WorldWideScience

Sample records for protein-ligand van der

  1. Average and extreme multi-atom Van der Waals interactions: Strong coupling of multi-atom Van der Waals interactions with covalent bonding

    Directory of Open Access Journals (Sweden)

    Finkelstein Alexei V

    2007-07-01

    Full Text Available Abstract Background The prediction of ligand binding or protein structure requires very accurate force field potentials – even small errors in force field potentials can make a 'wrong' structure (from the billions possible more stable than the single, 'correct' one. However, despite huge efforts to optimize them, currently-used all-atom force fields are still not able, in a vast majority of cases, even to keep a protein molecule in its native conformation in the course of molecular dynamics simulations or to bring an approximate, homology-based model of protein structure closer to its native conformation. Results A strict analysis shows that a specific coupling of multi-atom Van der Waals interactions with covalent bonding can, in extreme cases, increase (or decrease the interaction energy by about 20–40% at certain angles between the direction of interaction and the covalent bond. It is also shown that on average multi-body effects decrease the total Van der Waals energy in proportion to the square root of the electronic component of dielectric permittivity corresponding to dipole-dipole interactions at small distances, where Van der Waals interactions take place. Conclusion The study shows that currently-ignored multi-atom Van der Waals interactions can, in certain instances, lead to significant energy effects, comparable to those caused by the replacement of atoms (for instance, C by N in conventional pairwise Van der Waals interactions.

  2. van der Waals

    Indian Academy of Sciences (India)

    University education was beyond reach for van der Waals as he had to work for earning his daily bread ... languages, which was a prerequisite for entering a University those days. van der Waals worked as a school ... take academic examinations at the University yet, van der Waals continued studying at Leiden. University ...

  3. Statistical Estimation of the Protein-Ligand Binding Free Energy Based On Direct Protein-Ligand Interaction Obtained by Molecular Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    Haruki Nakamura

    2012-09-01

    Full Text Available We have developed a method for estimating protein-ligand binding free energy (DG based on the direct protein-ligand interaction obtained by a molecular dynamics simulation. Using this method, we estimated the DG value statistically by the average values of the van der Waals and electrostatic interactions between each amino acid of the target protein and the ligand molecule. In addition, we introduced fluctuations in the accessible surface area (ASA and dihedral angles of the protein-ligand complex system as the entropy terms of the DG estimation. The present method included the fluctuation term of structural change of the protein and the effective dielectric constant. We applied this method to 34 protein-ligand complex structures. As a result, the correlation coefficient between the experimental and calculated DG values was 0.81, and the average error of DG was 1.2 kcal/mol with the use of the fixed parameters. These results were obtained from a 2 nsec molecular dynamics simulation.

  4. van der Waals

    Indian Academy of Sciences (India)

    in the world without learning the 'van der Waals equation'. ... theory”. Those days, however, molecules were assumed to be point masses occupying no .... was 36 to obtain his PhD due to the prevailing social conditions. van der Waals died in ...

  5. Hollandse zee- en scheepstermen in het Russisch: Anna Croiset van der Kop versus Reinder van der Meulen

    Directory of Open Access Journals (Sweden)

    Nadja Louwerse

    2010-03-01

    Full Text Available Dutch nautical terms in Russian. Anna Croiset van der Kop versus Reinder van der Meulen This article explores the controversy in the beginning of the 20th century between de Dutch slavists Anna Croiset van der Kop and Reindert van der Meulen, author of the book De Hollandsche Zee- en Scheepstermen in het Russisch (Dutch Nautical Terms in Russian. After publication, she reacted with an undeniably negative and unusually elaborate review (72 pages!, written not in Dutch, but in Russian and published in one of the most leading, scientific series in Russia. Van der Meulen has never directly reacted to this review: in 1959 he published a supplement to his earlier work from 1909: Nederlandse woorden in het Russisch (Dutch words in Russian, not mentioning Croiset van der Kops name, nor her review. Obviously he felt hurt by her merciless criticism. The article focuses on the motives underlying her strong reaction. It will be argued that her severe criticism was not really inspired by Van der Meulen’s subject, but by his failing research methods. Furthermore, it will be pointed out that this review seemed to offer her an opportunity to measure up to her Dutch colleagues and to present herself internationally as a slavist. On the basis of the now available data it is hard to say, which motives really brought Croiset van der Kop to write her review. Investigation of her archives, preserved in St- Petersburg, and until now hardly studied, may perhaps reveal her real motives.

  6. iview: an interactive WebGL visualizer for protein-ligand complex.

    Science.gov (United States)

    Li, Hongjian; Leung, Kwong-Sak; Nakane, Takanori; Wong, Man-Hon

    2014-02-25

    Visualization of protein-ligand complex plays an important role in elaborating protein-ligand interactions and aiding novel drug design. Most existing web visualizers either rely on slow software rendering, or lack virtual reality support. The vital feature of macromolecular surface construction is also unavailable. We have developed iview, an easy-to-use interactive WebGL visualizer of protein-ligand complex. It exploits hardware acceleration rather than software rendering. It features three special effects in virtual reality settings, namely anaglyph, parallax barrier and oculus rift, resulting in visually appealing identification of intermolecular interactions. It supports four surface representations including Van der Waals surface, solvent excluded surface, solvent accessible surface and molecular surface. Moreover, based on the feature-rich version of iview, we have also developed a neat and tailor-made version specifically for our istar web platform for protein-ligand docking purpose. This demonstrates the excellent portability of iview. Using innovative 3D techniques, we provide a user friendly visualizer that is not intended to compete with professional visualizers, but to enable easy accessibility and platform independence.

  7. B. J. van der Merwe . Pentateugtradisies in die prediking van ...

    African Journals Online (AJOL)

    B. J. van der Merwe . Pentateugtradisies in die prediking van Deuterojesaja. Proefschrift ter verkrijging van de graad van Doctor in de Godgeleerdheid aan de Rijkuniversiteit te Groningen. Uitg. J. B. Wolters, Groningen, Djakarta. 1955. 280 bls.

  8. Nucleotide insertion initiated by van der Waals interaction during ...

    Indian Academy of Sciences (India)

    renormalized van der Waals (vdW) interaction of a stronger type, the ..... can be used to determine the electrostatic dipole–dipole, .... water molecule and a surface oxygen atom. ..... understand proteins electronic interaction.54 Here, we.

  9. Van der Waals and Molecular Science

    International Nuclear Information System (INIS)

    Kox, A J

    1997-01-01

    For many years it has been a source of amazement to scientists and historians of science that no serious scientific biography of J D van der Waals existed. When, more than ten years ago, I became engaged in a correspondence with the Russian historian of science B E Yavelow on the topic of van der Waals, whose biography he was writing, I was both pleased and a bit puzzled. It was clear that Yavelow had not done any archival research in the Netherlands himself, yet he was intimately familiar with many obscure facts from the life of van der Waals. Naturally, I was very curious to see the end result, which appeared in 1985, but although the Amsterdam University Library obtained a copy, my limited knowledge of Russian kept me from forming a judgement on the book. Finally, after more than ten years, an English edition has appeared. The two original Russian authors have joined forces with the well known scientist J S Rowlinson (who earlier edited an English translation of van der Waals's dissertation) to produce a revised and enlarged English version of the Russian original. Now that I have finally been able to study this work, I must admit to being much impressed. Both the life and the work of van der Waals are dealt with in an exemplary way: the authors' command of primary and secondary sources is impressive, as is their understanding of the Dutch social and educational circumstances in the last century. Teaching and research at the newly-founded University of Amsterdam, as well as activities in the Academy of Sciences, are discussed in great and interesting detail. Van der Waals's education and rise from a simple teacher to one of the foremost theoretical physicists in Europe teaches us much about his personality as well as about the opportunities offered by the Dutch educational system. In their discussion of the development of van der Waals's ideas and their impact (including an interesting chapter on the reception in Russia) the authors are not afraid to go into

  10. Genetics Home Reference: van der Woude syndrome

    Science.gov (United States)

    ... What is the prognosis of a genetic condition? Genetic and Rare Diseases Information Center Frequency Van der Woude syndrome is believed to occur in 1 in 35,000 to 1 in 100,000 people, based on data from Europe and Asia. Van der Woude syndrome ...

  11. Dynamical Binding Modes Determine Agonistic and Antagonistic Ligand Effects in the Prostate-Specific G-Protein Coupled Receptor (PSGR).

    Science.gov (United States)

    Wolf, Steffen; Jovancevic, Nikolina; Gelis, Lian; Pietsch, Sebastian; Hatt, Hanns; Gerwert, Klaus

    2017-11-22

    We analysed the ligand-based activation mechanism of the prostate-specific G-protein coupled receptor (PSGR), which is an olfactory receptor that mediates cellular growth in prostate cancer cells. Furthermore, it is an olfactory receptor with a known chemically near identic antagonist/agonist pair, α- and β-ionone. Using a combined theoretical and experimental approach, we propose that this receptor is activated by a ligand-induced rearrangement of a protein-internal hydrogen bond network. Surprisingly, this rearrangement is not induced by interaction of the ligand with the network, but by dynamic van der Waals contacts of the ligand with the involved amino acid side chains, altering their conformations and intraprotein connectivity. Ligand recognition in this GPCR is therefore highly stereo selective, but seemingly lacks any ligand recognition via polar contacts. A putative olfactory receptor-based drug design scheme will have to take this unique mode of protein/ligand action into account.

  12. Dr Jacob van der Land, marine biologist extraordinary

    NARCIS (Netherlands)

    Bruggen, van A.C.

    2001-01-01

    This contribution is an attempt to sketch the life and works of Dr Jacob van der Land, curator of worms and chief marine biologist of the National Museum of Natural History, on the occasion of his official retirement. Born in 1935, Jacob van der Land read biology at Leiden University (1958-1964),

  13. Walter van der Cruijsen / Walter van der Cruijsen ; interv. Tilman Baumgärtel

    Index Scriptorium Estoniae

    Cruijsen, Walter van der

    2006-01-01

    1997. a. Berliinis tehtud intervjuu hollandi maali, võrgu- ja installatsioonikunstniku Walter van der Cruijseniga (sünd. 1958), kes kuulub Euroopa ühe edukama 1990-ndatel loodud võrguprojekti De Digitale Stad Amsterdam loojate hulka

  14. Van Der Woude Syndrome – A Report Of Two Cases | Umweni ...

    African Journals Online (AJOL)

    Two cases of Van der Woude syndrome, which presented in a mother and son are reported. The occurrence of isolated cleft palate in a sibling supports the evidence that Van der Woude syndrome is associated with a dominant autosomic gene of high penetrance and variable expressively. The occurrence of Van der ...

  15. van der Waals interactions in a magnetodielectric medium

    International Nuclear Information System (INIS)

    Spagnolo, S.; Dalvit, D. A. R.; Milonni, P. W.

    2007-01-01

    The van der Waals interaction between two ground-state atoms is calculated for two electrically or magnetically polarizable particles embedded in a dispersive magnetodielectric medium. Unlike previous calculations which infer the atom-atom interaction from the dilute-medium limit of the macroscopic, many-body van der Waals interaction, the interaction is calculated directly for the system of two atoms in a magnetodielectric medium. Two approaches are presented, the first based on the quantized electromagnetic field in a dispersive medium without absorption and the second on Green functions that allow for absorption. We show that the correct van der Waals interactions are obtained regardless of whether absorption in the host medium is explicitly taken into account

  16. Isotope separation by photodissociation of Van der Wall's molecules

    International Nuclear Information System (INIS)

    Lee, Y.T.

    1977-01-01

    A method of separating isotopes based on the dissociation of a Van der Waal's complex is described. A beam of molecules of a Van der Waal's complex containing, as one partner of the complex, a molecular species in which an element is present in a plurality of isotopes is subjected to radiation from a source tuned to a frequency which will selectively excite vibrational motion by a vibrational transition or through electronic transition of those complexed molecules of the molecular species which contain a desired isotope. Since the Van der Waal's binding energy is much smaller than the excitational energy of vibrational motion, the thus excited Van der Waal's complex dissociate into molecular components enriched in the desired isotope. The recoil velocity associated with vibrational to translational and rotational relaxation will send the separated molecules away from the beam whereupon the product enriched in the desired isotope can be separated from the constituents of the beam

  17. Materials perspective on Casimir and van der Waals interactions

    Science.gov (United States)

    Woods, L. M.; Dalvit, D. A. R.; Tkatchenko, A.; Rodriguez-Lopez, P.; Rodriguez, A. W.; Podgornik, R.

    2016-10-01

    Interactions induced by electromagnetic fluctuations, such as van der Waals and Casimir forces, are of universal nature present at any length scale between any types of systems. Such interactions are important not only for the fundamental science of materials behavior, but also for the design and improvement of micro- and nanostructured devices. In the past decade, many new materials have become available, which has stimulated the need for understanding their dispersive interactions. The field of van der Waals and Casimir forces has experienced an impetus in terms of developing novel theoretical and computational methods to provide new insights into related phenomena. The understanding of such forces has far reaching consequences as it bridges concepts in materials, atomic and molecular physics, condensed-matter physics, high-energy physics, chemistry, and biology. This review summarizes major breakthroughs and emphasizes the common origin of van der Waals and Casimir interactions. Progress related to novel ab initio modeling approaches and their application in various systems, interactions in materials with Dirac-like spectra, force manipulations through nontrivial boundary conditions, and applications of van der Waals forces in organic and biological matter are examined. The outlook of the review is to give the scientific community a materials perspective of van der Waals and Casimir phenomena and stimulate the development of experimental techniques and applications.

  18. Modified Van der Waals equation and law of corresponding states

    Science.gov (United States)

    Zhong, Wei; Xiao, Changming; Zhu, Yongkai

    2017-04-01

    It is well known that the Van der Waals equation is a modification of the ideal gas law, yet it can be used to describe both gas and liquid, and some important messages can be obtained from this state equation. However, the Van der Waals equation is not a precise state equation, and it does not give a good description of the law of corresponding states. In this paper, we expand the Van der Waals equation into its Taylor's series form, and then modify the fourth order expansion by changing the constant Virial coefficients into their analogous ones. Via this way, a more precise result about the law of corresponding states has been obtained, and the law of corresponding states can then be expressed as: in terms of the reduced variables, all fluids should obey the same equation with the analogous Virial coefficients. In addition, the system of 3 He with quantum effects has also been taken into consideration with our modified Van der Waals equation, and it is found that, for a normal system without quantum effect, the modification on ideal gas law from the Van der Waals equation is more significant than the real case, however, for a system with quantum effect, this modification is less significant than the real case, thus a factor is introduced in this paper to weaken or strengthen the modification of the Van der Waals equation, respectively.

  19. Eglon Hendrik van der Neer (1635/36 - 1703) : Zijn leven en werk

    NARCIS (Netherlands)

    Schavemaker, E.

    2009-01-01

    Eglon van der Neer. His Life and His Work In his own time Eglon van der Neer was highly successful. His acclaim endured throughout the eighteenth century. Nowadays he is rated as a second-rate master. Van der Neer was born in Amsterdam in 1635 or 1636 as the son of the now more famous landscape

  20. Jan van der Groen, hovenier van de Prins van Oranje. Nieuwe archiefgegevens over zijn leven

    Directory of Open Access Journals (Sweden)

    Lenneke Berkhout

    2017-08-01

    Jan van der Groen was something of an odd man out among the gardeners. Having started out as a florist, he would seem to have had no experience in garden management when he was appointed head gardener. Most other gardeners had worked in the job from an early age, thereby building a wider range of horticultural skills and knowledge. It is also probable that he had little or no knowledge of geometry at a time when gardeners were increasingly being required to lay out classical gardens. On the other hand, in addition to his considerable knowledge of flowers and plants, Van der Groen was acquainted with prevailing views on ‘outdoor life’; he was familiar with the foremost gardens in France and the Dutch Republic, either from illustrations or possibly even from personal experience. In this he probably differed from other gardeners. Van der Groen did not make any garden designs. His social position was comparable to that of other gardeners: they belonged to the petit bourgeoisie, a social middle class with a modicum of property, which fell between the small, wealthy upper class and the vast mass of poor people. Nor was there any difference in terms of the subordinate position within the stadholder household and the garden management organization. All gardeners were required to render detailed accounts to the Nassause Domeinraad, the body responsible for managing the Prince of Orange’s domains. Ultimately, it was the publication of his book that set Van der Groen apart from his peers. No other court gardener ever penned such a work.

  1. Mihkelson paljastas van der Lindeni ärihuvid Venemaal / Helga Koger

    Index Scriptorium Estoniae

    Koger, Helga, 1945-

    2007-01-01

    Riigikogu EL asjade komisjoni esimees Marko Mihkelson tutvustas materjale, mis viitavad hiljuti Eestit kritiseerinud Euroopa Nõukogu Parlamentaarse Assamblee presidendi Rene van der Linderi ärihuvile Venemaal. Mihkelsoni sõnade järgi võivad van der Lindenil olla majandushuvid seoses Vladimiri oblasti Sobinski rajooni rajatava tööstuspargiga

  2. Jacobus Schroeder van der Kolk (1797-1862): his resistance against materialism.

    Science.gov (United States)

    Eling, P

    1998-07-01

    Schroeder van der Kolk is regarded as the founder of Dutch psychiatry and neurology. This paper describes his vitalistic views on the relation between body and soul, as formulated by him in a series of lectures. These lectures were intended to counteract the materialistic tendencies of some of Schroeder van der Kolk's French and German contemporaries. It is argued that Schroeder van der Kolk can be regarded as the transition in Holland from the "Naturphilosophie" approach to the modern experimental approach in physiology. Copyright 1998 Academic Press.

  3. On the dynamic London-van der Waals interaction

    International Nuclear Information System (INIS)

    Guzman, A.

    2003-08-01

    We present a theory of atomic reflection by evanescent waves in the quantized electromagnetic field vacuum that yields an analytical expression for the radiation pressure resulting from the combined effect of the evanescent field and spontaneous emission. The dynamic London-van der Waals potential between atoms and a dielectric wall is introduced as the effective interaction between the induced oscillating atomic dipole and its dipole image. Dissipative effects due to the imaginary part of the London-van der Waals potential are predicted. (author)

  4. Disaini ja rahvaste saatusest / Daniel Van der Velden ; interv. Kristjan Mändmaa

    Index Scriptorium Estoniae

    Van der Velden, Daniel

    2008-01-01

    17.-27. X 2008 oli Eesti Kunstiakadeemias näitus "Marsilt. Omaalgatuslikud projektid graafilises disainis". Kuraatorid: tšehhi disainerid Adam Machacek ja Radim Peshko. 17. X esinesid EKA saalis loengutega James Goggin Londoni firmast Practice ja Daniel van der Velden Hollandi disainikollektiivist Metahaven. 16. V osales D. van der Velden Eesti Disainiinstituudi korraldatud kohabrändingu-teemalises ümarlauas. D. van der Velden disaini, poliitika ja kohabrändingu tulevikust, Metahaveni disainitöödest

  5. Disaini ja rahvaste saatusest / Daniel Van der Velden ; intervjueerinud Kristjan Mändmaa

    Index Scriptorium Estoniae

    Van der Velden, Daniel

    2011-01-01

    17.-27. X 2008 oli Eesti Kunstiakadeemias näitus "Marsilt. Omaalgatuslikud projektid graafilises disainis". Kuraatorid: tšehhi disainerid Adam Machacek ja Radim Peshko. 17. X esinesid EKA saalis loengutega James Goggin Londoni firmast Practice ja Daniel van der Velden Hollandi disainikollektiivist Metahaven. 16. V osales D. van der Velden Eesti Disainiinstituudi korraldatud kohabrändingu-teemalises ümarlauas. D. van der Velden disaini, poliitika ja kohabrändingu tulevikust, Metahaveni disainitöödest

  6. Simon van der Meer retires

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    CERN's big Auditorium was packed on Friday 23 November for a 'Simon van der Meer Feest' to mark the formal retirement of the gifted Dutch accelerator physicist who has made so many valuable contributions to his field and to CERN's success

  7. Een concentratieprobleem bij B.J. van der Walt

    Directory of Open Access Journals (Sweden)

    S. Griffioen

    2010-07-01

    Full Text Available B.J. van der Walt’s concentration problem This contribution probes the concept of secularism, a key notion of B.J. van der Walt’s “Transforming power” (2007. It is found that Van der Walt’s interpretation of secularism rests on a double assumption. The first assumption is that human nature is intrinsically religious. Humans cannot live without putting their trust in something. The second is that this religious nature manifests itself in “concentrated” ways, rather than dispersing itself over a plurality of objects. These assumptions in tandem explain why Van der Walt holds the view that atheism, agnosticism and even overt indifference in matters of faith are at heart propelled by convictions that share the main features of positive religions. It also explains why he assumes that all these convictions tend towards one and the same goal: to gain dominance in the public realm. This article is sympathetic towards the first assumption, and skeptical towards the second. It is argued that the “concentration- thesis” fails to do justice to world and life-views that obviously do not claim total allegiance. To illustrate this point it turns to the phenomenon of “multiple religious participation”, as well as to different strands within contemporary humanism. It concludes that the main problem may well be that secular culture has little to offer to satisfy the innate religious drive in humankind.

  8. Role of ligand-ligand vs. core-core interactions in gold nanoclusters.

    Science.gov (United States)

    Milowska, Karolina Z; Stolarczyk, Jacek K

    2016-05-14

    The controlled assembly of ligand-coated gold nanoclusters (NCs) into larger structures paves the way for new applications ranging from electronics to nanomedicine. Here, we demonstrate through rigorous density functional theory (DFT) calculations employing novel functionals accounting for van der Waals forces that the ligand-ligand interactions determine whether stable assemblies can be formed. The study of NCs with different core sizes, symmetry forms, ligand lengths, mutual crystal orientations, and in the presence of a solvent suggests that core-to-core van der Waals interactions play a lesser role in the assembly. The dominant interactions originate from combination of steric effects, augmented by ligand bundling on NC facets, and related to them changes in electronic properties induced by neighbouring NCs. We also show that, in contrast to standard colloidal theory approach, DFT correctly reproduces the surprising experimental trends in the strength of the inter-particle interaction observed when varying the length of the ligands. The results underpin the importance of understanding NC interactions in designing gold NCs for a specific function.

  9. Quantum synchronization of quantum van der Pol oscillators with trapped ions.

    Science.gov (United States)

    Lee, Tony E; Sadeghpour, H R

    2013-12-06

    The van der Pol oscillator is the prototypical self-sustained oscillator and has been used to model nonlinear behavior in biological and other classical processes. We investigate how quantum fluctuations affect phase locking of one or many van der Pol oscillators. We find that phase locking is much more robust in the quantum model than in the equivalent classical model. Trapped-ion experiments are ideally suited to simulate van der Pol oscillators in the quantum regime via sideband heating and cooling of motional modes. We provide realistic experimental parameters for 171Yb+ achievable with current technology.

  10. Dr Jacob van der Land, marine biologist extraordinary

    OpenAIRE

    Bruggen, van, A.C.

    2001-01-01

    This contribution is an attempt to sketch the life and works of Dr Jacob van der Land, curator of worms and chief marine biologist of the National Museum of Natural History, on the occasion of his official retirement. Born in 1935, Jacob van der Land read biology at Leiden University (1958-1964), where he obtained his Ph.D. in 1970 on a treatise on the Priapulida under the supervision of Prof. Dr L.D. Brongersma. In 1964 he was appointed curator of worms in the museum. Later on he took over l...

  11. Cosmological models constructed by van der Waals fluid approximation and volumetric expansion

    Science.gov (United States)

    Samanta, G. C.; Myrzakulov, R.

    The universe modeled with van der Waals fluid approximation, where the van der Waals fluid equation of state contains a single parameter ωv. Analytical solutions to the Einstein’s field equations are obtained by assuming the mean scale factor of the metric follows volumetric exponential and power-law expansions. The model describes a rapid expansion where the acceleration grows in an exponential way and the van der Waals fluid behaves like an inflation for an initial epoch of the universe. Also, the model describes that when time goes away the acceleration is positive, but it decreases to zero and the van der Waals fluid approximation behaves like a present accelerated phase of the universe. Finally, it is observed that the model contains a type-III future singularity for volumetric power-law expansion.

  12. The scholar and the state: in search of van der Waerden

    CERN Document Server

    Soifer, Alexander

    2015-01-01

    Bartel Leendert van der Waerden made major contributions to algebraic geometry, abstract algebra, quantum mechanics, and other fields. He liberally published on the history of mathematics. His 2-volume work Modern Algebra is one of the most influential and popular mathematical books ever written. It is therefore surprising that no monograph has been dedicated to his life and work. Van der Waerden’s record is complex. In attempting to understand his life, the author assembled thousands of documents from numerous archives in Germany, the Netherlands, Switzerland and the United States which revealed fascinating and often surprising new information about van der Waerden. Soifer traces Van der Waerden’s early years in a family of great Dutch public servants, his life as professor in Leipzig during the entire Nazi period, and his personal and professional friendship with one of the great physicists Werner Heisenberg. We encounter heroes and villains and a much more numerous group in between these two extremes. ...

  13. Beam-Beam effects at the CMS BRIL van-der-Meer scans

    CERN Document Server

    CMS Collaboration

    2017-01-01

    The CMS Beam Radiation Instrumentation and Luminosity Project (BRIL) is devoted to the simulation and measurement of luminosity, beam conditions and radiation fields in the CMS Experiment at CERN. The project is engaged in operating and developing new detectors, compatible with the high luminosity experimental environments at the LHC. BRIL operates several detectors based on different physical principles and technologies. The detectors are calibrated using van-der-Meer scans to measure the luminosity that is a fundamental quantity of the LHC beam. In van-der-Meer scans the count rate in a detector is measured as a function of the distance between beams in the plane perpendicular to beam direction, to extract the underlying beam overlap area. The goal of the van-der-Meer scans is to obtain the calibration constant for each luminometer to be used at calibration then in physics data taking runs. The note presents the overview of beam-beam effects at the van-der-Meer scan and the corresponding corrections that sh...

  14. The role of van der Waals interactions in chemical reactions

    International Nuclear Information System (INIS)

    Takayanagi, Toshiyuki

    1998-01-01

    We are studying the role of van der Waals interactions in the chemical reactions from the theoretical view point, especially, a case related to the tunnel effect. The fist case that the cumulative reaction probability depends on the tunnel effect was increased by the van der waals force. This case was proved by theoretical calculation of the reaction rate constant of the reaction: Mu + F2 → MuF + F. The second case was that a van der Waals well was so deep that pseudo bound state was observed in the reaction: F + H 2 → HF + H. A van der Waals complex such as AB(v=j=0)...C was excited to the resonance state of AB(vij)...C and A...BC(v,j) by laser, than the resonance state proceeded to AB + C (predissociation) or A + BC(pre-reaction). We succeeded for the first time to calculate theoretically the pre-reaction by the real three dimentional potential curve. The pre-reaction can be observed only the case that the tunnel probability is larger than the non-adiabatic transition probability. The chemical reactions in solid were explained, too. (S.Y.)

  15. Molecule Matters van der Waals Molecules

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 12. Molecule Matters van der Waals Molecules - Noble Gas Clusters are London Molecules! E Arunan. Feature Article Volume 14 Issue 12 December 2009 pp 1210-1222 ...

  16. Implication of two-coupled differential Van der Pol Duffing oscillator in weak signal detection

    International Nuclear Information System (INIS)

    Peng Hanghang; Xu Xuemei; Yang Bingchu; Yin Linzi

    2016-01-01

    The principle of the Van der Pol Duffing oscillator for state transition and for determining critical value is described, which has been studied to indicate that the application of the Van der Pol Duffing oscillator in weak signal detection is feasible. On the basis of this principle, an improved two-coupled differential Van der Pol Duffing oscillator is proposed which can identify signals under any frequency and ameliorate signal-to-noise ratio (SNR). The analytical methods of the proposed model and the construction of the proposed oscillator are introduced in detail. Numerical experiments on the properties of the proposed oscillator compared with those of the Van der Pol Duffing oscillator are carried out. Our numerical simulations have confirmed the analytical treatment. The results demonstrate that this novel oscillator has better detection performance than the Van der Pol Duffing oscillator. (author)

  17. Implication of Two-Coupled Differential Van der Pol Duffing Oscillator in Weak Signal Detection

    Science.gov (United States)

    Peng, Hang-hang; Xu, Xue-mei; Yang, Bing-chu; Yin, Lin-zi

    2016-04-01

    The principle of the Van der Pol Duffing oscillator for state transition and for determining critical value is described, which has been studied to indicate that the application of the Van der Pol Duffing oscillator in weak signal detection is feasible. On the basis of this principle, an improved two-coupled differential Van der Pol Duffing oscillator is proposed which can identify signals under any frequency and ameliorate signal-to-noise ratio (SNR). The analytical methods of the proposed model and the construction of the proposed oscillator are introduced in detail. Numerical experiments on the properties of the proposed oscillator compared with those of the Van der Pol Duffing oscillator are carried out. Our numerical simulations have confirmed the analytical treatment. The results demonstrate that this novel oscillator has better detection performance than the Van der Pol Duffing oscillator.

  18. Oscillator representation and generalized van der Waals Hamiltonians

    International Nuclear Information System (INIS)

    Dinejkhan, M.

    1996-01-01

    The method called the oscillator representation is extended to calculate the energy spectrum of bound state described by axially symmetrical potentials in the parabolic system coordinates. In particular, the method is applied to calculate the energy of the ground and excited states of the hydrogen atom in the uniform electric field and van der Waals field. The method gives the perturbation formulas for the analytic spectrum of the hydrogen atom in the generalized van der Waals field and defined oscillator strengths for transitions from the ground state to the perturbed manifold n=10, m=0. 14 refs., 1 fig

  19. J.T. van der Kemp and Eighteenth century coded subjectivity | Smit ...

    African Journals Online (AJOL)

    It then proceeds to an analysis of the impact of J.T. van der Kemp, 1799-1804. Theoretically I draw on the distinction between morality and ethics by Michel Foucault as well as his theorising of eighteenth century representational thought. Keywords: J.T. van der Kemp, morality, ethics, models for missionary engagement, ...

  20. Cosmological models described by a mixture of van der Waals fluid and dark energy

    International Nuclear Information System (INIS)

    Kremer, G.M.

    2003-01-01

    The Universe is modeled as a binary mixture whose constituents are described by a van der Waals fluid and by a dark energy density. The dark energy density is considered either as quintessence or as the Chaplygin gas. The irreversible processes concerning the energy transfer between the van der Waals fluid and the gravitational field are taken into account. This model can simulate (a) an inflationary period where the acceleration grows exponentially and the van der Waals fluid behaves like an inflaton, (b) an accelerated period where the acceleration is positive but it decreases and tends to zero whereas the energy density of the van der Waals fluid decays, (c) a decelerated period which corresponds to a matter dominated period with a non-negative pressure, and (d) a present accelerated period where the dark energy density outweighs the energy density of the van der Waals fluid

  1. Dynamical screening of the van der Waals interaction between graphene layers

    International Nuclear Information System (INIS)

    Dappe, Y J; Bolcatto, P G; Ortega, J; Flores, F

    2012-01-01

    The interaction between graphene layers is analyzed combining local orbital DFT and second order perturbation theory. For this purpose we use the linear combination of atomic orbitals-orbital occupancy (LCAO-OO) formalism, that allows us to separate the interaction energy as the sum of a weak chemical interaction between graphene layers plus the van der Waals interaction (Dappe et al 2006 Phys. Rev. B 74 205434). In this work, the weak chemical interaction is calculated by means of corrected-LDA calculations using an atomic-like sp 3 d 5 basis set. The van der Waals interaction is calculated by means of second order perturbation theory using an atom-atom interaction approximation and the atomic-like-orbital occupancies. We also analyze the effect of dynamical screening in the van der Waals interaction using a simple model. We find that this dynamical screening reduces by 40% the van der Waals interaction. Taking this effect into account, we obtain a graphene-graphene interaction energy of 70 ± 5 meV/atom in reasonable agreement with the experimental evidence.

  2. Dynamical screening of the van der Waals interaction between graphene layers.

    Science.gov (United States)

    Dappe, Y J; Bolcatto, P G; Ortega, J; Flores, F

    2012-10-24

    The interaction between graphene layers is analyzed combining local orbital DFT and second order perturbation theory. For this purpose we use the linear combination of atomic orbitals-orbital occupancy (LCAO-OO) formalism, that allows us to separate the interaction energy as the sum of a weak chemical interaction between graphene layers plus the van der Waals interaction (Dappe et al 2006 Phys. Rev. B 74 205434). In this work, the weak chemical interaction is calculated by means of corrected-LDA calculations using an atomic-like sp(3)d(5) basis set. The van der Waals interaction is calculated by means of second order perturbation theory using an atom-atom interaction approximation and the atomic-like-orbital occupancies. We also analyze the effect of dynamical screening in the van der Waals interaction using a simple model. We find that this dynamical screening reduces by 40% the van der Waals interaction. Taking this effect into account, we obtain a graphene-graphene interaction energy of 70 ± 5 meV/atom in reasonable agreement with the experimental evidence.

  3. Chaos excited chaos synchronizations of integral and fractional order generalized van der Pol systems

    International Nuclear Information System (INIS)

    Ge Zhengming; Hsu Maoyuan

    2008-01-01

    In this paper, chaos excited chaos synchronizations of generalized van der Pol systems with integral and fractional order are studied. Synchronizations of two identified autonomous generalized van der Pol chaotic systems are obtained by replacing their corresponding exciting terms by the same function of chaotic states of a third nonautonomous or autonomous generalized van der Pol system. Numerical simulations, such as phase portraits, Poincare maps and state error plots are given. It is found that chaos excited chaos synchronizations exist for the fractional order systems with the total fractional order both less than and more than the number of the states of the integer order generalized van der Pol system

  4. Thermal response in van der Waals heterostructures

    KAUST Repository

    Gandi, Appala

    2016-11-21

    We solve numerically the Boltzmann transport equations of the phonons and electrons to understand the thermoelectric response in heterostructures of M2CO2 (M: Ti, Zr, Hf) MXenes with transition metal dichalcogenide monolayers. Low frequency optical phonons are found to occur as a consequence of the van der Waals bonding, contribute significantly to the thermal transport, and compensate for the reduced contributions of the acoustic phonons (increased scattering cross-sections in heterostructures), such that the thermal conductivities turn out to be similar to those of the bare MXenes. Our results indicate that the important superlattice design approach of thermoelectrics (to reduce the thermal conductivity) may be effective for two-dimensional van der Waals materials when used in conjunction with intercalation. © 2016 IOP Publishing Ltd.

  5. RANK/RANK-Ligand/OPG: Ein neuer Therapieansatz in der Osteoporosebehandlung

    Directory of Open Access Journals (Sweden)

    Preisinger E

    2007-01-01

    Full Text Available Die Erforschung der Kopplungsmechanismen zur Osteoklastogenese, Knochenresorption und Remodellierung eröffnete neue mögliche Therapieansätze in der Behandlung der Osteoporose. Eine Schlüsselrolle beim Knochenabbau spielt der RANK- ("receptor activator of nuclear factor (NF- κB"- Ligand (RANKL. Durch die Bindung von RANKL an den Rezeptor RANK wird die Knochenresorption eingeleitet. OPG (Osteoprotegerin sowie der für den klinischen Gebrauch entwickelte humane monoklonale Antikörper (IgG2 Denosumab blockieren die Bindung von RANK-Ligand an RANK und verhindern den Knochenabbau.

  6. Strange attractors and synchronization dynamics of coupled Van der Pol-Duffing oscillators

    International Nuclear Information System (INIS)

    Yamapi, R.; Filatrella, G.

    2006-07-01

    We consider in this paper the dynamics and synchronization of coupled chaotic Van der Pol-Duffing systems. The stability of the synchronization process between two coupled autonomous Van der Pol model is first analyzed analytically and numerically, before following the problem of synchronizing chaos both on the same and different chaotic orbits of two coupled Van der Pol-Duffing systems. The stability boundaries of the synchronization process are derived and the effects of the amplitude of the periodic perturbation of the coupling parameter on these boundaries are analyzed. The results are provided on the stability map in the (q, K) plane. (author)

  7. Dynamical property analysis of fractionally damped van der pol oscillator and its application

    Science.gov (United States)

    Zhong, Qiuhui; Zhang, Chunrui

    2012-01-01

    In this paper, the fractionally damped van der pol equation was studied. Firstly, the fractionally damped van der pol equation was transformed into a set of integer order equations. Then the Lyapunov exponents diagram was given. Secondly, it was transformed into a set of fractional integral equations and solved by a predictor-corrector method. The time domain diagrams and phase trajectory were used to describe the dynamic behavior. Finally, the fractionally damped van der pol equation was used to detect a weak signal.

  8. A comparison of hydrogen-bonded and van der Waals isomers of phenolṡṡnitrogen and phenolṡṡcarbon monoxide: An ab initio study

    Science.gov (United States)

    Chapman, Darren M.; Müller-Dethlefs, Klaus; Peel, J. Barrie

    1999-08-01

    The hydrogen-bonded and van der Waals isomers of phenolṡṡnitrogen and phenolṡṡcarbon monoxide in their neutral electronic (S0) and cation ground state (D0) were studied using ab initio HF/6-31G*, MP2/6-31G*, and B3LYP/6-31G* methods. The hydrogen-bonded isomers have the ligand bound via the hydroxyl group of the phenol ring, while the van der Waals isomers studied have the ligand located above the aromatic ring. For both complexes, the hydrogen-bonded isomer was found to be the most stable form for both the S0 and the D0 states. For phenolṡṡcarbon monoxide, twice as many isomers as compared to phenolṡṡnitrogen were found. The hydrogen-bonded isomer with the carbon end bonded to the hydroxyl group was the most stable structure for both the S0 and the D0 states.

  9. Quantum field theory of van der Waals friction

    International Nuclear Information System (INIS)

    Volokitin, A. I.; Persson, B. N. J.

    2006-01-01

    van der Waals friction between two semi-infinite solids, and between a small neutral particle and semi-infinite solid is studied using thermal quantum field theory in the Matsubara formulation. We show that the friction to linear order in the sliding velocity can be obtained from the equilibrium Green functions and that our treatment can be extended for bodies with complex geometry. The calculated friction agrees with the friction obtained using a dynamical modification of the Lifshitz theory, which is based on the fluctuation-dissipation theorem. We show that it should be possible to measure the van der Waals friction in noncontact friction experiment using state-of-the-art equipment

  10. NATO Advanced Research Workshop on Dynamics of Polyatomic Van der Waals Complexes

    CERN Document Server

    Janda, Kenneth

    1991-01-01

    This publication is the Proceedings of the NATO Advanced Research Workshop (ARW) on the Dynamics of Polyatomic Van der Waals Molecules held at the Chateau de Bonas, Castera-Verduzan, France, from August 21 through August 26, 1989. Van der Waals complexes provide important model problems for understanding energy transfer and dissipation. These processes can be described in great detail for Van der Waals complexes, and the insight gained from such studies can be applied to more complicated chemical problems that are not amenable to detailed study. The workshop concentrated on the current questions and future prospects for extend­ ing our highly detailed knowledge of triatomic Van der Waals molecule dynamics to polyatomic molecules and clusters (one molecule surrounded by several, or up to sev­ eral tens of, atoms). Both experimental and theoretical studies were discussed, with particular emphasis on the dynamical behavior of dissociation as observed in the dis­ tributions of quantum states of the dissociatio...

  11. Professor Willem van der Angeliaan / Aive Sarjas

    Index Scriptorium Estoniae

    Sarjas, Aive

    2010-01-01

    Läänemaal Koluvere hooldekodus kord nädalas tegevusteraapia teenust osutavast väikesest šetlandi tõugu ruunast Willem van der Angeliaanist ning tegevusterapeudi Moonika Salumaa tegevusteraapias kasutatavatest teooriatest ja meetoditest

  12. Augmented van der Waals Equations of State: SAFT-VR versus Yukawa Based van der Waals Equation

    Czech Academy of Sciences Publication Activity Database

    Nezbeda, Ivo; Melnyk, R.; Trokhymchuk, A.

    2011-01-01

    Roč. 309, č. 2 (2011), s. 174-178 ISSN 0378-3812 R&D Projects: GA AV ČR IAA400720710 Institutional research plan: CEZ:AV0Z40720504 Keywords : perturbation theory * SAFT-VR * augmented van der Waals Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.139, year: 2011

  13. Molecule Matters van der Waals Molecules

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 7. Molecule Matters van der Waals Molecules - Rg•••HF Complexes are Debye Molecules! E Arunan. Feature Article Volume 15 Issue 7 July 2010 pp 667-674. Fulltext. Click here to view fulltext PDF. Permanent link:

  14. Resonance oscillations of nonreciprocal long-range van der Waals forces between atoms in electromagnetic fields

    Science.gov (United States)

    Sherkunov, Yury

    2018-03-01

    We study theoretically the van der Waals interaction between two atoms out of equilibrium with an isotropic electromagnetic field. We demonstrate that at large interatomic separations, the van der Waals forces are resonant, spatially oscillating, and nonreciprocal due to resonance absorption and emission of virtual photons. We suggest that the van der Waals forces can be controlled and manipulated by tuning the spectrum of artificially created random light.

  15. Concurrent Van der Woude syndrome and Turner syndrome: A case report.

    Science.gov (United States)

    Los, Evan; Baines, Hayley; Guttmann-Bauman, Ines

    2017-01-01

    Most cases of Van der Woude syndrome are caused by a mutation to interferon regulatory factor 6 on chromosome 1. Turner syndrome is caused by complete or partial absence of the second sex chromosome in girls. We describe a unique case of the two syndromes occurring concurrently though apparently independently in a girl with Van der Woude syndrome diagnosed at birth and Turner syndrome at 14 years 9 months. Short stature was initially misattributed to Van der Woude syndrome and pituitary insufficiency associated with clefts before correctly diagnosing Turner syndrome. We discuss the prevalence of delayed diagnosis of Turner syndrome, the rarity of reports of concurrent autosomal chromosome mutation and sex chromosome deletion, as well as the need to consider the diagnosis of Turner syndrome in all girls with short stature regardless of prior medical history.

  16. Cluster ions and van der Waals molecules

    CERN Document Server

    Smirnov, Boris M

    1992-01-01

    This review discusses current ideas in the physics and chemistry of cluster ions and Van der Waals molecules as well as presenting numerical data on their parameters and the processes involving them. It is also a detailed reference on basic data relating to many species.

  17. A New Method for Suppressing Periodic Narrowband Interference Based on the Chaotic van der Pol Oscillator

    Science.gov (United States)

    Lu, Jia; Zhang, Xiaoxing; Xiong, Hao

    The chaotic van der Pol oscillator is a powerful tool for detecting defects in electric systems by using online partial discharge (PD) monitoring. This paper focuses on realizing weak PD signal detection in the strong periodic narrowband interference by using high sensitivity to the periodic narrowband interference signals and immunity to white noise and PD signals of chaotic systems. A new approach to removing the periodic narrowband interference by using a van der Pol chaotic oscillator is described by analyzing the motion characteristic of the chaotic oscillator on the basis of the van der Pol equation. Furthermore, the Floquet index for measuring the amplitude of periodic narrowband signals is redefined. The denoising signal processed by the chaotic van der Pol oscillators is further processed by wavelet analysis. Finally, the denoising results verify that the periodic narrowband and white noise interference can be removed efficiently by combining the theory of the chaotic van der Pol oscillator and wavelet analysis.

  18. Quark confinement potential and color Van der Waals force

    International Nuclear Information System (INIS)

    Zheng Yuming; Hua Daping; Liu Zuhua

    1985-01-01

    The color-analog Van der Waals force between two hadrons is studied by use of the coupling channel resonating group method in the framework of the Gaussian-type quark confinement potential. The problem of the boundary values for the two channel coupling differential equations is changed to the problem of the initial values. The equations are solved numerically by use of the Gear mehtod. The calculated results show that there is no color Van der Waals force between hadrons in the confinement potential model. This indicates that the confinement potential model not only can describe the internal structure of hadrons but also can be used to calculate the hadron-hadron interactions if the quark confinement potential is chosen properly

  19. Competition of van der Waals and chemical forces on gold–sulfur surfaces and nanoparticles

    DEFF Research Database (Denmark)

    Reimers, Jeffrey R.; Ford, Michael J.; Marcuccio, Sebastian M.

    2017-01-01

    Chemists generally believe that covalent and ionic bonds form much stronger links between atoms than the van der Waals force does. However, this is not always so. We present cases in which van der Waals dispersive forces introduce new competitive bonding possibilities rather than just modulating...

  20. Higher-accuracy van der Waals density functional

    DEFF Research Database (Denmark)

    Lee, Kyuho; Murray, Éamonn D.; Kong, Lingzhu

    2010-01-01

    We propose a second version of the van der Waals density functional of Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)], employing a more accurate semilocal exchange functional and the use of a large-N asymptote gradient correction in determining the vdW kernel. The predicted binding energy...

  1. Van der Waals black hole

    Directory of Open Access Journals (Sweden)

    Aruna Rajagopal

    2014-10-01

    Full Text Available In the context of extended phase space, where the negative cosmological constant is treated as a thermodynamic pressure in the first law of black hole thermodynamics, we find an asymptotically AdS metric whose thermodynamics matches exactly that of the Van der Waals fluid. We show that as a solution of Einstein's equations, the corresponding stress energy tensor obeys (at least for certain range of metric parameters all three weak, strong, and dominant energy conditions.

  2. A tribute to H.W. van der Merwe: Peace builder, colleague, and friend

    African Journals Online (AJOL)

    Centre for Conflict Resolution at the University of Cape Town) for 21 years, where the main focus of his work and H.W. van der Merwe's was conflict and peace studies (CAPS). (More about him on the first page of his article in this issue.) A tribute to H.W. van der Merwe: Peace builder, colleague, and friend. Ampie Muller* ...

  3. van der Waals interaction between a microparticle and a single-walled carbon nanotube

    International Nuclear Information System (INIS)

    Blagov, E. V.; Mostepanenko, V. M.; Klimchitskaya, G. L.

    2007-01-01

    The Lifshitz-type formulas describing the free energy and the force of the van der Waals interaction between an atom (molecule) and a single-walled carbon nanotube are obtained. The single-walled nanotube is considered as a cylindrical sheet carrying a two-dimensional free-electron gas with appropriate boundary conditions on the electromagnetic field. The obtained formulas are used to calculate the van der Waals free energy and force between a hydrogen atom (molecule) and single-walled carbon nanotubes of different radii. Comparison studies of the van der Waals interaction of hydrogen atoms with single-walled and multiwalled carbon nanotubes show that depending on atom-nanotube separation distance, the idealization of graphite dielectric permittivity is already applicable to nanotubes with only two or three walls

  4. Van der Vyver’s analysis of rights: a case study drawn from thirteenth-century canon law

    Directory of Open Access Journals (Sweden)

    Charles J. Reid, Jr.

    1999-03-01

    Full Text Available In an important article published in 1988, Johan Van der Vyver challenged the prevailing reliance on Wesley Hohfeld’s taxonomy of rights. Hohfeld's division of rights into claims, powers, privileges and immunities, Van der Vyver stresses, is excessively concerned with "inter-individual legal relations” at the expense of the right-holder's relationship to the object of the right. Van der Vyver proposes instead that an assertion of right involves three distinct juridic aspects:• legal capacity, which is "the competence to occupy the offices of legal subject;• legal claim, which "comprises claims of a legal subject as against other persons to a legal object";• legal entitlement, which specifies the boundaries of the right-holder's ability to use, enjoy, consume, destroy or alienate the right in question.This article applies Van der Vyver’s taxonomy to the operations of thirteenthcentury canon law, and demonstrates that Van der Vyver’s analysis provides greater depth than Hohfeld's, in that it considers both the relationship of the person claiming a particular right and the object of that right.

  5. Hopf Bifurcation of Compound Stochastic van der Pol System

    Directory of Open Access Journals (Sweden)

    Shaojuan Ma

    2016-01-01

    Full Text Available Hopf bifurcation analysis for compound stochastic van der Pol system with a bound random parameter and Gaussian white noise is investigated in this paper. By the Karhunen-Loeve (K-L expansion and the orthogonal polynomial approximation, the equivalent deterministic van der Pol system can be deduced. Based on the bifurcation theory of nonlinear deterministic system, the critical value of bifurcation parameter is obtained and the influence of random strength δ and noise intensity σ on stochastic Hopf bifurcation in compound stochastic system is discussed. At last we found that increased δ can relocate the critical value of bifurcation parameter forward while increased σ makes it backward and the influence of δ is more sensitive than σ. The results are verified by numerical simulations.

  6. Strain engineering of van der Waals heterostructures

    NARCIS (Netherlands)

    Vermeulen, Paul A.; Mulder, Jefta; Momand, Jamo; Kooi, Bart J.

    2018-01-01

    Modifying the strain state of solids allows control over a plethora of functional properties. The weak interlayer bonding in van der Waals (vdWaals) materials such as graphene, hBN, MoS2, and Bi2Te3 might seem to exclude strain engineering, since strain would immediately relax at the vdWaals

  7. Bartholomeus van der Helst (1613-1670): een studie naar zijn leven en zijn werk

    NARCIS (Netherlands)

    van Gent, J.F.J.M.

    2011-01-01

    Bartholomeus van der Helst was a leading portrait painter in the Northern Netherlands in the 17th century. This monograph reconstructs his career and his circle of patrons based on the surviving works and documents. Van der Helst was born in Haarlem around 1613. In the early 1630s he moved to

  8. A notable difference between ideal gas and infinite molar volume limit of van der Waals gas

    International Nuclear Information System (INIS)

    Liu, Q H; Shen, Y; Bai, R L; Wang, X

    2010-01-01

    The van der Waals equation of state does not sufficiently represent a gas unless a thermodynamic potential with two proper and independent variables is simultaneously determined. The limiting procedures under which the behaviour of the van der Waals gas approaches that of an ideal gas are letting two van der Waals coefficients be zero rather than letting the molar volume become infinitely large; otherwise, the partial derivative of internal energy with respect to pressure at a fixed temperature does not vanish.

  9. A notable difference between ideal gas and infinite molar volume limit of van der Waals gas

    Science.gov (United States)

    Liu, Q. H.; Shen, Y.; Bai, R. L.; Wang, X.

    2010-05-01

    The van der Waals equation of state does not sufficiently represent a gas unless a thermodynamic potential with two proper and independent variables is simultaneously determined. The limiting procedures under which the behaviour of the van der Waals gas approaches that of an ideal gas are letting two van der Waals coefficients be zero rather than letting the molar volume become infinitely large; otherwise, the partial derivative of internal energy with respect to pressure at a fixed temperature does not vanish.

  10. Self-Aligned van der Waals Heterojunction Diodes and Transistors.

    Science.gov (United States)

    Sangwan, Vinod K; Beck, Megan E; Henning, Alex; Luo, Jiajia; Bergeron, Hadallia; Kang, Junmo; Balla, Itamar; Inbar, Hadass; Lauhon, Lincoln J; Hersam, Mark C

    2018-02-14

    A general self-aligned fabrication scheme is reported here for a diverse class of electronic devices based on van der Waals materials and heterojunctions. In particular, self-alignment enables the fabrication of source-gated transistors in monolayer MoS 2 with near-ideal current saturation characteristics and channel lengths down to 135 nm. Furthermore, self-alignment of van der Waals p-n heterojunction diodes achieves complete electrostatic control of both the p-type and n-type constituent semiconductors in a dual-gated geometry, resulting in gate-tunable mean and variance of antiambipolar Gaussian characteristics. Through finite-element device simulations, the operating principles of source-gated transistors and dual-gated antiambipolar devices are elucidated, thus providing design rules for additional devices that employ self-aligned geometries. For example, the versatility of this scheme is demonstrated via contact-doped MoS 2 homojunction diodes and mixed-dimensional heterojunctions based on organic semiconductors. The scalability of this approach is also shown by fabricating self-aligned short-channel transistors with subdiffraction channel lengths in the range of 150-800 nm using photolithography on large-area MoS 2 films grown by chemical vapor deposition. Overall, this self-aligned fabrication method represents an important step toward the scalable integration of van der Waals heterojunction devices into more sophisticated circuits and systems.

  11. Isotope engineering of van der Waals interactions in hexagonal boron nitride

    Science.gov (United States)

    Vuong, T. Q. P.; Liu, S.; van der Lee, A.; Cuscó, R.; Artús, L.; Michel, T.; Valvin, P.; Edgar, J. H.; Cassabois, G.; Gil, B.

    2018-02-01

    Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes (10B and 11B) compared to those with the natural distribution of boron (20 at% 10B and 80 at% 11B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10BN than in 11BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.

  12. Dipole-dipole van der Waals interaction in alkali halides

    International Nuclear Information System (INIS)

    Thakur, B.N.; Thakur, K.P.

    1978-01-01

    Values of van der Waals dipole-dipole constants and interaction energetics of alkali halides are reported using the recent data. The values obtained are somewhat larger than those of earlier workers. (orig.) [de

  13. Supersonic molecular beam electric resonance spectroscopy and van der Waals molecules

    International Nuclear Information System (INIS)

    Luftman, H.S.

    1982-09-01

    A supersonic molecular beam electric resonance (MBER) spectrometer was built to study the radiofrequency spectra of weakly bound gas phase van der Waals molecules. The instrument and its operating characteristics are described in detail. Sample mass spectra of Ar-ClF gas mixtures are also presented as an illustration of the synthesis of van der Waals molecules. The Stark focusing process for linear polar molecules is discussed and computer-simulated using both second order perturbation and variational methods. Experimental refocusing spectra of OCS and ClF are studied and compared with these trajectory calculations. Though quantitative fitting is poor, there are strong qualitative indicators that the central part of a supersonic beam consists of molecules with a significantly greater population in the lowest energy rotational states than generally assumed. Flop in as opposed to flop out resonance signals for OCS are also numerically predicted and observed. The theoretical properties of the MBER spectrum for linear molecules are elaborated upon with special emphasis on line shape considerations. MBER spectra of OCS and ClF under a variety of conditions are presented and discussed in context to these predictions. There is some uncertainty expressed both in our own modeling and in the manner complex MBER spectra have been analyzed in the past. Finally, an electrostatic potential model is used to quantitatively describe the class of van der Waals molecules Ar-MX, where MX is an alkali halide. Energetics and equilibrium geometries are calculated. The validity of using an electrostatic model to predict van der Waals bond properties is critically discussed

  14. Longitudinal ophthalmic findings in a child with Helsmoortel-Van der Aa Syndrome

    Directory of Open Access Journals (Sweden)

    Michael J. Gale

    2018-06-01

    Full Text Available Purpose: We present the first detailed ophthalmic description of a child with Helsmoortel-Van der Aa Syndrome (HVDAS, including longitudinal follow-up and analysis. Observations: After extensive workup, a young child with poor visual behavior, hypotonic cerebral palsy, intellectual disability, and global developmental delay was found to have a heterozygous de novo mutation in the ADNP gene and diagnosed with HVDAS. Ophthalmic findings were remarkable for progressive nystagmus, macular pigment mottling, mild foveal hypoplasia with abnormal macular laminations, persistent rod dysfunction with electronegative waveform, and progressive cone degeneration. Conclusions and importance: Patients with HVDAS are known to have abnormal visual behavior due to refractive or cortical impairment. However, we present the first description, to our knowledge, of an association with retinal mal-development and degeneration. Thus, patients with HVDAS should be referred for ophthalmic genetics evaluation, and HVDAS should be on the differential diagnosis for young children with global developmental delay who present with nystagmus, rod and cone dysfunction with electronegative waveform, and relative lack of severe structural degeneration on optical coherence tomography. Keywords: Helsmoortel-Van der Aa Syndrome, HVDAS, Activity-dependent neuroprotective protein, ADNP, Nystagmus, Retinal degeneration, Electronegative waveform, Optical coherence tomography

  15. R. E. van der Ross (1921–2017)

    African Journals Online (AJOL)

    19 Mrt. 2018 ... Sedert sy jeug het Richard Ernest van der Ross. (1921–2017) 'n belangrike rol in die breë Kaapse ge- meenskap gespeel. Hy het hom onderskei as 'n anti- apartheidsaktivis, 'n opvoedkundige, 'n geskied- skrywer en openbare intellektueel, 'n vakbondmens,. 'n gemeenskapsbouer, 'n maatskappydirekteur ...

  16. Contribution of the covalent and the Van der Waals force to the nuclear binding

    International Nuclear Information System (INIS)

    Rosina, M.; Povh, B.

    1994-01-01

    The contribution of the covalent and the Van der Waals force to the nuclear binding is estimated in a simplified model for medium distance of about 1 fm. It is shown how colour effects suppress these two forces as compared to the case of the forces between atoms. The covalent and the Van der Waals force represent a minor though noticeable component of the nuclear force. (orig.)

  17. On the validity of Brownian assumptions in the spin van der Waals model

    International Nuclear Information System (INIS)

    Oh, Suhk Kun

    1985-01-01

    A simple Brownian motion theory of the spin van der Waals model, which can be stationary, Markoffian or Gaussian, is studied. By comparing the Brownian motion theory with an exact theory called the generalized Langevin equation theory, the validity of the Brownian assumptions is tested. Thereby, it is shown explicitly how the Markoffian and Gaussian properties are modified in the spin van der Waals model under the influence of quantum fluctuations and long range ordering. (Author)

  18. Mies van der Rohe preemia 2011 / Karen Jagodin

    Index Scriptorium Estoniae

    Jagodin, Karen, 1982-

    2011-01-01

    20. juunil antakse Barcelonas inglise arhitektile Sir David Chipperfieldile Berliini Neues Museumi restaureerimise eest üle 2011. aasta Mies van der Rohe arhitektuuripreemia. Nimetatud võidutöö viis suuremat konkurenti, varem preemia pälvinud hooneid ja nende autoreid. Sir David Chipperfieldist, Berliini Neues Muuseumi restaureerimisest. Loetletud preemia nominendid Eestist

  19. Nanostructure van der Waals interaction between a quantum well and a quantum dot atom

    International Nuclear Information System (INIS)

    Horing, Norman J Morgenstern

    2006-01-01

    We examine the van der Waals interaction between mobile plasma electrons in a narrow quantum well nanostructure and a quantum dot atom. This formulation of the van der Waals interaction exhibits it to second order as the correlation energy (self-energy) of the dot-atom electrons mediated by the image potential arising from the dynamic, nonlocal and spatially inhomogeneous polarization of the quantum well plasma electrons. This image potential of the quantum-well plasma is, in turn, determined by the dynamic, nonlocal, inhomogeneous screening function of the quantum well, which involves the space-time matrix inversion of its spatially inhomogeneous, nonlocal and time-dependent dielectric function. The latter matrix inversion is carried out exactly, in closed form, and the van der Waals energy is evaluated in the electrostatic limit to dipole-dipole terms

  20. 'N OU LIED WAT MET DIE KOMS VAN Ds. D. VAN DER HOFF ...

    African Journals Online (AJOL)

    Test

    Toe ds. D. van der Hoff begin Augustus 1853 op Rustenburg verwelkom is, is die volgende lied vir hierdie geleentheid vervaardig om gesing te word: Toi de Gemeenfe. De daagraad lang door ons verwacht. Is eindelijk aangebroken! Verdrongen is de duistre nacht: Gods heilig woord wordt weer gesproken. W ij hebben ...

  1. Jazõk do demokrati ne dovedjot / Max van der Stoel

    Index Scriptorium Estoniae

    Stoel, Max van der, 1924-2011

    1999-01-01

    OSCE vähemusrahvuste ülemkomissari Max van der Stoeli pöördumine Lennart Meri poole seoses riigikeele oskuse nõude sisseviimisega Riigikogu valimise ja kohaliku omavalitsuse volikogu valimise seadusesse

  2. Accurate van der Waals force field for gas adsorption in porous materials.

    Science.gov (United States)

    Sun, Lei; Yang, Li; Zhang, Ya-Dong; Shi, Qi; Lu, Rui-Feng; Deng, Wei-Qiao

    2017-09-05

    An accurate van der Waals force field (VDW FF) was derived from highly precise quantum mechanical (QM) calculations. Small molecular clusters were used to explore van der Waals interactions between gas molecules and porous materials. The parameters of the accurate van der Waals force field were determined by QM calculations. To validate the force field, the prediction results from the VDW FF were compared with standard FFs, such as UFF, Dreiding, Pcff, and Compass. The results from the VDW FF were in excellent agreement with the experimental measurements. This force field can be applied to the prediction of the gas density (H 2 , CO 2 , C 2 H 4 , CH 4 , N 2 , O 2 ) and adsorption performance inside porous materials, such as covalent organic frameworks (COFs), zeolites and metal organic frameworks (MOFs), consisting of H, B, N, C, O, S, Si, Al, Zn, Mg, Ni, and Co. This work provides a solid basis for studying gas adsorption in porous materials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Energy transfer rates in inhomogeneous van der Waals clusters

    International Nuclear Information System (INIS)

    Desfrancois, C.; Schermann, J.P.

