WorldWideScience

Sample records for protein subcellular locations

  1. Multi-Label Learning via Random Label Selection for Protein Subcellular Multi-Locations Prediction.

    Science.gov (United States)

    Wang, Xiao; Li, Guo-Zheng

    2013-03-12

    Prediction of protein subcellular localization is an important but challenging problem, particularly when proteins may simultaneously exist at, or move between, two or more different subcellular location sites. Most of the existing protein subcellular localization methods are only used to deal with the single-location proteins. In the past few years, only a few methods have been proposed to tackle proteins with multiple locations. However, they only adopt a simple strategy, that is, transforming the multi-location proteins to multiple proteins with single location, which doesn't take correlations among different subcellular locations into account. In this paper, a novel method named RALS (multi-label learning via RAndom Label Selection), is proposed to learn from multi-location proteins in an effective and efficient way. Through five-fold cross validation test on a benchmark dataset, we demonstrate our proposed method with consideration of label correlations obviously outperforms the baseline BR method without consideration of label correlations, indicating correlations among different subcellular locations really exist and contribute to improvement of prediction performance. Experimental results on two benchmark datasets also show that our proposed methods achieve significantly higher performance than some other state-of-the-art methods in predicting subcellular multi-locations of proteins. The prediction web server is available at http://levis.tongji.edu.cn:8080/bioinfo/MLPred-Euk/ for the public usage.

  2. Predicting protein subcellular locations using hierarchical ensemble of Bayesian classifiers based on Markov chains

    Directory of Open Access Journals (Sweden)

    Eils Roland

    2006-06-01

    Full Text Available Abstract Background The subcellular location of a protein is closely related to its function. It would be worthwhile to develop a method to predict the subcellular location for a given protein when only the amino acid sequence of the protein is known. Although many efforts have been made to predict subcellular location from sequence information only, there is the need for further research to improve the accuracy of prediction. Results A novel method called HensBC is introduced to predict protein subcellular location. HensBC is a recursive algorithm which constructs a hierarchical ensemble of classifiers. The classifiers used are Bayesian classifiers based on Markov chain models. We tested our method on six various datasets; among them are Gram-negative bacteria dataset, data for discriminating outer membrane proteins and apoptosis proteins dataset. We observed that our method can predict the subcellular location with high accuracy. Another advantage of the proposed method is that it can improve the accuracy of the prediction of some classes with few sequences in training and is therefore useful for datasets with imbalanced distribution of classes. Conclusion This study introduces an algorithm which uses only the primary sequence of a protein to predict its subcellular location. The proposed recursive scheme represents an interesting methodology for learning and combining classifiers. The method is computationally efficient and competitive with the previously reported approaches in terms of prediction accuracies as empirical results indicate. The code for the software is available upon request.

  3. LocateP: Genome-scale subcellular-location predictor for bacterial proteins

    Directory of Open Access Journals (Sweden)

    Zhou Miaomiao

    2008-03-01

    Full Text Available Abstract Background In the past decades, various protein subcellular-location (SCL predictors have been developed. Most of these predictors, like TMHMM 2.0, SignalP 3.0, PrediSi and Phobius, aim at the identification of one or a few SCLs, whereas others such as CELLO and Psortb.v.2.0 aim at a broader classification. Although these tools and pipelines can achieve a high precision in the accurate prediction of signal peptides and transmembrane helices, they have a much lower accuracy when other sequence characteristics are concerned. For instance, it proved notoriously difficult to identify the fate of proteins carrying a putative type I signal peptidase (SPIase cleavage site, as many of those proteins are retained in the cell membrane as N-terminally anchored membrane proteins. Moreover, most of the SCL classifiers are based on the classification of the Swiss-Prot database and consequently inherited the inconsistency of that SCL classification. As accurate and detailed SCL prediction on a genome scale is highly desired by experimental researchers, we decided to construct a new SCL prediction pipeline: LocateP. Results LocateP combines many of the existing high-precision SCL identifiers with our own newly developed identifiers for specific SCLs. The LocateP pipeline was designed such that it mimics protein targeting and secretion processes. It distinguishes 7 different SCLs within Gram-positive bacteria: intracellular, multi-transmembrane, N-terminally membrane anchored, C-terminally membrane anchored, lipid-anchored, LPxTG-type cell-wall anchored, and secreted/released proteins. Moreover, it distinguishes pathways for Sec- or Tat-dependent secretion and alternative secretion of bacteriocin-like proteins. The pipeline was tested on data sets extracted from literature, including experimental proteomics studies. The tests showed that LocateP performs as well as, or even slightly better than other SCL predictors for some locations and outperforms

  4. Multi-label learning with fuzzy hypergraph regularization for protein subcellular location prediction.

    Science.gov (United States)

    Chen, Jing; Tang, Yuan Yan; Chen, C L Philip; Fang, Bin; Lin, Yuewei; Shang, Zhaowei

    2014-12-01

    Protein subcellular location prediction aims to predict the location where a protein resides within a cell using computational methods. Considering the main limitations of the existing methods, we propose a hierarchical multi-label learning model FHML for both single-location proteins and multi-location proteins. The latent concepts are extracted through feature space decomposition and label space decomposition under the nonnegative data factorization framework. The extracted latent concepts are used as the codebook to indirectly connect the protein features to their annotations. We construct dual fuzzy hypergraphs to capture the intrinsic high-order relations embedded in not only feature space, but also label space. Finally, the subcellular location annotation information is propagated from the labeled proteins to the unlabeled proteins by performing dual fuzzy hypergraph Laplacian regularization. The experimental results on the six protein benchmark datasets demonstrate the superiority of our proposed method by comparing it with the state-of-the-art methods, and illustrate the benefit of exploiting both feature correlations and label correlations.

  5. Finding the Subcellular Location of Barley, Wheat, Rice and Maize Proteins: The Compendium of Crop Proteins with Annotated Locations (cropPAL).

    Science.gov (United States)

    Hooper, Cornelia M; Castleden, Ian R; Aryamanesh, Nader; Jacoby, Richard P; Millar, A Harvey

    2016-01-01

    Barley, wheat, rice and maize provide the bulk of human nutrition and have extensive industrial use as agricultural products. The genomes of these crops each contains >40,000 genes encoding proteins; however, the major genome databases for these species lack annotation information of protein subcellular location for >80% of these gene products. We address this gap, by constructing the compendium of crop protein subcellular locations called crop Proteins with Annotated Locations (cropPAL). Subcellular location is most commonly determined by fluorescent protein tagging of live cells or mass spectrometry detection in subcellular purifications, but can also be predicted from amino acid sequence or protein expression patterns. The cropPAL database collates 556 published studies, from >300 research institutes in >30 countries that have been previously published, as well as compiling eight pre-computed subcellular predictions for all Hordeum vulgare, Triticum aestivum, Oryza sativa and Zea mays protein sequences. The data collection including metadata for proteins and published studies can be accessed through a search portal http://crop-PAL.org. The subcellular localization information housed in cropPAL helps to depict plant cells as compartmentalized protein networks that can be investigated for improving crop yield and quality, and developing new biotechnological solutions to agricultural challenges. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Decoding the Divergent Subcellular Location of Two Highly Similar Paralogous LEA Proteins

    Directory of Open Access Journals (Sweden)

    Marie-Hélène Avelange-Macherel

    2018-05-01

    Full Text Available Many mitochondrial proteins are synthesized as precursors in the cytosol with an N-terminal mitochondrial targeting sequence (MTS which is cleaved off upon import. Although much is known about import mechanisms and MTS structural features, the variability of MTS still hampers robust sub-cellular software predictions. Here, we took advantage of two paralogous late embryogenesis abundant proteins (LEA from Arabidopsis with different subcellular locations to investigate structural determinants of mitochondrial import and gain insight into the evolution of the LEA genes. LEA38 and LEA2 are short proteins of the LEA_3 family, which are very similar along their whole sequence, but LEA38 is targeted to mitochondria while LEA2 is cytosolic. Differences in the N-terminal protein sequences were used to generate a series of mutated LEA2 which were expressed as GFP-fusion proteins in leaf protoplasts. By combining three types of mutation (substitution, charge inversion, and segment replacement, we were able to redirect the mutated LEA2 to mitochondria. Analysis of the effect of the mutations and determination of the LEA38 MTS cleavage site highlighted important structural features within and beyond the MTS. Overall, these results provide an explanation for the likely loss of mitochondrial location after duplication of the ancestral gene.

  7. Organ accumulation and subcellular location of Cicer arietinum ST1 protein.

    Science.gov (United States)

    Albornos, Lucía; Cabrera, Javier; Hernández-Nistal, Josefina; Martín, Ignacio; Labrador, Emilia; Dopico, Berta

    2014-07-01

    The ST (ShooT Specific) proteins are a new family of proteins characterized by a signal peptide, tandem repeats of 25/26 amino acids, and a domain of unknown function (DUF2775), whose presence is limited to a few families of dicotyledonous plants, mainly Fabaceae and Asteraceae. Their function remains unknown, although involvement in plant growth, fruit morphogenesis or in biotic and abiotic interactions have been suggested. This work is focused on ST1, a Cicer arietinum ST protein. We established the protein accumulation in different tissues and organs of chickpea seedlings and plants and its subcellular localization, which could indicate the possible function of ST1. The raising of specific antibodies against ST1 protein revealed that its accumulation in epicotyls and radicles was related to their elongation rate. Its pattern of tissue location in cotyledons during seed formation and early seed germination, as well as its localization in the perivascular fibres of epicotyls and radicles, indicated a possible involvement in seed germination and seedling growth. ST1 protein appears both inside the cell and in the cell wall. This double subcellular localization was found in every organ in which the ST1 protein was detected: seeds, cotyledons and seedling epicotyls and radicles. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Prediction of protein subcellular locations by GO-FunD-PseAA predictor.

    Science.gov (United States)

    Chou, Kuo-Chen; Cai, Yu-Dong

    2004-08-06

    The localization of a protein in a cell is closely correlated with its biological function. With the explosion of protein sequences entering into DataBanks, it is highly desired to develop an automated method that can fast identify their subcellular location. This will expedite the annotation process, providing timely useful information for both basic research and industrial application. In view of this, a powerful predictor has been developed by hybridizing the gene ontology approach [Nat. Genet. 25 (2000) 25], functional domain composition approach [J. Biol. Chem. 277 (2002) 45765], and the pseudo-amino acid composition approach [Proteins Struct. Funct. Genet. 43 (2001) 246; Erratum: ibid. 44 (2001) 60]. As a showcase, the recently constructed dataset [Bioinformatics 19 (2003) 1656] was used for demonstration. The dataset contains 7589 proteins classified into 12 subcellular locations: chloroplast, cytoplasmic, cytoskeleton, endoplasmic reticulum, extracellular, Golgi apparatus, lysosomal, mitochondrial, nuclear, peroxisomal, plasma membrane, and vacuolar. The overall success rate of prediction obtained by the jackknife cross-validation was 92%. This is so far the highest success rate performed on this dataset by following an objective and rigorous cross-validation procedure.

  9. HPSLPred: An Ensemble Multi-Label Classifier for Human Protein Subcellular Location Prediction with Imbalanced Source.

    Science.gov (United States)

    Wan, Shixiang; Duan, Yucong; Zou, Quan

    2017-09-01

    Predicting the subcellular localization of proteins is an important and challenging problem. Traditional experimental approaches are often expensive and time-consuming. Consequently, a growing number of research efforts employ a series of machine learning approaches to predict the subcellular location of proteins. There are two main challenges among the state-of-the-art prediction methods. First, most of the existing techniques are designed to deal with multi-class rather than multi-label classification, which ignores connections between multiple labels. In reality, multiple locations of particular proteins imply that there are vital and unique biological significances that deserve special focus and cannot be ignored. Second, techniques for handling imbalanced data in multi-label classification problems are necessary, but never employed. For solving these two issues, we have developed an ensemble multi-label classifier called HPSLPred, which can be applied for multi-label classification with an imbalanced protein source. For convenience, a user-friendly webserver has been established at http://server.malab.cn/HPSLPred. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. HybridGO-Loc: mining hybrid features on gene ontology for predicting subcellular localization of multi-location proteins.

    Science.gov (United States)

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2014-01-01

    Protein subcellular localization prediction, as an essential step to elucidate the functions in vivo of proteins and identify drugs targets, has been extensively studied in previous decades. Instead of only determining subcellular localization of single-label proteins, recent studies have focused on predicting both single- and multi-location proteins. Computational methods based on Gene Ontology (GO) have been demonstrated to be superior to methods based on other features. However, existing GO-based methods focus on the occurrences of GO terms and disregard their relationships. This paper proposes a multi-label subcellular-localization predictor, namely HybridGO-Loc, that leverages not only the GO term occurrences but also the inter-term relationships. This is achieved by hybridizing the GO frequencies of occurrences and the semantic similarity between GO terms. Given a protein, a set of GO terms are retrieved by searching against the gene ontology database, using the accession numbers of homologous proteins obtained via BLAST search as the keys. The frequency of GO occurrences and semantic similarity (SS) between GO terms are used to formulate frequency vectors and semantic similarity vectors, respectively, which are subsequently hybridized to construct fusion vectors. An adaptive-decision based multi-label support vector machine (SVM) classifier is proposed to classify the fusion vectors. Experimental results based on recent benchmark datasets and a new dataset containing novel proteins show that the proposed hybrid-feature predictor significantly outperforms predictors based on individual GO features as well as other state-of-the-art predictors. For readers' convenience, the HybridGO-Loc server, which is for predicting virus or plant proteins, is available online at http://bioinfo.eie.polyu.edu.hk/HybridGoServer/.

  11. Accurate prediction of subcellular location of apoptosis proteins combining Chou’s PseAAC and PsePSSM based on wavelet denoising

    Science.gov (United States)

    Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Wang, Ming-Hui; Zhang, Yan

    2017-01-01

    Apoptosis proteins subcellular localization information are very important for understanding the mechanism of programmed cell death and the development of drugs. The prediction of subcellular localization of an apoptosis protein is still a challenging task because the prediction of apoptosis proteins subcellular localization can help to understand their function and the role of metabolic processes. In this paper, we propose a novel method for protein subcellular localization prediction. Firstly, the features of the protein sequence are extracted by combining Chou's pseudo amino acid composition (PseAAC) and pseudo-position specific scoring matrix (PsePSSM), then the feature information of the extracted is denoised by two-dimensional (2-D) wavelet denoising. Finally, the optimal feature vectors are input to the SVM classifier to predict subcellular location of apoptosis proteins. Quite promising predictions are obtained using the jackknife test on three widely used datasets and compared with other state-of-the-art methods. The results indicate that the method proposed in this paper can remarkably improve the prediction accuracy of apoptosis protein subcellular localization, which will be a supplementary tool for future proteomics research. PMID:29296195

  12. Multi-location gram-positive and gram-negative bacterial protein subcellular localization using gene ontology and multi-label classifier ensemble.

    Science.gov (United States)

    Wang, Xiao; Zhang, Jun; Li, Guo-Zheng

    2015-01-01

    It has become a very important and full of challenge task to predict bacterial protein subcellular locations using computational methods. Although there exist a lot of prediction methods for bacterial proteins, the majority of these methods can only deal with single-location proteins. But unfortunately many multi-location proteins are located in the bacterial cells. Moreover, multi-location proteins have special biological functions capable of helping the development of new drugs. So it is necessary to develop new computational methods for accurately predicting subcellular locations of multi-location bacterial proteins. In this article, two efficient multi-label predictors, Gpos-ECC-mPLoc and Gneg-ECC-mPLoc, are developed to predict the subcellular locations of multi-label gram-positive and gram-negative bacterial proteins respectively. The two multi-label predictors construct the GO vectors by using the GO terms of homologous proteins of query proteins and then adopt a powerful multi-label ensemble classifier to make the final multi-label prediction. The two multi-label predictors have the following advantages: (1) they improve the prediction performance of multi-label proteins by taking the correlations among different labels into account; (2) they ensemble multiple CC classifiers and further generate better prediction results by ensemble learning; and (3) they construct the GO vectors by using the frequency of occurrences of GO terms in the typical homologous set instead of using 0/1 values. Experimental results show that Gpos-ECC-mPLoc and Gneg-ECC-mPLoc can efficiently predict the subcellular locations of multi-label gram-positive and gram-negative bacterial proteins respectively. Gpos-ECC-mPLoc and Gneg-ECC-mPLoc can efficiently improve prediction accuracy of subcellular localization of multi-location gram-positive and gram-negative bacterial proteins respectively. The online web servers for Gpos-ECC-mPLoc and Gneg-ECC-mPLoc predictors are freely accessible

  13. pLoc-mVirus: Predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC.

    Science.gov (United States)

    Cheng, Xiang; Xiao, Xuan; Chou, Kuo-Chen

    2017-09-10

    Knowledge of subcellular locations of proteins is crucially important for in-depth understanding their functions in a cell. With the explosive growth of protein sequences generated in the postgenomic age, it is highly demanded to develop computational tools for timely annotating their subcellular locations based on the sequence information alone. The current study is focused on virus proteins. Although considerable efforts have been made in this regard, the problem is far from being solved yet. Most existing methods can be used to deal with single-location proteins only. Actually, proteins with multi-locations may have some special biological functions. This kind of multiplex proteins is particularly important for both basic research and drug design. Using the multi-label theory, we present a new predictor called "pLoc-mVirus" by extracting the optimal GO (Gene Ontology) information into the general PseAAC (Pseudo Amino Acid Composition). Rigorous cross-validation on a same stringent benchmark dataset indicated that the proposed pLoc-mVirus predictor is remarkably superior to iLoc-Virus, the state-of-the-art method in predicting virus protein subcellular localization. To maximize the convenience of most experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/pLoc-mVirus/, by which users can easily get their desired results without the need to go through the complicated mathematics involved. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. pLoc-mPlant: predict subcellular localization of multi-location plant proteins by incorporating the optimal GO information into general PseAAC.

    Science.gov (United States)

    Cheng, Xiang; Xiao, Xuan; Chou, Kuo-Chen

    2017-08-22

    One of the fundamental goals in cellular biochemistry is to identify the functions of proteins in the context of compartments that organize them in the cellular environment. To realize this, it is indispensable to develop an automated method for fast and accurate identification of the subcellular locations of uncharacterized proteins. The current study is focused on plant protein subcellular location prediction based on the sequence information alone. Although considerable efforts have been made in this regard, the problem is far from being solved yet. Most of the existing methods can be used to deal with single-location proteins only. Actually, proteins with multi-locations may have some special biological functions. This kind of multiplex protein is particularly important for both basic research and drug design. Using the multi-label theory, we present a new predictor called "pLoc-mPlant" by extracting the optimal GO (Gene Ontology) information into the Chou's general PseAAC (Pseudo Amino Acid Composition). Rigorous cross-validation on the same stringent benchmark dataset indicated that the proposed pLoc-mPlant predictor is remarkably superior to iLoc-Plant, the state-of-the-art method for predicting plant protein subcellular localization. To maximize the convenience of most experimental scientists, a user-friendly web-server for the new predictor has been established at , by which users can easily get their desired results without the need to go through the complicated mathematics involved.

  15. pLoc-mHum: predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information.

    Science.gov (United States)

    Cheng, Xiang; Xiao, Xuan; Chou, Kuo-Chen

    2018-05-01

    For in-depth understanding the functions of proteins in a cell, the knowledge of their subcellular localization is indispensable. The current study is focused on human protein subcellular location prediction based on the sequence information alone. Although considerable efforts have been made in this regard, the problem is far from being solved yet. Most existing methods can be used to deal with single-location proteins only. Actually, proteins with multi-locations may have some special biological functions that are particularly important for both basic research and drug design. Using the multi-label theory, we present a new predictor called 'pLoc-mHum' by extracting the crucial GO (Gene Ontology) information into the general PseAAC (Pseudo Amino Acid Composition). Rigorous cross-validations on a same stringent benchmark dataset have indicated that the proposed pLoc-mHum predictor is remarkably superior to iLoc-Hum, the state-of-the-art method in predicting the human protein subcellular localization. To maximize the convenience of most experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/pLoc-mHum/, by which users can easily get their desired results without the need to go through the complicated mathematics involved. xcheng@gordonlifescience.org. Supplementary data are available at Bioinformatics online.

  16. Predict subcellular locations of singleplex and multiplex proteins by semi-supervised learning and dimension-reducing general mode of Chou's PseAAC.

    Science.gov (United States)

    Pacharawongsakda, Eakasit; Theeramunkong, Thanaruk

    2013-12-01

    Predicting protein subcellular location is one of major challenges in Bioinformatics area since such knowledge helps us understand protein functions and enables us to select the targeted proteins during drug discovery process. While many computational techniques have been proposed to improve predictive performance for protein subcellular location, they have several shortcomings. In this work, we propose a method to solve three main issues in such techniques; i) manipulation of multiplex proteins which may exist or move between multiple cellular compartments, ii) handling of high dimensionality in input and output spaces and iii) requirement of sufficient labeled data for model training. Towards these issues, this work presents a new computational method for predicting proteins which have either single or multiple locations. The proposed technique, namely iFLAST-CORE, incorporates the dimensionality reduction in the feature and label spaces with co-training paradigm for semi-supervised multi-label classification. For this purpose, the Singular Value Decomposition (SVD) is applied to transform the high-dimensional feature space and label space into the lower-dimensional spaces. After that, due to limitation of labeled data, the co-training regression makes use of unlabeled data by predicting the target values in the lower-dimensional spaces of unlabeled data. In the last step, the component of SVD is used to project labels in the lower-dimensional space back to those in the original space and an adaptive threshold is used to map a numeric value to a binary value for label determination. A set of experiments on viral proteins and gram-negative bacterial proteins evidence that our proposed method improve the classification performance in terms of various evaluation metrics such as Aiming (or Precision), Coverage (or Recall) and macro F-measure, compared to the traditional method that uses only labeled data.

  17. Subcellular sites for bacterial protein export

    NARCIS (Netherlands)

    Campo, Nathalie; Tjalsma, Harold; Buist, Girbe; Stepniak, Dariusz; Meijer, Michel; Veenhuis, Marten; Westermann, Martin; Müller, Jörg P.; Bron, Sierd; Kok, Jan; Kuipers, Oscar P.; Jongbloed, Jan D.H.

    2004-01-01

    Most bacterial proteins destined to leave the cytoplasm are exported to extracellular compartments or imported into the cytoplasmic membrane via the highly conserved SecA-YEG pathway. In the present studies, the subcellular distributions of core components of this pathway, SecA and SecY, and of the

  18. Subcellular sites for bacterial protein export.

    NARCIS (Netherlands)

    Campo, N.; Tjalsma, H.; Buist, G.; Stepniak, D.; Meijer, M.; Veenhuis, M.; Westermann, M.; Muller, J.P.; Bron, S.; Kok, J.; Kuipers, O.P.; Jongbloed, J.D.

    2004-01-01

    Most bacterial proteins destined to leave the cytoplasm are exported to extracellular compartments or imported into the cytoplasmic membrane via the highly conserved SecA-YEG pathway. In the present studies, the subcellular distributions of core components of this pathway, SecA and SecY, and of the

  19. Protein subcellular localization assays using split fluorescent proteins

    Science.gov (United States)

    Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM

    2009-09-08

    The invention provides protein subcellular localization assays using split fluorescent protein systems. The assays are conducted in living cells, do not require fixation and washing steps inherent in existing immunostaining and related techniques, and permit rapid, non-invasive, direct visualization of protein localization in living cells. The split fluorescent protein systems used in the practice of the invention generally comprise two or more self-complementing fragments of a fluorescent protein, such as GFP, wherein one or more of the fragments correspond to one or more beta-strand microdomains and are used to "tag" proteins of interest, and a complementary "assay" fragment of the fluorescent protein. Either or both of the fragments may be functionalized with a subcellular targeting sequence enabling it to be expressed in or directed to a particular subcellular compartment (i.e., the nucleus).

  20. The PDZ and band 4.1 containing protein Frmpd1 regulates the subcellular location of activator of G-protein signaling 3 and its interaction with G-proteins.

    Science.gov (United States)

    An, Ningfei; Blumer, Joe B; Bernard, Michael L; Lanier, Stephen M

    2008-09-05

    Activator of G-protein signaling 3 (AGS3) is one of nine mammalian proteins containing one or more G-protein regulatory (GPR) motifs that stabilize the GDP-bound conformation of Galphai. Such proteins have revealed unexpected functional diversity for the "G-switch" in the control of events within the cell independent of the role of heterotrimeric G-proteins as transducers for G-protein-coupled receptors at the cell surface. A key question regarding this class of proteins is what controls their subcellular positioning and interaction with G-proteins. We conducted a series of yeast two-hybrid screens to identify proteins interacting with the tetratricopeptide repeat (TPR) of AGS3, which plays an important role in subcellular positioning of the protein. We report the identification of Frmpd1 (FERM and PDZ domain containing 1) as a regulatory binding partner of AGS3. Frmpd1 binds to the TPR domain of AGS3 and coimmunoprecipitates with AGS3 from cell lysates. Cell fractionation indicated that Frmpd1 stabilizes AGS3 in a membrane fraction. Upon cotransfection of COS7 cells with Frmpd1-GFP and AGS3-mRFP, AGS3-mRFP is observed in regions of the cell cortex and also in membrane extensions or processes where it appears to be colocalized with Frmpd1-GFP based upon the merged fluorescent signals. Frmpd1 knockdown (siRNA) in Cath.a-differentiated neuronal cells decreased the level of endogenous AGS3 in membrane fractions by approximately 50% and enhanced the alpha2-adrenergic receptor-mediated inhibition of forskolin-induced increases in cAMP. The coimmunoprecipitation of Frmpd1 with AGS3 is lost as the amount of Galphai3 in the cell is increased and AGS3 apparently switches its binding partner from Frmpd1 to Galphai3 indicating that the interaction of AGS3 with Frmpd1 and Galphai3 is mutually exclusive. Mechanistically, Frmpd1 may position AGS3 in a membrane environment where it then interacts with Galphai in a regulated manner.

  1. Subcellular localization for Gram positive and Gram negative bacterial proteins using linear interpolation smoothing model.

    Science.gov (United States)

    Saini, Harsh; Raicar, Gaurav; Dehzangi, Abdollah; Lal, Sunil; Sharma, Alok

    2015-12-07

    Protein subcellular localization is an important topic in proteomics since it is related to a protein׳s overall function, helps in the understanding of metabolic pathways, and in drug design and discovery. In this paper, a basic approximation technique from natural language processing called the linear interpolation smoothing model is applied for predicting protein subcellular localizations. The proposed approach extracts features from syntactical information in protein sequences to build probabilistic profiles using dependency models, which are used in linear interpolation to determine how likely is a sequence to belong to a particular subcellular location. This technique builds a statistical model based on maximum likelihood. It is able to deal effectively with high dimensionality that hinders other traditional classifiers such as Support Vector Machines or k-Nearest Neighbours without sacrificing performance. This approach has been evaluated by predicting subcellular localizations of Gram positive and Gram negative bacterial proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. A novel representation for apoptosis protein subcellular localization prediction using support vector machine.

    Science.gov (United States)

    Zhang, Li; Liao, Bo; Li, Dachao; Zhu, Wen

    2009-07-21

    Apoptosis, or programmed cell death, plays an important role in development of an organism. Obtaining information on subcellular location of apoptosis proteins is very helpful to understand the apoptosis mechanism. In this paper, based on the concept that the position distribution information of amino acids is closely related with the structure and function of proteins, we introduce the concept of distance frequency [Matsuda, S., Vert, J.P., Ueda, N., Toh, H., Akutsu, T., 2005. A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Sci. 14, 2804-2813] and propose a novel way to calculate distance frequencies. In order to calculate the local features, each protein sequence is separated into p parts with the same length in our paper. Then we use the novel representation of protein sequences and adopt support vector machine to predict subcellular location. The overall prediction accuracy is significantly improved by jackknife test.

  3. Mutational analyses of the signals involved in the subcellular location of DSCR1

    Directory of Open Access Journals (Sweden)

    Henrique-Silva Flávio

    2002-09-01

    Full Text Available Abstract Background Down syndrome is the most frequent genetic disorder in humans. Rare cases involving partial trisomy of chromosome 21 allowed a small chromosomal region common to all carriers, called Down Syndrome Critical Region (DSCR, to be determined. The DSCR1 gene was identified in this region and is expressed preferentially in the brain, heart and skeletal muscle. Recent studies have shown that DSCR1 belongs to a family of proteins that binds and inhibits calcineurin, a serine-threonine phosphatase. The work reported on herein consisted of a study of the subcellular location of DSCR1 and DSCR1-mutated forms by fusion with a green fluorescent protein, using various cell lines, including human. Results The protein's location was preferentially nuclear, independently of the isoform, cell line and insertion in the GFP's N- or C-terminal. A segment in the C-terminal, which is important in the location of the protein, was identified by deletion. On the other hand, site-directed mutational analyses have indicated the involvement of some serine and threonine residues in this event. Conclusion In this paper, we discuss the identification of amino acids which can be important for subcellular location of DSCR1. The involvement of residues that are prone to phosphorylation suggests that the location and function of DSCR1 may be regulated by kinases and/or phosphatases.

  4. Analysis of potato virus X replicase and TGBp3 subcellular locations

    International Nuclear Information System (INIS)

    Bamunusinghe, Devinka; Hemenway, Cynthia L.; Nelson, Richard S.; Sanderfoot, Anton A.; Ye, Chang M.; Silva, Muniwarage A.T.; Payton, M.; Verchot-Lubicz, Jeanmarie

    2009-01-01

    Potato virus X (PVX) infection leads to certain cytopathological modifications of the host endomembrane system. The subcellular location of the PVX replicase was previously unknown while the PVX TGBp3 protein was previously reported to reside in the ER. Using PVX infectious clones expressing the green fluorescent protein reporter, and antisera detecting the PVX replicase and host membrane markers, we examined the subcellular distribution of the PVX replicase in relation to the TGBp3. Confocal and electron microscopic observations revealed that the replicase localizes in membrane bound structures that derive from the ER. A subset of TGBp3 resides in the ER at the same location as the replicase. Sucrose gradient fractionation showed that the PVX replicase and TGBp3 proteins co-fractionate with ER marker proteins. This localization represents a region where both proteins may be synthesized and/or function. There is no evidence to indicate that either PVX protein moves into the Golgi apparatus. Cerulenin, a drug that inhibits de novo membrane synthesis, also inhibited PVX replication. These combined data indicate that PVX replication relies on ER-derived membrane recruitment and membrane proliferation.

  5. Localization and regulation of mouse pantothenate kinase 2 [The PanK2 Genes of Mouse and Human Specify Proteins with Distinct Subcellular Locations

    Energy Technology Data Exchange (ETDEWEB)

    Leonardi, Roberta [St. Jude Children' s Research Hospital, Memphis, TN (United States); Zhang, Yong-Mei [St. Jude Children' s Research Hospital, Memphis, TN (United States); Lykidis, Athanasios [DOE Joint Genome Inst., Walnut Creek, CA (United States); Rock, Charles O. [St. Jude Children' s Research Hospital, Memphis, TN (United States); Jackowski, Suzanne [St. Jude Children' s Research Hospital, Memphis, TN (United States)

    2007-09-07

    Coenzyme A (CoA) biosynthesis is initiated by pantothenatekinase (PanK) and CoA levels are controlled through differentialexpression and feedback regulation of PanK isoforms. PanK2 is amitochondrial protein in humans, but comparative genomics revealed thatacquisition of a mitochondrial targeting signal was limited to primates.Human and mouse PanK2 possessed similar biochemical properties, withinhibition by acetylCoA and activation by palmitoylcarnitine. Mouse PanK2localized in the cytosol, and the expression of PanK2 was higher in humanbrain compared to mouse brain. Differences in expression and subcellularlocalization should be considered in developing a mouse model for humanPanK2 deficiency.

  6. Prediction of protein subcellular localization using support vector machine with the choice of proper kernel

    Directory of Open Access Journals (Sweden)

    Al Mehedi Hasan

    2017-07-01

    Full Text Available The prediction of subcellular locations of proteins can provide useful hints for revealing their functions as well as for understanding the mechanisms of some diseases and, finally, for developing novel drugs. As the number of newly discovered proteins has been growing exponentially, laboratory-based experiments to determine the location of an uncharacterized protein in a living cell have become both expensive and time-consuming. Consequently, to tackle these challenges, computational methods are being developed as an alternative to help biologists in selecting target proteins and designing related experiments. However, the success of protein subcellular localization prediction is still a complicated and challenging problem, particularly when query proteins may have multi-label characteristics, i.e. their simultaneous existence in more than one subcellular location, or if they move between two or more different subcellular locations as well. At this point, to get rid of this problem, several types of subcellular localization prediction methods with different levels of accuracy have been proposed. The support vector machine (SVM has been employed to provide potential solutions for problems connected with the prediction of protein subcellular localization. However, the practicability of SVM is affected by difficulties in selecting its appropriate kernel as well as in selecting the parameters of that selected kernel. The literature survey has shown that most researchers apply the radial basis function (RBF kernel to build a SVM based subcellular localization prediction system. Surprisingly, there are still many other kernel functions which have not yet been applied in the prediction of protein subcellular localization. However, the nature of this classification problem requires the application of different kernels for SVM to ensure an optimal result. From this viewpoint, this paper presents the work to apply different kernels for SVM in protein

  7. Detrended cross-correlation coefficient: Application to predict apoptosis protein subcellular localization.

    Science.gov (United States)

    Liang, Yunyun; Liu, Sanyang; Zhang, Shengli

    2016-12-01

    Apoptosis, or programed cell death, plays a central role in the development and homeostasis of an organism. Obtaining information on subcellular location of apoptosis proteins is very helpful for understanding the apoptosis mechanism. The prediction of subcellular localization of an apoptosis protein is still a challenging task, and existing methods mainly based on protein primary sequences. In this paper, we introduce a new position-specific scoring matrix (PSSM)-based method by using detrended cross-correlation (DCCA) coefficient of non-overlapping windows. Then a 190-dimensional (190D) feature vector is constructed on two widely used datasets: CL317 and ZD98, and support vector machine is adopted as classifier. To evaluate the proposed method, objective and rigorous jackknife cross-validation tests are performed on the two datasets. The results show that our approach offers a novel and reliable PSSM-based tool for prediction of apoptosis protein subcellular localization. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Subcellular Location of PKA Controls Striatal Plasticity: Stochastic Simulations in Spiny Dendrites

    Science.gov (United States)

    Oliveira, Rodrigo F.; Kim, MyungSook; Blackwell, Kim T.

    2012-01-01

    Dopamine release in the striatum has been implicated in various forms of reward dependent learning. Dopamine leads to production of cAMP and activation of protein kinase A (PKA), which are involved in striatal synaptic plasticity and learning. PKA and its protein targets are not diffusely located throughout the neuron, but are confined to various subcellular compartments by anchoring molecules such as A-Kinase Anchoring Proteins (AKAPs). Experiments have shown that blocking the interaction of PKA with AKAPs disrupts its subcellular location and prevents LTP in the hippocampus and striatum; however, these experiments have not revealed whether the critical function of anchoring is to locate PKA near the cAMP that activates it or near its targets, such as AMPA receptors located in the post-synaptic density. We have developed a large scale stochastic reaction-diffusion model of signaling pathways in a medium spiny projection neuron dendrite with spines, based on published biochemical measurements, to investigate this question and to evaluate whether dopamine signaling exhibits spatial specificity post-synaptically. The model was stimulated with dopamine pulses mimicking those recorded in response to reward. Simulations show that PKA colocalization with adenylate cyclase, either in the spine head or in the dendrite, leads to greater phosphorylation of DARPP-32 Thr34 and AMPA receptor GluA1 Ser845 than when PKA is anchored away from adenylate cyclase. Simulations further demonstrate that though cAMP exhibits a strong spatial gradient, diffusible DARPP-32 facilitates the spread of PKA activity, suggesting that additional inactivation mechanisms are required to produce spatial specificity of PKA activity. PMID:22346744

  9. Determining the sub-cellular localization of proteins within Caenorhabditis elegans body wall muscle.

    Science.gov (United States)

    Meissner, Barbara; Rogalski, Teresa; Viveiros, Ryan; Warner, Adam; Plastino, Lorena; Lorch, Adam; Granger, Laure; Segalat, Laurent; Moerman, Donald G

    2011-01-01

    Determining the sub-cellular localization of a protein within a cell is often an essential step towards understanding its function. In Caenorhabditis elegans, the relatively large size of the body wall muscle cells and the exquisite organization of their sarcomeres offer an opportunity to identify the precise position of proteins within cell substructures. Our goal in this study is to generate a comprehensive "localizome" for C. elegans body wall muscle by GFP-tagging proteins expressed in muscle and determining their location within the cell. For this project, we focused on proteins that we know are expressed in muscle and are orthologs or at least homologs of human proteins. To date we have analyzed the expression of about 227 GFP-tagged proteins that show localized expression in the body wall muscle of this nematode (e.g. dense bodies, M-lines, myofilaments, mitochondria, cell membrane, nucleus or nucleolus). For most proteins analyzed in this study no prior data on sub-cellular localization was available. In addition to discrete sub-cellular localization we observe overlapping patterns of localization including the presence of a protein in the dense body and the nucleus, or the dense body and the M-lines. In total we discern more than 14 sub-cellular localization patterns within nematode body wall muscle. The localization of this large set of proteins within a muscle cell will serve as an invaluable resource in our investigation of muscle sarcomere assembly and function.

  10. Rice DB: an Oryza Information Portal linking annotation, subcellular location, function, expression, regulation, and evolutionary information for rice and Arabidopsis.

    Science.gov (United States)

    Narsai, Reena; Devenish, James; Castleden, Ian; Narsai, Kabir; Xu, Lin; Shou, Huixia; Whelan, James

    2013-12-01

    Omics research in Oryza sativa (rice) relies on the use of multiple databases to obtain different types of information to define gene function. We present Rice DB, an Oryza information portal that is a functional genomics database, linking gene loci to comprehensive annotations, expression data and the subcellular location of encoded proteins. Rice DB has been designed to integrate the direct comparison of rice with Arabidopsis (Arabidopsis thaliana), based on orthology or 'expressology', thus using and combining available information from two pre-eminent plant models. To establish Rice DB, gene identifiers (more than 40 types) and annotations from a variety of sources were compiled, functional information based on large-scale and individual studies was manually collated, hundreds of microarrays were analysed to generate expression annotations, and the occurrences of potential functional regulatory motifs in promoter regions were calculated. A range of computational subcellular localization predictions were also run for all putative proteins encoded in the rice genome, and experimentally confirmed protein localizations have been collated, curated and linked to functional studies in rice. A single search box allows anything from gene identifiers (for rice and/or Arabidopsis), motif sequences, subcellular location, to keyword searches to be entered, with the capability of Boolean searches (such as AND/OR). To demonstrate the utility of Rice DB, several examples are presented including a rice mitochondrial proteome, which draws on a variety of sources for subcellular location data within Rice DB. Comparisons of subcellular location, functional annotations, as well as transcript expression in parallel with Arabidopsis reveals examples of conservation between rice and Arabidopsis, using Rice DB (http://ricedb.plantenergy.uwa.edu.au). © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  11. Identifying essential proteins based on sub-network partition and prioritization by integrating subcellular localization information.

    Science.gov (United States)

    Li, Min; Li, Wenkai; Wu, Fang-Xiang; Pan, Yi; Wang, Jianxin

    2018-06-14

    Essential proteins are important participants in various life activities and play a vital role in the survival and reproduction of living organisms. Identification of essential proteins from protein-protein interaction (PPI) networks has great significance to facilitate the study of human complex diseases, the design of drugs and the development of bioinformatics and computational science. Studies have shown that highly connected proteins in a PPI network tend to be essential. A series of computational methods have been proposed to identify essential proteins by analyzing topological structures of PPI networks. However, the high noise in the PPI data can degrade the accuracy of essential protein prediction. Moreover, proteins must be located in the appropriate subcellular localization to perform their functions, and only when the proteins are located in the same subcellular localization, it is possible that they can interact with each other. In this paper, we propose a new network-based essential protein discovery method based on sub-network partition and prioritization by integrating subcellular localization information, named SPP. The proposed method SPP was tested on two different yeast PPI networks obtained from DIP database and BioGRID database. The experimental results show that SPP can effectively reduce the effect of false positives in PPI networks and predict essential proteins more accurately compared with other existing computational methods DC, BC, CC, SC, EC, IC, NC. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Protein subcellular localization prediction using artificial intelligence technology.

    Science.gov (United States)

    Nair, Rajesh; Rost, Burkhard

    2008-01-01

    Proteins perform many important tasks in living organisms, such as catalysis of biochemical reactions, transport of nutrients, and recognition and transmission of signals. The plethora of aspects of the role of any particular protein is referred to as its "function." One aspect of protein function that has been the target of intensive research by computational biologists is its subcellular localization. Proteins must be localized in the same subcellular compartment to cooperate toward a common physiological function. Aberrant subcellular localization of proteins can result in several diseases, including kidney stones, cancer, and Alzheimer's disease. To date, sequence homology remains the most widely used method for inferring the function of a protein. However, the application of advanced artificial intelligence (AI)-based techniques in recent years has resulted in significant improvements in our ability to predict the subcellular localization of a protein. The prediction accuracy has risen steadily over the years, in large part due to the application of AI-based methods such as hidden Markov models (HMMs), neural networks (NNs), and support vector machines (SVMs), although the availability of larger experimental datasets has also played a role. Automatic methods that mine textual information from the biological literature and molecular biology databases have considerably sped up the process of annotation for proteins for which some information regarding function is available in the literature. State-of-the-art methods based on NNs and HMMs can predict the presence of N-terminal sorting signals extremely accurately. Ab initio methods that predict subcellular localization for any protein sequence using only the native amino acid sequence and features predicted from the native sequence have shown the most remarkable improvements. The prediction accuracy of these methods has increased by over 30% in the past decade. The accuracy of these methods is now on par with

  13. ngLOC: software and web server for predicting protein subcellular localization in prokaryotes and eukaryotes

    Directory of Open Access Journals (Sweden)

    King Brian R

    2012-07-01

    Full Text Available Abstract Background Understanding protein subcellular localization is a necessary component toward understanding the overall function of a protein. Numerous computational methods have been published over the past decade, with varying degrees of success. Despite the large number of published methods in this area, only a small fraction of them are available for researchers to use in their own studies. Of those that are available, many are limited by predicting only a small number of organelles in the cell. Additionally, the majority of methods predict only a single location for a sequence, even though it is known that a large fraction of the proteins in eukaryotic species shuttle between locations to carry out their function. Findings We present a software package and a web server for predicting the subcellular localization of protein sequences based on the ngLOC method. ngLOC is an n-gram-based Bayesian classifier that predicts subcellular localization of proteins both in prokaryotes and eukaryotes. The overall prediction accuracy varies from 89.8% to 91.4% across species. This program can predict 11 distinct locations each in plant and animal species. ngLOC also predicts 4 and 5 distinct locations on gram-positive and gram-negative bacterial datasets, respectively. Conclusions ngLOC is a generic method that can be trained by data from a variety of species or classes for predicting protein subcellular localization. The standalone software is freely available for academic use under GNU GPL, and the ngLOC web server is also accessible at http://ngloc.unmc.edu.

  14. Disparate subcellular location of putative sortase substrates in Clostridium difficile.

    Science.gov (United States)

    Peltier, Johann; Shaw, Helen A; Wren, Brendan W; Fairweather, Neil F

    2017-08-23

    Clostridium difficile is a gastrointestinal pathogen but how the bacterium colonises this niche is still little understood. Sortase enzymes covalently attach specific bacterial proteins to the peptidoglycan cell wall and are often involved in colonisation by pathogens. Here we show C. difficile proteins CD2537 and CD3392 are functional substrates of sortase SrtB. Through manipulation of the C-terminal regions of these proteins we show the SPKTG motif is essential for covalent attachment to the cell wall. Two additional putative substrates, CD0183 which contains an SPSTG motif, and CD2768 which contains an SPQTG motif, are not cleaved or anchored to the cell wall by sortase. Finally, using an in vivo asymmetric cleavage assay, we show that despite containing a conserved SPKTG motif, in the absence of SrtB these proteins are localised to disparate cellular compartments.

  15. CellMap visualizes protein-protein interactions and subcellular localization

    Science.gov (United States)

    Dallago, Christian; Goldberg, Tatyana; Andrade-Navarro, Miguel Angel; Alanis-Lobato, Gregorio; Rost, Burkhard

    2018-01-01

    Many tools visualize protein-protein interaction (PPI) networks. The tool introduced here, CellMap, adds one crucial novelty by visualizing PPI networks in the context of subcellular localization, i.e. the location in the cell or cellular component in which a PPI happens. Users can upload images of cells and define areas of interest against which PPIs for selected proteins are displayed (by default on a cartoon of a cell). Annotations of localization are provided by the user or through our in-house database. The visualizer and server are written in JavaScript, making CellMap easy to customize and to extend by researchers and developers. PMID:29497493

  16. Gene ontology based transfer learning for protein subcellular localization

    Directory of Open Access Journals (Sweden)

    Zhou Shuigeng

    2011-02-01

    Full Text Available Abstract Background Prediction of protein subcellular localization generally involves many complex factors, and using only one or two aspects of data information may not tell the true story. For this reason, some recent predictive models are deliberately designed to integrate multiple heterogeneous data sources for exploiting multi-aspect protein feature information. Gene ontology, hereinafter referred to as GO, uses a controlled vocabulary to depict biological molecules or gene products in terms of biological process, molecular function and cellular component. With the rapid expansion of annotated protein sequences, gene ontology has become a general protein feature that can be used to construct predictive models in computational biology. Existing models generally either concatenated the GO terms into a flat binary vector or applied majority-vote based ensemble learning for protein subcellular localization, both of which can not estimate the individual discriminative abilities of the three aspects of gene ontology. Results In this paper, we propose a Gene Ontology Based Transfer Learning Model (GO-TLM for large-scale protein subcellular localization. The model transfers the signature-based homologous GO terms to the target proteins, and further constructs a reliable learning system to reduce the adverse affect of the potential false GO terms that are resulted from evolutionary divergence. We derive three GO kernels from the three aspects of gene ontology to measure the GO similarity of two proteins, and derive two other spectrum kernels to measure the similarity of two protein sequences. We use simple non-parametric cross validation to explicitly weigh the discriminative abilities of the five kernels, such that the time & space computational complexities are greatly reduced when compared to the complicated semi-definite programming and semi-indefinite linear programming. The five kernels are then linearly merged into one single kernel for

  17. Diversity and subcellular distribution of archaeal secreted proteins.

    Science.gov (United States)

    Szabo, Zalan; Pohlschroder, Mechthild

    2012-01-01

    Secreted proteins make up a significant percentage of a prokaryotic proteome and play critical roles in important cellular processes such as polymer degradation, nutrient uptake, signal transduction, cell wall biosynthesis, and motility. The majority of archaeal proteins are believed to be secreted either in an unfolded conformation via the universally conserved Sec pathway or in a folded conformation via the Twin arginine transport (Tat) pathway. Extensive in vivo and in silico analyses of N-terminal signal peptides that target proteins to these pathways have led to the development of computational tools that not only predict Sec and Tat substrates with high accuracy but also provide information about signal peptide processing and targeting. Predictions therefore include indications as to whether a substrate is a soluble secreted protein, a membrane or cell wall anchored protein, or a surface structure subunit, and whether it is targeted for post-translational modification such as glycosylation or the addition of a lipid. The use of these in silico tools, in combination with biochemical and genetic analyses of transport pathways and their substrates, has resulted in improved predictions of the subcellular localization of archaeal secreted proteins, allowing for a more accurate annotation of archaeal proteomes, and has led to the identification of potential adaptations to extreme environments, as well as phyla-specific pathways among the archaea. A more comprehensive understanding of the transport pathways used and post-translational modifications of secreted archaeal proteins will also facilitate the identification and heterologous expression of commercially valuable archaeal enzymes.

  18. Subcellular location of the enzymes of purine breakdown in the yeast Candida famata grown on uric acid

    NARCIS (Netherlands)

    Large, Peter J.; Waterham, Hans R.; Veenhuis, Marten

    1990-01-01

    The subcellular location of the enzymes of purine breakdown in the yeast Candida famata, which grows on uric acid as sole carbon and nitrogen source, has been examined by subcellular fractionation methods. Uricase was confirmed as being peroxisomal, but the other three enzymes, allantoinase,

  19. Diversity and subcellular distribution of archaeal secreted proteins

    Directory of Open Access Journals (Sweden)

    Mechthild ePohlschroder

    2012-07-01

    Full Text Available Secreted proteins make up a significant percentage of a prokaryotic proteome and play critical roles in important cellular processes such as polymer degradation, nutrient uptake, signal transduction, cell wall biosynthesis and motility. The majority of archaeal proteins are believed to be secreted either in an unfolded conformation via the universally conserved Sec pathway or in a folded conformation via the Twin arginine transport (Tat pathway. Extensive in vivo and in silico analyses of N-terminal signal peptides that target proteins to these pathways have led to the development of computational tools that not only predict Sec and Tat substrates with high accuracy but also provide information about signal peptide processing and targeting. Predictions therefore include indications as to whether a substrate is a soluble secreted protein, a membrane or cell-wall anchored protein, or a surface structure subunit, and whether it is targeted for post-translational modification such as glycosylation or the addition of a lipid. The use of these in silico tools, in combination with biochemical and genetic analyses of transport pathways and their substrates, has resulted in improved predictions of the subcellular localization of archaeal secreted proteins, allowing for a more accurate annotation of archaeal proteomes, and has led to the identification of potential adaptations to extreme environments, as well as archaeal kingdom-specific pathways. A more comprehensive understanding of the transport pathways and post-translational modifications of secreted archaeal proteins will also generate invaluable insights that will facilitate the identification of commercially valuable archaeal enzymes and the development of heterologous systems in which to efficiently express them.

  20. Predicting the subcellular localization of viral proteins within a mammalian host cell

    Directory of Open Access Journals (Sweden)

    Thomas DY

    2006-04-01

    Full Text Available Abstract Background The bioinformatic prediction of protein subcellular localization has been extensively studied for prokaryotic and eukaryotic organisms. However, this is not the case for viruses whose proteins are often involved in extensive interactions at various subcellular localizations with host proteins. Results Here, we investigate the extent of utilization of human cellular localization mechanisms by viral proteins and we demonstrate that appropriate eukaryotic subcellular localization predictors can be used to predict viral protein localization within the host cell. Conclusion Such predictions provide a method to rapidly annotate viral proteomes with subcellular localization information. They are likely to have widespread applications both in the study of the functions of viral proteins in the host cell and in the design of antiviral drugs.

  1. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization.

    Directory of Open Access Journals (Sweden)

    Kuo-Chen Chou

    Full Text Available One of the fundamental goals in proteomics and cell biology is to identify the functions of proteins in various cellular organelles and pathways. Information of subcellular locations of proteins can provide useful insights for revealing their functions and understanding how they interact with each other in cellular network systems. Most of the existing methods in predicting plant protein subcellular localization can only cover three or four location sites, and none of them can be used to deal with multiplex plant proteins that can simultaneously exist at two, or move between, two or more different location sits. Actually, such multiplex proteins might have special biological functions worthy of particular notice. The present study was devoted to improve the existing plant protein subcellular location predictors from the aforementioned two aspects. A new predictor called "Plant-mPLoc" is developed by integrating the gene ontology information, functional domain information, and sequential evolutionary information through three different modes of pseudo amino acid composition. It can be used to identify plant proteins among the following 12 location sites: (1 cell membrane, (2 cell wall, (3 chloroplast, (4 cytoplasm, (5 endoplasmic reticulum, (6 extracellular, (7 Golgi apparatus, (8 mitochondrion, (9 nucleus, (10 peroxisome, (11 plastid, and (12 vacuole. Compared with the existing methods for predicting plant protein subcellular localization, the new predictor is much more powerful and flexible. Particularly, it also has the capacity to deal with multiple-location proteins, which is beyond the reach of any existing predictors specialized for identifying plant protein subcellular localization. As a user-friendly web-server, Plant-mPLoc is freely accessible at http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/. Moreover, for the convenience of the vast majority of experimental scientists, a step-by-step guide is provided on how to use the web-server to

  2. Predicting Subcellular Localization of Proteins by Bioinformatic Algorithms

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2015-01-01

    was used. Various statistical and machine learning algorithms are used with all three approaches, and various measures and standards are employed when reporting the performances of the developed methods. This chapter presents a number of available methods for prediction of sorting signals and subcellular...

  3. Pharmacologic modulation of protein kinase C isozymes: the role of RACKs and subcellular localisation.

    Science.gov (United States)

    Csukai, M; Mochly-Rosen, D

    1999-04-01

    Protein kinase C (PKC) isozymes are highly homologous kinases and several different isozymes can be present in a cell. Each isozyme is likely to mediate unique functions, but pharmacological tools to explore their isozyme-specific roles have not been available until recently. In this review, we describe the development and application of isozyme-selective inhibitors of PKC. The identification of these inhibitors stems from the observation that PKC isozymes are each localised to unique subcellular locations following activation. Inhibitors of this isozyme-unique localisation have been shown to act as selective inhibitors of the functions of individual isozymes. The identification of isozyme-specific inhibitors should allow the exploration of individual PKC isozyme function in a wide range of cell systems. Copyright 1999 The Italian Pharmacological Society.

  4. Comparative study of human mitochondrial proteome reveals extensive protein subcellular relocalization after gene duplications

    Directory of Open Access Journals (Sweden)

    Huang Yong

    2009-11-01

    Full Text Available Abstract Background Gene and genome duplication is the principle creative force in evolution. Recently, protein subcellular relocalization, or neolocalization was proposed as one of the mechanisms responsible for the retention of duplicated genes. This hypothesis received support from the analysis of yeast genomes, but has not been tested thoroughly on animal genomes. In order to evaluate the importance of subcellular relocalizations for retention of duplicated genes in animal genomes, we systematically analyzed nuclear encoded mitochondrial proteins in the human genome by reconstructing phylogenies of mitochondrial multigene families. Results The 456 human mitochondrial proteins selected for this study were clustered into 305 gene families including 92 multigene families. Among the multigene families, 59 (64% consisted of both mitochondrial and cytosolic (non-mitochondrial proteins (mt-cy families while the remaining 33 (36% were composed of mitochondrial proteins (mt-mt families. Phylogenetic analyses of mt-cy families revealed three different scenarios of their neolocalization following gene duplication: 1 relocalization from mitochondria to cytosol, 2 from cytosol to mitochondria and 3 multiple subcellular relocalizations. The neolocalizations were most commonly enabled by the gain or loss of N-terminal mitochondrial targeting signals. The majority of detected subcellular relocalization events occurred early in animal evolution, preceding the evolution of tetrapods. Mt-mt protein families showed a somewhat different pattern, where gene duplication occurred more evenly in time. However, for both types of protein families, most duplication events appear to roughly coincide with two rounds of genome duplications early in vertebrate evolution. Finally, we evaluated the effects of inaccurate and incomplete annotation of mitochondrial proteins and found that our conclusion of the importance of subcellular relocalization after gene duplication on

  5. Lipase genes in Mucor circinelloides: identification, sub-cellular location, phylogenetic analysis and expression profiling during growth and lipid accumulation.

    Science.gov (United States)

    Zan, Xinyi; Tang, Xin; Chu, Linfang; Zhao, Lina; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda

    2016-10-01

    Lipases or triacylglycerol hydrolases are widely spread in nature and are particularly common in the microbial world. The filamentous fungus Mucor circinelloides is a potential lipase producer, as it grows well in triacylglycerol-contained culture media. So far only one lipase from M. circinelloides has been characterized, while the majority of lipases remain unknown in this fungus. In the present study, 47 potential lipase genes in M. circinelloides WJ11 and 30 potential lipase genes in M. circinelloides CBS 277.49 were identified by extensive bioinformatics analysis. An overview of these lipases is presented, including several characteristics, sub-cellular location, phylogenetic analysis and expression profiling of the lipase genes during growth and lipid accumulation. All of these proteins contained the consensus sequence for a classical lipase (GXSXG motif) and were divided into four types including α/β-hydrolase_1, α/β-hydrolase_3, class_3 and GDSL lipase (GDSL) based on gene annotations. Phylogenetic analyses revealed that class_3 family and α/β-hydrolase_3 family were the conserved lipase family in M. circinelloides. Additionally, some lipases also contained a typical acyltransferase motif of H-(X) 4-D, and these lipases may play a dual role in lipid metabolism, catalyzing both lipid hydrolysis and transacylation reactions. The differential expression of all lipase genes were confirmed by quantitative real-time PCR, and the expression profiling were analyzed to predict the possible biological roles of these lipase genes in lipid metabolism in M. circinelloides. We preliminarily hypothesized that lipases may be involved in triacylglycerol degradation, phospholipid synthesis and beta-oxidation. Moreover, the results of sub-cellular localization, the presence of signal peptide and transcriptional analyses of lipase genes indicated that four lipase in WJ11 most likely belong to extracellular lipases with a signal peptide. These findings provide a platform

  6. Using distant supervised learning to identify protein subcellular localizations from full-text scientific articles.

    Science.gov (United States)

    Zheng, Wu; Blake, Catherine

    2015-10-01

    Databases of curated biomedical knowledge, such as the protein-locations reflected in the UniProtKB database, provide an accurate and useful resource to researchers and decision makers. Our goal is to augment the manual efforts currently used to curate knowledge bases with automated approaches that leverage the increased availability of full-text scientific articles. This paper describes experiments that use distant supervised learning to identify protein subcellular localizations, which are important to understand protein function and to identify candidate drug targets. Experiments consider Swiss-Prot, the manually annotated subset of the UniProtKB protein knowledge base, and 43,000 full-text articles from the Journal of Biological Chemistry that contain just under 11.5 million sentences. The system achieves 0.81 precision and 0.49 recall at sentence level and an accuracy of 57% on held-out instances in a test set. Moreover, the approach identifies 8210 instances that are not in the UniProtKB knowledge base. Manual inspection of the 50 most likely relations showed that 41 (82%) were valid. These results have immediate benefit to researchers interested in protein function, and suggest that distant supervision should be explored to complement other manual data curation efforts. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Subcellular localization and logistics of integral membrane protein biogenesis in Escherichia coli.

    Science.gov (United States)

    Bogdanov, Mikhail; Aboulwafa, Mohammad; Saier, Milton H

    2013-01-01

    Transporters catalyze entry and exit of molecules into and out of cells and organelles, and protein-lipid interactions influence their activities. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS) catalyzes transport-coupled sugar phosphorylation as well as nonvectorial sugar phosphorylation in the cytoplasm. The vectorial process is much more sensitive to the lipid environment than the nonvectorial process. Moreover, cytoplasmic micellar forms of these enzyme-porters have been identified, and non-PTS permeases have similarly been shown to exist in 'soluble' forms. The latter porters exhibit lipid-dependent activities and can adopt altered topologies by simply changing the lipid composition. Finally, intracellular membranes and vesicles exist in Escherichia coli leading to the following unanswered questions: (1) what determines whether a PTS permease catalyzes vectorial or nonvectorial sugar phosphorylation? (2) How do phospholipids influence relative amounts of the plasma membrane, intracellular membrane, inner membrane-derived vesicles and cytoplasmic micelles? (3) What regulates the route(s) of permease insertion and transfer into and between the different subcellular sites? (4) Do these various membranous forms have distinct physiological functions? (5) What methods should be utilized to study the biogenesis and interconversion of these membranous structures? While research concerning these questions is still in its infancy, answers will greatly enhance our understanding of protein-lipid interactions and how they control the activities, conformations, cellular locations and biogenesis of integral membrane proteins. Copyright © 2013 S. Karger AG, Basel.

  8. MultiLoc2: integrating phylogeny and Gene Ontology terms improves subcellular protein localization prediction

    Directory of Open Access Journals (Sweden)

    Kohlbacher Oliver

    2009-09-01

    Full Text Available Abstract Background Knowledge of subcellular localization of proteins is crucial to proteomics, drug target discovery and systems biology since localization and biological function are highly correlated. In recent years, numerous computational prediction methods have been developed. Nevertheless, there is still a need for prediction methods that show more robustness and higher accuracy. Results We extended our previous MultiLoc predictor by incorporating phylogenetic profiles and Gene Ontology terms. Two different datasets were used for training the system, resulting in two versions of this high-accuracy prediction method. One version is specialized for globular proteins and predicts up to five localizations, whereas a second version covers all eleven main eukaryotic subcellular localizations. In a benchmark study with five localizations, MultiLoc2 performs considerably better than other methods for animal and plant proteins and comparably for fungal proteins. Furthermore, MultiLoc2 performs clearly better when using a second dataset that extends the benchmark study to all eleven main eukaryotic subcellular localizations. Conclusion MultiLoc2 is an extensive high-performance subcellular protein localization prediction system. By incorporating phylogenetic profiles and Gene Ontology terms MultiLoc2 yields higher accuracies compared to its previous version. Moreover, it outperforms other prediction systems in two benchmarks studies. MultiLoc2 is available as user-friendly and free web-service, available at: http://www-bs.informatik.uni-tuebingen.de/Services/MultiLoc2.

  9. iLoc-Animal: a multi-label learning classifier for predicting subcellular localization of animal proteins.

    Science.gov (United States)

    Lin, Wei-Zhong; Fang, Jian-An; Xiao, Xuan; Chou, Kuo-Chen

    2013-04-05

    Predicting protein subcellular localization is a challenging problem, particularly when query proteins have multi-label features meaning that they may simultaneously exist at, or move between, two or more different subcellular location sites. Most of the existing methods can only be used to deal with the single-label proteins. Actually, multi-label proteins should not be ignored because they usually bear some special function worthy of in-depth studies. By introducing the "multi-label learning" approach, a new predictor, called iLoc-Animal, has been developed that can be used to deal with the systems containing both single- and multi-label animal (metazoan except human) proteins. Meanwhile, to measure the prediction quality of a multi-label system in a rigorous way, five indices were introduced; they are "Absolute-True", "Absolute-False" (or Hamming-Loss"), "Accuracy", "Precision", and "Recall". As a demonstration, the jackknife cross-validation was performed with iLoc-Animal on a benchmark dataset of animal proteins classified into the following 20 location sites: (1) acrosome, (2) cell membrane, (3) centriole, (4) centrosome, (5) cell cortex, (6) cytoplasm, (7) cytoskeleton, (8) endoplasmic reticulum, (9) endosome, (10) extracellular, (11) Golgi apparatus, (12) lysosome, (13) mitochondrion, (14) melanosome, (15) microsome, (16) nucleus, (17) peroxisome, (18) plasma membrane, (19) spindle, and (20) synapse, where many proteins belong to two or more locations. For such a complicated system, the outcomes achieved by iLoc-Animal for all the aforementioned five indices were quite encouraging, indicating that the predictor may become a useful tool in this area. It has not escaped our notice that the multi-label approach and the rigorous measurement metrics can also be used to investigate many other multi-label problems in molecular biology. As a user-friendly web-server, iLoc-Animal is freely accessible to the public at the web-site .

  10. pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites.

    Science.gov (United States)

    Cheng, Xiang; Zhao, Shu-Guang; Lin, Wei-Zhong; Xiao, Xuan; Chou, Kuo-Chen

    2017-11-15

    Cells are deemed the basic unit of life. However, many important functions of cells as well as their growth and reproduction are performed via the protein molecules located at their different organelles or locations. Facing explosive growth of protein sequences, we are challenged to develop fast and effective method to annotate their subcellular localization. However, this is by no means an easy task. Particularly, mounting evidences have indicated proteins have multi-label feature meaning that they may simultaneously exist at, or move between, two or more different subcellular location sites. Unfortunately, most of the existing computational methods can only be used to deal with the single-label proteins. Although the 'iLoc-Animal' predictor developed recently is quite powerful that can be used to deal with the animal proteins with multiple locations as well, its prediction quality needs to be improved, particularly in enhancing the absolute true rate and reducing the absolute false rate. Here we propose a new predictor called 'pLoc-mAnimal', which is superior to iLoc-Animal as shown by the compelling facts. When tested by the most rigorous cross-validation on the same high-quality benchmark dataset, the absolute true success rate achieved by the new predictor is 37% higher and the absolute false rate is four times lower in comparison with the state-of-the-art predictor. To maximize the convenience of most experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/pLoc-mAnimal/, by which users can easily get their desired results without the need to go through the complicated mathematics involved. xxiao@gordonlifescience.org or kcchou@gordonlifescience.org. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  11. DeepLoc: prediction of protein subcellular localization using deep learning

    DEFF Research Database (Denmark)

    Almagro Armenteros, Jose Juan; Sønderby, Casper Kaae; Sønderby, Søren Kaae

    2017-01-01

    The prediction of eukaryotic protein subcellular localization is a well-studied topic in bioinformatics due to its relevance in proteomics research. Many machine learning methods have been successfully applied in this task, but in most of them, predictions rely on annotation of homologues from...... knowledge databases. For novel proteins where no annotated homologues exist, and for predicting the effects of sequence variants, it is desirable to have methods for predicting protein properties from sequence information only. Here, we present a prediction algorithm using deep neural networks to predict...... current state-of-the-art algorithms, including those relying on homology information. The method is available as a web server at http://www.cbs.dtu.dk/services/DeepLoc . Example code is available at https://github.com/JJAlmagro/subcellular_localization . The dataset is available at http...

  12. Echinococcus granulosus fatty acid binding proteins subcellular localization.

    Science.gov (United States)

    Alvite, Gabriela; Esteves, Adriana

    2016-05-01

    Two fatty acid binding proteins, EgFABP1 and EgFABP2, were isolated from the parasitic platyhelminth Echinococcus granulosus. These proteins bind fatty acids and have particular relevance in flatworms since de novo fatty acids synthesis is absent. Therefore platyhelminthes depend on the capture and intracellular distribution of host's lipids and fatty acid binding proteins could participate in lipid distribution. To elucidate EgFABP's roles, we investigated their intracellular distribution in the larval stage by a proteomic approach. Our results demonstrated the presence of EgFABP1 isoforms in cytosolic, nuclear, mitochondrial and microsomal fractions, suggesting that these molecules could be involved in several cellular processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Prediction of essential proteins based on subcellular localization and gene expression correlation.

    Science.gov (United States)

    Fan, Yetian; Tang, Xiwei; Hu, Xiaohua; Wu, Wei; Ping, Qing

    2017-12-01

    Essential proteins are indispensable to the survival and development process of living organisms. To understand the functional mechanisms of essential proteins, which can be applied to the analysis of disease and design of drugs, it is important to identify essential proteins from a set of proteins first. As traditional experimental methods designed to test out essential proteins are usually expensive and laborious, computational methods, which utilize biological and topological features of proteins, have attracted more attention in recent years. Protein-protein interaction networks, together with other biological data, have been explored to improve the performance of essential protein prediction. The proposed method SCP is evaluated on Saccharomyces cerevisiae datasets and compared with five other methods. The results show that our method SCP outperforms the other five methods in terms of accuracy of essential protein prediction. In this paper, we propose a novel algorithm named SCP, which combines the ranking by a modified PageRank algorithm based on subcellular compartments information, with the ranking by Pearson correlation coefficient (PCC) calculated from gene expression data. Experiments show that subcellular localization information is promising in boosting essential protein prediction.

  14. A mathematical model of single target site location by Brownian movement in subcellular compartments.

    Science.gov (United States)

    Kuthan, Hartmut

    2003-03-07

    The location of distinct sites is mandatory for many cellular processes. In the subcompartments of the cell nucleus, only very small numbers of diffusing macromolecules and specific target sites of some types may be present. In this case, we are faced with the Brownian movement of individual macromolecules and their "random search" for single/few specific target sites, rather than bulk-averaged diffusion and multiple sites. In this article, I consider the location of a distant central target site, e.g. a globular protein, by individual macromolecules executing unbiased (i.e. drift-free) random walks in a spherical compartment. For this walk-and-capture model, the closed-form analytic solution of the first passage time probability density function (p.d.f.) has been obtained as well as the first and second moment. In the limit of a large ratio of the radii of the spherical diffusion space and central target, well-known relations for the variance and the first two moments for the exponential p.d.f. were found to hold with high accuracy. These calculations reinforce earlier numerical results and Monte Carlo simulations. A major implication derivable from the model is that non-directed random movement is an effective means for locating single sites in submicron-sized compartments, even when the diffusion coefficients are comparatively small and the diffusing species are present in one copy only. These theoretical conclusions are underscored numerically for effective diffusion constants ranging from 0.5 to 10.0 microm(2) s(-1), which have been reported for a couple of nuclear proteins in their physiological environment. Spherical compartments of submicron size are, for example, the Cajal bodies (size: 0.1-1.0 microm), which are present in 1-5 copies in the cell nucleus. Within a small Cajal body of radius 0.1 microm a single diffusing protein molecule (with D=0.5 microm(2) s(-1)) would encounter a medium-sized protein of radius 2.5 nm within 1 s with a probability near

  15. Subcellular distribution of calcium-binding proteins and a calcium-ATPase in canine pancreas

    International Nuclear Information System (INIS)

    Nigam, S.K.; Towers, T.

    1990-01-01

    Using a 45Ca blot-overlay assay, we monitored the subcellular fractionation pattern of several Ca binding proteins of apparent molecular masses 94, 61, and 59 kD. These proteins also appeared to stain blue with Stains-All. Additionally, using a monoclonal antiserum raised against canine cardiac sarcoplasmic reticulum Ca-ATPase, we examined the subcellular distribution of a canine pancreatic 110-kD protein recognized by this antiserum. This protein had the same electrophoretic mobility as the cardiac protein against which the antiserum was raised. The three Ca binding proteins and the Ca-ATPase cofractionated into the rough microsomal fraction (RM), previously shown to consist of highly purified RER, in a pattern highly similar to that of the RER marker, ribophorin I. To provide further evidence for an RER localization, native RM were subjected to isopycnic flotation in sucrose gradients. The Ca binding proteins and the Ca-ATPase were found in dense fractions, along with ribophorin I. When RM were stripped of ribosomes with puromycin/high salt, the Ca binding proteins and the Ca-ATPase exhibited a shift to less dense fractions, as did ribophorin I. We conclude that, in pancreas, the Ca binding proteins and Ca-ATPase we detect are localized to the RER (conceivably a subcompartment of the RER) or, possibly, a structure intimately associated with the RER

  16. mPLR-Loc: an adaptive decision multi-label classifier based on penalized logistic regression for protein subcellular localization prediction.

    Science.gov (United States)

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2015-03-15

    Proteins located in appropriate cellular compartments are of paramount importance to exert their biological functions. Prediction of protein subcellular localization by computational methods is required in the post-genomic era. Recent studies have been focusing on predicting not only single-location proteins but also multi-location proteins. However, most of the existing predictors are far from effective for tackling the challenges of multi-label proteins. This article proposes an efficient multi-label predictor, namely mPLR-Loc, based on penalized logistic regression and adaptive decisions for predicting both single- and multi-location proteins. Specifically, for each query protein, mPLR-Loc exploits the information from the Gene Ontology (GO) database by using its accession number (AC) or the ACs of its homologs obtained via BLAST. The frequencies of GO occurrences are used to construct feature vectors, which are then classified by an adaptive decision-based multi-label penalized logistic regression classifier. Experimental results based on two recent stringent benchmark datasets (virus and plant) show that mPLR-Loc remarkably outperforms existing state-of-the-art multi-label predictors. In addition to being able to rapidly and accurately predict subcellular localization of single- and multi-label proteins, mPLR-Loc can also provide probabilistic confidence scores for the prediction decisions. For readers' convenience, the mPLR-Loc server is available online (http://bioinfo.eie.polyu.edu.hk/mPLRLocServer). Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Signaling efficiency of Gαq through its effectors p63RhoGEF and GEFT depends on their subcellular location.

    Science.gov (United States)

    Goedhart, Joachim; van Unen, Jakobus; Adjobo-Hermans, Merel J W; Gadella, Theodorus W J

    2013-01-01

    The p63RhoGEF and GEFT proteins are encoded by the same gene and both members of the Dbl family of guanine nucleotide exchange factors. These proteins can be activated by the heterotrimeric G-protein subunit Gαq. We show that p63RhoGEF is located at the plasma membrane, whereas GEFT is confined to the cytoplasm. Live-cell imaging studies yielded quantitative information on diffusion coefficients, association rates and encounter times of GEFT and p63RhoGEF. Calcium signaling was examined as a measure of the signal transmission, revealing more efficient signaling through the membrane-associated p63RhoGEF. A rapamycin dependent recruitment system was used to dynamically alter the subcellular location and concentration of GEFT, showing efficient signaling through GEFT only upon membrane recruitment. Together, our results show efficient signal transmission through membrane located effectors, and highlight a role for increased concentration rather than increased encounter times due to membrane localization in the Gαq mediated pathways to p63RhoGEF and PLCβ.

  18. Automated Learning of Subcellular Variation among Punctate Protein Patterns and a Generative Model of Their Relation to Microtubules.

