modified by dietary protein level.

  18. Hippocampal kindling alters the concentration of glial fibrillary acidic protein and other marker proteins in rat brain

    DEFF Research Database (Denmark)

    Hansen, A; Jørgensen, Ole Steen; Bolwig, T G

    1990-01-01

    The effect of hippocampal kindling on neuronal and glial marker proteins was studied in the rat by immunochemical methods. In hippocampus, pyriform cortex and amygdala there was an increase in glial fibrillary acidic protein (GFAP), indicating reactive gliosis, and an increase in the glycolytic...... enzyme NSE, suggesting increased anaerobic metabolism. Neuronal cell adhesion molecule (NCAM) decreased in pyriform cortex and amygdala of kindled rats, indicating neuronal degeneration....

  19. Differential Effects of Intrauterine Growth Restriction on the Regional Neurochemical Profile of the Developing Rat Brain.

    Science.gov (United States)

    Maliszewski-Hall, Anne M; Alexander, Michelle; Tkáč, Ivan; Öz, Gülin; Rao, Raghavendra

    2017-01-01

    Intrauterine growth restricted (IUGR) infants are at increased risk for neurodevelopmental deficits that suggest the hippocampus and cerebral cortex may be particularly vulnerable. Evaluate regional neurochemical profiles in IUGR and normally grown (NG) 7-day old rat pups using in vivo 1 H magnetic resonance (MR) spectroscopy at 9.4 T. IUGR was induced via bilateral uterine artery ligation at gestational day 19 in pregnant Sprague-Dawley dams. MR spectra were obtained from the cerebral cortex, hippocampus and striatum at P7 in IUGR (N = 12) and NG (N = 13) rats. In the cortex, IUGR resulted in lower concentrations of phosphocreatine, glutathione, taurine, total choline, total creatine (P regions. Persistent neurochemical changes may lead to cortex-based long-term neurodevelopmental deficits in human IUGR infants.

  20. Alcohol-induced decrease in muscle protein synthesis associated with increased binding of mTOR and raptor: Comparable effects in young and mature rats

    Directory of Open Access Journals (Sweden)

    Vary Thomas C

    2009-01-01

    Full Text Available Abstract Background Acute alcohol (EtOH intoxication decreases muscle protein synthesis via inhibition of mTOR-dependent translation initiation. However, these studies have been performed in relatively young rapidly growing rats in which muscle protein accretion is more sensitive to growth factor and nutrient stimulation. Furthermore, some in vivo-produced effects of EtOH vary in an age-dependent manner. The hypothesis tested in the present study was that young rats will show a more pronounced decrement in muscle protein synthesis than older mature rats in response to acute EtOH intoxication. Methods Male F344 rats were studied at approximately 3 (young or 12 (mature months of age. Young rats were injected intraperitoneally with 75 mmol/kg of EtOH, and mature rats injected with either 75 or 90 mmol/kg EtOH. Time-matched saline-injected control rats were included for both age groups. Gastrocnemius protein synthesis and the activity of the mTOR pathway were assessed 2.5 h after EtOH using [3H]-labeled phenylalanine and the phosphorylation of various protein factors known to regulate peptide-chain initiation. Results Blood alcohol levels (BALs were lower in mature rats compared to young rats after administration of 75 mmol/kg EtOH (154 ± 23 vs 265 ± 24 mg/dL. However, injection of 90 mmol/kg EtOH in mature rats produced BALs comparable to that of young rats (281 ± 33 mg/dL. EtOH decreased muscle protein synthesis similarly in both young and high-dose EtOH-treated mature rats. The EtOH-induced changes in both groups were associated with a concomitant reduction in 4E-BP1 phosphorylation, and redistribution of eIF4E between the active eIF4E·eIF4G and inactive eIF4E·4EBP1 complex. Moreover, EtOH increased the binding of mTOR with raptor in a manner which appeared to be AMPK- and TSC-independent. In contrast, although muscle protein synthesis was unchanged in mature rats given low-dose EtOH, compared to control values, the phosphorylation of rpS6

  1. Differential effect of NMDA and AMPA receptor blockade on protein synthesis in the rat infarct borderzone

    DEFF Research Database (Denmark)

    Christensen, Thomas; Bruhn, T; Frank, L

    1996-01-01

    treated with either saline, MK-801 (5 mg/kg i.p.) or NBQX (30 mg/kg i.p. x 3) were subjected to permanent MCAO. Regional CPSR and volumes of gray matter structures displaying normal CPSR were measured in coronal cryosections of the brain by quantitative autoradiography following an i.v. bolus injection....... Treatment with MK-801 significantly increased the volume of tissue with normal CPSR in the ischemic hemisphere compared to controls, whereas this was not seen with NBQX treatment. The results suggest that MK-801 and NBQX have different effects on peri-infarct protein synthesis after MCAO. Since both......We investigated whether the known neuroprotective effects of two selective glutamate receptor antagonists, the NMDA antagonist MK-801 and the AMPA antagonist NBQX, are reflected in the regional cerebral protein synthesis rates (CPSR) in rats with middle cerebral artery occlusion (MCAO). Rats...

  2. Effects of Caloric Restriction and Exercise Training on Skeletal Muscle Histochemistry in Aging Fischer 344 Rats

    Directory of Open Access Journals (Sweden)

    David T. Lowenthal

    2006-01-01

    Full Text Available The purpose of this study was to determine the effects of calorie restriction and exercise on hindlimb histochemistry and fiber type in Fischer 344 rats as they advanced from adulthood through senescence. At 10 months of age, animals were divided into sedentary fed ad libitum, exercise (18 m/min, 8% grade, 20 min/day, 5 days/week fed ad libitum, and calorie restricted by alternate days of feeding. Succinic dehydrogenase, myosin adenosine triphosphatase (mATPase at pH 9.4, nicotine adenonine dinucleotide reductase, and Periodic Acid Shiff histochemical stains were performed on plantaris and soleus muscles. The results indicated that aging resulted in a progressive decline in plantaris Type I muscle fiber in sedentary animals, while exercise resulted in maintenance of these fibers. The percent of plantaris Type II fibers increased between 10 and 24 months of age. Exercise also resulted in a small, but significant, increase in the percentage of plantaris Type IIa fibers at 24 months of age. The soleus fiber distribution for Type I fibers was unaffected by increasing age in all groups of animals. The implications of these results suggest the implementation of exercise as a lifestyle modification as early as possible.

  3. Participation of the oviductal s100 calcium binding protein G in the genomic effect of estradiol that accelerates oviductal embryo transport in mated rats

    Directory of Open Access Journals (Sweden)

    Croxatto Horacio B

    2011-05-01

    Full Text Available Abstract Background Mating changes the mechanism by which E2 regulates oviductal egg transport, from a non-genomic to a genomic mode. Previously, we found that E2 increased the expression of several genes in the oviduct of mated rats, but not in unmated rats. Among the transcripts that increased its level by E2 only in mated rats was the one coding for an s100 calcium binding protein G (s100 g whose functional role in the oviduct is unknown. Methods Herein, we investigated the participation of s100 g on the E2 genomic effect that accelerates oviductal transport in mated rats. Thus, we determined the effect of E2 on the mRNA and protein level of s100 g in the oviduct of mated and unmated rats. Then, we explored the effect of E2 on egg transport in unmated and mated rats under conditions in which s100 g protein was knockdown in the oviduct by a morpholino oligonucleotide against s100 g (s100 g-MO. In addition, the localization of s100 g in the oviduct of mated and unmated rats following treatment with E2 was also examined. Results Expression of s100 g mRNA progressively increased at 3-24 h after E2 treatment in the oviduct of mated rats while in unmated rats s100 g increased only at 12 and 24 hours. Oviductal s100 g protein increased 6 h following E2 and continued elevated at 12 and 24 h in mated rats, whereas in unmated rats s100 g protein increased at the same time points as its transcript. Administration of a morpholino oligonucleotide against s100 g transcript blocked the effect of E2 on egg transport in mated, but not in unmated rats. Finally, immunoreactivity of s100 g was observed only in epithelial cells of the oviducts of mated and unmated rats and it was unchanged after E2 treatment. Conclusions Mating affects the kinetic of E2-induced expression of s100 g although it not changed the cellular localization of s100 g in the oviduct after E2 . On the other hand, s100 g is a functional component of E2 genomic effect that accelerates egg

  4. Soluble Milk Protein Supplementation with Moderate Physical Activity Improves Locomotion Function in Aging Rats.

    Directory of Open Access Journals (Sweden)

    Aude Lafoux

    Full Text Available Aging is associated with a loss of muscle mass and functional capacity. Present study was designed to compare the impact of specific dairy proteins on muscular function with or without a low-intensity physical activity program on a treadmill in an aged rat model. We investigated the effects of nutritional supplementation, five days a week over a 2-month period with a slow digestible protein, casein or fast digestible proteins, whey or soluble milk protein, on strength and locomotor parameters in sedentary or active aged Wistar RjHan rats (17-19 months of age. An extensive gait analysis was performed before and after protein supplementation. After two months of protein administration and activity program, muscle force was evaluated using a grip test, spontaneous activity using an open-field and muscular mass by specific muscle sampling. When aged rats were supplemented with proteins without exercise, only minor effects of different diets on muscle mass and locomotion were observed: higher muscle mass in the casein group and improvement of stride frequencies with soluble milk protein. By contrast, supplementation with soluble milk protein just after physical activity was more effective at improving overall skeletal muscle function in old rats compared to casein. For active old rats supplemented with soluble milk protein, an increase in locomotor activity in the open field and an enhancement of static and dynamic gait parameters compared to active groups supplemented with casein or whey were observed without any differences in muscle mass and forelimb strength. These results suggest that consumption of soluble milk protein as a bolus immediately after a low intensity physical activity may be a suitable nutritional intervention to prevent decline in locomotion in aged rats and strengthen the interest to analyze the longitudinal aspect of locomotion in aged rodents.

  5. Soluble Milk Protein Supplementation with Moderate Physical Activity Improves Locomotion Function in Aging Rats.

    Science.gov (United States)

    Lafoux, Aude; Baudry, Charlotte; Bonhomme, Cécile; Le Ruyet, Pascale; Huchet, Corinne

    2016-01-01

    Aging is associated with a loss of muscle mass and functional capacity. Present study was designed to compare the impact of specific dairy proteins on muscular function with or without a low-intensity physical activity program on a treadmill in an aged rat model. We investigated the effects of nutritional supplementation, five days a week over a 2-month period with a slow digestible protein, casein or fast digestible proteins, whey or soluble milk protein, on strength and locomotor parameters in sedentary or active aged Wistar RjHan rats (17-19 months of age). An extensive gait analysis was performed before and after protein supplementation. After two months of protein administration and activity program, muscle force was evaluated using a grip test, spontaneous activity using an open-field and muscular mass by specific muscle sampling. When aged rats were supplemented with proteins without exercise, only minor effects of different diets on muscle mass and locomotion were observed: higher muscle mass in the casein group and improvement of stride frequencies with soluble milk protein. By contrast, supplementation with soluble milk protein just after physical activity was more effective at improving overall skeletal muscle function in old rats compared to casein. For active old rats supplemented with soluble milk protein, an increase in locomotor activity in the open field and an enhancement of static and dynamic gait parameters compared to active groups supplemented with casein or whey were observed without any differences in muscle mass and forelimb strength. These results suggest that consumption of soluble milk protein as a bolus immediately after a low intensity physical activity may be a suitable nutritional intervention to prevent decline in locomotion in aged rats and strengthen the interest to analyze the longitudinal aspect of locomotion in aged rodents.

  6. Effects of energy and protein restriction, followed by nutritional recovery on morphological development of the gastrointestinal tract of weaned kids.

    Science.gov (United States)

    Sun, Z H; He, Z X; Zhang, Q L; Tan, Z L; Han, X F; Tang, S X; Zhou, C S; Wang, M; Yan, Q X

    2013-09-01

    Effects of energy, protein, or both energy and protein restriction on gastrointestinal morphological development were investigated in 60 Liuyang Black kids, which were sourced from local farms and weaned at 28 d of age. Weaned kids were randomly assigned to receive 1 of 4 dietary treatments (15 kids per treatment), which consisted of adequate nutrient supply (CON), energy restriction (ER), protein restriction (PR), or energy and protein restriction (EPR). The entire experiment included adaptation period (0 to 6 d), nutritional restriction period (7 to 48 d), and recovery period (49 to 111 d). Three kids from each group were killed at d 48 and 111, and the rumen, duodenum, jejunum, and ileum were harvested. On d 48 (end of nutritional restriction), lengths of the duodenum (P = 0.005), jejunum (P = 0.003), and ileum (P = 0.003), and weights of the rumen (P = 0.004), duodenum (P = 0.006), jejunum (P = 0.006), and ileum (P = 0.004) of kids in ER, PR, and EPR were less than those of kids in CON. Compared with CON, PR decreased papillae width (P = 0.03) and surface area (P = 0.05) of the rumen epithelium, villus surface area (P = 0.05), and N concentration (P = 0.02) of the jejunum mucosa on d 48. Compared with CON, EPR decreased papillae height (P = 0.001), width (P = 0.001), and surface area (P = 0.003), N concentration (P = 0.01), and the ratio of N to DNA (P = 0.03) of the rumen epithelium. Compared with CON, EPR also decreased villus height (P = 0.01), width (P = 0.006), and surface area (P = 0.006), N concentration (P kids in ER, PR, and EPR were still less than those of kids in CON; N concentrations of rumen epithelium of kids in PR (P = 0.01) and EPR (P = 0.001), and the ratio of N to DNA of jejunum mucosa of kids in EPR (P kids in CON. Results indicate that nutritional restriction of 6 wk can retard gastrointestinal morphological development for kids weaned at 28 d of age and retarded development remains evident, even after nutritional recovery of 9 wk.

  7. Exercise alters myostatin protein expression in sedentary and exercised streptozotocin-diabetic rats.

    Science.gov (United States)

    Bassi, Daniela; Bueno, Patricia de Godoy; Nonaka, Keico Okino; Selistre-Araujo, Heloisa Sobreiro; Leal, Angela Merice de Oliveira

    2015-04-01

    The aim of this study was to analyze the effect of exercise on the pattern of muscle myostatin (MSTN) protein expression in two important metabolic disorders, i.e., obesity and diabetes mellitus. MSTN, is a negative regulator of skeletal muscle mass. We evaluated the effect of exercise on MSTN protein expression in diabetes mellitus and high fat diet-induced obesity. MSTN protein expression in gastrocnemius muscle was analyzed by Western Blot. P sedentary or exercised obese animals. Diabetes reduced gastrocnemius muscle weight in sedentary animals. However, gastrocnemius muscle weight increased in diabetic exercised animals. Both the precursor and processed forms of muscle MSTN protein were significantly higher in sedentary diabetic rats than in control rats. The precursor form was significantly lower in diabetic exercised animals than in diabetic sedentary animals. However, the processed form did not change. These results demonstrate that exercise can modulate the muscle expression of MSTN protein in diabetic rats and suggest that MSTN may be involved in energy homeostasis.

  8. THE SERUM PROTEIN FRACTIONS IN THYMOQUINONE TREATED RATS.

    Science.gov (United States)

    A, Güllü; S, Dede

    2016-01-01

    TQ has been used as treatment and preventive agent for many diseases over the years. The goal of this study was to investigate the effects of TQ supplement on fractions of serum proteins. Fourteen male Wistar-Albino rats (200-250 g weight) were used as material for two groups; (control (C) and thymoquinone (TQ) respectively. Each group contained seven rats. The control group had only corn oil, while the TQ group was dissolved in corn oil. 30 mg/kg/day were given by oral gavage for four weeks. The serum protein fractions were identified using cellulose acetate technique. The total protein level and albumin, α-1, α-2 fractions and A/G ratio have showed no difference between groups (p>0.05). β-globulin fractions of TQ group were higher than control's (pfractions may have originated from elevation or decline synthesis, or activities of containing proteins.

  9. Constraint-induced movement therapy promotes motor function recovery and downregulates phosphorylated extracellular regulated protein kinase expression in ischemic brain tissue of rats

    Directory of Open Access Journals (Sweden)

    Bei Zhang

    2015-01-01

    Full Text Available Motor function impairment is a common outcome of stroke. Constraint-induced movement therapy (CIMT involving intensive use of the impaired limb while restraining the unaffected limb is widely used to overcome the effects of ′learned non-use′ and improve limb function after stroke. However, the underlying mechanism of CIMT remains unclear. In the present study, rats were randomly divided into a middle cerebral artery occlusion (model group, a CIMT + model (CIMT group, or a sham group. Restriction of the affected limb by plaster cast was performed in the CIMT and sham groups. Compared with the model group, CIMT significantly improved the forelimb functional performance in rats. By western blot assay, the expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi of cerebral ischemic rats in the CIMT group was significantly lower than that in the model group, and was similar to sham group levels. These data suggest that functional recovery after CIMT may be related to decreased expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi.

  10. Selective effects of whey protein concentrate on glutathione levels and apoptosis in rats with mammary tumors.

    Science.gov (United States)

    Cheng, Shih-Hsuan; Tseng, Yang-Ming; Wu, Szu-Hsien; Tsai, Shih-Meng; Tsai, Li-Yu

    2017-09-01

    Glutathione (GSH) plays an important role in antioxidant defense and regulation of apoptosis. GSH deficiency is related to many diseases, including cancer, and increased GSH levels in cancer cells are associated with chemotherapy resistance because of resistance to apoptosis. In this study, we investigated the effects of whey protein concentrate (WPC), a precursor of GSH, in rats with mammary tumors induced by treatment with 7,12-dimethylbenz(a)anthracene (DMBA). DMBA treatment results in cellular changes that mimic the initiation and promotion of carcinogenesis of breast tissue. We aimed to examine the possible preventive effects of diets containing whey protein on DMBA-induced mammary tumors in rats. The results indicate that WPC (0.334 g/kg) supplementation significantly increased the liver GSH levels by 92%, and were accompanied by low Bax/Bcl-2 ratio (from 5 to 3) and cleaved caspase-3/procaspase-3 ratio (from 2.4 to 1.2) in DMBA-treated rats. Furthermore, tumor GSH levels were decreased by 47% in WPC-supplemented rats, which resulted in increased Bax/Bcl-2 ratio (from 0.9 to 2) and cleaved caspase-3/procaspase-3 ratio (from 1.1 to 2.7). In conclusion, supplementation with WPC could selectively deplete tumor GSH levels and, therefore, WPC supplementation might be a promising strategy to overcome treatment resistance in cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Repeated sleep restriction in rats leads to homeostatic and allostatic responses during recovery sleep

    OpenAIRE

    Kim, Youngsoo; Laposky, Aaron D.; Bergmann, Bernard M.; Turek, Fred W.

    2007-01-01

    Recent studies indicate that chronic sleep restriction can have negative consequences for brain function and peripheral physiology and can contribute to the allostatic load throughout the body. Interestingly, few studies have examined how the sleep–wake system itself responds to repeated sleep restriction. In this study, rats were subjected to a sleep-restriction protocol consisting of 20 h of sleep deprivation (SD) followed by a 4-h sleep opportunity each day for 5 consecutive days. In respo...

  12. Ouabain rescues rat nephrogenesis during intrauterine growth restriction by regulating the complement and coagulation cascades and calcium signaling pathway.

    Science.gov (United States)

    Chen, L; Yue, J; Han, X; Li, J; Hu, Y

    2016-02-01

    Intrauterine growth restriction (IUGR) is associated with a reduction in the numbers of nephrons in neonates, which increases the risk of hypertension. Our previous study showed that ouabain protects the development of the embryonic kidney during IUGR. To explore this molecular mechanism, IUGR rats were induced by protein and calorie restriction throughout pregnancy, and ouabain was delivered using a mini osmotic pump. RNA sequencing technology was used to identify the differentially expressed genes (DEGs) of the embryonic kidneys. DEGs were submitted to the Database for Annotation and Visualization and Integrated Discovery, and gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted. Maternal malnutrition significantly reduced fetal weight, but ouabain treatment had no significant effect on body weight. A total of 322 (177 upregulated and 145 downregulated) DEGs were detected between control and the IUGR group. Meanwhile, 318 DEGs were found to be differentially expressed (180 increased and 138 decreased) between the IUGR group and the ouabain-treated group. KEGG pathway analysis indicated that maternal undernutrition mainly disrupts the complement and coagulation cascades and the calcium signaling pathway, which could be protected by ouabain treatment. Taken together, these two biological pathways may play an important role in nephrogenesis, indicating potential novel therapeutic targets against the unfavorable effects of IUGR.

  13. Nitrogen excretion in rats on a protein-free diet and during starvation

    DEFF Research Database (Denmark)

    Chwalibog, André; Sawosz, Ewa; Niemiec, Tomasz

    2008-01-01

    Nitrogen balances (six days) were determined in male Wistar rats during feeding a diet with sufficient protein or a nearly protein-free diet (n = 2 x 24), and then during three days of starvation (n = 2 x 12). The objective was to evaluate the effect of protein withdrawal on minimum nitrogen...... excretion in urine (UN), corresponding to endogenous UN, during feeding and subsequent starvation periods. The rats fed the protein free-diet had almost the same excretion of urinary N during feeding and starvation (165 and 157 mg/kg W(0.75)), while it was 444 mg/kg W(0.75) in rats previously fed...... with protein, demonstrating a major influence of protein content in a diet on N excretion during starvation. Consequently, the impact of former protein supply on N losses during starvation ought to be considered when evaluating minimum N requirement necessary to sustain life....

  14. Metformin treatment modulates the tumour-induced wasting effects in muscle protein metabolism minimising the cachexia in tumour-bearing rats

    International Nuclear Information System (INIS)

    Oliveira, André G.; Gomes-Marcondes, Maria Cristina C.

    2016-01-01

    Cancer-cachexia state frequently induces both fat and protein wasting, leading to death. In this way, the knowledge of the mechanism of drugs and their side effects can be a new feature to treat and to have success, contributing to a better life quality for these patients. Metformin is an oral drug used in type 2 diabetes mellitus, showing inhibitory effect on proliferation in some neoplastic cells. For this reason, we evaluated its modulatory effect on Walker-256 tumour evolution and also on protein metabolism in gastrocnemius muscle and body composition. Wistar rats received or not tumour implant and metformin treatment and were distributed into four groups, as followed: control (C), Walker 256 tumour-bearing (W), metformin-treated (M) and tumour-bearing treated with metformin (WM). Animals were weighed three times a week, and after cachexia state has been detected, the rats were euthanised and muscle and tumour excised and analysed by biochemical and molecular assays. Tumour growth promoted some deleterious effects on chemical body composition, increasing water and decreasing fat percentage, and reducing lean body mass. In muscle tissue, tumour led to a decreased protein synthesis and an increased proteolysis, showing the higher activity of the ubiquitin-proteasome pathway. On the other hand, the metformin treatment likely minimised the tumour-induced wasting state; in this way, this treatment ameliorated chemical body composition, reduced the higher activities of proteolytic enzymes and decreased the protein waste. Metformin treatment not only decreases the tumour growth but also improves the protein metabolism in gastrocnemius muscle in tumour-bearing rats

  15. Muscle and liver protein synthesis in growing rats fed diets containing raw legumes as the main source of protein

    International Nuclear Information System (INIS)

    Goena, M.; Santidrian, S.; Cuevillas, F.; Larralde, J.

    1986-01-01

    Although legumes are widely used as protein sources, their effects on protein metabolism remain quite unexplored. The authors have measured the rates of gastrocnemius muscle and liver protein synthesis in growing rats fed ad libitum over periods of 12 days on diets containing raw field bean (Vicia faba L.), raw kidney bean (Phaseolus vulgaris L.), and raw bitter vetch (Vicia ervilia L.) as the major sources of protein. Diets were isocaloric and contained about 12% protein. Protein synthesis was evaluated by the constant-intravenous-infusion method, using L-/ 14 C/-tyrosine, as well as by the determination of the RNA-activity (g of newly synthesized protein/day/g RNA). Results showed that, as compared to well-fed control animals, those fed the raw legume diets exhibited a marked reduction in the rate of growth with no changes in the amount of food intake (per 100 g b.wt.). These changes were accompanied by a significant reduction in the rate of muscle protein synthesis in all legume-treated rats, being this reduction greater in the animals fed the Ph. vulgaris and V. ervilia diets. Liver protein synthesis was slightly higher in the rats fed the V. faba and V. ervilia diets, and smaller in the Ph. vulgaris-fed rats. It is suggested that both sulfur amino acid deficiency and the presence of different anti-nutritive factors in raw legumes may account for these effects

  16. Protein restriction does not affect body temperature pattern in female mice.

    Science.gov (United States)

    Kato, Goro A; Shichijo, Hiroki; Takahashi, Toshihiro; Shinohara, Akio; Morita, Tetsuo; Koshimoto, Chihiro

    2017-10-30

    Daily torpor is a physiological adaptation in mammals and birds characterized by a controlled reduction of metabolic rate and body temperature during the resting phase of circadian rhythms. In laboratory mice, daily torpor is induced by dietary caloric restriction. However, it is not known which nutrients are related to daily torpor expression. To determine whether dietary protein is a key factor in inducing daily torpor in mice, we fed mice a protein-restricted (PR) diet that included only one-quarter of the amount of protein but the same caloric level as a control (C) diet. We assigned six non-pregnant female ICR mice to each group and recorded their body weights and core body temperatures for 4 weeks. Body weights in the C group increased, but those in the PR group remained steady or decreased. Mice in both groups did not show daily torpor, but most mice in a food-restricted group (n=6) supplied with 80% of the calories given to the C group exhibited decreased body weights and frequently displayed daily torpor. This suggests that protein restriction is not a trigger of daily torpor; torpid animals can conserve their internal energy, but torpor may not play a significant role in conserving internal protein. Thus, opportunistic daily torpor in mice may function in energy conservation rather than protein saving.

  17. Response of rat brain protein synthesis to ethanol and sodium barbital

    International Nuclear Information System (INIS)

    Tewari, S.; Greenberg, S.A.; Do, K.; Grey, P.A.

    1987-01-01

    Central nervous system (CNS) depressants such as ethanol and barbiturates under acute or chronic conditions can induce changes in rat brain protein synthesis. While these data demonstrate the individual effects of drugs on protein synthesis, the response of brain protein synthesis to alcohol-drug interactions is not known. The goal of the present study was to determine the individual and combined effects of ethanol and sodium barbital on brain protein synthesis and gain an understanding of the mechanisms by which these alterations in protein synthesis are produced. Specifically, the in vivo and in vitro effects of sodium barbital (one class of barbiturates which is not metabolized by the hepatic tissue) were examined on brain protein synthesis in rats made physically dependent upon ethanol. Using cell free brain polysomal systems isolated from Control, Ethanol and 24 h Ethanol Withdrawn rats, data show that sodium barbital, when intubated intragastrically, inhibited the time dependent incorporation of 14 C) leucine into protein by all three groups of ribosomes. Under these conditions, the Ethanol Withdrawn group displayed the largest inhibition of the 14 C) leucine incorporation into protein when compared to the Control and Ethanol groups. In addition, sodium barbital when added at various concentrations in vitro to the incubation medium inhibited the incorporation of 14 C) leucine into protein by Control and Ethanol polysomes. The inhibitory effects were also obtained following preincubation of ribosomes in the presence of barbital but not cycloheximide. Data suggest that brain protein synthesis, specifically brain polysomes, through interaction with ethanol or barbital are involved in the functional development of tolerance. These interactions may occur through proteins or polypeptide chains or alterations in messenger RNA components associated with the ribosomal units

  18. Influence of protein deficiency on cadmium toxicity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Tewari, P C; Jain, V K; Ashquin, M; Tandon, S K

    1986-07-01

    The effects of a low protein diet on the body uptake and retention of cadmium, levels of essential trace elements, and cadmium-induced biochemical alterations in liver and kidneys of the rat were investigated. Low dietary protein disturbs cadmium induced alterations in carbohydrate metabolism, essential trace elements metabolism and offsets the hepatic and renal process of cadmium detoxification. Protein malnutrition enhances the susceptibility to cadmium intoxication.

  19. 1,25(OH)2D3 and Ca-binding protein in fetal rats: Relationship to the maternal vitamin D status

    International Nuclear Information System (INIS)

    Verhaeghe, J.; Thomasset, M.; Brehier, A.; Van Assche, F.A.; Bouillon, R.

    1988-01-01

    The autonomy and functional role of fetal 1,25-dihydroxyvitamin D 3 [1,25(OH) 2 D 3 ] were investigated in nondiabetic and diabetic BB rats fed diets containing 0.85% calcium-0.7% phosphorus or 0.2% calcium and phosphorus and in semistarved rats on the low calcium-phosphorus diet. The changes in maternal and fetal plasma 1,25(OH) 2 D 3 were similar: the levels were increased by calcium-phosphorus restriction and decreased by diabetes and semistarvation. Maternal and fetal 1,25(OH) 2 D 3 levels were correlated. The vitamin D-dependent calcium-binding proteins (CaBP 9K and CaBP 28K ) were measured in multiple maternal and fetal tissues and in the placenta of nondiabetic, diabetic, and calcium-phosphorus-restricted rats. The distributions of CaBP 9K and CaBP 28K in the pregnant rat were similar to that of the growing rat. The increased maternal plasma 1,25(OH) 2 D 3 levels in calcium-phosphorus-restricted rats were associated with higher duodenal CaBP 9K and renal CaBPs, but placental CaBP 9K was not different. In diabetic pregnant rats, duodenal CaBP 9K was not different. In diabetic pregnant rats, duodenal CaBP 9K tended to be lower, while renal CaBPs were normal; placental CaBP 9K was decreased. The results indicate that in the rat fetal 1,25(OH) 2 D 3 depends on maternal 1,25(OH) 2 D 3 or on factors regulating maternal 1,25(OH) 2 D 3 . The lack of changes in fetal CaBP in the presence of altered fetal plasma 1,25(OH) 2 D 3 levels confirms earlier data showing that 1,25(H) 2 D 3 has a limited hormonal function during perinatal development in the rat

  20. Effects of Biotin Deficiency on Biotinylated Proteins and Biotin-Related Genes in the Rat Brain.

    Science.gov (United States)

    Yuasa, Masahiro; Aoyama, Yuki; Shimada, Ryoko; Sawamura, Hiromi; Ebara, Shuhei; Negoro, Munetaka; Fukui, Toru; Watanabe, Toshiaki

    2016-01-01

    Biotin is a water-soluble vitamin that functions as a cofactor for biotin-dependent carboxylases. The biochemical and physiological roles of biotin in brain regions have not yet been investigated sufficiently in vivo. Thus, in order to clarify the function of biotin in the brain, we herein examined biotin contents, biotinylated protein expression (e.g. holocarboxylases), and biotin-related gene expression in the brain of biotin-deficient rats. Three-week-old male Wistar rats were divided into a control group, biotin-deficient group, and pair-fed group. Rats were fed experimental diets from 3 wk old for 8 wk, and the cortex, hippocampus, striatum, hypothalamus, and cerebellum were then collected. In the biotin-deficient group, the maintenance of total biotin and holocarboxylases, increases in the bound form of biotin and biotinidase activity, and the expression of an unknown biotinylated protein were observed in the cortex. In other regions, total and free biotin contents decreased, holocarboxylase expression was maintained, and bound biotin and biotinidase activity remained unchanged. Biotin-related gene (pyruvate carboxylase, sodium-dependent multivitamin transporter, holocarboxylase synthetase, and biotinidase) expression in the cortex and hippocampus also remained unchanged among the dietary groups. These results suggest that biotin may be related to cortex functions by binding protein, and the effects of a biotin deficiency and the importance of biotin differ among the different brain regions.

  1. Targeting tumor-initiating cells: Eliminating anabolic cancer stem cells with inhibitors of protein synthesis or by mimicking caloric restriction

    Science.gov (United States)

    Lamb, Rebecca; Harrison, Hannah; Smith, Duncan L.; Townsend, Paul A.; Jackson, Thomas; Ozsvari, Bela; Martinez-Outschoorn, Ubaldo E.; Pestell, Richard G.; Howell, Anthony; Lisanti, Michael P.; Sotgia, Federica

    2015-01-01

    We have used an unbiased proteomic profiling strategy to identify new potential therapeutic targets in tumor-initiating cells (TICs), a.k.a., cancer stem cells (CSCs). Towards this end, the proteomes of mammospheres from two breast cancer cell lines were directly compared to attached monolayer cells. This allowed us to identify proteins that were highly over-expressed in CSCs and/or progenitor cells. We focused on ribosomal proteins and protein folding chaperones, since they were markedly over-expressed in mammospheres. Overall, we identified >80 molecules specifically associated with protein synthesis that were commonly upregulated in mammospheres. Most of these proteins were also transcriptionally upregulated in human breast cancer cells in vivo, providing evidence for their potential clinical relevance. As such, increased mRNA translation could provide a novel mechanism for enhancing the proliferative clonal expansion of TICs. The proteomic findings were functionally validated using known inhibitors of protein synthesis, via three independent approaches. For example, puromycin (which mimics the structure of tRNAs and competitively inhibits protein synthesis) preferentially targeted CSCs in both mammospheres and monolayer cultures, and was ~10-fold more potent for eradicating TICs, than “bulk” cancer cells. In addition, rapamycin, which inhibits mTOR and hence protein synthesis, was very effective at reducing mammosphere formation, at nanomolar concentrations. Finally, mammosphere formation was also markedly inhibited by methionine restriction, which mimics the positive effects of caloric restriction in cultured cells. Remarkably, mammosphere formation was >18-fold more sensitive to methionine restriction and replacement, as directly compared to monolayer cell proliferation. Methionine is absolutely required for protein synthesis, since every protein sequence starts with a methionine residue. Thus, the proliferation and survival of CSCs is very sensitive to

  2. Lipolysis stimulating peptides of potato protein hydrolysate effectively suppresses high-fat-diet-induced hepatocyte apoptosis and fibrosis in aging rats

    Directory of Open Access Journals (Sweden)

    Wen-Dee Chiang

    2016-07-01

    Full Text Available Background: Non-alcoholic fatty liver disease (NAFLD is one of the most common outcomes of obesity and is characterized by the accumulation of triglycerides, increased tissue apoptosis, and fibrosis. NAFLD is more common among elderly than in younger age groups, and it causes serious hepatic complications. Objective: In this study, alcalase treatment derived potato protein hydrolysate (APPH with lipolysis-stimulating property has been evaluated for its efficiency to provide hepato-protection in a high-fat-diet (HFD-fed aging rats. Design: Twenty-four-month-old SD rats were randomly divided into six groups (n=8: aged rats fed with standard chow, HFD-induced aged obese rats, HFD with low-dose (15 mg/kg/day APPH treatment, HFD with moderate (45 mg/kg/day APPH treatment, HFD with high (75 mg/kg/day APPH treatment, and HFD with probucol. Results: APPH was found to reduce the NAFLD-related effects in rat livers induced by HFD and all of the HFD-fed rats exhibited heavier body weight than those with control chow diet. However, the HFD-induced hepatic fat accumulation was effectively attenuated in rats administered with low (15 mg/kg/day, moderate (45 mg/kg/day, and high (75 mg/kg/day doses of APPH. APPH oral administration also suppressed the hepatic apoptosis- and fibrosis-related proteins induced by HFD. Conclusions: Our results thus indicate that APPH potentially attenuates hepatic lipid accumulation and anti-apoptosis and fibrosis effects in HFD-induced rats. APPH may have therapeutic potential in the amelioration of NAFLD liver damage.

  3. Feeding condition and the relative contribution of different dopamine receptor subtypes to the discriminative stimulus effects of cocaine in rats.

    Science.gov (United States)

    Baladi, Michelle G; Newman, Amy H; France, Charles P

    2014-02-01

    The contribution of dopamine receptor subtypes in mediating the discriminative stimulus effects of cocaine is not fully established. Many drug discrimination studies use food to maintain responding, necessitating food restriction, which can alter drug effects. This study established stimulus control with cocaine (10 mg/kg) in free-feeding and food-restricted rats responding under a schedule of stimulus shock termination (SST) and in food-restricted rats responding under a schedule of food presentation to examine whether feeding condition or the reinforcer used to maintain responding impacts the effects of cocaine. Dopamine receptor agonists and antagonists were examined for their ability to mimic or attenuate, respectively, the effects of cocaine. Apomorphine, quinpirole, and lisuride occasioned >90 % responding on the cocaine-associated lever in free-feeding rats responding under a schedule of SST; apomorphine, but not quinpirole or lisuride, occasioned >90 % responding on the cocaine lever in food-restricted rats responding under a schedule of SST. In food-restricted rats responding for food these drugs occasioned little cocaine lever responding and were comparatively more potent in decreasing responding. In free-feeding rats, the effects of cocaine were attenuated by the D2/D3 receptor antagonist raclopride and the D3 receptor-selective antagonist PG01037. In food-restricted rats, raclopride and the D2 receptor-selective antagonist L-741,626 attenuated the effects of cocaine. Raclopride antagonized quinpirole in all groups while PG01037 antagonized quinpirole only in free-feeding rats. These results demonstrate significant differences in the discriminative stimulus of cocaine that are due to feeding conditions and not to the use of different reinforcers across procedures.

  4. Enhancement of a visual reinforcer by D-amphetamine and nicotine in adult rats: relation to habituation and food restriction.

    Science.gov (United States)

    Wright, Jennifer M; Ren, Suelynn; Constantin, Annie; Clarke, Paul B S

    2018-03-01

    Nicotine and D-amphetamine can strengthen reinforcing effects of unconditioned visual stimuli. We investigated whether these reinforcement-enhancing effects reflect a slowing of stimulus habituation and depend on food restriction. Adult male rats pressed an active lever to illuminate a cue light during daily 60-min sessions. Depending on the experiment, rats were challenged with fixed or varying doses of D-amphetamine (0.25-2 mg/kg IP) and nicotine (0.025-0.2 mg/kg SC) or with the tobacco constituent norharman (0.03-10 μg/kg IV). Experiment 1 tested for possible reinforcement-enhancing effects of D-amphetamine and norharman. Experiment 2 investigated whether nicotine and amphetamine inhibited the spontaneous within-session decline in lever pressing. Experiment 3 assessed the effects of food restriction. Amphetamine (0.25-1 mg/kg) and nicotine (0.1 mg/kg) increased active lever pressing specifically (two- to threefold increase). The highest doses of nicotine and amphetamine also affected inactive lever responding (increase and decrease, respectively). With the visual reinforcer omitted, responding was largely extinguished. Neither drug appeared to slow habituation, as assessed by the within-session decline in lever pressing, and reinforcement-enhancing effects still occurred if the drugs were given after this decline had occurred. Food restriction enhanced the reinforcement-enhancing effect of amphetamine but not that of nicotine. Responding remained goal-directed after several weeks of testing. Low doses of D-amphetamine and nicotine produced reinforcement enhancement even in free-feeding subjects, independent of the spontaneous within-session decline in responding. Reinforcement enhancement by amphetamine, but not nicotine, was enhanced by concurrent subchronic food restriction.

  5. Minocycline restores cognitive-relative altered proteins in young bile duct-ligated rat prefrontal cortex.

    Science.gov (United States)

    Li, Shih-Wen; Chen, Yu-Chieh; Sheen, Jiunn-Ming; Hsu, Mei-Hsin; Tain, You-Lin; Chang, Kow-Aung; Huang, Li-Tung

    2017-07-01

    Bile duct ligation (BDL) model is used to study hepatic encephalopathy accompanied by cognitive impairment. We employed the proteomic analysis approach to evaluate cognition-related proteins in the prefrontal cortex of young BDL rats and analyzed the effect of minocycline on these proteins and spatial memory. BDL was induced in young rats at postnatal day 17. Minocycline as a slow-release pellet was implanted into the peritoneum. Morris water maze test and two-dimensional liquid chromatography-tandem mass spectrometry were used to evaluate spatial memory and prefrontal cortex protein expression, respectively. We used 2D/LC-MS/MS to analyze for affected proteins in the prefrontal cortex of young BDL rats. Results were verified with Western blotting, immunohistochemistry, and quantitative real-time PCR. The effect of minocycline in BDL rats was assessed. BDL induced spatial deficits, while minocycline rescued it. Collapsin response mediator protein 2 (CRMP2) and manganese-dependent superoxide dismutase (MnSOD) were upregulated and nucleoside diphosphate kinase B (NME2) was downregulated in young BDL rats. BDL rats exhibited decreased levels of brain-derived neurotrophic factor (BDNF) mRNA as compared with those by the control. However, minocycline treatment restored CRMP2 and NME2 protein expression, BDNF mRNA level, and MnSOD activity to control levels. We demonstrated that BDL altered the expression of CRMP2, NME2, MnSOD, and BDNF in the prefrontal cortex of young BDL rats. However, minocycline treatment restored the expression of the affected mediators that are implicated in cognition. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. 54Mn absorption and excretion in rats fed soy protein and casein diets

    International Nuclear Information System (INIS)

    Lee, D.Y.; Johnson, P.E.

    1989-01-01

    Rats were fed diets containing either soy protein or casein and different levels of manganese, methionine, phytic acid, or arginine for 7 days and then fed test meals labeled with 2 microCi of 54Mn after an overnight fast. Retention of 54Mn in each rat was measured every other day for 21 days using a whole-body counter. Liver manganese was higher (P less than 0.0001) in soy protein-fed rats (8.8 micrograms/g) than in casein-fed rats (5.2 micrograms/g); manganese superoxide dismutase activity also was higher in soy protein-fed rats than in casein-fed rats (P less than 0.01). There was a significant interaction between manganese and protein which affected manganese absorption and biologic half-life of 54Mn. In a second experiment, rats fed soy protein-test meals retained more 54Mn (P less than 0.001) than casein-fed rats. Liver manganese (8.3 micrograms/g) in the soy protein group was also higher than that (5.7 micrograms/g) in the casein group (P less than 0.0001), but manganese superoxide dismutase activity was unaffected by protein. Supplementation with methionine increased 54Mn retention from both soy and casein diets (P less than 0.06); activity of manganese superoxide dismutase increased (P less than 0.05) but liver manganese did not change. The addition of arginine to casein diets had little effect on manganese bioavailability. Phytic acid affected neither manganese absorption nor biologic half-life in two experiments, but it depressed liver manganese in one experiment. These results suggest that neither arginine nor phytic acid was the component in soy protein which made manganese more available from soy protein diets than casein diets

  7. Radiation induced changes in plasma total protein nitrogen and urinary total nitrogen in desert rodent and albino rats subjected to dietary protein deficiency

    International Nuclear Information System (INIS)

    Roushdy, H.; El-Husseini, M.; Saleh, F.

    1986-01-01

    The effect of gamma-irradiation on plasma total protein nitrogen and urinary total nitrogen was studied in the desert rodent, psammomy obesus obesus and albino rats subjected to dietary protein deficiency. In albino rats kept on high protein diet, the radiation syndrome resulted in urine retention, while in those kept on non-protein diet, such phenomenon was recorded only with the high radiation level of 1170r. Radiation exposure to 780 and 1170r caused remarkable diuresis in psammomys obesus obesus whereas they induced significant urine retention in albino rats. The levels of plasma total protein nitrogen and urinary total nitrogen were higher in albino rats maintained on high protein diet than in those kept on non-protein diet. Radiation exposure caused an initial drop in plasma total protein nitrogen concentration, concomitant with an initial rise in total urinary nitrogen, radiation exposure of psammomys obesus obesus caused significant increase in the levels of plasma protein nitrogen and urinary total nitrogen. Psammomys obesus obesus seemed to be more affected by radiation exposure than did the albino rats

  8. Protective effect of CSN1S2 protein of goat milk on ileum microstructure and inflmmation in rat-CFAinduced rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Rista Nikmatu Rohmah

    2015-07-01

    Full Text Available Objective: To observe the protective effect of goat milk alpha (S2-casein (CSN1S2 protein on ileum microstructure and inflammation in rat-complete Freund’s adjuvant-induced rheumatoid arthritis model. Methods: Twenty four male Wistar rats were divided into six groups of two models. The body weight, food intake and albumin level of all subjects were calculated. The ileum microstructures were analyzed by scanning electron microscopy. Histopathological analysis was observed by hematoxylin-eosin staining and the level expressions of immunoglobulin E, secretory immunoglobulin A, interleukin-17, interleukin-10, Ki-67 and caspase-9 were measured by using western blotting. Results: CSN1S2 protein of milk or yogurt could repair the ileum villi of rat arthritis group similar to the normal. The level expressions showed the immunoglobulin E, secretory immunoglobulin A, interleukin-17 and caspase-9 decreased in milk CSN1S2 protein and yogurt CSN1S2 protein rat groups. The level expression of interleukin-10 was increased, and also Ki- 67 was significantly increased in milk CSN1S2 protein and yogurt CSN1S2 protein rat groups. CSN1S2 protein of milk and yogurt could increase the body weight and albumin significantly, meanwhile food intake increased but not significantly. Conclusions: CSN1S2 protein of goat milk and yogurt could repair the ileum microstructure, suppress inflammatory process and also increase the body weight, food intake and albumin level. This result indicates that goat CSN1S2 protein may protect the ileum disorder in rheumatoid arthritis disease.

  9. Protein malnutrition and metronidazole induced intestinal bacterial ...

    African Journals Online (AJOL)

    This study was designed to assess the effects of protein malnutrition (PM) associated with antibiotic on growth weight, cecal bacterial overgrowth and enterobacteria translocation. Eighteen Gnotobiotic young Wistar rats (135 ± 2.35 g) were treated orally with antibiotic and submitted to dietary restriction based on maize diet ...

  10. Effects of a high protein diet on cognition and brain metabolism in cirrhotic rats.

    Science.gov (United States)

    Méndez-López, M; Méndez, M; Arias, J; Arias, J L

    2015-10-01

    Hepatic encephalopathy (HE) is a neurological complication observed in patients with liver disease. Patients who suffer from HE present neuropsychiatric, neuromuscular and behavioral symptoms. Animal models proposed to study HE resulting from cirrhosis mimic the clinical characteristics of cirrhosis and portal hypertension, and require the administration of hepatotoxins such as thioacetamide (TAA). The aim of this study was to assess the effects of a high protein diet on motor function, anxiety and memory processes in a model of cirrhosis induced by TAA administration. In addition, we used cytochrome c-oxidase (COx) histochemistry to assess the metabolic activity of the limbic system regions. Male rats were distributed into groups: control, animals with cirrhosis, Control rats receiving a high protein diet, and animals with cirrhosis receiving a high protein diet. Results showed preserved motor function and normal anxiety levels in all the groups. The animals with cirrhosis showed an impairment in active avoidance behavior and spatial memory, regardless of the diet they received. However, the animals with cirrhosis and a high protein diet showed longer escape latencies on the spatial memory task. The model of cirrhosis presented an under-activation of the dentate gyrus and CA3 hippocampal subfields and the medial part of the medial mammillary nucleus. The results suggest that a high protein intake worsens spatial memory deficits shown by the TAA-induced model of cirrhosis. However, high protein ingestion has no influence on the COx hypoactivity associated with the model. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Effect of a low-protein diet supplemented with keto-acids on autophagy and inflammation in 5/6 nephrectomized rats.

    Science.gov (United States)

    Zhang, Yue-Yue; Huang, Juan; Yang, Man; Gu, Li-Jie; Ji, Jia-Yao; Wang, Li-Jun; Yuan, Wei-Jie

    2015-09-14

    Ketoacids (KA) are known to preserve muscle mass among patients with chronic kidney disease (CKD) on a low-protein diet (LPD). The present study was to compare the effects of KA supplemented diet therapy in autophagy and inflammation in CKD rats' skeletal muscle. Rats with 5/6 nephrectomy were randomly divided into three groups and fed with either 11 g/kg/day protein [normal-protein diet (NPD)], 3 g/kg/day protein (LPD) or 3 g/kg/day protein which including 5% protein plus 1% KA (LPD + KA) for 24 weeks. Sham-operated rats with NPD intake were used as control. LPD could improve body weight, gastrocnemius muscle mass, as well as gastrocnemius muscle cross-sectional area, with the effect being more obvious in the LPD + KA group. The autophagy marker LC3 (microtubule-associated protein 1 light chain 3), p62, Parkin and PTEN induced putative kinase 1 (PINK1) were significantly attenuate in LPD + KA group than LPD group. LPD + KA group had the lower total mtDNA (mitochondiral DNA) and cytosol mtDNA, NACHT-PYD-containing protein 3 (NALP3) inflammasome than LPD group, but its reactive oxygen species (ROS), caspase-1 and apoptosis-associated speck-like protein containing a CARD (ASC) level was higher. Immunoblotting showed IL-1β (interleukin-1-beta) was lower in LPD and LPD + KA group than the NPD group, but IL-18 showed no significant difference among control and CKD group; toll-like receptor signalling-dependent IL-6 was higher in LPD + KA group than LPD group, but tumor necrosis factor-α (TNF-α) was not significantly changed between LPD + KA and LPD group. Systematic changes of the four cytokines were different from that of the tissue. Although LPD + KA could further ameliorate-activated autophagy than LPD, its effect on the activated inflammation state in CKD was not distinctly. Further study is still required to explore the method of ameliorating inflammation to provide new therapeutic approaches for CKD protein energy wasting (PEW). © 2015 Authors.

  12. Nippostronglylus brasiliensis infection in the rat: effect of iron and protein deficiency and dexamethasone on the efficacy of benzimidazole anthelmintics.

    Science.gov (United States)

    Duncombe, V M; Bolin, T D; Davis, A E; Kelly, J D

    1977-01-01

    Malnutrition, anaemia, and gut parasites are commonly interrelated. Using the Nippostrongylus brasiliensis-rat model, the effect of iron and protein deficiency on the efficacy of benzimidazole anthelmintics was studied. It was demonstrated that the anthelmintics mebendazole and fenbendazole were significantly less effective in eradicating parasites when animals were deficient in iron and protein. This decreased efficacy of anthelmintics in iron and protein deficiency could not be overcome by intraperitoneal administration of the drug. Since nutritional deficiencies may act via impairment of the immune response, anthelmintic efficacy was determined in adequately nourished rats treated with the immunosuppressive drug dexamethasone. A similar decrease in efficacy of mebendazole was shown when these animals were treated with dexamethasone. Thus it is possible that lowered anthelmintic efficacy in iron and protein deficient animals is mediated by immune deficiency. These findings may be relevant to anthelmintic programmes in malnourished communities. PMID:590849

  13. Longitudinal analysis of calorie restriction on rat taste bud morphology and expression of sweet taste modulators.

    Science.gov (United States)

    Cai, Huan; Daimon, Caitlin M; Cong, Wei-Na; Wang, Rui; Chirdon, Patrick; de Cabo, Rafael; Sévigny, Jean; Maudsley, Stuart; Martin, Bronwen

    2014-05-01

    Calorie restriction (CR) is a lifestyle intervention employed to reduce body weight and improve metabolic functions primarily via reduction of ingested carbohydrates and fats. Taste perception is highly related to functional metabolic status and body adiposity. We have previously shown that sweet taste perception diminishes with age; however, relatively little is known about the effects of various lengths of CR upon taste cell morphology and function. We investigated the effects of CR on taste bud morphology and expression of sweet taste-related modulators in 5-, 17-, and 30-month-old rats. In ad libitum (AL) and CR rats, we consistently found the following parameters altered significantly with advancing age: reduction of taste bud size and taste cell numbers per taste bud and reduced expression of sonic hedgehog, type 1 taste receptor 3 (T1r3), α-gustducin, and glucagon-like peptide-1 (GLP-1). In the oldest rats, CR affected a significant reduction of tongue T1r3, GLP-1, and α-gustducin expression compared with age-matched AL rats. Leptin receptor immunopositive cells were elevated in 17- and 30-month-old CR rats compared with age-matched AL rats. These alterations of sweet taste-related modulators, specifically during advanced aging, suggest that sweet taste perception may be altered in response to different lengths of CR.

  14. Effects of protein deficiency on the rate of radioactivity loss from body constituents in adult rats given 14C-amino acids

    International Nuclear Information System (INIS)

    Yamamoto, Shigeru; Inoue, Goro

    1975-01-01

    The effect of protein deficiency on the rate of loss of radioactivity from body constituents was studied in adult rats administered 14 C-Chlorella protein hydrolysate or 14 C-lysine. Rats were kept on a protein-free diet for 3 weeks and then injected with labelled amino acids and fed on a protein-free diet for 3 more days to allow 14 C deposition in tissues. Then they were given experimental diets (protein-free diet, 1% and 10% wheat gluten diets pair-fed with the protein-free diet, and 10% wheat gluten diet ad libitum) for 7 days and sacrificed. The rates of loss of radioactivity from tissue proteins became low in general with the extent of protein deficiency. This increased capacity of tissues to retain 14 C-amino acids may result from higher efficiency of protein utilization in protein deficiency. The reutilization of free amino acids and the rate of catabolism of tissue protein are discussed on the basis of the results. The half-life of muscle protein was too long to observe the effects of experimental diets given for 7 days on the rate of loss of radioactivity. (auth.)

  15. Muscle protein turnover in rats treated with corticosterone (CC) or/and nandrolone decanoate (ND) and fed an adequate or a low-protein diet

    Energy Technology Data Exchange (ETDEWEB)

    Santidrian, S.; Cuevillas, F.; Goena, M.; Larralde, J.

    1986-03-01

    In order to investigate the possible antagonistic effect between glucocorticoids and androgens on muscle protein turnover, the authors have measured the fractional rates of gastrocnemius muscle protein synthesis (k/sub s/) and degradation (k/sub d/) by the constant-intravenous-infusion method using L-//sup 14/C/-tyrosine in rats receiving via s.c. per 100 g b.wt. 10 mg of CC, or 2 mg of ND or CC+ND at the indicated doses, and fed either an 18% or 5% protein diets over a period of 5 days. As an additional index of protein synthesis, RNA activity (g of synthesized protein/day/g RNA) was determined as well. Results showed that as compared to vehicle-injected animals fed the adequate diet, CC-treated rats exhibited a reduction of muscle k/sub d/, while ND-treated rats had an outstanding increase of muscle k/sub s/. However, rats receiving CC+ND showed k/sub s/ and k/sub d/ values similar to those displayed by control animals. Nevertheless, when the steroids were injected to rats fed the low-protein diet, CC has a catabolic effect on muscle protein but by reducing k/sub s/, while the anabolic action of ND is still displayed but by a significant reduction of muscle k/sub d/. CC+ND given to these protein-deficient rats caused an increase in muscle k/sub s/ and a reduction in k/sub d/. These results might indicate that, at least in part, ND antagonizes the catabolic action of high doses of CC on muscle protein metabolism.

  16. Muscle protein turnover in rats treated with corticosterone (CC) or/and nandrolone decanoate (ND) and fed an adequate or a low-protein diet

    International Nuclear Information System (INIS)

    Santidrian, S.; Cuevillas, F.; Goena, M.; Larralde, J.

    1986-01-01

    In order to investigate the possible antagonistic effect between glucocorticoids and androgens on muscle protein turnover, the authors have measured the fractional rates of gastrocnemius muscle protein synthesis (k/sub s/) and degradation (k/sub d/) by the constant-intravenous-infusion method using L-/ 14 C/-tyrosine in rats receiving via s.c. per 100 g b.wt. 10 mg of CC, or 2 mg of ND or CC+ND at the indicated doses, and fed either an 18% or 5% protein diets over a period of 5 days. As an additional index of protein synthesis, RNA activity (g of synthesized protein/day/g RNA) was determined as well. Results showed that as compared to vehicle-injected animals fed the adequate diet, CC-treated rats exhibited a reduction of muscle k/sub d/, while ND-treated rats had an outstanding increase of muscle k/sub s/. However, rats receiving CC+ND showed k/sub s/ and k/sub d/ values similar to those displayed by control animals. Nevertheless, when the steroids were injected to rats fed the low-protein diet, CC has a catabolic effect on muscle protein but by reducing k/sub s/, while the anabolic action of ND is still displayed but by a significant reduction of muscle k/sub d/. CC+ND given to these protein-deficient rats caused an increase in muscle k/sub s/ and a reduction in k/sub d/. These results might indicate that, at least in part, ND antagonizes the catabolic action of high doses of CC on muscle protein metabolism

  17. Effects of high-protein diet containing isolated whey protein in rats submitted to resistance training of aquatic jumps.

    Science.gov (United States)

    Avila, Eudes Thiago Pereira; da Rosa Lima, Thiago; Tibana, Ramires Alsamir; de Almeida, Paula Caroline; Fraga, Géssica Alves; de Souza Sena, Mariana; Corona, Luiz Felipe Petusk; Navalta, James Wilfred; Rezaei, Sajjad; Ghayomzadeh, Morteza; Damazo, Amílcar Sabino; Prestes, Jonato; Voltarelli, Fabrício Azevedo

    2018-02-13

    Isolated whey protein (IWP) can decrease body fat compared with other protein sources. The present study verified the effects of high protein diet (HD) containing IWP on several parameters of rats subjected to resistance training (RT). Thirty-two male Wistar rats (60 days of age) were separated into four groups (n = 8/group): sedentary normoproteic (IWP 14%; SN); sedentary hyperproteic (IWP 35%; SH); trained normoproteic (IWP 14%; TN), and trained hyperproteic (WPI 35%; TH). Relative tissue/organ weight (g): perirenal and retroperitoneal adipose tissues were lower in SH and TH compared with SN (no difference to TN); omental and subcutaneous adipose tissues were higher in SN compared with SH. Epididymal adipose tissue was higher in SN compared with other groups. Heart weight was higher in TH compared with TN and SN, but not SH; kidney and liver higher in TH and SH compared with SN and TN; gastrocnemius lower in SN compared with other groups; soleus higher in SH in relation to other groups. The triglycerides levels (mg/dL) was reduced in the TH groups compared with SH, TN, and SN. There were no changes both in the concentrations of adiponectin and leptin and in the protein expression of GLUT-4 and p70 s6k . HD containing WPI improved body composition, increased the weight of the heart, kidneys, liver and gastrocnemius and soleus muscles; however, this diet maintained the normal histomorphology of muscle and liver and, when associated with RT, reduced the serum levels of triglycerides. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Variation in Protein and Calorie Consumption Following Protein Malnutrition in Rattus norvegicus

    Science.gov (United States)

    Jones, Donna C.; German, Rebecca Z.