    1991-01-01

    The internal energy exchange inside an inhomogeneous van der Waals cluster are investigated by means of molecular dynamic calculations. The very long time scales for relaxation of the high frequency degrees of freedom are examined within the framework of Nekhoroshev's theorem. (orig.)

  4. Descriptor Data Bank (DDB): A Cloud Platform for Multiperspective Modeling of Protein-Ligand Interactions.

    Science.gov (United States)

    Ashtawy, Hossam M; Mahapatra, Nihar R

    2018-01-22

    Protein-ligand (PL) interactions play a key role in many life processes such as molecular recognition, molecular binding, signal transmission, and cell metabolism. Examples of interaction forces include hydrogen bonding, hydrophobic effects, steric clashes, electrostatic contacts, and van der Waals attractions. Currently, a large number of hypotheses and perspectives to model these interaction forces are scattered throughout the literature and largely forgotten. Instead, had they been assembled and utilized collectively, they would have substantially improved the accuracy of predicting binding affinity of protein-ligand complexes. In this work, we present Descriptor Data Bank (DDB), a data-driven platform on the cloud for facilitating multiperspective modeling of PL interactions. DDB is an open-access hub for depositing, hosting, executing, and sharing descriptor extraction tools and data for a large number of interaction modeling hypotheses. The platform also implements a machine-learning (ML) toolbox for automatic descriptor filtering and analysis and scoring function (SF) fitting and prediction. The descriptor filtering module is used to filter out irrelevant and/or noisy descriptors and to produce a compact subset from all available features. We seed DDB with 16 diverse descriptor extraction tools developed in-house and collected from the literature. The tools altogether generate over 2700 descriptors that characterize (i) proteins, (ii) ligands, and (iii) protein-ligand complexes. The in-house descriptors we extract are protein-specific which are based on pairwise primary and tertiary alignment of protein structures followed by clustering and trilateration. We built and used DDB's ML library to fit SFs to the in-house descriptors and those collected from the literature. We then evaluated them on several data sets that were constructed to reflect real-world drug screening scenarios. We found that multiperspective SFs that were constructed using a large number

  5. Van der Waals equation of state revisited: importance of the dispersion correction.

    Science.gov (United States)

    de Visser, Sam P

    2011-04-28

    One of the most basic equations of state describing nonideal gases and liquids is the van der Waals equation of state, and as a consequence, it is generally taught in most first year undergraduate chemistry courses. In this work, we show that the constants a and b in the van der Waals equation of state are linearly proportional to the polarizability volume of the molecules in a gas or liquid. Using this information, a new thermodynamic one-parameter equation of state is derived that contains experimentally measurable variables and physics constants only. This is the first equation of state apart from the Ideal Gas Law that contains experimentally measurable variables and physics constants only, and as such, it may be a very useful and practical equation for the description of dilute gases and liquids. The modified van der Waals equation of state describes pV as the sum of repulsive and attractive intermolecular interaction energies that are represented by an exponential repulsion function between the electron clouds of the molecules and a London dispersion component, respectively. The newly derived equation of state is tested against experimental data for several gas and liquid examples, and the agreement is satisfactory. The description of the equation of state as a one-parameter function also has implications on other thermodynamic functions, such as critical parameters, virial coefficients, and isothermal compressibilities. Using our modified van der Waals equation of state, we show that all of these properties are a function of the molecular polarizability volume. Correlations of experimental data confirm the derived proportionalities.

  6. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope

    KAUST Repository

    Govyadinov, Alexander A.

    2017-07-14

    Van der Waals materials exhibit intriguing structural, electronic, and photonic properties. Electron energy loss spectroscopy within scanning transmission electron microscopy allows for nanoscale mapping of such properties. However, its detection is typically limited to energy losses in the eV range-too large for probing low-energy excitations such as phonons or mid-infrared plasmons. Here, we adapt a conventional instrument to probe energy loss down to 100 meV, and map phononic states in hexagonal boron nitride, a representative van der Waals material. The boron nitride spectra depend on the flake thickness and on the distance of the electron beam to the flake edges. To explain these observations, we developed a classical response theory that describes the interaction of fast electrons with (anisotropic) van der Waals slabs, revealing that the electron energy loss is dominated by excitation of hyperbolic phonon polaritons, and not of bulk phonons as often reported. Thus, our work is of fundamental importance for interpreting future low-energy loss spectra of van der Waals materials.Here the authors adapt a STEM-EELS system to probe energy loss down to 100 meV, and apply it to map phononic states in hexagonal boron nitride, revealing that the electron loss is dominated by hyperbolic phonon polaritons.

  7. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope.

    Science.gov (United States)

    Govyadinov, Alexander A; Konečná, Andrea; Chuvilin, Andrey; Vélez, Saül; Dolado, Irene; Nikitin, Alexey Y; Lopatin, Sergei; Casanova, Fèlix; Hueso, Luis E; Aizpurua, Javier; Hillenbrand, Rainer

    2017-07-21

    Van der Waals materials exhibit intriguing structural, electronic, and photonic properties. Electron energy loss spectroscopy within scanning transmission electron microscopy allows for nanoscale mapping of such properties. However, its detection is typically limited to energy losses in the eV range-too large for probing low-energy excitations such as phonons or mid-infrared plasmons. Here, we adapt a conventional instrument to probe energy loss down to 100 meV, and map phononic states in hexagonal boron nitride, a representative van der Waals material. The boron nitride spectra depend on the flake thickness and on the distance of the electron beam to the flake edges. To explain these observations, we developed a classical response theory that describes the interaction of fast electrons with (anisotropic) van der Waals slabs, revealing that the electron energy loss is dominated by excitation of hyperbolic phonon polaritons, and not of bulk phonons as often reported. Thus, our work is of fundamental importance for interpreting future low-energy loss spectra of van der Waals materials.Here the authors adapt a STEM-EELS system to probe energy loss down to 100 meV, and apply it to map phononic states in hexagonal boron nitride, revealing that the electron loss is dominated by hyperbolic phonon polaritons.

  8. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope

    KAUST Repository

    Govyadinov, Alexander A.; Konečná , Andrea; Chuvilin, Andrey; Vé lez, Saü l; Dolado, Irene; Nikitin, Alexey Y.; Lopatin, Sergei; Casanova, Fè lix; Hueso, Luis E.; Aizpurua, Javier; Hillenbrand, Rainer

    2017-01-01

    Van der Waals materials exhibit intriguing structural, electronic, and photonic properties. Electron energy loss spectroscopy within scanning transmission electron microscopy allows for nanoscale mapping of such properties. However, its detection is typically limited to energy losses in the eV range-too large for probing low-energy excitations such as phonons or mid-infrared plasmons. Here, we adapt a conventional instrument to probe energy loss down to 100 meV, and map phononic states in hexagonal boron nitride, a representative van der Waals material. The boron nitride spectra depend on the flake thickness and on the distance of the electron beam to the flake edges. To explain these observations, we developed a classical response theory that describes the interaction of fast electrons with (anisotropic) van der Waals slabs, revealing that the electron energy loss is dominated by excitation of hyperbolic phonon polaritons, and not of bulk phonons as often reported. Thus, our work is of fundamental importance for interpreting future low-energy loss spectra of van der Waals materials.Here the authors adapt a STEM-EELS system to probe energy loss down to 100 meV, and apply it to map phononic states in hexagonal boron nitride, revealing that the electron loss is dominated by hyperbolic phonon polaritons.

  9. Effects of the van der Waals Force on the Dynamics Performance for a Micro Resonant Pressure Sensor

    Directory of Open Access Journals (Sweden)

    Lizhong Xu

    2016-01-01

    Full Text Available The micro resonant pressure sensor outputs the frequency signals where the distortion does not take place in a long distance transmission. As the dimensions of the sensor decrease, the effects of the van der Waals forces should be considered. Here, a coupled dynamic model of the micro resonant pressure sensor is proposed and its coupled dynamic equation is given in which the van der Waals force is considered. By the equation, the effects of the van der Waals force on the natural frequencies and vibration amplitudes of the micro resonant pressure sensor are investigated. Results show that the natural frequency and the vibrating amplitudes of the micro resonant pressure sensor are affected significantly by van der Waals force for a small clearance between the film and the base plate, a small initial tension stress of the film, and some other conditions.

  10. The hot pick-up technique for batch assembly of van der Waals heterostructures

    DEFF Research Database (Denmark)

    Pizzocchero, Filippo; Gammelgaard, Lene; Jessen, Bjarke Sørensen

    2016-01-01

    The assembly of individual two-dimensional materials into van der Waals heterostructures enables the construction of layered three-dimensional materials with desirable electronic and optical properties. A core problem in the fabrication of these structures is the formation of clean interfaces...... between the individual two-dimensional materials which would affect device performance. We present here a technique for the rapid batch fabrication of van der Waals heterostructures, demonstrated by the controlled production of 22 mono-, bi- and trilayer graphene stacks encapsulated in hexagonal boron...

  11. More than Welgelegen (well-situated: Abraham van der Hart and the Hope family

    Directory of Open Access Journals (Sweden)

    Jacqueline Heijenbrok

    2008-11-01

    Full Text Available Pavilion Welgelegen in Haarlem was built in 1785-1792 as the country house of the fabulously rich Amsterdam citizen Henry Hope (1735-1811, partner of the internationally renowned commercial bank Hope & Co. Since 1930 the Pavilion has been the seat of the provincial authorities of North Holland. So far, it was assumed that the consul of the Kingdom of Sardinia in the Dutch Republic, Michel (de Triquetti (1748-1821, had designed Welgelegen, whose plans were said to have been executed by Jean-Baptiste Dubois (1762-1851, an architect from Dendermonde. However, it has now been ascertained that the designer was Abraham van der Hart (1747-1820, town architect of Amsterdam at that time. This is the result of new research in the records, confirmed by the conclusions of a study of Henry Hope's network of relations in connection with known buildings of Van der Hart. Research of Pavilion Welgelegen itself showed that the L-shaped building originally consisted of two rather autonomous parts: a residential wing on the Dreef and a picture gallery on Haarlemmerhout. It also appeared that the residential wing is in fact the refurbished country house that Hope had bought in 1769. This functional distinction was also evident from the very expensive interior, for instance, the soft furnishings: chintz for the residential wing and silk for the gallery. The soft furnishings were the work of the French decorator Louis le Houx, who had probably settled in Haarlem especially for this assignment. Because of the imperfect connection between the wings it may be assumed that initially the design of the picture gallery on Haarlemmerhout was not intended for Welgelegen, but for the country estate Groenendaal in Heemstede, the property of John Hope, Henry's cousin. Just as Henry, John was a partner of Hope & Co, but he was a collector in the first place; around 1780 his collection of paintings was the most important of Amsterdam. Everything indicates that John had plans for

  12. Understanding the nanoscale local buckling behavior of vertically aligned MWCNT arrays with van der Waals interactions

    Science.gov (United States)

    Li, Yupeng; Kim, Hyung-Ick; Wei, Bingqing; Kang, Junmo; Choi, Jae-Boong; Nam, Jae-Do; Suhr, Jonghwan

    2015-08-01

    The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect.The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03581c

  13. Many body effects in the van der Waals force

    International Nuclear Information System (INIS)

    Perez, P.; Claro, F.

    1985-08-01

    A classical model of fluctuating dipoles is proposed for the evaluation of many-body effects in the van der Waals force between neutral polarizable particles. The method is applied to solid xenon giving the correct low temperature stable structure, unlike the usual two-body potential result. (author)

  14. Infrared photodissociation of van der Waals molecules containing ethylene

    International Nuclear Information System (INIS)

    Casassa, M.P.; Bomse, D.S.; Janda, K.C.

    1981-01-01

    Vibrational predissociation line shapes in the n 7 region of the ethylene spectrum are measured for van der Waals molecules of ethylene bound to Ne, Ar, Kr, C 2 H 4 , C 2 F 4 , and larger ethylene clusters. The predissociative rate is very fast for this group of molecules. The vibrationally excited state lifetimes are 0.44, 0.59 and 0.89 x 10 -12 sec for (C 2 H 4 ) 2 , ArxC 2 H 4 , and C 2 H 4 xC 2 F 4 respectively. That the observed line shapes are homogeneous is demonstrated by the fact that a low-power, narrow frequency bandwidth laser can dissociate a large fraction of the initial ensemble of ethylene clusters. The observed transition probability is proportional to the number of ethylene subunits for clusters containing three or fewer ethylene subunits. These observations are interpreted in terms of intramolecular energy flow directly from ethylene n 7 to the weak van der Waals modes of motion

  15. Chaos in a modified van der Pol system and in its fractional order systems

    International Nuclear Information System (INIS)

    Ge Zhengming; Zhang, A.-R.

    2007-01-01

    Chaos in a modified van der Pol system and in its fractional order systems is studied in this paper. It is found that chaos exists both in the system and in the fractional order systems with order from 1.8 down to 0.8 much less than the number of states of the system, two. By phase portraits, Poincare maps and bifurcation diagrams, the chaotic behaviors of fractional order modified van der Pol systems are presented

  16. Self-Assembly of Nanoclusters into Mono-, Few-, and Multilayered Sheets via Dipole-Induced Asymmetric van der Waals Attraction.

    Science.gov (United States)

    Wu, Zhennan; Liu, Jiale; Li, Yanchun; Cheng, Ziyi; Li, Tingting; Zhang, Hao; Lu, Zhongyuan; Yang, Bai

    2015-06-23

    Two-dimensional (2D) nanomaterials possessing regular layered structures and versatile chemical composition are highly expected in many applications. Despite the importance of van der Waals (vdW) attraction in constructing and maintaining layered structures, the origin of 2D anisotropy is not fully understood, yet. Here, we report the 2D self-assembly of ligand-capped Au15 nanoclusters into mono-, few-, and multilayered sheets in colloidal solution. Both the experimental results and computer simulation reveal that the 2D self-assembly is initiated by 1D dipolar attraction common in nanometer-sized objects. The dense 1D attachment of Au15 leads to a redistribution of the surface ligands, thus generating asymmetric vdW attraction. The deliberate control of the coordination of dipolar and vdW attraction further allows to manipulate the thickness and morphologies of 2D self-assembly architectures.

  17. Bonding in Mercury-Alkali Molecules: Orbital-driven van der Waals Complexes

    Directory of Open Access Journals (Sweden)

    Dieter Cremer

    2008-06-01

    Full Text Available The bonding situation in mercury-alkali diatomics HgA (2Σ+ (A = Li, Na, K, Rb has been investigated employing the relativistic all-electron method Normalized Elimination of the Small Component (NESC, CCSD(T, and augmented VTZ basis sets. Although Hg,A interactions are typical of van der Waals complexes, trends in calculated De values can be explained on the basis of a 3-electron 2-orbital model utilizing calculated ionization potentials and the De values of HgA+(1Σ+ diatomics. HgA molecules are identified as orbital-driven van der Waals complexes. The relevance of results for the understanding of the properties of liquid alkali metal amalgams is discussed.

  18. Maria van der Hoeven, the Netherlands minister for education, culture and science, visited CERN

    CERN Multimedia

    maximilien Brice

    2005-01-01

    On 21 April, the Netherlands Minister for Education, Culture and Science, Mrs Maria van der Hoeven, was welcomed to CERN by the Director-General, Robert Aymar, and the Chief Scientific Officer, Jos Engelen. Minister van der Hoeven visited the ATLAS installations, the LHC tunnel and the magnet assembly and test hall before meeting a group of young scientists from the Netherlands. Picture 05 : from left to right, Frank Linde, Director of the Netherlands National Institute for Nuclear Physics and High Energy Physics (NIKHEF), Jos Engelen, CERN's Chief Scientific Officer, Maria van der Hoeven, Netherlands Minister for Education, Culture and Science, and Herman Ten Kate, Head of the ATLAS magnet project, visiting the ATLAS assembly hall.Picture 09 ; Here she talks with, from left to right, Jos Engelen, CERN's chief scientific officer, Peter Jenni, the ATLAS spokesman, Herman Ten Kate, head of the ATLAS magnet project, and Frank Linde, director of the Netherlands National Institute for Nuclear Physics and High Ener...

  19. Simon van der Stel en Constantia sal in my gedagtes bly. Die ...

    African Journals Online (AJOL)

    Simon van der Stel en Constantia sal in my gedagtes bly. Die byfigure sal nie vervaag nie en bo dit alles is, vir almal wat in die boeien- de verhaal 'n rol speel, die vraag aangaande die lotsbestemming van die mens gestel, 'n vraag waarop die skrywer Monica Dacosta laat antwoord: "Dutchmen never speak about destiny" [ ...

  20. Somatotropin physiology - a review | van der Walt | South African ...

    African Journals Online (AJOL)

    South African Journal of Animal Science. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 24, No 1 (1994) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Somatotropin physiology - a review. JG van der ...

  1. Van der Waals interaction between metal and atom

    International Nuclear Information System (INIS)

    Rao, P.R.; Mukhopadhyay, G.

    1984-07-01

    A dielectric response approach to the Van der Waals interaction between an atom and a planar metal surface is presented. An exact formula in terms of a form factor is derived within the point dipole approximation and non-retarded limit valid for shorter separation. The interaction potential is studied via SCIB model, and a substantial modification over its classical form is found at shorter distances. (author)

  2. Electronic spectral properties of surfaces and adsorbates and atom-adsorbate van der Waals interactions

    International Nuclear Information System (INIS)

    Lovric, D.; Gumhalter, B.

    1988-01-01

    The relevance of van der Waals interactions in the scattering of neutral atoms from adsorbates has been recently confirmed by highly sensitive molecular-beam techniques. The theoretical descriptions of the collision dynamics which followed the experimental studies have necessitated very careful qualitative and quantitative examinations and evaluations of the properties of atom-adsorbate van der Waals interactions for specific systems. In this work we present a microscopic calculation of the strengths and reference-plane positions for van der Waals potentials relevant for scattering of He atoms from CO adsorbed on various metallic substrates. In order to take into account the specificities of the polarization properties of real metals (noble and transition metals) and of chemisorbed CO, we first calculate the spectra of the electronic excitations characteristic of the respective electronic subsystems by using various data sources available and combine them with the existing theoretical models. The reliability of the calculated spectra is then verified in each particular case by universal sum rules which may be established for the electronic excitations of surfaces and adsorbates. The substrate and adsorbate polarization properties which derive from these calculations serve as input data for the evaluation of the strengths and reference-plane positions of van der Waals potentials whose computed values are tabulated for a number of real chemisorption systems. The implications of the obtained results are discussed in regard to the atom-adsorbate scattering cross sections pertinent to molecular-beam scattering experiments

  3. Mixed Dimensional Van der Waals Heterostructures for Opto-Electronics.

    Science.gov (United States)

    Jariwala, Deep

    The isolation of a growing number of two-dimensional (2D) materials has inspired worldwide efforts to integrate distinct 2D materials into van der Waals (vdW) heterostructures. While a tremendous amount of research activity has occurred in assembling disparate 2D materials into ``all-2D'' van der Waals heterostructures, this concept is not limited to 2D materials alone. Given that any passivated, dangling bond-free surface will interact with another via vdW forces, the vdW heterostructure concept can be extended to include the integration of 2D materials with non-2D materials that adhere primarily through noncovalent interactions. In the first part of this talk I will present our work on emerging mixed-dimensional (2D + nD, where n is 0, 1 or 3) heterostructure devices performed at Northwestern University. I will present two distinct examples of gate-tunable p-n heterojunctions 1. Single layer n-type MoS2\\ (2D) combined with p-type semiconducting single walled carbon nanotubes (1D) and 2. Single layer MoS2 combined with 0D molecular semiconductor, pentacene. I will present the unique electrical properties, underlying charge transport mechanisms and photocurrent responses in both the above systems using a variety of scanning probe microscopy techniques as well as computational analysis. This work shows that van der Waals interactions are robust across different dimensionalities of materials and can allow fabrication of semiconductor devices with unique geometries and properties unforeseen in bulk semiconductors. Finally, I will briefly discuss our recent work from Caltech on near-unity absorption in atomically-thin photovoltaic devices. This work is supported by the Materials Research Center at Northwestern University, funded by the National Science Foundation (NSF DMR-1121262) and the Resnick Sustainability Institute at Caltech.

  4. Holographic Van der Waals phase transition of the higher-dimensional electrically charged hairy black hole

    International Nuclear Information System (INIS)

    Li, Hui-Ling; Feng, Zhong-Wen; Zu, Xiao-Tao

    2018-01-01

    With motivation by holography, employing black hole entropy, two-point connection function and entanglement entropy, we show that, for the higher-dimensional Anti-de Sitter charged hairy black hole in the fixed charged ensemble, a Van der Waals-like phase transition can be observed. Furthermore, based on the Maxwell equal-area construction, we check numerically the equal-area law for a first order phase transition in order to further characterize the Van der Waals-like phase transition. (orig.)

  5. Holographic Van der Waals phase transition of the higher-dimensional electrically charged hairy black hole

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui-Ling [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Shenyang Normal University, College of Physics Science and Technology, Shenyang (China); Feng, Zhong-Wen [China West Normal University, College of Physics and Space Science, Nanchong (China); Zu, Xiao-Tao [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China)

    2018-01-15

    With motivation by holography, employing black hole entropy, two-point connection function and entanglement entropy, we show that, for the higher-dimensional Anti-de Sitter charged hairy black hole in the fixed charged ensemble, a Van der Waals-like phase transition can be observed. Furthermore, based on the Maxwell equal-area construction, we check numerically the equal-area law for a first order phase transition in order to further characterize the Van der Waals-like phase transition. (orig.)

  6. Šveitsi hommage Mies van der Rohele / Kai Lobjakas

    Index Scriptorium Estoniae

    Lobjakas, Kai, 1975-

    1999-01-01

    Šveitsi väikelinna Buschi ehitatud voolava ruumilahendusega maja meenutab Mies van der Rohe kujundatud saksa paviljoni maailmanäitusel Barcelonas. Materjalideks betoon, puit, klaas. Loodud on palju erineva kõrgusega pindu maja ja seda ümbritseva müüri vahel. Interjööris punakas tammepuit. Arhitekt: Peter+Christian Frei, Architekten.

  7. Book review : Street Architecture: Work by Hans van der Heijden

    NARCIS (Netherlands)

    Jenniskens, D.P.H.

    The recently published book Street Architecture is the result of a collaboration between Karin Templin, currently pursuing a PhD in architecture at the University of Cambridge, and Hans van der Heijden, an Amsterdam-based architect of mainly urban renewal projects and residential architecture. The

  8. Bell's palsy before Bell: Cornelis Stalpart van der Wiel's observation of Bell's palsy in 1683.

    Science.gov (United States)

    van de Graaf, Robert C; Nicolai, Jean-Philippe A

    2005-11-01

    Bell's palsy is named after Sir Charles Bell (1774-1842), who has long been considered to be the first to describe idiopathic facial paralysis in the early 19th century. However, it was discovered that Nicolaus Anton Friedreich (1761-1836) and James Douglas (1675-1742) preceded him in the 18th century. Recently, an even earlier account of Bell's palsy was found, as observed by Cornelis Stalpart van der Wiel (1620-1702) from The Hague, The Netherlands in 1683. Because our current knowledge of the history of Bell's palsy before Bell is limited to a few documents, it is interesting to discuss Stalpart van der Wiel's description and determine its additional value for the history of Bell's palsy. It is concluded that Cornelis Stalpart van der Wiel was the first to record Bell's palsy in 1683. His manuscript provides clues for future historical research.

  9. Effect of van der Waals interactions on the structural and binding properties of GaSe

    Energy Technology Data Exchange (ETDEWEB)

    Sarkisov, Sergey Y., E-mail: sarkisov@mail.tsu.ru [Tomsk State University, Lenin Avenue 36, 634050 Tomsk (Russian Federation); Kosobutsky, Alexey V., E-mail: kosobutsky@kemsu.ru [Tomsk State University, Lenin Avenue 36, 634050 Tomsk (Russian Federation); Kemerovo State University, Krasnaya 6, 650043 Kemerovo (Russian Federation); Shandakov, Sergey D. [Kemerovo State University, Krasnaya 6, 650043 Kemerovo (Russian Federation)

    2015-12-15

    The influence of van der Waals interactions on the lattice parameters, band structure, elastic moduli and binding energy of layered GaSe compound has been studied using projector-augmented wave method within density functional theory. We employed the conventional local/semilocal exchange-correlation functionals and recently developed van der Waals functionals which are able to describe dispersion forces. It is found that application of van der Waals density functionals allows to substantially increase the accuracy of calculations of the lattice constants a and c and interlayer distance in GaSe at ambient conditions and under hydrostatic pressure. The pressure dependences of the a-parameter, Ga–Ga, Ga–Se bond lengths and Ga–Ga–Se bond angle are characterized by a relatively low curvature, while c(p) has a distinct downward bowing due to nonlinear shrinking of the interlayer spacing. From the calculated binding energy curves we deduce the interlayer binding energy of GaSe, which is found to be in the range 0.172–0.197 eV/layer (14.2–16.2 meV/Å{sup 2}). - Highlights: • Effects of van der Waals interactions are analyzed using advanced density functionals. • Calculations with vdW-corrected functionals closely agree with experiment. • Interlayer binding energy of GaSe is estimated to be 14.2–16.2 meV/Å{sup 2}.

  10. THE PORTRAITS OF SIMON VAN DER STEL, FIRST GOVERNOR ...

    African Journals Online (AJOL)

    The Stichting moreover reported that in its opinion the subject of the portrait was not Willem (Adriaan), but his father Simon van der Stel, and the youth on the horse, one of the latter's children. This hypothesis was based not exclusively on the date assigned to the painting, but also on the outward appearance of its subject.

  11. Evaluation of van der Waals density functionals for layered materials

    Science.gov (United States)

    Tawfik, Sherif Abdulkader; Gould, Tim; Stampfl, Catherine; Ford, Michael J.

    2018-03-01

    In 2012, Björkman et al. posed the question "Are we van der Waals ready?" [T. Björkman et al., J. Phys.: Condens. Matter 24, 424218 (2012), 10.1088/0953-8984/24/42/424218] about the ability of ab initio modeling to reproduce van der Waals (vdW) dispersion forces in layered materials. The answer at that time was no, however. Here we report on a new generation of vdW dispersion models and show that one, i.e., the fractionally ionic atom theory with many-body dispersions, offers close to quantitative predictions for layered structures. Furthermore, it does so from a qualitatively correct picture of dispersion forces. Other methods, such as D3 and optB88vdW, also work well, albeit with some exceptions. We thus argue that we are nearly vdW ready and that some modern dispersion methods are accurate enough to be used for nanomaterial prediction, albeit with some caution required.

  12. A modified van der Pol equation with delay in a description of the heart action

    OpenAIRE

    Zduniak Beata; Bodnar Marek; Foryś Urszula

    2014-01-01

    In this paper, a modified van der Pol equation is considered as a description of the heart action. This model has a number of interesting properties allowing reconstruction of phenomena observed in physiological experiments as well as in Holter electrocardiographic recordings. Our aim is to study periodic solutions of the modified van der Pol equation and take into consideration the influence of feedback and delay which occur in the normal heart action mode as well as in pathological modes. U...

  13. Van der Waerden's function and colourings of hypergraphs

    Energy Technology Data Exchange (ETDEWEB)

    Shabanov, Dmitrii A [M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow (Russian Federation)

    2011-10-31

    A classical problem of combinatorial number theory is to compute van der Waerden's function W(n,r). Using random colourings of hypergraphs, we get a new asymptotic lower bound for W(n,r) which improves previous results for a wide range of values of n and r.

  14. De werking van de hydro- en acetylverbindingen van kinidine en kinine op het hart van Rana esculenta

    NARCIS (Netherlands)

    Sibie, Johan Dirk

    1942-01-01

    In hoofdstuk I werd een inleiding gegeven betreffende de geschiedenis van de kina en van het begin der kinacultuur op Java, de chemie der kinaälkaloïden en enkele aspecten der pharmacologische werking van de kinaderivaten. ... Zie: Samenvatting

  15. Weyl-van der Waerden spinor technic for spin-3/2 fermions

    International Nuclear Information System (INIS)

    Novaes, S.F.; Spehler, D.

    1991-09-01

    We use the Weyl-van der Waerden spinor technic to construct helicity wave functions for massless and massive spin-3/2 fermions. We apply our formalism to evaluate helicity amplitudes taking into account some phenomenological couplings involving these particles. (author)

  16. Defect mediated van der Waals epitaxy of hexagonal boron nitride on graphene

    Science.gov (United States)

    Heilmann, M.; Bashouti, M.; Riechert, H.; Lopes, J. M. J.

    2018-04-01

    Van der Waals heterostructures comprising of hexagonal boron nitride and graphene are promising building blocks for novel two-dimensional devices such as atomically thin transistors or capacitors. However, demonstrators of those devices have been so far mostly fabricated by mechanical assembly, a non-scalable and time-consuming method, where transfer processes can contaminate the surfaces. Here, we investigate a direct growth process for the fabrication of insulating hexagonal boron nitride on high quality epitaxial graphene using plasma assisted molecular beam epitaxy. Samples were grown at varying temperatures and times and studied using atomic force microscopy, revealing a growth process limited by desorption at high temperatures. Nucleation was mostly commencing from morphological defects in epitaxial graphene, such as step edges or wrinkles. Raman spectroscopy combined with x-ray photoelectron measurements confirm the formation of hexagonal boron nitride and prove the resilience of graphene against the nitrogen plasma used during the growth process. The electrical properties and defects in the heterostructures were studied with high lateral resolution by tunneling current and Kelvin probe force measurements. This correlated approach revealed a nucleation apart from morphological defects in epitaxial graphene, which is mediated by point defects. The presented results help understanding the nucleation and growth behavior during van der Waals epitaxy of 2D materials, and point out a route for a scalable production of van der Waals heterostructures.

  17. Graphene on metals: A van der Waals density functional study

    DEFF Research Database (Denmark)

    Vanin, Marco; Mortensen, Jens Jørgen; Kelkkanen, Kari André

    2010-01-01

    We use density functional theory (DFT) with a recently developed van der Waals density functional (vdW-DF) to study the adsorption of graphene on Co, Ni, Pd, Ag, Au, Cu, Pt, and Al(111) surfaces. In contrast to the local-density approximation (LDA) which predicts relatively strong binding for Ni...

  18. Van der Waals Attraction and Coalescence of Aqueous Salt Nanodroplets

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Pavel; Buch, V.

    2003-01-01

    Roč. 68, č. 12 (2003), s. 2283-2291 ISSN 0010-0765 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : van der Waals interactions * aqueous droplets * coalescence Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.041, year: 2003

  19. Sindrome de Van der Knaap megalencefalia com leucodistrofia: a respeito de dois casos na mesma família Van Der Knaap syndrome (megalencephaly with leukodystrophy: report of two cases in the same family

    Directory of Open Access Journals (Sweden)

    CARLOS EDUARDO CAVALCANTI

    2000-03-01

    Full Text Available Relatamos os casos de dois irmãos, com quatro e seis anos de idade, com achados característicos da síndrome de Van Der Knaap. Discutimos os seus aspectos clínicos e radiológicos, assim como suas peculiaridades. Comparamos aos dados da literatura e analisamos os possíveis mecanismos etiopatogênicos envolvidos.We report on two brothers, aged four and six years-old, evidencing the Van Der Knaap syndrome. Clinical and radiological aspects are discussed as well their peculiarities. Data are compared with related literature, as etiopathogenic mechanisms possibly involved.

  20. Interlayer excitons in a bulk van der Waals semiconductor.

    Science.gov (United States)

    Arora, Ashish; Drüppel, Matthias; Schmidt, Robert; Deilmann, Thorsten; Schneider, Robert; Molas, Maciej R; Marauhn, Philipp; Michaelis de Vasconcellos, Steffen; Potemski, Marek; Rohlfing, Michael; Bratschitsch, Rudolf

    2017-09-21

    Bound electron-hole pairs called excitons govern the electronic and optical response of many organic and inorganic semiconductors. Excitons with spatially displaced wave functions of electrons and holes (interlayer excitons) are important for Bose-Einstein condensation, superfluidity, dissipationless current flow, and the light-induced exciton spin Hall effect. Here we report on the discovery of interlayer excitons in a bulk van der Waals semiconductor. They form due to strong localization and spin-valley coupling of charge carriers. By combining high-field magneto-reflectance experiments and ab initio calculations for 2H-MoTe 2 , we explain their salient features: the positive sign of the g-factor and the large diamagnetic shift. Our investigations solve the long-standing puzzle of positive g-factors in transition metal dichalcogenides, and pave the way for studying collective phenomena in these materials at elevated temperatures.Excitons, quasi-particles of bound electron-hole pairs, are at the core of the optoelectronic properties of layered transition metal dichalcogenides. Here, the authors unveil the presence of interlayer excitons in bulk van der Waals semiconductors, arising from strong localization and spin-valley coupling of charge carriers.

  1. Holographic Van der Waals-like phase transition in the Gauss–Bonnet gravity

    Energy Technology Data Exchange (ETDEWEB)

    He, Song, E-mail: hesong17@gmail.com [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, 14476 Golm (Germany); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Li-Fang, E-mail: lilf@itp.ac.cn [Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); Zeng, Xiao-Xiong, E-mail: xxzeng@itp.ac.cn [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Material Science and Engineering, Chongqing Jiaotong University, Chongqing 400074 (China)

    2017-02-15

    The Van der Waals-like phase transition is observed in temperature–thermal entropy plane in spherically symmetric charged Gauss–Bonnet–AdS black hole background. In terms of AdS/CFT, the non-local observables such as holographic entanglement entropy, Wilson loop, and two point correlation function of very heavy operators in the field theory dual to spherically symmetric charged Gauss–Bonnet–AdS black hole have been investigated. All of them exhibit the Van der Waals-like phase transition for a fixed charge parameter or Gauss–Bonnet parameter in such gravity background. Further, with choosing various values of charge or Gauss–Bonnet parameter, the equal area law and the critical exponent of the heat capacity are found to be consistent with phase structures in temperature–thermal entropy plane.

  2. Simon van der Meer and his legacy to CERN and particle accelerators

    International Nuclear Information System (INIS)

    Chohan, Vinod

    2012-01-01

    Simon van der Meer was a brilliant scientist and a true giant in the field of accelerators. His seminal contributions to accelerator science are essential to this day in our quest to satisfy the demands of modern particle physics. Whether we are talking of long-baseline neutrino physics or antiproton-proton physics at CERN and Fermilab, or proton-proton physics at the LHC, his techniques and inventions have been a vital and necessary part of modern-day successes. Simon van der Meer and Carlo Rubbia were the first CERN scientists to become Nobel laureates in Physics in 1984. His less well-known contributions spanned a whole range of subjects in accelerator science from magnet design to power supply design, beam measurements, slow beam extraction, sophisticated programs, and controls. (author)

  3. Underwater adhesion of abalone: The role of van der Waals and capillary forces

    Energy Technology Data Exchange (ETDEWEB)

    Lin, A.Y.M., E-mail: albertlin22@yahoo.com [Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093 (United States); Brunner, R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States)] [Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093 (United States); Chen, P.Y. [Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093 (United States); Talke, F.E. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States)] [Center for Magnetic Recording Research, University of California, San Diego, La Jolla, CA 92093 (United States); Meyers, M.A. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States)] [Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093 (United States)] [Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093 (United States)

    2009-08-15

    The observation of the pedal foot of the red abalone Haliotis rufescens reveals the presence of micrometer-scaled setae terminating in nanometer-sized cylindrical fibrils, with some resemblance to those found on the gecko foot. Atomic force microscopy (AFM) pull-off force measurements on a single seta are compared with theoretical estimates for van der Waals attraction obtained through the Johnson-Kendall-Roberts (JKR) equation, approximately 600 nN, and show agreement. The use of the JKR equation is justified through an analysis of the shape of the fibril extremities (parabolic) as well as their diameter ({approx}200 nm). Measurements under varying humidity conditions indicate that additional capillary interactions play a role, since the pull-off force increases with humidity. It is proposed that both van der Waals and capillary forces play a role in the attachment mechanism of H. rufescens, effectively enabling suction to reach its theoretical limit. Bulk pull-off force measurements on entire live animals yield an average detachment stress of 115 kPa, consistent with theoretical estimates. The setae and nanoscale fibril terminations enable compliance to surfaces with a variety of roughnesses, effectively sealing the interface, in addition to providing capillary and van der Waals forces.

  4. Underwater adhesion of abalone: The role of van der Waals and capillary forces

    International Nuclear Information System (INIS)

    Lin, A.Y.M.; Brunner, R.; Chen, P.Y.; Talke, F.E.; Meyers, M.A.

    2009-01-01

    The observation of the pedal foot of the red abalone Haliotis rufescens reveals the presence of micrometer-scaled setae terminating in nanometer-sized cylindrical fibrils, with some resemblance to those found on the gecko foot. Atomic force microscopy (AFM) pull-off force measurements on a single seta are compared with theoretical estimates for van der Waals attraction obtained through the Johnson-Kendall-Roberts (JKR) equation, approximately 600 nN, and show agreement. The use of the JKR equation is justified through an analysis of the shape of the fibril extremities (parabolic) as well as their diameter (∼200 nm). Measurements under varying humidity conditions indicate that additional capillary interactions play a role, since the pull-off force increases with humidity. It is proposed that both van der Waals and capillary forces play a role in the attachment mechanism of H. rufescens, effectively enabling suction to reach its theoretical limit. Bulk pull-off force measurements on entire live animals yield an average detachment stress of 115 kPa, consistent with theoretical estimates. The setae and nanoscale fibril terminations enable compliance to surfaces with a variety of roughnesses, effectively sealing the interface, in addition to providing capillary and van der Waals forces.

  5. ENPA juht usub Vene arengusse / Rene van der Linden ; interv. Erkki Bahovski

    Index Scriptorium Estoniae

    Linden, Rene van der

    2006-01-01

    Vt. ka Postimees : na russkom jazõke 2. juuni lk. 7. Euroopa Nõukogu Parlamentaarse Assamblee president Rene van der Linden Euroopa Nõukogu (EN) rollist, Venemaa ja Eesti arengutest EN-i liikmena. Lisa: Euroopa parlamentide kogu

  6. Effect of van der Waals forces on thermal conductance at the interface of a single-wall carbon nanotube array and silicon

    Directory of Open Access Journals (Sweden)

    Ya Feng

    2014-12-01

    Full Text Available Molecular dynamics simulations are performed to evaluate the effect of van der Waals forces among single-wall carbon nanotubes (SWNTs on the interfacial thermal conductance between a SWNT array and silicon substrate. First, samples of SWNTs vertically aligned on silicon substrate are simulated, where both the number and arrangement of SWNTs are varied. Results reveal that the interfacial thermal conductance of a SWNT array/Si with van der Waals forces present is higher than when they are absent. To better understand how van der Waals forces affect heat transfer through the interface between SWNTs and silicon, further constructs of one SWNT surrounded by different numbers of other ones are studied, and the results show that the interfacial thermal conductance of the central SWNT increases with increasing van der Waals forces. Through analysis of the covalent bonds and vibrational density of states at the interface, we find that heat transfer across the interface is enhanced with a greater number of chemical bonds and that improved vibrational coupling of the two sides of the interface results in higher interfacial thermal conductance. Van der Waals forces stimulate heat transfer at the interface.

  7. van der Waals forces in density functional theory: Perturbational long-range electron-interaction corrections

    International Nuclear Information System (INIS)

    Angyan, Janos G.; Gerber, Iann C.; Savin, Andreas; Toulouse, Julien

    2005-01-01

    Long-range exchange and correlation effects, responsible for the failure of currently used approximate density functionals in describing van der Waals forces, are taken into account explicitly after a separation of the electron-electron interaction in the Hamiltonian into short- and long-range components. We propose a 'range-separated hybrid' functional based on a local density approximation for the short-range exchange-correlation energy, combined with a long-range exact exchange energy. Long-range correlation effects are added by a second-order perturbational treatment. The resulting scheme is general and is particularly well adapted to describe van der Waals complexes, such as rare gas dimers

  8. The treasure trove of yeast genera and species described by Johannes van der Walt (1925-2011).

    Science.gov (United States)

    Smith, Maudy Th; Groenewald, Marizeth

    2012-12-01

    Yeast taxonomy and systematics have in recent years been dealt with intensively primarily by a small group of individual researchers with particular expertise. Amongst these was Johannes P. van der Walt, who had a major role in shaping our current understanding of yeast biodiversity and taxonomy. Van der Walt based his taxonomic studies not only on available cultures, but also by going into the field to isolate yeasts from various substrates. This pioneering work led to the discovery of many new genera and species, which were deposited in the Centraalbureau voor Schimmelcultures (CBS) collections for future studies in taxonomy, genomics, and industrial uses. These treasures collected during more than 60 years provide an outstanding legacy to the yeast community and will continue to exist in his absence. This contribution provides a comprehensive overview of the current nomenclatural and taxonomic status of the yeast genera and species introduced by van der Walt during his career.

  9. Theoretical Study of the Pyridine-Helium van der Waals Complexes

    DEFF Research Database (Denmark)

    v, Hubert; Henriksen, Christian; Fernandez, Berta

    2015-01-01

    In this study we evaluate a high-level ab initio ground-state intermolecular potential-energy surface for the pyridine–He van der Waals complex, using the CCSD(T) method and Dunning’s augmented correlation consistent polarized valence double-ζ basis set extended with a set of 3s3p2d1f1g midbond...

  10. Cl-intercalated graphene on SiC: Influence of van der Waals forces

    KAUST Repository

    Cheng, Yingchun; Zhu, Zhiyong; Schwingenschlö gl, Udo

    2013-01-01

    The atomic and electronic structures of Cl-intercalated epitaxial graphene on SiC are studied by first-principles calculations. By increasing the Cl concentration, doping levels from n-type to slightly p-type are achieved on the SiC(0001) surface, while a wider range of doping levels is possible on the SiC(0001̄) surface. We find that the Cl atoms prefer bonding to the substrate rather than to the graphene. By varying the Cl concentration the doping level can be tailored. Consideration of van der Waals forces improves the distance between the graphene and the substrate as well as the binding energy, but it is not essential for the formation energy. For understanding the doping mechanism the introduction of non-local van der Waals contributions to the exchange correlation functional is shown to be essential. Copyright © EPLA, 2013.

  11. Van der Waals coefficients for alkali metal clusters and their size

    Indian Academy of Sciences (India)

    In this paper we employ the hydrodynamic formulation of time-dependent density functional theory to obtain the van der Waals coefficients 6 and 8 of alkali metal clusters of various sizes including very large clusters. Such calculations become computationally very demanding in the orbital-based Kohn-Sham formalism, ...

  12. Silicene on MoS2: role of the van der Waals interaction

    KAUST Repository

    Zhu, Jiajie; Schwingenschlö gl, Udo

    2015-01-01

    We demonstrate for silicene on MoS2 substrate the limitations of the predictive power of first principles calculations based on van der Waals density functional theory. Only the optB86b-vdW functional is found to give reasonable agreement

  13. Impact of protein and ligand impurities on ITC-derived protein-ligand thermodynamics.

    Science.gov (United States)

    Grüner, Stefan; Neeb, Manuel; Barandun, Luzi Jakob; Sielaff, Frank; Hohn, Christoph; Kojima, Shun; Steinmetzer, Torsten; Diederich, François; Klebe, Gerhard

    2014-09-01

    The thermodynamic characterization of protein-ligand interactions by isothermal titration calorimetry (ITC) is a powerful tool in drug design, giving valuable insight into the interaction driving forces. ITC is thought to require protein and ligand solutions of high quality, meaning both the absence of contaminants as well as accurately determined concentrations. Ligands synthesized to deviating purity and protein of different pureness were titrated by ITC. Data curation was attempted also considering information from analytical techniques to correct stoichiometry. We used trypsin and tRNA-guanine transglycosylase (TGT), together with high affinity ligands to investigate the effect of errors in protein concentration as well as the impact of ligand impurities on the apparent thermodynamics. We found that errors in protein concentration did not change the thermodynamic properties obtained significantly. However, most ligand impurities led to pronounced changes in binding enthalpy. If protein binding of the respective impurity is not expected, the actual ligand concentration was corrected for and the thus revised data compared to thermodynamic properties obtained with the respective pure ligand. Even in these cases, we observed differences in binding enthalpy of about 4kJ⋅mol(-1), which is considered significant. Our results indicate that ligand purity is the critical parameter to monitor if accurate thermodynamic data of a protein-ligand complex are to be recorded. Furthermore, artificially changing fitting parameters to obtain a sound interaction stoichiometry in the presence of uncharacterized ligand impurities may lead to thermodynamic parameters significantly deviating from the accurate thermodynamic signature. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. van der Waals criticality in AdS black holes: A phenomenological study

    Science.gov (United States)

    Bhattacharya, Krishnakanta; Majhi, Bibhas Ranjan; Samanta, Saurav

    2017-10-01

    Anti-de Sitter black holes exhibit van der Waals-type phase transition. In the extended phase-space formalism, the critical exponents for any spacetime metric are identical to the standard ones. Motivated by this fact, we give a general expression for the Helmholtz free energy near the critical point, which correctly reproduces these exponents. The idea is similar to the Landau model, which gives a phenomenological description of the usual second-order phase transition. Here, two main inputs are taken into account for the analysis: (a) black holes should have van der Waals-like isotherms, and (b) free energy can be expressed solely as a function of thermodynamic volume and horizon temperature. Resulting analysis shows that the form of Helmholtz free energy correctly encapsulates the features of the Landau function. We also discuss the isolated critical point accompanied by nonstandard values of critical exponents. The whole formalism is then extended to two other criticalities, namely, Y -X and T -S (based on the standard; i.e., nonextended phase space), where X and Y are generalized force and displacement, whereas T and S are the horizon temperature and entropy. We observe that in the former case Gibbs free energy plays the role of Landau function, whereas in the later case, that role is played by the internal energy (here, it is the black hole mass). Our analysis shows that, although the existence of a van der Waals phase transition depends on the explicit form of the black hole metric, the values of the critical exponents are universal in nature.

  15. A modified van der Pol equation with delay in a description of the heart action

    Directory of Open Access Journals (Sweden)

    Zduniak Beata

    2014-12-01

    Full Text Available In this paper, a modified van der Pol equation is considered as a description of the heart action. This model has a number of interesting properties allowing reconstruction of phenomena observed in physiological experiments as well as in Holter electrocardiographic recordings. Our aim is to study periodic solutions of the modified van der Pol equation and take into consideration the influence of feedback and delay which occur in the normal heart action mode as well as in pathological modes. Usage of certain values for feedback and delay parameters allows simulating the heart action when an accessory conducting pathway is present (Wolff-Parkinson-White syndrome.

  16. Engineering Low Dimensional Materials with van der Waals Interaction

    Science.gov (United States)

    Jin, Chenhao

    Two-dimensional van der Waals materials grow into a hot and big field in condensed matter physics in the past decade. One particularly intriguing thing is the possibility to stack different layers together as one wish, like playing a Lego game, which can create artificial structures that do not exist in nature. These new structures can enable rich new physics from interlayer interaction: The interaction is strong, because in low-dimension materials electrons are exposed to the interface and are susceptible to other layers; and the screening of interaction is less prominent. The consequence is rich, not only from the extensive list of two-dimensional materials available nowadays, but also from the freedom of interlayer configuration, such as displacement and twist angle, which creates a gigantic parameter space to play with. On the other hand, however, the huge parameter space sometimes can make it challenging to describe consistently with a single picture. For example, the large periodicity or even incommensurability in van der Waals systems creates difficulty in using periodic boundary condition. Worse still, the huge superlattice unit cell and overwhelming computational efforts involved to some extent prevent the establishment of a simple physical picture to understand the evolution of system properties in the parameter space of interlayer configuration. In the first part of the dissertation, I will focus on classification of the huge parameter space into subspaces, and introduce suitable theoretical approaches for each subspace. For each approach, I will discuss its validity, limitation, general solution, as well as a specific example of application demonstrating how one can obtain the most important effects of interlayer interaction with little computation efforts. Combining all the approaches introduced will provide an analytic solution to cover majority of the parameter space, which will be very helpful in understanding the intuitive physical picture behind

  17. Electric-field switching of two-dimensional van der Waals magnets

    Science.gov (United States)

    Jiang, Shengwei; Shan, Jie; Mak, Kin Fai

    2018-05-01

    Controlling magnetism by purely electrical means is a key challenge to better information technology1. A variety of material systems, including ferromagnetic (FM) metals2-4, FM semiconductors5, multiferroics6-8 and magnetoelectric (ME) materials9,10, have been explored for the electric-field control of magnetism. The recent discovery of two-dimensional (2D) van der Waals magnets11,12 has opened a new door for the electrical control of magnetism at the nanometre scale through a van der Waals heterostructure device platform13. Here we demonstrate the control of magnetism in bilayer CrI3, an antiferromagnetic (AFM) semiconductor in its ground state12, by the application of small gate voltages in field-effect devices and the detection of magnetization using magnetic circular dichroism (MCD) microscopy. The applied electric field creates an interlayer potential difference, which results in a large linear ME effect, whose sign depends on the interlayer AFM order. We also achieve a complete and reversible electrical switching between the interlayer AFM and FM states in the vicinity of the interlayer spin-flip transition. The effect originates from the electric-field dependence of the interlayer exchange bias.

  18. Combination Rules for Morse-Based van der Waals Force Fields.

    Science.gov (United States)

    Yang, Li; Sun, Lei; Deng, Wei-Qiao

    2018-02-15

    In traditional force fields (FFs), van der Waals interactions have been usually described by the Lennard-Jones potentials. Conventional combination rules for the parameters of van der Waals (VDW) cross-termed interactions were developed for the Lennard-Jones based FFs. Here, we report that the Morse potentials were a better function to describe VDW interactions calculated by highly precise quantum mechanics methods. A new set of combination rules was developed for Morse-based FFs, in which VDW interactions were described by Morse potentials. The new set of combination rules has been verified by comparing the second virial coefficients of 11 noble gas mixtures. For all of the mixed binaries considered in this work, the combination rules work very well and are superior to all three other existing sets of combination rules reported in the literature. We further used the Morse-based FF by using the combination rules to simulate the adsorption isotherms of CH 4 at 298 K in four covalent-organic frameworks (COFs). The overall agreement is great, which supports the further applications of this new set of combination rules in more realistic simulation systems.

  19. Semi-analytical stochastic analysis of the generalized van der Pol system

    Czech Academy of Sciences Publication Activity Database

    Náprstek, Jiří; Fischer, Cyril

    (2018) ISSN 1802-680X R&D Projects: GA ČR(CZ) GA15-01035S Institutional support: RVO:68378297 Keywords : stochastic stability * generalized van der Pol system * stochastic averaging * limit cycles Subject RIV: JM - Building Engineering OBOR OECD: Construction engineering, Municipal and structural engineering https://www.kme.zcu.cz/acm/acm/article/view/407

  20. Beam-dynamic effects at the CMS BRIL van der Meer scans

    Science.gov (United States)

    Babaev, A.

    2018-03-01

    The CMS Beam Radiation Instrumentation and Luminosity Project (BRIL) is responsible for the simulation and measurement of luminosity, beam conditions and radiation fields in the CMS experiment. The project is engaged in operating and developing new detectors (luminometers), adequate for the experimental conditions associated with high values of instantaneous luminosity delivered by the CERN LHC . BRIL operates several detectors based on different physical principles and technologies. Precise and accurate measurements of the delivered luminosity is of paramount importance for the CMS physics program. The absolute calibration of luminosity is achieved by the van der Meer method, which is carried out under specially tailored conditions. This paper presents models used to simulate of beam-dynamic effects arising due to the electromagnetic interaction of colliding bunches. These effects include beam-beam deflection and dynamic-β effect. Both effects are important to luminosity measurements and influence calibration constants at the level of 1-2%. The simulations are carried out based on 2016 CMS van der Meer scan data for proton-proton collisions at a center-of-mass energy of 13 TeV.

  1. VPLIV VAN DER WAALSOVIH SIL NA TVORBO ASOCIIRANIH MOLEKUL

    OpenAIRE

    Kuster, Bernarda

    2014-01-01

    Namen diplomske naloge je preučiti vpliv van der Waalsovih sil na tvorbo asociiranih molekul. V ta namen smo izbrali površinsko aktivne snovi, ki imajo amfifilne lastnosti in vplivajo na povšinske in medfazne napetosti ter pri določeni koncentraciji, imenovani kritična micelna koncentracija (CMC), tvorijo molekulske skupke, ki jim pravimo micele. Kritično micelno koncentracijo smo določili trem površinsko aktivnim snovem: heksadeciltrimetilamonijevemu bromidu, tetradeciltrimetilamonijevemu b...

  2. Van der Woude syndrome: Management in the mixed dentition

    OpenAIRE

    Sonahita Agarwal; M R Dinesh; R M Dharma; B C Amarnath

    2013-01-01

    This article presents the case of a patient with Van der Woude syndrome treated with orthodontic and orthopedic intervention in the mixed dentition stage. The patient had a bilateral cleft of the lip and alveolus accompanied by lip pits on the lower lip. Intra-orally, there was bilateral anterior and posterior cross-bite with a collapsed maxilla. The maxillary transverse deficiency was managed with orthopedic expansion and the second phase of treatment involved secondary alveolar bone graftin...

  3. Spontaneous doping on high quality talc-graphene-hBN van der Waals heterostructures

    Science.gov (United States)

    Mania, E.; Alencar, A. B.; Cadore, A. R.; Carvalho, B. R.; Watanabe, K.; Taniguchi, T.; Neves, B. R. A.; Chacham, H.; Campos, L. C.

    2017-09-01

    Steady doping, added to its remarkable electronic properties, would make graphene a valuable commodity in the solar cell market, as energy power conversion could be substantially increased. Here we report a graphene van der Waals heterostructure which is able to spontaneously dope graphene (p-type) up to n ~ 2.2  ×  1013 cm-2 while providing excellent charge mobility (μ ~ 25 000 cm2 V-1 s-1). Such properties are achieved via deposition of graphene on atomically flat layered talc, a natural and abundant dielectric crystal. Raman investigation shows a preferential charge accumulation on graphene-talc van der Waals heterostructures, which are investigated through the electronic properties of talc/graphene/hBN heterostructure devices. These heterostructures preserve graphene’s good electronic quality, verified by the observation of quantum Hall effect at low magnetic fields (B  =  0.4 T) at T  =  4.2 K. In order to investigate the physical mechanisms behind graphene-on-talc p-type doping, we performed first-principles calculations of their interface structural and electronic properties. In addition to potentially improving solar cell efficiency, graphene doping via van der Waals stacking is also a promising route towards controlling the band gap opening in bilayer graphene, promoting a steady n or p type doping in graphene and, eventually, providing a new path to access superconducting states in graphene, predicted to exist only at very high doping.

  4. Characterisation of the selective binding of antibiotics vancomycin and teicoplanin by the VanS receptor regulating type A vancomycin resistance in the enterococci.

    Science.gov (United States)

    Hughes, C S; Longo, E; Phillips-Jones, M K; Hussain, R

    2017-08-01

    A-type resistance towards "last-line" glycopeptide antibiotic vancomycin in the leading hospital acquired infectious agent, the enterococci, is the most common in the UK. Resistance is regulated by the VanR A S A two-component system, comprising the histidine sensor kinase VanS A and the partner response regulator VanR A . The nature of the activating ligand for VanS A has not been identified, therefore this work sought to identify and characterise ligand(s) for VanS A . In vitro approaches were used to screen the structural and activity effects of a range of potential ligands with purified VanS A protein. Of the screened ligands (glycopeptide antibiotics vancomycin and teicoplanin, and peptidoglycan components N-acetylmuramic acid, D-Ala-D-Ala and Ala-D-y-Glu-Lys-D-Ala-D-Ala) only glycopeptide antibiotics vancomycin and teicoplanin were found to bind VanS A with different affinities (vancomycin 70μM; teicoplanin 30 and 170μM), and were proposed to bind via exposed aromatic residues tryptophan and tyrosine. Furthermore, binding of the antibiotics induced quicker, longer-lived phosphorylation states for VanS A , proposing them as activators of type A vancomycin resistance in the enterococci. Copyright © 2017 Diamond Light Source Ltd. Published by Elsevier B.V. All rights reserved.

  5. Pattern-free thermal modulator via thermal radiation between Van der Waals materials

    Science.gov (United States)

    Liu, Xianglei; Shen, Jiadong; Xuan, Yimin

    2017-10-01

    Modulating heat flux provides a platform for a plethora of emerging devices such as thermal diodes, thermal transistors, and thermal memories. Here, a pattern-free noncontact thermal modulator is proposed based on the mechanical rotation between two Van der Waals films with optical axes parallel to the surfaces. A modulation contrast can reach a value higher than 5 for hexagonal Boron Nitride (hBN) films separated by a nanoscale gap distance. The dominant radiative heat exchange comes from the excitation of both Type I and Type II hyperbolic surface phonon polaritons (HSPhPs) at the vacuum-hBN interface for different orientations, while the large modulation contrast is mainly attributed to the mismatching Type I HSPhPs induced by rotation. This work opens the possibility to design cheap thermal modulators without relying on nanofabrication techniques, and paves the way to apply natural Van der Waals materials in manipulating heat currents in an active way.

  6. Van der Waals Attraction of Vortices in Anisotropic and Layered Superconductors

    International Nuclear Information System (INIS)

    Blatter, G.; Geshkenbein, V.

    1996-01-01

    We show that in anisotropic and layered superconductors the fluctuations of vortex lines produce an attractive long-range vortex-vortex interaction of the van der Waals type. This attraction follows from the anisotropic screening properties of the material and has profound consequences for the low-field phase diagram of these materials. copyright 1996 The American Physical Society

  7. Using the minimum principle for the Helmholtz free energy in the analysis of the equilibria of a van der Waals fluid

    International Nuclear Information System (INIS)

    Ascoli, Sergio; Malvestuto, Vincenzo

    2004-01-01

    For a fluid system, obeying a state equation of the van der Waals type, the gas and the liquid phases can coexist in equilibrium, at a given temperature, only if the volume of the system is kept fixed. Thus, in order to study the two-phase equilibria of a fluid system, it seemed quite natural to choose the molar volume as the independent variable, and, consequently, the Helmholtz free energy as the proper thermodynamic potential for the application of the minimum principle. Specific computations are here carried out for a single van der Waals fluid, namely, pure water at 300 0 C. As a result, the present treatment indicates a simple and effective way to identify the whole range of molar volumes where the equilibrium preferred by the system is a two-phase equilibrium. This range results to be wider than the interval of strict instability of the van der Waals isotherm. Finally, it is pointed out that all the results, obtained here for the van der Waals state equation, can be extended to all the state equations of the same type

  8. Efimov states near a Feshbach resonance and the limits of van der Waals universality at finite background scattering length

    Science.gov (United States)

    Langmack, Christian; Schmidt, Richard; Zwerger, Wilhelm

    2018-03-01

    We calculate the spectrum of three-body Efimov bound states near a Feshbach resonance within a model which accounts both for the finite range of interactions and the presence of background scattering. The latter may be due to direct interactions in an open channel or a second overlapping Feshbach resonance. It is found that background scattering gives rise to substantial changes in the trimer spectrum as a function of the detuning away from a Feshbach resonance, in particular in the regime where the background channel supports Efimov states on its own. Compared to the situation with negligible background scattering, the regime where van der Waals universality applies is shifted to larger values of the resonance strength if the background scattering length is positive. For negative background scattering lengths, in turn, van der Waals universality extends to even small values of the resonance strength parameter, consistent with experimental results on Efimov states in 39K. Within a simple model, we show that short-range three-body forces do not affect van der Waals universality significantly. Repulsive three-body forces may, however, explain the observed variation between around -8 and -10 of the ratio between the scattering length where the first Efimov trimer appears and the van der Waals length.