    Directory of Open Access Journals (Sweden)

    Gregory R Johnson

    2015-12-01

    Full Text Available Characterizing the spatial distribution of proteins directly from microscopy images is a difficult problem with numerous applications in cell biology (e.g. identifying motor-related proteins and clinical research (e.g. identification of cancer biomarkers. Here we describe the design of a system that provides automated analysis of punctate protein patterns in microscope images, including quantification of their relationships to microtubules. We constructed the system using confocal immunofluorescence microscopy images from the Human Protein Atlas project for 11 punctate proteins in three cultured cell lines. These proteins have previously been characterized as being primarily located in punctate structures, but their images had all been annotated by visual examination as being simply "vesicular". We were able to show that these patterns could be distinguished from each other with high accuracy, and we were able to assign to one of these subclasses hundreds of proteins whose subcellular localization had not previously been well defined. In addition to providing these novel annotations, we built a generative approach to modeling of punctate distributions that captures the essential characteristics of the distinct patterns. Such models are expected to be valuable for representing and summarizing each pattern and for constructing systems biology simulations of cell behaviors.

  19. Imbalanced multi-modal multi-label learning for subcellular localization prediction of human proteins with both single and multiple sites.

    Directory of Open Access Journals (Sweden)

    Jianjun He

    Full Text Available It is well known that an important step toward understanding the functions of a protein is to determine its subcellular location. Although numerous prediction algorithms have been developed, most of them typically focused on the proteins with only one location. In recent years, researchers have begun to pay attention to the subcellular localization prediction of the proteins with multiple sites. However, almost all the existing approaches have failed to take into account the correlations among the locations caused by the proteins with multiple sites, which may be the important information for improving the prediction accuracy of the proteins with multiple sites. In this paper, a new algorithm which can effectively exploit the correlations among the locations is proposed by using gaussian process model. Besides, the algorithm also can realize optimal linear combination of various feature extraction technologies and could be robust to the imbalanced data set. Experimental results on a human protein data set show that the proposed algorithm is valid and can achieve better performance than the existing approaches.

  20. Accurate Classification of Protein Subcellular Localization from High-Throughput Microscopy Images Using Deep Learning

    Directory of Open Access Journals (Sweden)

    Tanel Pärnamaa

    2017-05-01

    Full Text Available High-throughput microscopy of many single cells generates high-dimensional data that are far from straightforward to analyze. One important problem is automatically detecting the cellular compartment where a fluorescently-tagged protein resides, a task relatively simple for an experienced human, but difficult to automate on a computer. Here, we train an 11-layer neural network on data from mapping thousands of yeast proteins, achieving per cell localization classification accuracy of 91%, and per protein accuracy of 99% on held-out images. We confirm that low-level network features correspond to basic image characteristics, while deeper layers separate localization classes. Using this network as a feature calculator, we train standard classifiers that assign proteins to previously unseen compartments after observing only a small number of training examples. Our results are the most accurate subcellular localization classifications to date, and demonstrate the usefulness of deep learning for high-throughput microscopy.

  1. Accurate Classification of Protein Subcellular Localization from High-Throughput Microscopy Images Using Deep Learning.

    Science.gov (United States)

    Pärnamaa, Tanel; Parts, Leopold

    2017-05-05

    High-throughput microscopy of many single cells generates high-dimensional data that are far from straightforward to analyze. One important problem is automatically detecting the cellular compartment where a fluorescently-tagged protein resides, a task relatively simple for an experienced human, but difficult to automate on a computer. Here, we train an 11-layer neural network on data from mapping thousands of yeast proteins, achieving per cell localization classification accuracy of 91%, and per protein accuracy of 99% on held-out images. We confirm that low-level network features correspond to basic image characteristics, while deeper layers separate localization classes. Using this network as a feature calculator, we train standard classifiers that assign proteins to previously unseen compartments after observing only a small number of training examples. Our results are the most accurate subcellular localization classifications to date, and demonstrate the usefulness of deep learning for high-throughput microscopy. Copyright © 2017 Parnamaa and Parts.

  2. Protein Subcellular Localization with Gaussian Kernel Discriminant Analysis and Its Kernel Parameter Selection.

    Science.gov (United States)

    Wang, Shunfang; Nie, Bing; Yue, Kun; Fei, Yu; Li, Wenjia; Xu, Dongshu

    2017-12-15

    Kernel discriminant analysis (KDA) is a dimension reduction and classification algorithm based on nonlinear kernel trick, which can be novelly used to treat high-dimensional and complex biological data before undergoing classification processes such as protein subcellular localization. Kernel parameters make a great impact on the performance of the KDA model. Specifically, for KDA with the popular Gaussian kernel, to select the scale parameter is still a challenging problem. Thus, this paper introduces the KDA method and proposes a new method for Gaussian kernel parameter selection depending on the fact that the differences between reconstruction errors of edge normal samples and those of interior normal samples should be maximized for certain suitable kernel parameters. Experiments with various standard data sets of protein subcellular localization show that the overall accuracy of protein classification prediction with KDA is much higher than that without KDA. Meanwhile, the kernel parameter of KDA has a great impact on the efficiency, and the proposed method can produce an optimum parameter, which makes the new algorithm not only perform as effectively as the traditional ones, but also reduce the computational time and thus improve efficiency.

  3. [L-arginine metabolism enzyme activities in rat liver subcellular fractions under condition of protein deprivation].

    Science.gov (United States)

    Kopyl'chuk, G P; Buchkovskaia, I M

    2014-01-01

    The features of arginase and NO-synthase pathways of arginine's metabolism have been studied in rat liver subcellular fractions under condition of protein deprivation. During the experimental period (28 days) albino male rats were kept on semi synthetic casein diet AIN-93. The protein deprivation conditions were designed as total absence of protein in the diet and consumption of the diet partially deprived with 1/2 of the casein amount compared to in the regular diet. Daily diet consumption was regulated according to the pair feeding approach. It has been shown that the changes of enzyme activities, involved in L-arginine metabolism, were characterized by 1.4-1.7 fold decrease in arginase activity, accompanied with unchanged NO-synthase activity in cytosol. In mitochondrial fraction the unchanged arginase activity was accompanied by 3-5 fold increase of NO-synthase activity. At the terminal stages of the experiment the monodirectional dynamics in the studied activities have been observed in the mitochondrial and cytosolfractions in both experimental groups. In the studied subcellular fractions arginase activity decreased (2.4-2.7 fold with no protein in the diet and 1.5 fold with partly supplied protein) and was accompanied by NO-synthase activity increase by 3.8 fold in cytosole fraction, by 7.2 fold in mitochondrial fraction in the group with no protein in the diet and by 2.2 and 3.5 fold in the group partialy supplied with protein respectively. The observed tendency is presumably caused by the switch of L-arginine metabolism from arginase into oxidizing NO-synthase parthway.

  4. Rechecking the Centrality-Lethality Rule in the Scope of Protein Subcellular Localization Interaction Networks.

    Directory of Open Access Journals (Sweden)

    Xiaoqing Peng

    Full Text Available Essential proteins are indispensable for living organisms to maintain life activities and play important roles in the studies of pathology, synthetic biology, and drug design. Therefore, besides experiment methods, many computational methods are proposed to identify essential proteins. Based on the centrality-lethality rule, various centrality methods are employed to predict essential proteins in a Protein-protein Interaction Network (PIN. However, neglecting the temporal and spatial features of protein-protein interactions, the centrality scores calculated by centrality methods are not effective enough for measuring the essentiality of proteins in a PIN. Moreover, many methods, which overfit with the features of essential proteins for one species, may perform poor for other species. In this paper, we demonstrate that the centrality-lethality rule also exists in Protein Subcellular Localization Interaction Networks (PSLINs. To do this, a method based on Localization Specificity for Essential protein Detection (LSED, was proposed, which can be combined with any centrality method for calculating the improved centrality scores by taking into consideration PSLINs in which proteins play their roles. In this study, LSED was combined with eight centrality methods separately to calculate Localization-specific Centrality Scores (LCSs for proteins based on the PSLINs of four species (Saccharomyces cerevisiae, Homo sapiens, Mus musculus and Drosophila melanogaster. Compared to the proteins with high centrality scores measured from the global PINs, more proteins with high LCSs measured from PSLINs are essential. It indicates that proteins with high LCSs measured from PSLINs are more likely to be essential and the performance of centrality methods can be improved by LSED. Furthermore, LSED provides a wide applicable prediction model to identify essential proteins for different species.

  5. Targeted nanodiamonds for identification of subcellular protein assemblies in mammalian cells

    Science.gov (United States)

    Lake, Michael P.; Bouchard, Louis-S.

    2017-01-01

    Transmission electron microscopy (TEM) can be used to successfully determine the structures of proteins. However, such studies are typically done ex situ after extraction of the protein from the cellular environment. Here we describe an application for nanodiamonds as targeted intensity contrast labels in biological TEM, using the nuclear pore complex (NPC) as a model macroassembly. We demonstrate that delivery of antibody-conjugated nanodiamonds to live mammalian cells using maltotriose-conjugated polypropylenimine dendrimers results in efficient localization of nanodiamonds to the intended cellular target. We further identify signatures of nanodiamonds under TEM that allow for unambiguous identification of individual nanodiamonds from a resin-embedded, OsO4-stained environment. This is the first demonstration of nanodiamonds as labels for nanoscale TEM-based identification of subcellular protein assemblies. These results, combined with the unique fluorescence properties and biocompatibility of nanodiamonds, represent an important step toward the use of nanodiamonds as markers for correlated optical/electron bioimaging. PMID:28636640

  6. Targeted nanodiamonds for identification of subcellular protein assemblies in mammalian cells.

    Science.gov (United States)

    Lake, Michael P; Bouchard, Louis-S

    2017-01-01

    Transmission electron microscopy (TEM) can be used to successfully determine the structures of proteins. However, such studies are typically done ex situ after extraction of the protein from the cellular environment. Here we describe an application for nanodiamonds as targeted intensity contrast labels in biological TEM, using the nuclear pore complex (NPC) as a model macroassembly. We demonstrate that delivery of antibody-conjugated nanodiamonds to live mammalian cells using maltotriose-conjugated polypropylenimine dendrimers results in efficient localization of nanodiamonds to the intended cellular target. We further identify signatures of nanodiamonds under TEM that allow for unambiguous identification of individual nanodiamonds from a resin-embedded, OsO4-stained environment. This is the first demonstration of nanodiamonds as labels for nanoscale TEM-based identification of subcellular protein assemblies. These results, combined with the unique fluorescence properties and biocompatibility of nanodiamonds, represent an important step toward the use of nanodiamonds as markers for correlated optical/electron bioimaging.

  7. Determination of ABA-binding proteins contents in subcellular fractions isolated from cotton seedlings using radioimmunoanalysis

    International Nuclear Information System (INIS)

    Tursunkhodjayeva, F.M.

    2004-01-01

    Full text: Knowledge of plants' hormone receptor sites is essential to understanding of the principles of phytohormone action in cells and tissues. The hormone abscisic acid (ABA) takes part in many important physiological processes of plants, including water balance and resistance to salt stress. The detection of salt tolerance in the early stages of ontogenesis is desirable for effective cultivation of cotton. Usually such characteristics are determined visually after genetic analysis of hybrids over several generations. This classic method of genetics requires a long time to grow several generations of cotton plants. In this connection we study ABA-binding protein contents in subcellular fractions isolated from seedlings of several kinds of cotton with different tolerance to salt stress. The contents of ABA-binding protein in nuclei and chloroplasts fractions isolated from cotton seedlings were determined using radioimmunoanalysis. The subcellular fractions were prepared by ultracentrifugation in 0,25 - 2,2 M sucrose gradient. ABA-binding protein was isolated from cotton seedlings by affinity chromatography. The antibodies against ABA-binding protein of cotton were developed in rabbits according standard protocols. Than the antibodies were labelled by radioisotope J 125 according Greenwood et al. It was shown, that the nuclei and chloroplasts fractions isolated from cotton with high tolerance to salt stress contain ABA-binding protein up to 1,5-1,8 times more, than the same fractions from cotton with low tolerance to salt stress. So, the ABA-binding protein contents in cotton seedlings may be considered as a marker for screening of cotton kinds, which may potentially have high tolerance to salt stress

  8. ESLpred2: improved method for predicting subcellular localization of eukaryotic proteins

    Directory of Open Access Journals (Sweden)

    Raghava Gajendra PS

    2008-11-01

    Full Text Available Abstract Background The expansion of raw protein sequence databases in the post genomic era and availability of fresh annotated sequences for major localizations particularly motivated us to introduce a new improved version of our previously forged eukaryotic subcellular localizations prediction method namely "ESLpred". Since, subcellular localization of a protein offers essential clues about its functioning, hence, availability of localization predictor would definitely aid and expedite the protein deciphering studies. However, robustness of a predictor is highly dependent on the superiority of dataset and extracted protein attributes; hence, it becomes imperative to improve the performance of presently available method using latest dataset and crucial input features. Results Here, we describe augmentation in the prediction performance obtained for our most popular ESLpred method using new crucial features as an input to Support Vector Machine (SVM. In addition, recently available, highly non-redundant dataset encompassing three kingdoms specific protein sequence sets; 1198 fungi sequences, 2597 from animal and 491 plant sequences were also included in the present study. First, using the evolutionary information in the form of profile composition along with whole and N-terminal sequence composition as an input feature vector of 440 dimensions, overall accuracies of 72.7, 75.8 and 74.5% were achieved respectively after five-fold cross-validation. Further, enhancement in performance was observed when similarity search based results were coupled with whole and N-terminal sequence composition along with profile composition by yielding overall accuracies of 75.9, 80.8, 76.6% respectively; best accuracies reported till date on the same datasets. Conclusion These results provide confidence about the reliability and accurate prediction of SVM modules generated in the present study using sequence and profile compositions along with similarity search

  9. Signaling efficiency of Galphaq through its effectors p63RhoGEF and GEFT depends on their subcellular location

    NARCIS (Netherlands)

    Goedhart, J.; Unen, J. van; Adjobo-Hermans, M.J.W.; Gadella, T.W.

    2013-01-01

    The p63RhoGEF and GEFT proteins are encoded by the same gene and both members of the Dbl family of guanine nucleotide exchange factors. These proteins can be activated by the heterotrimeric G-protein subunit Galphaq. We show that p63RhoGEF is located at the plasma membrane, whereas GEFT is confined

  10. Osmotic stress changes the expression and subcellular localization of the Batten disease protein CLN3.

    Directory of Open Access Journals (Sweden)

    Amanda Getty

    Full Text Available Juvenile CLN3 disease (formerly known as juvenile neuronal ceroid lipofuscinosis is a fatal childhood neurodegenerative disorder caused by mutations in the CLN3 gene. CLN3 encodes a putative lysosomal transmembrane protein with unknown function. Previous cell culture studies using CLN3-overexpressing vectors and/or anti-CLN3 antibodies with questionable specificity have also localized CLN3 in cellular structures other than lysosomes. Osmoregulation of the mouse Cln3 mRNA level in kidney cells was recently reported. To clarify the subcellular localization of the CLN3 protein and to investigate if human CLN3 expression and localization is affected by osmotic changes we generated a stably transfected BHK (baby hamster kidney cell line that expresses a moderate level of myc-tagged human CLN3 under the control of the human ubiquitin C promoter. Hyperosmolarity (800 mOsm, achieved by either NaCl/urea or sucrose, dramatically increased the mRNA and protein levels of CLN3 as determined by quantitative real-time PCR and Western blotting. Under isotonic conditions (300 mOsm, human CLN3 was found in a punctate vesicular pattern surrounding the nucleus with prominent Golgi and lysosomal localizations. CLN3-positive early endosomes, late endosomes and cholesterol/sphingolipid-enriched plasma membrane microdomain caveolae were also observed. Increasing the osmolarity of the culture medium to 800 mOsm extended CLN3 distribution away from the perinuclear region and enhanced the lysosomal localization of CLN3. Our results reveal that CLN3 has multiple subcellular localizations within the cell, which, together with its expression, prominently change following osmotic stress. These data suggest that CLN3 is involved in the response and adaptation to cellular stress.

  11. Subcellular location of astrocytic calcium stores favors extrasynaptic neuron-astrocyte communication.

    Science.gov (United States)

    Patrushev, Ilya; Gavrilov, Nikolay; Turlapov, Vadim; Semyanov, Alexey

    2013-11-01

    Neuron-astrocyte interactions are important for brain computations and synaptic plasticity. Perisynaptic astrocytic processes (PAPs) contain a high density of transporters that are responsible for neurotransmitter clearance. Metabotropic glutamate receptors are thought to trigger Ca(2+) release from Ca(2+) stores in PAPs in response to synaptic activity. Our ultrastructural study revealed that PAPs are actually devoid of Ca(2+) stores and have a high surface-to-volume ratio favorable for uptake. Astrocytic processes containing Ca(2+) stores were located further away from the synapses and could therefore respond to changes in ambient glutamate. Thus, the anatomic data do not support communication involving Ca(2+) stores in tripartite synapses, but rather point to extrasynaptic communication. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Expression, purification, characterization and subcellular localization of the goose parvovirus rep1 protein.

    Science.gov (United States)

    Chen, Zongyan; Li, Chuanfeng; Peng, Gaojing; Liu, Guangqing

    2013-07-01

    The goose parvovirus (GPV) Rep1 protein is both essential for viral replication and a potential target for GPV diagnosis, but its protein characterization and intracellular localization is not clear. We constructed a recombinant plasmid, pET28a/GPV-Rep1, and expressed the Rep1 gene in BL21 (DE3) Escherichia coli. A protein approximately 75 kDa in size was obtained from lysates of E. coli cells expressing the recombinant plasmid. SDS-PAGE analysis showed that after induction with 0.6 mM isopropyl β-D-thiogalactosidase (IPTG) at 30°C for 5 h, the Rep1 protein was highly overexpressed. Two methods used to purify proteins, a salinity-gradient elution and Ni-NTA affinity chromatography, were performed. The amount of Rep1 protein obtained by Ni-NTA affinity chromatography was 41.23 mg, while 119.9 mg of Rep1 protein was obtained by a salinity-gradient elution from a 1 L E. coli BL21 (DE3) culture. An immunogenicity analysis showed that the protein could significantly elicit a specific antibody response in immunized goslings compared to control groups. Antibody titers peaked to 1:5120 (optical density (OD) 450 = 3.9) on day 28 after immunization but had mean titers of 1:10,240 (OD450 = 4.2) in gosling groups immunized with a commercially available GPV-attenuated vaccine strain. Experiments examining subcellular localization showed that the Rep1 protein appeared to associate predominantly with the nuclear membrane, especially during later times of infection. This work provides a basis for biochemical and structural studies on the GPV Rep1 protein.

  13. Subcellular fractionation and localization studies reveal a direct interaction of the Fragile X Mental Retardation Protein (FMRP) with nucleolin

    NARCIS (Netherlands)

    Taha, M.S.; Nouri, K.; Milroy, L.G.; Moll, J.M.; Herrmann, C.; Brunsveld, L.; Piekorz, R.P.; Ahmadian, M.R.

    2014-01-01

    Fragile X mental Retardation Protein (FMRP) is a well-known regulator of local translation of its mRNA targets in neurons. However, despite its ubiquitous expression, the role of FMRP remains ill-defined in other cell types. In this study we investigated the subcellular distribution of FMRP and its

  14. Subcellular redistribution of trimeric G-proteins – potential mechanism of desensitization of hormone response: internalisation, solubilization, down-regulation

    Czech Academy of Sciences Publication Activity Database

    Drastichová, Zdeňka; Bouřová, Lenka; Lisý, Václav; Hejnová, L.; Rudajev, Vladimír; Stöhr, Jiří; Durchánková, Dana; Ostašov, Pavel; Teisinger, Jan; Soukup, Tomáš; Novotný, Jiří; Svoboda, Petr

    2008-01-01

    Roč. 57, Suppl.3 (2008), S1-S10 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LC554; GA ČR(CZ) GA309/06/0121 Institutional research plan: CEZ:AV0Z50110509 Keywords : brain * subcellular fractionation * trimeric G-proteins Subject RIV: CE - Biochemistry Impact factor: 1.653, year: 2008

  15. Subcellular location of Arabidopsis thaliana subfamily a1 β-galactosidases and developmental regulation of transcript levels of their coding genes.

    Science.gov (United States)

    Moneo-Sánchez, María; Izquierdo, Lucía; Martín, Ignacio; Labrador, Emilia; Dopico, Berta

    2016-12-01

    The aim of this work is to gain insight into the six members of the a1 subfamily of the β-galactosidases (BGAL) from Arabidopsis thaliana. First, the subcellular location of all these six BGAL proteins from a1 subfamily has been established in the cell wall by the construction of transgenic plants producing the enhanced green fluorescent protein (eGFP) fused to the BGAL proteins. BGAL12 is also located in the endoplasmic reticulum. Our study of the AtBGAL transcript accumulation along plant development indicated that all AtBGAL transcript appeared in initial stages of development, both dark- and light-grown seedlings, being AtBGAL1, AtBGAL2 and AtBGAL3 transcripts the predominant ones in the latter condition, mainly in the aerial part and with levels decreasing with age. The high accumulation of transcript of AtBGAL4 in basal internodes and in leaves at the end of development, and their strong increase after treatment both with BL and H 3 BO 3 point to an involvement of BGAL4 in cell wall changes leading to the cease of elongation and increased rigidity. The changes of AtBGAL transcript accumulation in relation to different stages and conditions of plant development, suggest that each of the different gene products have a plant-specific function and provides support for the proposed function of the subfamily a1 BGAL in plant cell wall remodelling for cell expansion or for cell response to stress conditions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Inhibition of the Secretory pathway by Foot-and-Mouth disease virus 2BC protein is reproduced by co-expression of 2B with 2C, and the site of inhibition is determined by the subcellular location of 2C

    DEFF Research Database (Denmark)

    Moffat, Katy; Knox, Caroline; Howell, Gareth

    2007-01-01

    immune responses in vivo. Foot-and-mouth disease virus (FMDV), another picornavirus, can cause persistent infection of ruminants, suggesting it too may inhibit immune responses. Endoplasmic reticulum (ER)-to-Golgi apparatus transport of proteins is blocked by the FMDV 2BC protein. The observation that 2...... blocked in FMDV-infected cells. The block could be reconstituted by coexpression of 2B and 2C, showing that processing of 2BC did not compromise the ability of FMDV to slow secretion. Under these conditions, 2C was located to the Golgi apparatus, and the block in transport also occurred in the Golgi...... apparatus. Interestingly, the block in transport could be redirected to the ER when 2B was coexpressed with a 2C protein fused to an ER retention element. Thus, for FMDV a block in secretion is dependent on both 2B and 2C, with the latter determining the site of the block....

  17. Hum-mPLoc 3.0: prediction enhancement of human protein subcellular localization through modeling the hidden correlations of gene ontology and functional domain features.

    Science.gov (United States)

    Zhou, Hang; Yang, Yang; Shen, Hong-Bin

    2017-03-15

    Protein subcellular localization prediction has been an important research topic in computational biology over the last decade. Various automatic methods have been proposed to predict locations for large scale protein datasets, where statistical machine learning algorithms are widely used for model construction. A key step in these predictors is encoding the amino acid sequences into feature vectors. Many studies have shown that features extracted from biological domains, such as gene ontology and functional domains, can be very useful for improving the prediction accuracy. However, domain knowledge usually results in redundant features and high-dimensional feature spaces, which may degenerate the performance of machine learning models. In this paper, we propose a new amino acid sequence-based human protein subcellular location prediction approach Hum-mPLoc 3.0, which covers 12 human subcellular localizations. The sequences are represented by multi-view complementary features, i.e. context vocabulary annotation-based gene ontology (GO) terms, peptide-based functional domains, and residue-based statistical features. To systematically reflect the structural hierarchy of the domain knowledge bases, we propose a novel feature representation protocol denoted as HCM (Hidden Correlation Modeling), which will create more compact and discriminative feature vectors by modeling the hidden correlations between annotation terms. Experimental results on four benchmark datasets show that HCM improves prediction accuracy by 5-11% and F 1 by 8-19% compared with conventional GO-based methods. A large-scale application of Hum-mPLoc 3.0 on the whole human proteome reveals proteins co-localization preferences in the cell. www.csbio.sjtu.edu.cn/bioinf/Hum-mPLoc3/. hbshen@sjtu.edu.cn. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  18. Abnormal subcellular distribution of GLUT4 protein in obese and insulin-treated diabetic female dogs

    Directory of Open Access Journals (Sweden)

    A.M. Vargas

    2004-07-01

    Full Text Available The GLUT4 transporter plays a key role in insulin-induced glucose uptake, which is impaired in insulin resistance. The objective of the present study was to investigate the tissue content and the subcellular distribution of GLUT4 protein in 4- to 12-year-old control, obese and insulin-treated diabetic mongrel female dogs (4 animals per group. The parametrial white adipose tissue was sampled and processed to obtain both plasma membrane and microsome subcellular fractions for GLUT4 analysis by Western blotting. There was no significant difference in glycemia and insulinemia between control and obese animals. Diabetic dogs showed hyperglycemia (369.9 ± 89.9 mg/dl. Compared to control, the plasma membrane GLUT4, reported per g tissue, was reduced by 55% (P < 0.01 in obese dogs, and increased by 30% (P < 0.05 in diabetic dogs, and the microsomal GLUT4 was increased by ~45% (P < 0.001 in both obese and diabetic animals. Considering the sum of GLUT4 measured in plasma membrane and microsome as total cellular GLUT4, percent GLUT4 present in plasma membrane was reduced by ~65% (P < 0.001 in obese compared to control and diabetic animals. Since insulin stimulates GLUT4 translocation to the plasma membrane, percent GLUT4 in plasma membrane was divided by the insulinemia at the time of tissue removal and was found to be reduced by 75% (P < 0.01 in obese compared to control dogs. We conclude that the insulin-stimulated translocation of GLUT4 to the cell surface is reduced in obese female dogs. This probably contributes to insulin resistance, which plays an important role in glucose homeostasis in dogs.

  19. Trehalose Alters Subcellular Trafficking and the Metabolism of the Alzheimer-associated Amyloid Precursor Protein.

    Science.gov (United States)

    Tien, Nguyen T; Karaca, Ilker; Tamboli, Irfan Y; Walter, Jochen

    2016-05-13

    The disaccharide trehalose is commonly considered to stimulate autophagy. Cell treatment with trehalose could decrease cytosolic aggregates of potentially pathogenic proteins, including mutant huntingtin, α-synuclein, and phosphorylated tau that are associated with neurodegenerative diseases. Here, we demonstrate that trehalose also alters the metabolism of the Alzheimer disease-related amyloid precursor protein (APP). Cell treatment with trehalose decreased the degradation of full-length APP and its C-terminal fragments. Trehalose also reduced the secretion of the amyloid-β peptide. Biochemical and cell biological experiments revealed that trehalose alters the subcellular distribution and decreases the degradation of APP C-terminal fragments in endolysosomal compartments. Trehalose also led to strong accumulation of the autophagic marker proteins LC3-II and p62, and decreased the proteolytic activation of the lysosomal hydrolase cathepsin D. The combined data indicate that trehalose decreases the lysosomal metabolism of APP by altering its endocytic vesicular transport. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Targeted nanodiamonds for identification of subcellular protein assemblies in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Michael P Lake

    Full Text Available Transmission electron microscopy (TEM can be used to successfully determine the structures of proteins. However, such studies are typically done ex situ after extraction of the protein from the cellular environment. Here we describe an application for nanodiamonds as targeted intensity contrast labels in biological TEM, using the nuclear pore complex (NPC as a model macroassembly. We demonstrate that delivery of antibody-conjugated nanodiamonds to live mammalian cells using maltotriose-conjugated polypropylenimine dendrimers results in efficient localization of nanodiamonds to the intended cellular target. We further identify signatures of nanodiamonds under TEM that allow for unambiguous identification of individual nanodiamonds from a resin-embedded, OsO4-stained environment. This is the first demonstration of nanodiamonds as labels for nanoscale TEM-based identification of subcellular protein assemblies. These results, combined with the unique fluorescence properties and biocompatibility of nanodiamonds, represent an important step toward the use of nanodiamonds as markers for correlated optical/electron bioimaging.

  1. Distinct cellular and subcellular distributions of G protein-coupled receptor kinase and arrestin isoforms in the striatum.

    Directory of Open Access Journals (Sweden)

    Evgeny Bychkov

    Full Text Available G protein-coupled receptor kinases (GRKs and arrestins mediate desensitization of G protein-coupled receptors (GPCR. Arrestins also mediate G protein-independent signaling via GPCRs. Since GRK and arrestins demonstrate no strict receptor specificity, their functions in the brain may depend on their cellular complement, expression level, and subcellular targeting. However, cellular expression and subcellular distribution of GRKs and arrestins in the brain is largely unknown. We show that GRK isoforms GRK2 and GRK5 are similarly expressed in direct and indirect pathway neurons in the rat striatum. Arrestin-2 and arrestin-3 are also expressed in neurons of both pathways. Cholinergic interneurons are enriched in GRK2, arrestin-3, and GRK5. Parvalbumin-positive interneurons express more of GRK2 and less of arrestin-2 than medium spiny neurons. The GRK5 subcellular distribution in the human striatal neurons is altered by its phosphorylation: unphosphorylated enzyme preferentially localizes to synaptic membranes, whereas phosphorylated GRK5 is found in plasma membrane and cytosolic fractions. Both GRK isoforms are abundant in the nucleus of human striatal neurons, whereas the proportion of both arrestins in the nucleus was equally low. However, overall higher expression of arrestin-2 yields high enough concentration in the nucleus to mediate nuclear functions. These data suggest cell type- and subcellular compartment-dependent differences in GRK/arrestin-mediated desensitization and signaling.

  2. Protein (multi-)location prediction: utilizing interdependencies via a generative model.

    Science.gov (United States)

    Simha, Ramanuja; Briesemeister, Sebastian; Kohlbacher, Oliver; Shatkay, Hagit

    2015-06-15

    Proteins are responsible for a multitude of vital tasks in all living organisms. Given that a protein's function and role are strongly related to its subcellular location, protein location prediction is an important research area. While proteins move from one location to another and can localize to multiple locations, most existing location prediction systems assign only a single location per protein. A few recent systems attempt to predict multiple locations for proteins, however, their performance leaves much room for improvement. Moreover, such systems do not capture dependencies among locations and usually consider locations as independent. We hypothesize that a multi-location predictor that captures location inter-dependencies can improve location predictions for proteins. We introduce a probabilistic generative model for protein localization, and develop a system based on it-which we call MDLoc-that utilizes inter-dependencies among locations to predict multiple locations for proteins. The model captures location inter-dependencies using Bayesian networks and represents dependency between features and locations using a mixture model. We use iterative processes for learning model parameters and for estimating protein locations. We evaluate our classifier MDLoc, on a dataset of single- and multi-localized proteins derived from the DBMLoc dataset, which is the most comprehensive protein multi-localization dataset currently available. Our results, obtained by using MDLoc, significantly improve upon results obtained by an initial simpler classifier, as well as on results reported by other top systems. MDLoc is available at: http://www.eecis.udel.edu/∼compbio/mdloc. © The Author 2015. Published by Oxford University Press.

  3. Subcellular distribution of folate and folate binding protein in renal proximal tubules

    International Nuclear Information System (INIS)

    Sharkey, C.; Hjelle, J.T.; Selhub, J.

    1986-01-01

    High affinity folate binding protein (FBP) found in brush border membranes derived from renal cortices is thought to be involved in the renal conservation of folate. To examine the mechanisms of folate recovery, the subcellular distribution of FBP and 3 H-folate in rabbit renal proximal tubules (PT) was examined using analytical cell fractionation techniques. Tubules contain 3.41 +/- 0.32 picomoles FBP/mg protein (X +/- S.D.; n = 5). Postnuclear supernates (PNS) of PT were layered atop Percoll-sucrose gradients, centrifuged, fractions collected and assayed for various marker enzymes and FBP. Pooled fractions from such gradients were subsequently treated with digitonin and centrifuged in a stoichiometric manner with the activity of the microvillar enzyme, alanylaminopeptidase (AAP); excess FBP distributed with more buoyant particles. Infusion of 3 H-folate into rabbit kidneys followed by tubule isolation and fractionation revealed a time dependent shift in distribution of radiolabel from the AAP-rich gradient fractions to a region containing more buoyant particles; radiolevel was not associated with lysosomal markers. EM-radioautography revealed grains over intracellular vesicles. These results are consistent with the hypothesis that folate is recovered by a process involving receptor-mediated endocytosis or transcytosis

  4. Protein (multi-)location prediction: utilizing interdependencies via a generative model

    Science.gov (United States)

    Shatkay, Hagit

    2015-01-01

    Motivation: Proteins are responsible for a multitude of vital tasks in all living organisms. Given that a protein’s function and role are strongly related to its subcellular location, protein location prediction is an important research area. While proteins move from one location to another and can localize to multiple locations, most existing location prediction systems assign only a single location per protein. A few recent systems attempt to predict multiple locations for proteins, however, their performance leaves much room for improvement. Moreover, such systems do not capture dependencies among locations and usually consider locations as independent. We hypothesize that a multi-location predictor that captures location inter-dependencies can improve location predictions for proteins. Results: We introduce a probabilistic generative model for protein localization, and develop a system based on it—which we call MDLoc—that utilizes inter-dependencies among locations to predict multiple locations for proteins. The model captures location inter-dependencies using Bayesian networks and represents dependency between features and locations using a mixture model. We use iterative processes for learning model parameters and for estimating protein locations. We evaluate our classifier MDLoc, on a dataset of single- and multi-localized proteins derived from the DBMLoc dataset, which is the most comprehensive protein multi-localization dataset currently available. Our results, obtained by using MDLoc, significantly improve upon results obtained by an initial simpler classifier, as well as on results reported by other top systems. Availability and implementation: MDLoc is available at: http://www.eecis.udel.edu/∼compbio/mdloc. Contact: shatkay@udel.edu. PMID:26072505

  5. Detection and subcellular localization of dehydrin-like proteins in quinoa (Chenopodium quinoa Willd.) embryos.

    Science.gov (United States)

    Carjuzaa, P; Castellión, M; Distéfano, A J; del Vas, M; Maldonado, S

    2008-01-01

    The aim of this study was to characterize the dehydrin content in mature embryos of two quinoa cultivars, Sajama and Baer La Unión. Cultivar Sajama grows at 3600-4000 m altitude and is adapted to the very arid conditions characteristic of the salty soils of the Bolivian Altiplano, with less than 250 mm of annual rain and a minimum temperature of -1 degrees C. Cultivar Baer La Unión grows at sea-level regions of central Chile and is adapted to more humid conditions (800 to 1500 mm of annual rain), fertile soils, and temperatures above 5 degrees C. Western blot analysis of embryo tissues from plants growing under controlled greenhouse conditions clearly revealed the presence of several dehydrin bands (at molecular masses of approximately 30, 32, 50, and 55 kDa), which were common to both cultivars, although the amount of the 30 and 32 kDa bands differed. Nevertheless, when grains originated from their respective natural environments, three extra bands (at molecular masses of approximately 34, 38, and 40 kDa), which were hardly visible in Sajama, and another weak band (at a molecular mass of approximately 28 kDa) were evident in Baer La Unión. In situ immunolocalization microscopy detected dehydrin-like proteins in all axis and cotyledon tissues. At the subcellular level, dehydrins were detected in the plasma membrane, cytoplasm and nucleus. In the cytoplasm, dehydrins were found associated with mitochondria, rough endoplasmic reticulum cisternae, and proplastid membranes. The presence of dehydrins was also recognized in the matrix of protein bodies. In the nucleus, dehydrins were associated with the euchromatin. Upon examining dehydrin composition and subcellular localization in two quinoa cultivars belonging to highly contrasting environments, we conclude that most dehydrins detected here were constitutive components of the quinoa seed developmental program, but some of them (specially the 34, 38, and 40 kDa bands) may reflect quantitative molecular differences

  6. Effect of pH 5 enzyme from liver on the protein synthesis by mammary gland subcellular fractions in vitro

    International Nuclear Information System (INIS)

    Singh, Jaspal; Singh, Ajit; Ganguli, N.C.

    1976-01-01

    The effect of pH 5 enzyme fraction of liver on the protein synthesizing activity of the subcellular fractions of the mammary gland has been investigated. Results indicate that (1) lactating liver pH 5 enzyme stimulates protein synthesis which is enhanced by the addition of ATP-generating system and (2) the enzyme fractions from the non-lactating liver inhibits the protein synthesis by mammary fractions, but in some cases like mitochondrial and supernatant fractions of mammary it elevates the synthesis when supplemented with ATP-generating system. Chlorella protein hydrolysate- 14 C was used as a tracer and rabits were used as experimental animals. (M.G.B.)

  7. Protein Laboratories in Single Location | Poster

    Science.gov (United States)

    By Andrew Stephen, Timothy Veenstra, and Gordon Whiteley, Guest Writers, and Ken Michaels, Staff Writer The Laboratory of Proteomics and Analytical Technologies (LPAT), Antibody Characterization Laboratory (ACL), and Protein Chemistry Laboratory (PCL), previously located on different floors or in different buildings, are now together on the first floor of C wing in the ATRF.

  8. Mapping the Subcellular Proteome of Shewanella oneidensis MR-1 using Sarkosyl-based fractionation and LC-MS/MS protein identification

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Roslyn N.; Romine, Margaret F.; Schepmoes, Athena A.; Smith, Richard D.; Lipton, Mary S.

    2010-07-19

    A simple and effective subcellular proteomic method for fractionation and analysis of gram-negative bacterial cytoplasm, periplasm, inner, and outer membranes was applied to Shewanella oneidensis to gain insight into its subcellular architecture. A combination of differential centrifugation, Sarkosyl solubilization, and osmotic lysis was used to prepare subcellular fractions. Global differences in protein fractions were observed by SDS PAGE and heme staining, and tryptic peptides were analyzed using high-resolution LC-MS/MS. Compared to crude cell lysates, the fractionation method achieved a significant enrichment (average ~2-fold) in proteins predicted to be localized to each subcellular fraction. Compared to other detergent, organic solvent, and density-based methods previously reported, Sarkosyl most effectively facilitated separation of the inner and outer membranes and was amenable to mass spectrometry, making this procedure ideal for probing the subcellular proteome of gram-negative bacteria via LC-MS/MS. With 40% of the observable proteome represented, this study has provided extensive information on both subcellular architecture and relative abundance of proteins in S. oneidensis and provides a foundation for future work on subcellular organization and protein-membrane interactions in other gram-negative bacteria.

  9. A new method of high-speed cellular protein separation and insight into subcellular compartmentalization of proteins.

    Science.gov (United States)

    Png, Evelyn; Lan, WanWen; Lazaroo, Melisa; Chen, Silin; Zhou, Lei; Tong, Louis

    2011-05-01

    Transglutaminase (TGM)-2 is a ubiquitous protein with important cellular functions such as regulation of cytoskeleton, cell adhesion, apoptosis, energy metabolism, and stress signaling. We identified several proteins that may interact with TGM-2 through a discovery-based proteomics method via pull down of flag-tagged TGM-2 peptide fragments. The distribution of these potential binding partners of TGM-2 was studied in subcellular fractions separated by density using novel high-speed centricollation technology. Centricollation is a compressed air-driven, low-temperature stepwise ultracentrifugation procedure where low extraction volumes can be processed in a relatively short time in non-denaturing separation conditions with high recovery yield. The fractions were characterized by immunoblots against known organelle markers. The changes in the concentrations of the binding partners were studied in cells expressing short hairpin RNA against TGM-2 (shTG). Desmin, mitochondrial intramembrane cleaving protease (PARL), protein tyrosine kinase (NTRK3), and serine protease (PRSS3) were found to be less concentrated in the 8.5%, 10%, 15%, and 20% sucrose fractions (SFs) from the lysate of shTG cells. The Golgi-associated protein (GOLGA2) was predominantly localized in 15% SF fraction, and in shTG, this shifted to predominantly in the 8.5% SF and showed larger aggregations in the cytosol of cells on immunofluorescent staining compared to control. Based on the relative concentrations of these proteins, we propose how trafficking of such proteins between cellular compartments can occur to regulate cell function. Centricollation is useful for elucidating biological function at the molecular level, especially when combined with traditional cell biology techniques.

  10. Autophagosome Proteins LC3A, LC3B and LC3C Have Distinct Subcellular Distribution Kinetics and Expression in Cancer Cell Lines.

    Directory of Open Access Journals (Sweden)

    Michael I Koukourakis

    Full Text Available LC3s (MAP1-LC3A, B and C are structural proteins of autophagosomal membranes, widely used as biomarkers of autophagy. Whether these three LC3 proteins have a similar biological role in autophagy remains obscure. We examine in parallel the subcellular expression patterns of the three LC3 proteins in a panel of human cancer cell lines, as well as in normal MRC5 fibroblasts and HUVEC, using confocal microscopy and western blot analysis of cell fractions. In the cytoplasm, there was a minimal co-localization between LC3A, B and C staining, suggesting that the relevant autophagosomes are formed by only one out of the three LC3 proteins. LC3A showed a perinuclear and nuclear localization, while LC3B was equally distributed throughout the cytoplasm and localized in the nucleolar regions. LC3C was located in the cytoplasm and strongly in the nuclei (excluding nucleoli, where it extensively co-localized with the LC3A and the Beclin-1 autophagy initiating protein. Beclin 1 is known to contain a nuclear trafficking signal. Blocking nuclear export function by Leptomycin B resulted in nuclear accumulation of all LC3 and Beclin-1 proteins, while Ivermectin that blocks nuclear import showed reduction of accumulation, but not in all cell lines. Since endogenous LC3 proteins are used as major markers of autophagy in clinical studies and cell lines, it is essential to check the specificity of the antibodies used, as the kinetics of these molecules are not identical and may have distinct biological roles. The distinct subcellular expression patterns of LC3s provide a basis for further studies.

  11. Transcriptional Analysis and Subcellular Protein Localization Reveal Specific Features of the Essential WalKR System in Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Olivier Poupel

    Full Text Available The WalKR two-component system, controlling cell wall metabolism, is highly conserved among Bacilli and essential for cell viability. In Staphylococcus aureus, walR and walK are followed by three genes of unknown function: walH, walI and walJ. Sequence analysis and transcript mapping revealed a unique genetic structure for this locus in S. aureus: the last gene of the locus, walJ, is transcribed independently, whereas transcription of the tetra-cistronic walRKHI operon occurred from two independent promoters located upstream from walR. Protein topology analysis and protein-protein interactions in E. coli as well as subcellular localization in S. aureus allowed us to show that WalH and WalI are membrane-bound proteins, which associate with WalK to form a complex at the cell division septum. While these interactions suggest that WalH and WalI play a role in activity of the WalKR regulatory pathway, deletion of walH and/or walI did not have a major effect on genes whose expression is strongly dependent on WalKR or on associated phenotypes. No effect of WalH or WalI was seen on tightly controlled WalKR regulon genes such as sle1 or saouhsc_00773, which encodes a CHAP-domain amidase. Of the genes encoding the two major S. aureus autolysins, AtlA and Sle1, only transcription of atlA was increased in the ΔwalH or ΔwalI mutants. Likewise, bacterial autolysis was not increased in the absence of WalH and/or WalI and biofilm formation was lowered rather than increased. Our results suggest that contrary to their major role as WalK inhibitors in B. subtilis, the WalH and WalI proteins have evolved a different function in S. aureus, where they are more accessory. A phylogenomic analysis shows a striking conservation of the 5 gene wal cluster along the evolutionary history of Bacilli, supporting the key importance of this signal transduction system, and indicating that the walH and walI genes were lost in the ancestor of Streptococcaceae, leading to their

  12. Transcriptional Analysis and Subcellular Protein Localization Reveal Specific Features of the Essential WalKR System in Staphylococcus aureus.

    Science.gov (United States)

    Poupel, Olivier; Moyat, Mati; Groizeleau, Julie; Antunes, Luísa C S; Gribaldo, Simonetta; Msadek, Tarek; Dubrac, Sarah

    2016-01-01

    The WalKR two-component system, controlling cell wall metabolism, is highly conserved among Bacilli and essential for cell viability. In Staphylococcus aureus, walR and walK are followed by three genes of unknown function: walH, walI and walJ. Sequence analysis and transcript mapping revealed a unique genetic structure for this locus in S. aureus: the last gene of the locus, walJ, is transcribed independently, whereas transcription of the tetra-cistronic walRKHI operon occurred from two independent promoters located upstream from walR. Protein topology analysis and protein-protein interactions in E. coli as well as subcellular localization in S. aureus allowed us to show that WalH and WalI are membrane-bound proteins, which associate with WalK to form a complex at the cell division septum. While these interactions suggest that WalH and WalI play a role in activity of the WalKR regulatory pathway, deletion of walH and/or walI did not have a major effect on genes whose expression is strongly dependent on WalKR or on associated phenotypes. No effect of WalH or WalI was seen on tightly controlled WalKR regulon genes such as sle1 or saouhsc_00773, which encodes a CHAP-domain amidase. Of the genes encoding the two major S. aureus autolysins, AtlA and Sle1, only transcription of atlA was increased in the ΔwalH or ΔwalI mutants. Likewise, bacterial autolysis was not increased in the absence of WalH and/or WalI and biofilm formation was lowered rather than increased. Our results suggest that contrary to their major role as WalK inhibitors in B. subtilis, the WalH and WalI proteins have evolved a different function in S. aureus, where they are more accessory. A phylogenomic analysis shows a striking conservation of the 5 gene wal cluster along the evolutionary history of Bacilli, supporting the key importance of this signal transduction system, and indicating that the walH and walI genes were lost in the ancestor of Streptococcaceae, leading to their atypical 3 wal gene

  13. Role of the EHD2 unstructured loop in dimerization, protein binding and subcellular localization.

    Directory of Open Access Journals (Sweden)

    Kriti Bahl

    Full Text Available The C-terminal Eps 15 Homology Domain proteins (EHD1-4 play important roles in regulating endocytic trafficking. EHD2 is the only family member whose crystal structure has been solved, and it contains an unstructured loop consisting of two proline-phenylalanine (PF motifs: KPFRKLNPF. In contrast, despite EHD2 having nearly 70% amino acid identity with its paralogs, EHD1, EHD3 and EHD4, the latter proteins contain a single KPF or RPF motif, but no NPF motif. In this study, we sought to define the precise role of each PF motif in EHD2's homo-dimerization, binding with the protein partners, and subcellular localization. To test the role of the NPF motif, we generated an EHD2 NPF-to-NAF mutant to mimic the homologous sequences of EHD1 and EHD3. We demonstrated that this mutant lost both its ability to dimerize and bind to Syndapin2. However, it continued to localize primarily to the cytosolic face of the plasma membrane. On the other hand, EHD2 NPF-to-APA mutants displayed normal dimerization and Syndapin2 binding, but exhibited markedly increased nuclear localization and reduced association with the plasma membrane. We then hypothesized that the single PF motif of EHD1 (that aligns with the KPF of EHD2 might be responsible for both binding and localization functions of EHD1. Indeed, the EHD1 RPF motif was required for dimerization, interaction with MICAL-L1 and Syndapin2, as well as localization to tubular recycling endosomes. Moreover, recycling assays demonstrated that EHD1 RPF-to-APA was incapable of supporting normal receptor recycling. Overall, our data suggest that the EHD2 NPF phenylalanine residue is crucial for EHD2 localization to the plasma membrane, whereas the proline residue is essential for EHD2 dimerization and binding. These studies support the recently proposed model in which the EHD2 N-terminal region may regulate the availability of the unstructured loop for interactions with neighboring EHD2 dimers, thus promoting

  14. Subcellular Trafficking of the Papillomavirus Genome during Initial Infection: The Remarkable Abilities of Minor Capsid Protein L2

    Directory of Open Access Journals (Sweden)

    Samuel K. Campos

    2017-12-01

    Full Text Available Since 2012, our understanding of human papillomavirus (HPV subcellular trafficking has undergone a drastic paradigm shift. Work from multiple laboratories has revealed that HPV has evolved a unique means to deliver its viral genome (vDNA to the cell nucleus, relying on myriad host cell proteins and processes. The major breakthrough finding from these recent endeavors has been the realization of L2-dependent utilization of cellular sorting factors for the retrograde transport of vDNA away from degradative endo/lysosomal compartments to the Golgi, prior to mitosis-dependent nuclear accumulation of L2/vDNA. An overview of current models of HPV entry, subcellular trafficking, and the role of L2 during initial infection is provided below, highlighting unresolved questions and gaps in knowledge.

  15. Current Gaps in the Understanding of the Subcellular Distribution of Exogenous and Endogenous Protein TorsinA

    Directory of Open Access Journals (Sweden)

    N. Charles Harata

    2014-09-01

    Full Text Available Background: An in‐frame deletion leading to the loss of a single glutamic acid residue in the protein torsinA (ΔE‐torsinA results in an inherited movement disorder, DYT1 dystonia. This autosomal dominant disease affects the function of the brain without causing neurodegeneration, by a mechanism that remains unknown.Methods: We evaluated the literature regarding the subcellular localization of torsinA.Results: Efforts to elucidate the pathophysiological basis of DYT1 dystonia have relied partly on examining the subcellular distribution of the wild‐type and mutated proteins. A typical approach is to introduce the human torsinA gene (TOR1A into host cells and overexpress the protein therein. In both neurons and non‐neuronal cells, exogenous wild‐type torsinA introduced in this manner has been found to localize mainly to the endoplasmic reticulum, whereas exogenous ΔE‐torsinA is predominantly in the nuclear envelope or cytoplasmic inclusions. Although these outcomes are relatively consistent, findings for the localization of endogenous torsinA have been variable, leaving its physiological distribution a matter of debate.Discussion: As patients’ cells do not overexpress torsinA proteins, it is important to understand why the reported distributions of the endogenous proteins are inconsistent. We propose that careful optimization of experimental methods will be critical in addressing the causes of the differences among the distributions of endogenous (non‐overexpressed vs. exogenously introduced (overexpressed proteins.

  16. Current Gaps in the Understanding of the Subcellular Distribution of Exogenous and Endogenous Protein TorsinA.

    Science.gov (United States)

    Harata, N Charles

    2014-01-01

    An in-frame deletion leading to the loss of a single glutamic acid residue in the protein torsinA (ΔE-torsinA) results in an inherited movement disorder, DYT1 dystonia. This autosomal dominant disease affects the function of the brain without causing neurodegeneration, by a mechanism that remains unknown. We evaluated the literature regarding the subcellular localization of torsinA. Efforts to elucidate the pathophysiological basis of DYT1 dystonia have relied partly on examining the subcellular distribution of the wild-type and mutated proteins. A typical approach is to introduce the human torsinA gene (TOR1A) into host cells and overexpress the protein therein. In both neurons and non-neuronal cells, exogenous wild-type torsinA introduced in this manner has been found to localize mainly to the endoplasmic reticulum, whereas exogenous ΔE-torsinA is predominantly in the nuclear envelope or cytoplasmic inclusions. Although these outcomes are relatively consistent, findings for the localization of endogenous torsinA have been variable, leaving its physiological distribution a matter of debate. As patients' cells do not overexpress torsinA proteins, it is important to understand why the reported distributions of the endogenous proteins are inconsistent. We propose that careful optimization of experimental methods will be critical in addressing the causes of the differences among the distributions of endogenous (non-overexpressed) vs. exogenously introduced (overexpressed) proteins.

  17. AAV exploits subcellular stress associated with inflammation, endoplasmic reticulum expansion, and misfolded proteins in models of cystic fibrosis.

    Directory of Open Access Journals (Sweden)

    Jarrod S Johnson

    2011-05-01

    Full Text Available Barriers to infection act at multiple levels to prevent viruses, bacteria, and parasites from commandeering host cells for their own purposes. An intriguing hypothesis is that if a cell experiences stress, such as that elicited by inflammation, endoplasmic reticulum (ER expansion, or misfolded proteins, then subcellular barriers will be less effective at preventing viral infection. Here we have used models of cystic fibrosis (CF to test whether subcellular stress increases susceptibility to adeno-associated virus (AAV infection. In human airway epithelium cultured at an air/liquid interface, physiological conditions of subcellular stress and ER expansion were mimicked using supernatant from mucopurulent material derived from CF lungs. Using this inflammatory stimulus to recapitulate stress found in diseased airways, we demonstrated that AAV infection was significantly enhanced. Since over 90% of CF cases are associated with a misfolded variant of Cystic Fibrosis Transmembrane Conductance Regulator (ΔF508-CFTR, we then explored whether the presence of misfolded proteins could independently increase susceptibility to AAV infection. In these models, AAV was an order of magnitude more efficient at transducing cells expressing ΔF508-CFTR than in cells expressing wild-type CFTR. Rescue of misfolded ΔF508-CFTR under low temperature conditions restored viral transduction efficiency to that demonstrated in controls, suggesting effects related to protein misfolding were responsible for increasing susceptibility to infection. By testing other CFTR mutants, G551D, D572N, and 1410X, we have shown this phenomenon is common to other misfolded proteins and not related to loss of CFTR activity. The presence of misfolded proteins did not affect cell surface attachment of virus or influence expression levels from promoter transgene cassettes in plasmid transfection studies, indicating exploitation occurs at the level of virion trafficking or processing. Thus

  18. Primary structure and subcellular localization of two fimbrial subunit-like proteins involved in the biosynthesis of K99 fibrillae.

    Science.gov (United States)

    Roosendaal, E; Jacobs, A A; Rathman, P; Sondermeyer, C; Stegehuis, F; Oudega, B; de Graaf, F K

    1987-09-01

    Analysis of the nucleotide sequence of the distal part of the fan gene cluster encoding the proteins involved in the biosynthesis of the fibrillar adhesin, K99, revealed the presence of two structural genes, fanG and fanH. The amino acid sequence of the gene products (FanG and FanH) showed significant homology to the amino acid sequence of the fibrillar subunit protein (FanC). Introduction of a site-specific frameshift mutation in fanG or fanH resulted in a simultaneous decrease in fibrillae production and adhesive capacity. Analysis of subcellular fractions showed that, in contrast to the K99 fibrillar subunit (FanC), both the FanH and the FanG protein were loosely associated with the outer membrane, possibly on the periplasmic side, but were not components of the fimbriae themselves.

  19. In vivo subcellular localization of Mal de Rio Cuarto virus (MRCV) non-structural proteins in insect cells reveals their putative functions

    Energy Technology Data Exchange (ETDEWEB)

    Maroniche, Guillermo A.; Mongelli, Vanesa C.; Llauger, Gabriela; Alfonso, Victoria; Taboga, Oscar [Instituto de Biotecnologia, CICVyA, Instituto Nacional de Tecnologia Agropecuaria (IB-INTA), Las cabanas y Los Reseros s/n. Hurlingham Cp 1686, Buenos Aires (Argentina); Vas, Mariana del, E-mail: mdelvas@cnia.inta.gov.ar [Instituto de Biotecnologia, CICVyA, Instituto Nacional de Tecnologia Agropecuaria (IB-INTA), Las cabanas y Los Reseros s/n. Hurlingham Cp 1686, Buenos Aires (Argentina)

    2012-09-01

    The in vivo subcellular localization of Mal de Rio Cuarto virus (MRCV, Fijivirus, Reoviridae) non-structural proteins fused to GFP was analyzed by confocal microscopy. P5-1 showed a cytoplasmic vesicular-like distribution that was lost upon deleting its PDZ binding TKF motif, suggesting that P5-1 interacts with cellular PDZ proteins. P5-2 located at the nucleus and its nuclear import was affected by the deletion of its basic C-termini. P7-1 and P7-2 also entered the nucleus and therefore, along with P5-2, could function as regulators of host gene expression. P6 located in the cytoplasm and in perinuclear cloud-like inclusions, was driven to P9-1 viroplasm-like structures and co-localized with P7-2, P10 and {alpha}-tubulin, suggesting its involvement in viroplasm formation and viral intracellular movement. Finally, P9-2 was N-glycosylated and located at the plasma membrane in association with filopodia-like protrusions containing actin, suggesting a possible role in virus cell-to-cell movement and spread.

  20. Locating proteins in the cell using TargetP, SignalP and related tools

    DEFF Research Database (Denmark)

    Emanuelsson, O.; Brunak, Søren; von Heijne, G.

    2007-01-01

    of methods to predict subcellular localization based on these sorting signals and other sequence properties. We then outline how to use a number of internet-accessible tools to arrive at a reliable subcellular localization prediction for eukaryotic and prokaryotic proteins. In particular, we provide detailed...

  1. Subcellular localization of skeletal muscle lipid droplets and PLIN family proteins OXPAT and ADRP at rest and following contraction in rat soleus muscle.

    Science.gov (United States)

    MacPherson, Rebecca E K; Herbst, Eric A F; Reynolds, Erica J; Vandenboom, Rene; Roy, Brian D; Peters, Sandra J

    2012-01-01

    Skeletal muscle lipid droplet-associated proteins (PLINs) are thought to regulate lipolysis through protein-protein interactions on the lipid droplet surface. In adipocytes, PLIN2 [adipocyte differentiation-related protein (ADRP)] is found only on lipid droplets, while PLIN5 (OXPAT, expressed only in oxidative tissues) is found both on and off the lipid droplet and may be recruited to lipid droplet membranes when needed. Our purpose was to determine whether PLIN5 is recruited to lipid droplets with contraction and to investigate the myocellular location and colocalization of lipid droplets, PLIN2, and PLIN5. Rat solei were isolated, and following a 30-min equilibration period, they were assigned to one of two groups: 1) 30 min of resting incubation and 2) 30 min of stimulation (n = 10 each). Immunofluorescence microscopy was used to determine subcellular content, distribution, and colocalization of lipid droplets, PLIN2, and PLIN5. There was a main effect for lower lipid and PLIN2 content in stimulated compared with rested muscles (P muscles (P = 0.001, r(2) = 0.99) and linearly in stimulated muscles (slope = -0.0023 ± 0.0006, P muscles (P contraction in isolated skeletal muscle.

  2. GOASVM: a subcellular location predictor by incorporating term-frequency gene ontology into the general form of Chou's pseudo-amino acid composition.

    Science.gov (United States)

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2013-04-21

    Prediction of protein subcellular localization is an important yet challenging problem. Recently, several computational methods based on Gene Ontology (GO) have been proposed to tackle this problem and have demonstrated superiority over methods based on other features. Existing GO-based methods, however, do not fully use the GO information. This paper proposes an efficient GO method called GOASVM that exploits the information from the GO term frequencies and distant homologs to represent a protein in the general form of Chou's pseudo-amino acid composition. The method first selects a subset of relevant GO terms to form a GO vector space. Then for each protein, the method uses the accession number (AC) of the protein or the ACs of its homologs to find the number of occurrences of the selected GO terms in the Gene Ontology annotation (GOA) database as a means to construct GO vectors for support vector machines (SVMs) classification. With the advantages of GO term frequencies and a new strategy to incorporate useful homologous information, GOASVM can achieve a prediction accuracy of 72.2% on a new independent test set comprising novel proteins that were added to Swiss-Prot six years later than the creation date of the training set. GOASVM and Supplementary materials are available online at http://bioinfo.eie.polyu.edu.hk/mGoaSvmServer/GOASVM.html. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Identification and subcellular localization of porcine deltacoronavirus accessory protein NS6

    International Nuclear Information System (INIS)

    Fang, Puxian; Fang, Liurong; Liu, Xiaorong; Hong, Yingying; Wang, Yongle; Dong, Nan; Ma, Panpan; Bi, Jing; Wang, Dang; Xiao, Shaobo

    2016-01-01

    Porcine deltacoronavirus (PDCoV) is an emerging swine enteric coronavirus. Accessory proteins are genus-specific for coronavirus, and two putative accessory proteins, NS6 and NS7, are predicted to be encoded by PDCoV; however, this remains to be confirmed experimentally. Here, we identified the leader-body junction sites of NS6 subgenomic RNA (sgRNA) and found that the actual transcription regulatory sequence (TRS) utilized by NS6 is non-canonical and is located upstream of the predicted TRS. Using the purified NS6 from an Escherichia coli expression system, we obtained two anti-NS6 monoclonal antibodies that could detect the predicted NS6 in cells infected with PDCoV or transfected with NS6-expressing plasmids. Further studies revealed that NS6 is always localized in the cytoplasm of PDCoV-infected cells, mainly co-localizing with the endoplasmic reticulum (ER) and ER-Golgi intermediate compartments, as well as partially with the Golgi apparatus. Together, our results identify the NS6 sgRNA and demonstrate its expression in PDCoV-infected cells. -- Highlights: •The leader-body fusion site of NS6 sgRNA is identified. •NS6 sgRNA uses a non-canonical transcription regulatory sequence (TRS). •NS6 can be expressed in PDCoV-infected cell. •NS6 predominantly localize to the ER complex and ER-Golgi intermediate compartment.

  4. Identification and subcellular localization of porcine deltacoronavirus accessory protein NS6

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Puxian; Fang, Liurong; Liu, Xiaorong; Hong, Yingying; Wang, Yongle; Dong, Nan; Ma, Panpan [State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China); The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070 (China); Bi, Jing [State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China); Department of Immunology and Aetology, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan 430065 (China); Wang, Dang [State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China); The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070 (China); Xiao, Shaobo, E-mail: vet@mail.hzau.edu.cn [State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China); The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070 (China)

    2016-12-15

    Porcine deltacoronavirus (PDCoV) is an emerging swine enteric coronavirus. Accessory proteins are genus-specific for coronavirus, and two putative accessory proteins, NS6 and NS7, are predicted to be encoded by PDCoV; however, this remains to be confirmed experimentally. Here, we identified the leader-body junction sites of NS6 subgenomic RNA (sgRNA) and found that the actual transcription regulatory sequence (TRS) utilized by NS6 is non-canonical and is located upstream of the predicted TRS. Using the purified NS6 from an Escherichia coli expression system, we obtained two anti-NS6 monoclonal antibodies that could detect the predicted NS6 in cells infected with PDCoV or transfected with NS6-expressing plasmids. Further studies revealed that NS6 is always localized in the cytoplasm of PDCoV-infected cells, mainly co-localizing with the endoplasmic reticulum (ER) and ER-Golgi intermediate compartments, as well as partially with the Golgi apparatus. Together, our results identify the NS6 sgRNA and demonstrate its expression in PDCoV-infected cells. -- Highlights: •The leader-body fusion site of NS6 sgRNA is identified. •NS6 sgRNA uses a non-canonical transcription regulatory sequence (TRS). •NS6 can be expressed in PDCoV-infected cell. •NS6 predominantly localize to the ER complex and ER-Golgi intermediate compartment.

  5. Cell segmentation in time-lapse fluorescence microscopy with temporally varying sub-cellular fusion protein patterns.

    Science.gov (United States)

    Bunyak, Filiz; Palaniappan, Kannappan; Chagin, Vadim; Cardoso, M

    2009-01-01

    Fluorescently tagged proteins such as GFP-PCNA produce rich dynamically varying textural patterns of foci distributed in the nucleus. This enables the behavioral study of sub-cellular structures during different phases of the cell cycle. The varying punctuate patterns of fluorescence, drastic changes in SNR, shape and position during mitosis and abundance of touching cells, however, require more sophisticated algorithms for reliable automatic cell segmentation and lineage analysis. Since the cell nuclei are non-uniform in appearance, a distribution-based modeling of foreground classes is essential. The recently proposed graph partitioning active contours (GPAC) algorithm supports region descriptors and flexible distance metrics. We extend GPAC for fluorescence-based cell segmentation using regional density functions and dramatically improve its efficiency for segmentation from O(N(4)) to O(N(2)), for an image with N(2) pixels, making it practical and scalable for high throughput microscopy imaging studies.

  6. Signaling efficiency of Gαq through its effectors p63RhoGEF and GEFT depends on their subcellular location.

    NARCIS (Netherlands)

    Goedhart, J.; van Unen, J.; Adjobo-Hermans, M.J.W.; Gadella (jr.), T.W.J.

    2013-01-01

    The p63RhoGEF and GEFT proteins are encoded by the same gene and both members of the Dbl family of guanine nucleotide exchange factors. These proteins can be activated by the heterotrimeric G-protein subunit Galphaq. We show that p63RhoGEF is located at the plasma membrane, whereas GEFT is confined

  7. Subcellular localization of acyl-CoA binding protein in Aspergillus oryzae is regulated by autophagy machinery.

    Science.gov (United States)

    Kawaguchi, Kouhei; Kikuma, Takashi; Higuchi, Yujiro; Takegawa, Kaoru; Kitamoto, Katsuhiko

    2016-11-04

    In eukaryotic cells, acyl-CoA binding protein (ACBP) is important for cellular activities, such as in lipid metabolism. In the industrially important fungus Aspergillus oryzae, the ACBP, known as AoACBP, has been biochemically characterized, but its physiological function is not known. In the present study, although we could not find any phenotype of AoACBP disruptants in the normal growth conditions, we examined the subcellular localization of AoACBP to understand its physiological function. Using an enhanced green fluorescent protein (EGFP)-tagged AoACBP construct we showed that AoACBP localized to punctate structures in the cytoplasm, some of which moved inside the cells in a microtubule-dependent manner. Further microscopic analyses showed that AoACBP-EGFP co-localized with the autophagy marker protein AoAtg8 tagged with red fluorescent protein (mDsRed). Expression of AoACBP-EGFP in disruptants of autophagy-related genes revealed aggregation of AoACBP-EGFP fluorescence in the cytoplasm of Aoatg1, Aoatg4 and Aoatg8 disruptant cells. However, in cells harboring disruption of Aoatg15, which encodes a lipase for autophagic body, puncta of AoACBP-EGFP fluorescence accumulated in vacuoles, indicating that AoACBP is transported to vacuoles via the autophagy machinery. Collectively, these results suggest the existence of a regulatory mechanism between AoACBP localization and autophagy. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Distinct domains within the NITROGEN LIMITATION ADAPTATION protein mediate its subcellular localization and function in the nitrate-dependent phosphate homeostasis pathway

    Science.gov (United States)

    The NITROGEN LIMITATION ADAPTATION (NLA) protein is a RING-type E3 ubiquitin ligase that plays an essential role in the regulation of nitrogen and phosphate homeostasis. NLA is localized to two distinct subcellular sites, the plasma membrane and nucleus, and contains four distinct domains: i) a RING...

  9. Interferon-inducible p200-family protein IFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA: regulation of subcellular localization.

    Science.gov (United States)

    Veeranki, Sudhakar; Choubey, Divaker

    2012-01-01

    The interferon (IFN)-inducible p200-protein family includes structurally related murine (for example, p202a, p202b, p204, and Aim2) and human (for example, AIM2 and IFI16) proteins. All proteins in the family share a partially conserved repeat of 200-amino acid residues (also called HIN-200 domain) in the C-terminus. Additionally, most proteins (except the p202a and p202b proteins) also share a protein-protein interaction pyrin domain (PYD) in the N-terminus. The HIN-200 domain contains two consecutive oligosaccharide/oligonucleotide binding folds (OB-folds) to bind double stranded DNA (dsDNA). The PYD domain in proteins allows interactions with the family members and an adaptor protein ASC. Upon sensing cytosolic dsDNA, Aim2, p204, and AIM2 proteins recruit ASC protein to form an inflammasome, resulting in increased production of proinflammatory cytokines. However, IFI16 protein can sense cytosolic as well as nuclear dsDNA. Interestingly, the IFI16 protein contains a nuclear localization signal (NLS). Accordingly, the initial studies had indicated that the endogenous IFI16 protein is detected in the nucleus and within the nucleus in the nucleolus. However, several recent reports suggest that subcellular localization of IFI16 protein in nuclear versus cytoplasmic (or both) compartment depends on cell type. Given that the IFI16 protein can sense cytosolic as well as nuclear dsDNA and can initiate different innate immune responses (production of IFN-β versus proinflammatory cytokines), here we evaluate the experimental evidence for the regulation of subcellular localization of IFI16 protein in various cell types. We conclude that further studies are needed to understand the molecular mechanisms that regulate the subcellular localization of IFI16 protein. Published by Elsevier Ltd.

  10. Loss of Subcellular Lipid Transport Due to ARV1 Deficiency Disrupts Organelle Homeostasis and Activates the Unfolded Protein Response*

    Science.gov (United States)

    Shechtman, Caryn F.; Henneberry, Annette L.; Seimon, Tracie A.; Tinkelenberg, Arthur H.; Wilcox, Lisa J.; Lee, Eunjee; Fazlollahi, Mina; Munkacsi, Andrew B.; Bussemaker, Harmen J.; Tabas, Ira; Sturley, Stephen L.

    2011-01-01

    The ARV1-encoded protein mediates sterol transport from the endoplasmic reticulum (ER) to the plasma membrane. Yeast ARV1 mutants accumulate multiple lipids in the ER and are sensitive to pharmacological modulators of both sterol and sphingolipid metabolism. Using fluorescent and electron microscopy, we demonstrate sterol accumulation, subcellular membrane expansion, elevated lipid droplet formation, and vacuolar fragmentation in ARV1 mutants. Motif-based regression analysis of ARV1 deletion transcription profiles indicates activation of Hac1p, an integral component of the unfolded protein response (UPR). Accordingly, we show constitutive splicing of HAC1 transcripts, induction of a UPR reporter, and elevated expression of UPR targets in ARV1 mutants. IRE1, encoding the unfolded protein sensor in the ER lumen, exhibits a lethal genetic interaction with ARV1, indicating a viability requirement for the UPR in cells lacking ARV1. Surprisingly, ARV1 mutants expressing a variant of Ire1p defective in sensing unfolded proteins are viable. Moreover, these strains also exhibit constitutive HAC1 splicing that interacts with DTT-mediated perturbation of protein folding. These data suggest that a component of UPR induction in arv1Δ strains is distinct from protein misfolding. Decreased ARV1 expression in murine macrophages also results in UPR induction, particularly up-regulation of activating transcription factor-4, CHOP (C/EBP homologous protein), and apoptosis. Cholesterol loading or inhibition of cholesterol esterification further elevated CHOP expression in ARV1 knockdown cells. Thus, loss or down-regulation of ARV1 disturbs membrane and lipid homeostasis, resulting in a disruption of ER integrity, one consequence of which is induction of the UPR. PMID:21266578

  11. Structure, function and subcellular localization of the potato Resistance protein Rx1

    NARCIS (Netherlands)

    Slootweg, E.J.

    2009-01-01

    Resistance proteins are part of the plant’s immune system and mediate a defence response upon recognizing their cognate pathogens. They are thought to be present in the cell as part of a larger protein complex. The modular architecture of R proteins suggests that they form a scaffold for various

  12. Analysis of the influence of subcellular localization of the HIV Rev protein on Rev-dependent gene expression by multi-fluorescence live-cell imaging

    International Nuclear Information System (INIS)

    Wolff, Horst; Hadian, Kamyar; Ziegler, Manja; Weierich, Claudia; Kramer-Hammerle, Susanne; Kleinschmidt, Andrea; Erfle, Volker; Brack-Werner, Ruth

    2006-01-01

    The human immunodeficiency virus Rev protein is a post-transcriptional activator of HIV gene expression. Rev is a nucleocytoplasmic shuttle protein that displays characteristic nuclear/nucleolar subcellular localization in various cell lines. Cytoplasmic localization of Rev occurs under various conditions disrupting Rev function. The goal of this study was to investigate the relationship between localization of Rev and its functional activity in living cells. A triple-fluorescent imaging assay, called AQ-FIND, was established for automatic quantitative evaluation of nucleocytoplasmic distribution of fluorescently tagged proteins. This assay was used to screen 500 rev genes generated by error-prone PCR for Rev mutants with different localization phenotypes. Activities of the Rev mutants were determined with a second quantitative, dual-fluorescent reporter assay. In HeLa cells, the majority of nuclear Rev mutants had activities similar to wild-type Rev. The activities of Rev mutants with abnormal cytoplasmic localization ranged from moderately impaired to nonfunctional. There was no linear correlation between subcellular distribution and levels of Rev activity. In astrocytes, nuclear Rev mutants showed similar impaired activities as the cytoplasmic wild-type Rev. Our data suggest that steady-state subcellular localization is not a primary regulator of Rev activity but may change as a secondary consequence of altered Rev function. The methodologies described here have potential for studying the significance of subcellular localization for functions of other regulatory factors

  13. Protein (multi-)location prediction: using location inter-dependencies in a probabilistic framework

    Science.gov (United States)

    2014-01-01

    Motivation Knowing the location of a protein within the cell is important for understanding its function, role in biological processes, and potential use as a drug target. Much progress has been made in developing computational methods that predict single locations for proteins. Most such methods are based on the over-simplifying assumption that proteins localize to a single location. However, it has been shown that proteins localize to multiple locations. While a few recent systems attempt to predict multiple locations of proteins, their performance leaves much room for improvement. Moreover, they typically treat locations as independent and do not attempt to utilize possible inter-dependencies among locations. Our hypothesis is that directly incorporating inter-dependencies among locations into both the classifier-learning and the prediction process can improve location prediction performance. Results We present a new method and a preliminary system we have developed that directly incorporates inter-dependencies among locations into the location-prediction process of multiply-localized proteins. Our method is based on a collection of Bayesian network classifiers, where each classifier is used to predict a single location. Learning the structure of each Bayesian network classifier takes into account inter-dependencies among locations, and the prediction process uses estimates involving multiple locations. We evaluate our system on a dataset of single- and multi-localized proteins (the most comprehensive protein multi-localization dataset currently available, derived from the DBMLoc dataset). Our results, obtained by incorporating inter-dependencies, are significantly higher than those obtained by classifiers that do not use inter-dependencies. The performance of our system on multi-localized proteins is comparable to a top performing system (YLoc+), without being restricted only to location-combinations present in the training set. PMID:24646119

  14. Protein (multi-)location prediction: using location inter-dependencies in a probabilistic framework.

    Science.gov (United States)

    Simha, Ramanuja; Shatkay, Hagit

    2014-03-19

    Knowing the location of a protein within the cell is important for understanding its function, role in biological processes, and potential use as a drug target. Much progress has been made in developing computational methods that predict single locations for proteins. Most such methods are based on the over-simplifying assumption that proteins localize to a single location. However, it has been shown that proteins localize to multiple locations. While a few recent systems attempt to predict multiple locations of proteins, their performance leaves much room for improvement. Moreover, they typically treat locations as independent and do not attempt to utilize possible inter-dependencies among locations. Our hypothesis is that directly incorporating inter-dependencies among locations into both the classifier-learning and the prediction process can improve location prediction performance. We present a new method and a preliminary system we have developed that directly incorporates inter-dependencies among locations into the location-prediction process of multiply-localized proteins. Our method is based on a collection of Bayesian network classifiers, where each classifier is used to predict a single location. Learning the structure of each Bayesian network classifier takes into account inter-dependencies among locations, and the prediction process uses estimates involving multiple locations. We evaluate our system on a dataset of single- and multi-localized proteins (the most comprehensive protein multi-localization dataset currently available, derived from the DBMLoc dataset). Our results, obtained by incorporating inter-dependencies, are significantly higher than those obtained by classifiers that do not use inter-dependencies. The performance of our system on multi-localized proteins is comparable to a top performing system (YLoc+), without being restricted only to location-combinations present in the training set.