    2013-01-01

    Simple Summary Catch-up growth following malnutrition is likely influenced by available protein and calories. We measured calorie and protein consumption following the removal of protein malnutrition after 40, 60 and 90 days, in laboratory rats. Following the transition in diet, animals self-selected fewer calories, implying elevated protein is sufficient to fuel catch-up growth, eventually resulting in body weights and bone lengths greater or equal to those of control animals. Rats rehabilitated at younger ages, had more drastic alterations in consumption. Variable responses in different ages and sex highlight the plasticity of growth and how nutrition affects body form. This work furthers our understanding of how humans and livestock can recover from protein-restriction malnutrition, which seems to employ different biological responses. Abstract Catch-up growth rates, following protein malnutrition, vary with timing and duration of insult, despite unlimited access to calories. Understanding changing patterns of post-insult consumption, relative rehabilitation timing, can provide insight into the mechanisms driving those differences. We hypothesize that higher catch-up growth rates will be correlated with increased protein consumption, while calorie consumption could remain stable. As catch-up growth rates decrease with age/malnutrition duration, we predict a dose effect in protein consumption with rehabilitation timing. We measured total and protein consumption, body mass, and long bone length, following an increase of dietary protein at 40, 60 and 90 days, with two control groups (chronic reduced protein or standard protein) for 150+ days. Immediately following rehabilitation, rats’ food consumption decreased significantly, implying that elevated protein intake is sufficient to fuel catch-up growth rates that eventually result in body weights and long bone lengths greater or equal to final measures of chronically fed standard (CT) animals. The duration of

  19. Effects of Whey, Caseinate, or Milk Protein Ingestion on Muscle Protein Synthesis after Exercise.

    Science.gov (United States)

    Kanda, Atsushi; Nakayama, Kyosuke; Sanbongi, Chiaki; Nagata, Masashi; Ikegami, Shuji; Itoh, Hiroyuki

    2016-06-03

    Whey protein (WP) is characterized as a "fast" protein and caseinate (CA) as a "slow" protein according to their digestion and absorption rates. We hypothesized that co-ingestion of milk proteins (WP and CA) may be effective for prolonging the muscle protein synthesis response compared to either protein alone. We therefore compared the effect of ingesting milk protein (MP) to either WP or CA alone on muscle protein synthesis after exercise in rats. We also compared the effects of these milk-derived proteins to a control, soy protein (SP). Male Sprague-Dawley rats swam for two hours. Immediately after exercise, one of the following four solutions was administered: WP, CA, MP, or SP. Individual rats were euthanized at designated postprandial time points and triceps muscle samples collected for measurement of the protein fractional synthesis rate (FSR). FSR tended to increase in all groups post-ingestion, although the initial peaks of FSR occurred at different times (WP, peak time = 60 min, FSR = 7.76%/day; MP, peak time = 90 min, FSR = 8.34%/day; CA, peak time = 120 min, FSR = 7.85%/day). Milk-derived proteins caused significantly greater increases (p protein synthesis to occur at different times (WP, fast; MP, intermediate; CA, slow) and the dairy proteins have a superior effect on muscle protein synthesis after exercise compared with SP.

  20. Cardioprotective effect of L-glutamate in obese type 2 diabetic Zucker fatty rats

    DEFF Research Database (Denmark)

    Povlsen, Jonas Agerlund; Løfgren, Bo; Rasmussen, Lars Ege

    2009-01-01

    (Wistar-Kyoto) and diabetic (Zucker diabetic fatty (ZDF)) rats, studied at 16 weeks of age. The infarct size (IS)/area-at-risk (AAR) ratio was the primary end-point. Expression of L-glutamate excitatory amino acid transporter (EAAT) 1 (mitochondrial) and EAAT3 (sarcolemmal) was determined by quantitative...... was downregulated in hearts from ZDF rats at both the mRNA and protein levels (P diabetic hearts (P obese diabetic rats have......1. Because diabetic hearts have an increased threshold for cardioprotection by ischaemic preconditioning (IPC), we hypothesized that protection by L-glutamate during reperfusion is restricted in Type 2 diabetic hearts. Previously, we found that L-glutamate-mediated postischaemic cardioprotection...

  1. Kidney gene expression analysis in a rat model of intrauterine growth restriction reveals massive alterations of coagulation genes.

    Science.gov (United States)

    Buffat, Christophe; Boubred, Farid; Mondon, Françoise; Chelbi, Sonia T; Feuerstein, Jean-Marc; Lelièvre-Pégorier, Martine; Vaiman, Daniel; Simeoni, Umberto

    2007-11-01

    In this study, low birth weight was induced in rats by feeding the dams with a low-protein diet during pregnancy. Kidneys from the fetuses at the end of gestation were collected and showed a reduction in overall and relative weight, in parallel with other tissues (heart and liver). This reduction was associated with a reduction in nephrons number. To better understand the molecular basis of this observation, a transcriptome analysis contrasting kidneys from control and protein-deprived rats was performed, using a platform based upon long isothermic oligonucleotides, strengthening the robustness of the results. We could identify over 1800 transcripts modified more than twice (772 induced and 1040 repressed). Genes of either category were automatically classified according to functional criteria, making it possible to bring to light a large cluster of genes involved in coagulation and complement cascades. The promoters of the most induced and most repressed genes were contrasted for their composition in putative transcription factor binding sites, suggesting an overrepresentation of the AP1R binding site, together with the transcription induction of factors actually binding to this site in the set of induced genes. The induction of coagulation cascades in the kidney of low-birth-weight rats provides a putative rationale for explaining thrombo-endothelial disorders also observed in intrauterine growth-restricted human newborns. These alterations in the kidneys have been reported as a probable cause for cardiovascular diseases in the adult.

  2. Effects of thyroxine and dexamethasone on rat submandibular glands

    International Nuclear Information System (INIS)

    Sagulin, G.B.; Roomans, G.M.

    1989-01-01

    Glucocorticoids and thyroxine are known to have a marked effect on the flow rate and protein composition of rat parotid saliva in hormonally intact animals. In the present study, the effects of a one-week treatment of male rats with dexamethasone and thyroxine were studied by electron microscopy and x-ray micro-analysis, and by measurement of the flow rate and determination of the chemical composition of pilocarpine-induced submandibular saliva. Thyroxine had the most extensive effects on the submandibular gland. The acinar cells were enlarged and filled with mucus; the cellular calcium concentration was significantly increased. The flow rate of the submandibular saliva was significantly reduced compared with that in saline-injected control animals. Thyroxine caused an increase in the concentrations of protein, total calcium, and potassium in the saliva. Dexamethasone had no significant effects on gland ultrastructure or on the elemental composition of the acinar cells; flow rate was not affected, but the concentrations of protein, calcium, and potassium were significantly increased. The effects of dexamethasone and thyroxine on the flow rate and protein composition of pilocarpine-induced rat submandibular saliva differ from those reported earlier for rat parotid saliva after simultaneous stimulation with pilocarpine and isoproterenol

  3. Effects of proteins on absorption by the rat of iron from polymeric and low-molecular-weight iron species

    International Nuclear Information System (INIS)

    Berner, L.; Miller, D.

    1986-01-01

    To examine effects of proteins on Fe absorption from polymeric ferric hydroxides (polys) or low-molecular-weight complexes (LMW Fe), 2 studies were conducted. First, anemic rats were given 59 Fe-labeled polys or LMW Fe in the presence and absence of pepsin-digested soy protein isolate, casein, and BSA. The doses were introduced into ligated duodenal segments for 1 hr. Uptake into the carcass of 59 Fe from polys was doubled in the presence of BSA (7.8 vs 16.1%, p 59 Fe from LMW Fe was 7X greater than from polys; BSA and casein had no effect but soy depressed Fe uptake by almost 50% (57.4 vs 35.5%, p < .05). The second experiment repeated the first except that the proteins were not pepsin-digested and the doses were given by gastric intubation. All Fe, whether from polys or LMW Fe, was highly available (although in vitro digestions reveal that polys are not depolymerized to a large degree under simulated stomach conditions). Soy depressed Fe uptake from both sources (92.9 vs. 81.6%, LMW Fe and 85.4 vs 73.7%, polys) while casein and BSA had no effect. These results show: (1) BSA can depolymerize polys in the rat duodenum, thus enhancing absorption; (2) soy isolate generally depressed Fe uptake; and (3) the rat stomach appears to have an exceptional capacity for equalizing Fe sources

  4. Decreased insulin secretion in pregnant rats fed a low protein diet.

    Science.gov (United States)

    Gao, Haijun; Ho, Eric; Balakrishnan, Meena; Yechoor, Vijay; Yallampalli, Chandra

    2017-10-01

    Low protein (LP) diet during pregnancy leads to reduced plasma insulin levels in rodents, but the underlying mechanisms remain unclear. Glucose is the primary insulin secretagogue, and enhanced glucose-stimulated insulin secretion (GSIS) in beta cells contributes to compensation for insulin resistance and maintenance of glucose homeostasis during pregnancy. In this study, we hypothesized that plasma insulin levels in pregnant rats fed LP diet are reduced due to disrupted GSIS of pancreatic islets. We first confirmed reduced plasma insulin levels, then investigated in vivo insulin secretion by glucose tolerance test and ex vivo GSIS of pancreatic islets in the presence of glucose at different doses, and KCl, glibenclamide, and L-arginine. Main findings include (1) plasma insulin levels were unaltered on day 10, but significantly reduced on days 14-22 of pregnancy in rats fed LP diet compared to those of control (CT) rats; (2) insulin sensitivity was unchanged, but glucose intolerance was more severe in pregnant rats fed LP diet; (3) GSIS in pancreatic islets was lower in LP rats compared to CT rats in the presence of glucose, KCl, and glibenclamide, and the response to L-arginine was abolished in LP rats; and (4) the total insulin content in pancreatic islets and expression of Ins2 were reduced in LP rats, but expression of Gcg was unaltered. These studies demonstrate that decreased GSIS in beta cells of LP rats contributes to reduced plasma insulin levels, which may lead to placental and fetal growth restriction and programs hypertension and other metabolic diseases in offspring. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Protein degradation in skeletal muscle during experimental hyperthyroidism in rats and the effect of beta-blocking agents.

    Science.gov (United States)

    Angerås, U; Hasselgren, P O

    1987-04-01

    beta-Blocking agents are increasingly used in the management of hyperthyroid patients. The effect of this treatment on increased muscle protein breakdown in the hyperthyroid state is not known. In the present study, experimental hyperthyroidism was induced in rats by daily ip injections of T3 (100 micrograms/100 g BW) during a 10-day period. Control animals received corresponding volumes of solvent. In groups of rats the selective beta-1-blocking agent metoprolol or the nonselective beta-blocker propranolol was infused by miniosmotic pumps implanted sc on the backs of the animals. Protein degradation was measured in incubated intact soleus and extensor digitorum longus muscles by determining tyrosine release into the incubation medium. The protein degradation rate in incubated extensor digitorum longus and soleus muscles was increased by 50-60% during T3 treatment. Metoprolol or propranolol did not influence muscle protein breakdown in either T3-treated or control animals. The results suggest that T3-induced increased muscle proteolysis is not mediated by beta-receptors, and muscle weakness and wasting in hyperthyroidism might not be affected by beta-blockers.

  6. Effect of Piper betel leaf stalk extract on protein metabolism in reproductive tissues of male albino rats

    OpenAIRE

    V Vengaiah; A Govardhan Naik; C Changamma

    2015-01-01

    Objective: To know the impact of Piper betel leaf stalk (P. betel) extract on Protein and energy metabolism and its role in male albino rats. Methods: Healthy adult (3-4 months old) male Wistar strain albino rats were administered with betel leaf stalk extract, at the dose of 50 mg/kg/day through oral gavages for 15 days. Twenty four hours after the last dose, the animals were autopsied. In order to assess antifertility effect in testis, epididymis, seminal vesicle and prostate gland, esti...

  7. Leucine and protein metabolism in obese Zucker rats.

    Directory of Open Access Journals (Sweden)

    Pengxiang She

    Full Text Available Branched-chain amino acids (BCAAs are circulating nutrient signals for protein accretion, however, they increase in obesity and elevations appear to be prognostic of diabetes. To understand the mechanisms whereby obesity affects BCAAs and protein metabolism, we employed metabolomics and measured rates of [1-(14C]-leucine metabolism, tissue-specific protein synthesis and branched-chain keto-acid (BCKA dehydrogenase complex (BCKDC activities. Male obese Zucker rats (11-weeks old had increased body weight (BW, 53%, liver (107% and fat (∼300%, but lower plantaris and gastrocnemius masses (-21-24%. Plasma BCAAs and BCKAs were elevated 45-69% and ∼100%, respectively, in obese rats. Processes facilitating these rises appeared to include increased dietary intake (23%, leucine (Leu turnover and proteolysis [35% per g fat free mass (FFM, urinary markers of proteolysis: 3-methylhistidine (183% and 4-hydroxyproline (766%] and decreased BCKDC per g kidney, heart, gastrocnemius and liver (-47-66%. A process disposing of circulating BCAAs, protein synthesis, was increased 23-29% by obesity in whole-body (FFM corrected, gastrocnemius and liver. Despite the observed decreases in BCKDC activities per gm tissue, rates of whole-body Leu oxidation in obese rats were 22% and 59% higher normalized to BW and FFM, respectively. Consistently, urinary concentrations of eight BCAA catabolism-derived acylcarnitines were also elevated. The unexpected increase in BCAA oxidation may be due to a substrate effect in liver. Supporting this idea, BCKAs were elevated more in liver (193-418% than plasma or muscle, and per g losses of hepatic BCKDC activities were completely offset by increased liver mass, in contrast to other tissues. In summary, our results indicate that plasma BCKAs may represent a more sensitive metabolic signature for obesity than BCAAs. Processes supporting elevated BCAA]BCKAs in the obese Zucker rat include increased dietary intake, Leu and protein

  8. Exercise Training and Calorie Restriction Influence the Metabolic Parameters in Ovariectomized Female Rats

    Directory of Open Access Journals (Sweden)

    Anikó Pósa

    2015-01-01

    Full Text Available The estrogen deficiency after menopause leads to overweight or obesity, and physical exercise is one of the important modulators of this body weight gain. Female Wistar rats underwent ovariectomy surgery (OVX or sham operation (SO. OVX and SO groups were randomized into new groups based on the voluntary physical activity (with or without running and the type of diet for 12 weeks. Rats were fed standard chow (CTRL, high triglyceride diet (HT, or restricted diet (CR. The metabolic syndrome was assessed by measuring the body weight gain, the glucose sensitivity, and the levels of insulin, triglyceride, leptin, and aspartate aminotransferase transaminase (AST and alanine aminotransferase (ALT. The exercise training combined with the CR resulted in improvements in the glucose tolerance and the insulin sensitivity. Plasma TG, AST, and ALT levels were significantly higher in OVX rats fed with HT but these high values were suppressed by exercise and CR. Compared to SO animals, estrogen deprivation with HT caused a significant increase in leptin level. Our data provide evidence that CR combined with voluntary physical exercise can be a very effective strategy to prevent the development of a metabolic syndrome induced by high calorie diet.

  9. Dietary carbohydrates impair the protective effect of protein restriction against diabetes in NZO mice used as a model of type 2 diabetes.

    Science.gov (United States)

    Laeger, Thomas; Castaño-Martinez, Teresa; Werno, Martin W; Japtok, Lukasz; Baumeier, Christian; Jonas, Wenke; Kleuser, Burkhard; Schürmann, Annette

    2018-06-01

    Low-protein diets are well known to improve glucose tolerance and increase energy expenditure. Increases in circulating fibroblast growth factor 21 (FGF21) have been implicated as a potential underlying mechanism. We aimed to test whether low-protein diets in the context of a high-carbohydrate or high-fat regimen would also protect against type 2 diabetes in New Zealand Obese (NZO) mice used as a model of polygenetic obesity and type 2 diabetes. Mice were placed on high-fat diets that provided protein at control (16 kJ%; CON) or low (4 kJ%; low-protein/high-carbohydrate [LP/HC] or low-protein/high-fat [LP/HF]) levels. Protein restriction prevented the onset of hyperglycaemia and beta cell loss despite increased food intake and fat mass. The effect was seen only under conditions of a lower carbohydrate/fat ratio (LP/HF). When the carbohydrate/fat ratio was high (LP/HC), mice developed type 2 diabetes despite the robustly elevated hepatic FGF21 secretion and increased energy expenditure. Prevention of type 2 diabetes through protein restriction, without lowering food intake and body fat mass, is compromised by high dietary carbohydrates. Increased FGF21 levels and elevated energy expenditure do not protect against hyperglycaemia and type 2 diabetes per se.

  10. IFITM Proteins Restrict HIV-1 Infection by Antagonizing the Envelope Glycoprotein

    Directory of Open Access Journals (Sweden)

    Jingyou Yu

    2015-10-01

    Full Text Available The interferon-induced transmembrane (IFITM proteins have been recently shown to restrict HIV-1 and other viruses. Here, we provide evidence that IFITM proteins, particularly IFITM2 and IFITM3, specifically antagonize the HIV-1 envelope glycoprotein (Env, thereby inhibiting viral infection. IFITM proteins interact with HIV-1 Env in viral producer cells, leading to impaired Env processing and virion incorporation. Notably, the level of IFITM incorporation into HIV-1 virions does not strictly correlate with the extent of inhibition. Prolonged passage of HIV-1 in IFITM-expressing T lymphocytes leads to emergence of Env mutants that overcome IFITM restriction. The ability of IFITMs to inhibit cell-to-cell infection can be extended to HIV-1 primary isolates, HIV-2 and SIVs; however, the extent of inhibition appears to be virus-strain dependent. Overall, our study uncovers a mechanism by which IFITM proteins specifically antagonize HIV-1 Env to restrict HIV-1 infection and provides insight into the specialized role of IFITMs in HIV infection.

  11. Hypolipidemic effect of dietary pea proteins: Impact on genes regulating hepatic lipid metabolism.

    Science.gov (United States)

    Rigamonti, Elena; Parolini, Cinzia; Marchesi, Marta; Diani, Erika; Brambilla, Stefano; Sirtori, Cesare R; Chiesa, Giulia

    2010-05-01

    Controversial data on the lipid-lowering effect of dietary pea proteins have been provided and the mechanisms behind this effect are not completely understood. The aim of the study was to evaluate a possible hypolipidemic activity of a pea protein isolate and to determine whether pea proteins could affect the hepatic lipid metabolism through regulation of genes involved in cholesterol and fatty acid homeostasis. Rats were fed Nath's hypercholesterolemic diets for 28 days, the protein sources being casein or a pea protein isolate from Pisum sativum. After 14 and 28 days of dietary treatment, rats fed pea proteins had markedly lower plasma cholesterol and triglyceride levels than rats fed casein (pPea protein-fed rats displayed higher hepatic mRNA levels of LDL receptor versus those fed casein (ppea protein-fed rats than in rats fed casein (ppea proteins in rats. Moreover, pea proteins appear to affect cellular lipid homeostasis by upregulating genes involved in hepatic cholesterol uptake and by downregulating fatty acid synthesis genes.

  12. PROGRESSIVE ALTERATION OF SERUM PROTEINS IN RATS SEVERAL MONTHS AFTER AN ACUTE OR PROTRACTED IRRADIATION

    Energy Technology Data Exchange (ETDEWEB)

    Ghys, R.; Reuter, A.

    1963-06-15

    Delayed changes of the serum proteins in male Sprague Dawley rats that survived the acute radiation syndrome were investigated. Doses of Co/sup 60/ gamma ranging from LD/sub O/ to LD/sub 50/ were given to rats six to eight weeks of age. Paper electrophoreses and microdosage of proteins by the buiret method were performed on plasma proteins for 206 rats: 29 with acute irradiation; 73 chronic irradiation; 44 acute irradiation following cold acclimatization; and 80 normal animals. No significant variations in the total serum proteins were found in andy one group. Alpha globulins were found to be slightly above normal in some irradiated rats, but there was no significant variation in the BETA globulin fraction. Gamma globulins showed a marked and consistent increase following irradiation. Thus for observed protein chandges in irradiated rats have not proven to be dose dependent. It is suggested that the changes may provide a link between early irradiation syndrome and late effects. (H.M.G.)

  13. Fast axonal transport of labeled proteins in motoneurons of exercise-trained rats

    International Nuclear Information System (INIS)

    Jasmin, B.J.; Lavoie, P.A.; Gardiner, P.F.

    1988-01-01

    In this study, the fast orthograde axonal transport of radiolabeled proteins was measured to determine the effects of endurance-running training on transport velocity and amounts of transported proteins in rat sciatic motoneurons. Female rats were subjected to a progressive running-training program for 10-12 wk. Twenty-four hours after the last training session, rats underwent right L4-L5 dorsal root ganglionectomy. The next day, 20 microCi of [3H]leucine was injected bilaterally in the vicinity of the motoneuronal cell bodies supplying the sciatic nerve, to study axonal transport parameters. Results showed that peak and average transport velocities of labeled proteins were significantly (P less than 0.05) increased by 22 and 29%, respectively, in the deafferented nerves of the runners as compared with controls. Moreover, the amount of total transported protein-bound radioactivity was increased in both left (40%) and right (37%) sciatic nerves of the runners. An exhaustive exercise session reduced (P less than 0.05) peak displacement (8%) and total transported protein-bound radioactivity (36%) in the sciatic nerves of control rats, whereas no changes were noticed in trained animals. The data suggest that chronic endurance running induces significant adaptations in the fast axonal transport of labeled proteins

  14. Effect of the “protein diet” and bone tissue.

    Science.gov (United States)

    Nascimento da Silva, Zoraide; Azevedo de Jesuz, Vanessa; De Salvo Castro, Eduardo; Soares da Costa, Carlos Alberto; Teles Boaventura, Gilson; Blondet de Azeredo, Vilma

    2014-01-01

    The aim of this study is to evaluate the effect of the hyperproteic diet consumption on bone tissue. The study was conducted during sixty days. Twenty eight Wistar albinus rats, adults, originated from Laboratory of Experimental Nutrition were divided in four groups: (n = 7); Control 1 (C1), Control 2 (C2), Hyperproteic 1 (HP1) e Hyperproteic 2 (HP2). The C2 and HP2 groups were submitted to 30% of food restriction. The hyperproteic diet was based on the Atkins diet and prepared to simulate the protein diet. At the end of the study the animals were anesthetized to performer bone densitometry analyses by DEXA and blood and tissue collection. Serum and bone minerals analyses were conducted by colorimetric methods in automated equipment. The total bone mineral density (BMD) of the pelvis and the spine of the food restriction groups (HP2 e C2) were lower (p hyperproteic groups (HP1 e HP2). It was observed similar effect on the osteocalcin level, that presented lower (p hyperproteic groups. The insulin level was lower only in HP2 and serum calcium of the HP1 and HP2 groups was lower than C1. The protein diet promotes significant bone change on femur and in the hormones levels related to bone synthesis and maintenance of this tissue.

  15. Gestational Protein Restriction Impairs Insulin-Regulated Glucose Transport Mechanisms in Gastrocnemius Muscles of Adult Male Offspring

    Science.gov (United States)

    Blesson, Chellakkan S.; Sathishkumar, Kunju; Chinnathambi, Vijayakumar

    2014-01-01

    Type II diabetes originates from various genetic and environmental factors. Recent studies showed that an adverse uterine environment such as that caused by a gestational low-protein (LP) diet can cause insulin resistance in adult offspring. The mechanism of insulin resistance induced by gestational protein restriction is not clearly understood. Our aim was to investigate the role of insulin signaling molecules in gastrocnemius muscles of gestational LP diet–exposed male offspring to understand their role in LP-induced insulin resistance. Pregnant Wistar rats were fed a control (20% protein) or isocaloric LP (6%) diet from gestational day 4 until delivery and a normal diet after weaning. Only male offspring were used in this study. Glucose and insulin responses were assessed after a glucose tolerance test. mRNA and protein levels of molecules involved in insulin signaling were assessed at 4 months in gastrocnemius muscles. Muscles were incubated ex vivo with insulin to evaluate insulin-induced phosphorylation of insulin receptor (IR), Insulin receptor substrate-1, Akt, and AS160. LP diet-fed rats gained less weight than controls during pregnancy. Male pups from LP diet–fed mothers were smaller but exhibited catch-up growth. Plasma glucose and insulin levels were elevated in LP offspring when subjected to a glucose tolerance test; however, fasting levels were comparable. LP offspring showed increased expression of IR and AS160 in gastrocnemius muscles. Ex vivo treatment of muscles with insulin showed increased phosphorylation of IR (Tyr972) in controls, but LP rats showed higher basal phosphorylation. Phosphorylation of Insulin receptor substrate-1 (Tyr608, Tyr895, Ser307, and Ser318) and AS160 (Thr642) were defective in LP offspring. Further, glucose transporter type 4 translocation in LP offspring was also impaired. A gestational LP diet leads to insulin resistance in adult offspring by a mechanism involving inefficient insulin-induced IR, Insulin receptor

  16. Effect of short-term vs. long-term elevation of dietary protein intake on responsiveness of rat thick ascending limbs to peptide hormones.

    Science.gov (United States)

    Goldstein, David L; Plaga, Kimberly

    2002-10-01

    We compared the renal responses of rats on three diet regimens. Rats received either 8% protein food (low-protein, LP) for 10 weeks following weaning, 8% protein for 9 weeks followed by 1 week on 30% protein (short-term high-protein, SHP), or 30% protein for 10 weeks (high-protein, HP). Kidneys from HP rats were enlarged by approximately 50%, or 20% when corrected for body mass. Most of this hypertrophy resulted from enlargement of the inner stripe of the outer medulla, site of the thick ascending limbs (TAL), and TAL from HP rats were larger in diameter. SHP rats had TAL diameters similar to HP rats, but changes in renal mass or height of renal zones did not reach statistical significance. The activity of adenylyl cyclase (AC) in TAL, measured from the accumulation of cAMP in isolated tubules, increased with dose of both arginine vasopressin (AVP) and glucagon in all rats. However, HP rats had significantly higher hormone-induced AC activity than LP or SHP rats, which were not different from each other. Our results suggest that tubule hypertrophy may precede up-regulation of hormone-sensitive AC activity during the progression of renal response to elevated dietary protein.

  17. Changes in UCP expression in tissues of Zucker rats fed diets with different protein content.

    Science.gov (United States)

    Masanés, R M; Yubero, P; Rafecas, I; Remesar, X

    2002-09-01

    The effect of dietary protein content on the uncoupling proteins (UCP) 1, 2 and 3 expression in a number of tissues of Zucker lean and obese rats was studied. Thirty-day-old male Zucker lean (Fa/?) and obese (fa/fa) rats were fed on hyperproteic (HP, 30% protein), standard (RD, 17% protein) or hypoproteic (LP, 9% protein) diets ad libitum for 30 days. Although dietary protein intake affected the weights of individual muscles in lean and obese animals, these weights were similar. In contrast, huge differences were observed in brown adipose tissue (BAT) and liver weights. Lean rats fed on the LP diet generally increased UCP expression, whereas the HP group had lower values. Obese animals, HP and LP groups showed higher UCP expression in muscles, with slight differences in BAT and lower values for UCP3 in subcutaneous adipose tissue. The mean values of UCP expression in BAT of obese rats were lower than in their lean counterpart, whereas the expression in skeletal muscle was increased. Thus, expression of UCPs can be modified by dietary protein content, in lean and obese rats. A possible thermogenic function of UCP3 in muscle and WAT in obese rats must be taken into account.

  18. Fetal kidney programming by severe food restriction: effects on structure, hormonal receptor expression and urinary sodium excretion in rats.

    Science.gov (United States)

    Vaccari, Barbara; Mesquita, Flavia F; Gontijo, Jose A R; Boer, Patricia A

    2015-03-01

    The present study investigates, in 23-day-old and adult male rats, the effect of severe food restriction in utero on blood pressure (BP), and its association with nephron structure and function changes, angiotensin II (AT1R/AT2R), glucocorticoid (GR) and mineralocorticoid (MR) receptor expression. The daily food supply to pregnant rats was measured and one group (n=15) received normal quantity of food (NF) while the other received 50% of that (FR50%) (n=15). Kidneys were processed to AT1R, AT2R, MR, and GR immunolocalization and for western blotting analysis. The renal function was estimated by creatinine and lithium clearances in 12-week-old offspring. By stereological analyses, FR50% offspring present a reduction of nephron numbers (35%) with unchanged renal volume. Expression of AT1R and AT2R was significantly decreased in FR50% while the expression of GR and MR increased in FR50%. We also verified a pronounced decrease in urinary sodium excretion accompanied by increased BP in 12-week-old FR50% offspring. The current data suggest that changes in renal function are conducive to excess sodium tubule reabsorption, and this might potentiate the programming of adult hypertension. It is plausible to arise in the current study an association between decreasing natriuresis, reciprocal changes in renal AngII and steroid receptors with the hypertension development found in FR50% compared with age-matched NF offspring. © The Author(s) 2013.

  19. Glutamic Acid as Enhancer of Protein Synthesis Kinetics in Hepatocytes from Old Rats.

    Science.gov (United States)

    Brodsky, V Y; Malchenko, L A; Butorina, N N; Lazarev Konchenko, D S; Zvezdina, N D; Dubovaya, T K

    2017-08-01

    Dense cultures of hepatocytes from old rats (~2 years old, body weight 530-610 g) are different from similar cultures of hepatocytes from young rats by the low amplitude of protein synthesis rhythm. Addition of glutamic acid (0.2, 0.4, or 0.6 mg/ml) into the culture medium with hepatocytes of old rats resulted in increase in the oscillation amplitudes of the protein synthesis rhythm to the level of young rats. A similar action of glutamic acid on the protein synthesis kinetics was observed in vivo after feeding old rats with glutamic acid. Inhibition of metabotropic receptors of glutamic acid with α-methyl-4-carboxyphenylglycine (0.01 mg/ml) abolished the effect of glutamic acid. The amplitude of oscillation of the protein synthesis rhythm in a cell population characterizes synchronization of individual oscillations caused by direct cell-cell communications. Hence, glutamic acid, acting as a receptor-dependent transmitter, enhanced direct cell-cell communications of hepatocytes that were decreased with aging. As differentiated from other known membrane signaling factors (gangliosides, norepinephrine, serotonin, dopamine), glutamic acid can penetrate into the brain and thus influence the communications and protein synthesis kinetics that are disturbed with aging not only in hepatocytes, but also in neurons.

  20. Early postnatal low-protein nutrition, metabolic programming and the autonomic nervous system in adult life

    OpenAIRE

    de Oliveira, Júlio Cezar; Grassiolli, Sabrina; Gravena, Clarice; de Mathias, Paulo Cezar Freitas

    2012-01-01

    Abstract Protein restriction during lactation has been used as a rat model of metabolic programming to study the impact of perinatal malnutrition on adult metabolism. In contrast to protein restriction during fetal life, protein restriction during lactation did not appear to cause either obesity or the hallmarks of metabolic syndrome, such as hyperinsulinemia, when individuals reached adulthood. However, protein restriction provokes body underweight and hypoinsulinemia. This review is focused...

  1. Heating Has No Effect on the Net Protein Utilisation from Egg Whites in Rats

    Directory of Open Access Journals (Sweden)

    Ryosuke Matsuoka

    2017-01-01

    Full Text Available Egg whites (EW are a good source of protein; however, they are typically heated prior to consumption. Therefore, we investigated the effects of different heating conditions on the protein utilisation rate of EW. Male Sprague-Dawley rats (n=36, 198±1 g were divided into six groups and fed American Institute of Nutrition-76 chow containing unheated EW, soft-boiled EW, boiled EW, milk whey protein, soybean protein, or no protein over a 10-day period using pair-feeding. Urine and faeces were sampled daily beginning on day 5 to measure nitrogen content and the net protein utilisation (NPU rate. The soybean protein group had a significantly lower level of food intake and was thus excluded from subsequent analyses. The NPU value was similar among the unheated, soft-boiled, and boiled EW groups (97.5±0.4, 96.5±0.1, and 96.5±0.7, resp.. The EW group values were significantly higher than the whey group values (90.5±1.0. These results show that EW serve as a good source of protein, irrespective of heating.

  2. Differential effects of restricted versus unlimited high-fat feeding in rats on fat mass, plasma hormones and brain appetite regulators.

    Science.gov (United States)

    Shiraev, T; Chen, H; Morris, M J

    2009-07-01

    The rapid rise in obesity has been linked to altered food consumption patterns. There is increasing evidence that, in addition to total energy intake, the macronutrient composition of the diet may influence the development of obesity. The present study aimed to examine the impact of high dietary fat content, under both isocaloric and hypercaloric conditions, compared with a low fat diet, on adiposity, glucose and lipid metabolism, and brain appetite regulators in rats. Male Sprague-Dawley rats were exposed to one of three diets: control (14% fat), ad lib high-fat palatable (HFD, 35% fat) or high-fat palatable restricted (HFD-R, matched to the energy intake of control) and were killed in the fasting state 11 weeks later. Body weight was increased by 28% in unrestricted HFD fed rats, with an almost tripling of caloric intake and fat mass (P < 0.001) and double the plasma triglycerides of controls. Glucose intolerance and increased insulin levels were observed. HFD-R animals calorie matched to control had double their fat mass, plasma insulin and triglycerides (P < 0.05). Only ad lib consumption of the HFD increased the hypothalamic mRNA expression of the appetite-regulating peptides, neuropeptide Y and pro-opiomelanocortin. Although restricted consumption of palatable HFD had no significant impact on hypothalamic appetite regulators or body weight, it increased adiposity and circulating triglycerides, suggesting that the proportion of dietary fat, independent of caloric intake, affects fat deposition and the metabolic profile.

  3. On the presence of prostatic secretion protein in rat seminal fluid

    International Nuclear Information System (INIS)

    Borgstroem, E.; Pousette, A.; Bjoerk, P.; Hoegberg, B.; Carlstroem, K.; Sundelin, B.; Gustafsson, J.A.

    1981-01-01

    The copulating plug collected from the tip of the penis from rats immediately after decapitation contains a protein very similar and probably identical to PSP (prostatic secretion protein); this protein has earlier been purified from rat prostatic cytosol and characterized. The protein present in the copulating plug interacts with [3H]estramustine and binds to the antibody raised against rat PSP. The concentration of the protein in the copulating plug is 400 ng/mg of total protein, when measured using the radioimmunoassay technique developed earlier for measurement of PSP in rat prostate. The [3H]estramustine-protein complex formed in a preparation of the copulating plug has an apparent molecular weight of about 50,000 and a sedimentation coefficient of about 3S when analyzed using sucrose density gradient centrifugation. The complex was retained on Concanavalin-A Sepharose indicating that the protein is a glycoprotein. Binding of the complex was also observed on hydroxylapatite and DEAE-Sephadex columns, from which it was eluted at 0.18 M KCl. Light microscope autoradiograms of rat sperms incubated with 125I-labeled PSP indicated that PSP is bound to all parts of the sperms. A macromolecule interacting with the PSP-antibodies is also present in human seminal fluid but at a concentration considerably lower than in rat seminal fluid. The present study shows that a macromolecule probably identical to prostatic secretion protein is present in the copulating plug from the rat. The biological role of this protein in normal male fertility is discussed

  4. Impaired mitochondrial metabolism and protein synthesis in streptozotocin diabetic rat hepatocytes

    International Nuclear Information System (INIS)

    Memon, R.A.; Bessman, S.P.; Mohan, C.

    1990-01-01

    Isolated hepatocytes prepared from control, streptozotocin diabetic rats were incubated at 30 degrees C in Krebs-Henseleit bicarbonate buffer, pH 7.4, containing 0.5 mM concentration of each of the 20 natural amino acids. Effect of insulin on the oxidation of 2,3- 14 C and 1,4- 14 C succinate (suc) carbons and their incorporation into hepatocyte protein, lipid and various metabolic intermediates was studied. Mitochondrial oxidation of suc carbons and their incorporation into protein and lipid was significantly lower in diabetic and insulin treated diabetic rats. Diabetic rats failed to exhibit any significant insulin effect on the oxidation of either 2,3 or 1,4- 14 C suc carbons. Amphibolic channeling of 2,3- 14 C suc carbons into amino acids was significantly reduced in hepatocytes of diabetic rats, however, more of these carbons were diverted into the gluconeogenesis pathway. Diabetes caused a far greater decrease in the oxidation of 2,3- 14 C suc carbons as compared to 1,4- 14 C suc. Based on an earlier report that insulin stimulates only the intramitochondrial Krebs cycle reactions, the authors conclude that the diminished level of anabolic activities in the diabetic rat hepatocytes is due to the subsequent reduction in amphibolic channeling of metabolic intermediates

  5. Excessive endoplasmic reticulum stress and decreased neuroplasticity-associated proteins in prefrontal cortex of obese rats and the regulatory effects of aerobic exercise.

    Science.gov (United States)

    Li, Feng; Liu, Bei Bei; Cai, Ming; Li, Jing Jing; Lou, Shu-Jie

    2018-04-06

    Studies have shown high fat diet induced obesity may cause cognition impairment and down-regulation of neuroplasticity-associated proteins, while aerobic exercise could improve that damage. Endoplasmic reticulum stress (ERS) has been reported to play a key role in regulating neuroplasticity-associated proteins expression, folding and post-translational modification in hippocampus of obese rodent models, however, the effects of ERS on neuroplasticity-associated proteins and possible underlying mechanisms in prefrontal cortex are not fully clear. In order to clarify changes of neuroplasticity-associated proteins and ERS in the prefrontal cortex of obese rats, male SD rats were fed on high fat diet for 8 weeks to establish the obese model. Then, 8 weeks of aerobic exercise treadmill intervention was arranged for the obese rats. Results showed that high fat diet induced obesity caused hyperlipidemia, and significantly promoted FATP1 expression in the prefrontal cortex, meanwhile, we found up-regulation of GRP78, p-PERK, p-eIF2α, caspase-12, CHOP, and Bax/Bcl-2, reflecting the activation of ERS and ERS-mediated apoptosis. Moreover, reduced BDNF and SYN was found in obese rats. However, FATP1, GRP78, p-PERK, p-eIF2α, caspase-12, CHOP, and Bax/Bcl-2 expressions were obviously reversed by aerobic exercise intervention. These results suggested that dietary obesity could induce Prefrontal ERS in SD rats and excessive ERS may play a critical role in decreasing the levels of neuroplasticity-associated proteins. Moreover, aerobic exercise could relieve ERS, thus promoted the expression of neuroplasticity-associated proteins. Copyright © 2018. Published by Elsevier Inc.

  6. Effects of developmental exposure to a Commercial PBDE mixture (DE-71) on protein networks in the rat Cerebellum and Hippocampus

    Science.gov (United States)

    Title (20 words): Effects of developmental exposure to a Commercial PBDE mixture (DE-71) on protein networks in the rat Cerebellum and Hippocampus. Introduction (120 words): Polybrominated diphenyl ethers (PBDE5) possess neurotoxic effects similar to those of PCBs. The cellular a...

  7. Study of the evolution of the placenta and fetal pancreas in the pathophysiology of growth retardation intrauterine due to restricted maternal diet

    Directory of Open Access Journals (Sweden)

    Marilza Vieira Cunha Rudge

    1999-03-01

    Full Text Available CONTEXT: Intrauterine growth retard (IUGR continues to be a significant perinatology problem at the end of this century. The nature of the etiologic agent, the time when the attack occurred during pregnancy and its duration affect the type of IUGR. OBJECTIVE: To study the evolution of fetal pancreas and placenta between the 18th and 21st day of pregnancy in rats submitted to maternal protein-calorie restriction. DESIGN: Randomized controlled trial on laboratory animal. SAMPLE: Forty-one normoglycemic pregnant Wistar rats. INTERVENTION: Rats were divided into six experimental groups according to their access to food and date of cesarean section (18th or 21st day: control with free access to food; diet restricted to 25% introduced on 1st day of pregnancy; and diet restricted to 25% after the 3rd day of pregnancy. MAIN MEASUREMENTS: Newborn weight, placenta weight, histopathological study (morphological histochemistry RESULTS: Maternal protein-calorie malnutrition caused intrauterine growth retard (IUGR after the 18th day of pregnancy. Dietary restriction did not interfere with the morphology of the fetal pancreas and the immunohistochemical study of the placenta showed that glycogen stores were decreased between the 18th and 21st day in the control group and in a diet restricted to 25% from the first day of pregnancy. Dietary restriction after the 3rd day of pregnancy led to low placental glycogen concentrations on the 18th day and disappearance on the 21st day. CONCLUSION: The pathophysiology of IUGR due to maternal protein-calorie restriction in rats is related to lower placental weight and low placental glycogen stores.

  8. Arginase up-regulation and eNOS uncoupling contribute to impaired endothelium-dependent vasodilation in a rat model of intrauterine growth restriction.

    Science.gov (United States)

    Grandvuillemin, Isabelle; Buffat, Christophe; Boubred, Farid; Lamy, Edouard; Fromonot, Julien; Charpiot, Philippe; Simoncini, Stephanie; Sabatier, Florence; Dignat-George, Françoise; Peyter, Anne-Christine; Simeoni, Umberto; Yzydorczyk, Catherine

    2018-05-09

    Individuals born after intrauterine growth restriction (IUGR) are at increased risk of developing cardiovascular diseases in adulthood, notably hypertension (HTN). Alterations in the vascular system, particularly impaired endothelium-dependent vasodilation, may play an important role in long-term effects of IUGR. Whether such vascular dysfunction precedes HTN has not been fully established in individuals born after IUGR. Moreover, the intimate mechanisms of altered endothelium-dependent vasodilation remain incompletely elucidated. We therefore investigated, using a rat model of IUGR, whether impaired endothelium-dependent relaxation precedes the development of HTN and whether key components of the L-Arginine-nitric oxide (NO) pathway are involved in its pathogenesis. Pregnant rats were fed with a control (CTRL, 23% casein) or low-protein diet (LP, 9% casein) to induce IUGR. Systolic blood pressure (SBP) was measured by tail-cuff plethysmography in 5- and 8-week-old male offspring. Aortic rings were isolated to investigate relaxation to acetylcholine, NO production, eNOS protein content, arginase activity, and superoxide anion production. SBP was not different at 5 weeks, but significantly increased in 8-week-old LP vs. CRTL offspring. In 5-week-old LP vs. CRTL males, endothelium-dependent vasorelaxation was significantly impaired, but restored by pre-incubation with L-Arginine or the arginase inhibitor BEC; NO production was significantly reduced, but restored by L-Arginine pretreatment; total eNOS protein, dimer/monomer ratio, and arginase activity were significantly increased; superoxide anion production was significantly enhanced, but normalized by pretreatment with the NOS inhibitor L-NNA. In this model, IUGR leads to early-impaired endothelium-dependent vasorelaxation, resulting from arginase up-regulation and eNOS uncoupling, which precedes the development of HTN.

  9. Effects of chronic ethanol administration on hepatic glycoprotein secretion in the rat

    International Nuclear Information System (INIS)

    Sorrell, M.F.; Nauss, J.M.; Donohue, T.M. Jr.; Tuma, D.J.

    1983-01-01

    The effects of chronic ethanol feeding on protein and glycoprotein synthesis and secretion were studied in rat liver slices. Liver slices from rats fed ethanol for 4-5 wk showed a decreased ability to incorporate [ 14 C]glucosamine into medium trichloracetic acid-precipitable proteins when compared to the pair-fed controls; however, the labeling of hepatocellular glycoproteins was unaffected by chronic ethanol treatment. Immunoprecipitation of radiolabeled secretory (serum) glycoproteins with antiserum against rat serum proteins showed a similar marked inhibition in the appearance of glucosamine-labeled proteins in the medium of slices from ethanol-fed rats. Minimal effects, however, were noted in the labeling of intracellular secretory glycoproteins. Protein synthesis, as determined by measuring [ 14 C]leucine incorporation into medium and liver proteins, was decreased in liver slices from ethanol-fed rats as compared to the pair-fed controls. This was the case for both total proteins as well as immunoprecipitable secretory proteins, although the labeling of secretory proteins retained in the liver slices was reduced to a lesser extent than total radiolabeled hepatic proteins. When the terminal sugar, [ 14 C]fucose, was employed as a precursor in order to more closely focus on the final steps of hepatic glycoprotein secretion, liver slices obtained from chronic ethanol-fed rats exhibited impaired secretion of fucose-labeled proteins into the medium. When ethanol (5 or 10 mM) was added to the incubation medium containing liver slices from the ethanol-fed rats, the alterations in protein and glycoprotein synthesis and secretion caused by the chronic ethanol treatment were further potentiated. The results of this study indicate that liver slices prepared from chronic ethanol-fed rats exhibit both impaired synthesis and secretion of proteins and glycoproteins, and these defects are further potentiated by acute ethanol administration

  10. Effect of whole body gamma-irradiation and/or dietary protein deficiency on the levels of plasma non-protein nitrogen and amino acids; plasma and urinary ammonia and urea in desert rodent and albino rats

    International Nuclear Information System (INIS)

    Roushdy, H.M.; El-Husseini, M.; Saleh, F.

    1984-01-01

    The effect of gamma-irradiation exposure on the levels of non-protein nitrogen (N.P.N.) and amino acids in plasma; ammonia and urea in plasma and urine was studied in the desert rodent, Psammomys obesus obesus and albino rats subjected to dietary protein deficiency, N.P.N. and amino acids in plasma were shown to increase by irradiation exposure. The effect of radiation on blood ammonia was less marked, but it caused a significant increase in ammonia excretion in urine. Radiation exposure in albino rats caused a marked increase in urea concentration in plasma of animals fed the high protein diet and irradiated at 780 r. In urine, the tested radiation levels caused an initial increase in urea concentration followed by a subsequent decrease. In psammomys, radiation exposure exerted a little effect on the plasma urea level, whereas significant increase in the daily urea excretion was recorded. It seems that urea level in plasma is more stabilized in psammomys than in albino rats

  11. Intestinal absorption and excretion of zinc in streptozotocin-diabetic rats as affected by dietary zinc and protein

    International Nuclear Information System (INIS)

    Johnson, W.T.; Canfield, W.K.

    1985-01-01

    65 Zn was used to examine the effects of dietary zinc and protein on true zinc absorption and intestinal excretion of endogenous zinc by an isotope dilution technique in streptozotocin-diabetic and control rats. Four groups each of diabetic and control rats were fed diets containing 20 ppm Zn, 20% egg white protein (HMHP); 20 ppm Zn, 10% egg white protein (HMLP); 10 ppm Zn, 20% egg white protein (LMHP); and 10 ppm Zn, 10% egg white protein (LMLP). Measurement of zinc balance was begun 9 d after an i.m. injection of 65 Zn. True zinc absorption and the contribution of endogenous zinc to fecal zinc excretion were calculated from the isotopically labeled and unlabeled zinc in the feces, duodenum and kidney. Results from the isotope dilution study indicated that diabetic rats, but not control rats, absorbed more zinc from 20 ppm zinc diets than from 10ppm zinc diets and that all rats absorbed more zinc from 20% protein diets than from 10% protein diets. Furthermore, all rats excreted more endogenous zinc from their intestines when dietary zinc and protein levels resulted in greater zinc absorption. In diabetic and control rats, consuming equivalent amounts of zinc, the amount of zinc absorbed was not significantly different, but the amount of zinc excreted by the intestine was less in the diabetic rats. Decreased intestinal excretion of endogenous zinc may be a homeostatic response to the increased urinary excretion of endogenous zinc in the diabetic rats and may also lead to the elevated zinc concentrations observed in some organs of the diabetic rats

  12. Green Tea Polyphenols, Mimicking the Effects of Dietary Restriction, Ameliorate High-Fat Diet-Induced Kidney Injury via Regulating Autophagy Flux

    Directory of Open Access Journals (Sweden)

    Xiao Xie

    2017-05-01

    Full Text Available Epidemiological and experimental studies reveal that Western dietary patterns contribute to chronic kidney disease, whereas dietary restriction (DR or dietary polyphenols such as green tea polyphenols (GTPs can ameliorate the progression of kidney injury. This study aimed to investigate the renal protective effects of GTPs and explore the underlying mechanisms. Sixty Wistar rats were randomly divided into 6 groups: standard diet (STD, DR, high-fat diet (HFD, and three diets plus 200 mg/kg(bw/day GTPs, respectively. After 18 weeks, HFD group exhibited renal injuries by increased serum cystatin C levels and urinary N-acetyl-β-d-glucosaminidase activity, which can be ameliorated by GTPs. Meanwhile, autophagy impairment as denoted by autophagy-lysosome related proteins, including LC3-II, Beclin-1, p62, cathepsin B, cathepsin D and LAMP-1, was observed in HFD group, whereas DR or GTPs promoted renal autophagy activities and GTPs ameliorated HFD-induced autophagy impairment. In vitro, autophagy flux suppression was detected in palmitic acid (PA-treated human proximal tubular epithelial cells (HK-2, which was ameliorated by epigallocatechin-3-gallate (EGCG. Furthermore, GTPs (or EGCG elevated phosphorylation of AMP-activated protein kinase in the kidneys of HFD-treated rats and in PA-treated HK-2 cells. These findings revealed that GTPs mimic the effects of DR to induce autophagy and exert a renal protective effect by alleviating HFD-induced autophagy suppression.

  13. In vivo effects of T-2 mycotoxin on synthesis of proteins and DNA in rat tissues

    International Nuclear Information System (INIS)

    Thompson, W.L.; Wannemacher, R.W. Jr.

    1990-01-01

    Rats were given an ip injection of T-2 mycotoxin (T-2), the T-2 metabolite, T-2 tetraol (tetraol), or cycloheximide. Serum, liver, heart, kidney, spleen, muscle, and intestine were collected at 3, 6, and 9 hr postinjection after a 2-hr pulse at each time with [14C]leucine and [3H]thymidine. Protein and DNA synthesis levels in rats were determined by dual-label counting of the acid-precipitable fraction of tissue homogenates. Rats given a lethal dose of T-2, tetraol, or cycloheximide died between 14 and 20 hr. Maximum inhibition of protein synthesis at the earliest time period was observed in additional rats given the same lethal dose of the three treatments and continued for the duration of the study (9 hr). With sublethal doses of T-2 or tetraol, the same early decrease in protein synthesis was observed but, in most of the tissues, recovery was seen with time. In the T-2-treated rats. DNA synthesis in the six tissues studied was also suppressed, although to a lesser degree. With sublethal doses, complete recovery of DNA synthesis took place in four of the six tissues by 9 hr after toxin exposure. The appearance of newly translated serum proteins did not occur in the animals treated with T-2 mycotoxin or cycloheximide, as evidenced by total and PCA-soluble serum levels of labeled leucine. An increase in tissue-pool levels of free leucine and thymidine in response to T-2 mycotoxin was also noted. T-2 mycotoxin, its metabolite, T-2 tetraol, and cycloheximide cause a rapid inhibition of protein and DNA synthesis in all tissue types studied. These results are compared with the responses seen in in vitro studies

  14. [Effects of exogenous high mobility group protein box 1 on angiogenesis in ischemic zone of early scald wounds of rats].

    Science.gov (United States)

    Dai, L; Guo, X; Huang, H J; Liao, X M; Luo, X Q; Li, D; Zhou, H; Gao, X C; Tan, M Y

    2018-04-20

    Objective: To observe effects of exogenous high mobility group protein box 1 (HMGB1) on angiogenesis in ischemic zone of early scald wounds of rats. Methods: Thirty-six Sprague-Dawley rats were divided into HMGB1 group and simple scald (SS) group according to the random number table, with 18 rats in each group. Comb-like copper mould was placed on the back of rats for 20 s after being immersed in 100 ℃ hot water for 3 to 5 min to make three ischemic zones of wound. Immediately after scald, rats in HMGB1 group were subcutaneously injected with 0.4 μg HMGB1 and 0.1 mL phosphate buffer solution (PBS), and rats in SS group were subcutaneously injected with 0.1 mL PBS from boarders of ischemic zone of scald wound. At post scald hour (PSH) 24, 48, and 72, 6 rats in each group were collected. Protein expressions of vascular endothelial growth factor (VEGF) in ischemic zone of wound at PSH 24, 48, and 72 and protein expressions of CD31 in ischemic zone of wound at PSH 48 and 72 were detected by immunohistochemistry. The number of microvessel in CD31 immunohistochemical sections of ischemic zone of wound at PSH 48 and 72 was calculated after observing by the microscope. The mRNA expressions of VEGF and CD31 in ischemic zone of wound were detected by real-time fluorescence quantitative reverse transcription polymerase chain reaction at PSH 24, 48, and 72. Data were processed with analysis of variance of factorial design, t test, and Bonferroni correction. Results: (1) At PSH 24, 48, and 72, protein expressions of VEGF in ischemic zone of wound of rats in HMGB1 group were significantly higher than those of rats in SS group ( t =7.496, 4.437, 5.402, P zone of wound of rats in HMGB1 group were 0.038 8±0.007 9 and 0.057 7±0.001 2 respectively, significantly higher than 0.013 4±0.004 9 and 0.030 3±0.004 0 of rats in SS group ( t =10.257, 15.055, P zone of wound of rats in HMGB1 group was obviously more than that of rats in SS group ( t =3.536, 4.000, P zone of wound of

  15. Relative efficacy of casein or soya protein combined with palm or safflower-seed oil on hyperuricaemia in rats.

    Science.gov (United States)

    Lo, Hui-Chen; Wang, Yao-Horng; Chiou, Hue-Ying; Lai, Shan-Hu; Yang, Yu

    2010-07-01

    Diets that ameliorate the adverse effects of uric acid (UA) on renal damage deserve attention. The effects of casein or soya protein combined with palm or safflower-seed oil on various serum parameters and renal histology were investigated on hyperuricaemic rats. Male Wistar rats administered with oxonic acid and UA to induce hyperuricaemia were fed with casein or soya protein plus palm- or safflower-seed oil-supplemented diets. Normal rats and hyperuricaemic rats with or without allopurinol treatment (150 mg/l in drinking water) were fed with casein plus maize oil-supplemented diets. After 8 weeks, allopurinol treatment and soya protein plus safflower-seed oil-supplemented diet significantly decreased serum UA in hyperuricaemic rats (one-way ANOVA; P soya protein and casein attenuated hyperuricaemia-induced decreases in serum albumin and insulin, respectively (two-way ANOVA; P soya protein significantly decreased renal NO and nitrotyrosine and palm oil significantly decreased renal nitrotyrosine, TNF-alpha and interferon-gamma and increased renal transforming growth factor-beta. Casein with safflower-seed oil significantly attenuated renal tubulointerstitial nephritis, crystals and fibrosis. Comparing casein v. soya protein combined with palm or safflower-seed oil, the results support that casein with safflower-seed oil may be effective in attenuating hyperuricaemia-associated renal damage, while soya protein with safflower-seed oil may be beneficial in lowering serum UA and TAG.

  16. Intra-uterine Growth Restriction Downregulates the Hepatic Toll Like Receptor-4 Expression and Function

    Directory of Open Access Journals (Sweden)

    Ozlem Equils

    2005-01-01

    Full Text Available Maternal starvation is a significant cause of intrauterine growth restriction (IUGR in the world and increases the risk of infection in the neonate. We examined the effect of maternal starvation on Toll like receptor (TLR4 expression in hepatic, splenic and intestinal tissues obtained from the adult IUGR offspring of prenatal calorie restricted rats. The hepatic TLR4 protein concentration was undetectable in the IUGR rats that had restricted milk intake during the suckling period (SM/SP; n = 4, p < 0.05 as compared to the normal growth controls (CM/CP; n=4, and access to ad lib milk intake during the sucking period partially corrected the hepatic TLR4 expression (SM/CP; n = 4. IUGR had no effect on the splenic (n = 4 or intestinal (n = 4 TLR4 mRNA levels. In the liver, IUGR led to a 20% increase in baseline tumor necrosis factor (TNF-α mRNA expression ( p < 0.03 and a 70% increase in interleukin-1β (IL-1β mRNA expression ( p < 0.008 as compared to the control rats (CM/CP; n = 7. LPS-induced hepatic TNF-α release was significantly higher in SM/SP as compared to CM/CP. We propose that IUGR dysregulates TLR4 expression and function in the offspring, which may help explain the increased risk of Gram-negative sepsis and inflammatory diseases in this population.

  17. Effect of omnivorous and vegan diets with different protein and carbohydrate content on growth and metabolism of growing rats.

    Science.gov (United States)

    Giuberti, Gianluca; Morlacchini, Mauro; Crippa, Luca; Capraro, Jessica; Paganini, Beatrice; Gallo, Antonio; Rossi, Filippo

    2018-08-01

    The purpose of this study was to observe, in a rat animal model, the short and medium term effects of vegan (VEG) or omnivorous (OMNI) diets with different energy partition between nutrients (zone or classic). Six different diets were administered, for 72 days to 120 growing male Sprague-Dawley rats: (i) VEG zone diet; (ii) VEG classic diet; (iii) OMNI zone diet; (iv) OMNI classic diet; (v) OMNI zone diet with added fibre and (vi) OMNI classic diet with added fibre. Zone diets (high protein and low carbohydrates), resulted in better growth , feed efficiency, lower blood glucose and insulin responses. VEG diets have lowered cholesterol blood level. Histopathological analysis evidenced no damage to liver and kidney tissue by the intake of any of the diet types. Further longer animal and human duration studies should be performed to exclude detrimental effect of higher protein diet.

  18. Dietary restriction of choline reduces hippocampal acetylcholine release in rats: in vivo microdialysis study.

    Science.gov (United States)

    Nakamura, A; Suzuki, Y; Umegaki, H; Ikari, H; Tajima, T; Endo, H; Iguchi, A

    2001-12-01

    We fed rats with a diet deficient in choline for 12 weeks and studied how dietary choline deficiency affected their behavior and their ability to release acetylcholine in discrete regions of rat brain using step-through passive avoidance task and in vivo microdialysis. In comparison with the control, rats fed the choline-deficient diet showed poorer retention of nociceptive memory in the passive avoidance task. Average choline level in cerebrospinal fluid in the choline-deficient group was significantly less (33.1%) than that of control rats. In vivo microdialysis showed no difference in the pattern of acetylcholine release enhanced by intraperitoneal administration of scopolamine hydrochloride (2 mg/kg) in the striatum between the two groups, whereas in the hippocampus, the maximum and subsequent increase of acetylcholine from the baseline by scopolamine injection was significantly lower in the choline-deficient group than in the control. From the results of our study, we speculate that long-term dietary restriction of choline can affect extra- and intracellular sources of substrates required for acetylcholine synthesis, and eventually limit the ability to release acetylcholine in the hippocampus. Reduced capacity to release acetylcholine in the hippocampus implies that the mechanism, maintaining acetylcholine synthesis on increased neuronal demand, may vary in discrete regions of the brain in response to dietary manipulation. The vulnerability of the mechanism in the hippocampus to dietary choline restriction is indicated by impaired mnemonic performance we observed.