  9. Hermite Functional Link Neural Network for Solving the Van der Pol-Duffing Oscillator Equation.

    Science.gov (United States)

    Mall, Susmita; Chakraverty, S

    2016-08-01

    Hermite polynomial-based functional link artificial neural network (FLANN) is proposed here to solve the Van der Pol-Duffing oscillator equation. A single-layer hermite neural network (HeNN) model is used, where a hidden layer is replaced by expansion block of input pattern using Hermite orthogonal polynomials. A feedforward neural network model with the unsupervised error backpropagation principle is used for modifying the network parameters and minimizing the computed error function. The Van der Pol-Duffing and Duffing oscillator equations may not be solved exactly. Here, approximate solutions of these types of equations have been obtained by applying the HeNN model for the first time. Three mathematical example problems and two real-life application problems of Van der Pol-Duffing oscillator equation, extracting the features of early mechanical failure signal and weak signal detection problems, are solved using the proposed HeNN method. HeNN approximate solutions have been compared with results obtained by the well known Runge-Kutta method. Computed results are depicted in term of graphs. After training the HeNN model, we may use it as a black box to get numerical results at any arbitrary point in the domain. Thus, the proposed HeNN method is efficient. The results reveal that this method is reliable and can be applied to other nonlinear problems too.

  10. Color van der Waals force acting in heavy-ion scattering at low energies

    International Nuclear Information System (INIS)

    Hussein, M.S.; Lima, C.L.; Pato, M.P.; Bertulani, C.A.

    1990-01-01

    The influence of the color van der Waals force in the elastic scattering of 208 Pb on 208 Pb at sub-barrier energies is studied. The conspicuous changes in the Mott oscillation found here are suggested as a possible experimental test

  11. Fragmentation of neutral van der Waals clusters with visible laser light: A new variant of the Raman effect?

    International Nuclear Information System (INIS)

    Stamatovic, A.; Howorka, F.; Scheier, P.; Maerk, T.D.

    1989-01-01

    We have observed strong photodissociation (using visible laser light) of neutral van der Waals clusters (Ar, N 2 , O 2 , CO 2 , SO 2 , NH 3 ) produced by supersonic expansion and detected by electron ionization/mass spectrometer. Several tests were performed, all of them supporting this surprising discovery. We suggest that Raman induced photodissociation (RIP) is responsible for this phenomenon. This first observation of Raman induced photodissociation provides a new technique for the study of neutral van der Waals clusters. (orig.)

  12. Van der Waals Forces and Photon-Less Effective Field Theory

    International Nuclear Information System (INIS)

    Arriola, E.R.

    2011-01-01

    In the ultra-cold regime Van der Waals forces between neutral atoms can be represented by short range effective interactions. We show that universal low energy scaling features of the underlying vdW long range force stemming from two photon exchange impose restrictions on an Effective Field Theory without explicit photons. The role of naively redundant operators, relevant to the definition of three body forces, is also analyzed. (author)

  13. Evidence for van der Waals adhesion in gecko setae

    OpenAIRE

    Autumn, Kellar; Sitti, Metin; Liang, Yiching A.; Peattie, Anne M.; Hansen, Wendy R.; Sponberg, Simon; Kenny, Thomas W.; Fearing, Ronald; Israelachvili, Jacob N.; Full, Robert J.

    2002-01-01

    Geckos have evolved one of the most versatile and effective adhesives known. The mechanism of dry adhesion in the millions of setae on the toes of geckos has been the focus of scientific study for over a century. We provide the first direct experimental evidence for dry adhesion of gecko setae by van der Waals forces, and reject the use of mechanisms relying on high surface polarity, including capillary adhesion. The toes of live Tokay geckos were highly hydrophobic, and adhered equally well ...

  14. Complex dynamics in Duffing-Van der Pol equation

    International Nuclear Information System (INIS)

    Jing Zhujun; Yang, Zhiyan; Jiang Tao

    2006-01-01

    Duffing-Van der Pol equation with fifth nonlinear-restoring force and two external forcing terms is investigated. The threshold values of existence of chaotic motion are obtained under the periodic perturbation. By second-order averaging method and Melnikov method, we prove the criterion of existence of chaos in averaged system under quasi-periodic perturbation for ω 2 nω 1 + εσ, n = 1, 3, 5, and cannot prove the criterion of existence of chaos in second-order averaged system under quasi-periodic perturbation for ω 2 = nω 1 + εσ, n = 2, 4, 6, 7, 8, 9, 10, where σ is not rational to ω 1 , but can show the occurrence of chaos in original system by numerical simulation. Numerical simulations including heteroclinic and homoclinic bifurcation surfaces, bifurcation diagrams, Lyapunov exponent, phase portraits and Poincare map, not only show the consistence with the theoretical analysis but also exhibit the more new complex dynamical behaviors. We show that cascades of interlocking period-doubling and reverse period-doubling bifurcations from period-2 to -4 and -6 orbits, interleaving occurrence of chaotic behaviors and quasi-periodic orbits, transient chaos with a great abundance of period windows, symmetry-breaking of periodic orbits in chaotic regions, onset of chaos which occurs more than one, chaos suddenly disappearing to period orbits, interior crisis, strange non-chaotic attractor, non-attracting chaotic set and nice chaotic attractors. Our results show many dynamical behaviors and some of them are strictly departure from the behaviors of Duffing-Van der Pol equation with a cubic nonlinear-restoring force and one external forcing

  15. First-principles study of van der Waals interactions in MoS2 and MoO3

    International Nuclear Information System (INIS)

    Peelaers, H; Van de Walle, C G

    2014-01-01

    Van der Waals interactions play an important role in layered materials such as MoS 2 and MoO 3 . Within density functional theory, several methods have been developed to explicitly include van der Waals interactions. We compare the performance of several of these functionals in describing the structural and electronic properties of MoS 2 and MoO 3 . We include functionals based on the local density or generalized gradient approximations, but also based on hybrid functionals. The coupling of the semiempirical Grimme D2 method with the hybrid functional HSE06 is shown to lead to a very good description of both structural and electronic properties. (paper)

  16. Analytical solution for Van der Pol-Duffing oscillators

    International Nuclear Information System (INIS)

    Kimiaeifar, A.; Saidi, A.R.; Bagheri, G.H.; Rahimpour, M.; Domairry, D.G.

    2009-01-01

    In this paper, the problem of single-well, double-well and double-hump Van der Pol-Duffing oscillator is studied. Governing equation is solved analytically using a new kind of analytic technique for nonlinear problems namely the 'Homotopy Analysis Method' (HAM), for the first time. Present solution gives an expression which can be used in wide range of time for all domain of response. Comparisons of the obtained solutions with numerical results show that this method is effective and convenient for solving this problem. This method is a capable tool for solving this kind of nonlinear problems.

  17. Generalization of the van der Pauw relationship derived from electrostatics

    Science.gov (United States)

    Weiss, Jonathan D.

    2011-08-01

    In an earlier paper, this author, along with two others Weiss et al. (2008) [1], demonstrated that the original van der Pauw relationship could be derived from three-dimensional electrostatics, as opposed to van der Pauw's use of conformal mapping. The earlier derivation was done for a conducting material of rectangular cross section with contacts placed at the corners. Presented here is a generalization of the previous work involving a square sample and a square array of electrodes that are not confined to the corners, since this measurement configuration could be a more convenient one. As in the previous work, the effects of non-zero sample thickness and contact size have been investigated. Buehler and Thurber derived a similar relationship using an infinite series of current images on a large and thin conducting sheet to satisfy the conditions at the boundary of the sample. The results presented here agree with theirs numerically, but analytic agreement could not be shown using any of the perused mathematical literature. By simply equating the two solutions, it appears that, as a byproduct of this work, a new mathematical relationship has been uncovered. Finally, the application of this methodology to the Hall Effect is discussed.

  18. Van der Waals cohesion and plasmon excitations in C60 fullerite

    International Nuclear Information System (INIS)

    Lambin, P.; Lucas, A.A.

    1993-01-01

    The Van der Waals cohesive energy of C 60 fullerite is evaluated from the zero-point energy of multipole plasmons fluctuating on the highly-polarizable Bucky balls. These hollow molecules are treated as dielectric shells. The shell material is an isotropic continuum with a dielectric function designed to exhibit the plasmon resonances observed in other forms of solid carbon in the ultraviolet. (orig.)

  19. Interlayer excitons in a bulk van der Waals semiconductor

    DEFF Research Database (Denmark)

    Arora, Ashish; Drueppel, Matthias; Schmidt, Robert

    2017-01-01

    Bound electron-hole pairs called excitons govern the electronic and optical response of many organic and inorganic semiconductors. Excitons with spatially displaced wave functions of electrons and holes (interlayer excitons) are important for Bose-Einstein condensation, superfluidity......, dissipationless current flow, and the light-induced exciton spin Hall effect. Here we report on the discovery of interlayer excitons in a bulk van der Waals semiconductor. They form due to strong localization and spin-valley coupling of charge carriers. By combining high-field magneto-reflectance experiments...

  20. Contribution of van der Waals forces to the plasticity of magnesium

    International Nuclear Information System (INIS)

    Ding, Zhigang; Liu, Wei; Li, Shuang; Zhang, Dalong; Zhao, Yonghao; Lavernia, Enrique J.; Zhu, Yuntian

    2016-01-01

    The accurate determination of stacking fault energies (SFE) and associated restoring forces is important for understanding plastic deformation, especially the dislocation emission and motion in metals. In this work, we use density-functional theory (DFT) calculations to, systematically study the all-dimension relaxed atomic models of Mg crystal slip, with a special focus on the “subslip modes” in prismatic and pyramidal slip systems. We find that slip systems with large interplanar distances are readily activated, which agrees well with experimental observations. Inclusion of the ubiquitous van der Waals (vdW) interactions results in lower generalized stacking fault energy curves. Remarkably, the unstable SFE value of pyramidal-II system is strongly reduced by up to 69 mJ/m 2 , and the related restoring stress is lowered by 0.74 GPa after taking into account the vdW energy. Our calculations indicate significant effect of vdW forces on the plasticity of Mg. - Graphical abstract: By using density-functional theory calculations, we systematically study the generalized stacking fault energy for pure Mg, and demonstrated pronounced contributions of van der Waals forces to the plasticity of Mg.

  1. Blades Forced Vibration Under Aero-Elastic Excitation Modeled by Van der Pol

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk

    2017-01-01

    Roč. 27, č. 11 (2017), č. článku 1750166. ISSN 0218-1274 R&D Projects: GA ČR GA16-04546S Institutional support: RVO:61388998 Keywords : ade vibration * aero-elastic force * self-excitation * van der Pol Subject RIV: BI - Acoustics OBOR OECD: Applied mechanics Impact factor: 1.329, year: 2016

  2. Evidence for van der Waals adhesion in gecko setae.

    Science.gov (United States)

    Autumn, Kellar; Sitti, Metin; Liang, Yiching A; Peattie, Anne M; Hansen, Wendy R; Sponberg, Simon; Kenny, Thomas W; Fearing, Ronald; Israelachvili, Jacob N; Full, Robert J

    2002-09-17

    Geckos have evolved one of the most versatile and effective adhesives known. The mechanism of dry adhesion in the millions of setae on the toes of geckos has been the focus of scientific study for over a century. We provide the first direct experimental evidence for dry adhesion of gecko setae by van der Waals forces, and reject the use of mechanisms relying on high surface polarity, including capillary adhesion. The toes of live Tokay geckos were highly hydrophobic, and adhered equally well to strongly hydrophobic and strongly hydrophilic, polarizable surfaces. Adhesion of a single isolated gecko seta was equally effective on the hydrophobic and hydrophilic surfaces of a microelectro-mechanical systems force sensor. A van der Waals mechanism implies that the remarkable adhesive properties of gecko setae are merely a result of the size and shape of the tips, and are not strongly affected by surface chemistry. Theory predicts greater adhesive forces simply from subdividing setae to increase surface density, and suggests a possible design principle underlying the repeated, convergent evolution of dry adhesive microstructures in gecko, anoles, skinks, and insects. Estimates using a standard adhesion model and our measured forces come remarkably close to predicting the tip size of Tokay gecko seta. We verified the dependence on size and not surface type by using physical models of setal tips nanofabricated from two different materials. Both artificial setal tips stuck as predicted and provide a path to manufacturing the first dry, adhesive microstructures.

  3. Droplet spreading driven by van der Waals force: a molecular dynamics study

    KAUST Repository

    Wu, Congmin

    2010-07-07

    The dynamics of droplet spreading is investigated by molecular dynamics simulations for two immiscible fluids of equal density and viscosity. All the molecular interactions are modeled by truncated Lennard-Jones potentials and a long-range van der Waals force is introduced to act on the wetting fluid. By gradually increasing the coupling constant in the attractive van der Waals interaction between the wetting fluid and the substrate, we observe a transition in the initial stage of spreading. There exists a critical value of the coupling constant, above which the spreading is pioneered by a precursor film. In particular, the dynamically determined critical value quantitatively agrees with that determined by the energy criterion that the spreading coefficient equals zero. The latter separates partial wetting from complete wetting. In the regime of complete wetting, the radius of the spreading droplet varies with time as R(t) ∼ √t, a behavior also found in molecular dynamics simulations where the wetting dynamics is driven by the short-range Lennard-Jones interaction between liquid and solid. © 2010 IOP Publishing Ltd.

  4. Moire superlattice effects in graphene/boron-nitride van der Waals heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Wallbank, John R.; Chen, Xi; Fal' ko, Vladimir I. [Department of Physics, Lancaster University, Lancaster (United Kingdom); Mucha-Kruczynski, Marcin [Department of Physics, University of Bath (United Kingdom)

    2015-06-15

    Van der Waals heterostructures of graphene and hexagonal boron nitride feature a moire superlattice for graphene's Dirac electrons. Here, we review the effects generated by this superlattice, including a specific miniband structure featuring gaps and secondary Dirac points, and a fractal spectrum of magnetic minibands known as Hofstadter's butterfly. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates

    Science.gov (United States)

    Bonilla, Manuel; Kolekar, Sadhu; Ma, Yujing; Diaz, Horacio Coy; Kalappattil, Vijaysankar; Das, Raja; Eggers, Tatiana; Gutierrez, Humberto R.; Phan, Manh-Huong; Batzill, Matthias

    2018-04-01

    Reduced dimensionality and interlayer coupling in van der Waals materials gives rise to fundamentally different electronic1, optical2 and many-body quantum3-5 properties in monolayers compared with the bulk. This layer-dependence permits the discovery of novel material properties in the monolayer regime. Ferromagnetic order in two-dimensional materials is a coveted property that would allow fundamental studies of spin behaviour in low dimensions and enable new spintronics applications6-8. Recent studies have shown that for the bulk-ferromagnetic layered materials CrI3 (ref. 9) and Cr2Ge2Te6 (ref. 10), ferromagnetic order is maintained down to the ultrathin limit at low temperatures. Contrary to these observations, we report the emergence of strong ferromagnetic ordering for monolayer VSe2, a material that is paramagnetic in the bulk11,12. Importantly, the ferromagnetic ordering with a large magnetic moment persists to above room temperature, making VSe2 an attractive material for van der Waals spintronics applications.

  6. Van der Waals dispersion energy between atoms and nanoparticles

    International Nuclear Information System (INIS)

    Boustimi, M; Loulou, M; Natto, S; Belafhal, A; Baudon, J

    2017-01-01

    In this work, we focus on the atom-surface interaction where the geometry of the surface is highly symmetric (i.e. sphere, cylinder and plane) and the atom is in ground state. We first present the main features of our model, based on the susceptibility tensors of the two partners in interaction, to determine a general expression of the dispersive energy of van der Waals interaction. Some results are given as applications of this model which addresses recent nanophysical problems, for example, when atoms are in the vicinity of metallic nanoshells, nanospheres or nanowires. (paper)

  7. David van der Linden, Experiencing Exile: Huguenot Refugees in the Dutch Republic 1680-1700

    Directory of Open Access Journals (Sweden)

    Matthew Glozier

    2016-04-01

    Full Text Available David van der Linden, Experiencing Exile: Huguenot Refugees in the Dutch Republic 1680-1700 (PhD Universiteit Utrecht 2013; Politics and Culture in Europe, 1650-1750; Farnham: Ashgate, 2015, xx + 289 pp., ISBN 978 14 7242 927 8.

  8. Phase transitions in the argon, krypton and xenon in generalized Van der Waals theory

    International Nuclear Information System (INIS)

    Cavalcanti, H.M.

    1977-01-01

    Fluid-solid like phase transitions for three monoatomic substances, argon, krypton and xenon are treated, using the extension of the Van der Waals theory to the crystalline state. The method utilized is based on 'Maxwell construction' of identical areas [pt

  9. Recent progress in predicting structural and electronic properties of organic solids with the van der Waals density functional

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, Susumu, E-mail: shou@sci.u-ryukyu.ac.jp [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 (Japan); Okuma, Koji; Inaoka, Takeshi [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 (Japan); Hamada, Ikutaro, E-mail: Hamada.Ikutaro@nims.go.jp [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044 (Japan)

    2015-10-01

    Highlights: • Review of theoretical studies on organic solids with the density-functional methods. • van der Waals (vdW)-inclusive methods to predict cohesive properties of oligoacenes. • A variant of the vdW density functional describes the structures accurately. • The molecular configuration and conformation crucially affects the band dispersion. - Abstract: We review recent studies on electronic properties of the organic solids with the first-principles electronic structure methods, with the emphasis on the roles of the intermolecular van der Waals (vdW) interaction in electronic properties of the organic semiconductors. After a brief summary of the recent vdW inclusive first-principle theoretical methods, we discuss their performance in predicting cohesive properties of oligoacene crystals as examples of organic crystals. We show that a variant of the van der Waals density functional describes structure and energetics of organic crystals accurately. In addition, we review our recent study on the zinc phthalocyanine crystal and discuss the importance of the intermolecular distance and orientational angle in the band dispersion. Finally, we draw some general conclusions and the future perspectives.

  10. Recent progress in predicting structural and electronic properties of organic solids with the van der Waals density functional

    International Nuclear Information System (INIS)

    Yanagisawa, Susumu; Okuma, Koji; Inaoka, Takeshi; Hamada, Ikutaro

    2015-01-01

    Highlights: • Review of theoretical studies on organic solids with the density-functional methods. • van der Waals (vdW)-inclusive methods to predict cohesive properties of oligoacenes. • A variant of the vdW density functional describes the structures accurately. • The molecular configuration and conformation crucially affects the band dispersion. - Abstract: We review recent studies on electronic properties of the organic solids with the first-principles electronic structure methods, with the emphasis on the roles of the intermolecular van der Waals (vdW) interaction in electronic properties of the organic semiconductors. After a brief summary of the recent vdW inclusive first-principle theoretical methods, we discuss their performance in predicting cohesive properties of oligoacene crystals as examples of organic crystals. We show that a variant of the van der Waals density functional describes structure and energetics of organic crystals accurately. In addition, we review our recent study on the zinc phthalocyanine crystal and discuss the importance of the intermolecular distance and orientational angle in the band dispersion. Finally, we draw some general conclusions and the future perspectives.

  11. Cort van der Linden (1846-1935) : Minister-president in oorlogstijd : een politieke biografie

    NARCIS (Netherlands)

    Hertog, Johannes Paul den

    2007-01-01

    This political biography analyzes the political influence of, and methods used by, P.W.A. Cort van der Linden (1846-1935), Dutch Prime-Minister from 1913 to 1918. While he was a Professor of Economics he developed a view of liberalism based on German idealism which also included a progressive use

  12. Dependences of the van der Waals atom-wall interaction on atomic and material properties

    International Nuclear Information System (INIS)

    Caride, A.O.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Zanette, S.I.

    2005-01-01

    The 1%-accurate calculations of the van der Waals interaction between an atom and a cavity wall are performed in the separation region from 3 nm to 150 nm. The cases of metastable He * and Na atoms near metal, semiconductor, and dielectric walls are considered. Different approximations to the description of wall material and atomic dynamic polarizability are carefully compared. The smooth transition to the Casimir-Polder interaction is verified. It is shown that to obtain accurate results for the atom-wall van der Waals interaction at short separations with an error less than 1% one should use the complete optical-tabulated data for the complex refractive index of the wall material and the accurate dynamic polarizability of an atom. The obtained results may be useful for the theoretical interpretation of recent experiments on quantum reflection and Bose-Einstein condensation of ultracold atoms on or near surfaces of different kinds

  13. Intermolecular vibronic spectroscopy of small van der Waals clusters: Phenol- and aniline-(argon)2 complexes

    International Nuclear Information System (INIS)

    Schmidt, M.; Mons, M.; Le Calve, J.

    1990-01-01

    We report the clear observation and assignment of the symmetric stretching and bending van der Waals modes in two three-body C 2ν complexes, phenol- and aniline-(Ar) 2 , using resonant two-photon ionization. (orig.)

  14. van der Waals forces in density functional theory: a review of the vdW-DF method.

    Science.gov (United States)

    Berland, Kristian; Cooper, Valentino R; Lee, Kyuho; Schröder, Elsebeth; Thonhauser, T; Hyldgaard, Per; Lundqvist, Bengt I

    2015-06-01

    A density functional theory (DFT) that accounts for van der Waals (vdW) interactions in condensed matter, materials physics, chemistry, and biology is reviewed. The insights that led to the construction of the Rutgers-Chalmers van der Waals density functional (vdW-DF) are presented with the aim of giving a historical perspective, while also emphasizing more recent efforts which have sought to improve its accuracy. In addition to technical details, we discuss a range of recent applications that illustrate the necessity of including dispersion interactions in DFT. This review highlights the value of the vdW-DF method as a general-purpose method, not only for dispersion bound systems, but also in densely packed systems where these types of interactions are traditionally thought to be negligible.

  15. Development of a picture of the van der Waals interaction energy between clusters of nanometer-range particles

    International Nuclear Information System (INIS)

    Arunachalam, V.; Marlow, W.H.; Lu, J.X.

    1998-01-01

    The importance of the long-range Lifshitz-van der Waals interaction energy between condensed bodies is well known. However, its implementation for interacting bodies that are highly irregular and separated by distances varying from contact to micrometers has received little attention. As part of a study of collisions of irregular aerosol particles, an approach based on the Lifshitz theory of van der Waals interaction has been developed to compute the interaction energy between a sphere and an aggregate of spheres at all separations. In the first part of this study, the iterated sum-over-dipole interactions between pairs of approximately spherical molecular clusters are compared with the Lifshitz and Lifshitz-Hamaker interaction energies for continuum spheres of radii equal to those of the clusters' circumscribed spheres and of the same masses as the clusters. The Lifshitz energy is shown to converge to the iterated dipolar energy for quasispherical molecular clusters for sufficiently large separations, while the energy calculated by using the Lifshitz-Hamaker approach does not. Next, the interaction energies between a contacting pair of these molecular clusters and a third cluster in different relative positions are calculated first by coupling all molecules in the three-cluster system and second by ignoring the interactions between the molecules of the adhering clusters. The error calculated by this omission is shown to be very small, and is an indication of the error in computing the long-range interaction energy between a pair of interacting spheres and a third sphere as a simple sum over the Lifshitz energies between individual, condensed-matter spheres. This Lifshitz energy calculation is then combined with the short-separation, nonsingular van der Waals energy calculation of Lu, Marlow, and Arunachalam, to provide an integrated picture of the van der Waals energy from large separations to contact. copyright 1998 The American Physical Society

  16. Van der Woude syndrome: Management in the mixed dentition

    Directory of Open Access Journals (Sweden)

    Sonahita Agarwal

    2013-01-01

    Full Text Available This article presents the case of a patient with Van der Woude syndrome treated with orthodontic and orthopedic intervention in the mixed dentition stage. The patient had a bilateral cleft of the lip and alveolus accompanied by lip pits on the lower lip. Intra-orally, there was bilateral anterior and posterior cross-bite with a collapsed maxilla. The maxillary transverse deficiency was managed with orthopedic expansion and the second phase of treatment involved secondary alveolar bone grafting followed by retention with functional regulator-3. The mild maxillary retrognathia and deficient lip support was managed with dental compensation.

  17. Van der Woude syndrome: Management in the mixed dentition.

    Science.gov (United States)

    Agarwal, Sonahita; Dinesh, M R; Dharma, R M; Amarnath, B C

    2013-01-01

    This article presents the case of a patient with Van der Woude syndrome treated with orthodontic and orthopedic intervention in the mixed dentition stage. The patient had a bilateral cleft of the lip and alveolus accompanied by lip pits on the lower lip. Intra-orally, there was bilateral anterior and posterior cross-bite with a collapsed maxilla. The maxillary transverse deficiency was managed with orthopedic expansion and the second phase of treatment involved secondary alveolar bone grafting followed by retention with functional regulator-3. The mild maxillary retrognathia and deficient lip support was managed with dental compensation.

  18. The role of van der waals interaction on quantum-mechanical tunneling

    Energy Technology Data Exchange (ETDEWEB)

    Takayanagi, Toshiyuki; Kurosaki, Yuzuru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    We present three-dimensional quantum cumulative reaction probabilities for the F + H{sub 2}, D{sub 2}, and HD reactions with a special emphasis on resonances associated with quasi-bound states localized in the reactant van der Waals region of the potential energy surface. The accurate ab initio potential surface of Stark and Werner and the less accurate 5SEC-W surface developed by Truhlar and co-workers have been employed. (author)

  19. Multiple critical points and liquid-liquid equilibria from the van der Waals like equations of state

    International Nuclear Information System (INIS)

    Artemenko, Sergey; Lozovsky, Taras; Mazur, Victor

    2008-01-01

    The principal aim of this work is a comprehensive analysis of the phase diagram of water via the van der Waals like equations of state (EoSs) which are considered as superpositions of repulsive and attractive forces. We test more extensively the modified van der Waals EoS (MVDW) proposed by Skibinski et al (2004 Phys. Rev. E 69 061206) and refine this model by introducing instead of the classical van der Waals repulsive term a very accurate hard sphere EoS over the entire stable and metastable regions (Liu 2006 Preprint cond-mat/0605392). It was detected that the simplest form of MVDW EoS displays a complex phase behavior, including three critical points, and identifies four fluid phases (gas, low density liquid (LDL), high density liquid (HDL), and very high density liquid (VHDL)). Moreover the experimentally observed (Mallamace et al 2007 Proc. Natl Acad. Sci. USA 104 18387) anomalous behavior of the density of water in the deeply supercooled region (a density minimum) is reproduced by the MWDW EoS. An improvement of the repulsive part does not change the topological picture of the phase behavior of water in the wide range of thermodynamic variables. The new parameters set for second and third critical points are recognized by thorough analysis of experimental data for the loci of thermodynamic response function extrema

  20. J.T. van der Kemp and his Critique of the Settler Farmers on the ...

    African Journals Online (AJOL)

    Theoretically, I draw on some insights from works of Michel Foucault, especially with regard to eighteenth and early nineteenth century 'representational thought', where 'idea' and 'object' are directly related. Keywords: J.T. van der Kemp, settler farmers, frontier, patriot, rebellion, slavery, baptism, cruelty, Black Circuit Court ...

  1. Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures

    Science.gov (United States)

    2018-02-19

    AFRL-AFOSR-JP-TR-2018-0012 Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures PHILIP Kim HARVARD COLLEGE PRESIDENT...21-02-2018 2.  REPORT TYPE      Final 3.  DATES COVERED (From - To)      15 Aug 2015 to 14 Feb 2017 4.  TITLE AND SUBTITLE Nano Electronics on...NOTES 14.  ABSTRACT We report molecular beam epitaxial growth and electronic transport properties of high quality topological insulator Bi2Se3 thin films

  2. On van der Waals-like forces in spontaneously broken supersymmetries

    International Nuclear Information System (INIS)

    Radescu, E.E.

    1982-12-01

    In spontaneously broken rigid supersymmetry, Goldstone fermion pair exchange should lead to a universal interaction between massive bodies uniquely fixed by the existing low energy theorem. The resulting van der Waals-like potential is shown to be V(r)=Mmπ -3 F -4 r -7 +O(r -8 ), where M,m are the masses of the interacting bodies while √F is the scale of the breaking. The change in the situation when the supersymmetry is promoted to a local one is briefly discussed. (author)

  3. Van der Woude syndrome: A review of 11 cases seen at the Lagos ...

    African Journals Online (AJOL)

    Background: Van der Woude syndrome (VWS), an autosomal dominant condition associated with clefts of the lip and/or palate and lower lip pits and is caused by mutations in interferon regulatory factor six gene. It is reported to be the most common syndromic cleft worldwide. Non-penetrance for the lip pit phenotype is ...

  4. Durabilidad natural y descripción anatómica de la madera de la especie Caryodaphnopsis cogolloi Van der Werf

    OpenAIRE

    César Polanco Tapia; Jenny Caicedo Velásquez; Diego Beltrán Hernandez

    2014-01-01

    Se realizó la descripción anatómica de la madera de la especie Caryodaphnopsis cogolloi van der Werff., describiendo las principales características xilológicas de la especie, identificadas en los planos transversal y longitudinal (tangencial y radial) de la madera. Además, se determinó la durabilidad natural de la especie Caryodaphnopsis cogolloi Van der Werff mediante el ensayo acelerado de laboratorio, utilizando las metodologías soil block, establecida por la norma NTC 1127, y agar block,...

  5. A critical engagement with BJ van der Walt’s reformational approach towards African culture and world view / Isaac Njaramba Mutua

    OpenAIRE

    Mutua, Isaac Njaramba

    2014-01-01

    This research interrogates Bennie van der Walt’s third way as a solution for the “divided soul” of the African people - a divided soul that creates a false dilemma. This division is the creation of political colonialism and neo-colonialism, which impacts negatively on the African socio-economic and political structure. The myth of the superiority of Western culture propagates this vice. Van der Walt’s clarification of the concepts of a world view and culture are depicted in chapter 1. He w...

  6. Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation

    Science.gov (United States)

    Hu, Xue-Rong; Zheng, Ji-Ming; Ren, Zhao-Yu

    2018-04-01

    Based on first-principles calculations within the framework of density functional theory, we study the electronic properties of phosphorene/graphene heterostructures. Band gaps with different sizes are observed in the heterostructure, and charges transfer from graphene to phosphorene, causing the Fermi level of the heterostructure to shift downward with respect to the Dirac point of graphene. Significantly, strong coupling between two layers is discovered in the band spectrum even though it has a van der Waals heterostructure. A tight-binding Hamiltonian model is used to reveal that the resonance of the Bloch states between the phosphorene and graphene layers in certain K points combines with the symmetry matching between band states, which explains the reason for the strong coupling in such heterostructures. This work may enhance the understanding of interlayer interaction and composition mechanisms in van der Waals heterostructures consisting of two-dimensional layered nanomaterials, and may indicate potential reference information for nanoelectronic and optoelectronic applications.

  7. Lithium ions in the van der Waals gap of Bi2Se3 single crystals

    Czech Academy of Sciences Publication Activity Database

    Bludská, Jana; Jakubec, Ivo; Karamazov, S.; Horák, Jaromír; Uher, C.

    2010-01-01

    Roč. 183, č. 12 (2010), s. 2813-2817 ISSN 0022-4596 Institutional research plan: CEZ:AV0Z40320502 Keywords : intercalation * van Der Waals gap * Bi2Se3 crystals Subject RIV: CG - Electrochemistry Impact factor: 2.261, year: 2010

  8. Van-der-Waals interaction of atoms in dipolar Rydberg states

    Science.gov (United States)

    Kamenski, Aleksandr A.; Mokhnenko, Sergey N.; Ovsiannikov, Vitaly D.

    2018-02-01

    An asymptotic expression for the van-der-Waals constant C 6( n) ≈ -0.03 n 12 K p ( x) is derived for the long-range interaction between two highly excited hydrogen atoms A and B in their extreme Stark states of equal principal quantum numbers n A = n B = n ≫ 1 and parabolic quantum numbers n 1(2) = n - 1, n 2(1) = m = 0 in the case of collinear orientation of the Stark-state dipolar electric moments and the interatomic axis. The cubic polynomial K 3( x) in powers of reciprocal values of the principal quantum number x = 1/ n and quadratic polynomial K 2( y) in powers of reciprocal values of the principal quantum number squared y = 1/ n 2 were determined on the basis of the standard curve fitting polynomial procedure from the calculated data for C 6( n). The transformation of attractive van-der-Waals force ( C 6 > 0) for low-energy states n < 23 into repulsive force ( C 6 < 0) for all higher-energy states of n ≥ 23, is observed from the results of numerical calculations based on the second-order perturbation theory for the operator of the long-range interaction between neutral atoms. This transformation is taken into account in the asymptotic formulas (in both cases of p = 2, 3) by polynomials K p tending to unity at n → ∞ ( K p (0) = 1). The transformation from low- n attractive van-der-Waals force into high- n repulsive force demonstrates the gradual increase of the negative contribution to C 6( n) from the lower-energy two-atomic states, of the A(B)-atom principal quantum numbers n'A(B) = n-Δ n (where Δ n = 1, 2, … is significantly smaller than n for the terms providing major contribution to the second-order series), which together with the states of n″B(A) = n+Δ n make the joint contribution proportional to n 12. So, the hydrogen-like manifold structure of the energy spectrum is responsible for the transformation of the power-11 asymptotic dependence C 6( n) ∝ n 11of the low-angular-momenta Rydberg states in many-electron atoms into the power

  9. Observing Imperfection in Atomic Interfaces for van der Waals Heterostructures.

    Science.gov (United States)

    Rooney, Aidan P; Kozikov, Aleksey; Rudenko, Alexander N; Prestat, Eric; Hamer, Matthew J; Withers, Freddie; Cao, Yang; Novoselov, Kostya S; Katsnelson, Mikhail I; Gorbachev, Roman; Haigh, Sarah J

    2017-09-13

    Vertically stacked van der Waals heterostructures are a lucrative platform for exploring the rich electronic and optoelectronic phenomena in two-dimensional materials. Their performance will be strongly affected by impurities and defects at the interfaces. Here we present the first systematic study of interfaces in van der Waals heterostructure using cross-sectional scanning transmission electron microscope (STEM) imaging. By measuring interlayer separations and comparing these to density functional theory (DFT) calculations we find that pristine interfaces exist between hBN and MoS 2 or WS 2 for stacks prepared by mechanical exfoliation in air. However, for two technologically important transition metal dichalcogenide (TMDC) systems, MoSe 2 and WSe 2 , our measurement of interlayer separations provide the first evidence for impurity species being trapped at buried interfaces with hBN interfaces that are flat at the nanometer length scale. While decreasing the thickness of encapsulated WSe 2 from bulk to monolayer we see a systematic increase in the interlayer separation. We attribute these differences to the thinnest TMDC flakes being flexible and hence able to deform mechanically around a sparse population of protruding interfacial impurities. We show that the air sensitive two-dimensional (2D) crystal NbSe 2 can be fabricated into heterostructures with pristine interfaces by processing in an inert-gas environment. Finally we find that adopting glovebox transfer significantly improves the quality of interfaces for WSe 2 compared to processing in air.

  10. Inter-layer and intra-layer heat transfer in bilayer/monolayer graphene van der Waals heterostructure: Is there a Kapitza resistance analogous?

    Science.gov (United States)

    Rajabpour, Ali; Fan, Zheyong; Vaez Allaei, S. Mehdi

    2018-06-01

    Van der Waals heterostructures have exhibited interesting physical properties. In this paper, heat transfer in hybrid coplanar bilayer/monolayer (BL-ML) graphene, as a model layered van der Waals heterostructure, was studied using non-equilibrium molecular dynamics (MD) simulations. The temperature profile and inter- and intra-layer heat fluxes of the BL-ML graphene indicated that, there is no fully developed thermal equilibrium between layers and the drop in the average temperature profile at the step-like BL-ML interface is not attributable to the effect of Kapitza resistance. By increasing the length of the system up to 1 μm in the studied MD simulations, the thermally non-equilibrium region was reduced to a small area near the step-like interface. All MD results were compared to a continuum model and a good match was observed between the two approaches. Our results provide a useful understanding of heat transfer in nano- and micro-scale layered materials and van der Waals heterostructures.

  11. Van der Waals-like forces between hadrons induced by color confining potentials

    International Nuclear Information System (INIS)

    Gavela, M.B.; Yaouanc, A. le; Oliver, L.; Pene, O.; Raynal, J.C.; Sood, S.

    1979-01-01

    The London treatment of van der Waals forces is generalized to long-range forces induced by instantaneous confining potentials. Special attention is given to the problem of accounting for the intermediate colour-octet states. The result is in contradiciton with data on nucleon-nucleon phase shifts for any confining potential V(r) = -a(Σsub(A)lambdasup(A)lambda sup(A))rsup(α) for α > 0.1. (Auth.)

  12. Simon van der Meer in the AA Control Room

    CERN Multimedia

    CERN PhotoLab

    1984-01-01

    Simon van der Meer, spiritus rector of the Antiproton Accumulator, in the AA Control Room. Inventor of stochastic cooling, on which the AA was based, and of the magnetic horn, with which the antiprotons were focused, he also wrote most of the software with which the AA was controlled, and spent uncountable numbers of hours in this chair to tickle the AA to top performance. 8 months after this picture was taken, he received, in October 1984, the Nobel prize, together with Carlo Rubbia, the moving force behind the whole Proton-Antiproton Collider project that led to the discovery, in 1983, of the W and Z intermediate bosons.

  13. Heterogeneous nucleation of polymorphs on polymer surfaces: polymer-molecule interactions using a Coulomb and van der Waals model.

    Science.gov (United States)

    Wahlberg, Nanna; Madsen, Anders Ø; Mikkelsen, Kurt V

    2018-06-09

    The nucleation processes of acetaminophen on poly(methyl methacrylate) and poly(vinyl acetate) have been investigated and the mechanisms of the processes are studied. This is achieved by a combination of theoretical models and computational investigations within the framework of a modified QM/MM method; a Coulomb-van der Waals model. We have combined quantum mechanical computations and electrostatic models at the atomistic level for investigating the stability of different orientations of acetaminophen on the polymer surfaces. Based on the Coulomb-van der Waals model, we have determined the most stable orientation to be a flat orientation, and the strongest interaction is seen between poly(vinyl acetate) and the molecule in a flat orientation in vacuum.

  14. A Componentwise Convex Splitting Scheme for Diffuse Interface Models with Van der Waals and Peng--Robinson Equations of State

    KAUST Repository

    Fan, Xiaolin

    2017-01-19

    This paper presents a componentwise convex splitting scheme for numerical simulation of multicomponent two-phase fluid mixtures in a closed system at constant temperature, which is modeled by a diffuse interface model equipped with the Van der Waals and the Peng-Robinson equations of state (EoS). The Van der Waals EoS has a rigorous foundation in physics, while the Peng-Robinson EoS is more accurate for hydrocarbon mixtures. First, the phase field theory of thermodynamics and variational calculus are applied to a functional minimization problem of the total Helmholtz free energy. Mass conservation constraints are enforced through Lagrange multipliers. A system of chemical equilibrium equations is obtained which is a set of second-order elliptic equations with extremely strong nonlinear source terms. The steady state equations are transformed into a transient system as a numerical strategy on which the scheme is based. The proposed numerical algorithm avoids the indefiniteness of the Hessian matrix arising from the second-order derivative of homogeneous contribution of total Helmholtz free energy; it is also very efficient. This scheme is unconditionally componentwise energy stable and naturally results in unconditional stability for the Van der Waals model. For the Peng-Robinson EoS, it is unconditionally stable through introducing a physics-preserving correction term, which is analogous to the attractive term in the Van der Waals EoS. An efficient numerical algorithm is provided to compute the coefficient in the correction term. Finally, some numerical examples are illustrated to verify the theoretical results and efficiency of the established algorithms. The numerical results match well with laboratory data.

  15. LA CASA CON PATIO EN MIES VAN DER ROHE / House with patio from Mies van der Rohe

    Directory of Open Access Journals (Sweden)

    José Altés Bustelo

    2013-05-01

    Full Text Available RESUMEN Una revisión del tema Casa con Patio, con especial atención a los planteamientos desarrollados por Mies van der Rohe durante sus últimos años en Berlín, a propósito del conocido dibujo denominado “Casa con tres patios”. Se explora su pensamiento arquitectónico a partir de los datos historiográficos de su trayectoria, más los que se pueden deducir del análisis de los dibujos y croquis previos del arquitecto. El conjunto de proyectos en que aparece el tema es muy amplio durante ese tiempo y los dibujos conservados ofrecen múltiples reflexiones. Sobre ese soporte se examinan conceptos relativos a la definición espacial y formal, donde aparecen cuestiones que ligan esa definición con los sistemas y materiales constructivos. Malla estructural, muro, pared de vidrio y patio vividero, vinculados necesariamente a sus respectivas cualidades tectónicas, adquieren el sentido de materiales de proyecto utilizados para definir un particular modo de entender la arquitectura en el que el usuario está presente siempre como destinatario de la misma. Finalmente, se plantea la utilidad didáctica del análisis de esos dibujos para el progreso del conocimiento en el proyecto arquitectónico.SUMMARY A review of the theme, House with Patio, with special reference to the plans developed by Mies van der Rohe during his last years in Berlin, in relation to the well–known drawing called: “House with three patios”. His architectural thoughts are explored through the historiographic data of his career, plus those that can be deduced from the analysis of the architect’s previous drawings and sketches. The group of projects, in which the theme appears is prolific from that time, and the preserved drawings offer multiple opportunities for reflection. Concepts on that medium are examined, relative to spatial and formal definition, where questions appear that link that definition with the constructive systems and materials. Structural mesh

  16. Van der Waals potentials between metal clusters and helium atoms obtained with density functional theory and linear response methods

    International Nuclear Information System (INIS)

    Liebrecht, M.

    2014-01-01

    The importance of van der Waals interactions in many diverse research fields such as, e. g., polymer science, nano--materials, structural biology, surface science and condensed matter physics created a high demand for efficient and accurate methods that can describe van der Waals interactions from first principles. These methods should be able to deal with large and complex systems to predict functions and properties of materials that are technologically and biologically relevant. Van der Waals interactions arise due to quantum mechanical correlation effects and finding appropriate models an numerical techniques to describe this type of interaction is still an ongoing challenge in electronic structure and condensed matter theory. This thesis introduces a new variational approach to obtain intermolecular interaction potentials between clusters and helium atoms by means of density functional theory and linear response methods. It scales almost linearly with the number of electrons and can therefore be applied to much larger systems than standard quantum chemistry techniques. The main focus of this work is the development of an ab-initio method to account for London dispersion forces, which are purely attractive and dominate the interaction of non--polar atoms and molecules at large distances. (author) [de

  17. Entwicklung von Antikörper-Mikroarray : von Biophysik der Mikrospot-Reaktion bis zur Hochdurchsatzanalyse der Proteine

    OpenAIRE

    Kusnezow, Wlad

    2007-01-01

    Obwohl Protein-Mikroarrays ursprünglich aus dem gut entwickelten und fest etablierten DNA-Pendant entstanden sind, repräsentierte jedoch die Umstellung der Mikroarray-Technik von der DNA- auf die Proteinanalyse aufgrund der enormen physikalisch-chemischen Variabilität der Proteine, deren relativ niedrigen Stabilität und der komplexen Mikrospot-Kinetik eine große technologische Herausforderung. Deshalb setzt das Vorhaben, die Technik der Antikörper–Mikroarrays von ihrem konzeptuellen Zustand a...

  18. The Dutch Connection: Johanna van der Meulen’s Contribution to Russian Symbolism

    Directory of Open Access Journals (Sweden)

    Magnus Ljunggren

    2017-09-01

    Full Text Available The Symbolist Ėllis’ (Lev Kobylinskij writings during his Moscow period emphasize the split, the division and dichotomy between material reality and celestial vision. His works written in exile in Locarno-Monti in Switzerland are devoted to resolving these antitheses by building bridges on all levels: between Catholicism and Orthodoxy, between culture and religion, between worldly and otherworldly, ultimately between East and West. From being a poet and critic he became a translator and culturologist: “Dr. Leo Kobilinski-Ellis.” The Dutch medium Johanna van der Meulen — whom he had met in 1911 in Rudolf Steiner’s Theosophical, soon Anthroposophical colony — played a crucial role in this fundamental metamorphosis. With her he lived in a thirty-five-year-long creative symbiosis that proved extremely beneficial to the two of them. Van der Meulen developed a mystical doctrine of her own, “Cosmosophy”, based on a Gnostic world view, strongly influenced by Russian religious philosophy. As she had finished her work in four parts Dr. Kobilinski-Ellis published his summary and interpretation of her teachings, in which he defines the core of Cosmosophy as a synthesis of the “Johannian” element in the meditative wisdom of the Eastern Church and the “Petrine” component in the energetic faith of Catholicism.

  19. Atomic layer MoS2-graphene van der Waals heterostructure nanomechanical resonators.

    Science.gov (United States)

    Ye, Fan; Lee, Jaesung; Feng, Philip X-L

    2017-11-30

    Heterostructures play significant roles in modern semiconductor devices and micro/nanosystems in a plethora of applications in electronics, optoelectronics, and transducers. While state-of-the-art heterostructures often involve stacks of crystalline epi-layers each down to a few nanometers thick, the intriguing limit would be hetero-atomic-layer structures. Here we report the first experimental demonstration of freestanding van der Waals heterostructures and their functional nanomechanical devices. By stacking single-layer (1L) MoS 2 on top of suspended single-, bi-, tri- and four-layer (1L to 4L) graphene sheets, we realize an array of MoS 2 -graphene heterostructures with varying thickness and size. These heterostructures all exhibit robust nanomechanical resonances in the very high frequency (VHF) band (up to ∼100 MHz). We observe that fundamental-mode resonance frequencies of the heterostructure devices fall between the values of graphene and MoS 2 devices. Quality (Q) factors of heterostructure resonators are lower than those of graphene but comparable to those of MoS 2 devices, suggesting interface damping related to interlayer interactions in the van der Waals heterostructures. This study validates suspended atomic layer heterostructures as an effective device platform and provides opportunities for exploiting mechanically coupled effects and interlayer interactions in such devices.

  20. A. VAN SELMS. LUKAS SE SEGSMAN VIR DIE GESKIEDENIS VAN ...

    African Journals Online (AJOL)

    Test

    oordele aan die eerste drie hoofstukke van sy Evangelie, het Lukas onder „van ..... Simon te onderskei van Simon Petrus, hoef ons nie erns te maak nie. .... op hulle beurt vereenselwig met Mosa van Jos. .... i&) Lukas der Arzt. Leipzig, 1906.

  1. Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling

    Science.gov (United States)

    Tielrooij, Klaas-Jan; Hesp, Niels C. H.; Principi, Alessandro; Lundeberg, Mark B.; Pogna, Eva A. A.; Banszerus, Luca; Mics, Zoltán; Massicotte, Mathieu; Schmidt, Peter; Davydovskaya, Diana; Purdie, David G.; Goykhman, Ilya; Soavi, Giancarlo; Lombardo, Antonio; Watanabe, Kenji; Taniguchi, Takashi; Bonn, Mischa; Turchinovich, Dmitry; Stampfer, Christoph; Ferrari, Andrea C.; Cerullo, Giulio; Polini, Marco; Koppens, Frank H. L.

    2018-01-01

    Van der Waals heterostructures have emerged as promising building blocks that offer access to new physics, novel device functionalities and superior electrical and optoelectronic properties1-7. Applications such as thermal management, photodetection, light emission, data communication, high-speed electronics and light harvesting8-16 require a thorough understanding of (nanoscale) heat flow. Here, using time-resolved photocurrent measurements, we identify an efficient out-of-plane energy transfer channel, where charge carriers in graphene couple to hyperbolic phonon polaritons17-19 in the encapsulating layered material. This hyperbolic cooling is particularly efficient, giving picosecond cooling times for hexagonal BN, where the high-momentum hyperbolic phonon polaritons enable efficient near-field energy transfer. We study this heat transfer mechanism using distinct control knobs to vary carrier density and lattice temperature, and find excellent agreement with theory without any adjustable parameters. These insights may lead to the ability to control heat flow in van der Waals heterostructures.

  2. Duffing–van der Pol oscillator type dynamics in Murali–Lakshmanan–Chua (MLC) circuit

    International Nuclear Information System (INIS)

    Srinivasan, K.; Chandrasekar, V.K.; Venkatesan, A.; Raja Mohamed, I.

    2016-01-01

    Highlights: • Proposed an electronic circuit with diode based nonlinear element equivalent to a well known Murali–Lakshmanan–Chua (MLC) circuit. • For chosen circuit parameters this circuit admits familiar MLC type attractor and also Duffing–van der Pol circuit type chaotic attractor. • The performance of the circuit is investigated by means of explicit laboratory experiments, numerical simulations and analytical studies. - Abstract: We have constructed a simple second-order dissipative nonautonomous circuit exhibiting ordered and chaotic behaviour. This circuit is the well known Murali–Lakshmanan–Chua(MLC) circuit but with diode based nonlinear element. For chosen circuit parameters this circuit admits familiar MLC type attractor and also Duffing–van der Pol circuit type chaotic attractors. It is interesting to note that depending upon the circuit parameters the circuit shows both period doubling route to chaos and quasiperiodic route to chaos. In our study we have constructed two-parameter bifurcation diagrams in the forcing amplitude–frequency plane, one parameter bifurcation diagrams, Lyapunov exponents, 0–1 test and phase portrait. The performance of the circuit is investigated by means of laboratory experiments, numerical integration of appropriate mathematical model and explicit analytic studies.

  3. Should We Stop Developing Heuristics and Only Rely on Mixed Integer Programming Solvers in Automated Test Assembly? A Rejoinder to van der Linden and Li (2016).

    Science.gov (United States)

    Chen, Pei-Hua

    2017-05-01

    This rejoinder responds to the commentary by van der Linden and Li entiled "Comment on Three-Element Item Selection Procedures for Multiple Forms Assembly: An Item Matching Approach" on the article "Three-Element Item Selection Procedures for Multiple Forms Assembly: An Item Matching Approach" by Chen. Van der Linden and Li made a strong statement calling for the cessation of test assembly heuristics development, and instead encouraged embracing mixed integer programming (MIP). This article points out the nondeterministic polynomial (NP)-hard nature of MIP problems and how solutions found using heuristics could be useful in an MIP context. Although van der Linden and Li provided several practical examples of test assembly supporting their view, the examples ignore the cases in which a slight change of constraints or item pool data might mean it would not be possible to obtain solutions as quickly as before. The article illustrates the use of heuristic solutions to improve both the performance of MIP solvers and the quality of solutions. Additional responses to the commentary by van der Linden and Li are included.

  4. Holography does not account for goodness: A critical review of Van der Helm and Leeuwenberg .

    NARCIS (Netherlands)

    Olivers, C.N.L.; Chater, N.; Watson, D.G.

    2004-01-01

    P. A. van der Helm and E. L. J. Leeuwenberg (1996) outlined a holographic account of figural goodness of a perceptual stimulus. The theory is mathematically precise and can be applied to a broad spectrum of empirical data. The authors argue, however, that the account is inadequate on both

  5. Van der Waals phase transition in the framework of holography

    International Nuclear Information System (INIS)

    Zeng, Xiao-Xiong; Li, Li-Fang

    2017-01-01

    Phase structure of the quintessence Reissner–Nordström–AdS black hole is probed by the nonlocal observables such as holographic entanglement entropy and two point correlation function. Our result shows that, as the case of the thermal entropy, both the observables exhibit the Van der Waals-like phase transition. To reinforce this conclusion, we further check the equal area law for the first order phase transition and critical exponent of the heat capacity for the second order phase transition. We also discuss the effect of the state parameter on the phase structure of the nonlocal observables.

  6. Spherical and hyperspherical harmonics representation of van der Waals aggregates

    Science.gov (United States)

    Lombardi, Andrea; Palazzetti, Federico; Aquilanti, Vincenzo; Grossi, Gaia; Albernaz, Alessandra F.; Barreto, Patricia R. P.; Cruz, Ana Claudia P. S.

    2016-12-01

    The representation of the potential energy surfaces of atom-molecule or molecular dimers interactions should account faithfully for the symmetry properties of the systems, preserving at the same time a compact analytical form. To this aim, the choice of a proper set of coordinates is a necessary precondition. Here we illustrate a description in terms of hyperspherical coordinates and the expansion of the intermolecular interaction energy in terms of hypersherical harmonics, as a general method for building potential energy surfaces suitable for molecular dynamics simulations of van der Waals aggregates. Examples for the prototypical case diatomic-molecule-diatomic-molecule interactions are shown.

  7. Van der Waals pressure sensors using reduced graphene oxide composites

    Science.gov (United States)

    Jung, Ju Ra; Ahn, Sung Il

    2018-04-01

    Reduced graphene oxide (RGO) films intercalated with various polymers were fabricated by reaction-based self-assembly, and their characteristics as vacuum pressure sensors based on van der Waals interactions were studied. At low temperature, the electrical resistances of the samples decrease linearly with increasing vacuum pressure, whereas at high temperature the variation of the electrical resistance shows secondary order curves. Among all samples, the poly vinyl alcohol intercalated RGO shows the highest sensitivity, being almost two times more sensitive than reference RGO. All samples show almost the same signal for repetitive sudden pressure changes, indicating reasonable reproducibility and durability.

  8. Van der Waals phase transition in the framework of holography

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiao-Xiong, E-mail: xxzeng@itp.ac.cn [State School of Material Science and Engineering, Chongqing Jiaotong University, Chongqing 400074 (China); Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Li-Fang, E-mail: lilf@itp.ac.cn [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-01-10

    Phase structure of the quintessence Reissner–Nordström–AdS black hole is probed by the nonlocal observables such as holographic entanglement entropy and two point correlation function. Our result shows that, as the case of the thermal entropy, both the observables exhibit the Van der Waals-like phase transition. To reinforce this conclusion, we further check the equal area law for the first order phase transition and critical exponent of the heat capacity for the second order phase transition. We also discuss the effect of the state parameter on the phase structure of the nonlocal observables.

  9. Van der Waals phase transition in the framework of holography

    Directory of Open Access Journals (Sweden)

    Xiao-Xiong Zeng

    2017-01-01

    Full Text Available Phase structure of the quintessence Reissner–Nordström–AdS black hole is probed by the nonlocal observables such as holographic entanglement entropy and two point correlation function. Our result shows that, as the case of the thermal entropy, both the observables exhibit the Van der Waals-like phase transition. To reinforce this conclusion, we further check the equal area law for the first order phase transition and critical exponent of the heat capacity for the second order phase transition. We also discuss the effect of the state parameter on the phase structure of the nonlocal observables.

  10. Weyl-van-der-Waerden formalism for helicity amplitudes of massive particles

    CERN Document Server

    Dittmaier, Stefan

    1999-01-01

    The Weyl-van-der-Waerden spinor technique for calculating helicity amplitudes of massive and massless particles is presented in a form that is particularly well suited to a direct implementation in computer algebra. Moreover, we explain how to exploit discrete symmetries and how to avoid unphysical poles in amplitudes in practice. The efficiency of the formalism is demonstrated by giving explicit compact results for the helicity amplitudes of the processes gamma gamma -> f fbar, f fbar -> gamma gamma gamma, mu^- mu^+ -> f fbar gamma.

  11. Van der Waals Interactions in Aspirin

    Science.gov (United States)

    Reilly, Anthony; Tkatchenko, Alexandre

    2015-03-01

    The ability of molecules to yield multiple solid forms, or polymorphs, has significance for diverse applications ranging from drug design and food chemistry to nonlinear optics and hydrogen storage. In particular, aspirin has been used and studied for over a century, but has only recently been shown to have an additional polymorphic form, known as form II. Since the two observed solid forms of aspirin are degenerate in terms of lattice energy, kinetic effects have been suggested to determine the metastability of the less abundant form II. Here, first-principles calculations provide an alternative explanation based on free-energy differences at room temperature. The explicit consideration of many-body van der Waals interactions in the free energy demonstrates that the stability of the most abundant form of aspirin is due to a subtle coupling between collective electronic fluctuations and quantized lattice vibrations. In addition, a systematic analysis of the elastic properties of the two forms of aspirin rules out mechanical instability of form II as making it metastable.

  12. Simon van der Meer (1925-2011)

    CERN Multimedia

    2011-01-01

    Simon van der Meer was a true giant of modern particle physics, though a gentle one. His contributions to accelerator science remain vital for the operation of accelerators such as the LHC today. Simon was an electrical engineer who grew up in The Hague, moving on to Delft University to study electrical engineering. After a short stint with Philips, he came to CERN in 1956, just two years after the lab opened, and remained with us until his retirement in 1990.   Simon was an incredibly inventive man. When confronted with a problem, he would sink into deep reflection, rarely emerging until he had a solution. One of us, Steve Myers, remembers him as a man who did not suffer fools gladly, and who was extremely taciturn. Simon would never use two words where one would suffice. But that one word would invariably be the right one. Simon is best known for his contribution to the SPS collider project, for which he was awarded the Nobel Prize, jointly with Carlo Rubbia, in 1984. Stochastic cooling, the in...

  13. Charge carrier mobility in thin films of organic semiconductors by the gated van der Pauw method

    Science.gov (United States)

    Rolin, Cedric; Kang, Enpu; Lee, Jeong-Hwan; Borghs, Gustaaf; Heremans, Paul; Genoe, Jan

    2017-01-01

    Thin film transistors based on high-mobility organic semiconductors are prone to contact problems that complicate the interpretation of their electrical characteristics and the extraction of important material parameters such as the charge carrier mobility. Here we report on the gated van der Pauw method for the simple and accurate determination of the electrical characteristics of thin semiconducting films, independently from contact effects. We test our method on thin films of seven high-mobility organic semiconductors of both polarities: device fabrication is fully compatible with common transistor process flows and device measurements deliver consistent and precise values for the charge carrier mobility and threshold voltage in the high-charge carrier density regime that is representative of transistor operation. The gated van der Pauw method is broadly applicable to thin films of semiconductors and enables a simple and clean parameter extraction independent from contact effects. PMID:28397852

  14. Transport Properties Of Van Der Waals Hybrid Heterostructures.

    Science.gov (United States)

    Pacheco, M.; Orellana, P. A.; Felix, A. B.; Latge, A.

    Here we study transport properties of van der Waals heterostructures composed of carbon nanotubes adsorbed on nanoribbons of distinct 2D materials. Calculations of the electronic density of states and conductance of the hybrid systems are obtained in single band tight-binding approximation in the Green function formalism by adopting real-space renormalization schemes. We show that an analytical approach may be derived when both systems are formed by the same type of atoms. In the coupled structures the different electronic paths along the ribbons and finite nanotubes lead to quantum interference effects which are reflected as Fano antiresonances in the conductance. The electronic and transport properties of these materials are modulated by changing geometrical and structural parameters, such as the nanotube diameter and the widths and edge type of the ribbons. FONDECYT 1151316-1140571.

  15. A molecular dynamics investigation of CDK8/CycC and ligand binding: conformational flexibility and implication in drug discovery

    Science.gov (United States)

    Cholko, Timothy; Chen, Wei; Tang, Zhiye; Chang, Chia-en A.

    2018-05-01

    Abnormal activity of cyclin-dependent kinase 8 (CDK8) along with its partner protein cyclin C (CycC) is a common feature of many diseases including colorectal cancer. Using molecular dynamics (MD) simulations, this study determined the dynamics of the CDK8-CycC system and we obtained detailed breakdowns of binding energy contributions for four type-I and five type-II CDK8 inhibitors. We revealed system motions and conformational changes that will affect ligand binding, confirmed the essentialness of CycC for inclusion in future computational studies, and provide guidance in development of CDK8 binders. We employed unbiased all-atom MD simulations for 500 ns on twelve CDK8-CycC systems, including apoproteins and protein-ligand complexes, then performed principal component analysis (PCA) and measured the RMSF of key regions to identify protein dynamics. Binding pocket volume analysis identified conformational changes that accompany ligand binding. Next, H-bond analysis, residue-wise interaction calculations, and MM/PBSA were performed to characterize protein-ligand interactions and find the binding energy. We discovered that CycC is vital for maintaining a proper conformation of CDK8 to facilitate ligand binding and that the system exhibits motion that should be carefully considered in future computational work. Surprisingly, we found that motion of the activation loop did not affect ligand binding. Type-I and type-II ligand binding is driven by van der Waals interactions, but electrostatic energy and entropic penalties affect type-II binding as well. Binding of both ligand types affects protein flexibility. Based on this we provide suggestions for development of tighter-binding CDK8 inhibitors and offer insight that can aid future computational studies.