  15. Protein kinase C ϵ stabilizes β-catenin and regulates its subcellular localization in podocytes.

    Science.gov (United States)

    Duong, Michelle; Yu, Xuejiao; Teng, Beina; Schroder, Patricia; Haller, Hermann; Eschenburg, Susanne; Schiffer, Mario

    2017-07-21

    Kidney disease has been linked to dysregulated signaling via PKC in kidney cells such as podocytes. PKCα is a conventional isoform of PKC and a well-known binding partner of β-catenin, which promotes its degradation. β-Catenin is the main effector of the canonical Wnt pathway and is critical in cell adhesion. However, whether other PKC isoforms interact with β-catenin has not been studied systematically. Here we demonstrate that PKCϵ-deficient mice, which develop proteinuria and glomerulosclerosis, display lower β-catenin expression compared with PKC wild-type mice, consistent with an altered phenotype of podocytes in culture. Remarkably, β-catenin showed a reversed subcellular localization pattern: Although β-catenin exhibited a perinuclear pattern in undifferentiated wild-type cells, it predominantly localized to the nucleus in PKCϵ knockout cells. Phorbol 12-myristate 13-acetate stimulation of both cell types revealed that PKCϵ positively regulates β-catenin expression and stabilization in a glycogen synthase kinase 3β-independent manner. Further, β-catenin overexpression in PKCϵ-deficient podocytes could restore the wild-type phenotype, similar to rescue with a PKCϵ construct. This effect was mediated by up-regulation of P-cadherin and the β-catenin downstream target fascin1. Zebrafish studies indicated three PKCϵ-specific phosphorylation sites in β-catenin that are required for full β-catenin function. Co-immunoprecipitation and pulldown assays confirmed PKCϵ and β-catenin as binding partners and revealed that ablation of the three PKCϵ phosphorylation sites weakens their interaction. In summary, we identified a novel pathway for regulation of β-catenin levels and define PKCϵ as an important β-catenin interaction partner and signaling opponent of other PKC isoforms in podocytes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes.

    Science.gov (United States)

    Yu, Nancy Y; Wagner, James R; Laird, Matthew R; Melli, Gabor; Rey, Sébastien; Lo, Raymond; Dao, Phuong; Sahinalp, S Cenk; Ester, Martin; Foster, Leonard J; Brinkman, Fiona S L

    2010-07-01

    PSORTb has remained the most precise bacterial protein subcellular localization (SCL) predictor since it was first made available in 2003. However, the recall needs to be improved and no accurate SCL predictors yet make predictions for archaea, nor differentiate important localization subcategories, such as proteins targeted to a host cell or bacterial hyperstructures/organelles. Such improvements should preferably be encompassed in a freely available web-based predictor that can also be used as a standalone program. We developed PSORTb version 3.0 with improved recall, higher proteome-scale prediction coverage, and new refined localization subcategories. It is the first SCL predictor specifically geared for all prokaryotes, including archaea and bacteria with atypical membrane/cell wall topologies. It features an improved standalone program, with a new batch results delivery system complementing its web interface. We evaluated the most accurate SCL predictors using 5-fold cross validation plus we performed an independent proteomics analysis, showing that PSORTb 3.0 is the most accurate but can benefit from being complemented by Proteome Analyst predictions. http://www.psort.org/psortb (download open source software or use the web interface). psort-mail@sfu.ca Supplementary data are available at Bioinformatics online.

  17. The Subcellular Localization and Functional Analysis of Fibrillarin2, a Nucleolar Protein in Nicotiana benthamiana

    Directory of Open Access Journals (Sweden)

    Luping Zheng

    2016-01-01

    Full Text Available Nucleolar proteins play important roles in plant cytology, growth, and development. Fibrillarin2 is a nucleolar protein of Nicotiana benthamiana (N. benthamiana. Its cDNA was amplified by RT-PCR and inserted into expression vector pEarley101 labeled with yellow fluorescent protein (YFP. The fusion protein was localized in the nucleolus and Cajal body of leaf epidermal cells of N. benthamiana. The N. benthamiana fibrillarin2 (NbFib2 protein has three functional domains (i.e., glycine and arginine rich domain, RNA-binding domain, and α-helical domain and a nuclear localization signal (NLS in C-terminal. The protein 3D structure analysis predicted that NbFib2 is an α/β protein. In addition, the virus induced gene silencing (VIGS approach was used to determine the function of NbFib2. Our results showed that symptoms including growth retardation, organ deformation, chlorosis, and necrosis appeared in NbFib2-silenced N. benthamiana.

  18. Cloning, characterization and sub-cellular localization of gamma subunit of T-complex protein-1 (chaperonin) from Leishmania donovani

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskar,; Kumari, Neeti [Division of Biochemistry, CSIR-Central Drug Research Institute, Chattar Manzil Palace, PO Box 173, Lucknow (India); Goyal, Neena, E-mail: neenacdri@yahoo.com [Division of Biochemistry, CSIR-Central Drug Research Institute, Chattar Manzil Palace, PO Box 173, Lucknow (India)

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer The study presents cloning and characterization of TCP1{gamma} gene from L. donovani. Black-Right-Pointing-Pointer TCP1{gamma} is a subunit of T-complex protein-1 (TCP1), a chaperonin class of protein. Black-Right-Pointing-Pointer LdTCP{gamma} exhibited differential expression in different stages of promastigotes. Black-Right-Pointing-Pointer LdTCP{gamma} co-localized with actin, a cytoskeleton protein. Black-Right-Pointing-Pointer The data suggests that this gene may have a role in differentiation/biogenesis. Black-Right-Pointing-Pointer First report on this chapronin in Leishmania. -- Abstract: T-complex protein-1 (TCP1) complex, a chaperonin class of protein, ubiquitous in all genera of life, is involved in intracellular assembly and folding of various proteins. The gamma subunit of TCP1 complex (TCP1{gamma}), plays a pivotal role in the folding and assembly of cytoskeleton protein(s) as an individual or complexed with other subunits. Here, we report for the first time cloning, characterization and expression of the TCP1{gamma} of Leishmania donovani (LdTCP1{gamma}), the causative agent of Indian Kala-azar. Primary sequence analysis of LdTCP1{gamma} revealed the presence of all the characteristic features of TCP1{gamma}. However, leishmanial TCP1{gamma} represents a distinct kinetoplastid group, clustered in a separate branch of the phylogenic tree. LdTCP1{gamma} exhibited differential expression in different stages of promastigotes. The non-dividing stationary phase promastigotes exhibited 2.5-fold less expression of LdTCP1{gamma} as compared to rapidly dividing log phase parasites. The sub-cellular distribution of LdTCP1{gamma} was studied in log phase promastigotes by employing indirect immunofluorescence microscopy. The protein was present not only in cytoplasm but it was also localized in nucleus, peri-nuclear region, flagella, flagellar pocket and apical region. Co-localization of LdTCP1{gamma} with actin suggests

  19. Cloning, characterization and sub-cellular localization of gamma subunit of T-complex protein-1 (chaperonin) from Leishmania donovani

    International Nuclear Information System (INIS)

    Bhaskar,; Kumari, Neeti; Goyal, Neena

    2012-01-01

    Highlights: ► The study presents cloning and characterization of TCP1γ gene from L. donovani. ► TCP1γ is a subunit of T-complex protein-1 (TCP1), a chaperonin class of protein. ► LdTCPγ exhibited differential expression in different stages of promastigotes. ► LdTCPγ co-localized with actin, a cytoskeleton protein. ► The data suggests that this gene may have a role in differentiation/biogenesis. ► First report on this chapronin in Leishmania. -- Abstract: T-complex protein-1 (TCP1) complex, a chaperonin class of protein, ubiquitous in all genera of life, is involved in intracellular assembly and folding of various proteins. The gamma subunit of TCP1 complex (TCP1γ), plays a pivotal role in the folding and assembly of cytoskeleton protein(s) as an individual or complexed with other subunits. Here, we report for the first time cloning, characterization and expression of the TCP1γ of Leishmania donovani (LdTCP1γ), the causative agent of Indian Kala-azar. Primary sequence analysis of LdTCP1γ revealed the presence of all the characteristic features of TCP1γ. However, leishmanial TCP1γ represents a distinct kinetoplastid group, clustered in a separate branch of the phylogenic tree. LdTCP1γ exhibited differential expression in different stages of promastigotes. The non-dividing stationary phase promastigotes exhibited 2.5-fold less expression of LdTCP1γ as compared to rapidly dividing log phase parasites. The sub-cellular distribution of LdTCP1γ was studied in log phase promastigotes by employing indirect immunofluorescence microscopy. The protein was present not only in cytoplasm but it was also localized in nucleus, peri-nuclear region, flagella, flagellar pocket and apical region. Co-localization of LdTCP1γ with actin suggests that, this gene may have a role in maintaining the structural dynamics of cytoskeleton of parasite.

  20. Sequential fractionation and isolation of subcellular proteins from tissue or cultured cells

    OpenAIRE

    Sabina Baghirova; Bryan G. Hughes; Michael J. Hendzel; Richard Schulz

    2015-01-01

    Many types of studies require the localization of a protein to, or isolation of enriched protein from a specific cellular compartment. Many protocols in the literature and from commercially available kits claim to yield pure cellular fractions. However, in our hands, the former often do not work effectively and the latter may be prohibitively expensive if a large number of fractionations are required. Furthermore, the largely proprietary composition of reagents in commercial kits means that t...

  1. Targeted Nanodiamonds for Identification of Subcellular Protein Assemblies in Mammalian Cells

    OpenAIRE

    Lake, Michael P.; Bouchard, Louis-S.

    2017-01-01

    Transmission electron microscopy (TEM) can be used to successfully determine the structures of proteins. However, such studies are typically done ex situ after extraction of the protein from the cellular environment. Here we describe an application for nanodiamonds as targeted intensity contrast labels in biological TEM, using the nuclear pore complex (NPC) as a model macroassembly. We demonstrate that delivery of antibody-conjugated nanodiamonds to live mammalian cells using maltotriose-conj...

  2. Characterization of bud emergence 46 (BEM46) protein: Sequence, structural, phylogenetic and subcellular localization analyses

    International Nuclear Information System (INIS)

    Kumar, Abhishek; Kollath-Leiß, Krisztina; Kempken, Frank

    2013-01-01

    Highlights: •All eukaryotes have at least a single copy of a bem46 ortholog. •The catalytic triad of BEM46 is illustrated using sequence and structural analysis. •We identified indels in the conserved domain of BEM46 protein. •Localization studies of BEM46 protein were carried out using GFP-fusion tagging. -- Abstract: The bud emergence 46 (BEM46) protein from Neurospora crassa belongs to the α/β-hydrolase superfamily. Recently, we have reported that the BEM46 protein is localized in the perinuclear ER and also forms spots close by the plasma membrane. The protein appears to be required for cell type-specific polarity formation in N. crassa. Furthermore, initial studies suggested that the BEM46 amino acid sequence is conserved in eukaryotes and is considered to be one of the widespread conserved “known unknown” eukaryotic genes. This warrants for a comprehensive phylogenetic analysis of this superfamily to unravel origin and molecular evolution of these genes in different eukaryotes. Herein, we observe that all eukaryotes have at least a single copy of a bem46 ortholog. Upon scanning of these proteins in various genomes, we find that there are expansions leading into several paralogs in vertebrates. Usingcomparative genomic analyses, we identified insertion/deletions (indels) in the conserved domain of BEM46 protein, which allow to differentiate fungal classes such as ascomycetes from basidiomycetes. We also find that exonic indels are able to differentiate BEM46 homologs of different eukaryotic lineage. Furthermore, we unravel that BEM46 protein from N. crassa possess a novel endoplasmic-retention signal (PEKK) using GFP-fusion tagging experiments. We propose that three residues namely a serine 188S, a histidine 292H and an aspartic acid 262D are most critical residues, forming a catalytic triad in BEM46 protein from N. crassa. We carried out a comprehensive study on bem46 genes from a molecular evolution perspective with combination of functional

  3. Characterization of bud emergence 46 (BEM46) protein: Sequence, structural, phylogenetic and subcellular localization analyses

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Abhishek; Kollath-Leiß, Krisztina; Kempken, Frank, E-mail: fkempken@bot.uni-kiel.de

    2013-08-30

    Highlights: •All eukaryotes have at least a single copy of a bem46 ortholog. •The catalytic triad of BEM46 is illustrated using sequence and structural analysis. •We identified indels in the conserved domain of BEM46 protein. •Localization studies of BEM46 protein were carried out using GFP-fusion tagging. -- Abstract: The bud emergence 46 (BEM46) protein from Neurospora crassa belongs to the α/β-hydrolase superfamily. Recently, we have reported that the BEM46 protein is localized in the perinuclear ER and also forms spots close by the plasma membrane. The protein appears to be required for cell type-specific polarity formation in N. crassa. Furthermore, initial studies suggested that the BEM46 amino acid sequence is conserved in eukaryotes and is considered to be one of the widespread conserved “known unknown” eukaryotic genes. This warrants for a comprehensive phylogenetic analysis of this superfamily to unravel origin and molecular evolution of these genes in different eukaryotes. Herein, we observe that all eukaryotes have at least a single copy of a bem46 ortholog. Upon scanning of these proteins in various genomes, we find that there are expansions leading into several paralogs in vertebrates. Usingcomparative genomic analyses, we identified insertion/deletions (indels) in the conserved domain of BEM46 protein, which allow to differentiate fungal classes such as ascomycetes from basidiomycetes. We also find that exonic indels are able to differentiate BEM46 homologs of different eukaryotic lineage. Furthermore, we unravel that BEM46 protein from N. crassa possess a novel endoplasmic-retention signal (PEKK) using GFP-fusion tagging experiments. We propose that three residues namely a serine 188S, a histidine 292H and an aspartic acid 262D are most critical residues, forming a catalytic triad in BEM46 protein from N. crassa. We carried out a comprehensive study on bem46 genes from a molecular evolution perspective with combination of functional

  4. Modeling curvature-dependent subcellular localization of a small sporulation protein in Bacillus subtilis

    Science.gov (United States)

    Wasnik, Vaibhav; Wingreen, Ned; Mukhopadhyay, Ranjan

    2012-02-01

    Recent experiments suggest that in the bacterium, B. subtilis, the cue for the localization of small sporulation protein, SpoVM, that plays a central role in spore coat formation, is curvature of the bacterial plasma membrane. This curvature-dependent localization is puzzling given the orders of magnitude difference in lengthscale of an individual protein and radius of curvature of the membrane. Here we develop a minimal model to study the relationship between curvature-dependent membrane absorption of SpoVM and clustering of membrane-associated SpoVM and compare our results with experiments.

  5. Binding of inorganic mercury by subcellular fractions and proteins of rat kidneys

    Energy Technology Data Exchange (ETDEWEB)

    Komsta-Szumska, E; Chmielnicka, J; Piotrowski, J K

    1976-01-01

    Inorganic mercury, administered to rats in a single dose of 0.5 mg Hg/kg is accumulated in the kidneys mainly in the soluble (54 percent) and nuclear (30 percent) fractions, showing decreasing tendency with time. Mitochondrial and microsomal fractions, initially accumulating approximately 11 and 6 percent of total Hg, show a tendency to increase the absolute level of Hg for the first week after administration. In the soluble fraction low-molecular weight, metallothioneinlike proteins are mainly responsible for the accumulation of mercury; in other fractions proteins of higher molecular weight prevail.

  6. Characterization of MYG1 gene and protein: subcellular distribution and function

    DEFF Research Database (Denmark)

    Philips, Mari-Anne; Vikeså, Jonas; Luuk, Hendrik

    2009-01-01

    . CONCLUSIONS: Taken together, we infer that MYG1 is a ubiquitous nucleo-mitochondrial protein, with differential pattern and level of expression during embryonic development. MYG1 expression in normal adult tissues is stable and our data suggest MYG1 involvement in early developmental processes and also...

  7. Subcellular localization of Bombyx mori ribosomal protein S3a and ...

    African Journals Online (AJOL)

    USER

    2010-04-05

    Apr 5, 2010 ... In the present study, using a BV/PH-Bms3a-EGFP, we found that Bombyx mori ribosomal protein S3a. (BmS3a) with EGFP fused to its C-terminal, was predominantly localized in the cytoplasm of B. mori cells. Subsequently, to investigate the effect of BmS3a over-expression on BmNPV infection both at the.

  8. Mutational analysis of PVX TGBp3 links subcellular accumulation and protein turnover

    International Nuclear Information System (INIS)

    Ju, H.-J.; Ye, C.-M.; Verchot-Lubicz, Jeanmarie

    2008-01-01

    Potato virus X (PVX) TGBp3 is required for virus cell-to-cell transport, has an N-terminal transmembrane domain, and a C-terminal cytosolic domain. In the absence of virus infection TGBp3:GFP is seen in the cortical and perinuclear ER. In PVX infected cells the TGBp3:GFP fusion is also seen in the nucleoplasm indicating that events during PVX infection trigger entry into the nucleus. Mutational analysis failed to identify a nuclear targeting domain. Mutations inhibiting TGBp3 association with the ER and inhibiting virus movement did not block TGBp3:GFP in the nucleoplasm. A mutation disrupting the N-terminal transmembrane domain of TGBp3 caused the fusion to accumulate in the nucleus indicating that nuclear import is regulated by ER interactions. Tunicamycin, an ER-stress inducing chemical, caused lower levels of GFP and TGBp3:GFP to accumulate in virus infected protoplasts. MG115 and MG132 were used to demonstrate that wild-type and mutant TGBp3:GFP fusions were degraded by the 26S proteasome. These observations are consistent with an ER-associated protein degradation (ERAD) pathway suggesting that PVX TGBp3, similar to aberrant ER proteins, is translocate to the cytoplasm for degradation. Nuclear accumulation of mutant and wild-type TGBp3:GFP is independent of other PVX proteins and may be another feature of an ERAD pathway

  9. Investigation of the effects of cell model and subcellular location of gold nanoparticles on nuclear dose enhancement factors using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Zhongli; Chattopadhyay, Niladri; Kwon, Yongkyu Luke [Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2 (Canada); Pignol, Jean-Philippe [Department of Radiation Oncology, University of Toronto, Toronto, Ontario M4N 3M5, Canada and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Lechtman, Eli [Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Reilly, Raymond M. [Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2 (Canada); Department of Medical Imaging, University of Toronto, Toronto, Ontario M5S 3E2 (Canada); Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 2C4 (Canada)

    2013-11-15

    Purpose: The authors’ aims were to model how various factors influence radiation dose enhancement by gold nanoparticles (AuNPs) and to propose a new modeling approach to the dose enhancement factor (DEF).Methods: The authors used Monte Carlo N-particle (MCNP 5) computer code to simulate photon and electron transport in cells. The authors modeled human breast cancer cells as a single cell, a monolayer, or a cluster of cells. Different numbers of 5, 30, or 50 nm AuNPs were placed in the extracellular space, on the cell surface, in the cytoplasm, or in the nucleus. Photon sources examined in the simulation included nine monoenergetic x-rays (10–100 keV), an x-ray beam (100 kVp), and {sup 125}I and {sup 103}Pd brachytherapy seeds. Both nuclear and cellular dose enhancement factors (NDEFs, CDEFs) were calculated. The ability of these metrics to predict the experimental DEF based on the clonogenic survival of MDA-MB-361 human breast cancer cells exposed to AuNPs and x-rays were compared.Results: NDEFs show a strong dependence on photon energies with peaks at 15, 30/40, and 90 keV. Cell model and subcellular location of AuNPs influence the peak position and value of NDEF. NDEFs decrease in the order of AuNPs in the nucleus, cytoplasm, cell membrane, and extracellular space. NDEFs also decrease in the order of AuNPs in a cell cluster, monolayer, and single cell if the photon energy is larger than 20 keV. NDEFs depend linearly on the number of AuNPs per cell. Similar trends were observed for CDEFs. NDEFs using the monolayer cell model were more predictive than either single cell or cluster cell models of the DEFs experimentally derived from the clonogenic survival of cells cultured as a monolayer. The amount of AuNPs required to double the prescribed dose in terms of mg Au/g tissue decreases as the size of AuNPs increases, especially when AuNPs are in the nucleus and the cytoplasm. For 40 keV x-rays and a cluster of cells, to double the prescribed x-ray dose (NDEF = 2

  10. Role of NH2-terminal hydrophobic motif in the subcellular localization of ATP-binding cassette protein subfamily D: Common features in eukaryotic organisms

    International Nuclear Information System (INIS)

    Lee, Asaka; Asahina, Kota; Okamoto, Takumi; Kawaguchi, Kosuke; Kostsin, Dzmitry G.; Kashiwayama, Yoshinori; Takanashi, Kojiro; Yazaki, Kazufumi; Imanaka, Tsuneo; Morita, Masashi

    2014-01-01

    Highlights: • ABCD proteins classifies based on with or without NH 2 -terminal hydrophobic segment. • The ABCD proteins with the segment are targeted peroxisomes. • The ABCD proteins without the segment are targeted to the endoplasmic reticulum. • The role of the segment in organelle targeting is conserved in eukaryotic organisms. - Abstract: In mammals, four ATP-binding cassette (ABC) proteins belonging to subfamily D have been identified. ABCD1–3 possesses the NH 2 -terminal hydrophobic region and are targeted to peroxisomes, while ABCD4 lacking the region is targeted to the endoplasmic reticulum (ER). Based on hydropathy plot analysis, we found that several eukaryotes have ABCD protein homologs lacking the NH 2 -terminal hydrophobic segment (H0 motif). To investigate whether the role of the NH 2 -terminal H0 motif in subcellular localization is conserved across species, we expressed ABCD proteins from several species (metazoan, plant and fungi) in fusion with GFP in CHO cells and examined their subcellular localization. ABCD proteins possessing the NH 2 -terminal H0 motif were localized to peroxisomes, while ABCD proteins lacking this region lost this capacity. In addition, the deletion of the NH 2 -terminal H0 motif of ABCD protein resulted in their localization to the ER. These results suggest that the role of the NH 2 -terminal H0 motif in organelle targeting is widely conserved in living organisms

  11. Molecular determinants of Guanylate Cyclase Activating Protein subcellular distribution in photoreceptor cells of the retina.

    Science.gov (United States)

    López-Begines, Santiago; Plana-Bonamaisó, Anna; Méndez, Ana

    2018-02-13

    Retinal guanylate cyclase (RetGC) and guanylate cyclase activating proteins (GCAPs) play an important role during the light response in photoreceptor cells. Mutations in these proteins are linked to distinct forms of blindness. RetGC and GCAPs exert their role at the ciliary outer segment where phototransduction takes place. We investigated the mechanisms governing GCAP1 and GCAP2 distribution to rod outer segments by expressing selected GCAP1 and GCAP2 mutants as transient transgenes in the rods of GCAP1/2 double knockout mice. We show that precluding GCAP1 direct binding to RetGC (K23D/GCAP1) prevented its distribution to rod outer segments, while preventing GCAP1 activation of RetGC post-binding (W94A/GCAP1) did not. We infer that GCAP1 translocation to the outer segment strongly depends on GCAP1 binding affinity for RetGC, which points to GCAP1 requirement to bind to RetGC to be transported. We gain further insight into the distinctive regulatory steps of GCAP2 distribution, by showing that a phosphomimic at position 201 is sufficient to retain GCAP2 at proximal compartments; and that the bovine equivalent to blindness-causative mutation G157R/GCAP2 results in enhanced phosphorylation in vitro and significant retention at the inner segment in vivo, as likely contributing factors to the pathophysiology.

  12. Location, location, location: new insights into O-GalNAc protein glycosylation

    DEFF Research Database (Denmark)

    Gill, David J; Clausen, Henrik; Bard, Frederic

    2011-01-01

    O-GalNAc glycosylation of proteins confers essential structural, protective and signaling roles in eumetazoans. Addition of O-glycans onto proteins is an extremely complex process that regulates both sites of attachment and the types of oligosaccharides added. Twenty distinct polypeptide GalNAc......-transferases (GalNAc-Ts) initiate O-glycosylation and fine-tuning their expression provides a mechanism for regulating this action. Recently, a new mode of regulation has emerged where activation of Src kinase selectively redistributes Golgi-localized GalNAc-Ts to the ER. This relocalization results in a strong...... increase in the density of O-glycan decoration. In this review, we discuss how different mechanisms can regulate the number and the types of O-glycans decorating proteins. In addition, we speculate how Src-dependent relocation of GalNAc-Ts could play an important role in cancerous cellular transformation....

  13. The Induction of Recombinant Protein Bodies in Different Subcellular Compartments Reveals a Cryptic Plastid-Targeting Signal in the 27-kDa γ-Zein Sequence

    International Nuclear Information System (INIS)

    Hofbauer, Anna; Peters, Jenny; Arcalis, Elsa; Rademacher, Thomas; Lampel, Johannes; Eudes, François; Vitale, Alessandro; Stoger, Eva

    2014-01-01

    Naturally occurring storage proteins such as zeins are used as fusion partners for recombinant proteins because they induce the formation of ectopic storage organelles known as protein bodies (PBs) where the proteins are stabilized by intermolecular interactions and the formation of disulfide bonds. Endogenous PBs are derived from the endoplasmic reticulum (ER). Here, we have used different targeting sequences to determine whether ectopic PBs composed of the N-terminal portion of mature 27 kDa γ-zein added to a fluorescent protein could be induced to form elsewhere in the cell. The addition of a transit peptide for targeting to plastids causes PB formation in the stroma, whereas in the absence of any added targeting sequence PBs were typically associated with the plastid envelope, revealing the presence of a cryptic plastid-targeting signal within the γ-zein cysteine-rich domain. The subcellular localization of the PBs influences their morphology and the solubility of the stored recombinant fusion protein. Our results indicate that the biogenesis and budding of PBs does not require ER-specific factors and therefore, confirm that γ-zein is a versatile fusion partner for recombinant proteins offering unique opportunities for the accumulation and bioencapsulation of recombinant proteins in different subcellular compartments.

  14. The Induction of Recombinant Protein Bodies in Different Subcellular Compartments Reveals a Cryptic Plastid-Targeting Signal in the 27-kDa γ-Zein Sequence

    Energy Technology Data Exchange (ETDEWEB)

    Hofbauer, Anna; Peters, Jenny; Arcalis, Elsa [Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (Austria); Rademacher, Thomas [Institute of Molecular Biotechnology, RWTH Aachen University, Aachen (Germany); Lampel, Johannes [Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (Austria); Eudes, François [Agriculture and Agri-Food Canada, Lethbridge, AB (Canada); Vitale, Alessandro [Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Milan (Italy); Stoger, Eva, E-mail: eva.stoger@boku.ac.at [Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (Austria)

    2014-12-11

    Naturally occurring storage proteins such as zeins are used as fusion partners for recombinant proteins because they induce the formation of ectopic storage organelles known as protein bodies (PBs) where the proteins are stabilized by intermolecular interactions and the formation of disulfide bonds. Endogenous PBs are derived from the endoplasmic reticulum (ER). Here, we have used different targeting sequences to determine whether ectopic PBs composed of the N-terminal portion of mature 27 kDa γ-zein added to a fluorescent protein could be induced to form elsewhere in the cell. The addition of a transit peptide for targeting to plastids causes PB formation in the stroma, whereas in the absence of any added targeting sequence PBs were typically associated with the plastid envelope, revealing the presence of a cryptic plastid-targeting signal within the γ-zein cysteine-rich domain. The subcellular localization of the PBs influences their morphology and the solubility of the stored recombinant fusion protein. Our results indicate that the biogenesis and budding of PBs does not require ER-specific factors and therefore, confirm that γ-zein is a versatile fusion partner for recombinant proteins offering unique opportunities for the accumulation and bioencapsulation of recombinant proteins in different subcellular compartments.

  15. Evaluation and comparison of mammalian subcellular localization prediction methods

    Directory of Open Access Journals (Sweden)

    Fink J Lynn

    2006-12-01

    Full Text Available Abstract Background Determination of the subcellular location of a protein is essential to understanding its biochemical function. This information can provide insight into the function of hypothetical or novel proteins. These data are difficult to obtain experimentally but have become especially important since many whole genome sequencing projects have been finished and many resulting protein sequences are still lacking detailed functional information. In order to address this paucity of data, many computational prediction methods have been developed. However, these methods have varying levels of accuracy and perform differently based on the sequences that are presented to the underlying algorithm. It is therefore useful to compare these methods and monitor their performance. Results In order to perform a comprehensive survey of prediction methods, we selected only methods that accepted large batches of protein sequences, were publicly available, and were able to predict localization to at least nine of the major subcellular locations (nucleus, cytosol, mitochondrion, extracellular region, plasma membrane, Golgi apparatus, endoplasmic reticulum (ER, peroxisome, and lysosome. The selected methods were CELLO, MultiLoc, Proteome Analyst, pTarget and WoLF PSORT. These methods were evaluated using 3763 mouse proteins from SwissProt that represent the source of the training sets used in development of the individual methods. In addition, an independent evaluation set of 2145 mouse proteins from LOCATE with a bias towards the subcellular localization underrepresented in SwissProt was used. The sensitivity and specificity were calculated for each method and compared to a theoretical value based on what might be observed by random chance. Conclusion No individual method had a sufficient level of sensitivity across both evaluation sets that would enable reliable application to hypothetical proteins. All methods showed lower performance on the LOCATE

  16. Protein scissors: Photocleavage of proteins at specific locations

    Indian Academy of Sciences (India)

    Unknown

    Binding of ligands to globular proteins at hydrophobic cavities while making specific ... ched to a PTI model A1010 monochromator. UV cut-off filter ..... >1:1 stoichiometry (protein to ligand), the binding equilibrium favors the thermo- dynamically ...

  17. The subcellular distribution of the human ribosomal "stalk" components: P1, P2 and P0 proteins

    DEFF Research Database (Denmark)

    Tchórzewski, Marek; Krokowski, Dawid; Rzeski, Wojciech

    2003-01-01

    The ribosomal "stalk" structure is a distinct lateral protuberance located on the large ribosomal subunit in prokaryotic, as well as in eukaryotic cells. In eukaryotes, this ribosomal structure is composed of the acidic ribosomal P proteins, forming two hetero-dimers (P1/P2) attached...

  18. Variation in the Subcellular Localization and Protein Folding Activity among Arabidopsis thaliana Homologs of Protein Disulfide Isomerase

    Directory of Open Access Journals (Sweden)

    Christen Y. L. Yuen

    2013-10-01

    Full Text Available Protein disulfide isomerases (PDIs catalyze the formation, breakage, and rearrangement of disulfide bonds to properly fold nascent polypeptides within the endoplasmic reticulum (ER. Classical animal and yeast PDIs possess two catalytic thioredoxin-like domains (a, a′ and two non-catalytic domains (b, b′, in the order a-b-b′-a′. The model plant, Arabidopsis thaliana, encodes 12 PDI-like proteins, six of which possess the classical PDI domain arrangement (AtPDI1 through AtPDI6. Three additional AtPDIs (AtPDI9, AtPDI10, AtPDI11 possess two thioredoxin domains, but without intervening b-b′ domains. C-terminal green fluorescent protein (GFP fusions to each of the nine dual-thioredoxin PDI homologs localized predominantly to the ER lumen when transiently expressed in protoplasts. Additionally, expression of AtPDI9:GFP-KDEL and AtPDI10: GFP-KDDL was associated with the formation of ER bodies. AtPDI9, AtPDI10, and AtPDI11 mediated the oxidative folding of alkaline phosphatase when heterologously expressed in the Escherichia coli protein folding mutant, dsbA−. However, only three classical AtPDIs (AtPDI2, AtPDI5, AtPDI6 functionally complemented dsbA−. Interestingly, chemical inducers of the ER unfolded protein response were previously shown to upregulate most of the AtPDIs that complemented dsbA−. The results indicate that Arabidopsis PDIs differ in their localization and protein folding activities to fulfill distinct molecular functions in the ER.

  19. Subcellular localization analysis of the closely related Fps/Fes and Fer protein-tyrosine kinases suggests a distinct role for Fps/Fes in vesicular trafficking.

    Science.gov (United States)

    Zirngibl, R; Schulze, D; Mirski, S E; Cole, S P; Greer, P A

    2001-05-15

    The subcellular localizations of the Fps/Fes and closely related Fer cytoplasmic tyrosine kinases were studied using green fluorescent protein (GFP) fusions and confocal fluorescence microscopy. In contrast to previous reports, neither kinase localized to the nucleus. Fer was diffusely cytoplasmic throughout the cell cycle. Fps/Fes also displayed a diffuse cytoplasmic localization, but in addition it showed distinct accumulations in cytoplasmic vesicles as well as in a perinuclear region consistent with the Golgi. This localization was very similar to that of TGN38, a known marker of the trans Golgi. The localization of Fps/Fes and TGN38 were both perturbed by brefeldin A, a fungal metabolite that disrupts the Golgi apparatus. Fps/Fes was also found to colocalize to various extents with several Rab proteins, which are members of the monomeric G-protein superfamily involved in vesicular transport between specific subcellular compartments. Using Rabs that are involved in endocytosis (Rab5B and Rab7) or exocytosis (Rab1A and Rab3A), we showed that Fps/Fes is localized in both pathways. These results suggest that Fps/Fes may play a general role in the regulation of vesicular trafficking. Copyright 2001 Academic Press.

  20. Sub-cellular localisation studies may spuriously detect the Yes-associated protein, YAP, in nucleoli leading to potentially invalid conclusions of its function.

    Science.gov (United States)

    Finch, Megan L; Passman, Adam M; Strauss, Robyn P; Yeoh, George C; Callus, Bernard A

    2015-01-01

    The Yes-associated protein (YAP) is a potent transcriptional co-activator that functions as a nuclear effector of the Hippo signaling pathway. YAP is oncogenic and its activity is linked to its cellular abundance and nuclear localisation. Activation of the Hippo pathway restricts YAP nuclear entry via its phosphorylation by Lats kinases and consequent cytoplasmic retention bound to 14-3-3 proteins. We examined YAP expression in liver progenitor cells (LPCs) and surprisingly found that transformed LPCs did not show an increase in YAP abundance compared to the non-transformed LPCs from which they were derived. We then sought to ascertain whether nuclear YAP was more abundant in transformed LPCs. We used an antibody that we confirmed was specific for YAP by immunoblotting to determine YAP's sub-cellular localisation by immunofluorescence. This antibody showed diffuse staining for YAP within the cytosol and nuclei, but, noticeably, it showed intense staining of the nucleoli of LPCs. This staining was non-specific, as shRNA treatment of cells abolished YAP expression to undetectable levels by Western blot yet the nucleolar staining remained. Similar spurious YAP nucleolar staining was also seen in mouse embryonic fibroblasts and mouse liver tissue, indicating that this antibody is unsuitable for immunological applications to determine YAP sub-cellular localisation in mouse cells or tissues. Interestingly nucleolar staining was not evident in D645 cells suggesting the antibody may be suitable for use in human cells. Given the large body of published work on YAP in recent years, many of which utilise this antibody, this study raises concerns regarding its use for determining sub-cellular localisation. From a broader perspective, it serves as a timely reminder of the need to perform appropriate controls to ensure the validity of published data.

  1. Cytoskeletal Components Define Protein Location to Membrane Microdomains*

    Science.gov (United States)

    Szymanski, Witold G.; Zauber, Henrik; Erban, Alexander; Gorka, Michal; Wu, Xu Na; Schulze, Waltraud X.

    2015-01-01

    The plasma membrane is an important compartment that undergoes dynamic changes in composition upon external or internal stimuli. The dynamic subcompartmentation of proteins in ordered low-density (DRM) and disordered high-density (DSM) membrane phases is hypothesized to require interactions with cytoskeletal components. Here, we systematically analyzed the effects of actin or tubulin disruption on the distribution of proteins between membrane density phases. We used a proteomic screen to identify candidate proteins with altered submembrane location, followed by biochemical or cell biological characterization in Arabidopsis thaliana. We found that several proteins, such as plasma membrane ATPases, receptor kinases, or remorins resulted in a differential distribution between membrane density phases upon cytoskeletal disruption. Moreover, in most cases, contrasting effects were observed: Disruption of actin filaments largely led to a redistribution of proteins from DRM to DSM membrane fractions while disruption of tubulins resulted in general depletion of proteins from the membranes. We conclude that actin filaments are necessary for dynamic movement of proteins between different membrane phases and that microtubules are not necessarily important for formation of microdomains as such, but rather they may control the protein amount present in the membrane phases. PMID:26091700

  2. Subcellular localization, interactions and dynamics of the phage-shock protein-like Lia response in Bacillus subtilis.

    Science.gov (United States)

    Domínguez-Escobar, Julia; Wolf, Diana; Fritz, Georg; Höfler, Carolin; Wedlich-Söldner, Roland; Mascher, Thorsten

    2014-05-01

    The liaIH operon of Bacillus subtilis is the main target of the envelope stress-inducible two-component system LiaRS. Here, we studied the localization, interaction and cellular dynamics of Lia proteins to gain insights into the physiological role of the Lia response. We demonstrate that LiaI serves as the membrane anchor for the phage-shock protein A homologue LiaH. Under non-inducing conditions, LiaI locates in highly motile membrane-associated foci, while LiaH is dispersed throughout the cytoplasm. Under stress conditions, both proteins are strongly induced and colocalize in numerous distinct static spots at the cytoplasmic membrane. This behaviour is independent of MreB and does also not correlate with the stalling of the cell wall biosynthesis machinery upon antibiotic inhibition. It can be induced by antibiotics that interfere with the membrane-anchored steps of cell wall biosynthesis, while compounds that inhibit the cytoplasmic or extracytoplasmic steps do not trigger this response. Taken together, our data are consistent with a model in which the Lia system scans the cytoplasmic membrane for envelope perturbations. Upon their detection, LiaS activates the cognate response regulator LiaR, which in turn strongly induces the liaIH operon. Simultaneously, LiaI recruits LiaH to the membrane, presumably to protect the envelope and counteract the antibiotic-induced damage. © 2014 John Wiley & Sons Ltd.

  3. Subcellular localization of proteins in the anaerobic sulfate reducer Desulfovibrio vulgaris via SNAP-tag labeling and photoconversion

    Energy Technology Data Exchange (ETDEWEB)

    Gorur, A.; Leung, C. M.; Jorgens, D.; Tauscher, A.; Remis, J. P.; Ball, D. A.; Chhabra, S.; Fok, V.; Geller, J. T.; Singer, M.; Hazen, T. C.; Juba, T.; Elias, D.; Wall, J.; Biggin, M.; Downing, K. H.; Auer, M.

    2010-06-01

    chromosome is located. Two other proteins - Thiosulfate reductase and ATP binding protein were found to be cytoplasmically distributed, whereas a molybdenum transporter was found to locate to the cell periphery. We judge labeling outcome by (1) SDS gel electrophoresis, followed by direct fluorescence imaging of the gel to address specificity of labeling/confirm expected molecular weight, and subsequent Coomassie analysis to ensure comparable protein levels (2) fluorescence intensity of culture by plate reader for statistical sampling (after adjustment for respective cell numbers) and (3) fluorescence microscopy for addressing cell-to-cell signal variation and potential localization patterns. All three assays were usually found to be consistent with one another. While we have been able to improve the efficacy of photoconversion by drastically reducing (eliminating) non-specific binding with our altered labeling protocol, we are currently working on reducing non-specific photoconversion reaction arising occasionally in non-labeled cells. In addition, we have confirmed the presence of SNAP tagged constructs in three recently cloned E.coli strains under promotor control, and are in the process of utilizing them for evaluating the sensitivity of the photoconversion protocol. Fluorescent Activated Cell Sorting was successfully applied to labeled E.coli cells containing SNAP tagged AtpA protein. Different batches of sorted cells, representing low and high labeling intensity, were re-grown and re-labeled and displayed a labeling efficiency similar to the starter culture, supporting the notion that cell-to-cell differences in labeling reflect difference in protein expression, rather then genetic differences.

  4. Exploiting protein flexibility to predict the location of allosteric sites

    Directory of Open Access Journals (Sweden)

    Panjkovich Alejandro

    2012-10-01

    Full Text Available Abstract Background Allostery is one of the most powerful and common ways of regulation of protein activity. However, for most allosteric proteins identified to date the mechanistic details of allosteric modulation are not yet well understood. Uncovering common mechanistic patterns underlying allostery would allow not only a better academic understanding of the phenomena, but it would also streamline the design of novel therapeutic solutions. This relatively unexplored therapeutic potential and the putative advantages of allosteric drugs over classical active-site inhibitors fuel the attention allosteric-drug research is receiving at present. A first step to harness the regulatory potential and versatility of allosteric sites, in the context of drug-discovery and design, would be to detect or predict their presence and location. In this article, we describe a simple computational approach, based on the effect allosteric ligands exert on protein flexibility upon binding, to predict the existence and position of allosteric sites on a given protein structure. Results By querying the literature and a recently available database of allosteric sites, we gathered 213 allosteric proteins with structural information that we further filtered into a non-redundant set of 91 proteins. We performed normal-mode analysis and observed significant changes in protein flexibility upon allosteric-ligand binding in 70% of the cases. These results agree with the current view that allosteric mechanisms are in many cases governed by changes in protein dynamics caused by ligand binding. Furthermore, we implemented an approach that achieves 65% positive predictive value in identifying allosteric sites within the set of predicted cavities of a protein (stricter parameters set, 0.22 sensitivity, by combining the current analysis on dynamics with previous results on structural conservation of allosteric sites. We also analyzed four biological examples in detail, revealing

  5. TOPDOM: database of conservatively located domains and motifs in proteins.

    Science.gov (United States)

    Varga, Julia; Dobson, László; Tusnády, Gábor E

    2016-09-01

    The TOPDOM database-originally created as a collection of domains and motifs located consistently on the same side of the membranes in α-helical transmembrane proteins-has been updated and extended by taking into consideration consistently localized domains and motifs in globular proteins, too. By taking advantage of the recently developed CCTOP algorithm to determine the type of a protein and predict topology in case of transmembrane proteins, and by applying a thorough search for domains and motifs as well as utilizing the most up-to-date version of all source databases, we managed to reach a 6-fold increase in the size of the whole database and a 2-fold increase in the number of transmembrane proteins. TOPDOM database is available at http://topdom.enzim.hu The webpage utilizes the common Apache, PHP5 and MySQL software to provide the user interface for accessing and searching the database. The database itself is generated on a high performance computer. tusnady.gabor@ttk.mta.hu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  6. A Comprehensive Subcellular Proteomic Survey of Salmonella Grown under Phagosome-Mimicking versus Standard Laboratory Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Roslyn N.; Sanford, James A.; Park, Jea H.; Deatherage, Brooke L.; Champion, Boyd L.; Smith, Richard D.; Heffron, Fred; Adkins, Joshua N.

    2012-06-01

    Towards developing a systems-level pathobiological understanding of Salmonella enterica, we performed a subcellular proteomic analysis of this pathogen grown under standard laboratory and infection-mimicking conditions in vitro. Analysis of proteins from cytoplasmic, inner membrane, periplasmic, and outer membrane fractions yielded coverage of over 30% of the theoretical proteome. Confident subcellular location could be assigned to over 1000 proteins, with good agreement between experimentally observed location and predicted/known protein properties. Comparison of protein location under the different environmental conditions provided insight into dynamic protein localization and possible moonlighting (multiple function) activities. Notable examples of dynamic localization were the response regulators of two-component regulatory systems (e.g., ArcB, PhoQ). The DNA-binding protein Dps that is generally regarded as cytoplasmic was significantly enriched in the outer membrane for all growth conditions examined, suggestive of moonlighting activities. These observations imply the existence of unknown transport mechanisms and novel functions for a subset of Salmonella proteins. Overall, this work provides a catalog of experimentally verified subcellular protein location for Salmonella and a framework for further investigations using computational modeling.

  7. Nucleolin modulates the subcellular localization of GDNF-inducible zinc finger protein 1 and its roles in transcription and cell proliferation

    International Nuclear Information System (INIS)

    Dambara, Atsushi; Morinaga, Takatoshi; Fukuda, Naoyuki; Yamakawa, Yoshinori; Kato, Takuya; Enomoto, Atsushi; Asai, Naoya; Murakumo, Yoshiki; Matsuo, Seiichi; Takahashi, Masahide

    2007-01-01

    GZF1 is a zinc finger protein induced by glial cell-line-derived neurotrophic factor (GDNF). It is a sequence-specific transcriptional repressor with a BTB/POZ (Broad complex, Tramtrack, Bric a brac/Poxvirus and zinc finger) domain and ten zinc finger motifs. In the present study, we used immunoprecipitation and mass spectrometry to identify nucleolin as a GZF1-binding protein. Deletion analysis revealed that zinc finger motifs 1-4 of GZF1 mediate its association with nucleolin. When zinc fingers 1-4 were deleted from GZF1 or nucleolin expression was knocked down by short interference RNA (siRNA), nuclear localization of GZF1 was impaired. These results suggest that nucleolin is involved in the proper subcellular distribution of GZF1. In addition, overexpression of nucleolin moderately inhibited the transcriptional repressive activity of GZF1 whereas knockdown of nucleolin expression by siRNA enhanced its activity. Thus, the repressive activity of GZF1 is modulated by the level at which nucleolin is expressed. Finally, we found that knockdown of GZF1 and nucleolin expression markedly impaired cell proliferation. These findings suggest that the physiological functions of GZF1 may be regulated by the protein's association with nucleolin

  8. Biogenesis of the rat hepatocyte plasma membrane in vivo: comparison of the pathways taken by apical and basolateral proteins using subcellular fractionation

    International Nuclear Information System (INIS)

    Bartles, J.R.; Feracci, H.M.; Stieger, B.; Hubbard, A.L.

    1987-01-01

    We have used pulse-chase metabolic radiolabeling with L-[ 35 S]methionine in conjunction with subcellular fractionation and specific protein immunoprecipitation techniques to compare the posttranslational transport pathways taken by endogenous domain-specific integral proteins of the rat hepatocyte plasma membrane in vivo. Our results suggest that both apical (HA 4, dipeptidylpeptidase IV, and aminopeptidase N) and basolateral (CE 9 and the asialoglycoprotein receptor [ASGP-R]) proteins reach the hepatocyte plasma membrane with similar kinetics. The mature molecular mass form of each of these proteins reaches its maximum specific radioactivity in a purified hepatocyte plasma membrane fraction after only 45 min of chase. However, at this time, the mature radiolabeled apical proteins are not associated with vesicles derived from the apical domain of the hepatocyte plasma membrane, but instead are associated with vesicles which, by several criteria, appear to be basolateral plasma membrane. These vesicles: (a) fractionate like basolateral plasma membrane in sucrose density gradients and in free-flow electrophoresis; (b) can be separated from the bulk of the likely organellar contaminants, including membranes derived from the late Golgi cisternae, transtubular network, and endosomes; (c) contain the proven basolateral constituents CE 9 and the ASGP-R, as judged by vesicle immunoadsorption using fixed Staphylococcus aureus cells and anti-ASGP-R antibodies; and (d) are oriented with their ectoplasmic surfaces facing outward, based on the results of vesicle immunoadsorption experiments using antibodies specific for the ectoplasmic domain of the ASGP-R. Only at times of chase greater than 45 min do significant amounts of the mature radiolabeled apical proteins arrive at the apical domain, and they do so at different rates

  9. Expression and subcellular localization of antiporter regulating ...

    African Journals Online (AJOL)

    We examined the expression and subcellular localization of antiporter regulating protein OsARP in a submergence tolerant rice (Oryza sativa L.) cultivar FR13A. In the public databases, this protein was designated as putative Os02g0465900 protein. The cDNA containing the full-length sequence of OsARP gene was ...

  10. The Puf family of RNA-binding proteins in plants: phylogeny, structural modeling, activity and subcellular localization

    Directory of Open Access Journals (Sweden)

    Tam Michael WC

    2010-03-01

    Full Text Available Abstract Background Puf proteins have important roles in controlling gene expression at the post-transcriptional level by promoting RNA decay and repressing translation. The Pumilio homology domain (PUM-HD is a conserved region within Puf proteins that binds to RNA with sequence specificity. Although Puf proteins have been well characterized in animal and fungal systems, little is known about the structural and functional characteristics of Puf-like proteins in plants. Results The Arabidopsis and rice genomes code for 26 and 19 Puf-like proteins, respectively, each possessing eight or fewer Puf repeats in their PUM-HD. Key amino acids in the PUM-HD of several of these proteins are conserved with those of animal and fungal homologs, whereas other plant Puf proteins demonstrate extensive variability in these amino acids. Three-dimensional modeling revealed that the predicted structure of this domain in plant Puf proteins provides a suitable surface for binding RNA. Electrophoretic gel mobility shift experiments showed that the Arabidopsis AtPum2 PUM-HD binds with high affinity to BoxB of the Drosophila Nanos Response Element I (NRE1 RNA, whereas a point mutation in the core of the NRE1 resulted in a significant reduction in binding affinity. Transient expression of several of the Arabidopsis Puf proteins as fluorescent protein fusions revealed a dynamic, punctate cytoplasmic pattern of localization for most of these proteins. The presence of predicted nuclear export signals and accumulation of AtPuf proteins in the nucleus after treatment of cells with leptomycin B demonstrated that shuttling of these proteins between the cytosol and nucleus is common among these proteins. In addition to the cytoplasmically enriched AtPum proteins, two AtPum proteins showed nuclear targeting with enrichment in the nucleolus. Conclusions The Puf family of RNA-binding proteins in plants consists of a greater number of members than any other model species studied to

  11. Analysis of the subcellular localization of the proteins Rep, Rep' and Cap of porcine circovirus type 1

    International Nuclear Information System (INIS)

    Finsterbusch, T.; Steinfeldt, T.; Caliskan, R.; Mankertz, A.

    2005-01-01

    Porcine circovirus type 1 (PCV1) encodes two major ORFs. The cap gene comprises the major structural protein of PCV, the rep gene specifies Rep and Rep', which are both essential for initiating the replication of the viral DNA. Rep corresponds to the full-length protein, whereas Rep' is a truncated splice product that is frame-shifted in its C-terminal sequence. In this study, the cellular localization of PCV1-encoded proteins was investigated by immune fluorescence techniques using antibodies against Rep, Rep' and Cap and by expression of viral proteins fused to green and red fluorescence proteins. Rep and Rep' protein co-localized in the nucleus of infected cells as well as in cells transfected with plasmids expressing Rep and Rep' fused to fluorescence proteins, but no signal was seen in the nucleoli. Rep and Rep' carry three potential nuclear localization signals in their identical N-termini, and the contribution of these motifs to nuclear import was experimentally dissected. In contrast to the rep gene products, the localization of the Cap protein varied. While the Cap protein was restricted to the nucleoli in plasmid-transfected cells and was also localized in the nucleoli at an early stage of PCV1 infection, it was seen in the nucleoplasm and the cytoplasm later in infection, suggesting that a shuttling between distinct cellular compartments occurs

  12. Subcellular localization of Aleutian mink disease parvovirus proteins and DNA during permissive infection of Crandell feline kidney cells

    DEFF Research Database (Denmark)

    Oleksiewicz, M.B.; Costello, F.; Huhtanen, M.

    1996-01-01

    Confocal microscopy allowed us to localize viral nonstructural (NS) and capsid (VP) proteins and DNA simultaneously in cells permissively infected with Aleutian mink disease parvovirus (ADV). Early after infection, NS proteins colocalized with viral DNA to form intranuclear inclusions, whereas VP...

  13. Plasma effects on subcellular structures

    International Nuclear Information System (INIS)

    Gweon, Bomi; Kim, Dan Bee; Jung, Heesoo; Choe, Wonho; Kim, Daeyeon; Shin, Jennifer H.

    2010-01-01

    Atmospheric pressure helium plasma treated human hepatocytes exhibit distinctive zones of necrotic and live cells separated by a void. We propose that plasma induced necrosis is attributed to plasma species such as oxygen radicals, charged particles, metastables and/or severe disruption of charged cytoskeletal proteins. Interestingly, uncharged cytoskeletal intermediate filaments are only minimally disturbed by plasma, elucidating the possibility of plasma induced electrostatic effects selectively destroying charged proteins. These bona fide plasma effects, which inflict alterations in specific subcellular structures leading to necrosis and cellular detachment, were not observed by application of helium flow or electric field alone.

  14. Unraveling 14-3-3 proteins in C4 panicoids with emphasis on model plant Setaria italica reveals phosphorylation-dependent subcellular localization of RS splicing factor.

    Directory of Open Access Journals (Sweden)

    Karunesh Kumar

    Full Text Available 14-3-3 proteins are a large multigenic family of regulatory proteins ubiquitously found in eukaryotes. In plants, 14-3-3 proteins are reported to play significant role in both development and response to stress stimuli. Therefore, considering their importance, genome-wide analyses have been performed in many plants including Arabidopsis, rice and soybean. But, till date, no comprehensive investigation has been conducted in any C4 panicoid crops. In view of this, the present study was performed to identify 8, 5 and 26 potential 14-3-3 gene family members in foxtail millet (Si14-3-3, sorghum (Sb14-3-3 and maize (Zm14-3-3, respectively. In silico characterization revealed large variations in their gene structures; segmental and tandem duplications have played a major role in expansion of these genes in foxtail millet and maize. Gene ontology annotation showed the participation of 14-3-3 proteins in diverse biological processes and molecular functions, and in silico expression profiling indicated their higher expression in all the investigated tissues. Comparative mapping was performed to derive the orthologous relationships between 14-3-3 genes of foxtail millet and other Poaceae members, which showed a higher, as well as similar percentage of orthology among these crops. Expression profiling of Si14-3-3 genes during different time-points of abiotic stress and hormonal treatments showed a differential expression pattern of these genes, and sub-cellular localization studies revealed the site of action of Si14-3-3 proteins within the cells. Further downstream characterization indicated the interaction of Si14-3-3 with a nucleocytoplasmic shuttling phosphoprotein (SiRSZ21A in a phosphorylation-dependent manner, and this demonstrates that Si14-3-3 might regulate the splicing events by binding with phosphorylated SiRSZ21A. Taken together, the present study is a comprehensive analysis of 14-3-3 gene family members in foxtail millet, sorghum and maize

  15. Unraveling 14-3-3 proteins in C4 panicoids with emphasis on model plant Setaria italica reveals phosphorylation-dependent subcellular localization of RS splicing factor.

    Science.gov (United States)

    Kumar, Karunesh; Muthamilarasan, Mehanathan; Bonthala, Venkata Suresh; Roy, Riti; Prasad, Manoj

    2015-01-01

    14-3-3 proteins are a large multigenic family of regulatory proteins ubiquitously found in eukaryotes. In plants, 14-3-3 proteins are reported to play significant role in both development and response to stress stimuli. Therefore, considering their importance, genome-wide analyses have been performed in many plants including Arabidopsis, rice and soybean. But, till date, no comprehensive investigation has been conducted in any C4 panicoid crops. In view of this, the present study was performed to identify 8, 5 and 26 potential 14-3-3 gene family members in foxtail millet (Si14-3-3), sorghum (Sb14-3-3) and maize (Zm14-3-3), respectively. In silico characterization revealed large variations in their gene structures; segmental and tandem duplications have played a major role in expansion of these genes in foxtail millet and maize. Gene ontology annotation showed the participation of 14-3-3 proteins in diverse biological processes and molecular functions, and in silico expression profiling indicated their higher expression in all the investigated tissues. Comparative mapping was performed to derive the orthologous relationships between 14-3-3 genes of foxtail millet and other Poaceae members, which showed a higher, as well as similar percentage of orthology among these crops. Expression profiling of Si14-3-3 genes during different time-points of abiotic stress and hormonal treatments showed a differential expression pattern of these genes, and sub-cellular localization studies revealed the site of action of Si14-3-3 proteins within the cells. Further downstream characterization indicated the interaction of Si14-3-3 with a nucleocytoplasmic shuttling phosphoprotein (SiRSZ21A) in a phosphorylation-dependent manner, and this demonstrates that Si14-3-3 might regulate the splicing events by binding with phosphorylated SiRSZ21A. Taken together, the present study is a comprehensive analysis of 14-3-3 gene family members in foxtail millet, sorghum and maize, which provides

  16. Fungal lectin MpL enables entry of protein drugs into cancer cells and their subcellular targeting.

    Science.gov (United States)

    Å Urga, Simon; Nanut, Milica Perišić; Kos, Janko; Sabotič, Jerica

    2017-04-18

    Lectins have been recognized as promising carrier molecules for targeted drug delivery. They specifically bind carbohydrate moieties on cell membranes and trigger cell internalization. Fungal lectin MpL (Macrolepiota procera lectin) does not provoke cancer cell cytotoxicity but is able to bind aminopeptidase N (CD13) and integrin α3β1, two glycoproteins that are overexpressed on the membrane of tumor cells. Upon binding, MpL is endocytosed in a clathrin-dependent manner and accumulates initially in the Golgi apparatus and, finally, in the lysosomes. For effective binding and internalization a functional binding site on the α-repeat is needed. To test the potential of MpL as a carrier for delivering protein drugs to cancer cells we constructed fusion proteins consisting of MpL and the cysteine peptidase inhibitors cystatin C and clitocypin. The fused proteins followed the same endocytic route as the unlinked MpL. Peptidase inhibitor-MpL fusions impaired both the intracellular degradation of extracellular matrix and the invasiveness of cancer cells. MpL is thus shown in vitro to be a lectin that can enable protein drugs to enter cancer cells, enhance their internalization and sort them to lysosomes and the Golgi apparatus.

  17. Tau regulates the subcellular localization of calmodulin

    Energy Technology Data Exchange (ETDEWEB)

    Barreda, Elena Gomez de [Centro de Biologia Molecular ' Severo Ochoa' , CSIC/UAM, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Avila, Jesus, E-mail: javila@cbm.uam.es [Centro de Biologia Molecular ' Severo Ochoa' , CSIC/UAM, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); CIBER de Enfermedades Neurodegenerativas, 28031 Madrid (Spain)

    2011-05-13

    Highlights: {yields} In this work we have tried to explain how a cytoplasmic protein could regulate a cell nuclear function. We have tested the role of a cytoplasmic protein (tau) in regulating the expression of calbindin gene. We found that calmodulin, a tau-binding protein with nuclear and cytoplasmic localization, increases its nuclear localization in the absence of tau. Since nuclear calmodulin regulates calbindin expression, a decrease in nuclear calmodulin, due to the presence of tau that retains it at the cytoplasm, results in a change in calbindin expression. -- Abstract: Lack of tau expression in neuronal cells results in a change in the expression of few genes. However, little is known about how tau regulates gene expression. Here we show that the presence of tau could alter the subcellular localization of calmodulin, a protein that could be located at the cytoplasm or in the nucleus. Nuclear calmodulin binds to co-transcription factors, regulating the expression of genes like calbindin. In this work, we have found that in neurons containing tau, a higher proportion of calmodulin is present in the cytoplasm compared with neurons lacking tau and that an increase in cytoplasmic calmodulin correlates with a higher expression of calbindin.

  18. Tau regulates the subcellular localization of calmodulin

    International Nuclear Information System (INIS)

    Barreda, Elena Gomez de; Avila, Jesus

    2011-01-01

    Highlights: → In this work we have tried to explain how a cytoplasmic protein could regulate a cell nuclear function. We have tested the role of a cytoplasmic protein (tau) in regulating the expression of calbindin gene. We found that calmodulin, a tau-binding protein with nuclear and cytoplasmic localization, increases its nuclear localization in the absence of tau. Since nuclear calmodulin regulates calbindin expression, a decrease in nuclear calmodulin, due to the presence of tau that retains it at the cytoplasm, results in a change in calbindin expression. -- Abstract: Lack of tau expression in neuronal cells results in a change in the expression of few genes. However, little is known about how tau regulates gene expression. Here we show that the presence of tau could alter the subcellular localization of calmodulin, a protein that could be located at the cytoplasm or in the nucleus. Nuclear calmodulin binds to co-transcription factors, regulating the expression of genes like calbindin. In this work, we have found that in neurons containing tau, a higher proportion of calmodulin is present in the cytoplasm compared with neurons lacking tau and that an increase in cytoplasmic calmodulin correlates with a higher expression of calbindin.

  19. Expression and subcellular localization of kinetoplast-associated proteins in the different developmental stages of Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Cavalcanti Danielle

    2009-06-01

    Full Text Available Abstract Background The kinetoplast DNA (kDNA of trypanosomatids consists of an unusual arrangement of circular molecules catenated into a single network. The diameter of the isolated kDNA network is similar to that of the entire cell. However, within the kinetoplast matrix, the kDNA is highly condensed. Studies in Crithidia fasciculata showed that kinetoplast-associated proteins (KAPs are capable of condensing the kDNA network. However, little is known about the KAPs of Trypanosoma cruzi, a parasitic protozoon that shows distinct patterns of kDNA condensation during their complex morphogenetic development. In epimastigotes and amastigotes (replicating forms the kDNA fibers are tightly packed into a disk-shaped kinetoplast, whereas trypomastigotes (non-replicating present a more relaxed kDNA organization contained within a rounded structure. It is still unclear how the compact kinetoplast disk of epimastigotes is converted into a globular structure in the infective trypomastigotes. Results In this work, we have analyzed KAP coding genes in trypanosomatid genomes and cloned and expressed two kinetoplast-associated proteins in T. cruzi: TcKAP4 and TcKAP6. Such small basic proteins are expressed in all developmental stages of the parasite, although present a differential distribution within the kinetoplasts of epimastigote, amastigote and trypomastigote forms. Conclusion Several features of TcKAPs, such as their small size, basic nature and similarity with KAPs of C. fasciculata, are consistent with a role in DNA charge neutralization and condensation. Additionally, the differential distribution of KAPs in the kinetoplasts of distinct developmental stages of the parasite, indicate that the kDNA rearrangement that takes place during the T. cruzi differentiation process is accompanied by TcKAPs redistribution.

  20. The complex subcellular distribution of satellite panicum mosaic virus capsid protein reflects its multifunctional role during infection

    International Nuclear Information System (INIS)

    Qi Dong; Omarov, Rustem T.; Scholthof, Karen-Beth G.

    2008-01-01

    Satellite panicum mosaic virus (SPMV) depends on its helper Panicum mosaic virus for replication and movement in host plants. The positive-sense single-stranded genomic RNA of SPMV encodes a 17-kDa capsid protein (CP) to form 16-nm virions. We determined that SPMV CP accumulates in both cytosolic and non-cytosolic fractions, but cytosolic accumulation of SPMV CP is exclusively associated with virions. An N-terminal arginine-rich motif (N-ARM) on SPMV CP is used to bind its cognate RNA and to form virus particles. Intriguingly, virion formation is dispensable for successful systemic SPMV RNA accumulation, yet this process still depends on an intact N-ARM. In addition, a C-terminal domain on the SPMV CP is necessary for self-interaction. Biochemical fractionation and fluorescent microscopy of green fluorescent protein-tagged SPMV CP demonstrated that the non-cytosolic SPMV CP is associated with the cell wall, the nucleus and other membranous organelles. To our knowledge, this is the first report that a satellite virus CP not only accumulates exclusively as virions in the cytosol but also is directed to the nucleolus and membranes. That SPMV CP is found both in the nucleus and the cell wall suggests its involvement in viral nuclear import and cell-to-cell transport

  1. Akt regulates the subcellular localization of the Rab27a-binding protein JFC1 by phosphorylation.

    Science.gov (United States)

    Johnson, Jennifer L; Pacquelet, Sandrine; Lane, William S; Eam, Boreth; Catz, Sergio D

    2005-08-01

    Here, we show that the Rab27a-binding protein JFC1/Slp1 (synaptotagmin-like protein) is regulated by Akt-mediated phosphorylation. Using the phosphatase and tensin homolog-null LNCaP cells and the phosphatidylinositol 3-kinase inhibitor LY294002, we show that the phosphorylation of endogenous JFC1 is dependent on the phosphatidylinositol 3-kinase/Akt pathway. JFC1 was phosphorylated in cells expressing a constitutively active Akt, confirming that it is an Akt substrate in vivo. Direct phosphorylation of JFC1 by Akt was confirmed in vitro. Using microcapillary high-performance liquid chromatography tandem mass spectrometry, we identified five Akt-phosphorylation sites in JFC1. By mutagenesis analysis and subsequent immunoprecipitation (IP), we established that Akt phosphorylates JFC1 at serine 241. JFC1 and Rab27a colocalize in the proximity of the plasma membrane in LNCaP cells. The interaction was confirmed by IP analysis and was abolished by the point mutation W83S in JFC1. Phosphorylation did not alter the ability of JFC1 to bind to Rab27a. Instead, phosphorylation by Akt dramatically decreased when JFC1 was bound to Rab27a. Finally, we show that as a consequence of in vivo phosphorylation, JFC1 dissociates from the membrane, promoting JFC1 redistribution to the cytosol. Our results suggest that Akt regulates JFC1/Slp1 function by phosphorylation and may have implications on Rab27a-containing vesicle secretion.

  2. Heterotrimeric G protein subunits are located on rat liver endosomes

    Directory of Open Access Journals (Sweden)

    Van Dyke Rebecca W

    2004-01-01

    Full Text Available Abstract Background Rat liver endosomes contain activated insulin receptors and downstream signal transduction molecules. We undertook these studies to determine whether endosomes also contain heterotrimeric G proteins that may be involved in signal transduction from G protein-coupled receptors. Results By Western blotting Gsα, Giα1,2, Giα3 and Gβ were enriched in both canalicular (CM and basolateral (BLM membranes but also readily detectable on three types of purified rat liver endosomes in the order recycling receptor compartment (RRC > compartment for uncoupling of receptor and ligand (CURL > multivesicular bodies (MVB >> purified secondary lysosomes. Western blotting with antibodies to Na, K-ATPase and to other proteins associated with plasma membranes and intracellular organelles indicated this was not due to contamination of endosome preparations by CM or BLM. Adenylate cyclase (AC was also identified on purified CM, BLM, RRC, CURL and MVB. Percoll gradient fractionation of liver postnuclear supernatants demonstrated co-occurrence of endosomes and heterotrimeric G protein subunits in fractions with little plasma membrane markers. By confocal microscopy, punctate staining for Gsα, Giα3 and Gβ corresponded to punctate areas of endocytosed Texas red-dextran in hepatocytes from control and cholera toxin-treated livers. Conclusion We conclude that heterotrimeric G protein subunits as well as AC likely traffic into hepatocytes on endosome membranes, possibly generating downstream signals spatially separate from signalling generated at the plasma membrane, analogous to the role(s of internalized insulin receptors.

  3. Location matters: the endoplasmic reticulum and protein trafficking in dendrites

    Directory of Open Access Journals (Sweden)

    Omar A Ramírez

    2011-01-01

    Full Text Available Neurons are highly polarized, but the trafficking mechanisms that operate in these cells and the topological organization of their secretory organelles are still poorly understood. Particularly incipient is our knowledge of the role of the neuronal endoplasmic reticulum. Here we review the current understanding of the endoplasmic reticulum in neurons, its structure, composition, dendritic distribution and dynamics. We also focus on the trafficking of proteins through the dendritic endoplasmic reticulum, emphasizing the relevance of transport, retention, assembly of multi-subunit protein complexes and export. We additionally discuss the roles of the dendritic endoplasmic reticulum in synaptic plasticity.

  4. Fast subcellular localization by cascaded fusion of signal-based and homology-based methods

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2011-10-01

    Full Text Available Abstract Background The functions of proteins are closely related to their subcellular locations. In the post-genomics era, the amount of gene and protein data grows exponentially, which necessitates the prediction of subcellular localization by computational means. Results This paper proposes mitigating the computation burden of alignment-based approaches to subcellular localization prediction by a cascaded fusion of cleavage site prediction and profile alignment. Specifically, the informative segments of protein sequences are identified by a cleavage site predictor using the information in their N-terminal shorting signals. Then, the sequences are truncated at the cleavage site positions, and the shortened sequences are passed to PSI-BLAST for computing their profiles. Subcellular localization are subsequently predicted by a profile-to-profile alignment support-vector-machine (SVM classifier. To further reduce the training and recognition time of the classifier, the SVM classifier is replaced by a new kernel method based on the perturbational discriminant analysis (PDA. Conclusions Experimental results on a new dataset based on Swiss-Prot Release 57.5 show that the method can make use of the best property of signal- and homology-based approaches and can attain an accuracy comparable to that achieved by using full-length sequences. Analysis of profile-alignment score matrices suggest that both profile creation time and profile alignment time can be reduced without significant reduction in subcellular localization accuracy. It was found that PDA enjoys a short training time as compared to the conventional SVM. We advocate that the method will be important for biologists to conduct large-scale protein annotation or for bioinformaticians to perform preliminary investigations on new algorithms that involve pairwise alignments.

  5. Expression of endogenous proteins in maize hybrids in a multi-location field trial in India.

    Science.gov (United States)

    Gutha, Linga R; Purushottam, Divakar; Veeramachaneni, Aruna; Tigulla, Sarita; Kodappully, Vikas; Enjala, Chandana; Rajput, Hitendrasinh; Anderson, Jennifer; Hong, Bonnie; Schmidt, Jean; Bagga, Shveta

    2018-05-17

    Genetically modified (GM) crops undergo large scale multi-location field trials to characterize agronomics, composition, and the concentration of newly expressed protein(s) [herein referred to as transgenic protein(s)]. The concentration of transgenic proteins in different plant tissues and across the developmental stages of the plant is considered in the safety assessment of GM crops. Reference or housekeeping proteins are expected to maintain a relatively stable expression pattern in healthy plants given their role in cellular functions. Understanding the effects of genotype, growth stage and location on the concentration of endogenous housekeeping proteins may provide insight into the contribution these factors could have on transgenic protein concentrations in GM crops. The concentrations of three endogenous proteins (actin, elongation factor 1-alpha, and glyceraldehyde 3-phosphate dehydrogenase) were measured in several different maize hybrids grown across multiple field locations over 2 years. Leaf samples were collected from healthy plants at three developmental stages across the growing seasons, and protein concentrations were quantified by indirect enzyme-linked immunosorbent assay (ELISA) for each protein. In general, the concentrations of these three endogenous proteins were relatively consistent across hybrid backgrounds, when compared within one growth stage and location (2-26%CV), whereas the concentrations of proteins in the same hybrid and growth stage across different locations were more variable (12-64%CV). In general, the protein concentrations in 2013 and 2014 show similar trends in variability. Some degree of variability in protein concentrations should be expected for both transgenic and endogenous plant-expressed proteins. In the case of GM crops, the potential variation in protein concentrations due to location effects is captured in the current model of multi-location field testing.

  6. Molecular Interaction and Cellular Location of RecA and CheW Proteins in Salmonella enterica during SOS Response and Their Implication in Swarming.