  19. Ozone Effects on Protein Carbonyl Content in the Frontal ...

    Science.gov (United States)

    Oxidative stress (OS) plays an important role in susceptibility and disease in old age. Understanding age-related susceptibility is a critical part of community-based human health risk assessment of chemical exposures. There is growing concern over a common air pollutant, ozone (03), and adverse health effects including dysfunction of the pulmonary, cardiac, and nervous systems. The objective of this study was to test whether OS plays a role in the adverse effects caused by 03 exposure, and if so, if effects were age-dependent. We selected protein carbonyl as an indicator of OS because carbonyl content of cells is a useful indicator of oxidative protein damage and has been linked to chemical-induced adverse effects. Male Brown Norway rats (4, 12, and 24 months) were exposed to 03 (0,0.25 or 1 ppm) via inhalation for 6 h/day, 2 days per week for 13 weeks. Frontal cortex (FC) and cerebellum (CB) were dissected, quick frozen on dry ice, and stored at -80°C. Protein carbonyls were assayed using commercial kits. Hydrogen peroxide, a positive control, increased protein carbonyls in cortical tissue in vitro in a concentration-dependent manner. Significant effects of age on protein carbonyls in FC and a significant effect of age and 03 dose on protein carbonyls in CB were observed. In control rats, there was an age-dependent increase in protein carbonyls indicating increased OS in 12 and 24 month old rats compared to 4 month old rats. Although 03 increase

  20. Administration of growth hormone in selectively protein-deprived rats decreases BMD and bone strength.

    Science.gov (United States)

    Ammann, Patrick; Brennan, Tara C; Mekraldi, Samia; Aubert, Michel L; Rizzoli, René

    2010-06-01

    Isocaloric protein undernutrition is associated with decreased bone mass and decreased bone strength, together with lower IGF-I levels. It remains unclear whether administration of growth hormone (GH) corrects these alterations in bone metabolism. Six-month-old female rats were fed isocaloric diets containing either 2.5% or 15% casein for 2 weeks. Bovine growth hormone (bGH, 0.5 or 2.5mg/kg of body weight) or vehicle was then administered as subcutaneous injections, twice daily, to rats on either diet for 4 weeks. At the proximal tibia, analysis of bone mineral density (BMD), maximal load and histomorphometry were performed. In addition, urinary deoxypyridinoline, plasma osteocalcin and IGF-I concentrations were measured. Weight was monitored weekly. bGH caused a dose-dependent increase in plasma IGF-I regardless of the dietary protein content. However, bGH dose-dependently decreased BMD and bone strength in rats fed the low-protein diet. There was no significant effect of bGH on BMD in rats fed the normal protein diet within this short-term treatment period, however bone formation as detected by histomorphometry was improved in this group but not the low-protein group. Osteoclast surface was increased in the low-protein bGH-treated animals only. Changes in bone turnover markers were detectable under both normal and low-protein diets. These results emphasize the major importance of dietary protein intake in the bone response to short-term GH administration, and highlight the need for further investigation into the effects of GH treatment in patients with reduced protein intake. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Biochemical studies on gamma irradiated male rats fed on whey protein concentrate

    International Nuclear Information System (INIS)

    Mohamed, N.E; Anwar, M.M.; El-bostany, N.A.

    2010-01-01

    This study carried out to investigate the possible role of whey protein protein concentrate in ameliorating some biochemical disorders induced in gamma irradiated male rats. Forty eight male albino rats were divided into four equal groups: Group 1 fed on normal diet during experimental period. Group 2 where the diet contain 15 % whey protein concentrate instead of soybean protein . Group 3 rats were exposed to whole body gamma radiation with single dose of 5 Gy and fed on the normal diet. Group 4 rate exposed to 5 Gy then fed on diet contain 15 % whey protein concentrate, the rats were decapitated after two and four weeks post irradiation. Exposure to whole body irradiation caused significant elevation of serum ALT, AST, glucose, urea, creatinine and total triiodothyronine with significant decrease in total protein, albumin and thyroxin. Irradiated rats fed on whey protein concentrate revealed significant improvement of some biochemical parameters. It could be conclude that whey protein concentrate may be considered as a useful protein source for reducing radiation injury via metabolic pathway.

  2. Evaluation of the Effects of Curcumin on Palm Inflammation and Level of Acute Phase Proteins in Arthritic Rats

    Directory of Open Access Journals (Sweden)

    F. Aghaei Borashan

    2008-10-01

    Full Text Available Background and ObjectivesRheumatoid arthritis (RA is a chronic inflammatory disease which is characterized by joint swelling, and synovial inflammation. C reactive protein (CRP and ceruloplasmin (CP are identified as important biomarkers of RA and various inflammatory diseases. Curcumin, a widely used yellow color spice is the most active component of Curcuma longa L (Turmeric. Curcumin contains potent anti-inflammatory and antioxidant properties. The goal of this study is evaluation of the anti-inflammatory effect of curcumin on arthritic palm of rats and levels of the CRP and CP in the blood samples of arthritis induced male albino Wistar rats.Methods Arthritis was induced by subcutaneous injection of Freund’s Complete Adjuvant (FCA into the palm of right rear foot of 8 different male albino Wistar rats. The rats were randomly divided into five groups after the injection. These groups were as follow: Group Ι, control normal rats Group II, carrier arthritic rats Group III, arthritic rats which were given 30mg/ kg of curcumin orally seven days prior to FCA injectionGroup IV, arthritic rats treated with 30mg/kg of curcumin Group V, arthritic rats treated with 3 mg/kg of indomethacin.All the groups except group III received oral treatment with curcumin seven days after FCA injection and the treatment was continued fourteen days thereafter. The rear foot thicknesses of all the rats were measured on days 1, 5, 10, 15, 20 after FCA injection. The rats were destroyed after 20th day and their blood samples were collected.ResultsThe results of this study indicate that curcumin significantly decreases swelling of the rats rear foot (p<0.05, and levels of the CRP and CP as compared to carrier arthritic rats (p<0.05. One-way variance analysis by ANOVA program and post test analysis by Tukey were used for analysis of the collected data. ConclusionEvaluation of the results of this experiment supports the anti-inflammatory, and possibly anti

  3. The Colonic Microbiome and Epithelial Transcriptome Are Altered in Rats Fed a High-Protein Diet Compared with a Normal-Protein Diet.

    Science.gov (United States)

    Mu, Chunlong; Yang, Yuxiang; Luo, Zhen; Guan, Leluo; Zhu, Weiyun

    2016-03-01

    A high-protein diet (HPD) can produce hazardous compounds and reduce butyrate-producing bacteria in feces, which may be detrimental to gut health. However, information on whether HPD affects intestinal function is limited. The aim of this study was to determine the impact of an HPD on the microbiota, microbial metabolites, and epithelial transcriptome in the colons of rats. Adult male Wistar rats were fed either a normal-protein diet (20% protein, 56% carbohydrate) or an HPD (45% protein, 30% carbohydrate) for 6 wk (n = 10 rats per group, individually fed). After 6 wk, the colonic microbiome, microbial metabolites, and epithelial transcriptome were determined. Compared with the normal-protein diet, the HPD adversely altered the colonic microbiota by increasing (P 0.7, P < 0.05) with genes and metabolites generally regarded as being involved in disease pathogenesis, suggesting these bacteria may mediate the detrimental effects of HPDs on colonic health. Our findings suggest that the HPD altered the colonic microbial community, shifted the metabolic profile, and affected the host response in the colons of rats toward an increased risk of colonic disease. © 2016 American Society for Nutrition.

  4. Critical differences between two low protein diet protocols in the programming of hypertension in the rat.

    Science.gov (United States)

    Langley-Evans, S C

    2000-01-01

    Maternal nutrition has been identified as a factor determining fetal growth and risk of adult disease. In rats, the feeding of a low protein diet during pregnancy retards fetal growth and induces hypertension in the resulting offspring. Rat models of low protein feeding have been extensively used to study the mechanisms that may link maternal nutrition with impaired fetal growth and later cardiovascular disease and diabetes. Low protein diets of differing composition used in different laboratories have yielded inconsistent data on the relationship between maternal protein intake and offsprings' blood pressure. Two separate low protein diet protocols were compared in terms of their ability to programme hypertension during fetal life. Pregnant rats were assigned to receive one of four diets. Two diets were obtained from a commercial supplier and provided casein at 22 or 9% by weight (H22, control; H9, low protein). The other two diets, manufactured in our own facility, provided 18% casein (S18, control) or 9% casein (S9, low protein) by weight. The diets differed principally in their overall fat content, fatty acid composition, methionine content and the source of carbohydrate. Feeding of the experimental diets commenced on the first day of pregnancy and continued until the rats delivered their litters. Following weaning all the offspring had blood pressure determined on a single occasion. Both low protein diets reduced maternal weight gain relative to their corresponding control diets. Despite this litter sizes were unaffected by the dietary protocols. Both low protein diets reduced birthweights of the pups. Systolic blood pressure was significantly elevated in the offspring of rats fed a low protein S9 diet relative to all other groups (P work that differing low protein diet manipulations in rat pregnancy elicit different programming effects upon the developing cardiovasculature. The balance of protein and other nutrients may be a critical determinant of the long

  5. Levetiracetam Affects Differentially Presynaptic Proteins in Rat Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Daniele Marcotulli

    2017-12-01

    Full Text Available Presynaptic proteins are potential therapeutic targets for epilepsy and other neurological diseases. We tested the hypothesis that chronic treatment with the SV2A ligand levetiracetam affects the expression of other presynaptic proteins. Results showed that in rat neocortex no significant difference was detected in SV2A protein levels in levetiracetam treated animals compared to controls, whereas levetiracetam post-transcriptionally decreased several vesicular proteins and increased LRRK2, without any change in mRNA levels. Analysis of SV2A interactome indicates that the presynaptic proteins regulation induced by levetiracetam reported here is mediated by this interactome, and suggests that LRRK2 plays a role in forging the pattern of effects.

  6. Chronic sleep restriction induces long-lasting changes in adenosine and noradrenaline receptor density in the rat brain.

    Science.gov (United States)

    Kim, Youngsoo; Elmenhorst, David; Weisshaupt, Angela; Wedekind, Franziska; Kroll, Tina; McCarley, Robert W; Strecker, Robert E; Bauer, Andreas

    2015-10-01

    Although chronic sleep restriction frequently produces long-lasting behavioural and physiological impairments in humans, the underlying neural mechanisms are unknown. Here we used a rat model of chronic sleep restriction to investigate the role of brain adenosine and noradrenaline systems, known to regulate sleep and wakefulness, respectively. The density of adenosine A1 and A2a receptors and β-adrenergic receptors before, during and following 5 days of sleep restriction was assessed with autoradiography. Rats (n = 48) were sleep-deprived for 18 h day(-1) for 5 consecutive days (SR1-SR5), followed by 3 unrestricted recovery sleep days (R1-R3). Brains were collected at the beginning of the light period, which was immediately after the end of sleep deprivation on sleep restriction days. Chronic sleep restriction increased adenosine A1 receptor density significantly in nine of the 13 brain areas analysed with elevations also observed on R3 (+18 to +32%). In contrast, chronic sleep restriction reduced adenosine A2a receptor density significantly in one of the three brain areas analysed (olfactory tubercle which declined 26-31% from SR1 to R1). A decrease in β-adrenergic receptors density was seen in substantia innominata and ventral pallidum which remained reduced on R3, but no changes were found in the anterior cingulate cortex. These data suggest that chronic sleep restriction can induce long-term changes in the brain adenosine and noradrenaline receptors, which may underlie the long-lasting neurocognitive impairments observed in chronic sleep restriction. © 2015 European Sleep Research Society.

  7. Effect of restricted protein diet supplemented with keto analogues in chronic kidney disease: a systematic review and meta-analysis.

    Science.gov (United States)

    Jiang, Zheng; Zhang, Xiaoyan; Yang, Lichuan; Li, Zi; Qin, Wei

    2016-03-01

    To evaluate the efficacy and safety of the restricted protein diet (low or very low protein diet) supplemented with keto analogues in the treatment of chronic kidney disease (CKD). The Cochrane library, PubMed, Embase, CBM and CENTRAL databases were searched and reviewed up to April 2015. Clinical trials were analyzed using RevMan 5.3 software. Seven random control trials, one cross-over trial and one non-randomized concurrent control trial were selected and included in this study according to our inclusion and exclusion criteria. The changes of eGFR, BUN, Scr, albumin, PTH, triglyceride, cholesterol, calcium, phosphorus and nutrition indexes (BMI, lean body mass and mid-arm muscular circumference) before and after treatment were analyzed. The meta-analysis results indicated that, comparing with normal protein diet, low protein diet (LPD) or very low protein diet (vLPD) supplemented with keto analogues (s(v)LPD) could significantly prevent the deterioration of eGFR (P diet supplemented with keto analogues (s(v)LPD) could delay the progression of CKD effectively without causing malnutrition.

  8. Physiological covalent regulation of rat liver branched-chain alpha-ketoacid dehydrogenase

    International Nuclear Information System (INIS)

    Harris, R.A.; Powell, S.M.; Paxton, R.; Gillim, S.E.; Nagae, H.

    1985-01-01

    A radiochemical assay was developed for measuring branched-chain alpha-ketoacid dehydrogenase activity of Triton X-100 extracts of freeze-clamped rat liver. The proportion of active (dephosphorylated) enzyme was determined by measuring enzyme activities before and after activation of the complex with a broad-specificity phosphoprotein phosphatase. Hepatic branched-chain alpha-ketoacid dehydrogenase activity in normal male Wistar rats was 97% active but decreased to 33% active after 2 days on low-protein (8%) diet and to 13% active after 4 days on the same diet. Restricting protein intake of lean and obese female Zucker rats also caused inactivation of hepatic branched-chain alpha-ketoacid dehydrogenase complex. Essentially all of the enzyme was in the active state in rats maintained for 14 days on either 30 or 50% protein diets. This was also the case for rats maintained on a commercial chow diet (minimum 23% protein). However, maintaining rats on 20, 8, and 0% protein diets decreased the percentage of the active form of the enzyme to 58, 10, and 7% of the total, respectively. Fasting of chow-fed rats for 48 h had no effect on the activity state of hepatic branched-chain alpha-ketoacid dehydrogenase, i.e., 93% of the enzyme remained in the active state compared to 97% for chow-fed rats. However, hepatic enzyme of rats maintained on 8% protein diet was 10% active before starvation and 83% active after 2 days of starvation. Thus, dietary protein deficiency results in inactivation of hepatic branched-chain alpha-ketoacid dehydrogenase complex, presumably as a consequence of low hepatic levels of branched-chain alpha-ketoacids

  9. Eating high fat chow enhances the locomotor-stimulating effects of cocaine in adolescent and adult female rats.

    Science.gov (United States)

    Baladi, Michelle G; Koek, Wouter; Aumann, Megan; Velasco, Fortino; France, Charles P

    2012-08-01

    Dopamine systems vary through development in a manner that can impact drugs acting on those systems. Dietary factors can also impact the effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters locomotor effects of cocaine (1-56 mg/kg) in adolescent and adult female rats. Cocaine was studied in rats (n = 6/group) with free access to standard (5.7% fat) or high fat (34.3%) chow or restricted access to high fat chow (body weight matched to rats eating standard chow). After 1 week of eating high fat chow (free or restricted access), sensitivity to cocaine was significantly increased in adolescent and adult rats, compared with rats eating standard chow. Sensitivity to cocaine was also increased in adolescent rats with restricted, but not free, access to high fat chow for 4 weeks. When adolescent and adult rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. In adolescent and adult female rats eating high fat chow, but not those eating standard chow, sensitivity to cocaine increased progressively over once weekly tests with cocaine (i.e., sensitization) in a manner that was not statistically different between adolescents and adults. These results show that eating high fat chow alters sensitivity of female rats to acutely administered cocaine and also facilitates the development of sensitization to cocaine. That the type of food consumed can increase drug effects might have relevance to vulnerability to abuse cocaine in the female population.

  10. Effects of Amyloid Precursor Protein 17 Peptide on the Protection of Diabetic Encephalopathy and Improvement of Glycol Metabolism in the Diabetic Rat

    Directory of Open Access Journals (Sweden)

    Heng Meng

    2013-01-01

    Full Text Available Researchers have proposed that amyloid precursor protein 17 peptide (APP17 peptide, an active fragment of amyloid precursor protein (APP in the nervous system, has therapeutic effects on neurodegeneration. Diabetic encephalopathy (DE is a neurological disease caused by diabetes. Here we use multiple experimental approaches to investigate the effect of APP17 peptide on changes in learning behavior and glycol metabolism in rats. It was found that rats with DE treated by APP17 peptide showed reversed behavioral alternation. The [18F]-FDG-PET images and other results all showed that the APP17 peptide could promote glucose metabolism in the brain of the DE rat model. Meanwhile, the insulin signaling was markedly increased as shown by increased phosphorylation of Akt and enhanced GLUT4 activation. Compared with the DE group, the activities of SOD, GSH-Px, and CAT in the rat hippocampal gyrus were increased, while MDA decreased markedly in the DE + APP17 peptide group. No amyloid plaques in the cortex and the hippocampus were detected in either group, indicating that the experimental animals in the current study were not suffering from Alzheimer’s disease. These results indicate that APP17 peptide could be used to treat DE effectively.

  11. Comparative radioprotective studies of chlorpromazine and cysteamine on rat bone development; Effect on serum and bone proteins

    Energy Technology Data Exchange (ETDEWEB)

    Abdeen, A M; Ibrahim, H A; Badawy, M; Elkholy, W M.E.

    1986-01-01

    Experiments were planned to study the radioprotective effect of chlorpromazine (CPZ) and Cysteamine (Cys), when injected separately or combined before irradiation, on some factors affecting the development of rat bone. The results obtained can be summarized as follows: (1) The body weight decreased due to gamma-irradiation. (2) The mortality rate increased after irradiation, but diminished by single or double chemical injection before irradiation. (3) The serum total protein; albumin, globulin contents and A/G ratio were significantly increased, 6 hrs. After irradiation, then declined afterwards. (4) Histochemically, a decrease in bone protein content was demonstrates after irradiation. The above irradiation effects were suppressed by injection of the radioprotective substances. Their effect seems to be cumulative. 4 fig.,3 tab.

  12. Expression of S100 protein and protective effect of arundic acid on the rat brain in chronic cerebral hypoperfusion.

    Science.gov (United States)

    Ohtani, Ryo; Tomimoto, Hidekazu; Wakita, Hideaki; Kitaguchi, Hiroshi; Nakaji, Kayoko; Takahashi, Ryosuke

    2007-03-02

    S100 protein is expressed primarily by astroglia in the brain, and accumulates in and around the ischemic lesions. Arundic acid, a novel astroglia-modulating agent, is neuroprotective in acute cerebral infarction, whereas the protective effects remain unknown during chronic cerebral hypoperfusion. Rats undergoing chronic cerebral hypoperfusion were subjected to a bilateral ligation of the common carotid arteries, and were allowed to survive for 3, 7 and 14 days. The animals received a daily intraperitoneal injection of 5.0, 10.0 or 20.0 mg/kg of arundic acid, or vehicle, for 14 days. Alternatively, other groups of rats received a delayed intraperitoneal injection of 20.0 mg/kg of arundic acid or vehicle, which started from 1, 3 or 7 days after ligation and continued to 14 days. The degree of white matter (WM) lesions and the numerical density of S100 protein-immunoreactive astroglia were estimated. In the WM of rats with vehicle injections, the number of S100 protein-immunoreactive astroglia increased significantly after chronic cerebral hypoperfusion as compared to the sham-operation. A dosage of 10.0 and 20.0 mg/kg of arundic acid suppressed the numerical increase in S100 protein-immunoreactive astroglia and the WM lesions. These pathological changes were suppressed with delayed treatment up to 7 days in terms of astroglial activation, and up to 3 days in terms of the WM lesions. The protective effects of arundic acid against WM lesions were demonstrated in a dose-dependent manner, and even after postischemic treatments. These results suggest the potential usefulness of arundic acid in the treatment of cerebrovascular WM lesions.

  13. Effects of discontinuing a high-fat diet on mitochondrial proteins and 6-hydroxydopamine-induced dopamine depletion in rats.

    Science.gov (United States)

    Ma, Delin; Shuler, Jeffrey M; Raider, Kayla D; Rogers, Robert S; Wheatley, Joshua L; Geiger, Paige C; Stanford, John A

    2015-07-10

    Diet-induced obesity can increase the risk for developing age-related neurodegenerative diseases including Parkinson's disease (PD). Increasing evidence suggests that mitochondrial and proteasomal mechanisms are involved in both insulin resistance and PD. The goal of this study was to determine whether diet intervention could influence mitochondrial or proteasomal protein expression and vulnerability to 6-Hydroxydopamine (6-OHDA)-induced nigrostriatal dopamine (DA) depletion in rats' nigrostriatal system. After a 3 month high-fat diet regimen, we switched one group of rats to a low-fat diet for 3 months (HF-LF group), while the other half continued with the high-fat diet (HF group). A chow group was included as a control. Three weeks after unilateral 6-OHDA lesions, HF rats had higher fasting insulin levels and higher Homeostasis model assessment of insulin resistance (HOMA-IR), indicating insulin resistance. HOMA-IR was significantly lower in HF-LF rats than HF rats, indicating that insulin resistance was reversed by switching to a low-fat diet. Compared to the Chow group, the HF group exhibited significantly greater DA depletion in the substantia nigra but not in the striatum. DA depletion did not differ between the HF-LF and HF group. Proteins related to mitochondrial function (such as AMPK, PGC-1α), and to proteasomal function (such as TCF11/Nrf1) were influenced by diet intervention, or by 6-OHDA lesion. Our findings suggest that switching to a low-fat diet reverses the effects of a high-fat diet on systemic insulin resistance, and mitochondrial and proteasomal function in the striatum. Conversely, they suggest that the effects of the high-fat diet on nigrostriatal vulnerability to 6-OHDA-induced DA depletion persist. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Oxidized tissue proteins after intestinal reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Schanaider Alberto

    2005-01-01

    Full Text Available PURPOSE: To analyse if the carbonyl proteins measurement could be validated as a method that allows the identification of an intestinal oxidative stress after ischemia and reperfusion injury. METHODS: Twenty-five male Wistar rats (n =21 weighting 200 to 250g were divided into three groups. Group I - control (n = 10. Group II - sham (n = 5 and Group III (n = 10 subjected to 60 minutes of intestinal ischemia and equal period of reperfusion. For this purpose it was clamped the superior mesenteric artery in its distal third. Histological changes and carbonyl protein levels were determined in the samples of all groups. In group III, samples of both normal and reperfused ileal segment were studied. RESULTS: All the reperfused segments showed mucosal and submucosal swelling and inflammatory infiltrate of the lamina propria. Levels of carbonyl protein rose in group III, including in the non-ischemic segments. The sensitivity and specificity of the carbonyl protein tissue levels were respectively 94% and 88%. CONCLUSION: The carbonyl protein method is a useful biologic marker of oxidative stress after the phenomenon of intestinal ischemia and reperfusion in rats. It was also noteworthy that the effects of oxidative stress could be seen far from the locus of the primary injury.

  15. [The effect of copper on the metabolism of iodine, carbohydrates and proteins in rats].

    Science.gov (United States)

    Esipenko, B E; Marsakova, N V

    1990-01-01

    Experiments on 156 rats maintained at ration with copper deficiency have demonstrated a decrease in the values of iodine metabolism in organs and tissues excluding the liver where a sharp increase in the concentration and content of inorganic iodine was observed. A disturbance in indices of carbohydrate and proteins metabolism in the organism of animals is marked. A direct relationship with a correlation coefficient equaling 0.87-1.00 is determined between changes in the concentration of protein-bound iodine in blood and concentration of glycogen in the liver, skeletal muscles, albumins, alpha 1-, alpha 2-globulins, urea concentration; an inverse relationship with glucose, activity of blood lipo-dehydrogenase and liver mitochondria, aldolase, concentration of pyruvic and lactic acids is established as well. It is concluded that copper deficiency can exert both a direct effect on metabolic processes (as data from literature testify) and an indirect one disturbing iodine metabolism, i. e. sharply decreasing protein-bound iodine production by the thyroid gland.

  16. Short-Term Preoperative Calorie and Protein Restriction Is Feasible in Healthy Kidney Donors and Morbidly Obese Patients Scheduled for Surgery

    Directory of Open Access Journals (Sweden)

    Franny Jongbloed

    2016-05-01

    Full Text Available Introduction. Surgery-induced oxidative stress increases the risk of perioperative complications and delay in postoperative recovery. In mice, short-term preoperative dietary and protein restriction protect against oxidative stress. We investigated the feasibility of a calorie- and protein-restricted diet in two patient populations. Methods. In this pilot study, 30 live kidney donors and 38 morbidly obese patients awaiting surgery were randomized into three groups: a restricted diet group, who received a synthetic liquid diet with 30% fewer calories and 80% less protein for five consecutive days; a group who received a synthetic diet containing the daily energy requirements (DER; and a control group. Feasibility was assessed using self-reported discomfort, body weight changes, and metabolic parameters in blood samples. Results. Twenty patients (71% complied with the restricted and 13 (65% with the DER-diet. In total, 68% of the patients reported minor discomfort that resolved after normal eating resumed. The mean weight loss on the restricted diet was significantly greater (2.4 kg than in the control group (0 kg, p = 0.002, but not in the DER-diet (1.5 kg. The restricted diet significantly reduced levels of serum urea and plasma prealbumin (PAB and retinol binding protein (RBP. Conclusions. A short-term preoperative calorie- and protein-restricted diet is feasible in kidney donors and morbidly obese patients. Compliance is high and can be objectively measured via changes in urea, PAB, and RBP levels. These results demonstrate that this diet can be used to study the effects of dietary restriction on surgery-induced oxidative stress in a clinical setting.

  17. Tumor-associated proteins in rat submandibular gland induced by DMBA and irradiation

    International Nuclear Information System (INIS)

    Oh, Sung Ook; Choi, Soon Chul; Park, Tae Won; You, Dong Soo

    1997-01-01

    This study was performed in order to identify changes of the plasma membrane proteins in rat submandibular gland tumors induced by 7,12-dimethylbenz[a]anthracene [DMBA] and X-irradiation. Two kinds of tumor associated membrane proteins (protein A and B) were isolated with 3 M KCl extraction from rat submandibular gland tumors induced by DMBA and X-irradiation. To identify their antigenicities, immunoelectrophoresis and double immunodiffusion was carried out with various proteins extracted from liver, heart, skin and pancreas of adult rats and from embryonic liver, heart and skin. The rabbit antisera against the protein A did not cross-react with any of the proteins extracted from the above mentioned tissues, suggesting that protein A might be tumor specific antigen. However, the rabbit antisera against protein B was precipitated with proteins extracted from the liver of adult and embryonic rats. Polyacrylamide gel electrophoresis of these two proteins (A and B) showed that protein A was a dimer with molecular weights of 69,000 and 35,000 dalton, whereas protein B was a monomer with molecular weight of 50,000 dalton.

  18. Analysis of Select Herpes Simplex Virus 1 (HSV-1) Proteins for Restriction of Human Immunodeficiency Virus Type 1 (HIV-1): HSV-1 gM Protein Potently Restricts HIV-1 by Preventing Intracellular Transport and Processing of Env gp160.

    Science.gov (United States)

    Polpitiya Arachchige, Sachith; Henke, Wyatt; Pramanik, Ankita; Kalamvoki, Maria; Stephens, Edward B

    2018-01-15

    Virus-encoded proteins that impair or shut down specific host cell functions during replication can be used as probes to identify potential proteins/pathways used in the replication of viruses from other families. We screened nine proteins from herpes simplex virus 1 (HSV-1) for the ability to enhance or restrict human immunodeficiency virus type 1 (HIV-1) replication. We show that several HSV-1 proteins (glycoprotein M [gM], US3, and UL24) potently restricted the replication of HIV-1. Unlike UL24 and US3, which reduced viral protein synthesis, we observed that gM restriction of HIV-1 occurred through interference with the processing and transport of gp160, resulting in a significantly reduced level of mature gp120/gp41 released from cells. Finally, we show that an HSV-1 gM mutant lacking the majority of the C-terminal domain (HA-gM[Δ345-473]) restricted neither gp160 processing nor the release of infectious virus. These studies identify proteins from heterologous viruses that can restrict viruses through novel pathways. IMPORTANCE HIV-1 infection of humans results in AIDS, characterized by the loss of CD4 + T cells and increased susceptibility to opportunistic infections. Both HIV-1 and HSV-1 can infect astrocytes and microglia of the central nervous system (CNS). Thus, the identification of HSV-1 proteins that directly restrict HIV-1 or interfere with pathways required for HIV-1 replication could lead to novel antiretroviral strategies. The results of this study show that select viral proteins from HSV-1 can potently restrict HIV-1. Further, our results indicate that the gM protein of HSV-1 restricts HIV-1 through a novel pathway by interfering with the processing of gp160 and its incorporation into virus maturing from the cell. Copyright © 2018 American Society for Microbiology.

  19. Protein Drug Targets of Lavandula angustifolia on treatment of Rat Alzheimer's Disease

    Science.gov (United States)

    Zali, Hakimeh; Zamanian-Azodi, Mona; Rezaei Tavirani, Mostafa; Akbar-zadeh Baghban, Alireza

    2015-01-01

    Different treatment strategies of Alzheimer's disease (AD) are being studied for treating or slowing the progression of AD. Many pharmaceutically important regulation systems operate through proteins as drug targets. Here, we investigate the drug target proteins in beta-amyloid (Aβ) injected rat hippocampus treated with Lavandula angustifolia (LA) by proteomics techniques. The reported study showed that lavender extract (LE) improves the spatial performance in AD animal model by diminishing Aβ production in histopathology of hippocampus, so in this study neuroprotective proteins expressed in Aβ injected rats treated with LE were scrutinized. Rats were divided into three groups including normal, Aβ injected, and Aβ injected that was treated with LE. Protein expression profiles of hippocampus tissue were determined by two-dimensional electrophoresis (2DE) method and dysregulated proteins such as Snca, NF-L, Hspa5, Prdx2, Apoa1, and Atp5a1were identified by MALDI-TOF/TOF. KEGG pathway and gene ontology (GO) categories were used by searching DAVID Bioinformatics Resources. All detected protein spots were used to determine predictedinteractions with other proteins in STRING online database. Different isoforms of important protein, Snca that exhibited neuroprotective effects by anti-apoptotic properties were expressed. NF-L involved in the maintenance of neuronal caliber. Hspa5 likewise Prdx2 displays as anti-apoptotic protein that Prdx2 also involved in the neurotrophic effects. Apoa1 has anti-inflammatory activity and Atp5a1, produces ATP from ADP. To sum up, these proteins as potential drug targets were expressed in hippocampus in response to effective components in LA may have therapeutic properties for the treatment of AD and other neurodegenerative diseases. PMID:25561935

  20. Serum protein and enzyme levels in rats following administration of ...

    African Journals Online (AJOL)

    The effects of caffeinated and non-caffeinated paracetamol administration, with or without vitamins A and E supplementation on the protein and enzyme levels in Wistar albino rats were investigated using cafeinated paracetamol and paracetamol as caffeinated and non-caffeinated paracetamol respectively, and water ...

  1. Kinetic parameters of protein metabolism in rats during protein-free feeding

    International Nuclear Information System (INIS)

    Krawielitzki, K.; Schadereit, R.; Wuensche, J.

    1987-01-01

    16 male rats of 100 g live weight were given 50 mg of a mixture containing 15 N-labelled amino acids as a single dose within a protein-free feeding period. Following this the 15 N excretion in feces and urine as well as the development of the 15 N excess in different organs and tissues were estimated over 3 days by slaughtering the animals within given 7 time intervals. Using a 3 pool model and the computer program for the interpretation of 15 N tracer experiments by Toewe et al. (1984), kinetic parameters such as the rate of protein synthesis, protein breakdown and the rate of reutilization were calculated. Despite a negative N balance (- 41.8 mg N/d) under protein-free conditions the protein metabolism of the rat shows high dynamics characterized by a high flux rate (225 mg N/d) and a high rate of body protein synthesis (181 mg/d). The reutilization was 85 %. Depending on time the 15 N excess in the tested organs and tissues showed significant differences and seems to demonstrate that under these conditions protein synthesis mainly takes place in the most important organs (e.g. intestinal tract, liver). Under protein-free feeding conditions protein synthesis and protein breakdown of the whole body seems to be slightly increased in comparison to N balanced feeding conditions. (author)

  2. Sex differences in the effects of pre- and postnatal caffeine exposure on behavior and synaptic proteins in pubescent rats.

    Science.gov (United States)

    Sallaberry, Cássia; Ardais, Ana Paula; Rocha, Andréia; Borges, Maurício Felisberto; Fioreze, Gabriela T; Mioranzza, Sabrina; Nunes, Fernanda; Pagnussat, Natália; Botton, Paulo Henrique S; Porciúncula, Lisiane O

    2018-02-02

    Few studies have addressed the effects of caffeine in the puberty and/or adolescence in a sex dependent manner. Considering that caffeine intake has increased in this population, we investigated the behavioral and synaptic proteins changes in pubescent male and female rats after maternal consumption of caffeine. Adult female Wistar rats started to receive water or caffeine (0.1 and 0.3g/L in drinking water; low and moderate dose, respectively) during the active cycle at weekdays, two weeks before mating. The treatment lasted up to weaning and the offspring received caffeine until the onset of puberty (30-34days old). Behavioral tasks were performed to evaluate locomotor activity (open field task), anxious-like behavior (elevated plus maze task) and recognition memory (object recognition task) and synaptic proteins levels (proBDNF, BDNF, GFAP and SNAP-25) were verified in the hippocampus and cerebral cortex. While hyperlocomotion was observed in both sexes after caffeine treatment, anxiety-related behavior was attenuated by caffeine (0.3g/L) only in females. While moderate caffeine worsened recognition memory in females, an improvement in the long-term memory was observed in male rats for both doses. Coincident with memory improvement in males, caffeine increased pro- and BDNF in the hippocampus and cortex. Females presented increased proBDNF levels in both brain regions, with no effects of caffeine. While GFAP was not altered, moderate caffeine intake increased SNAP-25 in the cortex of female rats. Our findings revealed that caffeine promoted cognitive benefits in males associated with increased BDNF levels, while females showed less anxiety. Our findings revealed that caffeine promotes distinct behavioral outcomes and alterations in synaptic proteins during brain development in a sex dependent manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The satiety effects of intragastric macronutrient infusions in fatty and lean Zucker rats.

    Science.gov (United States)

    Maggio, C A; Greenwood, M R; Vasselli, J R

    1983-09-01

    To evaluate satiety in the hyperphagic, genetically obese Zucker "fatty" (fafa) rat, food-deprived fatty and lean (FaFa) control rats were given equicaloric intragastric infusions consisting largely of fat, carbohydrate, or protein. Relative to distilled water infusion, these infusions resulted in immediate reductions of food intake in both fatty and lean rats allowed to feed 20 min post-infusion. Cumulative food intakes remained reduced throughout the 2 hr period of observation. Thus, despite its hyperphagia, the fatty rat is responsive to the satiating effect of infused nutrients. However, the relative satiating effectiveness of the macronutrient infusions differed for the two genotypes. In lean rats, the different macronutrient infusions resulted in equivalent reductions of feeding. In contrast, in fatty rats, fat was the least satiating and protein was the most satiating macronutrient. Moreover, compared to lean rats, fatty rats displayed less initial suppression of feeding after fat infusion and greater overall suppression after protein infusion. These effects are consistent with the long-term feeding behavior of the fatty rat for the different macronutrients and may be related to pre- and postabsorptive metabolic alterations that have been documented in this animal.

  4. [Construction and functional identification of eukaryotic expression vector carrying Sprague-Dawley rat MSX-2 gene].

    Science.gov (United States)

    Yang, Xian-Xian; Zhang, Mei; Yan, Zhao-Wen; Zhang, Ru-Hong; Mu, Xiong-Zheng

    2008-01-01

    To construct a high effective eukaryotic expressing plasmid PcDNA 3.1-MSX-2 encoding Sprague-Dawley rat MSX-2 gene for the further study of MSX-2 gene function. The full length SD rat MSX-2 gene was amplified by PCR, and the full length DNA was inserted in the PMD1 8-T vector. It was isolated by restriction enzyme digest with BamHI and Xhol, then ligated into the cloning site of the PcDNA3.1 expression plasmid. The positive recombinant was identified by PCR analysis, restriction endonudease analysis and sequence analysis. Expression of RNA and protein was detected by RT-PCR and Western blot analysis in PcDNA3.1-MSX-2 transfected HEK293 cells. Sequence analysis and restriction endonudease analysis of PcDNA3.1-MSX-2 demonstrated that the position and size of MSX-2 cDNA insertion were consistent with the design. RT-PCR and Western blot analysis showed specific expression of mRNA and protein of MSX-2 in the transfected HEK293 cells. The high effective eukaryotic expression plasmid PcDNA3.1-MSX-2 encoding Sprague-Dawley Rat MSX-2 gene which is related to craniofacial development can be successfully reconstructed. It may serve as the basis for the further study of MSX-2 gene function.

  5. Human activated protein C variants in a rat model of arterial thrombosis

    Directory of Open Access Journals (Sweden)

    Dahlbäck Björn

    2008-10-01

    Full Text Available Abstract Background Activated protein C (APC inhibits coagulation by degrading activated factor V (FVa and factor VIII (FVIIIa, protein S (PS functioning as a cofactor to APC. Methods By mutagenesis of the vitamin K-dependent Gla domain of APC, we have recently created an APC variant having enhanced anticoagulant activity due to increased affinity for negatively charged phospholipid membranes. In the present study, the potential antithrombotic effects of this APC variant, and of a variant APC that is additionally mutated in the serine protease domain, have been evaluated in a blind randomized study in a rat model of arterial thrombosis. In this model, we have previously found the combination of bovine APC and PS to be highly antithrombotic. Four treatment groups each containing 10 rats were, in a blind random fashion, given intravenous bolus injections of wild-type or mutant variants of APC (0.8 mg/kg together with human PS (0.6 mg/kg or human PS (0.6 mg/kg alone. A control group with 20 animals where given vehicle only. Results A trend to increased patency rates was noted in a group receiving one of the APC variants, but it did not reach statistical significance. Conclusion In conclusion, administration of human APC variants having enhanced anticoagulant efficacy together with human PS in a rat model of arterial thrombosis did not give an efficient antithrombotic effect. The lack of effect may be due to species-specific differences between the human protein C system and the rat hemostatic system.

  6. Differential effects of methylmercury on the synthesis of protein species in dorsal root ganglia of the rat

    International Nuclear Information System (INIS)

    Kasama, Hidetaka; Itoh, Kazuo; Omata, Saburo; Sugano, Hiroshi

    1989-01-01

    Dorsal root ganglia from control and methylmercury(MeHg)-treated rats were incubated in vitro with 35 S-methionine and the proteins synthesized were analyzed by two-dimensional electrophoresis. The double labelling method, in which proteins of control dorsal root ganglia labelled in vitro with 3 H-leucine were added to each of the two samples as an internal standard, was used to minimize unavoidable errors arising from the resolving procedure itself. The results obtained showed that the effect of MeHg on the synthesis of proteins in dorsal root ganglia was not uniform for individual protein species in the latent period of MeHg intoxication. Among 200 protein species investigated, 157 showed inhibition of synthesis close to that of the total proteins in the tissue (68% of the control). Among the remaining protein species, 20 showed real stimulation of synthesis, whereas 7 were moderately inhibited and 16 were inhibited more strongly than the total proteins in the tissue. These results suggest that the effect of MeHg on the synthetic rates for protein species in dorsal root ganglia differs with the species, and that unusual elevation or reduction of the synthesis of some protein species caused by MeHg may lead to impairment of normal nerve functions. (orig.)

  7. Identification of H-2d Restricted T Cell Epitope of Foot-and-mouth Disease Virus Structural Protein VP1

    Directory of Open Access Journals (Sweden)

    Zhang Zhong-Wang

    2011-09-01

    Full Text Available Abstract Background Foot-and-mouth disease (FMD is a highly contagious and devastating disease affecting livestock that causes significant financial losses. Therefore, safer and more effective vaccines are required against Foot-and-mouth disease virus(FMDV. The purpose of this study is to screen and identify an H-2d restricted T cell epitope from the virus structural protein VP1, which is present with FMD. We therefore provide a method and basis for studying a specific FMDV T cell epitope. Results A codon-optimized expression method was adopted for effective expression of VP1 protein in colon bacillus. We used foot-and-mouth disease standard positive serum was used for Western blot detection of its immunogenicity. The VP1 protein was used for immunizing BALB/c mice, and spleen lymphocytes were isolated. Then, a common in vitro training stimulus was conducted for potential H-2Dd, H-2Kd and H-2Ld restricted T cell epitope on VP1 proteins that were predicted and synthesized by using a bioinformatics method. The H-2Kd restricted T cell epitope pK1 (AYHKGPFTRL and the H-2Dd restricted T cell epitope pD7 (GFIMDRFVKI were identified using lymphocyte proliferation assays and IFN-γ ELISPOT experiments. Conclusions The results of this study lay foundation for studying the FMDV immune process, vaccine development, among other things. These results also showed that, to identify viral T cell epitopes, the combined application of bioinformatics and molecular biology methods is effective.

  8. Effects of Melatonin and Epiphyseal Proteins on Fluoride-Induced Adverse Changes in Antioxidant Status of Heart, Liver, and Kidney of Rats

    Directory of Open Access Journals (Sweden)

    Vijay K. Bharti

    2014-01-01

    Full Text Available Several experimental and clinical reports indicated the oxidative stress-mediated adverse changes in vital organs of human and animal in fluoride (F toxicity. Therefore, the present study was undertaken to evaluate the therapeutic effect of buffalo (Bubalus bubalis epiphyseal (pineal proteins (BEP and melatonin (MEL against F-induced oxidative stress in heart, liver, and kidney of experimental adult female rats. To accomplish this experimental objective, twenty-four adult female Wistar rats (123–143 g body weights were divided into four groups, namely, control, F, F + BEP, and F + MEL and were administered sodium fluoride (NaF, 150 ppm elemental F in drinking water, MEL (10 mg/kg BW, i.p., and BEP (100 µg/kg BW, i.p. for 28 days. There were significantly P<0.05 high levels of lipid peroxidation and catalase and low levels of reduced glutathione, superoxide dismutase, glutathione reductase, and glutathione peroxidase in cardiac, hepatic, and renal tissues of F-treated rats. Administration of BEP and MEL in F-treated rats, however, significantly P<0.05 attenuated these adverse changes in all the target components of antioxidant defense system of cardiac, hepatic, and renal tissues. The present data suggest that F can induce oxidative stress in liver, heart, and kidney of female rats which may be a mechanism in F toxicity and these adverse effects can be ameliorated by buffalo (Bubalus bubalis epiphyseal proteins and melatonin by upregulation of antioxidant defense system of heart, liver, and kidney of rats.

  9. Effect of sardine proteins on hyperglycaemia, hyperlipidaemia and lecithin:cholesterol acyltransferase activity, in high-fat diet-induced type 2 diabetic rats.

    Science.gov (United States)

    Benaicheta, Nora; Labbaci, Fatima Z; Bouchenak, Malika; Boukortt, Farida O

    2016-01-14

    Type 2 diabetes (T2D) is a major risk factor of CVD. The effects of purified sardine proteins (SP) were examined on glycaemia, insulin sensitivity and reverse cholesterol transport in T2D rats. Rats fed a high-fat diet (HFD) for 5 weeks, and injected with a low dose of streptozotocin, were used. The diabetic rats were divided into four groups, and they were fed casein (CAS) or SP combined with 30 or 5% lipids, for 4 weeks. HFD-induced hyperglycaemia, insulin resistance and hyperlipidaemia in rats fed HFD, regardless of the consumed protein. In contrast, these parameters lowered in rats fed SP combined with 5 or 30% lipids, and serum insulin values reduced in SP v. CAS. HFD significantly increased total cholesterol and TAG concentrations in the liver and serum, whereas these parameters decreased with SP, regardless of lipid intake. Faecal cholesterol excretion was higher with SP v. CAS, combined with 30 or 5% lipids. Lecithin:cholesterol acyltransferase (LCAT) activity and HDL3-phospholipids (PL) were higher in CAS-HF than in CAS, whereas HDL2-cholesteryl esters (CE) were lower. Otherwise, LCAT activity and HDL2-CE were higher in the SP group than in the CAS group, whereas HDL3-PL and HDL3-unesterified cholesterol were lower. Moreover, LCAT activity lowered in the SP-HF group than in the CAS-HF group, when HDL2-CE was higher. In conclusion, these results indicate the potential effects of SP to improve glycaemia, insulin sensitivity and reverse cholesterol transport, in T2D rats.

  10. Cobalamin and its binding protein in rat milk

    DEFF Research Database (Denmark)

    Raaberg, Lasse; Nexø, Ebba; Poulsen, Steen Seier

    1989-01-01

    Cobalamin and its binding protein, haptocorrin, are present in rat milk throughout the lactation period. The concentration of cobalamin is approximately 0.3-times the concentration of the unsaturated binding protein. The concentration of the unsaturated cobalamin-binding protein varies between 18...

  11. Synergistic Effect of Rapamycin and Metformin Against Age-Dependent Oxidative Stress in Rat Erythrocytes.

    Science.gov (United States)

    Singh, Abhishek Kumar; Garg, Geetika; Singh, Sandeep; Rizvi, Syed Ibrahim

    2017-10-01

    Erythrocytes are particularly vulnerable toward age-dependent oxidative stress-mediated damage. Caloric restriction mimetics (CRMs) may provide a novel strategy for the maintenance of redox balance as well as effective treatment of age-associated diseases. Herein, we have investigated the beneficial effect of cotreatment with CRM-candidate drugs, rapamycin (an immunosuppressant drug and inhibitor of mammalian target of rapamycin) and metformin (an antidiabetic biguanide and activator of adenosine monophosphate kinase), against aging-induced oxidative stress in erythrocytes and plasma of aging rats. Male Wistar rats of age 4 (young) and 24 months (old) were coexposed to rapamycin (0.5 mg/kg body weight [b.w.]) and metformin (300 mg/kg b.w.), and data were compared with the response of rats receiving an independent exposure to these chemicals at similar doses. The exposure of individual candidate drugs significantly reversed the age-dependent alterations in the endpoints associated with oxidative stress such as reactive oxygen species, ferric reducing ability of plasma, malondialdehyde, reduced glutathione, plasma membrane redox system, plasma protein carbonyl, and acetyl cholinesterase in erythrocytes and plasma of aging rats. However, the cotreatment with rapamycin and metformin showed a significant augmented effect compared with individual drug interventions on reversal of these age-dependent biomarkers of oxidative stress, suggesting a synergistic response. Thus, the findings open up further possibilities for the design of new combinatorial therapies to prevent oxidative stress- and age-associated health problems.

  12. Effects of protein-deficient nutrition during rat pregnancy and development on developmental hindlimb crossing due to methylmercury intoxication

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarti, S.K.; Bai, Chengjiang [Montreal Univ., Quebec (Canada). Dept. de Medecine du Travail et Hygiene du Milieu

    2000-07-01

    Pregnant rats were fed either a control (20% protein) or low (3.5%) protein diet during gestation and lactation. The pups were separated from their mothers on postnatal day 21, and were given the same dient as their corresponding mothers. The groups of pups from each diet group were treated on either postnatal day 21 or postnatal day 60 with 7.5 mg methylmercury chloride (MeHgCl) per kg b.w. once daily by gavage for 10 consecutive days, and the development of ataxia (hind-limb corossing) was monitored. The offspring from mothers on the protein-deficient diet were found to be more sensitive to MeHg-induced ataxia than those on the protein-sufficient diet. The former accumulated more mercury in different brain regions than the latter. The rates of protein synthesis in different brain regions of the offspring fed the protein-deficient diet were significantly reduced compared with the rates in those fed the protein-sufficient diet. However, MeHg treatment did not significantly modify the rates of such protein synthesis further in protein-deficient rats. Thus, a significantly much higher inhibition of the intrinsic rates of protein synthesis in different brain regions due to severe protein deficiency, as observed in this study, may be partly responsible for the increased susceptibility of developing rats fed a protein-deficient diet to MeHg-induced ataxia, or hindlimb crossing, although other factor(s) might also be involved. (orig.)

  13. Plasma Protein Turnover Rates in Rats Using Stable Isotope Labeling, Global Proteomics, and Activity-Based Protein Profiling

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jordan N.; Tyrrell, Kimberly J.; Hansen, Joshua R.; Thomas, Dennis G.; Murphree, Taylor A.; Shukla, Anil K.; Luders, Teresa; Madden, James M.; Li, Yunying; Wright, Aaron T.; Piehowski, Paul D.

    2017-12-06

    Protein turnover is important for general health on cellular and organism scales providing a strategy to replace old, damaged, or dysfunctional proteins. Protein turnover also informs of biomarker kinetics, as a better understanding of synthesis and degradation of proteins increases the clinical utility of biomarkers. Here, turnover rates of plasma proteins in rats were measured in vivo using a pulse-chase stable isotope labeling experiment. During the pulse, rats (n=5) were fed 13C6-labeled lysine (“heavy”) feed for 23 days to label proteins. During the chase, feed was changed to an unlabeled equivalent feed (“light”), and blood was repeatedly sampled from rats over 10 time points for 28 days. Plasma samples were digested with trypsin, and analyzed with liquid chromatography-tandem mass spectrometry (LC-MS/MS). MaxQuant was used to identify peptides and proteins, and quantify heavy:light lysine ratios. A system of ordinary differential equations was used to calculate protein turnover rates. Using this approach, 273 proteins were identified, and turnover rates were quantified for 157 plasma proteins with half-lives ranging 0.3-103 days. For the ~70 most abundant proteins, variability in turnover rates among rats was low (median coefficient of variation: 0.09). Activity-based protein profiling was applied to pooled plasma samples to enrich serine hydrolases using a fluorophosphonate (FP2) activity-based probe. This enrichment resulted in turnover rates for an additional 17 proteins. This study is the first to measure global plasma protein turnover rates in rats in vivo, measure variability of protein turnover rates in any animal model, and utilize activity-based protein profiling for enhancing measurements of targeted, low-abundant proteins, such as those commonly used as biomarkers. Measured protein turnover rates will be important for understanding of the role of protein turnover in cellular and organism health as well as increasing the utility of protein

  14. Suppressive effects of a novel compound on interphotoreceptor retinoid-binding protein-induced experimental autoimmune uveoretinitis in rats

    Directory of Open Access Journals (Sweden)

    Jun-ichi Sakai

    1999-01-01

    Full Text Available The immunosuppressive effect of ethyl O-(N-(pcarboxyphenyl-carbamoyl-mycophenolate(CAM was examined in interphotoreceptor retinoid-binding protein (IRBP-induced experimental autoimmune uveoretinitis (EAU in rats. Lewis rats immunized with bovine IRBP were treated with various oral doses of CAM postimmunization. The degree of inflammation was assessed clinically each day and histologically on day 14 or day 20. Production of various cytokines and IRBP-specific antibody, as well as IRBP-specific proliferation response, was assessed. Complete inhibition of EAU in rats, both by clinical and histologic criteria, was achieved with 50 mg/kg CAM when administered daily for 14 days following IRBP immunization. Partial inhibition was observed at lesser doses of CAM. This CAM-mediated response was accompanied by diminished production of cytokines interleukin-2, interferon-γ and tumor necrosis factor-α, as well as a reduction in IRBP-specific antibody production. Furthermore, administration of CAM either in the induction phase only (days 0–7 or in the effector phase only (days 9 or 11 to day 20 was also capable of suppressing EAU, as assessed histopathologically on day 20. We conclude that CAM is effective in suppressing EAU in rats and its mechanism of action appears to involve modulation of T cell function.

  15. The Effect of Dexmedetomidine on Cognitive Function and Protein Expression of Aβ, p-Tau, and PSD95 after Extracorporeal Circulation Operation in Aged Rats

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2018-01-01

    Full Text Available Postoperative cognitive dysfunction (POCD is a kind of serious neurologic complications and dexmedetomidine has a certain effect on POCD. However, functional mechanism of dexmedetomidine on POCD still remains unclear, so the research mainly studied the effect of dexmedetomidine on cognitive function and protein expression in hippocampus and prefrontal cortex cerebrospinal fluid after extracorporeal circulation operation in aged rats. We Found that, compared with POCD group, the cognitive function was improved in POCD + Dex group. We speculate that dexmedetomidine could improve the cognitive function after extracorporeal circulation operation in aged rats and Aβ, p-Tau, and PSD95 protein might have contributed to this favorable outcome.

  16. Effects of maternal protein or energy restriction during late gestation on immune status and responses to lipopolysaccharide challenge in postnatal young goats.

    Science.gov (United States)

    He, Z X; Sun, Z H; Yang, W Z; Beauchemin, K A; Tang, S X; Zhou, C S; Han, X F; Wang, M; Kang, J H; Tan, Z L

    2014-11-01

    Knowledge of maternal malnutrition of ruminants and effects on development of the immune system of their offspring is lacking. A study was conducted to investigate the effects of maternal protein or energy restriction during late gestation on immune status of their offspring at different ages. Sixty-three pregnant goats (local breed, Liuyang black goat, 22.2 ± 1.5 kg at d 90 of gestation) were fed control (CON, ME = 9.34 MJ/kg and CP = 12.5%, DM basis), 40% protein restricted (PR), or 40% energy restricted (ER) diets from d 91 of gestation to parturition, after which all animals received an adequate diet for nutritional recovery. Plasma concentrations of complement components (C3, C4), C-reactive protein (CRP) and immunoglobulins (IgG and IgM), jejunum cytokines (IL-2, IL-6, and IL-10) expression levels and morphology in the offspring were measured. Additionally, plasma concentration of complement and IL-6, and cytokines expression levels in gastrointestinal tract obtained at 6 wk from young goats were assessed under saline or lipopolysaccharide (LPS) challenging conditions. Maternal PR or ER decreased (P 0.05) plasma CRP concentration. The IL-10 mRNA expression of jejunum from PR kids was also less (P 0.05) in any plasma or tissue immune parameters among the 3 treatments. However, when given a LPS challenge, ER and PR kids had greater (P = 0.02) IL-6 concentration compared with CON kids. Our results suggest that both PR and ER during late gestation induced short-term as well as long-lasting alterations on immune responses in their offspring, which may make the animals more susceptible to a bacterial pathogen challenge. The present findings expand the existing knowledge in immunological mechanisms responsible for the development of disease in later life.

  17. Melatonin Therapy Prevents Programmed Hypertension and Nitric Oxide Deficiency in Offspring Exposed to Maternal Caloric Restriction

    Directory of Open Access Journals (Sweden)

    You-Lin Tain

    2014-01-01

    Full Text Available Nitric oxide (NO deficiency is involved in the development of hypertension, a condition that can originate early in life. We examined whether NO deficiency contributed to programmed hypertension in offspring from mothers with calorie-restricted diets and whether melatonin therapy prevented this process. We examined 3-month-old male rat offspring from four maternal groups: untreated controls, 50% calorie-restricted (CR rats, controls treated with melatonin (0.01% in drinking water, and CR rats treated with melatonin (CR + M. The effect of melatonin on nephrogenesis was analyzed using next-generation sequencing. The CR group developed hypertension associated with elevated plasma asymmetric dimethylarginine (ADMA, a nitric oxide synthase inhibitor, decreased L-arginine, decreased L-arginine-to-ADMA ratio (AAR, and decreased renal NO production. Maternal melatonin treatment prevented these effects. Melatonin prevented CR-induced renin and prorenin receptor expression. Renal angiotensin-converting enzyme 2 protein levels in the M and CR + M groups were also significantly increased by melatonin therapy. Maternal melatonin therapy had long-term epigenetic effects on global gene expression in the kidneys of offspring. Conclusively, we attributed these protective effects of melatonin on CR-induced programmed hypertension to the reduction of plasma ADMA, restoration of plasma AAR, increase of renal NO level, alteration of renin-angiotensin system, and epigenetic changes in numerous genes.

  18. Chronic leptin infusion advances, and immunoneutralization of leptin postpones puberty onset in normally fed and feed restricted female rats

    NARCIS (Netherlands)

    Zeinoaldini, S.; Swarts, J.J.M.; Heijning, van de B.J.M.

    2006-01-01

    Does leptin play a vital role in initiating puberty in female rats and can it overrule a nutrionally imposed (i.e. a 30% feed restriction, FR) delay in puberty onset? Prepubertal female rats were chronically infused for 14 days with leptin (icv or sc) or leptin-antiserum (icv) while puberty onset

  19. Dietary management of chronic kidney disease: protein restriction and beyond.

    Science.gov (United States)

    Goraya, Nimrit; Wesson, Donald E

    2012-11-01

    More kidney protective strategies are needed to reduce the burden of complete kidney failure from chronic kidney disease (CKD). Clinicians sometimes use protein restriction as kidney protection despite its demonstrated lack of effectiveness in the only large-scale study. Small-scale studies support that dietary acid reduction is kidney-protective, including when done with base-inducing foods like fruits and vegetables. We review these studies in light of current kidney-protective recommendations. Animal models of CKD show that acid-inducing dietary protein exacerbates and base-inducing protein ameliorates nephropathy progression, and that increased intake of acid-inducing but not base-inducing dietary protein exacerbates progression. Clinical studies show that dietary acid reduction with Na-based alkali reduces kidney injury and slows nephropathy progression in patients with CKD and reduced glomerular filtration rate (GFR); base-inducing fruits and vegetables reduce kidney injury in patients with reduced GFR; and base-inducing fruits and vegetables improve metabolic acidosis in CKD. Protein type rather than amount might more importantly affect nephropathy progression. Base-inducing foods might be another way to reduce dietary acid, a strategy shown in small studies to slow nephropathy progression. Further studies will determine if CKD patients should be given base-inducing food as part of their management.