  16. Fourier Transform Microwave Spectroscopy of Multiconformational Molecules and Van Der Waals Complexes.

    Science.gov (United States)

    Hight Walker, Angela Renee

    1995-01-01

    With the use of a Fourier transform microwave (FTM) spectrometer, structural determinations of two types of species; multiconformational molecules and van der Waals complexes, have been performed. Presented in this thesis are three sections summarizing this research effort. The first section contains a detailed explanation of the FTM instrument. In Section II, the study of three multiconformational molecules is presented as two chapters. Finally, three chapters in Section III outline the work still in progress on many van der Waals complexes. Section I was written to be a "manual" for the FTM spectrometer and to aid new additions to the group in their understanding of the instrument. An instruction guide is necessary for home-built instruments such as this one due to their unique design and application. Vital techniques and theories are discussed and machine operation is outlined. A brief explanation of general microwave spectroscopy as performed on an FTM spectrometer is also given. Section II is composed of two chapters pertaining to multiconformational molecules. In Chapter 2, a complete structural analysis of dipropyl ether is reported. The only conformer assigned had C_{rm s} symmetry. Many transitions are yet unassigned. Chapter 3 summarizes an investigation of two nitrosamines; methyl ethyl and methyl propyl nitrosamine. Only one conformer was observed for methyl ethyl nitrosamine, but two were assigned to methyl propyl nitrosamine. Nuclear hyperfine structure and internal methyl rotation complicated the spectra. The final section, Section III, contains the ongoing progress on weakly bound van der Waals complexes. The analysis of the OCS--HBr complex identified the structure as quasi-linear with large amplitude bending motions. Five separate isotopomers were assigned. Transitions originating from the HBr--DBr complex were measured and presented in Chapter 5. Although early in the analysis, the structure was determined to be bent and deuterium bonded. The

  17. EDITORIAL: Van der Waals interactions in advanced materials, in memory of David C Langreth Van der Waals interactions in advanced materials, in memory of David C Langreth

    Science.gov (United States)

    Hyldgaard, Per; Rahman, Talat S.

    2012-10-01

    The past decade has seen a dramatic rise in interest in exploring the role that van der Waals (vdW) or dispersion forces play in materials and in material behavior. Part of this stems from the obvious fact that vdW interactions (and other weak forces, such as Casimir) underpin molecular recognition, i.e., nature's approach to search for a match between genes and anti-genes and hence enable biological function. Less obvious is the recognition that vdW interactions affect a multitude of properties of a vast variety of materials in general, some of which also have strong technological applications. While for two atom- or orbital-sized material fragments the dispersive contributions to binding are small compared to those from the better known forms (ionic, covalent, metallic), those between sparse materials (spread over extended areas) can be of paramount importance. For example, an understanding of binding in graphite cannot arise solely from a study of the graphene layers individually, but also requires insight from inter-sheet graphene vdW bonding. It is the extended-area vdW bonding that provides sufficient cohesion to make graphite a robust, naturally occurring material. In fact, it is the vdW-bonded graphite, and not the all-covalently bonded diamond, that is the preferred form of pure carbon under ambient conditions. Also important is the understanding that vdW attraction can attain a dramatic relevance even if the material fragments, the building blocks, are not necessarily parallel from the outset or smooth when viewed in isolation (such as a graphene sheet or a carbon nanotube). This can happen if the building blocks have some softness and flexibility and allow an internal relative alignment to emerge. The vdW forces can then cause increasingly larger parts of the interacting fragments to line up at sub-nanometer separations and thus beget more areas with a sizable vdW bonding contribution. The gecko can scale a wall because it can bring its flexible hairs

  18. Etude de l'oscillateur de van der pol generalise par la methode du ...

    African Journals Online (AJOL)

    La méthode du groupe de renormalisation est l'une des méthodes de perturbation singulière utilisée dans la recherche des comportements asymptotiques de solution des équations différentielles ordinaires. Dans ce papier, l'équation de l'oscillateur de VAN der Pol généralisé qui modélise beaucoup de phénomènes ...

  19. Exfoliation and van der Waals heterostructure assembly of intercalated ferromagnet Cr1/3TaS2

    Science.gov (United States)

    Yamasaki, Yuji; Moriya, Rai; Arai, Miho; Masubuchi, Satoru; Pyon, Sunseng; Tamegai, Tsuyoshi; Ueno, Keiji; Machida, Tomoki

    2017-12-01

    Ferromagnetic van der Waals (vdW) materials are in demand for spintronic devices with all-two-dimensional-materials heterostructures. Here, we demonstrate mechanical exfoliation of magnetic-atom-intercalated transition metal dichalcogenide Cr1/3TaS2 from its bulk crystal; previously such intercalated materials were thought difficult to exfoliate. Magnetotransport in exfoliated tens-of-nanometres-thick flakes revealed ferromagnetic ordering below its Curie temperature T C ~ 110 K as well as strong in-plane magnetic anisotropy; these are identical to its bulk properties. Further, van der Waals heterostructure assembly of Cr1/3TaS2 with another intercalated ferromagnet Fe1/4TaS2 is demonstrated using a dry-transfer method. The fabricated heterojunction composed of Cr1/3TaS2 and Fe1/4TaS2 with a native Ta2O5 oxide tunnel barrier in between exhibits tunnel magnetoresistance (TMR), revealing possible spin injection and detection with these exfoliatable ferromagnetic materials through the vdW junction.

  20. The physics behind Van der Burgh's empirical equation, providing a new predictive equation for salinity intrusion in estuaries

    Science.gov (United States)

    Zhang, Zhilin; Savenije, Hubert H. G.

    2017-07-01

    The practical value of the surprisingly simple Van der Burgh equation in predicting saline water intrusion in alluvial estuaries is well documented, but the physical foundation of the equation is still weak. In this paper we provide a connection between the empirical equation and the theoretical literature, leading to a theoretical range of Van der Burgh's coefficient of 1/2 residual circulation. This type of mixing is relevant in the wider part of alluvial estuaries where preferential ebb and flood channels appear. Subsequently, this dispersion equation is combined with the salt balance equation to obtain a new predictive analytical equation for the longitudinal salinity distribution. Finally, the new equation was tested and applied to a large database of observations in alluvial estuaries, whereby the calibrated K values appeared to correspond well to the theoretical range.

  1. Effect of van der Waals interaction on the properties of SnS2 layered semiconductor

    International Nuclear Information System (INIS)

    Seminovski, Y.; Palacios, P.; Wahnón, P.

    2013-01-01

    Nowadays, dispersion correction applied on layered semiconductors is a topic of interest. Among the known layered semiconductors, SnS 2 polytypes are wide gap semiconductors with a van der Waals interaction between their layers, which could form good materials to be used in photovoltaic applications. The present work gives an approach to the SnS 2 geometrical and electronic characterization using an empirical dispersion correction added to the Perdew–Burke–Ernzerhof functional and subsequent actualization of the electronic charge density using the screened hybrid Heyd–Scuseria–Ernzerhof functional using a density functional code. The obtained interlayer distance and band-gap are in good agreement with experimental values when van der Waals dispersion forces are included. - Highlights: ► Tin disulphide (SnS 2 ) has been calculated using density functional theory methods. ► A dispersion correction was also applied for two different SnS 2 polytypes. ► Geometrical parameters and band-gaps were obtained using both approaches. ► Our calculations give a good agreement of the computed band gap with experiment

  2. Chaos Noise on Phase of Van Der Pol Oscillator

    Directory of Open Access Journals (Sweden)

    Xian He Huang

    2010-12-01

    Full Text Available Phase noise is the most important parameter in many oscillators. In this paper, based on nonlinear stochastic differential equation for phase noise analysis approach is proposed. And then discusses and compares the influence of two different sources of noise in the Van Der Pol oscillator adopted this method. One source of noise is a white noise process, which is a genuinely stochastic process; the other source of noise is actually a deterministic system, which exhibits chaotic behavior in some regions. The behavior of the oscillator under different conditions is investigated numerically. It is shown that the phase noise of the oscillator is affected more by noise arising from chaos than by noise arising from the genuine stochastic process at the same noise intensity.

  3. Layered van der Waals crystals with hyperbolic light dispersion

    DEFF Research Database (Denmark)

    Gjerding, Morten Niklas; Petersen, R.; Pedersen, T.G.

    2017-01-01

    candidates for Purcell factor control of emission from diamond nitrogen-vacancy centers.Natural hyperbolic materials retain the peculiar optical properties of traditional metamaterials whilst not requiring artificial structuring. Here, the authors perform a theoretical screening of a large class of natural......Compared to artificially structured hyperbolic metamaterials, whose performance is limited by the finite size of the metallic components, the sparse number of naturally hyperbolic materials recently discovered are promising candidates for the next generation of hyperbolic materials. Using first......-infrared to the ultraviolet. Combined with the emerging field of van der Waals heterostructuring, we demonstrate how the hyperbolic properties can be further controlled by stacking different two-dimensional crystals opening new perspectives for atomic-scale design of photonic metamaterials. As an application, we identify...

  4. The Average IQ of Sub-Saharan Africans: Comments on Wicherts, Dolan, and van der Maas

    Science.gov (United States)

    Lynn, Richard; Meisenberg, Gerhard

    2010-01-01

    Wicherts, Dolan, and van der Maas (2009) contend that the average IQ of sub-Saharan Africans is about 80. A critical evaluation of the studies presented by WDM shows that many of these are based on unrepresentative elite samples. We show that studies of 29 acceptably representative samples on tests other than the Progressive Matrices give a…

  5. Holography Does Not Account for Goodness: A Critique of van der Helm and Leeuwenberg (1996)

    Science.gov (United States)

    Olivers, Christian N. L.; Chater, Nick; Watson, Derrick G.

    2004-01-01

    P. A. van der Helm and E. L. J. Leeuwenberg (1996; see record 1996-01780-002) outlined a holographic account of figural goodness of a perceptual stimulus. The theory is mathematically precise and can be applied to a broad spectrum of empirical data. The authors argue, however, that the account is inadequate on both theoretical and empirical…

  6. Repliek op Van der Watt se artikel oor ‘Intertekstualiteit en oorinterpretasie: Verwysings na Genesis 28:12 in Johannes 1:51?’

    Directory of Open Access Journals (Sweden)

    Hennie F. Stander

    2017-10-01

    Full Text Available A response to Van der Watt’s article on ‘Intertextuality and over-interpretation: References to Genesis 28:12 in John 1:51?’ This article is a response to an article of Van der Watt titled ‘Intertextuality and over-interpretation: References to Genesis 28:12 in John 1:51?’ (2016. He states in this article that his aim is ‘to illustrate the dangers of over-interpretation when dealing with intertextual relations between texts, especially when allusion is assumed’. He then gives a brief survey of different interpretations of John 1:51. Van der Watt shows in his article how theologians use themes from Genesis 28:12 (like the ladder, Jacob or Bethel, which are not mentioned in John 1:51 in their expositions of John 1:51. Van der Watt regards some of these expositions as examples of over-interpretation. The aim of my article is to show how Church Fathers interpreted Genesis 28:12 and John 1:51. I show in my article that the Church Fathers saw several parallels between these two sections from the Bible. Furthermore, I suggest that the early theologians’ interpretations formed a tradition that probably influenced modern interpreters of the Bible. I also discuss the role of typology in the history of interpretation, specifically also in the case of Genesis 28:12 and John 1:51. I then argue that it is perhaps not so far-fetched to see an intertextual relation between Genesis 28:12 and John 1:51.

  7. Silicene on MoS2: role of the van der Waals interaction

    KAUST Repository

    Jiajie Zhu,

    2015-10-13

    We demonstrate for silicene on MoS2 substrate the limitations of the predictive power of first principles calculations based on van der Waals density functional theory. Only the optB86b-vdW functional is found to give reasonable agreement with experimental results on structural properties, while for all other investigated functionals the interlayer interaction is underestimated or the charge redistribution at the interface is not described correctly so that the predicted electronic structure is qualitatively wrong. © 2015 IOP Publishing Ltd.

  8. Implementing a memristive Van der Pol oscillator coupled to a linear oscillator: synchronization and application to secure communication

    International Nuclear Information System (INIS)

    Megam Ngouonkadi, E B; Fotsin, H B; Louodop Fotso, P

    2014-01-01

    This paper investigates the dynamics of a memristor-based Van der Pol oscillator coupled to a linear circuit (VDPCL). This chaotic oscillator is a modification of the classical Van der Pol coupled to a linear circuit, and is obtained by replacing the classical cubic nonlinearity by the memristive one. The memristive VDPCL oscillator, in addition to having a very special stability property, exhibits interesting spectral characteristics, which makes it suitable for chaos-based secure communication applications. The memristor is realized by using off-the-shelf components. The basic properties of the circuit are analyzed by means of bifurcation analysis. Chaotic attractors from numerical and experimental analysis are presented, followed by a comparison of results obtained from the modified VDPCL oscillator and those from the classical VDPCL oscillator. An application to synchronization and chaos secure communication is also presented. (paper)

  9. Electronic Properties and Device Applications of van-der-Waals Thin Films

    Science.gov (United States)

    Renteria, Jacqueline de Dios

    Successful exfoliation of graphene and discoveries of its unique electrical and thermal properties have motivated searches for other quasi two-dimensional (2D) materials with interesting properties. The layered van der Waals materials can be cleaved mechanically or exfoliated chemically by breaking the relatively weak bonding between the layers. In this dissertation research I addressed a special group of inorganic van der Waals materials -- layered transition metal dichalcogenides (MX2, where M=Mo, W, Nb, Ta or Ti and X=S, Se or Te). The focus of the investigation was electronic properties of thin films of TaSe2 and MoS2 and their device applications. In the first part of the dissertation, I describe the fabrication and performance of all-metallic three-terminal devices with the TaSe2 thin-film conducting channel. The layers of 2H-TaSe2 were exfoliated mechanically from single crystals grown by the chemical vapor transport method. It was established that devices with nanometer-scale thickness channels exhibited strongly non-linear current-voltage characteristics, unusual optical response, and electrical gating at room temperature. It was found that the drain-source current in thin-film 2H-TaSe2--Ti/Au devices reproducibly shows an abrupt transition from a highly resistive to a conductive state, with the threshold tunable via the gate voltage. Such current-voltage characteristics can be used, in principle, for implementing radiation-hard all-metallic logic circuits. In the second part of the dissertation, I describe the fabrication, electrical testing and measurements of the low-frequency 1/f noise in three-terminal devices with the MoS2 thin-film channel (f is the frequency). Analysis of the experimental data allowed us to distinguish channel and contact noise contributions for both as fabricated and aged devices. The noise characteristics of MoS 2--Ti/Au devices are in agreement with the McWhorter model description. The latter is contrary to what is observed in

  10. Optimaliseren van een biovergister

    NARCIS (Netherlands)

    van der Bij, Joost; Rademaker, Mark; Visser, Klaas; de Vries, Herman

    2014-01-01

    Dit rapport beschrijft onderzoek van conversie van biomassa in een Swill-gasser geplaatst bij het Van der Valk restaurant in Cuijk. De Swill-gasser is een biomassa vergister voor restaurant afval. Het onderzoek heeft zich gericht op het optimaliseren van de data acquisitie en op het bepalen van de

  11. From the Cover: Evidence for van der Waals adhesion in gecko setae

    Science.gov (United States)

    Autumn, Kellar; Sitti, Metin; Liang, Yiching A.; Peattie, Anne M.; Hansen, Wendy R.; Sponberg, Simon; Kenny, Thomas W.; Fearing, Ronald; Israelachvili, Jacob N.; Full, Robert J.

    2002-09-01

    Geckos have evolved one of the most versatile and effective adhesives known. The mechanism of dry adhesion in the millions of setae on the toes of geckos has been the focus of scientific study for over a century. We provide the first direct experimental evidence for dry adhesion of gecko setae by van der Waals forces, and reject the use of mechanisms relying on high surface polarity, including capillary adhesion. The toes of live Tokay geckos were highly hydrophobic, and adhered equally well to strongly hydrophobic and strongly hydrophilic, polarizable surfaces. Adhesion of a single isolated gecko seta was equally effective on the hydrophobic and hydrophilic surfaces of a microelectro-mechanical systems force sensor. A van der Waals mechanism implies that the remarkable adhesive properties of gecko setae are merely a result of the size and shape of the tips, and are not strongly affected by surface chemistry. Theory predicts greater adhesive forces simply from subdividing setae to increase surface density, and suggests a possible design principle underlying the repeated, convergent evolution of dry adhesive microstructures in gecko, anoles, skinks, and insects. Estimates using a standard adhesion model and our measured forces come remarkably close to predicting the tip size of Tokay gecko seta. We verified the dependence on size and not surface type by using physical models of setal tips nanofabricated from two different materials. Both artificial setal tips stuck as predicted and provide a path to manufacturing the first dry, adhesive microstructures.

  12. Generalized Van der Waals 4-D oscillator. Invariant tori and relative equilibria in Ξ = L = 0 surface

    NARCIS (Netherlands)

    Díaz, G.; Egea, J.; Ferrer, S.; Meer, van der J.C.; Vera, J.A.; Lanchares, V.; Elipe, A.

    2009-01-01

    An uniparametric 4-DOF Hamiltonian family of perturbed oscillators in 1:1:1:1 resonance is studied. The model includes some classical cases, in particular Zeeman and the van der Waals systems. First several invariant manifolds are identified. Normalization by Lie-transforms (only first order is

  13. A 900 electrostatic prism for microparticle beam steering on a 2 MV van der Graaff dust accelerator

    International Nuclear Information System (INIS)

    Dixon, D.G.; Clarke, C.D.; McDonnell, J.A.M.; Dickason, R.E.; Flavill, R.P.

    1984-01-01

    The design and construction of a 90 0 electrostatic prism is described. The device is used to deflect hypervelocity dust particles produced in a horizontal van der Graaff accelerator to simulate micrometeoroid impacts on dusty lunar and asteroidal surfaces where vertical incidence must be provided. (author)

  14. Electrostatics of electron-hole interactions in van der Waals heterostructures

    Science.gov (United States)

    Cavalcante, L. S. R.; Chaves, A.; Van Duppen, B.; Peeters, F. M.; Reichman, D. R.

    2018-03-01

    The role of dielectric screening of electron-hole interaction in van der Waals heterostructures is theoretically investigated. A comparison between models available in the literature for describing these interactions is made and the limitations of these approaches are discussed. A simple numerical solution of Poisson's equation for a stack of dielectric slabs based on a transfer matrix method is developed, enabling the calculation of the electron-hole interaction potential at very low computational cost and with reasonable accuracy. Using different potential models, direct and indirect exciton binding energies in these systems are calculated within Wannier-Mott theory, and a comparison of theoretical results with recent experiments on excitons in two-dimensional materials is discussed.

  15. Makna Simbol Kebudayaan Minangkabau Dalam Novel Tenggelamnya Kapal Van Der Wijck Karya Hamka: Tinjauan Semiotika

    OpenAIRE

    Akhyar, Aqmarul

    2017-01-01

    100701001 Penelitian ini dilatarbelakangi oleh roman Tenggelamna Kapal van der Wijck (TKvDW) karya Hamka yang menyajikan unsur-unsur adat Minangkabau dengan sangat kental, kokoh serta dianut oleh masyarakat Minangkabau. Tujuan penelitian ini adalah menginventarisasi bentuk simbol kebudayaan Minangkabau dan menganalisis makna simbol kebudayaan Minangkabau dalam roman TKvDW. Metode penelitian yang digunakan adalah metode penelitian kualitatif dan kepustakaan (library research). Teknik pengum...

  16. Construction of van der Waals magnetic tunnel junction using ferromagnetic layered dichalcogenide

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Miho; Moriya, Rai, E-mail: moriyar@iis.u-tokyo.ac.jp; Yabuki, Naoto; Masubuchi, Satoru [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Ueno, Keiji [Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570 (Japan); Machida, Tomoki, E-mail: tmachida@iis.u-tokyo.ac.jp [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Institute for Nano Quantum Information Electronics, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan)

    2015-09-07

    We investigate the micromechanical exfoliation and van der Waals (vdW) assembly of ferromagnetic layered dichalcogenide Fe{sub 0.25}TaS{sub 2}. The vdW interlayer coupling at the Fe-intercalated plane of Fe{sub 0.25}TaS{sub 2} allows exfoliation of flakes. A vdW junction between the cleaved crystal surfaces is constructed by dry transfer method. We observe tunnel magnetoresistance in the resulting junction under an external magnetic field applied perpendicular to the plane, demonstrating spin-polarized tunneling between the ferromagnetic layered material and the vdW junction.

  17. Strong Ligand-Protein Interactions Derived from Diffuse Ligand Interactions with Loose Binding Sites.

    Science.gov (United States)

    Marsh, Lorraine

    2015-01-01

    Many systems in biology rely on binding of ligands to target proteins in a single high-affinity conformation with a favorable ΔG. Alternatively, interactions of ligands with protein regions that allow diffuse binding, distributed over multiple sites and conformations, can exhibit favorable ΔG because of their higher entropy. Diffuse binding may be biologically important for multidrug transporters and carrier proteins. A fine-grained computational method for numerical integration of total binding ΔG arising from diffuse regional interaction of a ligand in multiple conformations using a Markov Chain Monte Carlo (MCMC) approach is presented. This method yields a metric that quantifies the influence on overall ligand affinity of ligand binding to multiple, distinct sites within a protein binding region. This metric is essentially a measure of dispersion in equilibrium ligand binding and depends on both the number of potential sites of interaction and the distribution of their individual predicted affinities. Analysis of test cases indicates that, for some ligand/protein pairs involving transporters and carrier proteins, diffuse binding contributes greatly to total affinity, whereas in other cases the influence is modest. This approach may be useful for studying situations where "nonspecific" interactions contribute to biological function.

  18. Theoretical study of noble gases diffraction from Ru(0001) using van der Waals DFT-based potentials

    International Nuclear Information System (INIS)

    Del Cueto, M; Muzas, A S; Martín, F; Díaz, C

    2015-01-01

    This study aims to analyze the role of van der Waals forces in the diffraction process of noble gases from a metal surface. We made use of different vdW implementations to rationalize the effect of dispersion forces on the corrugation of the system, the resulting scattering patterns and on the eventual diffraction results. (paper)

  19. Effect of van der Waals interaction on the properties of SnS{sub 2} layered semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Seminovski, Y. [Instituto de Energía Solar, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Dpt. TEAT, ETSI Telecomunicacion, Universidad Politecnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Palacios, P., E-mail: pablo.palacios@upm.es [Instituto de Energía Solar, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Dpt. FyQATA, EIAE, Universidad Politécnica de Madrid, Pz. Cardenal Cisneros, 3, 28040 Madrid (Spain); Wahnón, P. [Instituto de Energía Solar, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Dpt. TEAT, ETSI Telecomunicacion, Universidad Politecnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain)

    2013-05-01

    Nowadays, dispersion correction applied on layered semiconductors is a topic of interest. Among the known layered semiconductors, SnS{sub 2} polytypes are wide gap semiconductors with a van der Waals interaction between their layers, which could form good materials to be used in photovoltaic applications. The present work gives an approach to the SnS{sub 2} geometrical and electronic characterization using an empirical dispersion correction added to the Perdew–Burke–Ernzerhof functional and subsequent actualization of the electronic charge density using the screened hybrid Heyd–Scuseria–Ernzerhof functional using a density functional code. The obtained interlayer distance and band-gap are in good agreement with experimental values when van der Waals dispersion forces are included. - Highlights: ► Tin disulphide (SnS{sub 2}) has been calculated using density functional theory methods. ► A dispersion correction was also applied for two different SnS{sub 2} polytypes. ► Geometrical parameters and band-gaps were obtained using both approaches. ► Our calculations give a good agreement of the computed band gap with experiment.

  20. Hybrid van der Waals p-n Heterojunctions based on SnO and 2D MoS2

    KAUST Repository

    Wang, Zhenwei; He, Xin; Zhang, Xixiang; Alshareef, Husam N.

    2016-01-01

    A p-type oxide/2D hybrid van der Waals p-n heterojunction is demonstrated for the first time between SnO (tin monoxide) (the p-type oxide) and 2D MoS2 (molybdenum disulfide), showing an ideality factor of 2 and rectification ratio up to 10

  1. Lyapunov stability of large systems of van der Pol-like oscillators and connection with turbulence and fluctuations spectra

    International Nuclear Information System (INIS)

    Tasso, H.

    1993-04-01

    For a system of van der Pol-like oscillators, Lyapunov functions valid in the greater part of phase space are given. They allow a finite region of attraction to be defined. Any attractor has to be within the rigorously estimated bounds. Under a special choice of the interaction matrices the attractive region can be squeezed to zero. In this case the asymptotic behaviour is given by a conservative system of nonlinear oscillators which acts as attractor. Though this system does not possess, in general, a Hamiltonian formulation, Gibbs statistics is possible due to the proof of a Liouville theorem and the existence of a positive invariant or 'shell' condition. The 'canonical' distribution on the attractor is remarkably simple despite nonlinearities. Finally the connection of the van der Pol-like system and of the attractive region with turbulence and fluctuation spectra in fluids and plasmas is discussed. (orig.)

  2. THERMODYNAMICS OF PROTEIN-LIGAND INTERACTIONS AND THEIR ANALYSIS

    Directory of Open Access Journals (Sweden)

    Rummi Devi Saini

    2017-11-01

    Full Text Available Physiological processes are controlled mainly by intermolecular recognition mechanisms which involve protein–protein and protein–ligand interactions with a high specificity and affinity to form a specific complex. Proteins being an important class of macromolecules in biological systems, it is important to understand their actions through binding to other molecules of proteins or ligands. In fact, the binding of low molecular weight ligands to proteins plays a significant role in regulating biological processes such as cellular metabolism and signal transmission. Therefore knowledge of the protein–ligand interactions and the knowledge of the mechanisms involved in the protein-ligand recognition and binding are key in understanding biology at molecular level which will facilitate the discovery, design, and development of drugs. In this review, the mechanisms involved in protein–ligand binding, the binding kinetics, thermodynamic concepts and binding driving forces are discussed. Thermodynamic mechanisms involved in a few important protein-ligand binding are described. Various spectroscopic, non-spectroscopic and computational method for analysis of protein–ligand binding are also discussed.

  3. Characterization of van der Waals type bimodal,- lambda,- meta- and spinodal phase transitions in liquid mixtures, solid suspensions and thin films.

    Science.gov (United States)

    Rosenholm, Jarl B

    2018-03-01

    The perfect gas law is used as a reference when selecting state variables (P, V, T, n) needed to characterize ideal gases (vapors), liquids and solids. Van der Waals equation of state is used as a reference for models characterizing interactions in liquids, solids and their mixtures. Van der Waals loop introduces meta- and unstable states between the observed gas (vapor)-liquid P-V transitions at low T. These intermediate states are shown to appear also between liquid-liquid, liquid-solid and solid-solid phase transitions. First-order phase transitions are characterized by a sharp discontinuity of first-order partial derivatives (P, S, V) of Helmholtz and Gibbs free energies. Second-order partial derivatives (K T , B, C V , C P , E) consist of a static contribution relating to second-order phase transitions and a relaxation contribution representing the degree of first-order phase transitions. Bimodal (first-order) and spinodal (second-order) phase boundaries are used to separate stable phases from metastable and unstable phases. The boundaries are identified and quantified by partial derivatives of molar Gibbs free energy or chemical potentials with respect to P, S, V and composition (mole fractions). Molecules confined to spread Langmuir monolayers or adsorbed Gibbs monolayers are characterized by equation of state and adsorption isotherms relating to a two-dimensional van der Waals equation of state. The basic work of two-dimensional wetting (cohesion, adsorption, spreading, immersion), have to be adjusted by a horizontal surface pressure in the presence of adsorbed vapor layers. If the adsorption is extended to liquid films a vertical surface pressure (Π) may be added to account for the lateral interaction, thus restoring PV = ΠAh dependence of thin films. Van der Waals attraction, Coulomb repulsion and structural hydration forces contribute to the vertical surface pressure. A van der Waals type coexistence of ordered (dispersed) and disordered

  4. Inelastic transitions of atoms and molecules induced by van der Waals interaction with a surface

    International Nuclear Information System (INIS)

    Baudon, J.; Hamamda, M.; Boustimi, M.; Bocvarski, V.; Taillandier-Loize, T.; Dutier, G.; Perales, F.; Ducloy, M.

    2012-01-01

    Inelastic processes occuring in thermal-velocity metastable atoms and molecules passing at a mean distance (1–100 nm) are investigated. These processes are caused by the quadrupolar part of the van der Waals interaction: fine-structure transitions in atoms (Ar ∗ , Kr ∗ ), rovibrational transitions in N 2 ∗ ( 3 Σ u + ), transitions among magnetic sub-levels in the presence of a magnetic field.

  5. Virtual Resonance and Frequency Difference Generation by van der Waals Interaction

    Science.gov (United States)

    Tetard, L.; Passian, A.; Eslami, S.; Jalili, N.; Farahi, R. H.; Thundat, T.

    2011-05-01

    The ability to explore the interior of materials for the presence of inhomogeneities was recently demonstrated by mode synthesizing atomic force microscopy [L. Tetard, A. Passian, and T. Thundat, Nature Nanotech. 5, 105 (2009).NNAABX1748-338710.1038/nnano.2009.454]. Proposing a semiempirical nonlinear force, we show that difference frequency ω- generation, regarded as the simplest synthesized mode, occurs optimally when the force is tuned to van der Waals form. From a parametric study of the probe-sample excitation, we show that the predicted ω- oscillation agrees well with experiments. We then introduce the concept of virtual resonance to show that probe oscillations at ω- can efficiently be enhanced.

  6. Instability of nanocantilever arrays in electrostatic and van der Waals interactions

    Energy Technology Data Exchange (ETDEWEB)

    Ramezani, Asghar [Department of Automotive Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Alasty, Aria, E-mail: aramezani@iust.ac.i, E-mail: aalasti@sharif.ed [Center of Excellence in Design, Robotics, and Automation (CEDRA), School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2009-11-21

    The structural instability of an array of cantilevers, each of which interacts with two neighbouring beams through electrostatic and van der Waals forces, is studied. Distributed and lumped parameter modelling of the array result in a set of coupled nonlinear boundary value problems and a set of coupled nonlinear equations, respectively. These coupled nonlinear systems are solved numerically for different numbers of beams in the array to obtain the pull-in parameters. The pull-in parameters converge to constant values with an increase in the number of beams in the array. These constants, which are important in the design of cantilever arrays, are compared for the distributed and lumped parameter models.

  7. Force spectroscopy studies on protein-ligand interactions: a single protein mechanics perspective.

    Science.gov (United States)

    Hu, Xiaotang; Li, Hongbin

    2014-10-01

    Protein-ligand interactions are ubiquitous and play important roles in almost every biological process. The direct elucidation of the thermodynamic, structural and functional consequences of protein-ligand interactions is thus of critical importance to decipher the mechanism underlying these biological processes. A toolbox containing a variety of powerful techniques has been developed to quantitatively study protein-ligand interactions in vitro as well as in living systems. The development of atomic force microscopy-based single molecule force spectroscopy techniques has expanded this toolbox and made it possible to directly probe the mechanical consequence of ligand binding on proteins. Many recent experiments have revealed how ligand binding affects the mechanical stability and mechanical unfolding dynamics of proteins, and provided mechanistic understanding on these effects. The enhancement effect of mechanical stability by ligand binding has been used to help tune the mechanical stability of proteins in a rational manner and develop novel functional binding assays for protein-ligand interactions. Single molecule force spectroscopy studies have started to shed new lights on the structural and functional consequence of ligand binding on proteins that bear force under their biological settings. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  8. Composition of Overlapping Protein-Protein and Protein-Ligand Interfaces.

    Directory of Open Access Journals (Sweden)

    Ruzianisra Mohamed

    Full Text Available Protein-protein interactions (PPIs play a major role in many biological processes and they represent an important class of targets for therapeutic intervention. However, targeting PPIs is challenging because often no convenient natural substrates are available as starting point for small-molecule design. Here, we explored the characteristics of protein interfaces in five non-redundant datasets of 174 protein-protein (PP complexes, and 161 protein-ligand (PL complexes from the ABC database, 436 PP complexes, and 196 PL complexes from the PIBASE database and a dataset of 89 PL complexes from the Timbal database. In all cases, the small molecule ligands must bind at the respective PP interface. We observed similar amino acid frequencies in all three datasets. Remarkably, also the characteristics of PP contacts and overlapping PL contacts are highly similar.

  9. Infrared hyperbolic metasurface based on nanostructured van der Waals materials

    Science.gov (United States)

    Li, Peining; Dolado, Irene; Alfaro-Mozaz, Francisco Javier; Casanova, Fèlix; Hueso, Luis E.; Liu, Song; Edgar, James H.; Nikitin, Alexey Y.; Vélez, Saül; Hillenbrand, Rainer

    2018-02-01

    Metasurfaces with strongly anisotropic optical properties can support deep subwavelength-scale confined electromagnetic waves (polaritons), which promise opportunities for controlling light in photonic and optoelectronic applications. We developed a mid-infrared hyperbolic metasurface by nanostructuring a thin layer of hexagonal boron nitride that supports deep subwavelength-scale phonon polaritons that propagate with in-plane hyperbolic dispersion. By applying an infrared nanoimaging technique, we visualize the concave (anomalous) wavefronts of a diverging polariton beam, which represent a landmark feature of hyperbolic polaritons. The results illustrate how near-field microscopy can be applied to reveal the exotic wavefronts of polaritons in anisotropic materials and demonstrate that nanostructured van der Waals materials can form a highly variable and compact platform for hyperbolic infrared metasurface devices and circuits.

  10. Chaos of the Relativistic Forced van der Pol Oscillator

    International Nuclear Information System (INIS)

    Ashkenazya, Y.; Gorma, C; Horwitz, L. P.

    1998-01-01

    A manifestly relativistically covariant form of the van der Pol oscillator in 1 + 1 dimensions is studied. We show that the driven relativistic equations, for which z and t are coupled, relax very quickly to a pair of identical decoupled equations, due to a rapid vanishing of the angular momentum (the boost in 1 + 1 dimensions). A similar effect occurs in the damped driven covariant Duffing oscillator previously treated. This effect is an example of entrainment, or synchronization (phase locking) , of coupled chaotic systems. The Lyapunov exponents are calculated using the very efficient method of Habib and Ryne. We show a Poincare map that demonstrates this effect and maintains remarkable stability in spite of the inevitable accumulation of computer error in the chaotic region. For our choice of parameters, the positive Lyapunov exponent is about 0.242 almost independently of the integration method

  11. Vloeistof-vloeistof verdeling als onderzoekmethode bij de vergelijking van enige rassen van digitalis purpurea L.

    NARCIS (Netherlands)

    Henning, Gerardus Johannes

    1962-01-01

    De samenstelling van het glycosidenmengsel van drie rassen van Digitalis purpura L. werd in verschillende groeistadia onderzocht. Door extractie met chloroform van een waterige oplossing der in het gefermenteerde blad voorkomende glycosiden werden deze in twee groepen verdeeld, een in chloroform

  12. Formation and physical characteristics of van der Waals molecules, cations, and anions: Estimates of complete basis set values

    Czech Academy of Sciences Publication Activity Database

    Zahradník, Rudolf; Šroubková, Libuše

    2005-01-01

    Roč. 104, č. 1 (2005), s. 52-63 ISSN 0020-7608 Institutional research plan: CEZ:AV0Z40400503 Keywords : intermolecular complexes * van der Waals species * ab initio calculations * complete basis set values * estimates Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.192, year: 2005

  13. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures

    KAUST Repository

    Lin, Yu-Chuan; Ghosh, Ram Krishna; Addou, Rafik; Lu, Ning; Eichfeld, Sarah M.; Zhu, Hui; Li, Ming-Yang; Peng, Xin; Kim, Moon J.; Li, Lain-Jong; Wallace, Robert M.; Datta, Suman; Robinson, Joshua A.

    2015-01-01

    Vertical integration of two-dimensional van der Waals materials is predicted to lead to novel electronic and optical properties not found in the constituent layers. Here, we present the direct synthesis of two unique, atomically thin, multi-junction heterostructures by combining graphene with the monolayer transition-metal dichalcogenides: molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2). The realization of MoS2–WSe2–graphene and WSe2–MoS2–graphene heterostructures leads to resonant tunnelling in an atomically thin stack with spectrally narrow, room temperature negative differential resistance characteristics.

  14. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures

    KAUST Repository

    Lin, Yu-Chuan

    2015-06-19

    Vertical integration of two-dimensional van der Waals materials is predicted to lead to novel electronic and optical properties not found in the constituent layers. Here, we present the direct synthesis of two unique, atomically thin, multi-junction heterostructures by combining graphene with the monolayer transition-metal dichalcogenides: molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2). The realization of MoS2–WSe2–graphene and WSe2–MoS2–graphene heterostructures leads to resonant tunnelling in an atomically thin stack with spectrally narrow, room temperature negative differential resistance characteristics.

  15. Passivation of Black Phosphorus via Self-Assembled Organic Monolayers by van der Waals Epitaxy.

    Science.gov (United States)

    Zhao, Yinghe; Zhou, Qionghua; Li, Qiang; Yao, Xiaojing; Wang, Jinlan

    2017-02-01

    An effective passivation approach to protect black phosphorus (BP) from degradation based on multi-scale simulations is proposed. The self-assembly of perylene-3,4,9,10-tetracarboxylic dianhydride monolayers via van der Waals epitaxy on BP does not break the original electronic properties of BP. The passivation layer thickness is only 2 nm. This study opens up a new pathway toward fine passivation of BP. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Using the van der Waals broadening of the spectral atomic lines to measure the gas temperature of an argon microwave plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Yubero, C.; Dimitrijevic, M.S.; Garcia, M.C.; Calzada, M.D.

    2007-01-01

    The ro-vibrational emission spectra of the molecular species are usually used to measure the gas temperature of a discharge at atmospheric pressure. However, under some experimental conditions, it is difficult to detect them. In order to overcome this difficulty and obtain the temperature, there are methods based on the relation between the gas temperature and the van der Waals broadening of argon atomic spectral lines with a Stark contribution negligible. In this work, we propose a method based on this relation but for lines with a Stark broadening comparable with the van der Waals one

  17. Nuclear spin-spin coupling in a van der Waals-bonded system: xenon dimer.

    Science.gov (United States)

    Vaara, Juha; Hanni, Matti; Jokisaari, Jukka

    2013-03-14

    Nuclear spin-spin coupling over van der Waals bond has recently been observed via the frequency shift of solute protons in a solution containing optically hyperpolarized (129)Xe nuclei. We carry out a first-principles computational study of the prototypic van der Waals-bonded xenon dimer, where the spin-spin coupling between two magnetically non-equivalent isotopes, J((129)Xe - (131)Xe), is observable. We use relativistic theory at the four-component Dirac-Hartree-Fock and Dirac-density-functional theory levels using novel completeness-optimized Gaussian basis sets and choosing the functional based on a comparison with correlated ab initio methods at the nonrelativistic level. J-coupling curves are provided at different levels of theory as functions of the internuclear distance in the xenon dimer, demonstrating cross-coupling effects between relativity and electron correlation for this property. Calculations on small Xe clusters are used to estimate the importance of many-atom effects on J((129)Xe - (131)Xe). Possibilities of observing J((129)Xe - (131)Xe) in liquid xenon are critically examined, based on molecular dynamics simulation. A simplistic spherical model is set up for the xenon dimer confined in a cavity, such as in microporous materials. It is shown that the on the average shorter internuclear distance enforced by the confinement increases the magnitude of the coupling as compared to the bulk liquid case, rendering J((129)Xe - (131)Xe) in a cavity a feasible target for experimental investigation.

  18. Discovering protein-ligand chalcogen bonding in the protein data bank using endocyclic sulfur-containing heterocycles as ligand search subsets.

    Science.gov (United States)

    Mitchell, Miguel O

    2017-09-24

    The chalcogen bond, the noncovalent, electrostatic attraction between covalently bonded atoms in group 16 and Lewis bases, is present in protein-ligand interactions based on X-ray structures deposited in the Protein Data Bank (PDB). Discovering protein-ligand chalcogen bonding in the PDB employed a strategy that focused on searching the database for protein complexes of five-membered, heterocyclic ligands containing endocyclic sulfur with endo electron-withdrawing groups (isothiazoles; thiazoles; 1,2,3-, 1,2.4-, 1,2,5-, 1,3,4-thiadiazoles) and thiophenes with exo electron-withdrawing groups, e.g., 2-chloro, 2-bromo, 2-amino, 2-alkylthio. Out of 930 ligands investigated, 33 or 3.5% have protein-ligand S---O interactions of which 31 are chalcogen bonds and two appear to be S---HO hydrogen bonds. The bond angles for some of the chalcogen bonds found in the PDB are less than 90°, and an electrostatic model is proposed to explain this phenomenon.

  19. A Reply to van der Voort's Response to Welch's Review of "Urihi A: A Terra‐ Floresta Yanomami"

    Directory of Open Access Journals (Sweden)

    James R. Welch

    2011-02-01

    Full Text Available A Reply to van der Voort's Response to Welch's Review of Urihi A: A Terra‐ Floresta Yanomami. Bruce Albert and William Milliken with Gale Goodwin Gomez. São Paulo: Instituto Socioambiental, 2009. 207 pp., illustrations, tables, bibliography, appendices, index. Paperback ISBN: 978‐85 85994‐72‐3.

  20. Influence of van der Waals forces on the adsorption structure of benzene on silicon studied using density functional theory

    DEFF Research Database (Denmark)

    Johnston, Karen; Kleis, Jesper; Lundqvist, Bengt

    2008-01-01

    Two different adsorption configurations of benzene on the Si(001)-(2×1) surface, the tight-bridge and butterfly structures, were studied using density functional theory. Several exchange and correlation functionals were used, including the recently developed van der Waals density functional (vd...

  1. Sacred History And Sacred Texts In Early Judaism : A Symposium In Honour Of A.s. Van Der Woude

    NARCIS (Netherlands)

    Bremmer, J.N.; García Martínez, F.

    1992-01-01

    After a long and distinguished career Adam S. van der Woude will retire on Reformation Day (October 31) from the Chair of Old Testament Studies and Intertestamental Literature of the Faculty of Theology of the Rijksuniversiteit Groningen. In order not to let this occasion go unnoticed, the Center of

  2. Theoretical investigation of the distance dependence of capillary and van der Waals forces in scanning force microscopy

    International Nuclear Information System (INIS)

    Stifter, Thomas; Marti, Othmar; Bhushan, Bharat

    2000-01-01

    The capillary and van der Waals forces between a tip and a plane in a scanning force microscope (SFM) are calculated. The forces are calculated for a fixed distance of tip and sample, as well as during retracting of the tip from the sample surface. The exact geometric shape of the meniscus is considered, with the boundary condition of fixed liquid volume during retraction. The starting volume is given by the operating and environmental conditions (surface tension, humidity, and tip geometry) at the point of lowest distance between tip and surface. The influence of the different parameters, namely, humidity, tip geometry, tip-sample starting distance, surface tension, and contact angles are studied. For each force curve also the geometric shape of the meniscus is calculated. The capillary forces are compared with van der Waals forces to understand their relative importance in various operating conditions. In addition to application in SFM, this analysis is useful in the design of surface roughness in microdevices for low adhesion in operating environments

  3. Relations between anisotropic defects, structural evolution, and van der Waals bonding in 2H-NbSe2

    International Nuclear Information System (INIS)

    Gavarri, J.R.; Mokrani, R.; Boulesteix, C.; Vacquier, G.

    1988-01-01

    Correlations between anisotropic defects and van der Waals interactions have been established for the layer compound 2H-NbSe 2 which is investigated by low temperature X-ray diffraction techniques. Thermal expansion coefficients and anisotropic Debye temperatures are determined. A diffraction profile analysis reveals the existence of lattice distortions independent of the temperature. They are due to layer defects. To interpret the structural evolution data, the thermal expansion functions, α a (T) and α c (T) are simulated in the low temperature range which yield the elastic constants and the Grueneisen parameters. Using bond energy models, the Van der Waals nature of interlayer Se-Se interactions is confirmed by a model of thermal expansion of bonds and connected with the C 13 component of the elastic tensor. Such interactions can explain the presence of some layer defects that can be 4H-NbSe 2 nuclei in the 2H host lattice. In addition, no strong change in the Grueneisen parameters is clearly shown to occur at the 35 K transition of 2H-NbSe 2 . (author)

  4. Synchronisation Induced by Repulsive Interactions in a System of van der Pol Oscillators

    Science.gov (United States)

    Martins, T. V.; Toral, R.

    2011-09-01

    We consider a system of identical van der Pol oscillators, globally coupled through their velocities, and study how the presence of competitive interactions affects its synchronisation properties. We will address the question from two points of view. Firstly, we will investigate the role of competitive interactions on the synchronisation among identical oscillators. Then, we will show that the presence of a fraction of repulsive links results in the appearance of macroscopic oscillations at that signal's rhythm, in regions where the individual oscillator is unable to synchronise with a weak external signal.

  5. Henry constants in polymer solutions with the van der Waals equation of state

    DEFF Research Database (Denmark)

    Bithas, Sotiris; Kalospiros, Nikolaos; Kontogeorgis, Georgios

    1996-01-01

    parameter is satisfactory, with typical errors within the experimental uncertainty and comparable to those with the more complex Perturbed Hard Chain Theory-based equations of state with the same number of adjustable parameters. A predictive scheme for calculating Henry constants is also presented, which...... is a corresponding-states correlation for a dimensionless Henry constant defined based on the van der Waals equation of state. Satisfactory results-often close to the ones from the one-parameter correlation-are obtained for all systems investigated in this work. Compared with literature models that have been applied...

  6. On a modification of the spinor calculus of Infeeld and van der Waerden

    International Nuclear Information System (INIS)

    Buchdahl, H.A.

    1990-01-01

    A modification of the spinor calculus of Infeeld and van der Waerden is presented in which σ kμν is no longer covariant constant. The structure of spin space is enriched by a spinor f μνρσ defined on it. Flatness of the Riemannian world space no longer necessarily entails the vanishing of the curvature of the spin space. After a brief look at Dirac's equation, the revised calculus is re-interpreted in terms of a Riemann-Cartan space, with σ kμν again covariant constant. (author)

  7. Metastable decay and binding energies of van der Waals cluster ions

    International Nuclear Information System (INIS)

    Ernstberger, B.; Krause, H.; Neusser, H.J.

    1991-01-01

    In this work the appearance potentials for the metastable decay channel of a series of van der Waals dimer ions are presented. Ionization and metastable dissociation is achieved by resonance-enhanced two-photon absorption in a linear reflectron time-of-flight mass spectrometer. From the appearance potentials the binding energy of the neutral dimers is obtained and from the additionally measured ionization potentials binding energies of the dimer cations are achieved. The contribution of charge transfer resonance interaction to the binding in cluster ions is evaluated by investigation of several homo- and heterodimers of aromatic components and the heterodimer benzene/cyclohexane as an example for a dimer consisting of an aromatic and a nonaromatic component. (orig.)

  8. Van Der Waals Heterostructures between Small Organic Molecules and Layered Substrates

    Directory of Open Access Journals (Sweden)

    Han Huang

    2016-09-01

    Full Text Available Two dimensional atomic crystals, like grapheme (G and molybdenum disulfide (MoS2, exhibit great interest in electronic and optoelectronic applications. The excellent physical properties, such as transparency, semiconductivity, and flexibility, make them compatible with current organic electronics. Here, we review recent progress in the understanding of the interfaces of van der Waals (vdW heterostructures between small organic molecules (pentacene, copper phthalocyanine (CuPc, perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA, and dioctylbenzothienobenzothiophene (C8-BTBT and layered substrates (G, MoS2 and hexagonal boron nitride (h-BN. The influences of the underlying layered substrates on the molecular arrangement, electronic and vibrational properties will be addressed.

  9. Reconstructing the Middle Ages. Dirck van Bleyswijck’s Beschryvinge der stadt Delft and its uneasy relationship with the past

    Directory of Open Access Journals (Sweden)

    Marcin Polkowski

    2013-12-01

    Full Text Available Dirck van Bleyswijck's Beschryvinge der stadt Delft presents an ambiguous and problematic attitude to the medieval history of Delft, which makes it interesting to scholars wishing to explore the perception of the Middle Ages as it crystallized during the early modern period. The aim of this contribution is to determine the intellectual origins of Van Bleyswijck's work as a historian in the context of his perception of the medieval past. The analysis of Van Bleyswijck's performance as a historian is based on a case study derived from the narrative: quotations from source texts and commentary about the life of the medieval Delft beguine Geertruyd van Oosten will be compared. Van Bleyswijck's representation of the Middle Ages was formed by a combination of humanist and proto-Enlightenment concepts, which entailed a critical reaction to forms of religious culture known to medieval society.

  10. Characterization of rarefaction waves in van der Waals fluids

    Science.gov (United States)

    Yuen, Albert; Barnard, John J.

    2015-12-01

    We calculate the isentropic evolution of an instantaneously heated foil, assuming a van der Waals equation of state with the Maxwell construction. The analysis by Yuen and Barnard [Phys. Rev. E 92, 033019 (2015), 10.1103/PhysRevE.92.033019] is extended for the particular case of three degrees of freedom. We assume heating to temperatures in the vicinity of the critical point. The self-similar profiles of the rarefaction waves describing the evolution of the foil display plateaus in density and temperature due to a phase transition from the single-phase to the two-phase regime. The hydrodynamic equations are expressed in a dimensionless form and the solutions form a set of universal curves, depending on a single parameter: the dimensionless initial entropy. We characterize the rarefaction waves by calculating how the plateau length, density, pressure, temperature, velocity, internal energy, and sound speed vary with dimensionless initial entropy.

  11. J.A. van der Kloes (1845-1935) : A professional biography of the first Dutch professor in building materials

    NARCIS (Netherlands)

    Quist, W.J.

    2015-01-01

    Prof. Jacobus Alida van der Kloes (1845-1935) was appointed teacher in building materials at the “Polytechnische school” of Delft in 1882. From 1905 until his retirement in 1915 he was promoted to full professor on the subject of knowledge and research of building materials at the “Technische

  12. Macht, machinaties en musea. Jan van der Hoeven, Hermann Schlegel en hun strijd om het Rijksmuseum van natuurlijke historie te Leiden

    Directory of Open Access Journals (Sweden)

    H.L. de Jonge

    2005-01-01

    Full Text Available Might, machinations and museums. Jan van der Hoeven, Hermann Schlegel and their battle over the National Museum for Natural History in LeidenMuseums had a central place in nineteenth-century natural history. Aside from being important places for carrying out research into nature, they were also powerful vehicles for transmitting and communicating scientific knowledge. That is why, in the nineteenth century, natural history museums were frequently battlegrounds for rival scientists. Often, clashes over scientific matters were at the same time conflicts about power and space. After all, the naturalist who could get control over a museum’s collection and decide how the specimens should be classified and exhibited ultimately had the power to dictate which scientific knowledge was communicated; which story was told by a collection of specimens. This article is about the power struggle over the directorate of the National Museum of Natural History in Leiden that broke out between Jan van der Hoeven, Professor of Natural History and Comparative Anatomy at Leiden and Herman Schlegel, the museum’s chief curator. Both were rooted in very different natural historical traditions and had completely different views on the role of the museum and how the collection should be arranged and exhibited. In this article, we follow the two scientists in their attempts to gain support for their nominations. In this way, we also get a picture of nineteenth century Dutch political culture and the role scientists could play in it.

  13. Heterostructures based on inorganic and organic van der Waals systems

    International Nuclear Information System (INIS)

    Lee, Gwan-Hyoung; Lee, Chul-Ho; Zande, Arend M. van der; Han, Minyong; Cui, Xu; Arefe, Ghidewon; Hone, James; Nuckolls, Colin; Heinz, Tony F.; Kim, Philip

    2014-01-01

    The two-dimensional limit of layered materials has recently been realized through the use of van der Waals (vdW) heterostructures composed of weakly interacting layers. In this paper, we describe two different classes of vdW heterostructures: inorganic vdW heterostructures prepared by co-lamination and restacking; and organic-inorganic hetero-epitaxy created by physical vapor deposition of organic molecule crystals on an inorganic vdW substrate. Both types of heterostructures exhibit atomically clean vdW interfaces. Employing such vdW heterostructures, we have demonstrated various novel devices, including graphene/hexagonal boron nitride (hBN) and MoS 2 heterostructures for memory devices; graphene/MoS 2 /WSe 2 /graphene vertical p-n junctions for photovoltaic devices, and organic crystals on hBN with graphene electrodes for high-performance transistors

  14. Switching phase states in two van der Pol oscillators coupled by ttochastically time-varying resistor

    OpenAIRE

    Uwate, Y; Nishio, Y; Stoop, R

    2009-01-01

    We explore the synchronization and switching behavior of a system of two identical van der Pol oscillators coupled by a stochastically timevarying resistor. Triggered by the time-varying resistor, the system of oscillators switches between synchronized and anti-synchronized behavior. We find that the preference of the synchronized/antisynchronized state is determined by the ratio of the probabilities of the two resistor states. The length of the phases of maintained resistor states, however, ...

  15. ProBiS-ligands: a web server for prediction of ligands by examination of protein binding sites.

    Science.gov (United States)

    Konc, Janez; Janežič, Dušanka

    2014-07-01

    The ProBiS-ligands web server predicts binding of ligands to a protein structure. Starting with a protein structure or binding site, ProBiS-ligands first identifies template proteins in the Protein Data Bank that share similar binding sites. Based on the superimpositions of the query protein and the similar binding sites found, the server then transposes the ligand structures from those sites to the query protein. Such ligand prediction supports many activities, e.g. drug repurposing. The ProBiS-ligands web server, an extension of the ProBiS web server, is open and free to all users at http://probis.cmm.ki.si/ligands. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Quantitative chemogenomics: machine-learning models of protein-ligand interaction.

    Science.gov (United States)

    Andersson, Claes R; Gustafsson, Mats G; Strömbergsson, Helena

    2011-01-01

    Chemogenomics is an emerging interdisciplinary field that lies in the interface of biology, chemistry, and informatics. Most of the currently used drugs are small molecules that interact with proteins. Understanding protein-ligand interaction is therefore central to drug discovery and design. In the subfield of chemogenomics known as proteochemometrics, protein-ligand-interaction models are induced from data matrices that consist of both protein and ligand information along with some experimentally measured variable. The two general aims of this quantitative multi-structure-property-relationship modeling (QMSPR) approach are to exploit sparse/incomplete information sources and to obtain more general models covering larger parts of the protein-ligand space, than traditional approaches that focuses mainly on specific targets or ligands. The data matrices, usually obtained from multiple sparse/incomplete sources, typically contain series of proteins and ligands together with quantitative information about their interactions. A useful model should ideally be easy to interpret and generalize well to new unseen protein-ligand combinations. Resolving this requires sophisticated machine-learning methods for model induction, combined with adequate validation. This review is intended to provide a guide to methods and data sources suitable for this kind of protein-ligand-interaction modeling. An overview of the modeling process is presented including data collection, protein and ligand descriptor computation, data preprocessing, machine-learning-model induction and validation. Concerns and issues specific for each step in this kind of data-driven modeling will be discussed. © 2011 Bentham Science Publishers

  17. Analysis of the quasiperiodic response of a generalized van der Pol nonlinear system in the resonance zone

    Czech Academy of Sciences Publication Activity Database

    Náprstek, Jiří; Fischer, Cyril

    -, - (2018), , , --- ISSN 0045-7949 R&D Projects: GA ČR(CZ) GA15-01035S Institutional support: RVO:68378297 Keywords : nonlinear dynamics * generalized van der Pol system * quasiperiodic response * synchronization effects * stability of auto-oscillation Subject RIV: JM - Building Engineering OBOR OECD: Mechanical engineering Impact factor: 2.847, year: 2016 http://www.sciencedirect.com/science/article/pii/S004579491730278X

  18. Period-doubling cascades and strange attractors in the triple-well Φ6-Van der Pol oscillator

    International Nuclear Information System (INIS)

    Yu Jun; Zhang Rongbo; Pan Weizhen; Schimansky-Geier, L

    2008-01-01

    Duffing-Van der Pol equation with the fifth nonlinear-restoring force is investigated. The bifurcation structure and chaotic motion under the periodic perturbation are obtained by numerical simulations. Numerical simulations, including bifurcation diagrams, Lyapunov exponents, phase portraits and Poincare maps, exhibit some new complex dynamical behaviors of the system. Different routes to chaos, such as period doubling and quasi-periodic routes, and various kinds of strange attractors are also demonstrated

  19. Determination of silicon and chromium content in gray cast iron by the Van der Pauw method; Determinacion del contenido de silicio y cromo en fundiciones grises mediante el metodo de Van der Pauw

    Energy Technology Data Exchange (ETDEWEB)

    Tremps, E.; Enrique, J. L.; Moron, C.; Garcia, A.; Gomez, A.

    2013-07-01

    In this paper we show a system based on the resistivity measurement of samples of gray cast iron by the Van der Pauw method to calculate the silicon content in the samples. Twenty five trials have been carried out, studying resistive and metallographic characteristics of the samples. This has demonstrated that it is possible to obtain, by this method, the silicon content in molten flat with low content of alloying elements, also the content of chromium in series smelters where the rate of silicon remains constant. (Author)

  20. Feedback control and adaptive synchronization of chaotic forced Bonhoeffer-van der Pol oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Kontchou, E W Chimi; Fotsin, H B [Laboratoire d' Electronique, Departement de Physique, Faculte des Sciences, Universite de Dschang, B P 67 Dschang (Cameroon); Woafo, P [Laboratory of Modelling and Simulation in Engineering and Biological Physics, Faculty of Science, University of Yaounde I, Box 812, Yaounde (Cameroon)], E-mail: hbfotsin@yahoo.fr

    2008-04-15

    This paper deals with chaos control and synchronization in forced Bonhoeffer-van der Pol (FBVP) oscillators. The state equations of the model are first established and the stability is analysed. A feedback control strategy for stabilizing the chaotic dynamics on a periodic orbit of the phase space is investigated. Adaptive synchronization of two FBVP oscillators, based on parameter estimation and a nonlinear observer approach, is also investigated. It appears that a particular unknown parameter of the model can be estimated, which gives the possibility of recovering information through chaotic masking. An application in secure communications is presented.

  1. Feedback control and adaptive synchronization of chaotic forced Bonhoeffer-van der Pol oscillators

    International Nuclear Information System (INIS)

    Kontchou, E W Chimi; Fotsin, H B; Woafo, P

    2008-01-01

    This paper deals with chaos control and synchronization in forced Bonhoeffer-van der Pol (FBVP) oscillators. The state equations of the model are first established and the stability is analysed. A feedback control strategy for stabilizing the chaotic dynamics on a periodic orbit of the phase space is investigated. Adaptive synchronization of two FBVP oscillators, based on parameter estimation and a nonlinear observer approach, is also investigated. It appears that a particular unknown parameter of the model can be estimated, which gives the possibility of recovering information through chaotic masking. An application in secure communications is presented

  2. 2D halide perovskite-based van der Waals heterostructures: contact evaluation and performance modulation

    Science.gov (United States)

    Guo, Yaguang; Saidi, Wissam A.; Wang, Qian

    2017-09-01

    Halide perovskites and van der Waals (vdW) heterostructures are both of current interest owing to their novel properties and potential applications in nano-devices. Here, we show the great potential of 2D halide perovskite sheets (C4H9NH3)2PbX4 (X  =  Cl, Br and I) that were synthesized recently (Dou et al 2015 Science 349 1518-21) as the channel materials contacting with graphene and other 2D metallic sheets to form van der Waals heterostructures for field effect transistor (FET). Based on state-of-the-art theoretical simulations, we show that the intrinsic properties of the 2D halide perovskites are preserved in the heterojunction, which is different from the conventional contact with metal surfaces. The 2D halide perovskites form a p-type Schottky barrier (Φh) contact with graphene, where tunneling barrier exists, and a negative band bending occurs at the lateral interface. We demonstrate that the Schottky barrier can be turned from p-type to n-type by doping graphene with nitrogen atoms, and a low-Φh or an Ohmic contact can be realized by doping graphene with boron atoms or replacing graphene with other high-work-function 2D metallic sheets such as ZT-MoS2, ZT-MoSe2 and H-NbS2. This study not only predicts a 2D halide perovskite-based FETs, but also enhances the understanding of tuning Schottky barrier height in device applications.