    Science.gov (United States)

    Irazoki, Oihane; Aranda, Jesús; Zimmermann, Timo; Campoy, Susana; Barbé, Jordi

    2016-01-01

    In addition to its role in DNA damage repair and recombination, the RecA protein, through its interaction with CheW, is involved in swarming motility, a form of flagella-dependent movement across surfaces. In order to better understand how SOS response modulates swarming, in this work the location of RecA and CheW proteins within the swarming cells has been studied by using super-resolution microscopy. Further, and after in silico docking studies, the specific RecA and CheW regions associated with the RecA-CheW interaction have also been confirmed by site-directed mutagenesis and immunoprecipitation techniques. Our results point out that the CheW distribution changes, from the cell poles to foci distributed in a helical pattern along the cell axis when SOS response is activated or RecA protein is overexpressed. In this situation, the CheW presents the same subcellular location as that of RecA, pointing out that the previously described RecA storage structures may be modulators of swarming motility. Data reported herein not only confirmed that the RecA-CheW pair is essential for swarming motility but it is directly involved in the CheW distribution change associated to SOS response activation. A model explaining not only the mechanism by which DNA damage modulates swarming but also how both the lack and the excess of RecA protein impair this motility is proposed.

  7. Molecular interaction and cellular location of RecA and CheW proteins in Salmonella enterica during SOS response and their implication in swarming

    Directory of Open Access Journals (Sweden)

    Oihane Irazoki

    2016-10-01

    Full Text Available In addition to its role in DNA damage repair and recombination, the RecA protein, through its interaction with CheW, is involved in swarming motility, a form of flagella-dependent movement across surfaces. In order to better understand how SOS response modulates swarming, in this work the location of RecA and CheW proteins within the swarming cells has been studied by using super-resolution microscopy. Further, and after in silico docking studies, the specific RecA and CheW regions associated with the RecA-CheW interaction have also been confirmed by site-directed mutagenesis and immunoprecipitation techniques. Our results point out that the CheW distribution changes, from the cell poles to foci distributed in a helical pattern along the cell axis when SOS response is activated or RecA protein is overexpressed. In this situation, the CheW presents the same subcellular location as that of RecA, pointing out that the previously described RecA storage structures may be modulators of swarming motility. Data reported herein not only confirmed that the RecA-CheW pair is essential for swarming motility but it is directly involved in the CheW distribution change associated to SOS response activation. A model explaining not only the mechanism by which DNA damage modulates swarming but also how both the lack and the excess of RecA protein impair this motility is proposed.

  8. The UL24 protein of herpes simplex virus 1 affects the sub-cellular distribution of viral glycoproteins involved in fusion

    Energy Technology Data Exchange (ETDEWEB)

    Ben Abdeljelil, Nawel; Rochette, Pierre-Alexandre; Pearson, Angela, E-mail: angela.pearson@iaf.inrs.ca

    2013-09-15

    Mutations in UL24 of herpes simplex virus type 1 can lead to a syncytial phenotype. We hypothesized that UL24 affects the sub-cellular distribution of viral glycoproteins involved in fusion. In non-immortalized human foreskin fibroblasts (HFFs) we detected viral glycoproteins B (gB), gD, gH and gL present in extended blotches throughout the cytoplasm with limited nuclear membrane staining; however, in HFFs infected with a UL24-deficient virus (UL24X), staining for the viral glycoproteins appeared as long, thin streaks running across the cell. Interestingly, there was a decrease in co-localized staining of gB and gD with F-actin at late times in UL24X-infected HFFs. Treatment with chemical agents that perturbed the actin cytoskeleton hindered the formation of UL24X-induced syncytia in these cells. These data support a model whereby the UL24 syncytial phenotype results from a mislocalization of viral glycoproteins late in infection. - Highlights: • UL24 affects the sub-cellular distribution of viral glycoproteins required for fusion. • Sub-cellular distribution of viral glycoproteins varies in cell-type dependent manner. • Drugs targeting actin microfilaments affect formation of UL24-related syncytia in HFFs.

  9. Plant subcellular proteomics: Application for exploring optimal cell function in soybean.

    Science.gov (United States)

    Wang, Xin; Komatsu, Setsuko

    2016-06-30

    Plants have evolved complicated responses to developmental changes and stressful environmental conditions. Subcellular proteomics has the potential to elucidate localized cellular responses and investigate communications among subcellular compartments during plant development and in response to biotic and abiotic stresses. Soybean, which is a valuable legume crop rich in protein and vegetable oil, can grow in several climatic zones; however, the growth and yield of soybean are markedly decreased under stresses. To date, numerous proteomic studies have been performed in soybean to examine the specific protein profiles of cell wall, plasma membrane, nucleus, mitochondrion, chloroplast, and endoplasmic reticulum. In this review, methods for the purification and purity assessment of subcellular organelles from soybean are summarized. In addition, the findings from subcellular proteomic analyses of soybean during development and under stresses, particularly flooding stress, are presented and the proteins regulated among subcellular compartments are discussed. Continued advances in subcellular proteomics are expected to greatly contribute to the understanding of the responses and interactions that occur within and among subcellular compartments during development and under stressful environmental conditions. Subcellular proteomics has the potential to investigate the cellular events and interactions among subcellular compartments in response to development and stresses in plants. Soybean could grow in several climatic zones; however, the growth and yield of soybean are markedly decreased under stresses. Numerous proteomics of cell wall, plasma membrane, nucleus, mitochondrion, chloroplast, and endoplasmic reticulum was carried out to investigate the respecting proteins and their functions in soybean during development or under stresses. In this review, methods of subcellular-organelle enrichment and purity assessment are summarized. In addition, previous findings of

  10. Subcellular Iron Localization Mechanisms in Plants

    Directory of Open Access Journals (Sweden)

    Emre Aksoy

    2017-12-01

    Full Text Available The basic micro-nutrient element iron (Fe is present as a cofactor in the active sites of many metalloproteins with important roles in the plant. On the other hand, since it is excessively reactive, excess accumulation in the cell triggers the production of reactive oxygen species, leading to cell death. Therefore, iron homeostasis in the cell is very important for plant growth. Once uptake into the roots, iron is distributed to the subcellular compartments. Subcellular iron transport and hence cellular iron homeostasis is carried out through synchronous control of different membrane protein families. It has been discovered that expression levels of these membrane proteins increase under iron deficiency. Examination of the tasks and regulations of these carriers is very important in terms of understanding the iron intake and distribution mechanisms in plants. Therefore, in this review, the transporters responsible for the uptake of iron into the cell and its subcellular distribution between organelles will be discussed with an emphasis on the current developments about these transporters.

  11. Acne located on the trunk, whey protein supplementation: Is there any association?

    Directory of Open Access Journals (Sweden)

    Fatma Pelin Cengiz

    2017-03-01

    Full Text Available Whey protein is a source of protein that was isolated from milk. Whey proteins are composed of higher levels of essential amino acids. The role of diet in acne etiology has been investigated for several years. It was established that milk and milk products can trigger acneiform lesions, and recent evidence supports the role of whey protein supplements in acne. Herein, we report 6 healthy male adolescent patients developing acne located only to the trunk after the consumption of whey protein supplements for faster bodybuilding. This is the first observation which specified the location of acneiform lesions among bodybuilders. In our opinion, a trendy and common health problem is beginning among adolescents in the gyms.

  12. Expression and Location of Glucose-regulated Protein 78 in Testis and Epididymis

    Directory of Open Access Journals (Sweden)

    W Wang

    2014-04-01

    Full Text Available Objective: To know the role of glucose-regulated protein 78 (GRP78/BiP/HSPA5 in spermatogenesis and its expression and location in the testis and epididymis. Methods: Immunohistochemistry and Western blot were used to detect GRP78 location and expression in the testis and epididymis. Results: Glucose-regulated protein 78 was observed in spermatocytes, round spermatids and interstitial cells of the testis and in principal cells of the epididymis. Glucose-regulated protein 78 was first detected in the rat testis at postnatal day 14. Thereafter, the protein level increased gradually with age and was maintained at a high and stable state after postnatal day 28. In the rat, GRP78 was expressed in the principal cells but not in clear cells of the epididymis. Conclusion: Glucose-regulated protein 78 participates in the process of spermatogenesis.

  13. Acne located on the trunk, whey protein supplementation: Is there any association?

    Science.gov (United States)

    Cengiz, Fatma Pelin; Cevirgen Cemil, Bengu; Emiroglu, Nazan; Gulsel Bahali, Anil; Onsun, Nahide

    2017-01-01

    Whey protein is a source of protein that was isolated from milk. Whey proteins are composed of higher levels of essential amino acids. The role of diet in acne etiology has been investigated for several years. It was established that milk and milk products can trigger acneiform lesions, and recent evidence supports the role of whey protein supplements in acne. Herein, we report 6 healthy male adolescent patients developing acne located only to the trunk after the consumption of whey protein supplements for faster bodybuilding. This is the first observation which specified the location of acneiform lesions among bodybuilders. In our opinion, a trendy and common health problem is beginning among adolescents in the gyms. PMID:28326292

  14. Subcellular Nanoparticle Distribution from Light Transmission Spectroscopy

    Science.gov (United States)

    Deatsch, Alison; Sun, Nan; Johnson, Jeffrey; Stack, Sharon; Tanner, Carol; Ruggiero, Steven

    We have measured the particle-size distribution (PSD) of subcellular structures in plant and animal cells. We have employed a new technique developed by our group, Light Transmission Spectroscopy-combined with cell fractionation-to accurately measure PSDs over a wide size range: from 10 nm to 3000nm, which includes objects from the size of individual proteins to organelles. To date our experiments have included cultured human oral cells and spinach cells. These results show a power-law dependence of particle density with particle diameter, implying a universality of the packing distribution. We discuss modeling the cell as a self-similar (fractal) body comprised of spheres on all size scales. This goal of this work is to obtain a better understanding of the fundamental nature of particle packing within cells in order to enrich our knowledge of the structure, function, and interactions of sub-cellular nanostructures across cell types.

  15. Correlation of N-myc downstream-regulated gene 1 subcellular localization and lymph node metastases of colorectal neoplasms

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yan [Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014 (China); Lv, Liyang [Department of Health, Jinan Military Area Command, Jinan 250022 (China); Du, Juan; Yue, Longtao [Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014 (China); Cao, Lili, E-mail: cllly22@163.com [Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014 (China)

    2013-09-20

    Highlights: •We clarified NDRG1 subcellular location in colorectal cancer. •We found the changes of NDRG1 distribution during colorectal cancer progression. •We clarified the correlation between NDRG1 distribution and lymph node metastasis. •It is possible that NDRG1 subcellular localization may determine its function. •Maybe NDRG1 is valuable early diagnostic markers for metastasis. -- Abstract: In colorectal neoplasms, N-myc downstream-regulated gene 1 (NDRG1) is a primarily cytoplasmic protein, but it is also expressed on the cell membrane and in the nucleus. NDRG1 is involved in various stages of tumor development in colorectal cancer, and it is possible that the different subcellular localizations may determine the function of NDRG1 protein. Here, we attempt to clarify the characteristics of NDRG1 protein subcellular localization during the progression of colorectal cancer. We examined NDRG1 expression in 49 colorectal cancer patients in cancerous, non-cancerous, and corresponding lymph node tissues. Cytoplasmic and membrane NDRG1 expression was higher in the lymph nodes with metastases than in those without metastases (P < 0.01). Nuclear NDRG1 expression in colorectal neoplasms was significantly higher than in the normal colorectal mucosa, and yet the normal colorectal mucosa showed no nuclear expression. Furthermore, our results showed higher cytoplasmic NDRG1 expression was better for differentiation, and higher membrane NDRG1 expression resulted in a greater possibility of lymph node metastasis. These data indicate that a certain relationship between the cytoplasmic and membrane expression of NDRG1 in lymph nodes exists with lymph node metastasis. NDRG1 expression may translocate from the membrane of the colorectal cancer cells to the nucleus, where it is involved in lymph node metastasis. Combination analysis of NDRG1 subcellular expression and clinical variables will help predict the incidence of lymph node metastasis.

  16. Correlation of N-myc downstream-regulated gene 1 subcellular localization and lymph node metastases of colorectal neoplasms

    International Nuclear Information System (INIS)

    Song, Yan; Lv, Liyang; Du, Juan; Yue, Longtao; Cao, Lili

    2013-01-01

    Highlights: •We clarified NDRG1 subcellular location in colorectal cancer. •We found the changes of NDRG1 distribution during colorectal cancer progression. •We clarified the correlation between NDRG1 distribution and lymph node metastasis. •It is possible that NDRG1 subcellular localization may determine its function. •Maybe NDRG1 is valuable early diagnostic markers for metastasis. -- Abstract: In colorectal neoplasms, N-myc downstream-regulated gene 1 (NDRG1) is a primarily cytoplasmic protein, but it is also expressed on the cell membrane and in the nucleus. NDRG1 is involved in various stages of tumor development in colorectal cancer, and it is possible that the different subcellular localizations may determine the function of NDRG1 protein. Here, we attempt to clarify the characteristics of NDRG1 protein subcellular localization during the progression of colorectal cancer. We examined NDRG1 expression in 49 colorectal cancer patients in cancerous, non-cancerous, and corresponding lymph node tissues. Cytoplasmic and membrane NDRG1 expression was higher in the lymph nodes with metastases than in those without metastases (P < 0.01). Nuclear NDRG1 expression in colorectal neoplasms was significantly higher than in the normal colorectal mucosa, and yet the normal colorectal mucosa showed no nuclear expression. Furthermore, our results showed higher cytoplasmic NDRG1 expression was better for differentiation, and higher membrane NDRG1 expression resulted in a greater possibility of lymph node metastasis. These data indicate that a certain relationship between the cytoplasmic and membrane expression of NDRG1 in lymph nodes exists with lymph node metastasis. NDRG1 expression may translocate from the membrane of the colorectal cancer cells to the nucleus, where it is involved in lymph node metastasis. Combination analysis of NDRG1 subcellular expression and clinical variables will help predict the incidence of lymph node metastasis

  17. Cellular and Subcellular Immunohistochemical Localization and Quantification of Cadmium Ions in Wheat (Triticum aestivum.

    Directory of Open Access Journals (Sweden)

    Wei Gao

    Full Text Available The distribution of metallic ions in plant tissues is associated with their toxicity and is important for understanding mechanisms of toxicity tolerance. A quantitative histochemical method can help advance knowledge of cellular and subcellular localization and distribution of heavy metals in plant tissues. An immunohistochemical (IHC imaging method for cadmium ions (Cd2+ was developed for the first time for the wheat Triticum aestivum grown in Cd2+-fortified soils. Also, 1-(4-Isothiocyanobenzyl-ethylenediamine-N,N,N,N-tetraacetic acid (ITCB-EDTA was used to chelate the mobile Cd2+. The ITCB-EDTA/Cd2+ complex was fixed with proteins in situ via the isothiocyano group. A new Cd2+-EDTA specific monoclonal antibody, 4F3B6D9A1, was used to locate the Cd2+-EDTA protein complex. After staining, the fluorescence intensities of sections of Cd2+-positive roots were compared with those of Cd2+-negative roots under a laser confocal scanning microscope, and the location of colloidal gold particles was determined with a transmission electron microscope. The results enable quantification of the Cd2+ content in plant tissues and illustrate Cd2+ translocation and cellular and subcellular responses of T. aestivum to Cd2+ stress. Compared to the conventional metal-S coprecipitation histochemical method, this new IHC method is quantitative, more specific and has less background interference. The subcellular location of Cd2+ was also confirmed with energy-dispersive X-ray microanalysis. The IHC method is suitable for locating and quantifying Cd2+ in plant tissues and can be extended to other heavy metallic ions.

  18. Cellular and Subcellular Immunohistochemical Localization and Quantification of Cadmium Ions in Wheat (Triticum aestivum).

    Science.gov (United States)

    Gao, Wei; Nan, Tiegui; Tan, Guiyu; Zhao, Hongwei; Tan, Weiming; Meng, Fanyun; Li, Zhaohu; Li, Qing X; Wang, Baomin

    2015-01-01

    The distribution of metallic ions in plant tissues is associated with their toxicity and is important for understanding mechanisms of toxicity tolerance. A quantitative histochemical method can help advance knowledge of cellular and subcellular localization and distribution of heavy metals in plant tissues. An immunohistochemical (IHC) imaging method for cadmium ions (Cd2+) was developed for the first time for the wheat Triticum aestivum grown in Cd2+-fortified soils. Also, 1-(4-Isothiocyanobenzyl)-ethylenediamine-N,N,N,N-tetraacetic acid (ITCB-EDTA) was used to chelate the mobile Cd2+. The ITCB-EDTA/Cd2+ complex was fixed with proteins in situ via the isothiocyano group. A new Cd2+-EDTA specific monoclonal antibody, 4F3B6D9A1, was used to locate the Cd2+-EDTA protein complex. After staining, the fluorescence intensities of sections of Cd2+-positive roots were compared with those of Cd2+-negative roots under a laser confocal scanning microscope, and the location of colloidal gold particles was determined with a transmission electron microscope. The results enable quantification of the Cd2+ content in plant tissues and illustrate Cd2+ translocation and cellular and subcellular responses of T. aestivum to Cd2+ stress. Compared to the conventional metal-S coprecipitation histochemical method, this new IHC method is quantitative, more specific and has less background interference. The subcellular location of Cd2+ was also confirmed with energy-dispersive X-ray microanalysis. The IHC method is suitable for locating and quantifying Cd2+ in plant tissues and can be extended to other heavy metallic ions.

  19. Subcellular controls of mercury trophic transfer to a marine fish

    International Nuclear Information System (INIS)

    Dang Fei; Wang Wenxiong

    2010-01-01

    Different behaviors of inorganic mercury [Hg(II)] and methylmercury (MeHg) during trophic transfer along the marine food chain have been widely reported, but the mechanisms are not fully understood. The bioavailability of ingested mercury, quantified by assimilation efficiency (AE), was investigated in a marine fish, the grunt Terapon jarbua, based on mercury subcellular partitioning in prey and purified subcellular fractions of prey tissues. The subcellular distribution of Hg(II) differed substantially among prey types, with cellular debris being a major (49-57% in bivalves) or secondary (14-19% in other prey) binding pool. However, MeHg distribution varied little among prey types, with most MeHg (43-79%) in heat-stable protein (HSP) fraction. The greater AEs measured for MeHg (90-94%) than for Hg(II) (23-43%) confirmed the findings of previous studies. Bioavailability of each purified subcellular fraction rather than the proposed trophically available metal (TAM) fraction could better elucidate mercury assimilation difference. Hg(II) associated with insoluble fraction (e.g. cellular debris) was less bioavailable than that in soluble fraction (e.g. HSP). However, subcellular distribution was shown to be less important for MeHg, with each fraction having comparable MeHg bioavailability. Subcellular distribution in prey should be an important consideration in mercury trophic transfer studies.

  20. Subcellular controls of mercury trophic transfer to a marine fish

    Energy Technology Data Exchange (ETDEWEB)

    Dang Fei [Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong); Wang Wenxiong, E-mail: wwang@ust.hk [Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong)

    2010-09-15

    Different behaviors of inorganic mercury [Hg(II)] and methylmercury (MeHg) during trophic transfer along the marine food chain have been widely reported, but the mechanisms are not fully understood. The bioavailability of ingested mercury, quantified by assimilation efficiency (AE), was investigated in a marine fish, the grunt Terapon jarbua, based on mercury subcellular partitioning in prey and purified subcellular fractions of prey tissues. The subcellular distribution of Hg(II) differed substantially among prey types, with cellular debris being a major (49-57% in bivalves) or secondary (14-19% in other prey) binding pool. However, MeHg distribution varied little among prey types, with most MeHg (43-79%) in heat-stable protein (HSP) fraction. The greater AEs measured for MeHg (90-94%) than for Hg(II) (23-43%) confirmed the findings of previous studies. Bioavailability of each purified subcellular fraction rather than the proposed trophically available metal (TAM) fraction could better elucidate mercury assimilation difference. Hg(II) associated with insoluble fraction (e.g. cellular debris) was less bioavailable than that in soluble fraction (e.g. HSP). However, subcellular distribution was shown to be less important for MeHg, with each fraction having comparable MeHg bioavailability. Subcellular distribution in prey should be an important consideration in mercury trophic transfer studies.

  1. HER2 and β-catenin protein location: importance in the prognosis of breast cancer patients and their correlation when breast cancer cells suffer stressful situations.

    Science.gov (United States)

    Cuello-Carrión, F Darío; Shortrede, Jorge E; Alvarez-Olmedo, Daiana; Cayado-Gutiérrez, Niubys; Castro, Gisela N; Zoppino, Felipe C M; Guerrero, Martín; Martinis, Estefania; Wuilloud, Rodolfo; Gómez, Nidia N; Biaggio, Verónica; Orozco, Javier; Gago, Francisco E; Ciocca, Leonardo A; Fanelli, Mariel A; Ciocca, Daniel R

    2015-02-01

    In human breast cancer, β-catenin localization has been related with disease prognosis. Since HER2-positive patients are an important subgroup, and that in breast cancer cells a direct interaction of β-catenin/HER2 has been reported, in the present study we have explored whether β-catenin location is related with the disease survival. The study was performed in a tumor bank from patients (n = 140) that did not receive specific anti-HER2 therapy. The proteins were detected by immunohistochemistry in serial sections, 47 (33.5%) patients were HER2-positive with a long follow-up. HER2-positive patients that displayed β-catenin at the plasma membrane (completely surrounding the tumour cells) showed a significant better disease-free survival and overall survival than the patients showing the protein on other locations. Then we explored the dynamics of the co-expression of β-catenin and HER2 in human MCF-7 and SKBR3 cells exposed to different stressful situations. In untreated conditions MCF-7 and SKBR3 cells showed very different β-catenin localization. In MCF-7 cells, cadmium administration caused a striking change in β-catenin localization driving it from plasma membrane to cytoplasmic and perinuclear areas and HER2 showed a similar localization patterns. The changes induced by cadmium were compared with heat shock, H2O2 and tamoxifen treatments. In conclusion, this study shows the dynamical associations of HER2 and β-catenin and their changes in subcellular localizations driven by stressful situations. In addition, we report for the first time the correlation between plasma membrane associated β-catenin in HER2-positive breast cancer and survival outcome, and the importance of the protein localization in breast cancer samples.

  2. Polypeptide structure and encoding location of the adenovirus serotype 2 late, nonstructural 33K protein

    International Nuclear Information System (INIS)

    Oosterom-Dragon, E.A.; Anderson, C.W.

    1983-01-01

    Radiochemical microsequence analysis of selected tryptic peptides of the adenovirus type 2 33K nonstructural protein has revealed the precise region of the genomic nucleotide sequence that encodes this protein. The initiation codon for the 33K protein lies 606 nucleotides to the right of the EcoRI restriction site at 70.7 map units and 281 nucleotides to the left of the postulated carboxyterminal codon of the adenovirus 100K protein. The coding regions for these two proteins thus overlap; however, the 33K protein is derived from the +1 frame with respect to the postulated 100K reading frame. Our results contradict an earlier published report suggesting that these two proteins share extensive amino acid sequence homology. The published nucleotide sequence of the Ad2 EcoRI-F fragment (70.7 to 75.9 map units) cannot accomodate in a single reading frame the peptide sequences of the 33K protein that we have determined. Sequence analysis of DNA fragments derived from virus has confirmed the published nucleotide sequence in all critical regions with respect to the coding region for the 33K protein. Consequently, our data are only consistent with the existence of an mRNA splice within the coding for 33K. Consensus donor and acceptor splice sequences have been located that would predict the removal of 202 nucleotides from the transcripts for the 33K protein. Removal of these nucleotides would explain the structure of a peptide that cannot otherwise be directly encoded by the EcoRI-F fragment. Identification of the precise splice points by peptide sequencing has permitted a prediction of the complete amino acid sequence for the 33K protein

  3. Subcellular distribution of curium in beagle liver

    International Nuclear Information System (INIS)

    Bruenger, F.W.; Grube, B.J.; Atherton, D.R.; Taylor, G.N.; Stevens, W.

    1976-01-01

    The subcellular distribution of curium ( 243 244 Cm) was studied in canine liver from 2 hr to 47 days after injection of 3 μCi 243 244 Cm/kg of body weight. The pattern of distribution for Cm was similar to other trivalent actinide elements studied previously (Am, Cf). Initially (2 hr), most of the nuclide was found in the cytosol and at least 90 percent was protein bound. About 70 percent of the Cm was bound to ferritin, approximately 5 percent was associated with a protein of MW approximately 200,000, and approximately 25 percent was found in the low-molecular-weight region (approximately 5000). The decrease in the Cm content of cytosol, nuclei, and microsomes coincided with an increase in the amount associated with mitochondria and lysosomes. The concentration of the Cm in the mitochondrial fraction was higher than it was in the lysosomal fraction at each time studied. In the mitochondrial fraction approximately 30 percent of the Cm was bound to membranous or granular material, and 70 percent was found in the soluble fraction. The Cm concentration initially associated with cell nuclei was high but had diminished to 20 percent of the 2 hr concentration by 20 days post injection (PI). The subcellular distribution of Cm in the liver of a dog which had received the same dose and was terminated because of severe liver damage was studied at 384 days PI. The liver weighed 130 g and contained approximately 30 percent of the injected Cm. In contrast, a normal liver weighs 280 g and at 2 hr PI contains approximately 40 percent of the injected dose. The subcellular distribution of Cm in this severely damaged liver differed from the pattern observed at earlier times after injection. The relative concentration of Cm in the cytosol was doubled; it was higher in the nuclei-debris fraction; and it was lower in the mitochondrial and lysosomal fractions when compared to earlier times

  4. Locating protein-coding sequences under selection for additional, overlapping functions in 29 mammalian genomes

    DEFF Research Database (Denmark)

    Lin, Michael F; Kheradpour, Pouya; Washietl, Stefan

    2011-01-01

    conservation compared to typical protein-coding genes—especially at synonymous sites. In this study, we use genome alignments of 29 placental mammals to systematically locate short regions within human ORFs that show conspicuously low estimated rates of synonymous substitution across these species. The 29......-species alignment provides statistical power to locate more than 10,000 such regions with resolution down to nine-codon windows, which are found within more than a quarter of all human protein-coding genes and contain ~2% of their synonymous sites. We collect numerous lines of evidence that the observed...... synonymous constraint in these regions reflects selection on overlapping functional elements including splicing regulatory elements, dual-coding genes, RNA secondary structures, microRNA target sites, and developmental enhancers. Our results show that overlapping functional elements are common in mammalian...

  5. The subcellular localization of IGFBP5 affects its cell growth and migration functions in breast cancer

    International Nuclear Information System (INIS)

    Akkiprik, Mustafa; Hu, Limei; Sahin, Aysegul; Hao, Xishan; Zhang, Wei

    2009-01-01

    Insulin-like growth factor binding protein 5 (IGFBP5) has been shown to be associated with breast cancer metastasis in clinical marker studies. However, a major difficulty in understanding how IGFBP5 functions in this capacity is the paradoxical observation that ectopic overexpression of IGFBP5 in breast cancer cell lines results in suppressed cellular proliferation. In cancer tissues, IGFBP5 resides mainly in the cytoplasm; however, in transfected cells, IGFBP5 is mainly located in the nucleus. We hypothesized that subcellular localization of IGFBP5 affects its functions in host cells. To test this hypothesis, we generated wild-type and mutant IGFBP5 expression constructs. The mutation occurs within the nuclear localization sequence (NLS) of the protein and is generated by site-directed mutagenesis using the wild-type IGFBP5 expression construct as a template. Next, we transfected each expression construct into MDA-MB-435 breast cancer cells to establish stable clones overexpressing either wild-type or mutant IGFBP5. Functional analysis revealed that cells overexpressing wild-type IGFBP5 had significantly lower cell growth rate and motility than the vector-transfected cells, whereas cells overexpressing mutant IGFBP5 demonstrated a significantly higher ability to proliferate and migrate. To illustrate the subcellular localization of the proteins, we generated wild-type and mutant IGFBP5-pDsRed fluorescence fusion constructs. Fluorescence microscopy imaging revealed that mutation of the NLS in IGFBP5 switched the accumulation of IGFBP5 from the nucleus to the cytoplasm of the protein. Together, these findings imply that the mutant form of IGFBP5 increases proliferation and motility of breast cancer cells and that mutation of the NLS in IGFBP5 results in localization of IGFBP5 in the cytoplasm, suggesting that subcellular localization of IGFBP5 affects its cell growth and migration functions in the breast cancer cells

  6. Prediction of the location and type of beta-turns in proteins using neural networks.

    OpenAIRE

    Shepherd, A. J.; Gorse, D.; Thornton, J. M.

    1999-01-01

    A neural network has been used to predict both the location and the type of beta-turns in a set of 300 nonhomologous protein domains. A substantial improvement in prediction accuracy compared with previous methods has been achieved by incorporating secondary structure information in the input data. The total percentage of residues correctly classified as beta-turn or not-beta-turn is around 75% with predicted secondary structure information. More significantly, the method gives a Matthews cor...

  7. Identification of a multifunctional protein, PhaM, that determines number, surface to volume ratio, subcellular localization and distribution to daughter cells of poly(3-hydroxybutyrate), PHB, granules in Ralstonia eutropha H16.

    Science.gov (United States)

    Pfeiffer, Daniel; Wahl, Andreas; Jendrossek, Dieter

    2011-11-01

    A two-hybrid approach was applied to screen for proteins with the ability to interact with PHB synthase (PhaC1) of Ralstonia eutropha. The H16_A0141 gene (phaM) was identified in the majority of positive clones. PhaM (26.6 kDa) strongly interacted with PhaC1 and with phasin PhaP5 but not with PhaP1 or other PHB granule-associated proteins. A ΔphaM mutant accumulated only one or two large PHB granules instead of three to six medium-sized PHB granules of the wild type, and distribution of granules to daughter cells was disordered. All three phenotypes (number, size and distribution of PHB granules) were reversed by reintroduction of phaM. Purified PhaM revealed DNA-binding properties in gel mobility shift experiments. Expression of a fusion of the yellow fluorescent protein (eYfp) with PhaM resulted in formation of many small fluorescent granules that were bound to the nucleoid region. Remarkably, an eYfp-PhaP5 fusion localized at the cell poles in a PHB-negative background and overexpression of eYfp-PhaP5 in the wild type conferred binding of PHB granules to the cell poles. In conclusion, subcellular localization of PHB granules in R. eutropha depends on a concerted expression of at least three PHB granule-associated proteins, namely PhaM, PhaP5 and PHB synthase PhaC1. © 2011 Blackwell Publishing Ltd.

  8. FALDO: a semantic standard for describing the location of nucleotide and protein feature annotation.

    Science.gov (United States)

    Bolleman, Jerven T; Mungall, Christopher J; Strozzi, Francesco; Baran, Joachim; Dumontier, Michel; Bonnal, Raoul J P; Buels, Robert; Hoehndorf, Robert; Fujisawa, Takatomo; Katayama, Toshiaki; Cock, Peter J A

    2016-06-13

    Nucleotide and protein sequence feature annotations are essential to understand biology on the genomic, transcriptomic, and proteomic level. Using Semantic Web technologies to query biological annotations, there was no standard that described this potentially complex location information as subject-predicate-object triples. We have developed an ontology, the Feature Annotation Location Description Ontology (FALDO), to describe the positions of annotated features on linear and circular sequences. FALDO can be used to describe nucleotide features in sequence records, protein annotations, and glycan binding sites, among other features in coordinate systems of the aforementioned "omics" areas. Using the same data format to represent sequence positions that are independent of file formats allows us to integrate sequence data from multiple sources and data types. The genome browser JBrowse is used to demonstrate accessing multiple SPARQL endpoints to display genomic feature annotations, as well as protein annotations from UniProt mapped to genomic locations. Our ontology allows users to uniformly describe - and potentially merge - sequence annotations from multiple sources. Data sources using FALDO can prospectively be retrieved using federalised SPARQL queries against public SPARQL endpoints and/or local private triple stores.

  9. Prediction of Protein Submitochondrial Locations by Incorporating Dipeptide Composition into Chou's General Pseudo Amino Acid Composition.

    Science.gov (United States)

    Ahmad, Khurshid; Waris, Muhammad; Hayat, Maqsood

    2016-06-01

    Mitochondrion is the key organelle of eukaryotic cell, which provides energy for cellular activities. Submitochondrial locations of proteins play crucial role in understanding different biological processes such as energy metabolism, program cell death, and ionic homeostasis. Prediction of submitochondrial locations through conventional methods are expensive and time consuming because of the large number of protein sequences generated in the last few decades. Therefore, it is intensively desired to establish an automated model for identification of submitochondrial locations of proteins. In this regard, the current study is initiated to develop a fast, reliable, and accurate computational model. Various feature extraction methods such as dipeptide composition (DPC), Split Amino Acid Composition, and Composition and Translation were utilized. In order to overcome the issue of biasness, oversampling technique SMOTE was applied to balance the datasets. Several classification learners including K-Nearest Neighbor, Probabilistic Neural Network, and support vector machine (SVM) are used. Jackknife test is applied to assess the performance of classification algorithms using two benchmark datasets. Among various classification algorithms, SVM achieved the highest success rates in conjunction with the condensed feature space of DPC, which are 95.20 % accuracy on dataset SML3-317 and 95.11 % on dataset SML3-983. The empirical results revealed that our proposed model obtained the highest results so far in the literatures. It is anticipated that our proposed model might be useful for future studies.

  10. Location of DNA-protein cross-links in mammalian cell nuclei

    International Nuclear Information System (INIS)

    Oleinick, N.L.

    1985-01-01

    DNA-protein cross-links (DPCs) occur in 1-3% of the bulk DNA of unirradiated cells, and dose-dependent increases in DPCs with γ- or UV-radiation can be detected by filter-binding. DPCs may contribute to cell lethality, since their formation is prevented by radical scavengers. Since the environment of DNA varies within eukaryotic nuclei, we have probed the composition and sub-nuclear location of DPCs. Both before and after irradiation, the major proteins cross-linked to DNA have molecular weights similar to known proteins of the nuclear matrix. The DNA cross-linked to protein is enriched in sequences which hybridize to mRNA or rRNA transcripts; such sequences are also found preferentially in preparations of nuclear matrix. When histone-depleted, matrix-associated DNA is separated from the DNA of the supercoiled ''loops'' by digestion with EcoRI and assayed for DPCs by filter binding, the frequency of DPCs is greater in the matrix. During repair of DPCs, protein-associated DNA becomes depleted in actively transcribing DNA, followed by reconstitution of the active-gene-enriched nuclear matrix. These data are consistent with known properties of the matrix and suggest the hypothesis that in intact cells, radiation-induced DPCs are primarily a product of matrix-associated DNA sequences and matrix protein

  11. Interference of HTLV-1 Tax Protein with Cell Polarity Regulators: Defining the Subcellular Localization of the Tax-DLG1 Interaction.

    Science.gov (United States)

    Marziali, Federico; Bugnon Valdano, Marina; Brunet Avalos, Clarisse; Moriena, Lucía; Cavatorta, Ana Laura; Gardiol, Daniela

    2017-11-23

    Human T cell leukemia virus (HTLV)-1 Tax (Tax) protein is very important in viral replication and cell transformation. Tax localizes in the nucleus and cytoplasm in association with organelles. Some activities of Tax depend on interactions with PDZ (PSD-95/Discs Large/Z0-1) domain-containing proteins such as Discs large protein 1 (DLG1) which is involved in cell polarity and proliferation. The DLG1 interaction results in a cytoplasmic co-localization pattern resembling vesicular aggregates, the nature of which is still unknown. To further explore the role of PDZ proteins in HTLV-1 cell transformation, we deeply investigated the Tax-DLG1 association. By fluorescence resonance energy transfer (FRET), we detected, for the first time, the direct binding of Tax to DLG1 within the cell. We showed that the interaction specifically affects the cellular distribution of not only DLG1, but also Tax. After studying different cell structures, we demonstrated that the aggregates distribute into the Golgi apparatus in spatial association with the microtubule-organizing center (MTOC). This study contributes to understand the biological significance of Tax-PDZ interactions.

  12. Interference of HTLV-1 Tax Protein with Cell Polarity Regulators: Defining the Subcellular Localization of the Tax-DLG1 Interaction

    Directory of Open Access Journals (Sweden)

    Federico Marziali

    2017-11-01

    Full Text Available Human T cell leukemia virus (HTLV-1 Tax (Tax protein is very important in viral replication and cell transformation. Tax localizes in the nucleus and cytoplasm in association with organelles. Some activities of Tax depend on interactions with PDZ (PSD-95/Discs Large/Z0-1 domain–containing proteins such as Discs large protein 1 (DLG1 which is involved in cell polarity and proliferation. The DLG1 interaction results in a cytoplasmic co-localization pattern resembling vesicular aggregates, the nature of which is still unknown. To further explore the role of PDZ proteins in HTLV-1 cell transformation, we deeply investigated the Tax-DLG1 association. By fluorescence resonance energy transfer (FRET, we detected, for the first time, the direct binding of Tax to DLG1 within the cell. We showed that the interaction specifically affects the cellular distribution of not only DLG1, but also Tax. After studying different cell structures, we demonstrated that the aggregates distribute into the Golgi apparatus in spatial association with the microtubule-organizing center (MTOC. This study contributes to understand the biological significance of Tax-PDZ interactions.

  13. Subcellular distribution of swine vesicular disease virus proteins and alterations induced in infected cells: A comparative study with foot-and-mouth disease virus and vesicular stomatitis virus

    International Nuclear Information System (INIS)

    Martin-Acebes, Miguel A.; Gonzalez-Magaldi, Monica; Rosas, Maria F.; Borrego, Belen; Brocchi, Emiliana; Armas-Portela, Rosario; Sobrino, Francisco

    2008-01-01

    The intracellular distribution of swine vesicular disease virus (SVDV) proteins and the induced reorganization of endomembranes in IBRS-2 cells were analyzed. Fluorescence to new SVDV capsids appeared first upon infection, concentrated in perinuclear circular structures and colocalized to dsRNA. As in foot-and-mouth disease virus (FMDV)-infected cells, a vesicular pattern was predominantly found in later stages of SVDV capsid morphogenesis that colocalized with those of non-structural proteins 2C, 2BC and 3A. These results suggest that assembly of capsid proteins is associated to the replication complex. Confocal microscopy showed a decreased fluorescence to ER markers (calreticulin and protein disulfide isomerase), and disorganization of cis-Golgi gp74 and trans-Golgi caveolin-1 markers in SVDV- and FMDV-, but not in vesicular stomatitis virus (VSV)-infected cells. Electron microscopy of SVDV-infected cells at an early stage of infection revealed fragmented ER cisternae with expanded lumen and accumulation of large Golgi vesicles, suggesting alterations of vesicle traffic through Golgi compartments. At this early stage, FMDV induced different patterns of ER fragmentation and Golgi alterations. At later stages of SVDV cytopathology, cells showed a completely vacuolated cytoplasm containing vesicles of different sizes. Cell treatment with brefeldin A, which disrupts the Golgi complex, reduced SVDV (∼ 5 log) and VSV (∼ 4 log) titers, but did not affect FMDV growth. Thus, three viruses, which share target tissues and clinical signs in natural hosts, induce different intracellular effects in cultured cells

  14. Sub-cellular localisation of fukutin related protein in different cell lines and in the muscle of patients with MDC1C and LGMD2I

    DEFF Research Database (Denmark)

    Torelli, Silvia; Brown, Susan C; Brockington, Martin

    2005-01-01

    MDC1C and LGMD2I are two allelic forms of muscular dystrophies caused by mutations in the gene encoding for fukutin related protein (FKRP). FKRP encodes for a putative glycosyltransferase, the precise function of which is unknown. However, the marked reduction of alpha-dystroglycan glycosylation ...

  15. Effects of the TAT peptide orientation and relative location on the protein transduction efficiency.

    Science.gov (United States)

    Guo, Qingguo; Zhao, Guojie; Hao, Fengjin; Guan, Yifu

    2012-05-01

    To understand the protein transduction domain (PTD)-mediated protein transduction behavior and to explore its potential in delivering biopharmaceutic drugs, we prepared four TAT-EGFP conjugates: TAT(+)-EGFP, TAT(-)-EGFP, EGFP-TAT(+) and EGFP-TAT(-), where TAT(+) and TAT(-) represent the original and the reversed TAT sequence, respectively. These four TAT-EGFP conjugates were incubated with HeLa and PC12 cells for in vitro study as well as injected intraperitoneally to mice for in vivo study. Flow cytometric results showed that four TAT-EGFP conjugates were able to traverse HeLa and PC12 cells with almost equal transduction efficiency. The in vivo study showed that the TAT-EGFP conjugates could be delivered into different organs of mice with different transduction capabilities. Bioinformatic analyses and CD spectroscopic data revealed that the TAT peptide has no defined secondary structure, and conjugating the TAT peptide to the EGFP cargo protein would not alter the native structure and the function of the EGFP protein. These results conclude that the sequence orientation, the spatial structure, and the relative location of the TAT peptide have much less effect on the TAT-mediated protein transduction. Thus, the TAT-fused conjugates could be constructed in more convenient and flexible formats for a wide range of biopharmaceutical applications. © 2011 John Wiley & Sons A/S.

  16. ExoLocator--an online view into genetic makeup of vertebrate proteins.

    Science.gov (United States)

    Khoo, Aik Aun; Ogrizek-Tomas, Mario; Bulovic, Ana; Korpar, Matija; Gürler, Ece; Slijepcevic, Ivan; Šikic, Mile; Mihalek, Ivana

    2014-01-01

    ExoLocator (http://exolocator.eopsf.org) collects in a single place information needed for comparative analysis of protein-coding exons from vertebrate species. The main source of data--the genomic sequences, and the existing exon and homology annotation--is the ENSEMBL database of completed vertebrate genomes. To these, ExoLocator adds the search for ostensibly missing exons in orthologous protein pairs across species, using an extensive computational pipeline to narrow down the search region for the candidate exons and find a suitable template in the other species, as well as state-of-the-art implementations of pairwise alignment algorithms. The resulting complements of exons are organized in a way currently unique to ExoLocator: multiple sequence alignments, both on the nucleotide and on the peptide levels, clearly indicating the exon boundaries. The alignments can be inspected in the web-embedded viewer, downloaded or used on the spot to produce an estimate of conservation within orthologous sets, or functional divergence across paralogues.

  17. Comparison of GLUT1, GLUT3, and GLUT4 mRNA and the subcellular distribution of their proteins in normal human muscle

    Science.gov (United States)

    Stuart, C. A.; Wen, G.; Gustafson, W. C.; Thompson, E. A.

    2000-01-01

    Basal, "insulin-independent" glucose uptake into skeletal muscle is provided by glucose transporters positioned at the plasma membrane. The relative amount of the three glucose transporters expressed in muscle has not been previously quantified. Using a combination of qualitative and quantitative ribonuclease protection assay (RPA) methods, we found in normal human muscle that GLUT1, GLUT3, and GLUT4 mRNA were expressed at 90 +/- 10, 46 +/- 4, and 156 +/- 12 copies/ng RNA, respectively. Muscle was fractionated by DNase digestion and differential sedimentation into membrane fractions enriched in plasma membranes (PM) or low-density microsomes (LDM). GLUT1 and GLUT4 proteins were distributed 57% to 67% in LDM, whereas GLUT3 protein was at least 88% in the PM-enriched fractions. These data suggest that basal glucose uptake into resting human muscle could be provided in part by each of these three isoforms.

  18. Yersinia pestis insecticidal-like toxin complex (Tc family proteins: characterization of expression, subcellular localization, and potential role in infection of the flea vector

    Directory of Open Access Journals (Sweden)

    Spinner Justin L

    2012-12-01

    Full Text Available Abstract Background Toxin complex (Tc family proteins were first identified as insecticidal toxins in Photorhabdus luminescens and have since been found in a wide range of bacteria. The genome of Yersinia pestis, the causative agent of bubonic plague, contains a locus that encodes the Tc protein homologues YitA, YitB, YitC, and YipA and YipB. Previous microarray data indicate that the Tc genes are highly upregulated by Y. pestis while in the flea vector; however, their role in the infection of fleas and pathogenesis in the mammalian host is unclear. Results We show that the Tc proteins YitA and YipA are highly produced by Y. pestis while in the flea but not during growth in brain heart infusion (BHI broth at the same temperature. Over-production of the LysR-type regulator YitR from an exogenous plasmid increased YitA and YipA synthesis in broth culture. The increase in production of YitA and YipA correlated with the yitR copy number and was temperature-dependent. Although highly synthesized in fleas, deletion of the Tc proteins did not alter survival of Y. pestis in the flea or prevent blockage of the proventriculus. Furthermore, YipA was found to undergo post-translational processing and YipA and YitA are localized to the outer membrane of Y. pestis. YitA was also detected by immunofluorescence microscopy on the surface of Y. pestis. Both YitA and YipA are produced maximally at low temperature but persist for several hours after transfer to 37°C. Conclusions Y. pestis Tc proteins are highly expressed in the flea but are not essential for Y. pestis to stably infect or produce a transmissible infection in the flea. However, YitA and YipA localize to the outer membrane and YitA is exposed on the surface, indicating that at least YitA is present on the surface when Y. pestis is transmitted into the mammalian host from the flea.

  19. Location, location, location

    NARCIS (Netherlands)

    Anderson, S.P.; Goeree, J.K.; Ramer, R.

    1997-01-01

    We analyze the canonical location-then-price duopoly game with general log- concave consumer densities. A unique pure-strategy equilibrium to the two-stage game exists if the density is not "too asymmetric" and not "too concave." These criteria are satisfied by many commonly used densities.

  20. A new location to split Cre recombinase for protein fragment complementation.

    Science.gov (United States)

    Rajaee, Maryam; Ow, David W

    2017-11-01

    We have previously described a recombinase-mediated gene stacking system in which the Cre recombinase is used to remove lox-site flanked DNA no longer needed after each round of Bxb1 integrase-mediated site-specific integration. The Cre recombinase can be conveniently introduced by hybridization with a cre-expressing plant. However, maintaining an efficient cre-expressing line over many generations can be a problem, as high production of this DNA-binding protein might interfere with normal chromosome activities. To counter this selection against high Cre activity, we considered a split-cre approach, in which Cre activity is reconstituted after separate parts of Cre are brought into the same genome by hybridization. To insure that the recombinase-mediated gene stacking system retains its freedom to operate, we tested for new locations to split Cre into complementing fragments. In this study, we describe testing four new locations for splitting the Cre recombinase for protein fragment complementation and show that the two fragments of Cre split between Lys244 and Asn245 can reconstitute activity that is comparable to that of wild-type Cre. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  1. In silico platform for predicting and initiating β-turns in a protein at desired locations.

    Science.gov (United States)

    Singh, Harinder; Singh, Sandeep; Raghava, Gajendra P S

    2015-05-01

    Numerous studies have been performed for analysis and prediction of β-turns in a protein. This study focuses on analyzing, predicting, and designing of β-turns to understand the preference of amino acids in β-turn formation. We analyzed around 20,000 PDB chains to understand the preference of residues or pair of residues at different positions in β-turns. Based on the results, a propensity-based method has been developed for predicting β-turns with an accuracy of 82%. We introduced a new approach entitled "Turn level prediction method," which predicts the complete β-turn rather than focusing on the residues in a β-turn. Finally, we developed BetaTPred3, a Random forest based method for predicting β-turns by utilizing various features of four residues present in β-turns. The BetaTPred3 achieved an accuracy of 79% with 0.51 MCC that is comparable or better than existing methods on BT426 dataset. Additionally, models were developed to predict β-turn types with better performance than other methods available in the literature. In order to improve the quality of prediction of turns, we developed prediction models on a large and latest dataset of 6376 nonredundant protein chains. Based on this study, a web server has been developed for prediction of β-turns and their types in proteins. This web server also predicts minimum number of mutations required to initiate or break a β-turn in a protein at specified location of a protein. © 2015 Wiley Periodicals, Inc.

  2. The Subcellular Localisation of the Human Papillomavirus (HPV 16 E7 Protein in Cervical Cancer Cells and Its Perturbation by RNA Aptamers

    Directory of Open Access Journals (Sweden)

    Özlem Cesur

    2015-06-01

    Full Text Available Human papillomavirus (HPV is the most common viral infection of the reproductive tract, affecting both men and women. High-risk oncogenic types are responsible for almost 90% of anogenital and oropharyngeal cancers including cervical cancer. Some of the HPV “early” genes, particularly E6 and E7, are known to act as oncogenes that promote tumour growth and malignant transformation. Most notably, HPV-16 E7 interacts with the tumour suppressor protein pRb, promoting its degradation, leading to cell cycle dysregulation in infected cells. We have previously shown that an RNA aptamer (termed A2 selectively binds to HPV16 E7 and is able to induce apoptosis in HPV16-transformed cervical carcinoma cell lines (SiHa through reduction of E7 levels. In this study, we investigated the effects of the A2 aptamer on E7 localisation in order to define its effects on E7 activity. We demonstrate for the first time that E7 localised to the plasma membrane. In addition, we show that A2 enhanced E7 localisation in the ER and that the A2-mediated reduction of E7 was not associated with proteasomal degradation. These data suggest that A2 perturbs normal E7 trafficking through promoting E7 ER retention.

  3. Malonyl-CoA decarboxylase (MCD) is differentially regulated in subcellular compartments by 5'AMP-activated protein kinase (AMPK). Studies using H9c2 cells overexpressing MCD and AMPK by adenoviral gene transfer technique.

    Science.gov (United States)

    Sambandam, Nandakumar; Steinmetz, Michael; Chu, Angel; Altarejos, Judith Y; Dyck, Jason R B; Lopaschuk, Gary D

    2004-07-01

    Malonyl-CoA, a potent inhibitor of carnitine pamitoyl transferase-I (CPT-I), plays a pivotal role in fuel selection in cardiac muscle. Malonyl-CoA decarboxylase (MCD) catalyzes the degradation of malonyl-CoA, removes a potent allosteric inhibition on CPT-I and thereby increases fatty acid oxidation in the heart. Although MCD has several Ser/Thr phosphorylation sites, whether it is regulated by AMP-activated protein kinase (AMPK) has been controversial. We therefore overexpressed MCD (Ad.MCD) and constitutively active AMPK (Ad.CA-AMPK) in H9c2 cells, using an adenoviral gene delivery approach in order to examine if MCD is regulated by AMPK. Cells infected with Ad.CA-AMPK demonstrated a fourfold increase in AMPK activity as compared with control cells expressing green fluorescent protein (Ad.GFP). MCD activity increased 40- to 50-fold in Ad.MCD + Ad.GFP cells when compared with Ad.GFP control. Co-expressing AMPK with MCD further augmented MCD expression and activity in Ad.MCD + Ad.CA-AMPK cells compared with the Ad.MCD + Ad.GFP control. Subcellular fractionation further revealed that 54.7 kDa isoform of MCD expression was significantly higher in cytosolic fractions of Ad.MCD + Ad.CA-AMPK cells than of the Ad.MCD +Ad.GFP control. However, the MCD activities in cytosolic fractions were not different between the two groups. Interestingly, in the mitochondrial fractions, MCD activity significantly increased in Ad.MCD + Ad.CA-AMPK cells when compared with Ad.MCD + Ad.GFP cells. Using phosphoserine and phosphothreonine antibodies, no phosphorylation of MCD by AMPK was observed. The increase in MCD activity in mitochondria-rich fractions of Ad.MCD + Ad.CA-AMPK cells was accompanied by an increase in the level of the 50.7 kDa isoform of MCD protein in the mitochondria. This differential regulation of MCD expression and activity in the mitochondria by AMPK may potentially regulate malonyl-CoA levels at sites nearby CPT-I on the mitochondria.

  4. Potassium-transporting proteins in skeletal muscle: cellular location and fiber-type differences

    DEFF Research Database (Denmark)

    Kristensen, Michael; Juel, Carsten

    2010-01-01

    Potassium (K+) displacement in skeletal muscle may be an important factor in the development of muscle fatigue during intense exercise. It has been shown in vitro that an increase in the extracellular K+ concentration ([K+]e) to values higher than approx. 10 mm significantly reduce force developm......Potassium (K+) displacement in skeletal muscle may be an important factor in the development of muscle fatigue during intense exercise. It has been shown in vitro that an increase in the extracellular K+ concentration ([K+]e) to values higher than approx. 10 mm significantly reduce force......, but is suggested primarily to participate in K+ release to the interstitium. Because there is restricted diffusion of K+ to the interstitium, K+ released to the T-tubules during AP propagation will be removed primarily by reuptake mediated by transport proteins located in the T-tubule membrane. The most important...

  5. EMILIN2 (Elastin microfibril interface located protein, potential modifier of thrombosis

    Directory of Open Access Journals (Sweden)

    Hoover-Plow Jane L

    2011-05-01

    Full Text Available Abstract Background Elastin microfibril interface located protein 2 (EMILIN2 is an extracellular glycoprotein associated with cardiovascular development. While other EMILIN proteins are reported to play a role in elastogenesis and coagulation, little is known about EMILIN2 function in the cardiovascular system. The objective of this study was to determine whether EMILIN2 could play a role in thrombosis. Results EMILIN2 mRNA was expressed in 8 wk old C57BL/6J mice in lung, heart, aorta and bone marrow, with the highest expression in bone marrow. In mouse cells, EMILIN2 mRNA expression in macrophages was higher than expression in endothelial cells and fibroblasts. EMILIN2 was identified with cells and extracellular matrix by immunohistochemistry in the carotid and aorta. After carotid ferric chloride injury, EMILIN2 was abundantly expressed in the thrombus and inhibition of EMILIN2 increased platelet de-aggregation after ADP-stimulated platelet aggregation. Conclusions These results suggest EMILIN2 could play a role in thrombosis as a constituent of the vessel wall and/or a component of the thrombus.

  6. Antibody Competition Reveals Surface Location of HPV L2 Minor Capsid Protein Residues 17–36

    Directory of Open Access Journals (Sweden)

    Stephanie M. Bywaters

    2017-11-01

    Full Text Available The currently available nonavalent human papillomavirus (HPV vaccine exploits the highly antigenic L1 major capsid protein to promote high-titer neutralizing antibodies, but is limited to the HPV types included in the vaccine since the responses are highly type-specific. The limited cross-protection offered by the L1 virus-like particle (VLP vaccine warrants further investigation into cross-protective L2 epitopes. The L2 proteins are yet to be fully characterized as to their precise placement in the virion. Adding to the difficulties in localizing L2, studies have suggested that L2 epitopes are not well exposed on the surface of the mature capsid prior to cellular engagement. Using a series of competition assays between previously mapped anti-L1 monoclonal antibodies (mAbs (H16.V5, H16.U4 and H16.7E and novel anti-L2 mAbs, we probed the capsid surface for the location of an L2 epitope (aa17–36. The previously characterized L1 epitopes together with our competition data is consistent with a proposed L2 epitope within the canyons of pentavalent capsomers.

  7. Antibody Competition Reveals Surface Location of HPV L2 Minor Capsid Protein Residues 17-36.

    Science.gov (United States)

    Bywaters, Stephanie M; Brendle, Sarah A; Tossi, Kerstin P; Biryukov, Jennifer; Meyers, Craig; Christensen, Neil D

    2017-11-10

    The currently available nonavalent human papillomavirus (HPV) vaccine exploits the highly antigenic L1 major capsid protein to promote high-titer neutralizing antibodies, but is limited to the HPV types included in the vaccine since the responses are highly type-specific. The limited cross-protection offered by the L1 virus-like particle (VLP) vaccine warrants further investigation into cross-protective L2 epitopes. The L2 proteins are yet to be fully characterized as to their precise placement in the virion. Adding to the difficulties in localizing L2, studies have suggested that L2 epitopes are not well exposed on the surface of the mature capsid prior to cellular engagement. Using a series of competition assays between previously mapped anti-L1 monoclonal antibodies (mAbs) (H16.V5, H16.U4 and H16.7E) and novel anti-L2 mAbs, we probed the capsid surface for the location of an L2 epitope (aa17-36). The previously characterized L1 epitopes together with our competition data is consistent with a proposed L2 epitope within the canyons of pentavalent capsomers.

  8. Imaging Subcellular Structures in the Living Zebrafish Embryo.

    Science.gov (United States)

    Engerer, Peter; Plucinska, Gabriela; Thong, Rachel; Trovò, Laura; Paquet, Dominik; Godinho, Leanne

    2016-04-02

    In vivo imaging provides unprecedented access to the dynamic behavior of cellular and subcellular structures in their natural context. Performing such imaging experiments in higher vertebrates such as mammals generally requires surgical access to the system under study. The optical accessibility of embryonic and larval zebrafish allows such invasive procedures to be circumvented and permits imaging in the intact organism. Indeed the zebrafish is now a well-established model to visualize dynamic cellular behaviors using in vivo microscopy in a wide range of developmental contexts from proliferation to migration and differentiation. A more recent development is the increasing use of zebrafish to study subcellular events including mitochondrial trafficking and centrosome dynamics. The relative ease with which these subcellular structures can be genetically labeled by fluorescent proteins and the use of light microscopy techniques to image them is transforming the zebrafish into an in vivo model of cell biology. Here we describe methods to generate genetic constructs that fluorescently label organelles, highlighting mitochondria and centrosomes as specific examples. We use the bipartite Gal4-UAS system in multiple configurations to restrict expression to specific cell-types and provide protocols to generate transiently expressing and stable transgenic fish. Finally, we provide guidelines for choosing light microscopy methods that are most suitable for imaging subcellular dynamics.

  9. Subcellular distribution of styrene oxide in rat liver

    International Nuclear Information System (INIS)

    Pacifici, G.M.; Cuoci, L.; Rane, A.

    1984-01-01

    The subcellular distribution of ( 3 H)-styrene-7,8-oxide was studied in the rat liver. The compound was added to liver homogenate to give a final concentration of 2 X 10(-5); 2 X 10(-4) and 2 X 10(-3) M. Subcellular fractions were obtained by differential centrifugation. Most of styrene oxide (59-88%) was associated with the cytosolic fraction. Less than 15 percent of the compound was retrieved in each of the nuclear, mitochondrial and microsomal fractions. A considerable percentage of radioactivity was found unextractable with the organic solvents, suggesting that styrene oxide reacted with the endogenous compounds. The intracellular distribution of this epoxide was also studied in the perfused rat liver. Comparable results with those previously described were obtained. The binding of styrene oxide to the cytosolic protein was investigated by equilibrium dialysis and ultrafiltration. Only a small percentage of the compound was bound to protein

  10. Quantitative Analysis of Subcellular Distribution of the SUMO Conjugation System by Confocal Microscopy Imaging.

    Science.gov (United States)

    Mas, Abraham; Amenós, Montse; Lois, L Maria

    2016-01-01

    Different studies point to an enrichment in SUMO conjugation in the cell nucleus, although non-nuclear SUMO targets also exist. In general, the study of subcellular localization of proteins is essential for understanding their function within a cell. Fluorescence microscopy is a powerful tool for studying subcellular protein partitioning in living cells, since fluorescent proteins can be fused to proteins of interest to determine their localization. Subcellular distribution of proteins can be influenced by binding to other biomolecules and by posttranslational modifications. Sometimes these changes affect only a portion of the protein pool or have a partial effect, and a quantitative evaluation of fluorescence images is required to identify protein redistribution among subcellular compartments. In order to obtain accurate data about the relative subcellular distribution of SUMO conjugation machinery members, and to identify the molecular determinants involved in their localization, we have applied quantitative confocal microscopy imaging. In this chapter, we will describe the fluorescent protein fusions used in these experiments, and how to measure, evaluate, and compare average fluorescence intensities in cellular compartments by image-based analysis. We show the distribution of some components of the Arabidopsis SUMOylation machinery in epidermal onion cells and how they change their distribution in the presence of interacting partners or even when its activity is affected.

  11. Protein P7 of the cystovirus φ6 is located at the three-fold axis of the unexpanded procapsid.

    Directory of Open Access Journals (Sweden)

    Garrett Katz

    Full Text Available The objective of this study was to determine the location of protein P7, the RNA packaging factor, in the procapsid of the φ6 cystovirus. A comparison of cryo-electron microscopy high-resolution single particle reconstructions of the φ6 complete unexpanded procapsid, the protein P2-minus procapsid (P2 is the RNA directed RNA-polymerase, and the P7-minus procapsid, show that prior to RNA packaging the P7 protein is located near the three-fold axis of symmetry. Difference maps highlight the precise position of P7 and demonstrate that in P7-minus particles the P2 proteins are less localized with reduced densities at the three-fold axes. We propose that P7 performs the mechanical function of stabilizing P2 on the inner protein P1 shell which ensures that entering viral single-stranded RNA is replicated.

  12. Subcellular distribution and chemical forms of cadmium in Phytolacca americana L

    Energy Technology Data Exchange (ETDEWEB)

    Fu Xiaoping; Dou Changming [Ministry of Agriculture Key Laboratory of Non-point Source Pollution Control, Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310029 (China); Chen Yingxu, E-mail: yingxu_chen@hotmail.com [Ministry of Agriculture Key Laboratory of Non-point Source Pollution Control, Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310029 (China); Chen Xincai; Shi Jiyan; Yu Mingge; Xu Jie [Ministry of Agriculture Key Laboratory of Non-point Source Pollution Control, Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310029 (China)

    2011-02-15

    Phytolacca americana L. (pokeweed) is a promising species for Cd phytoextraction with large biomass and fast growth rate. To further understand the mechanisms involved in Cd tolerance and detoxification, the present study investigated subcellular distribution and chemical forms of Cd in pokeweed. Subcellular fractionation of Cd-containing tissues indicated that both in root and leaves, the majority of the element was located in soluble fraction and cell walls. Meanwhile, Cd taken up by pokeweed existed in different chemical forms. Results showed that the greatest amount of Cd was found in the extraction of 80% ethanol in roots, followed by 1 M NaCl, d-H{sub 2}O and 2% HAc, while in leaves and stems, most of the Cd was extracted by 1 M NaCl, and the subdominant amount of Cd was extracted by 80% ethanol. It could be suggested that Cd compartmentation with organo-ligands in vacuole or integrated with pectates and proteins in cell wall might be responsible for the adaptation of pokeweed to Cd stress.

  13. Subcellular location and species specificity of pipecolate degradation

    International Nuclear Information System (INIS)

    Mihalik, S.J.; Rhead, W.J.

    1986-01-01

    Defects in pipecolic acid (PA) catabolism are characteristic of several inherited metabolic diseases including hyperpipecolic acidemia, Zellweger's Syndrome, neonatal-onset adrenoleukodystrophy, and infantile Refsum's disease. In the latter three diseases, peroxisomes are abnormal. The authors have studied the subcelluar distribution of the PA degradation to determine a mammalian model for the normal pathway. Crude light and heavy mitochondrial fractions (including lysosomes and peroxisomes) from kidney cortex or liver were separated on Percoll gradients. Individual fractions were then incubated at 37 0 C with 3H-2,3,4,5,6 L-PA. Using ion exchange chromatography, the production of 3H α-aminoadipic acid (AAA) and 3H-H2O were quantitated. AAA production paralleled the activity of the mitochondrial marker enzyme, glutamate dehydrogenase, in the rabbit, guinea pig, dog, pig, and sheep. 3H-AAA production ranged from 382 to 13,900 pmol/mg prot/h. Guinea pig kidney cortex exhibited highest specific activity. The mitochondrial enzyme was absent from human liver (n=3) and liver and kidney cortex from rat, mouse, and monkey. In these tissues, the activity followed the pattern of the peroxisomal core enzyme, urate oxidase

  14. Subcellular localization of pituitary enzymes

    Science.gov (United States)

    Smith, R. E.

    1970-01-01

    A cytochemical procedure is reported for identifying subcellular sites of enzymes hydrolyzing beta-naphthylamine substrates, and to study the sites of reaction product localization in cells of various tissues. Investigations using the substrate Leu 4-methoxy-8-naphthylamine, a capture with hexonium pararosaniline, and the final chelation of osmium have identified the hydrolyzing enzyme of rat liver cells; this enzyme localized on cell membranes with intense deposition in the areas of the parcanaliculi. The study of cells in the anterior pituitary of the rat showed the deposition of reaction product on cell membrane; and on the membranes of secretion granules contained within the cell. The deposition of reaction product on the cell membrane however showed no increase or decrease with changes in the physiological state of the gland and release of secretion granules from specific cells.

  15. Comparison of expressed human and mouse sodium/iodide sym-porters reveals differences in transport properties and subcellular localization

    Energy Technology Data Exchange (ETDEWEB)

    Dayem, M.; Basquin, C.; Navarro, V.; Carrier, P.; Marsault, R.; Lindenthal, S.; Pourcher, T. [Univ Nice Sophia Antipolis, Sch Med, CEA, DSV, iBEB, SBTN, TIRO, F-06107 Nice (France); Chang, P. [CNRS, UPMC Biol Dev, UMR 7009, F-06230 Villefranche Sur Mer (France); Huc, S.; Darrouzet, E. [CEA Valrho, DSV, iBEB, SBTN, F-30207 Bagnols Sur Ceze (France)

    2008-07-01

    The active transport of iodide from the blood stream into thyroid follicular cells is mediated by the Na{sup +}/I{sup -} sym-porter (NIS). We studied mouse NIS (mNIS) and found that it catalyzes iodide transport into transfected cells more efficiently than human NIS (hNIS). To further characterize this difference,we compared {sup 125}I, uptake in the transiently transfected human embryonic kidney (HEK) 293 cells. We found that the Vmax for mNIS was four times higher than that for hNIS, and that the iodide transport constant (Km) was 2-5-fold lower for hNIS than mNIS. We also performed immuno-cyto-localization studies and observed that the subcellular distribution of the two ortho-logs differed. While the mouse protein was predominantly found at the plasma membrane, its human ortho-log was intracellular in {approx} 40% of the expressing cells. Using cell surface protein-labeling assays, we found that the plasma membrane localization frequency of the mouse protein was only 2-5-fold higher than that of the human protein, and therefore cannot alone account for,x values. We reasoned that the difference in the obtained Vmax the observed difference could also be caused by a higher turnover number for iodide transport in the mouse protein. We then expressed and analyzed chimeric proteins. The data obtained with these constructs suggest that the iodide recognition site could be located in the region extending from the N-terminus to transmembrane domain 8, and that the region between transmembrane domain 5 and the C-terminus could play a role in the subcellular localization of the protein. (authors)

  16. Comparison of expressed human and mouse sodium/iodide sym-porters reveals differences in transport properties and subcellular localization

    International Nuclear Information System (INIS)

    Dayem, M.; Basquin, C.; Navarro, V.; Carrier, P.; Marsault, R.; Lindenthal, S.; Pourcher, T.; Chang, P.; Huc, S.; Darrouzet, E.

    2008-01-01

    The active transport of iodide from the blood stream into thyroid follicular cells is mediated by the Na + /I - sym-porter (NIS). We studied mouse NIS (mNIS) and found that it catalyzes iodide transport into transfected cells more efficiently than human NIS (hNIS). To further characterize this difference,we compared 125 I, uptake in the transiently transfected human embryonic kidney (HEK) 293 cells. We found that the Vmax for mNIS was four times higher than that for hNIS, and that the iodide transport constant (Km) was 2-5-fold lower for hNIS than mNIS. We also performed immuno-cyto-localization studies and observed that the subcellular distribution of the two ortho-logs differed. While the mouse protein was predominantly found at the plasma membrane, its human ortho-log was intracellular in ∼ 40% of the expressing cells. Using cell surface protein-labeling assays, we found that the plasma membrane localization frequency of the mouse protein was only 2-5-fold higher than that of the human protein, and therefore cannot alone account for,x values. We reasoned that the difference in the obtained Vmax the observed difference could also be caused by a higher turnover number for iodide transport in the mouse protein. We then expressed and analyzed chimeric proteins. The data obtained with these constructs suggest that the iodide recognition site could be located in the region extending from the N-terminus to transmembrane domain 8, and that the region between transmembrane domain 5 and the C-terminus could play a role in the subcellular localization of the protein. (authors)

  17. Monoterpene biosynthesis potential of plant subcellular compartments

    NARCIS (Netherlands)

    Dong, L.; Jongedijk, E.J.; Bouwmeester, H.J.; Krol, van der A.R.

    2016-01-01

    Subcellular monoterpene biosynthesis capacity based on local geranyl diphosphate (GDP) availability or locally boosted GDP production was determined for plastids, cytosol and mitochondria. A geraniol synthase (GES) was targeted to plastids, cytosol, or mitochondria. Transient expression in Nicotiana

  18. Optogenetic Tools for Subcellular Applications in Neuroscience.

    Science.gov (United States)

    Rost, Benjamin R; Schneider-Warme, Franziska; Schmitz, Dietmar; Hegemann, Peter

    2017-11-01

    The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic toolbox includes fluorescent sensors to visualize signaling events in living cells and optogenetic actuators enabling manipulation of numerous cellular activities. Most optogenetic tools are not targeted to specific subcellular compartments but are localized with limited discrimination throughout the cell. Therefore, optogenetic activation often does not reflect context-dependent effects of highly localized intracellular signaling events. Subcellular targeting is required to achieve more specific optogenetic readouts and photomanipulation. Here we first provide a detailed overview of the available optogenetic tools with a focus on optogenetic actuators. Second, we review established strategies for targeting these tools to specific subcellular compartments. Finally, we discuss useful tools and targeting strategies that are currently missing from the optogenetics repertoire and provide suggestions for novel subcellular optogenetic applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Location of RAD51-like protein during meiotic prophase in Eimeria tenella.

    Science.gov (United States)

    Del Cacho, Emilio; Gallego, Margarita; Pagés, Marc; Barbero, José Luís; Monteagudo, Luís; Sánchez-Acedo, Caridad

    2011-05-31

    This study focuses on reporting events in Eimeria tenella oocysts from early to late prophase I in terms of RAD51 protein in association with the synaptonemal complex formed between homologous chromosomes. The aim of the study was the sequential localization of RAD51 protein, which is involved in the repair of double-strand breaks (DSBs) on the eimerian chromosomes as they synapse and desynapse. Structural Maintenance of Chromosome protein SMC3, which plays a role in synaptonemal complex formation, was labeled to identify initiation and progress of chromosome synapsis and desynapsis in parallel with the appearance and disappearance of RAD51 foci. Antibodies directed against RAD51 and cohesin subunit SMC3 proteins were labeled with either fluorescence or colloidal gold to visualize RAD51 protein foci and synaptonemal complexes. RAD51 protein localization during prophase I was studied on meiotic chromosomes spreads obtained from oocysts at different points in time after the start of sporulation. The present findings showed that foci detected with the antibody directed against RAD51 protein first appeared at the pre-leptotene stage before homologous chromosomes began pairing. Subsequently, the foci were detected in association with the lateral elements at the precise sites where synapsis were in progress. These findings lead us to suggest that in E. tenella, homologous chromosome pairing was a DSB-dependent mechanism and reinforced the participation of RAD51 protein in meiotic homology search, alignment and pairing of chromosomes. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Ensemble Linear Neighborhood Propagation for Predicting Subchloroplast Localization of Multi-Location Proteins.

    Science.gov (United States)

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2016-12-02

    In the postgenomic era, the number of unreviewed protein sequences is remarkably larger and grows tremendously faster than that of reviewed ones. However, existing methods for protein subchloroplast localization often ignore the information from these unlabeled proteins. This paper proposes a multi-label predictor based on ensemble linear neighborhood propagation (LNP), namely, LNP-Chlo, which leverages hybrid sequence-based feature information from both labeled and unlabeled proteins for predicting localization of both single- and multi-label chloroplast proteins. Experimental results on a stringent benchmark dataset and a novel independent dataset suggest that LNP-Chlo performs at least 6% (absolute) better than state-of-the-art predictors. This paper also demonstrates that ensemble LNP significantly outperforms LNP based on individual features. For readers' convenience, the online Web server LNP-Chlo is freely available at http://bioinfo.eie.polyu.edu.hk/LNPChloServer/ .

  1. Predicting protein subnuclear location with optimized evidence-theoretic K-nearest classifier and pseudo amino acid composition

    International Nuclear Information System (INIS)

    Shen Hongbin; Chou Kuochen

    2005-01-01

    The nucleus is the brain of eukaryotic cells that guides the life processes of the cell by issuing key instructions. For in-depth understanding of the biochemical process of the nucleus, the knowledge of localization of nuclear proteins is very important. With the avalanche of protein sequences generated in the post-genomic era, it is highly desired to develop an automated method for fast annotating the subnuclear locations for numerous newly found nuclear protein sequences so as to be able to timely utilize them for basic research and drug discovery. In view of this, a novel approach is developed for predicting the protein subnuclear location. It is featured by introducing a powerful classifier, the optimized evidence-theoretic K-nearest classifier, and using the pseudo amino acid composition [K.C. Chou, PROTEINS: Structure, Function, and Genetics, 43 (2001) 246], which can incorporate a considerable amount of sequence-order effects, to represent protein samples. As a demonstration, identifications were performed for 370 nuclear proteins among the following 9 subnuclear locations: (1) Cajal body, (2) chromatin, (3) heterochromatin, (4) nuclear diffuse, (5) nuclear pore, (6) nuclear speckle, (7) nucleolus, (8) PcG body, and (9) PML body. The overall success rates thus obtained by both the re-substitution test and jackknife cross-validation test are significantly higher than those by existing classifiers on the same working dataset. It is anticipated that the powerful approach may also become a useful high throughput vehicle to bridge the huge gap occurring in the post-genomic era between the number of gene sequences in databases and the number of gene products that have been functionally characterized. The OET-KNN classifier will be available at www.pami.sjtu.edu.cn/people/hbshen

  2. The incorporation of labelled amino acids into the subcellular fractions of the rabbit brain

    International Nuclear Information System (INIS)

    Ogrodnik, W.