  20. Suramin-restricted blood volume in the placenta of normal and diabetic rats is normalized by vitamin E treatment.

    Science.gov (United States)

    Nash, P; Eriksson, U J

    2007-01-01

    Previously maternal and fetal alterations resembling human pre-eclampsia were induced in pregnant rats by injections of the angiogenesis inhibitor Suramin. These alterations were aggravated by maternal diabetes and partly rectified by vitamin E supplementation. In the present study we evaluated the morphology of placentae and kidneys in this model. Non-diabetic and streptozotocin-induced diabetic pregnant rats of two rat strains (U and H) were treated with Suramin or saline, and given standard or vitamin E-enriched food. On gestational day 20 one placenta and the left kidney of the mother were collected for morphological and stereological analysis. In the placental trophospongium Suramin treatment caused cysts, which were further enhanced by maternal diabetes. Vitamin E treatment had no effect on the vacuolization. In the placental labyrinth of the non-diabetic rats Suramin treatment restricted maternal placental blood volume and increased the interface between maternal and fetal circulation. These changes were reversed by vitamin E treatment. Diabetes increased slightly the interface between the circulations in both rat strains. Suramin treatment decreased the interface, and vitamin E further decreased the interface in the diabetic U rats, whereas neither treatment affected the maternal-fetal interface in the diabetic H rats. The kidneys of Suramin-treated and diabetic rats were heavier compared to controls. Suramin treatment and maternal diabetes damaged renal glomeruli to a similar extent. Vitamin E treatment diminished the Suramin- and diabetes-induced glomerular damage in U rats, but not in H rats. The average cell count per glomerulus was decreased by Suramin in the U rats. Vitamin E treatment did not affect cell number per glomerulus in any group. We conclude that Suramin-injected pregnant rats constitute a valid animal model for placental dysfunction and pre-eclampsia, also from the histological perspective. The present work supports the notion that one

  1. Effect of Prolonged Simulated Microgravity on Metabolic Proteins in Rat Hippocampus: Steps toward Safe Space Travel.

    Science.gov (United States)

    Wang, Yun; Javed, Iqbal; Liu, Yahui; Lu, Song; Peng, Guang; Zhang, Yongqian; Qing, Hong; Deng, Yulin

    2016-01-04

    Mitochondria are not only the main source of energy in cells but also produce reactive oxygen species (ROS), which result in oxidative stress when in space. This oxidative stress is responsible for energy imbalances and cellular damage. In this study, a rat tail suspension model was used in individual experiments for 7 and 21 days to explore the effect of simulated microgravity (SM) on metabolic proteins in the hippocampus, a vital brain region involved in learning, memory, and navigation. A comparative (18)O-labeled quantitative proteomic strategy was used to observe the differential expression of metabolic proteins. Forty-two and sixty-seven mitochondrial metabolic proteins were differentially expressed after 21 and 7 days of SM, respectively. Mitochondrial Complex I, III, and IV, isocitrate dehydrogenase and malate dehydrogenase were down-regulated. Moreover, DJ-1 and peroxiredoxin 6, which defend against oxidative damage, were up-regulated in the hippocampus. Western blot analysis of proteins DJ-1 and COX 5A confirmed the mass spectrometry results. Despite these changes in mitochondrial protein expression, no obvious cell apoptosis was observed after 21 days of SM. The results of this study indicate that the oxidative stress induced by SM has profound effects on metabolic proteins.

  2. The mechanisms underlying the hypolipidaemic effects of Grifola frondosa in the liver of rats

    Directory of Open Access Journals (Sweden)

    Yinrun Ding

    2016-08-01

    Full Text Available The present study investigated the hypolipidaemic effects of Grifola frondosa and its regulation mechanism involved in lipid metabolism in liver of rats fed a high-cholesterol diet. The body weights and serum lipid levels of control rats, of hyperlipidaemic rats and of hyperlipidaemic rats treated with oral Grifola frondosa were determined. mRNA expression and concentration of key lipid metabolism enzymes were investigated. Serum cholesterol, triacylglycerol and low-density lipoprotein cholesterol levels were markedly decreased in hyperlipidaemic rats treated with Grifola frondosa compared with untreated hyperlipidaemic rats. mRNA expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR, acyl-coenzyme A: cholesterol acyltransferase (ACAT2, apolipoprotein B (ApoB, fatty acid synthase (FAS and acetyl-CoA carboxylase (ACC1 were significantly down-regulated, while expression of cholesterol 7-alpha-hydroxylase (CYP7A1 was significantly up-regulated in the livers of treated rats compared with untreated hyperlipidaemic rats. The concentrations of these enzymes also paralleled the observed changes in mRNA expression. Two-dimensional polyacrylamide gel electrophoresis (2-DE and Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS were used to identify twenty proteins differentially expressed in livers of rats treated with Grifola frondosa compared with untreated hyperlipidemic rats. Of these twenty proteins, seven proteins were down-regulated and thirteen proteins were up-regulated. These findings indicate that the hypolipidaemic effects of Grifola frondosa reflected its modulation of key enzymes involved in cholesterol and triacylglycerol biosynthesis, absorption and catabolic pathways. Grifola frondosa may exert anti-atherosclerotic effects by inhibiting LDL oxidation through down-regulation and up-regulating proteins expression in the liver of rats. Therefore, Grifola frondosa may produce both hypolipidaemic

  3. Protein phosphorylation in isolated hepatocytes of septic and endotoxemic rats

    International Nuclear Information System (INIS)

    Deaciuc, I.V.; Spitzer, J.A.

    1989-01-01

    The purpose of this study was to investigate possible alterations induced by sepsis and endotoxicosis in the late phase of Ca2+-dependent signaling in rat liver. Hepatocytes isolated from septic or chronically endotoxin (ET)-treated rats were labeled with [32P]H3PO4 and stimulated with various agents. Proteins were resolved by one-dimensional polyacrylamide gel electrophoresis and autoradiographed. Vasopressin (VP)- and phenylephrine (PE)-induced responses were attenuated in both septic and ET-treated rats for cytosolic and membrane proteins compared with their respective controls. Glucagon and 12-O-myristate phorbol-13-acetate (TPA) affected only the phosphorylation of membrane proteins. Glucagon-induced changes in the phosphorylation of membrane proteins were affected by both sepsis and endotoxicosis, whereas TPA-stimulated phosphorylation was lowered only in endotoxicosis. Response to the Ca2+ ionophore A23187 was depressed in septic rats for cytosolic proteins. The phosphorylation of two cytosolic proteins, i.e., 93 and 61 kDa (previously identified as glycogen phosphorylase and pyruvate kinase, respectively), in response to VP, PE, and A23187 was severely impaired by endotoxicosis and sepsis. TPA did not affect the phosphorylation state of these two proteins. The results show that sepsis and endotoxicosis produce perturbations of the phosphorylation step in Ca2+ transmembrane signaling. Such changes can explain alterations of glycogenolysis and gluconeogenesis associated with sepsis and endotoxicosis

  4. Repeated sleep restriction in rats leads to homeostatic and allostatic responses during recovery sleep.

    Science.gov (United States)

    Kim, Youngsoo; Laposky, Aaron D; Bergmann, Bernard M; Turek, Fred W

    2007-06-19

    Recent studies indicate that chronic sleep restriction can have negative consequences for brain function and peripheral physiology and can contribute to the allostatic load throughout the body. Interestingly, few studies have examined how the sleep-wake system itself responds to repeated sleep restriction. In this study, rats were subjected to a sleep-restriction protocol consisting of 20 h of sleep deprivation (SD) followed by a 4-h sleep opportunity each day for 5 consecutive days. In response to the first 20-h SD block on day 1, animals responded during the 4-h sleep opportunity with enhanced sleep intensity [i.e., nonrapid eye movement (NREM) delta power] and increased rapid eye movement sleep time compared with baseline. This sleep pattern is indicative of a homeostatic response to acute sleep loss. Remarkably, after the 20-h SD blocks on days 2-5, animals failed to exhibit a compensatory NREM delta power response during the 4-h sleep opportunities and failed to increase NREM and rapid eye movement sleep times, despite accumulating a sleep debt each consecutive day. After losing approximately 35 h of sleep over 5 days of sleep restriction, animals regained virtually none of their lost sleep, even during a full 3-day recovery period. These data demonstrate that the compensatory/homeostatic sleep response to acute SD does not generalize to conditions of chronic partial sleep loss. We propose that the change in sleep-wake regulation in the context of repeated sleep restriction reflects an allostatic process, and that the allostatic load produced by SD has direct effects on the sleep-wake regulatory system.

  5. A Protein Extract from Chicken Reduces Plasma Homocysteine in Rats

    Directory of Open Access Journals (Sweden)

    Vegard Lysne

    2015-06-01

    Full Text Available The present study aimed to evaluate effects of a water-soluble protein fraction of chicken (CP, with a low methionine/glycine ratio, on plasma homocysteine and metabolites related to homocysteine metabolism. Male Wistar rats were fed either a control diet with 20% w/w casein as the protein source, or an experimental diet where 6, 14 or 20% w/w of the casein was replaced with the same amount of CP for four weeks. Rats fed CP had reduced plasma total homocysteine level and markedly increased levels of the choline pathway metabolites betaine, dimethylglycine, sarcosine, glycine and serine, as well as the transsulfuration pathway metabolites cystathionine and cysteine. Hepatic mRNA level of enzymes involved in homocysteine remethylation, methionine synthase and betaine-homocysteine S-methyltransferase, were unchanged, whereas cystathionine gamma-lyase of the transsulfuration pathway was increased in the CP treated rats. Plasma concentrations of vitamin B2, folate, cobalamin, and the B-6 catabolite pyridoxic acid were increased in the 20% CP-treated rats. In conclusion, the CP diet was associated with lower plasma homocysteine concentration and higher levels of serine, choline oxidation and transsulfuration metabolites compared to a casein diet. The status of related B-vitamins was also affected by CP.

  6. The hepatic transcriptome of young suckling and aging intrauterine growth restricted male rats.

    Science.gov (United States)

    Freije, William A; Thamotharan, Shanthie; Lee, Regina; Shin, Bo-Chul; Devaskar, Sherin U

    2015-04-01

    Intrauterine growth restriction leads to the development of adult onset obesity/metabolic syndrome, diabetes mellitus, cardiovascular disease, hypertension, stroke, dyslipidemia, and non-alcoholic fatty liver disease/steatohepatitis. Continued postnatal growth restriction has been shown to ameliorate many of these sequelae. To further our understanding of the mechanism of how intrauterine and early postnatal growth affects adult health we have employed Affymetrix microarray-based expression profiling to characterize hepatic gene expression of male offspring in a rat model of maternal nutrient restriction in early and late life. At day 21 of life (p21) combined intrauterine and postnatal calorie restriction treatment led to expression changes in circadian, metabolic, and insulin-like growth factor genes as part of a larger transcriptional response that encompasses 144 genes. Independent and controlled experiments at p21 confirm the early life circadian, metabolic, and growth factor perturbations. In contrast to the p21 transcriptional response, at day 450 of life (d450) only seven genes, largely uncharacterized, were differentially expressed. This lack of a transcriptional response identifies non-transcriptional mechanisms mediating the adult sequelae of intrauterine growth restriction. Independent experiments at d450 identify a circadian defect as well as validate expression changes to four of the genes identified by the microarray screen which have a novel association with growth restriction. Emerging from this rich dataset is a portrait of how the liver responds to growth restriction through circadian dysregulation, energy/substrate management, and growth factor modulation. © 2014 Wiley Periodicals, Inc.

  7. Sleep restriction alters the hypothalamic-pituitary-adrenal response to stress

    Science.gov (United States)

    Meerlo, P.; Koehl, M.; van der Borght, K.; Turek, F. W.

    2002-01-01

    Chronic sleep restriction is an increasing problem in many countries and may have many, as yet unknown, consequences for health and well being. Studies in both humans and rats suggest that sleep deprivation may activate the hypothalamic-pituitary-adrenal (HPA) axis, one of the main neuroendocrine stress systems. However, few attempts have been made to examine how sleep loss affects the HPA axis response to subsequent stressors. Furthermore, most studies applied short-lasting total sleep deprivation and not restriction of sleep over a longer period of time, as often occurs in human society. Using the rat as our model species, we investigated: (i) the HPA axis activity during and after sleep deprivation and (ii) the effect of sleep loss on the subsequent HPA response to a novel stressor. In one experiment, rats were subjected to 48 h of sleep deprivation by placing them in slowly rotating wheels. Control rats were placed in nonrotating wheels. In a second experiment, rats were subjected to an 8-day sleep restriction protocol allowing 4 h of sleep each day. To test the effects of sleep loss on subsequent stress reactivity, rats were subjected to a 30-min restraint stress. Blood samples were taken at several time points and analysed for adrenocorticotropic hormone (ACTH) and corticosterone. The results show that ACTH and corticosterone concentrations were elevated during sleep deprivation but returned to baseline within 4 h of recovery. After 1 day of sleep restriction, the ACTH and corticosterone response to restraint stress did not differ between control and sleep deprived rats. However, after 48 h of total sleep deprivation and after 8 days of restricted sleep, the ACTH response to restraint was significantly reduced whereas the corticosterone response was unaffected. These results show that sleep loss not only is a mild activator of the HPA axis itself, but also affects the subsequent response to stress. Alterations in HPA axis regulation may gradually appear under

  8. Leucine-Enriched Essential Amino Acids Augment Mixed Protein Synthesis, But Not Collagen Protein Synthesis, in Rat Skeletal Muscle after Downhill Running

    OpenAIRE

    Kato, Hiroyuki; Suzuki, Hiromi; Inoue, Yoshiko; Suzuki, Katsuya; Kobayashi, Hisamine

    2016-01-01

    Mixed and collagen protein synthesis is elevated for as many as 3 days following exercise. Immediately after exercise, enhanced amino acid availability increases synthesis of mixed muscle protein, but not muscle collagen protein. However, the potential for synergic effects of amino acid ingestion with exercise on both mixed and collagen protein synthesis remains unclear. We investigated muscle collagen protein synthesis in rats following post-exercise ingestion of leucine-enriched essential a...

  9. Metabolism of serine in growing rats and chicks at various dietary protein levels

    International Nuclear Information System (INIS)

    Tanaka, Hideyuki; Yamaguchi, Michio; Kametaka, Masao

    1976-01-01

    The metabolic fate of the carbon skeleton of L-serine-U- 14 C has been investigated, in vivo and in vitro, in growing rats and chicks fed the diets with various protein calories percents (C %) at 410 kcal of metabolizable energy. The incorporation of 14 C into body protein at 12 hr after the injection of serine- 14 C was about 49% of the injected dose in rats fed the 10 or 15 PC% diet, though the value was reduced in rats fed lower and higher protein diets. The 14 CO 2 production was smaller in rats fed the 10 and 15 PC% diet, and it showed an inverse pattern to that of the 14 C incorporation into body protein. Urinary excretion of 14 C was higher in rats fed 10 and higher PC% diets, whose growth rate and net body protein retention were maximum. In contrast to the case of rats, the incorporation of 14 C into body protein of chicks at 6 hr after the injection was rather reduced in the 15 PC% group. The proportion of 14 C excreted as uric acid was remarkably increased above the 10 PC% group, and about 19% of the injected dose was recovered in the 50 PC% group. The catabolic rate of serine in the liver slices of rats and chicks was increased by high protein diets. These results support the concept that the nutritional significance of metabolism of the carbon skeleton of serine in growing rats and chicks is different from each other, especially at high protein diets. (auth.)

  10. The effects of graded levels of calorie restriction: III. Impact of short term calorie and protein restriction on mean daily body temperature and torpor use in the C57BL/6 mouse

    Science.gov (United States)

    Mitchell, Sharon E.; Delville, Camille; Konstantopedos, Penelope; Derous, Davina; Green, Cara L.; Chen, Luonan; Han, Jing-Dong J.; Wang, Yingchun; Promislow, Daniel E.L.; Douglas, Alex; Lusseau, David; Speakman, John R.

    2015-01-01

    A commonly observed response in mammals to calorie restriction (CR) is reduced body temperature (Tb). We explored how the Tb of male C57BL/6 mice responded to graded CR (10 to 40%), compared to the response to equivalent levels of protein restriction (PR) over 3 months. Under CR there was a dynamic change in daily Tb over the first 30–35 days, which stabilized thereafter until day 70 after which a further decline was noted. The time to reach stability was dependent on restriction level. Body mass negatively correlated with Tb under ad libitum feeding and positively correlated under CR. The average Tb over the last 20 days was significantly related to the levels of body fat, structural tissue, leptin and insulin-like growth factor-1. Some mice, particularly those under higher levels of CR, showed periods of daily torpor later in the restriction period. None of the changes in Tb under CR were recapitulated by equivalent levels of PR. We conclude that changes in Tb under CR are a response only to the shortfall in calorie intake. The linear relationship between average Tb and the level of restriction supports the idea that Tb changes are an integral aspect of the lifespan effect. PMID:26286956

  11. Hepatotoxic effects of fenofibrate in spontaneously hypertensive rats expressing human C-reactive protein

    Czech Academy of Sciences Publication Activity Database

    Škop, V.; Trnovská, J.; Oliyarnyk, O.; Marková, I.; Malínská, H.; Kazdová, L.; Zídek, Václav; Landa, Vladimír; Mlejnek, Petr; Šimáková, Miroslava; Kůdela, M.; Pravenec, Michal; Šilhavý, Jan

    2016-01-01

    Roč. 65, č. 6 (2016), s. 891-899 ISSN 0862-8408 R&D Projects: GA MZd(CZ) NT14325 Institutional support: RVO:67985823 Keywords : fenofibrate * rosuvastatin * C-reactive protein * transgenic * spontaneously hypertensive rat * inflammation * hepatotoxic Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 1.461, year: 2016

  12. Simultaneous infusion of glutamine and branched-chain amino acids (BCAA) to septic rats does not have more favorable effect on protein synthesis in muscle, liver, and small intestine than separate infusions.

    Science.gov (United States)

    Holecek, Milan; Muthny, Tomas; Kovarik, Miroslav; Sispera, Ludek

    2006-01-01

    Glutamine and branched-chain amino acids (BCAA; valine, leucine, and isoleucine) are used as nutrition supplements in the treatment of proteocatabolic illness. We hypothesized that simultaneous administration of BCAA and glutamine affects protein metabolism more significantly than separate administration. In the present study, we evaluated their effect on protein synthesis in skeletal muscle, liver, and jejunum of septic rats. Twenty-four hours after induction of sepsis by subcutaneous injection of turpentine, the rats were infused for 6 hours with 5 mL of 1.75% glutamine, 1.75% BCAA, 1.75% glutamine+BCAA, or saline solution. The control group consisted of intact rats infused with saline. Protein synthesis was measured at the end of infusion by a "flooding method" with [3,4,5-(3)H]phenylalanine. In turpentine-treated animals, we observed a decrease in glutamine concentration in blood plasma and skeletal muscle, a decrease in BCAA concentration in liver and jejunum, and a decrease in protein synthesis in all tissues. Glutamine or glutamine+BCAA infusion increased glutamine concentration in plasma and muscle and stimulated protein synthesis in the liver. The BCAA infusion enhanced concentrations of BCAA in plasma and tissues, but the effect of BCAA on protein synthesis was insignificant. Synergistic effect of simultaneous infusion of glutamine and BCAA on protein synthesis was not observed. We conclude that glutamine infusion to rats with septic injury may significantly improve impaired protein synthesis in the liver and that there is no synergistic effect of glutamine and BCAA infusion on protein synthesis in skeletal muscle, liver, and jejunum.

  13. Effect of soy protein on serum lipid profile and some lipid ...

    African Journals Online (AJOL)

    The effect of soy protein on serum lipid profile and some lipid metabolizing enzymes in rats fed with cholesterol diets was examined in this study. Rats were subjected to feeding trial over a period of six weeks on formulated diets containing: 20% soy protein with 0% cholesterol (group A), 20% soy protein with 5% cholesterol ...

  14. Early localization of NPA58, a rat nuclear pore-associated protein

    Indian Academy of Sciences (India)

    We have studied the mitotic reassembly of the nuclear envelope, using antibodies to nuclear marker proteins and NPA58 in F-111 rat fibroblast cells. In earlier studies we have proposed that NPA58, a 58 kDa rat nuclear protein, is involved in nuclear protein import. In this report, NPA58 is shown to be localized on the ...

  15. MTOR signaling and ubiquitin-proteosome gene expression in the preservation of fat free mass following high protein, calorie restricted weight loss

    Directory of Open Access Journals (Sweden)

    McIver Cassandra M

    2012-09-01

    Full Text Available Abstract Caloric restriction is one of the most efficient ways to promote weight loss and is known to activate protective metabolic pathways. Frequently reported with weight loss is the undesirable consequence of fat free (lean muscle mass loss. Weight loss diets with increased dietary protein intake are popular and may provide additional benefits through preservation of fat free mass compared to a standard protein, high carbohydrate diet. However, the precise mechanism by which a high protein diet may mitigate dietary weight loss induced reductions in fat free mass has not been fully elucidated. Maintenance of fat free mass is dependent upon nutrient stimulation of protein synthesis via the mTOR complex, although during caloric restriction a decrease (atrophy in skeletal muscle may be driven by a homeostatic shift favouring protein catabolism. This review evaluates the relationship between the macronutrient composition of calorie restricted diets and weight loss using metabolic indicators. Specifically we evaluate the effect of increased dietary protein intake and caloric restricted diets on gene expression in skeletal muscle, particularly focusing on biosynthesis, degradation and the expression of genes in the ubiquitin-proteosome (UPP and mTOR signaling pathways, including MuRF-1, MAFbx/atrogin-1, mTORC1, and S6K1.

  16. [Autophagy-lysosome pathway in skeletal muscle of diabetic nephropathy rats and the effect of low-protein diet plus α-keto acids on it].

    Science.gov (United States)

    Huang, Juan; Yuan, Wei-jie; Wang, Jia-lin; Gu, Li-jie; Yin, Jun; Dong, Ting; Bao, Jin-fang; Tang, Zhi-huan

    2013-11-26

    To explore the regulation of autophagy-lysosome pathway (ALP) in skeletal muscle of diabetic nephropathy and examine the effect of low protein diet plus α-keto acid on ALP. A total of 45 24-week-old Goto-Kakizaki rats were randomized to receive normal protein (22%) diet (NPD), low-protein (6%) diet (LPD) or low-protein (5%) plus α-keto acids (1%) diet (Keto) (n = 15 each). Wistar control rats had a normal protein diet. The mRNA and protein levels of ALP markers LC3B, Bnip3, Cathepsin L in soleus muscle were evaluated at 48 weeks. Electron microscopy was used to confirm the changes of autophagy. Compared with CTL group, the mRNA levels of LC3B, Bnip3, Cathepsin L in soleus muscle of rats on NPD were higher, and protein levels of LC3B-I, LC3B-II, Bnip3, Cathepsin L in soleus muscle of rats on NPD also higher than CTL group (0.82 ± 0.33 vs 0.25 ± 0.07, 0.76 ± 0.38 vs 0.20 ± 0.12, 1.25 ± 0.30 vs 0.56 ± 0.19, 1.29 ± 0.40 vs 0.69 ± 0.20). The mRNA levels of LC3B, Bnip3 and Cathepsin L in LPD group were slightly lower, compared with NPD group. However there was no statistical significance. Similarly the protein levels of LC3B-I, LC3B-II, Bnip3 and Cathepsin L in LPD group were slightly lower with no statistical significance. In contrast, the mRNA levels of LC3B, Bnip3 and Cathepsin L were greatly lower in Keto group in comparison with NPD and LPD. And protein levels of LC3B-I, LC3B-II, Bnip3 and Cathepsin L were also greatly lower in Keto group in comparison with NPD and LPD. Additionally, autophagosome or auto-lysosome was found in NPD and LPD groups by electron microscopy. ALP is activated in skeletal muscle of diabetic nephropathy rats. And low protein plus α-keto acid decrease the activation of ALP and improve muscle wasting.

  17. Rodent malaria in rats exacerbated by milk protein, attenuated by low-protein vegetable diet

    NARCIS (Netherlands)

    Doorne, C.W. van; Eling, W.M.C.; Luyken, R.

    1998-01-01

    Young male Wistar rats were fed a purified, vegetable, low-protein diet containing 6% protein from maize gluten and 2% from soy protein isolate, or comparable diets in which maize gluten was replaced partly or completely by the equivalent amount of a milk protein concentrate. Diets with adequate

  18. Protein-Energy Malnutrition Causes Deficits in Motor Function in Adult Male Rats.

    Science.gov (United States)

    Alaverdashvili, Mariam; Li, Xue; Paterson, Phyllis G

    2015-11-01

    Adult protein-energy malnutrition (PEM) often occurs in combination with neurological disorders affecting hand use and walking ability. The independent effects of PEM on motor function are not well characterized and may be obscured by these comorbidities. Our goal was to undertake a comprehensive evaluation of sensorimotor function with the onset and progression of PEM in an adult male rat model. In Expt. 1 and Expt. 2, male Sprague-Dawley rats (14-15 wk old) were assigned ad libitum access for 4 wk to normal-protein (NP) or low-protein (LP) diets containing 12.5% and 0.5% protein, respectively. Expt. 1 assessed muscle strength, balance, and skilled walking ability on days 2, 8, and 27 by bar-holding, cylinder, and horizontal ladder walking tasks, respectively. In addition to food intake and body weight, nutritional status was determined on days 3, 9, and 28 by serum acute-phase reactant and corticosterone concentrations and liver lipids. Expt. 2 addressed the effect of an LP diet on hindlimb muscle size. PEM evolved over time in rats consuming the LP diet. Total food intake decreased by 24% compared with the NP group. On day 28, body weight and serum albumin decreased by 31% and 26%, respectively, and serum α2-macroglobulin increased by 445% (P malnutrition. This model can be used in combination with disease models of sensorimotor deficits to examine the interactions between nutritional status, other treatments, and disease progression. © 2015 American Society for Nutrition.

  19. Cellular Promyelocytic Leukemia Protein Is an Important Dengue Virus Restriction Factor

    OpenAIRE

    Giovannoni, Federico; Damonte, Elsa B.; Garc?a, Cybele C.

    2015-01-01

    The intrinsic antiviral defense is based on cellular restriction factors that are constitutively expressed and, thus, active even before a pathogen enters the cell. The promyelocytic leukemia (PML) nuclear bodies (NBs) are discrete nuclear foci that contain several cellular proteins involved in intrinsic antiviral responses against a number of viruses. Accumulating reports have shown the importance of PML as a DNA virus restriction factor and how these pathogens evade this antiviral activity....

  20. Early metabolic defects in dexamethasone-exposed and undernourished intrauterine growth restricted rats.

    Directory of Open Access Journals (Sweden)

    Emmanuel Somm

    Full Text Available Poor fetal growth, also known as intrauterine growth restriction (IUGR, is a worldwide health concern. IUGR is commonly associated with both an increased risk in perinatal mortality and a higher prevalence of developing chronic metabolic diseases later in life. Obesity, type 2 diabetes or metabolic syndrome could result from noxious "metabolic programming." In order to better understand early alterations involved in metabolic programming, we modeled IUGR rat pups through either prenatal exposure to synthetic glucocorticoid (dams infused with dexamethasone 100 µg/kg/day, DEX or prenatal undernutrition (dams feeding restricted to 30% of ad libitum intake, UN. Physiological (glucose and insulin tolerance, morphometric (automated tissue image analysis and transcriptomic (quantitative PCR approaches were combined during early life of these IUGR pups with a special focus on their endocrine pancreas and adipose tissue development. In the absence of catch-up growth before weaning, DEX and UN IUGR pups both presented basal hyperglycaemia, decreased glucose tolerance, and pancreatic islet atrophy. Other early metabolic defects were model-specific: DEX pups presented decreased insulin sensitivity whereas UN pups exhibited lowered glucose-induced insulin secretion and more marked alterations in gene expression of pancreatic islet and adipose tissue development regulators. In conclusion, these results show that before any catch-up growth, IUGR rats present early physiologic, morphologic and transcriptomic defects, which can be considered as initial mechanistic basis of metabolic programming.

  1. The Preventive Effect of Calcium Supplementation on Weak Bones Caused by the Interaction of Exercise and Food Restriction in Young Female Rats During the Period from Acquiring Bone Mass to Maintaining Bone Mass.

    Science.gov (United States)

    Aikawa, Yuki; Agata, Umon; Kakutani, Yuya; Kato, Shoyo; Noma, Yuichi; Hattori, Satoshi; Ogata, Hitomi; Ezawa, Ikuko; Omi, Naomi

    2016-01-01

    Increasing calcium (Ca) intake is important for female athletes with a risk of weak bone caused by inadequate food intake. The aim of the present study was to examine the preventive effect of Ca supplementation on low bone strength in young female athletes with inadequate food intake, using the rats as an experimental model. Seven-week-old female Sprague-Dawley rats were divided into four groups: the sedentary and ad libitum feeding group (SED), voluntary running exercise and ad libitum feeding group (EX), voluntary running exercise and 30% food restriction group (EX-FR), and a voluntary running exercise, 30% food-restricted and high-Ca diet group (EX-FR+Ca). To Ca supplementation, we used 1.2% Ca diet as "high-Ca diet" that contains two-fold Ca of normal Ca diet. The experiment lasted for 12 weeks. As a result, the energy availability, internal organ weight, bone strength, bone mineral density, and Ca absorption in the EX-FR group were significantly lower than those in the EX group. The bone strength and Ca absorption in the EX-FR+Ca group were significantly higher than those in the EX-FR group. However, the bone strength in the EX-FR+Ca group did not reach that in the EX group. These results suggested that Ca supplementation had a positive effect on bone strength, but the effect was not sufficient to prevent lower bone strength caused by food restriction in young female athletes.

  2. Some biochemical and hematological changes in female rats under protein malnutrition

    International Nuclear Information System (INIS)

    EL-Sherbiny, E.M.; El-Mahdy, A.A.; Bayoumi, M.M.

    2006-01-01

    The aim of this study was to clarify the effect of low and high dietary protein on some biochemical and hematological parameters in blood of female albino rats. A total number of 75 albino female rats were equally divided into 3 groups, the first group was fed 20% protein diet and served as control and the second and third groups were fed 5% and 65% protein for 5 weeks and served as low and high protein dietary groups, respectively. The results showed high significant decreases in serum growth hormone, ferritin levels and iron concentration in group II and there was significant increase in unsaturated iron binding capacity (UIBC) in group III, compared to control group. Studies of total protein and its fractions revealed high significant decreases in total protein, albumin, alpha-1-globulin, beta-globulin as well as gamma globulin in group II and significant increases in total protein, alpha-1- globulin, beta-globulin and gamma-globulin in group III, compared to normal control group. The hematological investigations in group II revealed significant decreases in hemoglobin value, total leukocyte count, platelets, mean corpuscular hemoglobin concentration (MCHC), erythrocytic count and mean corpuscular volume (MCV). On the other hand, there was significant increase in total leukocyte count in group III if compared to control group

  3. Effects of high-impact exercise on the physical properties of bones of ovariectomized rats fed to a high-protein diet.

    Science.gov (United States)

    Shimano, R C; Yanagihara, G R; Macedo, A P; Yamanaka, J S; Shimano, A C; Tavares, J M R S; Issa, J P M

    2018-05-01

    The aim of this study was to evaluate the effects of high-impact physical exercise as a prophylactic and therapeutic means in osteopenic bones of rats submitted to ovariectomy and protein diet intake. A total of 64 Wistar rats were divided into eight groups (n = 8 each), being: OVX, ovx, standard diet and sedentary; OVXE, ovx, standard diet and jump; OVXP, ovx, high-protein diet and sedentary; and OVXEP, ovx, high-protein diet and jump; SH, sham, standard diet and sedentary; SHE, sham, standard diet and jump; SHP, sham, high-protein diet and sedentary; and SHEP, sham, high-protein diet and jump. OVX surgery consists of ovariectomy, and sham was the control surgery. The jumping protocol consisted of 20 jumps/day, 5 days/week. The bone structure was evaluated by densitometry, mechanical tests, histomorphometric, and immunohistochemical analyses. A high-protein diet resulted in increased bone mineral density (P = .049), but decreased maximal load (P = .026) and bone volume fraction (P = .023). The benefits of physical exercise were demonstrated by higher values of the maximal load in the trained groups compared to the sedentary groups (P high-protein diet (P = .005) and jump exercise (P = .017) resulted in lower immunostaining of osteopontin compared to the standard diet and sedentary groups, respectively. In this experimental model, it was concluded that ovariectomy and a high-fat diet can negatively affect bone tissue and the high-impact exercise was not enough to suppress the deleterious effects caused by the protein diet and ovariectomy. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. The comparative effect of fasting with and without caloric restriction in Rat on oxidative stress parameters

    OpenAIRE

    Nurina Tyagita; Taufiqurrachman Nasihun; Titiek Sumarawati

    2016-01-01

    Introduction: Fasting, like Islamic Ramadan Fasting, has been associated with health benefits. Islamic Ramadan fasting, a form of caloric restriction (CR) or alternate day fasting that. Studies suggest a comparable effect of ADF and caloric restriction. Despite the fact that fasting can be considered as a form of dietary restriction, fasters tend to have difficulty to reduce their food intake during non-fasting period by overeating leading to the excessive calorie intake. To compare the effec...

  5. Changes in rat parotid saliva protein composition following chronic reserpine treatment and their relation to inanition.

    Science.gov (United States)

    Johnson, D A

    1988-01-01

    Chronic administration of the catecholamine-depleting agent, reserpine (0.5 mg/kg), resulted in a reduction in food intake after 3 days. To differentiate effects of the drug from those of reduced food intake a pair-fed group, whose daily caloric intake was restricted to the amount consumed by the reserpine-treated rats, was included. After 7 days, both the reserpine-treated and pair-fed control exhibited a marked reduction in the volume of saliva collected in a 30 min interval following a secretory stimulus compared to untreated ad libitum-fed controls, and the proportion of salivary proteins attributable to acidic and basic proline-rich proteins and to minor 1b protein were decreased whereas deoxyribonuclease was increased. For two of the salivary proteins (fractions I and V) changes for the reserpine-treated and pair-fed groups were different. Fraction I was reduced in both groups, but exhibited a greater decrease in the pair-fed than in the reserpine-treated, whereas fraction V was significantly increased only in the pair-fed group. Thus many of the salivary changes associated with reserpine treatment may have resulted from the change in feeding habits and not from reserpine treatment per se. The study demonstrates the importance of controlling for food intake under experimental circumstances which may lead to a marked change in daily feeding habits.

  6. [Expression of c-jun protein after experimental rat brain concussion].

    Science.gov (United States)

    Wang, Feng; Li, Yong-hong

    2010-02-01

    To observe e-jun protein expression after rat brain concussion and explore the forensic pathologic markers following brain concussion. Fifty-five rats were randomly divided into brain concussion group and control group. The expression of c-jun protein was observed by immunohistochemistry. There were weak positive expression of c-jun protein in control group. In brain concussion group, however, some neutrons showed positive expression of c-jun protein at 15 min after brain concussion, and reach to the peak at 3 h after brain concussion. The research results suggest that detection of c-jun protein could be a marker to determine brain concussion and estimate injury time after brain concussion.

  7. Strain differences in the response to morphine on incorporation of 3H-lysine into rat brain protein

    International Nuclear Information System (INIS)

    Ford, D.H.; Rhines, R.K.; Levi, M.A.

    1977-01-01

    The effect of morphine on the specific activity (SA) of lysine in the plasma free amino acid (FFA) fraction and in the cerebral cortical FAA and protein fractions, as well as on the specific accumulation and incorporation, was determined in male Sprague-Dawley and Wistar rats at various time intervals after intravenous injection of drug and amino acid into unanesthetized animals. The lysine SA was higher in Sprague-Dawley than in Wistar rats in the plasma and brain FAA fraction and in the protein fraction. In the SD strain, morphine decreased the SA of plasma FAA significantly, but had only slight effects in the Wistar strain. In the cortical gray matter, morphine elevated the SA of lysine significantly in both strains. SA of the lysine in cerebral cortical protein increased in both strains with time. When the data for the free amino acids were expressed in terms of specific accumulation, the observed rates were higher in the Sprague-Dawley animals and reached a point of maximal concentration, which was not observed in animals of the Wistar strain. Morphine elevated the levels of specific accumulation of lysine into the cortical free amino acid pool in both strains of rat. It is concluded that Sprague-Dawley and Wistar rats are not equivalent in relation to the accumulation of an amino acid in the brain FAA pool from the plasma and that the effect of morphine on specific incorporation of lysine into brain protein is greater in Wistar rats. (author)

  8. Irradiated diets and its effect on testes and adrenal gland of rats

    International Nuclear Information System (INIS)

    Kushwaha, A.K.S.; Hasan, S.S.

    1988-01-01

    The present investigation was undertaken to study the feeding effects of irradiated normal diet (consisting of equal parts of gram and wheat) and irradiated low protein diet (consisting one part of normal diet and three parts of wheat) on male rats for various periods starting from weaning time. Rats maintained on irradiated low protein diets showed decrease in the activity of androgen sensitive enzymes i.e., alkaline and acid phosphatase while an increase in the cholesterol content of the testes compared with irradiated normal controls. Diminution in androgen sensitive enzymes and accumulation of cholesterol in the rat testes suggest non-conversion of cholesterol into steriod hormones after feeding of irradiated low protein. Besides, rats fed on irradiated low protein diet showed increased cellular activity in the adrenal cortex and medulla as compared to rats fed on the irradiated normal diet. (author). 12 refs., 4 tabs

  9. [Effects of Electroacupuncture Intervention on Oxygen Free Radicals and Expression of Apoptosis-related Proteins in Rats with Ischemic Learning and Memory Disorder].

    Science.gov (United States)

    Hou, Zhi-tao; Sun, Zhong-ren; Liu, Song-tao; Xiong, Sheng-biao; Liu, Yi-tian; Han, Xiao-xia; Sun, Hong-fang; Han, Yu-sheng; Yin, Hong-na; Xu, Jin-qiao; Li, Dong-dong

    2015-12-01

    To observe the effect of electroacupuncture (EA) therapy on levels of oxygen free radicals (OFR) and hippocampal apoptosis-related protein expression in ischemic learning-memory disorder rats so as to investigate its mechanisms underlying improvement of ischemic learning-memory impairment. A total of 60 SD rats were randomly divided into sham operation (sham), model, medication, and EA groups, with 15 rats in each group. The learning-memory disorder model was made by occlusion of bilateral carotid arteries. EA (2- 3 Hz, 2 mA) was applied to "Zhi San Zhen" ["Shenting" (GV 24) and bilateral "Benshen" (GB 13)] for 30 min, once a day for 3 weeks. The rats of the medication group were treated by lavage of Aricept (0.03 mg . kg(-1) . d(-1)), once daily for 3 weeks. The rats' learning-memory ability was detected by Morris water maze tests and the state of hippocampal apoptosis cells was observed by light microscope after TUNEL staining and the expression of hippocampal Bcl-2, Bax and Caspase-3 proteins was detected by immunohistochemistry. Serum and hippocampal superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity and malondialdehyde (MDA) contents were detected by chemical colorimetric analysis. Compared with the sham group, the escape latencies (place-navigation) after modeling were evidently prolonged, and the times of target-platform crossing in 90 sec (spatial probe test) considerably reduced in the model group (Plearning-memory ability. After the treatment for 21 d, the increased escape latency and the reduced target-platform crossing time in both EA and medication groups were reversed in comparison with the model group (Pmemory ability, and the effect of the EA group was significantly superior to that of the medication group (Plearning-memory ability in ischemic learning-memory disorder rats which may be associated with its effects in reducing blood and hippocampal OFR contents and hippocampal cellular apoptosis.

  10. Effect of passive smoking on the levels of pregnancy associated plasma protein-A in normal rats

    International Nuclear Information System (INIS)

    Naveed, A.K.; Rahim, A.; Malik, M.S.

    2010-01-01

    To measure the levels of pregnancy associated plasma protein- A (PAPPA-A) in normal rats exposed to cigarette smoke. Sixty albino rats of Sprague- Dawley strain weighing 200-250 gm, divided into two groups. Both the groups were kept in identical chambers. One group of 30 rats was further exposed to passive cigarette smoke for 4 weeks. No increase was observed in the levels of serum PAPP-A of both the groups: Passive smokers and not exposed to passive smoking i.e. P > 0.05. Smoking does not increase the levels of PAPP-A. (author)

  11. Dietary soy and meat proteins induce distinct physiological and gene expression changes in rats

    Science.gov (United States)

    Song, Shangxin; Hooiveld, Guido J.; Li, Mengjie; Zhao, Fan; Zhang, Wei; Xu, Xinglian; Muller, Michael; Li, Chunbao; Zhou, Guanghong

    2016-01-01

    This study reports on a comprehensive comparison of the effects of soy and meat proteins given at the recommended level on physiological markers of metabolic syndrome and the hepatic transcriptome. Male rats were fed semi-synthetic diets for 1 wk that differed only regarding protein source, with casein serving as reference. Body weight gain and adipose tissue mass were significantly reduced by soy but not meat proteins. The insulin resistance index was improved by soy, and to a lesser extent by meat proteins. Liver triacylglycerol contents were reduced by both protein sources, which coincided with increased plasma triacylglycerol concentrations. Both soy and meat proteins changed plasma amino acid patterns. The expression of 1571 and 1369 genes were altered by soy and meat proteins respectively. Functional classification revealed that lipid, energy and amino acid metabolic pathways, as well as insulin signaling pathways were regulated differently by soy and meat proteins. Several transcriptional regulators, including NFE2L2, ATF4, Srebf1 and Rictor were identified as potential key upstream regulators. These results suggest that soy and meat proteins induce distinct physiological and gene expression responses in rats and provide novel evidence and suggestions for the health effects of different protein sources in human diets. PMID:26857845

  12. The adverse effect of 4-tert-octylphenol on fat metabolism in pregnant rats via regulation of lipogenic proteins.

    Science.gov (United States)

    Kim, Jun; Kang, Eun-Jin; Park, Mee-Na; Kim, Ji-Eun; Kim, Seung-Chul; Jeung, Eui-Bae; Lee, Geun-Shik; Hwang, Dae-Youn; An, Beum-Soo

    2015-07-01

    Alkylphenols such as 4-tert-octylphenol (OP), nonylphenol, and bisphenol A are classified as endocrine-disrupting chemicals (EDCs). Digestion and metabolism of food are controlled by many endocrine factors, including insulin, glucagon, and estrogen. These factors are differentially regulated during pregnancy. The alteration of nutritional intake and fat metabolism may affect the maintenance of pregnancy and supplementation of nutrients to the fetus, and therefore can cause severe metabolic diseases such as ketosis, marasmus and diabetes mellitus in pregnant individuals. In this study, we examined the effects of OP on fat metabolism in pregnant rats. Ethinyl estradiol (EE) was also administered as an estrogenic positive control. In our results, rats treated with OP showed significantly reduced body weights compared to the control group. In addition, histological analysis showed that the amount of fat deposited in adipocytes was reduced by OP treatment. To study the mechanism of action of OP in fat metabolism, we examined the expression levels of fat metabolism-associated genes in rat adipose tissue and liver by real-time PCR. OP and EE negatively regulated the expression of lipogenic enzymes, including FAS (fatty acid synthase), ACC-1 (acetyl-CoA carboxylase-1), and SCD-1 (stearoyl-CoA desaturase-1). The levels of lipogenic enzyme-associated transcription factors such as C/EBP-α (CAAT enhancer binding protein alpha) and SREBP-1c (sterol regulatory element binding protein-1c) were also reduced in both liver and adipose tissue. In summary, these findings suggest that OP has adverse effects on fat metabolism in pregnant rats and inhibits fat deposition via regulating lipogenic genes in the liver and adipose tissue. The altered fat metabolism by OP may affect the nutrition balance during pregnancy and can cause metabolism-related diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Chronic dietary supplementation with soy protein improves muscle function in rats.

    Directory of Open Access Journals (Sweden)

    Ramzi J Khairallah

    Full Text Available Athletes as well as elderly or hospitalized patients use dietary protein supplementation to maintain or grow skeletal muscle. It is recognized that high quality protein is needed for muscle accretion, and can be obtained from both animal and plant-based sources. There is interest to understand whether these sources differ in their ability to maintain or stimulate muscle growth and function. In this study, baseline muscle performance was assessed in 50 adult Sprague-Dawley rats after which they were assigned to one of five semi-purified "Western" diets (n = 10/group differing only in protein source, namely 19 kcal% protein from either milk protein isolate (MPI, whey protein isolate (WPI, soy protein isolate (SPI, soy protein concentrate (SPC or enzyme-treated soy protein (SPE. The diets were fed for 8 weeks at which point muscle performance testing was repeated and tissues were collected for analysis. There was no significant difference in food consumption or body weights over time between the diet groups nor were there differences in terminal organ and muscle weights or in serum lipids, creatinine or myostatin. Compared with MPI-fed rats, rats fed WPI and SPC displayed a greater maximum rate of contraction using the in vivo measure of muscle performance (p<0.05 with increases ranging from 13.3-27.5% and 22.8-29.5%, respectively at 60, 80, 100 and 150 Hz. When the maximum force was normalized to body weight, SPC-fed rats displayed increased force compared to MPI (p<0.05, whereas when normalized to gastrocnemius weight, WPI-fed rats displayed increased force compared to MPI (p<0.05. There was no difference between groups using in situ muscle performance. In conclusion, soy protein consumption, in high-fat diet, resulted in muscle function comparable to whey protein and improved compared to milk protein. The benefits seen with soy or whey protein were independent of changes in muscle mass or fiber cross-sectional area.

  14. Influence Of Whey Protein For Abrogating Liver Injury In Female Rats

    International Nuclear Information System (INIS)

    ANWAR, M.M.; MOHAMED, N.E.

    2009-01-01

    The objective of this study was to determine the possible benefits of whey protein concentrate (44% protein, 5% fat and 4.6% ash in dry weight) against liver injury induced by CCl 4 . It was carried out by evaluating the effect of the daily feeding of female rats on diet containing 15% whey protein instead of soybean protein for four weeks on some biochemical and histological changes in liver of female rats.The data showed that injection with CCl 4 (1 ml /kg body weight 3 times / week) caused significant decrease in body weight with disturbances in liver functions as significant increase in serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, gamma glutamyl transferase and bilirubin and significant decrease in serum albumin, FT3 and an increase in AFP levels. A marked significant decrease in glutathione content and significant increase in lipid peroxidation was also observed in hepatic tissues. The histological examination revealed that CCl 4 treatment showed marked degenerative changes in liver hepatocytes and sinusoids.The results also showed that feeding on diet containing whey protein for two or four weeks during CCl 4 treatment minimized the disturbance of the liver functions and liver histology.

  15. Urea utilization in protein deficient rats

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, N [Hyogo College of Medicine, Nishinomiya, Hyogo (Japan)

    1982-06-01

    Three experiments were performed to investigate the mechanism of urea utilization and the nutritional roles of intestinal flora on the utilization of urea by rats fed with a protein deficient diet. Ammonia content in the small intestine in LPD(low protein diet) group fed with a low protein diet for 2 or 5 weeks was about three of five times higher than that of control group fed with SPD(standard protein diet) after administration of urea (0.2gN/100gB.W.). The /sup 15/N incorporation into plasma protein of LPD group was significantly higher than that of the control group two hours after the administration of /sup 15/N-urea (10 mg/100gB.W.) and higher level of /sup 15/N concentration in plasma protein in LPD group was maintained thereafter. The /sup 15/N incorporation into the amino acids of plasma protein was higher in LPD group than in control group. The /sup 15/N incorporation into the amino acids in portal plasma seemed to be higher in LPD group than in control group one hour after the administration of /sup 15/N-urea (10mg/100gB.W.). However, the /sup 15/N incorporation into each free amino acids was suppressed considerably by the administration of antibiotic mixture. it follows that amino acids may be synthesized from urea in the intestine by intestinal-bacterial action and absorbed from portal vein. From these results, it may be concluded that the ammonia nitrogen converted from urea by the action of intestinal-bacterial urease in the intestine is utilized for the synthesis of essential and nonessential amino acids in protein deficient rats and transfered to the liver through portal vein and utilized for protein synthesis.

  16. Urea utilization in protein deficient rats

    International Nuclear Information System (INIS)

    Tanaka, Noriko

    1982-01-01

    Three experiments were performed to investigate the mechanism of urea utilization and the nutritional roles of intestinal flora on the utilization of urea by rats fed with a protein deficient diet. Ammonia content in the small intestine in LPD(low protein diet) group fed with a low protein diet for 2 or 5 weeks was about three of five times higher than that of control group fed with SPD(standard protein diet) after administration of urea (0.2gN/100gB.W.). The 15 N incorporation into plasma protein of LPD group was significantly higher than that of the control group two hours after the administration of 15 N-urea (10 mg/100gB.W.) and higher level of 15 N concentration in plasma protein in LPD group was maintained thereafter. The 15 N incorporation into the amino acids of plasma protein was higher in LPD group than in control group. The 15 N incorporation into the amino acids in portal plasma seemed to be higher in LPD group than in control group one hour after the administration of 15 N-urea (10mg/100gB.W.). However, the 15 N incorporation into each free amino acids was suppressed considerably by the administration of antibiotic mixture. it follows that amino acids may be synthesized from urea in the intestine by intestinal-bacterial action and absorbed from portal vein. From these results, it may be concluded that the ammonia nitrogen converted from urea by the action of intestinal-bacterial urease in the intestine is utilized for the synthesis of essential and nonessential amino acids in protein deficient rats and transfered to the liver through portal vein and utilized for protein synthesis. (J.P.N.)

  17. Relationship Between Calorie Restriction, Lipid Peroxidation ...

    African Journals Online (AJOL)

    In the brain of the caloric restricted rats, there was little or no change in the tGSH and GSH, although the GSSG and GSSG/GSH% ratio were increased significantly. These results suggest that aging of rats had been decelerated by caloric restriction due to the decrease in the peroxidative damage in the lungs and brain.

  18. The effects of clobazam treatment in rats on the expression of genes and proteins encoding glucronosyltransferase 1A/2B (UGT1A/2B) and multidrug resistance‐associated protein-2 (MRP2), and development of thyroid follicular cell hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Miyawaki, Izuru, E-mail: izuru-miyawaki@ds-pharma.co.jp; Tamura, Akitoshi; Matsumoto, Izumi; Inada, Hiroshi; Kunimatsu, Takeshi; Kimura, Juki; Funabashi, Hitoshi

    2012-12-15

    Clobazam (CLB) is known to increase hepatobiliary thyroxine (T4) clearance in Sprague–Dawley (SD) rats, which results in hypothyroidism followed by thyroid follicular cell hypertrophy. However, the mechanism of the acceleration of T4-clearance has not been fully investigated. In the present study, we tried to clarify the roles of hepatic UDP-glucronosyltransferase (UGT) isoenzymes (UGT1A and UGT2B) and efflux transporter (multidrug resistance–associated protein-2; MRP2) in the CLB-induced acceleration of T4-clearance using two mutant rat strains, UGT1A-deficient mutant (Gunn) and MRP2-deficient mutant (EHBR) rats, especially focusing on thyroid morphology, levels of circulating hormones (T4 and triiodothyronine (T3)) and thyroid-stimulating hormone (TSH), and mRNA or protein expressions of UGTs (Ugt1a1, Ugt1a6, and Ugt2b1/2) and MRP2 (Mrp). CLB induced thyroid morphological changes with increases in TSH in SD and Gunn rats, but not in EHBR rats. T4 was slightly decreased in SD and Gunn rats, and T3 was decreased in Gunn rats, whereas these hormones were maintained in EHBR rats. Hepatic Ugt1a1, Ugt1a6, Ugt2b1/2, and Mrp2 mRNAs were upregulated in SD rats. In Gunn rats, UGT1A mRNAs (Ugt1a1/6) and protein levels were quite low, but UGT2B mRNAs (Ugt2b1/2) and protein were prominently upregulated. In SD and Gunn rats, MRP2 mRNA and protein were upregulated to the same degree. These results suggest that MRP2 is an important contributor in development of the thyroid cellular hypertrophy in CLB-treated rats, and that UGT1A and UGT2B work in concert with MRP2 in the presence of MRP2 function to enable the effective elimination of thyroid hormones. -- Highlights: ► Role of UGT and MRP2 in thyroid pathology was investigated in clobazam-treated rats. ► Clobazam induced thyroid cellular hypertrophy in SD and Gunn rats, but not EHBR rats. ► Hepatic Mrp2 gene and protein were upregulated in SD and Gunn rats, but not EHBR rats. ► Neither serum thyroid hormones (T3/T4

  19. The effects of clobazam treatment in rats on the expression of genes and proteins encoding glucronosyltransferase 1A/2B (UGT1A/2B) and multidrug resistance‐associated protein-2 (MRP2), and development of thyroid follicular cell hypertrophy

    International Nuclear Information System (INIS)

    Miyawaki, Izuru; Tamura, Akitoshi; Matsumoto, Izumi; Inada, Hiroshi; Kunimatsu, Takeshi; Kimura, Juki; Funabashi, Hitoshi

    2012-01-01

    Clobazam (CLB) is known to increase hepatobiliary thyroxine (T4) clearance in Sprague–Dawley (SD) rats, which results in hypothyroidism followed by thyroid follicular cell hypertrophy. However, the mechanism of the acceleration of T4-clearance has not been fully investigated. In the present study, we tried to clarify the roles of hepatic UDP-glucronosyltransferase (UGT) isoenzymes (UGT1A and UGT2B) and efflux transporter (multidrug resistance–associated protein-2; MRP2) in the CLB-induced acceleration of T4-clearance using two mutant rat strains, UGT1A-deficient mutant (Gunn) and MRP2-deficient mutant (EHBR) rats, especially focusing on thyroid morphology, levels of circulating hormones (T4 and triiodothyronine (T3)) and thyroid-stimulating hormone (TSH), and mRNA or protein expressions of UGTs (Ugt1a1, Ugt1a6, and Ugt2b1/2) and MRP2 (Mrp). CLB induced thyroid morphological changes with increases in TSH in SD and Gunn rats, but not in EHBR rats. T4 was slightly decreased in SD and Gunn rats, and T3 was decreased in Gunn rats, whereas these hormones were maintained in EHBR rats. Hepatic Ugt1a1, Ugt1a6, Ugt2b1/2, and Mrp2 mRNAs were upregulated in SD rats. In Gunn rats, UGT1A mRNAs (Ugt1a1/6) and protein levels were quite low, but UGT2B mRNAs (Ugt2b1/2) and protein were prominently upregulated. In SD and Gunn rats, MRP2 mRNA and protein were upregulated to the same degree. These results suggest that MRP2 is an important contributor in development of the thyroid cellular hypertrophy in CLB-treated rats, and that UGT1A and UGT2B work in concert with MRP2 in the presence of MRP2 function to enable the effective elimination of thyroid hormones. -- Highlights: ► Role of UGT and MRP2 in thyroid pathology was investigated in clobazam-treated rats. ► Clobazam induced thyroid cellular hypertrophy in SD and Gunn rats, but not EHBR rats. ► Hepatic Mrp2 gene and protein were upregulated in SD and Gunn rats, but not EHBR rats. ► Neither serum thyroid hormones (T3/T4

  20. Energy restriction does not prevent insulin resistance but does prevent liver steatosis in aging rats on a Western-style diet.

    Science.gov (United States)

    Hennebelle, Marie; Roy, Maggie; St-Pierre, Valérie; Courchesne-Loyer, Alexandre; Fortier, Mélanie; Bouzier-Sore, Anne-Karine; Gallis, Jean-Louis; Beauvieux, Marie-Christine; Cunnane, Stephen C

    2015-03-01

    The aim of this study was to evaluate the effects of long-term energy restriction (ER) on plasma, liver, and skeletal muscle metabolite profiles in aging rats fed a Western-style diet. Three groups of male Sprague-Dawley rats were studied. Group 1 consisted of 2 mo old rats fed ad libitum; group 2 were 19 mo old rats also fed ad libitum; and group 3 were 19 mo old rats subjected to 40% ER for the last 11.5 mo. To imitate a Western-style diet, all rats were given a high-sucrose, very low ω-3 polyunsaturated fatty acid (PUFA) diet. High-resolution magic angle spinning-(1)H nuclear magnetic resonance spectroscopy was used for hepatic and skeletal muscle metabolite determination, and fatty acid profiles were measured by capillary gas chromatography on plasma, liver, and skeletal muscle. ER coupled with a Western-style diet did not prevent age-induced insulin resistance or the increase in triacylglycerol content in plasma and skeletal muscle associated with aging. However, in the liver, ER did prevent steatosis and increased the percent of saturated and monounsaturated fatty acids relative to ω-6 and ω-3 PUFA. Although steatosis was reduced, the beneficial effects of ER on systemic insulin resistance and plasma and skeletal muscle metabolites observed elsewhere with a balanced diet seem to be compromised by high-sucrose and low ω-3 PUFA intake. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. The Effect of Recombinant Human MG53 Protein on Tourniquet-induced Ischemia Reperfusion Injury in Rat Muscle

    Science.gov (United States)

    2014-06-01

    blind to the treatment , and the prevalence of damaged fibers was quantitated from 10 10x images from each muscle . Approximately 800 fibers were counted...therapeutic cell membrane repair in treatment of muscular dystrophy . Sci Transl Med. 2012; 4(139):139ra185. 11. Weisleder N, Lin P, Zhao X, Orange M, Zhu H...The effect of recombinant human MG53 protein on tourniquet- induced ischemia reperfusion injury in rat muscle Benjamin T. Corona, Ph.D.1, Koyal Garg

  2. Impairment of Fos protein formation in the rat infarct borderzone by MK-801, but not by NBQX

    DEFF Research Database (Denmark)

    Christensen, Thomas; Jørgensen, M B; Diemer, Nils Henrik

    1993-01-01

    or a glutamate receptor antagonist; the non-competitive NMDA receptor antagonist MK-801 or the AMPA receptor antagonist NBQX which are known to be able to reduce infarct size in MCA occluded rats. The saline treated rats showed presence of Fos protein in nerve cell nuclei throughout the cortical and striatal...... infarct borderzone, but no staining in the infarct core or contralateral hemisphere. MK-801 almost totally abolished this expression of Fos protein whereas NBQX had no significant effect on Fos protein expression. It is suggested that the Fos protein induction is due to repeated spreading depressions...