  3. A crossover in anisotropic nanomechanochemistry of van der Waals crystals

    International Nuclear Information System (INIS)

    Shimamura, Kohei; Misawa, Masaaki; Li, Ying; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya; Shimojo, Fuyuki

    2015-01-01

    In nanoscale mechanochemistry, mechanical forces selectively break covalent bonds to essentially control chemical reactions. An archetype is anisotropic detonation of layered energetic molecular crystals bonded by van der Waals (vdW) interactions. Here, quantum molecular dynamics simulations reveal a crossover of anisotropic nanomechanochemistry of vdW crystal. Within 10 −13 s from the passage of shock front, lateral collision produces NO 2 via twisting and bending of nitro-groups and the resulting inverse Jahn-Teller effect, which is mediated by strong intra-layer hydrogen bonds. Subsequently, as we transition from heterogeneous to homogeneous mechanochemical regimes around 10 −12 s, shock normal to multilayers becomes more reactive, producing H 2 O assisted by inter-layer N-N bond formation. These time-resolved results provide much needed atomistic understanding of nanomechanochemistry that underlies a wider range of technologies

  4. Low-energy universality and scaling of van der Waals forces

    International Nuclear Information System (INIS)

    Calle Cordon, A.; Ruiz Arriola, E.

    2010-01-01

    At long distances, interactions between neutral ground-state atoms can be described by the van der Waals potential. In the ultracold regime, atom-atom scattering is dominated by s-waves phase shifts given by an effective range expansion in terms of the scattering length α 0 and the effective range r 0 . We show that while the scattering length cannot be predicted for these potentials, the effective range is given by the universal low-energy theorem r 0 =A+B/α 0 +C/α 0 2 , where A, B, and C depend on the dispersion coefficients C n and the reduced diatom mass. We confront this formula to about 100 determinations of r 0 and α 0 and show why the result is dominated by the leading dispersion coefficient C 6 . Universality and scaling extend much beyond naive dimensional analysis estimates.

  5. A crossover in anisotropic nanomechanochemistry of van der Waals crystals

    Energy Technology Data Exchange (ETDEWEB)

    Shimamura, Kohei [Department of Physics, Kumamoto University, Kumamoto 860-8555 (Japan); Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Graduate School of System Informatics, Kobe University, Kobe 657-8501 (Japan); Misawa, Masaaki [Department of Physics, Kumamoto University, Kumamoto 860-8555 (Japan); Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Li, Ying [Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Shimojo, Fuyuki [Department of Physics, Kumamoto University, Kumamoto 860-8555 (Japan)

    2015-12-07

    In nanoscale mechanochemistry, mechanical forces selectively break covalent bonds to essentially control chemical reactions. An archetype is anisotropic detonation of layered energetic molecular crystals bonded by van der Waals (vdW) interactions. Here, quantum molecular dynamics simulations reveal a crossover of anisotropic nanomechanochemistry of vdW crystal. Within 10{sup −13} s from the passage of shock front, lateral collision produces NO{sub 2} via twisting and bending of nitro-groups and the resulting inverse Jahn-Teller effect, which is mediated by strong intra-layer hydrogen bonds. Subsequently, as we transition from heterogeneous to homogeneous mechanochemical regimes around 10{sup −12} s, shock normal to multilayers becomes more reactive, producing H{sub 2}O assisted by inter-layer N-N bond formation. These time-resolved results provide much needed atomistic understanding of nanomechanochemistry that underlies a wider range of technologies.

  6. Ab-initio study of structural and electronic properties of WS2/h-BN van der Waals heterostructure

    Science.gov (United States)

    Ghasemi majd, Zahra; Amiri, Peiman; Taghizadeh, Seyed Fardin

    2018-06-01

    First-principle calculations with different exchange-correlation functionals, including LDA, GGA, semi-empirical and ab-initio van der Waals in the forms of vdW-DF2B86R and vdW-DF2 were performed to evaluate the performance of different functionals in describing the bonding mechanism, adsorption energy and interlayer distance of WS2 monolayer on and between h-BN layers. The finding was that the vdW-DF2B86R seems to be the approach best lending itself to this purpose. In order to include the van der Waals (vdW) interactions in our calculations, we used the DFT-D2 and vdW methods, which gave rise to a physical adsorption with no net charge transfer between the WS2 layer and the corresponding substrates. In addition, we investigated the electronic and structural properties of WS2 and h-BN heterolayers, using vdW-DF2B86R functional. Based on density functional theory calculations, WS2 on and between h-BN layers showed a direct band gap at the K-point, which was experimentally observed.

  7. Nonlinear response of a forced van der Pol-Duffing oscillator at non-resonant bifurcations of codimension two

    International Nuclear Information System (INIS)

    Ji, J.C.; Zhang, N.

    2009-01-01

    Non-resonant bifurcations of codimension two may appear in the controlled van der Pol-Duffing oscillator when two critical time delays corresponding to a double Hopf bifurcation have the same value. With the aid of centre manifold theorem and the method of multiple scales, the non-resonant response and two types of primary resonances of the forced van der Pol-Duffing oscillator at non-resonant bifurcations of codimension two are investigated by studying the possible solutions and their stability of the four-dimensional ordinary differential equations on the centre manifold. It is shown that the non-resonant response of the forced oscillator may exhibit quasi-periodic motions on a two- or three-dimensional (2D or 3D) torus. The primary resonant responses admit single and mixed solutions and may exhibit periodic motions or quasi-periodic motions on a 2D torus. Illustrative examples are presented to interpret the dynamics of the controlled system in terms of two dummy unfolding parameters and exemplify the periodic and quasi-periodic motions. The analytical predictions are found to be in good agreement with the results of numerical integration of the original delay differential equation.

  8. Imaging of Interlayer Coupling in van der Waals Heterostructures Using a Bright-Field Optical Microscope.

    Science.gov (United States)

    Alexeev, Evgeny M; Catanzaro, Alessandro; Skrypka, Oleksandr V; Nayak, Pramoda K; Ahn, Seongjoon; Pak, Sangyeon; Lee, Juwon; Sohn, Jung Inn; Novoselov, Kostya S; Shin, Hyeon Suk; Tartakovskii, Alexander I

    2017-09-13

    Vertically stacked atomic layers from different layered crystals can be held together by van der Waals forces, which can be used for building novel heterostructures, offering a platform for developing a new generation of atomically thin, transparent, and flexible devices. The performance of these devices is critically dependent on the layer thickness and the interlayer electronic coupling, influencing the hybridization of the electronic states as well as charge and energy transfer between the layers. The electronic coupling is affected by the relative orientation of the layers as well as by the cleanliness of their interfaces. Here, we demonstrate an efficient method for monitoring interlayer coupling in heterostructures made from transition metal dichalcogenides using photoluminescence imaging in a bright-field optical microscope. The color and brightness in such images are used here to identify mono- and few-layer crystals and to track changes in the interlayer coupling and the emergence of interlayer excitons after thermal annealing in heterobilayers composed of mechanically exfoliated flakes and as a function of the twist angle in atomic layers grown by chemical vapor deposition. Material and crystal thickness sensitivity of the presented imaging technique makes it a powerful tool for characterization of van der Waals heterostructures assembled by a wide variety of methods, using combinations of materials obtained through mechanical or chemical exfoliation and crystal growth.

  9. Van verenigingsondersteuning naar verenigingsontwikkeling

    NARCIS (Netherlands)

    Slender, Hans; Meijburg, Heleen; Boven, Magda; Dijk, Bake; de Jong, Johan

    2017-01-01

    Sportverenigingen staan momenteel voor grote uitdagingen zoals bijvoorbeeld vermeend consumentgedrag van leden (Van der Roest, 2015), steeds meer eisen vanuit de overheid om bij te dragen aan maatschappelijke vraagstukken (Waardenburg, 2016) en teruglopende ledenaantal in krimpregio’s. Enkele

  10. Bridging C60 by silicon: Towards non-Van der Waals C60-based materials

    International Nuclear Information System (INIS)

    Tournus, F.; Masenelli, B.; Melinon, P.; Blase, X.; Perez, A.; Pellarin, M.; Broyer, M.; Flank, A.M.; Lagarde, P.

    2002-01-01

    We report the three-dimensional packing of C 60 clusters stabilized by the addition of Si. X-ray absorption spectroscopy reveals that Si atoms are in an unusual environment: between two C 60 , with ten or more carbon neighbors. According to ab initio calculations, the cohesive energy is about 2 eV per Si atom, much higher than the Van der Waals binding energy between two C 60 . Experiment and calculations both indicate a charge transfer from Si to C 60 . Eventually, the film may have a local decahedral symmetry

  11. Dendrimer-protein interactions versus dendrimer-based nanomedicine.

    Science.gov (United States)

    Shcharbin, Dzmitry; Shcharbina, Natallia; Dzmitruk, Volha; Pedziwiatr-Werbicka, Elzbieta; Ionov, Maksim; Mignani, Serge; de la Mata, F Javier; Gómez, Rafael; Muñoz-Fernández, Maria Angeles; Majoral, Jean-Pierre; Bryszewska, Maria

    2017-04-01

    Dendrimers are hyperbranched polymers belonging to the huge class of nanomedical devices. Their wide application in biology and medicine requires understanding of the fundamental mechanisms of their interactions with biological systems. Summarizing, electrostatic force plays the predominant role in dendrimer-protein interactions, especially with charged dendrimers. Other kinds of interactions have been proven, such as H-bonding, van der Waals forces, and even hydrophobic interactions. These interactions depend on the characteristics of both participants: flexibility and surface charge of a dendrimer, rigidity of protein structure and the localization of charged amino acids at its surface. pH and ionic strength of solutions can significantly modulate interactions. Ligands and cofactors attached to a protein can also change dendrimer-protein interactions. Binding of dendrimers to a protein can change its secondary structure, conformation, intramolecular mobility and functional activity. However, this strongly depends on rigidity versus flexibility of a protein's structure. In addition, the potential applications of dendrimers to nanomedicine are reviwed related to dendrimer-protein interactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Morse-Morse-Spline-Van der Waals intermolecular potential suitable for hexafluoride gases

    International Nuclear Information System (INIS)

    Coroiu, Ilioara

    2004-01-01

    Several effective isotopic pair potential functions have been proposed to characterize the bulk properties of quasispherical molecules, in particular the hexafluorides, but none got a success. Unfortunately, these potentials have repulsive walls steeper than those which describe the hexafluorides. That these intermolecular potentials are not quite adequate is shown by the lack of complete agreement between theory and experiment even for the rare gases. Not long ago, R. A. Aziz et al. have constructed a Morse-Morse-Spline-Van der Waals (MMSV) potential. The MMSV potential incorporates the determination of C 6 dispersion coefficient and it reasonably correlates second virial coefficients and viscosity data of sulphur hexafluoride at the same time. None of the potential functions previously proposed in literature could predict these properties simultaneously. We calculated the second virial coefficients and a large number of Chapman-Cowling collision integrals for this improved intermolecular potential, the MMSV potential. The results were tabulated for a large reduced temperature range, kT/ε from 0.1 to 100. The treatment was entirely classical and no corrections for quantum effects were made. The higher approximations to the transport coefficients and the isotopic thermal diffusion factor were also calculated and tabulated for the same range. In this paper we present the evaluation of the uranium hexafluoride potential parameters for the MMSV intermolecular potential. To find a single set of potential parameters which could predict all the transport properties (viscosity, thermal conductivity, self diffusion, etc.), as well as the second virial coefficients, simultaneously, the method suggested by Morizot and a large assortment of literature data were used. Our results emphasized that the Morse-Morse-Spline-Van der Waals potential have the best overall predictive ability for gaseous hexafluoride data, certain for uranium hexafluoride. (author)

  13. Quantitative analysis of protein-ligand interactions by NMR.

    Science.gov (United States)

    Furukawa, Ayako; Konuma, Tsuyoshi; Yanaka, Saeko; Sugase, Kenji

    2016-08-01

    Protein-ligand interactions have been commonly studied through static structures of the protein-ligand complex. Recently, however, there has been increasing interest in investigating the dynamics of protein-ligand interactions both for fundamental understanding of the underlying mechanisms and for drug development. NMR is a versatile and powerful tool, especially because it provides site-specific quantitative information. NMR has widely been used to determine the dissociation constant (KD), in particular, for relatively weak interactions. The simplest NMR method is a chemical-shift titration experiment, in which the chemical-shift changes of a protein in response to ligand titration are measured. There are other quantitative NMR methods, but they mostly apply only to interactions in the fast-exchange regime. These methods derive the dissociation constant from population-averaged NMR quantities of the free and bound states of a protein or ligand. In contrast, the recent advent of new relaxation-based experiments, including R2 relaxation dispersion and ZZ-exchange, has enabled us to obtain kinetic information on protein-ligand interactions in the intermediate- and slow-exchange regimes. Based on R2 dispersion or ZZ-exchange, methods that can determine the association rate, kon, dissociation rate, koff, and KD have been developed. In these approaches, R2 dispersion or ZZ-exchange curves are measured for multiple samples with different protein and/or ligand concentration ratios, and the relaxation data are fitted to theoretical kinetic models. It is critical to choose an appropriate kinetic model, such as the two- or three-state exchange model, to derive the correct kinetic information. The R2 dispersion and ZZ-exchange methods are suitable for the analysis of protein-ligand interactions with a micromolar or sub-micromolar dissociation constant but not for very weak interactions, which are typical in very fast exchange. This contrasts with the NMR methods that are used

  14. Genetiese parameters van speenkafrf^ eienskappe by ...

    African Journals Online (AJOL)

    Genetiese en. Omgewingsparameters van 'n VIeisraskudde. Ph.D.-tesis,. Univ. van die Oranje-Vrystaat. VAN MARLE, J., 1964. Untersuchungen tiber Einfltisse von. Umwelt und Erbanlage auf die Gewichtsentwicklung von. Fleischrinden unter extensiven Weidebedingungen der. Versuchstation Armoedsvlakte in Stidafrika.

  15. The van der Waals interaction of microparticles with a substrate characterized by a nonlocal response

    International Nuclear Information System (INIS)

    Dorofeyev, Illarion

    2007-01-01

    The van der Waals energy of the system constituted by a microparticle and a solid surface characterized by a nonlocal response is calculated taking into account an influence of another microparticle. A saturation of the dispersion interaction at short distances from the surface both for the spectral density of energy and for the total energy is shown. The known McLachlan expression for the pair and triple energies in the case of local media directly follows from the obtained general expression

  16. Political Storytelling on Instagram: Key Aspects of Alexander Van der Bellen's Successful 2016 Presidential Election Campaign

    OpenAIRE

    Liebhart, Karin; Bernhardt, Petra

    2017-01-01

    This article addresses the strategic use of Instagram in election campaigns for the office of the Austrian Federal President in 2016. Based on a comprehensive visual analysis of 504 Instagram posts from Green-backed but independent presidential candidate Alexander Van der Bellen, who resulted as winner after almost one year of campaigning, this contribution reconstructs key aspects of digital storytelling on Instagram. By identifying relevant image types central to the self-representation of ...

  17. Cálculo do volume na equação de van der Waals pelo método de cardano Volume calculation in van der Waals equation by the cardano method

    Directory of Open Access Journals (Sweden)

    Nelson H. T. Lemes

    2010-01-01

    Full Text Available Analytical solutions of a cubic equation with real coefficients are established using the Cardano method. The method is first applied to simple third order equation. Calculation of volume in the van der Waals equation of state is afterwards established. These results are exemplified to calculate the volumes below and above critical temperatures. Analytical and numerical values for the compressibility factor are presented as a function of the pressure. As a final example, coexistence volumes in the liquid-vapor equilibrium are calculated. The Cardano approach is very simple to apply, requiring only elementary operations, indicating an attractive method to be used in teaching elementary thermodynamics.

  18. Film Thickness Formation in Nanoscale due to Effects of Elastohydrodynamic, Electrostatic and Surface force of Solvation and Van der Waals

    Directory of Open Access Journals (Sweden)

    M.F. Abd Al-Samieh

    2017-03-01

    Full Text Available The mechanism of oil film with a thickness in the nanoscale is discussed in this paper. A polar lubricant of propylene carbonate is used as the intervening liquid between contiguous bodies in concentrated contacts. A pressure caused by the hydrodynamic viscous action in addition to double layer electrostatic force, Van der Waals inter-molecular forces, and solvation pressure due to inter-surface forces is considered in calculating the ultrathin lubricating films. The numerical solution has been carried out, using the Newton-Raphson iteration technique, applied for the convergence of the hydrodynamic pressure. The results show that, at separations beyond about five molecular diameters of the intervening liquid, the formation of a lubricant film thickness is governed by combined effects of viscous action and surface force of an attractive Van der Waals force and a repulsive double layer force. At smaller separations below about five molecular diameters of the intervening liquid, the effect of solvation force is dominant in determining the oil film thickness

  19. Crystallization of bi-functional ligand protein complexes.

    Science.gov (United States)

    Antoni, Claudia; Vera, Laura; Devel, Laurent; Catalani, Maria Pia; Czarny, Bertrand; Cassar-Lajeunesse, Evelyn; Nuti, Elisa; Rossello, Armando; Dive, Vincent; Stura, Enrico Adriano

    2013-06-01

    Homodimerization is important in signal transduction and can play a crucial role in many other biological systems. To obtaining structural information for the design of molecules able to control the signalization pathways, the proteins involved will have to be crystallized in complex with ligands that induce dimerization. Bi-functional drugs have been generated by linking two ligands together chemically and the relative crystallizability of complexes with mono-functional and bi-functional ligands has been evaluated. There are problems associated with crystallization with such ligands, but overall, the advantages appear to be greater than the drawbacks. The study involves two matrix metalloproteinases, MMP-12 and MMP-9. Using flexible and rigid linkers we show that it is possible to control the crystal packing and that by changing the ligand-enzyme stoichiometric ratio, one can toggle between having one bi-functional ligand binding to two enzymes and having the same ligand bound to each enzyme. The nature of linker and its point of attachment on the ligand can be varied to aid crystallization, and such variations can also provide valuable structural information about the interactions made by the linker with the protein. We report here the crystallization and structure determination of seven ligand-dimerized complexes. These results suggest that the use of bi-functional drugs can be extended beyond the realm of protein dimerization to include all drug design projects. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Het veranderende gezicht van reumatoïde artritis

    NARCIS (Netherlands)

    Helm-van, van der Mil A.H.M.

    2016-01-01

    Oratie uitgesproken door Prof.dr. A.H.M. Van der Helm-van Mil bij de aanvaarding van het ambt van hoogleraar op het gebied van Reumatologie, in het bijzonder Vroege Artritis aan de Universiteit Leiden op vrijdag 14 oktober 2016

  1. Phase diagram of Rydberg atoms with repulsive van der Waals interaction

    International Nuclear Information System (INIS)

    Osychenko, O. N.; Astrakharchik, G. E.; Boronat, J.; Lutsyshyn, Y.; Lozovik, Yu. E.

    2011-01-01

    We report a quantum Monte Carlo calculation of the phase diagram of bosons interacting with a repulsive inverse sixth power pair potential, a model for assemblies of Rydberg atoms in the local van der Waals blockade regime. The model can be parametrized in terms of just two parameters, the reduced density and temperature. Solidification happens to the fcc phase. At zero temperature, the transition density is found with the diffusion Monte Carlo method at density ρ=3.9 ((ℎ/2π) 2 /mC 6 ) 3/4 , where C 6 is the strength of the interaction. The solidification curve at nonzero temperature is studied with the path-integral Monte Carlo approach and is compared with transitions in corresponding harmonic and classical crystals. Relaxation mechanisms are considered in relation to present experiments.

  2. Models of protein-ligand crystal structures: trust, but verify.

    Science.gov (United States)

    Deller, Marc C; Rupp, Bernhard

    2015-09-01

    X-ray crystallography provides the most accurate models of protein-ligand structures. These models serve as the foundation of many computational methods including structure prediction, molecular modelling, and structure-based drug design. The success of these computational methods ultimately depends on the quality of the underlying protein-ligand models. X-ray crystallography offers the unparalleled advantage of a clear mathematical formalism relating the experimental data to the protein-ligand model. In the case of X-ray crystallography, the primary experimental evidence is the electron density of the molecules forming the crystal. The first step in the generation of an accurate and precise crystallographic model is the interpretation of the electron density of the crystal, typically carried out by construction of an atomic model. The atomic model must then be validated for fit to the experimental electron density and also for agreement with prior expectations of stereochemistry. Stringent validation of protein-ligand models has become possible as a result of the mandatory deposition of primary diffraction data, and many computational tools are now available to aid in the validation process. Validation of protein-ligand complexes has revealed some instances of overenthusiastic interpretation of ligand density. Fundamental concepts and metrics of protein-ligand quality validation are discussed and we highlight software tools to assist in this process. It is essential that end users select high quality protein-ligand models for their computational and biological studies, and we provide an overview of how this can be achieved.

  3. Closed-form approximation and numerical validation of the influence of van der Waals force on electrostatic cantilevers at nano-scale separations

    Energy Technology Data Exchange (ETDEWEB)

    Ramezani, Asghar [School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Alasty, Aria [Center of Excellence in Design, Robotics, and Automation (CEDRA), School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Akbari, Javad [Center of Excellence in Design, Robotics, and Automation (CEDRA), School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2008-01-09

    In this paper the two-point boundary value problem (BVP) of the cantilever deflection at nano-scale separations subjected to van der Waals and electrostatic forces is investigated using analytical and numerical methods to obtain the instability point of the beam. In the analytical treatment of the BVP, the nonlinear differential equation of the model is transformed into the integral form by using the Green's function of the cantilever beam. Then, closed-form solutions are obtained by assuming an appropriate shape function for the beam deflection to evaluate the integrals. In the numerical method, the BVP is solved with the MATLAB BVP solver, which implements a collocation method for obtaining the solution of the BVP. The large deformation theory is applied in numerical simulations to study the effect of the finite kinematics on the pull-in parameters of cantilevers. The centerline of the beam under the effect of electrostatic and van der Waals forces at small deflections and at the point of instability is obtained numerically. In computing the centerline of the beam, the axial displacement due to the transverse deformation of the beam is taken into account, using the inextensibility condition. The pull-in parameters of the beam are computed analytically and numerically under the effects of electrostatic and/or van der Waals forces. The detachment length and the minimum initial gap of freestanding cantilevers, which are the basic design parameters, are determined. The results of the analytical study are compared with the numerical solutions of the BVP. The proposed methods are validated by the results published in the literature.

  4. Amplitude and phase fluctuations of Van der Pol oscillator under external random forcing

    Science.gov (United States)

    Singh, Aman K.; Yadava, R. D. S.

    2018-05-01

    The paper presents an analytical study of noise in Van der Pol oscillator output subjected to an external force noise assumed to be characterized by delta function (white noise). The external fluctuations are assumed to be small in comparison to the average response of the noise free system. The autocorrelation function and power spectrum are calculated under the condition of weak nonlinearity. The latter ensures limit cycle oscillations. The total spectral power density is dominated by the contributions from the phase fluctuations. The amplitude fluctuations are at least two orders of magnitude smaller. The analysis is shown to be useful to interpretation microcantilever based biosensing data.

  5. Quasi-periodic bifurcations and “amplitude death” in low-dimensional ensemble of van der Pol oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Emelianova, Yu.P., E-mail: yuliaem@gmail.com [Department of Electronics and Instrumentation, Saratov State Technical University, Polytechnicheskaya 77, Saratov 410054 (Russian Federation); Kuznetsov, A.P., E-mail: apkuz@rambler.ru [Kotel' nikov' s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch, Zelyenaya 38, Saratov 410019 (Russian Federation); Turukina, L.V., E-mail: lvtur@rambler.ru [Kotel' nikov' s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch, Zelyenaya 38, Saratov 410019 (Russian Federation); Institute for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam (Germany)

    2014-01-10

    The dynamics of the four dissipatively coupled van der Pol oscillators is considered. Lyapunov chart is presented in the parameter plane. Its arrangement is discussed. We discuss the bifurcations of tori in the system at large frequency detuning of the oscillators. Here are quasi-periodic saddle-node, Hopf and Neimark–Sacker bifurcations. The effect of increase of the threshold for the “amplitude death” regime and the possibilities of complete and partial broadband synchronization are revealed.

  6. Te schepe waert. Overwegingen bij de reconstructie van een zot polyfoon lied van Clemens non Papa

    NARCIS (Netherlands)

    Grijp, L.P.; van Maas e.a., S.

    2012-01-01

    Clemens non Papa's vierstemmige 'Te schepe waert' is het eerste lied van de bundel Niewe Duytsche Liedekens, uitgegeven in Maastricht 1554 door Jacob Baethen. Van deze bundel ontbreekt de sopraanpartij. Louis Grijp heeft samen met Nico van der Meel de sopraan gereconstrueerd en hoopt de aldus

  7. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit.

    Science.gov (United States)

    Huang, Bevin; Clark, Genevieve; Navarro-Moratalla, Efrén; Klein, Dahlia R; Cheng, Ran; Seyler, Kyle L; Zhong, Ding; Schmidgall, Emma; McGuire, Michael A; Cobden, David H; Yao, Wang; Xiao, Di; Jarillo-Herrero, Pablo; Xu, Xiaodong

    2017-06-07

    Since the discovery of graphene, the family of two-dimensional materials has grown, displaying a broad range of electronic properties. Recent additions include semiconductors with spin-valley coupling, Ising superconductors that can be tuned into a quantum metal, possible Mott insulators with tunable charge-density waves, and topological semimetals with edge transport. However, no two-dimensional crystal with intrinsic magnetism has yet been discovered; such a crystal would be useful in many technologies from sensing to data storage. Theoretically, magnetic order is prohibited in the two-dimensional isotropic Heisenberg model at finite temperatures by the Mermin-Wagner theorem. Magnetic anisotropy removes this restriction, however, and enables, for instance, the occurrence of two-dimensional Ising ferromagnetism. Here we use magneto-optical Kerr effect microscopy to demonstrate that monolayer chromium triiodide (CrI 3 ) is an Ising ferromagnet with out-of-plane spin orientation. Its Curie temperature of 45 kelvin is only slightly lower than that of the bulk crystal, 61 kelvin, which is consistent with a weak interlayer coupling. Moreover, our studies suggest a layer-dependent magnetic phase, highlighting thickness-dependent physical properties typical of van der Waals crystals. Remarkably, bilayer CrI 3 displays suppressed magnetization with a metamagnetic effect, whereas in trilayer CrI 3 the interlayer ferromagnetism observed in the bulk crystal is restored. This work creates opportunities for studying magnetism by harnessing the unusual features of atomically thin materials, such as electrical control for realizing magnetoelectronics, and van der Waals engineering to produce interface phenomena.

  8. Interlayer coupling effects on Schottky barrier in the arsenene-graphene van der Waals heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Congxin, E-mail: xiacongxin@htu.edu.cn; Xue, Bin; Wang, Tianxing; Peng, Yuting [Department of Physic, Henan Normal University, Xinxiang 453007 (China); Jia, Yu [School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052 (China)

    2015-11-09

    The electronic characteristics of arsenene-graphene van der Waals (vdW) heterostructures are studied by using first-principles methods. The results show that a linear Dirac-like dispersion relation around the Fermi level can be quite well preserved in the vdW heterostructures. Moreover, the p-type Schottky barrier (0.18 eV) to n-type Schottky barrier (0.31 eV) transition occurs when the interlayer distance increases from 2.8 to 4.5 Å, which indicates that the Schottky barrier can be tuned effectively by the interlayer distance in the vdW heterostructures.

  9. Nucleon-nucleon interaction with quark exchanges and prediction to colour van der Waals potential

    International Nuclear Information System (INIS)

    Osman, A.

    1985-11-01

    The nucleon-nucleon interaction is considered by including the colour nucleon clusters. The nucleon-nucleon system is treated as a six-quark system. The obtained local potentials reduce the short-range repulsion. The resulted nucleon-nucleon potential by using a quark-quark potential well agrees with the central-force potentials. The phase shifts calculated by using these local potentials are in good agreement with those obtained from other methods. Introducing the quark-quark potential in the nucleon-nucleon interaction, leads to a colour van der Waals potential very strong compared with that predicted by experiments. (author)

  10. Spectrophotometric method for determination of bifunctional macrocyclic ligands in macrocyclic ligand-protein conjugates

    International Nuclear Information System (INIS)

    Dadachova, E.; Chappell, L.L.; Brechbiel, M.W.

    1999-01-01

    A simple spectrophotometric assay for determination of bifunctional polyazacarboxylate-macrocyclic ligands of different sizes that are conjugated to proteins has been developed for: 12-membered macrocycle DOTA (2-[4-nitrobenzyl]-1, 4, 7, 10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid) and analogs, the 15-membered PEPA macrocycle (2-[4-nitrobenzyl]-1,4,7,10,13-pentaazacyclopentadecane-N,N',N'',N''',N'''' -pentaacetic acid), and the large 18-membered macrocycle HEHA (1,4,7,10,13,16-hexaazacyclooctadecane-N,N',N'',N''',N''''-hexaacetic acid). The method is based on titration of the blue-colored 1:1 Pb(II)-Arsenazo III (AAIII) complex with the polyazacarboxylate macrocyclic ligand in the concentration range of 0-2.5 μM, wherein color change occurring upon transchelation of the Pb(II) from the AAIII to the polyazamacrocyclic ligand is monitored at 656 nm. The assay is performed at ambient temperature within 20 min without any interfering interaction between the protein and Pb(II)-AA(III) complex. Thus, this method also provides a ligand-to-protein ratio (L/P ratio) that reflects the effective number of ligands per protein molecule available to radiolabeling. The method is not suitable for 14-membered TETA macrocycle (2-[4-nitrobenzyl]-1, 4, 8, 11-tetraazacyclotetradecane N,N',N'',N'''-tetraacetic acid) because of low stability constant of Pb(II)-TETA complex. The method is rapid, simple and may be customized for other polyazacarboxylate macrocyclic ligands

  11. Nucleon-nucleon interaction with quark exchange and prediction of the color van der Waals potential

    International Nuclear Information System (INIS)

    Osman, A.

    1988-01-01

    The nucleon-nucleon interaction is considered by including the color nucleon clusters. The nucleon-nucleon system is treated as a six-quark system. The obtained local potentials reduce the short-range repulsion. The resulting nucleon-nucleon potential, using a quark-quark potential, agress well with the central-force potentials. The phase shifts calculated by using these local potentials are in good agreement with those obtained from other methods. Introducing the quark-quark potential in the nucleon-nucleon interaction leads to a color van der Waals potential much stronger than that implied by experiments

  12. Optimal feedback control of the forced van der Pol system

    International Nuclear Information System (INIS)

    Chagas, T.P.; Toledo, B.A.; Rempel, E.L.; Chian, A.C.-L.; Valdivia, J.A.

    2012-01-01

    A simple feedback control strategy for chaotic systems is investigated using the forced van der Pol system as an example. The strategy regards chaos control as an optimization problem, where the maximum magnitude Floquet multiplier of a target unstable periodic orbit (UPO) is used as a cost function that needs to be minimized. Thus, the method obtains the optimal control gain in terms of the stability of the target UPO. This strategy was recently proposed for the proportional feedback control (PFC) method. Here, it is extended to the highly popular delayed feedback control (DFC) method. Since the DFC method treats the system as a delay-differential equation whose phase space is infinite-dimensional, the characteristic multipliers are found through a truncation in the number of delayed states. Control of a target UPO is achieved for several values of the forcing amplitude. We compare the DFC and PFC methods in terms of stability of the controlled orbit, steady state error and control effort.

  13. Consistent van der Waals radii for the whole main group.

    Science.gov (United States)

    Mantina, Manjeera; Chamberlin, Adam C; Valero, Rosendo; Cramer, Christopher J; Truhlar, Donald G

    2009-05-14

    Atomic radii are not precisely defined but are nevertheless widely used parameters in modeling and understanding molecular structure and interactions. The van der Waals radii determined by Bondi from molecular crystals and data for gases are the most widely used values, but Bondi recommended radius values for only 28 of the 44 main-group elements in the periodic table. In the present Article, we present atomic radii for the other 16; these new radii were determined in a way designed to be compatible with Bondi's scale. The method chosen is a set of two-parameter correlations of Bondi's radii with repulsive-wall distances calculated by relativistic coupled-cluster electronic structure calculations. The newly determined radii (in A) are Be, 1.53; B, 1.92; Al, 1.84; Ca, 2.31; Ge, 2.11; Rb, 3.03; Sr, 2.49; Sb, 2.06; Cs, 3.43; Ba, 2.68; Bi, 2.07; Po, 1.97; At, 2.02; Rn, 2.20; Fr, 3.48; and Ra, 2.83.

  14. Inflationary magnetogenesis, derivative couplings and relativistic Van der Waals interactions

    CERN Document Server

    Giovannini, Massimo

    2015-01-01

    When the gauge fields have derivative couplings to scalars, like in the case of the relativistic theory of Van der Waals (or Casimir-Polder) interactions, conformal invariance is broken but the magnetic and electric susceptibilities are not bound to coincide. We analyze the formation of large-scale magnetic fields in slow-roll inflation and find that they are generated at the level of a few hundredths of a nG and over typical length scales between few Mpc and $100$ Mpc. Using a new time parametrization that reduces to conformal time but only for coincident susceptibilities, the gauge action is quantized while the evolution equations of the corresponding mode functions are more easily solvable. The power spectra depend on the normalized rates of variation of the two susceptibilities (or of the corresponding gauge couplings) and on the absolute value of their ratio at the beginning of inflation. We pin down explicit regions in the parameter space where all the physical requirements (i.e. the backreaction constr...

  15. Use of Two-Body Correlated Basis Functions with van der Waals Interaction to Study the Shape-Independent Approximation for a Large Number of Trapped Interacting Bosons

    Science.gov (United States)

    Lekala, M. L.; Chakrabarti, B.; Das, T. K.; Rampho, G. J.; Sofianos, S. A.; Adam, R. M.; Haldar, S. K.

    2017-05-01

    We study the ground-state and the low-lying excitations of a trapped Bose gas in an isotropic harmonic potential for very small (˜ 3) to very large (˜ 10^7) particle numbers. We use the two-body correlated basis functions and the shape-dependent van der Waals interaction in our many-body calculations. We present an exhaustive study of the effect of inter-atomic correlations and the accuracy of the mean-field equations considering a wide range of particle numbers. We calculate the ground-state energy and the one-body density for different values of the van der Waals parameter C6. We compare our results with those of the modified Gross-Pitaevskii results, the correlated Hartree hypernetted-chain equations (which also utilize the two-body correlated basis functions), as well as of the diffusion Monte Carlo for hard sphere interactions. We observe the effect of the attractive tail of the van der Waals potential in the calculations of the one-body density over the truly repulsive zero-range potential as used in the Gross-Pitaevskii equation and discuss the finite-size effects. We also present the low-lying collective excitations which are well described by a hydrodynamic model in the large particle limit.

  16. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions.

    Science.gov (United States)

    Yang, Tiefeng; Zheng, Biyuan; Wang, Zhen; Xu, Tao; Pan, Chen; Zou, Juan; Zhang, Xuehong; Qi, Zhaoyang; Liu, Hongjun; Feng, Yexin; Hu, Weida; Miao, Feng; Sun, Litao; Duan, Xiangfeng; Pan, Anlian

    2017-12-04

    High-quality two-dimensional atomic layered p-n heterostructures are essential for high-performance integrated optoelectronics. The studies to date have been largely limited to exfoliated and restacked flakes, and the controlled growth of such heterostructures remains a significant challenge. Here we report the direct van der Waals epitaxial growth of large-scale WSe 2 /SnS 2 vertical bilayer p-n junctions on SiO 2 /Si substrates, with the lateral sizes reaching up to millimeter scale. Multi-electrode field-effect transistors have been integrated on a single heterostructure bilayer. Electrical transport measurements indicate that the field-effect transistors of the junction show an ultra-low off-state leakage current of 10 -14 A and a highest on-off ratio of up to 10 7 . Optoelectronic characterizations show prominent photoresponse, with a fast response time of 500 μs, faster than all the directly grown vertical 2D heterostructures. The direct growth of high-quality van der Waals junctions marks an important step toward high-performance integrated optoelectronic devices and systems.

  17. Many-body study of van der Waals interaction involving lithium and rare-gas atoms and its contribution to hyperfine shifts

    International Nuclear Information System (INIS)

    Rao, B.K.; Das, T.P.

    1982-01-01

    Using linked cluster many-body perturbation theory, the frequency-dependent dipole polarizabilities a(ω) has been calculated for the lithium atom. The value of a(ω) at the static limit (169.04 a 0 3 ) matches well with other available theoretical values and experimental results. These values have been used to calculate the van der Waals constants for interactions of lithium, helium and neon atoms. The values of the van der Waals constants for dipole-dipole interaction in atomic units are -22.9, -44.8, -1465.8, 184950.0, 2011.8, 3896.5, 30.3, 59.0 and 115.1 for Li-He, Li-Ne, Li-Li, Li-Li-Li, Li-Li-He, Li-Li-Ne, Li-He-He, Li-He-Ne and Li-Ne-Ne interactions respectively. Obtaining the suitable response functions for lithium and helium atoms, the long range contribution to Δa(r)/a 0 in the study of fractional frequency shift in hyperfine pressure and temperature shift measurements is obtained as -541 atomic units. (author)

  18. Evaluation of a density functional with account of van der Waals forces using experimental data of H2 physisorption on Cu(111)

    DEFF Research Database (Denmark)

    Lee, Kyuho; Kelkkanen, Kari André; Berland, Kristian

    2011-01-01

    Detailed experimental data for physisorption potential-energy curves of H2 on low-indexed faces of Cu challenge theory. Recently, density-functional theory has been developed to also account for nonlocal correlation effects, including van der Waals forces. We show that one functional, denoted vd...

  19. [Supercomputer investigation of the protein-ligand system low-energy minima].

    Science.gov (United States)

    Oferkin, I V; Sulimov, A V; Katkova, E V; Kutov, D K; Grigoriev, F V; Kondakova, O A; Sulimov, V B

    2015-01-01

    The accuracy of the protein-ligand binding energy calculations and ligand positioning is strongly influenced by the choice of the docking target function. This work demonstrates the evaluation of the five different target functions used in docking: functions based on MMFF94 force field and functions based on PM7 quantum-chemical method accounting or without accounting the implicit solvent model (PCM, COSMO or SGB). For these purposes the ligand positions corresponding to the minima of the target function and the experimentally known ligand positions in the protein active site (crystal ligand positions) were compared. Each function was examined on the same test-set of 16 protein-ligand complexes. The new parallelized docking program FLM based on Monte Carlo search algorithm was developed to perform the comprehensive low-energy minima search and to calculate the protein-ligand binding energy. This study demonstrates that the docking target function based on the MMFF94 force field can be used to detect the crystal or near crystal positions of the ligand by the finding the low-energy local minima spectrum of the target function. The importance of solvent accounting in the docking process for the accurate ligand positioning is also shown. The accuracy of the ligand positioning as well as the correlation between the calculated and experimentally determined protein-ligand binding energies are improved when the MMFF94 force field is substituted by the new PM7 method with implicit solvent accounting.

  20. Ligand Binding Domain Protein in Tetracycline-Inducible Expression

    African Journals Online (AJOL)

    Purpose: To investigate tetracycline-inducible expression system for producing clinically usable, highquality liver X receptor ligand-binding domain recombinant protein. Methods: In this study, we have expressed and purified the recombinant liver X receptor β-ligand binding domain proteins in E. coli using a tetracycline ...

  1. Onweerlegbaar Bewijs? Over het Belang en de Waarde van empirisch Onderzoek voor Financierings- en Beleggingsvraagstukken

    NARCIS (Netherlands)

    M.J.C.M. Verbeek (Marno)

    2002-01-01

    textabstractRede, in verkorte vorm uitgesproken bij de aanvaarding van het ambt van hoogleraar Ondernemingsfinanciering aan de Faculteit der Bedrijfskunde en de Faculteit der Economische Wetenschappen van de Erasmus Universiteit Rotterdam op vrijdag 21 juni 2002

  2. Hybrid van der Waals p-n Heterojunctions based on SnO and 2D MoS2

    KAUST Repository

    Wang, Zhenwei

    2016-08-30

    A p-type oxide/2D hybrid van der Waals p-n heterojunction is demonstrated for the first time between SnO (tin monoxide) (the p-type oxide) and 2D MoS2 (molybdenum disulfide), showing an ideality factor of 2 and rectification ratio up to 10(4) . The reported heterojunction is gate-tunable with typical anti-ambipolar transfer characteristics. Surface potential mapping is performed and a current model for such a heterojunction is proposed.

  3. A Protein Data Bank survey reveals shortening of intermolecular hydrogen bonds in ligand-protein complexes when a halogenated ligand is an H-bond donor.

    Science.gov (United States)

    Poznański, Jarosław; Poznańska, Anna; Shugar, David

    2014-01-01

    Halogen bonding in ligand-protein complexes is currently widely exploited, e.g. in drug design or supramolecular chemistry. But little attention has been directed to other effects that may result from replacement of a hydrogen by a strongly electronegative halogen. Analysis of almost 30000 hydrogen bonds between protein and ligand demonstrates that the length of a hydrogen bond depends on the type of donor-acceptor pair. Interestingly, lengths of hydrogen bonds between a protein and a halogenated ligand are visibly shorter than those estimated for the same family of proteins in complexes with non-halogenated ligands. Taking into account the effect of halogenation on hydrogen bonding is thus important when evaluating structural and/or energetic parameters of ligand-protein complexes. All these observations are consistent with the concept that halogenation increases the acidity of the proximal amino/imino/hydroxyl groups and thus makes them better, i.e. stronger, H-bond donors.

  4. Becoming a Teacher Educator: De inductie van beginnende lerarenopleiders

    NARCIS (Netherlands)

    Van der Klink, Marcel

    2010-01-01

    Van der Klink, M. (2010, 12 November). Becoming a Teacher Educator: De inductie van beginnende lerarenopleiders. Presentatie gehouden op de studiedag van de Velon op de Universiteit Utrecht, Utrecht, Nederland.

  5. calvyn oor die leiding van die heilige gees in die verklaring van die

    African Journals Online (AJOL)

    Mittel alters, bis er zur Ruhe kommt bei den kanonischen Schriften der. Urzeit der christlichen Ära (Barth ... (ego tamen dimoveri non possum ab amore compendii, CO 10, 403). Deur die boodskap van die .... Idem ergo spiritus qui per os prophetarum loquutus est, in corda nostra penetret necesse est, ut persuadeat fideliter ...

  6. Beam-dynamic effects at the CMS BRIL van der Meer scans

    CERN Document Server

    Babaev, Anton

    2017-01-01

    The CMS Beam Radiation Instrumentation and Luminosity Project (BRIL) is responsible for the simulation and measurement of luminosity, beam conditions and radiation fields in the CMS experiment. The project is engaged in operating and developing new detectors (luminometers), adequate for the experimental conditions associated with high values of instantaneous luminosity delivered by the CERN LHC. BRIL operates several detectors based on different physical principles and technologies. Precise and accurate measurements of the delivered luminosity is of paramount importance for the CMS physics program. The absolute calibration of luminosity is achieved by the van der Meer method, which is carried out under specially tailored conditions. This paper presents models used to simulate of beam-dynamic effects arising due to the electromagnetic interaction of colliding bunches. These effects include beam-beam deflection and dynamic-beta effect. Both effects are important to luminosity measurements and influence calibrat...

  7. Stability and dynamics of a controlled van der Pol-Duffing oscillator

    International Nuclear Information System (INIS)

    Ji, J.C.; Hansen, C.H.

    2006-01-01

    The trivial equilibrium of a van der Pol-Duffing oscillator under a linear-plus-nonlinear feedback control may change its stability either via a single or via a double Hopf bifurcation if the time delay involved in the feedback reaches certain values. It is found that the trivial equilibrium may lose its stability via a subcritical or supercritical Hopf bifurcation and regain its stability via a reverse subcritical or supercritical Hopf bifurcation as the time delay increases. A stable limit cycle appears after a supercritical Hopf bifurcation occurs and disappears through a reverse supercritical Hopf bifurcation. The interaction of the weakly periodic excitation and the stable bifurcating solution is investigated for the forced system under primary resonance conditions. It is shown that the forced periodic response may lose its stability via a Neimark-Sacker bifurcation. Analytical results are validated by a comparison with those of direct numerical integration

  8. A Protein Data Bank survey reveals shortening of intermolecular hydrogen bonds in ligand-protein complexes when a halogenated ligand is an H-bond donor.

    Directory of Open Access Journals (Sweden)

    Jarosław Poznański

    Full Text Available Halogen bonding in ligand-protein complexes is currently widely exploited, e.g. in drug design or supramolecular chemistry. But little attention has been directed to other effects that may result from replacement of a hydrogen by a strongly electronegative halogen. Analysis of almost 30000 hydrogen bonds between protein and ligand demonstrates that the length of a hydrogen bond depends on the type of donor-acceptor pair. Interestingly, lengths of hydrogen bonds between a protein and a halogenated ligand are visibly shorter than those estimated for the same family of proteins in complexes with non-halogenated ligands. Taking into account the effect of halogenation on hydrogen bonding is thus important when evaluating structural and/or energetic parameters of ligand-protein complexes. All these observations are consistent with the concept that halogenation increases the acidity of the proximal amino/imino/hydroxyl groups and thus makes them better, i.e. stronger, H-bond donors.

  9. A van der Waals DFT study of PtH_2 systems absorbed on pristine and defective graphene

    International Nuclear Information System (INIS)

    López-Corral, Ignacio; Piriz, Sebastián; Faccio, Ricardo; Juan, Alfredo; Avena, Marcelo

    2016-01-01

    Highlights: • We performed DFT calculations including van der Waals interactions. • Kubas-type Pt-H2 complex is stable on defective graphene. • Carbon vacancy decreases the reactivity of the metal decoration. • The interaction between σ-H and π-C states favors the Kubas-type complex. - Abstract: We used a density functional that incorporates van der Waals interactions to study hydrogen adsorption onto Pt atoms attached to carbon-vacancies on graphene layers, considering molecular and dissociated hydrogen-platinum coordination structures. PtH_2 complexes adsorbed on several sites of pristine graphene were also studied for comparison. Our results indicate that both a Kubas-type dihydrogen complex and a classic hydride without H−H bond are the preferential PtH_2 systems on the vacancy site of graphene. In contrast, the Kubas complex is unstable onto pristine graphene and the hydride is obtained at all adsorption sites. Our simulations suggest that the C-vacancy decreases the reactivity of the metal decoration, allowing a non-dissociative hydrogen adsorption. The H_2 molecule is oriented almost perpendicular to the outermost C−Pt bond, interacting also with the graphene surface through σ-H and π-C states. This stabilization of the Kubas-type complex could play a very important role for hydrogen storage in Pt-decorated carbon adsorbents with vacancies.

  10. A new analytical approach for limit cycles and quasi-periodic solutions of nonlinear oscillators: the example of the forced Van der Pol Duffing oscillator

    International Nuclear Information System (INIS)

    Shukla, Anant Kant; Ramamohan, T R; Srinivas, S

    2014-01-01

    In this paper we propose a technique to obtain limit cycles and quasi-periodic solutions of forced nonlinear oscillators. We apply this technique to the forced Van der Pol oscillator and the forced Van der Pol Duffing oscillator and obtain for the first time their limit cycles (periodic) and quasi-periodic solutions analytically. We introduce a modification of the homotopy analysis method to obtain these solutions. We minimize the square residual error to obtain accurate approximations to these solutions. The obtained analytical solutions are convergent and agree well with numerical solutions even at large times. Time trajectories of the solution, its first derivative and phase plots are presented to confirm the validity of the proposed approach. We also provide rough criteria for the determination of parameter regimes which lead to limit cycle or quasi-periodic behaviour. (papers)

  11. Thermodynamics of hydrogen bonding and van der Waals interactions of organic solutes in solutions of imidazolium based ionic liquids: “Structure-property” relationships

    International Nuclear Information System (INIS)

    Varfolomeev, Mikhail A.; Khachatrian, Artashes A.; Akhmadeev, Bulat S.; Solomonov, Boris N.

    2016-01-01

    Highlights: • Solution enthalpies of organic solutes in imidazolium based ionic liquids were measured. • van der Waals interactions scale of imidazolium based ionic liquids was proposed. • Enthalpies of solvation of organic solutes in ionic liquids were determined. • Hydrogen bond enthalpies of organic solutes with ionic liquids were calculated. • Relationships between structure of ionic liquids and thermochemical data were obtained. - Abstract: In the present work thermochemistry of intermolecular interactions of organic compounds in solutions of imidazolium based ionic liquids (ILs) has been studied using solution calorimetry method. Enthalpies of solution at infinite dilution of non-polar (alkanes, aromatic hydrocarbons) and polar (alcohols, amides, and etc.) organic solutes in two ionic liquids 1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium trifluoromethanesulfonate were measured at 298.15 K. The scale of van der Waals interactions of imidazolium based ILs has been proposed on the basis of solution enthalpies of n-alkanes in their media. The effect of the cation and anion structure of ILs on the enthalpies of solvation was analyzed. Enthalpies of hydrogen bonding of organic solutes with imidazolium based ILs were determined. It has been shown that these values are close to zero for proton acceptor solutes. At the same time, enthalpies of hydrogen bonding of proton donor solutes with ionic liquids are increased depending the anion: tetrafluoroborate ≈ bis(trifluoromethylsulfonyl)imide < 2-(2-methoxyethoxy)ethyl sulfate < trifluoromethanesulfonate. Enthalpies of van der Waals interactions and hydrogen bonding in the solutions of imidazolium based ionic liquids were compared with the same data for molecular solvents.

  12. Thermodynamics of hydrogen bonding and van der Waals interactions of organic solutes in solutions of imidazolium based ionic liquids: “Structure-property” relationships

    Energy Technology Data Exchange (ETDEWEB)

    Varfolomeev, Mikhail A., E-mail: vma.ksu@gmail.com; Khachatrian, Artashes A.; Akhmadeev, Bulat S.; Solomonov, Boris N.

    2016-06-10

    Highlights: • Solution enthalpies of organic solutes in imidazolium based ionic liquids were measured. • van der Waals interactions scale of imidazolium based ionic liquids was proposed. • Enthalpies of solvation of organic solutes in ionic liquids were determined. • Hydrogen bond enthalpies of organic solutes with ionic liquids were calculated. • Relationships between structure of ionic liquids and thermochemical data were obtained. - Abstract: In the present work thermochemistry of intermolecular interactions of organic compounds in solutions of imidazolium based ionic liquids (ILs) has been studied using solution calorimetry method. Enthalpies of solution at infinite dilution of non-polar (alkanes, aromatic hydrocarbons) and polar (alcohols, amides, and etc.) organic solutes in two ionic liquids 1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium trifluoromethanesulfonate were measured at 298.15 K. The scale of van der Waals interactions of imidazolium based ILs has been proposed on the basis of solution enthalpies of n-alkanes in their media. The effect of the cation and anion structure of ILs on the enthalpies of solvation was analyzed. Enthalpies of hydrogen bonding of organic solutes with imidazolium based ILs were determined. It has been shown that these values are close to zero for proton acceptor solutes. At the same time, enthalpies of hydrogen bonding of proton donor solutes with ionic liquids are increased depending the anion: tetrafluoroborate ≈ bis(trifluoromethylsulfonyl)imide < 2-(2-methoxyethoxy)ethyl sulfate < trifluoromethanesulfonate. Enthalpies of van der Waals interactions and hydrogen bonding in the solutions of imidazolium based ionic liquids were compared with the same data for molecular solvents.

  13. São Paulo Miesiana: a influência de Mies van der Rohe na Arquitetura Moderna Paulista

    Directory of Open Access Journals (Sweden)

    Patricia Pereira Fernandes

    2017-06-01

    The in-depth study of his interaction with modern Brazilian architectural production will be developed through successive steps of approaching the theme, from the general to the particular. In the first place, more general aspects related to the figure of Mies van der Rohe and his practices will be analyzed. Subsequently, the intercurrent relations between the master and the Brazilian architectural panorama will be investigated. And the subsequent stage will involve a detailed study of works considered emblematic of the influence of the architect in the São Paulo range.

  14. Electric field modulation of Schottky barrier height in graphene/MoSe2 van der Waals heterointerface

    OpenAIRE

    Sata, Yohta; Moriya, Rai; Morikawa, Sei; Yabuki, Naoto; Masubuchi, Satoru; Machida, Tomoki

    2015-01-01

    We demonstrate a vertical field-effect transistor based on a graphene/MoSe2 van der Waals (vdW) heterostructure. The vdW interface between the graphene and MoSe2 exhibits a Schottky barrier with an ideality factor of around 1.3, suggesting a high-quality interface. Owing to the low density of states in graphene, the position of the Fermi level in the graphene can be strongly modulated by an external electric field. Therefore, the Schottky barrier height at the graphene/MoSe2 vdW interface is ...

  15. Refined ab initio intermolecular ground-state potential energy surface for the He-C2H2 van der Waals complex

    DEFF Research Database (Denmark)

    Fernández, Berta; Henriksen, Christian; Farrelly, David

    2013-01-01

    A refined CCSD(T) intermolecular potential energy surface is developed for the He-C2H2 van der Waals complex. For this, 206 points on the intermolecular potential energy surface, evaluated using the CCSD(T) method and the aug-cc-pVQZ basis set extended with a set of 3s3p2d1f1g midbond functions...

  16. Free-Standing GaMnAs Nanomachined Sheets for van der Pauw Magnetotransport Measurements

    Directory of Open Access Journals (Sweden)

    Jae-Hyun Lee

    2016-12-01

    Full Text Available We report on the realization of free-standing GaMnAs epilayer sheets using nanomachining techniques. By optimizing the growth conditions of the sacrificial Al0.75Ga0.25As layer, free-standing metallic GaMnAs (with ~6% Mn microsheets (with TC ~85 K with integrated electrical probes are realized for magnetotransport measurements in the van der Pauw geometry. GaMnAs epilayer needs to be physically isolated to avoid buckling effects stemming from the release of lattice mismatch strain during the removal of the AlGaAs sacrificial layer. From finite element analysis, symmetrically placed and serpentine-shaped electrical leads induce minimal thermal stress at low temperatures. From magnetotransport measurements, changes in magnetic anisotropy are readily observed.

  17. Quantum Monte Carlo calculations of van der Waals interactions between aromatic benzene rings

    Science.gov (United States)

    Azadi, Sam; Kühne, T. D.

    2018-05-01

    The magnitude of finite-size effects and Coulomb interactions in quantum Monte Carlo simulations of van der Waals interactions between weakly bonded benzene molecules are investigated. To that extent, two trial wave functions of the Slater-Jastrow and Backflow-Slater-Jastrow types are employed to calculate the energy-volume equation of state. We assess the impact of the backflow coordinate transformation on the nonlocal correlation energy. We found that the effect of finite-size errors in quantum Monte Carlo calculations on energy differences is particularly large and may even be more important than the employed trial wave function. In addition to the cohesive energy, the singlet excitonic energy gap and the energy gap renormalization of crystalline benzene at different densities are computed.

  18. De eeuw van de Beeldenstorm

    Directory of Open Access Journals (Sweden)

    F. Postma

    1988-01-01

    Full Text Available P. van Boheemen, N.P.J. van der Lof, E. van Meurs, Het boek in Nederland in de 16e eeuw S. Groenveld, Ketters en papen onder Filips II. Het godsdienstig leven in de tweede helft van de zestiende eeuw R. Kistemaker, M. Jonker, De smaak van de elite. Amsterdam in de eeuw van de Beeldenstorm W.Th. Kloek, Kunst voor de Beeldenstorm. Noord-Nederlandse kunst ca 1525-1580, [I], Inleiding, [II, Catalogus] J.R. ter Molen, A.P.E. Ruempol, A.G.A. Dongen, Huisraad van een molenaarsweduwe. Gebruiksvoorwerpen uit een 16e eeuwse boedelinventaris M. de Roever, B. Bakker, Woelige tijden. Amsterdam in de eeuw van de Beeldenstorm I.M. Veldman, Leerrijke reeksen van Maarten van Heemskerck

  19. Vertical dielectric screening of few-layer van der Waals semiconductors.

    Science.gov (United States)

    Koo, Jahyun; Gao, Shiyuan; Lee, Hoonkyung; Yang, Li

    2017-10-05

    Vertical dielectric screening is a fundamental parameter of few-layer van der Waals two-dimensional (2D) semiconductors. However, unlike the widely-accepted wisdom claiming that the vertical dielectric screening is sensitive to the thickness, our first-principles calculation based on the linear response theory (within the weak field limit) reveals that this screening is independent of the thickness and, in fact, it is the same as the corresponding bulk value. This conclusion is verified in a wide range of 2D paraelectric semiconductors, covering narrow-gap ones and wide-gap ones with different crystal symmetries, providing an efficient and reliable way to calculate and predict static dielectric screening of reduced-dimensional materials. Employing this conclusion, we satisfactorily explain the tunable band gap in gated 2D semiconductors. We further propose to engineer the vertical dielectric screening by changing the interlayer distance via vertical pressure or hybrid structures. Our predicted vertical dielectric screening can substantially simplify the understanding of a wide range of measurements and it is crucial for designing 2D functional devices.

  20. Production Methods of Van der Waals Heterostructures Based on Transition Metal Dichalcogenides

    Directory of Open Access Journals (Sweden)

    Haimei Qi

    2018-01-01

    Full Text Available Two dimensional (2D materials have gained significant attention since the discovery of graphene in 2004. Layered transition metal dichalcogenides (TMDs have become the focus of 2D materials in recent years due to their wide range of chemical compositions and a variety of properties. These TMDs layers can be artificially integrated with other layered materials into a monolayer (lateral or a multilayer stack (vertical heterostructures. The resulting heterostructures provide new properties and applications beyond their component 2D atomic crystals and many exciting experimental results have been reported during the past few years. In this review, we present the various synthesis methods (mechanical exfoliation, physical vapor transport, chemical vapor deposition, and molecular beam epitaxy method on van der Waals heterostructures based on different TMDs as well as an outlook for future research.

  1. Combining density functional and incremental post-Hartree-Fock approaches for van der Waals dominated adsorbate-surface interactions: Ag2/graphene

    International Nuclear Information System (INIS)

    Lara-Castells, María Pilar de; Mitrushchenkov, Alexander O.; Stoll, Hermann

    2015-01-01

    A combined density functional (DFT) and incremental post-Hartree-Fock (post-HF) approach, proven earlier to calculate He-surface potential energy surfaces [de Lara-Castells et al., J. Chem. Phys. 141, 151102 (2014)], is applied to describe the van der Waals dominated Ag 2 /graphene interaction. It extends the dispersionless density functional theory developed by Pernal et al. [Phys. Rev. Lett. 103, 263201 (2009)] by including periodic boundary conditions while the dispersion is parametrized via the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)]. Starting with the elementary cluster unit of the target surface (benzene), continuing through the realistic cluster model (coronene), and ending with the periodic model of the extended system, modern ab initio methodologies for intermolecular interactions as well as state-of-the-art van der Waals-corrected density functional-based approaches are put together both to assess the accuracy of the composite scheme and to better characterize the Ag 2 /graphene interaction. The present work illustrates how the combination of DFT and post-HF perspectives may be efficient to design simple and reliable ab initio-based schemes in extended systems for surface science applications

  2. Using the van der Waals broadening of spectral atomic lines to measure the gas temperature of an argon-helium microwave plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Munoz, J.; Dimitrijevic, M.S.; Yubero, C.; Calzada, M.D.