    1980-01-01

    Radioactive amino acids were injected into the fourth ventriculum of adult rabbits. After 3, 6 and 13 hours the animals were killed and tissue subcellular fractions were prepared from their brains. Nucleic acids were extracted and quantitatively determined from nucleic, myelin, mitochondrial, microsomal and cytoplasmic fractions. The radioactivity was determined in the protein and nucleic acid fractions. It was found out that the incorporation of radioactive amino acids increased in relation to time. In the analyzed subcellular fractions a very rapid incorporation of glutamic acid and leucine into cytoplasmic proteins was observed. The chromatographic analysis of the nucleic acids showed that radioactivity in the nucleic acid fractions depended on a radioactive protein contamination. Radioactive aminoacyl-tRNA was not found in the nucleic acid fractions, extracted from different subcellular fractions. (author)

  3. Subcellular localization of ammonium transporters in Dictyostelium discoideum

    Directory of Open Access Journals (Sweden)

    Davis Carter T

    2008-12-01

    Full Text Available Abstract Background With the exception of vertebrates, most organisms have plasma membrane associated ammonium transporters which primarily serve to import a source of nitrogen for nutritional purposes. Dictyostelium discoideum has three ammonium transporters, Amts A, B and C. Our present work used fluorescent fusion proteins to determine the cellular localization of the Amts and tested the hypothesis that the transporters mediate removal of ammonia generated endogenously from the elevated protein catabolism common to many protists. Results Using RFP and YFP fusion constructs driven by the actin 15 promoter, we found that the three ammonium transporters were localized on the plasma membrane and on the membranes of subcellular organelles. AmtA and AmtB were localized on the membranes of endolysosomes and phagosomes, with AmtB further localized on the membranes of contractile vacuoles. AmtC also was localized on subcellular organelles when it was stabilized by coexpression with either the AmtA or AmtB fusion transporter. The three ammonium transporters exported ammonia linearly with regard to time during the first 18 hours of the developmental program as revealed by reduced export in the null strains. The fluorescently tagged transporters rescued export when expressed in the null strains, and thus they were functional transporters. Conclusion Unlike ammonium transporters in most organisms, which import NH3/NH4+ as a nitrogen source, those of Dictyostelium export ammonia/ammonium as a waste product from extensive catabolism of exogenously derived and endogenous proteins. Localization on proteolytic organelles and on the neutral contractile vacuole suggests that Dictyostelium ammonium transporters may have unique subcellular functions and play a role in the maintenance of intracellular ammonium distribution. A lack of correlation between the null strain phenotypes and ammonia excretion properties of the ammonium transporters suggests that it is not

  4. Subcellular localization of an intracellular serine protease of 68 kDa in Leishmania (Leishmania amazonensis promastigotes

    Directory of Open Access Journals (Sweden)

    José Andrés Morgado-Díaz

    2005-07-01

    Full Text Available Here we report the subcellular localization of an intracellular serine protease of 68 kDa in axenic promastigotes of Leishmania (Leishmania amazonensis, using subcellular fractionation, enzymatic assays, immunoblotting, and immunocytochemistry. All fractions were evaluated by transmission electron microscopy and the serine protease activity was measured during the cell fractionation procedure using a-N-r-tosyl-L-arginine methyl ester (L-TAME as substrate, phenylmethylsulphone fluoride (PMSF and L-1-tosylamino-2-phenylethylchloromethylketone (TPCK as specific inhibitors. The enzymatic activity was detected mainly in a membranous vesicular fraction (6.5-fold enrichment relative to the whole homogenate, but also in a crude plasma membrane fraction (2.0-fold. Analysis by SDS-PAGE gelatin under reducing conditions demonstrated that the major proteolytic activity was found in a 68 kDa protein in all fractions studied. A protein with identical molecular weight was also recognized in immunoblots by a polyclonal antibody against serine protease (anti-SP, with higher immunoreactivity in the vesicular fraction. Electron microscopic immunolocalization using the same polyclonal antibody showed the enzyme present at the cell surface, as well as in cytoplasmic membranous compartments of the parasite. Our findings indicate that the internal location of this serine protease in L. amazonensis is mainly restricted to the membranes of intracellular compartments resembling endocytic/exocytic elements.

  5. Plasma Membrane-Located Purine Nucleotide Transport Proteins Are Key Components for Host Exploitation by Microsporidian Intracellular Parasites

    Science.gov (United States)

    Heinz, Eva; Hacker, Christian; Dean, Paul; Mifsud, John; Goldberg, Alina V.; Williams, Tom A.; Nakjang, Sirintra; Gregory, Alison; Hirt, Robert P.; Lucocq, John M.; Kunji, Edmund R. S.; Embley, T. Martin

    2014-01-01

    Microsporidia are obligate intracellular parasites of most animal groups including humans, but despite their significant economic and medical importance there are major gaps in our understanding of how they exploit infected host cells. We have investigated the evolution, cellular locations and substrate specificities of a family of nucleotide transport (NTT) proteins from Trachipleistophora hominis, a microsporidian isolated from an HIV/AIDS patient. Transport proteins are critical to microsporidian success because they compensate for the dramatic loss of metabolic pathways that is a hallmark of the group. Our data demonstrate that the use of plasma membrane-located nucleotide transport proteins (NTT) is a key strategy adopted by microsporidians to exploit host cells. Acquisition of an ancestral transporter gene at the base of the microsporidian radiation was followed by lineage-specific events of gene duplication, which in the case of T. hominis has generated four paralogous NTT transporters. All four T. hominis NTT proteins are located predominantly to the plasma membrane of replicating intracellular cells where they can mediate transport at the host-parasite interface. In contrast to published data for Encephalitozoon cuniculi, we found no evidence for the location for any of the T. hominis NTT transporters to its minimal mitochondria (mitosomes), consistent with lineage-specific differences in transporter and mitosome evolution. All of the T. hominis NTTs transported radiolabelled purine nucleotides (ATP, ADP, GTP and GDP) when expressed in Escherichia coli, but did not transport radiolabelled pyrimidine nucleotides. Genome analysis suggests that imported purine nucleotides could be used by T. hominis to make all of the critical purine-based building-blocks for DNA and RNA biosynthesis during parasite intracellular replication, as well as providing essential energy for parasite cellular metabolism and protein synthesis. PMID:25474405

  6. Plasma membrane-located purine nucleotide transport proteins are key components for host exploitation by microsporidian intracellular parasites.

    Directory of Open Access Journals (Sweden)

    Eva Heinz

    2014-12-01

    Full Text Available Microsporidia are obligate intracellular parasites of most animal groups including humans, but despite their significant economic and medical importance there are major gaps in our understanding of how they exploit infected host cells. We have investigated the evolution, cellular locations and substrate specificities of a family of nucleotide transport (NTT proteins from Trachipleistophora hominis, a microsporidian isolated from an HIV/AIDS patient. Transport proteins are critical to microsporidian success because they compensate for the dramatic loss of metabolic pathways that is a hallmark of the group. Our data demonstrate that the use of plasma membrane-located nucleotide transport proteins (NTT is a key strategy adopted by microsporidians to exploit host cells. Acquisition of an ancestral transporter gene at the base of the microsporidian radiation was followed by lineage-specific events of gene duplication, which in the case of T. hominis has generated four paralogous NTT transporters. All four T. hominis NTT proteins are located predominantly to the plasma membrane of replicating intracellular cells where they can mediate transport at the host-parasite interface. In contrast to published data for Encephalitozoon cuniculi, we found no evidence for the location for any of the T. hominis NTT transporters to its minimal mitochondria (mitosomes, consistent with lineage-specific differences in transporter and mitosome evolution. All of the T. hominis NTTs transported radiolabelled purine nucleotides (ATP, ADP, GTP and GDP when expressed in Escherichia coli, but did not transport radiolabelled pyrimidine nucleotides. Genome analysis suggests that imported purine nucleotides could be used by T. hominis to make all of the critical purine-based building-blocks for DNA and RNA biosynthesis during parasite intracellular replication, as well as providing essential energy for parasite cellular metabolism and protein synthesis.

  7. Effect of regional muscle location but not adiposity on mitochondrial biogenesis-regulating proteins

    DEFF Research Database (Denmark)

    Ponce-González, Jesús Gustavo; Ara, Ignacio; Larsen, Steen

    2016-01-01

    PURPOSE: The aim of this study was to determine if the expression of the mitochondrial biogenesis-regulating proteins SIRT1, SIRT3 and PGC-1alpha in human skeletal muscle is influenced by adiposity. METHOD: Twenty-nine male subjects were recruited into three groups: control (n = 10), obese (n = 10...

  8. Mechanism of Genome Interrogation: How CRISPR RNA-Guided Cas9 Proteins Locate Specific Targets on DNA.

    Science.gov (United States)

    Shvets, Alexey A; Kolomeisky, Anatoly B

    2017-10-03

    The ability to precisely edit and modify a genome opens endless opportunities to investigate fundamental properties of living systems as well as to advance various medical techniques and bioengineering applications. This possibility is now close to reality due to a recent discovery of the adaptive bacterial immune system, which is based on clustered regularly interspaced short palindromic repeats (CRISPR)-associated proteins (Cas) that utilize RNA to find and cut the double-stranded DNA molecules at specific locations. Here we develop a quantitative theoretical approach to analyze the mechanism of target search on DNA by CRISPR RNA-guided Cas9 proteins, which is followed by a selective cleavage of nucleic acids. It is based on a discrete-state stochastic model that takes into account the most relevant physical-chemical processes in the system. Using a method of first-passage processes, a full dynamic description of the target search is presented. It is found that the location of specific sites on DNA by CRISPR Cas9 proteins is governed by binding first to protospacer adjacent motif sequences on DNA, which is followed by reversible transitions into DNA interrogation states. In addition, the search dynamics is strongly influenced by the off-target cutting. Our theoretical calculations allow us to explain the experimental observations and to give experimentally testable predictions. Thus, the presented theoretical model clarifies some molecular aspects of the genome interrogation by CRISPR RNA-guided Cas9 proteins. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. ClubSub-P: Cluster-based subcellular localization prediction for Gram-negative bacteria and Archaea.

    Directory of Open Access Journals (Sweden)

    Nagarajan eParamasivam

    2011-11-01

    Full Text Available The subcellular localization of proteins provides important clues to their function in a cell. In our efforts to predict useful vaccine targets against Gram-negative bacteria, we noticed that misannotated start codons frequently lead to wrongly assigned subcellular localizations. This and other problems in subcellular localization prediction, such as the relatively high false positive and false negative rates of some tools, can be avoided by applying multiple prediction tools to groups of homologous proteins. Here we present ClubSub-P, an online database that combines existing subcellular localization prediction tools into a consensus pipeline from more than 600 proteomes of fully sequenced microorganisms. On top of the consensus prediction at the level of single sequences, the tool uses clusters of homologous proteins from Gram-negative bacteria and from Archaea to eliminate false positive and false negative predictions. ClubSub-P can assign the subcellular localization of proteins from Gram-negative bacteria and Archaea with high precision. The database is searchable, and can easily be expanded using either new bacterial genomes or new prediction tools as they become available. This will further improve the performance of the subcellular localization prediction, as well as the detection of misannotated start codons and other annotation errors. ClubSub-P is available online at http://toolkit.tuebingen.mpg.de/clubsubp/

  10. Efficient DNP NMR of Membrane Proteins: Sample Preparation Protocols, Sensitivity, and Radical Location

    Science.gov (United States)

    Liao, Shu Y.; Lee, Myungwoon; Wang, Tuo; Sergeyev, Ivan V.; Hong, Mei

    2016-01-01

    Although dynamic nuclear polarization (DNP) has dramatically enhanced solid-state NMR spectral sensitivities of many synthetic materials and some biological macromolecules, recent studies of membrane-protein DNP using exogenously doped paramagnetic radicals as polarizing agents have reported varied and sometimes surprisingly limited enhancement factors. This motivated us to carry out a systematic evaluation of sample preparation protocols for optimizing the sensitivity of DNP NMR spectra of membrane-bound peptides and proteins at cryogenic temperatures of ~110 K. We show that mixing the radical with the membrane by direct titration instead of centrifugation gives a significant boost to DNP enhancement. We quantify the relative sensitivity enhancement between AMUPol and TOTAPOL, two commonly used radicals, and between deuterated and protonated lipid membranes. AMUPol shows ~4 fold higher sensitivity enhancement than TOTAPOL, while deuterated lipid membrane does not give net higher sensitivity for the membrane peptides than protonated membrane. Overall, a ~100 fold enhancement between the microwave-on and microwave-off spectra can be achieved on lipid-rich membranes containing conformationally disordered peptides, and absolute sensitivity gains of 105–160 can be obtained between low-temperature DNP spectra and high-temperature non-DNP spectra. We also measured the paramagnetic relaxation enhancement of lipid signals by TOTAPOL and AMUPol, to determine the depths of these two radicals in the lipid bilayer. Our data indicate a bimodal distribution of both radicals, a surface-bound fraction and a membrane-bound fraction where the nitroxides lie at ~10 Å from the membrane surface. TOTAPOL appears to have a higher membrane-embedded fraction than AMUPol. These results should be useful for membrane-protein solid-state NMR studies under DNP conditions and provide insights into how biradicals interact with phospholipid membranes. PMID:26873390

  11. Efficient DNP NMR of membrane proteins: sample preparation protocols, sensitivity, and radical location

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Shu Y.; Lee, Myungwoon; Wang, Tuo [Massachusetts Institute of Technology, Department of Chemistry (United States); Sergeyev, Ivan V. [Bruker Biospin (United States); Hong, Mei, E-mail: meihong@mit.edu [Massachusetts Institute of Technology, Department of Chemistry (United States)

    2016-03-15

    Although dynamic nuclear polarization (DNP) has dramatically enhanced solid-state NMR spectral sensitivities of many synthetic materials and some biological macromolecules, recent studies of membrane-protein DNP using exogenously doped paramagnetic radicals as polarizing agents have reported varied and sometimes surprisingly limited enhancement factors. This motivated us to carry out a systematic evaluation of sample preparation protocols for optimizing the sensitivity of DNP NMR spectra of membrane-bound peptides and proteins at cryogenic temperatures of ~110 K. We show that mixing the radical with the membrane by direct titration instead of centrifugation gives a significant boost to DNP enhancement. We quantify the relative sensitivity enhancement between AMUPol and TOTAPOL, two commonly used radicals, and between deuterated and protonated lipid membranes. AMUPol shows ~fourfold higher sensitivity enhancement than TOTAPOL, while deuterated lipid membrane does not give net higher sensitivity for the membrane peptides than protonated membrane. Overall, a ~100 fold enhancement between the microwave-on and microwave-off spectra can be achieved on lipid-rich membranes containing conformationally disordered peptides, and absolute sensitivity gains of 105–160 can be obtained between low-temperature DNP spectra and high-temperature non-DNP spectra. We also measured the paramagnetic relaxation enhancement of lipid signals by TOTAPOL and AMUPol, to determine the depths of these two radicals in the lipid bilayer. Our data indicate a bimodal distribution of both radicals, a surface-bound fraction and a membrane-bound fraction where the nitroxides lie at ~10 Å from the membrane surface. TOTAPOL appears to have a higher membrane-embedded fraction than AMUPol. These results should be useful for membrane-protein solid-state NMR studies under DNP conditions and provide insights into how biradicals interact with phospholipid membranes.

  12. Locating binding poses in protein-ligand systems using reconnaissance metadynamics

    Science.gov (United States)

    Söderhjelm, Pär; Tribello, Gareth A.; Parrinello, Michele

    2012-01-01

    A molecular dynamics-based protocol is proposed for finding and scoring protein-ligand binding poses. This protocol uses the recently developed reconnaissance metadynamics method, which employs a self-learning algorithm to construct a bias that pushes the system away from the kinetic traps where it would otherwise remain. The exploration of phase space with this algorithm is shown to be roughly six to eight times faster than unbiased molecular dynamics and is only limited by the time taken to diffuse about the surface of the protein. We apply this method to the well-studied trypsin–benzamidine system and show that we are able to refind all the poses obtained from a reference EADock blind docking calculation. These poses can be scored based on the length of time the system remains trapped in the pose. Alternatively, one can perform dimensionality reduction on the output trajectory and obtain a map of phase space that can be used in more expensive free-energy calculations. PMID:22440749

  13. RNA2 of grapevine fanleaf virus: sequence analysis and coat protein cistron location.

    Science.gov (United States)

    Serghini, M A; Fuchs, M; Pinck, M; Reinbolt, J; Walter, B; Pinck, L

    1990-07-01

    The nucleotide sequence of the genomic RNA2 (3774 nucleotides) of grapevine fanleaf virus strain F13 was determined from overlapping cDNA clones and its genetic organization was deduced. Two rapid and efficient methods were used for cDNA cloning of the 5' region of RNA2. The complete sequence contained only one long open reading frame of 3555 nucleotides (1184 codons, 131K product). The analysis of the N-terminal sequence of purified coat protein (CP) and identification of its C-terminal residue have allowed the CP cistron to be precisely positioned within the polyprotein. The CP produced by proteolytic cleavage at the Arg/Gly site between residues 680 and 681 contains 504 amino acids (Mr 56019) and has hydrophobic properties. The Arg/Gly cleavage site deduced by N-terminal amino acid sequence analysis is the first for a nepovirus coat protein and for plant viruses expressing their genomic RNAs by polyprotein synthesis. Comparison of GFLV RNA2 with M RNA of cowpea mosaic comovirus and with RNA2 of two closely related nepoviruses, tomato black ring virus and Hungarian grapevine chrome mosaic virus, showed strong similarities among the 3' non-coding regions but less similarity among the 5' end non-coding sequences than reported among other nepovirus RNAs.

  14. Subcellular Localization of Cadmium in Chlorella vulgaris Beijerinck Strain Bt-09

    Directory of Open Access Journals (Sweden)

    P.B. Lintongan

    2004-06-01

    Full Text Available Growth response curves of Chlorella vulgaris Beijerinck strain Bt-09 to sublethal concentrations of cadmium were evaluated. The growth responses of this microalgal isolate was determined through analysis of chlorophyll a levels. Cadmium was effectively taken up by the cells as determined by Flame Atomic Absorption Spectrophotometry (F-AAS. Subcellular fractionation was undertaken to locate sites that accumulate cadmium.

  15. Location of and post-mortem changes in some cytoskeletal proteins in pork and cod muscle

    DEFF Research Database (Denmark)

    Morrison, E.H.; Bremner, Allan; Purslow, P.P.

    2000-01-01

    The cytoskeletal proteins actin, nebulin, spectrin, desmin, vinculin and talin were labelled immunohistochemically in sections of muscle from commercially available pigs and cod (Gadus morhua) taken pre-rigor and from samples stored for several days. Actin, nebulin and spectrin gave similar...... labelling patterns in both pork and cod muscle which remained the same in stored samples. Desmin was intensely labelled at the cell boundaries and within the body of the cells in both pork and cod in the initial and the stored samples. Vinculin was readily labelled in pork muscle but showed only diffuse...... labelling in fish. Labelling for talin in pork muscle was intense at the sarcolemma but was not present in samples stored for 4 days. In contrast, the label for talin was concentrated at the myotendinous junction of the cod muscle throughout the storage period. These are the first reports of the detection...

  16. The cellular and subcellular localization of zinc transporter 7 in the mouse spinal cord

    Science.gov (United States)

    The present work addresses the cellular and subcellular localization of the zinc transporter 7 (ZNT7, SLC30a7) protein and the distribution of zinc ions (Zn2+) in the mouse spinal cord. Our results indicated that the ZNT7 immunoreactive neurons were widely distributed in the Rexed’s laminae of the g...

  17. Subcellular Redox Targeting: Bridging in Vitro and in Vivo Chemical Biology.

    Science.gov (United States)

    Long, Marcus J C; Poganik, Jesse R; Ghosh, Souradyuti; Aye, Yimon

    2017-03-17

    Networks of redox sensor proteins within discrete microdomains regulate the flow of redox signaling. Yet, the inherent reactivity of redox signals complicates the study of specific redox events and pathways by traditional methods. Herein, we review designer chemistries capable of measuring flux and/or mimicking subcellular redox signaling at the cellular and organismal level. Such efforts have begun to decipher the logic underlying organelle-, site-, and target-specific redox signaling in vitro and in vivo. These data highlight chemical biology as a perfect gateway to interrogate how nature choreographs subcellular redox chemistry to drive precision redox biology.

  18. ATM protein is located on presynaptic vesicles and its deficit leads to failures in synaptic plasticity.

    Science.gov (United States)

    Vail, Graham; Cheng, Aifang; Han, Yu Ray; Zhao, Teng; Du, Shengwang; Loy, Michael M T; Herrup, Karl; Plummer, Mark R

    2016-07-01

    Ataxia telangiectasia is a multisystemic disorder that includes a devastating neurodegeneration phenotype. The ATM (ataxia-telangiectasia mutated) protein is well-known for its role in the DNA damage response, yet ATM is also found in association with cytoplasmic vesicular structures: endosomes and lysosomes, as well as neuronal synaptic vesicles. In keeping with this latter association, electrical stimulation of the Schaffer collateral pathway in hippocampal slices from ATM-deficient mice does not elicit normal long-term potentiation (LTP). The current study was undertaken to assess the nature of this deficit. Theta burst-induced LTP was reduced in Atm(-/-) animals, with the reduction most pronounced at burst stimuli that included 6 or greater trains. To assess whether the deficit was associated with a pre- or postsynaptic failure, we analyzed paired-pulse facilitation and found that it too was significantly reduced in Atm(-/-) mice. This indicates a deficit in presynaptic function. As further evidence that these synaptic effects of ATM deficiency were presynaptic, we used stochastic optical reconstruction microscopy. Three-dimensional reconstruction revealed that ATM is significantly more closely associated with Piccolo (a presynaptic marker) than with Homer1 (a postsynaptic marker). These results underline how, in addition to its nuclear functions, ATM plays an important functional role in the neuronal synapse where it participates in the regulation of presynaptic vesicle physiology. Copyright © 2016 the American Physiological Society.

  19. Subcellular localization of cadmium in hyperaccumulator Populus ...

    African Journals Online (AJOL)

    In this study, subcellular localization of cadmium in hyperaccumulator grey poplar (Populus × canescens) was investigated by the transmission electron microscopy (TEM) method. Young Populus × canescens were grown and hydroponic experiments were conducted under four Cd2+ concentrations (10, 30, 50, and 70 μM) ...

  20. The Mitochondrion-Located Protein OsB12D1 Enhances Flooding Tolerance during Seed Germination and Early Seedling Growth in Rice

    Directory of Open Access Journals (Sweden)

    Dongli He

    2014-07-01

    Full Text Available B12D belongs to a function unknown subgroup of the Balem (Barley aleurone and embryo proteins. In our previous work on rice seed germination, we identified a B12D-like protein encoded by LOC_Os7g41350 (named OsB12D1. OsB12D1 pertains to an ancient protein family with an amino acid sequence highly conserved from moss to angiosperms. Among the six OsB12Ds, OsB12D1 is one of the major transcripts and is primarily expressed in germinating seed and root. Bioinformatics analyses indicated that OsB12D1 is an anoxic or submergence resistance-related gene. RT-PCR results showed OsB12D1 is induced remarkably in the coleoptiles or roots by flooding during seed germination and early seedling growth. The OsB12D1-overexpressed rice seeds could protrude radicles in 8 cm deep water, further exhibiting significant flooding tolerance compared to the wild type. Moreover, this tolerance was not affected by the gibberellin biosynthesis inhibitor paclobutrazol. OsB12D1 was identified in the mitochondrion by subcellular localization analysis and possibly enhances electron transport through mediating Fe and oxygen availability under flooded conditions. This work indicated that OsB12D1 is a promising gene that can help to enhance rice seedling establishment in farming practices, especially for direct seeding.

  1. Estrogen levels regulate the subcellular distribution of phosphorylated Akt in hippocampal CA1 dendrites.

    Science.gov (United States)

    Znamensky, Vladimir; Akama, Keith T; McEwen, Bruce S; Milner, Teresa A

    2003-03-15

    In addition to genomic pathways, estrogens may regulate gene expression by activating specific signal transduction pathways, such as that involving phosphatidylinositol 3-kinase (PI3-K) and the subsequent phosphorylation of Akt (protein kinase B). The Akt pathway regulates various cellular events, including the initiation of protein synthesis. Our previous studies showed that synaptogenesis in hippocampal CA1 pyramidal cell dendritic spines is highest when brain estrogen levels are highest. To address the role of Akt in this process, the subcellular distribution of phosphorylated Akt immunoreactivity (pAkt-I) in the hippocampus of female rats across the estrous cycle and male rats was analyzed by light microscopy (LM) and electron microscopy (EM). By LM, the density of pAkt-I in stratum radiatum of CA1 was significantly higher in proestrus rats (or in estrogen-supplemented ovariectomized females) compared with diestrus, estrus, or male rats. By EM, pAkt-I was found throughout the shafts and in select spines of stratum radiatum dendrites. Quantitative ultrastructural analysis identifying pAkt-I with immunogold particles revealed that proestrus rats compared with diestrus, estrus, and male rats contained significantly higher pAkt-I associated with (1) dendritic spines (both cytoplasm and plasmalemma), (2) spine apparati located within 0.1 microm of dendritic spine bases, (3) endoplasmic reticula and polyribosomes in the cytoplasm of dendritic shafts, and (4) the plasmalemma of dendritic shafts. These findings suggest that estrogens may regulate spine formation in CA1 pyramidal neurons via Akt-mediated signaling events.

  2. Sequence Variation in Rhoptry Neck Protein 10 Gene among Toxoplasma gondii Isolates from Different Hosts and Geographical Locations.

    Science.gov (United States)

    Zhao, Yu; Zhou, Donghui; Chen, Jia; Sun, Xiaolin

    2017-01-01

    Toxoplasma gondii, as a eukaryotic parasite of the phylum Apicomplexa, can infect almost all the warm-blooded animals and humans, causing toxoplasmosis. Rhoptry neck proteins (RONs) play a key role in the invasion process of T. gondii and are potential vaccine candidate molecules against toxoplasmosis. The present study examined sequence variation in the rhoptry neck protein 10 (TgRON10) gene among 10 T. gondii isolates from different hosts and geographical locations from Lanzhou province during 2014, and compared with the corresponding sequences of strains ME49 and VEG obtained from the ToxoDB database, using polymerase chain reaction (PCR) amplification, sequence analysis, and phylogenetic reconstruction by Bayesian inference (BI) and maximum parsimony (MP). Analysis of all the 12 TgRON10 genomic and cDNA sequences revealed 7 exons and 6 introns in the TgRON10 gDNA. The complete genomic sequence of the TgRON10 gene ranged from 4759 bp to 4763 bp, and sequence variation was 0-0.6% among the 12 T. gondii isolates, indicating a low sequence variation in TgRON10 gene. Phylogenetic analysis of TgRON10 sequences showed that the cluster of the 12 T. gondii isolates was not completely consistent with their respective genotypes. TgRON10 gene is not a suitable genetic marker for the differentiation of T. gondii isolates from different hosts and geographical locations, but may represent a potential vaccine candidate against toxoplasmosis, worth further studies.

  3. Nuclear location of tumor suppressor protein maspin inhibits proliferation of breast cancer cells without affecting proliferation of normal epithelial cells

    International Nuclear Information System (INIS)

    Machowska, Magdalena; Wachowicz, Katarzyna; Sopel, Mirosław; Rzepecki, Ryszard

    2014-01-01

    Maspin, which is classified as a tumor suppressor protein, is downregulated in many types of cancer. Several studies have suggested potential anti-proliferative activity of maspin as well as sensitizing activity of maspin for therapeutic cytotoxic agents in breast cancer tissue culture and animal models. All of the experimental data gathered so far have been based on studies with maspin localized cytoplasmically, while maspin in breast cancer tumor cells may be located in the cytoplasm, nucleus or both. In this study, the effect of maspin cytoplasmic and nuclear location and expression level on breast cancer proliferation and patient survival was studied. Tissue sections from 166 patients with invasive ductal breast cancer were stained by immunohistochemistry for maspin and Ki-67 protein. The localization and expression level of maspin were correlated with estimated patient overall survival and percent of Ki-67-positive cells. In further studies, we created constructs for transient transfection of maspin into breast cancer cells with targeted cytoplasmic and nuclear location. We analyzed the effect of maspin location in normal epithelial cell line MCF10A and three breast cancer cell lines - MCF-7, MDA-MB-231 and SKBR-3 - by immunofluorescence and proliferation assay. We observed a strong positive correlation between moderate and high nuclear maspin level and survival of patients. Moreover, a statistically significant negative relationship was observed between nuclear maspin and Ki-67 expression in patients with invasive ductal breast cancer. Spearman’s correlation analysis showed a negative correlation between level of maspin localized in nucleus and percentage of Ki-67 positive cells. No such differences were observed in cells with cytoplasmic maspin. We found a strong correlation between nuclear maspin and loss of Ki-67 protein in breast cancer cell lines, while there was no effect in normal epithelial cells from breast. The anti-proliferative effect of nuclear

  4. Nuclear location of tumor suppressor protein maspin inhibits proliferation of breast cancer cells without affecting proliferation of normal epithelial cells

    Science.gov (United States)

    2014-01-01

    Background Maspin, which is classified as a tumor suppressor protein, is downregulated in many types of cancer. Several studies have suggested potential anti-proliferative activity of maspin as well as sensitizing activity of maspin for therapeutic cytotoxic agents in breast cancer tissue culture and animal models. All of the experimental data gathered so far have been based on studies with maspin localized cytoplasmically, while maspin in breast cancer tumor cells may be located in the cytoplasm, nucleus or both. In this study, the effect of maspin cytoplasmic and nuclear location and expression level on breast cancer proliferation and patient survival was studied. Methods Tissue sections from 166 patients with invasive ductal breast cancer were stained by immunohistochemistry for maspin and Ki-67 protein. The localization and expression level of maspin were correlated with estimated patient overall survival and percent of Ki-67-positive cells. In further studies, we created constructs for transient transfection of maspin into breast cancer cells with targeted cytoplasmic and nuclear location. We analyzed the effect of maspin location in normal epithelial cell line MCF10A and three breast cancer cell lines - MCF-7, MDA-MB-231 and SKBR-3 - by immunofluorescence and proliferation assay. Results We observed a strong positive correlation between moderate and high nuclear maspin level and survival of patients. Moreover, a statistically significant negative relationship was observed between nuclear maspin and Ki-67 expression in patients with invasive ductal breast cancer. Spearman’s correlation analysis showed a negative correlation between level of maspin localized in nucleus and percentage of Ki-67 positive cells. No such differences were observed in cells with cytoplasmic maspin. We found a strong correlation between nuclear maspin and loss of Ki-67 protein in breast cancer cell lines, while there was no effect in normal epithelial cells from breast. The anti

  5. Protein Sorting Prediction

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2017-01-01

    and drawbacks of each of these approaches is described through many examples of methods that predict secretion, integration into membranes, or subcellular locations in general. The aim of this chapter is to provide a user-level introduction to the field with a minimum of computational theory.......Many computational methods are available for predicting protein sorting in bacteria. When comparing them, it is important to know that they can be grouped into three fundamentally different approaches: signal-based, global-property-based and homology-based prediction. In this chapter, the strengths...

  6. Subcellular proteomic characterization of the high-temperature stress response of the cyanobacterium Spirulina platensis

    Directory of Open Access Journals (Sweden)

    Cheevadhanarak Supapon

    2009-09-01

    Full Text Available Abstract The present study examined the changes in protein expression in Spirulina platensis upon exposure to high temperature, with the changes in expression analyzed at the subcellular level. In addition, the transcriptional expression level of some differentially expressed proteins, the expression pattern clustering, and the protein-protein interaction network were analyzed. The results obtained from differential expression analysis revealed up-regulation of proteins involved in two-component response systems, DNA damage and repair systems, molecular chaperones, known stress-related proteins, and proteins involved in other biological processes, such as capsule formation and unsaturated fatty acid biosynthesis. The clustering of all differentially expressed proteins in the three cellular compartments showed: (i the majority of the proteins in all fractions were sustained tolerance proteins, suggesting the roles of these proteins in the tolerance to high temperature stress, (ii the level of resistance proteins in the photosynthetic membrane was 2-fold higher than the level in two other fractions, correlating with the rapid inactivation of the photosynthetic system in response to high temperature. Subcellular communication among the three cellular compartments via protein-protein interactions was clearly shown by the PPI network analysis. Furthermore, this analysis also showed a connection between temperature stress and nitrogen and ammonia assimilation.

  7. Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein-Coupled Bile Acid Receptors

    DEFF Research Database (Denmark)

    Brighton, Cheryl A.; Rievaj, Juraj; Kuhre, Rune E.

    2015-01-01

    Bile acids are well-recognized stimuli of glucagon-like peptide-1 (GLP-1) secretion. This action has been attributed to activation of the G protein-coupled bile acid receptor GPBAR1 (TGR5), although other potential bile acid sensors include the nuclear farnesoid receptor and the apical sodium......-coupled bile acid transporter ASBT. The aim of this study was to identify pathways important for GLP-1 release and to determine whether bile acids target their receptors on GLP-1-secreting L-cells from the apical or basolateral compartment. Using transgenic mice expressing fluorescent sensors specifically in L...... to either TLCA or TDCA. We conclude that the action of bile acids on GLP-1 secretion is predominantly mediated by GPBAR1 located on the basolateral L-cell membrane, suggesting that stimulation of gut hormone secretion may include postabsorptive mechanisms....

  8. A novel human gene encoding a G-protein-coupled receptor (GPR15) is located on chromosome 3

    Energy Technology Data Exchange (ETDEWEB)

    Heiber, M.; Marchese, A.; O`Dowd, B.F. [Univ. of Toronto, Ontario (Canada)] [and others

    1996-03-05

    We used sequence similarities among G-protein-coupled receptor genes to discover a novel receptor gene. Using primers based on conserved regions of the opioid-related receptors, we isolated a PCR product that was used to locate the full-length coding region of a novel human receptor gene, which we have named GPR15. A comparison of the amino acid sequence of the receptor gene, which we have named GPR15. A comparison of the amino acid sequence of the receptor encoded by GPR15 with other receptors revealed that it shared sequence identity with the angiotensin II AT1 and AT2 receptors, the interleukin 8b receptor, and the orphan receptors GPR1 and AGTL1. GPR15 was mapped to human chromosome 3q11.2-q13.1. 12 refs., 2 figs.

  9. Sequence Variation in Rhoptry Neck Protein 10 Gene among Toxoplasma gondii Isolates from Different Hosts and Geographical Locations

    Directory of Open Access Journals (Sweden)

    Yu ZHAO

    2017-09-01

    Full Text Available Background: Toxoplasma gondii, as a eukaryotic parasite of the phylum Apicomplexa, can infect almost all the warm-blooded animals and humans, causing toxoplasmosis. Rhoptry neck proteins (RONs play a key role in the invasion process of T. gondii and are potential vaccine candidate molecules against toxoplasmosis.Methods: The present study examined sequence variation in the rhoptry neck protein 10 (TgRON10 gene among 10 T. gondii isolates from different hosts and geographical locations from Lanzhou province during 2014, and compared with the corresponding sequences of strains ME49 and VEG obtained from the ToxoDB database, using polymerase chain reaction (PCR amplification, sequence analysis, and phylogenetic reconstruction by Bayesian inference (BI and maximum parsimony (MP. Results: Analysis of all the 12 TgRON10 genomic and cDNA sequences revealed 7 exons and 6 introns in the TgRON10 gDNA. The complete genomic sequence of the TgRON10 gene ranged from 4759 bp to 4763 bp, and sequence variation was 0-0.6% among the 12 T. gondii isolates, indicating a low sequence variation in TgRON10 gene. Phylogenetic analysis of TgRON10 sequences showed that the cluster of the 12 T. gondii isolates was not completely consistent with their respective genotypes.Conclusion: TgRON10 gene is not a suitable genetic marker for the differentiation of T. gondii isolates from different hosts and geographical locations, but may represent a potential vaccine candidate against toxoplasmosis, worth further studies.

  10. Schistosoma japonicum UDP-glucose 4-epimerase protein is located on the tegument and induces moderate protection against challenge infection.

    Directory of Open Access Journals (Sweden)

    Pingping Liu

    Full Text Available Schistosomiasis is an important global public health problem, as millions of people are at risk of acquiring this infection. An ideal method for sustainable control of schistosomiasis is using a vaccine alone or in combination with drugs. In the present study, we cloned the SjGALE gene and generated the expression product in E. coli. The expression level of SjGALE during different developmental stages of S. japonicum was evaluated by real-time RT-PCR and western blotting. Immunolocalization indicated that the protein was mainly located on the tegument of the parasite. Infection of rSjGALE-immunized mice demonstrated a 34% and 49% reduction of the mean worm burden and liver egg burden, respectively, in two independent experiments, indicating immune protection. The liver egg count from each female adult worm was significantly reduced by 63% in the two trials. The cytokine profile and IgG isotype analysis demonstrated the induction of a Th1 immune profile in response to immunization with this protein, further suggesting protection against infection. In conclusion, these findings indicated that SjGALE is a potential vaccine against S. japonicum.

  11. Subcellular distribution of apolipoprotein E along the lipoprotein synthetic pathway of rat liver

    International Nuclear Information System (INIS)

    Cole, T.G.; Stockhausen, D.C.

    1986-01-01

    Apolipoprotein E (apoE) is synthesized by the liver and is secreted as a component of VLDL. To define the intracellular locations of apoE, liver from 10 nonfasted male rats were removed and subcellular organelles prepared by differential pelleting through sucrose gradients. Mass of apoE was measured by radioimmunoassay. Approximately 10% of total hepatic apoE was recovered in rough endoplasmic reticulum (RER), smooth endoplasmic reticulum (SER) and Golgi fractions. Concentrations of apoE (ng/mg protein) were: homogenate, 302 +/- 59; RER, 653 +/- 251; SER, 1250 +/- 471; Golgi, 11,044 +/- 4291. Total apoE content of each reaction (μg/organelle) was: homogenate (whole liver), 517 +/- 103; RER, 15 +/- 3; SER, 9 +/- 3; Golgi, 28 +/- 8. These data indicate that along the putative pathway of lipoprotein synthesis (RER->SER->Golgi), apoE concentration increases in each successive organelle and that flux of apoE is apparently most rapid through SER. Furthermore, the majority of apoE in the rat liver is apparently not directly associated with the lipoprotein synthetic pathway and may be associated with internalized lipoproteins or may be involved in non-lipoprotein related functions

  12. Molecular basis of the specific subcellular localization of the C2-like domain of 5-lipoxygenase.

    Science.gov (United States)

    Kulkarni, Shilpa; Das, Sudipto; Funk, Colin D; Murray, Diana; Cho, Wonhwa

    2002-04-12

    The activation of 5-lipoxygenase (5-LO) involves its calcium-dependent translocation to the nuclear envelope, where it catalyzes the two-step transformation of arachidonic acid into leukotriene A(4), leading to the synthesis of various leukotrienes. To understand the mechanism by which 5-LO is specifically targeted to the nuclear envelope, we studied the membrane binding properties of the amino-terminal domain of 5-LO, which has been proposed to have a C2 domain-like structure. The model building, electrostatic potential calculation, and in vitro membrane binding studies of the isolated C2-like domain of 5-LO and selected mutants show that this Ca(2+)-dependent domain selectively binds zwitterionic phosphatidylcholine, which is conferred by tryptophan residues (Trp(13), Trp(75), and Trp(102)) located in the putative Ca(2+)-binding loops. The spatiotemporal dynamics of the enhanced green fluorescence protein-tagged C2-like domain of 5-LO and mutants in living cells also show that the phosphatidylcholine selectivity of the C2-like domain accounts for the specific targeting of 5-LO to the nuclear envelope. Together, these results show that the C2-like domain of 5-LO is a genuine Ca(2+)-dependent membrane-targeting domain and that the subcellular localization of the domain is governed in large part by its membrane binding properties.

  13. Subcellular distribution and chemical forms of thorium in Brassica juncea var. foliosa.

    Science.gov (United States)

    Zhou, Sai; Kai, Hailu; Zha, Zhongyong; Fang, Zhendong; Wang, Dingna; Du, Liang; Zhang, Dong; Feng, Xiaojie; Jin, Yongdong; Xia, Chuanqin

    2016-06-01

    Brassica juncea var. foliosa (B. juncea var. foliosa) is a promising species for thorium (Th) phytoextraction due to its large biomass, fast growth rate and high tolerance toward Th. To further understand the mechanisms of Th tolerance, the present study investigated the subcellular distribution and chemical forms of Th found in B. juncea var. foliosa Our results indicated that in both roots and leaves, Th contents in different parts of the cells follow the order of cell wall > membranes and soluble fraction > organelles. In particular, Transmission Electron Microscope (TEM) analysis showed that Th was abundantly located in cell walls of the roots. Additionally, when plants were exposed to different concentrations of Th, we have found that Th existed in B. juncea var. foliosa with different chemical forms. Much of the Th extracted by 2% acetic acid (HAc), 1 M NaCl and HCl in roots with the percentage distribution varied from 47.2% to 62.5%, while in leaves, most of the Th was in the form of residue and the subdominant amount of Th was extracted by HCl, followed by 2% HAc. This suggested that Th compartmentation in cytosol and integration with phosphate or proteins in cell wall might be responsible for the tolerance of B. juncea var. foliosa to the stress of Th. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Subcellular localization of hepatitis E virus (HEV) replicase

    International Nuclear Information System (INIS)

    Rehman, Shagufta; Kapur, Neeraj; Durgapal, Hemlata; Panda, Subrat Kumar

    2008-01-01

    Hepatitis E virus (HEV) is a hepatotropic virus with a single sense-strand RNA genome of ∼ 7.2 kb in length. Details of the intracellular site of HEV replication can pave further understanding of HEV biology. In-frame fusion construct of functionally active replicase-enhanced green fluorescent protein (EGFP) gene was made in eukaryotic expression vector. The functionality of replicase-EGFP fusion protein was established by its ability to synthesize negative-strand viral RNA in vivo, by strand-specific anchored RT-PCR and molecular beacon binding. Subcellular co-localization was carried out using organelle specific fluorophores and by immuno-electron microscopy. Fluorescence Resonance Energy Transfer (FRET) demonstrated the interaction of this protein with the 3' end of HEV genome. The results show localization of replicase on the endoplasmic reticulum membranes. The protein regions responsible for membrane localization was predicted and identified by use of deletion mutants. Endoplasmic reticulum was identified as the site of replicase localization and possible site of replication

  15. Subcellular interactions of dietary cadmium, copper and zinc in rainbow trout (Oncorhynchus mykiss)

    International Nuclear Information System (INIS)

    Kamunde, Collins; MacPhail, Ruth

    2011-01-01

    Highlights: Interactions of Cu, Cd and Zn were studied at the subcellular level in rainbow trout. Metals accumulated in the liver were predominantly metabolically active. Cd, Cu and Zn exhibited both competitive and cooperative interactions. The metal–metal interactions altered subcellular metals partitioning. - Abstract: Interactions of Cu, Cd and Zn were studied at the subcellular level in juvenile rainbow trout (Oncorhynchus mykiss) fed diets containing (μg/g) 500 Cu, 1000 Zn and 500 Cd singly and as a ternary mixture for 28 days. Livers were harvested and submitted to differential centrifugation to isolate components of metabolically active metal pool (MAP: heat-denaturable proteins (HDP), organelles, nuclei) and metabolically detoxified metal pool (MDP: heat stable proteins (HSP), NaOH-resistant granules). Results indicated that Cd accumulation was enhanced in all the subcellular compartments, albeit at different time points, in fish exposed to the metals mixture relative to those exposed to Cd alone, whereas Cu alone exposure increased Cd partitioning. Exposure to the metals mixture reduced (HDP) and enhanced (HSP, nuclei and granules) Cu accumulation while exposure to Zn alone enhanced Cu concentration in all the fractions analyzed without altering proportional distribution in MAP and MDP. Although subcellular Zn accumulation was less pronounced than that of either Cu or Cd, concentrations of Zn were enhanced in HDP, nuclei and granules from fish exposed to the metals mixture relative to those exposed to Zn alone. Cadmium alone exposure mobilized Zn and Cu from the nuclei and increased Zn accumulation in organelles and Cu in granules, while Cu alone exposure stimulated Zn accumulation in HSP, HDP and organelles. Interestingly, Cd alone exposure increased the partitioning of the three metals in MDP indicative of enhanced detoxification. Generally the accumulated metals were predominantly metabolically active: Cd, 67–83%; Cu, 68–79% and Zn, 60–76

  16. Subcellular interactions of dietary cadmium, copper and zinc in rainbow trout (Oncorhynchus mykiss)

    Energy Technology Data Exchange (ETDEWEB)

    Kamunde, Collins, E-mail: ckamunde@upei.ca [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3 (Canada); MacPhail, Ruth [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3 (Canada)

    2011-10-15

    Highlights: Interactions of Cu, Cd and Zn were studied at the subcellular level in rainbow trout. Metals accumulated in the liver were predominantly metabolically active. Cd, Cu and Zn exhibited both competitive and cooperative interactions. The metal-metal interactions altered subcellular metals partitioning. - Abstract: Interactions of Cu, Cd and Zn were studied at the subcellular level in juvenile rainbow trout (Oncorhynchus mykiss) fed diets containing ({mu}g/g) 500 Cu, 1000 Zn and 500 Cd singly and as a ternary mixture for 28 days. Livers were harvested and submitted to differential centrifugation to isolate components of metabolically active metal pool (MAP: heat-denaturable proteins (HDP), organelles, nuclei) and metabolically detoxified metal pool (MDP: heat stable proteins (HSP), NaOH-resistant granules). Results indicated that Cd accumulation was enhanced in all the subcellular compartments, albeit at different time points, in fish exposed to the metals mixture relative to those exposed to Cd alone, whereas Cu alone exposure increased Cd partitioning. Exposure to the metals mixture reduced (HDP) and enhanced (HSP, nuclei and granules) Cu accumulation while exposure to Zn alone enhanced Cu concentration in all the fractions analyzed without altering proportional distribution in MAP and MDP. Although subcellular Zn accumulation was less pronounced than that of either Cu or Cd, concentrations of Zn were enhanced in HDP, nuclei and granules from fish exposed to the metals mixture relative to those exposed to Zn alone. Cadmium alone exposure mobilized Zn and Cu from the nuclei and increased Zn accumulation in organelles and Cu in granules, while Cu alone exposure stimulated Zn accumulation in HSP, HDP and organelles. Interestingly, Cd alone exposure increased the partitioning of the three metals in MDP indicative of enhanced detoxification. Generally the accumulated metals were predominantly metabolically active: Cd, 67-83%; Cu, 68-79% and Zn, 60-76%. Taken

  17. Analysis of the subcellular localization of the human histone methyltransferase SETDB1

    Energy Technology Data Exchange (ETDEWEB)

    Tachibana, Keisuke, E-mail: nya@phs.osaka-u.ac.jp [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Gotoh, Eiko; Kawamata, Natsuko [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ishimoto, Kenji [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Laboratory for System Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Uchihara, Yoshie [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Iwanari, Hiroko [Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Sugiyama, Akira; Kawamura, Takeshi [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo 113-0032 (Japan); Mochizuki, Yasuhiro [Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Tanaka, Toshiya [Laboratory for System Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Sakai, Juro [Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Hamakubo, Takao [Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Kodama, Tatsuhiko [Laboratory for System Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); and others

    2015-10-02

    SET domain, bifurcated 1 (SETDB1) is a histone methyltransferase that methylates lysine 9 on histone H3. Although it is important to know the localization of proteins to elucidate their physiological function, little is known of the subcellular localization of human SETDB1. In the present study, to investigate the subcellular localization of hSETDB1, we established a human cell line constitutively expressing enhanced green fluorescent protein fused to hSETDB1. We then generated a monoclonal antibody against the hSETDB1 protein. Expression of both exogenous and endogenous hSETDB1 was observed mainly in the cytoplasm of various human cell lines. Combined treatment with the nuclear export inhibitor leptomycin B and the proteasome inhibitor MG132 led to the accumulation of hSETDB1 in the nucleus. These findings suggest that hSETDB1, localized in the nucleus, might undergo degradation by the proteasome and be exported to the cytosol, resulting in its detection mainly in the cytosol. - Highlights: • Endogenous human SETDB1 was localized mainly in the cytoplasm. • Combined treatment with LMB and MG132 led to accumulation of human SETDB1 in the nucleus. • HeLa cells expressing EFGP-hSETDB1 are useful for subcellular localization analyses.

  18. Analysis of the subcellular localization of the human histone methyltransferase SETDB1

    International Nuclear Information System (INIS)

    Tachibana, Keisuke; Gotoh, Eiko; Kawamata, Natsuko; Ishimoto, Kenji; Uchihara, Yoshie; Iwanari, Hiroko; Sugiyama, Akira; Kawamura, Takeshi; Mochizuki, Yasuhiro; Tanaka, Toshiya; Sakai, Juro; Hamakubo, Takao; Kodama, Tatsuhiko

    2015-01-01

    SET domain, bifurcated 1 (SETDB1) is a histone methyltransferase that methylates lysine 9 on histone H3. Although it is important to know the localization of proteins to elucidate their physiological function, little is known of the subcellular localization of human SETDB1. In the present study, to investigate the subcellular localization of hSETDB1, we established a human cell line constitutively expressing enhanced green fluorescent protein fused to hSETDB1. We then generated a monoclonal antibody against the hSETDB1 protein. Expression of both exogenous and endogenous hSETDB1 was observed mainly in the cytoplasm of various human cell lines. Combined treatment with the nuclear export inhibitor leptomycin B and the proteasome inhibitor MG132 led to the accumulation of hSETDB1 in the nucleus. These findings suggest that hSETDB1, localized in the nucleus, might undergo degradation by the proteasome and be exported to the cytosol, resulting in its detection mainly in the cytosol. - Highlights: • Endogenous human SETDB1 was localized mainly in the cytoplasm. • Combined treatment with LMB and MG132 led to accumulation of human SETDB1 in the nucleus. • HeLa cells expressing EFGP-hSETDB1 are useful for subcellular localization analyses.

  19. Spatio-temporal manipulation of small GTPase activity at subcellular level and on timescale of seconds in living cells.

    Science.gov (United States)

    DeRose, Robert; Pohlmeyer, Christopher; Umeda, Nobuhiro; Ueno, Tasuku; Nagano, Tetsuo; Kuo, Scot; Inoue, Takanari

    2012-03-09

    Dynamic regulation of the Rho family of small guanosine triphosphatases (GTPases) with great spatiotemporal precision is essential for various cellular functions and events(1, 2). Their spatiotemporally dynamic nature has been revealed by visualization of their activity and localization in real time(3). In order to gain deeper understanding of their roles in diverse cellular functions at the molecular level, the next step should be perturbation of protein activities at a precise subcellular location and timing. To achieve this goal, we have developed a method for light-induced, spatio-temporally controlled activation of small GTPases by combining two techniques: (1) rapamycin-induced FKBP-FRB heterodimerization and (2) a photo-caging method of rapamycin. With the use of rapamycin-mediated FKBP-FRB heterodimerization, we have developed a method for rapidly inducible activation or inactivation of small GTPases including Rac(4), Cdc42(4), RhoA(4) and Ras(5), in which rapamycin induces translocation of FKBP-fused GTPases, or their activators, to the plasma membrane where FRB is anchored. For coupling with this heterodimerization system, we have also developed a photo-caging system of rapamycin analogs. A photo-caged compound is a small molecule whose activity is suppressed with a photocleavable protecting group known as a caging group. To suppress heterodimerization activity completely, we designed a caged rapamycin that is tethered to a macromolecule such that the resulting large complex cannot cross the plasma membrane, leading to virtually no background activity as a chemical dimerizer inside cells(6). Figure 1 illustrates a scheme of our system. With the combination of these two systems, we locally recruited a Rac activator to the plasma membrane on a timescale of seconds and achieved light-induced Rac activation at the subcellular level(6).

  20. Studies on proinsulin and proglucagon biosynthesis and conversion at the subcellular level: I. Fractionation procedure and characterization of the subcellular fractions

    Science.gov (United States)

    Noe, BD; Baste, CA; Bauer, GE

    1977-01-01

    Anglerfish islets were homogenized in 0.25 M sucrose and separated into seven separate subcellular fractions by differential and discontinuous density gradient centrifugation. The objective was to isolate microsomes and secretory granules in a highly purified state. The fractions were characterized by electron microscopy and chemical analyses. Each fraction was assayed for its content of protein, RNA, DNA, immunoreactive insulin (IRI), and immunoreactive glucagon (IRG). Ultrastructural examination showed that two of the seven subcellular fractions contain primarily mitochondria, and that two others consist almost exclusively of secretory granules. A fifth fraction contains rough and smooth microsomal vesicles. The remaining two fractions are the cell supernate and the nuclei and cell debris. The content of DNA and RNA in all fractions is consistent with the observed ultrastructure. More than 82 percent of the total cellular IRI and 89(percent) of the total cellular IRG are found in the fractions of secretory granules. The combined fractions of secretory granules and microsomes consistently yield >93 percent of the total IRG. These results indicate that the fractionation procedure employed yields fractions of microsomes and secretory granules that contain nearly all the immunoassayable insulin and glucagons found in whole islet tissue. These fractions are thus considered suitable for study of proinsulin and proglucagon biosynthesis and their metabolic conversion at the subcellular level. PMID:328517

  1. Copper and zinc contamination in oysters: subcellular distribution and detoxification.

    Science.gov (United States)

    Wang, Wen-Xiong; Yang, Yubo; Guo, Xiaoyu; He, Mei; Guo, Feng; Ke, Caihuan

    2011-08-01

    Metal pollution levels in estuarine and coastal environments have been widely reported, but few documented reports exist of severe contamination in specific environments. Here, we report on a metal-contaminated estuary in Fujian Province, China, in which blue oysters (Crassostrea hongkongensis) and green oysters (Crassostrea angulata) were discovered to be contaminated with Cu and other metals. Extraordinarily high metal concentrations were found in the oysters collected from the estuary. Comparison with historical data suggests that the estuary has recently been contaminated with Cr, Cu, Ni, and Zn. Metal concentrations in blue oysters were as high as 1.4 and 2.4% of whole-body tissue dry wt for Cu and Zn, respectively. Cellular debris was the main subcellular fraction binding the metals, but metal-rich granules were important for Cr, Ni, and Pb. With increasing Cu accumulation, its partitioning into the cytosolic proteins decreased. In contrast, metallothionein-like proteins increased their importance in binding with Zn as tissue concentrations of Zn increased. In the most severely contaminated oysters, only a negligible fraction of their Cu and Zn was bound with the metal-sensitive fraction, which may explain the survival of oysters in such contaminated environments. Copyright © 2011 SETAC.

  2. Subcellular localization of class I histone deacetylases in the developing Xenopus tectum

    Directory of Open Access Journals (Sweden)

    Xia eGuo

    2016-01-01

    Full Text Available Histone deacetylases (HDACs are thought to localize in the nucleus to regulate gene transcription and play pivotal roles in neurogenesis, apoptosis and plasticity. However, the subcellular distribution of class I HDACs in the developing brain remains unclear. Here, we show that HDAC1 and HDAC2 are located in both the mitochondria and the nucleus in the Xenopus laevis stage 34 tectum and are mainly restricted to the nucleus following further brain development. HDAC3 is widely present in the mitochondria, nucleus and cytoplasm during early tectal development and is mainly distributed in the nucleus in stage 45 tectum. In contrast, HDAC8 is broadly located in the mitochondria, nucleus and cytoplasm during tectal development. These data demonstrate that HDAC1, HDAC2 and HDAC3 are transiently localized in the mitochondria and that the subcellular distribution of class I HDACs in the Xenopus tectum is heterogeneous. Furthermore, we observed that spherical mitochondria accumulate in the cytoplasm at earlier stages, whereas elongated mitochondria are evenly distributed in the tectum at later stages. The activity of histone acetylation (H4K12 remains low in mitochondria during tectal development. Pharmacological blockades of HDACs using a broad spectrum HDAC inhibitor of Trichostatin A (TSA or specific class I HDAC inhibitors of MS-275 and MGCD0103 decrease the number of mitochondria in the tectum at stage 34. These findings highlight a link between the subcellular distribution of class I HDACs and mitochondrial dynamics in the developing optic tectum of Xenopus laevis.

  3. Subcellular boron and fluorine distributions with SIMS ion microscopy in BNCT and cancer research

    Energy Technology Data Exchange (ETDEWEB)

    Subhash Chandra

    2008-05-30

    The development of a secondary ion mass spectrometry (SIMS) based technique of Ion Microscopy in boron neutron capture therapy (BNCT) was the main goal of this project, so that one can study the subcellular location of boron-10 atoms and their partitioning between the normal and cancerous tissue. This information is fundamental for the screening of boronated drugs appropriate for neutron capture therapy of cancer. Our studies at Cornell concentrated mainly on studies of glioblastoma multiforme (GBM). The early years of the grant were dedicated to the development of cryogenic methods and correlative microscopic approaches so that a reliable subcellular analysis of boron-10 atoms can be made with SIMS. In later years SIMS was applied to animal models and human tissues of GBM for studying the efficacy of potential boronated agents in BNCT. Under this grant the SIMS program at Cornell attained a new level of excellence and collaborative SIMS studies were published with leading BNCT researchers in the U.S.

  4. Subcellular boron and fluorine distributions with SIMS ion microscopy in BNCT and cancer research

    International Nuclear Information System (INIS)

    Subhash, Chandra

    2008-01-01

    The development of a secondary ion mass spectrometry (SIMS) based technique of Ion Microscopy in boron neutron capture therapy (BNCT) was the main goal of this project, so that one can study the subcellular location of boron-10 atoms and their partitioning between the normal and cancerous tissue. This information is fundamental for the screening of boronated drugs appropriate for neutron capture therapy of cancer. Our studies at Cornell concentrated mainly on studies of glioblastoma multiforme (GBM). The early years of the grant were dedicated to the development of cryogenic methods and correlative microscopic approaches so that a reliable subcellular analysis of boron-10 atoms can be made with SIMS. In later years SIMS was applied to animal models and human tissues of GBM for studying the efficacy of potential boronated agents in BNCT. Under this grant the SIMS program at Cornell attained a new level of excellence and collaborative SIMS studies were published with leading BNCT researchers in the U.S.

  5. Subcellular distribution of glycogen and decreased tetanic Ca2+ in fatigued single intact mouse muscle fibres

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Cheng, Arthur J; Ørtenblad, Niels

    2014-01-01

    In skeletal muscle fibres, glycogen has been shown to be stored at different subcellular locations: (i) between the myofibrils (intermyofibrillar); (ii) within the myofibrils (intramyofibrillar); and (iii) subsarcolemmal. Of these, intramyofibrillar glycogen has been implied as a critical regulator...... of sarcoplasmic reticulum Ca(2+) release. The aim of the present study was to test directly how the decrease in cytoplasmic free Ca(2+) ([Ca(2+)]i) during repeated tetanic contractions relates to the subcellular glycogen distribution. Single fibres of mouse flexor digitorum brevis muscles were fatigued with 70 Hz...... in tetanic [Ca(2+)]i, and hence force, is accompanied by major reductions in inter- and intramyofibrillar glycogen. The stronger correlation between decreased tetanic [Ca(2+)]i and reduced intramyofibrillar glycogen implies that sarcoplasmic reticulum Ca(2+) release critically depends on energy supply from...

  6. Parasites modify sub-cellular partitioning of metals in the gut of fish

    Energy Technology Data Exchange (ETDEWEB)

    Oyoo-Okoth, Elijah, E-mail: elijaoyoo2009@gmail.com [Division of Environmental Health, School of Environmental Studies, Moi University, P.O. Box 3900, Eldoret (Kenya); Department of Aquatic Ecology and Ecotoxicology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 9424/1090 GE (Netherlands); Admiraal, Wim [Department of Aquatic Ecology and Ecotoxicology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 9424/1090 GE (Netherlands); Osano, Odipo [Division of Environmental Health, School of Environmental Studies, Moi University, P.O. Box 3900, Eldoret (Kenya); Kraak, Michiel H.S. [Department of Aquatic Ecology and Ecotoxicology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 9424/1090 GE (Netherlands); Gichuki, John; Ogwai, Caleb [Kenya Marine and Fisheries Research Institute, P.O. Box 1881, Kisumu (Kenya)

    2012-01-15

    Infestation of fish by parasites may influence metal accumulation patterns in the host. However, the subcellular mechanisms of these processes have rarely been studied. Therefore, this study determined how a cyprinid fish (Rastrineobola argentea) partitioned four metals (Cd, Cr, Zn and Cu) in the subcellular fractions of the gut in presence of an endoparasite (Ligula intestinalis). The fish were sampled along four sites in Lake Victoria, Kenya differing in metal contamination. Accumulation of Cd, Cr and Zn was higher in the whole body and in the gut of parasitized fish compared to non-parasitized fish, while Cu was depleted in parasitized fish. Generally, for both non-parasitized and parasitized fish, Cd, Cr and Zn partitioned in the cytosolic fractions and Cu in the particulate fraction. Metal concentrations in organelles within the particulate fractions of the non-parasitized fish were statistically similar except for Cd in the lysosome, while in the parasitized fish, Cd, Cr and Zn were accumulated more by the lysosome and microsomes. In the cytosolic fractions, the non-parasitized fish accumulated Cd, Cr and Zn in the heat stable proteins (HSP), while in the parasitized fish the metals were accumulated in the heat denatured proteins (HDP). On the contrary, Cu accumulated in the HSP in parasitized fish. The present study revealed specific binding of metals to potentially sensitive sub-cellular fractions in fish in the presence of parasites, suggesting interference with metal detoxification, and potentially affecting the health status of fish hosts in Lake Victoria.

  7. Bioaccumulation and subcellular partitioning of zinc in rainbow trout (Oncorhynchus mykiss): Cross-talk between waterborne and dietary uptake

    International Nuclear Information System (INIS)

    Sappal, Ravinder; Burka, John; Dawson, Susan; Kamunde, Collins

    2009-01-01

    Zinc homeostasis was studied at the tissue and gill subcellular levels in rainbow trout (Oncorhynchus mykiss) following waterborne and dietary exposures, singly and in combination. Juvenile rainbow trout were exposed to 150 or 600 μg l -1 waterborne Zn, 1500 or 4500 μg g -1 dietary Zn, and a combination of 150 μg l -1 waterborne and 1500 μg g -1 dietary Zn for 40 days. Accumulation of Zn in tissues and gill subcellular fractions was measured. At the tissue level, the carcass acted as the main Zn depot containing 84-90% of whole body Zn burden whereas the gill held 4-6%. At the subcellular level, the majority of gill Zn was bioavailable with the estimated metabolically active pool being 81-90%. Interestingly, the nuclei-cellular debris fraction bound the highest amount (40%) of the gill Zn burden. There was low partitioning of Zn into the detoxified pool (10-19%) suggesting that sequestration and chelation are not major mechanisms of cellular Zn homeostasis in rainbow trout. Further, the subcellular partitioning of Zn did not conform to the spill-over model of metal toxicity because Zn binding was indiscriminate irrespective of exposure concentration and duration. The contribution of the branchial and gastrointestinal uptake pathways to Zn accumulation depended on the tissue. Specifically, in plasma, blood cells, and gill, uptake from water was dominant whereas both pathways appeared to contribute equally to Zn accumulation in the carcass. Subcellularly, additive uptake from the two pathways was observed in the heat-stable proteins (HSP) fraction. Toxicologically, Zn exposure caused minimal adverse effects manifested by a transitory inhibition of protein synthesis in gills in the waterborne exposure. Overall, subcellular fractionation appears to have value in the quest for a better understanding of Zn homeostasis and interactions between branchial and gastrointestinal uptake pathways

  8. Bioaccumulation and subcellular partitioning of zinc in rainbow trout (Oncorhynchus mykiss): Cross-talk between waterborne and dietary uptake

    Energy Technology Data Exchange (ETDEWEB)

    Sappal, Ravinder; Burka, John; Dawson, Susan [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3 (Canada); Kamunde, Collins [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3 (Canada)], E-mail: ckamunde@upei.ca

    2009-03-09

    Zinc homeostasis was studied at the tissue and gill subcellular levels in rainbow trout (Oncorhynchus mykiss) following waterborne and dietary exposures, singly and in combination. Juvenile rainbow trout were exposed to 150 or 600 {mu}g l{sup -1} waterborne Zn, 1500 or 4500 {mu}g g{sup -1} dietary Zn, and a combination of 150 {mu}g l{sup -1} waterborne and 1500 {mu}g g{sup -1} dietary Zn for 40 days. Accumulation of Zn in tissues and gill subcellular fractions was measured. At the tissue level, the carcass acted as the main Zn depot containing 84-90% of whole body Zn burden whereas the gill held 4-6%. At the subcellular level, the majority of gill Zn was bioavailable with the estimated metabolically active pool being 81-90%. Interestingly, the nuclei-cellular debris fraction bound the highest amount (40%) of the gill Zn burden. There was low partitioning of Zn into the detoxified pool (10-19%) suggesting that sequestration and chelation are not major mechanisms of cellular Zn homeostasis in rainbow trout. Further, the subcellular partitioning of Zn did not conform to the spill-over model of metal toxicity because Zn binding was indiscriminate irrespective of exposure concentration and duration. The contribution of the branchial and gastrointestinal uptake pathways to Zn accumulation depended on the tissue. Specifically, in plasma, blood cells, and gill, uptake from water was dominant whereas both pathways appeared to contribute equally to Zn accumulation in the carcass. Subcellularly, additive uptake from the two pathways was observed in the heat-stable proteins (HSP) fraction. Toxicologically, Zn exposure caused minimal adverse effects manifested by a transitory inhibition of protein synthesis in gills in the waterborne exposure. Overall, subcellular fractionation appears to have value in the quest for a better understanding of Zn homeostasis and interactions between branchial and gastrointestinal uptake pathways.

  9. Dynamic changes to survivin subcellular localization are initiated by DNA damage

    Directory of Open Access Journals (Sweden)

    Maritess Gay Asumen

    2010-07-01

    Full Text Available Maritess Gay Asumen1, Tochukwu V Ifeacho2, Luke Cockerham3, Christina Pfandl4, Nathan R Wall31Touro University’s College of Osteopathic Medicine, Vallejo, CA, USA; 2University of Southern California, Los Angeles, CA, USA; 3Center for Health Disparities Research and Molecular Medicine, Loma Linda University, CA, USA; 4Green Mountain Antibodies, Burlington, VT, USAAbstract: Subcellular distribution of the apoptosis inhibitor survivin and its ability to relocalize as a result of cell cycle phase or therapeutic insult has led to the hypothesis that these subcellular pools may coincide with different survivin functions. The PIK kinases (ATM, ATR and DNA-PK phosphorylate a variety of effector substrates that propagate DNA damage signals, resulting in various biological outputs. Here we demonstrate that subcellular repartitioning of survivin in MCF-7 cells as a result of UV light-mediated DNA damage is dependent upon DNA damage-sensing proteins as treatment with the pan PIK kinase inhibitor wortmannin repartitioned survivin in the mitochondria and diminished it from the cytosol and nucleus. Mitochondrial redistribution of survivin, such as was recorded after wortmannin treatment, occurred in cells lacking any one of the three DNA damage sensing protein kinases: DNA-PK, ATM or ATR. However, failed survivin redistribution from the mitochondria in response to low-dose UV occurred only in the cells lacking ATM, implying that ATM may be the primary kinase involved in this process. Taken together, this data implicates survivian’s subcellular distribution is a dynamic physiological process that appears responsive to UV light- initiated DNA damage and that its distribution may be responsible for its multifunctionality.Keywords: survivin, PIK kinases, ATM, ATR, DNA-PK

  10. Accumulation, subcellular distribution and toxicity of inorganic mercury and methylmercury in marine phytoplankton

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yun [Division of Life Science, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong); Wang Wenxiong, E-mail: wwang@ust.hk [Division of Life Science, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong)

    2011-10-15

    We examined the accumulation, subcellular distribution, and toxicity of Hg(II) and MeHg in three marine phytoplankton (the diatom Thalassiosira pseudonana, the green alga Chlorella autotrophica, and the flagellate Isochrysis galbana). For MeHg, the inter-species toxic difference could be best interpreted by the total cellular or intracellular accumulation. For Hg(II), both I. galbana and T. pseudonana exhibited similar sensitivity, but they each accumulated a different level of Hg(II). A higher percentage of Hg(II) was bound to the cellular debris fraction in T. pseudonana than in I. galbana, implying that the cellular debris may play an important role in Hg(II) detoxification. Furthermore, heat-stable proteins were a major binding pool for MeHg, while the cellular debris was an important binding pool for Hg(II). Elucidating the different subcellular fates of Hg(II) and MeHg may help us understand their toxicity in marine phytoplankton at the bottom of aquatic food chains. - Highlights: > The inter-species toxic difference of methylmercury in marine phytoplankton can be explained by its total cellular or intracellular accumulation. > The inter-species toxic difference of inorganic mercury in marine phytoplankton can be explained by its subcellular distribution. > Heat-stable protein was a major binding pool for MeHg, while the cellular debris was an important binding pool for Hg(II). - The inter-species difference in methylmercury and inorganic mercury toxicity in phytoplankton can be explained by cellular accumulation and subcellular distribution.

  11. Accumulation, subcellular distribution and toxicity of inorganic mercury and methylmercury in marine phytoplankton

    International Nuclear Information System (INIS)

    Wu Yun; Wang Wenxiong

    2011-01-01

    We examined the accumulation, subcellular distribution, and toxicity of Hg(II) and MeHg in three marine phytoplankton (the diatom Thalassiosira pseudonana, the green alga Chlorella autotrophica, and the flagellate Isochrysis galbana). For MeHg, the inter-species toxic difference could be best interpreted by the total cellular or intracellular accumulation. For Hg(II), both I. galbana and T. pseudonana exhibited similar sensitivity, but they each accumulated a different level of Hg(II). A higher percentage of Hg(II) was bound to the cellular debris fraction in T. pseudonana than in I. galbana, implying that the cellular debris may play an important role in Hg(II) detoxification. Furthermore, heat-stable proteins were a major binding pool for MeHg, while the cellular debris was an important binding pool for Hg(II). Elucidating the different subcellular fates of Hg(II) and MeHg may help us understand their toxicity in marine phytoplankton at the bottom of aquatic food chains. - Highlights: → The inter-species toxic difference of methylmercury in marine phytoplankton can be explained by its total cellular or intracellular accumulation. → The inter-species toxic difference of inorganic mercury in marine phytoplankton can be explained by its subcellular distribution. → Heat-stable protein was a major binding pool for MeHg, while the cellular debris was an important binding pool for Hg(II). - The inter-species difference in methylmercury and inorganic mercury toxicity in phytoplankton can be explained by cellular accumulation and subcellular distribution.

  12. Conserved epitope on several human vitamin K-dependent proteins: location of the antigenic site and influence of metal ions on antibody binding

    International Nuclear Information System (INIS)

    Church, W.R.; Messier, T.; Howard, P.R.; Amiral, J.; Meyer, D.; Mann, K.G.

    1988-01-01

    A murine monoclonal antibody (designated H-11) produced by injecting mice with purified human protein C was found to bind several human vitamin K-dependent proteins. Using a solid-phase competitive radioimmunoassay with antibody immobilized onto microtiter plates, binding of 125 I-labeled protein C to the antibody was inhibited by increasing amounts of protein C, prothrombin, and Factors X and VII over a concentration range of 1 x 10 -8 to 1 x 10 -6 M. Chemical treatment of prothrombin with a variety of agents did not destroy the antigenic site recognized by the antibody as measured by immunoblotting of prothrombin or prothrombin derivative immobilized onto nitrocellulose. Immunoblotting of purified vitamin K-dependent polypeptides with the monoclonal antibody following sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrophoretic transfer to nitrocellulose indicated that the antigenic site was found on the light chains of protein C and Factor X. The exact location of the antigenic determinant for antibody H-11 was established using synthetic peptides. Comparison of protein sequences of bovine and human vitamin K-dependent proteins suggests that the sequence Phe-Leu-Glu-Glu-Xaa-Arg/Lys is required for antibody binding. Increasing concentrations of Ca 2+ , Mg 2+ , or Mn 2+ partially inhibited binding of 125 I-protein C to the antibody in a solid-phase assay system with half-maximal binding observed at divalent metal ion concentrations of 2, 4, and 0.6 mM, respectively. The antigenic site thus recognized by monoclonal antibody H-11 is located at the amino-terminal region in the highly conserved γ-carboxyglutamic acid-containing domains of several, but not all, vitamin K-dependent proteins

  13. Subcellular site and nature of intracellular cadmium in plants

    International Nuclear Information System (INIS)

    Wagner, G.J.