  3. Aniline-induced nitrosative stress in rat spleen: Proteomic identification of nitrated proteins

    International Nuclear Information System (INIS)

    Fan Xiuzhen; Wang Jianling; Soman, Kizhake V.; Ansari, G.A.S.; Khan, M. Firoze

    2011-01-01

    Aniline exposure is associated with toxicity to the spleen which is characterized by splenomegaly, hyperplasia, fibrosis, and a variety of sarcomas on chronic exposure in rats. However, mechanisms by which aniline elicits splenotoxic responses are not well understood. Earlier we have shown that aniline exposure leads to increased nitration of proteins in the spleen. However, nitrated proteins remain to be characterized. Therefore, in the current study using proteomic approaches, we focused on characterizing the nitrated proteins in the spleen of aniline-exposed rats. Aniline exposure led to increased tyrosine nitration of proteins, as determined by 2D Western blotting with anti-3-nitrotyrosine specific antibody, compared to the controls. The analyzed nitrated proteins were found in the molecular weight range of 27.7 to 123.6 kDa. A total of 37 nitrated proteins were identified in aniline-treated and control spleens. Among them, 25 were found only in aniline-treated rats, 11 were present in both aniline-treated and control rats, while one was found in controls only. The nitrated proteins identified mainly represent skeletal proteins, chaperones, ferric iron transporter, enzymes, nucleic acids binding protein, and signaling and protein synthesis pathways. Furthermore, aniline exposure led to significantly increased iNOS mRNA and protein expression in the spleen, suggesting its role in increased reactive nitrogen species formation and contribution to increased nitrated proteins. The identified nitrated proteins provide a global map to further investigate alterations in their structural and functional properties, which will lead to a better understanding of the role of protein nitration in aniline-mediated splenic toxicity. - Highlights: → Proteomic approaches are used to identify nitrated proteins in the spleen. → Twenty five nitrated proteins were found only in the spleen of aniline-treated rats. → Aniline exposure led to increased iNOS mRNA and protein

  4. Role of CC chemokines (macrophage inflammatory protein-1 beta, monocyte chemoattractant protein-1, RANTES) in acute lung injury in rats

    DEFF Research Database (Denmark)

    Bless, N M; Huber-Lang, M; Guo, R F

    2000-01-01

    The role of the CC chemokines, macrophage inflammatory protein-1 beta (MIP-1 beta), monocyte chemotactic peptide-1 (MCP-1), and RANTES, in acute lung inflammatory injury induced by intrapulmonary deposition of IgG immune complexes injury in rats was determined. Rat MIP-1 beta, MCP-1, and RANTES...... were cloned, the proteins were expressed, and neutralizing Abs were developed. mRNA and protein expression for MIP-1 beta and MCP-1 were up-regulated during the inflammatory response, while mRNA and protein expression for RANTES were constitutive and unchanged during the inflammatory response....... Treatment of rats with anti-MIP-1 beta Ab significantly decreased vascular permeability by 37% (p = 0.012), reduced neutrophil recruitment into lung by 65% (p = 0.047), and suppressed levels of TNF-alpha in bronchoalveolar lavage fluids by 61% (p = 0.008). Treatment of rats with anti-rat MCP-1 or anti...

  5. Immediate and residual effects of heat stress and restricted intake on milk protein and casein composition and energy metabolism.

    Science.gov (United States)

    Cowley, F C; Barber, D G; Houlihan, A V; Poppi, D P

    2015-04-01

    The effects of heat stress on dairy production can be separated into 2 distinct causes: those effects that are mediated by the reduced voluntary feed intake associated with heat stress, and the direct physiological and metabolic effects of heat stress. To distinguish between these, and identify their effect on milk protein and casein concentration, mid-lactation Holstein-Friesian cows (n = 24) were housed in temperature-controlled chambers and either subjected to heat stress [HS; temperature-humidity index (THI) ~78] or kept in a THIheat-stressed cows (TN-R) for 7 d. A control group of cows was kept in a THIheat stress. Heat stress reduced the milk protein concentration, casein number, and casein concentration and increased the urea concentration in milk beyond the effects of restriction of intake. Under HS, the proportion in total casein of αS1-casein increased and the proportion of αS2-casein decreased. Because no effect of HS on milk fat or lactose concentration was found, these effects appeared to be the result of specific downregulation of mammary protein synthesis, and not a general reduction in mammary activity. No residual effects were found of HS or TN-R on milk production or composition after THIHeat-stressed cows had elevated blood concentrations of urea and Ca, compared with TN-R and TN-AL. Cows in TN-R had higher serum nonesterified fatty acid concentrations than cows in HS. It was proposed that HS and TN-R cows may mobilize different tissues as endogenous sources of energy. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Glomerular sieving of high molecular weight proteins in proteinuric rats

    International Nuclear Information System (INIS)

    Bertolatus, J.A.; Abuyousef, M.; Hunsicker, L.G.

    1987-01-01

    To characterize the permeability of the glomerular capillary wall to high molecular weight proteins in normal and proteinuric rats, we determined the glomerular sieving coefficients (GSC) of radioiodinated marker proteins of known size and charge by means of a paired label, tissue accumulation method previously validated in this laboratory. In one group of rats (Series A) the GSCs of 125 I-anionic IgG (aIgG-molecular weight [mol wt] 150,000, pI 4.9) and 131 I-neutral IgG (nIgG-pI 7.4 to 7.6) were measured simultaneously. In Series B, the GSC of a second anionic marker, 131 I-human ceruloplasmin (Crp-mol wt 137,000, pI 4.9) was compared to that of 125 I-nIgG. As in the previous report, the labeled proteins were not degraded or deiodinated during the 20 minute clearance period for GSC determination. Within Series A and B, three subgroups of rats were studied: control saline-infused rats, rats made acutely proteinuric by infusion of the polycation hexadimethrine (HDM), and rats with chronic doxorubicin (Adriamycin-Adria) nephrosis. In the control rats, GSCs for the anionic markers aIgG (Series A) or Crp (Series B) were significantly greater than that of nIgG (both series). These large proteins crossed the filtration barrier by a different pathway from that available to smaller neutral molecules the size of albumin, which in our previous study had a much higher GSC than a native, anionic albumin marker. In a third group of control rats only (Series C), the GSCs of native anionic bovine albumin (BSA) and nIgG were compared directly. The GSC of BSA (0.0029) was only slightly larger than the GSC of nIgG (0.0025), indicating that most of the native albumin crosses the glomerular capillary wall via a nonselective pathway similar to that available to nIgG. The results in the control groups are compatible with recently-described heteroporous models of glomerular size selectivity

  7. Perinatal protein deprivation facilitates morphine cross-sensitization to cocaine and enhances ΔFosB expression in adult rats.

    Science.gov (United States)

    Perondi, María Cecilia; Gutiérrez, María Cecilia; Valdomero, Analía; Cuadra, Gabriel Ricardo

    2017-08-30

    Previous studies have indicated that neural changes induced by early nutritional insult cause an altered response to pharmacological treatments, including addictive drugs. This study evaluates the influence of perinatal protein malnutrition in developing cross-sensitization to cocaine-induced rewarding effects in animals pre-exposed to morphine. Different groups of well-nourished (C-rats) and protein-deprived animals (D-rats) were treated twice a day for three days with increasing doses of morphine or with saline. After 3days, the incentive motivational effects of cocaine were assessed in a Conditioned Place Preference paradigm in both groups. In saline pre-treated animals, dose-response curves to cocaine revealed a conditioning effect in D-rats at doses of 5, 7.5 and 10mg/kg, while this effect was observed in C-rats only with 10 and 15mg/kg. Furthermore, when animals of both groups were pre-treated with escalating doses of morphine, cross-sensitization to the conditioning effect of cocaine was elicited only in D-rats with low doses of cocaine (5 and 7.5mg/kg). In contrast, under the same experimental conditions, C-rats show no cross-sensitization. To correlate this differential rewarding response with a molecular substrate linked to the behavioral changes observed after repeated drug exposure, ΔFosB expression was assessed in different brain regions. D-rats showed a significant increase in this transcription factor in the nucleus accumbens, amygdala and medial prefrontal cortex. These results demonstrated that perinatal protein deprivation facilitates rewarding effects and the development of cross-sensitization to cocaine, which correlates with an upregulation of ΔFosB in brain areas related to the reward circuitry. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The translocator protein radioligand 18F-DPA-714 monitors antitumor effect of erufosine in a rat 9L intracranial glioma model

    International Nuclear Information System (INIS)

    Awde, Ali R.; Boisgard, Raphael; Theze, Benoit; Dubois, Albertine; Zheng, Jinzi; Winkeler, Alexandra; Dolle, Frederic; Jacobs, Andreas H.; Tavitian, Bertrand

    2013-01-01

    On the one hand, the translocator protein (TSPO) radioligand N,N-diethyl-2-(2-(4-(2- 18 F-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a] pyrimidin-3-yl)acetamide ( 18 F-DPA-714) has been suggested to serve as an alternative radiotracer to image human glioma, and on the other hand the alkyl-phosphocholine erufosine (ErPC3) has been reported to induce apoptosis in otherwise highly apoptosis resistant glioma cell lines. The induction of apoptosis by ErPC3 requires TSPO, a mitochondrial membrane protein highly expressed in malignant gliomas. In this preclinical study, we monitored the effect of ErPC3 treatment in vivo using 18 F-DPA-714 PET. Methods: In vitro studies investigated the antitumor effect of ErPC3 in 9L rat gliosarcoma cells. In vivo, glioma-bearing rats were imaged with 18 F-DPA-714 for the time of treatment. Results: A significant decrease in 9L cell proliferation and viability and a significant increase in apoptosis and caspase-3 activation were demonstrated on ErPC3 treatment in cell culture. In the rat model, ErPC3 administration resulted in significant changes in 18 F-DPA-714 tumor uptake over the course of the treatment. Immunohistochemistry revealed reduced tumor volume and increased cell death in ErPC3-treated animals accompanied by infiltration of the tumor core by CD11b-positive micro-glia/macrophages and glial fibrillary acidic protein-positive astrocytes. Conclusion: Our findings demonstrate a potent antitumor effect of ErPC3 in vitro, in vivo, and ex vivo. PET imaging of TSPO expression using 18 F-DPA-714 allows effective monitoring and quantification of disease progression and response to ErPC3 therapy in intracranial 9L gliomas. (authors)

  9. The effect of increasing levels of fish oil-containing structured triglycerides on protein metabolism in parenterally fed rats stressed by burn plus endotoxin.

    Science.gov (United States)

    Gollaher, C J; Fechner, K; Karlstad, M; Babayan, V K; Bistrian, B R

    1993-01-01

    This report investigates the effect of various levels of medium-chain/fish oil structured triglycerides on protein and energy metabolism in hypermetabolic rats. Male Sprague-Dawley rats (192 to 226 g) were continuously infused with isovolemic diets that provided 200 kcal/kg per day and 2 g of amino acid nitrogen per kilogram per day. The percentage of nonnitrogen calories as structured triglyceride was varied: no fat, 5%, 15%, or 30%. A 30% long-chain triglyceride diet was also provided as a control to compare the protein-sparing abilities of these two types of fat. Nitrogen excretion, plasma albumin, plasma triglycerides, and whole-body and liver and muscle protein kinetics were determined after 3 days of feeding. Whole-body protein breakdown, flux, and oxidation were similar in all groups. The 15% structured triglyceride diet maximized whole-body protein synthesis (p structured triglyceride (p triglycerides were markedly elevated in the 30% structured triglyceride-fed rats. The 30% structured triglyceride diet maintained plasma albumin levels better than those diets containing no fat, 5% medium-chain triglyceride/fish oil structured triglyceride, or 30% long-chain triglycerides. Nitrogen excretion was lower in animals receiving 30% of nonnitrogen calories as a structured triglyceride than in those receiving 30% as long-chain triglycerides, but this difference did not reach statistical significance (p = .1). These data suggest that protein metabolism is optimized when structured triglyceride is provided at relatively low dietary fat intakes.

  10. Glutamic Acid Signal Synchronizes Protein Synthesis Kinetics in Hepatocytes from Old Rats for the Following Several Days. Cell Metabolism Memory.

    Science.gov (United States)

    Brodsky, V Y; Malchenko, L A; Lazarev, D S; Butorina, N N; Dubovaya, T K; Zvezdina, N D

    2018-03-01

    The kinetics of protein synthesis was investigated in primary cultures of hepatocytes from old rats in serum-free medium. The rats were fed mixed fodder supplemented with glutamic acid and then transferred to a regular mixed fodder. The amplitude of protein synthesis rhythm in hepatocytes isolated from these rats increased on average 2-fold in comparison with the rats not receiving glutamic acid supplement. Based on this indicator reflecting the degree of cell-cell interactions, the cells from old rats were not different from those of young rats. The effect was preserved for 3-4 days. These results are discussed in connection with our previous data on preservation of the effect of single administration of gangliosides, noradrenaline, serotonin, and other synchronizers on various cell populations. In contrast to the other investigated factors, glutamic acid is capable of penetrating the blood-brain barrier, which makes its effect possible not only in the case of hepatocytes and other non-brain cells, but also in neurons.

  11. Effect of x-irradiation in rats bearing walker-256-carcinosarcoma and normal rats

    International Nuclear Information System (INIS)

    Ehara, Kazuhiko

    1978-01-01

    Serum protein fractions and total proteins were studied with bloods obtained from the rats exposed each to the partial-, whole-bodies and the transplanted tumors (Walker-256-carcinosarcoma transplanted in the right hind leg). The electrophoretic variation induced in the sera of tumor-bearing rats (Group II), and the content of total proteins decreased. Early irradiation to the tumor part of rats less induced the variations of the electrophoretic pattern and the decrease of the amount of serum total proteins. When the distant metastasis appeared during irradiation treatment, the electrophoretic patterns and content of total proteins changed proportionally to the variation in sera of Group II. On the other hand, the γ-globulin (G) fraction increased in the long-term survival rat. The separation of the rat serum β-G into two peaks of β 1 - and β 2 -G was shown only in Group IV (late irradiation to the right hind leg). This finding supposed that some factors involve in the sera of rats with transplanted primary tumor grown up to a fixed size and guessed the appearance of the distant metastasis during x-irradiation. The percentages of the albumin and γ-G decreased slightly and those of the α 1 -, α 2 - and β-G increased slightly in the rats with 300 rad partial-body (the right hind leg) x-irradiation daily for 20 days. The remarkable decrease of the albumin and γ-G, the increase of the α 1 - and β-G, the marked increase of the α 2 -G and the decrease of serum total proteins were demonstrated for the sera of rats with 1,000 rad whole-body x-irradiation at a time. These phenomena seem to be related to the destructive and reticuloendothelial injury by the exposure. (auth.)

  12. Anti-Restriction Protein, KlcAHS, Promotes Dissemination of Carbapenem Resistance

    Directory of Open Access Journals (Sweden)

    Xiaofei Jiang

    2017-05-01

    Full Text Available Carbapenemase-producing Klebsiella pneumoniae (KPC has emerged and spread throughout the world. A retrospective analysis was performed on carbapenem-resistant K. pneumoniae isolated at our teaching hospital during the period 2009–2010, when the initial outbreak occurred. To determine the mechanism(s that underlies the increased infectivity exhibited by KPC, Multilocus Sequence Typing (MLST was conducted. A series of plasmids was also extracted, sequenced and analyzed. Concurrently, the complete sequences of blaKPC−2-harboring plasmids deposited in GenBank were summarized and aligned. The blaKPC−2 and KlcAHS genes in the carbapenem-resistant K. pneumoniae isolates were examined. E. coli strains, carrying different Type I Restriction and Modification (RM systems, were selected to study the interaction between RM systems, anti-RM systems and horizontal gene transfer (HGT. The ST11 clone predominated among 102 carbapenem-resistant K. pneumoniae isolates, all harbored the blaKPC−2 gene; 98% contained the KlcAHS gene. KlcAHS was one of the core genes in the backbone region of most blaKPC−2 carrying plasmids. Type I RM systems in the host bacteria reduced the rate of pHS10842 plasmid transformation by 30- to 40-fold. Presence of the anti-restriction protein, KlcAHS, on the other hand, increased transformation efficiency by 3- to 6-fold. These results indicate that RM systems can significantly restrict HGT. In contrast, KlcAHS can disrupt the RM systems and promote HGT by transformation. These findings suggest that the anti-restriction protein, KlcAHS, represents a novel mechanism that facilitates the increased transfer of blaKPC-2 and KlcAHS-carrying plasmids among K. pneumoniae strains.

  13. Higher protein kinase C ζ in fatty rat liver and its effect on insulin actions in primary hepatocytes.

    Directory of Open Access Journals (Sweden)

    Wei Chen

    Full Text Available We previously showed the impairment of insulin-regulated gene expression in the primary hepatocytes from Zucker fatty (ZF rats, and its association with alterations of hepatic glucose and lipid metabolism. However, the molecular mechanism is unknown. A preliminary experiment shows that the expression level of protein kinase C ζ (PKCζ, a member of atypical PKC family, is higher in the liver and hepatocytes of ZF rats than that of Zucker lean (ZL rats. Herein, we intend to investigate the roles of atypical protein kinase C in the regulation of hepatic gene expression. The insulin-regulated hepatic gene expression was evaluated in ZL primary hepatocytes treated with atypical PKC recombinant adenoviruses. Recombinant adenovirus-mediated overexpression of PKCζ, or the other atypical PKC member PKCι/λ, alters the basal and impairs the insulin-regulated expressions of glucokinase, sterol regulatory element-binding protein 1c, the cytosolic form of phosphoenolpyruvate carboxykinase, the catalytic subunit of glucose 6-phosphatase, and insulin like growth factor-binding protein 1 in ZL primary hepatocytes. PKCζ or PKCι/λ overexpression also reduces the protein level of insulin receptor substrate 1, and the insulin-induced phosphorylation of AKT at Ser473 and Thr308. Additionally, PKCι/λ overexpression impairs the insulin-induced Prckz expression, indicating the crosstalk between PKCζ and PKCι/λ. We conclude that the PKCζ expression is elevated in hepatocytes of insulin resistant ZF rats. Overexpressions of aPKCs in primary hepatocytes impair insulin signal transduction, and in turn, the down-stream insulin-regulated gene expression. These data suggest that elevation of aPKC expression may contribute to the hepatic insulin resistance at gene expression level.

  14. Behavioral and Neurochemical Studies in Stressed and Unstressed Rats Fed on Protein, Carbohydrate and Fat Rich Diet

    Directory of Open Access Journals (Sweden)

    Samia Moin§, Saida Haider*, Saima Khaliq1, Saiqa Tabassum and Darakhshan J. Haleem

    2012-05-01

    Full Text Available Stress produces behavioral and neurochemical deficits. To study the relationship between adaptation to stress and macronutrient intake, the present study was designed to monitor the effects of different diets on feed intake, growth rate and serotonin (5-Hydroxytryptamine, 5-HT metabolism following exposure to restraint stress in rats. Rats were divided into four groups (n=12 as control, sugar, protein and fat rich diet fed rats. After 5 weeks of treatment animals of each group were divided into unrestrained and restrained animals (n=6. Rats of restrained group were given immobilization stress for 2 hours/day for 5 days. Food intake and growth rates of unrestrained and restrained rats were monitored daily. Rats were decapitated on 6th day to collect brain samples for neurochemical estimation. Results show that sugar diet fed rats produced adaptation to stress early as compared to normal diet fed rats. Food intake and growth rates of unrestrained and restrained rats were comparable on 3rd day in sugar diet fed rats and on 4th day in normal diet fed rats. Stress decreased food intake and growth rates of protein and fat treated rats. Repeated stress did not alter brain 5-HT and 5-HIAA levels of normal diet fed rats and sugar diet fed rats. Protein diet fed restrained rats showed elevated brain 5-HT levels. Fat diet fed restrained rats significantly decreased brain TRP and 5-HIAA levels. Finding suggested that carbohydrate diet might protect against stressful conditions. Study also showed that nutritional status could alter different behaviors in response to a stressful environment.

  15. Intermittent Fasting Modulation of the Diabetic Syndrome in Streptozotocin-Injected Rats

    Directory of Open Access Journals (Sweden)

    Louiza Belkacemi

    2012-01-01

    Full Text Available This study investigates the effects of intermittent overnight fasting in streptozotocin-induced diabetic rats (STZ rats. Over 30 days, groups of 5-6 control or STZ rats were allowed free food access, starved overnight, or exposed to a restricted food supply comparable to that ingested by the intermittently fasting animals. Intermittent fasting improved glucose tolerance, increased plasma insulin, and lowered Homeostatis Model Assessment index. Caloric restriction failed to cause such beneficial effects. The β-cell mass, as well as individual β-cell and islet area, was higher in intermittently fasting than in nonfasting STZ rats, whilst the percentage of apoptotic β-cells appeared lower in the former than latter STZ rats. In the calorie-restricted STZ rats, comparable findings were restricted to individual islet area and percentage of apoptotic cells. Hence, it is proposed that intermittent fasting could represent a possible approach to prevent or minimize disturbances of glucose homeostasis in human subjects.

  16. Prefrontal cortex, caloric restriction and stress during aging: studies on dopamine and acetylcholine release, BDNF and working memory.

    Science.gov (United States)

    Del Arco, Alberto; Segovia, Gregorio; de Blas, Marta; Garrido, Pedro; Acuña-Castroviejo, Dario; Pamplona, Reinald; Mora, Francisco

    2011-01-01

    This study was designed to investigate whether long-term caloric restriction during the life span of the rat changes the effects of an acute mild stress on the release of dopamine and acetylcholine in the prefrontal cortex (PFC) and on working memory performance. Spontaneous motor activity was also monitored and levels of BDNF measured in the prefrontal cortex, amygdala and hippocampus. Male Wistar rats (3 months of age) were housed during 3, 12, 21 and 27 months (6, 15, 24 and 30 months of age at the end of housing) in caloric restriction (CR; 40% food intake restriction) or control conditions. After behavioural testing, animals were further subdivided into two other groups. In one of the groups BDNF protein levels were determined. In the other group rats were implanted with guide cannulas into the PFC to perform microdialysis experiments. In CR rats the release of dopamine produced by handling stress did not differ from the response found in control rats of 6, 15 and 24 months of age. The release of acetylcholine was not changed at the ages of 6 and 15 months but reduced at the age of 24 months. Stress did not change dopamine or acetylcholine release in CR and control rats of 30 months of age. BDNF levels were increased in the hippocampus and amygdala, but not in the PFC, of 6 and 15 months CR rats. Spontaneous motor activity was increased in all groups of CR rats. Age, however, decreased motor activity in CR and control rats. Both experimental groups showed similar working memory performance in a delayed alternation task in basal conditions and after a situation of acute stress. These results suggest that CR does not modify the function of the PFC in response to an acute stress nor the changes found as a result of the normal process of aging. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. PANCREATIC HYPERTROPHY IN RATS CAUSED BY CHICKPEA (Cicer arietinum L. PROTEIN INTAKE

    Directory of Open Access Journals (Sweden)

    O. L. TAVANO

    2008-10-01

    Full Text Available

    The objectives of this work were demonstrate the occurrence of pancreatic hypertrophy in rats, caused by chickpea protein intake, and the possible relation to the presence of trypsin inhibitors in the protein samples. The principal protein fractions of chickpea were isolated, the effect of heating was also tested (121°C/15 min. The heated chickpea diets did not cause significant pancreatic hypertrophy in rats, in relation to the casein control group. Only unheated chickpea flour and albumin diets caused pancreatic weight increases correlating to the presence of trypsin inhibitors in these samples. Apart from the trypsin inhibitor activity the other chickpea protein components appear not to exert any alteration in pancreatic weight.

  18. Effects of prenatal low protein and postnatal high fat diets on visceral adipose tissue macrophage phenotypes and IL-6 expression in Sprague Dawley rat offspring.

    Directory of Open Access Journals (Sweden)

    Linglin Xie

    Full Text Available Adipose tissue macrophages (ATM are implicated in adipose tissue inflammation and obesity-related insulin resistance. Maternal low protein models result in fetal programming of obesity. The study aims to answer whether maternal undernutrition by protein restriction affects the ATM M1 or M2 phenotype under postnatal high fat diet in F1 offspring. Using a rat model of prenatal low protein (LP, 8% protein diet followed by a postnatal high fat energy diet (HE, 45% fat or low fat normal energy diet (NE, 10% fat for 12 weeks, we investigated the effects of these diets on adiposity, programming of the offspring ATM phenotype, and the associated inflammatory response in adipose tissue. Fat mass in newborn and 12-week old LP fed offspring was lower than that of normal protein (20%; NP fed offspring; however, the adipose tissue growth rate was higher compared to the NP fed offspring. While LP did not affect the number of CD68+ or CD206+ cells in adipose tissue of NE offspring, it attenuated the number of these cells in offspring fed HE. In offspring fed HE, LP offspring had a lower percentage of CD11c+CD206+ ATMs, whose abundancy was correlated with the size of the adipocytes. Noteworthy, similar to HE treatment, LP increased gene expression of IL-6 within ATMs. Two-way ANOVA showed an interaction of prenatal LP and postnatal HE on IL-6 and IL-1β transcription. Overall, both LP and HE diets impact ATM phenotype by affecting the ratio of CD11c+CD206+ ATMs and the expression of IL-6.

  19. Carbohydrate-restricted diets high in either monounsaturated fat or protein are equally effective at promoting fat loss and improving blood lipids.

    Science.gov (United States)

    Luscombe-Marsh, Natalie D; Noakes, Manny; Wittert, Gary A; Keogh, Jennifer B; Foster, Paul; Clifton, Peter M

    2005-04-01

    When substituted for carbohydrate in an energy-reduced diet, dietary protein enhances fat loss in women. It is unknown whether the effect is due to increased protein or reduced carbohydrate. We compared the effects of 2 isocaloric diets that differed in protein and fat content on weight loss, lipids, appetite regulation, and energy expenditure after test meals. This was a parallel, randomized study in which subjects received either a low-fat, high-protein (LF-HP) diet (29 +/- 1% fat, 34 +/- 0.8% protein) or a high-fat, standard-protein (HF-SP) diet (45 +/- 0.6% fat, 18 +/- 0.3% protein) during 12 wk of energy restriction (6 +/- 0.1 MJ/d) and 4 wk of energy balance (7.4 +/- 0.3 MJ/d). Fifty-seven overweight and obese [mean body mass index (in kg/m(2)): 33.8 +/- 0.9] volunteers with insulin concentrations >12 mU/L completed the study. Weight loss (LF-HP group, 9.7 +/- 1.1 kg; HF-SP group, 10.2 +/- 1.4 kg; P = 0.78) and fat loss were not significantly different between diet groups even though the subjects desired less to eat after the LF-HP meal (P = 0.02). The decrease in resting energy expenditure was not significantly different between diet groups (LF-HP, -342 +/- 185 kJ/d; HF-SP, -349 +/- 220 kJ/d). The decrease in the thermic effect of feeding with weight loss was smaller in the LF-HP group than in the HF-SP group (-0.3 +/- 1.0% compared with -3.6 +/- 0.7%; P = 0.014). Glucose and insulin responses to test meals improved after weight loss (P loss and the improvements in insulin resistance and cardiovascular disease risk factors did not differ significantly between the 2 diets, and neither diet had any detrimental effects on bone turnover or renal function.

  20. Effect of fetal growth on maternal protein metabolism in postabsorptive rat

    International Nuclear Information System (INIS)

    Ling, P.R.; Bistrian, B.R.; Blackburn, G.L.; Istfan, N.

    1987-01-01

    Rates of protein synthesis were measured in whole fetuses and maternal tissues at 17 and 20 days of gestation in postabsorptive rats using continuous infusion of L-[1- 14 C]leucine. Fetal protein degradation rates were derived from the fractional rates of synthesis and growth. Whole-body (plasma) leucine kinetics in the mother showed a significant reduction of the fraction of plasma leucine oxidized in the mothers bearing older fetuses, a slight increase in the plasma flux, with total leucine oxidation and incorporation into protein remaining similar at the two gestational ages. Estimates of fractional protein synthesis in maternal tissues revealed an increase in placental and hepatic rates at 20 days of gestation, whereas the fractional synthetic rate in muscle remained unchanged. A model for estimation of the redistribution of leucine between plasma and tissues is described in detail. This model revealed a more efficient utilization of leucine in fetal protein synthesis in comparison with other maternal tissues, a greater dependency of the fetus on plasma supply of leucine, and a significant increase (2-fold) in the release of leucine from maternal muscle as the fetal requirements increased proportionately with its size. The latter conclusion, supported by nitrogen analysis and the ratio of bound-to-free leucine in maternal tissues, confirms the importance of maternal stores in maintaining the homeostasis of essential amino acids during late pregnancy

  1. Comparison of the effects of weight loss from a high-protein versus standard-protein energy-restricted diet on strength and aerobic capacity in overweight and obese men.

    Science.gov (United States)

    Wycherley, Thomas P; Buckley, Jonathan D; Noakes, Manny; Clifton, Peter M; Brinkworth, Grant D

    2013-02-01

    To compare the effects of two low-fat, hypoenergetic diets differing in carbohydrate-to-protein ratio, on strength and aerobic capacity measures in overweight and obese men. In a parallel design, 56 men (age, 45.5 ± 8.7 years; BMI, 33.6 ± 3.9 kg/m(2)) were randomly assigned to a low-fat, energy-restricted diet (7,000 kJ/day) with either high protein (HP: protein/carbohydrate/fat % energy, 35:40:25) or standard protein (SP, 17:58:25). Body weight, body composition, muscle strength and aerobic capacity were assessed at baseline and after 12 weeks. Forty-two participants completed the study (HP, n = 21; SP, n = 21). Both groups experienced similar reductions in body weight (HP, -10.7 ± 5.3 kg [-9.8%]; SP, -8.7 ± 3.5 kg [-8.4%]) and fat-free mass (HP, -2.8 ± 3.6 kg; SP, -3.2 ± 2.7 kg; P 0.14 time × group interaction). There was a trend for a greater reduction in fat mass in the HP diet group, (-7.7 ± 4.3 kg [-21.2%] vs. -5.4 ± 3.3 kg [-15.1%]; P diet effect (P ≤ 0.23 time × group interaction). In overweight and obese men, both a HP and SP diet reduced body weight and improved body composition with similar effects on strength and aerobic capacity.

  2. Effect of feeding a high-fat diet independently of caloric intake on reproductive function in diet-induced obese female rats

    Science.gov (United States)

    Hussain, Mona A.; Abogresha, Noha M.; Tamany, Dalia A.; Lotfy, Mariam

    2016-01-01

    Introduction Globally, the prevalence of overweight and obesity is increasing, predisposing females to health hazards including compromised reproductive capacity. Our objective was to investigate the effect of ad libitum, isocalorically and hypocalorically restricted high-fat diet (HFD) feeding on reproductive function in diet-induced obese female rats. Material and methods Twenty female albino Sprague Dawley rats were used; 5 rats were kept on a standard pellet animal diet to serve as a control group (A) and 15 rats were fed a HFD for 9 weeks to induce obesity. The HFD fed animals were equally divided into three groups: an ad libitum HFD group (B), an isocalorically restricted HFD group (C), and a hypocalorically restricted HFD group (D). Estrous cyclicity, hormonal levels, ovarian histopathology and caspase-3 immunoreactivity were evaluated. Results The HFD-fed rats in groups B, C and D had significant irregularity in estrous cyclicity Vs group A (p = 0.001, 0.003 and 0.034 respectively). Groups C and D had significant reduction in serum progesterone level (p = 0.006 and 0.018 Vs A). Isocaloric restriction of HFD feeding significantly increased serum LH. Groups B and C had a significant increase in caspase-3 expression in the ovary (p < 0.001). Conclusions Ad libitum HFD interfered with the normal estrous cycle and enhanced apoptosis of luteal cells in obese female rats. The HFD restriction interfered with the normal estrous cycle and caused functional insufficiency of the corpus luteum in obese female rats. These results suggest that HFD feeding determinately affects female reproductive function independently of caloric intake. PMID:27478474

  3. Higher insulin sensitivity in EDL muscle of rats fed a low-protein, high-carbohydrate diet inhibits the caspase-3 and ubiquitin-proteasome proteolytic systems but does not increase protein synthesis.

    Science.gov (United States)

    Dos Santos, Maísa Pavani; Batistela, Emanuele; Pereira, Mayara Peron; Paula-Gomes, Silvia; Zanon, Neusa Maria; Kettelhut, Isis do Carmo; Karatzaferi, Christina; Andrade, Claudia Marlise Balbinotti; de França, Suélem Aparecida; Baviera, Amanda Martins; Kawashita, Nair Honda

    2016-08-01

    Compared with the extensor digitorum longus (EDL) muscle of control rats (C), the EDL muscle of rats fed a low-protein, high-carbohydrate diet (LPHC) showed a 36% reduction in mass. Muscle mass is determined by the balance between protein synthesis and proteolysis; thus, the aim of this work was to evaluate the components involved in these processes. Compared with the muscle from C rats, the EDL muscle from LPHC diet-fed rats showed a reduction (34%) in the in vitro basal protein synthesis and a 22% reduction in the in vitro basal proteolysis suggesting that the reduction in the mass can be associated with a change in the rate of the two processes. Soon after euthanasia, in the EDL muscles of the rats fed the LPHC diet for 15days, the activity of caspase-3 and that of components of the ubiquitin-proteasome system (atrogin-1 content and chymotrypsin-like activity) were decreased. The phosphorylation of p70(S6K) and 4E-BP1, proteins involved in protein synthesis, was also decreased. We observed an increase in the insulin-stimulated protein content of p-Akt. Thus, the higher insulin sensitivity in the EDL muscle of LPHC rats seemed to contribute to the lower proteolysis in LPHC rats. However, even with the higher insulin sensitivity, the reduction in p-E4-BP1 and p70(S6K) indicates a reduction in protein synthesis, showing that factors other than insulin can have a greater effect on the control of protein synthesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. [Effect of American Ginseng Capsule on the liver oxidative injury and the Nrf2 protein expression in rats exposed by electromagnetic radiation of frequency of cell phone].

    Science.gov (United States)

    Luo, Ya-ping; Ma, Hui-Rong; Chen, Jing-Wei; Li, Jing-Jing; Li, Chun-xiang

    2014-05-01

    To observe the effect of American Ginseng Capsule (AGC) on the liver oxidative injury and the Nrf2 protein expression in the liver tissue of rats exposed by 900 MHz cell phone electromagnetic radiation. Totally 40 male SD rats were randomly divided into the normal control group, the model group, the Shuifei Jibin Capsule (SJC) group, and the AGC group,10 in each group. Rats in the normal control group were not irradiated. Rats in the rest three groups were exposed by imitated 900 MHz cellular phone for 4 h in 12 consecutive days. Meanwhile, rats in the SJC group and the AGC group were intragastrically administrated with suspension of SJC and AGC (1 mL/200 g body weight) respectively. Normal saline was administered to rats in the normal control group and the model group. The histolomorphological changes of the liver tissue were observed by HE staining. Contents of malonic dialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), and glutathione peroxidase (GSH-PX)were detected by colorimetry. The Nrf2 protein expression of hepatocytes was detected by immunohistochemical assay and Western blot. Compared with the normal control group, hepatocyte nucleus was atrophied or partially disappeared, the contents of liver MDA and Nrf2 protein obviously increased (P electromagnetic radiation induced by 900 MHz cell phone could affect the expression of Nrf2 protein, induce oxidative injury, and induce abnormal morphology of liver cells. SJC and AGC could promote the morphological recovery of the liver cells. Its mechanism might be related to affecting the expression of Nrf2 protein and attenuating oxidative damage of liver cells.

  5. High-fat diet-induced plasma protein and liver changes in obese rats can be attenuated by melatonin supplementation.

    Science.gov (United States)

    Wongchitrat, Prapimpun; Klosen, Paul; Pannengpetch, Supitcha; Kitidee, Kuntida; Govitrapong, Piyarat; Isarankura-Na-Ayudhya, Chartchalerm

    2017-06-01

    Obesity triggers changes in protein expression in various organs that might participate in the pathogenesis of obesity. Melatonin has been reported to prevent or attenuate such pathological protein changes in several chronic diseases. However, such melatonin effects on plasma proteins have not yet been studied in an obesity model. Using a proteomic approach, we investigated the effect of melatonin on plasma protein profiles after rats were fed a high-fat diet (HFD) to induce obesity. We hypothesized that melatonin would attenuate abnormal protein expression in obese rats. After 10weeks of the HFD, animals displayed increased body weight and fat accumulation as well as increased glucose levels, indicating an obesity-induced prediabetes mellitus-like state. Two-dimensional gel electrophoresis and liquid chromatography-mass spectrometry/mass spectrometry revealed 12 proteins whose expression was altered in response to the HFD and the melatonin treatment. The altered proteins are related to the development of liver pathology, such as cirrhosis (α1-antiproteinase), thrombosis (fibrinogen, plasminogen), and inflammation (mannose-binding protein A, complement C4, complement factor B), contributing to liver steatosis or hepatic cell death. Melatonin treatment most probably reduced the severity of the HFD-induced obesity by reducing the amplitude of HFD-induced plasma protein changes. In conclusion, we identified several potential biomarkers associated with the progression of obesity and its complications, such as liver damage. Furthermore, our findings reveal melatonin's beneficial effect of attenuating plasma protein changes and liver pathogenesis in obese rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. CNS development under altered gravity: cerebellar glial and neuronal protein expression in rat neonates exposed to hypergravity

    Science.gov (United States)

    Nguon, K.; Li, G.-H.; Sajdel-Sulkowska, E. M.

    2004-01-01

    The future of space exploration depends on a solid understanding of the developmental process under microgravity, specifically in relation to the central nervous system (CNS). We have previously employed a hypergravity paradigm to assess the impact of altered gravity on the developing rat cerebellum [Exp. Biol. Med. 226 (2000) 790]. The present study addresses the molecular mechanisms involved in the cerebellar response to hypergravity. Specifically, the study focuses on the expression of selected glial and neuronal cerebellar proteins in rat neonates exposed to hypergravity (1.5 G) from embryonic day (E)11 to postnatal day (P)6 or P9 (the time of maximal cerebellar changes) comparing them against their expression in rat neonates developing under normal gravity. Proteins were analyzed by quantitative Western blots of cerebellar homogenates; RNA analysis was performed in the same samples using quantitative PCR. Densitometric analysis of Western blots suggested a reduction in glial (glial acidic protein, GFAP) and neuronal (neuronal cell adhesion moiecule, NCAM-L1, synaptophysin) proteins, but the changes in individual cerebellar proteins in hypergravity-exposed neonates appeared both age- and gender-specific. RNA analysis suggested a reduction in GFAP and synaptophysin mRNAs on P6. These data suggest that exposure to hypergravity may interfere with the expression of selected cerebellar proteins. These changes in protein expression may be involved in mediating the effect of hypergravity on the developing rat cerebellum.

  7. Formoterol attenuates increased oxidative stress and myosin protein loss in respiratory and limb muscles of cancer cachectic rats

    Directory of Open Access Journals (Sweden)

    Anna Salazar-Degracia

    2017-12-01

    Full Text Available Muscle mass loss and wasting are characteristic features of patients with chronic conditions including cancer. Therapeutic options are still scarce. We hypothesized that cachexia-induced muscle oxidative stress may be attenuated in response to treatment with beta2-adrenoceptor-selective agonist formoterol in rats. In diaphragm and gastrocnemius of tumor-bearing rats (108 AH-130 Yoshida ascites hepatoma cells inoculated intraperitoneally with and without treatment with formoterol (0.3 mg/kg body weight/day for seven days, daily subcutaneous injection, redox balance (protein oxidation and nitration and antioxidants and muscle proteins (1-dimensional immunoblots, carbonylated proteins (2-dimensional immunoblots, inflammatory cells (immunohistochemistry, and mitochondrial respiratory chain (MRC complex activities were explored. In the gastrocnemius, but not the diaphragm, of cancer cachectic rats compared to the controls, protein oxidation and nitration levels were increased, several functional and structural proteins were carbonylated, and in both study muscles, myosin content was reduced, inflammatory cell counts were greater, while no significant differences were seen in MRC complex activities (I, II, and IV. Treatment of cachectic rats with formoterol attenuated all the events in both respiratory and limb muscles. In this in vivo model of cancer-cachectic rats, the diaphragm is more resistant to oxidative stress. Formoterol treatment attenuated the rise in oxidative stress in the limb muscles, inflammatory cell infiltration, and the loss of myosin content seen in both study muscles, whereas no effects were observed in the MRC complex activities. These findings have therapeutic implications as they demonstrate beneficial effects of the beta2 agonist through decreased protein oxidation and inflammation in cachectic muscles, especially the gastrocnemius.

  8. RNA-sequencing data analysis of uterus in ovariectomized rats fed with soy protein isolate,17B-estradiol and casein

    Science.gov (United States)

    This data file describes the bioinformatics analysis of uterine RNA-seq data comparing genome wide effects of feeding soy protein isolate compared to casein to ovariectomized female rats age 64 days relative to treatment of casein fed rats with 5 ug/kg/d estradiol and relative to rats treated with e...

  9. The effect of octreotide and bromocriptine on expression of a pro-apoptotic Bax protein in rat prolactinoma.

    Directory of Open Access Journals (Sweden)

    Jolanta Kunert-Radek

    2004-03-01

    Full Text Available It is well established that disruption of apoptosis may lead to tumor initiation, progression or metastasis. It is also well documented that many anticancer drugs induce apoptosis. In the earlier studies, the dopamine D2 receptor agonist bromocriptine (BC and somatostatin analog octreotide (OCT were found to inhibit the growth of the estrogen-induced rat prolactinoma. Our previous investigations, applying the TUNEL method showed the involvement of the pro-apoptotic effect in the action of BC, and to a lesser degree, in the action of OCT. The aim of the present study was to investigate whether the pro-apoptotic action of these drugs involves the increased expression of Bax--a member of Bcl-2 protein family which is known to play an important role in the regulation of apoptosis. Male four-week Fisher 344 rats were used in the experiment. Capsules containing diethylstilboestrol (DES were implanted subcutaneously. Six weeks after the implantation the rats were given OCT (2 x 25 microg/animal/24, BC (3 mg/kg b.w./24 h or OCT and BC at the above doses for 10 days. Bax expression was detected by immunohistochemistry. Prolactin (PRL in blood serum was measured by radioimmunoassay (RIA. It has been found that both OCT and BC, alone or in combination, significantly reduce the tumor weight. Both OCT and BC suppressed PRL levels, but the inhibitory effect of BC was stronger than that of OCT. It has been found that the treatment with OCT and BC, alone or in combination, causes a significant increase in Bax expression in the rat prolactinoma cells. Our findings indicate that anti-tumoral action of bromocriptine and to some extent the action of octreotide in the experimental rat prolactinoma is connected with the induction of apoptosis and is associated with increased Bax expression.

  10. [Changing laws of serum high mobility group box 1 protein in septic rats and the intervention effect of xuebijing].

    Science.gov (United States)

    Zhao, Shi-bing; He, Xian-di; Wang, Hua-xue; Zheng, Sheng-yong; Deng, Xi-ming; Duan, Li-bin

    2014-06-01

    To investigate the changing laws of serum high mobility group box 1 protein (HMGB1) in septic rats and intervention effect of Xuebijing on it. Lipopolysaccharide (LPS) (5 mg/kg BW) was intravenously injected into the tail vein of healthy male Wistar rats to prepare the sepsis rat model. In Experiment 1: 50 Wistar rats were randomly divided into three groups, i.e., the normal group (A, n=10); the LPS model group (B, n=10), the LPS +Xuebijing treatment group (C, n=30). Rats in the C group were further divided into three subgroups, i.e., 2 h before LPS injection (group C1), 2 h after LPS injection (group C2), and 8 h after LPS injection (group C3), 10 in each group. Blood samples were collected from the caudal vein to detect serum HMGB1 levels by Western blot at 4, 12, 24, 48, and 72 h after LPS injection. Experiment 2: 30 Wistar rats were equally divided into the LPS model group (D) and the LPS + Xuebijing treatment group (E), 15 in each group. They were treated as rats in the B group and the C1 group respectively. Five rats were sacrificed at 12, 24, and 48 h after LPS injection in the two groups. Blood as well as the tissue samples were harvested to measure such indices as ALT, AST, Cr, and BUN, as well as pathological changes of liver, lung, and kidney. (1) Compared with the A group, serum HMGB1 levels were higher at various time points in the B group (P decrement in the C3 group was less than that in the C1 and C2 groups (P multiple organ dysfunction. Xuebijing could reduce the serum levels of HMGB1, improve biochemical parameters, and attenuate severe inflammatory response of liver, lung, and kidney tissues in septic rats. Besides, the earlier use, the better effect obtained.

  11. Correlation between Amitriptyline-Induced Cardiotoxic Effects and Cardiac S100b Protein in Isolated Rat Hearts

    Directory of Open Access Journals (Sweden)

    Nil Hocaoğlu

    2016-12-01

    Full Text Available Background: Amitriptyline is an important cause of mortality due to its cardiovascular toxicity. Aims: To investigate the changes in levels of cardiac S100b protein on amitriptyline-induced cardiotoxicity and also to examine the correlation between amitriptyline-induced cardiotoxic effects and cardiac S100b protein in an isolated rat heart model. Study Design: Animal experimentation, isolated heart model. Methods: After a stabilization period, isolated hearts were randomized to two groups (n=5 and n=7. In the control group, isolated hearts were subjected to an infusion of 5% dextrose for 60 minutes. In the amitriptyline group, 5.5×10-5 M amitriptyline was infused for 60 minutes to achieve amitriptyline toxicity. After the infusion period, heart tissues were removed for histological examination. Results: In comparison to control treatment, amitriptyline infusion decreased left ventricular developed pressure (LVDP, dp/dtmax and heart rate (HR and significantly prolonged QRS duration (p<0.05. The semiquantitative scores for S100b protein levels in amitriptyline-infused hearts were higher than in the control group (p<0.01. At the end of the experiment, in the amitriptyline-infused group, significant correlations were found between LVDP and S100b protein scores (r=-0.807, p=0.003 and between QRS duration and S100b protein scores (r=0.859, p=0.001. Conclusion: Our results indicate that the S100b protein may be a helpful indicator or biomarker in studying the cardiotoxic effects of amitriptyline.

  12. Effect of moderate dietary restriction on visceral organ weight, hepatic oxygen consumption, and metabolic proteins associated with energy balance in mature pregnant beef cows.

    Science.gov (United States)

    Wood, K M; Awda, B J; Fitzsimmons, C; Miller, S P; McBride, B W; Swanson, K C

    2013-09-01

    Twenty-two nonlactating multiparous pregnant beef cows (639 ± 68 kg) were used to investigate the effect of dietary restriction on the abundance of selected proteins regulating cellular energy metabolism. Cows were fed at either 85% (n = 11; LOW) or 140% (n = 11; HIGH) of total NE requirements. The diet consisted of a haylage-based total mixed ration containing 20% wheat straw. Cows were slaughtered by block (predicted date of parturition), beginning 83 d after the initiation of dietary treatments and every week thereafter for 6 wk, such that each block was slaughtered at approximately 250 d of gestation. Tissue samples from liver, kidney, sternomandibularis muscle, ruminal papilli (ventral sac), pancreas, and small intestinal muscosa were collected at slaughter and snap frozen in liquid N2. Western blots were conducted to quantify abundance of proliferating cell nuclear antigen (PCNA), ATP synthase, ubiquitin, and Na/K+ ATPase for all tissues; PPARγ, PPARγ coactivator 1 α (PGC-1α), and 5´-adenosine monophosphate-activated protein kinase (AMPK) and the activated form phosphorylated-AMPK (pAMPK) for liver, muscle, and rumen; phosphoenolpyruvate carboxykinase (PEPCK) for liver and kidney; and uncoupling protein 2 (UCP2) for liver. Statistical analysis was conducted using Proc Mixed in SAS and included the fixed effects of dietary treatment, cow age, block, and the random effect of pen. Dietary treatments resulted in cows fed HIGH having greater (P ≤ 0.04) ADG and final BW than cows fed LOW. Abundance of ubiquitin in muscle was greater (P = 0.009) in cows fed LOW, and PCG-1 α in liver was greater (P = 0.03) in cows fed HIGH. Hepatic O2 consumption was greater in HIGH (P ≤ 0.04). Feed intake can influence the abundance of important metabolic proteins and suggest that protein degradation may increase in muscle from moderately nutrient restricted cows and that energy metabolism in liver increases in cows fed above NE requirements.

  13. Myelin basic protein in brains of rats with low dose lead encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Sundstroem, R; Karlsson, B

    1987-02-01

    In the present study control rats and lead exposed rats which did not have any retardation of growth were examined by radioimmunological assay of myelin basic protein (MBP) of homogenates of cerebrum and cerebellum at 30, 60 and 120 days of age. Lead was administered on postnatal days 1-15 by daily intraperitoneal injections of 10 mg lead nitrate/kg body weight. This lead dose results in light microscopically discernible hemorrhagic encephalopathy in the cerebellum of 15-day old rats, but does not induce growth retardation. The controls were injected with vehicle only. The amount of lead in the blood and brain homogenates of lead-exposed and control rats 15-200 days old was estimated by atomic absorption spectrophotometry. Significant differences between the lead-exposed and control rats were not found in the cerebral or cerebellar content of MBP. Considering the results of previous investigations, the findings do not exclude a hypo-myelinating effect of lead, but they suggest that exposure to lead without concomitant malnutrition does not cause hypo-myelination in the cerebrum and cerebellum of the developing rat.

  14. Restriction map of the single-stranded DNA genome of Kilham rat virus strain 171, a nondefective parvovirus

    International Nuclear Information System (INIS)

    Banerjee, P.T.; Rathrock, R.; Mitra, S.

    1981-01-01

    A physical map of Kilham rat virus strain 171 DNA was constructed by analyzing the sizes and locations of restriction endonuclease-generated fragments of the replicative-form viral DNA synthesized in vitro. BglI, KpnI, BamHI, SmaI, XhoI, and XorII did not appear to have any cleavage sites, whereas 11 other enzymes cleaved the genome at one to eight sites, and AluI generated more than 12 distinct fragments. The 30 restriction sites that were mapped were distributed randomly in the viral genome. A comparison of the restriction fragments of in vivo- and in vitro-replicated replicative-form DNAs showed that these DNAs were identical except in the size or configuration of the terminal fragments

  15. Effects of iron supplementation on growth, gut microbiota, metabolomics and cognitive development of rat pups.

    Directory of Open Access Journals (Sweden)

    Erica E Alexeev

    Full Text Available Iron deficiency is common during infancy and therefore iron supplementation is recommended. Recent reports suggest that iron supplementation in already iron replete infants may adversely affect growth, cognitive development, and morbidity.Normal and growth restricted rat pups were given iron daily (30 or 150 μg/d from birth to postnatal day (PD 20, and followed to PD56. At PD20, hematology, tissue iron, and the hepatic metabolome were measured. The plasma metabolome and colonic microbial ecology were assessed at PD20 and PD56. T-maze (PD35 and passive avoidance (PD40 tests were used to evaluate cognitive development.Iron supplementation increased iron status in a dose-dependent manner in both groups, but no significant effect of iron on growth was observed. Passive avoidance was significantly lower only in normal rats given high iron compared with controls. In plasma and liver of normal and growth-restricted rats, excess iron increased 3-hydroxybutyrate and decreased several amino acids, urea and myo-inositol. While a profound difference in gut microbiota of normal and growth-restricted rats was observed, with iron supplementation differences in the abundance of strict anaerobes were observed.Excess iron adversely affects cognitive development, which may be a consequence of altered metabolism and/or shifts in gut microbiota.

  16. Effect of Intermediate-Frequency Repetitive Transcranial Magnetic Stimulation on Recovery following Traumatic Brain Injury in Rats

    Directory of Open Access Journals (Sweden)

    Leticia Verdugo-Diaz

    2017-01-01

    Full Text Available Traumatic brain injury (TBI represents a significant public health concern and has been associated with high rates of morbidity and mortality. Although several research groups have proposed the use of repetitive transcranial magnetic stimulation (rTMS to enhance neuroprotection and recovery in patients with TBI, few studies have obtained sufficient evidence regarding its effects in this population. Therefore, we aimed to analyze the effect of intermediate-frequency rTMS (2 Hz on behavioral and histological recovery following TBI in rats. Male Wistar rats were divided into six groups: three groups without TBI (no manipulation, movement restriction plus sham rTMS, and movement restriction plus rTMS and three groups subjected to TBI (TBI only, TBI plus movement restriction and sham rTMS, and TBI plus movement restriction and rTMS. The movement restriction groups were included so that rTMS could be applied without anesthesia. Our results indicate that the restriction of movement and sham rTMS per se promotes recovery, as measured using a neurobehavioral scale, although rTMS was associated with faster and superior recovery. We also observed that TBI caused alterations in the CA1 and CA3 subregions of the hippocampus, which are partly restored by movement restriction and rTMS. Our findings indicated that movement restriction prevents damage caused by TBI and that intermediate-frequency rTMS promotes behavioral and histologic recovery after TBI.

  17. Low Dietary Protein Status Potentiating Risk of Health Hazard in Whole Body Gamma Irradiated Rats

    International Nuclear Information System (INIS)

    El-Gawish, M.A.M.; Yousri, R.M.; Roushdy, H.M.; Abdel-Reheem, K.A.; Al-Mossallamy, N.A.

    1998-01-01

    Investigations were planned to assess the changes in certain biochemical parameters as affected by the synergistic effect of exposure to fractionated doses of rays and / or feeding on different protein levels. The date showed that animals kept on normal or low protein diet exhibited a significant decrease in serum total protein and glucose. Also , a significant increase was recorded in insulin level in rats exposed at the radiation dose level of 20 Gy. Exposure to cumulative doses of irradiation has aggrevated the hyperglycemic effect of high protein diet with a significant and marked increase of insulin at all the applied doses. Animals fed normal high or low protein diet were found to exert significant decreases in T3, T4 while a significant increase in TSH of high protein group occurred as a result of exposure to cumulative doses of gamma-irradiation. Rats kept on low protein diet exhibited losses in body weight, hypercholesterolemia, low levels of phospholipids and triglycerides as compared with the normal protein diet group. In contrast high protein diet group showed no serious effects. Irradiation has potentiated body weight losses, hypotriglyceridemia and hypercholesterolemia in animal group fed low protein diet with a significant increase in serum phospholipids due to the higher radiation dose of 20 Gy. Protein deficiency acted synergistically with gamma irradiation and increased the susceptibility of body organs to radiation damage. Such findings contributed to the knowledge which stimulated the decrease of the internationally recognized occupational dose limits from 50 down to 20 m Sv (ICRP 1991)

  18. Gender-Dimorphic Regulation of Skeletal Muscle Proteins in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Minji Choi

    2013-03-01

    Full Text Available Background: Despite the fact that sexual differences increase diabetic risk and contribute to the need for gender-specific care, there remain contradictory results as to whether or not sexual dimorphism increases susceptibility to the development of type 1 diabetes mellitus. Methods: To examine gender-dimorphic regulation of skeletal muscle proteins between healthy control and STZ-induced diabetic rats of both genders, we performed differential proteome analysis using two-dimensional electrophoresis combined with mass spectrometry. Results: Animal experiments revealed that STZ treatment rendered female rats more susceptible to induction of diabetes than their male littermates with significantly lower plasma insulin levels due to hormonal regulation. Proteomic analysis of skeletal muscle identified a total of 21 proteins showing gender-dimorphic differential expression patterns between healthy controls and diabetic rats. Most interestingly, gender-specific proteome comparison showed that male and female rats displayed differential regulation of proteins involved in muscle contraction, carbohydrate, and lipid metabolism, as well as oxidative phosphorylation and cellular stress. Conclusion: The current proteomic study revealed that impaired protein regulation was more prominent in the muscle tissue of female diabetic rats, which were more susceptible to STZ-induced diabetes. We expect that the present proteomic data can provide valuable information for evidence-based gender-specific treatment of diabetes.

  19. Alterations in protein transport events in rat liver after estrogen treatment

    International Nuclear Information System (INIS)

    Goldsmith, M.A.; Jones, A.L.; Underdown, B.J.; Schiff, J.M.

    1987-01-01

    The effects of 17α-ethynylestradiol (EE) treatment on the hepatic processing of rat polymeric immunoglobulin A (IgA) and human asialoorosomucoid (ASOr) were studied. After 5 days of treatment with EE (5 mg/kg) or solvent alone, male rats were anesthetized and injected with tracer doses of the test proteins. Bile flow rates had been reduced by >60% in the EE-treated animals. A previously reported radiolabeling strategy was used to monitor both the transport of intact protein to bile and the degradation of protein in lysosomes. Transport of intact IgA to bile was reduced by 43%, with transport peaking 27 min later in EE-treated animals compared with controls. There was a corresponding impairment of uptake of labeled IgA from blood. EE induced no kinetic change in the uptake or processing of ASOr. However, there was an increase in the proportion of ASOr reaching bile intact from 3% to 15-23% of the injected dose. The data indicate that EE disables the transport pathway for IgA and causes a partial change in the routing of ASOr after endocytosis in favor of direct transport to the bile canaliculus. These findings may have implications for the importance of membrane composition in protein transport events

  20. Maternal protein restriction during lactation induces early and lasting plasma metabolomic and hepatic lipidomic signatures of the offspring in a rodent programming model.