    2009-01-01

    The applications of plasmas generated with gas mixtures have become increasingly common in different scientific and technological fields. In order to understand the advantages of these discharges, for instance in chemical analysis, it is necessary to know the gas temperature (T g , kinetic energy of the heavy particles) since it has a great influence on the atomization reactions of the molecules located in the discharge, along with the dependence of the reaction rate on this parameter. The ro-vibrational emission spectra of the molecular species are usually used to measure the gas temperature of a discharge at atmospheric pressure although under some experimental conditions, these are difficult to detect. In such cases, the gas temperature can be determined from the van der Waals broadening of the emitted atomic spectral lines related to this parameter. The method proposed is based on the van der Waals broadening taking into account two perturbers

  3. Subharmonic Resonance of Van Der Pol Oscillator with Fractional-Order Derivative

    Directory of Open Access Journals (Sweden)

    Yongjun Shen

    2014-01-01

    Full Text Available The subharmonic resonance of van der Pol (VDP oscillator with fractional-order derivative is studied by the averaging method. At first, the first-order approximate solutions are obtained by the averaging method. Then the definitions of equivalent linear damping coefficient (ELDC and equivalent linear stiffness coefficient (ELSC for subharmonic resonance are established, and the effects of the fractional-order parameters on the ELDC, the ELSC, and the dynamical characteristics of system are also analysed. Moreover, the amplitude-frequency equation and phase-frequency equation of steady-state solution for subharmonic resonance are established. The corresponding stability condition is presented based on Lyapunov theory, and the existence condition for subharmonic resonance (ECSR is also obtained. At last, the comparisons of the fractional-order and the traditional integer-order VDP oscillator are fulfilled by the numerical simulation. The effects of the parameters in fractional-order derivative on the steady-state amplitude, the amplitude-frequency curves, and the system stability are also studied.

  4. Explosive death of conjugate coupled Van der Pol oscillators on networks

    Science.gov (United States)

    Zhao, Nannan; Sun, Zhongkui; Yang, Xiaoli; Xu, Wei

    2018-06-01

    Explosive death phenomenon has been gradually gaining attention of researchers due to the research boom of explosive synchronization, and it has been observed recently for the identical or nonidentical coupled systems in all-to-all network. In this work, we investigate the emergence of explosive death in networked Van der Pol (VdP) oscillators with conjugate variables coupling. It is demonstrated that the network structures play a crucial role in identifying the types of explosive death behaviors. We also observe that the damping coefficient of the VdP system not only can determine whether the explosive death state is generated but also can adjust the forward transition point. We further show that the backward transition point is independent of the network topologies and the damping coefficient, which is well confirmed by theoretical analysis. Our results reveal the generality of explosive death phenomenon in different network topologies and are propitious to promote a better comprehension for the oscillation quenching behaviors.

  5. MATE (Mentale Aspecten van Team Effectiviteit) (MATE (Mental Aspects of Team Effectiveness))

    Science.gov (United States)

    2008-05-01

    0 Auteur (s) drs. J.P. van Meer drs. MI. 1 ’ IIart0 drs. 1. van der 16. Rubricering rapport Ongerubriceerd Vastgesteld door Ikol drs. L.A. de Vos...team Auteur (s) Teamntraining drs. J.P. van Meer drs. M.H.E. I Hart Programmanummer Projectnummer drs. 1. van der Beijl V406 015.34095 Rubricering...Murphy & Cleveland (1995) geven inzicht in de tearngedragingen die meetbaar zijn en de theorie over Shared Mental Models (Espevik et al, 2006) laat zien

  6. AFAL: a web service for profiling amino acids surrounding ligands in proteins

    Science.gov (United States)

    Arenas-Salinas, Mauricio; Ortega-Salazar, Samuel; Gonzales-Nilo, Fernando; Pohl, Ehmke; Holmes, David S.; Quatrini, Raquel

    2014-11-01

    With advancements in crystallographic technology and the increasing wealth of information populating structural databases, there is an increasing need for prediction tools based on spatial information that will support the characterization of proteins and protein-ligand interactions. Herein, a new web service is presented termed amino acid frequency around ligand (AFAL) for determining amino acids type and frequencies surrounding ligands within proteins deposited in the Protein Data Bank and for assessing the atoms and atom-ligand distances involved in each interaction (availability: http://structuralbio.utalca.cl/AFAL/index.html). AFAL allows the user to define a wide variety of filtering criteria (protein family, source organism, resolution, sequence redundancy and distance) in order to uncover trends and evolutionary differences in amino acid preferences that define interactions with particular ligands. Results obtained from AFAL provide valuable statistical information about amino acids that may be responsible for establishing particular ligand-protein interactions. The analysis will enable investigators to compare ligand-binding sites of different proteins and to uncover general as well as specific interaction patterns from existing data. Such patterns can be used subsequently to predict ligand binding in proteins that currently have no structural information and to refine the interpretation of existing protein models. The application of AFAL is illustrated by the analysis of proteins interacting with adenosine-5'-triphosphate.

  7. M erw e . Pentateugtradisies in die prediking van Deuterojesaja ...

    African Journals Online (AJOL)

    Test

    B. J. van der M erw e . Pentateugtradisies in die prediking van Deuterojesaja. Proefschrift ter verkrijging van de graad van Doctor in de God geleerdheid aan de Rijkuniversiteit te Groningen. Uitg. J. B. Wolters,. Groningen, Djakarta. 1955. 280 bis. Met hierdie deur die uitgewer in verskillende duidelike lettertipes.

  8. Application of the van der Waals equation of state to polymers .4. Correlation and prediction of lower critical solution temperatures for polymer solutions

    DEFF Research Database (Denmark)

    Goncalves, Ana Saraiva; Kontogeorgis, Georgios; Harismiadis, Vassilis I.

    1996-01-01

    The van der Waals equation of state is used for the correlation and the prediction of the lower critical solution behavior or mixtures including a solvent and a polymer. The equation of state parameters for the polymer are estimated from experimental volumetric data at low pressures. The equation...

  9. Ligand-promoted protein folding by biased kinetic partitioning.

    Science.gov (United States)

    Hingorani, Karan S; Metcalf, Matthew C; Deming, Derrick T; Garman, Scott C; Powers, Evan T; Gierasch, Lila M

    2017-04-01

    Protein folding in cells occurs in the presence of high concentrations of endogenous binding partners, and exogenous binding partners have been exploited as pharmacological chaperones. A combined mathematical modeling and experimental approach shows that a ligand improves the folding of a destabilized protein by biasing the kinetic partitioning between folding and alternative fates (aggregation or degradation). Computationally predicted inhibition of test protein aggregation and degradation as a function of ligand concentration are validated by experiments in two disparate cellular systems.

  10. Quality control and biophysical characterisation data of VanSA

    Directory of Open Access Journals (Sweden)

    C.S. Hughes

    2017-10-01

    Full Text Available This data article presents the results from quality control experiments including N-terminal sequencing, SEC-MALS and Mass Spectrometry for purified VanSA used in experiments described in (Hughes et al., 2017 [1]; in addition to ligand interaction measurements and thermal melting curves of VanSA in the presence of screened ligands from circular dichroism measurements as well as UV–vis absorbance spectra for the binding interaction of VanSA in the presence of screened ligands.

  11. One-dimensional Fermi accelerator model with moving wall described by a nonlinear van der Pol oscillator.

    Science.gov (United States)

    Botari, Tiago; Leonel, Edson D

    2013-01-01

    A modification of the one-dimensional Fermi accelerator model is considered in this work. The dynamics of a classical particle of mass m, confined to bounce elastically between two rigid walls where one is described by a nonlinear van der Pol type oscillator while the other one is fixed, working as a reinjection mechanism of the particle for a next collision, is carefully made by the use of a two-dimensional nonlinear mapping. Two cases are considered: (i) the situation where the particle has mass negligible as compared to the mass of the moving wall and does not affect the motion of it; and (ii) the case where collisions of the particle do affect the movement of the moving wall. For case (i) the phase space is of mixed type leading us to observe a scaling of the average velocity as a function of the parameter (χ) controlling the nonlinearity of the moving wall. For large χ, a diffusion on the velocity is observed leading to the conclusion that Fermi acceleration is taking place. On the other hand, for case (ii), the motion of the moving wall is affected by collisions with the particle. However, due to the properties of the van der Pol oscillator, the moving wall relaxes again to a limit cycle. Such kind of motion absorbs part of the energy of the particle leading to a suppression of the unlimited energy gain as observed in case (i). The phase space shows a set of attractors of different periods whose basin of attraction has a complicated organization.

  12. Die nabyheid van die Koninkryk

    Directory of Open Access Journals (Sweden)

    W.J. Snyman

    1963-03-01

    Full Text Available Vanweë die belangrikheid daarvan volg hier ’n breër bespreking van die proefskrif van dr. Tjaart van der Walt oor die nabyheid van die Koninkryk as wat in ’n gewone resensie kan geskied. Die vraagstuk wat onder oë gesien word is so oud as die kerk en die teologie, soms minder en soms meer op die voorgrond. Tans kan gesê word, staan dit in die middelpunt. Daarby is dit nie maar ’n akademiese vraagstuk nie, maar ’n vraagstuk waarvoor elke nadenkende leser van die Skrif te staan kom.

  13. Some new exact solitary wave solutions of the van der Waals model arising in nature

    Science.gov (United States)

    Bibi, Sadaf; Ahmed, Naveed; Khan, Umar; Mohyud-Din, Syed Tauseef

    2018-06-01

    This work proposes two well-known methods, namely, Exponential rational function method (ERFM) and Generalized Kudryashov method (GKM) to seek new exact solutions of the van der Waals normal form for the fluidized granular matter, linked with natural phenomena and industrial applications. New soliton solutions such as kink, periodic and solitary wave solutions are established coupled with 2D and 3D graphical patterns for clarity of physical features. Our comparison reveals that the said methods excel several existing methods. The worked-out solutions show that the suggested methods are simple and reliable as compared to many other approaches which tackle nonlinear equations stemming from applied sciences.

  14. die nasionalisering van waterregte in suid- afrika: ontneming of ...

    African Journals Online (AJOL)

    Administrator

    ondersoek word of die staat, deur die bepalings van die Nasionale. Waterwet ... word nie.14. In die uitspraak van Watermeyer CJ in Commissioner for Inland. Revenue v Estate Crewe15 blyk dit duidelik dat die begrip eiendom reeds van vroeg af ..... Van der Walt "Moving towards recognition of constructive expropriation?

  15. Precise, Self-Limited Epitaxy of Ultrathin Organic Semiconductors and Heterojunctions Tailored by van der Waals Interactions.

    Science.gov (United States)

    Wu, Bing; Zhao, Yinghe; Nan, Haiyan; Yang, Ziyi; Zhang, Yuhan; Zhao, Huijuan; He, Daowei; Jiang, Zonglin; Liu, Xiaolong; Li, Yun; Shi, Yi; Ni, Zhenhua; Wang, Jinlan; Xu, Jian-Bin; Wang, Xinran

    2016-06-08

    Precise assembly of semiconductor heterojunctions is the key to realize many optoelectronic devices. By exploiting the strong and tunable van der Waals (vdW) forces between graphene and organic small molecules, we demonstrate layer-by-layer epitaxy of ultrathin organic semiconductors and heterostructures with unprecedented precision with well-defined number of layers and self-limited characteristics. We further demonstrate organic p-n heterojunctions with molecularly flat interface, which exhibit excellent rectifying behavior and photovoltaic responses. The self-limited organic molecular beam epitaxy (SLOMBE) is generically applicable for many layered small-molecule semiconductors and may lead to advanced organic optoelectronic devices beyond bulk heterojunctions.

  16. Cloud computing for protein-ligand binding site comparison.

    Science.gov (United States)

    Hung, Che-Lun; Hua, Guan-Jie

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.

  17. Density functional for van der Waals forces accounts for hydrogen bond in benchmark set of water hexamers

    DEFF Research Database (Denmark)

    Kelkkanen, Kari André; Lundqvist, Bengt; Nørskov, Jens Kehlet

    2009-01-01

    A recent extensive study has investigated how various exchange-correlation (XC) functionals treat hydrogen bonds in water hexamers and has shown traditional generalized gradient approximation and hybrid functionals used in density-functional (DF) theory to give the wrong dissociation-energy trend...... of low-lying isomers and van der Waals (vdW) dispersion forces to give key contributions to the dissociation energy. The question raised whether functionals that incorporate vdW forces implicitly into the XC functional predict the correct lowest-energy structure for the water hexamer and yield accurate...

  18. Van der Waals heterostructure of phosphorene and graphene: tuning the Schottky barrier and doping by electrostatic gating.

    Science.gov (United States)

    Padilha, J E; Fazzio, A; da Silva, Antônio J R

    2015-02-13

    In this Letter, we study the structural and electronic properties of single-layer and bilayer phosphorene with graphene. We show that both the properties of graphene and phosphorene are preserved in the composed heterostructure. We also show that via the application of a perpendicular electric field, it is possible to tune the position of the band structure of phosphorene with respect to that of graphene. This leads to control of the Schottky barrier height and doping of phosphorene, which are important features in the design of new devices based on van der Waals heterostructures.

  19. Tuning electronic transport in epitaxial graphene-based van der Waals heterostructures

    Science.gov (United States)

    Lin, Yu-Chuan; Li, Jun; de La Barrera, Sergio C.; Eichfeld, Sarah M.; Nie, Yifan; Addou, Rafik; Mende, Patrick C.; Wallace, Robert M.; Cho, Kyeongjae; Feenstra, Randall M.; Robinson, Joshua A.

    2016-04-01

    Two-dimensional tungsten diselenide (WSe2) has been used as a component in atomically thin photovoltaic devices, field effect transistors, and tunneling diodes in tandem with graphene. In some applications it is necessary to achieve efficient charge transport across the interface of layered WSe2-graphene, a semiconductor to semimetal junction with a van der Waals (vdW) gap. In such cases, band alignment engineering is required to ensure a low-resistance, ohmic contact. In this work, we investigate the impact of graphene electronic properties on the transport at the WSe2-graphene interface. Electrical transport measurements reveal a lower resistance between WSe2 and fully hydrogenated epitaxial graphene (EGFH) compared to WSe2 grown on partially hydrogenated epitaxial graphene (EGPH). Using low-energy electron microscopy and reflectivity on these samples, we extract the work function difference between the WSe2 and graphene and employ a charge transfer model to determine the WSe2 carrier density in both cases. The results indicate that WSe2-EGFH displays ohmic behavior at small biases due to a large hole density in the WSe2, whereas WSe2-EGPH forms a Schottky barrier junction.Two-dimensional tungsten diselenide (WSe2) has been used as a component in atomically thin photovoltaic devices, field effect transistors, and tunneling diodes in tandem with graphene. In some applications it is necessary to achieve efficient charge transport across the interface of layered WSe2-graphene, a semiconductor to semimetal junction with a van der Waals (vdW) gap. In such cases, band alignment engineering is required to ensure a low-resistance, ohmic contact. In this work, we investigate the impact of graphene electronic properties on the transport at the WSe2-graphene interface. Electrical transport measurements reveal a lower resistance between WSe2 and fully hydrogenated epitaxial graphene (EGFH) compared to WSe2 grown on partially hydrogenated epitaxial graphene (EGPH). Using low

  20. Ligand cluster-based protein network and ePlatton, a multi-target ligand finder.

    Science.gov (United States)

    Du, Yu; Shi, Tieliu

    2016-01-01

    Small molecules are information carriers that make cells aware of external changes and couple internal metabolic and signalling pathway systems with each other. In some specific physiological status, natural or artificial molecules are used to interact with selective biological targets to activate or inhibit their functions to achieve expected biological and physiological output. Millions of years of evolution have optimized biological processes and pathways and now the endocrine and immune system cannot work properly without some key small molecules. In the past thousands of years, the human race has managed to find many medicines against diseases by trail-and-error experience. In the recent decades, with the deepening understanding of life and the progress of molecular biology, researchers spare no effort to design molecules targeting one or two key enzymes and receptors related to corresponding diseases. But recent studies in pharmacogenomics have shown that polypharmacology may be necessary for the effects of drugs, which challenge the paradigm, 'one drug, one target, one disease'. Nowadays, cheminformatics and structural biology can help us reasonably take advantage of the polypharmacology to design next-generation promiscuous drugs and drug combination therapies. 234,591 protein-ligand interactions were extracted from ChEMBL. By the 2D structure similarity, 13,769 ligand emerged from 156,151 distinct ligands which were recognized by 1477 proteins. Ligand cluster- and sequence-based protein networks (LCBN, SBN) were constructed, compared and analysed. For assisting compound designing, exploring polypharmacology and finding possible drug combination, we integrated the pathway, disease, drug adverse reaction and the relationship of targets and ligand clusters into the web platform, ePlatton, which is available at http://www.megabionet.org/eplatton. Although there were some disagreements between the LCBN and SBN, communities in both networks were largely the same

  1. Accurate treatment of nanoelectronics through improved description of van der Waals Interactions

    DEFF Research Database (Denmark)

    Kelkkanen, Kari André

    , or even as broken. The hexamer experience of the criteria and effects of vdW forces can be used in interpretation of results of molecular dynamics (MD) simulations of ambient water, where vdW forces qualitatively result in liquid water with fewer, more distorted HBs. This is interesting...... and relevance of van der Waals (vdW) forces in molecular surface adsorption and water through density- functional theory (DFT), using the exchange-correlation functional vdW-DF [Dion et al., Phys. Rev. Lett. 92, 246401 (2004)] and developments based on it. Results are first computed for adsorption with vd...... functionals. DFT calculations are performed for water dimer and hexamer, and for liquid water. Calculations on four low-energetic isomers of the water hexamer show that the vdW-DF accurately determines the energetic trend on these small clusters. How- ever, the dissociation-energy values with the vd...

  2. 1-D Van der Waals Foams Heated by Ion Beam Energy Deposition

    International Nuclear Information System (INIS)

    Zylstra, A.B.; Barnard, J.J.; More, R.M.

    2009-01-01

    One dimensional simulations of various initial average density aluminum foams (modeled as slabs of solid metal separated by low density regions) heated by volumetric energy deposition are conducted with a Lagrangian hydrodynamics code using a van der Waals equation of tate (EOS). The resulting behavior is studied to facilitate the design of future warm dense matter (WDM) experiments at LBNL. In the simulations the energy deposition ranges from 10 to 30 kJ/g and from 0.075 to 4.0 ns total pulse length, resulting in temperatures from approximately 1 o 4 eV. We study peak pressures and temperatures in the foams, expansion velocity, and the phase evolution. Five relevant time scales in the problem are identified. Additionally, we present a method for characterizing the level of inhomogeneity in a foam target as it is heated and the time it takes for a foam to homogenize.

  3. Protein-ligand interfaces are polarized: discovery of a strong trend for intermolecular hydrogen bonds to favor donors on the protein side with implications for predicting and designing ligand complexes.

    Science.gov (United States)

    Raschka, Sebastian; Wolf, Alex J; Bemister-Buffington, Joseph; Kuhn, Leslie A

    2018-04-01

    Understanding how proteins encode ligand specificity is fascinating and similar in importance to deciphering the genetic code. For protein-ligand recognition, the combination of an almost infinite variety of interfacial shapes and patterns of chemical groups makes the problem especially challenging. Here we analyze data across non-homologous proteins in complex with small biological ligands to address observations made in our inhibitor discovery projects: that proteins favor donating H-bonds to ligands and avoid using groups with both H-bond donor and acceptor capacity. The resulting clear and significant chemical group matching preferences elucidate the code for protein-native ligand binding, similar to the dominant patterns found in nucleic acid base-pairing. On average, 90% of the keto and carboxylate oxygens occurring in the biological ligands formed direct H-bonds to the protein. A two-fold preference was found for protein atoms to act as H-bond donors and ligand atoms to act as acceptors, and 76% of all intermolecular H-bonds involved an amine donor. Together, the tight chemical and geometric constraints associated with satisfying donor groups generate a hydrogen-bonding lock that can be matched only by ligands bearing the right acceptor-rich key. Measuring an index of H-bond preference based on the observed chemical trends proved sufficient to predict other protein-ligand complexes and can be used to guide molecular design. The resulting Hbind and Protein Recognition Index software packages are being made available for rigorously defining intermolecular H-bonds and measuring the extent to which H-bonding patterns in a given complex match the preference key.

  4. Protein-ligand interfaces are polarized: discovery of a strong trend for intermolecular hydrogen bonds to favor donors on the protein side with implications for predicting and designing ligand complexes

    Science.gov (United States)

    Raschka, Sebastian; Wolf, Alex J.; Bemister-Buffington, Joseph; Kuhn, Leslie A.

    2018-02-01

    Understanding how proteins encode ligand specificity is fascinating and similar in importance to deciphering the genetic code. For protein-ligand recognition, the combination of an almost infinite variety of interfacial shapes and patterns of chemical groups makes the problem especially challenging. Here we analyze data across non-homologous proteins in complex with small biological ligands to address observations made in our inhibitor discovery projects: that proteins favor donating H-bonds to ligands and avoid using groups with both H-bond donor and acceptor capacity. The resulting clear and significant chemical group matching preferences elucidate the code for protein-native ligand binding, similar to the dominant patterns found in nucleic acid base-pairing. On average, 90% of the keto and carboxylate oxygens occurring in the biological ligands formed direct H-bonds to the protein. A two-fold preference was found for protein atoms to act as H-bond donors and ligand atoms to act as acceptors, and 76% of all intermolecular H-bonds involved an amine donor. Together, the tight chemical and geometric constraints associated with satisfying donor groups generate a hydrogen-bonding lock that can be matched only by ligands bearing the right acceptor-rich key. Measuring an index of H-bond preference based on the observed chemical trends proved sufficient to predict other protein-ligand complexes and can be used to guide molecular design. The resulting Hbind and Protein Recognition Index software packages are being made available for rigorously defining intermolecular H-bonds and measuring the extent to which H-bonding patterns in a given complex match the preference key.

  5. A web server for analysis, comparison and prediction of protein ligand binding sites.

    Science.gov (United States)

    Singh, Harinder; Srivastava, Hemant Kumar; Raghava, Gajendra P S

    2016-03-25

    One of the major challenges in the field of system biology is to understand the interaction between a wide range of proteins and ligands. In the past, methods have been developed for predicting binding sites in a protein for a limited number of ligands. In order to address this problem, we developed a web server named 'LPIcom' to facilitate users in understanding protein-ligand interaction. Analysis, comparison and prediction modules are available in the "LPIcom' server to predict protein-ligand interacting residues for 824 ligands. Each ligand must have at least 30 protein binding sites in PDB. Analysis module of the server can identify residues preferred in interaction and binding motif for a given ligand; for example residues glycine, lysine and arginine are preferred in ATP binding sites. Comparison module of the server allows comparing protein-binding sites of multiple ligands to understand the similarity between ligands based on their binding site. This module indicates that ATP, ADP and GTP ligands are in the same cluster and thus their binding sites or interacting residues exhibit a high level of similarity. Propensity-based prediction module has been developed for predicting ligand-interacting residues in a protein for more than 800 ligands. In addition, a number of web-based tools have been integrated to facilitate users in creating web logo and two-sample between ligand interacting and non-interacting residues. In summary, this manuscript presents a web-server for analysis of ligand interacting residue. This server is available for public use from URL http://crdd.osdd.net/raghava/lpicom .

  6. Combining density functional and incremental post-Hartree-Fock approaches for van der Waals dominated adsorbate-surface interactions: Ag{sub 2}/graphene

    Energy Technology Data Exchange (ETDEWEB)

    Lara-Castells, María Pilar de, E-mail: Pilar.deLara.Castells@csic.es [Instituto de Física Fundamental (C.S.I.C.), Serrano 123, E-28006 Madrid (Spain); Mitrushchenkov, Alexander O. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France); Stoll, Hermann [Institut für Theoretische Chemie, Universität Stuttgart, D-70550 Stuttgart (Germany)

    2015-09-14

    A combined density functional (DFT) and incremental post-Hartree-Fock (post-HF) approach, proven earlier to calculate He-surface potential energy surfaces [de Lara-Castells et al., J. Chem. Phys. 141, 151102 (2014)], is applied to describe the van der Waals dominated Ag{sub 2}/graphene interaction. It extends the dispersionless density functional theory developed by Pernal et al. [Phys. Rev. Lett. 103, 263201 (2009)] by including periodic boundary conditions while the dispersion is parametrized via the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)]. Starting with the elementary cluster unit of the target surface (benzene), continuing through the realistic cluster model (coronene), and ending with the periodic model of the extended system, modern ab initio methodologies for intermolecular interactions as well as state-of-the-art van der Waals-corrected density functional-based approaches are put together both to assess the accuracy of the composite scheme and to better characterize the Ag{sub 2}/graphene interaction. The present work illustrates how the combination of DFT and post-HF perspectives may be efficient to design simple and reliable ab initio-based schemes in extended systems for surface science applications.

  7. Residue preference mapping of ligand fragments in the Protein Data Bank.

    Science.gov (United States)

    Wang, Lirong; Xie, Zhaojun; Wipf, Peter; Xie, Xiang-Qun

    2011-04-25

    The interaction between small molecules and proteins is one of the major concerns for structure-based drug design because the principles of protein-ligand interactions and molecular recognition are not thoroughly understood. Fortunately, the analysis of protein-ligand complexes in the Protein Data Bank (PDB) enables unprecedented possibilities for new insights. Herein, we applied molecule-fragmentation algorithms to split the ligands extracted from PDB crystal structures into small fragments. Subsequently, we have developed a ligand fragment and residue preference mapping (LigFrag-RPM) algorithm to map the profiles of the interactions between these fragments and the 20 proteinogenic amino acid residues. A total of 4032 fragments were generated from 71 798 PDB ligands by a ring cleavage (RC) algorithm. Among these ligand fragments, 315 unique fragments were characterized with the corresponding fragment-residue interaction profiles by counting residues close to these fragments. The interaction profiles revealed that these fragments have specific preferences for certain types of residues. The applications of these interaction profiles were also explored and evaluated in case studies, showing great potential for the study of protein-ligand interactions and drug design. Our studies demonstrated that the fragment-residue interaction profiles generated from the PDB ligand fragments can be used to detect whether these fragments are in their favorable or unfavorable environments. The algorithm for a ligand fragment and residue preference mapping (LigFrag-RPM) developed here also has the potential to guide lead chemistry modifications as well as binding residues predictions.

  8. El todo en el fragmento. Arquitectura y Bankunst en Mies Van der Rohe = The whole in the fragment. Mies van der Rohe´s Architecture and Bankunst

    Directory of Open Access Journals (Sweden)

    Antonio Juárez Chicote

    2013-10-01

    Full Text Available ResumenEl texto pretende asomarse a la mirada interior de Ludwig Mies van der Rohe y tomar conciencia del ejercicio visual y mental que la noción de ‘construcción’ tiene para el arquitecto. A partir de los ejercicios de adiestramiento visual (visual training propuestos en el IIT de Chicago a partir de 1938 propuestos por Mies van der Rohe y desarrollados por Walter Perterhans, y de los collage realizados por Mies para ilustrar su obra de arquitectura, como los realizados para el edificio de oficinas Bacardí en Santiago de Cuba el texto disecciona el universo mental de Mies.El adiestramiento del ojo propuesto por Mies en el IIT supone un adiestramiento en el orden de lo visual de enorme complejidad, pues el orden de la percepción no coincide con el orden de la construcción.Este desfase entre ambos universos plantea problemas casi irresolubles entre los que se debate el arquitecto y que el artículo, tras las lecturas que William Jordy, Robin Evans y Colin Rowe han realizado de la obra miesiana, pretende sintetizar y clarificar.El texto pretende asomarse a la tensión interna que, en la propia mente del arquitecto, alcanzan algunas de sus piezas, en un equilibrio altamente inestable, en el que la estructura superpuesta de la piel del edificio –la ‘representación de la estructura’– no puede sino anunciar con nostalgia el esplendor perdido del primer orden jerárquico estructural, que es de acero recubierto de hormigón, quedando, de esta manera a la vista, su condición inestable que se debate entre ser muro y ser esqueleto.Se proponen algunos conceptos clave extraídos de los cursos de Adiestramiento Visual y de algunos aspectos de la obra europea y americana de Mies a la luz de los cuales se puede hacer una relectura global de su obra: horizonte / obstáculo, textura / estructura, paisaje / material, percepción / construcción, totalidad / fragmento.Palabras claveforma, estructura, textura, percepción, construcci

  9. Harmonic oscillations, chaos and synchronization in systems consisting of Van der Pol oscillator coupled to a linear oscillator

    International Nuclear Information System (INIS)

    Woafo, P.

    1999-12-01

    This paper deals with the dynamics of a model describing systems consisting of the classical Van der Pol oscillator coupled gyroscopically to a linear oscillator. Both the forced and autonomous cases are considered. Harmonic response is investigated along with its stability boundaries. Condition for quenching phenomena in the autonomous case is derived. Neimark bifurcation is observed and it is found that our model shows period doubling and period-m sudden transitions to chaos. Synchronization of two and more systems in their chaotic regime is presented. (author)

  10. Horseshoes chaos and stability of a delayed van der Pol-Duffing oscillator under a bounded double well potential

    International Nuclear Information System (INIS)

    Kwuimy, C.A. Kitio; Woafo, P.

    2009-06-01

    In this paper a van der Pol-Duffing oscillator with a bounded double well potential and a delayed (positive and negative) position and velocity feedback is considered. Attention is focussed on the effects of time delay on stability, escape motion and horseshoes chaos. Using Forde and Nelson's theorem, harmonic balance and Melnikov criterion for chaos, the boundary conditions for such phenomena are derived. It appears that, time delay can be used as simple switch to avoid and/or create complex behavior of the model. (author)

  11. A van der Waals pn heterojunction with organic/inorganic semiconductors

    International Nuclear Information System (INIS)

    He, Daowei; Yang, Ziyi; Wu, Bing; Xu, Bingchen; Zhang, Yuhan; Li, Yun; Shi, Yi; Wang, Xinran; Pan, Yiming; Wang, Baigeng; Nan, Haiyan; Luo, Xiaoguang; Ni, Zhenhua; Gu, Shuai; Zhu, Jia; Chai, Yang

    2015-01-01

    van der Waals (vdW) heterojunctions formed by two-dimensional (2D) materials have attracted tremendous attention due to their excellent electrical/optical properties and device applications. However, current 2D heterojunctions are largely limited to atomic crystals, and hybrid organic/inorganic structures are rarely explored. Here, we fabricate the hybrid 2D heterostructures with p-type dioctylbenzothienobenzothiophene (C 8 -BTBT) and n-type MoS 2 . We find that few-layer C 8 -BTBT molecular crystals can be grown on monolayer MoS 2 by vdW epitaxy, with pristine interface and controllable thickness down to monolayer. The operation of the C 8 -BTBT/MoS 2 vertical heterojunction devices is highly tunable by bias and gate voltages between three different regimes: interfacial recombination, tunneling, and blocking. The pn junction shows diode-like behavior with rectifying ratio up to 10 5 at the room temperature. Our devices also exhibit photovoltaic responses with a power conversion efficiency of 0.31% and a photoresponsivity of 22 mA/W. With wide material combinations, such hybrid 2D structures will offer possibilities for opto-electronic devices that are not possible from individual constituents

  12. A van der Waals pn heterojunction with organic/inorganic semiconductors

    Science.gov (United States)

    He, Daowei; Pan, Yiming; Nan, Haiyan; Gu, Shuai; Yang, Ziyi; Wu, Bing; Luo, Xiaoguang; Xu, Bingchen; Zhang, Yuhan; Li, Yun; Ni, Zhenhua; Wang, Baigeng; Zhu, Jia; Chai, Yang; Shi, Yi; Wang, Xinran

    2015-11-01

    van der Waals (vdW) heterojunctions formed by two-dimensional (2D) materials have attracted tremendous attention due to their excellent electrical/optical properties and device applications. However, current 2D heterojunctions are largely limited to atomic crystals, and hybrid organic/inorganic structures are rarely explored. Here, we fabricate the hybrid 2D heterostructures with p-type dioctylbenzothienobenzothiophene (C8-BTBT) and n-type MoS2. We find that few-layer C8-BTBT molecular crystals can be grown on monolayer MoS2 by vdW epitaxy, with pristine interface and controllable thickness down to monolayer. The operation of the C8-BTBT/MoS2 vertical heterojunction devices is highly tunable by bias and gate voltages between three different regimes: interfacial recombination, tunneling, and blocking. The pn junction shows diode-like behavior with rectifying ratio up to 105 at the room temperature. Our devices also exhibit photovoltaic responses with a power conversion efficiency of 0.31% and a photoresponsivity of 22 mA/W. With wide material combinations, such hybrid 2D structures will offer possibilities for opto-electronic devices that are not possible from individual constituents.

  13. A van der Waals pn heterojunction with organic/inorganic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    He, Daowei; Yang, Ziyi; Wu, Bing; Xu, Bingchen; Zhang, Yuhan; Li, Yun; Shi, Yi, E-mail: yshi@nju.edu.cn, E-mail: xrwang@nju.edu.cn; Wang, Xinran, E-mail: yshi@nju.edu.cn, E-mail: xrwang@nju.edu.cn [National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Pan, Yiming; Wang, Baigeng [National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093 (China); Nan, Haiyan; Luo, Xiaoguang; Ni, Zhenhua [Department of Physics, Southeast University, Nanjing 211189 (China); Gu, Shuai; Zhu, Jia [College of Engineering and Applied Science, Nanjing University, Nanjing 210093 (China); Chai, Yang [Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

    2015-11-02

    van der Waals (vdW) heterojunctions formed by two-dimensional (2D) materials have attracted tremendous attention due to their excellent electrical/optical properties and device applications. However, current 2D heterojunctions are largely limited to atomic crystals, and hybrid organic/inorganic structures are rarely explored. Here, we fabricate the hybrid 2D heterostructures with p-type dioctylbenzothienobenzothiophene (C{sub 8}-BTBT) and n-type MoS{sub 2}. We find that few-layer C{sub 8}-BTBT molecular crystals can be grown on monolayer MoS{sub 2} by vdW epitaxy, with pristine interface and controllable thickness down to monolayer. The operation of the C{sub 8}-BTBT/MoS{sub 2} vertical heterojunction devices is highly tunable by bias and gate voltages between three different regimes: interfacial recombination, tunneling, and blocking. The pn junction shows diode-like behavior with rectifying ratio up to 10{sup 5} at the room temperature. Our devices also exhibit photovoltaic responses with a power conversion efficiency of 0.31% and a photoresponsivity of 22 mA/W. With wide material combinations, such hybrid 2D structures will offer possibilities for opto-electronic devices that are not possible from individual constituents.

  14. Molecular interactions in particular Van der Waals nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Jungclas, Hartmut; Schmidt, Lothar [Marburg Univ. (Germany). Chemistry Dept.; Komarov, Viacheslav V.; Popova, Anna M. [Marburg Univ. (Germany). Chemistry Dept.; Lomonosov Moscow State Univ. (Russian Federation). Skobeltzin Inst. of Nuclear Physics

    2017-04-01

    A method is presented to analyse the interaction energies in a nanocluster, which is consisting of three neutral molecules bound by non-covalent long range Van der Waals forces. One of the molecules (M{sub 0}) in the nanocluster has a permanent dipole moment, whereas the two other molecules (M{sub 1} and M{sub 2}) are non-polar. Analytical expressions are obtained for the numerical calculation of the dispersion and induction energies of the molecules in the considered nanocluster. The repulsive forces at short intermolecular distances are taken into account by introduction of damping functions. Dispersion and induction energies are calculated for a nanocluster with a definite geometry, in which the polar molecule M{sub 0} is a linear hydrocarbon molecule C{sub 5}H{sub 10} and M{sub 1} and M{sub 2} are pyrene molecules. The calculations are done for fixed distances between the two pyrene molecules. The results show that the induction energies in the considered three-molecular nanocluster are comparable with the dispersion energies. Furthermore, the sum of induction energies in the substructure (M{sub 0}, M{sub 1}) of the considered nanocluster is much higher than the sum of induction energies in a two-molecular nanocluster with similar molecules (M{sub 0}, M{sub 1}) because of the absence of an electrostatic field in the latter case. This effect can be explained by the essential intermolecular induction in the three-molecular nanocluster.

  15. Semiempirical calculation of van der Waals coefficients for alkali-metal and alkaline-earth-metal atoms

    International Nuclear Information System (INIS)

    Mitroy, J.; Bromley, M.W.J.

    2003-01-01

    The van der Waals coefficients, C 6 , C 8 , and C 10 for the alkali-metal (Li, Na, K, and Rb) and alkaline-earth-metal (Be, Mg, Ca, and Sr) atoms are estimated by a combination of ab initio and semiempirical methods. Polarizabilities and atom-wall coefficients are given as a diagnostic check, and the lowest order nonadiabatic dispersion coefficient, D 8 and the three-body coefficient, C 9 are also presented. The dispersion coefficients are in agreement with the available relativistic many-body perturbation theory calculations. The contribution from the core was included by using constrained sum rules involving the core polarizability and Hartree-Fock expectation values to estimate the f-value distribution

  16. X-ray electron density investigation of chemical bonding in van der Waals materials

    Science.gov (United States)

    Kasai, Hidetaka; Tolborg, Kasper; Sist, Mattia; Zhang, Jiawei; Hathwar, Venkatesha R.; Filsø, Mette Ø.; Cenedese, Simone; Sugimoto, Kunihisa; Overgaard, Jacob; Nishibori, Eiji; Iversen, Bo B.

    2018-03-01

    Van der Waals (vdW) solids have attracted great attention ever since the discovery of graphene, with the essential feature being the weak chemical bonding across the vdW gap. The nature of these weak interactions is decisive for many extraordinary properties, but it is a strong challenge for current theory to accurately model long-range electron correlations. Here we use synchrotron X-ray diffraction data to precisely determine the electron density in the archetypal vdW solid, TiS2, and compare the results with density functional theory calculations. Quantitative agreement is observed for the chemical bonding description in the covalent TiS2 slabs, but significant differences are identified for the interactions across the gap, with experiment revealing more electron deformation than theory. The present data provide an experimental benchmark for testing theoretical models of weak chemical bonding.

  17. Ultrafast Exciton Dissociation and Long-Lived Charge Separation in a Photovoltaic Pentacene-MoS2 van der Waals Heterojunction.

    Science.gov (United States)

    Bettis Homan, Stephanie; Sangwan, Vinod K; Balla, Itamar; Bergeron, Hadallia; Weiss, Emily A; Hersam, Mark C

    2017-01-11

    van der Waals heterojunctions between two-dimensional (2D) layered materials and nanomaterials of different dimensions present unique opportunities for gate-tunable optoelectronic devices. Mixed-dimensional p-n heterojunction diodes, such as p-type pentacene (0D) and n-type monolayer MoS 2 (2D), are especially interesting for photovoltaic applications where the absorption cross-section and charge transfer processes can be tailored by rational selection from the vast library of organic molecules and 2D materials. Here, we study the kinetics of excited carriers in pentacene-MoS 2 p-n type-II heterojunctions by transient absorption spectroscopy. These measurements show that the dissociation of MoS 2 excitons occurs by hole transfer to pentacene on the time scale of 6.7 ps. In addition, the charge-separated state lives for 5.1 ns, up to an order of magnitude longer than the recombination lifetimes from previously reported 2D material heterojunctions. By studying the fractional amplitudes of the MoS 2 decay processes, the hole transfer yield from MoS 2 to pentacene is found to be ∼50%, with the remaining holes undergoing trapping due to surface defects. Overall, the ultrafast charge transfer and long-lived charge-separated state in pentacene-MoS 2 p-n heterojunctions suggest significant promise for mixed-dimensional van der Waals heterostructures in photovoltaics, photodetectors, and related optoelectronic technologies.

  18. Automatic generation of bioinformatics tools for predicting protein-ligand binding sites.

    Science.gov (United States)

    Komiyama, Yusuke; Banno, Masaki; Ueki, Kokoro; Saad, Gul; Shimizu, Kentaro

    2016-03-15

    Predictive tools that model protein-ligand binding on demand are needed to promote ligand research in an innovative drug-design environment. However, it takes considerable time and effort to develop predictive tools that can be applied to individual ligands. An automated production pipeline that can rapidly and efficiently develop user-friendly protein-ligand binding predictive tools would be useful. We developed a system for automatically generating protein-ligand binding predictions. Implementation of this system in a pipeline of Semantic Web technique-based web tools will allow users to specify a ligand and receive the tool within 0.5-1 day. We demonstrated high prediction accuracy for three machine learning algorithms and eight ligands. The source code and web application are freely available for download at http://utprot.net They are implemented in Python and supported on Linux. shimizu@bi.a.u-tokyo.ac.jp Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  19. Reliability and sensitivity to change of the Simple Erosion Narrowing Score compared with the Sharp-van der Heijde method for scoring radiographs in rheumatoid arthritis

    NARCIS (Netherlands)

    Dias, E. M.; Lukas, C.; Landewé, R.; Fatenejad, S.; van der Heijde, D.

    2008-01-01

    To compare the performance of a simplified scoring method for structural damage on radiographs of patients with rheumatoid arthritis (the Simple Erosion Narrowing Score or SENS) with the Sharp-van der Heijde Score (SHS) as reference. We used the radiographic data from the Trial of Etanercept and

  20. Effect of the van der Waals interaction on the electron energy-loss near edge structure theoretical calculation

    Energy Technology Data Exchange (ETDEWEB)

    Katsukura, Hirotaka; Miyata, Tomohiro; Tomita, Kota; Mizoguchi, Teruyasu, E-mail: teru@iis.u-tokyo.ac.jp

    2017-07-15

    The effect of the van der Waals (vdW) interaction on the simulation of the electron energy-loss near edge structure (ELNES) by a first-principles band-structure calculation is reported. The effect of the vdW interaction is considered by the Tkatchenko-Scheffler scheme, and the change of the spectrum profile and the energy shift are discussed. We perform calculations on systems in the solid, liquid and gaseous states. The transition energy shifts to lower energy by approximately 0.1 eV in the condensed (solid and liquid) systems by introducing the vdW effect into the calculation, whereas the energy shift in the gaseous models is negligible owing to the long intermolecular distance. We reveal that the vdW interaction exhibits a larger effect on the excited state than the ground state owing to the presence of an excited electron in the unoccupied band. Moreover, the vdW effect is found to depend on the local electron density and the molecular coordination. In addition, this study suggests that the detection of the vdW interactions exhibited within materials is possible by a very stable and high resolution observation. - Highlights: • Effect of van der Waals (vdW) interaction in ELNES calculation is investigated. • The vdW interaction influences more to the excited state owing to the presence of excited electron. • The vdW interaction makes spectral shift to lower energy side by 0.1–0.01 eV. • The vdW interaction is negligible in gaseous materials due to long intermolecular distance.

  1. Dimensies van onafhankelijkheid: de Surinaamse ervaring

    Directory of Open Access Journals (Sweden)

    P. Meel

    2002-01-01

    Full Text Available J. Trommelen, Dwars door Suriname. Drie Guyana's in een tegendraads portret H. Breeveld, Jopie Pengel 1916-1970. Leven en werk van een Surinaamse politicus J. Jansen van Galen, J.A. Jansen, Hetenachtsdroom. Suriname, erfenis van de slavernij J. Jansen van Galen, Het Suriname-syndroom. De PvdA tussen Den Haag en Paramaribo M. van Kessel, H. van der Vlist, Tussen twee huizen. Het leven van de Surinaamse Nederlander Jan Veldema G. Oostindie, I. Klinkers, Knellende koninkrijksbanden. Het Nederlandse dekolonisatiebeleid in de Caraïben, 1940-2000, I, 1940-1954, II, 1954-1975, III, 1975-2000 R. Tjin, C. Buma, J. Reichert, Suriname onafhankelijk. 25 November 1975. Srefidensi sranan = Suriname free. 25 November 1975

  2. A Note on the Solutions of the Van der Pol and Duffing Equations Using a Linearisation Method

    Directory of Open Access Journals (Sweden)

    Sandile S. Motsa

    2012-01-01

    Full Text Available We present a novel application of the successive linearisation method to the classical Van der Pol and Duffing oscillator equations. By recasting the governing equations as nonlinear eigenvalue problems we obtain accurate values of the frequency and amplitude. We demonstrate that the proposed method can be used to obtain the limit cycle and bifurcation diagrams of the governing equations. Comparison with exact and other results in the literature shows that the method is accurate and effective in finding solutions of nonlinear equations with oscillatory solutions, nonlinear eigenvalue problems, and other nonlinear problems with bifurcations.

  3. C6H6/Au(111): Interface dipoles, band alignment, charging energy, and van der Waals interaction

    International Nuclear Information System (INIS)

    Abad, E.; Martinez, J. I.; Flores, F.; Ortega, J.; Dappe, Y. J.

    2011-01-01

    We analyze the benzene/Au(111) interface taking into account charging energy effects to properly describe the electronic structure of the interface and van der Waals interactions to obtain the adsorption energy and geometry. We also analyze the interface dipoles and discuss the barrier formation as a function of the metal work-function. We interpret our DFT calculations within the induced density of interface states (IDIS) model. Our results compare well with experimental and other theoretical results, showing that the dipole formation of these interfaces is due to the charge transfer between the metal and benzene, as described in the IDIS model.

  4. Deep level observation in InP by temperature dependence of the van der Pauw`s symmetry factor

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, K. [Hungarian Academy of Sciences, Budapest (Hungary). Research Inst. for Technical Physics

    1996-12-31

    One of the most convenient methods of the basic characterization of the semiconductors is the Hall effect measurement by van der Pauw`s geometry. As a by-product, the symmetry factor and a function of the symmetry factor is calculated. It is supposed that temperature dependent changes in the value of the symmetry factor indicate inhomogeneities of the sample, since this factor describes an electrical symmetry of the sample, not simply a geometrical one. Otherwise this factor is not assumed as an important information. In this work the author wishes to demonstrate that this factor can indicate quite important properties of the sample.

  5. Connection between fragility, mean-squared displacement and shear modulus in two van der Waals bonded glass-forming liquids

    DEFF Research Database (Denmark)

    Hansen, Henriette Wase; Frick, Bernhard; Hecksher, Tina

    2017-01-01

    The temperature dependence of the high-frequency shear modulus measured in the kHz range is compared with the mean-squared displacement measured in the nanosecond range for the two van der Waals bonded glass-forming liquids cumene and 5-polyphenyl ether. This provides an experimental test for the...... for the assumption connecting two versions of the shoving model for the non-Arrhenius temperature dependence of the relaxation time in glass formers. The two versions of the model are also tested directly and both are shown to work well for these liquids....

  6. THz absorption spectrum of the CO2–H2O complex: Observation and assignment of intermolecular van der Waals vibrations

    DEFF Research Database (Denmark)

    Andersen, Jonas; Heimdal, J.; Wallin Mahler Andersen, Denise

    2014-01-01

    have been assigned and provide crucial observables for benchmark theoretical descriptions of this systems’ flat intermolecular potential energy surface. A (semi)-empirical value for the zero-point energy of 273 ± 15 cm−1 from the class of intermolecular van der Waals vibrations is proposed...... and the combination with high-level quantum chemical calculations provides a value of 726 ± 15 cm−1 for the dissociation energy D0...

  7. Observation of Atom Wave Phase Shifts Induced by Van Der Waals Atom-Surface Interactions

    International Nuclear Information System (INIS)

    Perreault, John D.; Cronin, Alexander D.

    2005-01-01

    The development of nanotechnology and atom optics relies on understanding how atoms behave and interact with their environment. Isolated atoms can exhibit wavelike (coherent) behavior with a corresponding de Broglie wavelength and phase which can be affected by nearby surfaces. Here an atom interferometer is used to measure the phase shift of Na atom waves induced by the walls of a 50 nm wide cavity. To our knowledge this is the first direct measurement of the de Broglie wave phase shift caused by atom-surface interactions. The magnitude of the phase shift is in agreement with that predicted by Lifshitz theory for a nonretarded van der Waals interaction. This experiment also demonstrates that atom waves can retain their coherence even when atom-surface distances are as small as 10 nm

  8. Direction-specific van der Waals attraction between rutile TiO 2 nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xin; He, Yang; Sushko, Maria L.; Liu, Jia; Luo, Langli; De Yoreo, James J.; Mao, Scott X.; Wang, Chongmin; Rosso, Kevin M.

    2017-04-27

    Mutual lattice orientations dictate the types and magnitudes of forces between crystalline particles. When lattice polarizability is anisotropic, the van der Waals dispersion attraction can, in principle, contribute to this direction dependence. Here we report direct measurement of this attraction between rutile nanocrystals, as a function of their mutual orientation and surface hydration extent. At tens of nanometers of separation the attraction is weak and shows no dependence on azimuthal alignment nor surface hydration. At separations of approximately one hydration layer the attraction is strongly dependent on azimuthal alignment, and systematically decreases as intervening water density increases. Measured forces are in close agreement with predictions from Lifshitz theory, and show that dispersion forces are capable of generating a torque between particles interacting in solution and between grains in materials.

  9. Revisiting the adsorption of copper-phthalocyanine on Au(111) including van der Waals corrections

    International Nuclear Information System (INIS)

    Lüder, Johann; Eriksson, Olle; Sanyal, Biplab; Brena, Barbara

    2014-01-01

    We have studied the adsorption of copper-phthalocyanine on Au(111) by means of van der Waals corrected density functional theory using the Tkatchenko-Scheffler method. We have compared the element and site resolved adsorption distances to recent experimental normal-incident X-ray standing wave measurements. The measured adsorption distances could be reproduced within a deviation of 1% for the Cu atom, 1% for the C atoms, and 2% for the N atoms. The molecule was found to have a magnetic moment of 1 μ B distributed over the Cu and the N atoms of the pyrrole ring. Simulated scanning tunnel microscopy images based on the total and on the spin-resolved differential charge densities are provided for bias voltages of −1.45 and 1.45 eV

  10. De zin van het economische opnieuw beschouwd

    Directory of Open Access Journals (Sweden)

    T. P. van der Kooy

    1964-03-01

    Full Text Available In 1950 heb ik het hoogleraarschap in de economie aan de juridische faculteit der Vrije Universiteit te Amsterdam aanvaard m et een rede over de zin van het economische. Sinds- dien heeft dit centiaal m elhodologisch vraagstuk van de we- tenschap der economie mij ook verder bezig gehouden. Het is voor een economist een m oeilijk vraagstuk, om dat het tevens een wijsgerig vraagstuk is. Over het algemeen vindt de econo­ m ist daarover weinig in de filosofische liLeratuur. Dit is zeer begrijpelijk, w ant wijsgeren kunnen op zijn best m aar heel sum m ier kennis nem en van wat er in de vakw etenschappen omgaat, terw ijl zij, voor zover mij bekend, in den regel slechts weinig belangstelling voor de economie aan den dag leggen. Omgekeerd zijn econom islen m eestal niet bijzonder filosofisch aangelegd, en hebben zij de handen vol om de storm achtige ontwikkeling van liun eigen literatuur enigzins bij te houden afgezien nog van het l'eit dat zij in den regel vele praktischc beslom m eringen hebben, ten gevolge waarvan zij zich niet ongestoord aan de studie kunnen wijden. Van een behoorlijk sam enspel tussen filosolen en economislen komt over het ge- heel ook niet veel terecht. Wat de wijsgerige kant van m ijn overpeizingen betreft, ben ik dus door de nood gedwongen slechts am ateur. Ik kom daar gaarne voor uit, en ik ben steeds bereid te zwichten voor het beter oordeel der wijsgeren, m its ik dat kan vatten, en in m ijn eigen w erk daar iets mee uit kan richten. Men behoeft nog geen door de wol geverfd prag­ m atist of operationalist te zijn om te weten dat ieder werk zijn eigen eisen stelt.

  11. Retinoid-binding proteins: similar protein architectures bind similar ligands via completely different ways.

    Directory of Open Access Journals (Sweden)

    Yu-Ru Zhang

    Full Text Available BACKGROUND: Retinoids are a class of compounds that are chemically related to vitamin A, which is an essential nutrient that plays a key role in vision, cell growth and differentiation. In vivo, retinoids must bind with specific proteins to perform their necessary functions. Plasma retinol-binding protein (RBP and epididymal retinoic acid binding protein (ERABP carry retinoids in bodily fluids, while cellular retinol-binding proteins (CRBPs and cellular retinoic acid-binding proteins (CRABPs carry retinoids within cells. Interestingly, although all of these transport proteins possess similar structures, the modes of binding for the different retinoid ligands with their carrier proteins are different. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we analyzed the various retinoid transport mechanisms using structure and sequence comparisons, binding site analyses and molecular dynamics simulations. Our results show that in the same family of proteins and subcellular location, the orientation of a retinoid molecule within a binding protein is same, whereas when different families of proteins are considered, the orientation of the bound retinoid is completely different. In addition, none of the amino acid residues involved in ligand binding is conserved between the transport proteins. However, for each specific binding protein, the amino acids involved in the ligand binding are conserved. The results of this study allow us to propose a possible transport model for retinoids. CONCLUSIONS/SIGNIFICANCE: Our results reveal the differences in the binding modes between the different retinoid-binding proteins.

  12. Identification of individual protein-ligand NOEs in the limit of intermediate exchange

    International Nuclear Information System (INIS)

    Reibarkh, Mikhail; Malia, Thomas J.; Hopkins, Brian T.; Wagner, Gerhard

    2006-01-01

    Interactions of proteins with small molecules or other macromolecules play key roles in many biological processes and in drug action, and NMR is an excellent tool for their structural characterization. Frequently, however, line broadening due to intermediate exchange completely eliminates the signals needed for measuring specific intermolecular NOEs. This limits the use of NMR for detailed structural studies in such kinetic situations. Here we show that an optimally chosen excess of ligand over protein can reduce the extent of line broadening for both the ligand and the protein. This makes observation of ligand resonances possible but reduces the size of the measurable NOEs due to the residual line broadening and the non-stoichiometric concentrations. Because the solubility of small molecule drug leads are often limited to high micromolar concentrations, protein concentrations are restricted to even lower values in the low micromolar range. At these non-stoichiometric concentrations and in the presence of significant residual line broadening, conventional NOESY experiments very often are not sensitive enough to observe intermolecular NOEs since the signals inverted by the NOESY preparation pulse sequence relax prior to significant NOE build up. Thus, we employ methods related to driven NOE spectroscopy to investigate protein-ligand interactions in the intermediate exchange regime. In this approach, individual protein resonances are selectively irradiated for up to five seconds to build up measurable NOEs at the ligand resonances. To enable saturation of individual protein resonances we prepare deuterated protein samples selectively protonated at a few sites so that the 1D 1 H spectrum of the protein is resolved well enough to permit irradiation of individual protein signals, which do not overlap with the ligand spectrum. This approach is suitable for measuring a sufficiently large number of protein-ligand NOEs that allow calculation of initial complex structures

  13. Het format van de stad. Een evaluatie van recente Nederlandse stadsgeschiedenissen

    Directory of Open Access Journals (Sweden)

    P. Kooij

    2002-01-01

    Full Text Available R. Kunst, Leeuwarden 750-2000. Hoofdstad van Friesland; A. van der Schoor, N. Schadee, Stad in aanwas. Geschiedenis van Rotterdam tot 1813; P. van de Laar, Stad van formaat. Geschiedenis van Rotterdam in de negentiende en twintigste eeuw; R.E. de Bruin, 'Een paradijs vol weelde'. Geschiedenis van de stad Utrecht.The shape of the city. An evaluation of recent historical studies on Dutch townsUrban history in the Netherlands started roundabout 1970. It was initially promoted by mainly economic and social historians who used concepts derived from geography which centred on town and country relations, urban networks, and migration. The spatial factor was considered to be a core feature, also inside the towns and cities. An alternative view, however, argued that a completely introspective urban history, focussing on one city, would result in more integration. This hypothesis has been proved in a number of recent, more or less integral urban histories, commissioned by several independent municipal authorities in individual cities. They show that a combination of internal and external elements offers the best results with regard to integration.

  14. Christus' offer bij Paulus vergeleken met de offeropvattingen van Philo

    NARCIS (Netherlands)

    Stelma, Juurd Hari

    1938-01-01

    Een vergelijking der offeropvattingen van Paulus en Philo brengt ons in aanraking met twee principieel verschillende voorstellingen aangaande het offer. Het offer van Christus is voor Paulus de gave Gods, waardoor de macht van de zonde en dood vernietigd en de schuld verzoend is. Door de

  15. Interaction of boron with graphite: A van der Waals density functional study

    International Nuclear Information System (INIS)

    Liu, Juan; Wang, Chen; Liang, Tongxiang; Lai, Wensheng

    2016-01-01

    Highlights: • A van der Waals density-functional approach is applied to study the interaction of boron with graphite. • VdW-DF functionals give fair agreement of crystal parameters with experiments. • The π electron approaches boron while adsorbing on graphite surface. • The hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. • PBE cannot describe the interstitial boron in graphite because of the ignoring binding of graphite sheets. - Abstract: Boron doping has been widely investigated to improve oxidation resistance of graphite. In this work the interaction of boron with graphite is investigated by a van der Waals density-functional approach (vdW-DF). The traditional density-functional theory (DFT) is well accounted for the binding in boron-substituted graphite. However, to investigate the boron atom on graphite surface and the interstitial impurities require use of a description of graphite interlayer binding. Traditional DFT cannot describe the vdW physics, for instance, GGA calculations show no relevant binding between graphite sheets. LDA shows some binding, but they fail to provide an accurate account of vdW forces. In this paper, we compare the calculation results of graphite lattice constant and cohesive energy by several functionals, it shows that vdW-DF such as two optimized functionals optB88-vdW and optB86b-vdW give much improved results than traditional DFT. The vdW-DF approach is then applied to study the interaction of boron with graphite. Boron adsorption, substitution, and intercalation are discussed in terms of structural parameters and electronic structures. When adsorbing on graphite surface, boron behaves as π electron acceptor. The π electron approaches boron atom because of more electropositive of boron than carbon. For substitution situation, the hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. The B-doped graphite system with the hole has less

  16. Interaction of boron with graphite: A van der Waals density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juan; Wang, Chen [Beijing Key Lab of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Liang, Tongxiang, E-mail: txliang@tsinghua.edu.cn [State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Lai, Wensheng [Advanced Material Laboratory, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084 (China)

    2016-08-30

    Highlights: • A van der Waals density-functional approach is applied to study the interaction of boron with graphite. • VdW-DF functionals give fair agreement of crystal parameters with experiments. • The π electron approaches boron while adsorbing on graphite surface. • The hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. • PBE cannot describe the interstitial boron in graphite because of the ignoring binding of graphite sheets. - Abstract: Boron doping has been widely investigated to improve oxidation resistance of graphite. In this work the interaction of boron with graphite is investigated by a van der Waals density-functional approach (vdW-DF). The traditional density-functional theory (DFT) is well accounted for the binding in boron-substituted graphite. However, to investigate the boron atom on graphite surface and the interstitial impurities require use of a description of graphite interlayer binding. Traditional DFT cannot describe the vdW physics, for instance, GGA calculations show no relevant binding between graphite sheets. LDA shows some binding, but they fail to provide an accurate account of vdW forces. In this paper, we compare the calculation results of graphite lattice constant and cohesive energy by several functionals, it shows that vdW-DF such as two optimized functionals optB88-vdW and optB86b-vdW give much improved results than traditional DFT. The vdW-DF approach is then applied to study the interaction of boron with graphite. Boron adsorption, substitution, and intercalation are discussed in terms of structural parameters and electronic structures. When adsorbing on graphite surface, boron behaves as π electron acceptor. The π electron approaches boron atom because of more electropositive of boron than carbon. For substitution situation, the hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. The B-doped graphite system with the hole has less

  17. Equations of State: From the Ideas of van der Waals to Association Theories

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Economou, Ioannis G.

    2010-01-01

    equations of state are sensitive to the mixing and combining rules used. Moreover, it is shown that previously reported deficiencies for size-asymmetric systems are more related to the van der Waals one fluid mixing rules used rather than the functionality of the cubic equation of state itself. Improved...... models for polar systems have been developed using the so-called EoS/GE mixing rules and we illustrate with the same methodology how these mixing rules should best be used for size-asymmetric systems. Despite the significant capabilities of cubic equations of state, their limitations lie especially...... in the description of complex phase behavior, e.g. liquid–liquid equilibria for highly polar and/or hydrogen bonding containing molecules. In these cases, advanced equations of state based on statistical mechanics that incorporate ideas from perturbation (e.g. SAFT and CPA), chemical (e.g. APACT) and lattice (e...