    1979-01-01

    The mechanisms underlying heavy metal accumulation, toxicity, and tolerance in higher plants are poorly understood. Since subcellular processes are undoubtedly involved in all these phenomena, it is of interest to study the extent, subcellular site and nature of intracellularly accumulated cadmium in higher plants. Whole plants supplied 109 CdCl 2 or 112 CdSO 4 accumulated Cd into roots and aerial tissues. Preparation of protoplasts from aerial tissues followed by subcellular fractionation of the protoplasts to obtain intact vacuoles, chloroplasts and cytosol revealed the presence of Cd in the cytosol but not in vacuoles or chloroplasts. No evidence was obtained for the production of volatile Cd complexes in tobacco

  14. Subcellular distribution and chemical forms of thorium in Brassica juncea var. foliosa

    International Nuclear Information System (INIS)

    Zhou, Sai; Kai, Hailu; Zha, Zhongyong; Fang, Zhendong; Wang, Dingna; Du, Liang; Zhang, Dong; Feng, Xiaojie; Jin, Yongdong; Xia, Chuanqin

    2016-01-01

    Brassica juncea var. foliosa (B. juncea var. foliosa) is a promising species for thorium (Th) phytoextraction due to its large biomass, fast growth rate and high tolerance toward Th. To further understand the mechanisms of Th tolerance, the present study investigated the subcellular distribution and chemical forms of Th found in B. juncea var. foliosa Our results indicated that in both roots and leaves, Th contents in different parts of the cells follow the order of cell wall > membranes and soluble fraction > organelles. In particular, Transmission Electron Microscope (TEM) analysis showed that Th was abundantly located in cell walls of the roots. Additionally, when plants were exposed to different concentrations of Th, we have found that Th existed in B. juncea var. foliosa with different chemical forms. Much of the Th extracted by 2% acetic acid (HAc), 1 M NaCl and HCl in roots with the percentage distribution varied from 47.2% to 62.5%, while in leaves, most of the Th was in the form of residue and the subdominant amount of Th was extracted by HCl, followed by 2% HAc. This suggested that Th compartmentation in cytosol and integration with phosphate or proteins in cell wall might be responsible for the tolerance of B. juncea var. foliosa to the stress of Th. - Highlights: • Brassica juncea var. foliosa can adapt to the stress of Th(<200 μM) under hydroponic condition. • Th was selectively distributed on cell wall, membranes and soluble fraction. • Th mainly existed in low-toxicity forms which were benefit for Th tolerance.

  15. Subcellular localization of the antidepressant-sensitive norepinephrine transporter

    Directory of Open Access Journals (Sweden)

    Winder Danny G

    2009-06-01

    Full Text Available Abstract Background Reuptake of synaptic norepinephrine (NE via the antidepressant-sensitive NE transporter (NET supports efficient noradrenergic signaling and presynaptic NE homeostasis. Limited, and somewhat contradictory, information currently describes the axonal transport and localization of NET in neurons. Results We elucidate NET localization in brain and superior cervical ganglion (SCG neurons, aided by a new NET monoclonal antibody, subcellular immunoisolation techniques and quantitative immunofluorescence approaches. We present evidence that axonal NET extensively colocalizes with syntaxin 1A, and to a limited degree with SCAMP2 and synaptophysin. Intracellular NET in SCG axons and boutons also quantitatively segregates from the vesicular monoamine transporter 2 (VMAT2, findings corroborated by organelle isolation studies. At the surface of SCG boutons, NET resides in both lipid raft and non-lipid raft subdomains and colocalizes with syntaxin 1A. Conclusion Our findings support the hypothesis that SCG NET is segregated prior to transport from the cell body from proteins comprising large dense core vesicles. Once localized to presynaptic boutons, NET does not recycle via VMAT2-positive, small dense core vesicles. Finally, once NET reaches presynaptic plasma membranes, the transporter localizes to syntaxin 1A-rich plasma membrane domains, with a portion found in cholera toxin-demarcated lipid rafts. Our findings indicate that activity-dependent insertion of NET into the SCG plasma membrane derives from vesicles distinct from those that deliver NE. Moreover, NET is localized in presynaptic membranes in a manner that can take advantage of regulatory processes targeting lipid raft subdomains.

  16. Monoterpene biosynthesis potential of plant subcellular compartments.

    Science.gov (United States)

    Dong, Lemeng; Jongedijk, Esmer; Bouwmeester, Harro; Van Der Krol, Alexander

    2016-01-01

    Subcellular monoterpene biosynthesis capacity based on local geranyl diphosphate (GDP) availability or locally boosted GDP production was determined for plastids, cytosol and mitochondria. A geraniol synthase (GES) was targeted to plastids, cytosol, or mitochondria. Transient expression in Nicotiana benthamiana indicated local GDP availability for each compartment but resulted in different product levels. A GDP synthase from Picea abies (PaGDPS1) was shown to boost GDP production. PaGDPS1 was also targeted to plastids, cytosol or mitochondria and PaGDPS1 and GES were coexpressed in all possible combinations. Geraniol and geraniol-derived products were analyzed by GC-MS and LC-MS, respectively. GES product levels were highest for plastid-targeted GES, followed by mitochondrial- and then cytosolic-targeted GES. For each compartment local boosting of GDP biosynthesis increased GES product levels. GDP exchange between compartments is not equal: while no GDP is exchanged from the cytosol to the plastids, 100% of GDP in mitochondria can be exchanged to plastids, while only 7% of GDP from plastids is available for mitochondria. This suggests a direct exchange mechanism for GDP between plastids and mitochondria. Cytosolic PaGDPS1 competes with plastidial GES activity, suggesting an effective drain of isopentenyl diphosphate from the plastids to the cytosol. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  17. Subcellular RNA profiling links splicing and nuclear DICER1 to alternative cleavage and polyadenylation.

    Science.gov (United States)

    Neve, Jonathan; Burger, Kaspar; Li, Wencheng; Hoque, Mainul; Patel, Radhika; Tian, Bin; Gullerova, Monika; Furger, Andre

    2016-01-01

    Alternative cleavage and polyadenylation (APA) plays a crucial role in the regulation of gene expression across eukaryotes. Although APA is extensively studied, its regulation within cellular compartments and its physiological impact remains largely enigmatic. Here, we used a rigorous subcellular fractionation approach to compare APA profiles of cytoplasmic and nuclear RNA fractions from human cell lines. This approach allowed us to extract APA isoforms that are subjected to differential regulation and provided us with a platform to interrogate the molecular regulatory pathways that shape APA profiles in different subcellular locations. Here, we show that APA isoforms with shorter 3' UTRs tend to be overrepresented in the cytoplasm and appear to be cell-type-specific events. Nuclear retention of longer APA isoforms occurs and is partly a result of incomplete splicing contributing to the observed cytoplasmic bias of transcripts with shorter 3' UTRs. We demonstrate that the endoribonuclease III, DICER1, contributes to the establishment of subcellular APA profiles not only by expected cytoplasmic miRNA-mediated destabilization of APA mRNA isoforms, but also by affecting polyadenylation site choice. © 2016 Neve et al.; Published by Cold Spring Harbor Laboratory Press.

  18. Zymogen Activation and Subcellular Activity of Subtilisin Kexin Isozyme 1/Site 1 Protease*

    Science.gov (United States)

    da Palma, Joel Ramos; Burri, Dominique Julien; Oppliger, Joël; Salamina, Marco; Cendron, Laura; de Laureto, Patrizia Polverino; Seidah, Nabil Georges; Kunz, Stefan; Pasquato, Antonella

    2014-01-01

    The proprotein convertase subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P) plays crucial roles in cellular homeostatic functions and is hijacked by pathogenic viruses for the processing of their envelope glycoproteins. Zymogen activation of SKI-1/S1P involves sequential autocatalytic processing of its N-terminal prodomain at sites B′/B followed by the herein newly identified C′/C sites. We found that SKI-1/S1P autoprocessing results in intermediates whose catalytic domain remains associated with prodomain fragments of different lengths. In contrast to other zymogen proprotein convertases, all incompletely matured intermediates of SKI-1/S1P showed full catalytic activity toward cellular substrates, whereas optimal cleavage of viral glycoproteins depended on B′/B processing. Incompletely matured forms of SKI-1/S1P further process cellular and viral substrates in distinct subcellular compartments. Using a cell-based sensor for SKI-1/S1P activity, we found that 9 amino acid residues at the cleavage site (P1–P8) and P1′ are necessary and sufficient to define the subcellular location of processing and to determine to what extent processing of a substrate depends on SKI-1/S1P maturation. In sum, our study reveals novel and unexpected features of SKI-1/S1P zymogen activation and subcellular specificity of activity toward cellular and pathogen-derived substrates. PMID:25378398

  19. Top Down Proteomics Reveals Mature Proteoforms Expressed in Subcellular Fractions of the Echinococcus granulosus Preadult Stage.

    Science.gov (United States)

    Lorenzatto, Karina R; Kim, Kyunggon; Ntai, Ioanna; Paludo, Gabriela P; Camargo de Lima, Jeferson; Thomas, Paul M; Kelleher, Neil L; Ferreira, Henrique B

    2015-11-06

    Echinococcus granulosus is the causative agent of cystic hydatid disease, a neglected zoonosis responsible for high morbidity and mortality. Several molecular mechanisms underlying parasite biology remain poorly understood. Here, E. granulosus subcellular fractions were analyzed by top down and bottom up proteomics for protein identification and characterization of co-translational and post-translational modifications (CTMs and PTMs, respectively). Nuclear and cytosolic extracts of E. granulosus protoscoleces were fractionated by 10% GELFrEE and proteins under 30 kDa were analyzed by LC-MS/MS. By top down analysis, 186 proteins and 207 proteoforms were identified, of which 122 and 52 proteoforms were exclusively detected in nuclear and cytosolic fractions, respectively. CTMs were evident as 71% of the proteoforms had methionine excised and 47% were N-terminal acetylated. In addition, in silico internal acetylation prediction coupled with top down MS allowed the characterization of 9 proteins differentially acetylated, including histones. Bottom up analysis increased the overall number of identified proteins in nuclear and cytosolic fractions to 154 and 112, respectively. Overall, our results provided the first description of the low mass proteome of E. granulosus subcellular fractions and highlighted proteoforms with CTMs and PTMS whose characterization may lead to another level of understanding about molecular mechanisms controlling parasitic flatworm biology.

  20. Prion subcellular fractionation reveals infectivity spectrum, with a high titre-low PrPres level disparity

    Directory of Open Access Journals (Sweden)

    Lewis Victoria

    2012-04-01

    Full Text Available Abstract Background Prion disease transmission and pathogenesis are linked to misfolded, typically protease resistant (PrPres conformers of the normal cellular prion protein (PrPC, with the former posited to be the principal constituent of the infectious 'prion'. Unexplained discrepancies observed between detectable PrPres and infectivity levels exemplify the complexity in deciphering the exact biophysical nature of prions and those host cell factors, if any, which contribute to transmission efficiency. In order to improve our understanding of these important issues, this study utilized a bioassay validated cell culture model of prion infection to investigate discordance between PrPres levels and infectivity titres at a subcellular resolution. Findings Subcellular fractions enriched in lipid rafts or endoplasmic reticulum/mitochondrial marker proteins were equally highly efficient at prion transmission, despite lipid raft fractions containing up to eight times the levels of detectable PrPres. Brain homogenate infectivity was not differentially enhanced by subcellular fraction-specific co-factors, and proteinase K pre-treatment of selected fractions modestly, but equally reduced infectivity. Only lipid raft associated infectivity was enhanced by sonication. Conclusions This study authenticates a subcellular disparity in PrPres and infectivity levels, and eliminates simultaneous divergence of prion strains as the explanation for this phenomenon. On balance, the results align best with the concept that transmission efficiency is influenced more by intrinsic characteristics of the infectious prion, rather than cellular microenvironment conditions or absolute PrPres levels.

  1. Chromosome locations of genes encoding human signal transduction adapter proteins, Nck (NCK), Shc (SHC1), and Grb2 (GRB2)

    DEFF Research Database (Denmark)

    Huebner, K; Kastury, K; Druck, T

    1994-01-01

    "adapter" proteins, which are involved in transducing signals from receptor tyrosine kinases to downstream signal recipients such as ras, because adaptor protein genes could also, logically, serve as targets of mutation, rearrangement, or other aberration in disease. Therefore, DNAs from panels of rodent-human......Abnormalities due to chromosomal aberration or point mutation in gene products of growth factor receptors or in ras gene products, which lie on the same signaling pathway, can cause disease in animals and humans. Thus, it can be important to determine chromosomal map positions of genes encoding...... hybrids carrying defined complements of human chromosomes were assayed for the presence of the cognate genes for NCK, SHC, and GRB2, three SH2 or SH2/SH3 (Src homology 2 and 3) domain-containing adapter proteins. Additionally, NCK and SHC genes were more narrowly localized by chromosomal in situ...

  2. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    Science.gov (United States)

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  3. Convolutional LSTM Networks for Subcellular Localization of Proteins

    DEFF Research Database (Denmark)

    Sønderby, Søren Kaae; Sønderby, Casper Kaae; Nielsen, Henrik

    2015-01-01

    Machine learning is widely used to analyze biological sequence data. Non-sequential models such as SVMs or feed-forward neural networks are often used although they have no natural way of handling sequences of varying length. Recurrent neural networks such as the long short term memory (LSTM) model...

  4. Capillary electrophoretic analysis reveals subcellular binding between individual mitochondria and cytoskeleton

    Science.gov (United States)

    Kostal, Vratislav; Arriaga, Edgar A.

    2011-01-01

    Interactions between the cytoskeleton and mitochondria are essential for normal cellular function. An assessment of such interactions is commonly based on bulk analysis of mitochondrial and cytoskeletal markers present in a given sample, which assumes complete binding between these two organelle types. Such measurements are biased because they rarely account for non-bound ‘free’ subcellular species. Here we report on the use of capillary electrophoresis with dual laser induced fluorescence detection (CE-LIF) to identify, classify, count and quantify properties of individual binding events of mitochondria and cytoskeleton. Mitochondria were fluorescently labeled with DsRed2 while F-actin, a major cytoskeletal component, was fluorescently labeled with Alexa488-phalloidin. In a typical subcellular fraction of L6 myoblasts, 79% of mitochondrial events did not have detectable levels of F-actin, while the rest had on average ~2 zeptomole F-actin, which theoretically represents a ~ 2.5-μm long network of actin filaments per event. Trypsin treatment of L6 subcellular fractions prior to analysis decreased the fraction of mitochondrial events with detectable levels of F-actin, which is expected from digestion of cytoskeletal proteins on the surface of mitochondria. The electrophoretic mobility distributions of the individual events were also used to further distinguish between cytoskeleton-bound from cytoskeleton-free mitochondrial events. The CE-LIF approach described here could be further developed to explore cytoskeleton interactions with other subcellular structures, the effects of cytoskeleton destabilizing drugs, and the progression of viral infections. PMID:21309532

  5. The human cytomegalovirus US28 protein is located in endocytic vesicles and undergoes constitutive endocytosis and recycling

    DEFF Research Database (Denmark)

    Fraile-Ramos, A; Kledal, T N; Pelchen-Matthews, A

    2001-01-01

    Genes encoding chemokine receptor-like proteins have been found in herpes and poxviruses and implicated in viral pathogenesis. Here we describe the cellular distribution and trafficking of a human cytomegalovirus (HCMV) chemokine receptor encoded by the US28 gene, after transient and stable...

  6. The structure of avian polyomavirus reveals variably sized capsids, non-conserved inter-capsomere interactions, and a possible location of the minor capsid protein VP4

    International Nuclear Information System (INIS)

    Shen, Peter S.; Enderlein, Dirk; Nelson, Christian D.S.; Carter, Weston S.; Kawano, Masaaki; Xing Li; Swenson, Robert D.; Olson, Norman H.; Baker, Timothy S.; Cheng, R. Holland; Atwood, Walter J.; Johne, Reimar; Belnap, David M.

    2011-01-01

    Avian polyomavirus (APV) causes a fatal, multi-organ disease among several bird species. Using cryogenic electron microscopy and other biochemical techniques, we investigated the structure of APV and compared it to that of mammalian polyomaviruses, particularly JC polyomavirus and simian virus 40. The structure of the pentameric major capsid protein (VP1) is mostly conserved; however, APV VP1 has a unique, truncated C-terminus that eliminates an intercapsomere-connecting β-hairpin observed in other polyomaviruses. We postulate that the terminal β-hairpin locks other polyomavirus capsids in a stable conformation and that absence of the hairpin leads to the observed capsid size variation in APV. Plug-like density features were observed at the base of the VP1 pentamers, consistent with the known location of minor capsid proteins VP2 and VP3. However, the plug density is more prominent in APV and may include VP4, a minor capsid protein unique to bird polyomaviruses.

  7. Genome-wide overlap in the binding location and function of chromatin-remodeling proteins | Center for Cancer Research

    Science.gov (United States)

    A single strand of DNA can stretch several meters. Yet dozens of these strands, which can be one-tenth as thin as a human hair, need to fit into the cell’s nucleus. To pack those strands into such a small space, DNA tightly winds itself around histone proteins, forming nucleosomes that are strung together into complexes called chromatin. Beyond efficiently packaging DNA,

  8. The subcellular compartmentalization of arginine metabolizing enzymes and their role in endothelial dysfunction

    Directory of Open Access Journals (Sweden)

    Feng eChen

    2013-07-01

    Full Text Available The endothelial production of nitric oxide (NO mediates endothelium-dependent vasorelaxation and restrains vascular inflammation, smooth muscle proliferation and platelet aggregation. Impaired production of NO is a hallmark of endothelial dysfunction and promotes the development of cardiovascular disease. In endothelial cells, NO is generated by endothelial nitric oxide synthase (eNOS through the conversion of its substrate, L-arginine to L-citrulline. Reduced access to L-arginine has been proposed as a major mechanism underlying reduced eNOS activity and NO production in cardiovascular disease. The arginases (Arg1 and Arg2 metabolize L-arginine to generate L-ornithine and urea and increased expression of arginase has been proposed as a mechanism of reduced eNOS activity secondary to the depletion of L-arginine. Indeed, supplemental L-arginine and suppression of arginase activity has been shown to improve endothelium-dependent relaxation and ameliorate cardiovascular disease. However, L-arginine concentrations in endothelial cells remain sufficiently high to support NO synthesis suggesting additional mechanisms. The compartmentalization of intracellular L-arginine into poorly interchangeable pools has been proposed to allow for the local depletion of L-arginine. Indeed the subcellular location of L-arginine metabolizing enzymes plays important functional roles. In endothelial cells, eNOS is found in discrete intracellular locations and the capacity to generate NO is heavily influenced by its localtion. Arg1 and Arg2 also reside in different subcellular environments and are thought to differentially influence endothelial function. The plasma membrane solute transporter, CAT-1 and the arginine recycling enzyme, ASL, co-localize with eNOS and facilitate NO release. This review highlights the importance of the subcellular location of eNOS and arginine transporting and metabolizing enzymes to NO release and cardiovascular disease.

  9. Subcellular neuropharmacology: the importance of intracellular targeting.

    Science.gov (United States)

    Miyashiro, Kevin Y; Bell, Thomas J; Sul, Jai-Yoon; Eberwine, James

    2009-04-01

    Few cell types are more adapted for cell-cell signaling than neurons. Their responsiveness lies in the formation of highly specialized compartments composed of unique repertoires of selectively distributed protein complexes generated, in part, by the local translation of mRNAs and regulated by their RNA-binding proteins. Utilizing the selective distribution of these neuronal proteins and the underlying mechanisms that generate the differential patterns of expression as central facets of drug design promises to enhance the therapeutic ratio of a drug. It is in this context that we discuss the unique arrangement of mRNAs, RNA-binding proteins and the protein macromolecular complexes at the dendrite, which is the postsynaptic site of synaptic transmission. Recent advances in identifying the function of dendritic components of the mechanisms of protein and RNA transport, non-nuclear RNA splicing and localized translation underscore their importance as targets of neuropharmacology.

  10. Subcellular localization of YKL-40 in normal and malignant epithelial cells of the breast

    DEFF Research Database (Denmark)

    Roslind, A.; Balslev, E.; Kruse, H.

    2008-01-01

    . YKL-40 protein expression was redistributed in carcinoma versus normal glandular tissue of the breast. A reduced expression of YKL-40 in relation to intermediate filaments and desmosomes was found in tumor cells. Changes in YKL-40 expression suggest that the function of YKL-40 in cells of epithelial......YKL-40 is a new prognostic biomarker in cancer. The biological function is only poorly understood. This study aimed at determining the subcellular localization of YKL-40, using immunogold labeling, in normal epithelial cells and in malignant tumor cells of the breast by immunoelectron microscopy...

  11. Zn subcellular distribution in liver of goldfish (carassius auratus with exposure to zinc oxide nanoparticles and mechanism of hepatic detoxification.

    Directory of Open Access Journals (Sweden)

    Wenhong Fan

    Full Text Available Zinc Oxide Nanoparticles (ZnO NPs have attracted increasing concerns because of their widespread use and toxic potential. In this study, Zn accumulations in different tissues (gills, liver, muscle, and gut of goldfish (Carassius auratus after exposure to ZnO NPs were studied in comparison with bulk ZnO and Zn(2+. And the technique of subcellular partitioning was firstly used on the liver of goldfish to study the hepatic accumulation of ZnO NPs. The results showed that at sublethal Zn concentration (2 mg/L, bioaccumulation in goldfish was tissue-specific and dependent on the exposure materials. Compared with Zn(2+, the particles of bulk ZnO and the ZnO NPs appeared to aggregate in the environmentally contacted tissues (gills and gut, rather than transport to the internal tissues (liver and muscle. The subcellular distributions of liver differed for the three exposure treatments. After ZnO NPs exposure, Zn percentage in metal-rich granule (MRG increased significantly, and after Zn(2+ exposure, it increased significantly in the organelles. Metallothionein-like proteins (MTLP were the main target for Zn(2+, while MRG played dominant role for ZnO NPs. The different results of subcellular distributions revealed that metal detoxification mechanisms of liver for ZnO NPs, bulk ZnO, and Zn(2+ were different. Overall, subcellular partitioning provided an interesting start to better understanding of the toxicity of nano- and conventional materials.

  12. Protein tyrosine phosphatases: regulatory mechanisms.

    NARCIS (Netherlands)

    den Hertog, J.; Ostman, A.; Bohmer, F.D.

    2008-01-01

    Protein-tyrosine phosphatases are tightly controlled by various mechanisms, ranging from differential expression in specific cell types to restricted subcellular localization, limited proteolysis, post-translational modifications affecting intrinsic catalytic activity, ligand binding and

  13. Sub-cellular distribution and translocation of TRP channels.

    Science.gov (United States)

    Toro, Carlos A; Arias, Luis A; Brauchi, Sebastian

    2011-01-01

    Cellular electrical activity is the result of a highly complex processes that involve the activation of ion channel proteins. Ion channels make pores on cell membranes that rapidly transit between conductive and non-conductive states, allowing different ions to flow down their electrochemical gradients across cell membranes. In the case of neuronal cells, ion channel activity orchestrates action potentials traveling through axons, enabling electrical communication between cells in distant parts of the body. Somatic sensation -our ability to feel touch, temperature and noxious stimuli- require ion channels able to sense and respond to our peripheral environment. Sensory integration involves the summing of various environmental cues and their conversion into electrical signals. Members of the Transient Receptor Potential (TRP) family of ion channels have emerged as important mediators of both cellular sensing and sensory integration. The regulation of the spatial and temporal distribution of membrane receptors is recognized as an important mechanism for controlling the magnitude of the cellular response and the time scale on which cellular signaling occurs. Several studies have shown that this mechanism is also used by TRP channels to modulate cellular response and ultimately fulfill their physiological function as sensors. However, the inner-working of this mode of control for TRP channels remains poorly understood. The question of whether TRPs intrinsically regulate their own vesicular trafficking or weather the dynamic regulation of TRP channel residence on the cell surface is caused by extrinsic changes in the rates of vesicle insertion or retrieval remain open. This review will examine the evidence that sub-cellular redistribution of TRP channels plays an important role in regulating their activity and explore the mechanisms that control the trafficking of vesicles containing TRP channels.

  14. Expression and subcellular localization of antiporter regulating ...

    African Journals Online (AJOL)

    Md. Imtiaz Uddin

    2012-02-14

    Feb 14, 2012 ... important factors, the limitation of gas diffusion under water and reduced irradiance, which impair photo- synthesis ... functions as cell expansion, universal stress protein, and putative ..... They catalyze the exchange of Na+.

  15. Subcellular site and nature of intracellular cadmium in plants

    International Nuclear Information System (INIS)

    Wagner, G.J.

    1979-01-01

    The mechanisms underlying heavy metal accumulation, toxicity and tolerance in higher plants are poorly understood. Since subcellular processes are undoubtedly involved in all these phenomena, it is of interest to study the extent of, subcellular site of and nature of intracellularly accumulated cadmium in higher plants. Whole plants supplied 109 CdCl 2 or 112 CdSO 4 accumulated Cd into roots and aerial tissues. Preparation of protoplasts from aerial tissue followed by subcellular fractionation of the protoplasts to obtain intact vacuoles, chloroplasts and cytosol revealed the presence of Cd in the cytosol but not in vacuoles or chloroplasts. Particulate materials containing other cell components were also labeled. Of the 109 Cd supplied to plants, 2 to 10% was recovered in both cytosol preparations and in particulate materials. Cytosol contained proteinaceous--Cd complexes, free metal and low molecular weight Cd complexes. Labeling of protoplasts gave similar results. No evidence was obtained for the production of volatile Cd complexes in tobacco

  16. Biomechanics of subcellular structures by non-invasive Brillouin microscopy

    Science.gov (United States)

    Antonacci, Giuseppe; Braakman, Sietse

    2016-11-01

    Cellular biomechanics play a pivotal role in the pathophysiology of several diseases. Unfortunately, current methods to measure biomechanical properties are invasive and mostly limited to the surface of a cell. As a result, the mechanical behaviour of subcellular structures and organelles remains poorly characterised. Here, we show three-dimensional biomechanical images of single cells obtained with non-invasive, non-destructive Brillouin microscopy with an unprecedented spatial resolution. Our results quantify the longitudinal elastic modulus of subcellular structures. In particular, we found the nucleoli to be stiffer than both the nuclear envelope (p biomechanics and its role in pathophysiology.

  17. Neptunium 237 behaviour in subcellular fractions of rat kidneys

    International Nuclear Information System (INIS)

    Kreslov, V.V.; Maksutova, A.Ya.; Mushkacheva, G.S.

    1978-01-01

    Subcellular distribution of intravenously injected (1 and 0.5 μCi/rat) neptunium nitrate (5- and 6-valent) in kidneys of rat males and females has been investigated. It has been shown that the radionuclide was unevenly distributed within the cell. As early as 24 hours after administration, about 50 per cent of neptunium were concentrated in the mitochondrial fraction. The data are presented on variations in neptunium behaviour within subcellular fractions of rat kidneys depending on the sex of animals, valency and dose of the isotope

  18. Mutations in the C-terminal region affect subcellular localization of crucian carp herpesvirus (CaHV) GPCR.

    Science.gov (United States)

    Wang, Jun; Gui, Lang; Chen, Zong-Yan; Zhang, Qi-Ya

    2016-08-01

    G protein-coupled receptors (GPCRs) are known as seven transmembrane domain receptors and consequently can mediate diverse biological functions via regulation of their subcellular localization. Crucian carp herpesvirus (CaHV) was recently isolated from infected fish with acute gill hemorrhage. CaHV GPCR of 349 amino acids (aa) was identified based on amino acid identity. A series of variants with truncation/deletion/substitution mutation in the C-terminal (aa 315-349) were constructed and expressed in fathead minnow (FHM) cells. The roles of three key C-terminal regions in subcellular localization of CaHV GPCR were determined. Lysine-315 (K-315) directed the aggregation of the protein preferentially at the nuclear side. Predicted N-myristoylation site (GGGWTR, aa 335-340) was responsible for punctate distribution in periplasm or throughout the cytoplasm. Predicted phosphorylation site (SSR, aa 327-329) and GGGWTR together determined the punctate distribution in cytoplasm. Detection of organelles localization by specific markers showed that the protein retaining K-315 colocalized with the Golgi apparatus. These experiments provided first evidence that different mutations of CaHV GPCR C-terminals have different affects on the subcellular localization of fish herpesvirus-encoded GPCRs. The study provided valuable information and new insights into the precise interactions between herpesvirus and fish cells, and could also provide useful targets for antiviral agents in aquaculture.

  19. Specific primary sequence requirements for Aurora B kinase-mediated phosphorylation and subcellular localization of TMAP during mitosis.

    Science.gov (United States)

    Kim, Hyun-Jun; Kwon, Hye-Rim; Bae, Chang-Dae; Park, Joobae; Hong, Kyung U

    2010-05-15

    During mitosis, regulation of protein structures and functions by phosphorylation plays critical roles in orchestrating a series of complex events essential for the cell division process. Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton-associated protein 2 (CKAP2), is a novel player in spindle assembly and chromosome segregation. We have previously reported that TMAP is phosphorylated at multiple residues specifically during mitosis. However, the mechanisms and functional importance of phosphorylation at most of the sites identified are currently unknown. Here, we report that TMAP is a novel substrate of the Aurora B kinase. Ser627 of TMAP was specifically phosphorylated by Aurora B both in vitro and in vivo. Ser627 and neighboring conserved residues were strictly required for efficient phosphorylation of TMAP by Aurora B, as even minor amino acid substitutions of the phosphorylation motif significantly diminished the efficiency of the substrate phosphorylation. Nearly all mutations at the phosphorylation motif had dramatic effects on the subcellular localization of TMAP. Instead of being localized to the chromosome region during late mitosis, the mutants remained associated with microtubules and centrosomes throughout mitosis. However, the changes in the subcellular localization of these mutants could not be completely explained by the phosphorylation status on Ser627. Our findings suggest that the motif surrounding Ser627 ((625) RRSRRL (630)) is a critical part of a functionally important sequence motif which not only governs the kinase-substrate recognition, but also regulates the subcellular localization of TMAP during mitosis.

  20. The Gene Ontology (GO) Cellular Component Ontology: integration with SAO (Subcellular Anatomy Ontology) and other recent developments

    Science.gov (United States)

    2013-01-01

    Background The Gene Ontology (GO) (http://www.geneontology.org/) contains a set of terms for describing the activity and actions of gene products across all kingdoms of life. Each of these activities is executed in a location within a cell or in the vicinity of a cell. In order to capture this context, the GO includes a sub-ontology called the Cellular Component (CC) ontology (GO-CCO). The primary use of this ontology is for GO annotation, but it has also been used for phenotype annotation, and for the annotation of images. Another ontology with similar scope to the GO-CCO is the Subcellular Anatomy Ontology (SAO), part of the Neuroscience Information Framework Standard (NIFSTD) suite of ontologies. The SAO also covers cell components, but in the domain of neuroscience. Description Recently, the GO-CCO was enriched in content and links to the Biological Process and Molecular Function branches of GO as well as to other ontologies. This was achieved in several ways. We carried out an amalgamation of SAO terms with GO-CCO ones; as a result, nearly 100 new neuroscience-related terms were added to the GO. The GO-CCO also contains relationships to GO Biological Process and Molecular Function terms, as well as connecting to external ontologies such as the Cell Ontology (CL). Terms representing protein complexes in the Protein Ontology (PRO) reference GO-CCO terms for their species-generic counterparts. GO-CCO terms can also be used to search a variety of databases. Conclusions In this publication we provide an overview of the GO-CCO, its overall design, and some recent extensions that make use of additional spatial information. One of the most recent developments of the GO-CCO was the merging in of the SAO, resulting in a single unified ontology designed to serve the needs of GO annotators as well as the specific needs of the neuroscience community. PMID:24093723

  1. Subcellular localization of casein kinase I

    DEFF Research Database (Denmark)

    Grankowski, N; Issinger, O G

    1990-01-01

    An anti-yeast CKI antiserum was shown to cross-react with CKI isolated from Krebs II mouse ascites tumour cells. The mammalian CKI showed virtually the same molecular mass (app. 45 kDa) as the yeast enzyme. By immunofluorescence it could be shown that CKI is preferably located in the nucleolus....

  2. Nuclear functions and subcellular trafficking mechanisms of the epidermal growth factor receptor family

    Science.gov (United States)

    2012-01-01

    Accumulating evidence suggests that various diseases, including many types of cancer, result from alteration of subcellular protein localization and compartmentalization. Therefore, it is worthwhile to expand our knowledge in subcellular trafficking of proteins, such as epidermal growth factor receptor (EGFR) and ErbB-2 of the receptor tyrosine kinases, which are highly expressed and activated in human malignancies and frequently correlated with poor prognosis. The well-characterized trafficking of cell surface EGFR is routed, via endocytosis and endosomal sorting, to either the lysosomes for degradation or back to the plasma membrane for recycling. A novel nuclear mode of EGFR signaling pathway has been gradually deciphered in which EGFR is shuttled from the cell surface to the nucleus after endocytosis, and there, it acts as a transcriptional regulator, transmits signals, and is involved in multiple biological functions, including cell proliferation, tumor progression, DNA repair and replication, and chemo- and radio-resistance. Internalized EGFR can also be transported from the cell surface to several intracellular compartments, such as the Golgi apparatus, the endoplasmic reticulum, and the mitochondria, in addition to the nucleus. In this review, we will summarize the functions of nuclear EGFR family and the potential pathways by which EGFR is trafficked from the cell surface to a variety of cellular organelles. A better understanding of the molecular mechanism of EGFR trafficking will shed light on both the receptor biology and potential therapeutic targets of anti-EGFR therapies for clinical application. PMID:22520625

  3. The role of water flow into subcellular organella in cell death

    International Nuclear Information System (INIS)

    Chiba-Kamoshida, Kaori

    2008-01-01

    Mitochondrion is a subcellular organella producing most of the energy necessary for living cells. The structure consisting of double membrane, inner and outer membranes, has a close relationship with activity and diseases. Its accurate regulation of the membrane permeability plays an important role in the homeostatic energy production. Abnormal membrane permeability has a potential to lead to cell depth. Although, even transportation of water molecule is regulated by a specific membrane protein, aquapoline, there has not been reported any method to monitor the water flow through the membrane. Neutron small-angle scattering allows us to perform measurements with biological materials and subcellular organella such as mitochondria in solution under the experimental condition maintaining the activity of the biological samples. Outstanding advantage of neutron spectroscopy is its ability to distinguish hydrogen spread over biomolecules from deuterium. In order to explore a new method to monitor conformational change inside mitochondria, wide-range neutron small angle scattering data introducing two neutron spectrometers in JAEA JRR-3, SANS-J and PNO covering not only the size for the thickness of the double membrane but also that for isolated whole mitochondria particle, ∼1 μm was employed. Utilizing the excess protein content, 70%, in the inner membrane of mitochondria, a new attempt was began to figure out the structure change in inner membrane caused by the change such as in oxygen and in the substrate concentration, and to examine the relationship between the structure change and water flow through the mitochondria membrane. (author)

  4. Kandelia obovata (S., L.) Yong tolerance mechanisms to Cadmium: Subcellular distribution, chemical forms and thiol pools

    International Nuclear Information System (INIS)

    Weng Bosen; Xie Xiangyu; Weiss, Dominik J.; Liu Jingchun; Lu Haoliang; Yan Chongling

    2012-01-01

    Highlights: ► Cadmium tolerance mechanisms of Kandelia obovata was investigated systematacially. ► Thiol pool can play roles in cadmium detoxification mechanisms. ► Increasing cadmium treatment strength caused proportional increase of cadmium uptake. ► More than half of cadmium was localized in cell walls, and lowest in membranes. ► Sodium chloride and acetic acid extractable fractions were dominant. - Abstract: In order to explore the detoxification mechanisms adopted by mangrove under cadmium (Cd) stress, we investigated the subcellular distribution and chemical forms of Cd, in addition to the change of the thiol pools in Kandelia obovata (S., L.) Yong, which were cultivated in sandy culture medium treated with sequential Cd solution. We found that Cd addition caused a proportional increase of Cd in the organs of K. obovata. The investigation of subcellular distribution verified that most of the Cd was localized in the cell wall, and the lowest was in the membrane. Results showed sodium chloride and acetic acid extractable Cd fractions were dominant. The contents of non-protein thiol compounds, Glutathione and phytochelatins in K. obovata were enhanced by the increasing strength of Cd treatment. Therefore, K. obovata can be defined as Cd tolerant plant, which base on cell wall compartmentalization, as well as protein and organic acids combination.

  5. Unique Protein Signature of Circulating Microparticles in Systemic Lupus Erythematosus

    DEFF Research Database (Denmark)

    Østergaard, Ole; Nielsen, Christoffer; Iversen, Line V

    2013-01-01

    To characterize the unique qualities of proteins associated with circulating subcellular material in systemic lupus erythematosus (SLE) patients compared with healthy controls and patients with other chronic autoimmune diseases.......To characterize the unique qualities of proteins associated with circulating subcellular material in systemic lupus erythematosus (SLE) patients compared with healthy controls and patients with other chronic autoimmune diseases....

  6. Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins

    KAUST Repository

    Bigeard, Jean; Rayapuram, Naganand; Pflieger, Delphine; Hirt, Heribert

    2014-01-01

    In eukaryotes, most of the DNA is located in the nucleus where it is organized with histone proteins in a higher order structure as chromatin. Chromatin and chromatin-associated proteins contribute to DNA-related processes such as replication and transcription as well as epigenetic regulation. Protein functions are often regulated by PTMs among which phosphorylation is one of the most abundant PTM. Phosphorylation of proteins affects important properties, such as enzyme activity, protein stability, or subcellular localization. We here describe the main specificities of protein phosphorylation in plants and review the current knowledge on phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. We also outline some future challenges to further elucidate protein phosphorylation and chromatin regulation.

  7. Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins

    KAUST Repository

    Bigeard, Jean

    2014-07-10

    In eukaryotes, most of the DNA is located in the nucleus where it is organized with histone proteins in a higher order structure as chromatin. Chromatin and chromatin-associated proteins contribute to DNA-related processes such as replication and transcription as well as epigenetic regulation. Protein functions are often regulated by PTMs among which phosphorylation is one of the most abundant PTM. Phosphorylation of proteins affects important properties, such as enzyme activity, protein stability, or subcellular localization. We here describe the main specificities of protein phosphorylation in plants and review the current knowledge on phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. We also outline some future challenges to further elucidate protein phosphorylation and chromatin regulation.

  8. ALG-2 oscillates in subcellular localization, unitemporally with calcium oscillations

    DEFF Research Database (Denmark)

    la Cour, Jonas Marstrand; Mollerup, Jens; Berchtold, Martin Werner

    2007-01-01

    discovered that the subcellular distribution of a tagged version of ALG-2 could be directed by physiological external stimuli (including ATP, EGF, prostaglandin, histamine), which provoke intracellular Ca2+ oscillations. Cellular stimulation led to a redistribution of ALG-2 from the cytosol to a punctate...

  9. Tip chip : Subcellular sampling from single cancer cells

    NARCIS (Netherlands)

    Quist, Jos; Sarajlic, Edin; Lai, Stanley C.S.; Lemay, Serge G.

    2016-01-01

    To analyze the molecular content of single cells, cell lysis is typically required, yielding a snapshot of cell behavior only. To follow complex molecular profiles over time, subcellular sampling methods potentially can be used, but to date these methods involve laborious offline analysis. Here we

  10. Simplified Enrichment of Plasma Membrane Proteins from Arabidopsis thaliana Seedlings Using Differential Centrifugation and Brij-58 Treatment.

    Science.gov (United States)

    Collins, Carina A; Leslie, Michelle E; Peck, Scott C; Heese, Antje

    2017-01-01

    The plasma membrane (PM) forms a barrier between a plant cell and its environment. Proteins at this subcellular location play diverse and complex roles, including perception of extracellular signals to coordinate cellular changes. Analyses of PM proteins, however, are often limited by the relatively low abundance of these proteins in the total cellular protein pool. Techniques traditionally used for enrichment of PM proteins are time consuming, tedious, and require extensive optimization. Here, we provide a simple and reproducible enrichment procedure for PM proteins from Arabidopsis thaliana seedlings starting from total microsomal membranes isolated by differential centrifugation. To enrich for PM proteins, total microsomes are treated with the nonionic detergent Brij-58 to decrease the abundance of contaminating organellar proteins. This protocol combined with the genetic resources available in Arabidopsis provides a powerful tool that will enhance our understanding of proteins at the PM.

  11. Locative media

    CERN Document Server

    Wilken, Rowan

    2014-01-01

    Not only is locative media one of the fastest growing areas in digital technology, but questions of location and location-awareness are increasingly central to our contemporary engagements with online and mobile media, and indeed media and culture generally. This volume is a comprehensive account of the various location-based technologies, services, applications, and cultures, as media, with an aim to identify, inventory, explore, and critique their cultural, economic, political, social, and policy dimensions internationally. In particular, the collection is organized around the perception that the growth of locative media gives rise to a number of crucial questions concerning the areas of culture, economy, and policy.

  12. Retinoid-binding proteins: similar protein architectures bind similar ligands via completely different ways.

    Directory of Open Access Journals (Sweden)

    Yu-Ru Zhang

    Full Text Available BACKGROUND: Retinoids are a class of compounds that are chemically related to vitamin A, which is an essential nutrient that plays a key role in vision, cell growth and differentiation. In vivo, retinoids must bind with specific proteins to perform their necessary functions. Plasma retinol-binding protein (RBP and epididymal retinoic acid binding protein (ERABP carry retinoids in bodily fluids, while cellular retinol-binding proteins (CRBPs and cellular retinoic acid-binding proteins (CRABPs carry retinoids within cells. Interestingly, although all of these transport proteins possess similar structures, the modes of binding for the different retinoid ligands with their carrier proteins are different. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we analyzed the various retinoid transport mechanisms using structure and sequence comparisons, binding site analyses and molecular dynamics simulations. Our results show that in the same family of proteins and subcellular location, the orientation of a retinoid molecule within a binding protein is same, whereas when different families of proteins are considered, the orientation of the bound retinoid is completely different. In addition, none of the amino acid residues involved in ligand binding is conserved between the transport proteins. However, for each specific binding protein, the amino acids involved in the ligand binding are conserved. The results of this study allow us to propose a possible transport model for retinoids. CONCLUSIONS/SIGNIFICANCE: Our results reveal the differences in the binding modes between the different retinoid-binding proteins.

  13. Selenium assimilation and loss by an insect predator and its relationship to Se subcellular partitioning in two prey types

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, Maitee [Institut national de la recherche scientifique - Eau, Terre et Environnement, Universite du Quebec, Quebec City, Quebec, G1K 9A9 (Canada); Hare, Landis [Institut national de la recherche scientifique - Eau, Terre et Environnement, Universite du Quebec, Quebec City, Quebec, G1K 9A9 (Canada)], E-mail: landis@ete.inrs.ca

    2009-03-15

    Subcellular selenium (Se) distributions in the oligochaete Tubifex tubifex and in the insect Chironomus riparius did not vary with Se exposure duration, which was consistent with the observations that the duration of prey Se exposure had little influence on either Se assimilation or loss by a predatory insect (the alderfly Sialis velata). However, these two prey types differed in how Se was distributed in their cells. Overall, the predator assimilated a mean of 66% of the Se present in its prey, which was similar to the mean percentage of Se in prey cells (62%) that was theoretically available for uptake (that is, Se in the protein and organelle fractions). Likewise, data for cadmium, nickel and thallium suggest that predictions of trace element transfer between prey and predator are facilitated by considering the subcellular partitioning of these contaminants in prey cells. - Selenium assimilation by a predatory aquatic insect depends on Se availability in the cells of its prey.

  14. Quantifying the Sub-Cellular Distributions of Gold Nanospheres Uptaken by Cells through Stepwise, Site-Selective Etching.

    Science.gov (United States)

    Xia, Younan; Huo, Da

    2018-04-10

    A quantitative understanding of the sub-cellular distributions of nanoparticles uptaken by cells is important to the development of nanomedicine. With Au nanospheres as a model system, here we demonstrate, for the first time, how to quantify the numbers of nanoparticles bound to plasma membrane, accumulated in cytosol, and entrapped in lysosomes, respectively, through stepwise, site-selective etching. Our results indicate that the chance for nanoparticles to escape from lysosomes is insensitive to the presence of targeting ligand although ligand-receptor binding has been documented as a critical factor in triggering internalization. Furthermore, the presence of serum proteins is shown to facilitate the binding of nanoparticles to plasma membrane lacking the specific receptor. Collectively, these findings confirm the potential of stepwise etching in quantitatively analyzing the sub-cellular distributions of nanoparticles uptaken by cells in an effort to optimize the therapeutic effect. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Endoplasmic Reticulum Export, Subcellular Distribution, and Fibril Formation by Pmel17 Require an Intact N-terminal Domain Junction*

    Science.gov (United States)

    Leonhardt, Ralf M.; Vigneron, Nathalie; Rahner, Christoph; Van den Eynde, Benoît J.; Cresswell, Peter

    2010-01-01

    Pmel17 is a melanocyte/melanoma-specific protein that subcellularly localizes to melanosomes, where it forms a fibrillar matrix that serves for the sequestration of potentially toxic reaction intermediates of melanin synthesis and deposition of the pigment. As a key factor in melanosomal biogenesis, understanding intracellular trafficking and processing of Pmel17 is of central importance to comprehend how these organelles are formed, how they mature, and how they function in the cell. Using a series of deletion and missense mutants of Pmel17, we are able to show that the integrity of the junction between the N-terminal region and the polycystic kidney disease-like domain is highly crucial for endoplasmic reticulum export, subcellular targeting, and fibril formation by Pmel17 and thus for establishing functional melanosomes. PMID:20231267

  16. Selenium assimilation and loss by an insect predator and its relationship to Se subcellular partitioning in two prey types

    International Nuclear Information System (INIS)

    Dubois, Maitee; Hare, Landis

    2009-01-01

    Subcellular selenium (Se) distributions in the oligochaete Tubifex tubifex and in the insect Chironomus riparius did not vary with Se exposure duration, which was consistent with the observations that the duration of prey Se exposure had little influence on either Se assimilation or loss by a predatory insect (the alderfly Sialis velata). However, these two prey types differed in how Se was distributed in their cells. Overall, the predator assimilated a mean of 66% of the Se present in its prey, which was similar to the mean percentage of Se in prey cells (62%) that was theoretically available for uptake (that is, Se in the protein and organelle fractions). Likewise, data for cadmium, nickel and thallium suggest that predictions of trace element transfer between prey and predator are facilitated by considering the subcellular partitioning of these contaminants in prey cells. - Selenium assimilation by a predatory aquatic insect depends on Se availability in the cells of its prey

  17. Phosphorylation-dependent trafficking of plasma membrane proteins in animal and plant cells.

    Science.gov (United States)

    Offringa, Remko; Huang, Fang

    2013-09-01

    In both unicellular and multicellular organisms, transmembrane (TM) proteins are sorted to and retained at specific membrane domains by endomembrane trafficking mechanisms that recognize sorting signals in the these proteins. The trafficking and distribution of plasma membrane (PM)-localized TM proteins (PM proteins), especially of those PM proteins that show an asymmetric distribution over the PM, has received much attention, as their proper PM localization is crucial for elementary signaling and transport processes, and defects in their localization often lead to severe disease symptoms or developmental defects. The subcellular localization of PM proteins is dynamically regulated by post-translational modifications, such as phosphorylation and ubiquitination. These modificaitons mostly occur on sorting signals that are located in the larger cytosolic domains of the cargo proteins. Here we review the effects of phosphorylation of PM proteins on their trafficking, and present the key examples from the animal field that have been subject to studies for already several decades, such as that of aquaporin 2 and the epidermal growth factor receptor. Our knowledge on cargo trafficking in plants is largely based on studies of the family of PIN FORMED (PIN) carriers that mediate the efflux of the plant hormone auxin. We will review what is known on the subcellular distribution and trafficking of PIN proteins, with a focus on how this is modulated by phosphorylation, and identify and discuss analogies and differences in trafficking with the well-studied animal examples. © 2013 Institute of Botany, Chinese Academy of Sciences.

  18. Mapping the subcellular distribution of biomolecules at the ultrastructural level by ion microscopy.

    Science.gov (United States)

    Galle, P; Escaig, F; Dantin, F; Zhang, L

    1996-05-01

    Analytical ion microscopy, a method proposed and developed in 1960 by Casting and Slodzian at the Orsay University (France), makes it possible to obtain easily and rapidly analytical images representing the distribution in a tissue section of elements or isotopes (beginning from the three isotopes of hydrogen until to transuranic elements), even when these elements or isotopes are at a trace concentration of 1 ppm or less. This method has been applied to study the subcellular distribution of different varieties of biomolecules. The subcellular location of these molecules can be easily determined when the molecules contain in their structures a specific atom such as fluorine, iodine, bromine or platinum, what is the case of many pharmaceutical drugs. In this situation, the distribution of these specific atoms can be considered as representative of the distribution of the corresponding molecule. In other cases, the molecules must be labelled with an isotope which may be either radioactive or stable. Recent developments in ion microscopy allow the obtention of their chemical images at ultra structural level. In this paper we present the results obtained with the prototype of a new Scanning Ion Microscope used for the study of the intracellular distribution of different varieties of molecules: glucocorticoids, estrogens, pharmaceutical drugs and pyrimidine analogues.

  19. The SubCons webserver: A user friendly web interface for state-of-the-art subcellular localization prediction.

    Science.gov (United States)

    Salvatore, M; Shu, N; Elofsson, A

    2018-01-01

    SubCons is a recently developed method that predicts the subcellular localization of a protein. It combines predictions from four predictors using a Random Forest classifier. Here, we present the user-friendly web-interface implementation of SubCons. Starting from a protein sequence, the server rapidly predicts the subcellular localizations of an individual protein. In addition, the server accepts the submission of sets of proteins either by uploading the files or programmatically by using command line WSDL API scripts. This makes SubCons ideal for proteome wide analyses allowing the user to scan a whole proteome in few days. From the web page, it is also possible to download precalculated predictions for several eukaryotic organisms. To evaluate the performance of SubCons we present a benchmark of LocTree3 and SubCons using two recent mass-spectrometry based datasets of mouse and drosophila proteins. The server is available at http://subcons.bioinfo.se/. © 2017 The Protein Society.

  20. Location, location, location: Extracting location value from house prices

    OpenAIRE

    Kolbe, Jens; Schulz, Rainer; Wersing, Martin; Werwatz, Axel

    2012-01-01

    The price for a single-family house depends both on the characteristics of the building and on its location. We propose a novel semiparametric method to extract location values from house prices. After splitting house prices into building and land components, location values are estimated with adaptive weight smoothing. The adaptive estimator requires neither strong smoothness assumptions nor local symmetry. We apply the method to house transactions from Berlin, Germany. The estimated surface...

  1. Tissue and subcellular localizations of 3H-cyclosporine A in mice

    International Nuclear Information System (INIS)

    Baeckman, L.; Brandt, I.; Appelkvist, E.-L.; Dallner, G.

    1988-01-01

    The tissue and subcellular localizations of 3 H-cyclosporine A after administration to mice were determined with whole-body autoradiography and scintillation counting of lipid extracts of tissues and subcellular fractions. The radioactivity was widely distributed in the body and the pattern of distribution after oral or parenteral administration was the same, except that tissue levels were generatlly lower after oral administration. Pretreatment of the animals with a diet containing cyclosporine A for 30 days before the injection of radioactive cyclosporine A did not change the pattern of distribution substantially. No significant radioactivity was found in the central nervous system, except for the choroidal plexus and the area postrema region of the brain. In pregnant mice no passage of radioactivity from the placentas to fetuses was observed after a single injection. 3 H-cyclosporine A and/or its metabolites showed a high affinity for the lympho-myeloid tissues, with a marked long-term retention in bone marrow and lymph nodes. There was massive excretion in the intestinal tract after parenteral administration, and the liver, bile, pancreas and salivary glands contained high levels of radioactivity. In the kidney radioactivity was confined to the outer zone of the outer kidney medulla. In liver homogenates no quantitatively significant binding of 3 H-cyclosporine A and/or its metabolites to cellular molecules such as proteins, DNA, phospho- or neutral lipids was found. After lipid extraction with organic solvents, almost all radioactivity was recovered in the organic phase. (author)

  2. The SlZRT1 Gene Encodes a Plasma Membrane-Located ZIP (Zrt-, Irt-Like Protein Transporter in the Ectomycorrhizal Fungus Suillus luteus

    Directory of Open Access Journals (Sweden)

    Laura Coninx

    2017-11-01

    Full Text Available Zinc (Zn is an essential micronutrient but may become toxic when present in excess. In Zn-contaminated environments, trees can be protected from Zn toxicity by their root-associated micro-organisms, in particular ectomycorrhizal fungi. The mechanisms of cellular Zn homeostasis in ectomycorrhizal fungi and their contribution to the host tree’s Zn status are however not yet fully understood. The aim of this study was to identify and characterize transporters involved in Zn uptake in the ectomycorrhizal fungus Suillus luteus, a cosmopolitan pine mycobiont. Zn uptake in fungi is known to be predominantly governed by members of the ZIP (Zrt/IrtT-like protein family of Zn transporters. Four ZIP transporter encoding genes were identified in the S. luteus genome. By in silico and phylogenetic analysis, one of these proteins, SlZRT1, was predicted to be a plasma membrane located Zn importer. Heterologous expression in yeast confirmed the predicted function and localization of the protein. A gene expression analysis via RT-qPCR was performed in S. luteus to establish whether SlZRT1 expression is affected by external Zn concentrations. SlZRT1 transcripts accumulated almost immediately, though transiently upon growth in the absence of Zn. Exposure to elevated concentrations of Zn resulted in a significant reduction of SlZRT1 transcripts within the first hour after initiation of the exposure. Altogether, the data support a role as cellular Zn importer for SlZRT1 and indicate a key role in cellular Zn uptake of S. luteus. Further research is needed to understand the eventual contribution of SlZRT1 to the Zn status of the host plant.

  3. The SlZRT1 Gene Encodes a Plasma Membrane-Located ZIP (Zrt-, Irt-Like Protein) Transporter in the Ectomycorrhizal Fungus Suillus luteus.

    Science.gov (United States)

    Coninx, Laura; Thoonen, Anneleen; Slenders, Eli; Morin, Emmanuelle; Arnauts, Natascha; Op De Beeck, Michiel; Kohler, Annegret; Ruytinx, Joske; Colpaert, Jan V

    2017-01-01

    Zinc (Zn) is an essential micronutrient but may become toxic when present in excess. In Zn-contaminated environments, trees can be protected from Zn toxicity by their root-associated micro-organisms, in particular ectomycorrhizal fungi. The mechanisms of cellular Zn homeostasis in ectomycorrhizal fungi and their contribution to the host tree's Zn status are however not yet fully understood. The aim of this study was to identify and characterize transporters involved in Zn uptake in the ectomycorrhizal fungus Suillus luteus , a cosmopolitan pine mycobiont. Zn uptake in fungi is known to be predominantly governed by members of the ZIP (Zrt/IrtT-like protein) family of Zn transporters. Four ZIP transporter encoding genes were identified in the S. luteus genome. By in silico and phylogenetic analysis, one of these proteins, SlZRT1, was predicted to be a plasma membrane located Zn importer. Heterologous expression in yeast confirmed the predicted function and localization of the protein. A gene expression analysis via RT-qPCR was performed in S. luteus to establish whether SlZRT1 expression is affected by external Zn concentrations. SlZRT1 transcripts accumulated almost immediately, though transiently upon growth in the absence of Zn. Exposure to elevated concentrations of Zn resulted in a significant reduction of SlZRT1 transcripts within the first hour after initiation of the exposure. Altogether, the data support a role as cellular Zn importer for SlZRT1 and indicate a key role in cellular Zn uptake of S. luteus . Further research is needed to understand the eventual contribution of SlZRT1 to the Zn status of the host plant.

  4. Biodynamics of copper oxide nanoparticles and copper ions in an oligochaete - Part II: Subcellular distribution following sediment exposure

    Energy Technology Data Exchange (ETDEWEB)

    Thit, Amalie, E-mail: athitj@ruc.dk [U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025 (United States); Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde DK-4000 (Denmark); Ramskov, Tina, E-mail: tramskov@hotmail.com [U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025 (United States); Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde DK-4000 (Denmark); Croteau, Marie-Noële, E-mail: mcroteau@usgs.gov [Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde DK-4000 (Denmark); Selck, Henriette [U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025 (United States); Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde DK-4000 (Denmark)

    2016-11-15

    Highlights: • L. variegatus was exposed to sediment spiked with either aqueous Cu or nanoparticulate CuO. • Both aqueous and nanoparticulate Cu were marginally accumulated by L. variegatus. • Elimination of Cu accumulated from both forms was limited. • The subcellular distribution of accumulated Cu varied between Cu forms. • The use of a tracer, greater exposure concentration and duration are recommended. - Abstract: The use and likely incidental release of metal nanoparticles (NPs) is steadily increasing. Despite the increasing amount of published literature on metal NP toxicity in the aquatic environment, very little is known about the biological fate of NPs after sediment exposures. Here, we compare the bioavailability and subcellular distribution of copper oxide (CuO) NPs and aqueous Cu (Cu-Aq) in the sediment-dwelling worm Lumbriculus variegatus. Ten days (d) sediment exposure resulted in marginal Cu bioaccumulation in L. variegatus for both forms of Cu. Bioaccumulation was detected because isotopically enriched {sup 65}Cu was used as a tracer. Neither burrowing behavior or survival was affected by the exposure. Once incorporated into tissue, Cu loss was negligible over 10 d of elimination in clean sediment (Cu elimination rate constants were not different from zero). With the exception of day 10, differences in bioaccumulation and subcellular distribution between Cu forms were either not detectable or marginal. After 10 d of exposure to Cu-Aq, the accumulated Cu was primarily partitioned in the subcellular fraction containing metallothionein-like proteins (MTLP, ≈40%) and cellular debris (CD, ≈30%). Cu concentrations in these fractions were significantly higher than in controls. For worms exposed to CuO NPs for 10 d, most of the accumulated Cu was partitioned in the CD fraction (≈40%), which was the only subcellular fraction where the Cu concentration was significantly higher than for the control group. Our results indicate that L. variegatus

  5. SMYD3 interacts with HTLV-1 Tax and regulates subcellular localization of Tax.

    Science.gov (United States)

    Yamamoto, Keiyu; Ishida, Takaomi; Nakano, Kazumi; Yamagishi, Makoto; Yamochi, Tadanori; Tanaka, Yuetsu; Furukawa, Yoichi; Nakamura, Yusuke; Watanabe, Toshiki

    2011-01-01

    HTLV-1 Tax deregulates signal transduction pathways, transcription of genes, and cell cycle regulation of host cells, which is mainly mediated by its protein-protein interactions with host cellular factors. We previously reported an interaction of Tax with a histone methyltransferase (HMTase), SUV39H1. As the interaction was mediated by the SUV39H1 SET domain that is shared among HMTases, we examined the possibility of Tax interaction with another HMTase, SMYD3, which methylates histone H3 lysine 4 and activates transcription of genes, and studied the functional effects. Expression of endogenous SMYD3 in T cell lines and primary T cells was confirmed by immunoblotting analysis. Co-immuno-precipitaion assays and in vitro pull-down assay indicated interaction between Tax and SMYD3. The interaction was largely dependent on the C-terminal 180 amino acids of SMYD3, whereas the interacting domain of Tax was not clearly defined, although the N-terminal 108 amino acids were dispensable for the interaction. In the cotransfected cells, colocalization of Tax and SMYD3 was indicated in the cytoplasm or nuclei. Studies using mutants of Tax and SMYD3 suggested that SMYD3 dominates the subcellular localization of Tax. Reporter gene assays showed that nuclear factor-κB activation promoted by cytoplasmic Tax was enhanced by the presence of SMYD3, and attenuated by shRNA-mediated knockdown of SMYD3, suggesting an increased level of Tax localization in the cytoplasm by SMYD3. Our study revealed for the first time Tax-SMYD3 direct interaction, as well as apparent tethering of Tax by SMYD3, influencing the subcellular localization of Tax. Results suggested that SMYD3-mediated nucleocytoplasmic shuttling of Tax provides one base for the pleiotropic effects of Tax, which are mediated by the interaction of cellular proteins localized in the cytoplasm or nucleus. © 2010 Japanese Cancer Association.

  6. Pathways and Subcellular Compartmentation of NAD Biosynthesis in Human Cells

    Science.gov (United States)

    Nikiforov, Andrey; Dölle, Christian; Niere, Marc; Ziegler, Mathias

    2011-01-01

    NAD is a vital redox carrier, and its degradation is a key element of important regulatory pathways. NAD-mediated functions are compartmentalized and have to be fueled by specific biosynthetic routes. However, little is known about the different pathways, their subcellular distribution, and regulation in human cells. In particular, the route(s) to generate mitochondrial NAD, the largest subcellular pool, is still unknown. To visualize organellar NAD changes in cells, we targeted poly(ADP-ribose) polymerase activity into the mitochondrial matrix. This activity synthesized immunodetectable poly(ADP-ribose) depending on mitochondrial NAD availability. Based on this novel detector system, detailed subcellular enzyme localizations, and pharmacological inhibitors, we identified extracellular NAD precursors, their cytosolic conversions, and the pathway of mitochondrial NAD generation. Our results demonstrate that, besides nicotinamide and nicotinic acid, only the corresponding nucleosides readily enter the cells. Nucleotides (e.g. NAD and NMN) undergo extracellular degradation resulting in the formation of permeable precursors. These precursors can all be converted to cytosolic and mitochondrial NAD. For mitochondrial NAD synthesis, precursors are converted to NMN in the cytosol. When taken up into the organelles, NMN (together with ATP) serves as substrate of NMNAT3 to form NAD. NMNAT3 was conclusively localized to the mitochondrial matrix and is the only known enzyme of NAD synthesis residing within these organelles. We thus present a comprehensive dissection of mammalian NAD biosynthesis, the groundwork to understand regulation of NAD-mediated processes, and the organismal homeostasis of this fundamental molecule. PMID:21504897

  7. Single-cell analysis of pyroptosis dynamics reveals conserved GSDMD-mediated subcellular events that precede plasma membrane rupture.

    Science.gov (United States)

    de Vasconcelos, Nathalia M; Van Opdenbosch, Nina; Van Gorp, Hanne; Parthoens, Eef; Lamkanfi, Mohamed

    2018-04-17

    Pyroptosis is rapidly emerging as a mechanism of anti-microbial host defense, and of extracellular release of the inflammasome-dependent cytokines interleukin (IL)-1β and IL-18, which contributes to autoinflammatory pathology. Caspases 1, 4, 5 and 11 trigger this regulated form of necrosis by cleaving the pyroptosis effector gasdermin D (GSDMD), causing its pore-forming amino-terminal domain to oligomerize and perforate the plasma membrane. However, the subcellular events that precede pyroptotic cell lysis are ill defined. In this study, we triggered primary macrophages to undergo pyroptosis from three inflammasome types and recorded their dynamics and morphology using high-resolution live-cell spinning disk confocal laser microscopy. Based on quantitative analysis of single-cell subcellular events, we propose a model of pyroptotic cell disintegration that is initiated by opening of GSDMD-dependent ion channels or pores that are more restrictive than recently proposed GSDMD pores, followed by osmotic cell swelling, commitment of mitochondria and other membrane-bound organelles prior to sudden rupture of the plasma membrane and full permeability to intracellular proteins. This study provides a dynamic framework for understanding cellular changes that occur during pyroptosis, and charts a chronological sequence of GSDMD-mediated subcellular events that define pyroptotic cell death at the single-cell level.

  8. Library Locations

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Carnegie Library of Pittsburgh locations including address, coordinates, phone number, square footage, and standard operating hours. The map below does not display...

  9. Acetylation dynamics of human nuclear proteins during the ionizing radiation-induced DNA damage response

    DEFF Research Database (Denmark)

    Bennetzen, Martin; Andersen, J.S.; Lasen, D.H.

    2013-01-01

    Genotoxic insults, such as ionizing radiation (IR), cause DNA damage that evokes a multifaceted cellular DNA damage response (DDR). DNA damage signaling events that control protein activity, subcellular localization, DNA binding, protein-protein interactions, etc. rely heavily on time...

  10. A calcium-dependent protein kinase can inhibit a calmodulin-stimulated Ca2+ pump (ACA2) located in the endoplasmic reticulum of Arabidopsis

    Science.gov (United States)

    Hwang, I.; Sze, H.; Harper, J. F.; Evans, M. L. (Principal Investigator)

    2000-01-01

    The magnitude and duration of a cytosolic Ca(2+) release can potentially be altered by changing the rate of Ca(2+) efflux. In plant cells, Ca(2+) efflux from the cytoplasm is mediated by H(+)/Ca(2+)-antiporters and two types of Ca(2+)-ATPases. ACA2 was recently identified as a calmodulin-regulated Ca(2+)-pump located in the endoplasmic reticulum. Here, we show that phosphorylation of its N-terminal regulatory domain by a Ca(2+)-dependent protein kinase (CDPK isoform CPK1), inhibits both basal activity ( approximately 10%) and calmodulin stimulation ( approximately 75%), as shown by Ca(2+)-transport assays with recombinant enzyme expressed in yeast. A CDPK phosphorylation site was mapped to Ser(45) near a calmodulin binding site, using a fusion protein containing the N-terminal domain as an in vitro substrate for a recombinant CPK1. In a full-length enzyme, an Ala substitution for Ser(45) (S45/A) completely blocked the observed CDPK inhibition of both basal and calmodulin-stimulated activities. An Asp substitution (S45/D) mimicked phosphoinhibition, indicating that a negative charge at this position is sufficient to account for phosphoinhibition. Interestingly, prior binding of calmodulin blocked phosphorylation. This suggests that, once ACA2 binds calmodulin, its activation state becomes resistant to phosphoinhibition. These results support the hypothesis that ACA2 activity is regulated as the balance between the initial kinetics of calmodulin stimulation and CDPK inhibition, providing an example in plants for a potential point of crosstalk between two different Ca(2+)-signaling pathways.

  11. Occurrence of protein disulfide bonds in different domains of life: a comparison of proteins from the Protein Data Bank.

    Science.gov (United States)

    Bošnjak, I; Bojović, V; Šegvić-Bubić, T; Bielen, A

    2014-03-01

    Disulfide bonds (SS bonds) are important post-translational modifications of proteins. They stabilize a three-dimensional (3D) structure (structural SS bonds) and also have the catalytic or regulatory functions (redox-active SS bonds). Although SS bonds are present in all groups of organisms, no comparative analyses of their frequency in proteins from different domains of life have been made to date. Using the Protein Data Bank, the number and subcellular locations of SS bonds in Archaea, Bacteria and Eukarya have been compared. Approximately three times higher frequency of proteins with SS bonds in eukaryotic secretory organelles (e.g. endoplasmic reticulum) than in bacterial periplasmic/secretory pathways was calculated. Protein length also affects the SS bond frequency: the average number of SS bonds is positively correlated with the length for longer proteins (>200 amino acids), while for the shorter and less stable proteins (proteins (250-350 amino acids) indicated a high number of SS bonds only in Archaea which could be explained by the need for additional protein stabilization in hyperthermophiles. The results emphasize higher capacity for the SS bond formation and isomerization in Eukarya when compared with Archaea and Bacteria.

  12. Differential subcellular localization of insulin receptor substrates depends on C-terminal regions and importin β

    International Nuclear Information System (INIS)

    Kabuta, Tomohiro; Take, Kazumi; Kabuta, Chihana; Hakuno, Fumihiko; Takahashi, Shin-Ichiro

    2008-01-01

    Insulin receptor substrates (IRSs) play essential roles in signal transduction of insulin and insulin-like growth factors. Previously, we showed that IRS-3 is localized to the nucleus as well as the cytosol, while IRS-1 and 2 are mainly localized to the cytoplasm. In the present study, we found that importin β directly interacts with IRS-3 and is able to mediate nuclear transport of IRS-3. Importin β interacted with the pleckstrin homology domain, the phosphotyrosine binding domain and the C-terminal region of IRS-3; indeed all of these fragments exhibited predominant nuclear localization. By contrast, almost no interaction of importin β with IRS-1 and -2 was observed, and their C-terminal regions displayed discrete spotty images in the cytosol. In addition, using chimeric proteins between IRS-1 and IRS-3, we revealed that the C-terminal regions are the main determinants of the differing subcellular localizations of IRS-1 and IRS-3.

  13. The subcellular localization of natural 210Po in the hepatopancreas of the rock lobster (Jasus lalandii)

    International Nuclear Information System (INIS)

    Heyraud, M.; Dowdle, E.B.; Cherry, R.D.

    1987-01-01

    The subcellular localization of the naturally occurring nuclide 210 Po in the hepatopancreas of the South African rock lobster, Jasus lalandii, has been studied using centrifugation, ultrafiltration and chromatography. Just over half of the 210 Po was found to be associated with a component in the microsomal pellet. Most of the 210 Po was tightly bound to a component of high molecular mass. Dissociation of the 210 Po from this component required incubation with sulphydryl-reducing reagents, after which the 210 Po appeared to associate with a fraction having a molecular mass of 1500 daltons or less. A search for negatively-charged, hydrophobic, sulphur-containing membrane proteins which bind 210 Po is suggested. (author)

  14. Subcellular localization of natural /sup 210/Po in the hepatopancreas of the rock lobster (Jasus lalandii)

    Energy Technology Data Exchange (ETDEWEB)

    Heyraud, M; Dowdle, E B; Cherry, R D

    1987-01-01

    The subcellular localization of the naturally occurring nuclide /sup 210/Po in the hepatopancreas of the South African rock lobster, Jasus lalandii, has been studied using centrifugation, ultrafiltration and chromatography. Just over half of the /sup 210/Po was found to be associated with a component in the microsomal pellet. Most of the /sup 210/Po was tightly bound to a component of high molecular mass. Dissociation of the /sup 210/Po from this component required incubation with sulphydryl-reducing reagents, after which the /sup 210/Po appeared to associate with a fraction having a molecular mass of 1500 daltons or less. A search for negatively-charged, hydrophobic, sulphur-containing membrane proteins which bind /sup 210/Po is suggested.

  15. Subcellular localization of glycolytic enzymes and characterization of intermediary metabolism of Trypanosoma rangeli.