    Science.gov (United States)

    Martin Agnoux, Aurore; El Ghaziri, Angélina; Moyon, Thomas; Pagniez, Anthony; David, Agnès; Simard, Gilles; Parnet, Patricia; Qannari, El Mostafa; Darmaun, Dominique; Antignac, Jean-Philippe; Alexandre-Gouabau, Marie-Cécile

    2018-05-01

    Perinatal undernutrition affects not only fetal and neonatal growth but also adult health outcome, as suggested by the metabolic imprinting concept. However, the exact mechanisms underlying offspring metabolic adaptations are not yet fully understood. Specifically, it remains unclear whether the gestation or the lactation is the more vulnerable period to modify offspring metabolic flexibility. We investigated in a rodent model of intrauterine growth restriction (IUGR) induced by maternal protein restriction (R) during gestation which time window of maternal undernutrition (gestation, lactation or gestation-lactation) has more impact on the male offspring metabolomics phenotype. Plasma metabolome and hepatic lipidome of offspring were characterized through suckling period and at adulthood using liquid chromatography-high-resolution mass spectrometry. Multivariate analysis of these fingerprints highlighted a persistent metabolomics signature in rats suckled by R dams, with a clear-cut discrimination from offspring fed by control (C) dams. Pups submitted to a nutritional switch at birth presented a metabolomics signature clearly distinct from that of pups nursed by dams maintained on a consistent perinatal diet. Control rats suckled by R dams presented transiently higher branched-chain amino acid (BCAA) oxidation during lactation besides increased fatty acid (FA) β-oxidation, associated with preserved insulin sensitivity and lesser fat accretion that persisted throughout their life. In contrast, IUGR rats displayed permanently impaired β-oxidation, associated to increased glucose or BCAA oxidation at adulthood, depending on the fact that pups experienced slow postnatal or catch-up growth, as suckled by R or C dams, respectively. Taken together, these findings provide evidence for a significant contribution of the lactation period in metabolic programming. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Effects of Chronic Exposure to Sodium Arsenite on Expressions of VEGF and VEGFR2 Proteins in the Epididymis of Rats

    Directory of Open Access Journals (Sweden)

    Dai Yan-Ping

    2017-01-01

    Full Text Available Objective. To study the expressions of VEGF and VEGFR2 at protein level in the epididymis of rats with arsenism. Methods. Forty male Sprague-Dawley rats were randomly divided into four groups: the high dose arsenic infected group (60.0 mg/L in water, the middle dose arsenic infected group (12.0 mg/L in water, the low dose arsenic infected group (2.4 mg/L in water, and the control group (distilled water. Rats were treated with arsenic through drinking water for 6 consecutive months. At the end of the experiment, the average densitometry values of apoptotic cells in epididymis tubules were determined by TUNEL method; the protein and mRNA levels of VEGF and VEGFR2 were observed by immunohistochemistry, Western blot, and real time fluorescent quantitative PCR, respectively. Results. Compared with the control group, in each infected group, the average densitometry values of apoptotic cells in the epididymis tubules were significantly lower. Compared with control group, protein and mRNA levels of VEGF and VEGFR2 in each infected group were obviously declined. The correlations between protein and mRNA levels of VEGF and VEGFR2 were positively exhibited (r = 0.843, 0.869, p < 0.05. Conclusions. Arsenism affects the expressions of VEGF and VEGFR2 in the epididymis of rats and results in apoptosis of pathophysiology of male infertility.

  2. Effects of voluntary and treadmill exercise on spontaneous withdrawal signs, cognitive deficits and alterations in apoptosis-associated proteins in morphine-dependent rats.

    Science.gov (United States)

    Mokhtari-Zaer, Amin; Ghodrati-Jaldbakhan, Shahrbanoo; Vafaei, Abbas Ali; Miladi-Gorji, Hossein; Akhavan, Maziar M; Bandegi, Ahmad Reza; Rashidy-Pour, Ali

    2014-09-01

    Chronic exposure to morphine results in cognitive deficits and alterations of apoptotic proteins in favor of cell death in the hippocampus, a brain region critically involved in learning and memory. Physical activity has been shown to have beneficial effects on brain health. In the current work, we examined the effects of voluntary and treadmill exercise on spontaneous withdrawal signs, the associated cognitive defects, and changes of apoptotic proteins in morphine-dependent rats. Morphine dependence was induced through bi-daily administrations of morphine (10mg/kg) for 10 days. Then, the rats were trained under two different exercise protocols: mild treadmill exercise or voluntary wheel exercise for 10 days. After exercise training, their spatial learning and memory and aversive memory were examined by a water maze and by an inhibitory avoidance task, respectively. The expression of the pro-apoptotic protein Bax and the anti-apoptotic protein Bcl-2 in the hippocampus were determined by immunoblotting. We found that chronic exposure to morphine impaired spatial and aversive memory and remarkably suppressed the expression of Bcl-2, but Bax expression remained constant. Both voluntary and treadmill exercise alleviated memory impairment, increased the expression of Bcl-2 protein, and only the later suppressed the expression of Bax protein in morphine-dependent animals. Moreover, both exercise protocols diminished the occurrence of spontaneous morphine withdrawal signs. Our findings showed that exercise reduces the spontaneous morphine-withdrawal signs, blocks the associated impairment of cognitive performance, and overcomes morphine-induced alterations in apoptotic proteins in favor of cell death. Thus, exercise may be a useful therapeutic strategy for cognitive and behavioral deficits in addict individuals. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Cardiac protein expression patterns are associated with distinct inborn exercise capacity in non-selectively bred rats

    Directory of Open Access Journals (Sweden)

    L.P. Ribeiro

    2018-01-01

    Full Text Available In the present study, we successfully demonstrated for the first time the existence of cardiac proteomic differences between non-selectively bred rats with distinct intrinsic exercise capacities. A proteomic approach based on two-dimensional gel electrophoresis coupled to mass spectrometry was used to study the left ventricle (LV tissue proteome of rats with distinct intrinsic exercise capacity. Low running performance (LRP and high running performance (HRP rats were categorized by a treadmill exercise test, according to distance run to exhaustion. The running capacity of HRPs was 3.5-fold greater than LRPs. Protein profiling revealed 29 differences between HRP and LRP rats (15 proteins were identified. We detected alterations in components involved in metabolism, antioxidant and stress response, microfibrillar and cytoskeletal proteins. Contractile proteins were upregulated in the LVs of HRP rats (α-myosin heavy chain-6, myosin light chain-1 and creatine kinase, whereas the LVs of LRP rats exhibited upregulation in proteins associated with stress response (aldehyde dehydrogenase 2, α-crystallin B chain and HSPβ-2. In addition, the cytoskeletal proteins desmin and α-actin were upregulated in LRPs. Taken together, our results suggest that the increased contractile protein levels in HRP rats partly accounted for their improved exercise capacity, and that proteins considered risk factors to the development of cardiovascular disease were expressed in higher amounts in LRP animals.

  4. Additive Effects of Rebamipide Plus Proton Pump Inhibitors on the Expression of Tight Junction Proteins in a Rat Model of Gastro-Esophageal Reflux Disease.

    Science.gov (United States)

    Gweon, Tae-Geun; Park, Jong-Hyung; Kim, Byung-Wook; Choi, Yang Kyu; Kim, Joon Sung; Park, Sung Min; Kim, Chang Whan; Kim, Hyung-Gil; Chung, Jun-Won

    2018-01-15

    The aim of this study was to investigate the effects of rebamipide on tight junction proteins in the esophageal mucosa in a rat model of gastroesophageal reflux disease (GERD). GERD was created in rats by tying the proximal stomach. The rats were divided into a control group, a proton pump inhibitor (PPI) group, and a PPI plus rebamipide (PPI+R) group. Pantoprazole (5 mg/kg) was administered intraperitoneally to the PPI and PPI+R groups. An additional dose of rebamipide (100 mg/kg) was administered orally to the PPI+R group. Mucosal erosions, epithelial thickness, and leukocyte infiltration into the esophageal mucosa were measured in isolated esophagi 14 days after the procedure. A Western blot analysis was conducted to measure the expression of claudin-1, -3, and -4. The mean surface area of mucosal erosions, epithelial thickness, and leukocyte infiltration were lower in the PPI group and the PPI+R group than in the control group. Western blot analysis revealed that the expression of claudin-3 and -4 was significantly higher in the PPI+R group than in the control group. Rebamipide may exert an additive effect in combination with PPI to modify the tight junction proteins of the esophageal mucosa in a rat model of GERD. This treatment might be associated with the relief of GERD symptoms.

  5. Effect of nutritional recovery with soybean flour diet on body composition, energy balance and serum leptin concentration in adult rats

    Directory of Open Access Journals (Sweden)

    Boschero Antonio C

    2009-08-01

    Full Text Available Abstract Background Malnutrition in early life is associated with obesity in adulthood and soybean products may have a beneficial effect on its prevention and treatment. This study evaluated body composition, serum leptin and energy balance in adult rats subjected to protein restriction during the intrauterine stage and lactation and recovering on a soybean flour diet. Methods Five groups of the Wistar strain of albino rats were used: CC, offspring born to and suckled by mothers fed a control diet and fed the same diet after weaning; CS, offspring born to and suckled by mothers fed a control diet and fed a soybean diet with 17% protein after weaning; LL, offspring of mothers fed a low protein diet and fed the same diet after weaning; LC, offspring of mothers fed a low protein diet, but fed a control diet after weaning; LS, offspring of mothers fed a low protein diet, but fed a soybean diet with 17% protein after weaning. Food intake, body, perirenal and retroperitoneal adipose tissue were measured in grams. Leptin was quantified using the Enzyme Linked Immuno Sorbent Assay (ELISA and insulin by radioimmunoassay (RIA. Carcass composition was determined by chemical methods and energy expenditure was calculated by the difference between energy intake and carcass energy gain. Data were tested by analysis of variance (ANOVA. Results The LC and LS groups had higher energetic intake concerning body weight, lower energy expenditure, proportion of fat carcass and fat pads than CC and CS groups. The LS group showed reduced body weight gain and lower energy efficiency, which was reflected in less energy gain as protein and the proportion of carcass protein, and lower energy gain as lipid than in the LC groups, although both groups had eaten the same amount of diet and showed equal energy expenditure. Serum leptin did not differ among groups and was unrelated to food or energy intake and energy expenditure. Serum insulin was higher in the LS than in the LC

  6. The effect of intermittent fasting and water restriction on myocardial ischemia/reperfusion-induced arrhythmia in rats

    OpenAIRE

    KAYA, Salih Tunç; BOZDOĞAN, Ömer

    2011-01-01

    To investigate the effect of intermittent fasting and water restriction on ischemia/reperfusion-induced arrhythmias. Materials and methods: Six minutes of ischemia followed by 6 min of reperfusion was produced by the ligation and then releasing of the left coronary artery. Intermittent fasting and water restriction were applied during 1 month for 12 h/day. The duration, type, and incidence of arrhythmias during reperfusion and the survival rate at the end of reperfusion were determined and c...

  7. Tissue vitamin concentrations are maintained constant by changing the urinary excretion rate of vitamins in rats' restricted food intake.

    Science.gov (United States)

    Shibata, Katsumi; Fukuwatari, Tsutomu

    2014-01-01

    We previously reported that mild food restriction induces a reduction in tryptophan-nicotinamide conversion, which helps to explain why death secondary to pellagra is pandemic during the hungry season. In this study, we investigated the levels of B-group vitamins in the liver, kidney, blood, and urine in rats that underwent gradual restriction of food intake (80, 60, 40, and 20% restriction vs. ad libitum food intake). No significant differences in the B-group vitamin concentrations (mol/g tissue) in the liver and kidney were observed at any level of food restriction. However, the urine excretion rates exhibited some characteristic phenomena that differed by vitamin. These results show that the tissue concentrations of B-group vitamins were kept constant by changing the urinary elimination rates of vitamins under various levels of food restriction. Only vitamin B12 was the only (exception).

  8. A study on the effect of the internal exposure to {sup 210}Po on the excretion of urinary proteins in rats

    Energy Technology Data Exchange (ETDEWEB)

    Sadi, Baki; Li, Chunsheng; Ko, Raymond; Daka, Joseph [Health Canada, National Internal Radiation Assessment Section, Radiation Protection Bureau, Ottawa, ON (Canada); Yusuf, Hamdi [Carleton University, Department of Chemistry, Ottawa, ON (Canada); Wyatt, Heather; Surette, Joel; Priest, Nick [Atomic Energy of Canada Limited, Canadian Nuclear Laboratories, Chalk River, ON (Canada); Hamada, Nobuyuki [Central Research Institute of Electric Power Industry (CRIEPI), Nuclear Technology Research Laboratory, Radiation Safety Research Center, Komae, Tokyo (Japan)

    2016-05-15

    This study was designed to assess the feasibility of a noninvasive urine specimen for the detection of proteins as indicators of internal exposure to ionizing radiation. Three groups of rats (five in each group) were intravenously injected with 1601 ± 376, 10,846 ± 591 and 48,467 ± 2812 Bq of {sup 210}Po in citrate form. A sham-exposed control group of five rats was intravenously injected with sterile physiological saline. Daily urine samples were collected over 4 days following injection. Purification and pre-concentration of urinary proteins were carried out by ultrafiltration using a 3000 Da molecular weight cutoff membrane filter. The concentration of common urinary proteins, namely albumin, alpha-1-acid glycoprotein, immunoglobulins IgA and IgG, was measured by an enzyme-linked immunosorbent assay. Urinary excretion of albumin decreased dose-dependently (p < 0.05) 96 h post-injection relative to the control group. In contrast, no statistically significant effects were observed for other proteins tested. The dose-dependent decrease in urinary excretion of albumin observed in this study underscores the need for further research, which may lead to the discovery of new biomarkers that would reflect the changes in the primary target organs for deposition of {sup 210}Po. (orig.)

  9. Increase in skeletal muscle protein content by the ß-2 selective adrenergic agonist clenbuterol exacerbates hypoalbuminemia in rats fed a low-protein diet

    Directory of Open Access Journals (Sweden)

    A.L. Sawaya

    1998-06-01

    Full Text Available This investigation examined how the nutritional status of rats fed a low-protein diet was affected when the animals were treated with the ß-2 selective agonist clenbuterol (CL. Males (4 weeks old from an inbred, specific-pathogen-free strain of hooded rats maintained at the Dunn Nutritional Laboratory were used in the experiments (N = 6 rats per group. CL treatment (Ventipulmin, Boehringer-Ingelheim Ltd., 3.2 mg/kg diet for 2 weeks caused an exacerbation of the symptoms associated with protein deficiency in rats. Plasma albumin concentrations, already low in rats fed a low-protein diet (group A, were further reduced in CL rats (A = 25.05 ± 0.31 vs CL = 23.64 ± 0.30 g/l, P<0.05. Total liver protein decreased below the level seen in either pair-fed animals (group P or animals with free access to the low-protein diet (A = 736.56 ± 26 vs CL = 535.41 ± 54 mg, P<0.05, whereas gastrocnemius muscle protein was higher than the values normally described for control (C animals (C = 210.88 ± 3.2 vs CL = 227.14 ± 1.7 mg/g, P<0.05. Clenbuterol-treated rats also showed a reduction in growth when compared to P rats (P = 3.2 ± 1.1 vs CL = -10.2 ± 1.9 g, P<0.05. This was associated with a marked decrease in fat stores (P = 5.35 ± 0.81 vs CL = 2.02 ± 0.16 g, P<0.05. Brown adipose tissue (BAT cytochrome oxidase activity, although slightly lower than in P rats (P = 469.96 ± 16.20 vs CL = 414.48 ± 11.32 U/BAT x kg body weight, P<0.05, was still much higher than in control rats (C = 159.55 ± 11.54 vs CL = 414.48 ± 11.32 U/BAT x kg body weight, P<0.05. The present findings support the hypothesis that an increased muscle protein content due to clenbuterol stimulation worsened amino acid availability to the liver and further reduced albumin synthesis causing exacerbation of hypoalbuminemia in rats fed a low-protein diet.

  10. Protein kinase C is activated in glomeruli from streptozotocin diabetic rats. Possible mediation by glucose

    International Nuclear Information System (INIS)

    Craven, P.A.; DeRubertis, F.R.

    1989-01-01

    Glomerular inositol content and the turnover of polyphosphoinositides was reduced by 58% in 1-2 wk streptozotocin diabetic rats. Addition of inositol to the incubation medium increased polyphosphoinositide turnover in glomeruli from diabetic rats to control values. Despite the reduction in inositol content and polyphosphoinositide turnover, protein kinase C was activated in glomeruli from diabetic rats, as assessed by an increase in the percentage of enzyme activity associated with the particulate cell fraction. Total protein kinase C activity was not different between glomeruli from control and diabetic rats. Treatment of diabetic rats with insulin to achieve near euglycemia prevented the increase in particulate protein kinase C. Moreover, incubation of glomeruli from control rats with glucose (100-1,000 mg/dl) resulted in a progressive increase in labeled diacylglycerol production and in the percentage of protein kinase C activity which was associated with the particulate fraction. These results support a role for hyperglycemia per se in the enhanced state of activation of protein kinase C seen in glomeruli from diabetic rats. Glucose did not appear to increase diacylglycerol by stimulating inositol phospholipid hydrolysis in glomeruli. Other pathways for diacylglycerol production, including de novo synthesis and phospholipase C mediated hydrolysis of phosphatidylcholine or phosphatidyl-inositol-glycan are not excluded

  11. Cellular Restriction Factors of Feline Immunodeficiency Virus

    Science.gov (United States)

    Zielonka, Jörg; Münk, Carsten

    2011-01-01

    Lentiviruses are known for their narrow cell- and species-tropisms, which are determined by cellular proteins whose absence or presence either support viral replication (dependency factors, cofactors) or inhibit viral replication (restriction factors). Similar to Human immunodeficiency virus type 1 (HIV-1), the cat lentivirus Feline immunodeficiency virus (FIV) is sensitive to recently discovered cellular restriction factors from non-host species that are able to stop viruses from replicating. Of particular importance are the cellular proteins APOBEC3, TRIM5α and tetherin/BST-2. In general, lentiviruses counteract or escape their species’ own variant of the restriction factor, but are targeted by the orthologous proteins of distantly related species. Most of the knowledge regarding lentiviral restriction factors has been obtained in the HIV-1 system; however, much less is known about their effects on other lentiviruses. We describe here the molecular mechanisms that explain how FIV maintains its replication in feline cells, but is largely prevented from cross-species infections by cellular restriction factors. PMID:22069525

  12. Chronological protein synthesis in regenerating rat liver.

    Science.gov (United States)

    He, Jinjun; Hao, Shuai; Zhang, Hao; Guo, Fuzheng; Huang, Lingyun; Xiao, Xueyuan; He, Dacheng

    2015-07-01

    Liver regeneration has been studied for decades; however, its regulation remains unclear. In this study, we report a dynamic tracing of protein synthesis in rat regenerating liver with a new proteomic technique, (35) S in vivo labeling analysis for dynamic proteomics (SiLAD). Conventional proteomic techniques typically measure protein alteration in accumulated amounts. The SiLAD technique specifically detects protein synthesis velocity instead of accumulated amounts of protein through (35) S pulse labeling of newly synthesized proteins, providing a direct way for analyzing protein synthesis variations. Consequently, protein synthesis within short as 30 min was visualized and protein regulations in the first 8 h of regenerating liver were dynamically traced. Further, the 3.5-5 h post partial hepatectomy (PHx) was shown to be an important regulatory turning point by acute regulation of many proteins in the initiation of liver regeneration. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Increased Milk Protein Concentration in a Rehydration Drink Enhances Fluid Retention Caused by Water Reabsorption in Rats.

    Science.gov (United States)

    Ito, Kentaro; Saito, Yuri; Ashida, Kinya; Yamaji, Taketo; Itoh, Hiroyuki; Oda, Munehiro

    2015-01-01

    A fluid-retention effect is required for beverages that are designed to prevent dehydration. That is, fluid absorbed from the intestines should not be excreted quickly; long-term retention is desirable. Here, we focused on the effect of milk protein on fluid retention, and propose a new effective oral rehydration method that can be used daily for preventing dehydration. We first evaluated the effects of different concentrations of milk protein on fluid retention by measuring the urinary volumes of rats fed fluid containing milk protein at concentrations of 1, 5, and 10%. We next compared the fluid-retention effect of milk protein-enriched drink (MPD) with those of distilled water (DW) and a sports drink (SD) by the same method. Third, to investigate the mechanism of fluid retention, we measured plasma insulin changes in rats after ingesting these three drinks. We found that the addition of milk protein at 5 or 10% reduced urinary volume in a dose-dependent manner. Ingestion of the MPD containing 4.6% milk protein resulted in lower urinary volumes than DW and SD. MPD also showed a higher water reabsorption rate in the kidneys and higher concentrations of plasma insulin than DW and SD. These results suggest that increasing milk protein concentration in a beverage enhances fluid retention, which may allow the possibility to develop rehydration beverages that are more effective than SDs. In addition, insulin-modifying renal water reabsorption may contribute to the fluid-retention effect of MPD.

  14. Sweetpotato- and cereal-based infant foods: protein quality assessment, and effect on body composition using sprague dawley rats as a model.

    Science.gov (United States)

    Amagloh, Francis Kweku; Chiridza, Tracy; Lemercier, Marie-Eve; Broomfield, Anne; Morel, Patrick C H; Coad, Jane

    2015-01-01

    The Protein Digestibility Corrected Amino Acid Score (PDCAAS) of sweetpotato-based complementary foods (OFSP ComFa and CFSP ComFa) and cereal-based infant products (Weanimix and Cerelac) was assessed using 3 wk-old male Sprague Dawley rats weighing between 53-67 g as a model for human infants. Also, the effect of consumption of the infant formulations on lean mass, bone mass content and fat mass was evaluated by Dual-Energy X-ray Absorptiometry (DEXA) using 6 wk-old Sprague Dawley rats (initial weight, 206-229 g). The ComFa products and Weanimix are household-level formulations, and Cerelac is a commercial infant cereal. The true protein digestibility score for Cerelac was 96.27%, and about 1.8% (Pbody composition studies indicate that complementary foods could be formulated from readily available agricultural resources at the household-level to support growth as would a nutritionally adequate industrial-manufactured infant cereal. Nonetheless, it should be noted that the findings of our studies are based on an animal model.

  15. Proteinuria in aging rats due to low-protein diet during mid-gestation

    NARCIS (Netherlands)

    Joles, J. A.; Sculley, D. V.; Langley-Evans, S. C.

    Nephrogenesis in the rat starts mid-gestation and continues into lactation. Maternal low protein (LP) intake leads to renal injury in rats and associates with mild renal injury in humans. We hypothesized that LP during early nephrogenesis or throughout gestation would induce more renal injury in rat

  16. Effects of FoxO1 on podocyte injury in diabetic rats

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Feng; Zhang, Yuanyuan; Wang, Qingzhu; Ren, Lei; Zhou, Yingni [Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Ma, Xiaojun [Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Wu, Lina [Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Qin, Guijun, E-mail: hyqingj@zzu.edu.cn [Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China)

    2015-10-16

    Objective: This study was designed to investigate the protective effect of forkhead transcription factor O1 (FoxO1) on podocyte injury in rats with diabetic nephropathy. Methods: Streptozotocin-induced diabetic rats were served as DM group, while DM rats transfected with blank lentiviral vectors (LV-pSC-GFP) or lentiviral vectors carrying constitutively active FoxO1 (LV-CA-FoxO1) were served as LV-NC group or LV-CA group, respectively. The control group (NG) consisted of uninduced rats that received an injection of diluent buffer. At 2, 4, and 8 weeks after transfection, the levels of urine albumin, blood glucose, blood urea nitrogen, serum creatinine and urine podocalyxin were measured. Real-time PCR and western blotting were performed to measure mRNA and protein levels of FoxO1, podocalyxin, nephrin, and desmin in renal cortex. In addition, light and electron microscopy were used to detect structural changes in the glomerulus and podocytes. Results: Compared with the rats in LV-NC and DM groups, LV-CA rats showed a significant increase in FoxO1 mRNA and protein levels and a distinct decrease in urine albumin, blood urea nitrogen, and serum creatinine (except at the two-week time point) levels (p < 0.05). Podocalyxin and nephrin mRNA and protein levels increased (p < 0.05), whereas desmin mRNA and protein levels decreased (p < 0.05). Pathological changes in glomerulus were also ameliorated in LV-CA group. Conclusions: Upregulating expression of FoxO1 by transduction with recombinant lentivirus ameliorates podocyte injury in diabetic rats. - Highlights: • The structures and functions of podocytes were impaired in STZ-induced diabetic rats. • Constitutively active FoxO1 ameliorates structure injury and preserves function of podocytes in diabetic rats. • FoxO1 may alleviate the pathological changes associated with diabetic nephropathy.

  17. Effects of FoxO1 on podocyte injury in diabetic rats

    International Nuclear Information System (INIS)

    Guo, Feng; Zhang, Yuanyuan; Wang, Qingzhu; Ren, Lei; Zhou, Yingni; Ma, Xiaojun; Wu, Lina; Qin, Guijun

    2015-01-01

    Objective: This study was designed to investigate the protective effect of forkhead transcription factor O1 (FoxO1) on podocyte injury in rats with diabetic nephropathy. Methods: Streptozotocin-induced diabetic rats were served as DM group, while DM rats transfected with blank lentiviral vectors (LV-pSC-GFP) or lentiviral vectors carrying constitutively active FoxO1 (LV-CA-FoxO1) were served as LV-NC group or LV-CA group, respectively. The control group (NG) consisted of uninduced rats that received an injection of diluent buffer. At 2, 4, and 8 weeks after transfection, the levels of urine albumin, blood glucose, blood urea nitrogen, serum creatinine and urine podocalyxin were measured. Real-time PCR and western blotting were performed to measure mRNA and protein levels of FoxO1, podocalyxin, nephrin, and desmin in renal cortex. In addition, light and electron microscopy were used to detect structural changes in the glomerulus and podocytes. Results: Compared with the rats in LV-NC and DM groups, LV-CA rats showed a significant increase in FoxO1 mRNA and protein levels and a distinct decrease in urine albumin, blood urea nitrogen, and serum creatinine (except at the two-week time point) levels (p < 0.05). Podocalyxin and nephrin mRNA and protein levels increased (p < 0.05), whereas desmin mRNA and protein levels decreased (p < 0.05). Pathological changes in glomerulus were also ameliorated in LV-CA group. Conclusions: Upregulating expression of FoxO1 by transduction with recombinant lentivirus ameliorates podocyte injury in diabetic rats. - Highlights: • The structures and functions of podocytes were impaired in STZ-induced diabetic rats. • Constitutively active FoxO1 ameliorates structure injury and preserves function of podocytes in diabetic rats. • FoxO1 may alleviate the pathological changes associated with diabetic nephropathy.

  18. Immunomodulatory effects of high-protein diet with resveratrol supplementation on radiation-induced acute-phase inflammation in rats.

    Science.gov (United States)

    Kim, Kyoung-Ok; Park, HyunJin; Chun, Mison; Kim, Hyun-Sook

    2014-09-01

    We hypothesized that a high-protein diet and/or resveratrol supplementation will improve acute inflammatory responses in rats after receiving experimental abdominal radiation treatment (ART). Based on our previous study, the period of 10 days after ART was used as an acute inflammation model. Rats were exposed to a radiation dose of 17.5 Gy and were supplied with a control (C), 30% high-protein diet (HP), resveratrol supplementation (RES), or HP with RES diet ([HP+RES]). At day 10 after ART, we measured profiles of lipids, proteins, and immune cells in blood. The levels of clusters of differentiating 4(+) (CD4(+)) cells and regulatory T cells, serum proinflammatory cytokines, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in urine were also measured. ART caused significant disturbances of lipid profiles by increasing triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C), and decreasing high-density lipoprotein cholesterol. The proinflammatroy cytokine levels were also increased by ART. All the experimental diets (HP, RES, and [HP+RES]) significantly decreased levels of TG, monocytes, proinflammatory cytokines, and 8-OHdG, whereas the platelet counts were increased. In addition, the HP and [HP+RES] diets decreased the concentrations of plasma LDL-C and total cholesterol. Also, the HP and RES diets decreased regulatory T cells compared with those of the control diet in ART group. Further, the HP diet led to a significant recovery of white blood cell counts, as well as increased percentages of lymphocyte and decreased percentages of neutrophils. In summary, RES appeared to be significantly effective in minimizing radiation-induced damage to lipid metabolism and immune responses. Our study also demonstrated the importance of dietary protein intake in recovering from acute inflammation by radiation.

  19. Dipeptidyl peptidase IV inhibition exerts renoprotective effects in rats with established heart failure

    Directory of Open Access Journals (Sweden)

    Daniel Francisco De Arruda Junior

    2016-07-01

    Full Text Available Circulating dipeptidyl peptidase IV (DPPIV activity is associated with worse cardiovascular outcomes in humans and experimental heart failure (HF models, suggesting that DPPIV may play a role in the pathophysiology of this syndrome. Renal dysfunction is one of the key features of HF, but it remains to be determined whether DPPIV inhibitors are capable of improving cardiorenal function after the onset of HF. Therefore, the present study aimed to test the hypothesis that DPPIV inhibition by vildagliptin improves renal water and salt handling and exerts anti-proteinuric effects in rats with established HF. To this end, male Wistar rats were subjected to left ventricle (LV radiofrequency ablation or sham operation. Six weeks after surgery, radiofrequency-ablated rats who developed HF were randomly divided into two groups and treated for four weeks with vildagliptin (120 mg/kg/day or vehicle by oral gavage. Echocardiography was performed before (pretreatment and at the end of treatment (post-treatment to evaluate cardiac function. The fractional area change increased (34±5 vs. 45±3%, p<0.05, and the isovolumic relaxation time decreased (33±2 vs. 27±1 ms; p<0.05 in HF rats treated with vildagliptin (post-treatment vs. pretreatment. On the other hand, cardiac dysfunction deteriorated further in vehicle-treated HF rats. Renal function was impaired in vehicle-treated HF rats as evidenced by fluid retention, low glomerular filtration rate (GFR and high levels of urinary protein excretion. Vildagliptin treatment restored urinary flow, GFR, urinary sodium and urinary protein excretion to sham levels. Restoration of renal function in HF rats by DPPIV inhibition was associated with increased active glucagon-like peptide-1 (GLP-1 serum concentration, reduced DPPIV activity and increased activity of protein kinase A in the renal cortex. Furthermore, the anti-proteinuric effect of vildagliptin treatment in rats with established HF was associated with

  20. Sweetpotato- and cereal-based infant foods: protein quality assessment, and effect on body composition using sprague dawley rats as a model.

    Directory of Open Access Journals (Sweden)

    Francis Kweku Amagloh

    Full Text Available The Protein Digestibility Corrected Amino Acid Score (PDCAAS of sweetpotato-based complementary foods (OFSP ComFa and CFSP ComFa and cereal-based infant products (Weanimix and Cerelac was assessed using 3 wk-old male Sprague Dawley rats weighing between 53-67 g as a model for human infants. Also, the effect of consumption of the infant formulations on lean mass, bone mass content and fat mass was evaluated by Dual-Energy X-ray Absorptiometry (DEXA using 6 wk-old Sprague Dawley rats (initial weight, 206-229 g. The ComFa products and Weanimix are household-level formulations, and Cerelac is a commercial infant cereal. The true protein digestibility score for Cerelac was 96.27%, and about 1.8% (P<0.0001 higher than that for OFSP ComFa, CFSP ComFa and Weanimix. However, OFSP ComFa had the highest un-truncated PDCAAS by a difference of 4.1%, than CFSP ComFa, and about 20% difference compared with both the Weanimix and Cerelac. All the products investigated had PDCAAS greater than 70%, the minimum protein quality requirement for complementary foods. Among the rats assigned to the four formulations, their bone mass and fat mass composition were not significantly different (P=0.08 and P=0.85, respectively. However, the rats on CFSP ComFa had higher lean mass than those on Cerelac (321.67 vs. 297.19 g; P=0.03. The findings from the PDCAAS and the DEXA-measured body composition studies indicate that complementary foods could be formulated from readily available agricultural resources at the household-level to support growth as would a nutritionally adequate industrial-manufactured infant cereal. Nonetheless, it should be noted that the findings of our studies are based on an animal model.

  1. The First International Mini-Symposium on Methionine Restriction and Lifespan

    Directory of Open Access Journals (Sweden)

    Gene eAbles

    2014-05-01

    Full Text Available It has been 20 years since the Orentreich Foundation for the Advancement of Science, under the leadership Dr. Norman Orentreich, first reported that low methionine (Met ingestion by rats extends lifespan [1]. Since then, several studies have replicated the effects of dietary methionine restriction (MR in delaying age-related diseases [2–5]. We report the abstracts from the First International Mini-Symposium on Methionine Restriction and Lifespan held in Tarrytown, NY last September 2013. The goals were 1 to gather researchers with an interest in methionine restriction and lifespan, 2 to exchange knowledge, 3 to generate ideas for future investigations, and 4 to strengthen relationships within this community. The presentations highlighted the importance of research on cysteine, growth hormone (GH, and ATF4 in the paradigm of aging. In addition, the effects of dietary restriction or MR in the kidneys, liver, bones and the adipose tissue were discussed. The symposium also emphasized the value of other species, e.g. the naked mole rat, Brandt’s bat and drosophila in aging research. Overall, the symposium consolidated scientists with similar research interests and provided opportunities to conduct future collaborative studies.

  2. Effect of Linguizhugan decoction on hyperlipidemia rats with intermittent fasting.

    Science.gov (United States)

    Yang, Yubin; Qin, Jian; Ke, Bin; Zhang, Junjie; Shi, Lanying; Li, Qiong

    2013-04-01

    To explore the effect of Linguizhugan decoction on hyperlipidemia rats with caloric restriction. The hyperlipidemia model of rat was induced by high fat diet for 8 weeks. After the model was established, 26 rats were randomly divided into 4 groups: the control group (n = 6), the model group (n = 6), the intermittent fasting (IF) group (n = 8), and the IF and herbal medicine (IFH) group (n = 6). IF group was applied intermittent fasting every other day. The IFH group was given Linguizhugan decoction every day and intermittent fasting every other day. Blood samples were taken at the end of 16 weeks, and serum ghrelin and lipid was tested. Serum ghrelin in the IF group significantly increased (P < 0.01). Serum ghrelin in IFH group was lower than the IF group (P < 0.05), but higher than the model group (P < 0.01). Linguizhugan decoction may play a part in regulation of energy and appetite in hyperlipidemia rats with IF.

  3. Meat, dairy and plant proteins alter bacterial composition of rat gut bacteria

    Science.gov (United States)

    Zhu, Yingying; Lin, Xisha; Zhao, Fan; Shi, Xuebin; Li, He; Li, Yingqiu; Zhu, Weiyun; Xu, Xinglian; Lu, Chunbao; Zhou, Guanghong

    2015-01-01

    Long-term consumption of red meat has been considered a potential risk to gut health, but this is based on clinic investigations, excessive intake of fat, heme and some injurious compounds formed during cooking or additions to processed meat products. Whether intake of red meat protein affects gut bacteria and the health of the host remains unclear. In this work, we compared the composition of gut bacteria in the caecum, by sequencing the V4-V5 region of 16S ribosomal RNA gene, obtained from rats fed with proteins from red meat (beef and pork), white meat (chicken and fish) and other sources (casein and soy). The results showed significant differences in profiles of gut bacteria between the six diet groups. Rats fed with meat proteins had a similar overall structure of caecal bacterial communities separated from those fed non-meat proteins. The beneficial genus Lactobacillus was higher in the white meat than in the red meat or non-meat protein groups. Also, rats fed with meat proteins and casein had significantly lower levels of lipopolysaccharide-binding proteins, suggesting that the intake of meat proteins may maintain a more balanced composition of gut bacteria, thereby reducing the antigen load and inflammatory response in the host. PMID:26463271

  4. Meat, dairy and plant proteins alter bacterial composition of rat gut bacteria.

    Science.gov (United States)

    Zhu, Yingying; Lin, Xisha; Zhao, Fan; Shi, Xuebin; Li, He; Li, Yingqiu; Zhu, Weiyun; Xu, Xinglian; Li, Chunbao; Lu, Chunbao; Zhou, Guanghong

    2015-10-14

    Long-term consumption of red meat has been considered a potential risk to gut health, but this is based on clinic investigations, excessive intake of fat, heme and some injurious compounds formed during cooking or additions to processed meat products. Whether intake of red meat protein affects gut bacteria and the health of the host remains unclear. In this work, we compared the composition of gut bacteria in the caecum, by sequencing the V4-V5 region of 16S ribosomal RNA gene, obtained from rats fed with proteins from red meat (beef and pork), white meat (chicken and fish) and other sources (casein and soy). The results showed significant differences in profiles of gut bacteria between the six diet groups. Rats fed with meat proteins had a similar overall structure of caecal bacterial communities separated from those fed non-meat proteins. The beneficial genus Lactobacillus was higher in the white meat than in the red meat or non-meat protein groups. Also, rats fed with meat proteins and casein had significantly lower levels of lipopolysaccharide-binding proteins, suggesting that the intake of meat proteins may maintain a more balanced composition of gut bacteria, thereby reducing the antigen load and inflammatory response in the host.

  5. Hypoxic-induced stress protein expression in rat cardiac myocytes

    International Nuclear Information System (INIS)

    Howard, G.; Geoghegan, T.E.

    1986-01-01

    Mammalian stress proteins can be induced in cells and tissues exposed to a variety of conditions including hyperthermia and diminished O 2 supply. The authors have previously shown that the expression of three stress proteins (71, 85, and 95 kDa) was induced in cardiac tissue from mice exposed to hypoxic conditions. The expression of mRNAs coding for the 85 and 95 kDa proteins increase with time of exposure to hypoxia, while the mRNA coding for the 71 kDa protein is transiently induced. The authors extended these studies to investigate the expression of stress proteins in isolated rat cardiac myocytes. Freshly prepared myocytes were exposed to control, hypoxic, anoxic, or heat-shock environments for up to 16 h. The proteins were then labeled for 6 hours with [ 35 S]methionine. Analysis of the solubilized proteins by SDS-PAGE and autoradiography showed that there was a 6-fold increase in synthesis of the 85 kDa protein upon exposure to hypoxia but not heat-shock conditions. The 71 kDa protein was present at high levels in both control and treated myocyte protein preparations, and presumably had been induced during the isolation procedure. Total RNA isolated from intact rat heart and isolated myocytes was compared by cell-free translation analysis and showed induction of RNAs coding for several stress proteins in the myocyte preparation. The induced proteins at 85 and 95 kDa have molecular weights similar to reported cell stress and/or glucose-regulated proteins

  6. Effect of ethanol in utero on higher nervous activity and protein and lipid metabolism in the rat brain

    International Nuclear Information System (INIS)

    Zabbudovskii, A.L.; Zhulin, V.V.

    1985-01-01

    The authors study parameters of protein phosphorylation and glycoprotein and phospholipid synthesis in the neocortex and hippocampus of adult rats and compare the findings with the results of an investigation of formation and preservation of defensive conditioned reflexes. The pattern of changes in these metabolic parameters are studied in response to stress. For the biochemical tests, the animals were lightly anesthetized with ether and injected with a mixture of (P 32)-orthophosphate and (H 3)-fucose. Phospholipids were identified with molybdate reagent and radioactivity of the protein digest and lipids was measured in Bray's scintillator. The study shows that the use of stress brought metabolic differences between the brain of the experimental and control rats more clearly to light

  7. Effect of restricted access to food on metabolic changes in lethally X-irradiated rats. I

    International Nuclear Information System (INIS)

    Toropila, M.; Ahlers, I.; Ahlersova, E.; Praslicka, M.

    1982-01-01

    Differences in the reaction of glucose in blood and in that of glycogen in liver in animals with free access to food and in those with restricted food intake to lethal irradiation by X-rays were studied. SPF bred male rats of the Wistar strain were fed by common laboratory diet and by tap water ad libitum (AL group) or food was accessible to them (in unlimited amounts) only in the period between 09.00 a. m. and 11.00 a. m. (meal-fed group, MF), all under standard laboratory conditions. After more than three weeks of adaptation to the nutrition patterns and 22 h after the last food intake, animals of both groups were irradiated with a single whole-body 14.35 Gy dose of X-rays and/or sham irradiated, respectively. Glucose concentration in blood was increased in both groups during the experiment; terminal hyperglycaemia was more expressed in the MF group. Due to the high initial glycogen concentration in the liver of MF irradiated animals the accumulation of glycogen was substantially lower and started later than in irradiated AL animals. (author)

  8. Effects of iron deficiency on the absorption and distribution of lead and cadmium in rats

    International Nuclear Information System (INIS)

    Ragan, H.A.

    1977-01-01

    In order to evaluate the effects of iron deficiency on the absorption of pollutant metals, an iron-deficient diet was fed to young rats until their tissue-iron stores were depleted. Prior to the development of anemia, the iron-deficient rats and littermate controls were administered an intragastric gavage of lead-210 or cadmium-109 and were killed 48 hr later. The body burden of lead was approximately 6 times greater, and that of cadmium approximately 7 times greater, in iron-deficient rats than in the controls. No consistent effects were observed on concentrations of serum total lipids or serum proteins nor on protein electrophoretic patterns in rats with a deficit in iron stores

  9. Effects of Ethanol on the Expression Level of Various BDNF mRNA Isoforms and Their Encoded Protein in the Hippocampus of Adult and Embryonic Rats

    Directory of Open Access Journals (Sweden)

    Shahla Shojaei

    2015-12-01

    Full Text Available We aimed to compare the effects of oral ethanol (Eth alone or combined with the phytoestrogen resveratrol (Rsv on the expression of various brain-derived neurotrophic factor (BDNF transcripts and the encoded protein pro-BDNF in the hippocampus of pregnant and embryonic rats. A low (0.25 g/kg body weight (BW/day dose of Eth produced an increase in the expression of BDNF exons I, III and IV and a decrease in that of the exon IX in embryos, but failed to affect BDNF transcript and pro-BDNF protein expression in adults. However, co-administration of Eth 0.25 g/kg·BW/day and Rsv led to increased expression of BDNF exons I, III and IV and to a small but significant increase in the level of pro-BDNF protein in maternal rats. A high (2.5 g/kg·BW/day dose of Eth increased the expression of BDNF exons III and IV in embryos, but it decreased the expression of exon IX containing BDNF mRNAs in the maternal rats. While the high dose of Eth alone reduced the level of pro-BDNF in adults, it failed to change the levels of pro-BDNF in embryos. Eth differentially affects the expression pattern of BDNF transcripts and levels of pro-BDNF in the hippocampus of both adult and embryonic rats.

  10. Protective effect of selenium against aluminium chloride induced cardiotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Imen Ghorbel

    2017-08-01

    Full Text Available Our study pertains to evaluate the protective effect of selenium (Se, used as a nutritional supplement, against aluminium chloride induced cardiotoxicity in rats. Rats have received during 21 days either AlCl3 (400 ppm via drinking water, AlCl3 associated with Na2SeO3 (0.5 mg/kg of diet or only Na2SeO3. Co-administration of Se to AlCl3 treated rats alleviated heart oxidative stress objectified by a decrease of malondialdehyde, hydrogen peroxide and protein carbonyls levels. An improvement in antioxidant redox status, enzymatic (catalase, superoxide dismutase and glutathione peroxidase and non enzymatic (reduced glutathione, non protein thiols and vitamin C was also observed in Se treated rats.  LDH and CK activities, TC, LDL-C levels, TC/HDL-C and LDL-C/HDL-C ratios were increased, while HDL-C and TG decreased in rats treated with AlCl3. Cardiac biomarkers and lipid profile were restored to near control values by the supplementation of Se. Our results revealed that Se, a trace element with antioxidant properties, was effective in preventing heart damage induced by aluminium chloride.

  11. [Effects of Electroacupunctrue Combined with Dietary Control on Peroxisome Proliferator-activa- ted Receptor-α, and Liver Fatty Acid-binding Protein Levels in Non-alcoholic Fatty Liver Disease Rats].

    Science.gov (United States)

    Zhang, Yi; Tang, Cheng-lin; Tian, Yuan; Yuan, Hai-zhou; Yang, Hui; Tang, Nian-zhen; Gao, Rui-qi; Cao, Jing

    2015-10-01

    To observe the effect of electroacupunctrue (EA) intervention or EA combined with dietary control on peroxisome proliferator-activated receptor (PPAR)-α, and liver fatty acid-binding protein (L-FABP) levels in non-alcoholic fatty liver disease (NAFLD) rats, so as to reveal its mechanism underlying improvement of NAFLD. Sixty SD male rats were randomly divided into common diet (control) group (n = 10) and high-fat diet group (n = 45). The NAFLD model was established by feeding the animals with high-fat forage (HFF, including cholesterol, sodium cholate, propylthiouracil, sucrose, lard and common forage) for 5 weeks. Forty NAFLD rats were then randomized into model, EA + HFF, low-fat forage (LFF) and EA+ LFF groups (n = 10 rats in each group). EA (4 Hz/20 Hz, 3 mA) was applied to ipsilateral "Zusanli" (ST 36),"Sanyinjiao" (SP 6) and "Taichong" (LR 3) for 20 min, once daily for 4 weeks. The pathologic changes of the hepatic tissue were detected by H. E. staining. Serum total cholesterol (TC) and triglyceride (TG) contents were determined by using enzymatic methods, serum free fat acids (FFA) content was detected by colorimetry. The expression levels of PPAR-α and L-FABP protein and gene of the liver tissue were determined by Western blot and RT-PCR, respectively. H. E. staining showed that the hepatocytes presented moderate or severe bullous adipose degeneration in rats of the model group, vesicular steatosis in the EA + HFF and LFF groups, turned to almost normal but with small amount of lipid droplets in the EA + LFF group. The contents of serum TC, TG and FFA were significantly higher in the model group than in the control group (P < 0.05), and were obviously decreased in the EA + HFF, LFF and EA + LFF groups in comparison with the model group (P < 0.05). Compared to the control group, hepatic PPAR-α protein and mRNA were markedly down-regulated in the model group, and hepatic L-FABP protein and mRNA considerably up-regulated in the model group (P < 0

  12. Branched-chain Amino Acids are Beneficial to Maintain Growth Performance and Intestinal Immune-related Function in Weaned Piglets Fed Protein Restricted Diet.

    Science.gov (United States)

    Ren, M; Zhang, S H; Zeng, X F; Liu, H; Qiao, S Y

    2015-12-01

    As a novel approach for disease control and prevention, nutritional modulation of the intestinal health has been proved. However, It is still unknown whether branched-chain amino acid (BCAA) is needed to maintain intestinal immune-related function. The objective of this study was to determine whether BCAA supplementation in protein restricted diet affects growth performance, intestinal barrier function and modulates post-weaning gut disorders. One hundred and eight weaned piglets (7.96±0.26 kg) were randomly fed one of the three diets including a control diet (21% crude protein [CP], CON), a protein restricted diet (17% CP, PR) and a BCAA diet (BCAA supplementation in the PR diet) for 14 d. The growth performance, plasma amino acid concentrations, small intestinal morphology and intestinal immunoglobulins were tested. First, average daily gain (ADG) (pBCAA group improved ADG (pBCAA groups was not different (p>0.05). The PR and BCAA treatments had a higher (pBCAA supplementation significantly increased BCAA concentrations (pBCAA supplementation increased villous height in the duodenum (pBCAA supplementation increased levels of jejunal and ileal immunoglobulin mentioned above. In conclusion, BCAA supplementation to protein restricted diet improved intestinal immune defense function by protecting villous morphology and by increasing levels of intestinal immunoglobulins in weaned piglets. Our finding has the important implication that BCAA may be used to reduce the negative effects of a protein restricted diet on growth performance and intestinal immunity in weaned piglets.

  13. Epinephrine ameliorating response of serum proteins and protein fractions to whole body gamma irradiation in albino rats

    International Nuclear Information System (INIS)

    Mohamed, M.A.; Saada, H.N.; Roushdy, H.M.; Awad, O.M.; El-Sayed, M.M.; Azab, Kh.Sh.

    1997-01-01

    The present study was carried out to investigate the role of epinephrine in modifying the radiation induced effects on serum protein as presented by total protein, protein fractions and albumin/globulin (A/G) ratio in adult albino rats. Epinephrine was intraperitoneally injected at a concentration of 200 M/g body weight, 15 min, pre-9 or just after 0 whole body gamma-irradiation of rats at a dose of 6 Gy (single dose). Studies have been undertaken at periods of 1 hr, 4 hrs, 1,3 and 7 days after irradiation. Data of the present study revealed that whole body gamma-irradiation induced significant decreased in the total content of serum protein and albumin at 1,3 and 7 days post radiation exposure alpha 1-globulin significantly increased only on the 1 st hr post-irradiation, however alpha 1-globulin significantly increased along all the experimental periods. B-globulin insignificantly changed after irradiation but gamma-globulin significantly decreased during the experimental periods. These changes were associated with significant decreases in A/G ratio at 3 and 7 days post-irradiation. Administration of epinephrine pre-or after radiation exposure produced some amelioration in the radiation induced changes in the studied parameters. So, it could be concluded that epinephrine plays a beneficial radioprotective role through its pharmacologic properties

  14. Analysis of protein profiles in diabetic rat blood plasma that induced by alloxan

    Science.gov (United States)

    Hidayati, Dewi; Abdulgani, Nurlita; Setiyawan, Hengki; Trisnawati, Indah; Ashuri, Nova Maulidina; Sa'adah, Noor Nailis

    2017-06-01

    Proteomics is the study to identify the proteins involved in physiological metabolic pathway. The protein profiles of blood plasma from alloxan-induced diabetic rats has investigated using Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE). Data were analyzed descriptively based on variations of the type and intensity of the protein. There were identified the similarity of protein variant between diabetic and control rats included ankyrin (200kDa), IgG (150kDa), nephrin (136 kDa), IDE (112 kDA), albumin (66 kDa), prealbumin (55 kDA), CICP (43 kDa), ApoA-V (39 kDa), GAPDH (35 kDa), C-RP (27,1 kDa), leptin (16 kDa) and apelin (13 kDa). However, the apelin profile at diabetic rats shows the higher intensity than control.

  15. Dietary sardine protein lowers insulin resistance, leptin and TNF-α and beneficially affects adipose tissue oxidative stress in rats with fructose-induced metabolic syndrome.

    Science.gov (United States)

    Madani, Zohra; Louchami, Karim; Sener, Abdullah; Malaisse, Willy J; Ait Yahia, Dalila

    2012-02-01

    The present study aims at exploring the effects of sardine protein on insulin resistance, plasma lipid profile, as well as oxidative and inflammatory status in rats with fructose-induced metabolic syndrome. Rats were fed sardine protein (S) or casein (C) diets supplemented or not with high-fructose (HF) for 2 months. Rats fed the HF diets had greater body weight and adiposity and lower food intake as compared to control rats. Increased plasma glucose, insulin, HbA1C, triacylglycerols, free fatty acids and impaired glucose tolerance and insulin resistance was observed in HF-fed rats. Moreover, a decline in adipose tissues antioxidant status and a rise in lipid peroxidation and plasma TNF-α and fibrinogen were noted. Rats fed sardine protein diets exhibited lower food intake and fat mass than those fed casein diets. Sardine protein diets diminished plasma insulin and insulin resistance. Plasma triacylglycerol and free fatty acids were also lower, while those of α-tocopherol, taurine and calcium were enhanced as compared to casein diets. Moreover, S-HF diet significantly decreased plasma glucose and HbA1C. Sardine protein consumption lowered hydroperoxide levels in perirenal and brown adipose tissues. The S-HF diet, as compared to C-HF diet decreased epididymal hydroperoxides. Feeding sardine protein diets decreased brown adipose tissue carbonyls and increased glutathione peroxidase activity. Perirenal and epididymal superoxide dismutase and catalase activities and brown catalase activity were significantly greater in S-HF group than in C-HF group. Sardine protein diets also prevented hyperleptinemia and reduced inflammatory status in comparison with rats fed casein diets. Taken together, these results support the beneficial effect of sardine protein in fructose-induced metabolic syndrome on such variables as hyperglycemia, insulin resistance, hyperlipidemia and oxidative and inflammatory status, suggesting the possible use of sardine protein as a protective

  16. Determination of phospholipid transfer proteins in rat tissues by immunoassays

    International Nuclear Information System (INIS)

    Teerlink, T.

    1983-01-01

    Several quantitative immunoassays have been developed for two phospholipid transfer proteins from rat liver, i.e. the phosphatidylcholine transfer protein and the non-specific lipid transfer protein. The development of a double-antibody radioimmunoassay for the phosphatidylcholine transfer protein is described. The transfer protein was labelled with iodine-125 by the mild glucose oxidase-lactoperoxidase method. Although less than one tyrosine residue per molecule of transfer protein was labelled, only 20% of the labelled transfer protein was immunoprecipitable. This value could be increased to 80% by purifying the labelled protein by affinity chromatography on a column of anti-phosphatidylcholine transfer protein-IgG coupled to Sepharose 4B. The radioimmunoassay was used to determine the levels of phosphatidylcholine transfer protein in homogenates and 105 000 xg supernatants from various rat tissues as well as several Morris hepatomas. An enzyme immunoassay for the non-specific lipid transfer protein is also described. The antiserum that was raised especially by the author was cross-reactive with the non-specific lipid transfer protein present in 105 000 xg supernatants from human, mouse and bovine liver. The non-specific lipid transfer protein lost its immunoreactivity upon labelling with iodine-125 using different labelling techniques. Therefore, a regular radioimmunoassay could not be developed. The results of these different assays were compared. (Auth.)

  17. Temporal microbiota changes of high-protein diet intake in a rat model.

    Science.gov (United States)

    Mu, Chunlong; Yang, Yuxiang; Luo, Zhen; Zhu, Weiyun

    2017-10-01

    Alterations of specific microbes serve as important indicators that link gut health with specific diet intake. Although a six-week high-protein diet (45% protein) upregulates the pro-inflammatory response and oxidative stress in colon of rats, the dynamic alteration of gut microbiota remains unclear. To dissect temporal changes of microbiota, dynamic analyses of fecal microbiota were conducted using a rat model. Adult rats were fed a normal-protein diet or an HPD for 6 weeks, and feces collected at different weeks were used for microbiota and metabolite analysis. The structural alteration of fecal microbiota was observed after 4 weeks, especially for the decreased appearance of bands related to Akkermansia species. HPD increased numbers of Escherichia coli while decreased Akkermansia muciniphila, Bifidobacterium, Prevotella, Ruminococcus bromii, and Roseburia/Eubacterium rectale (P protein diet. HPD also decreased the copies of genes encoding butyryl-CoA:acetate CoA-transferase and Prevotella-associated methylmalonyl-CoA decarboxylase α-subunit (P high-protein diet. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Anticonvulsant effect of time-restricted feeding in a pilocarpine-induced seizure model: Metabolic and epigenetic implications.

    Directory of Open Access Journals (Sweden)

    Jorge eLandgrave-Gómez

    2016-01-01

    Full Text Available A new generation of antiepileptic drugs has emerged; however, one-third of epilepsy patients do not properly respond to pharmacological treatments. The purpose of the present study was to investigate whether time-restricted feeding has an anticonvulsant effect and whether this restrictive diet promotes changes in energy metabolism and epigenetic modifications in a pilocarpine-induced seizure model. To resolve our hypothesis, one group of rats had free access to food and water ad libitum (AL and a second group underwent a time-restricted feeding (TRF schedule. We used the lithium-pilocarpine model to induce status epilepticus (SE, and behavioral seizure monitoring was analyzed. Additionally, an electroencephalography (EEG recording was performed to verify the effect of TRF on cortical electrical activity after a pilocarpine injection. For biochemical analysis, animals were sacrificed 24 hours after SE and hippocampal homogenates were used to evaluate the proteins related to metabolism and chromatin structure. Our results showed that TRF had an anticonvulsant effect as measured by the prolonged latency of forelimb clonus seizure, a decrease in the seizure severity score and fewer animals reaching SE. Additionally, the power of the late phase EEG recordings in the AL group was significantly higher than the TRF group. Moreover, we found that TRF is capable of inducing alterations in signaling pathways that regulate energy metabolism, including an increase in the phosphorylation of AMP dependent kinase (AMPK and a decrease in the phosphorylation of Akt kinase. Furthermore, we found that TRF was able to significantly increase the beta hydroxybutyrate (β-HB concentration, an endogenous inhibitor of histone deacetylases (HDACs. Finally, we found a significant decrease in HDAC activity as well as an increase in acetylation on histone 3 (H3 in hippocampal homogenates from the TRF group. These findings suggest that alterations in energy metabolism and the

  19. Thyroid hormone affects secretory activity and uncoupling protein-3 expression in rat harderian gland.

    Science.gov (United States)

    Chieffi Baccari, Gabriella; Monteforte, Rossella; de Lange, Pieter; Raucci, Franca; Farina, Paola; Lanni, Antonia

    2004-07-01

    The effects of T(3) administration on the rat Harderian gland were examined at morphological, biochemical, and molecular levels. T(3) induced hypertrophy of the two cell types (A and B) present in the glandular epithelium. In type A cells, the hypertrophy was mainly due to an increase in the size of the lipid compartment. The acinar lumina were filled with lipoproteic substances, and the cells often showed an olocrine secretory pattern. In type B cells, the hypertrophy largely consisted of a marked proliferation of mitochondria endowed with tightly packed cristae, the mitochondrial number being nearly doubled (from 62 to 101/100 microm(2)). Although the average area of individual mitochondria decreased by about 50%, the total area of the mitochondrial compartment increased by about 80% (from 11 to 19/100 microm(2)). This could be ascribed to T(3)-induced mitochondrial proliferation. The morphological and morphometric data correlated well with our biochemical results, which indicated that mitochondrial respiratory activity is increased in hyperthyroid rats. T(3), by influencing the metabolic function of the mitochondrial compartment, induces lipogenesis and the release of secretory product by type A cells. Mitochondrial uncoupling proteins 2 and 3 were expressed at both mRNA and protein levels in the euthyroid rat Harderian gland. T(3) treatment increased the mRNA levels of both uncoupling protein 2 (UCP2) and UCP3, but the protein level only of UCP3. A possible role for these proteins in the Harderian gland is discussed.

  20. Generation of a Homozygous Transgenic Rat Strain Stably Expressing a Calcium Sensor Protein for Direct Examination of Calcium Signaling.