  18. Experiment and computation: a combined approach to study the van der Waals complexes

    Directory of Open Access Journals (Sweden)

    Surin L.A.

    2017-01-01

    Full Text Available A review of recent results on the millimetre-wave spectroscopy of weakly bound van der Waals complexes, mostly those which contain H2 and He, is presented. In our work, we compared the experimental spectra to the theoretical bound state results, thus providing a critical test of the quality of the M–H2 and M–He potential energy surfaces (PESs which are a key issue for reliable computations of the collisional excitation and de-excitation of molecules (M = CO, NH3, H2O in the dense interstellar medium. The intermolecular interactions with He and H2 play also an important role for high resolution spectroscopy of helium or para-hydrogen clusters doped by a probe molecule (CO, HCN. Such experiments are directed on the detection of superfluid response of molecular rotation in the He and p-H2 clusters.

  19. The analysis of solutions behaviour of Van der Pol Duffing equation describing local brain hemodynamics

    Science.gov (United States)

    Cherevko, A. A.; Bord, E. E.; Khe, A. K.; Panarin, V. A.; Orlov, K. J.

    2017-10-01

    This article proposes the generalized model of Van der Pol — Duffing equation for describing the relaxation oscillations in local brain hemodynamics. This equation connects the velocity and pressure of blood flow in cerebral vessels. The equation is individual for each patient, since the coefficients are unique. Each set of coefficients is built based on clinical data obtained during neurosurgical operation in Siberian Federal Biomedical Research Center named after Academician E. N. Meshalkin. The equation has solutions of different structure defined by the coefficients and right side. We investigate the equations for different patients considering peculiarities of their vessel systems. The properties of approximate analytical solutions are studied. Amplitude-frequency and phase-frequency characteristics are built for the small-dimensional solution approximations.

  20. Evaluation of the novel algorithm of flexible ligand docking with moveable target-protein atoms.

    Science.gov (United States)

    Sulimov, Alexey V; Zheltkov, Dmitry A; Oferkin, Igor V; Kutov, Danil C; Katkova, Ekaterina V; Tyrtyshnikov, Eugene E; Sulimov, Vladimir B

    2017-01-01

    We present the novel docking algorithm based on the Tensor Train decomposition and the TT-Cross global optimization. The algorithm is applied to the docking problem with flexible ligand and moveable protein atoms. The energy of the protein-ligand complex is calculated in the frame of the MMFF94 force field in vacuum. The grid of precalculated energy potentials of probe ligand atoms in the field of the target protein atoms is not used. The energy of the protein-ligand complex for any given configuration is computed directly with the MMFF94 force field without any fitting parameters. The conformation space of the system coordinates is formed by translations and rotations of the ligand as a whole, by the ligand torsions and also by Cartesian coordinates of the selected target protein atoms. Mobility of protein and ligand atoms is taken into account in the docking process simultaneously and equally. The algorithm is realized in the novel parallel docking SOL-P program and results of its performance for a set of 30 protein-ligand complexes are presented. Dependence of the docking positioning accuracy is investigated as a function of parameters of the docking algorithm and the number of protein moveable atoms. It is shown that mobility of the protein atoms improves docking positioning accuracy. The SOL-P program is able to perform docking of a flexible ligand into the active site of the target protein with several dozens of protein moveable atoms: the native crystallized ligand pose is correctly found as the global energy minimum in the search space with 157 dimensions using 4700 CPU ∗ h at the Lomonosov supercomputer.

  1. Twee vroeë reaksies van Gereformeerde kant op Karl Barth

    Directory of Open Access Journals (Sweden)

    B. J. Engelbrecht

    1986-06-01

    Full Text Available In 1919 het die eerste uitgawe van die epogmakende “Romerbrief” van Karl Barth verskyn. Van die tweede druk in 1922 sê hy dat “kein Stein mehr auf dem andem” gelaat is nie. So opspraakwekkend was hierdie boek dat in 1929 die 5de druk van die tweede, radikaal-hersiene uitgawe verskyn het. Intussen het nog ander werke van Barth en selfs oor Barth verskyn. 0ns noem o.a. sy Der Christ in der Gesellschaft (1920; Das Wort Gottes und die Theologie (1924; Vom Christlichen Leben (1926; Auferstehung der Toten (2. Aufl. 1927, sy preke saam met Eduard Thurneysen Komm Schopfer Geist, (Dritt Aufl., 7-9 Tausend(! 1926. Maar 1927 was veral belangrik vanweë die verskyning van Barth se eerste Dogmatiekboek: “Die Christliche Dogmatik im Entwurf. 1 Die Lehre vom Worte Gottes. Prolegomena zur Christlichen Dogmatik” . Voor dié datum het dwarsoor die wêreld, maar ook in Nederland wye reaksie op sy teologie ontstaan. In 1926 skryf Max Strauch sy “Theologie Karl Barth’s”, terwyl Haitjema in Nederland ook in 1926 sy Barth boek die lig laat sien (Prof. dr. Th. L. Haitjema, Karl Barth, Wageningen 1926. Ander Nederlanders wat gereageer het, was drr. A. H. de Hartog, V. Hepp, Ph. Kohnstamm en di. D. Tromp en 0. Noordmans.

  2. A sequence-based dynamic ensemble learning system for protein ligand-binding site prediction

    KAUST Repository

    Chen, Peng

    2015-12-03

    Background: Proteins have the fundamental ability to selectively bind to other molecules and perform specific functions through such interactions, such as protein-ligand binding. Accurate prediction of protein residues that physically bind to ligands is important for drug design and protein docking studies. Most of the successful protein-ligand binding predictions were based on known structures. However, structural information is not largely available in practice due to the huge gap between the number of known protein sequences and that of experimentally solved structures

  3. A sequence-based dynamic ensemble learning system for protein ligand-binding site prediction

    KAUST Repository

    Chen, Peng; Hu, ShanShan; Zhang, Jun; Gao, Xin; Li, Jinyan; Xia, Junfeng; Wang, Bing

    2015-01-01

    Background: Proteins have the fundamental ability to selectively bind to other molecules and perform specific functions through such interactions, such as protein-ligand binding. Accurate prediction of protein residues that physically bind to ligands is important for drug design and protein docking studies. Most of the successful protein-ligand binding predictions were based on known structures. However, structural information is not largely available in practice due to the huge gap between the number of known protein sequences and that of experimentally solved structures

  4. Scattering of thermal He beams by crossed atomic and molecular beams. II. The He--Ar van der Waals potential

    International Nuclear Information System (INIS)

    Keilb, M.; Slankas, J.T.; Kuppermann, A.

    1979-01-01

    Differential cross sections for He--Ar scattering at room temperature have been measured. The experimental consistency of these measurements with others performed in different laboratories is demonstrated. Despite this consistency, the present van der Waals well depth of 1.78 meV, accurate to 10%, is smaller by 20% to 50% than the experimental values obtained previously. These discrepancies are caused by differences between the assumed mathematical forms or between the assumed dispersion coefficients of the potentials used in the present paper and those of previous studies. Independent investigations have shown that the previous assumptions are inappropriate for providing accurate potentials from fits to experimental differential cross section data for He--Ar. We use two forms free of this inadequacy in the present analysis: a modified version of the Simons--Parr--Finlan--Dunham (SPFD) potential, and a double Morse--van der Waals (M 2 SV) type of parameterization. The resulting He--Ar potentials are shown to be equal to with experimental error, throughout the range of interatomic distances to which the scattering data are sensitive. The SPFD or M 2 SV potentials are combined with a repulsive potential previously determined exclusively from fits to gas phase bulk properties. The resulting potentials, valid over the extended range of interatomic distances r> or approx. =2.4 A, are able to reproduce all these bulk properties quite well, without adversely affecting the quality of the fits to the DCS

  5. Lifshitz-type formulas for graphene and single-wall carbon nanotubes: van der Waals and Casimir interactions

    International Nuclear Information System (INIS)

    Bordag, M.; Geyer, B.; Klimchitskaya, G. L.; Mostepanenko, V. M.

    2006-01-01

    Lifshitz-type formulas are obtained for the van der Waals and Casimir interaction between graphene and a material plate, graphene and an atom or a molecule, and between a single-wall carbon nanotube and a plate. The reflection properties of electromagnetic oscillations on graphene are governed by the specific boundary conditions imposed on the infinitely thin positively charged plasma sheet, carrying a continuous fluid with some mass and charge density. The obtained formulas are applied to graphene interacting with Au and Si plates, to hydrogen atoms and molecules interacting with graphene, and to single-wall carbon nanotubes interacting with Au and Si plates. The generalizations to more complicated carbon nanostructures are discussed

  6. Van Sappho tot De Sade : momenten in de geschiedenis van de seksualiteit

    NARCIS (Netherlands)

    Bremmer, J.

    1988-01-01

    Waarom werd in het oude Griekenland een homoseksuele verhouding tussen twee volwassenen niet geaccepteerd? Waarom reikte in de middeleeuwen het verbod van incest tot aan de grenzen der verwantschap? Waarom was de negentiende eeuw doodsbenauwd voor masturbatie? Waarom zijn de bordelen met hun

  7. Printable Transfer-Free and Wafer-Size MoS2/Graphene van der Waals Heterostructures for High-Performance Photodetection.

    Science.gov (United States)

    Liu, Qingfeng; Cook, Brent; Gong, Maogang; Gong, Youpin; Ewing, Dan; Casper, Matthew; Stramel, Alex; Wu, Judy

    2017-04-12

    Two-dimensional (2D) MoS 2 /graphene van der Waals heterostructures integrate the superior light-solid interaction in MoS 2 and charge mobility in graphene for high-performance optoelectronic devices. Key to the device performance lies in a clean MoS 2 /graphene interface to facilitate efficient transfer of photogenerated charges. Here, we report a printable and transfer-free process for fabrication of wafer-size MoS 2 /graphene van der Waals heterostructures obtained using a metal-free-grown graphene, followed by low-temperature growth of MoS 2 from the printed thin film of ammonium thiomolybdate on graphene. The photodetectors based on the transfer-free MoS 2 /graphene heterostructures exhibit extraordinary short photoresponse rise/decay times of 20/30 ms, which are significantly faster than those of the previously reported MoS 2 /transferred-graphene photodetectors (0.28-1.5 s). In addition, a high photoresponsivity of up to 835 mA/W was observed in the visible spectrum on such transfer-free MoS 2 /graphene heterostructures, which is much higher than that of the reported photodetectors based on the exfoliated layered MoS 2 (0.42 mA/W), the graphene (6.1 mA/W), and transfer-free MoS 2 /graphene/SiC heterostructures (∼40 mA/W). The enhanced performance is attributed to the clean interface on the transfer-free MoS 2 /graphene heterostructures. This printable and transfer-free process paves the way for large-scale commercial applications of the emerging 2D heterostructures in optoelectronics and sensors.

  8. The effect of van der Waal's gap expansions on the surface electronic structure of layered topological insulators

    International Nuclear Information System (INIS)

    Eremeev, S V; Vergniory, M G; Chulkov, E V; Menshchikova, T V; Shaposhnikov, A A

    2012-01-01

    On the basis of relativistic ab initio calculations, we show that an expansion of van der Waal's (vdW) spacings in layered topological insulators caused by intercalation of deposited atoms, leads to the simultaneous emergence of parabolic and M-shaped two-dimensional electron gas (2DEG) bands as well as Rashba-splitting of the former states. The expansion of vdW spacings and the emergence of the 2DEG states localized in the (sub)surface region are also accompanied by a relocation of the topological surface state to the lower quintuple layers, that can explain the absence of inter-band scattering found experimentally. (paper)

  9. Synchronizing modified van der Pol-Duffing oscillators with offset terms using observer design: application to secure communications

    International Nuclear Information System (INIS)

    Fodjouong, G J; Fotsin, H B; Woafo, P

    2007-01-01

    This study addresses the adaptive synchronization of the modified van der Pol-Duffing (MVDPD) oscillator with offset terms. From our investigations of the system dynamics, we obtain that the system presents a chaotic behaviour at weak values of the offset parameters. Routh-Hurwitz criteria are used to study the asymptotic stability of the steady states. An adaptive observer design method is applied to achieve synchronization of two identical MVDPD oscillators with offset. Numerical simulations are given to validate the proposed synchronization approach. Moreover, as an application, the proposed scheme is applied to secure communication. Also, simulation results verify the proposed scheme's success in the communication application

  10. Range extension of Lyriothemis defonsekai van der Poorten, 2009 (Anisoptera: Libellulidae, an endemic odonate in Sri Lanka

    Directory of Open Access Journals (Sweden)

    Amila P. Sumanapala

    2016-11-01

    Full Text Available Lyriothemis defonsekai van der Poorten, 2009 is a nationally Critically Endangered odonate species in Sri Lanka.  It is endemic to the country and was known only from the type locality, Kudawa, Sinharaja Forest Reserve and its vicinity thus it was considered to be a point endemic.  We report the first ever record of the species outside Sinharaja extending the known range of the species.  The present observations were recorded from Yagirala Forest Reserve where an immature male and one or two mature females of the species were observed.  We also discuss the observations on its habitat and distribution range.  

  11. Increased precision for analysis of protein-ligand dissociation constants determined from chemical shift titrations

    Energy Technology Data Exchange (ETDEWEB)

    Markin, Craig J.; Spyracopoulos, Leo, E-mail: leo.spyracopoulos@ualberta.ca [University of Alberta, Department of Biochemistry (Canada)

    2012-06-15

    NMR is ideally suited for the analysis of protein-protein and protein ligand interactions with dissociation constants ranging from {approx}2 {mu}M to {approx}1 mM, and with kinetics in the fast exchange regime on the NMR timescale. For the determination of dissociation constants (K{sub D}) of 1:1 protein-protein or protein-ligand interactions using NMR, the protein and ligand concentrations must necessarily be similar in magnitude to the K{sub D}, and nonlinear least squares analysis of chemical shift changes as a function of ligand concentration is employed to determine estimates for the parameters K{sub D} and the maximum chemical shift change ({Delta}{delta}{sub max}). During a typical NMR titration, the initial protein concentration, [P{sub 0}], is held nearly constant. For this condition, to determine the most accurate parameters for K{sub D} and {Delta}{delta}{sub max} from nonlinear least squares analyses requires initial protein concentrations that are {approx}0.5 Multiplication-Sign K{sub D}, and a maximum concentration for the ligand, or titrant, of {approx}10 Multiplication-Sign [P{sub 0}]. From a practical standpoint, these requirements are often difficult to achieve. Using Monte Carlo simulations, we demonstrate that co-variation of the ligand and protein concentrations during a titration leads to an increase in the precision of the fitted K{sub D} and {Delta}{delta}{sub max} values when [P{sub 0}] > K{sub D}. Importantly, judicious choice of protein and ligand concentrations for a given NMR titration, combined with nonlinear least squares analyses using two independent variables (ligand and protein concentrations) and two parameters (K{sub D} and {Delta}{delta}{sub max}) is a straightforward approach to increasing the accuracy of measured dissociation constants for 1:1 protein-ligand interactions.

  12. Protein-Ligand Empirical Interaction Components for Virtual Screening.

    Science.gov (United States)

    Yan, Yuna; Wang, Weijun; Sun, Zhaoxi; Zhang, John Z H; Ji, Changge

    2017-08-28

    A major shortcoming of empirical scoring functions is that they often fail to predict binding affinity properly. Removing false positives of docking results is one of the most challenging works in structure-based virtual screening. Postdocking filters, making use of all kinds of experimental structure and activity information, may help in solving the issue. We describe a new method based on detailed protein-ligand interaction decomposition and machine learning. Protein-ligand empirical interaction components (PLEIC) are used as descriptors for support vector machine learning to develop a classification model (PLEIC-SVM) to discriminate false positives from true positives. Experimentally derived activity information is used for model training. An extensive benchmark study on 36 diverse data sets from the DUD-E database has been performed to evaluate the performance of the new method. The results show that the new method performs much better than standard empirical scoring functions in structure-based virtual screening. The trained PLEIC-SVM model is able to capture important interaction patterns between ligand and protein residues for one specific target, which is helpful in discarding false positives in postdocking filtering.

  13. Tunable band gaps in graphene/GaN van der Waals heterostructures

    International Nuclear Information System (INIS)

    Huang, Le; Kang, Jun; Li, Yan; Li, Jingbo; Yue, Qu

    2014-01-01

    Van der Waals (vdW) heterostructures consisting of graphene and other two-dimensional materials provide good opportunities for achieving desired electronic and optoelectronic properties. Here, we focus on vdW heterostructures composed of graphene and gallium nitride (GaN). Using density functional theory, we perform a systematic study on the structural and electronic properties of heterostructures consisting of graphene and GaN. Small band gaps are opened up at or near the Γ point of the Brillouin zone for all of the heterostructures. We also investigate the effect of the stacking sequence and electric fields on their electronic properties. Our results show that the tunability of the band gap is sensitive to the stacking sequence in bilayer-graphene-based heterostructures. In particular, in the case of graphene/graphene/GaN, a band gap of up to 334 meV is obtained under a perpendicular electric field. The band gap of bilayer graphene between GaN sheets (GaN/graphene/graphene/GaN) shows similar tunability, and increases to 217 meV with the perpendicular electric field reaching 0.8 V Å  − 1 . (paper)

  14. Classification of Beta-lactamases and penicillin binding proteins using ligand-centric network models.

    Directory of Open Access Journals (Sweden)

    Hakime Öztürk

    Full Text Available β-lactamase mediated antibiotic resistance is an important health issue and the discovery of new β-lactam type antibiotics or β-lactamase inhibitors is an area of intense research. Today, there are about a thousand β-lactamases due to the evolutionary pressure exerted by these ligands. While β-lactamases hydrolyse the β-lactam ring of antibiotics, rendering them ineffective, Penicillin-Binding Proteins (PBPs, which share high structural similarity with β-lactamases, also confer antibiotic resistance to their host organism by acquiring mutations that allow them to continue their participation in cell wall biosynthesis. In this paper, we propose a novel approach to include ligand sharing information for classifying and clustering β-lactamases and PBPs in an effort to elucidate the ligand induced evolution of these β-lactam binding proteins. We first present a detailed summary of the β-lactamase and PBP families in the Protein Data Bank, as well as the compounds they bind to. Then, we build two different types of networks in which the proteins are represented as nodes, and two proteins are connected by an edge with a weight that depends on the number of shared identical or similar ligands. These models are analyzed under three different edge weight settings, namely unweighted, weighted, and normalized weighted. A detailed comparison of these six networks showed that the use of ligand sharing information to cluster proteins resulted in modules comprising proteins with not only sequence similarity but also functional similarity. Consideration of ligand similarity highlighted some interactions that were not detected in the identical ligand network. Analysing the β-lactamases and PBPs using ligand-centric network models enabled the identification of novel relationships, suggesting that these models can be used to examine other protein families to obtain information on their ligand induced evolutionary paths.

  15. Electronic band structure of Two-Dimensional WS2/Graphene van der Waals Heterostructures

    Science.gov (United States)

    Henck, Hugo; Ben Aziza, Zeineb; Pierucci, Debora; Laourine, Feriel; Reale, Francesco; Palczynski, Pawel; Chaste, Julien; Silly, Mathieu G.; Bertran, François; Le Fèvre, Patrick; Lhuillier, Emmanuel; Wakamura, Taro; Mattevi, Cecilia; Rault, Julien E.; Calandra, Matteo; Ouerghi, Abdelkarim

    2018-04-01

    Combining single-layer two-dimensional semiconducting transition-metal dichalcogenides (TMDs) with a graphene layer in van der Waals heterostructures offers an intriguing means of controlling the electronic properties through these heterostructures. Here, we report the electronic and structural properties of transferred single-layer W S2 on epitaxial graphene using micro-Raman spectroscopy, angle-resolved photoemission spectroscopy measurements, and density functional theory (DFT) calculations. The results show good electronic properties as well as a well-defined band arising from the strong splitting of the single-layer W S2 valence band at the K points, with a maximum splitting of 0.44 eV. By comparing our DFT results with local and hybrid functionals, we find the top valence band of the experimental heterostructure is close to the calculations for suspended single-layer W S2 . Our results provide an important reference for future studies of electronic properties of W S2 and its applications in valleytronic devices.

  16. General theoretical description of angle-resolved photoemission spectroscopy of van der Waals structures

    Science.gov (United States)

    Amorim, B.

    2018-04-01

    We develop a general theory to model the angle-resolved photoemission spectroscopy (ARPES) of commensurate and incommensurate van der Waals (vdW) structures, formed by lattice mismatched and/or misaligned stacked layers of two-dimensional materials. The present theory is based on a tight-binding description of the structure and the concept of generalized umklapp processes, going beyond previous descriptions of ARPES in incommensurate vdW structures, which are based on continuous, low-energy models, being limited to structures with small lattice mismatch/misalignment. As applications of the general formalism, we study the ARPES bands and constant energy maps for two structures: twisted bilayer graphene and twisted bilayer MoS2. The present theory should be useful in correctly interpreting experimental results of ARPES of vdW structures and other systems displaying competition between different periodicities, such as two-dimensional materials weakly coupled to a substrate and materials with density wave phases.

  17. Multidisciplinary management of a patient with van der Woude syndrome: A case report.

    Science.gov (United States)

    Tehranchi, Azita; Behnia, Hossein; Nadjmi, Nasser; Yassaee, Vahid Reza; Ravesh, Zeinab; Mina, Morteza

    2017-01-01

    Van der Woude syndrome (VWS) is the most frequent form of syndromic cleft lip and palate (SCLP) accounting for 2% of all patients with CLP. We describe the orthodontic treatment of a girl diagnosed with VWS referred by her family dentist for her cosmetic concerns. Comprehensive orthodontic treatment, secondary bone graft, distraction osteogenesis (for a deficient maxilla), secondary palatoplasty and excision of lower lip pits, as well as orthodontic and prosthetic procedures may provide a satisfactory outcome. Genetic testing showed a known putative splice site mutation (c.174+1G/A) as the prime cause of VWS in our patient and her family. SCLP has significant effects on facial aesthetics and the psychosocial status. Parents should be assessed and counseled appropriately. This condition is treatable in the absence of life threatening systemic anomalies. An interdisciplinary team approach is advocated. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  18. Analysis of ligand-protein exchange by Clustering of Ligand Diffusion Coefficient Pairs (CoLD-CoP)

    Science.gov (United States)

    Snyder, David A.; Chantova, Mihaela; Chaudhry, Saadia

    2015-06-01

    NMR spectroscopy is a powerful tool in describing protein structures and protein activity for pharmaceutical and biochemical development. This study describes a method to determine weak binding ligands in biological systems by using hierarchic diffusion coefficient clustering of multidimensional data obtained with a 400 MHz Bruker NMR. Comparison of DOSY spectrums of ligands of the chemical library in the presence and absence of target proteins show translational diffusion rates for small molecules upon interaction with macromolecules. For weak binders such as compounds found in fragment libraries, changes in diffusion rates upon macromolecular binding are on the order of the precision of DOSY diffusion measurements, and identifying such subtle shifts in diffusion requires careful statistical analysis. The "CoLD-CoP" (Clustering of Ligand Diffusion Coefficient Pairs) method presented here uses SAHN clustering to identify protein-binders in a chemical library or even a not fully characterized metabolite mixture. We will show how DOSY NMR and the "CoLD-CoP" method complement each other in identifying the most suitable candidates for lysozyme and wheat germ acid phosphatase.

  19. A method for fast energy estimation and visualization of protein-ligand interaction

    Science.gov (United States)

    Tomioka, Nobuo; Itai, Akiko; Iitaka, Yoichi

    1987-10-01

    A new computational and graphical method for facilitating ligand-protein docking studies is developed on a three-dimensional computer graphics display. Various physical and chemical properties inside the ligand binding pocket of a receptor protein, whose structure is elucidated by X-ray crystal analysis, are calculated on three-dimensional grid points and are stored in advance. By utilizing those tabulated data, it is possible to estimate the non-bonded and electrostatic interaction energy and the number of possible hydrogen bonds between protein and ligand molecules in real time during an interactive docking operation. The method also provides a comprehensive visualization of the local environment inside the binding pocket. With this method, it becomes easier to find a roughly stable geometry of ligand molecules, and one can therefore make a rapid survey of the binding capability of many drug candidates. The method will be useful for drug design as well as for the examination of protein-ligand interactions.

  20. Exploring the composition of protein-ligand binding sites on a large scale.

    Directory of Open Access Journals (Sweden)

    Nickolay A Khazanov

    Full Text Available The residue composition of a ligand binding site determines the interactions available for diffusion-mediated ligand binding, and understanding general composition of these sites is of great importance if we are to gain insight into the functional diversity of the proteome. Many structure-based drug design methods utilize such heuristic information for improving prediction or characterization of ligand-binding sites in proteins of unknown function. The Binding MOAD database if one of the largest curated sets of protein-ligand complexes, and provides a source of diverse, high-quality data for establishing general trends of residue composition from currently available protein structures. We present an analysis of 3,295 non-redundant proteins with 9,114 non-redundant binding sites to identify residues over-represented in binding regions versus the rest of the protein surface. The Binding MOAD database delineates biologically-relevant "valid" ligands from "invalid" small-molecule ligands bound to the protein. Invalids are present in the crystallization medium and serve no known biological function. Contacts are found to differ between these classes of ligands, indicating that residue composition of biologically relevant binding sites is distinct not only from the rest of the protein surface, but also from surface regions capable of opportunistic binding of non-functional small molecules. To confirm these trends, we perform a rigorous analysis of the variation of residue propensity with respect to the size of the dataset and the content bias inherent in structure sets obtained from a large protein structure database. The optimal size of the dataset for establishing general trends of residue propensities, as well as strategies for assessing the significance of such trends, are suggested for future studies of binding-site composition.

  1. Measurement of visible cross sections in proton-lead collisions at √sNN = 5.02 TeV in van der Meer scans with the ALICE detector

    NARCIS (Netherlands)

    Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M. M.; Agnello, M.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anti.cíc, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badala, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Belmont, R.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berger, M. E.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Biel.cík, J.; Biel.cíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Böhmer, F. V.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Castillo Castellanos, J.; Casula, E. A R; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, D.; Das, I.; Das, K.; Das, S.; Dash, A.; Dash, S.; De, S.; Delagrange, H.; Deloff, A.; Dénes, E.; D'Erasmo, G.; De Caro, A.; De Cataldo, G.; De Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Rooij, R.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divìa, R.; Di Bari, D.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Djuvsland, O.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dørheim, S.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Esposito, M.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A S; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Graczykowski, L. K.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J. Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gumbo, M.; Gunji, T.; Gupta, A.; Gupta, R.; H. Khan, K.; Haake, R.; Haaland, O.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hippolyte, B.; Hladky, J.; Hristov, P.; Huang, M.; Humanic, T. J.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Innocenti, G. M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Jacholkowski, A.; Jacobs, P. M.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H S Y; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kadyshevskiy, V.; Kalcher, S.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Khan, M. M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kramer, F.; Krav.cáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kucera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, J.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; Ladron De Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; La Pointe, S. L.; La Rocca, P.; Lea, R.; Leardini, L.; Lee, G. R.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; Leoncino, M.; Léon Monźon, I.; Lévai, P.; Li, S.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohner, D.; Loizides, C.; Lopez, X.; Ĺopez Torres, E.; Lu, X. G.; Luettig, P.; Lunardon, M.; Luparello, G.; Luzzi, C.; Ma, R.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mare.s, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Markert, C.; Marquard, M.; Martashvili, I.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martin Blanco, J.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Mískowiec, D.; Mitra, J.; Mitu, C. M.; Mlynarz, J.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montano Zetina, L.; Montes, E.; Morando, M.; Moreira De Godoy, D. A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Okatan, A.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Sahoo, P.; Pachmayer, Y.; Pachr, M.; Pagano, P.; Paíc, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palmeri, A.; Pant, D.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Pesci, A.; Peskov, V.; Pestov, Y.; Petrá.cek, V.; Petran, M.; Petris, M.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Ploskón, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L M; Poghosyan, M. G.; Pohjoisaho, E. H O; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Rauf, A. W.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J. P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohni, S.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Safarík, K.; Sahlmuller, B.; Sahoo, R.; Sahu, P. K.; Saini, J.; Sakai, S.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Sánchez Rodríguez, F. J.; Sándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Segato, G.; Seger, J. E.; Sekiguchi, Y.; Selyuzhenkov, I.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Shangaraev, A.; Sharma, N.; Sharma, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Slupecki, M.; Smirnov, N.; Snellings, R. J M; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Spacek, M.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A P; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Sumbera, M.; Susa, T.; Symons, T. J M; Szabo, A.; Szanto De Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarazona Martinez, A.; Tarzila, M. G.; Tauro, A.; Tejeda Munoz, G.; Telesca, A.; Terrevoli, C.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Torii, H.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ulery, J.; Ullaland, K.; Uras, A.; Usai, G. L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Vande Vyvre, P.; Vannucci, L.; Van Der Maarel, J.; Van Hoorne, J. W.; Van Leeuwen, M.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limon, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; Von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wagner, V.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C S; Windelband, B.; Winn, M.; Xiang, C.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yang, S.; Yano, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I. K.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zaman, A.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, F.; Zhou, Y.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zoccarato, Y.; Zyzak, M.

    2014-01-01

    In 2013, the Large Hadron Collider provided proton-lead and lead-proton collisions at the center-of-mass energy per nucleon pair s NN=5.02 TeV . Van der Meer scans were performed for both configurations of colliding beams, and the cross section was measured for two reference processes, based on

  2. Magnetic levitation as a platform for competitive protein-ligand binding assays.

    Science.gov (United States)

    Shapiro, Nathan D; Soh, Siowling; Mirica, Katherine A; Whitesides, George M

    2012-07-17

    This paper describes a method based on magnetic levitation (MagLev) that is capable of indirectly measuring the binding of unlabeled ligands to unlabeled protein. We demonstrate this method by measuring the affinity of unlabeled bovine carbonic anhydrase (BCA) for a variety of ligands (most of which are benzene sulfonamide derivatives). This method utilizes porous gel beads that are functionalized with a common aryl sulfonamide ligand. The beads are incubated with BCA and allowed to reach an equilibrium state in which the majority of the immobilized ligands are bound to BCA. Since the beads are less dense than the protein, protein binding to the bead increases the overall density of the bead. This change in density can be monitored using MagLev. Transferring the beads to a solution containing no protein creates a situation where net protein efflux from the bead is thermodynamically favorable. The rate at which protein leaves the bead for the solution can be calculated from the rate at which the levitation height of the bead changes. If another small molecule ligand of BCA is dissolved in the solution, the rate of protein efflux is accelerated significantly. This paper develops a reaction-diffusion (RD) model to explain both this observation, and the physical-organic chemistry that underlies it. Using this model, we calculate the dissociation constants of several unlabeled ligands from BCA, using plots of levitation height versus time. Notably, although this method requires no electricity, and only a single piece of inexpensive equipment, it can measure accurately the binding of unlabeled proteins to small molecules over a wide range of dissociation constants (K(d) values within the range from ~10 nM to 100 μM are measured easily). Assays performed using this method generally can be completed within a relatively short time period (20 min-2 h). A deficiency of this system is that it is not, in its present form, applicable to proteins with molecular weight greater

  3. Sustainable protein from biogas. The perspective of susteine; Duurzaam eiwit uit biogas. Verkenning van het perspectief van susteine

    Energy Technology Data Exchange (ETDEWEB)

    Oosterhuis, N. [Easthouse Business Solutions, Rolde (Netherlands); Hooijer, H. [We-Do Interim Management and Consultancy, Culemborg (Netherlands)

    2007-12-15

    and a centrally located production of protein (due to scale of economy). However, such an option is not possible yet. Strict measurements for safety, quality and guarantee of supply as used by Gasunie makes such an option not directly applicable. It is advised to investigate which barriers (technical, political) have to be taken before this will be possible. Another hurdle in the economics is the applicability of the digested material. This is a general problem for biogas production from manure. In our surrounding countries various options for application of the digested material are investigated. Drying of the digested material, burning and application of the minerals as fertilizer would be an option. Also the isolation of the minerals and further purification of the digested material could be an option. However, this will lead to significant costs, although the earnings from the mineral stream might compensate. In general it may be concluded that earlier made statements and questions has been positively been answered. Production of protein from manure would lead to a more sustainable cattle breeding. On the other hand, major not only technical but also political hurdles have to be taken before such a project has a positive economical feasibility. [Dutch] Uit een eerder uitgevoerde analyse is geconcludeerd dat de productie van microbieel eiwit (SCP, Susteine) op basis van biogas een interessante optie zou kunnen zijn om enerzijds het mineralenoverschot in de veehouderijsector te verminderen en anderzijds om een sustainable eiwitbron voor diervoeder te produceren. In deze studie is de haalbaarheid van een dergelijke productie en een dergelijk product nader onderzocht. Geconcludeerd kan worden dat, mits voldaan aan de HACCP-eisen die de diervoedersector stelt, het product Susteine (aangenomen dat dit gelijkwaardig is aan het door Norferm geproduceerde eiwit), een aantrekkelijke positie kan veroveren. Weliswaar moet het product eerst worden toegelaten, hetgeen een

  4. Electric field modulation of Schottky barrier height in graphene/MoSe2 van der Waals heterointerface

    International Nuclear Information System (INIS)

    Sata, Yohta; Moriya, Rai; Morikawa, Sei; Yabuki, Naoto; Masubuchi, Satoru; Machida, Tomoki

    2015-01-01

    We demonstrate a vertical field-effect transistor based on a graphene/MoSe 2 van der Waals (vdW) heterostructure. The vdW interface between the graphene and MoSe 2 exhibits a Schottky barrier with an ideality factor of around 1.3, suggesting a high-quality interface. Owing to the low density of states in graphene, the position of the Fermi level in the graphene can be strongly modulated by an external electric field. Therefore, the Schottky barrier height at the graphene/MoSe 2 vdW interface is also modulated. We demonstrate a large current ON-OFF ratio of 10 5 . These results point to the potential high performance of the graphene/MoSe 2 vdW heterostructure for electronics applications

  5. PL-PatchSurfer: A Novel Molecular Local Surface-Based Method for Exploring Protein-Ligand Interactions

    Directory of Open Access Journals (Sweden)

    Bingjie Hu

    2014-08-01

    Full Text Available Structure-based computational methods have been widely used in exploring protein-ligand interactions, including predicting the binding ligands of a given protein based on their structural complementarity. Compared to other protein and ligand representations, the advantages of a surface representation include reduced sensitivity to subtle changes in the pocket and ligand conformation and fast search speed. Here we developed a novel method named PL-PatchSurfer (Protein-Ligand PatchSurfer. PL-PatchSurfer represents the protein binding pocket and the ligand molecular surface as a combination of segmented surface patches. Each patch is characterized by its geometrical shape and the electrostatic potential, which are represented using the 3D Zernike descriptor (3DZD. We first tested PL-PatchSurfer on binding ligand prediction and found it outperformed the pocket-similarity based ligand prediction program. We then optimized the search algorithm of PL-PatchSurfer using the PDBbind dataset. Finally, we explored the utility of applying PL-PatchSurfer to a larger and more diverse dataset and showed that PL-PatchSurfer was able to provide a high early enrichment for most of the targets. To the best of our knowledge, PL-PatchSurfer is the first surface patch-based method that treats ligand complementarity at protein binding sites. We believe that using a surface patch approach to better understand protein-ligand interactions has the potential to significantly enhance the design of new ligands for a wide array of drug-targets.

  6. PL-PatchSurfer: a novel molecular local surface-based method for exploring protein-ligand interactions.

    Science.gov (United States)

    Hu, Bingjie; Zhu, Xiaolei; Monroe, Lyman; Bures, Mark G; Kihara, Daisuke

    2014-08-27

    Structure-based computational methods have been widely used in exploring protein-ligand interactions, including predicting the binding ligands of a given protein based on their structural complementarity. Compared to other protein and ligand representations, the advantages of a surface representation include reduced sensitivity to subtle changes in the pocket and ligand conformation and fast search speed. Here we developed a novel method named PL-PatchSurfer (Protein-Ligand PatchSurfer). PL-PatchSurfer represents the protein binding pocket and the ligand molecular surface as a combination of segmented surface patches. Each patch is characterized by its geometrical shape and the electrostatic potential, which are represented using the 3D Zernike descriptor (3DZD). We first tested PL-PatchSurfer on binding ligand prediction and found it outperformed the pocket-similarity based ligand prediction program. We then optimized the search algorithm of PL-PatchSurfer using the PDBbind dataset. Finally, we explored the utility of applying PL-PatchSurfer to a larger and more diverse dataset and showed that PL-PatchSurfer was able to provide a high early enrichment for most of the targets. To the best of our knowledge, PL-PatchSurfer is the first surface patch-based method that treats ligand complementarity at protein binding sites. We believe that using a surface patch approach to better understand protein-ligand interactions has the potential to significantly enhance the design of new ligands for a wide array of drug-targets.

  7. Analysis of protein-protein docking decoys using interaction fingerprints: application to the reconstruction of CaM-ligand complexes

    Directory of Open Access Journals (Sweden)

    Uchikoga Nobuyuki

    2010-05-01

    Full Text Available Abstract Background Protein-protein docking for proteins with large conformational changes was analyzed by using interaction fingerprints, one of the scales for measuring similarities among complex structures, utilized especially for searching near-native protein-ligand or protein-protein complex structures. Here, we have proposed a combined method for analyzing protein-protein docking by taking large conformational changes into consideration. This combined method consists of ensemble soft docking with multiple protein structures, refinement of complexes, and cluster analysis using interaction fingerprints and energy profiles. Results To test for the applicability of this combined method, various CaM-ligand complexes were reconstructed from the NMR structures of unbound CaM. For the purpose of reconstruction, we used three known CaM-ligands, namely, the CaM-binding peptides of cyclic nucleotide gateway (CNG, CaM kinase kinase (CaMKK and the plasma membrane Ca2+ ATPase pump (PMCA, and thirty-one structurally diverse CaM conformations. For each ligand, 62000 CaM-ligand complexes were generated in the docking step and the relationship between their energy profiles and structural similarities to the native complex were analyzed using interaction fingerprint and RMSD. Near-native clusters were obtained in the case of CNG and CaMKK. Conclusions The interaction fingerprint method discriminated near-native structures better than the RMSD method in cluster analysis. We showed that a combined method that includes the interaction fingerprint is very useful for protein-protein docking analysis of certain cases.

  8. Compact two-electron wave function for bond dissociation and Van der Waals interactions: a natural amplitude assessment.

    Science.gov (United States)

    Giesbertz, Klaas J H; van Leeuwen, Robert

    2014-05-14

    Electron correlations in molecules can be divided in short range dynamical correlations, long range Van der Waals type interactions, and near degeneracy static correlations. In this work, we analyze for a one-dimensional model of a two-electron system how these three types of correlations can be incorporated in a simple wave function of restricted functional form consisting of an orbital product multiplied by a single correlation function f (r12) depending on the interelectronic distance r12. Since the three types of correlations mentioned lead to different signatures in terms of the natural orbital (NO) amplitudes in two-electron systems, we make an analysis of the wave function in terms of the NO amplitudes for a model system of a diatomic molecule. In our numerical implementation, we fully optimize the orbitals and the correlation function on a spatial grid without restrictions on their functional form. Due to this particular form of the wave function, we can prove that none of the amplitudes vanishes and moreover that it displays a distinct sign pattern and a series of avoided crossings as a function of the bond distance in agreement with the exact solution. This shows that the wave function ansatz correctly incorporates the long range Van der Waals interactions. We further show that the approximate wave function gives an excellent binding curve and is able to describe static correlations. We show that in order to do this the correlation function f (r12) needs to diverge for large r12 at large internuclear distances while for shorter bond distances it increases as a function of r12 to a maximum value after which it decays exponentially. We further give a physical interpretation of this behavior.

  9. 'Zaadoverdracht pepino onwaarschijnlijk' (interview met René van der Vlugt)

    NARCIS (Netherlands)

    Verheul, J.; Vlugt, van der R.A.A.

    2008-01-01

    Onderzoekers van Plant Research International (PRI) hebben een verdere toelichting gegeven op de eerdere uitkomsten van onderzoek naar het pepino mozaiekvirus in tomaat dat binnen het EU onderzoeksproject Pepeira plaatsvindt. Over de mogelijkheid van overdracht via zaad is een verkeerd beeld

  10. Modification of van La ar activity coefficient model

    International Nuclear Information System (INIS)

    Vakili-Nezhaad, G. R.; Modarress, H.; Mansoori, G. A.

    2001-01-01

    Based on statistical and mechanical arguments, the original van La ar activity coefficient model has been improved by reasonable assumptions. This modifications has been done by replacing the van der Waals equation of state with the Redlich-K wong equation of state in the formulation of van La ar with consistent mixing rules for the energy and volume parameters of this equation of state (a mix , b mix ). Other equations of state, such as the Soave modification of the Redlich-K wong equation of state, P eng-Robinson and Mohsen-Nia, Modarress and Mansoori equations of state, have been introduced in the formulation of van La ar for the activity coefficients of the components present in the binary liquid mixtures, and their effects on the accuracy of the resultant activity coefficient models have been examined. The results of these revised models have been compared with the experimental data and it was found that the Redlich-K wong equation of state with the van der Waals mixing rules for the volume and energy parameters of this equation, is the best choice among these equations of state. In addition, it can improve the original van La ar activity coefficient model and, therefore a better agreement with the experimental data is obtained

  11. Effect of temperature and density fluctuations on the spatially heterogeneous dynamics of glass-forming Van der Waals liquids under high pressure.

    Science.gov (United States)

    Koperwas, K; Grzybowski, A; Grzybowska, K; Wojnarowska, Z; Sokolov, A P; Paluch, M

    2013-09-20

    In this Letter, we show how temperature and density fluctuations affect the spatially heterogeneous dynamics at ambient and elevated pressures. By using high-pressure experimental data for van der Waals liquids, we examine contributions of the temperature and density fluctuations to the dynamics heterogeneity. We show that the dynamic heterogeneity decreases significantly with increasing pressure at a constant structural relaxation time (isochronal condition), while the broadening of the relaxation spectrum remains constant. This observation questions the relationship between spectral broadening and dynamic heterogeneity.

  12. Die funksies en toepassings van retoriese vrae | van der Merwe ...

    African Journals Online (AJOL)

    Dit kan byvoorbeeld in ekspressiewe funksie aangewend word ter be- klemtoning, ter oorreding en ter uiting van emosies. Hierdie soort vrae kom voor in mondelinge kommunikasie (bv. toesprake, didaktiese redevoering en gemoedelike gesprekvoering) en geskrewe taal (bv. in die media en die letterkunde). Die retoriese ...

  13. Rotational study on the van der Waals complex 1-chloro-1,1-difluoroethane-argon

    Science.gov (United States)

    Wang, Juan; Chen, Junhua; Feng, Gang; Xia, Zhining; Gou, Qian

    2018-03-01

    The rotational spectrum of the van der Waals complex formed between 1-chloro-1,1-difluoroethane and argon has been investigated by using a pulsed jet Fourier transform microwave spectrometer. Only one set of rotational transitions belonging to the lowest energy conformer has been observed and assigned, although theoretical calculations suggest six stable conformers that might be observed. The observed conformer, according to the experimental evidence from two isotopologues (35Cl and 37Cl), adopts a configuration in which the argon atom is located, close to the sbnd CF2Cl top, between the CCF and CCCl planes (the dihedral angle ∠ ArCCCl is 65.2°). The distance between argon atom and the center of mass of CH3CF2Cl is 3.949(2) Å. The dissociation energy, with pseudo diatomic approximation, is evaluated to be 2.4 kJ mol- 1.

  14. Van der Waals potential and vibrational energy levels of the ground state radon dimer

    Science.gov (United States)

    Sheng, Xiaowei; Qian, Shifeng; Hu, Fengfei

    2017-08-01

    In the present paper, the ground state van der Waals potential of the Radon dimer is described by the Tang-Toennies potential model, which requires five essential parameters. Among them, the two dispersion coefficients C6 and C8 are estimated from the well determined dispersion coefficients C6 and C8 of Xe2. C10 is estimated by using the approximation equation that C6C10/C82 has an average value of 1.221 for all the rare gas dimers. With these estimated dispersion coefficients and the well determined well depth De and Re the Born-Mayer parameters A and b are derived. Then the vibrational energy levels of the ground state radon dimer are calculated. 40 vibrational energy levels are observed in the ground state of Rn2 dimer. The last vibrational energy level is bound by only 0.0012 cm-1.

  15. Electronic structure, lattice dynamics, and optical properties of a novel van der Waals semiconductor heterostructure: InGaSe2

    Science.gov (United States)

    Ibarra-Hernández, Wilfredo; Elsayed, Hannan; Romero, Aldo H.; Bautista-Hernández, Alejandro; Olguín, Daniel; Cantarero, Andrés

    2017-07-01

    There is a growing interest in the property dependence of transition metal dichalcogenides as a function of the number of layers and formation of heterostructures. Depending on the stacking, doping, edge effects, and interlayer distance, the properties can be modified, which opens the door to novel applications that require a detailed understanding of the atomic mechanisms responsible for those changes. In this work, we analyze the electronic properties and lattice dynamics of a heterostructure constructed by simultaneously stacking InSe layers and GaSe layers bounded by van der Waals forces. We have assumed the same space group of GaSe, P 6 ¯m 2 as it becomes the lower energy configuration for other considered stackings. The structural, vibrational, and optical properties of this layered compound have been calculated using density functional theory. The structure is shown to be energetically, thermally, and elastically stable, which indicates its possible chemical synthesis. A correlation of the theoretical physical properties with respect to its parent compounds is extensively discussed. One of the most interesting properties is the low thermal conductivity, which indicates its potential use in thermolectric applications. Additionally, we discuss the possibility of using electronic gap engineering methods, which can help us to tune the optical emission in a variable range close to that used in the field of biological systems (NIR). Finally, the importance of considering properly van der Waals dispersion in layered materials has been emphasized as included in the exchange correlation functional. As for the presence of atoms with important spin-orbit coupling, relativistic corrections have been included.

  16. Energetics investigation on encapsulation of protein/peptide drugs in carbon nanotubes.

    Science.gov (United States)

    Chen, Qu; Wang, Qi; Liu, Ying-Chun; Wu, Tao; Kang, Yu; Moore, Joshua D; Gubbins, Keith E

    2009-07-07

    This work focuses on the dynamic properties and energetics of the protein/peptide drug during its transport through carbon nanotubes (CNTs). A systematic study was performed on the interaction between the peptide and the CNTs. In the molecular dynamics (MD) simulations, the protein/peptide molecule Zadaxin is observed to be encapsulated inside the nanotube after its spontaneous insertion and oscillates around the center of the tube, where the van der Waals interaction energy is observed to be a minimum. Furthermore, it is found by performing steered MD simulations that the pulling force applied to the peptide reaches a maximum value, which demonstrates the ability of the CNTs to trap protein/peptide drugs. Such effects, attributed to van der Waals interactions, can be influenced by varying the lengths and diameters of the CNTs. Longer nanotubes provide a broader area to trap the peptide, while smaller nanotubes are able to encapsulate the peptide with a deeper interaction energy well. This investigation provides insights into nanoscale pharmaceutical drug delivery devices.

  17. Behavior of quasinormal modes and Van der Waals-like phase transition of charged AdS black holes in massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Zou, De-Cheng; Yue, Ruihong [Yangzhou University, Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou (China); Liu, Yunqi [Huazhong University of Science and Technology, School of Physics, Wuhan (China)

    2017-06-15

    In this work, we utilize the quasinormal modes (QNMs) of a massless scalar perturbation to probe the Van der Waals-like small and large black holes (SBH/LBH) phase transition of charged topological Anti-de Sitter (AdS) black holes in four-dimensional massive gravity. We find that the signature of this SBH/LBH phase transition is detected in the isobaric as well as in the isothermal process. This further supports the idea that the QNMs can be an efficient tool to investigate the thermodynamical phase transition. (orig.)

  18. Binding Ligand Prediction for Proteins Using Partial Matching of Local Surface Patches

    Directory of Open Access Journals (Sweden)

    Lee Sael

    2010-12-01

    Full Text Available Functional elucidation of uncharacterized protein structures is an important task in bioinformatics. We report our new approach for structure-based function prediction which captures local surface features of ligand binding pockets. Function of proteins, specifically, binding ligands of proteins, can be predicted by finding similar local surface regions of known proteins. To enable partial comparison of binding sites in proteins, a weighted bipartite matching algorithm is used to match pairs of surface patches. The surface patches are encoded with the 3D Zernike descriptors. Unlike the existing methods which compare global characteristics of the protein fold or the global pocket shape, the local surface patch method can find functional similarity between non-homologous proteins and binding pockets for flexible ligand molecules. The proposed method improves prediction results over global pocket shape-based method which was previously developed by our group.

  19. Binding ligand prediction for proteins using partial matching of local surface patches.

    Science.gov (United States)

    Sael, Lee; Kihara, Daisuke

    2010-01-01

    Functional elucidation of uncharacterized protein structures is an important task in bioinformatics. We report our new approach for structure-based function prediction which captures local surface features of ligand binding pockets. Function of proteins, specifically, binding ligands of proteins, can be predicted by finding similar local surface regions of known proteins. To enable partial comparison of binding sites in proteins, a weighted bipartite matching algorithm is used to match pairs of surface patches. The surface patches are encoded with the 3D Zernike descriptors. Unlike the existing methods which compare global characteristics of the protein fold or the global pocket shape, the local surface patch method can find functional similarity between non-homologous proteins and binding pockets for flexible ligand molecules. The proposed method improves prediction results over global pocket shape-based method which was previously developed by our group.

  20. PSOVina: The hybrid particle swarm optimization algorithm for protein-ligand docking.

    Science.gov (United States)

    Ng, Marcus C K; Fong, Simon; Siu, Shirley W I

    2015-06-01

    Protein-ligand docking is an essential step in modern drug discovery process. The challenge here is to accurately predict and efficiently optimize the position and orientation of ligands in the binding pocket of a target protein. In this paper, we present a new method called PSOVina which combined the particle swarm optimization (PSO) algorithm with the efficient Broyden-Fletcher-Goldfarb-Shannon (BFGS) local search method adopted in AutoDock Vina to tackle the conformational search problem in docking. Using a diverse data set of 201 protein-ligand complexes from the PDBbind database and a full set of ligands and decoys for four representative targets from the directory of useful decoys (DUD) virtual screening data set, we assessed the docking performance of PSOVina in comparison to the original Vina program. Our results showed that PSOVina achieves a remarkable execution time reduction of 51-60% without compromising the prediction accuracies in the docking and virtual screening experiments. This improvement in time efficiency makes PSOVina a better choice of a docking tool in large-scale protein-ligand docking applications. Our work lays the foundation for the future development of swarm-based algorithms in molecular docking programs. PSOVina is freely available to non-commercial users at http://cbbio.cis.umac.mo .

  1. Experimental study of complex mixed-mode oscillations generated in a Bonhoeffer-van der Pol oscillator under weak periodic perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Kuniyasu, E-mail: kuniyasu.shimizu@it-chiba.ac.jp [Department of Electrical, Electronics and Computer Engineering, Chiba Institute of Technology, Narashino 275-0016 (Japan); Sekikawa, Munehisa [Department of Mechanical and Intelligent Engineering, Utsunomiya University, Utsunomiya 321-8585 (Japan); Inaba, Naohiko [Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kawasaki 214-8571 (Japan)

    2015-02-15

    Bifurcations of complex mixed-mode oscillations denoted as mixed-mode oscillation-incrementing bifurcations (MMOIBs) have frequently been observed in chemical experiments. In a previous study [K. Shimizu et al., Physica D 241, 1518 (2012)], we discovered an extremely simple dynamical circuit that exhibits MMOIBs. Our model was represented by a slow/fast Bonhoeffer-van der Pol circuit under weak periodic perturbation near a subcritical Andronov-Hopf bifurcation point. In this study, we experimentally and numerically verify that our dynamical circuit captures the essence of the underlying mechanism causing MMOIBs, and we observe MMOIBs and chaos with distinctive waveforms in real circuit experiments.

  2. Die uitbouing van die Bybelse kanon in antieke Judaïsme en die ...

    African Journals Online (AJOL)

    31 Jul 2015 ... die oer-Christelike boodskap tot by sy Ou Testamentiese wortels, die geskrifte van Israel wat cum grano salis die 'Bybel' van die oer-Christendom geword het en die blywende verwysingspunt van die Christelike boodskap is. Erkenning. Hierdie artikel is vertaal na Afrikaans deur Prof. Jan G. van der Watt.

  3. Ligand-free, protein-bound technetium-99m. Evidence for tumour localisation

    International Nuclear Information System (INIS)

    Jakovljevic, A.C.; Pojer, P.M.

    1984-11-01

    An hypothesis that cations accumulate in tumours independent of ligand is tested. A preparation of technetium-99m known to be ligand-free (that is, the technetium is protein bound and no other ligand is injected) has been shown to accumulate in a T-cell lymphoma

  4. Mobiele apparaten en apps als versnellers van Open Educational Resources

    NARCIS (Netherlands)

    De Vries, Fred; Thuss, Frank

    2013-01-01

    De Vries, F., & Thuss, F. (2013). Mobiele apparaten en apps als versnellers van Open Educational Resources? In R. Jacobi, H. Jelgerhuis, & N. van der Woert (Eds.), Trendrapport Open Educational Resources 2013 (pp. 51-54). Utrecht: SURF Foundation - Special Interest Group Open Educational Resources

  5. Optimizing the protein switch: altering nuclear import and export signals, and ligand binding domain

    Science.gov (United States)

    Kakar, Mudit; Davis, James R.; Kern, Steve E.; Lim, Carol S.

    2007-01-01

    Ligand regulated localization controllable protein constructs were optimized in this study. Several constructs were made from a classical nuclear export signal (HIV-rev, MAPKK, or progesterone receptor) in combination with a SV40 T-antigen type nuclear import signal. Different ligand binding domains (LBDs from glucocorticoid receptor or progesterone receptor) were also tested for their ability to impart control over localization of proteins. This study was designed to create constructs which are cytoplasmic in the absence of ligand and nuclear in the presence of ligand, and also to regulate the amount of protein translocating to the nucleus on ligand induction. The balance between the strengths of import and export signals was critical for overall localization of proteins. The amount of protein entering the nucleus was also affected by the dose of ligand (10-100nM). However, the overall import characteristics were determined by the strengths of localization signals and the inherent localization properties of the LBD used. This study established that the amount of protein present in a particular compartment can be regulated by the use of localization signals of various strengths. These optimized localization controllable protein constructs can be used to correct for diseases due to aberrant localization of proteins. PMID:17574289

  6. Chirality of TLR-2 ligand Pam3CysSK4 in fully synthetic peptide conjugates critically influences the induction of specific CD8+ T-cells.

    Science.gov (United States)

    Khan, Selina; Weterings, Jimmy J; Britten, Cedrik M; de Jong, Ana R; Graafland, Dirk; Melief, Cornelis J M; van der Burg, Sjoerd H; van der Marel, Gijs; Overkleeft, Hermen S; Filippov, Dmitri V; Ossendorp, Ferry

    2009-03-01

    Covalent conjugation of synthetic Toll-like receptor ligands (TLR-L) to synthetic antigenic peptides provides well-defined constructs that have significantly improved capacity to induce efficient priming of CD8(+) T lymphocytes in vivo. We have recently explored the cellular mechanisms underlying the efficient induction of a CD8(+) cytotoxic T lymphocyte response by such synthetic model vaccines [Khan, S., Bijker, M.S., Weterings, J.J., Tanke, H.J., Adema, G.J., van, H.T., Drijfhout, J.W., Melief, C.J., Overkleeft, H.S., van der Marel, G.A., Filippov, D.V., van der Burg, S.H., Ossendorp, F., 2007. Distinct uptake mechanisms but similar intracellular processing of two different toll-like receptor ligand-peptide conjugates in dendritic cells. J. Biol. Chem. 282, 21145-21159.]. In the current study we have investigated the behaviour of two diastereomers of the TLR-2 ligand Pam(3)CSK(4) (Pam) derivatives, namely the R- and S-epimers at C-2 of the glycerol moiety. Other studies have shown that the Pam(3)Cys based lipopeptides of R-configuration (Pam(R)) in the glycerol moiety enhanced macrophage and B-cell activation compared to those with S-configuration (Pam(S)). Here we report that Pam(R)-conjugates lead to better activation of dendritic cells than the Pam(S)-conjugates as judged by higher IL-12 secretion, upregulation of relevant markers for dendritic cell maturation. In contrast both epimers were internalized equally efficient in a clathrin-dependent manner indicating no qualitative difference in the uptake of the two stereoisomeric Pam-conjugates. We conclude that the enhanced DC activation is due to enhanced TLR-2 triggering by the Pam(R)-conjugate in contrast to the Pam(S)-conjugate. Importantly, induction of specific CD8(+) T-cells was significantly higher in mice injected with the Pam(R)-conjugates compared to mice injected with the Pam(S)-conjugate. In summary we show that the favourable effects of the Pam(R)-configuration of TLR-2 ligand can be attributed to

  7. AMMOS2: a web server for protein-ligand-water complexes refinement via molecular mechanics.

    Science.gov (United States)

    Labbé, Céline M; Pencheva, Tania; Jereva, Dessislava; Desvillechabrol, Dimitri; Becot, Jérôme; Villoutreix, Bruno O; Pajeva, Ilza; Miteva, Maria A

    2017-07-03

    AMMOS2 is an interactive web server for efficient computational refinement of protein-small organic molecule complexes. The AMMOS2 protocol employs atomic-level energy minimization of a large number of experimental or modeled protein-ligand complexes. The web server is based on the previously developed standalone software AMMOS (Automatic Molecular Mechanics Optimization for in silico Screening). AMMOS utilizes the physics-based force field AMMP sp4 and performs optimization of protein-ligand interactions at five levels of flexibility of the protein receptor. The new version 2 of AMMOS implemented in the AMMOS2 web server allows the users to include explicit water molecules and individual metal ions in the protein-ligand complexes during minimization. The web server provides comprehensive analysis of computed energies and interactive visualization of refined protein-ligand complexes. The ligands are ranked by the minimized binding energies allowing the users to perform additional analysis for drug discovery or chemical biology projects. The web server has been extensively tested on 21 diverse protein-ligand complexes. AMMOS2 minimization shows consistent improvement over the initial complex structures in terms of minimized protein-ligand binding energies and water positions optimization. The AMMOS2 web server is freely available without any registration requirement at the URL: http://drugmod.rpbs.univ-paris-diderot.fr/ammosHome.php. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Photochemistry of xenon-halogen Van der Waals complexes (X2 = Cl2, Br2, I2): evidence for the intermediate states in the (Xe-X2)*→ XeX* + X reaction

    International Nuclear Information System (INIS)

    Boivineau, Michel

    1987-01-01

    This research thesis addresses the reactivity of excited states of xenon-halogen Van der Waals complexes (Cl 2 , Br 2 , I 2 ) submitted to a multi-photonic excitation. The objective of this study is, by means of a specific experimental approach, to highlight the R*+ X 2 *- to better understand the reaction mechanism, and to study the reactivity of rare gas/halogen systems depending on the halogen nature. After having reported a bibliographical study on each studied system, the author describes the experimental system, reports and discusses experimental results obtained on the different complex systems (chlorine-, bromine- or iodine-based). He finally comments a possible and original application of these works in the development of an excimer laser with a new active medium (the rare gas/halogen Van der Waals complex) which would allow a continuous operation and an easy discharge production [fr

  9. Structure of the complex between teicoplanin and a bacterial cell-wall peptide: use of a carrier-protein approach

    International Nuclear Information System (INIS)

    Economou, Nicoleta J.; Zentner, Isaac J.; Lazo, Edwin; Jakoncic, Jean; Stojanoff, Vivian; Weeks, Stephen D.; Grasty, Kimberly C.; Cocklin, Simon; Loll, Patrick J.