    Science.gov (United States)

    Rondón-Mercado, Rocío; Acosta, Héctor; Cáceres, Ana J; Quiñones, Wilfredo; Concepción, Juan Luis

    2017-09-01

    Trypanosoma rangeli is a hemoflagellate protist that infects wild and domestic mammals as well as humans in Central and South America. Although this parasite is not pathogenic for human, it is being studied because it shares with Trypanosoma cruzi, the etiological agent of Chagas' disease, biological characteristics, geographic distribution, vectors and vertebrate hosts. Several metabolic studies have been performed with T. cruzi epimastigotes, however little is known about the metabolism of T. rangeli. In this work we present the subcellular distribution of the T. rangeli enzymes responsible for the conversion of glucose to pyruvate, as determined by epifluorescense immunomicroscopy and subcellular fractionation involving either selective membrane permeabilization with digitonin or differential and isopycnic centrifugation. We found that in T. rangeli epimastigotes the first six enzymes of the glycolytic pathway, involved in the conversion of glucose to 1,3-bisphosphoglycerate are located within glycosomes, while the last four steps occur in the cytosol. In contrast with T. cruzi, where three isoenzymes (one cytosolic and two glycosomal) of phosphoglycerate kinase are expressed simultaneously, only one enzyme with this activity is detected in T. rangeli epimastigotes, in the cytosol. Consistent with this latter result, we found enzymes involved in auxiliary pathways to glycolysis needed to maintain adenine nucleotide and redox balances within glycosomes such as phosphoenolpyruvate carboxykinase, malate dehydrogenase, fumarate reductase, pyruvate phosphate dikinase and glycerol-3-phosphate dehydrogenase. Glucokinase, galactokinase and the first enzyme of the pentose-phosphate pathway, glucose-6-phosphate dehydrogenase, were also located inside glycosomes. Furthermore, we demonstrate that T. rangeli epimastigotes growing in LIT medium only consume glucose and do not excrete ammonium; moreover, they are unable to survive in partially-depleted glucose medium. The

  16. Subcellular partitioning profiles and metallothionein levels in indigenous clams Moerella iridescens from a metal-impacted coastal bay

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zaosheng, E-mail: zswang@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Boulevard, Xiamen 361021 (China); State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Feng, Chenglian; Ye, Chun [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Wang, Youshao [State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301 (China); Yan, Changzhou, E-mail: czyan@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Boulevard, Xiamen 361021 (China); Li, Rui; Yan, Yijun; Chi, Qiaoqiao [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Boulevard, Xiamen 361021 (China)

    2016-07-15

    Highlights: • Subcellular partitioning profile of metals were investigated in biomonitor organism. • Cu, Zn and Cd levels in main fraction of HSP increase along accumulation gradients. • Despite MTs as the major binding pool, detoxification of Cd and Pb was incomplete. • Induced MTs were sequentially correlated with Cu, Zn and Cd levels in HSP fraction. • Intracellular metal fates highlighted the metabolic availability within organism. - Abstract: In this study, the effect of environmental metal exposure on the accumulation and subcellular distribution of metals in the digestive gland of clams with special emphasis on metallothioneins (MTs) was investigated. Specimens of indigenous Moerella iridescens were collected from different natural habitats in Maluan Bay (China), characterized by varying levels of metal contamination. The digestive glands were excised, homogenized and six subcellular fractions were separated by differential centrifugation procedures and analyzed for their Cu, Zn, Cd and Pb contents. MTs were quantified independently by spectrophotometric measurements of thiols. Site-specific differences were observed in total metal concentrations in the tissues, correlating well with variable environmental metal concentrations and reflecting the gradient trends in metal contamination. Concentrations of the non-essential Cd and Pb were more responsive to environmental exposure gradients than were tissue concentrations of the essential metals, Cu and Zn. Subcellular partitioning profiles for Cu, Zn and Cd were relatively similar, with the heat-stable protein (HSP) fraction as the dominant metal-binding compartment, whereas for Pb this fraction was much less important. The variations in proportions and concentrations of metals in this fraction along with the metal bioaccumulation gradients suggested that the induced MTs play an important role in metal homeostasis and detoxification for M. iridescens in the metal-contaminated bay. Nevertheless

  17. Visualizing Escherichia coli sub-cellular structure using sparse deconvolution Spatial Light Interference Tomography.

    Directory of Open Access Journals (Sweden)

    Mustafa Mir

    Full Text Available Studying the 3D sub-cellular structure of living cells is essential to our understanding of biological function. However, tomographic imaging of live cells is challenging mainly because they are transparent, i.e., weakly scattering structures. Therefore, this type of imaging has been implemented largely using fluorescence techniques. While confocal fluorescence imaging is a common approach to achieve sectioning, it requires fluorescence probes that are often harmful to the living specimen. On the other hand, by using the intrinsic contrast of the structures it is possible to study living cells in a non-invasive manner. One method that provides high-resolution quantitative information about nanoscale structures is a broadband interferometric technique known as Spatial Light Interference Microscopy (SLIM. In addition to rendering quantitative phase information, when combined with a high numerical aperture objective, SLIM also provides excellent depth sectioning capabilities. However, like in all linear optical systems, SLIM's resolution is limited by diffraction. Here we present a novel 3D field deconvolution algorithm that exploits the sparsity of phase images and renders images with resolution beyond the diffraction limit. We employ this label-free method, called deconvolution Spatial Light Interference Tomography (dSLIT, to visualize coiled sub-cellular structures in E. coli cells which are most likely the cytoskeletal MreB protein and the division site regulating MinCDE proteins. Previously these structures have only been observed using specialized strains and plasmids and fluorescence techniques. Our results indicate that dSLIT can be employed to study such structures in a practical and non-invasive manner.

  18. Gene Locater

    DEFF Research Database (Denmark)

    Anwar, Muhammad Zohaib; Sehar, Anoosha; Rehman, Inayat-Ur

    2012-01-01

    software's for calculating recombination frequency is mostly limited to the range and flexibility of this type of analysis. GENE LOCATER is a fully customizable program for calculating recombination frequency, written in JAVA. Through an easy-to-use interface, GENE LOCATOR allows users a high degree...... of flexibility in calculating genetic linkage and displaying linkage group. Among other features, this software enables user to identify linkage groups with output visualized graphically. The program calculates interference and coefficient of coincidence with elevated accuracy in sample datasets. AVAILABILITY...

  19. Dynamic neuroanatomy at subcellular resolution in the zebrafish.

    Science.gov (United States)

    Faucherre, Adèle; López-Schier, Hernán

    2014-01-01

    Genetic means to visualize and manipulate neuronal circuits in the intact animal have revolutionized neurobiology. "Dynamic neuroanatomy" defines a range of approaches aimed at quantifying the architecture or subcellular organization of neurons over time during their development, regeneration, or degeneration. A general feature of these approaches is their reliance on the optical isolation of defined neurons in toto by genetically expressing markers in one or few cells. Here we use the afferent neurons of the lateral line as an example to describe a simple method for the dynamic neuroanatomical study of axon terminals in the zebrafish by laser-scanning confocal microscopy.

  20. Aberrant location of inhibitory synaptic marker proteins in the hippocampus of dystrophin-deficient mice: implications for cognitive impairment in duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Elżbieta Krasowska

    Full Text Available Duchenne muscular dystrophy (DMD is a neuromuscular disease that arises from mutations in the dystrophin-encoding gene. Apart from muscle pathology, cognitive impairment, primarily of developmental origin, is also a significant component of the disorder. Convergent lines of evidence point to an important role for dystrophin in regulating the molecular machinery of central synapses. The clustering of neurotransmitter receptors at inhibitory synapses, thus impacting on synaptic transmission, is of particular significance. However, less is known about the role of dystrophin in influencing the precise expression patterns of proteins located within the pre- and postsynaptic elements of inhibitory synapses. To this end, we exploited molecular markers of inhibitory synapses, interneurons and dystrophin-deficient mouse models to explore the role of dystrophin in determining the stereotypical patterning of inhibitory connectivity within the cellular networks of the hippocampus CA1 region. In tissue from wild-type (WT mice, immunoreactivity of neuroligin2 (NL2, an adhesion molecule expressed exclusively in postsynaptic elements of inhibitory synapses, and the vesicular GABA transporter (VGAT, a marker of GABAergic presynaptic elements, were predictably enriched in strata pyramidale and lacunosum moleculare. In acute contrast, NL2 and VGAT immunoreactivity was relatively evenly distributed across all CA1 layers in dystrophin-deficient mice. Similar changes were evident with the cannabinoid receptor 1, vesicular glutamate transporter 3, parvalbumin, somatostatin and the GABAA receptor alpha1 subunit. The data show that in the absence of dystrophin, there is a rearrangement of the molecular machinery, which underlies the precise spatio-temporal pattern of GABAergic synaptic transmission within the CA1 sub-field of the hippocampus.

  1. Dosimetric characterization of radionuclides for systemic tumor therapy: Influence of particle range, photon emission, and subcellular distribution

    International Nuclear Information System (INIS)

    Uusijaervi, Helena; Bernhardt, Peter; Ericsson, Thomas; Forssell-Aronsson, Eva

    2006-01-01

    Various radionuclides have been proposed for systemic tumor therapy. However, in most dosimetric analysis of proposed radionuclides the charged particles are taken into consideration while the potential photons are ignored. The photons will cause undesirable irradiation of normal tissue, and increase the probability of toxicity in, e.g., the bone marrow. The aim of this study was to investigate the dosimetric properties according to particle range, photon emission, and subcellular radionuclide distribution, of a selection of radionuclides used or proposed for radionuclide therapy, and to investigate the possibility of dividing radionuclides into groups according to their dosimetric properties. The absorbed dose rate to the tumors divided by the absorbed dose rate to the normal tissue (TND) was estimated for different tumor sizes in a mathematical model of the human body. The body was simulated as a 70-kg ellipsoid and the tumors as spheres of different sizes (1 ng-100 g). The radionuclides were either assumed to be uniformly distributed throughout the entire tumor and normal tissue, or located in the nucleus or the cytoplasm of the tumor cells and on the cell membrane of the normal cells. Fifty-nine radionuclides were studied together with monoenergetic electrons, positrons, and alpha particles. The tumor and normal tissue were assumed to be of water density. The activity concentration ratio between the tumor and normal tissue was assumed to be 25. The radionuclides emitting low-energy electrons combined with a low photon contribution, and the alpha emitters showed high TND values for most tumor sizes. Electrons with higher energy gave reduced TND values for small tumors, while a higher photon contribution reduced the TND values for large tumors. Radionuclides with high photon contributions showed low TND value for all tumor sizes studied. The radionuclides studied could be divided into four main groups according to their TND values: beta emitters, Auger electron

  2. Retention and subcellular distribution of 67Ga in normal organs

    International Nuclear Information System (INIS)

    Ando, A.; Ando, I.; Hiraki, T.

    1986-01-01

    Using normal rats, retention values and subcellular distribution of 67 Ga in each organ were investigated. At 10 min after administration of 67 Ga-citrate the retention value of 67 Ga in blood was 6.77% dose/g, and this value decreased with time. The values for skeletal muscle, lung, pancreas, adrenal, heart muscle, brain, small intestine, large intestine and spinal cord were the highest at 10 min after administration, and they decreased with time. Conversely this value in bone increased until 10 days after injection. But in the liver, kidney, and stomach, these values increased with time after administration and were highest 24 h or 48 h after injection. After that, they decreased with time. The value in spleen reached a plateau 48 h after administration, and hardly varied for 10 days. From the results of subcellular fractionation, it was deduced that lysosome plays quite an important role in the concentration of 67 Ga in small intestine, stomach, lung, kidney and pancreas; a lesser role in its concentration in heart muscle, and hardly any role in the 67 Ga accumulation in skeletal muscle. In spleen, the contents in nuclear, mitochrondrial, microsomal, and supernatant fractions all contributed to the accumulation of 67 Ga. (orig.) [de

  3. Nanodiamond Landmarks for Subcellular Multimodal Optical and Electron Imaging

    Science.gov (United States)

    Zurbuchen, Mark A.; Lake, Michael P.; Kohan, Sirus A.; Leung, Belinda; Bouchard, Louis-S.

    2013-01-01

    There is a growing need for biolabels that can be used in both optical and electron microscopies, are non-cytotoxic, and do not photobleach. Such biolabels could enable targeted nanoscale imaging of sub-cellular structures, and help to establish correlations between conjugation-delivered biomolecules and function. Here we demonstrate a sub-cellular multi-modal imaging methodology that enables localization of inert particulate probes, consisting of nanodiamonds having fluorescent nitrogen-vacancy centers. These are functionalized to target specific structures, and are observable by both optical and electron microscopies. Nanodiamonds targeted to the nuclear pore complex are rapidly localized in electron-microscopy diffraction mode to enable “zooming-in” to regions of interest for detailed structural investigations. Optical microscopies reveal nanodiamonds for in-vitro tracking or uptake-confirmation. The approach is general, works down to the single nanodiamond level, and can leverage the unique capabilities of nanodiamonds, such as biocompatibility, sensitive magnetometry, and gene and drug delivery. PMID:24036840

  4. Characterization and subcellular compartmentation of recombinant 4-hydroxyphenylpyruvate dioxygenase from Arabidopsis in transgenic tobacco.

    Science.gov (United States)

    Garcia, I; Rodgers, M; Pepin, R; Hsieh, T F; Matringe, M

    1999-04-01

    4-Hydroxyphenylpyruvate dioxygenase (4HPPD) catalyzes the formation of homogentisate (2,5-dihydroxyphenylacetate) from p-hydroxyphenylpyruvate and molecular oxygen. In plants this enzyme activity is involved in two distinct metabolic processes, the biosynthesis of prenylquinones and the catabolism of tyrosine. We report here the molecular and biochemical characterization of an Arabidopsis 4HPPD and the compartmentation of the recombinant protein in chlorophyllous tissues. We isolated a 1508-bp cDNA with one large open reading frame of 1338 bp. Southern analysis strongly suggested that this Arabidopsis 4HPPD is encoded by a single-copy gene. We investigated the biochemical characteristics of this 4HPPD by overproducing the recombinant protein in Escherichia coli JM105. The subcellular localization of the recombinant 4HPPD in chlorophyllous tissues was examined by overexpressing its complete coding sequence in transgenic tobacco (Nicotiana tabacum), using Agrobacterium tumefaciens transformation. We performed western analyses for the immunodetection of protein extracts from purified chloroplasts and total leaf extracts and for the immunocytochemistry on tissue sections. These analyses clearly revealed that 4HPPD was confined to the cytosol compartment, not targeted to the chloroplast. Western analyses confirmed the presence of a cytosolic form of 4HPPD in cultured green Arabidopsis cells.

  5. Trophic transfer of trace metals: Subcellular compartmentalization in a polychaete and assimilation by a decapod crustacean

    Science.gov (United States)

    Rainbow, P.S.; Poirier, L.; Smith, B.D.; Brix, K.V.; Luoma, S.N.

    2006-01-01

    The chemical form of accumulated trace metal in prey is important in controlling the bioavailataility of dietary metal to a predator. This study investigated the trophic transfer of radiolabelled Ag, Cd and Zn from the polychaete worm Nereis diversicolor to the decapod crustacean Palaemonetes varians. We used 2 populations of worms with different proportions of accumulated metals in different subcellular fractions as prey, and loaded the worms with radiolabelled metals either from sediment or from solution. Accumulated radiolabelled metals were fractionated into 5 components : metal-rich granules (MRG), cellular debris, organelles, metallothionein-like proteins (MTLP), and other (heat-sensitive) proteins (HSP). Assimilation efficiencies (AE) of the metals by P. varians were measured from the 4 categories of prey (i.e. 2 populations, radiolabelled from sediment or solution). There were significant differences for each metal between the AEs from the different prey categories, confirming that origin of prey and route of uptake of accumulated trace metal will cause intraspecific differences in subsequent metal assimilation. Correlations were sought between AEs and selected fractions or combinations of fractions of metals in the prey-MRG, Trophically Available Metal (TAM = MTLP + HSP + organelles) and total protein (MTLP + HSP). TAM explained 28% of the variance in AEs for Ag, but no consistent relationships emerged between AEs and TAM or total protein when the metals were considered separately. AEs did, however, show significant positive regressions with both TAM and total protein when the 3 metals were considered together, explaining only about 21 % of the variance in each case. A significant negative relationship was observed between MRG and AE for all metals combined. The predator (P. varians) can assimilate dietary metal from a range of the fractions binding metals in the prey (N. diversicolor), with different assimilation efficiencies summated across these

  6. Fluorescence resonance energy transfer (FRET-based subcellular visualization of pathogen-induced host receptor signaling

    Directory of Open Access Journals (Sweden)

    Zimmermann Timo

    2009-11-01

    Full Text Available Abstract Background Bacteria-triggered signaling events in infected host cells are key elements in shaping the host response to pathogens. Within the eukaryotic cell, signaling complexes are spatially organized. However, the investigation of protein-protein interactions triggered by bacterial infection in the cellular context is technically challenging. Here, we provide a methodological approach to exploit fluorescence resonance energy transfer (FRET to visualize pathogen-initiated signaling events in human cells. Results Live-cell microscopy revealed the transient recruitment of the Src family tyrosine kinase Hck upon bacterial engagement of the receptor carcinoembryonic antigen-related cell adhesion molecule 3 (CEACAM3. In cells expressing a CEACAM3 variant lacking the cytoplasmic domain, the Src homology 2 (SH2 domain of Hck (Hck-SH2 was not recruited, even though bacteria still bound to the receptor. FRET measurements on the basis of whole cell lysates revealed intimate binding between Hck-SH2 (using enhanced yellow fluorescent protein (YPet-Hck-SH2 and the tyrosine-phosphorylated enhanced cyan fluorescent protein-labeled cytoplasmic domain of wild-type CEACAM3 (CEACAM3 WT-CyPet and a flow cytometry-based FRET approach verified this association in intact cells. Using confocal microscopy and acceptor photobleaching, FRET between Hck-SH2 and CEACAM3 was localized to the sites of bacteria-host cell contact. Conclusion These data demonstrate not only the intimate binding of the SH2 domain of Hck to the tyrosine-phosphorylated cytoplasmic domain of CEACAM3 in intact cells, but furthermore, FRET measurements allow the subcellular localization of this process during bacterial infection. FRET-based assays are valuable tools to resolve bacteria-induced protein-protein interactions in the context of the intact host cell.

  7. Association analysis of the chromosome 4p-located G protein-coupled receptor 78 (GPR78) gene in bipolar affective disorder and schizophrenia.

    Science.gov (United States)

    Underwood, S L; Christoforou, A; Thomson, P A; Wray, N R; Tenesa, A; Whittaker, J; Adams, R A; Le Hellard, S; Morris, S W; Blackwood, D H R; Muir, W J; Porteous, D J; Evans, K L

    2006-04-01

    The orphan G protein-coupled receptor 78 (GPR78) gene lies within a region of chromosome 4p where we have previously shown linkage to bipolar affective disorder (BPAD) in a large Scottish family. GPR78 was screened for single-nucleotide polymorphisms (SNPs) and a linkage disequilibrium map was constructed. Six tagging SNPs were selected and tested for association on a sample of 377 BPAD, 392 schizophrenia (SCZ) and 470 control individuals. Using standard chi(2) statistics and a backwards logistic regression approach to adjust for the effect of sex, SNP rs1282, located approximately 3 kb upstream of the coding region, was identified as a potentially important variant in SCZ (chi(2) P=0.044; LRT P=0.065). When the analysis was restricted to females, the strength of association increased to an uncorrected allele P-value of 0.015 (odds ratios (OR)=1.688, 95% confidence intervals (CI): 1.104-2.581) and uncorrected genotype P-value of 0.015 (OR=5.991, 95% CI: 1.545-23.232). Under the recessive model, the genotype P-value improved further to 0.005 (OR=5.618, 95% CI: 1.460-21.617) and remained significant after correcting for multiple testing (P=0.017). No single-marker association was detected in the SCZ males, in the BPAD individuals or with any other SNP. Haplotype analysis of the case-control samples revealed several global and individual haplotypes, with P-values <0.05, all but one of which contained SNP rs1282. After correcting for multiple testing, two haplotypes remained significant in both the female BPAD individuals (P=0.038 and 0.032) and in the full sample of affected female individuals (P=0.044 and 0.033). Our results provide preliminary evidence for the involvement of GPR78 in susceptibility to BPAD and SCZ in the Scottish population. Molecular Psychiatry (2006) 11, 384-394. doi:10.1038/sj.mp.4001786; published online 3 January 2006.

  8. Xenopus LAP2β protein knockdown affects location of lamin B and nucleoporins and has effect on assembly of cell nucleus and cell viability.

    Science.gov (United States)

    Dubińska-Magiera, Magda; Chmielewska, Magdalena; Kozioł, Katarzyna; Machowska, Magdalena; Hutchison, Christopher J; Goldberg, Martin W; Rzepecki, Ryszard

    2016-05-01

    Xenopus LAP2β protein is the single isoform expressed in XTC cells. The protein localizes on heterochromatin clusters both at the nuclear envelope and inside a cell nucleus. The majority of XLAP2β fraction neither colocalizes with TPX2 protein during interphase nor can be immunoprecipitated with XLAP2β antibody. Knockdown of the XLAP2β protein expression in XTC cells by synthetic siRNA and plasmid encoded siRNA resulted in nuclear abnormalities including changes in shape of nuclei, abnormal chromatin structure, loss of nuclear envelope, mislocalization of integral membrane proteins of INM such as lamin B2, mislocalization of nucleoporins, and cell death. Based on timing of cell death, we suggest mechanism associated with nucleus reassembly or with entry into mitosis. This confirms that Xenopus LAP2 protein is essential for the maintenance of cell nucleus integrity and the process of its reassembly after mitosis.

  9. Prequels to Synthetic Biology: From Candidate Gene Identification and Validation to Enzyme Subcellular Localization in Plant and Yeast Cells.

    Science.gov (United States)

    Foureau, E; Carqueijeiro, I; Dugé de Bernonville, T; Melin, C; Lafontaine, F; Besseau, S; Lanoue, A; Papon, N; Oudin, A; Glévarec, G; Clastre, M; St-Pierre, B; Giglioli-Guivarc'h, N; Courdavault, V

    2016-01-01

    Natural compounds extracted from microorganisms or plants constitute an inexhaustible source of valuable molecules whose supply can be potentially challenged by limitations in biological sourcing. The recent progress in synthetic biology combined to the increasing access to extensive transcriptomics and genomics data now provide new alternatives to produce these molecules by transferring their whole biosynthetic pathway in heterologous production platforms such as yeasts or bacteria. While the generation of high titer producing strains remains per se an arduous field of investigation, elucidation of the biosynthetic pathways as well as characterization of their complex subcellular organization are essential prequels to the efficient development of such bioengineering approaches. Using examples from plants and yeasts as a framework, we describe potent methods to rationalize the study of partially characterized pathways, including the basics of computational applications to identify candidate genes in transcriptomics data and the validation of their function by an improved procedure of virus-induced gene silencing mediated by direct DNA transfer to get around possible resistance to Agrobacterium-delivery of viral vectors. To identify potential alterations of biosynthetic fluxes resulting from enzyme mislocalizations in reconstituted pathways, we also detail protocols aiming at characterizing subcellular localizations of protein in plant cells by expression of fluorescent protein fusions through biolistic-mediated transient transformation, and localization of transferred enzymes in yeast using similar fluorescence procedures. Albeit initially developed for the Madagascar periwinkle, these methods may be applied to other plant species or organisms in order to establish synthetic biology platform. © 2016 Elsevier Inc. All rights reserved.

  10. Development of a new fluorescent reporter:operator system: location of AraC regulated genes in Escherichia coli K-12.

    Science.gov (United States)

    Sellars, Laura E; Bryant, Jack A; Sánchez-Romero, María-Antonia; Sánchez-Morán, Eugenio; Busby, Stephen J W; Lee, David J

    2017-08-03

    In bacteria, many transcription activator and repressor proteins regulate multiple transcription units that are often distally distributed on the bacterial genome. To investigate the subcellular location of DNA bound proteins in the folded bacterial nucleoid, fluorescent reporters have been developed which can be targeted to specific DNA operator sites. Such Fluorescent Reporter-Operator System (FROS) probes consist of a fluorescent protein fused to a DNA binding protein, which binds to an array of DNA operator sites located within the genome. Here we have developed a new FROS probe using the Escherichia coli MalI transcription factor, fused to mCherry fluorescent protein. We have used this in combination with a LacI repressor::GFP protein based FROS probe to assess the cellular location of commonly regulated transcription units that are distal on the Escherichia coli genome. We developed a new DNA binding fluorescent reporter, consisting of the Escherichia coli MalI protein fused to the mCherry fluorescent protein. This was used in combination with a Lac repressor:green fluorescent protein fusion to examine the spatial positioning and possible co-localisation of target genes, regulated by the Escherichia coli AraC protein. We report that induction of gene expression with arabinose does not result in co-localisation of AraC-regulated transcription units. However, measurable repositioning was observed when gene expression was induced at the AraC-regulated promoter controlling expression of the araFGH genes, located close to the DNA replication terminus on the chromosome. Moreover, in dividing cells, arabinose-induced expression at the araFGH locus enhanced chromosome segregation after replication. Regions of the chromosome regulated by AraC do not colocalise, but transcription events can induce movement of chromosome loci in bacteria and our observations suggest a role for gene expression in chromosome segregation.

  11. Assimilation and subcellular partitioning of elements by grass shrimp collected along an impact gradient

    International Nuclear Information System (INIS)

    Seebaugh, David R.; Wallace, William G.

    2009-01-01

    Chronic exposure to polluted field conditions can impact metal bioavailability in prey and may influence metal transfer to predators. The present study investigated the assimilation of Cd, Hg and organic carbon by grass shrimp Palaemonetes pugio, collected along an impact gradient within the New York/New Jersey Harbor Estuary. Adult shrimp were collected from five Staten Island, New York study sites, fed 109 Cd- or 203 Hg-labeled amphipods or 14 C-labeled meals and analyzed for assimilation efficiencies (AE). Subsamples of amphipods and shrimp were subjected to subcellular fractionation to isolate metal associated with a compartment presumed to contain trophically available metal (TAM) (metal associated with heat-stable proteins [HSP - e.g., metallothionein-like proteins], heat-denatured proteins [HDP - e.g., enzymes] and organelles [ORG]). TAM- 109 Cd% and TAM- 203 Hg% in radiolabeled amphipods were ∼64% and ∼73%, respectively. Gradients in AE- 109 Cd% (∼54% to ∼75%) and AE- 203 Hg% (∼61% to ∼78%) were observed for grass shrimp, with the highest values exhibited by shrimp collected from sites within the heavily polluted Arthur Kill complex. Population differences in AE- 14 C% were not observed. Assimilated 109 Cd% partitioned to the TAM compartment in grass shrimp varied between ∼67% and ∼75%. 109 Cd bound to HSP in shrimp varied between ∼15% and ∼47%, while 109 Cd associated with metal-sensitive HDP was ∼17% to ∼44%. Percentages of assimilated 109 Cd bound to ORG were constant at ∼10%. Assimilated 203 Hg% associated with TAM in grass shrimp did not exhibit significant variation. Percentages of assimilated 203 Hg bound to HDP (∼47%) and ORG (∼11%) did not vary among populations and partitioning of 203 Hg to HSP was not observed. Using a simplified biokinetic model of metal accumulation from the diet, it is estimated that site-specific variability in Cd AE by shrimp and tissue Cd burdens in field-collected prey (polychaetes Nereis spp

  12. CoBaltDB: Complete bacterial and archaeal orfeomes subcellular localization database and associated resources

    Directory of Open Access Journals (Sweden)

    Lucchetti-Miganeh Céline

    2010-03-01

    Full Text Available Abstract Background The functions of proteins are strongly related to their localization in cell compartments (for example the cytoplasm or membranes but the experimental determination of the sub-cellular localization of proteomes is laborious and expensive. A fast and low-cost alternative approach is in silico prediction, based on features of the protein primary sequences. However, biologists are confronted with a very large number of computational tools that use different methods that address various localization features with diverse specificities and sensitivities. As a result, exploiting these computer resources to predict protein localization accurately involves querying all tools and comparing every prediction output; this is a painstaking task. Therefore, we developed a comprehensive database, called CoBaltDB, that gathers all prediction outputs concerning complete prokaryotic proteomes. Description The current version of CoBaltDB integrates the results of 43 localization predictors for 784 complete bacterial and archaeal proteomes (2.548.292 proteins in total. CoBaltDB supplies a simple user-friendly interface for retrieving and exploring relevant information about predicted features (such as signal peptide cleavage sites and transmembrane segments. Data are organized into three work-sets ("specialized tools", "meta-tools" and "additional tools". The database can be queried using the organism name, a locus tag or a list of locus tags and may be browsed using numerous graphical and text displays. Conclusions With its new functionalities, CoBaltDB is a novel powerful platform that provides easy access to the results of multiple localization tools and support for predicting prokaryotic protein localizations with higher confidence than previously possible. CoBaltDB is available at http://www.umr6026.univ-rennes1.fr/english/home/research/basic/software/cobalten.

  13. Muscle glycogen and cell function--Location, location, location.

    Science.gov (United States)

    Ørtenblad, N; Nielsen, J

    2015-12-01

    The importance of glycogen, as a fuel during exercise, is a fundamental concept in exercise physiology. The use of electron microscopy has revealed that glycogen is not evenly distributed in skeletal muscle fibers, but rather localized in distinct pools. In this review, we present the available evidence regarding the subcellular localization of glycogen in skeletal muscle and discuss this from the perspective of skeletal muscle fiber function. The distribution of glycogen in the defined pools within the skeletal muscle varies depending on exercise intensity, fiber phenotype, training status, and immobilization. Furthermore, these defined pools may serve specific functions in the cell. Specifically, reduced levels of these pools of glycogen are associated with reduced SR Ca(2+) release, muscle relaxation rate, and membrane excitability. Collectively, the available literature strongly demonstrates that the subcellular localization of glycogen has to be considered to fully understand the role of glycogen metabolism and signaling in skeletal muscle function. Here, we propose that the effect of low muscle glycogen on excitation-contraction coupling may serve as a built-in mechanism, which links the energetic state of the muscle fiber to energy utilization. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Cellular and subcellular distribution of BSH in human glioblastoma multiforme

    International Nuclear Information System (INIS)

    Neumann, M.; Gabel, D.

    2000-01-01

    The cellular and subcellular distribution of mercaptoundecahydrododecaborate (BSH) in seven glioblastoma multiforme tissue sections of six patients having received BSH prior to surgery was investigated by light, fluorescence and electron microscopy. With use of specific antibodies against BSH its localization could be found in tissue sections predominantly (approx. 90%) in the cytoplasm of GFAP-positive cells of all but one patient. The latter was significantly younger (33 years in contrast of 46-71 (mean 60) years). In none of the tissue sections BSH could be found to a significant amount in the cell nuclei. In contrast, electron microscopy studies show BSH as well associated with the cell membrane as with the chromatin in the nucleus. (author)

  15. Enhanced Glycogen Storage of a Subcellular Hot Spot in Human Skeletal Muscle during Early Recovery from Eccentric Contractions

    Science.gov (United States)

    Nielsen, Joachim; Farup, Jean; Rahbek, Stine Klejs; de Paoli, Frank Vincenzo; Vissing, Kristian

    2015-01-01

    Unaccustomed eccentric exercise is accompanied by muscle damage and impaired glucose uptake and glycogen synthesis during subsequent recovery. Recently, it was shown that the role and regulation of glycogen in skeletal muscle are dependent on its subcellular localization, and that glycogen synthesis, as described by the product of glycogen particle size and number, is dependent on the time course of recovery after exercise and carbohydrate availability. In the present study, we investigated the subcellular distribution of glycogen in fibers with high (type I) and low (type II) mitochondrial content during post-exercise recovery from eccentric contractions. Analysis was completed on five male subjects performing an exercise bout consisting of 15 x 10 maximal eccentric contractions. Carbohydrate-rich drinks were subsequently ingested throughout a 48 h recovery period and muscle biopsies for analysis included time points 3, 24 and 48 h post exercise from the exercising leg, whereas biopsies corresponding to prior to and at 48 h after the exercise bout were collected from the non-exercising, control leg. Quantitative imaging by transmission electron microscopy revealed an early (post 3 and 24 h) enhanced storage of intramyofibrillar glycogen (defined as glycogen particles located within the myofibrils) of type I fibers, which was associated with an increase in the number of particles. In contrast, late in recovery (post 48 h), intermyofibrillar, intramyofibrillar and subsarcolemmal glycogen in both type I and II fibers were lower in the exercise leg compared with the control leg, and this was associated with a smaller size of the glycogen particles. We conclude that in the carbohydrate-supplemented state, the effect of eccentric contractions on glycogen metabolism depends on the subcellular localization, muscle fiber’s oxidative capacity, and the time course of recovery. The early enhanced storage of intramyofibrillar glycogen after the eccentric contractions may

  16. [Cloning, subcellular localization, and heterologous expression of ApNAC1 gene from Andrographis paniculata].

    Science.gov (United States)

    Wang, Jian; Qi, Meng-Die; Guo, Juan; Shen, Ye; Lin, Hui-Xin; Huang, Lu-Qi

    2017-03-01

    Andrographis paniculata is widely used as medicinal herb in China for a long time and andrographolide is its main medicinal constituent. To investigate the underlying andrographolide biosynthesis mechanisms, RNA-seq for A. paniculata leaves with MeJA treatment was performed. In A. paniculata transcriptomic data, the expression pattern of one member of NAC transcription factor family (ApNAC1) matched with andrographolide accumulation. The coding sequence of ApNAC1 was cloned by RT-PCR, and GenBank accession number was KY196416. The analysis of bioinformatics showed that the gene encodes a peptide of 323 amino acids, with a predicted relative molecular weight of 35.9 kDa and isoelectric point of 6.14. To confirm the subcellular localization, ApNAC1-GFP was transiently expressed in A. paniculata protoplast. The results indicated that ApNAC1 is a nucleus-localized protein. The analysis of real-time quantitative PCR revealed that ApNAC1 gene predominantly expresses in leaves. Compared with control sample, its expression abundance sharply increased with methyl jasmonate treatment. Based on its expression pattern, ApNAC1 gene might involve in andrographolide biosynthesis. ApNAC1 was heterologously expressed in Escherichia coli and recombinant protein was purified by Ni-NTA agarose. Further study will help us to understand the function of ApNAC1 in andrographolide biosynthesis. Copyright© by the Chinese Pharmaceutical Association.

  17. Requirements of cyclin a for mitosis are independent of its subcellular localization.

    Science.gov (United States)

    Dienemann, Axel; Sprenger, Frank

    2004-06-22

    Cyclin A (CycA), the only essential mitotic cyclin in Drosophila, is cytoplasmic during interphase and accumulates in the nucleus during prophase. We show that interphase localization is mediated by Leptomycin B (LMB)-sensitive nuclear export. This is a feature shared with human CyclinB1, and it is assumed that nuclear accumulation is necessary for mitotic entry. Here, we tested if the unique mitotic function of CycA requires nuclear accumulation. We fused subcellular localization signals to CycA and tested their mitotic capability. Surprisingly, nuclear accumulation was not required, and even a membrane-tethered form of CycA was able to induce mitosis. We noted that Cyclin B (CycB) protein disappears prematurely in CycA mutants, reminiscent of rca1 mutants. Rca1 is an inhibitor of Fizzy-related-APC/C activity, and in rca1 mutants, mitotic cyclins are degraded in G2 of the 16(th) embryonic cell cycle. Overexpression of Rca1 can restore mitosis in CycA mutants, indicating that the mitotic failure of CycA mutants is caused by premature activation of the APC/C. The essential mitotic function of CycA is therefore not the activation of numerous mitotic substrates by Cdk1-dependent phosphorylation. Rather, CycA-dependent kinase activity is required to inhibit one inhibitor of mitosis, the Fzr protein.

  18. Sub-cellular damage by copper in the cnidarian Zoanthus robustus.

    Science.gov (United States)

    Grant, A; Trompf, K; Seung, D; Nivison-Smith, L; Bowcock, H; Kresse, H; Holmes, S; Radford, J; Morrow, P

    2010-09-01

    Sessile organisms may experience chronic exposure to copper that is released into the marine environment from antifoulants and stormwater runoff. We have identified the site of damage caused by copper to the symbiotic cnidarian, Zoanthus robustus (Anthozoa, Hexacorallia). External changes to the zoanthids were apparent when compared with controls. The normally flexible bodies contracted and became rigid. Histological examination of the zoanthid tissue revealed that copper had caused sub-cellular changes to proteins within the extracellular matrix (ECM) of the tubular body. Collagen in the ECM and the internal septa increased in thickness to five and seven times that of controls respectively. The epithelium, which stained for elastin, was also twice as thick and tough to cut, but exposure to copper did not change the total amount of desmosine which is found only in elastin. We conclude that copper stimulated collagen synthesis in the ECM and also caused cross-linking of existing proteins. However, there was no expulsion of the symbiotic algae (Symbiodinium sp.) and no effect on algal pigments or respiration (44, 66 and 110 microg Cu L(-1)). A decrease in net photosynthesis was observed only at the highest copper concentration (156 microg Cu L(-1)). These results show that cnidarians may be more susceptible to damage by copper than their symbiotic algae. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  19. Subcellular distribution of glutathione and cysteine in cyanobacteria.

    Science.gov (United States)

    Zechmann, Bernd; Tomasić, Ana; Horvat, Lucija; Fulgosi, Hrvoje

    2010-10-01

    Glutathione plays numerous important functions in eukaryotic and prokaryotic cells. Whereas it can be found in virtually all eukaryotic cells, its production in prokaryotes is restricted to cyanobacteria and proteobacteria and a few strains of gram-positive bacteria. In bacteria, it is involved in the protection against reactive oxygen species (ROS), osmotic shock, acidic conditions, toxic chemicals, and heavy metals. Glutathione synthesis in bacteria takes place in two steps out of cysteine, glutamate, and glycine. Cysteine is the limiting factor for glutathione biosynthesis which can be especially crucial for cyanobacteria, which rely on both the sufficient sulfur supply from the growth media and on the protection of glutathione against ROS that are produced during photosynthesis. In this study, we report a method that allows detection and visualization of the subcellular distribution of glutathione in Synechocystis sp. This method is based on immunogold cytochemistry with glutathione and cysteine antisera and computer-supported transmission electron microscopy. Labeling of glutathione and cysteine was restricted to the cytosol and interthylakoidal spaces. Glutathione and cysteine could not be detected in carboxysomes, cyanophycin granules, cell walls, intrathylakoidal spaces, periplasm, and vacuoles. The accuracy of the glutathione and cysteine labeling is supported by two observations. First, preadsorption of the antiglutathione and anticysteine antisera with glutathione and cysteine, respectively, reduced the density of the gold particles to background levels. Second, labeling of glutathione and cysteine was strongly decreased by 98.5% and 100%, respectively, in Synechocystis sp. cells grown on media without sulfur. This study indicates a strong similarity of the subcellular distribution of glutathione and cysteine in cyanobacteria and plastids of plants and provides a deeper insight into glutathione metabolism in bacteria.

  20. Thyroid states regulate subcellular glucose phosphorylation activity in male mice

    Directory of Open Access Journals (Sweden)

    Flavia Letícia Martins Peçanha

    2017-07-01

    Full Text Available The thyroid hormones (THs, triiodothyronine (T3 and thyroxine (T4, are very important in organism metabolism and regulate glucose utilization. Hexokinase (HK is responsible for the first step of glycolysis, catalyzing the conversion of glucose to glucose 6-phosphate. HK has been found in different cellular compartments, and new functions have been attributed to this enzyme. The effects of hyperthyroidism on subcellular glucose phosphorylation in mouse tissues were examined. Tissues were removed, subcellular fractions were isolated from eu- and hyperthyroid (T3, 0.25 μg/g, i.p. during 21 days mice and HK activity was assayed. Glucose phosphorylation was increased in the particulate fraction in soleus (312.4% ± 67.1, n = 10, gastrocnemius (369.2% ± 112.4, n = 10 and heart (142.2% ± 13.6, n = 10 muscle in the hyperthyroid group compared to the control group. Hexokinase activity was not affected in brain or liver. No relevant changes were observed in HK activity in the soluble fraction for all tissues investigated. Acute T3 administration (single dose of T3, 1.25 μg/g, i.p. did not modulate HK activity. Interestingly, HK mRNA levels remained unchanged and HK bound to mitochondria was increased by T3 treatment, suggesting a posttranscriptional mechanism. Analysis of the AKT pathway showed a 2.5-fold increase in AKT and GSK3B phosphorylation in the gastrocnemius muscle in the hyperthyroid group compared to the euthyroid group. Taken together, we show for the first time that THs modulate HK activity specifically in particulate fractions and that this action seems to be under the control of the AKT and GSK3B pathways.

  1. Laserspritzer: a simple method for optogenetic investigation with subcellular resolutions.

    Directory of Open Access Journals (Sweden)

    Qian-Quan Sun

    Full Text Available To build a detailed circuit diagram in the brain, one needs to measure functional synaptic connections between specific types of neurons. A high-resolution circuit diagram should provide detailed information at subcellular levels such as soma, distal and basal dendrites. However, a limitation lies in the difficulty of studying long-range connections between brain areas separated by millimeters. Brain slice preparations have been widely used to help understand circuit wiring within specific brain regions. The challenge exists because long-range connections are likely to be cut in a brain slice. The optogenetic approach overcomes these limitations, as channelrhodopsin 2 (ChR2 is efficiently transported to axon terminals that can be stimulated in brain slices. Here, we developed a novel fiber optic based simple method of optogenetic stimulation: the laserspritzer approach. This method facilitates the study of both long-range and local circuits within brain slice preparations. This is a convenient and low cost approach that can be easily integrated with a slice electrophysiology setup, and repeatedly used upon initial validation. Our data with direct ChR2 mediated-current recordings demonstrates that the spatial resolution of the laserspritzer is correlated with the size of the laserspritzer, and the resolution lies within the 30 µm range for the 5 micrometer laserspritzer. Using olfactory cortical slices, we demonstrated that the laserspritzer approach can be applied to selectively activate monosynaptic perisomatic GABAergic basket synapses, or long-range intracortical glutamatergic inputs formed on different subcellular domains within the same cell (e.g. distal and proximal dendrites. We discuss significant advantages of the laserspritzer approach over the widely used collimated LED whole-field illumination method in brain slice electrophysiological research.

  2. PTPN13, a Fas-associated protein tyrosine phosphatase, is located on the long arm of chromosome 4 at band q21.3

    Energy Technology Data Exchange (ETDEWEB)

    Inazawa, Johji; Ariyama, Takeshi; Abe, Tatsuo [Kyoto Prefectural Univ. of Medicine (Japan)] [and others

    1996-01-15

    PTPN13 is a protein tyrosine phosphatase that associates with the C-terminal negative regulatory domain in the Fas (APO-1/CD95) receptor. The PTPN13 protein contains six GLGF repeats that have been found in the rat postsynaptic density protein (PSD-95) and the Drosophila tumor suppressor protein, lethal-(1)-disclarge-1 (dlg-1). The localization of the PTPN13 gene to human chromosome 4q21.3 was determined by both FISH and PCR analysis of somatic cell hybrids. This 4q21.3 chromosomal region contains a gene for autosomal dominant polycystic kidney disease as well as the region frequently deleted in liver and ovarian cancers, suggesting that PTPN13 is a candidate for one of the putative tumor suppressor genes on the long arm of chromosome 4. 21 refs., 1 fig.

  3. RACK1, A Multifaceted Scaffolding Protein: Structure and Function

    LENUS (Irish Health Repository)

    Adams, David R

    2011-10-06

    Abstract The Receptor for Activated C Kinase 1 (RACK1) is a member of the tryptophan-aspartate repeat (WD-repeat) family of proteins and shares significant homology to the β subunit of G-proteins (Gβ). RACK1 adopts a seven-bladed β-propeller structure which facilitates protein binding. RACK1 has a significant role to play in shuttling proteins around the cell, anchoring proteins at particular locations and in stabilising protein activity. It interacts with the ribosomal machinery, with several cell surface receptors and with proteins in the nucleus. As a result, RACK1 is a key mediator of various pathways and contributes to numerous aspects of cellular function. Here, we discuss RACK1 gene and structure and its role in specific signaling pathways, and address how posttranslational modifications facilitate subcellular location and translocation of RACK1. This review condenses several recent studies suggesting a role for RACK1 in physiological processes such as development, cell migration, central nervous system (CN) function and circadian rhythm as well as reviewing the role of RACK1 in disease.

  4. Development of a high-throughput method for the systematic identification of human proteins nuclear translocation potential

    Directory of Open Access Journals (Sweden)

    Kawai Jun

    2009-09-01

    Full Text Available Abstract Background Important clues to the function of novel and uncharacterized proteins can be obtained by identifying their ability to translocate in the nucleus. In addition, a comprehensive definition of the nuclear proteome undoubtedly represents a key step toward a better understanding of the biology of this organelle. Although several high-throughput experimental methods have been developed to explore the sub-cellular localization of proteins, these methods tend to focus on the predominant localizations of gene products and may fail to provide a complete catalog of proteins that are able to transiently locate into the nucleus. Results We have developed a method for examining the nuclear localization potential of human gene products at the proteome scale by adapting a mammalian two-hybrid system we have previously developed. Our system is composed of three constructs co-transfected into a mammalian cell line. First, it contains a PCR construct encoding a fusion protein composed of a tested protein, the PDZ-protein TIP-1, and the transactivation domain of TNNC2 (referred to as ACT construct. Second, our system contains a PCR construct encoding a fusion protein composed of the DNA binding domain of GAL4 and the PDZ binding domain of rhotekin (referred to as the BIND construct. Third, a GAL4-responsive luciferase reporter is used to detect the reconstitution of a transcriptionally active BIND-ACT complex through the interaction of TIP-1 and rhotekin, which indicates the ability of the tested protein to translocate into the nucleus. We validated our method in a small-scale feasibility study by comparing it to green fluorescent protein (GFP fusion-based sub-cellular localization assays, sequence-based computational prediction of protein sub-cellular localization, and current sub-cellular localization data available from the literature for 22 gene products. Conclusion Our reporter-based system can rapidly screen gene products for their ability

  5. Saccharomyces cerevisiae SSB1 protein and its relationship to nucleolar RNA-binding proteins.

    Science.gov (United States)

    Jong, A Y; Clark, M W; Gilbert, M; Oehm, A; Campbell, J L

    1987-08-01

    To better define the function of Saccharomyces cerevisiae SSB1, an abundant single-stranded nucleic acid-binding protein, we determined the nucleotide sequence of the SSB1 gene and compared it with those of other proteins of known function. The amino acid sequence contains 293 amino acid residues and has an Mr of 32,853. There are several stretches of sequence characteristic of other eucaryotic single-stranded nucleic acid-binding proteins. At the amino terminus, residues 39 to 54 are highly homologous to a peptide in calf thymus UP1 and UP2 and a human heterogeneous nuclear ribonucleoprotein. Residues 125 to 162 constitute a fivefold tandem repeat of the sequence RGGFRG, the composition of which suggests a nucleic acid-binding site. Near the C terminus, residues 233 to 245 are homologous to several RNA-binding proteins. Of 18 C-terminal residues, 10 are acidic, a characteristic of the procaryotic single-stranded DNA-binding proteins and eucaryotic DNA- and RNA-binding proteins. In addition, examination of the subcellular distribution of SSB1 by immunofluorescence microscopy indicated that SSB1 is a nuclear protein, predominantly located in the nucleolus. Sequence homologies and the nucleolar localization make it likely that SSB1 functions in RNA metabolism in vivo, although an additional role in DNA metabolism cannot be excluded.

  6. Subcellular partitioning of cadmium in the freshwater bivalve, Pyganodon grandis, after separate short-term exposures to waterborne or diet-borne metal

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Sophie; Hare, Landis [INRS-Eau, Terre et Environnement, Universite du Quebec, 490 rue de la Couronne, Quebec, QC, G1K 9A9 (Canada); Campbell, Peter G.C., E-mail: peter.campbell@ete.inrs.ca [INRS-Eau, Terre et Environnement, Universite du Quebec, 490 rue de la Couronne, Quebec, QC, G1K 9A9 (Canada)

    2010-11-15

    The dynamics of cadmium uptake and subcellular partitioning were studied in laboratory experiments conducted on Pyganodon grandis, a freshwater unionid bivalve that shows promise as a biomonitor for metal pollution. Bivalves were collected from an uncontaminated lake, allowed to acclimate to laboratory conditions ({>=}25 days), and then either exposed to a low, environmentally relevant, concentration of dissolved Cd (5 nM; 6, 12 and 24 h), or fed Cd-contaminated algae ({approx}70 nmol Cd g{sup -1} dry weight; 4 x 4 h). In this latter case, the bivalves were allowed to depurate for up to 8 days after the end of the feeding phase. As anticipated, the gills were the main target organ during the aqueous Cd exposure whereas the intestine was the initial site of Cd accumulation during the dietary exposure; during the subsequent depuration period, the dietary Cd accumulated in both the digestive gland and in the gills. For the gills, the distribution of Cd among the subcellular fractions (i.e., granules > heat-denatured proteins (HDP) {approx} heat-stable proteins (HSP) > mitochondria {approx} lysosomes + microsomes) was insensitive to the exposure route; both waterborne and diet-borne Cd ended up largely bound to the granule fraction. The subcellular distribution of Cd in the digestive gland differed markedly from that in the gills (HDP > HSP {approx} granules {approx} mitochondria > lysosomes + microsomes), but as in the case of the gills, this distribution was relatively insensitive to the exposure route. For both the gills and the digestive gland, the subcellular distributions of Cd differed from those observed in native bivalves that are chronically exposed to Cd in the field - in the short-term experimental exposures of P. grandis, metal detoxification was less effective than in chronically exposed native bivalves.

  7. Muscle glycogen and cell function - Location, location, location

    DEFF Research Database (Denmark)

    Ørtenblad, N; Nielsen, Joachim

    2015-01-01

    The importance of glycogen, as a fuel during exercise, is a fundamental concept in exercise physiology. The use of electron microscopy has revealed that glycogen is not evenly distributed in skeletal muscle fibers, but rather localized in distinct pools. In this review, we present the available...... evidence regarding the subcellular localization of glycogen in skeletal muscle and discuss this from the perspective of skeletal muscle fiber function. The distribution of glycogen in the defined pools within the skeletal muscle varies depending on exercise intensity, fiber phenotype, training status......, and immobilization. Furthermore, these defined pools may serve specific functions in the cell. Specifically, reduced levels of these pools of glycogen are associated with reduced SR Ca(2+) release, muscle relaxation rate, and membrane excitability. Collectively, the available literature strongly demonstrates...

  8. Prenatal alcohol exposure modifies glucocorticoid receptor subcellular distribution in the medial prefrontal cortex and impairs frontal cortex-dependent learning.

    Directory of Open Access Journals (Sweden)

    Andrea M Allan

    Full Text Available Prenatal alcohol exposure (PAE has been shown to impair learning, memory and executive functioning in children. Perseveration, or the failure to respond adaptively to changing contingencies, is a hallmark on neurobehavioral assessment tasks for human fetal alcohol spectrum disorder (FASD. Adaptive responding is predominantly a product of the medial prefrontal cortex (mPFC and is regulated by corticosteroids. In our mouse model of PAE we recently reported deficits in hippocampal formation-dependent learning and memory and a dysregulation of hippocampal formation glucocorticoid receptor (GR subcellular distribution. Here, we examined the effect of PAE on frontal cortical-dependent behavior, as well as mPFC GR subcellular distribution and the levels of regulators of intracellular GR transport. PAE mice displayed significantly reduced response flexibility in a Y-maze reversal learning task. While the levels of total nuclear GR were reduced in PAE mPFC, levels of GR phosphorylated at serines 203, 211 and 226 were not significantly changed. Cytosolic, but not nuclear, MR levels were elevated in the PAE mPFC. The levels of critical GR trafficking proteins, FKBP51, Hsp90, cyclophilin 40, dynamitin and dynein intermediate chain, were altered in PAE mice, in favor of the exclusion of GR from the nucleus, indicating dysregulation of GR trafficking. Our findings suggest that there may be a link between a deficit in GR nuclear localization and frontal cortical learning deficits in prenatal alcohol-exposed mice.

  9. Sub-cellular localisation of a 15N-labelled peptide vector using NanoSIMS imaging

    Science.gov (United States)

    Römer, Winfried; Wu, Ting-Di; Duchambon, Patricia; Amessou, Mohamed; Carrez, Danièle; Johannes, Ludger; Guerquin-Kern, Jean-Luc

    2006-07-01

    Dynamic SIMS imaging is proposed to map sub-cellular distributions of isotopically labelled, exogenous compounds. NanoSIMS imaging allows the characterisation of the intracellular transport pathways of exogenous molecules, including peptide vectors employed in innovative therapies, using stable isotopes as molecular markers to detect the compound of interest. Shiga toxin B-subunit (STxB) was chosen as a representative peptide vector. The recombinant protein ( 15N-STxB) was synthesised in Escherichia coli using 15NH 4Cl as sole nitrogen source resulting in 15N enrichment in the molecule. Using the NanoSIMS 50 ion microprobe (Cameca), different ion species ( 12C 14N -, 12C 15N -, 31P -) originating from the same sputtered micro volume were simultaneously detected. High mass resolving power enabled the discrimination of 12C 15N - from its polyatomic isobars of mass 27. We imaged the membrane binding and internalisation of 15N-STxB in HeLa cells at spatial resolutions of less than 100 nm. Thus, the use of rare stable isotopes like 15N with dynamic SIMS imaging permits sub-cellular detection of isotopically labelled, exogenous molecules and imaging of their transport pathways at high mass and spatial resolution. Application of stable isotopes as markers can replace the large and chemically complex tags used for fluorescence microscopy, without altering the chemical and physical properties of the molecule.

  10. Rational Design of Semiconductor Nanostructures for Functional Subcellular Interfaces.

    Science.gov (United States)

    Parameswaran, Ramya; Tian, Bozhi

    2018-05-15

    One of the fundamental questions guiding research in the biological sciences is how cellular systems process complex physical and environmental cues and communicate with each other across multiple length scales. Importantly, aberrant signal processing in these systems can lead to diseases that can have devastating impacts on human lives. Biophysical studies in the past several decades have demonstrated that cells can respond to not only biochemical cues but also mechanical and electrical ones. Thus, the development of new materials that can both sense and modulate all of these pathways is necessary. Semiconducting nanostructures are an emerging class of discovery platforms and tools that can push the limits of our ability to modulate and sense biological behaviors for both fundamental research and clinical applications. These materials are of particular interest for interfacing with cellular systems due to their matched dimension with subcellular components (e.g., cytoskeletal filaments), and easily tunable properties in the electrical, optical and mechanical regimes. Rational design via traditional or new approaches, such as nanocasting and mesoscale chemical lithography, can allow us to control micro- and nanoscale features in nanowires to achieve new biointerfaces. Both processes endogenous to the target cell and properties of the material surface dictate the character of these interfaces. In this Account, we focus on (1) approaches for the rational design of semiconducting nanowires that exhibit unique structures for biointerfaces, (2) recent fundamental discoveries that yield robust biointerfaces at the subcellular level, (3) intracellular electrical and mechanical sensing, and (4) modulation of cellular behaviors through material topography and remote physical stimuli. In the first section, we discuss new approaches for the synthetic control of micro- and nanoscale features of these materials. In the second section, we focus on achieving biointerfaces with

  11. Quantitative protein localization signatures reveal an association between spatial and functional divergences of proteins.

    Science.gov (United States)

    Loo, Lit-Hsin; Laksameethanasan, Danai; Tung, Yi-Ling

    2014-03-01

    Protein subcellular localization is a major determinant of protein function. However, this important protein feature is often described in terms of discrete and qualitative categories of subcellular compartments, and therefore it has limited applications in quantitative protein function analyses. Here, we present Protein Localization Analysis and Search Tools (PLAST), an automated analysis framework for constructing and comparing quantitative signatures of protein subcellular localization patterns based on microscopy images. PLAST produces human-interpretable protein localization maps that quantitatively describe the similarities in the localization patterns of proteins and major subcellular compartments, without requiring manual assignment or supervised learning of these compartments. Using the budding yeast Saccharomyces cerevisiae as a model system, we show that PLAST is more accurate than existing, qualitative protein localization annotations in identifying known co-localized proteins. Furthermore, we demonstrate that PLAST can reveal protein localization-function relationships that are not obvious from these annotations. First, we identified proteins that have similar localization patterns and participate in closely-related biological processes, but do not necessarily form stable complexes with each other or localize at the same organelles. Second, we found an association between spatial and functional divergences of proteins during evolution. Surprisingly, as proteins with common ancestors evolve, they tend to develop more diverged subcellular localization patterns, but still occupy similar numbers of compartments. This suggests that divergence of protein localization might be more frequently due to the development of more specific localization patterns over ancestral compartments than the occupation of new compartments. PLAST enables systematic and quantitative analyses of protein localization-function relationships, and will be useful to elucidate protein

  12. The diversification of the LIM superclass at the base of the metazoa increased subcellular complexity and promoted multicellular specialization.

    Directory of Open Access Journals (Sweden)

    Bernard J Koch

    Full Text Available Throughout evolution, the LIM domain has been deployed in many different domain configurations, which has led to the formation of a large and distinct group of proteins. LIM proteins are involved in relaying stimuli received at the cell surface to the nucleus in order to regulate cell structure, motility, and division. Despite their fundamental roles in cellular processes and human disease, little is known about the evolution of the LIM superclass.We have identified and characterized all known LIM domain-containing proteins in six metazoans and three non-metazoans. In addition, we performed a phylogenetic analysis on all LIM domains and, in the process, have identified a number of novel non-LIM domains and motifs in each of these proteins. Based on these results, we have formalized a classification system for LIM proteins, provided reasonable timing for class and family origin events; and identified lineage-specific loss events. Our analysis is the first detailed description of the full set of LIM proteins from the non-bilaterian species examined in this study.Six of the 14 LIM classes originated in the stem lineage of the Metazoa. The expansion of the LIM superclass at the base of the Metazoa undoubtedly contributed to the increase in subcellular complexity required for the transition from a unicellular to multicellular lifestyle and, as such, was a critically important event in the history of animal multicellularity.

  13. Understanding metal homeostasis in primary cultured neurons. Studies using single neuron subcellular and quantitative metallomics.

    Science.gov (United States)

    Colvin, Robert A; Lai, Barry; Holmes, William R; Lee, Daewoo

    2015-07-01

    associated with ferritin cages or transferrin receptor endosomes. The iron content and its distribution in puncta were similar in all neuron types studied including primary dopaminergic neurons. In summary, quantitative measurements of steady state metal levels in single primary cultured neurons made possible by SRXRF analyses provide unique information on the relative levels of each metal in neuronal soma and processes, subcellular location of zinc loads, and have confirmed and extended the characterization of heretofore poorly understood cytoplasmic iron puncta.

  14. Absorption and subcellular distribution of cadmium in tea plant (Camellia sinensis cv. "Shuchazao").

    Science.gov (United States)

    Cao, De-Ju; Yang, Xun; Geng, Geng; Wan, Xiao-Chun; Ma, Ru-Xiao; Zhang, Qian; Liang, Yue-Gan

    2018-03-21

    A hydroponic experiment was performed to investigate the Cd absorption and subcellular distribution in tea plant, Camellia sinensis. Increased Cd accumulation potential was observed in the tea plant in a Cd-enriched environment, but most of the Cd was absorbed by the roots of C. sinensis. The Cd in all the root fractions was mostly distributed in the soluble fraction, followed by the cell wall fraction. By contrast, the Cd was least distributed in the organelle fraction. The adsorption of Cd onto the C. sinensis roots was described well by the Langmuir isotherm model than the Freundlich isotherm. Most of the Cd (38.6 to 59.4%) was integrated with pectates and proteins in the roots and leaves. Fourier transform infrared spectroscopy (FTIR) analysis showed that small molecular organic substances, such as amino acids, organic acids, and carbohydrates with N-H, C=O, C-N, and O-H functional groups in the roots, bonded with Cd(II). The Cd accumulation in the C. sinensis leaves occurred in the cell wall and organelle fractions. C. sinensis has great capability to transport Cd, thereby indicating pollution risk. The metal homeostasis of Fe, Mn, Ca, and Mg in C. sinensis was affected when the Cd concentration was 1.0-15.0 mg/L.

  15. Perspective: On the importance of hydrodynamic interactions in the subcellular dynamics of macromolecules

    Science.gov (United States)

    Skolnick, Jeffrey

    2016-09-01

    An outstanding challenge in computational biophysics is the simulation of a living cell at molecular detail. Over the past several years, using Stokesian dynamics, progress has been made in simulating coarse grained molecular models of the cytoplasm. Since macromolecules comprise 20%-40% of the volume of a cell, one would expect that steric interactions dominate macromolecular diffusion. However, the reduction in cellular diffusion rates relative to infinite dilution is due, roughly equally, to steric and hydrodynamic interactions, HI, with nonspecific attractive interactions likely playing rather a minor role. HI not only serve to slow down long time diffusion rates but also cause a considerable reduction in the magnitude of the short time diffusion coefficient relative to that at infinite dilution. More importantly, the long range contribution of the Rotne-Prager-Yamakawa diffusion tensor results in temporal and spatial correlations that persist up to microseconds and for intermolecular distances on the order of protein radii. While HI slow down the bimolecular association rate in the early stages of lipid bilayer formation, they accelerate the rate of large scale assembly of lipid aggregates. This is suggestive of an important role for HI in the self-assembly kinetics of large macromolecular complexes such as tubulin. Since HI are important, questions as to whether continuum models of HI are adequate as well as improved simulation methodologies that will make simulations of more complex cellular processes practical need to be addressed. Nevertheless, the stage is set for the molecular simulations of ever more complex subcellular processes.

  16. Uniquely high turnover of nickel in contaminated oysters Crassostrea hongkongensis: Biokinetics and subcellular distribution.

    Science.gov (United States)

    Yin, Qijun; Wang, Wen-Xiong

    2018-01-01

    Despite the environmental concerns regarding nickel (Ni) especially in China, it has received little attention in aquatic animals due to its comparatively weak toxicity. In the present study, we explored the bioaccumulation, biokinetics, and subcellular distribution of Ni in an estuarine oyster Crassostrea hongkongensis. We demonstrated that Ni represented a new pattern of bioaccumulation in oysters characterized by rapid elimination and low dissolved uptake. The waterborne uptake rate constant and dietary assimilation efficiency were 0.036L/g/h and 28%, respectively, and dissolved uptake was the predominant exposure route. The efflux rate constant was positively related to tissue Ni concentration, with the highest efflux of 0.155d -1 . Such high elimination resulted in a high Ni turnover and steady-state condition reached rapidly, as shown with a 4-week waterborne exposure experiment at different Ni concentrations. Ni in oysters was mainly sequestered in metallothionein-like protein (MTLP), metal-rich granule, and cellular debris. MTLP was the most important binding fraction during accumulation and depuration, and played a dynamic role leading to rapid Ni elimination. Pre-exposure to Ni significantly reduced the dissolved uptake, probably accompanied by depressed filtration activity. Overall, the high turnover and regulation of Ni in oysters were achieved by enhanced efflux, suppressed uptake, and sequestration of most Ni into the detoxified pool. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Subcellular metabolite and lipid analysis of Xenopus laevis eggs by LAESI mass spectrometry.

    Science.gov (United States)

    Shrestha, Bindesh; Sripadi, Prabhakar; Reschke, Brent R; Henderson, Holly D; Powell, Matthew J; Moody, Sally A; Vertes, Akos

    2014-01-01

    Xenopus laevis eggs are used as a biological model system for studying fertilization and early embryonic development in vertebrates. Most methods used for their molecular analysis require elaborate sample preparation including separate protocols for the water soluble and lipid components. In this study, laser ablation electrospray ionization (LAESI), an ambient ionization technique, was used for direct mass spectrometric analysis of X. laevis eggs and early stage embryos up to five cleavage cycles. Single unfertilized and fertilized eggs, their animal and vegetal poles, and embryos through the 32-cell stage were analyzed. Fifty two small metabolite ions, including glutathione, GABA and amino acids, as well as numerous lipids including 14 fatty acids, 13 lysophosphatidylcholines, 36 phosphatidylcholines and 29 triacylglycerols were putatively identified. Additionally, some proteins, for example thymosin β4 (Xen), were also detected. On the subcellular level, the lipid profiles were found to differ between the animal and vegetal poles of the eggs. Radial profiling revealed profound compositional differences between the jelly coat vitelline/plasma membrane and egg cytoplasm. Changes in the metabolic profile of the egg following fertilization, e.g., the decline of polyamine content with the development of the embryo were observed using LAESI-MS. This approach enables the exploration of metabolic and lipid changes during the early stages of embryogenesis.

  18. Subcellular localization and regulation of type-1C and type-5 phosphodiesterases

    International Nuclear Information System (INIS)

    Dolci, Susanna; Belmonte, Alessia; Santone, Rocco; Giorgi, Mauro; Pellegrini, Manuela; Carosa, Eleonora; Piccione, Emilio; Lenzi, Andrea; Jannini, Emmanuele A.

    2006-01-01

    We investigated the subcellular localization of PDE5 in in vitro human myometrial cells. We demonstrated for First time that PDE5 is localized in discrete cytoplasmic foci and vesicular compartments corresponding to centrosomes. We also found that PDE5 intracellular localization is not cell- or species-specific, as it is conserved in different animal and human cells. PDE5 protein levels are strongly regulated by the mitotic activity of the smooth muscle cells (SMCs), as they were increased in quiescent, contractile myometrial cultures, and conditions in which proliferation was inhibited. In contrast, PDE1C levels decreased in all conditions that inhibited proliferation. This mirrored the enzymatic activity of both PDE5 and PDE1C. Increasing cGMP intracellular levels by dbcGMP or sildenafil treatments did not block proliferation, while dbcAMP inhibited myometrial cell proliferation. Together, these results suggest that PDE5 regulation of cGMP intracellular levels is not involved in the control of SMC cycle progression, but may represent one of the markers of the contractile phenotype

  19. Proteomic Analysis of Lysine Acetylation Sites in Rat Tissues Reveals Organ Specificity and Subcellular Patterns

    Directory of Open Access Journals (Sweden)

    Alicia Lundby

    2012-08-01

    Full Text Available Lysine acetylation is a major posttranslational modification involved in a broad array of physiological functions. Here, we provide an organ-wide map of lysine acetylation sites from 16 rat tissues analyzed by high-resolution tandem mass spectrometry. We quantify 15,474 modification sites on 4,541 proteins and provide the data set as a web-based database. We demonstrate that lysine acetylation displays site-specific sequence motifs that diverge between cellular compartments, with a significant fraction of nuclear sites conforming to the consensus motifs G-AcK and AcK-P. Our data set reveals that the subcellular acetylation distribution is tissue-type dependent and that acetylation targets tissue-specific pathways involved in fundamental physiological processes. We compare lysine acetylation patterns for rat as well as human skeletal muscle biopsies and demonstrate its general involvement in muscle contraction. Furthermore, we illustrate that acetylation of fructose-bisphosphate aldolase and glycerol-3-phosphate dehydrogenase serves as a cellular mechanism to switch off enzymatic activity.

  20. Subcellular distribution of histone-degrading enzyme activities from rat liver

    International Nuclear Information System (INIS)

    Heinrich, P.C.; Raydt, G.; Puschendorf, B.; Jusic, M.

    1976-01-01

    Chromatin prepared from liver tissue contains a histone-degrading enzyme activity with a pH optimum of 7.5-8.0, whereas chromatin isolated from purified nuclei is devoid of it. The histone-degrading enzyme activity was assayed with radioactively labelled total histones from Ehrlich ascites tumor cells. Among the different subcellular fractions assayed, only lysosomes and mitochondria exhibited histone-degrading enzymes. A pH optimum around 4.0-5.0 was found for the lysosomal fraction, whereas 7.5-8.0 has been found for mitochondria. Binding studies of frozen and thawed lysosomes or mitochondria to proteinase-free chromatin demonstrate that the proteinase associated with chromatin isolated from frozen tissue originates from damaged mitochondria. The protein degradation patterns obtained after acrylamide gel electrophoresis are similar for the chromatin-associated and the mitochondrial proteinase and different from that obtained after incubation with lysosomes. The chromatin-associated proteinase as well as the mitochondrial proteinase are strongly inhibited by 1.0 mM phenylmethanesulfonyl fluoride. Weak inhibition is found for lysosomal proteinases at pH 5. Kallikrein-trypsin inhibitor, however, inhibits lysosomal proteinase activity and has no effect on either chromatin-associated or mitochondrial proteinases. The higher template activity of chromatin isolated from a total homogenate compared to chromatin prepared from nuclei may be due to the presence of this histone-degrading enzyme activity. (orig.) [de

  1. Astrocyte-neuron crosstalk regulates the expression and subcellular localization of carbohydrate metabolism enzymes.

    Science.gov (United States)

    Mamczur, Piotr; Borsuk, Borys; Paszko, Jadwiga; Sas, Zuzanna; Mozrzymas, Jerzy; Wiśniewski, Jacek R; Gizak, Agnieszka; Rakus, Dariusz

    2015-02-01

    Astrocytes releasing glucose- and/or glycogen-derived lactate and glutamine play a crucial role in shaping neuronal function and plasticity. Little is known, however, how metabolic functions of astrocytes, e.g., their ability to degrade glucosyl units, are affected by the presence of neurons. To address this issue we carried out experiments which demonstrated that co-culturing of rat hippocampal astrocytes with neurons significantly elevates the level of mRNA and protein for crucial enzymes of glycolysis (phosphofructokinase, aldolase, and pyruvate kinase), glycogen metabolism (glycogen synthase and glycogen phosphorylase), and glutamine synthetase in astrocytes. Simultaneously, the decrease of the capability of neurons to metabolize glucose and glutamine is observed. We provide evidence that neurons alter the expression of astrocytic enzymes by secretion of as yet unknown molecule(s) into the extracellular fluid. Moreover, our data demonstrate that almost all studied enzymes may localize in astrocytic nuclei and this localization is affected by the co-culturing with neurons which also reduces proliferative activity of astrocytes. Our results provide the first experimental evidence that the astrocyte-neuron crosstalk substantially affects the expression of basal metabolic enzymes in the both types of cells and influences their subcellular localization in astrocytes. © 2014 Wiley Periodicals, Inc.

  2. Expression and subcellular localization of ORC1 in Leishmania major

    International Nuclear Information System (INIS)

    Kumar, Diwakar; Mukherji, Agnideep; Saha, Swati

    2008-01-01

    The mechanism of DNA replication is highly conserved in eukaryotes, with the process being preceded by the ordered assembly of pre-replication complexes (pre-RCs). Pre-RC formation is triggered by the association of the origin replication complex (ORC) with chromatin. Leishmania major appears to have only one ORC ortholog, ORC1. ORC1 in other eukaryotes is the largest of the ORC subunits and is believed to play a significant role in modulating replication initiation. Here we report for the first time, the cloning of ORC1 from L. major, and the analysis of its expression in L. major promastigotes. In human cells ORC1 levels have been found to be upregulated in G1 and subsequently degraded, thus playing a role in controlling replication initiation. We examine the subcellular localization of L. major ORC1 in relation to the different stages of the cell cycle. Our results show that, unlike what is widely believed to be the case with ORC1 in human cells, ORC1 in L. major is nuclear at all stages of the cell cycle

  3. Spatiotemporal visualization of subcellular dynamics of carbon nanotubes

    KAUST Repository

    Serag, Maged F.

    2012-12-12

    To date, there is no consensus on the relationship between the physicochemical characteristics of carbon nanotubes (CNTs) and their biological behavior; however, there is growing evidence that the versatile characteristics make their biological fate largely unpredictable and remain an issue of limited knowledge. Here we introduce an experimental methodology for tracking and visualization of postuptake behavior and the intracellular fate of CNTs based on the spatial distribution of diffusion values throughout the plant cell. By using raster scan image correlation spectroscopy (RICS), we were able to generate highly quantitative spatial maps of CNTs diffusion in different cell compartments. The spatial map of diffusion values revealed that the uptake of CNTs is associated with important subcellular events such as carrier-mediated vacuolar transport and autophagy. These results show that RICS is a useful methodology to elucidate the intracellular behavior mechanisms of carbon nanotubes and potentially other fluorescently labeled nanoparticles, which is of relevance for the important issues related to the environmental impact and health hazards. © 2012 American Chemical Society.

  4. Fluorescent tags of protein function in living cells.

    Science.gov (United States)

    Whitaker, M

    2000-02-01

    A cell's biochemistry is now known to be the biochemistry of molecular machines, that is, protein complexes that are assembled and dismantled in particular locations within the cell as needed. One important element in our understanding has been the ability to begin to see where proteins are in cells and what they are doing as they go about their business. Accordingly, there is now a strong impetus to discover new ways of looking at the workings of proteins in living cells. Although the use of fluorescent tags to track individual proteins in cells has a long history, the availability of laser-based confocal microscopes and the imaginative exploitation of the green fluorescent protein from jellyfish have provided new tools of great diversity and utility. It is now possible to watch a protein bind its substrate or its partners in real time and with submicron resolution within a single cell. The importance of processes of self-organisation represented by protein folding on the one hand and subcellular organelles on the other are well recognised. Self-organisation at the intermediate level of multimeric protein complexes is now open to inspection. BioEssays 22:180-187, 2000. Copyright 2000 John Wiley & Sons, Inc.

  5. Genetic regulation by amino acids of specific membrane protein biosynthesis in isolated rat hepatocytes

    International Nuclear Information System (INIS)

    Chiles, T.C.; Handlogten, M.E.; Kilberg, M.S.