    Science.gov (United States)

    Szebényi, Kornélia; Füredi, András; Kolacsek, Orsolya; Pergel, Enikő; Bősze, Zsuzsanna; Bender, Balázs; Vajdovich, Péter; Tóvári, József; Homolya, László; Szakács, Gergely; Héja, László; Enyedi, Ágnes; Sarkadi, Balázs; Apáti, Ágota; Orbán, Tamás I

    2015-08-03

    In drug discovery, prediction of selectivity and toxicity require the evaluation of cellular calcium homeostasis. The rat is a preferred laboratory animal for pharmacology and toxicology studies, while currently no calcium indicator protein expressing rat model is available. We established a transgenic rat strain stably expressing the GCaMP2 fluorescent calcium sensor by a transposon-based methodology. Zygotes were co-injected with mRNA of transposase and a CAG-GCaMP2 expressing construct, and animals with one transgene copy were pre-selected by measuring fluorescence in blood cells. A homozygous rat strain was generated with high sensor protein expression in the heart, kidney, liver, and blood cells. No pathological alterations were found in these animals, and fluorescence measurements in cardiac tissue slices and primary cultures demonstrated the applicability of this system for studying calcium signaling. We show here that the GCaMP2 expressing rat cardiomyocytes allow the prediction of cardiotoxic drug side-effects, and provide evidence for the role of Na(+)/Ca(2+) exchanger and its beneficial pharmacological modulation in cardiac reperfusion. Our data indicate that drug-induced alterations and pathological processes can be followed by using this rat model, suggesting that transgenic rats expressing a calcium-sensitive protein provide a valuable system for pharmacological and toxicological studies.

  1. Casein and soya-bean protein have different effects on whole body protein turnover at the same nitrogen balance

    DEFF Research Database (Denmark)

    Nielsen, K; Kondrup, J; Elsner, Petteri

    1994-01-01

    was recovered from urinary ammonia and urea during isotope steady state for measurement of protein synthesis and protein degradation. Compared with starvation the protein-free diet decreased N excretion by 75%, probably by increasing the rate of reutilization of amino acids from endogenous proteins for protein......The present study examined whether different proteins have different effects on whole-body protein turnover in adult rats. The rats were either starved, given a protein-free but energy-sufficient diet (1 MJ/kg body weight (BW) per d) or a diet containing intact casein, hydrolysed casein......, or hydrolysed soya-bean protein at a level of 9.1 g/kg BW per d. The diets, which were isoenergetic with the same carbohydrate: fat ratio, were given as a continuous intragastric infusion for at least 4 d. During the last 19 h 15N-glycine (a primed continuous infusion) was given intragastrically and 15N...

  2. The Neuroprotective Effect of Puerarin in Acute Spinal Cord Injury Rats

    Directory of Open Access Journals (Sweden)

    Dapeng Zhang

    2016-08-01

    Full Text Available Background: Acute spinal cord injury (SCI leads to permanent disabilities. This study evaluated the neuroprotective effect of puerarin, a natural extract, in a rat model of SCI. Methods: Acute SCI models were established in rats using a modified Allen's method. Locomotor function was evaluated using the BBB test. The histological changes in the spinal cord were observed by H&E staining. Neuron survival and glial cells activation were evaluated by immunostaining. ELISA and realtime PCR were used to measure secretion and gene expression of cytokines. TUNEL staining was used to examine cell apoptosis and western blot analysis was used to detect protein expression. Results: Puerarin significantly increased BBB score in SCI rats, attenuated histological injury of spinal cord, decreased neuron loss, inhibited glial cells activation, alleviated inflammation, and inhibited cell apoptosis in the injured spinal cords. In addition, the downregulated PI3K and phospho-Akt protein expression were restored by puerarin. Conclusion: Puerarin accelerated locomotor function recovery and tissue repair of SCI rats, which is associated with its neuroprotection, glial cell activation suppression, anti-inflammatory and anti-apoptosis effects. These effects may be associated with the activation of PI3K/Akt signaling pathway.

  3. Cross-species and tissue variations in cyanide detoxification rates in rodents and non-human primates on protein-restricted diet.

    Science.gov (United States)

    Kimani, S; Moterroso, V; Morales, P; Wagner, J; Kipruto, S; Bukachi, F; Maitai, C; Tshala-Katumbay, D

    2014-04-01

    We sought to elucidate the impact of diet, cyanide or cyanate exposure on mammalian cyanide detoxification capabilities (CDC). Male rats (~8 weeks old) (N=52) on 75% sulfur amino acid (SAA)-deficient diet were treated with NaCN (2.5mg/kg bw) or NaOCN (50mg/kg bw) for 6 weeks. Macaca fascicularis monkeys (~12 years old) (N=12) were exclusively fed cassava for 5 weeks. CDC was assessed in plasma, or spinal cord, or brain. In rats, NaCN induced seizures under SAA-restricted diet whereas NaOCN induced motor deficits. No deficits were observed in non-human primates. Under normal diet, the CDC were up to ~80× faster in the nervous system (14 ms to produce one μmol of thiocyanate from the detoxification of cyanide) relative to plasma. Spinal cord CDC was impaired by NaCN, NaOCN, or SAA deficiency. In M. fascicularis, plasma CDC changed proportionally to total proteins (r=0.43; pcyanide may result from a "multiple hit" by the toxicity of cyanide or its cyanate metabolite, the influences of dietary deficiencies, and the tissue variations in CDC. Chronic dietary reliance on cassava may cause metabolic derangement including poor CDC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Hepatoprotective and nephroprotective effects of Cnidoscolus aconitifolius in protein energy malnutrition induced liver and kidney damage.

    Science.gov (United States)

    Oyagbemi, Ademola A; Odetola, Adebimpe A

    2013-10-01

    This study was designed to evaluate the ameliorative and hypocholesterolemic effects of dietary supplementation of Cnidoscolus aconitifolius leaf meal (CALM) on hepatic injury and kidney injury associated with protein energy malnutrition (PEM). In this study, PEM was induced in weaning male Wistar albino rats by feeding them with low protein diet for 2 weeks. The effects of several recovery diets containing 20% soya protein or 20% C. aconitifolius in place of soya protein or 10% soya proteins with 10% C. aconitifolius or commercial rat feed were assessed in PEM rats. Plasma biochemical parameters were assessed as well. After the induction of PEM, results obtained showed significant increase in alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), total proteins (T.P), total bilirubin (T.Bil), triglycerides, total cholesterol, low density lipoproteins (LDL), blood urea nitrogen (BUN), and creatinine with significant reduction in plasma high density lipoproteins (HDL), albumin, sodium (Na(+)), potassium (K(+)), chloride (Cl(-)), bicarbonate (HC03(-)), and phosphate (P04(2-)) in PEM rats. Upon introduction of recovery diets containing 20% soya protein or 20% C. aconitifolius in place of soya protein or 10% soya proteins with 10% C. aconitifolius or commercial rat feed for 4 weeks caused significant (P protein deficient diets has a protective role against hepatic injury and renal damage associated with PEM.

  5. Mild prenatal protein malnutrition increases alpha 2C-adrenoceptor expression in the rat cerebral cortex during postnatal life.

    Science.gov (United States)

    Sierralta, Walter; Hernández, Alejandro; Valladares, Luis; Pérez, Hernán; Mondaca, Mauricio; Soto-Moyano, Rubén

    2006-05-15

    Mild reduction in the protein content in the diet of pregnant rats from 25 to 8% casein, calorically compensated by carbohydrates, does not alter body and brain weights of rat pups at birth, but results in significant changes of the concentration and release of cortical noradrenaline during postnatal life, together with impaired long-term potentiation and memory formation. Since some central noradrenergic receptors are critically involved in neuroplasticity, the present study evaluated, by utilizing immunohistochemical methods, the effect of mild prenatal protein malnutrition on the alpha 2C-adrenoceptor expression in the frontal and occipital cortices of 8- and 60-day-old rats. At day 8 of postnatal age, prenatally malnourished rats exhibited a three-fold increase of alpha 2C-adrenoceptor expression in both the frontal and the occipital cortices, as compared to well-nourished controls. At 60 days of age, prenatally malnourished rats showed normal expression levels scores of alpha 2C-adrenoceptor in the neocortex. Results suggest that overexpression of neocortical alpha 2C-adrenoceptors during early postnatal life, subsequent to mild prenatal protein malnutrition, could in part be responsible for neural and behavioral disturbances showing prenatally malnourished animals during the postnatal life.

  6. Evaluation of the Effects of Curcumin on Palm Inflammation and Level of Acute Phase Proteins in Arthritic Rats

    Directory of Open Access Journals (Sweden)

    F Aghaei Borashan

    2012-05-01

    Full Text Available

    Background and Objectives

    Rheumatoid arthritis (RA is a chronic inflammatory disease which is characterized by joint swelling, and synovial inflammation. C reactive protein (CRP and ceruloplasmin (CP are identified as important biomarkers of RA and various inflammatory diseases. Curcumin, a widely used yellow color spice is the most active component of Curcuma longa L (Turmeric. Curcumin contains potent anti-inflammatory and antioxidant properties. The goal of this study is evaluation of the anti-inflammatory effect of curcumin on arthritic palm of rats and levels of the CRP and CP in the blood samples of arthritis induced male albino Wistar rats.

     

    Methods

    Arthritis was induced by subcutaneous injection of Freund’s Complete Adjuvant (FCA into the palm of right rear foot of 8 different male albino Wistar rats. The rats were randomly divided into five groups after the injection. These groups were as follow:

    Group Ι, control normal rats

    Group II, carrier arthritic rats

    Group III, arthritic rats which were given 30mg/ kg of curcumin orally seven days prior to FCA injection

    Group IV, arthritic rats treated with 30mg/kg of curcumin

    Group V, arthritic rats treated with 3 mg/kg of indomethacin.

    All the groups except group III received oral treatment with curcumin seven days after FCA injection and the treatment was continued fourteen days thereafter. The rear foot thicknesses of all the rats were measured on days 1, 5, 10, 15, 20 after FCA injection. The rats were destroyed after 20th day and their blood samples were collected.

     

    Results

    The results of this study indicate that curcumin significantly decreases swelling of the rats rear foot (p<0.05, and levels of the CRP and CP as compared to carrier arthritic rats (p<0.05.

    One-way variance analysis

  7. Alternate-Day High-Fat Diet Induces an Increase in Mitochondrial Enzyme Activities and Protein Content in Rat Skeletal Muscle.

    Science.gov (United States)

    Li, Xi; Higashida, Kazuhiko; Kawamura, Takuji; Higuchi, Mitsuru

    2016-04-06

    Long-term high-fat diet increases muscle mitochondrial enzyme activity and endurance performance. However, excessive calorie intake causes intra-abdominal fat accumulation and metabolic syndrome. The purpose of this study was to investigate the effect of an alternating day high-fat diet on muscle mitochondrial enzyme activities, protein content, and intra-abdominal fat mass in rats. Male Wistar rats were given a standard chow diet (CON), high-fat diet (HFD), or alternate-day high-fat diet (ALT) for 4 weeks. Rats in the ALT group were fed a high-fat diet and standard chow every other day for 4 weeks. After the dietary intervention, mitochondrial enzyme activities and protein content in skeletal muscle were measured. Although body weight did not differ among groups, the epididymal fat mass in the HFD group was higher than those of the CON and ALT groups. Citrate synthase and beta-hydroxyacyl CoA dehydrogenase activities in the plantaris muscle of rats in HFD and ALT were significantly higher than that in CON rats, whereas there was no difference between HFD and ALT groups. No significant difference was observed in muscle glycogen concentration or glucose transporter-4 protein content among the three groups. These results suggest that an alternate-day high-fat diet induces increases in mitochondrial enzyme activities and protein content in rat skeletal muscle without intra-abdominal fat accumulation.

  8. Hypercaloric diet prevents sexual impairment induced by maternal food restriction.

    Science.gov (United States)

    Bernardi, M M; Macrini, D J; Teodorov, E; Bonamin, L V; Dalboni, L C; Coelho, C P; Chaves-Kirsten, G P; Florio, J C; Queiroz-Hazarbassanov, N; Bondan, E F; Kirsten, T B

    2017-05-01

    Prenatal undernutrition impairs copulatory behavior and increases the tendency to become obese/overweight, which also reduces sexual behavior. Re-feeding rats prenatally undernourished with a normocaloric diet can restore their physiological conditions and copulatory behavior. Thus, the present study investigated whether a hypercaloric diet that is administered in rats during the juvenile period prevents sexual impairments that are caused by maternal food restriction and the tendency to become overweight/obese. Female rats were prenatally fed a 40% restricted diet from gestational day 2 to 18. The pups received a hypercaloric diet from postnatal day (PND) 23 to PND65 (food restricted hypercaloric [FRH] group) or laboratory chow (food restricted control [FRC] group). Pups from non-food-restricted dams received laboratory chow during the entire experiment (non-food-restricted [NFR] group). During the juvenile period and adulthood, body weight gain was evaluated weekly. The day of balanopreputial separation, sexual behavior, sexual organ weight, hypodermal adiposity, striatal dopamine and serotonin, serum testosterone, and tumor necrosis factor α (TNF-α) were evaluated. The FRH group exhibited an increase in body weight on PND58 and PND65. The FRC group exhibited an increase in the latency to the first mount and intromission and an increase in serum TNF-α levels but a reduction of dopaminergic activity. The hypercaloric diet reversed all of these effects but increased adiposity. We concluded that the hypercaloric diet administered during the juvenile period attenuated reproductive impairments that were induced by maternal food restriction through increases in the energy expenditure but not the tendency to become overweight/obese. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. A diet containing whey protein, glutamine, and TGFbeta modulates gut protein metabolism during chemotherapy-induced mucositis in rats.

    Science.gov (United States)

    Boukhettala, Nabile; Ibrahim, Ayman; Claeyssens, Sophie; Faure, Magali; Le Pessot, Florence; Vuichoud, Jacques; Lavoinne, Alain; Breuillé, Denis; Déchelotte, Pierre; Coëffier, Moïse

    2010-08-01

    Mucositis, a common side effect of chemotherapy, is characterized by compromised digestive function, barrier integrity and immune competence. Our aim was to evaluate the impact of a specifically designed diet Clinutren Protect (CP), which contains whey proteins, TGFbeta-rich casein, and free glutamine, on mucositis in rats. Mucositis was induced by three consecutive injections (day 0, day 1, day 2) of methotrexate (2.5 mg/kg). Rats had free access to CP or placebo diets from days -7 to 9. In the placebo diet, whey proteins and TGFbeta-rich casein were replaced by TGFbeta-free casein and glutamine by alanine. Intestinal parameters were assessed at day 3 and 9. Values, expressed as mean +/- SEM, were compared using two-way ANOVA. At day 3, villus height was markedly decreased in the placebo (296 +/- 11 microm) and CP groups (360 +/- 10 microm) compared with controls (464 +/- 27 microm), but more markedly in the placebo as compared to CP group. The intestinal damage score was also reduced in the CP compared with the placebo group. Glutathione content increased in the CP compared with the placebo group (2.2 +/- 0.2 vs. 1.7 +/- 0.2 micromol/g tissue). Gut protein metabolism was more affected in the placebo than in the CP group. The fractional synthesis rate was decreased in the placebo group (93.8 +/- 4.9%/day) compared with controls (121.5 +/- 12.1, P < 0.05), but not in the CP group (106.0 +/- 13.1). In addition, at day 9, rats exhibited improved body weight and food intake recovery in the CP compared to the placebo group. Clinutren Protect feeding reduces intestinal injury in the acute phase of methotrexate-induced mucositis in rats and improves recovery.

  10. Effects of leucine supplemented diet on intestinal absorption in tumor bearing pregnant rats

    Directory of Open Access Journals (Sweden)

    de Mello Maria

    2002-04-01

    Full Text Available Abstract Background It is known that amino acid oxidation is increased in tumor-bearing rat muscles and that leucine is an important ketogenic amino acid that provides energy to the skeletal muscle. Methods To evaluate the effects of a leucine supplemented diet on the intestinal absorption alterations produced by Walker 256, growing pregnant rats were distributed into six groups. Three pregnant groups received a normal protein diet (18% protein: pregnant (N, tumor-bearing (WN, pair-fed rats (Np. Three other pregnant groups were fed a diet supplemented with 3% leucine (15% protein plus 3% leucine: leucine (L, tumor-bearing (WL and pair-fed with leucine (Lp. Non pregnant rats (C, which received a normal protein diet, were used as a control group. After 20 days, the animals were submitted to intestinal perfusion to measure leucine, methionine and glucose absorption. Results Tumor-bearing pregnant rats showed impairment in food intake, body weight gain and muscle protein content, which were less accentuated in WL than in WN rats. These metabolic changes led to reduction in both fetal and tumor development. Leucine absorption slightly increased in WN group. In spite of having a significant decrease in leucine and methionine absorption compared to L, the WL group has shown a higher absorption rate of methionine than WN group, probably due to the ingestion of the leucine supplemented diet inducing this amino acid uptake. Glucose absorption was reduced in both tumor-bearing groups. Conclusions Leucine supplementation during pregnancy in tumor-bearing rats promoted high leucine absorption, increasing the availability of the amino acid for neoplasic cells and, mainly, for fetus and host utilization. This may have contributed to the better preservation of body weight gain, food intake and muscle protein observed in the supplemented rats in relation to the non-supplemented ones.

  11. Effects of leucine supplemented diet on intestinal absorption in tumor bearing pregnant rats

    International Nuclear Information System (INIS)

    Ventrucci, Gislaine; Mello, Maria Alice Roston de; Gomes-Marcondes, Maria Cristina Cintra

    2002-01-01

    It is known that amino acid oxidation is increased in tumor-bearing rat muscles and that leucine is an important ketogenic amino acid that provides energy to the skeletal muscle. To evaluate the effects of a leucine supplemented diet on the intestinal absorption alterations produced by Walker 256, growing pregnant rats were distributed into six groups. Three pregnant groups received a normal protein diet (18% protein): pregnant (N), tumor-bearing (WN), pair-fed rats (Np). Three other pregnant groups were fed a diet supplemented with 3% leucine (15% protein plus 3% leucine): leucine (L), tumor-bearing (WL) and pair-fed with leucine (Lp). Non pregnant rats (C), which received a normal protein diet, were used as a control group. After 20 days, the animals were submitted to intestinal perfusion to measure leucine, methionine and glucose absorption. Tumor-bearing pregnant rats showed impairment in food intake, body weight gain and muscle protein content, which were less accentuated in WL than in WN rats. These metabolic changes led to reduction in both fetal and tumor development. Leucine absorption slightly increased in WN group. In spite of having a significant decrease in leucine and methionine absorption compared to L, the WL group has shown a higher absorption rate of methionine than WN group, probably due to the ingestion of the leucine supplemented diet inducing this amino acid uptake. Glucose absorption was reduced in both tumor-bearing groups. Leucine supplementation during pregnancy in tumor-bearing rats promoted high leucine absorption, increasing the availability of the amino acid for neoplasic cells and, mainly, for fetus and host utilization. This may have contributed to the better preservation of body weight gain, food intake and muscle protein observed in the supplemented rats in relation to the non-supplemented ones

  12. Effects of mercury on lysosomal protein digestion in the kidney proximal tubule

    International Nuclear Information System (INIS)

    Madsen, K.M.; Christensen, E.I.

    1978-01-01

    The effect of mercury on renal lysosomal protein digestion was studied after administration of mercury in vitro and in vivo. Mercuric chloride or methylmercury chloride was added in vitro to lysosomal enzymes isolated from normal rats, and subsequently, digestion experiments were carried out using 125 I-labeled lysozyme or cytochrome c as substrate proteins. Both mercury compounds produced a concentration-dependent inhibition of the degradation of the proteins, mercuric chloride being the strongest inhibitor. Mercuric chloride was also administered to rats in vivo for 5 to 8 months. Renal lysosomal enzymes from these animals also had a decreased ability to digest the two substrate proteins. Furthermore, the digestion of lysozyme intravenously injected into mercury-intoxicated rats was decreased in renal cortical slices incubated in vitro. Electron microscope autoradiography showed that intravenously injected labeled lysozyme was located primarily over lysosomes in proximal tubule cells 1 hour after injection in both control animals and mercury-intoxicated rats. These results suggest a decreased catabolism of low molecular weight proteins in the kidney during chronic mercury intoxication

  13. Activity of cAMP-dependent protein kinases and cAMP-binding proteins of rat kidney cytosol during dehydration

    International Nuclear Information System (INIS)

    Zelenina, M.N.; Solenov, E.I.; Ivanova, L.N.

    1985-01-01

    The activity of cAMP-dependent protein kinases, the binding of cAMP, and the spectrum of cAMP-binding proteins in the cytosol of the renal papilla was studied in intact rats and in rats after 24 h on a water-deprived diet. It was found that the activation of protein kinases by 10 -6 M cAMP is significantly higher in the experimental animals than in the intact animals. In chromatography on DEAE-cellulose, the positions of the peaks of specific reception of cAMP corresponded to the peaks of the regulatory subunits of cAMP-dependent protein kinases of types I and II. In this case, in intact animals more than 80% of the binding activity was detected in peaks II, whereas in rats subjected to water deprivation, more than 60% of the binding was observed in peak I. The general regulatory activity of the cytosol was unchanged in the experimental animals in comparison with intact animals. It is suggested that during dehydration there is an induction of the synthesis of the regulatory subunit of type I cAMP-dependent protein kinase in the renal papilla

  14. Coffee enhances the expression of chaperones and antioxidant proteins in rats with nonalcoholic fatty liver disease.

    Science.gov (United States)

    Salomone, Federico; Li Volti, Giovanni; Vitaglione, Paola; Morisco, Filomena; Fogliano, Vincenzo; Zappalà, Agata; Palmigiano, Angelo; Garozzo, Domenico; Caporaso, Nicola; D'Argenio, Giuseppe; Galvano, Fabio

    2014-06-01

    Coffee consumption is inversely related to the degree of liver injury in patients with nonalcoholic fatty liver disease (NAFLD). Molecular mediators contributing to coffee's beneficial effects in NAFLD remain to be elucidated. In this study, we administrated decaffeinated espresso coffee or vehicle to rats fed an high-fat diet (HFD) for 12 weeks and examined the effects of coffee on liver injury by using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) proteomic analysis combined with mass spectrometry. Rats fed an HFD and water developed panacinar steatosis, lobular inflammation, and mild fibrosis, whereas rats fed an HFD and coffee exhibited only mild steatosis. Coffee consumption increased liver expression of the endoplasmic reticulum chaperones glucose-related protein 78 and protein disulfide-isomerase A3; similarly, coffee drinking enhanced the expression of the mitochondrial chaperones heat stress protein 70 and DJ-1. Furthermore, in agreement with reduced hepatic levels of 8-isoprostanes and 8-hydroxy-2'-deoxyguanosine, proteomic analysis showed that coffee consumption induces the expression of master regulators of redox status (i.e., peroxiredoxin 1, glutathione S-transferase α2, and D-dopachrome tautomerase). Last, proteomics revealed an association of coffee intake with decreased expression of electron transfer flavoprotein subunit α, a component of the mitochondrial respiratory chain, involved in de novo lipogenesis. In this study, we were able to identify by proteomic analysis the stress proteins mediating the antioxidant effects of coffee; moreover, we establish for the first time the contribution of specific coffee-induced endoplasmic reticulum and mitochondrial chaperones ensuring correct protein folding and degradation in the liver. Copyright © 2014 Mosby, Inc. All rights reserved.

  15. A study on the effect of the internal exposure to "2"1"0Po on the excretion of urinary proteins in rats

    International Nuclear Information System (INIS)

    Sadi, Baki; Li, Chunsheng; Ko, Raymond; Daka, Joseph; Yusuf, Hamdi; Wyatt, Heather; Surette, Joel; Priest, Nick; Hamada, Nobuyuki

    2016-01-01

    This study was designed to assess the feasibility of a noninvasive urine specimen for the detection of proteins as indicators of internal exposure to ionizing radiation. Three groups of rats (five in each group) were intravenously injected with 1601 ± 376, 10,846 ± 591 and 48,467 ± 2812 Bq of "2"1"0Po in citrate form. A sham-exposed control group of five rats was intravenously injected with sterile physiological saline. Daily urine samples were collected over 4 days following injection. Purification and pre-concentration of urinary proteins were carried out by ultrafiltration using a 3000 Da molecular weight cutoff membrane filter. The concentration of common urinary proteins, namely albumin, alpha-1-acid glycoprotein, immunoglobulins IgA and IgG, was measured by an enzyme-linked immunosorbent assay. Urinary excretion of albumin decreased dose-dependently (p < 0.05) 96 h post-injection relative to the control group. In contrast, no statistically significant effects were observed for other proteins tested. The dose-dependent decrease in urinary excretion of albumin observed in this study underscores the need for further research, which may lead to the discovery of new biomarkers that would reflect the changes in the primary target organs for deposition of "2"1"0Po. (orig.)

  16. Effects of Metformin on Tissue Oxidative and Dicarbonyl Stress in Transgenic Spontaneously Hypertensive Rats Expressing Human C-Reactive Protein.

    Directory of Open Access Journals (Sweden)

    Hana Malínská

    Full Text Available Inflammation and oxidative and dicarbonyl stress play important roles in the pathogenesis of type 2 diabetes. Metformin is the first-line drug of choice for the treatment of type 2 diabetes because it effectively suppresses gluconeogenesis in the liver. However, its "pleiotropic" effects remain controversial. In the current study, we tested the effects of metformin on inflammation, oxidative and dicarbonyl stress in an animal model of inflammation and metabolic syndrome, using spontaneously hypertensive rats that transgenically express human C-reactive protein (SHR-CRP. We treated 8-month-old male transgenic SHR-CRP rats with metformin (5 mg/kg/day mixed as part of a standard diet for 4 weeks. A corresponding untreated control group of male transgenic SHR-CRP rats were fed a standard diet without metformin. In a similar fashion, we studied a group of nontransgenic SHR treated with metformin and an untreated group of nontransgenic SHR controls. In each group, we studied 6 animals. Parameters of glucose and lipid metabolism and oxidative and dicarbonyl stress were measured using standard methods. Gene expression profiles were determined using Affymetrix GeneChip Arrays. Statistical significance was evaluated by two-way ANOVA. In the SHR-CRP transgenic strain, we found that metformin treatment decreased circulating levels of inflammatory response marker IL-6, TNFα and MCP-1 while levels of human CRP remained unchanged. Metformin significantly reduced oxidative stress (levels of conjugated dienes and TBARS and dicarbonyl stress (levels of methylglyoxal in left ventricles, but not in kidneys. No significant effects of metformin on oxidative and dicarbonyl stress were observed in SHR controls. In addition, metformin treatment reduced adipose tissue lipolysis associated with human CRP. Possible molecular mechanisms of metformin action-studied by gene expression profiling in the liver-revealed deregulated genes from inflammatory and insulin signaling

  17. Effects of Arginase Inhibition in Hypertensive Hyperthyroid Rats.

    Science.gov (United States)

    Rodríguez-Gómez, Isabel; Manuel Moreno, Juan; Jimenez, Rosario; Quesada, Andrés; Montoro-Molina, Sebastian; Vargas-Tendero, Pablo; Wangensteen, Rosemary; Vargas, Félix

    2015-12-01

    This study analyzed the effects of chronic administration of N[omega]-hydroxy-nor-l-arginine (nor-NOHA), an inhibitor of arginase, on the hemodynamic, oxidative stress, morphologic, metabolic, and renal manifestations of hyperthyroidism in rats. Four groups of male Wistar rats were used: control, nor-NOHA-treated (10 mg/kg/day), thyroxine (T4)-treated (75 μg/rat/day), and thyroxine- plus nor-NOHA-treated rats. All treatments were maintained for 4 weeks. Body weight, tail systolic blood pressure (SBP), and heart rate (HR) were recorded weekly. Finally, morphologic, metabolic, plasma, and renal variables were measured. Arginase I and II protein abundance and arginase activity were measured in aorta, heart, and kidney. The T4 group showed increased arginase I and II protein abundance, arginase activity, SBP, HR, plasma nitrates/nitrites (NOx), brainstem and urinary isoprostanes, proteinuria and cardiac and renal hypertrophy in comparison to control rats. In hyperthyroid rats, chronic nor-NOHA prevented the increase in SBP and HR and decreased proteinuria in association with an increase in plasma NOx and a decrease in brainstem and urinary isoprostanes. In normal rats, nor-NOHA treatment did not significantly change any hemodynamic, morphologic, or renal variables. Acute nor-NOHA administration did not affect renal or systemic hemodynamic variables in normal or T4-treated rats. Hyperthyroidism in rats is associated with the increased expression and activity of arginase in aorta, heart, and kidney. Chronic arginase inhibition with nor-NOHA suppresses the characteristic hemodynamic manifestations of hyperthyroidism in association with a reduced oxidative stress. These results indicate an important role for arginase pathway alterations in the cardiovascular and renal abnormalities of hyperthyroidism. © American Journal of Hypertension, Ltd 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Effect of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD on Hormones of Energy Balance in a TCDD-Sensitive and a TCDD-Resistant Rat Strain

    Directory of Open Access Journals (Sweden)

    Jere Lindén

    2014-08-01

    Full Text Available One of the hallmarks of the acute toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD is a drastically reduced feed intake by an unknown mechanism. To further elucidate this wasting syndrome, we followed the effects of a single large dose (100 μg/kg of TCDD on the serum levels of several energy balance-influencing hormones, clinical chemistry variables, and hepatic aryl hydrocarbon receptor (AHR expression in two rat strains that differ widely in their TCDD sensitivities, for up to 10 days. TCDD affected most of the analytes in sensitive Long-Evans rats, while there were few alterations in the resistant Han/Wistar strain. However, analyses of feed-restricted unexposed Long-Evans rats indicated several of the perturbations to be secondary to energy deficiency. Notable increases in ghrelin and glucagon occurred in TCDD-treated Long-Evans rats alone, which links these hormones to the wasting syndrome. The newly found energy balance regulators, insulin-like growth factor 1 and fibroblast growth factor 21 (FGF-21, appeared to function in concert in body weight loss-induced metabolic state, and FGF-21 was putatively linked to increased lipolysis induced by TCDD. Finally, we demonstrate a reverse set of changes in the AHR protein and mRNA response to TCDD and feed restriction, suggesting that AHR might function also as a physiological regulator, possibly involved in the maintenance of energy balance.

  19. Effect of subchronic administration of methyl parathion on in vivo protein synthesis in pregnant rats and their conceptuses

    International Nuclear Information System (INIS)

    Gupta, R.C.; Thornburg, J.E.; Stedman, D.B.; Welsch, F.

    1984-01-01

    Pregnant rats received daily po doses of the organophosphate methyl parathion (MPTH) from Day 6 through Day 15 or 19 of gestation at doses causing no (1.0 mg/kg) or minimal (1.5 mg/kg) signs of maternal toxicity. Following the dose of MPTH on Day 15 or 19, in vivo protein synthesis was measured 0.5, 1.0, and 2.0 hr after sc injection of L-[1- 14 C]valine at a dose of 5 microCi/mmol/100 g body wt. The specific activity of [ 14 C]valine in the free amino acid pool and protein bound pool was significantly reduced in various regions of maternal brain and in maternal viscera, placenta, and whole embryos (Day 15), and in fetal brain and viscera (Day 19). The inhibitory effect of MPTH on net protein synthesis was dose dependent, greater on Day 19 than 15 of gestation and more pronounced in fetal than in maternal tissues

  20. High dietary fat-induced obesity in Wistar rats and type 2 diabetes in nonobese Goto-Kakizaki rats differentially affect retinol binding protein 4 expression and vitamin A metabolism.

    Science.gov (United States)

    Shirai, Tomomi; Shichi, Yuta; Sato, Miyuki; Tanioka, Yuri; Furusho, Tadasu; Ota, Toru; Tadokoro, Tadahiro; Suzuki, Tsukasa; Kobayashi, Ken-Ichi; Yamamoto, Yuji

    2016-03-01

    Obesity is a major risk factor for type 2 diabetes, which is caused mainly by insulin resistance. Retinol binding protein 4 (RBP4) is the only specific transport protein for retinol in the serum. RBP4 level is increased in the diabetic state and high-fat condition, indicating that retinol metabolism may be affected under these conditions. However, the precise effect of diabetes and high fat-induced obesity on retinol metabolism is unknown. In this study, we examined differences in retinol metabolite levels in rat models of diet-induced obesity and type 2 diabetes (Goto-Kakizaki [GK] rat). Four-week-old male Wistar and GK rats were given either a control diet (AIN-93G) or a high-fat diet (HFD, 40% fat kJ). After 15 weeks of feeding, the RBP4 levels increased by 2-fold in the serum of GK rats but not HFD-fed rats. The hepatic retinol concentration of HFD-fed rats was approximately 50% that of the controls (P type 2 diabetes mellitus. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Dietary soya protein improves intra-myocardial lipid deposition and altered glucose metabolism in a hypertensive, dyslipidaemic, insulin-resistant rat model.

    Science.gov (United States)

    Oliva, María E; Creus, Agustina; Ferreira, María R; Chicco, Adriana; Lombardo, Yolanda B

    2018-01-01

    This study investigates the effects of replacing dietary casein by soya protein on the underlying mechanisms involved in the impaired metabolic fate of glucose and lipid metabolisms in the heart of dyslipidaemic rats chronically fed (8 months) a sucrose-rich (62·5 %) diet (SRD). To test this hypothesis, Wistar rats were fed an SRD for 4 months. From months 4 to 8, half the animals continued with the SRD and the other half were fed an SRD in which casein was substituted by soya. The control group received a diet with maize starch as the carbohydrate source. Compared with the SRD-fed group, the following results were obtained. First, soya protein significantly (Psoya protein significantly increased (Psoya protein upon the altered pathways of glucose and lipid metabolism in the heart muscle of this rat model.

  2. High-dose thiamine therapy counters dyslipidemia and advanced glycation of plasma protein in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Karachalias, Nikolaos; Babaei-Jadidi, Roya; Kupich, Christian; Ahmed, Naila; Thornalley, Paul J

    2005-06-01

    The streptozotocin-induced (STZ) diabetic rat experimental model of diabetes on insulin maintenance therapy exhibits dyslipidemia, mild thiamine deficiency, and increased plasma protein advanced glycation end products (AGEs). The reversal of thiamine deficiency by high-dose thiamine and S-benzoylthiamine monophosphate (benfotiamine) prevented the development of incipient nephropathy. Recently, we reported that high-dose thiamine (but not benfotiamine) countered diabetic dyslipidemia. To understand further the differences between the effects of thiamine and benfotiamine therapy, we quantified the levels of the AGEs in plasma protein. We found hydroimidazolone AGE residues derived from glyoxal and methylglyoxal, G-H1 and MG-H1, were increased 115% and 68% in STZ diabetic rats, with respect to normal controls, and were normalized by both thiamine and benfotiamine; whereas N-carboxymethyl-lysine (CML) and N-carboxyethyl-lysine (CEL) residues were increased 74% and 118% in STZ diabetic rats and were normalized by thiamine only. The lack of effect of benfotiamine on plasma CML and CEL residue concentrations suggests there may be important precursors of plasma protein CML and CEL residues other than glyoxal and methylglyoxal. These are probably lipid-derived aldehydes.

  3. Caloric Restriction in Lean and Obese Strains of Laboratory ...

    Science.gov (United States)

    NEW FINDINGS: What is the central question of this study? How do lean and obese rats respond physiologically to caloric restriction? What is the main finding and its importance? Obese rats show marked benefits compared with lean animals. Reduced body fat is associated with improved longevity with caloric restriction (CR) in rodents. Little is known regarding effects of CR in genetically lean versus obese strains. Long-Evans (LE) and Brown Norway (BN) rats make an ideal comparison for a CR study because the percentage body fat of young adult LE rats is double that of BN rats. Male LE and BN rats were either fed ad libitum (AL) or were caloricallyrestricted to 80 or 90% of their AL weight. The percentages of fat, lean and fluid mass were measured non-invasively at 2- to 4-week intervals. Metabolic rate and respiratory quotient were measured after 3, 6, 9 and 12 months of CR. Overall health was scored monthly. The percentage of fat of the LE strain decreased with CR, whereas the percentage of fat of the BN strain remained above the AL group for several months. The percentage of lean mass increased above the AL for both strains subjected to CR. The percentage offluid was unaffected by CR. The average metabolic rate over 22 h of the BN rats subjected to CR was reduced, whereas that of LE rats was increased slightly above the AL group. The respiratory quotient of BN rats wasdecreased with CR. Overall health of the CR LE group was significantly improved compared with t

  4. Effect of Prenatal Protein Malnutrition on Long-Term Potentiation and BDNF Protein Expression in the Rat Entorhinal Cortex after Neocortical and Hippocampal Tetanization

    Directory of Open Access Journals (Sweden)

    Alejandro Hernández

    2008-01-01

    Full Text Available Reduction of the protein content from 25 to 8% casein in the diet of pregnant rats results in impaired neocortical long-term potentiation (LTP of the offspring together with lower visuospatial memory performance. The present study was aimed to investigate whether this type of maternal malnutrition could result in modification of plastic capabilities of the entorhinal cortex (EC in the adult progeny. Unlike normal eutrophic controls, 55–60-day-old prenatally malnourished rats were unable to develop LTP in the medial EC to tetanizing stimulation delivered to either the ipsilateral occipital cortex or the CA1 hippocampal region. Tetanizing stimulation of CA1 also failed to increase the concentration of brain-derived neurotrophic factor (BDNF in the EC of malnourished rats. Impaired capacity of the EC of prenatally malnourished rats to develop LTP and to increase BDNF levels during adulthood may be an important factor contributing to deficits in learning performance having adult prenatally malnourished animals.

  5. Effect of prenatal protein malnutrition on long-term potentiation and BDNF protein expression in the rat entorhinal cortex after neocortical and hippocampal tetanization.

    Science.gov (United States)

    Hernández, Alejandro; Burgos, Héctor; Mondaca, Mauricio; Barra, Rafael; Núñez, Héctor; Pérez, Hernán; Soto-Moyano, Rubén; Sierralta, Walter; Fernández, Victor; Olivares, Ricardo; Valladares, Luis

    2008-01-01

    Reduction of the protein content from 25 to 8% casein in the diet of pregnant rats results in impaired neocortical long-term potentiation (LTP) of the offspring together with lower visuospatial memory performance. The present study was aimed to investigate whether this type of maternal malnutrition could result in modification of plastic capabilities of the entorhinal cortex (EC) in the adult progeny. Unlike normal eutrophic controls, 55-60-day-old prenatally malnourished rats were unable to develop LTP in the medial EC to tetanizing stimulation delivered to either the ipsilateral occipital cortex or the CA1 hippocampal region. Tetanizing stimulation of CA1 also failed to increase the concentration of brain-derived neurotrophic factor (BDNF) in the EC of malnourished rats. Impaired capacity of the EC of prenatally malnourished rats to develop LTP and to increase BDNF levels during adulthood may be an important factor contributing to deficits in learning performance having adult prenatally malnourished animals.

  6. Cellular Restriction Factors of Feline Immunodeficiency Virus

    Directory of Open Access Journals (Sweden)

    Carsten Münk

    2011-10-01

    Full Text Available Lentiviruses are known for their narrow cell- and species-tropisms, which are determined by cellular proteins whose absence or presence either support viral replication (dependency factors, cofactors or inhibit viral replication (restriction factors. Similar to Human immunodeficiency virus type 1 (HIV-1, the cat lentivirus Feline immunodeficiency virus (FIV is sensitive to recently discovered cellular restriction factors from non-host species that are able to stop viruses from replicating. Of particular importance are the cellular proteins APOBEC3, TRIM5α and tetherin/BST-2. In general, lentiviruses counteract or escape their species’ own variant of the restriction factor, but are targeted by the orthologous proteins of distantly related species. Most of the knowledge regarding lentiviral restriction factors has been obtained in the HIV-1 system; however, much less is known about their effects on other lentiviruses. We describe here the molecular mechanisms that explain how FIV maintains its replication in feline cells, but is largely prevented from cross-species infections by cellular restriction factors.

  7. StAR protein and steroidogenic enzyme expressions in the rat Harderian gland.

    Science.gov (United States)

    Falvo, Sara; Chieffi Baccaria, Gabriella; Spaziano, Giuseppe; Rosati, Luigi; Venditti, Massimo; Di Fiore, Maria Maddalena; Santillo, Alessandra

    2018-03-01

    The Harderian gland (HG) of the rat (Rattus norvegicus) secretes copious amounts of lipids, such as cholesterol. Here we report a study of the expressions of the StAR protein and key steroidogenic enzymes in the HG of male and female rats. The objective of the present investigation was to ascertain (a) whether the rat HG is involved in steroid production starting with cholesterol, and (b) whether the pattern of gene and protein expressions together with the enzymatic activities display sexual dimorphism. The results demonstrate, for the first time, the expression of StAR gene and protein, and Cyp11a1, Hsd3b1, Hsd17b3, Srd5a1, Srd5a2 and Cyp19a1 genes in the rat HG. StAR mRNA and protein expressions were much greater in males than in females. Immunohistochemical analysis demonstrated a non-homogeneous StAR distribution among glandular cells. Hsd17b3 and Cyp19a1 mRNA levels were higher in males than in females, whereas Srd5a1 mRNA levels were higher in females than in males. No significant differences were observed in mRNA levels of Cyp11a1, Hsd3b1 and Srd5a2 between sexes. Furthermore, the in vitro experiments demonstrated a higher 5α-reductase activity in the female as compared to the male HG vice versa a higher P450 aro activity in males as compared to females. These results suggest that the Harderian gland can be classified as a steroidogenic tissue because it synthesizes cholesterol, expresses StAR and steroidogenic enzymes involved in both androgen and estrogen synthesis. The dimorphic expression and activity of the steroidogenic enzymes may suggest sex-specific hormonal effects into the HG physiology. Copyright © 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  8. Effect of Inhaling Bergamot Oil on Depression-Related Behaviors in Chronic Stressed Rats.

    Science.gov (United States)

    Saiyudthong, Somrudee; Mekseepralard, Chantana

    2015-10-01

    Bergamot essential oil (BEO) possesses sedation and anxiolytic properties similar to diazepam. After long period of exposure to stressors, including restrained stress, depressive-like behavior can be produced. BEO has been suggested to reduce depression. However, there is no scientific evidence supporting this property. To investigate the effect of BEO in chronic stressed rats on: 1) behavior related depressive disorder, 2) hypothalamic pituitary adrenal (HPA) axis response, and iii) brain-derived neurotrophic factor (BDNF) protein levels in hippocampus. Male Wistar rats, weighing 200 to 250 g, were induced chronic restrained stress 15 minutes dailyfor two weeks. For the next two weeks, these rats were divided intofour groups, control-i.p., fluoxetine-i.p., control-inhale, and BEO-inhale. Fluoxetine (10 mg/kg i.p.) or saline was intraperitoneally administered daily while 2.5% BEO or saline was inhaled daily. At the end of the treatment, rats were assessed for depressive-like behavior using the forced swimming test (FST). After the behavioral test, the animals were immediately decapitated and trunk blood samples were collected for the measurement ofcorticosterone and adrenocorticotropic hormone (ACTH) levels and hippocampus was dissected and stored in afreezer at -80 °C until assay for BDNF protein. BEO andfluoxetine significantly decreased the immobility time in the FST (p BDNF protein determination, neither BEO norfluoxetine had any effect on BDNF protein levels in hippocampus compared to their controls. The inhalation ofBEO decrease behavior related depressive disorder similar tofluoxetine but has no effect on HPA axis response and BDNF protein levels in chronic restrained stress.

  9. Incorporation of radioactive amino acids into protein in isolated rat hepatocytes

    International Nuclear Information System (INIS)

    Seglin, P.O.

    1976-01-01

    The incorporation of radioactivity from a 14 C-labelled amino acid mixture (algal protein hydrolysate) into protein in isolated rat hepatocytes has been studied. The incorporation rate declined with increasing cell concentration, an effect which could be explained by isotope consumption, partly (and largely) by isotope dilution due to the formation of non-labelled amino acids by the cells. At a high extracellular amino acid concentration, the rate of incorporation into protein became independent of cell concentration because the isotope dilution effect was now quantitatively insignificant. The time course of protein labelling at various cell concentrations correlated better with the intracellular than with the extracellular amino acid specific activity, suggesting that amino acids for protein synthesis were taken from an intracellular pool. With increasing extracellular amino acid concentrations, both the intracellular amino acid concentration, the intracellular radioactivity and the rate of incorporation into protein increased. Protein labelling exhibited a distinct time lag at high amino acid concentrations, presumable reflecting the time-dependent expansion of the intracellular amino acid pool. The gradual increase in the rate of protein labelling could be due either to an increased intracellular specific activity, or to a real stimulation of protein synthesis by amino acids, depending on whether the total intracellular amino acid pool or just the expandable compartment is the precursor pool for protein synthesis

  10. Intermittent Fasting Modulation of the Diabetic Syndrome in Streptozotocin-Injected Rats

    OpenAIRE

    Louiza Belkacemi; Ghalem Selselet-Attou; Emeline Hupkens; Evrard Nguidjoe; Karim Louchami; Abdullah Sener; Willy J. Malaisse

    2012-01-01

    This study investigates the effects of intermittent overnight fasting in streptozotocin-induced diabetic rats (STZ rats). Over 30 days, groups of 5-6 control or STZ rats were allowed free food access, starved overnight, or exposed to a restricted food supply comparable to that ingested by the intermittently fasting animals. Intermittent fasting improved glucose tolerance, increased plasma insulin, and lowered Homeostatis Model Assessment index. Caloric restriction failed to cause such benefic...

  11. LKB1-AMPK signaling in muscle from obese insulin-resistant Zucker rats and effects of training.

    Science.gov (United States)

    Sriwijitkamol, Apiradee; Ivy, John L; Christ-Roberts, Christine; DeFronzo, Ralph A; Mandarino, Lawrence J; Musi, Nicolas

    2006-05-01

    AMPK is a key regulator of fat and carbohydrate metabolism. It has been postulated that defects in AMPK signaling could be responsible for some of the metabolic abnormalities of type 2 diabetes. In this study, we examined whether insulin-resistant obese Zucker rats have abnormalities in the AMPK pathway. We compared AMPK and ACC phosphorylation and the protein content of the upstream AMPK kinase LKB1 and the AMPK-regulated transcriptional coactivator PPARgamma coactivator-1 (PGC-1) in gastrocnemius of sedentary obese Zucker rats and sedentary lean Zucker rats. We also examined whether 7 wk of exercise training on a treadmill reversed abnormalities in the AMPK pathway in obese Zucker rats. In the obese rats, AMPK phosphorylation was reduced by 45% compared with lean rats. Protein expression of the AMPK kinase LKB1 was also reduced in the muscle from obese rats by 43%. In obese rats, phosphorylation of ACC and protein expression of PGC-1alpha, two AMPK-regulated proteins, tended to be reduced by 50 (P = 0.07) and 35% (P = 0.1), respectively. There were no differences in AMPKalpha1, -alpha2, -beta1, -beta2, and -gamma3 protein content between lean and obese rats. Training caused a 1.5-fold increase in AMPKalpha1 protein content in the obese rats, although there was no effect of training on AMPK phosphorylation and the other AMPK isoforms. Furthermore, training also significantly increased LKB1 and PGC-1alpha protein content 2.8- and 2.5-fold, respectively, in the obese rats. LKB1 protein strongly correlated with hexokinase II activity (r = 0.75, P = 0.001), citrate synthase activity (r = 0.54, P = 0.02), and PGC-1alpha protein content (r = 0.81, P < 0.001). In summary, obese insulin-resistant rodents have abnormalities in the LKB1-AMPK-PGC-1 pathway in muscle, and these abnormalities can be restored by training.

  12. Acute cadmium intoxication induces alpha-class glutathione S-transferase protein synthesis and enzyme activity in rat liver

    International Nuclear Information System (INIS)

    Casalino, Elisabetta; Sblano, Cesare; Calzaretti, Giovanna; Landriscina, Clemente

    2006-01-01

    Acute cadmium intoxication affects glutathione S-transferase (GST) in rat liver. It has been found that 24 h after i.p. cadmium administration to rats, at a dose of 2.5 mg CdCl 2 kg -1 body weight, the activity of this enzyme in liver cytosol increased by 40%. A less stimulatory effect persisted till 48 h and thereafter the enzyme activity normalized. Since, GST isoenzymes belong to different classes in mammalian tissues, we used quantitative immunoassays to verify which family of GST isoenzymes is influenced by this intoxication. Only alpha-class glutathione S-transferase (α-GST) proteins were detected in rat liver cytosol and their level increased by about 25%, 24 h after cadmium treatment. No pi-GST isoforms were found in liver cytosol from either normal or cadmium-treated rats. Co-administration of actinomycin D with cadmium normalized both the protein level and the activity of α-GST, suggesting that some effect occurs on enzyme transcription of these isoenzymes by this metal. On the other hand, it seems unlikely that the stimulatory effect is due to the high level of peroxides caused by lipid peroxidation, since Vitamin E administration strongly reduced the TBARS level, but did not cause any GST activity decrease

  13. Diabetes diminishes the portal-systemic collateral vascular response to vasopressin via vasopressin receptor and Gα proteins regulations in cirrhotic rats.

    Directory of Open Access Journals (Sweden)

    Jing-Yi Lee

    Full Text Available Liver cirrhosis may lead to portal-systemic collateral formation and bleeding. The hemostatic effect is influenced by the response of collateral vessels to vasoconstrictors. Diabetes and glucose also influence vasoresponsiveness, but their net effect on collaterals remains unexplored. This study investigated the impact of diabetes or glucose application on portal-systemic collateral vasoresponsiveness to arginine vasopressin (AVP in cirrhosis. Spraque-Dawley rats with bile duct ligation (BDL-induced cirrhosis received vehicle (citrate buffer or streptozotocin (diabetic, BDL/STZ. The in situ collateral perfusion was done after hemodynamic measurements: Both were perfused with Krebs solution, D-glucose, or D-glucose and NaF, with additional OPC-31260 for the BDL/STZ group. Splenorenal shunt vasopressin receptors and Gα proteins mRNA expressions were evaluated. The survival rate of cirrhotic rats was decreased by STZ injection. The collateral perfusion pressure changes to AVP were lower in STZ-injected groups, which were reversed by OPC-31260 (a V2R antagonist and overcome by NaF (a G protein activator. The splenorenal shunt V2R mRNA expression was increased while Gα proteins mRNA expressions were decreased in BDL/STZ rats compared to BDL rats. The Gαq and Gα11 mRNA expressions also correlated with the maximal perfusion pressure changes to AVP. Diabetes diminished the portal-systemic collateral vascular response to AVP in rats with BDL-induced cirrhosis, probably via V2 receptor up-regulation and Gα proteins down-regulation.

  14. Physiological effects of some synthetic food colouring additives on rats.

    Science.gov (United States)

    Aboel-Zahab, H; el-Khyat, Z; Sidhom, G; Awadallah, R; Abdel-al, W; Mahdy, K

    1997-11-01

    Three different synthetic chocolate colourant agents (A, B and C) were administered to healthy adult male albino rats for 30 and 60 day periods to evaluate their effects on body weight, blood picture, liver and kidney functions, blood glucose, serum and liver lipids, liver nucleic acids (DNA and RNA), thyroid hormones (T3 and T4) and growth hormone. In addition, histopathological examinations of liver, kidney and stomach sections were studied. These parameters were also investigated 30 days after colourant stoppage (post effect). Ingestion of colourant C (brown HT and indigocarmine) significantly decreased rat body weight, serum cholesterol and HDL-cholesterol fraction, while, T4 hormone, liver RNA content, liver enzymes (S. GOT, S. GPT and alkaline phosphatase), total protein and globulin fractions were significantly elevated. Significant increases were observed in serum total lipids, cholesterol, triglycerides, total protein, globulin and serum transaminases in rats whose diets were supplemented with chocolate colours A and B (sunset yellow, tartrazine, carmoisine and brilliant blue in varying concentrations). Haematological investigations demonstrated selective neutropenia and lymphocytosis with no significant alterations of total white blood cell counts in all rat groups, while haemoglobin concentrations and red blood cell counts were significantly decreased in the rats who were administered food additives A and B. Eosinophilia was noted in rats fed on colourant A only. No changes were recorded for blood glucose, growth hormone and kidney function tests. Histopathological studies showed brown pigment deposition in the portal tracts and Van Küpffer cells of the liver as well as in the interstitial tissue and renal tubular cells of the kidney mainly induced by colourant A. Congested blood vessels and areas of haemorrhage in both liver and renal sections were revealed in those rats who were given colourants B and C. There were no-untoward-effects recorded in the

  15. Effects of Thyroid Dysfunction on Reproductive Hormones in Female Rats.

    Science.gov (United States)

    Liu, Juan; Guo, Meng; Hu, Xusong; Weng, Xuechun; Tian, Ye; Xu, Kaili; Heng, Dai; Liu, Wenbo; Ding, Yu; Yang, Yanzhou; Zhang, Cheng

    2018-05-10

    Thyroid hormones (THs) play a critical role in the development of ovarian cells. Although the effects of THs on female reproduction are of great interest, the mechanism remains unclear. We investigated the effects of TH dysregulation on reproductive hormones in rats. Propylthiouracil (PTU) and L-thyroxine were administered to rats to induce hypo- and hyper-thyroidism, respectively, and the reproductive hormone profiles were analyzed by radioimmunoassay. Ovarian histology was evaluated with H&E staining, and gene protein level or mRNA content was analyzed by western blotting or RT-PCR. The serum levels of gonadotropin releasing hormone (GnRH) and follicle stimulating hormone (FSH) in both rat models were significantly decreased on day 21, although there were no significant changes at earlier time points. There were no significant differences in luteinizing hormone (LH) or progesterone levels between the treatment and the control groups. Both PTU and L-thyroxine treatments downregulated estradiol concentrations; however, the serum testosterone level was increased only in hypothyroid rats at day 21. In addition, the expression levels of FSH receptor, cholesterol side-chain cleavage enzyme (P450scc), and steroidogenic acute regulatory protein were decreased in both rat models. Moreover, the onset of puberty was significantly delayed in the hypothyroid group. These results provide evidence that TH dysregulation alters reproductive hormone profiles, and that the initiation of the estrous cycle is postponed in hypothyroidism.

  16. Beneficial Effects of Caloric Restriction on Chronic Kidney Disease in Rodent Models: A Meta-Analysis and Systematic Review.

    Directory of Open Access Journals (Sweden)

    Xiao-Meng Xu

    Full Text Available Numerous studies have demonstrated the life-extending effect of caloric restriction. It is generally accepted that caloric restriction has health benefits, such as prolonging lifespan and delaying the onset and progression of CKD in various species, especially in rodent models. Although many studies have tested the efficacy of caloric restriction, no complete quantitative analysis of the potential beneficial effects of reducing caloric intake on the development and progression of CKD has been published.All studies regarding the relationship between caloric restriction and chronic kidney diseases were searched in electronic databases, including PubMed/MEDLINE, EMBASE, Science Citation Index (SCI, OVID evidence-based medicine, Chinese Bio-medical Literature and Chinese science and technology periodicals (CNKI, VIP, and Wan Fang. The pooled odds ratios (OR and 95% confidence intervals (95% CI were calculated by using fixed- or random-effects models.The data from 27 of all the studies mentioned above was used in the Meta analysis. Through the meta-analysis, we found that the parameter of blood urea nitrogen, serum creatinine and urinary protein levels of the AL group was significant higher than that of the CR group, which are 4.11 mg/dl, 0.08mg/dl and 33.20mg/kg/24h, respectively. The incidence of the nephropathy in the caloric restriction (CR group was significantly lower than that in the ad libitum-fed (AL group. We further introduced the subgroup analysis and found that the effect of caloric restriction on the occurrence of kidney disease was only significant with prolonged intervention; the beneficial effects of CR on the 60%-caloric-restriction group were greater than on the less-than-60%-caloric-restriction group, and caloric restriction did not show obvious protective effects in genetically modified strains. Moreover, survival rate of the caloric restriction group is much higher than that of the ad libitum-fed (AL group.Our findings

  17. Effects of an overload of animal protein on the rat: brain DNA alterations and tissue morphological modifications during fetal and post-natal stage.

    Science.gov (United States)

    Greco, A M; Sticchi, R; Boschi, G; Vetrani, A; Salvatore, G

    1985-01-01

    On account of many literature reports about the definite correlation between high animal protein intake and cardiovascular diseases, we have studied the effect of a hyperproteic purified diet (casein 40%, lactalbumin 20%) on fetal and post-natal (not further than 40th day) stage of the rat, when cell subdivision process is faster and therefore damage by nutritional imbalance is certainly more serious. Litters of rats were grouped according to mother's (either hyperproteic or common basic) and rat's (after lactation) diet. Brain DNA and histology of various organs were studied. Hyperproteic diet during fetal stage and lactation would inhibit brain cell subdivision since overall content of brain DNA would be decreased on autoptic finding. Structural changes were also shown in liver, heart, kidney and adrenal cortex, especially when hyperproteic diet was continued even after lactation.

  18. Postprandial leucine and insulin responses and toxicological effects of a novel whey protein hydrolysate-based supplement in rats

    Directory of Open Access Journals (Sweden)

    Toedebusch Ryan G

    2012-06-01

    Full Text Available Abstract The purpose of this study was: aim 1 compare insulin and leucine serum responses after feeding a novel hydrolyzed whey protein (WPH-based supplement versus a whey protein isolate (WPI in rats during the post-absorptive state, and aim 2 to perform a thorough toxicological analysis on rats that consume different doses of the novel WPH-based supplement over a 30-day period. In male Wistar rats (~250 g, n = 40, serum insulin and leucine concentrations were quantified up to 120 min after one human equivalent dose of a WPI or the WPH-based supplement. In a second cohort of rats (~250 g, n = 20, we examined serum/blood and liver/kidney histopathological markers after 30 days of feeding low (1human equivalent dose, medium (3 doses and high (6 doses amounts of the WPH-based supplement. In aim 1, higher leucine levels existed at 15 min after WPH vs. WPI ingestion (p = 0.04 followed by higher insulin concentrations at 60 min (p = 0.002. In aim 2, liver and kidney histopathology/toxicology markers were not different 30 days after feeding with low, medium, high dose WPH-based supplementation or water only. There were no between-condition differences in body fat or lean mass or circulating clinical chemistry markers following the 30-day feeding intervention in aim 2. In comparison to WPI, acute ingestion of a novel WPH-based supplement resulted in a higher transient leucine response with a sequential increase in insulin. Furthermore, chronic ingestion of the tested whey protein hydrolysate supplement appears safe.