    2013-01-01

    Using a carrier-protein strategy, the structure of teicoplanin bound to its bacterial cell-wall target has been determined. The structure reveals the molecular determinants of target recognition, flexibility in the antibiotic backbone and intrinsic radiation sensitivity of teicoplanin. Multidrug-resistant bacterial infections are commonly treated with glycopeptide antibiotics such as teicoplanin. This drug inhibits bacterial cell-wall biosynthesis by binding and sequestering a cell-wall precursor: a d-alanine-containing peptide. A carrier-protein strategy was used to crystallize the complex of teicoplanin and its target peptide by fusing the cell-wall peptide to either MBP or ubiquitin via native chemical ligation and subsequently crystallizing the protein–peptide–antibiotic complex. The 2.05 Å resolution MBP–peptide–teicoplanin structure shows that teicoplanin recognizes its ligand through a combination of five hydrogen bonds and multiple van der Waals interactions. Comparison of this teicoplanin structure with that of unliganded teicoplanin reveals a flexibility in the antibiotic peptide backbone that has significant implications for ligand recognition. Diffraction experiments revealed an X-ray-induced dechlorination of the sixth amino acid of the antibiotic; it is shown that teicoplanin is significantly more radiation-sensitive than other similar antibiotics and that ligand binding increases radiosensitivity. Insights derived from this new teicoplanin structure may contribute to the development of next-generation antibacterials designed to overcome bacterial resistance

  10. Particle number fluctuations for the van der Waals equation of state

    International Nuclear Information System (INIS)

    Vovchenko, V; Anchishkin, D V; Gorenstein, M I

    2015-01-01

    The van der Waals (VDW) equation of state describes a thermal equilibrium in system of particles, where both repulsive and attractive interactions between them are included. This equation predicts the existence of the first order liquid–gas phase transition and the critical point. The standard form of the VDW equation is given by the pressure function in a canonical ensemble (CE) with a fixed number of particles. In this paper the VDW equation is derived within the grand canonical ensemble (GCE) formulation. We argue that this procedure can be useful for new physical applications, in particular, the fluctuations of the number of particles, which are absent in the CE, can be studied in the GCE. For the VDW equation of state in the GCE the particle number fluctuations are calculated for the whole phase diagram, both outside and inside the liquid–gas mixed phase region. It is shown that the scaled variance of these fluctuations remains finite within the mixed phase and goes to infinity at the critical point. The GCE formulation of the VDW equation of state can also be an important step for its application in the statistical description of hadronic systems, where numbers of different particle species are usually not conserved. (paper)

  11. Signatures of van der Waals binding: A coupling-constant scaling analysis

    Science.gov (United States)

    Jiao, Yang; Schröder, Elsebeth; Hyldgaard, Per

    2018-02-01

    The van der Waals (vdW) density functional (vdW-DF) method [Rep. Prog. Phys. 78, 066501 (2015), 10.1088/0034-4885/78/6/066501] describes dispersion or vdW binding by tracking the effects of an electrodynamic coupling among pairs of electrons and their associated exchange-correlation holes. This is done in a nonlocal-correlation energy term Ecnl, which permits density functional theory calculation in the Kohn-Sham scheme. However, to map the nature of vdW forces in a fully interacting materials system, it is necessary to also account for associated kinetic-correlation energy effects. Here, we present a coupling-constant scaling analysis, which permits us to compute the kinetic-correlation energy Tcnl that is specific to the vdW-DF account of nonlocal correlations. We thus provide a more complete spatially resolved analysis of the electrodynamical-coupling nature of nonlocal-correlation binding, including vdW attraction, in both covalently and noncovalently bonded systems. We find that kinetic-correlation energy effects play a significant role in the account of vdW or dispersion interactions among molecules. Furthermore, our mapping shows that the total nonlocal-correlation binding is concentrated to pockets in the sparse electron distribution located between the material fragments.

  12. Mobiele apparaten en apps als versnellers van Open Educational Resources

    OpenAIRE

    De Vries, Fred; Thuss, Frank

    2013-01-01

    De Vries, F., & Thuss, F. (2013). Mobiele apparaten en apps als versnellers van Open Educational Resources? In R. Jacobi, H. Jelgerhuis, & N. van der Woert (Eds.), Trendrapport Open Educational Resources 2013 (pp. 51-54). Utrecht: SURF Foundation - Special Interest Group Open Educational Resources SURF.

  13. Mechanism of electron attachment to van der Waals clusters: Application to carbon dioxide clusters

    International Nuclear Information System (INIS)

    Tsukada, M.; Shima, N.; Tsuneyuki, S.; Kageshima, H.; Kondow, T.

    1987-01-01

    A theory on the attachment of very slow electrons to van der Waals clusters was developed on the basis of the electronic structure theory, and was applied to clarify the mechanism of the collisional electron transfer from a high-Rydberg atom to a CO 2 cluster. The strong coupled electron--phonon model is found to afford a reasonable mechanism of the attachment. The equilibrium geometry of (CO 2 )/sub N/ (2≤N≤13) clusters are determined and their vertical affinity levels are obtained by the DV-X α-transition state method. Using this information, as well as some plausible assumptions on the values of the coupling constants, the attachment cross section σ is evaluated as a function of the energy of the incident electron. The theory predicts the existence of the threshold cluster size for the attachment and a sharp decrease of σ with the energy, which are consistent with the experimental results

  14. Chaotic oscillations of the Klein-Gordon equation with distributed energy pumping and van der Pol boundary regulation and distributed time-varying coefficients

    Directory of Open Access Journals (Sweden)

    Bo Sun

    2014-09-01

    Full Text Available Consider the Klein-Gordon equation with variable coefficients, a van der Pol cubic nonlinearity in one of the boundary conditions and a spatially distributed antidamping term, we use a variable-substitution technique together with the analogy with the 1-dimensional wave equation to prove that for the Klein-Gordon equation chaos occurs for a class of equations and boundary conditions when system parameters enter a certain regime. Chaotic and nonchaotic profiles of solutions are illustrated by computer graphics.

  15. FDE-vdW: A van der Waals inclusive subsystem density-functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Kevorkyants, Ruslan; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu [Department of Chemistry, Rutgers University, Newark, New Jersey 07102 (United States); Eshuis, Henk [Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043 (United States)

    2014-07-28

    We present a formally exact van der Waals inclusive electronic structure theory, called FDE-vdW, based on the Frozen Density Embedding formulation of subsystem Density-Functional Theory. In subsystem DFT, the energy functional is composed of subsystem additive and non-additive terms. We show that an appropriate definition of the long-range correlation energy is given by the value of the non-additive correlation functional. This functional is evaluated using the fluctuation–dissipation theorem aided by a formally exact decomposition of the response functions into subsystem contributions. FDE-vdW is derived in detail and several approximate schemes are proposed, which lead to practical implementations of the method. We show that FDE-vdW is Casimir-Polder consistent, i.e., it reduces to the generalized Casimir-Polder formula for asymptotic inter-subsystems separations. Pilot calculations of binding energies of 13 weakly bound complexes singled out from the S22 set show a dramatic improvement upon semilocal subsystem DFT, provided that an appropriate exchange functional is employed. The convergence of FDE-vdW with basis set size is discussed, as well as its dependence on the choice of associated density functional approximant.

  16. Tunneling Photocurrent Assisted by Interlayer Excitons in Staggered van der Waals Hetero-Bilayers.

    Science.gov (United States)

    Luong, Dinh Hoa; Lee, Hyun Seok; Neupane, Guru Prakash; Roy, Shrawan; Ghimire, Ganesh; Lee, Jin Hee; Vu, Quoc An; Lee, Young Hee

    2017-09-01

    Vertically stacked van der Waals (vdW) heterostructures have been suggested as a robust platform for studying interfacial phenomena and related electric/optoelectronic devices. While the interlayer Coulomb interaction mediated by the vdW coupling has been extensively studied for carrier recombination processes in a diode transport, its correlation with the interlayer tunneling transport has not been elucidated. Here, a contrast is reported between tunneling and drift photocurrents tailored by the interlayer coupling strength in MoSe 2 /MoS 2 hetero-bilayers (HBs). The interfacial coupling modulated by thermal annealing is identified by the interlayer phonon coupling in Raman spectra and the emerging interlayer exciton peak in photoluminescence spectra. In strongly coupled HBs, positive photocurrents are observed owing to the inelastic band-to-band tunneling assisted by interlayer excitons that prevail over exciton recombinations. By contrast, weakly coupled HBs exhibit a negative photovoltaic diode behavior, manifested as a drift current without interlayer excitonic emissions. This study sheds light on tailoring the tunneling transport for numerous optoelectronic HB devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Quantum reflection times and space shifts for Casimir-van der Waals potential tails

    International Nuclear Information System (INIS)

    Jurisch, Alexander; Friedrich, Harald

    2004-01-01

    When cold atoms approach a surface, they can be quantum reflected by quantal regions in the tail of the atom-surface potential. We study the phase of the reflection amplitude for Casimir-van der Waals potential tails, depending on the critical parameter ρ=ρ(C 3 ,C 4 ), which describes the relative importance of the -C 3 /r 3 and -C 4 /r 4 parts of the potential. The phase is related to observable kinematic quantities, the space and time shifts, the reflected atom experiences. We study three different models for the shape of the potential between the asymptotic limits and observe that the phases are more sensitive to the potential shape than the quantum reflection probabilities. At threshold, there are always time delays in comparison to the free movement. This is in contrast to the classical movement, which shows time gains. Further above threshold, the quantum reflected atom experiences a time gain relative to free motion, but this time gain is generally smaller than that of the classical particle

  18. Exploration of the NH3-H2 van der Waals interaction by high level ab initio calculations

    International Nuclear Information System (INIS)

    Mladenovic, Mirjana; Lewerenz, Marius; Cilpa, Geraldine; Rosmus, Pavel; Chambaud, Gilberte

    2008-01-01

    The intermolecular potential energy for the van der Waals complex between ammonia and the hydrogen molecule has been studied by means of the coupled cluster CCSD(T) method and aug-cc-pVXZ (X = D, T, Q, 5) basis sets and with inclusion of the Boys and Bernardi counterpoise correction. For sufficiently large basis sets the only true electronic minimum energy structure of NH 3 -H 2 is found to possess C 3v point group symmetry. Various minimum energy paths for the relative motion of NH 3 and H 2 are analysed in order to understand the topography of the intermolecular potential. The complete basis set limit for the electronic dissociation energy is estimated to be about 253 cm -1 at the CCSD(T) level

  19. Bandgap engineering in van der Waals heterostructures of blue phosphorene and MoS{sub 2}: A first principles calculation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.Y. [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Si, M.S., E-mail: sims@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Peng, S.L. [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Zhang, F. [Key Lab of Photovoltaic Materials of Henan Province, Henan University, Kaifeng 475001 (China); Wang, Y.H.; Xue, D.S. [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2015-11-15

    Blue phosphorene (BP) was theoretically predicted to be thermally stable recently. Considering its similar in-layer hexagonal lattice to MoS{sub 2}, MoS{sub 2} could be an appropriate substrate to grow BP in experiments. In this work, the van der Waals (vdW) heterostructures are constructed by stacking BP on top of MoS{sub 2}. The thermal stability and electronic structures are evaluated based on first principles calculations with vdW-corrected exchange-correlation functional. The formation of the heterostructures is demonstrated to be exothermic and the most stable stacking configuration is confirmed. The heterostructures BP/MoS{sub 2} preserve both the properties of BP and MoS{sub 2} but exhibit relatively narrower bandgaps due to the interlayer coupling effect. The band structures can be further engineered by applying external electric fields. An indirect–direct bandgap transition in bilayer BP/MoS{sub 2} is demonstrated to be controlled by the symmetry property of the built-in electric dipole fields. - Graphical abstract: An indirect-direct band gap transition occurs in van der Waals heterostructure of MoS{sub 2}/BP under external electric fields which is demonstrated to be controlled by the symmetry of the built-in electric dipole fields. - Highlights: • The stacking of heterostructures of BP/MoS{sub 2} is demonstrated to be exothermic. • This suggests that it is possible to grow BP using MoS{sub 2} as the substrate. • The band structures of the heterostructures are exploited. • It realizes an indirect–direct gap transition under external electric fields. • The symmetry of the built-in electric dipole fields controls such gap transition.

  20. The Role of Protein-Ligand Contacts in Allosteric Regulation of the Escherichia coli Catabolite Activator Protein*

    Science.gov (United States)

    Townsend, Philip D.; Rodgers, Thomas L.; Glover, Laura C.; Korhonen, Heidi J.; Richards, Shane A.; Colwell, Lucy J.; Pohl, Ehmke; Wilson, Mark R.; Hodgson, David R. W.; McLeish, Tom C. B.; Cann, Martin J.

    2015-01-01

    Allostery is a fundamental process by which ligand binding to a protein alters its activity at a distant site. Both experimental and theoretical evidence demonstrate that allostery can be communicated through altered slow relaxation protein dynamics without conformational change. The catabolite activator protein (CAP) of Escherichia coli is an exemplar for the analysis of such entropically driven allostery. Negative allostery in CAP occurs between identical cAMP binding sites. Changes to the cAMP-binding pocket can therefore impact the allosteric properties of CAP. Here we demonstrate, through a combination of coarse-grained modeling, isothermal calorimetry, and structural analysis, that decreasing the affinity of CAP for cAMP enhances negative cooperativity through an entropic penalty for ligand binding. The use of variant cAMP ligands indicates the data are not explained by structural heterogeneity between protein mutants. We observe computationally that altered interaction strength between CAP and cAMP variously modifies the change in allosteric cooperativity due to second site CAP mutations. As the degree of correlated motion between the cAMP-contacting site and a second site on CAP increases, there is a tendency for computed double mutations at these sites to drive CAP toward noncooperativity. Naturally occurring pairs of covarying residues in CAP do not display this tendency, suggesting a selection pressure to fine tune allostery on changes to the CAP ligand-binding pocket without a drive to a noncooperative state. In general, we hypothesize an evolutionary selection pressure to retain slow relaxation dynamics-induced allostery in proteins in which evolution of the ligand-binding site is occurring. PMID:26187469

  1. A comparative morphological revision of the aphid genus Myzaphis van der Goot, 1913 (Insecta: Hemiptera: Aphididae) revealed a new genus and three new species.

    Science.gov (United States)

    Kanturski, Mariusz; Barjadze, Shalva; Jensen, Andrew S; Wieczorek, Karina

    2018-01-01

    The aphid genus Myzaphis van der Goot, 1913 from the tribe Macrosiphini is revised to include eight species. Apterous and alate viviparous females, known fundatrices and known sexual morphs (oviparous females and males) of Myzaphis bucktoni, M. juchnevitschae, M. rosarum, M. tianshanica and M. turanica are re-described and illustrated. Lectotype and paralectotypes of Myzaphis bucktoni and M. turanica are designated. The status of M. komatsubarae nomen dubium is discussed. Myzaphis avariolosa is regarded as a species belonging to the genus Ericaphis. Three new species: M. oezdemirae Kanturski & Barjadze sp. nov., M. tuatayae Kanturski & Barjadze sp. nov. from Turkey and M. rezwanii Kanturski & Barjadze sp. nov. from Iran are described and illustrated. Myzaphis bucktoni is recorded from Portugal for the first time. Diagnosis of the genus Myzaphis van der Goot, 1913 is redefined and a new genus Richardsaphis Kanturski & Barjadze gen. nov. is erected with the type species R. canadensis (Richards) comb. nov. Richardsaphis is for the first time recorded from the USA and hitherto unknown oviparous female and alate male are described and illustrated. Original keys to species of the genus Myzaphis and aphid genera of the tribe Macrosiphini with 2-2-2 first tarsal chaetotaxy are also provided.

  2. Bystander protein protects potential vaccine-targeting ligands against intestinal proteolysis.

    Science.gov (United States)

    Reuter, Fabian; Bade, Steffen; Hirst, Timothy R; Frey, Andreas

    2009-07-20

    Endowing mucosal vaccines with ligands that target antigen to mucosal lymphoid tissues may improve immunization efficacy provided that the ligands withstand the proteolytic environment of the gastro-intestinal tract until they reach their destination. Our aim was to investigate whether and how three renowned ligands - Ulex europaeus agglutinin I and the B subunits of cholera toxin and E. coli heat-labile enterotoxin - master this challenge. We assessed the digestive power of natural murine intestinal fluid (natIF) using assays for trypsin, chymotrypsin and pancreatic elastase along with a test for nonspecific proteolysis. The natIF was compared with simulated murine intestinal fluid (simIF) that resembled the trypsin, chymotrypsin and elastase activities of its natural counterpart but lacked or contained albumins as additional protease substrates. The ligands were exposed to the digestive fluids and degradation was determined. The studies revealed that (i) the three pancreatic endoproteases constitute only one third of the total protease activity of natIF and (ii) the ligands resist proteolysis in natIF and protein-enriched simIF over 3 h but (iii) are partially destroyed in simIF that lacks additional protease substrate. We assume that the proteins of natIF are preferred substrates for the intestinal proteases and thus can protect vaccine-targeting ligands from destruction.

  3. Chemical free device fabrication of two dimensional van der Waals materials based transistors by using one-off stamping

    International Nuclear Information System (INIS)

    Lee, Young Tack; Choi, Won Kook; Hwang, Do Kyung

    2016-01-01

    We report on a chemical free one-off imprinting method to fabricate two dimensional (2D) van der Waals (vdWs) materials based transistors. Such one-off imprinting technique is the simplest and effective way to prevent unintentional chemical reaction or damage of 2D vdWs active channel during device fabrication process. 2D MoS 2 nanosheets based transistors with a hexagonal-boron-nitride (h-BN) passivation layer, prepared by one-off imprinting, show negligible variations of transfer characteristics after chemical vapor deposition process. In addition, this method enables the fabrication of all 2D MoS 2 transistors consisting of h-BN gate insulator, and graphene source/drain and gate electrodes without any chemical damage.

  4. van der Waals heterostructures of germanene, stanene, and silicene with hexagonal boron nitride and their topological domain walls

    Science.gov (United States)

    Wang, Maoyuan; Liu, Liping; Liu, Cheng-Cheng; Yao, Yugui

    2016-04-01

    We investigate van der Waals (vdW) heterostructures made of germanene, stanene, or silicene with hexagonal boron nitride (h-BN). The intriguing topological properties of these buckled honeycomb materials can be maintained and further engineered in the heterostructures, where the competition between the substrate effect and external electric fields can be used to control the tunable topological phase transitions. Using such heterostructures as building blocks, various vdW topological domain walls (DW) are designed, along which there exist valley polarized quantum spin Hall edge states or valley-contrasting edge states which are protected by valley(spin)- resolved topological charges and can be tailored by the patterning of the heterojunctions and by external fields.

  5. Quantifying electronic band interactions in van der Waals materials using angle-resolved reflected-electron spectroscopy.

    Science.gov (United States)

    Jobst, Johannes; van der Torren, Alexander J H; Krasovskii, Eugene E; Balgley, Jesse; Dean, Cory R; Tromp, Rudolf M; van der Molen, Sense Jan

    2016-11-29

    High electron mobility is one of graphene's key properties, exploited for applications and fundamental research alike. Highest mobility values are found in heterostructures of graphene and hexagonal boron nitride, which consequently are widely used. However, surprisingly little is known about the interaction between the electronic states of these layered systems. Rather pragmatically, it is assumed that these do not couple significantly. Here we study the unoccupied band structure of graphite, boron nitride and their heterostructures using angle-resolved reflected-electron spectroscopy. We demonstrate that graphene and boron nitride bands do not interact over a wide energy range, despite their very similar dispersions. The method we use can be generally applied to study interactions in van der Waals systems, that is, artificial stacks of layered materials. With this we can quantitatively understand the 'chemistry of layers' by which novel materials are created via electronic coupling between the layers they are composed of.

  6. Tuning the Schottky barrier in the arsenene/graphene van der Waals heterostructures by electric field

    Science.gov (United States)

    Li, Wei; Wang, Tian-Xing; Dai, Xian-Qi; Wang, Xiao-Long; Ma, Ya-Qiang; Chang, Shan-Shan; Tang, Ya-Nan

    2017-04-01

    Using density functional theory calculations, we investigate the electronic properties of arsenene/graphene van der Waals (vdW) heterostructures by applying external electric field perpendicular to the layers. It is demonstrated that weak vdW interactions dominate between arsenene and graphene with their intrinsic electronic properties preserved. We find that an n-type Schottky contact is formed at the arsenene/graphene interface with a Schottky barrier of 0.54 eV. Moreover, the vertical electric field can not only control the Schottky barrier height but also the Schottky contacts (n-type and p-type) and Ohmic contacts (n-type) at the interface. Tunable p-type doping in graphene is achieved under the negative electric field because electrons can transfer from the Dirac point of graphene to the conduction band of arsenene. The present study would open a new avenue for application of ultrathin arsenene/graphene heterostructures in future nano- and optoelectronics.

  7. istar: a web platform for large-scale protein-ligand docking.

    Directory of Open Access Journals (Sweden)

    Hongjian Li

    Full Text Available Protein-ligand docking is a key computational method in the design of starting points for the drug discovery process. We are motivated by the desire to automate large-scale docking using our popular docking engine idock and thus have developed a publicly-accessible web platform called istar. Without tedious software installation, users can submit jobs using our website. Our istar website supports 1 filtering ligands by desired molecular properties and previewing the number of ligands to dock, 2 monitoring job progress in real time, and 3 visualizing ligand conformations and outputting free energy and ligand efficiency predicted by idock, binding affinity predicted by RF-Score, putative hydrogen bonds, and supplier information for easy purchase, three useful features commonly lacked on other online docking platforms like DOCK Blaster or iScreen. We have collected 17,224,424 ligands from the All Clean subset of the ZINC database, and revamped our docking engine idock to version 2.0, further improving docking speed and accuracy, and integrating RF-Score as an alternative rescoring function. To compare idock 2.0 with the state-of-the-art AutoDock Vina 1.1.2, we have carried out a rescoring benchmark and a redocking benchmark on the 2,897 and 343 protein-ligand complexes of PDBbind v2012 refined set and CSAR NRC HiQ Set 24Sept2010 respectively, and an execution time benchmark on 12 diverse proteins and 3,000 ligands of different molecular weight. Results show that, under various scenarios, idock achieves comparable success rates while outperforming AutoDock Vina in terms of docking speed by at least 8.69 times and at most 37.51 times. When evaluated on the PDBbind v2012 core set, our istar platform combining with RF-Score manages to reproduce Pearson's correlation coefficient and Spearman's correlation coefficient of as high as 0.855 and 0.859 respectively between the experimental binding affinity and the predicted binding affinity of the docked

  8. istar: a web platform for large-scale protein-ligand docking.

    Science.gov (United States)

    Li, Hongjian; Leung, Kwong-Sak; Ballester, Pedro J; Wong, Man-Hon

    2014-01-01

    Protein-ligand docking is a key computational method in the design of starting points for the drug discovery process. We are motivated by the desire to automate large-scale docking using our popular docking engine idock and thus have developed a publicly-accessible web platform called istar. Without tedious software installation, users can submit jobs using our website. Our istar website supports 1) filtering ligands by desired molecular properties and previewing the number of ligands to dock, 2) monitoring job progress in real time, and 3) visualizing ligand conformations and outputting free energy and ligand efficiency predicted by idock, binding affinity predicted by RF-Score, putative hydrogen bonds, and supplier information for easy purchase, three useful features commonly lacked on other online docking platforms like DOCK Blaster or iScreen. We have collected 17,224,424 ligands from the All Clean subset of the ZINC database, and revamped our docking engine idock to version 2.0, further improving docking speed and accuracy, and integrating RF-Score as an alternative rescoring function. To compare idock 2.0 with the state-of-the-art AutoDock Vina 1.1.2, we have carried out a rescoring benchmark and a redocking benchmark on the 2,897 and 343 protein-ligand complexes of PDBbind v2012 refined set and CSAR NRC HiQ Set 24Sept2010 respectively, and an execution time benchmark on 12 diverse proteins and 3,000 ligands of different molecular weight. Results show that, under various scenarios, idock achieves comparable success rates while outperforming AutoDock Vina in terms of docking speed by at least 8.69 times and at most 37.51 times. When evaluated on the PDBbind v2012 core set, our istar platform combining with RF-Score manages to reproduce Pearson's correlation coefficient and Spearman's correlation coefficient of as high as 0.855 and 0.859 respectively between the experimental binding affinity and the predicted binding affinity of the docked conformation. istar

  9. G-LoSA for Prediction of Protein-Ligand Binding Sites and Structures.

    Science.gov (United States)

    Lee, Hui Sun; Im, Wonpil

    2017-01-01

    Recent advances in high-throughput structure determination and computational protein structure prediction have significantly enriched the universe of protein structure. However, there is still a large gap between the number of available protein structures and that of proteins with annotated function in high accuracy. Computational structure-based protein function prediction has emerged to reduce this knowledge gap. The identification of a ligand binding site and its structure is critical to the determination of a protein's molecular function. We present a computational methodology for predicting small molecule ligand binding site and ligand structure using G-LoSA, our protein local structure alignment and similarity measurement tool. All the computational procedures described here can be easily implemented using G-LoSA Toolkit, a package of standalone software programs and preprocessed PDB structure libraries. G-LoSA and G-LoSA Toolkit are freely available to academic users at http://compbio.lehigh.edu/GLoSA . We also illustrate a case study to show the potential of our template-based approach harnessing G-LoSA for protein function prediction.

  10. LigSearch: a knowledge-based web server to identify likely ligands for a protein target

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Tjaart A. P. de; Laskowski, Roman A. [European Bioinformatics Institute (EMBL–EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD (United Kingdom); Duban, Mark-Eugene [Northwestern University Feinberg School of Medicine, Chicago, Illinois (United States); Chan, A. W. Edith [University College London, London WC1E 6BT (United Kingdom); Anderson, Wayne F. [Northwestern University Feinberg School of Medicine, Chicago, Illinois (United States); Thornton, Janet M., E-mail: thornton@ebi.ac.uk [European Bioinformatics Institute (EMBL–EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD (United Kingdom)

    2013-12-01

    LigSearch is a web server for identifying ligands likely to bind to a given protein. Identifying which ligands might bind to a protein before crystallization trials could provide a significant saving in time and resources. LigSearch, a web server aimed at predicting ligands that might bind to and stabilize a given protein, has been developed. Using a protein sequence and/or structure, the system searches against a variety of databases, combining available knowledge, and provides a clustered and ranked output of possible ligands. LigSearch can be accessed at http://www.ebi.ac.uk/thornton-srv/databases/LigSearch.

  11. Study of the influence of color van der Waals forces and of non-Coulombian effects in 208pb+208pb scattering using a high-precision experiment

    International Nuclear Information System (INIS)

    Casandjian, Jean-Marc

    1996-01-01

    This work deals with the precise measurement of the absolute angular position of the elastic 208 pb+ 208 pb scattering cross section oscillations. The main objective is to verify if all of the elastic scattering ingredients are known even with an angular position precision of a few milli-degrees or if it is necessary to introduce new elements such as the color van der Waals force. This experiment was performed at Ganil. We obtained a precision of 0.004 deg. on the absolute cross section oscillation position and an angular shift of a few hundredths of degrees in relation to the expected position of a pure coulomb scattering. The attainment of this precision required particular precautions in the measurement of the absolute energy target position and scattering angle. First, the angular straggling on a thin target and the production of δ electrons during the scattering is studied. Next the origin of the angular shift is examined by the calculation of all the potentials that act during the scattering. The agreement between experimentation and theory allowed us to set a new limit on the color van der Waals interaction. (author) [fr

  12. Ligand Binding Domain Protein in Tetracycline-Inducible Expression ...

    African Journals Online (AJOL)

    binding domain proteins in E. coli using a tetracycline inducible system. To allow for ... development of molecular ligands with improved therapeutic windows. Keywords: Nuclear receptor ..... functional recombinant cannabinoid receptor CB2 in ...

  13. Electrostatic similarities between protein and small molecule ligands facilitate the design of protein-protein interaction inhibitors.

    Directory of Open Access Journals (Sweden)

    Arnout Voet

    Full Text Available One of the underlying principles in drug discovery is that a biologically active compound is complimentary in shape and molecular recognition features to its receptor. This principle infers that molecules binding to the same receptor may share some common features. Here, we have investigated whether the electrostatic similarity can be used for the discovery of small molecule protein-protein interaction inhibitors (SMPPIIs. We have developed a method that can be used to evaluate the similarity of electrostatic potentials between small molecules and known protein ligands. This method was implemented in a software called EleKit. Analyses of all available (at the time of research SMPPII structures indicate that SMPPIIs bear some similarities of electrostatic potential with the ligand proteins of the same receptor. This is especially true for the more polar SMPPIIs. Retrospective analysis of several successful SMPPIIs has shown the applicability of EleKit in the design of new SMPPIIs.

  14. Physics-based scoring of protein-ligand interactions: explicit polarizability, quantum mechanics and free energies.

    Science.gov (United States)

    Bryce, Richard A

    2011-04-01

    The ability to accurately predict the interaction of a ligand with its receptor is a key limitation in computer-aided drug design approaches such as virtual screening and de novo design. In this article, we examine current strategies for a physics-based approach to scoring of protein-ligand affinity, as well as outlining recent developments in force fields and quantum chemical techniques. We also consider advances in the development and application of simulation-based free energy methods to study protein-ligand interactions. Fuelled by recent advances in computational algorithms and hardware, there is the opportunity for increased integration of physics-based scoring approaches at earlier stages in computationally guided drug discovery. Specifically, we envisage increased use of implicit solvent models and simulation-based scoring methods as tools for computing the affinities of large virtual ligand libraries. Approaches based on end point simulations and reference potentials allow the application of more advanced potential energy functions to prediction of protein-ligand binding affinities. Comprehensive evaluation of polarizable force fields and quantum mechanical (QM)/molecular mechanical and QM methods in scoring of protein-ligand interactions is required, particularly in their ability to address challenging targets such as metalloproteins and other proteins that make highly polar interactions. Finally, we anticipate increasingly quantitative free energy perturbation and thermodynamic integration methods that are practical for optimization of hits obtained from screened ligand libraries.

  15. The Role of Protein-Ligand Contacts in Allosteric Regulation of the Escherichia coli Catabolite Activator Protein.

    Science.gov (United States)

    Townsend, Philip D; Rodgers, Thomas L; Glover, Laura C; Korhonen, Heidi J; Richards, Shane A; Colwell, Lucy J; Pohl, Ehmke; Wilson, Mark R; Hodgson, David R W; McLeish, Tom C B; Cann, Martin J

    2015-09-04

    Allostery is a fundamental process by which ligand binding to a protein alters its activity at a distant site. Both experimental and theoretical evidence demonstrate that allostery can be communicated through altered slow relaxation protein dynamics without conformational change. The catabolite activator protein (CAP) of Escherichia coli is an exemplar for the analysis of such entropically driven allostery. Negative allostery in CAP occurs between identical cAMP binding sites. Changes to the cAMP-binding pocket can therefore impact the allosteric properties of CAP. Here we demonstrate, through a combination of coarse-grained modeling, isothermal calorimetry, and structural analysis, that decreasing the affinity of CAP for cAMP enhances negative cooperativity through an entropic penalty for ligand binding. The use of variant cAMP ligands indicates the data are not explained by structural heterogeneity between protein mutants. We observe computationally that altered interaction strength between CAP and cAMP variously modifies the change in allosteric cooperativity due to second site CAP mutations. As the degree of correlated motion between the cAMP-contacting site and a second site on CAP increases, there is a tendency for computed double mutations at these sites to drive CAP toward noncooperativity. Naturally occurring pairs of covarying residues in CAP do not display this tendency, suggesting a selection pressure to fine tune allostery on changes to the CAP ligand-binding pocket without a drive to a noncooperative state. In general, we hypothesize an evolutionary selection pressure to retain slow relaxation dynamics-induced allostery in proteins in which evolution of the ligand-binding site is occurring. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Van der Waals coefficients beyond the classical shell model

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Jianmin, E-mail: jianmint@sas.upenn.edu [Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 (United States); Fang, Yuan; Hao, Pan [Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118 (United States); Scuseria, G. E. [Department of Chemistry and Department of Physics and Astronomy, Rice University, Houston, Texas 77251-1892, USA and Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Ruzsinszky, Adrienn; Perdew, John P. [Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (United States)

    2015-01-14

    Van der Waals (vdW) coefficients can be accurately generated and understood by modelling the dynamic multipole polarizability of each interacting object. Accurate static polarizabilities are the key to accurate dynamic polarizabilities and vdW coefficients. In this work, we present and study in detail a hollow-sphere model for the dynamic multipole polarizability proposed recently by two of the present authors (JT and JPP) to simulate the vdW coefficients for inhomogeneous systems that allow for a cavity. The inputs to this model are the accurate static multipole polarizabilities and the electron density. A simplification of the full hollow-sphere model, the single-frequency approximation (SFA), circumvents the need for a detailed electron density and for a double numerical integration over space. We find that the hollow-sphere model in SFA is not only accurate for nanoclusters and cage molecules (e.g., fullerenes) but also yields vdW coefficients among atoms, fullerenes, and small clusters in good agreement with expensive time-dependent density functional calculations. However, the classical shell model (CSM), which inputs the static dipole polarizabilities and estimates the static higher-order multipole polarizabilities therefrom, is accurate for the higher-order vdW coefficients only when the interacting objects are large. For the lowest-order vdW coefficient C{sub 6}, SFA and CSM are exactly the same. The higher-order (C{sub 8} and C{sub 10}) terms of the vdW expansion can be almost as important as the C{sub 6} term in molecular crystals. Application to a variety of clusters shows that there is strong non-additivity of the long-range vdW interactions between nanoclusters.

  17. A Van der Pol-Mathieu equation for the dynamics of dust grain charge in dusty plasmas

    International Nuclear Information System (INIS)

    Momeni, M; Kourakis, I; Moslehi-Fard, M; Shukla, P K

    2007-01-01

    The chaotic profile of dust grain dynamics associated with dust-acoustic oscillations in a dusty plasma is considered. The collective behaviour of the dust plasma component is described via a multi-fluid model, comprising Boltzmann distributed electrons and ions, as well as an equation of continuity possessing a source term for the dust grains, the dust momentum and Poisson's equations. A Van der Pol-Mathieu-type nonlinear ordinary differential equation for the dust grain density dynamics is derived. The dynamical system is cast into an autonomous form by employing an averaging method. Critical stability boundaries for a particular trivial solution of the governing equation with varying parameters are specified. The equation is analysed to determine the resonance region, and finally numerically solved by using a fourth-order Runge-Kutta method. The presence of chaotic limit cycles is pointed out. (fast track communication)

  18. Analysis of protein stability and ligand interactions by thermal shift assay.

    Science.gov (United States)

    Huynh, Kathy; Partch, Carrie L

    2015-02-02

    Purification of recombinant proteins for biochemical assays and structural studies is time-consuming and presents inherent difficulties that depend on the optimization of protein stability. The use of dyes to monitor thermal denaturation of proteins with sensitive fluorescence detection enables rapid and inexpensive determination of protein stability using real-time PCR instruments. By screening a wide range of solution conditions and additives in a 96-well format, the thermal shift assay easily identifies conditions that significantly enhance the stability of recombinant proteins. The same approach can be used as an initial low-cost screen to discover new protein-ligand interactions by capitalizing on increases in protein stability that typically occur upon ligand binding. This unit presents a methodological workflow for small-scale, high-throughput thermal denaturation of recombinant proteins in the presence of SYPRO Orange dye. Copyright © 2015 John Wiley & Sons, Inc.

  19. Pepino overdraagbaar via zaad (interview met René van der Vlugt)

    NARCIS (Netherlands)

    Boonekamp, G.; Vlugt, van der R.A.A.

    2008-01-01

    Zaad geoogst van planten met pepinomozaïekvirus vormt een risico voor de overdracht van het virus naar teeltbedrijven. Dit blijkt uit resultaten van het Europees onderzoeksproject Pereira. Al langer bestonden er vermoedens dat pepino met zaad wordt overgebracht. Nu blijkt inderdaad dat het virus,

  20. Stabilization of thin liquid films by repulsive van der waals force

    KAUST Repository

    Li, Erqiang

    2014-05-13

    Using high-speed video recording of bubble rise experiments, we study the stability of thin liquid films trapped between a rising bubble and a surfactant-free liquid-liquid meniscus interface. Using different combinations of nonpolar oils and water that are all immiscible, we investigate the extent to which film stability can be predicted by attractive and repulsive van der Waals (vdW) interactions that are indicated by the relative magnitude of the refractive indices of the liquid combinations, for example, water (refractive index, n = 1.33), perfluorohexane (n = 1.23), and tetradecane (n = 1.43). We show that, when the film-forming phase was oil (perfluorohexane or tetradecane), the stability of the film could always be predicted from the sign of the vdW interaction, with a repulsive vdW force resulting in a stable film and an attractive vdW force resulting in film rupture. However, if aqueous electrolyte is the film-forming bulk phase between the rising air bubble and the upper oil phase, the film always ruptured, even when a repulsive vdW interaction was predicted. We interpret these results as supporting the hypothesis that a short-ranged hydrophobic attraction determines the stability of the thin water film formed between an air phase and a nonpolar oil phase. © 2014 American Chemical Society.

  1. Vertical electron transport in van der Waals heterostructures with graphene layers

    International Nuclear Information System (INIS)

    Ryzhii, V.; Otsuji, T.; Ryzhii, M.; Aleshkin, V. Ya.; Dubinov, A. A.; Mitin, V.; Shur, M. S.

    2015-01-01

    We propose and analyze an analytical model for the self-consistent description of the vertical electron transport in van der Waals graphene-layer (GL) heterostructures with the GLs separated by the barriers layers. The top and bottom GLs serve as the structure emitter and collector. The vertical electron transport in such structures is associated with the propagation of the electrons thermionically emitted from GLs above the inter-GL barriers. The model under consideration describes the processes of the electron thermionic emission from and the electron capture to GLs. It accounts for the nonuniformity of the self-consistent electric field governed by the Poisson equation which accounts for the variation of the electron population in GLs. The model takes also under consideration the cooling of electrons in the emitter layer due to the Peltier effect. We find the spatial distributions of the electric field and potential with the high-electric-field domain near the emitter GL in the GL heterostructures with different numbers of GLs. Using the obtained spatial distributions of the electric field, we calculate the current-voltage characteristics. We demonstrate that the Peltier cooling of the two-dimensional electron gas in the emitter GL can strongly affect the current-voltage characteristics resulting in their saturation. The obtained results can be important for the optimization of the hot-electron bolometric terahertz detectors and different devices based on GL heterostructures

  2. For an even plant propagation. Monitoring of the horizontal temperature distribution at plant cultivation Van der Lugt; Voor een gelijkmatige opkweek. Monitoring van de horizontale temperatuurverschillen bij plantenkwekerij Van der Lugt

    Energy Technology Data Exchange (ETDEWEB)

    Raaphorst, M. [Wageningen UR Glastuinbouw, Bleiswijk (Netherlands)

    2012-03-15

    The horizontal temperature distribution in a compartment of a nursery company is monitored during a month. The temperature difference between the warmest and the coldest place averaged no more than 1C. The main cause of the differences laid in the heat transfer from the distribution pipes. The wind direction had no influence on the temperature distribution, probably because the compartment has no outside gables, so the wind can not create much pressure differences. Also small screen openings did not to lead to undesirable horizontal air movements, possibly because of the relatively small area of the compartment (5000 m{sup 2}) [Dutch] De horizontale temperatuurverdeling in een afdeling van een opkweekbedrijf van groenteplanten is gedurende een maand gemonitord. Het temperatuurverschil tussen de warmste en de koudste plek bedroeg gemiddeld niet meer dan 1C. De belangrijkste oorzaak van de verschillen lag bij de warmteafgifte van de verdeelleidingen. De windrichting had geen invloed op de temperatuurverdeling, waarschijnlijk doordat de afdeling geen buitengevels heeft en de wind daardoor minder drukverschillen kan creeren. Ook bleken schermkieren niet te leiden tot ongewenste horizontale luchtbewegingen, mogelijk door de relatief kleine oppervlakte van de afdeling (5000 m{sup 2})

  3. Sampling and energy evaluation challenges in ligand binding protein design.

    Science.gov (United States)

    Dou, Jiayi; Doyle, Lindsey; Jr Greisen, Per; Schena, Alberto; Park, Hahnbeom; Johnsson, Kai; Stoddard, Barry L; Baker, David

    2017-12-01

    The steroid hormone 17α-hydroxylprogesterone (17-OHP) is a biomarker for congenital adrenal hyperplasia and hence there is considerable interest in development of sensors for this compound. We used computational protein design to generate protein models with binding sites for 17-OHP containing an extended, nonpolar, shape-complementary binding pocket for the four-ring core of the compound, and hydrogen bonding residues at the base of the pocket to interact with carbonyl and hydroxyl groups at the more polar end of the ligand. Eight of 16 designed proteins experimentally tested bind 17-OHP with micromolar affinity. A co-crystal structure of one of the designs revealed that 17-OHP is rotated 180° around a pseudo-two-fold axis in the compound and displays multiple binding modes within the pocket, while still interacting with all of the designed residues in the engineered site. Subsequent rounds of mutagenesis and binding selection improved the ligand affinity to nanomolar range, while appearing to constrain the ligand to a single bound conformation that maintains the same "flipped" orientation relative to the original design. We trace the discrepancy in the design calculations to two sources: first, a failure to model subtle backbone changes which alter the distribution of sidechain rotameric states and second, an underestimation of the energetic cost of desolvating the carbonyl and hydroxyl groups of the ligand. The difference between design model and crystal structure thus arises from both sampling limitations and energy function inaccuracies that are exacerbated by the near two-fold symmetry of the molecule. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  4. Evaluation of Docking Target Functions by the Comprehensive Investigation of Protein-Ligand Energy Minima.

    Science.gov (United States)

    Oferkin, Igor V; Katkova, Ekaterina V; Sulimov, Alexey V; Kutov, Danil C; Sobolev, Sergey I; Voevodin, Vladimir V; Sulimov, Vladimir B

    2015-01-01

    The adequate choice of the docking target function impacts the accuracy of the ligand positioning as well as the accuracy of the protein-ligand binding energy calculation. To evaluate a docking target function we compared positions of its minima with the experimentally known pose of the ligand in the protein active site. We evaluated five docking target functions based on either the MMFF94 force field or the PM7 quantum-chemical method with or without implicit solvent models: PCM, COSMO, and SGB. Each function was tested on the same set of 16 protein-ligand complexes. For exhaustive low-energy minima search the novel MPI parallelized docking program FLM and large supercomputer resources were used. Protein-ligand binding energies calculated using low-energy minima were compared with experimental values. It was demonstrated that the docking target function on the base of the MMFF94 force field in vacuo can be used for discovery of native or near native ligand positions by finding the low-energy local minima spectrum of the target function. The importance of solute-solvent interaction for the correct ligand positioning is demonstrated. It is shown that docking accuracy can be improved by replacement of the MMFF94 force field by the new semiempirical quantum-chemical PM7 method.

  5. Evaluation of Docking Target Functions by the Comprehensive Investigation of Protein-Ligand Energy Minima

    Directory of Open Access Journals (Sweden)

    Igor V. Oferkin

    2015-01-01

    Full Text Available The adequate choice of the docking target function impacts the accuracy of the ligand positioning as well as the accuracy of the protein-ligand binding energy calculation. To evaluate a docking target function we compared positions of its minima with the experimentally known pose of the ligand in the protein active site. We evaluated five docking target functions based on either the MMFF94 force field or the PM7 quantum-chemical method with or without implicit solvent models: PCM, COSMO, and SGB. Each function was tested on the same set of 16 protein-ligand complexes. For exhaustive low-energy minima search the novel MPI parallelized docking program FLM and large supercomputer resources were used. Protein-ligand binding energies calculated using low-energy minima were compared with experimental values. It was demonstrated that the docking target function on the base of the MMFF94 force field in vacuo can be used for discovery of native or near native ligand positions by finding the low-energy local minima spectrum of the target function. The importance of solute-solvent interaction for the correct ligand positioning is demonstrated. It is shown that docking accuracy can be improved by replacement of the MMFF94 force field by the new semiempirical quantum-chemical PM7 method.

  6. Interlayer Trions in the MoS2/WS2 van der Waals Heterostructure

    DEFF Research Database (Denmark)

    Deilmann, Thorsten; Thygesen, Kristian Sommer

    2018-01-01

    and experimentally. In contrast, studies of charged trions have so far been limited to the intralayer type. Here we investigate the complete set of interlayer excitations in a MoS2/WS2 heterostructure using a novel ab initio method, which allows for a consistent treatment of both excitons and trions at the same...... theoretical footing. Our calculations predict the existence of bound interlayer trions below the neutral interlayer excitons. We obtain binding energies of 18/28 meV for the positive/negative interlayer trions with both electrons/holes located on the same layer. In contrast, a negligible binding energy...... is found for trions which have the two equally charged particles on different layers. Our results advance the understanding of electronic excitations in doped van der Waals heterostructures and their effect on the optical properties....

  7. Acetylation of pregnane X receptor protein determines selective function independent of ligand activation

    International Nuclear Information System (INIS)

    Biswas, Arunima; Pasquel, Danielle; Tyagi, Rakesh Kumar; Mani, Sridhar

    2011-01-01

    Research highlights: → Pregnane X receptor (PXR), a major regulatory protein, is modified by acetylation. → PXR undergoes dynamic deacetylation upon ligand-mediated activation. → SIRT1 partially mediates PXR deacetylation. → PXR deacetylation per se induces lipogenesis mimicking ligand-mediated activation. -- Abstract: Pregnane X receptor (PXR), like other members of its class of nuclear receptors, undergoes post-translational modification [PTM] (e.g., phosphorylation). However, it is unknown if acetylation (a major and common form of protein PTM) is observed on PXR and, if it is, whether it is of functional consequence. PXR has recently emerged as an important regulatory protein with multiple ligand-dependent functions. In the present work we show that PXR is indeed acetylated in vivo. SIRT1 (Sirtuin 1), a NAD-dependent class III histone deacetylase and a member of the sirtuin family of proteins, partially mediates deacetylation of PXR. Most importantly, the acetylation status of PXR regulates its selective function independent of ligand activation.

  8. Is there a Difference in Van Der Waals Interactions between Rare Gas Atoms Adsorbed on Metallic and Semiconducting Single-Walled Carbon Nanotubes?

    Energy Technology Data Exchange (ETDEWEB)

    Chen, De-Li [Univ. of Pittsburgh, PA (United States). Dept. of Chemical and Petroleum Engineering; Mandeltort, Lynn [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Chemistry; Saidi, Wissam A. [Univ. of Pittsburgh, PA (United States). Dept. of Chemical and Petroleum Engineering; Yates, John T. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Chemistry; Cole, Milton W. [Pennsylvania State Univ., University Park, PA (United States). Dept of Physics; Johnson, J. Karl [Univ. of Pittsburgh, PA (United States). Dept. of Chemical and Petroleum Engineering; National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2013-03-01

    Differences in polarizabilities of metallic (M) and semiconducting (S) single-walled carbon nanotubes (SWNTs) might give rise to differences in adsorption potentials. We show from experiments and van der Waals-corrected density functional theory (DFT) that binding energies of Xe adsorbed on M- and S-SWNTs are nearly identical. Temperature programmed desorption of Xe on purified M- and S-SWNTs give similar peak temperatures, indicating that desorption kinetics and binding energies are independent of the type of SWNT. Binding energies computed from vdW-corrected DFT are in good agreement with experiments.

  9. Revisiting van der Waals like behavior of f(R AdS black holes via the two point correlation function

    Directory of Open Access Journals (Sweden)

    Jie-Xiong Mo

    2017-05-01

    Full Text Available Van der Waals like behavior of f(R AdS black holes is revisited via two point correlation function, which is dual to the geodesic length in the bulk. The equation of motion constrained by the boundary condition is solved numerically and both the effect of boundary region size and f(R gravity are probed. Moreover, an analogous specific heat related to δL is introduced. It is shown that the T−δL graphs of f(R AdS black holes exhibit reverse van der Waals like behavior just as the T−S graphs do. Free energy analysis is carried out to determine the first order phase transition temperature T⁎ and the unstable branch in T−δL curve is removed by a bar T=T⁎. It is shown that the first order phase transition temperature is the same at least to the order of 10−10 for different choices of the parameter b although the values of free energy vary with b. Our result further supports the former finding that charged f(R AdS black holes behave much like RN-AdS black holes. We also check the analogous equal area law numerically and find that the relative errors for both the cases θ0=0.1 and θ0=0.2 are small enough. The fitting functions between log⁡|T−Tc| and log⁡|δL−δLc| for both cases are also obtained. It is shown that the slope is around 3, implying that the critical exponent is about 2/3. This result is in accordance with those in former literatures of specific heat related to the thermal entropy or entanglement entropy.

  10. Erasmus Theologie : Handboek van de christensoldaat / Oproep / Gods onmetelijke barmhartigheid / Uit de Parafrase van Lucas / De vrije wilskeuze / Het herstel van de eenheid in de Kerk

    NARCIS (Netherlands)

    Bloemendal, J.

    2015-01-01

    Waarom vocht Erasmus, die streefde naar eenheid binnen de Kerk, zoveel theologische geschillen uit? Hij was een modern theoloog, die wilde afrekenen met de middeleeuwse manier van theologie bedrijven, iets wat hij ook in de Lof der Zotheid deed. Dat leverde hem vijanden op, die bijvoorbeeld zijn

  11. Crystal-phase intergradation in InAs nanostructures grown by van der Waals heteroepitaxy on graphene

    Science.gov (United States)

    Choi, Ji Eun; Yoo, Jinkyoung; Lee, Donghwa; Hong, Young Joon; Fukui, Takashi

    2018-04-01

    This study demonstrates the crystal-phase intergradation of InAs nanostructures grown on graphene via van der Waals epitaxy. InAs nanostructures with diverse diameters are yielded on graphene. High-resolution transmission electron microscopy (HR-TEM) reveals two crystallographic features of (i) wurtzite (WZ)-to-zinc blende (ZB) intergradation along the growth direction of InAs nanostructures and (ii) an increased mean fraction of ZB according to diameter increment. Based on the HR-TEM observations, a crystal-phase intergradation diagram is depicted. We discuss how the formation of a WZ-rich phase during the initial growth stage is an effective way of releasing heterointerfacial stress endowed by the lattice mismatch of InAs/graphene for energy minimization in terms of less in-plane lattice mismatching between WZ-InAs and graphene. The WZ-to-ZB evolution is responsible for the attenuation of the bottom-to-top surface charge interaction as growth proceeds.

  12. Van der Waals-like behaviour of charged black holes and hysteresis in the dual QFTs

    Directory of Open Access Journals (Sweden)

    Mariano Cadoni

    2017-05-01

    Full Text Available Using the rules of the AdS/CFT correspondence, we compute the spherical analogue of the shear viscosity, defined in terms of the retarded Green function for the stress-energy tensor for QFTs dual to five-dimensional charged black holes of general relativity with a negative cosmological constant. We show that the ratio between this quantity and the entropy density, η˜/s, exhibits a temperature-dependent hysteresis. We argue that this hysteretic behaviour can be explained by the Van der Waals-like character of charged black holes, considered as thermodynamical systems. Under the critical charge, hysteresis emerges owing to the presence of two stable states (small and large black holes connected by a meta-stable region (intermediate black holes. A potential barrier prevents the equilibrium path between the two stable states; the system evolution must occur through the meta-stable region, and a path-dependence of η˜/s is generated.

  13. Preliminary Molecular Dynamic Simulations of the Estrogen Receptor Alpha Ligand Binding Domain from Antagonist to Apo

    Directory of Open Access Journals (Sweden)

    Adrian E. Roitberg

    2008-06-01

    Full Text Available Estrogen receptors (ER are known as nuclear receptors. They exist in the cytoplasm of human cells and serves as a DNA binding transcription factor that regulates gene expression. However the estrogen receptor also has additional functions independent of DNA binding. The human estrogen receptor comes in two forms, alpha and beta. This work focuses on the alpha form of the estrogen receptor. The ERα is found in breast cancer cells, ovarian stroma cells, endometrium, and the hypothalamus. It has been suggested that exposure to DDE, a metabolite of DDT, and other pesticides causes conformational changes in the estrogen receptor. Before examining these factors, this work examines the protein unfolding from the antagonist form found in the 3ERT PDB crystal structure. The 3ERT PDB crystal structure has the estrogen receptor bound to the cancer drug 4-hydroxytamoxifen. The 4-hydroxytamoxifen ligand was extracted before the simulation, resulting in new conformational freedom due to absence of van der Waals contacts between the ligand and the receptor. The conformational changes that result expose the binding clef of the co peptide beside Helix 12 of the receptor forming an apo conformation. Two key conformations in the loops at either end of the H12 are produced resulting in the antagonist to apo conformation transformation. The results were produced over a 42ns Molecular Dynamics simulation using the AMBER FF99SB force field.

  14. @TOME-2: a new pipeline for comparative modeling of protein-ligand complexes.

    Science.gov (United States)

    Pons, Jean-Luc; Labesse, Gilles

    2009-07-01

    @TOME 2.0 is new web pipeline dedicated to protein structure modeling and small ligand docking based on comparative analyses. @TOME 2.0 allows fold recognition, template selection, structural alignment editing, structure comparisons, 3D-model building and evaluation. These tasks are routinely used in sequence analyses for structure prediction. In our pipeline the necessary software is efficiently interconnected in an original manner to accelerate all the processes. Furthermore, we have also connected comparative docking of small ligands that is performed using protein-protein superposition. The input is a simple protein sequence in one-letter code with no comment. The resulting 3D model, protein-ligand complexes and structural alignments can be visualized through dedicated Web interfaces or can be downloaded for further studies. These original features will aid in the functional annotation of proteins and the selection of templates for molecular modeling and virtual screening. Several examples are described to highlight some of the new functionalities provided by this pipeline. The server and its documentation are freely available at http://abcis.cbs.cnrs.fr/AT2/

  15. Van der Waals interaction between a molecule and a spherical cavity in a metal: Nonlocality and anisotropy effects

    International Nuclear Information System (INIS)

    Labani, B.; Boustimi, M.; Baudon, J.

    1997-01-01

    The electric response field of a small spherical metallic cavity to a molecule characterized by fluctuating dipolar and quadrupolar moments is built from spherical tensor theory. The electric susceptibility of the field gradient between the two points inside the metallic cavity is formulated by a general expression of the van der Waals energy between the two partners. The induction contribution is introduced by using the field gradient susceptibilities of the cavity at zero frequency. In order to illustrate the nonlocal effects as well as the importance of the curvature of the metallic cavity on the magnitude of the physisorption energy, we present numerical results for typical systems (HF, HCl on Ag, Al, and Cu). copyright 1997 The American Physical Society

  16. Optoelectronic Properties of Van Der Waals Hybrid Structures: Fullerenes on Graphene Nanoribbons.

    Science.gov (United States)

    Correa, Julián David; Orellana, Pedro Alejandro; Pacheco, Mónica

    2017-03-20

    The search for new optical materials capable of absorbing light in the frequency range from visible to near infrared is of great importance for applications in optoelectronic devices. In this paper, we report a theoretical study of the electronic and optical properties of hybrid structures composed of fullerenes adsorbed on graphene and on graphene nanoribbons. The calculations are performed in the framework of the density functional theory including the van der Waals dispersive interactions. We found that the adsorption of the C 60 fullerenes on a graphene layer does not modify its low energy states, but it has strong consequences for its optical spectrum, introducing new absorption peaks in the visible energy region. The optical absorption of fullerenes and graphene nanoribbon composites shows a strong dependence on photon polarization and geometrical characteristics of the hybrid systems, covering a broad range of energies. We show that an external electric field across the nanoribbon edges can be used to tune different optical transitions coming from nanoribbon-fullerene hybridized states, which yields a very rich electro-absorption spectrum for longitudinally polarized photons. We have carried out a qualitative analysis on the potential of these hybrids as possible donor-acceptor systems in photovoltaic cells.

  17. Optoelectronic Properties of Van Der Waals Hybrid Structures: Fullerenes on Graphene Nanoribbons

    Directory of Open Access Journals (Sweden)

    Julián David Correa

    2017-03-01

    Full Text Available The search for new optical materials capable of absorbing light in the frequency range from visible to near infrared is of great importance for applications in optoelectronic devices. In this paper, we report a theoretical study of the electronic and optical properties of hybrid structures composed of fullerenes adsorbed on graphene and on graphene nanoribbons. The calculations are performed in the framework of the density functional theory including the van der Waals dispersive interactions. We found that the adsorption of the C 60 fullerenes on a graphene layer does not modify its low energy states, but it has strong consequences for its optical spectrum, introducing new absorption peaks in the visible energy region. The optical absorption of fullerenes and graphene nanoribbon composites shows a strong dependence on photon polarization and geometrical characteristics of the hybrid systems, covering a broad range of energies. We show that an external electric field across the nanoribbon edges can be used to tune different optical transitions coming from nanoribbon–fullerene hybridized states, which yields a very rich electro-absorption spectrum for longitudinally polarized photons. We have carried out a qualitative analysis on the potential of these hybrids as possible donor-acceptor systems in photovoltaic cells.

  18. Interfacial properties of black phosphorus/transition metal carbide van der Waals heterostructures

    Science.gov (United States)

    Yuan, Hao; Li, Zhenyu

    2018-06-01

    Owing to its outstanding electronic properties, black phosphorus (BP) is considered as a promising material for next-generation optoelectronic devices. In this work, devices based on BP/MXene (Zr n+1C n T2, T = O, F, OH, n = 1, 2) van der Waals (vdW) heterostructures are designed via first-principles calculations. Zr n+1C n T2 compositions with appropriate work functions lead to the formation of Ohmic contact with BP in the vertical direction. Low Schottky barriers are found along the lateral direction in BP/Zr2CF2, BP/Zr2CO2H2, BP/Zr3C2F2, and BP/Zr3C2O2H2 bilayers, and BP/Zr3C2O2 even exhibits Ohmic contact behavior. BP/Zr2CO2 is a semiconducting heterostructure with type-II band alignment, which facilitates the separation of electron-hole pairs. The band structure of BP/Zr2CO2 can be effectively tuned via a perpendicular electric field, and BP is predicted to undergo a transition from donor to acceptor at a 0.4 V/Å electric field. The versatile electronic properties of the BP/MXene heterostructures examined in this work highlight their promising potential for applications in electronics.

  19. De ontwikkeling van een feedbacksysteem voor toetsvragenmakers

    NARCIS (Netherlands)

    Reinders, J J; Cohen-Schotanus, J; Molenaar, W M

    2005-01-01

    Door de Groningse Faculteit der Medische Wetenschappen is een feedbacksysteem voor toetsvragenmakers ontwikkeld. Het systeem is onder andere gebaseerd op een statistische analyse van de toetsresultaten. Uit een eerste peiling onder toetsvragenmakers blijken de respondenten overwegend positief te

  20. GalaxyDock BP2 score: a hybrid scoring function for accurate protein-ligand docking

    Science.gov (United States)

    Baek, Minkyung; Shin, Woong-Hee; Chung, Hwan Won; Seok, Chaok

    2017-07-01

    Protein-ligand docking is a useful tool for providing atomic-level understanding of protein functions in nature and design principles for artificial ligands or proteins with desired properties. The ability to identify the true binding pose of a ligand to a target protein among numerous possible candidate poses is an essential requirement for successful protein-ligand docking. Many previously developed docking scoring functions were trained to reproduce experimental binding affinities and were also used for scoring binding poses. However, in this study, we developed a new docking scoring function, called GalaxyDock BP2 Score, by directly training the scoring power of binding poses. This function is a hybrid of physics-based, empirical, and knowledge-based score terms that are balanced to strengthen the advantages of each component. The performance of the new scoring function exhibits significant improvement over existing scoring functions in decoy pose discrimination tests. In addition, when the score is used with the GalaxyDock2 protein-ligand docking program, it outperformed other state-of-the-art docking programs in docking tests on the Astex diverse set, the Cross2009 benchmark set, and the Astex non-native set. GalaxyDock BP2 Score and GalaxyDock2 with this score are freely available at http://galaxy.seoklab.org/softwares/galaxydock.html.