  19. Fish protein hydrolysate elevates plasma bile acids and reduces visceral adipose tissue mass in rats

    DEFF Research Database (Denmark)

    Liaset, Bjørn; Madsen, Lise; Hao, Qin

    2009-01-01

    levels relative to rats fed soy protein or casein. Concomitantly, the saithe FPH fed rats had reduced liver lipids and fasting plasma TAG levels. Furthermore, visceral adipose tissue mass was reduced and expression of genes involved in fatty acid oxidation and energy expenditure was induced in perirenal....../retroperitoneal adipose tissues of rats fed saithe FPH. Our results provide the first evidence that dietary protein sources with different amino acid compositions can modulate the level of plasma bile acids and our data suggest potential novel mechanisms by which dietary protein sources can affect energy metabolism....

  20. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export.

    Science.gov (United States)

    White, Phillip J; Lapworth, Amanda L; An, Jie; Wang, Liping; McGarrah, Robert W; Stevens, Robert D; Ilkayeva, Olga; George, Tabitha; Muehlbauer, Michael J; Bain, James R; Trimmer, Jeff K; Brosnan, M Julia; Rolph, Timothy P; Newgard, Christopher B

    2016-07-01

    A branched-chain amino acid (BCAA)-related metabolic signature is strongly associated with insulin resistance and predictive of incident diabetes and intervention outcomes. To better understand the role that this metabolite cluster plays in obesity-related metabolic dysfunction, we studied the impact of BCAA restriction in a rodent model of obesity in which BCAA metabolism is perturbed in ways that mirror the human condition. Zucker-lean rats (ZLR) and Zucker-fatty rats (ZFR) were fed either a custom control, low fat (LF) diet, or an isonitrogenous, isocaloric LF diet in which all three BCAA (Leu, Ile, Val) were reduced by 45% (LF-RES). We performed comprehensive metabolic and physiologic profiling to characterize the effects of BCAA restriction on energy balance, insulin sensitivity, and glucose, lipid and amino acid metabolism. LF-fed ZFR had higher levels of circulating BCAA and lower levels of glycine compared to LF-fed ZLR. Feeding ZFR with the LF-RES diet lowered circulating BCAA to levels found in LF-fed ZLR. Activity of the rate limiting enzyme in the BCAA catabolic pathway, branched chain keto acid dehydrogenase (BCKDH), was lower in liver but higher in skeletal muscle of ZFR compared to ZLR and was not responsive to diet in either tissue. BCAA restriction had very little impact on metabolites studied in liver of ZFR where BCAA content was low, and BCKDH activity was suppressed. However, in skeletal muscle of LF-fed ZFR compared to LF-fed ZLR, where BCAA content and BCKDH activity were increased, accumulation of fatty acyl CoAs was completely normalized by dietary BCAA restriction. BCAA restriction also normalized skeletal muscle glycine content and increased urinary acetyl glycine excretion in ZFR. These effects were accompanied by lower RER and improved skeletal muscle insulin sensitivity in LF-RES fed ZFR as measured by hyperinsulinemic-isoglycemic clamp. Our data are consistent with a model wherein elevated circulating BCAA contribute to development of

  1. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export

    Directory of Open Access Journals (Sweden)

    Phillip J. White

    2016-07-01

    Full Text Available Objective: A branched-chain amino acid (BCAA-related metabolic signature is strongly associated with insulin resistance and predictive of incident diabetes and intervention outcomes. To better understand the role that this metabolite cluster plays in obesity-related metabolic dysfunction, we studied the impact of BCAA restriction in a rodent model of obesity in which BCAA metabolism is perturbed in ways that mirror the human condition. Methods: Zucker-lean rats (ZLR and Zucker-fatty rats (ZFR were fed either a custom control, low fat (LF diet, or an isonitrogenous, isocaloric LF diet in which all three BCAA (Leu, Ile, Val were reduced by 45% (LF-RES. We performed comprehensive metabolic and physiologic profiling to characterize the effects of BCAA restriction on energy balance, insulin sensitivity, and glucose, lipid and amino acid metabolism. Results: LF-fed ZFR had higher levels of circulating BCAA and lower levels of glycine compared to LF-fed ZLR. Feeding ZFR with the LF-RES diet lowered circulating BCAA to levels found in LF-fed ZLR. Activity of the rate limiting enzyme in the BCAA catabolic pathway, branched chain keto acid dehydrogenase (BCKDH, was lower in liver but higher in skeletal muscle of ZFR compared to ZLR and was not responsive to diet in either tissue. BCAA restriction had very little impact on metabolites studied in liver of ZFR where BCAA content was low, and BCKDH activity was suppressed. However, in skeletal muscle of LF-fed ZFR compared to LF-fed ZLR, where BCAA content and BCKDH activity were increased, accumulation of fatty acyl CoAs was completely normalized by dietary BCAA restriction. BCAA restriction also normalized skeletal muscle glycine content and increased urinary acetyl glycine excretion in ZFR. These effects were accompanied by lower RER and improved skeletal muscle insulin sensitivity in LF-RES fed ZFR as measured by hyperinsulinemic-isoglycemic clamp. Conclusions: Our data are consistent with a model wherein

  2. Effect of whole-body gamma radiation on tissue sulfhydryl contents in experimental rats

    International Nuclear Information System (INIS)

    Sarkar, S.R.; Singh, L.R.; Uniyal, B.P.

    1985-01-01

    It has been postulated that vital constituents of cell membranes concerned with the maintenance of cellular integrity are affected by ionizing radiation. Sulfhydryl contents, which form an integral component of cell membranes play vital roles in maintaining cellular integrity. The purpose was to evaluate non-protein and protein sulfhydryl contents in tissues of irradiated rats. Adult male Sprague Dawley rats were exposed to whole-body gamma irradiation of 4 Gy and 10 Gy and non-protein and protein sulfhydryl contents of blood, heart and spleen were studied on postirradiation day 1, 3 and 6. Both groups of experimental rats exhibited unchanged blood non-protein sulfhydryl contents on first day after irradiation with significant diminution subsequently. In contrast, blood protein sulfhydryl groups of both groups of rats were increased on first day post exposure, which became normal on sixth day. Myocardial non-protein and protein sulfhydryl contents of both groups of rats remained unchanged in the initial stage of radiation exposure indicating radioresistance nature of rat heart. Both groups of rats demonstrated biphasic nature of non-protein sulfhydryl contents in spleen, asrevealed by initial increase with subsequent decrease. Protein sulfhydryl contents of rats of 4 Gy group showed significant diminution post exposure throughout, while the same of 10 Gy behaved in opposite way. (author)

  3. Effect of dietary zinc deficiency on the endogenous phosphorylation and dephosphorylation of rat erythrocyte membrane

    International Nuclear Information System (INIS)

    Paterson, P.G.; Allen, O.B.; Bettger, W.J.

    1987-01-01

    The effect of dietary zinc deficiency on patterns of phosphorylation and dephosphorylation of rat erythrocyte membrane proteins and erythrocyte filterability was examined. Weanling male Wistar rats were fed an egg white-based diet containing less than 1.1 mg zinc/kg diet ad libitum for 3 wk. Control rats were either pair-fed or ad libitum-fed the basal diet supplemented with 100 mg zinc/kg diet. Net phosphorylation and dephosphorylation of erythrocyte membrane proteins were carried out by an in vitro assay utilizing [gamma- 32 P]ATP. The membrane proteins were subsequently separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the 32 P content of gel slices was counted by Cerenkov counting. Erythrocyte filterability was measured as the filtration time of suspensions of erythrocytes, both untreated and preincubated with diamide, under constant pressure. Erythrocyte ghosts from zinc-deficient rats demonstrated greater dephosphorylation of protein bands R1 plus R2 and R7 than pair-fed rats and greater net phosphorylation of band R2.2 than pair-fed or ad libitum-fed control rats (P less than 0.05). Erythrocytes from ad libitum-fed control rats showed significantly longer filtration times than those from zinc-deficient or pair-fed control rats. In conclusion, dietary zinc deficiency alters in vitro patterns of erythrocyte membrane protein phosphorylation and dephosphorylation, whereas the depression in food intake associated with the zinc deficiency increases erythrocyte filterability. 71 references

  4. Intake of Meat Proteins Substantially Increased the Relative Abundance of Genus Lactobacillus in Rat Feces

    Science.gov (United States)

    Zhu, Yingying; Lin, Xisha; Li, He; Li, Yingqiu; Shi, Xuebin; Zhao, Fan; Xu, Xinglian; Li, Chunbao; Zhou, Guanghong

    2016-01-01

    Diet has been shown to have a critical influence on gut bacteria and host health, and high levels of red meat in diet have been shown to increase colonic DNA damage and thus be harmful to gut health. However, previous studies focused more on the effects of meat than of meat proteins. In order to investigate whether intake of meat proteins affects the composition and metabolic activities of gut microbiota, feces were collected from growing rats that were fed with either meat proteins (from beef, pork or fish) or non-meat proteins (casein or soy) for 14 days. The resulting composition of gut microbiota was profiled by sequencing the V4-V5 region of the 16S ribosomal RNA genes and the short chain fatty acids (SCFAs) were analyzed using gas chromatography. The composition of gut microbiota and SCFA levels were significantly different between the five diet groups. At a recommended dose of 20% protein in the diet, meat protein-fed rats had a higher relative abundance of the beneficial genus Lactobacillus, but lower levels of SCFAs and SCFA-producing bacteria including Fusobacterium, Bacteroides and Prevotella, compared with the soy protein-fed group. Further work is needed on the regulatory pathways linking dietary protein intake to gut microbiota. PMID:27042829

  5. Intake of Meat Proteins Substantially Increased the Relative Abundance of Genus Lactobacillus in Rat Feces.

    Directory of Open Access Journals (Sweden)

    Yingying Zhu

    Full Text Available Diet has been shown to have a critical influence on gut bacteria and host health, and high levels of red meat in diet have been shown to increase colonic DNA damage and thus be harmful to gut health. However, previous studies focused more on the effects of meat than of meat proteins. In order to investigate whether intake of meat proteins affects the composition and metabolic activities of gut microbiota, feces were collected from growing rats that were fed with either meat proteins (from beef, pork or fish or non-meat proteins (casein or soy for 14 days. The resulting composition of gut microbiota was profiled by sequencing the V4-V5 region of the 16S ribosomal RNA genes and the short chain fatty acids (SCFAs were analyzed using gas chromatography. The composition of gut microbiota and SCFA levels were significantly different between the five diet groups. At a recommended dose of 20% protein in the diet, meat protein-fed rats had a higher relative abundance of the beneficial genus Lactobacillus, but lower levels of SCFAs and SCFA-producing bacteria including Fusobacterium, Bacteroides and Prevotella, compared with the soy protein-fed group. Further work is needed on the regulatory pathways linking dietary protein intake to gut microbiota.

  6. Intake of Meat Proteins Substantially Increased the Relative Abundance of Genus Lactobacillus in Rat Feces.

    Science.gov (United States)

    Zhu, Yingying; Lin, Xisha; Li, He; Li, Yingqiu; Shi, Xuebin; Zhao, Fan; Xu, Xinglian; Li, Chunbao; Zhou, Guanghong

    2016-01-01

    Diet has been shown to have a critical influence on gut bacteria and host health, and high levels of red meat in diet have been shown to increase colonic DNA damage and thus be harmful to gut health. However, previous studies focused more on the effects of meat than of meat proteins. In order to investigate whether intake of meat proteins affects the composition and metabolic activities of gut microbiota, feces were collected from growing rats that were fed with either meat proteins (from beef, pork or fish) or non-meat proteins (casein or soy) for 14 days. The resulting composition of gut microbiota was profiled by sequencing the V4-V5 region of the 16S ribosomal RNA genes and the short chain fatty acids (SCFAs) were analyzed using gas chromatography. The composition of gut microbiota and SCFA levels were significantly different between the five diet groups. At a recommended dose of 20% protein in the diet, meat protein-fed rats had a higher relative abundance of the beneficial genus Lactobacillus, but lower levels of SCFAs and SCFA-producing bacteria including Fusobacterium, Bacteroides and Prevotella, compared with the soy protein-fed group. Further work is needed on the regulatory pathways linking dietary protein intake to gut microbiota.

  7. Effects of sciatic-conditioned medium on neonatal rat retinal cells in vitro

    Directory of Open Access Journals (Sweden)

    Torres P.M.M.

    1998-01-01

    Full Text Available Schwann cells produce and release trophic factors that induce the regeneration and survival of neurons following lesions in the peripheral nerves. In the present study we examined the in vitro ability of developing rat retinal cells to respond to factors released from fragments of sciatic nerve. Treatment of neonatal rat retinal cells with sciatic-conditioned medium (SCM for 48 h induced an increase of 92.5 ± 8.8% (N = 7 for each group in the amount of total protein. SCM increased cell adhesion, neuronal survival and glial cell proliferation as evaluated by morphological criteria. This effect was completely blocked by 2.5 µM chelerythrine chloride, an inhibitor of protein kinase C (PKC. These data indicate that PKC activation is involved in the effect of SCM on retinal cells and demonstrate that fragments of sciatic nerve release trophic factors having a remarkable effect on neonatal rat retinal cells in culture.

  8. Novel host restriction factors implicated in HIV-1 replication.

    Science.gov (United States)

    Ghimire, Dibya; Rai, Madhu; Gaur, Ritu

    2018-04-01

    Human immunodeficiency virus-1 (HIV-1) is known to interact with multiple host cellular proteins during its replication in the target cell. While many of these host cellular proteins facilitate viral replication, a number of them are reported to inhibit HIV-1 replication at various stages of its life cycle. These host cellular proteins, which are known as restriction factors, constitute an integral part of the host's first line of defence against the viral pathogen. Since the discovery of apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G) as an HIV-1 restriction factor, several human proteins have been identified that exhibit anti-HIV-1 restriction. While each restriction factor employs a distinct mechanism of inhibition, the HIV-1 virus has equally evolved complex counter strategies to neutralize their inhibitory effect. APOBEC3G, tetherin, sterile alpha motif and histidine-aspartate domain 1 (SAMHD1), and trim-5α are some of the best known HIV-1 restriction factors that have been studied in great detail. Recently, six novel restriction factors were discovered that exhibit significant antiviral activity: endoplasmic reticulum α1,2-mannosidase I (ERManI), translocator protein (TSPO), guanylate-binding protein 5 (GBP5), serine incorporator (SERINC3/5) and zinc-finger antiviral protein (ZAP). The focus of this review is to discuss the antiviral mechanism of action of these six restriction factors and provide insights into the probable counter-evasion strategies employed by the HIV-1 virus. The recent discovery of new restriction factors substantiates the complex host-pathogen interactions occurring during HIV-1 pathogenesis and makes it imperative that further investigations are conducted to elucidate the molecular basis of HIV-1 replication.

  9. Effect of insulin on albumin production and incorporation of 14C-leucine into proteins in isolated parenchymal liver cells from normal rats

    DEFF Research Database (Denmark)

    Dich, J; Gluud, C N

    1975-01-01

    the immunologically determined increment in the incubation medium was 1.7 +/- 0.2 mug albumin/min per g liver wet wt. This is about 30% of the rate of production in the perfused liver. Addition of insulin (10(-6)-10(-10) M) enhanced albumin production (50-17%), and incorporation of 14C-leucine both into albumin (50......Parenchymal rat liver cells were isolated by a modification of the collagenase method of Quistorff, Bondesen and Grunnet. The cells secreted albumin into the medium and incorporated 14C-leucine both into cell proteins and proteins secreted into the medium. Albumin production measured from......-8%), secreted proteins (40-9%) and cell proteins (20-8%). Insulin does not increase the production of albumin by depleting the cells. The effect of insulin on albumin production is compatible with an effect on the rate of synthesis as the specific activity of albumin is unaffected by addition of insulin....

  10. Acupuncture inhibits Notch1 and Hes1 protein expression in the basal ganglia of rats with cerebral hemorrhage

    Directory of Open Access Journals (Sweden)

    Wei Zou

    2015-01-01

    Full Text Available Notch pathway activation maintains neural stem cells in a proliferating state and increases nerve repair capacity. To date, studies have rarely focused on changes or damage to signal transduction pathways during cerebral hemorrhage. Here, we examined the effect of acupuncture in a rat model of cerebral hemorrhage. We examined four groups: in the control group, rats received no treatment. In the model group, cerebral hemorrhage models were established by infusing non-heparinized blood into the brain. In the acupuncture group, modeled rats had Baihui (DU20 and Qubin (GB7 acupoints treated once a day for 30 minutes. In the DAPT group, modeled rats had 0.15 μg/mL DAPT solution (10 mL infused into the brain. Immunohistochemistry and western blot results showed that acupuncture effectively inhibits Notch1 and Hes1 protein expression in rat basal ganglia. These inhibitory effects were identical to DAPT, a Notch signaling pathway inhibitor. Our results suggest that acupuncture has a neuroprotective effect on cerebral hemorrhage by inhibiting Notch-Hes signaling pathway transduction in rat basal ganglia after cerebral hemorrhage.

  11. Vitamin D-dependent rat renal calcium-binding protein: development of a radioimmunoassay, tissue distribution, and immunologic identification

    International Nuclear Information System (INIS)

    Sonnenberg, J.; Pansini, A.R.; Christakos, S.

    1984-01-01

    A sensitive double antibody RIA has been developed for the 28,000 mol wt rat renal vitamin D-dependent calcium-binding protein. Using this assay, concentrations of calcium-binding protein (CaBP) as low as 30 ng can be measured. The assay is precise (intraassay variability, 5.0%) and reproductible (interassay variability, 8.2%). Measurements of renal CaBP by RIA showed a good correlation with measurements of CaBP by the chelex resin assay and by polyacrylamide gel analysis by densitometric tracing using a purified CaBP marker. The concentration of CaBP in the vitamin D-replete rat kidney is 7.3 +/- 1.0 (mean +/- SEM) micrograms/mg protein. In vitamin D-deficient rats the level of renal CaBP is 2.6 +/- 0.3 micrograms/mg protein. Tissue distribution of immunoreactive rat renal CaBP showed the highest concentration of CaBP in the rat cerebellum (38.3 +/- 5.1 micrograms/mg protein). Lower concentrations of immunoreactive CaBP were detected in several other rat tissues. No immunoreactive CaBP was detected in rat or human serum. In necropsy human kidney and cerebellum, high levels of immunoreactive CaBP were also detected (1.5 +/- 0.1 and 27.3 +/- 2.1 micrograms/mg protein, respectively). When extracts of rat kidney and brain and human cerebellum and kidney were assayed at several dilutions, immunodisplacement curves parallel to that of pure renal CaBP were observed, indicating immunochemical similarity. Fractionation of extracts of rat cerebellum, human kidney, and human cerebellum on Sephadex G-100 revealed immunoreactivity and calcium-binding activity in the 28,000 mol wt region similar to rat kidney

  12. Impaired mitochondrial respiration and protein nitration in the rat hippocampus after acute inhalation of combustion smoke

    International Nuclear Information System (INIS)

    Lee, Heung M.; Reed, Jason; Greeley, George H.; Englander, Ella W.

    2009-01-01

    Survivors of massive inhalation of combustion smoke endure critical injuries, including lasting neurological complications. We have previously reported that acute inhalation of combustion smoke disrupts the nitric oxide homeostasis in the rat brain. In this study, we extend our findings and report that a 30-minute exposure of awake rats to ambient wood combustion smoke induces protein nitration in the rat hippocampus and that mitochondrial proteins are a sensitive nitration target in this setting. Mitochondria are central to energy metabolism and cellular signaling and are critical to proper cell function. Here, analyses of the mitochondrial proteome showed elevated protein nitration in the course of a 24-hour recovery following exposure to smoke. Mass spectrometry identification of several significantly nitrated mitochondrial proteins revealed diverse functions and involvement in central aspects of mitochondrial physiology. The nitrated proteins include the ubiquitous mitochondrial creatine kinase, F1-ATP synthase α subunit, dihydrolipoamide dehydrogenase (E3), succinate dehydrogenase Fp subunit, and voltage-dependent anion channel (VDAC1) protein. Furthermore, acute exposure to combustion smoke significantly compromised the respiratory capacity of hippocampal mitochondria. Importantly, elevated protein nitration and reduced mitochondrial respiration in the hippocampus persisted beyond the time required for restoration of normal oxygen and carboxyhemoglobin blood levels after the cessation of exposure to smoke. Thus, the time frame for intensification of the various smoke-induced effects differs between blood and brain tissues. Taken together, our findings suggest that nitration of essential mitochondrial proteins may contribute to the reduction in mitochondrial respiratory capacity and underlie, in part, the brain pathophysiology after acute inhalation of combustion smoke

  13. Blockade of Vascular Adhesion Protein-1 Inhibits Lymphocyte Infiltration in Rat Liver Allograft Rejection

    OpenAIRE

    Martelius, Timi; Salaspuro, Ville; Salmi, Marko; Krogerus, Leena; Höckerstedt, Krister; Jalkanen, Sirpa; Lautenschlager, Irmeli

    2004-01-01

    Vascular adhesion protein-1 (VAP-1) has been shown to mediate lymphocyte adhesion to endothelia at sites of inflammation, but its functional role in vivo has not been tested in any rodent model. Here we report the effects of VAP-1 blockade on rat liver allograft rejection. BN recipients of PVG liver allografts (known to develop acute rejection by day 7) were treated with 2 mg/kg anti-VAP-1 (a new anti-rat VAP-1 mAb 174–5) or isotype-matched irrelevant antibody (NS1) every other day (n = 6/gro...

  14. Protein source in a high-protein diet modulates reductions in insulin resistance and hepatic steatosis in fa/fa Zucker rats.

    Science.gov (United States)

    Wojcik, Jennifer L; Devassy, Jessay G; Wu, Yinghong; Zahradka, Peter; Taylor, Carla G; Aukema, Harold M

    2016-01-01

    High-protein diets are being promoted to reduce insulin resistance and hepatic steatosis in metabolic syndrome. Therefore, the effect of protein source in high-protein diets on reducing insulin resistance and hepatic steatosis was examined. Fa/fa Zucker rats were provided normal-protein (15% of energy) casein, high-protein (35% of energy) casein, high-protein soy, or high-protein mixed diets with animal and plant proteins. The high-protein mixed diet reduced area under the curve for insulin during glucose tolerance testing, fasting serum insulin and free fatty acid concentrations, homeostatic model assessment index, insulin to glucose ratio, and pancreatic islet cell area. The high-protein mixed and the high-protein soy diets reduced hepatic lipid concentrations, liver to body weight ratio, and hepatic steatosis rating. These improvements were observed despite no differences in body weight, feed intake, or adiposity among high-protein diet groups. The high-protein casein diet had minimal benefits. A high-protein mixed diet was the most effective for modulating reductions in insulin resistance and hepatic steatosis independent of weight loss, indicating that the source of protein within a high-protein diet is critical for the management of these metabolic syndrome parameters. © 2015 The Obesity Society.

  15. Ingestion of soy-whey blended protein augments sports performance and ameliorates exercise-induced fatigue in a rat exercise model.

    Science.gov (United States)

    Ren, Guangxu; Yi, Suqing; Zhang, Hongru; Wang, Jing

    2017-02-22

    This study sought to determine the effects of soy-whey blended protein supplementation on sports performance and related biochemical parameters after long-term training. After a week of adaptation, eighteen 6-week-old male Wistar rats were randomly assigned to 3 groups: the standard chow diet plus whey protein (Whey) group, the standard chow diet plus soy-whey blended protein (BP) group and the standard chow diet only (control) group. Each group included 6 rats for the seven-week experiment. Before the experiment, the baseline values of body weight, grasping force and time to exhaustion due to the loaded-swimming test were recorded for each group. During the experimental period, all rats performed the loaded-swimming test until exhaustion five days each week. The results showed that the mean maximum grasping force of the BP group significantly increased between the 5 th and the 7 th week (p protein for 7 weeks significantly increased the mean time to exhaustion due to swimming by 1.5-fold and 1.2-fold compared with the control and Whey groups, respectively. The plasma levels of leucine, isoleucine and valine were significantly higher at 60 min after the blended protein intervention compared with the Whey and control interventions (p protein enhanced the activities of lactate dehydrogenase and superoxide dismutase and decreased the levels of malondialdehyde in serum. These results collectively suggest that soy-whey blended protein ingestion with resistance exercise can improve sports performance and ameliorate exercise-induced fatigue in rats.

  16. The Effect of Vegan Protein-Based Diets on Metabolic Parameters, Expressions of Adiponectin and Its Receptors in Wistar Rats.

    Science.gov (United States)

    Chen, Jie-Hua; Song, Jia; Chen, Yan; Ding, Qiang; Peng, Anfang; Mao, Limei

    2016-10-18

    Vegan protein-based diet has attracted increasing interest in the prevention of metabolic syndrome (MetS). Meanwhile, adiponectin has become a highly potential molecular target in the prevention of MetS. Our study will identify a potential vegan protein diet for the prevention of MetS using rat models. Thirty-six Wistar rats were randomly assigned into three groups and given diets containing one of the following proteins for 12 weeks: casein (CAS, control diet), soy protein (SOY), and gluten-soy mixed protein (GSM). Changes in metabolic parameters as well as the expressions of adiponectin and its receptors were identified. Compared to CAS diet, both SOY and GSM diets led to decreases in blood total cholesterol and triglycerides, but only GSM diet led to an increase in HDL-cholesterol; no marked difference was observed in blood glucose in all three groups; HOMA-IR was found lower only in SOY group. Among groups, the order of serum adiponectin level was found as GSM > SOY > CAS. Similar order pattern was also observed in expression of adiponectin in adipose tissue and AdipoR1 mRNA in skeletal muscle. Our results suggested for the first time that, besides SOY diet, GSM diet could also be a possible substitute of animal protein to prevent MetS.

  17. The Effect of Vegan Protein-Based Diets on Metabolic Parameters, Expressions of Adiponectin and Its Receptors in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Jie-Hua Chen

    2016-10-01

    Full Text Available Vegan protein-based diet has attracted increasing interest in the prevention of metabolic syndrome (MetS. Meanwhile, adiponectin has become a highly potential molecular target in the prevention of MetS. Our study will identify a potential vegan protein diet for the prevention of MetS using rat models. Thirty-six Wistar rats were randomly assigned into three groups and given diets containing one of the following proteins for 12 weeks: casein (CAS, control diet, soy protein (SOY, and gluten-soy mixed protein (GSM. Changes in metabolic parameters as well as the expressions of adiponectin and its receptors were identified. Compared to CAS diet, both SOY and GSM diets led to decreases in blood total cholesterol and triglycerides, but only GSM diet led to an increase in HDL-cholesterol; no marked difference was observed in blood glucose in all three groups; HOMA-IR was found lower only in SOY group. Among groups, the order of serum adiponectin level was found as GSM > SOY > CAS. Similar order pattern was also observed in expression of adiponectin in adipose tissue and AdipoR1 mRNA in skeletal muscle. Our results suggested for the first time that, besides SOY diet, GSM diet could also be a possible substitute of animal protein to prevent MetS.

  18. Matrix Gla Protein is Involved in Crystal Formation in Kidney of Hyperoxaluric Rats

    Directory of Open Access Journals (Sweden)

    Xiuli Lu

    2013-02-01

    Full Text Available Background: Matrix Gla protein (MGP is a molecular determinant regulating vascular calcification of the extracellular matrix. However, it is still unclear how MGP may be invovled in crystal formation in the kidney of hyperoxaluric rats. Methods: Male Sprague-Dawley rats were divided into the hyperoxaluric group and control group. Hyperoxaluric rats were administrated by 0.75% ethylene glycol (EG for up to 8 weeks. Renal MGP expression was detected by the standard avidin-biotin complex (ABC method. Renal crystal deposition was observed by a polarizing microscope. Total RNA and protein from the rat kidney tissue were extracted. The levels of MGP mRNA and protein expression were analyzed by the real-time polymerase chain reaction (RT-PCR and Western blot. Results: Hyperoxaluria was induced successfully in rats. The MGP was polarly distributed, on the apical membrane of renal tubular epithelial cells, and was found in the ascending thick limbs of Henle's loop (cTAL and the distal convoluted tubule (DCT in hyperoxaluric rats, its expression however, was present in the medullary collecting duct (MCD in stone-forming rats. Crystals with multilaminated structure formed in the injurious renal tubules with lack of MGP expression.MGP mRNA expression was significantly upregulated by the crystals' stimulations. Conclusion: Our results suggested that the MGP was involved in crystals formation by the continuous expression, distributing it polarly in the renal tubular cells and binding directly to the crystals.

  19. Effect of soy protein isolate in the diet on retention by the rat of iron from radiolabeled test meals

    International Nuclear Information System (INIS)

    Thompson, D.B.; Erdman, J.W. Jr.

    1984-01-01

    The influence of soy protein isolate (SPI) in the diet on whole-body retention of extrinsically radiolabeled iron from test meals containing or not containing SPI was evaluated in marginally iron-deficient weanling rats. In experiment 1 SPI was compared with casein in a 2 X 2 factorial design: diets and test meals were either SPI-based or casein-based. Diets were fed for 13 days prior to the test meal and for 7 days subsequent to the test meal. Rats fed the SPI-based diet retained less iron from test meals than did rats fed the casein-based diet (66.1 vs. 74.8%, P less than 0.01). Experiment 2 showed that an SPI-based diet fed during the final 4 days of a 14-day pre-test meal period and subsequent to the test meal led to less iron retention compared to a casein-based diet. In addition to the observed diet effect, experiment 1 showed that iron retention was less from an SPI-based test meal than from a casein-based test meal, confirming previous reports of adverse effects of SPI on iron retention. The present experiments show that SPI can adversely affect from retention in two ways: by its presence in the diet before and after a test meal, and by its presence in a test meal

  20. Molecular and functional interactions of cat APOBEC3 and feline foamy and immunodeficiency virus proteins: different ways to counteract host-encoded restriction.

    Science.gov (United States)

    Chareza, Sarah; Slavkovic Lukic, Dragana; Liu, Yang; Räthe, Ann-Mareen; Münk, Carsten; Zabogli, Elisa; Pistello, Mauro; Löchelt, Martin

    2012-03-15

    Defined host-encoded feline APOBEC3 (feA3) cytidine deaminases efficiently restrict the replication and spread of exogenous retroviruses like Feline Immunodeficiency Virus (FIV) and Feline Foamy Virus (FFV) which developed different feA3 counter-acting strategies. Here we characterize the molecular interaction of FFV proteins with the diverse feA3 proteins. The FFV accessory protein Bet is the virus-encoded defense factor which is shown here to bind all feA3 proteins independent of whether they restrict FFV, a feature shared with FIV Vif that induces degradation of all feA3s including those that do not inactivate FIV. In contrast, only some feA3 proteins bind to FFV Gag, a pattern that in part reflects the restriction pattern detected. Additionally, one-domain feA3 proteins can homo- and hetero-dimerize in vitro, but a trans-dominant phenotype of any of the low-activity feA3 forms on FFV restriction by one of the highly-active feA3Z2 proteins was not detectable. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Hypocholesterolemic Effects of Probiotic Mixture on Diet-Induced Hypercholesterolemic Rats

    Directory of Open Access Journals (Sweden)

    Shang-Jin Kim

    2017-03-01

    Full Text Available Growing evidence has indicated that supplementation with probiotics improves lipid metabolism. We aimed to investigate the beneficial effects of a probiotics mixture (PM of three strains belonging to the species Bifidobacterium (B. longum, B. lactis, and B. breve and two strains belonging to the species Lactobacillus (L. reuteri and L. plantarum on cholesterol-lowering efficacy in hypercholesterolemic rats. A hypercholesterolemic rat model was established by feeding a high-cholesterol diet for eight weeks. To test the effects of PM on hypercholesterolemia, hypercholesterolemic rats were assigned to four groups, which were treated daily with low (1.65 × 109 cfu/kg, medium (5.5 × 109 cfu/kg, or high (1.65 × 1010 cfu/kg doses of probiotic mixture or simvastatin for eight weeks. Significant reductions of serum total cholesterol (TC, triacylglycerol (TG, and low-density lipoprotein (LDL-cholesterol levels, but increases of high-density lipoprotein (HDL-cholesterol were observed after supplementation of PM in hypercholesterolemic rats. In PM-supplemented hypercholesterolemic rats, hepatic tissue contents of TC and TG also significantly decreased. Notably, the histological evaluation of liver tissues demonstrated that PM dramatically decreased lipid accumulation. For their underlying mechanisms, we demonstrated that PM reduced expressions of cholesterol synthesis-related proteins such as sterol regulatory element-binding protein 1 (SREBP1, fatty acid synthase (FAS, and acetyl-CoA carboxylase (ACC in the liver. Taken together, these findings suggest that PM has beneficial effects against hypercholesterolemia. Accordingly, our PM might be utilized as a novel therapeutic agent for the management of hypercholesterolemia.

  2. Effect of gamma irradiation on proteins of some agricultural products

    International Nuclear Information System (INIS)

    Farag, M.F.S.E.

    1994-01-01

    Soybean and broad bean were exposed to gamma rays at dose levels of 10 ,30 and 50 KGy. Some chemical changes were studied in beans such as chemical composition, total amino acids, protein electrophoresis and trypsin inhibitor. Also irradiated beans were used as a sole source of protein in feeding rats. Some parameters were studied such as, true growth rate, food intake, protein efficiency ratio, true protein digestibility, biological value, serum total protein and serum albumin . The results indicated that irradiation treatments, did n't cause any obvious effects on the chemical composition . Also, no changes were shown in the number of protein bands. A little difference was observed in the bands density. Irradiation doses caused variable results with the majority of the amino acids, but they led to a gradual reduction in the activity of trypsin inhibitor. Moreover, the irradiation treatments caused an increased food intake. The rats growth rates, protein efficiency ratio, true protein digestibility and protein biological values were increased as the irradiation dose increased, but serum total protein and serum albumin were not affected

  3. Leptin Intake at Physiological Doses Throughout Lactation in Male Wistar Rats Normalizes the Decreased Density of Tyrosine Hydroxylase-Immunoreactive Fibers in the Stomach Caused by Mild Gestational Calorie Restriction

    Directory of Open Access Journals (Sweden)

    Nara Szostaczuk

    2018-03-01

    Full Text Available Introduction: Gestational under nutrition in rats has been shown to decrease expression of sympathetic innervation markers in peripheral tissues of offspring, including the stomach. This has been linked to lower gastric secretion and decreased circulating levels of ghrelin. Considering the critical role of leptin intake during lactation in preventing obesity and reversing adverse developmental programming effects, we aimed to find out whether leptin supplementation may reverse the above mentioned alterations caused by mild gestational calorie restriction.Methods: Three groups of male rats were studied at a juvenile age (25 days old and during adulthood (3 and 6 months old: the offspring of ad libitum fed dams (controls, the offspring of dams that were diet restricted (20% from days 1 to 12 of gestation (CR, and CR rats supplemented with a daily oral dose of leptin (equivalent to 5 times the average amount they could receive each day from maternal milk throughout lactation (CR-Leptin. The density of TyrOH-immunoreactive (TyrOH+ fibers and the levels of Tyrosine hydroxylase (TyrOH—used as potential markers of functional sympathetic innervation—were measured in stomach. Plasma leptin and ghrelin levels were also determined.Results: Twenty five-day-old CR rats, but not CR-Leptin rats, displayed lower density of TyrOH+ fibers (−46% and TyrOH levels (−47% in stomach compared to controls. Alterations in CR animals were mitigated at 6 months of age, and differences were not significant. Adult CR-Leptin animals showed higher plasma ghrelin levels than CR animals, particularly at 3 months (+16%, and a lower leptin/ghrelin ratio (−28 and −37% at 3 and 6 months, respectively.Conclusion: Leptin intake during lactation is able to reverse the alterations in the density of TyrOH+ fibers in the stomach and normalize the increased leptin/ghrelin ratio linked to a mild gestational calorie restriction in rats, supporting the relevance of leptin as an

  4. Protein metabolism in the rat cerebral cortex in vivo and in vitro as affected by the acquisition enhancing drug piracetam

    NARCIS (Netherlands)

    Nickolson, V.J.; Wolthuis, O.L.

    1976-01-01

    The effect of Piracetam on rat cerebral protein metabolism in vivo and in vitro was studied. It was found that the drug stimulates the uptake of labelled leucine by cerebral cortex slices, has no effect on the incorporation of leucine into cerebral protein, neither in slices nor in vivo, but

  5. Acute fluoride poisoning alters myocardial cytoskeletal and AMPK signaling proteins in rats.

    Science.gov (United States)

    Panneerselvam, Lakshmikanthan; Raghunath, Azhwar; Perumal, Ekambaram

    2017-02-15

    Our previous findings revealed that increased oxidative stress, apoptosis and necrosis were implicated in acute fluoride (F - ) induced cardiac dysfunction apart from hypocalcemia and hyperkalemia. Cardiac intermediate filaments (desmin and vimentin) and cytoskeleton linker molecule vinculin plays an imperative role in maintaining the architecture of cardiac cytoskeleton. In addition, AMPK is a stress activated kinase that regulates the energy homeostasis during stressed state. The present study was aimed to examine the role of cytoskeletal proteins and AMPK signaling molecules in acute F - induced cardiotoxicity in rats. In order to study this, male Wistar rats were treated with single oral doses of 45 and 90mg/kgF - for 24h. Acute F - intoxicated rats showed declined cytoskeletal protein expression of desmin, vimentin and vinculin in a dose dependent manner compared to control. A significant increase in phosphorylation of AMPKα (Thr172), AMPKß1 (Ser108) and Acetyl-coA carboxylase (ACC) (Ser79) in the myocardium and associated ATP deprivation were found in acute F - intoxicated rats. Further, ultra-structural studies confirmed myofibril lysis with interruption of Z lines, dilated sarcoplasmic reticulum and damaged mitochondrion were observed in both the groups of F - intoxicated rats. Taken together, these findings reveal that acute F - exposure causes sudden heart failure by altering the expression of cytoskeletal proteins and AMPK signaling molecules. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Rats free to select between pure protein and a fat-carbohydrate mix ingest high-protein mixed meals during the dark period and protein meals during the light period.

    Science.gov (United States)

    Makarios-Lahham, Lina; Roseau, Suzanne M; Fromentin, Gilles; Tome, Daniel; Even, Patrick C

    2004-03-01

    Rats that are allowed to select their diets [dietary self- selection (DSS)] often ingest >30% of their daily energy in the form of protein. Such an intake may seem unhealthy, but the consistency of this choice suggests that it is motivated by physiologic drives. To gain a clearer understanding of how protein selection is structured during DSS, we adapted 12 rats to a standard diet (14% Protein) and then allowed them to choose between two diets, i.e., total milk protein (P) and a mix of carbohydrates and lipids (FC). The protein intake during DSS rose above 40%; assuming an intermeal interval of 10 min, 70% of the energy intake occurred with meals that included both P and FC, with the sequence of FC followed by P preferred to the sequence of P followed by FC (70 vs. 30%, P energy intake during the light period was reduced to only 10% of the daily energy intake [vs. 30% with the control P14 diet or a with a high-protein diet (50%)], and 90% of the intake was in the form of pure protein meals. In complementary studies, we verified that the high protein intake also occurred when rats were offered casein and whey and was not due to the high palatability of the milk protein. We conclude that a specific feeding pattern accompanies high protein intake in rats allowed DSS. The mechanisms underlying this behavior and its potential beneficial/adverse consequences over the long term still must be clarified.

  7. Intake of Mung Bean Protein Isolate Reduces Plasma Triglyceride Level in Rats

    Directory of Open Access Journals (Sweden)

    Nobuhiko Tachibana

    2013-09-01

    Full Text Available ABSTRACTBackground: Mung bean is well known as a starch source, but the physiological effects of mung bean protein have received little attention. In this study, we isolated mung bean protein from de-starched mung bean solutions, and investigated its influence on lipid metabolism. Objective: The aim of this study is to clarify the influence of the lipid metabolism by consumption of mung bean protein isolate (MPIMethods: Diets containing either mung bean protein isolate (MPI or casein were fed to normal rats for 28 days.Results: Both groups ate the same amount of food, but the plasma triglyceride level, relative liver weight and liver lipid contents (cholesterol and triglyceride pool in the MPI group were significantly lower than in the casein group. In the MPI group, the expression of sterol regulatory-element binding factor 1 (SREBF1 mRNA in the liver was significantly different when compared with the casein group. The significantly lower levels of insulin and free fatty acids in the MPI-fed rats may be due to the regulation of genes related to lipid metabolism in the liver.Conclusions: These results suggest that MPI may improve the plasma lipid profile by normalizing insulin sensitivity.Keywords: mung bean, Vigna radiata L., 8S globulin, triglyceride, β-conglycinin, 7S globulin, insulin sensitivity, SREBF1

  8. Radioprotective effect of c-ski on rat skin fibroblast in vitro

    International Nuclear Information System (INIS)

    Liu Xia; Li Ping; Zhang En; Liu Ping; Zhou Ping; Zhou Yuanguo

    2006-01-01

    Objective: To examine radioprotective effect of c-ski on rat skin fibroblast in vitro and explore its possible mechanism. Methods: The effect of soft X-ray irradiation at dose varied from 2 to 8 Gy on cell apoptosis in rat skin fibroblast were determined by flow cytometry with Annexin-V-FITC-PI labelling. The effect of c-ski gene transfection on cell apoptosis was evaluated after soft X-ray irradiation of 4 Gy. The protein expressions of Bax and Bcl-2 after c-ski gene transfection were measured with the Western blot method. Results: Soft X-ray irradiation increases cell apoptosis, and the increase is proportional to the irradiation dose. Apoptosis ratio increases with time since the irradiation, and reaches its peak at 36h after the irradiation, c-ski gene was observed to markedly decrease apoptosis index at 24 h after soft X-ray irradiation of 4 Gy compared to the control group, significant increase of the protein expression of Bcl-2 was observed. C-ski gene was found no significant effect on the protein expression of Bax. Conclusion: c-ski gene can decrease radiation sensitivity of skin fibroblast, promoting Bcl-2 protein expression is one of its possible mechanism for this radioprotective effects. (authors)

  9. Concentration of rat brown adipose tissue uncoupling protein may not be correlated with 3H-GDP binding

    International Nuclear Information System (INIS)

    Henningfield, M.F.; Swick, A.G.; Swick, R.W.

    1986-01-01

    Rats fed diets low in protein or exposed to cold show an increase in brown adipose tissue (BAT) mitochondrial 3 H-GDP binding. To investigate this phenomenon further, the uncoupling protein associated with BAT function was measured immunochemically on nitrocellulose blots. Quantitation of uncoupling protein was achieved by densitometer scanning with a BioRad densitometer. Peaks were integrated with Chromatochart software and an Apple IIe computer. A standard curve of purified uncoupling protein (50 to 500 ng) was used to calculate uncoupling protein concentration. There is a 1.5-fold increase in uncoupling protein per mg of protein in BAT mitochondria from rats exposed to cold for 15 days. There was no decrease in uncoupling protein from rats exposed to the cold followed by 24 h at 27 0 C although 3 H-GDP binding had decreased by half. Rats fed diets containing either 5 or 15% lactalbumin for 3 weeks did not show differences in uncoupling protein concentration although 3 H-GDP binding was 1.5-fold greater in BAT mitochondria from the low protein group. These results indicate that GDP binding does not necessarily reflect the concentration of uncoupling protein in BAT mitochondria

  10. Whey protein concentrate supplementation protects rat brain against aging-induced oxidative stress and neurodegeneration.

    Science.gov (United States)

    Garg, Geetika; Singh, Sandeep; Singh, Abhishek Kumar; Rizvi, Syed Ibrahim

    2018-05-01

    Whey protein concentrate (WPC) is a rich source of sulfur-containing amino acids and is consumed as a functional food, incorporating a wide range of nutritional attributes. The purpose of this study is to evaluate the neuroprotective effect of WPC on rat brain during aging. Young (4 months) and old (24 months) male Wistar rats were supplemented with WPC (300 mg/kg body weight) for 28 days. Biomarkers of oxidative stress and antioxidant capacity in terms of ferric reducing antioxidant potential (FRAP), lipid hydroperoxide (LHP), total thiol (T-SH), protein carbonyl (PC), reactive oxygen species (ROS), nitric oxide (NO), and acetylcholinesterase (AChE) activity were measured in brain of control and experimental (WPC supplemented) groups. In addition, gene expression and histopathological studies were also performed. The results indicate that WPC augmented the level of FRAP, T-SH, and AChE in old rats as compared with the old control. Furthermore, WPC-treated groups exhibited significant reduction in LHP, PC, ROS, and NO levels in aged rats. WPC supplementation also downregulated the expression of inflammatory markers (tumor necrosis factor alpha, interleukin (IL)-1β, IL-6), and upregulated the expression of marker genes associated with autophagy (Atg3, Beclin-1, LC3B) and neurodegeneration (neuron specific enolase, Synapsin-I, MBP-2). The findings suggested WPC to be a potential functional nutritional food supplement that prevents the progression of age-related oxidative damage in Wistar rats.

  11. Naloxone-sensitive, haloperidol-sensitive, [3H](+)SKF-10047-binding protein partially purified from rat liver and rat brain membranes: an opioid/sigma receptor?

    Science.gov (United States)

    Tsao, L I; Su, T P

    1997-02-01

    A naloxone-sensitive, haloperidol-sensitive, [3H](+)SKF-10047-binding protein was partially purified from rat liver and rat brain membranes in an affinity chromatography originally designed to purify sigma receptors. Detergent-solubilized extracts from membranes were adsorbed to Sephadex G-25 resin containing an affinity ligand for sigma receptors: N-(2- 3,4-dichlorophenyl]ethyl)-N-(6-aminohexyl)-(2-[1-pyrrolidinyl]) ethylamine (DAPE). After eluting the resin with haloperidol, a protein that bound [3H](+)SKF-10047 was detected in the eluates. However, the protein was not the sigma receptor. [3H](+)SKF-10047 binding to the protein was inhibited by the following compounds in the order of decreasing potency: (+)pentazocine > (-) pentazocine > (+/-)cyclazocine > (-)morphine > (-)naloxone > haloperidol > (+)SKF-10047 > DADLE > (-)SKF-10047. Further, the prototypic sigma receptor ligands, such as 1,3-di-o-tolylguanidine (DTG), (+)3-PPP, and progesterone, bound poorly to the protein. Tryptic digestion and heat treatment of the affinity-purified protein abolished radioligand binding. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS/PAGE) of the partially-purified protein from the liver revealed a major diffuse band with a molecular mass of 31 kDa, a polypeptide of 65 kDa, and another polypeptide of > 97 kDa. This study demonstrates the existence of a novel protein in the rat liver and rat brain which binds opioids, benzomorphans, and haloperidol with namomolar affinity. The protein resembles the opioid/sigma receptor originally proposed by Martin et al. [(1976): J. Pharmacol. Exp. Ther., 197:517-532.]. A high degree of purification of this protein has been achieved in the present study.

  12. Marked increase in rat red blood cell membrane protein glycosylation by one-month treatment with a cafeteria diet

    Directory of Open Access Journals (Sweden)

    Laia Oliva

    2015-07-01

    Full Text Available Background and Objectives. Glucose, an aldose, spontaneously reacts with protein amino acids yielding glycosylated proteins. The compounds may reorganize to produce advanced glycosylation products, which regulatory importance is increasingly being recognized. Protein glycosylation is produced without the direct intervention of enzymes and results in the loss of function. Glycosylated plasma albumin, and glycosylated haemoglobin are currently used as index of mean plasma glucose levels, since higher glucose availability results in higher glycosylation rates. In this study we intended to detect the early changes in blood protein glycosylation elicited by an obesogenic diet.Experimental Design. Since albumin is in constant direct contact with plasma glucose, as are the red blood cell (RBC membranes, we analyzed their degree or glycosylation in female and male rats, either fed a standard diet or subjected to a hyper-energetic self-selected cafeteria diet for 30 days. This model produces a small increase in basal glycaemia and a significant increase in body fat, leaving the animals in the initial stages of development of metabolic syndrome. We also measured the degree of glycosylation of hemoglobin, and the concentration of glucose in contact with this protein, that within the RBC. Glycosylation was measured by colorimetric estimation of the hydroxymethylfurfural liberated from glycosyl residues by incubation with oxalate.Results. Plasma glucose was higher in cafeteria diet and in male rats, both independent effects. However, there were no significant differences induced by sex or diet in either hemoglobin or plasma proteins. Purified RBC membranes showed a marked effect of diet: higher glycosylation in cafeteria rats, which was more marked in females (not in controls. In any case, the number of glycosyl residues per molecule were higher in hemoglobin than in plasma proteins (after correction for molecular weight. The detected levels of glucose in

  13. Effect of Unripe Plantain (Musa paradisiaca) and Ginger (Zingiber officinale) on Renal Dysfunction in Streptozotocin-Induced Diabetic Rats.

    Science.gov (United States)

    Iroaganachi, Mercy; Eleazu, Chinedum; Okafor, Polycarp

    2015-03-20

    Although unripe plantain (Musa paradisiaca) and ginger (Zingiber officinale) are used as single plants to manage diabetes mellitus in Nigeria, the possibility of combining them in a typical diabetic diet and the glycemic response elicited as a result of such combination has not been investigated. To determine the effect of unripe plantain and ginger on serum total proteins, albumin, creatinine and urea levels of streptozotocin induced diabetic rats. Twenty four male albino rats were used and were divided into 4 groups of 6 rats each. Group 1 (non-diabetic) received standard rat feeds; Group 2 (diabetic) received standard rat feeds; Group 3 received unripe plantain pellets and Group 4 received unripe plantain+ginger pellets. There were significant increases (P=0.045) of both serum urea and creatinine, but significant decreases (P=0.045) of both serum total protein and albumin levels, in Group 2 rats compared with Group 1. There were significant decreases (P=0.033) of both serum urea and creatinine levels of Group 3 and 4 rats compared with Group 2. In addition, there were significant increases of both serum total protein and albumin levels (P=0.033) in Group 3 rats compared with Group 2, but the comparison of serum total protein and albumin levels between Group 4 and Group 2 did not reach the significant level (P=0.056 and P=0.065 for serum total protein and albumin levels, respectively. Combination of unripe plantain and ginger at the ratio used in the management of renal dysfunction in diabetics was not very effective compared with unripe plantain alone.

  14. Roux-en-Y gastric bypass surgery suppresses hypothalamic PTP1B protein level and alleviates leptin resistance in obese rats.

    Science.gov (United States)

    Liu, Jia-Yu; Mu, Song; Zhang, Shu-Ping; Guo, Wei; Li, Qi-Fu; Xiao, Xiao-Qiu; Zhang, Jun; Wang, Zhi-Hong

    2017-09-01

    The present study aimed to explore the effect of Roux-en-Y gastric bypass (RYGB) surgery on protein tyrosine phosphatase 1B (PTP1B) expression levels and leptin activity in hypothalami of obese rats. Obese rats induced by a high-fat diet (HFD) that underwent RYGB (n=11) or sham operation (SO, n=9), as well as an obese control cohort (Obese, n=10) and an additional normal-diet group (ND, n=10) were used. Food efficiency was measured at 8 weeks post-operation. Plasma leptin levels were evaluated and hypothalamic protein tyrosine phosphatase 1B (PTP1B) levels and leptin signaling activity were examined at the genetic and protein levels. The results indicated that food efficiency was typically lower in RYGB rats compared with that in the Obese and SO rats. In the RYGB group, leptin receptor expression and proopiomelanocortin was significantly higher, while Neuropeptide Y levels were lower than those in the Obese and SO groups. Furthermore, the gene and protein expression levels of PTP1B in the RYGB group were lower, while levels of phosphorylated signal transducer and activator of transcription 3 protein were much higher compared with those in the Obese and SO groups. In conclusion, RYGB surgery significantly suppressed hypothalamic PTP1B protein expression. PTP1B regulation may partially alleviate leptin resistance.

  15. Contractions activate hormone-sensitive lipase in rat muscle by protein kinase C and mitogen-activated protein kinase

    DEFF Research Database (Denmark)

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia

    2003-01-01

    and contractions. Adrenaline acts via cAMP-dependent protein kinase (PKA). The signalling mediating the effect of contractions is unknown and was explored in this study. Incubated soleus muscles from 70 g male rats were electrically stimulated to perform repeated tetanic contractions for 5 min. The contraction......Intramuscular triacylglycerol is an important energy store and is also related to insulin resistance. The mobilization of fatty acids from this pool is probably regulated by hormone-sensitive lipase (HSL), which has recently been shown to exist in muscle and to be activated by both adrenaline......-induced activation of HSL was abolished by the protein kinase C (PKC) inhibitors bisindolylmaleimide I and calphostin C and reduced 50% by the mitogen-activated protein kinase kinase (MEK) inhibitor U0126, which also completely blocked extracellular signal-regulated kinase (ERK) 1 and 2 phosphorylation. None...

  16. Shared and Unique Proteins in Human, Mouse and Rat Saliva Proteomes: Footprints of Functional Adaptation

    Directory of Open Access Journals (Sweden)

    Robert C. Karn

    2013-12-01

    Full Text Available The overall goal of our study was to compare the proteins found in the saliva proteomes of three mammals: human, mouse and rat. Our first objective was to compare two human proteomes with very different analysis depths. The 89 shared proteins in this comparison apparently represent a core of highly-expressed human salivary proteins. Of the proteins unique to each proteome, one-half to 2/3 lack signal peptides and probably are contaminants instead of less highly-represented salivary proteins. We recently published the first rodent saliva proteomes with saliva collected from the genome mouse (C57BL/6 and the genome rat (BN/SsNHsd/Mcwi. Our second objective was to compare the proteins in the human proteome with those we identified in the genome mouse and rat to determine those common to all three mammals, as well as the specialized rodent subset. We also identified proteins unique to each of the three mammals, because differences in the secreted protein constitutions can provide clues to differences in the evolutionary adaptation of the secretions in the three different mammals.

  17. Involvement of renal corpuscle microRNA expression on epithelial-to-mesenchymal transition in maternal low protein diet in adult programmed rats.

    Directory of Open Access Journals (Sweden)

    Letícia de Barros Sene

    Full Text Available Prior study shows that maternal protein-restricted (LP 16-wk-old offspring have pronounced reduction of nephron number and arterial hypertension associated with unchanged glomerular filtration rate, besides enhanced glomerular area, which may be related to glomerular hyperfiltration/overflow and which accounts for the glomerular filtration barrier breakdown and early glomerulosclerosis. In the current study, LP rats showed heavy proteinuria associated with podocyte simplification and foot process effacement. TGF-β1 glomerular expression was significantly enhanced in LP. Isolated LP glomeruli show a reduced level of miR-200a, miR-141, miR-429 and ZEB2 mRNA and upregulated collagen 1α1/2 mRNA expression. By western blot analyzes of whole kidney tissue, we found significant reduction of both podocin and nephrin and enhanced expression of mesenchymal protein markers such as desmin, collagen type I and fibronectin. From our present knowledge, these are the first data showing renal miRNA modulation in the protein restriction model of fetal programming. The fetal-programmed adult offspring showed pronounced structural glomerular disorders with an accentuated and advanced stage of fibrosis, which led us to state that the glomerular miR-200 family would be downregulated by TGF-β1 action inducing ZEB 2 expression that may subsequently cause glomeruli epithelial-to-mesenchymal transition.

  18. Effect of high carbohydrate or high protein diets on the uptake of [57Co] cyanocobalamin in the rat organs

    International Nuclear Information System (INIS)

    Inamdar-Deshmukh, A.B.; Jathar, V.S.

    1978-01-01

    The mean total body radiocyanocobalamin uptake in rats fed high casein or high carbohydrate diet did not show any significant difference, though there was marked variation in their body-weights. It seems that the body possesses the mechanism to maintain its B 12 store constant though the protein status altered at an early stage of under or over protein nutrition. (author)

  19. Brain protection by methylprednisolone in rats with spinal cord injury.

    Science.gov (United States)

    Chang, Chia-Mao; Lee, Ming-Hsueh; Wang, Ting-Chung; Weng, Hsu-Huei; Chung, Chiu-Yen; Yang, Jen-Tsung

    2009-07-01

    Traumatic spinal cord injury is clinically treated by high doses of methylprednisolone. However, the effect of methylprednisolone on the brain in spinal cord injury patients has been little investigated. This experimental study examined Bcl-2 and Bax protein expression and Nissl staining to evaluate an apoptosis-related intracellular signaling event and final neuron death, respectively. Spinal cord injury produced a significant apoptotic change and cell death not only in the spinal cord but also in the supraventricular cortex and hippocampal cornu ammonis 1 region in the rat brains. The treatment of methylprednisolone increased the Bcl-2/Bax ratio and prevented neuron death for 1-7 days after spinal cord injury. These findings suggest that rats with spinal cord injury show ascending brain injury that could be restricted through methylprednisolone management.

  20. Serum protein concentration in low-dose total body irradiation of normal and malnourished rats

    International Nuclear Information System (INIS)

    Viana, W.C.M.; Lambertz, D.; Borges, E.S.; Neto, A.M.O.; Lambertz, K.M.F.T.; Amaral, A.

    2016-01-01

    Among the radiotherapeutics' modalities, total body irradiation (TBI) is used as treatment for certain hematological, oncological and immunological diseases. The aim of this study was to evaluate the long-term effects of low-dose TBI on plasma concentration of total protein and albumin using prematurely and undernourished rats as animal model. For this, four groups with 9 animals each were formed: Normal nourished (N); Malnourished (M); Irradiated Normal nourished (IN); Irradiated Malnourished (IM). At the age of 28 days, rats of the IN and IM groups underwent total body gamma irradiation with a source of cobalt-60. Total protein and Albumin in the blood serum was quantified by colorimetry. This research indicates that procedures involving low-dose total body irradiation in children have repercussions in the reduction in body-mass as well as in the plasma levels of total protein and albumin. Our findings reinforce the periodic monitoring of total serum protein and albumin levels as an important tool in long-term follow-up of pediatric patients in treatments associated to total body irradiation. - Highlights: • Low-dose total body irradiation (TBI) in children have repercussions in their body-mass. • Long-term total protein and albumin levels are affected by TBI. • The monitoring of total protein and albumin levels are useful in the follow-up of TBI pediatric patients.