    1986-01-01

    Rat Hepatocytes in primary culture were incubated in amino acid-free (AAF) medium or amino acid-supplemented (AAS) medium for 2-6 hr. The effect of amino acid starvation on the synthesis of specific membrane proteins was monitored by including 3 H-leucine during the incubation. A crude plasma membrane fraction was prepared and then analyzed by 2-D gel electrophoresis followed by fluorography. Amino acid deprivation caused an induction of the synthesis of 5 of the 30 proteins studied. The ratio (AAF/-AAS) of cpm incorporated into the remaining 25 proteins was 0.8 +/- 0.2, whereas the ratio for the 5 proteins that showed amino acid-dependent synthesis ranged from 1.5 to 2.5. The presence of 4 μM actinomycin in the AAF medium completely blocked the starvation-induced synthesis of the 5 proteins tested, but did not alter significantly the ratio of cpm incorporated into the other 25 proteins. Binding studies involving ConA suggested a plasma membrane location for the 5 proteins. The molecular weight values of the starvation-induced proteins are 70, 66, 66, 67, and 45kD. Surface-labelling of intact cells and preparation of antibodies against the 5 proteins will be used to establish the subcellular location and to describe the amino acid-dependent synthesis of each in more detail

  6. Carotenoids located in human lymphocyte subpopulations and Natural Killer cells by Raman microspectroscopy

    NARCIS (Netherlands)

    Puppels, G.J.; Puppels, G.J.; Garritsen, H.S.P.; Garritsen, H.S.P.; Kummer, J.A.; Greve, Jan

    1993-01-01

    The presence and subcellular location of carotenoids in human lymphocyte sub-populations (CD4+, CD8+, T-cell receptor-γδ+, and CD19+ ) and natural killer cells (CD16+ ) were studied by means of Raman microspectroscopy. In CD4+ lymphocytes a high concentration (10-3M) of carotenoids was found in the

  7. State and location dependence of action potential metabolic cost in cortical pyramidal neurons

    NARCIS (Netherlands)

    Hallermann, Stefan; de Kock, Christiaan P. J.; Stuart, Greg J.; Kole, Maarten H. P.

    2012-01-01

    Action potential generation and conduction requires large quantities of energy to restore Na+ and K+ ion gradients. We investigated the subcellular location and voltage dependence of this metabolic cost in rat neocortical pyramidal neurons. Using Na+/K+ charge overlap as a measure of action

  8. State and location dependence of action potential metabolic cost in cortical pyramidal neurons

    NARCIS (Netherlands)

    Hallermann, S.; de Kock, C.P.J.; Stuart, G.J.; Kole, M.H.

    2012-01-01

    Action potential generation and conduction requires large quantities of energy to restore Na + and K + ion gradients. We investigated the subcellular location and voltage dependence of this metabolic cost in rat neocortical pyramidal neurons. Using Na +K + charge overlap as a measure of action

  9. Spatiotemporal and functional characterisation of the Plasmodium falciparum cGMP-dependent protein kinase.

    Directory of Open Access Journals (Sweden)

    Christine S Hopp

    Full Text Available Signalling by 3'-5'-cyclic guanosine monophosphate (cGMP exists in virtually all eukaryotes. In the apicomplexan parasite Plasmodium, the cGMP-dependent protein kinase (PKG has previously been reported to play a critical role in four key stages of the life cycle. The Plasmodium falciparum isoform (PfPKG is essential for the initiation of gametogenesis and for blood stage schizont rupture and work on the orthologue from the rodent malaria parasite P. berghei (PbPKG has shown additional roles in ookinete differentiation and motility as well as liver stage schizont development. In the present study, PfPKG expression and subcellular location in asexual blood stages was investigated using transgenic epitope-tagged PfPKG-expressing P. falciparum parasites. In Western blotting experiments and immunofluorescence analysis (IFA, maximal PfPKG expression was detected at the late schizont stage. While IFA suggested a cytosolic location, a degree of overlap with markers of the endoplasmic reticulum (ER was found and subcellular fractionation showed some association with the peripheral membrane fraction. This broad localisation is consistent with the notion that PfPKG, as with the mammalian orthologue, has numerous cellular substrates. This idea is further supported by the global protein phosphorylation pattern of schizonts which was substantially changed following PfPKG inhibition, suggesting a complex role for PfPKG during schizogony.

  10. Quantification analysis of the expression of tumor-associated proteins in serum samples from patients with ovarian cancer and those with other tumor location. Possibilities of their use in the diagnosis and estimation of the extent of a tumorous process

    Directory of Open Access Journals (Sweden)

    T. S. Bobrova

    2012-01-01

    Full Text Available The specific features of the expression of tumor-associated proteins (TAP were immunologically studied in the sera of patients with ovarian cancer (OC and other tumor location by means of immune sera (As or monoclonal antibodies (MAb to find out whether they could be used to diagnose and estimate the extent of a tumorous process.MAb 1 (to HEp-2 cell membrane proteins, larynx cancer, Ac4 (to a pool of two ovarian cystadenocarcinomas, and MAb 3 (to affinity-pu- rified proteins of the apparently intact human gastric mucosa were used to examine the sera of patients with OC and other tumor location and positive responsiveness was detected in 82, ~100, and 77 % of cases, respectively. The differences in the expression of TAP in the patients versus healthy donors were shown to be statistically significant (p = 0.0001; p = 0.015; p = 0.01, respectively.The sensitivity of quantifying ELISA in detecting TAP was 78 and 85 % in patients with Stages I–II and III–IV OC, respectively; ~100 and 89 % in patients with breast cancer and in those with gastrointestinal tract cancer, respectively; and 60 and 14 % in patients with lymphopro- liferative diseases and healthy donors, respectively. Comparison of TAP detection rates in the authors’ test systems with multiplex testing with a biochip array of 12 tumor markers has shown that these test systems are at the world standard level.

  11. Signal peptides and protein localization prediction

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2005-01-01

    In 1999, the Nobel prize in Physiology or Medicine was awarded to Gunther Blobel “for the discovery that proteins have intrinsic signals that govern their transport and localization in the cell”. Since the subcellular localization of a protein is an important clue to its function, the characteriz...

  12. Subcellular Targeting of Methylmercury Lyase Enhances Its Specific Activity for Organic Mercury Detoxification in Plants1

    Science.gov (United States)

    Bizily, Scott P.; Kim, Tehryung; Kandasamy, Muthugapatti K.; Meagher, Richard B.

    2003-01-01

    Methylmercury is an environmental pollutant that biomagnifies in the aquatic food chain with severe consequences for humans and other animals. In an effort to remove this toxin in situ, we have been engineering plants that express the bacterial mercury resistance enzymes organomercurial lyase MerB and mercuric ion reductase MerA. In vivo kinetics experiments suggest that the diffusion of hydrophobic organic mercury to MerB limits the rate of the coupled reaction with MerA (Bizily et al., 2000). To optimize reaction kinetics for organic mercury compounds, the merB gene was engineered to target MerB for accumulation in the endoplasmic reticulum and for secretion to the cell wall. Plants expressing the targeted MerB proteins and cytoplasmic MerA are highly resistant to organic mercury and degrade organic mercury at 10 to 70 times higher specific activity than plants with the cytoplasmically distributed wild-type MerB enzyme. MerB protein in endoplasmic reticulum-targeted plants appears to accumulate in large vesicular structures that can be visualized in immunolabeled plant cells. These results suggest that the toxic effects of organic mercury are focused in microenvironments of the secretory pathway, that these hydrophobic compartments provide more favorable reaction conditions for MerB activity, and that moderate increases in targeted MerB expression will lead to significant gains in detoxification. In summary, to maximize phytoremediation efficiency of hydrophobic pollutants in plants, it may be beneficial to target enzymes to specific subcellular environments. PMID:12586871

  13. Temporal variations in metallothionein concentration and subcellular distribution of metals in gills and digestive glands of the oyster Crassostrea angulata

    Directory of Open Access Journals (Sweden)

    Chiara Trombini

    2010-11-01

    Full Text Available The metallothionein levels and metal concentrations in whole body, digestive gland and gills of Crassostrea angulata were analyzed in field samples collected from the River Guadalquivir estuary over several years following a mining waste spill upstream. The subcellular distribution of metals was analyzed to determine the mechanisms involved in the detoxification process. The highest metallothionein levels were reported in the digestive gland shortly after the mining contamination event. In this organ, metals are stored preferentially in the non-cytosolic fraction when increased bioaccumulation takes place. In the cytosol of the gills, metals are associated with metallothionein, whereas in the digestive gland, the distribution of metals between metallothioneins and high molecular weight proteins is similar. Metallothionein variation cannot be explained by metals alone; other abiotic factors must be taken into account. In order to use metallothionein as a metal exposure biomarker in field studies, natural variability needs to be taken into account for the correct interpretation of results.

  14. Participation of the arcRACME protein in self-activation of the arc operon located in the arginine catabolism mobile element in pandemic clone USA300.

    Science.gov (United States)

    Rozo, Zayda Lorena Corredor; Márquez-Ortiz, Ricaurte Alejandro; Castro, Betsy Esperanza; Gómez, Natasha Vanegas; Escobar-Pérez, Javier

    2017-07-01

    Staphylococcus aureus pandemic clone USA300 has, in addition to its constitutive arginine catabolism (arc) gene cluster, an arginine catabolism mobile element (ACME) carrying another such cluster, which gives this clone advantages in colonisation and infection. Gene arcR, which encodes an oxygen-sensitive transcriptional regulator, is inside ACME and downstream of the constitutive arc gene cluster, and this situation may have an impact on its activation. Different relative expression behaviours are proven here for arcRACME and the arcACME operon compared to the constitutive ones. We also show that the artificially expressed recombinant ArcRACME protein binds to the promoter region of the arcACME operon; this mechanism can be related to a positive feedback model, which may be responsible for increased anaerobic survival of the USA300 clone during infection-related processes.

  15. FRET biosensors reveal AKAP-mediated shaping of subcellular PKA activity and a novel mode of Ca(2+)/PKA crosstalk.

    Science.gov (United States)

    Schott, Micah B; Gonowolo, Faith; Maliske, Benjamin; Grove, Bryon

    2016-04-01

    Scaffold proteins play a critical role in cellular homeostasis by anchoring signaling enzymes in close proximity to downstream effectors. In addition to anchoring static enzyme complexes, some scaffold proteins also form dynamic signalosomes that can traffic to different subcellular compartments upon stimulation. Gravin (AKAP12), a multivalent scaffold, anchors PKA and other enzymes to the plasma membrane under basal conditions, but upon [Ca(2+)]i elevation, is rapidly redistributed to the cytosol. Because gravin redistribution also impacts PKA localization, we postulate that gravin acts as a calcium "switch" that modulates PKA-substrate interactions at the plasma membrane, thus facilitating a novel crosstalk mechanism between Ca(2+) and PKA-dependent pathways. To assess this, we measured the impact of gravin-V5/His expression on compartmentalized PKA activity using the FRET biosensor AKAR3 in cultured cells. Upon treatment with forskolin or isoproterenol, cells expressing gravin-V5/His showed elevated levels of plasma membrane PKA activity, but cytosolic PKA activity levels were reduced compared with control cells lacking gravin. This effect required both gravin interaction with PKA and localization at the plasma membrane. Pretreatment with calcium-elevating agents thapsigargin or ATP caused gravin redistribution away from the plasma membrane and prevented gravin from elevating PKA activity levels at the membrane. Importantly, this mode of Ca(2+)/PKA crosstalk was not observed in cells expressing a gravin mutant that resisted calcium-mediated redistribution from the cell periphery. These results reveal that gravin impacts subcellular PKA activity levels through the spatial targeting of PKA, and that calcium elevation modulates downstream β-adrenergic/PKA signaling through gravin redistribution, thus supporting the hypothesis that gravin mediates crosstalk between Ca(2+) and PKA-dependent signaling pathways. Based on these results, AKAP localization dynamics may

  16. FRET biosensors reveal AKAP-mediated shaping of subcellular PKA activity and a novel mode of Ca2+/PKA crosstalk

    Science.gov (United States)

    Schott, Micah; Gonowolo, Faith; Maliske, Ben; Grove, Bryon

    2016-01-01

    Scaffold proteins play a critical role in cellular homeostasis by anchoring signaling enzymes in close proximity to downstream effectors. In addition to anchoring static enzyme complexes, some scaffold proteins also form dynamic signalosomes that can traffic to different subcellular compartments upon stimulation. Gravin (AKAP12), a multivalent scaffold, anchors PKA and other enzymes to the plasma membrane under basal conditions, but upon [Ca2+]i elevation, is rapidly redistributed to the cytosol. Because gravin redistribution also impacts PKA localization, we postulate that gravin acts as a calcium “switch” that modulates PKA-substrate interactions at the plasma membrane, thus facilitating a novel crosstalk mechanism between Ca2+ and PKA-dependent pathways. To assess this, we measured the impact of gravin-V5/His expression on compartmentalized PKA activity using the FRET biosensor AKAR3 in cultured cells. Upon treatment with forskolin or isoproterenol, cells expressing gravin-V5/His showed elevated levels of plasma membrane PKA activity, but cytosolic PKA activity levels were reduced compared with control cells lacking gravin. This effect required both gravin interaction with PKA and localization at the plasma membrane. Pretreatment with calcium-elevating agents thapsigargin or ATP caused gravin redistribution away from the plasma membrane and prevented gravin from elevating PKA activity levels at the membrane. Importantly, this mode of Ca2+/PKA crosstalk was not observed in cells expressing a gravin mutant that resists calcium-mediated redistribution from the cell periphery. These results reveal that gravin impacts subcellular PKA activity levels through the spatial targeting of PKA, and that calcium elevation modulates downstream β-adrenergic/PKA signaling through gravin redistribution, thus supporting the hypothesis that gravin mediates crosstalk between Ca2+ and PKA-dependent signaling pathways. Based on these results, AKAP localization dynamics may

  17. Structure and function of yeast glutaredoxin 2 depend on postranslational processing and are related to subcellular distribution.

    Science.gov (United States)

    Porras, Pablo; McDonagh, Brian; Pedrajas, Jose Rafael; Bárcena, J Antonio; Padilla, C Alicia

    2010-04-01

    We have previously shown that glutaredoxin 2 (Grx2) from Saccharomyces cerevisiae localizes at 3 different subcellular compartments, cytosol, mitochondrial matrix and outer membrane, as the result of different postranslational processing of one single gene. Having set the mechanism responsible for this remarkable phenomenon, we have now aimed at defining whether this diversity of subcellular localizations correlates with differences in structure and function of the Grx2 isoforms. We have determined the N-terminal sequence of the soluble mitochondrial matrix Grx2 by mass spectrometry and have determined the exact cleavage site by Mitochondrial Processing Peptidase (MPP). As a consequence of this cleavage, the mitochondrial matrix Grx2 isoform possesses a basic tetrapeptide extension at the N-terminus compared to the cytosolic form. A functional relationship to this structural difference is that mitochondrial Grx2 displays a markedly higher activity in the catalysis of GSSG reduction by the mitochondrial dithiol dihydrolipoamide. We have prepared Grx2 mutants affected on key residues inside the presequence to direct the protein to one single cellular compartment; either the cytosol, the mitochondrial membrane or the matrix and have analyzed their functional phenotypes. Strains expressing Grx2 only in the cytosol are equally sensitive to H(2)O(2) as strains lacking the gene, whereas those expressing Grx2 exclusively in the mitochondrial matrix are more resistant. Mutations on key basic residues drastically affect the cellular fate of the protein, showing that evolutionary diversification of Grx2 structural and functional properties are strictly dependent on the sequence of the targeting signal peptide. Copyright 2009 Elsevier B.V. All rights reserved.

  18. Lignin, mitochondrial family and photorespiratory transporter classification as case studies in using co-expression, co-response and protein locations to aid in identifying transport functions

    Directory of Open Access Journals (Sweden)

    Takayuki eTohge

    2014-03-01

    Full Text Available Whole genome sequencing and the relative ease of transcript profiling have facilitated the collection and data warehousing of immense quantities of expression data. However, a substantial proportion of genes are not yet functionally annotated a problem which is particularly acute for transport proteins. In Arabidopsis, for example, only a minor fraction of the estimated 700 intracellular transporters have been identified at the molecular genetic level. Furthermore it is only within the last couple of years that critical genes such as those encoding the final transport step required for the long distance transport of sucrose and the first transporter of the core photorespiratory pathway have been identified. Here we will describe how transcriptional coordination between genes of known function and non-annotated genes allows the identification of putative transporters on the premise that such co-expressed genes tend to be functionally related. We will additionally extend this to include the expansion of this approach to include phenotypic information from other levels of cellular organization such as proteomic and metabolomic data and provide case studies wherein this approach has successfully been used to fill knowledge gaps in important metabolic pathways and physiological processes.

  19. ClubSub-P: Cluster-Based Subcellular Localization Prediction for Gram-Negative Bacteria and Archaea

    Science.gov (United States)

    Paramasivam, Nagarajan; Linke, Dirk

    2011-01-01

    The subcellular localization (SCL) of proteins provides important clues to their function in a cell. In our efforts to predict useful vaccine targets against Gram-negative bacteria, we noticed that misannotated start codons frequently lead to wrongly assigned SCLs. This and other problems in SCL prediction, such as the relatively high false-positive and false-negative rates of some tools, can be avoided by applying multiple prediction tools to groups of homologous proteins. Here we present ClubSub-P, an online database that combines existing SCL prediction tools into a consensus pipeline from more than 600 proteomes of fully sequenced microorganisms. On top of the consensus prediction at the level of single sequences, the tool uses clusters of homologous proteins from Gram-negative bacteria and from Archaea to eliminate false-positive and false-negative predictions. ClubSub-P can assign the SCL of proteins from Gram-negative bacteria and Archaea with high precision. The database is searchable, and can easily be expanded using either new bacterial genomes or new prediction tools as they become available. This will further improve the performance of the SCL prediction, as well as the detection of misannotated start codons and other annotation errors. ClubSub-P is available online at http://toolkit.tuebingen.mpg.de/clubsubp/ PMID:22073040

  20. The relative importance of water and diet for uptake and subcellular distribution of cadmium in the deposit-feeding polychaete, Capitella sp I

    DEFF Research Database (Denmark)

    Selck, Henriette; Forbes, Valery E.

    2004-01-01

    The impact of dietary and water exposure on the accumulation and distribution of cadmium (Cd) in subcellular components of the polychaete Capitella sp. I was investigated. Worms were exposed to either dissolved Cd alone ('Water-Only' treatments; WO) or diet-bound Cd alone ('Algae-bound Only......, starvation likewise influenced the distribution of protein between mitochondria and cytosol. Cutaneous uptake and accumulation of Cd from the water was related to surface area while dietary uptake was influenced by the amount of sediment passing through the gut. Irrespective of exposure route, Cd...

  1. Topology and cellular localization of the small hydrophobic protein of avian metapneumovirus.

    Science.gov (United States)

    Deng, Qiji; Weng, Yuejin; Lu, Wuxun; Demers, Andrew; Song, Minxun; Wang, Dan; Yu, Qingzhong; Li, Feng

    2011-09-01

    The small hydrophobic protein (SH) is a type II integral membrane protein that is packaged into virions and is only present in certain paramyxoviruses including metapneumovirus. In addition to a highly divergent primary sequence, SH proteins vary significantly in size amongst the different viruses. Human respiratory syncytial virus (HRSV) encodes the smallest SH protein consisting of only 64 amino acids, while metapneumoviruses have the longest SH protein ranging from 174 to 179 amino acids in length. Little is currently known about the cellular localization and topology of the metapneumovirus SH protein. Here we characterize for the first time metapneumovirus SH protein with respect to topology, subcellular localization, and transport using avian metapneumovirus subgroup C (AMPV-C) as a model system. We show that AMPV-C SH is an integral membrane protein with N(in)C(out) orientation located in both the plasma membrane as well as within intracellular compartments, which is similar to what has been described previously for SH proteins of other paramyxoviruses. Furthermore, we demonstrate that AMPV-C SH protein localizes in the endoplasmic reticulum (ER), Golgi, and cell surface, and is transported through ER-Golgi secretory pathway. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Basic amino acid residues located in the N-terminal region of BEND3 are essential for its nuclear localization

    Energy Technology Data Exchange (ETDEWEB)

    Shiheido, Hirokazu, E-mail: shiheido@ak.med.kyoto-u.ac.jp; Shimizu, Jun

    2015-02-20

    BEN domain-containing protein 3 (BEND3) has recently been reported to function as a heterochromatin-associated protein in transcriptional repression in the nucleus. BEND3 should have nuclear localization signals (NLSs) to localize to the nucleus in light of its molecular weight, which is higher than that allowed to pass through nuclear pore complexes. We here analyzed the subcellular localization of deletion/site-directed mutants of human BEND3 by an immunofluorescence assay in an attempt to identify the amino acids essential for its nuclear localization. We found that three basic amino acid residues located in the N-terminal region of BEND3 (BEND3{sub 56–58}, KRK) are essential, suggesting that these residues play a role as a functional NLS. These results provide valuable information for progressing research on BEND3. - Highlights: • BEND3 localizes to the nucleus. • The N-terminal 60 amino acids region of BEND3 contains NLS. • Amino acids located between 56 and 58 of BEND3 (KRK) are part of NLS. • KRK motif is highly conserved among BEND3 homologs.

  3. SPiCE : A web-based tool for sequence-based protein classification and exploration

    NARCIS (Netherlands)

    Van den Berg, B.A.; Reinders, M.J.; Roubos, J.A.; De Ridder, D.

    2014-01-01

    Background Amino acid sequences and features extracted from such sequences have been used to predict many protein properties, such as subcellular localization or solubility, using classifier algorithms. Although software tools are available for both feature extraction and classifier construction,

  4. Targeting a heterologous protein to multiple plant organelles via rationally designed 5? mRNA tags

    NARCIS (Netherlands)

    Voges, M.J.; Silver, P.A.; Way, J.C.; Mattozzi, M.D.

    2013-01-01

    Background Plant bioengineers require simple genetic devices for predictable localization of heterologous proteins to multiple subcellular compartments. Results We designed novel hybrid signal sequences for multiple-compartment localization and characterize their function when fused to GFP in

  5. Subcellular partitioning of cadmium and zinc in mealworm beetle (Tenebrio molitor) larvae exposed to metal-contaminated flour.

    Science.gov (United States)

    Bednarska, Agnieszka J; Świątek, Zuzanna

    2016-11-01

    By studying the internal compartmentalization of metals in different subcellular fractions we are able to better understand the mechanisms of metal accumulation in organisms and the transfer of metals through trophic chains. We investigated the internal compartmentalization of cadmium (Cd) and zinc (Zn) in mealworm beetle (Tenebrio molitor) larvae by breeding them in flour contaminated with either Cd at 100, 300 and 600mgkg(-1), or Zn at 1000 and 2000mgkg(-1). We separated the cellular components of the larvae into 3 fractions: the S1 or cytosolic fraction containing organelles, heat-sensitive and heat-stable proteins, the S2 or cellular debris fraction and the G or metal-rich granule fraction. The concentration of Cd and Zn in each fraction was measured at 0, 7, 14 and 21 days of being fed the flour. The concentration of Cd in the flour affected the concentration of Cd measured in each larval subcellular fraction (p≤0.0001), while the concentration of Zn in the flour only affected the Zn concentration in the S2 and G fractions (p≤0.02). Both Cd and Zn concentrations in mealworms remained relatively constant during the exposure (days 7, 14 and 21) in all three fractions, but the Cd concentrations were much higher than those found in larvae before the exposure (day 0). The concentration of Cd in the flour, however, did not affect the percentage of Cd in the S1 fraction. The contribution of Cd in the G fraction to the total Cd amount was similar (30-40%) in all Cd treatments. The percentage of Zn in all three fractions was not affected by the concentration of Zn in the flour and the relative contributions of each subcellular fraction to the total burden of Zn remained generally constant for both control and treated larvae. In general, larvae sequestered approximately 30% of Cd and Zn in the S1 fraction, which is important for the transport of metals to higher trophic levels in a food web. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Impacts of BDE209 addition on Pb uptake, subcellular partitioning and gene toxicity in earthworm (Eisenia fetida)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei, E-mail: wzhang@ecust.edu.cn [State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai 200237 (China); School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237 (China); Liu, Kou; Li, Jing; Liang, Jun; Lin, Kuangfei [State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai 200237 (China); School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2015-12-30

    Highlights: • 10 or 100 μg g{sup −1} BDE209 addition caused histological changes in Pb-exposed earthworms’ body wall. • Strong histopathological effects with BDE209 addition confirmed the enhanced Pb bioavailability. • The presence of higher levels of BDE209 altered subcellular partitioning of Pb in earthworm. • Co-exposure to Pb and BDE209 declined SOD and CAT gene transcripts synergistically. • BDE209 addition elicited up-regulation of Hsp90 gene expression compared to Pb exposure alone. - Abstract: Lead (Pb) and decabromodiphenyl ether (BDE209) are the mainly co-existed contaminants at e-waste recycling sites. The potential toxicity of Pb (250 μg g{sup −1}) to earthworm Eisenia fetida in the presence of BDE209 (1, 10 and 100 μg g{sup −1}) was determined during 14-d incubation period. Compared to Pb treatment alone, the co-exposure with 1 μg g{sup −1} BDE209 barely affected Pb uptake, subcellular partitioning and gene expression; however, histopathological changes in earthworms’ body wall (epidermal, circular and longitudinal muscles) demonstrated that 10 and 100 μg g{sup −1} BDE209 additions enhanced Pb uptake and altered its subcellular partitioning, indicating that Pb redistributed from fractions E (cell debris) and D (metal-rich granules) to fraction C (cytosols); Additionally, BDE209 supply significantly inhibited (p < 0.05) the induction of SOD (superoxide dismutase) and CAT (catalase) gene expressions (maximum down-regulation 59% for SOD gene at Pb + 100 μg g{sup −1} BDE209 and 89% for CAT gene at Pb + 10 μg g{sup −1} BDE209), while facilitated (p < 0.05) Hsp90 (heat shock protein 90) gene expression with maximum induction rate of 120% after exposure to Pb + 10 μg g{sup −1} BDE209. These findings illustrate the importance of considering environmental BDE209 co-exposure when assessing Pb bioaccumulation and toxicity in multi-contaminated soil ecosystems.

  7. Impacts of BDE209 addition on Pb uptake, subcellular partitioning and gene toxicity in earthworm (Eisenia fetida)

    International Nuclear Information System (INIS)

    Zhang, Wei; Liu, Kou; Li, Jing; Liang, Jun; Lin, Kuangfei

    2015-01-01

    Highlights: • 10 or 100 μg g −1 BDE209 addition caused histological changes in Pb-exposed earthworms’ body wall. • Strong histopathological effects with BDE209 addition confirmed the enhanced Pb bioavailability. • The presence of higher levels of BDE209 altered subcellular partitioning of Pb in earthworm. • Co-exposure to Pb and BDE209 declined SOD and CAT gene transcripts synergistically. • BDE209 addition elicited up-regulation of Hsp90 gene expression compared to Pb exposure alone. - Abstract: Lead (Pb) and decabromodiphenyl ether (BDE209) are the mainly co-existed contaminants at e-waste recycling sites. The potential toxicity of Pb (250 μg g −1 ) to earthworm Eisenia fetida in the presence of BDE209 (1, 10 and 100 μg g −1 ) was determined during 14-d incubation period. Compared to Pb treatment alone, the co-exposure with 1 μg g −1 BDE209 barely affected Pb uptake, subcellular partitioning and gene expression; however, histopathological changes in earthworms’ body wall (epidermal, circular and longitudinal muscles) demonstrated that 10 and 100 μg g −1 BDE209 additions enhanced Pb uptake and altered its subcellular partitioning, indicating that Pb redistributed from fractions E (cell debris) and D (metal-rich granules) to fraction C (cytosols); Additionally, BDE209 supply significantly inhibited (p < 0.05) the induction of SOD (superoxide dismutase) and CAT (catalase) gene expressions (maximum down-regulation 59% for SOD gene at Pb + 100 μg g −1 BDE209 and 89% for CAT gene at Pb + 10 μg g −1 BDE209), while facilitated (p < 0.05) Hsp90 (heat shock protein 90) gene expression with maximum induction rate of 120% after exposure to Pb + 10 μg g −1 BDE209. These findings illustrate the importance of considering environmental BDE209 co-exposure when assessing Pb bioaccumulation and toxicity in multi-contaminated soil ecosystems.

  8. Subcellular localization, mobility, and kinetic activity of glucokinase in glucose-responsive insulin-secreting cells.

    Science.gov (United States)

    Stubbs, M; Aiston, S; Agius, L

    2000-12-01

    We investigated the subcellular localization, mobility, and activity of glucokinase in MIN6 cells, a glucose-responsive insulin-secreting beta-cell line. Glucokinase is present in the cytoplasm and a vesicular/granule compartment that is partially colocalized with insulin granules. The granular staining of glucokinase is preserved after permeabilization of the cells with digitonin. There was no evidence for changes in distribution of glucokinase between the cytoplasm and the granule compartment during incubation of the cells with glucose. The rate of release of glucokinase and of phosphoglucoisomerase from digitonin-permeabilized cells was slower when cells were incubated at an elevated glucose concentration (S0.5 approximately 15 mmol/l). This effect of glucose was counteracted by competitive inhibitors of glucokinase (5-thioglucose and mannoheptulose) but was unaffected by fructose analogs and may be due to changes in cell shape or conformation of the cytoskeleton that are secondary to glucose metabolism. Based on the similar release of glucokinase and phosphoglucoisomerase, we found no evidence for specific binding of cytoplasmic digitonin-extractable glucokinase. The affinity of beta-cells for glucose is slightly lower than that in cell extracts and, unlike that in hepatocytes, is unaffected by fructose, tagatose, or a high-K+ medium, which is consistent with the lack of change in glucokinase distribution or release. We conclude that glucokinase is present in two locations, cytoplasm and the granular compartment, and that it does not translocate between them. This conclusion is consistent with the lack of adaptive changes in the glucose phosphorylation affinity. The glucokinase activity associated with the insulin granules may have a role in either direct or indirect coupling between glucose phosphorylation and insulin secretion.

  9. Optimization of ruminococcus albus endoglucanase cel5-cbm6 production in plants by incorporating an elp tag and targeting to different subcellular compartments

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, E.O.; Menassa, R. [Western Ontario Univ., London, ON (Canada). Dept. of Biology; Agriculture and Agri-Food Canada, London, ON (Canada); Kolotilin, I. [Agriculture and Agri-Food Canada, London, ON (Canada)

    2009-07-01

    The production of biomass-based biofuel such as ethanol depends on the deconstruction of a cellulosic matrix and requires a variety of enzymes that hydrolyze glycosidic bonds to release fermentable sugars. Endoglucanases are one of most important groups of natural cellulosic hydrolytic enzymes that act on cellulose. In order to decrease ethanol production costs, the cost of producing cellulases must also be reduced. Genetically engineered transgenic plants are among the most economical systems for large scale production of recombinant proteins because of the large amount of enzymes that can be produced with minimal input. Cellulases present different levels of expression in different subcellular compartments. Cel5-CBM6 is a fused protein containing an endocellulase from Ruminococus albus (Cel5) and a cellulose binding domain (CBD) of Clostridium stercorarium. It accumulates in both the chloroplast and cytoplasm, but severe growth defects occur when expressed in the cytoplasm. Therefore, other subcellular compartments such as endoplasmic reticulum (ER) and vacuole must be evaluated and compared to determine the best co partment for production and activity of cellulases. Since elastin-like polypeptide (ELP) has also been shown to increase recombinant protein accumulation in plants, this study evaluated the effects of incorporating an ELP tag and a retrieval signal peptide on the expression levels of Cel5-CBM6.

  10. Sub-cellular force microscopy in single normal and cancer cells.

    Science.gov (United States)

    Babahosseini, H; Carmichael, B; Strobl, J S; Mahmoodi, S N; Agah, M

    2015-08-07

    This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer and significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Differential CARM1 Isoform Expression in Subcellular Compartments and among Malignant and Benign Breast Tumors.

    Directory of Open Access Journals (Sweden)

    David Shlensky

    Full Text Available Coactivator-associated arginine methyltransferase 1 (CARM1 is a coactivator for ERα and cancer-relevant transcription factors, and can methylate diverse cellular targets including histones. CARM1 is expressed in one of two alternative splice isoforms, full-length CARM1 (CARM1FL and truncated CARM1 (CARM1ΔE15. CARM1FL and CARM1ΔE15 function differently in transcriptional regulation, protein methylation, and mediation of pre-mRNA splicing in cellular models.To investigate the functional roles and the prognosis potential of CARM1 alternative spliced isoforms in breast cancer, we used recently developed antibodies to detect differential CARM1 isoform expression in subcellular compartments and among malignant and benign breast tumors.Immunofluorescence in MDA-MB-231 and BG-1 cell lines demonstrated that CARM1ΔE15 is the dominant isoform expressed in the cytoplasm, and CARM1FL is more nuclear localized. CARM1ΔE15 was found to be more sensitive to Hsp90 inhibition than CARM1FL, indicating that the truncated isoform may be the oncogenic form. Clinical cancer samples did not have significantly higher expression of CARM1FL or CARM1ΔE15 than benign breast samples at the level of mRNA or histology. Furthermore neither CARM1FL nor CARM1ΔE15 expression correlated with breast cancer molecular subtypes, tumor size, or lymph node involvement.The analysis presented here lends new insights into the possible oncogenic role of CARM1ΔE15. This study also demonstrates no obvious association of CARM1 isoform expression and clinical correlates in breast cancer. Recent studies, however, have shown that CARM1 expression correlates with poor prognosis, indicating a need for further studies of both CARM1 isoforms in a large cohort of breast cancer specimens.

  12. Study of subcellular distribution of /sup 67/Ga in tumor and liver

    Energy Technology Data Exchange (ETDEWEB)

    Ando, A; Takeshita, M; Hiraki, T [Kanazawa Univ. (Japan). School of Paramedicine; Ando, T; Hisada, K

    1977-02-01

    The following animals and transplanted tumors were used: rats implanted with Yoshida sarcoma and hepatoma AH109A, and mice implanted with Ehrlich tumor. /sup 67/Ga-citrate was injected into the rats intravenously and into the mice intraperitoneally. Ten minutes to 48 hours after the administration of /sup 67/Ga-citrate, the animals were sacrificed, and the tumor tissues and liver were excised. Subcellular fractionation of tumor tissues and livers was carried out according to the method of Hogeboom and Schneider. Radioactivity of each fraction was counted with a well type scintillation counter, and the protein of each fraction was measured according to Lowry's method. In Yoshida sarcoma and Ehrlich tumor, most of the radioactivity was localized in the supernatant fraction, and a small amount of radioactivity was localized in the mitochondrial fraction (lysosome contains in this fraction). But in the liver, most of the radioactivity was concentrated in the mitochondrial fraction, and the radioactivity of this fraction was increased with the passage of time after administration. Twenty-four hours later, about 50% of the total radioactivity was accumulated in this fraction. In the case of hepatoma AH109A, radioactivity of the mitochondrial fraction was increased with the passage of time after administration, and about 30% of total activity was concentrated in this fraction at 24 hours after administration. From these results it is concluded that the lysosome does not play an important role in the concentration of /sup 67/Ga in the tumor, but that the lysosome plays an important role in the concentration of /sup 67/Ga in the liver. In the case of hepatoma AH109A, it is presumed that the lysosome plays a very important role in the concentration of /sup 67/Ga in the tumor, hepatoma AH109A having some nature of liver.

  13. Study of subcellular distribution of /sup 169/Yb and /sup 111/In in tumor and liver

    Energy Technology Data Exchange (ETDEWEB)

    Ando, A; Takeshita, M; Hiraki, T [Kanazawa Univ. (Japan). School of Paramedicine; Ando, Itsuko; Hisada, Kinichi

    1977-03-01

    Rats were implanted with Yoshida sarcoma and hepatoma AH109A; and mice were implanted with Ehrlich tumor. /sup 169/Yb-citrate and /sup 111/In-citrate were injected into the rats intravenously and into the mice intraperitoneally. Ten minutes to 48 hours after the administration of /sup 169/Yb-citrate and /sup 111/In-citrate, the animals were sacrificed and the tumor tissues and liver were excised. Subcellular fractionation of tumor tissues and liver was carried out according to the method of Hogeboom and Schneider. The /sup 169/Yb and /sup 111/In of each fraction were counted by a well type scintillation counter, and the protein of each fraction was measured according to Lowry's method. In Yoshida sarcoma and Ehrlich tumor, most of the radioactivity was localized in the supernatant fraction, and a small amount of radioactivity was accumulated in the mitochondrial fraction (lysosome is contained in this fraction). But, in the liver, most of the radioactivity was concentrated in the mitochondrial fraction, and the radioactivity of this fraction was increased with the passage of time after administration. Twenty-four hours later, about 50% of the total radioactivity was accumulated in this fraction. In the case of hepatoma AH109A, radioactivity of the mitochondrial fraction was increased with time after administration, and about 30% of total radioactivity was concentrated in this fraction 24 hours after administration. From these results it is concluded that the lysosome does not play an important role in the concentration of /sup 169/Yb and /sup 111/In in the tumor, and that the lysosome plays an important role in the concentration of /sup 169/Yb and /sup 111/In in the liver. In the case of hepatoma AH109A it is presumed that the lysosome plays a very important role in the concentration of /sup 169/Yb and /sup 111/In, in the tumor as hepatoma AH109A retains some nature of liver.

  14. Polycaprolactone/maltodextrin nanocarrier for intracellular drug delivery: formulation, uptake mechanism, internalization kinetics, and subcellular localization.

    Science.gov (United States)

    Korang-Yeboah, Maxwell; Gorantla, Yamini; Paulos, Simon A; Sharma, Pankaj; Chaudhary, Jaideep; Palaniappan, Ravi

    2015-01-01

    Prostate cancer (PCa) disease progression is associated with significant changes in intracellular and extracellular proteins, intracellular signaling mechanism, and cancer cell phenotype. These changes may have direct impact on the cellular interactions with nanocarriers; hence, there is the need for a much-detailed understanding, as nanocarrier cellular internalization and intracellular sorting mechanism correlate directly with bioavailability and clinical efficacy. In this study, we report the differences in the rate and mechanism of cellular internalization of a biocompatible polycaprolactone (PCL)/maltodextrin (MD) nanocarrier system for intracellular drug delivery in LNCaP, PC3, and DU145 PCa cell lines. PCL/MD nanocarriers were designed and characterized. PCL/MD nanocarriers significantly increased the intracellular concentration of coumarin-6 and fluorescein isothiocyanate-labeled bovine serum albumin, a model hydrophobic and large molecule, respectively. Fluorescence microscopy and flow cytometry analysis revealed rapid internalization of the nanocarrier. The extent of nanocarrier cellular internalization correlated directly with cell line aggressiveness. PCL/MD internalization was highest in PC3 followed by DU145 and LNCaP, respectively. Uptake in all PCa cell lines was metabolically dependent. Extraction of endogenous cholesterol by methyl-β-cyclodextrin reduced uptake by 75%±4.53% in PC3, 64%±6.01% in LNCaP, and 50%±4.50% in DU145, indicating the involvement of endogenous cholesterol in cellular internalization. Internalization of the nanocarrier in LNCaP was mediated mainly by macropinocytosis and clathrin-independent pathways, while internalization in PC3 and DU145 involved clathrin-mediated endocytosis, clathrin-independent pathways, and macropinocytosis. Fluorescence microscopy showed a very diffused and non-compartmentalized subcellular localization of the PCL/MD nanocarriers with possible intranuclear localization and minor colocalization in

  15. Diversity and functions of protein glycosylation in insects.

    Science.gov (United States)

    Walski, Tomasz; De Schutter, Kristof; Van Damme, Els J M; Smagghe, Guy

    2017-04-01

    The majority of proteins is modified with carbohydrate structures. This modification, called glycosylation, was shown to be crucial for protein folding, stability and subcellular location, as well as protein-protein interactions, recognition and signaling. Protein glycosylation is involved in multiple physiological processes, including embryonic development, growth, circadian rhythms, cell attachment as well as maintenance of organ structure, immunity and fertility. Although the general principles of glycosylation are similar among eukaryotic organisms, insects synthesize a distinct repertoire of glycan structures compared to plants and vertebrates. Consequently, a number of unique insect glycans mediate functions specific to this class of invertebrates. For instance, the core α1,3-fucosylation of N-glycans is absent in vertebrates, while in insects this modification is crucial for the development of wings and the nervous system. At present, most of the data on insect glycobiology comes from research in Drosophila. Yet, progressively more information on the glycan structures and the importance of glycosylation in other insects like beetles, caterpillars, aphids and bees is becoming available. This review gives a summary of the current knowledge and recent progress related to glycan diversity and function(s) of protein glycosylation in insects. We focus on N- and O-glycosylation, their synthesis, physiological role(s), as well as the molecular and biochemical basis of these processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effects of cooking and subcellular distribution on the bioaccessibility of trace elements in two marine fish species.

    Science.gov (United States)

    He, Mei; Ke, Cai-Huan; Wang, Wen-Xiong

    2010-03-24

    In current human health risk assessment, the maximum acceptable concentrations of contaminants in food are mostly based on the total concentrations. However, the total concentration of contaminants may not always reflect the available amount. Bioaccessibility determination is thus required to improve the risk assessment of contaminants. This study used an in vitro digestion model to assess the bioaccessibility of several trace elements (As, Cd, Cu, Fe, Se, and Zn) in the muscles of two farmed marine fish species (seabass Lateolabrax japonicus and red seabream Pagrosomus major ) of different body sizes. The total concentrations and subcellular distributions of these trace elements in fish muscles were also determined. Bioaccessibility of these trace elements was generally high (>45%), and the lowest bioaccessibility was observed for Fe. Cooking processes, including boiling, steaming, frying, and grilling, generally decreased the bioaccessibility of these trace elements, especially for Cu and Zn. The influences of frying and grilling were greater than those of boiling and steaming. The relationship of bioaccessibility and total concentration varied with the elements. A positive correlation was found for As and Cu and a negative correlation for Fe, whereas no correlation was found for Cd, Se, and Zn. A significant positive relationship was demonstrated between the bioaccessibility and the elemental partitioning in the heat stable protein fraction and in the trophically available fraction, and a negative correlation was observed between the bioaccessibility and the elemental partitioning in metal-rich granule fraction. Subcellular distribution may thus affect the bioaccessibility of metals and should be considered in the risk assessment for seafood safety.

  17. Biases in the experimental annotations of protein function and their effect on our understanding of protein function space.

    Directory of Open Access Journals (Sweden)

    Alexandra M Schnoes

    Full Text Available The ongoing functional annotation of proteins relies upon the work of curators to capture experimental findings from scientific literature and apply them to protein sequence and structure data. However, with the increasing use of high-throughput experimental assays, a small number of experimental studies dominate the functional protein annotations collected in databases. Here, we investigate just how prevalent is the "few articles - many proteins" phenomenon. We examine the experimentally validated annotation of proteins provided by several groups in the GO Consortium, and show that the distribution of proteins per published study is exponential, with 0.14% of articles providing the source of annotations for 25% of the proteins in the UniProt-GOA compilation. Since each of the dominant articles describes the use of an assay that can find only one function or a small group of functions, this leads to substantial biases in what we know about the function of many proteins. Mass-spectrometry, microscopy and RNAi experiments dominate high throughput experiments. Consequently, the functional information derived from these experiments is mostly of the subcellular location of proteins, and of the participation of proteins in embryonic developmental pathways. For some organisms, the information provided by different studies overlap by a large amount. We also show that the information provided by high throughput experiments is less specific than those provided by low throughput experiments. Given the experimental techniques available, certain biases in protein function annotation due to high-throughput experiments are unavoidable. Knowing that these biases exist and understanding their characteristics and extent is important for database curators, developers of function annotation programs, and anyone who uses protein function annotation data to plan experiments.

  18. RABA Members Act in Distinct Steps of Subcellular Trafficking of the FLAGELLIN SENSING2 Receptor[W

    Science.gov (United States)

    Choi, Seung-won; Tamaki, Takayuki; Ebine, Kazuo; Uemura, Tomohiro; Ueda, Takashi; Nakano, Akihiko

    2013-01-01

    Cell surface proteins play critical roles in the perception of environmental stimuli at the plasma membrane (PM) and ensuing signal transduction. Intracellular localization of such proteins must be strictly regulated, which requires elaborate integration of exocytic and endocytic trafficking pathways. Subcellular localization of Arabidopsis thaliana FLAGELLIN SENSING2 (FLS2), a receptor that recognizes bacterial flagellin, also depends on membrane trafficking. However, our understanding about the mechanisms involved is still limited. In this study, we visualized ligand-induced endocytosis of FLS2 using green fluorescent protein (GFP)-tagged FLS2 expressed in Nicotiana benthamiana. Upon treatment with the flg22 peptide, internalized FLS2-GFP from the PM was transported to a compartment with properties intermediate between the trans-Golgi network (TGN) and the multivesicular endosome. This compartment gradually discarded the TGN characteristics as it continued along the trafficking pathway. We further found that FLS2 endocytosis involves distinct RABA/RAB11 subgroups at different steps. Moreover, we demonstrated that transport of de novo–synthesized FLS2 to the PM also involves a distinct RABA/RAB11 subgroup. Our results demonstrate the complex regulatory system for properly localizing FLS2 and functional differentiation in RABA members in endo- and exocytosis. PMID:23532067

  19. Subcellular partitioning of metals in Aporrectodea caliginosa along a gradient of metal exposure in 31 field-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Beaumelle, Léa [INRA, UR 251 PESSAC, 78026 Versailles Cedex (France); Gimbert, Frédéric [Laboratoire Chrono-Environnement, UMR 6249 University of Franche-Comté/CNRS Usc INRA, 16 route de Gray, 25030 Besançon Cedex (France); Hedde, Mickaël [INRA, UR 251 PESSAC, 78026 Versailles Cedex (France); Guérin, Annie [INRA, US 0010 LAS Laboratoire d' analyses des sols, 273 rue de Cambrai, 62000 Arras (France); Lamy, Isabelle, E-mail: lamy@versailles.inra.fr [INRA, UR 251 PESSAC, 78026 Versailles Cedex (France)

    2015-07-01

    Subcellular fractionation of metals in organisms was proposed as a better way to characterize metal bioaccumulation. Here we report the impact of a laboratory exposure to a wide range of field-metal contaminated soils on the subcellular partitioning of metals in the earthworm Aporrectodea caliginosa. Soils moderately contaminated were chosen to create a gradient of soil metal availability; covering ranges of both soil metal contents and of several soil parameters. Following exposure, Cd, Pb and Zn concentrations were determined both in total earthworm body and in three subcellular compartments: cytosolic, granular and debris fractions. Three distinct proxies of soil metal availability were investigated: CaCl{sub 2}-extractable content dissolved content predicted by a semi-mechanistic model and free ion concentration predicted by a geochemical speciation model. Subcellular partitionings of Cd and Pb were modified along the gradient of metal exposure, while stable Zn partitioning reflected regulation processes. Cd subcellular distribution responded more strongly to increasing soil Cd concentration than the total internal content, when Pb subcellular distribution and total internal content were similarly affected. Free ion concentrations were better descriptors of Cd and Pb subcellular distribution than CaCl{sub 2} extractable and dissolved metal concentrations. However, free ion concentrations and soil total metal contents were equivalent descriptors of the subcellular partitioning of Cd and Pb because they were highly correlated. Considering lowly contaminated soils, our results raise the question of the added value of three proxies of metal availability compared to soil total metal content in the assessment of metal bioavailability to earthworm. - Highlights: • Earthworms were exposed to a wide panel of historically contaminated soils • Subcellular partitioning of Cd, Pb and Zn was investigated in earthworms • Three proxies of soil metal availability were

  20. Concentration of 17 Elements in Subcellular Fractions of Beef Heart Tissue Determined by Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wester, P O

    1964-12-15

    Subcellular fractions of beef heart tissue are investigated, by means of neutron activation analysis, with respect to their concentration of 17 different elements. A recently developed ion-exchange technique combined with gamma spectrometry is used. The homogeneity of the subcellular fractions is examined electron microscopically. The following elements are determined: As, Ba, Br, Cas Co, Cs, Cu, Fe, Hg, La, Mo, P, Rb, Se, Sm, W and Zn. The determination of Ag, Au, Cd, Ce, Cr, Sb and Sc is omitted, in view of contamination. Reproducible and characteristic patterns of distribution are obtained for all elements studied.

  1. Concentration of 17 Elements in Subcellular Fractions of Beef Heart Tissue Determined by Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Wester, P.O.

    1964-12-01

    Subcellular fractions of beef heart tissue are investigated, by means of neutron activation analysis, with respect to their concentration of 17 different elements. A recently developed ion-exchange technique combined with gamma spectrometry is used. The homogeneity of the subcellular fractions is examined electron microscopically. The following elements are determined: As, Ba, Br, Cas Co, Cs, Cu, Fe, Hg, La, Mo, P, Rb, Se, Sm, W and Zn. The determination of Ag, Au, Cd, Ce, Cr, Sb and Sc is omitted, in view of contamination. Reproducible and characteristic patterns of distribution are obtained for all elements studied

  2. Interaction of HSP20 with a viral RdRp changes its sub-cellular localization and distribution pattern in plants.

    Science.gov (United States)

    Li, Jing; Xiang, Cong-Ying; Yang, Jian; Chen, Jian-Ping; Zhang, Heng-Mu

    2015-09-11

    Small heat shock proteins (sHSPs) perform a fundamental role in protecting cells against a wide array of stresses but their biological function during viral infection remains unknown. Rice stripe virus (RSV) causes a severe disease of rice in Eastern Asia. OsHSP20 and its homologue (NbHSP20) were used as baits in yeast two-hybrid (YTH) assays to screen an RSV cDNA library and were found to interact with the viral RNA-dependent RNA polymerase (RdRp) of RSV. Interactions were confirmed by pull-down and BiFC assays. Further analysis showed that the N-terminus (residues 1-296) of the RdRp was crucial for the interaction between the HSP20s and viral RdRp and responsible for the alteration of the sub-cellular localization and distribution pattern of HSP20s in protoplasts of rice and epidermal cells of Nicotiana benthamiana. This is the first report that a plant virus or a viral protein alters the expression pattern or sub-cellular distribution of sHSPs.

  3. Sub-cellular trafficking of phytochemicals explored using auto-fluorescent compounds in maize cells

    Directory of Open Access Journals (Sweden)

    Grotewold Erich

    2003-12-01

    Full Text Available Abstract Background Little is known regarding the trafficking mechanisms of small molecules within plant cells. It remains to be established whether phytochemicals are transported by pathways similar to those used by proteins, or whether the expansion of metabolic pathways in plants was associated with the evolution of novel trafficking pathways. In this paper, we exploited the induction of green and yellow auto-fluorescent compounds in maize cultured cells by the P1 transcription factor to investigate their targeting to the cell wall and vacuole, respectively. Results We investigated the accumulation and sub-cellular localization of the green and yellow auto-fluorescent compounds in maize BMS cells expressing the P1 transcription factor from an estradiol inducible promoter. We established that the yellow fluorescent compounds accumulate inside the vacuole in YFBs that resemble AVIs. The green fluorescent compounds accumulate initially in the cytoplasm in large spherical GFBs. Cells accumulating GFBs also contain electron-dense structures that accumulate initially in the ER and which later appear to fuse with the plasma membrane. Structures resembling the GFBs were also observed in the periplasmic space of plasmolized cells. Ultimately, the green fluorescence accumulates in the cell wall, in a process that is insensitive to the Golgi-disturbing agents BFA and monensin. Conclusions Our results suggest the presence of at least two distinct trafficking pathways, one to the cell wall and the other to the vacuole, for different auto-fluorescent compounds induced by the same transcription factor in maize BMS cells. These compartments represent two of the major sites of accumulation of phenolic compounds characteristic of maize cells. The secretion of the green auto-fluorescent compounds occurs by a pathway that does not involve the TGN, suggesting that it is different from the secretion of most proteins, polysaccharides or epicuticular waxes. The

  4. Biases in the Experimental Annotations of Protein Function and Their Effect on Our Understanding of Protein Function Space

    Science.gov (United States)

    Schnoes, Alexandra M.; Ream, David C.; Thorman, Alexander W.; Babbitt, Patricia C.; Friedberg, Iddo

    2013-01-01

    The ongoing functional annotation of proteins relies upon the work of curators to capture experimental findings from scientific literature and apply them to protein sequence and structure data. However, with the increasing use of high-throughput experimental assays, a small number of experimental studies dominate the functional protein annotations collected in databases. Here, we investigate just how prevalent is the “few articles - many proteins” phenomenon. We examine the experimentally validated annotation of proteins provided by several groups in the GO Consortium, and show that the distribution of proteins per published study is exponential, with 0.14% of articles providing the source of annotations for 25% of the proteins in the UniProt-GOA compilation. Since each of the dominant articles describes the use of an assay that can find only one function or a small group of functions, this leads to substantial biases in what we know about the function of many proteins. Mass-spectrometry, microscopy and RNAi experiments dominate high throughput experiments. Consequently, the functional information derived from these experiments is mostly of the subcellular location of proteins, and of the participation of proteins in embryonic developmental pathways. For some organisms, the information provided by different studies overlap by a large amount. We also show that the information provided by high throughput experiments is less specific than those provided by low throughput experiments. Given the experimental techniques available, certain biases in protein function annotation due to high-throughput experiments are unavoidable. Knowing that these biases exist and understanding their characteristics and extent is important for database curators, developers of function annotation programs, and anyone who uses protein function annotation data to plan experiments. PMID:23737737

  5. Seasonal variations in hepatic Cd and Cu concentrations and in the sub-cellular distribution of these metals in juvenile yellow perch (Perca flavescens)

    International Nuclear Information System (INIS)

    Kraemer, Lisa D.; Campbell, Peter G.C.; Hare, Landis

    2006-01-01

    Temporal fluctuations in metal (Cd and Cu) concentrations were monitored over four months (May to August) in the liver of juvenile yellow perch (Perca flavescens) sampled from four lakes situated along a metal concentration gradient in northwestern Quebec: Lake Opasatica (reference lake, low metal concentrations), Lake Vaudray (moderate metal concentrations) and lakes Osisko and Dufault (high metal levels). The objectives of this study were to determine if hepatic metal concentrations and metal-handling strategies at the sub-cellular level varied seasonally. Our results showed that Cd and Cu concentrations varied most, in both absolute and relative values, in fish with the highest hepatic metal concentrations, whereas fish sampled from the reference lake did not show any significant variation. To examine the sub-cellular partitioning of these two metals, we used a differential centrifugation technique that allowed the separation of cellular debris, metal detoxified fractions (heat-stable proteins such as metallothionein) and metal sensitive fractions (heat-denaturable proteins (HDP) and organelles). Whereas Cd concentrations in organelle and HDP fractions were maintained at low concentrations in perch from Lakes Opasatica and Vaudray, concentrations in these sensitive fractions were higher and more variable in perch from Lakes Dufault and Osisko, suggesting that there may be some liver dysfunction in these two fish populations. Similarly, Cu concentrations in these sensitive fractions were higher and more variable in perch from the two most Cu-contaminated lakes (Dufault and Osisko) than in perch from the other two lakes, suggesting a breakdown of homeostatic control over this metal. These results suggest not only that metal concentrations vary seasonally, but also that concentrations vary most in fish from contaminated sites. Furthermore, at the sub-cellular level, homeostatic control of metal concentrations in metal-sensitive fractions is difficult to maintain in

  6. Altered subcellular localization of ornithine decarboxylase in Alzheimer's disease brain

    DEFF Research Database (Denmark)

    Nilsson, Tatjana; Bogdanovic, Nenad; Volkman, Inga

    2006-01-01

    The amyloid precursor protein can through ligand-mimicking induce expression of ornithine decarboxylase (ODC), the initial and rate-limiting enzyme in polyamine biosynthesis. We report here the regional distribution and cellular localization of ODC immunoreactivity in Alzheimer's disease (AD...

  7. MNK1 expression increases during cellular senescence and modulates the subcellular localization of hnRNP A1

    International Nuclear Information System (INIS)

    Ziaei, Samira; Shimada, Naoko; Kucharavy, Herman; Hubbard, Karen

    2012-01-01

    Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is an RNA-binding protein that modulates splice site usage, polyadenylation, and cleavage efficiency. This protein has also been implicated in mRNA stability and transport from the nucleus. We have previously demonstrated that hnRNP A1 had diminished protein levels and showed cytoplasmic accumulation in senescent human diploid fibroblasts. Furthermore, we have shown that inhibition of p38 MAPK, a key regulator of cellular senescence, elevated hnRNP A1 protein levels and inhibited hnRNP A1 cytoplasmic localization. In this study, we have explored the possible involvement of MNK1, one of the downstream effector of p38 MAPK, in the regulation of hnRNP A1. We have demonstrated that pharmacological inhibition of MNK1 by CGP 57380 decreased the phosphorylation levels of hnRNP A1 in young and senescent fibroblast cells and blocked the cytoplasmic accumulation of hnRNP A1 in senescent cells. In addition, MNK1 formed a complex with hnRNP A1 in vivo. The expression levels of MNK1, phospho-MNK1, and phospho-eIF4E proteins were found to be elevated in senescent cells. These data suggest that MNK1 regulates the phosphorylation and the subcellular distribution of hnRNP A1 and that MNK1 may play a role in the induction of senescence. -- Highlights: ► MNK1 and not MAPKAPK2 phosphorylates hnRNP A1. ► MNK1 has elevated levels in senescent cells, this has not been reported previously. ► MNK1 activity induces cytoplasmic accumulation of hnRNP A1 in senescent cells. ► Altered cytoplasmic localization of hnRNP A1 may alter gene expression patterns. ► Our studies may increase our understanding of RNA metabolism during cellular aging.

  8. A Location Privacy Aware Friend Locator

    DEFF Research Database (Denmark)

    Siksnys, Laurynas; Thomsen, Jeppe Rishede; Saltenis, Simonas

    2009-01-01

    to trade their location privacy for quality of service, limiting the attractiveness of the services. The challenge is to develop a communication-efficient solution such that (i) it detects proximity between a user and the user’s friends, (ii) any other party is not allowed to infer the location of the user...

  9. Common and distinctive localization patterns of Crumbs polarity complex proteins in the mammalian eye.

    Science.gov (United States)

    Kim, Jin Young; Song, Ji Yun; Karnam, Santi; Park, Jun Young; Lee, Jamie J H; Kim, Seonhee; Cho, Seo-Hee

    2015-01-01

    Crumbs polarity complex proteins are essential for cellular and tissue polarity, and for adhesion of epithelial cells. In epithelial tissues deletion of any of three core proteins disrupts localization of the other proteins, indicating structural and functional interdependence among core components. Despite previous studies of function and co-localization that illustrated the properties that these proteins share, it is not known whether an individual component of the complex plays a distinct role in a unique cellular and developmental context. In order to investigate this question, we primarily used confocal imaging to determine the expression and subcellular localization of the core Crumbs polarity complex proteins during ocular development. Here we show that in developing ocular tissues core Crumbs polarity complex proteins, Crb, Pals1 and Patj, generally appear in an overlapping pattern with some exceptions. All three core complex proteins localize to the apical junction of the retinal and lens epithelia. Pals1 is also localized in the Golgi of the retinal cells and Patj localizes to the nuclei of the apically located subset of progenitor cells. These findings suggest that core Crumbs polarity complex proteins exert common and independent functions depending on cellular context. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Subcellular binding of 239Pu in the liver of selected species of rodents

    International Nuclear Information System (INIS)

    Winter, R.

    1980-01-01

    The subcellular distribution of 239 Pu in the liver of selected rodent species was investigated as well as the relation between 239 Pu and the iron metabolism. The goal of the investigation was to find out why the liver discharge of 239 Pu from the liver varies so much between species. (orig.) [de

  11. Studies on the turnover and subcellular localization of membrane gangliosides in cultured neuroblastoma cells

    International Nuclear Information System (INIS)

    Clarke, J.T.; Cook, H.W.; Spence, M.W.

    1985-01-01

    To compare the subcellular distribution of endogenously synthesized and exogenous gangliosides, cultured murine neuroblastoma cells (N1E-115) were incubated in suspension for 22 h in the presence of D-[1- 3 H]galactose or [ 3 H]GM1 ganglioside, transferred to culture medium containing no radioisotope for periods of up to 72 hr, and then subjected to subcellular fractionation and analysis of lipid-sialic acid and radiolabeled ganglioside levels. The results indicated that GM2 and GM3 were the principal gangliosides in the cells with only traces of GM1 and small amounts of disialogangliosides present. About 50% of the endogenously synthesized radiolabelled ganglioside in the four major subcellular membrane fractions studied was recovered from plasma membrane and only 10-15% from the crude mitochondrial membrane fraction. In contrast, 45% of the exogenous [ 3 H]GM1 taken up into the same subcellular membrane fractions was recovered from the crude mitochondrial fraction; less than 15% was localized in the plasma membrane fraction. The results are similar to those obtained from previously reported studies on membrane phospholipid turnover. They suggest that exogenous GM1 ganglioside, like exogenous phosphatidylcholine, does not intermix freely with any quantitatively major pool of endogenous membrane lipid

  12. Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing.

    Science.gov (United States)

    Shen, Yanting; Liang, Lijia; Zhang, Shuqin; Huang, Dianshuai; Zhang, Jing; Xu, Shuping; Liang, Chongyang; Xu, Weiqing

    2018-01-25

    The pH value of subcellular organelles in living cells is a significant parameter in the physiological activities of cells. Its abnormal fluctuations are commonly believed to be associated with cancers and other diseases. Herein, a series of surface-enhanced Raman scattering (SERS) nanosensors with high sensitivity and targeting function was prepared for the quantification and monitoring of pH values in mitochondria, nucleus, and lysosome. The nanosensors were composed of gold nanorods (AuNRs) functionalized with a pH-responsive molecule (4-mercaptopyridine, MPy) and peptides that could specifically deliver the AuNRs to the targeting subcellular organelles. The localization of our prepared nanoprobes in specific organelles was confirmed by super-high resolution fluorescence imaging and bio-transmission electron microscopy (TEM) methods. By the targeting ability, the pH values of the specific organelles can be determined by monitoring the vibrational spectral changes of MPy with different pH values. Compared to the cases of reported lysosome and cytoplasm SERS pH sensors, more accurate pH values of mitochondria and nucleus, which could be two additional intracellular tracers for subcellular microenvironments, were disclosed by this SERS approach, further improving the accuracy of discrimination of related diseases. Our sensitive SERS strategy can also be employed to explore crucial physiological and biological processes that are related to subcellular pH fluctuations.

  13. Determination of platinum in human subcellular microsamples by inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Björn, Erik; Nygren, Yvonne; Nguyen, Tam T. T. N.

    2007-01-01

    A fast and robust method for the determination of platinum in human subcellular microsamples by inductively coupled plasma mass spectrometry was developed, characterized, and validated. Samples of isolated DNA and exosome fractions from human ovarian (2008) and melanoma (T289) cancer cell lines w...

  14. Precise Photodynamic Therapy of Cancer via Subcellular Dynamic Tracing of Dual-loaded Upconversion Nanophotosensitizers

    NARCIS (Netherlands)

    Chang, Y.; Li, X.; Zhang, L.; Xia, L.; Liu, Xiaomin; Li, C.; Zhang, Y.; Tu, L.; Xue, B.; Zhao, H.; Zhang, H.; Kong, X.

    2017-01-01

    Recent advances in upconversion nanophotosensitizers (UCNPs-PS) excited by near-infrared (NIR) light have led to substantial progress in improving photodynamic therapy (PDT) of cancer. For a successful PDT, subcellular organelles are promising therapeutic targets for reaching a satisfactory

  15. Integrated femtosecond stimulated Raman scattering and two-photon fluorescence imaging of subcellular lipid and vesicular structures

    Science.gov (United States)

    Li, Xuesong; Lam, Wen Jiun; Cao, Zhe; Hao, Yan; Sun, Qiqi; He, Sicong; Mak, Ho Yi; Qu, Jianan Y.

    2015-11-01

    The primary goal of this study is to demonstrate that stimulated Raman scattering (SRS) as a new imaging modality can be integrated into a femtosecond (fs) nonlinear optical (NLO) microscope system. The fs sources of high pulse peak power are routinely used in multimodal nonlinear microscopy to enable efficient excitation of multiple NLO signals. However, with fs excitations, the SRS imaging of subcellular lipid and vesicular structures encounters significant interference from proteins due to poor spectral resolution and a lack of chemical specificity, respectively. We developed a unique NLO microscope of fs excitation that enables rapid acquisition of SRS and multiple two-photon excited fluorescence (TPEF) signals. In the in vivo imaging of transgenic C. elegans animals, we discovered that by cross-filtering false positive lipid signals based on the TPEF signals from tryptophan-bearing endogenous proteins and lysosome-related organelles, the imaging system produced highly accurate assignment of SRS signals to lipid. Furthermore, we demonstrated that the multimodal NLO microscope system could sequentially image lipid structure/content and organelles, such as mitochondria, lysosomes, and the endoplasmic reticulum, which are intricately linked to lipid metabolism.

  16. Subcellular localization of class II HDAs in Arabidopsis thaliana: nucleocytoplasmic shuttling of HDA15 is driven by light.

    Directory of Open Access Journals (Sweden)

    Malona V Alinsug

    Full Text Available Class II histone deacetylases in humans and other model organisms undergo nucleocytoplasmic shuttling. This unique functional regulatory mechanism has been well elucidated in eukaryotic organisms except in plant systems. In this study, we have paved the baseline evidence for the cytoplasmic and nuclear localization of Class II HDAs as well as their mRNA expression patterns. RT-PCR analysis on the different vegetative parts and developmental stages reveal that Class II HDAs are ubiquitously expressed in all tissues with minimal developmental specificity. Moreover, stable and transient expression assays using HDA-YFP/GFP fusion constructs indicate cytoplasmic localization of HDA5, HDA8, and HDA14 further suggesting their potential for nuclear transport and deacetylating organellar and cytoplasmic proteins. Organelle markers and stains confirm HDA14 to abound in the mitochondria and chloroplasts while HDA5 localizes in the ER. HDA15, on the other hand, shuttles in and out of the nucleus upon light exposure. In the absence of light, it is exported out of the nucleus where further re-exposition to light treatments signals its nuclear import. Unlike HDA5 which binds with 14-3-3 proteins, HDA15 fails to interact with these chaperones. Instead, HDA15 relies on its own nuclear localization and export signals to navigate its subcellular compartmentalization classifying it as a Class IIb HDA. Our study indicates that nucleocytoplasmic shuttling is indeed a hallmark for all eukaryotic Class II histone deacetylases.

  17. The Role of Lipid Droplets in Mortierella alpina Aging Revealed by Integrative Subcellular and Whole-Cell Proteome Analysis.

    Science.gov (United States)

    Yu, Yadong; Li, Tao; Wu, Na; Jiang, Ling; Ji, Xiaojun; Huang, He

    2017-03-07

    Lipid droplets (LDs) participate in many cellular processes in oleaginous microorganisms. However, the exact function of LDs in the Mortierella alpina aging process remains elusive. Herein, subcellular proteomics was employed to unveil the composition and dynamics of the LD proteome in the aging M. alpina for the first time. More than 400 proteins were detected in LDs and 62 of them changed expression significantly during aging. By combining the LD proteomic data with whole-cell data, we found that the carbohydrate metabolism and de novo lipid biosynthesis were all inhibited during aging of M. alpina mycelia. The up-regulation of fructose metabolism-related enzymes in LDs might imply that LDs facilitated the fructose metabolism, which in turn might cause pyruvate to accumulate and enter malate-pyruvate cycle, and ultimately, provide additional NADPH for the synthesis of arachidonic acid (ARA). Lysophospholipase and lecithinase were up-regulated in LDs during the aging process, suggesting that the phospholipids and lecithin were starting to be hydrolyzed, in order to release fatty acids for the cells. The impairment of the anti-oxidant system might lead to the accumulation of ROS and consequently cause the up-regulation of autophagy-related proteins in LDs, which further induces the M. alpina mycelia to activate the autophagy process.

  18. Subcellular localization of Arabidopsis pathogenesis-related 1 (PR1) protein

    Czech Academy of Sciences Publication Activity Database

    Pečenková, Tamara; Pleskot, Roman; Žárský, V.

    2017-01-01

    Roč. 18, č. 4 (2017), č. článku 825. E-ISSN 1422-0067 R&D Projects: GA ČR(CZ) GA15-14886S Grant - others:OPPK(XE) CZ.2.16/3.1.00/21519 Institutional support: RVO:61389030 Keywords : cape * mvb * pi(3)p * pr1 * Secretion * Trafficking Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 3.226, year: 2016

  19. Molecular cloning, transcriptional profiling, and subcellular localization of signal transducer and activator of transcription 2 (STAT2) ortholog from rock bream, Oplegnathus fasciatus.

    Science.gov (United States)

    Bathige, S D N K; Umasuthan, Navaneethaiyer; Priyathilaka, Thanthrige Thiunuwan; Thulasitha, William Shanthakumar; Jayasinghe, J D H E; Wan, Qiang; Nam, Bo-Hye; Lee, Jehee

    2017-08-30

    Signal transducer and activator of transcription 2 (STAT2) is a key element that transduces signals from the cell membrane to the nucleus via the type I interferon-signaling pathway. Although the structural and functional aspects of STAT proteins are well studied in mammals, information on teleostean STATs is very limited. In this study, a STAT paralog, which is highly homologous to the STAT2 members, was identified from a commercially important fish species called rock bream and designated as RbSTAT2. The RbSTAT2 gene was characterized at complementary DNA (cDNA) and genomic sequence levels, and was found to possess structural features common with its mammalian counterparts. The complete cDNA sequence was distributed into 24 exons in the genomic sequence. The promoter proximal region was analyzed and found to contain potential transcription factor binding sites to regulate the transcription of RbSTAT2. Phylogenetic studies and comparative genomic structure organization revealed the distinguishable evolution for fish and other vertebrate STAT2 orthologs. Transcriptional quantification was performed by SYBR Green quantitative real-time PCR (qPCR) and the ubiquitous expression of RbSTAT2 transcripts was observed in all tissues analyzed from healthy fish, with a remarkably high expression in blood cells. Significantly (Prock bream irido virus; RBIV), bacterial (Edwardsiella tarda and Streptococcus iniae), and immune stimulants (poly I:C and LPS). Antiviral potential was further confirmed by WST-1 assay, by measuring the viability of rock bream heart cells treated with RBIV. In addition, results of an in vitro challenge experiment signified the influence of rock bream interleukin-10 (RbIL-10) on transcription of RbSTAT2. Subcellular localization studies by transfection of pEGFP-N1/RbSTAT2 into rock bream heart cells revealed that the RbSTAT2 was usually located in the cytoplasm and translocated near to the nucleus upon poly I:C administration. Altogether, these

  20. Sub-cellular force microscopy in single normal and cancer cells

    International Nuclear Information System (INIS)

    Babahosseini, H.; Carmichael, B.; Strobl, J.S.; Mahmoodi, S.N.; Agah, M.

    2015-01-01

    This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer and significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. - Highlights: • The cells are modeled as a triple-layered structure using Generalized Maxwell model. • The sub-domains include membrane/cortex, cytoplasm/nucleus, and nuclear/integrin. • Biomechanics of corresponding sub-domains are compared among normal and cancer cells. • Viscoelasticity of sub-domains show a decreasing trend from normal to cancer cells. • The decreasing trend becomes most significant in the deeper sub-domain

  1. Sub-cellular force microscopy in single normal and cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Babahosseini, H. [VT MEMS Laboratory, The Bradley Department of Electrical and Computer Engineering, Blacksburg, VA 24061 (United States); Carmichael, B. [Nonlinear Intelligent Structures Laboratory, Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487-0276 (United States); Strobl, J.S. [VT MEMS Laboratory, The Bradley Department of Electrical and Computer Engineering, Blacksburg, VA 24061 (United States); Mahmoodi, S.N., E-mail: nmahmoodi@eng.ua.edu [Nonlinear Intelligent Structures Laboratory, Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487-0276 (United States); Agah, M., E-mail: agah@vt.edu [VT MEMS Laboratory, The Bradley Department of Electrical and Computer Engineering, Blacksburg, VA 24061 (United States)

    2015-08-07

    This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer and significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. - Highlights: • The cells are modeled as a triple-layered structure using Generalized Maxwell model. • The sub-domains include membrane/cortex, cytoplasm/nucleus, and nuclear/integrin. • Biomechanics of corresponding sub-domains are compared among normal and cancer cells. • Viscoelasticity of sub-domains show a decreasing trend from normal to cancer cells. • The decreasing trend becomes most significant in the deeper sub-domain.

  2. Live-cell visualization of intracellular interaction between a nuclear migration protein (hNUDC) and the thrombopoietin receptor (Mpl).

    Science.gov (United States)

    Zheng, Yuan-Bin; Xiao, Ying-Ying; Tan, Peng; Zhang, Qing; Xu, Peilin

    2012-01-01

    We previously demonstrated that endogenous hNUDC and Mpl co-localized in the perinuclear and cytoplasmic regions of megakaryocyte cells by indirect immunofluorescence. We further reported that hNUDC accumulated in the Golgi when NIH 3T3 cells were transfected with an hNUDC expression vector alone. However, co-transfection with hNUDC and Mpl expression vectors caused both proteins to co-localize predominantly in the cytosol. These observations led us to hypothesize that a complex containing hNUDC and Mpl may alter hNUDC subcellular location and induce its secretion. In the present study, we test this hypothesis by employing bimolecular fluorescence complementation (BiFC) to detect and visualize the complex formation of hNUDC/Mpl in living cells. We further examined in detail the subcellular locations of the hNUDC/Mpl complex by co-transfection of BiFC chimeras with known subcellular markers. The distribution of hNUDC/Mpl in the endoplasmic reticulum (ER), Golgi and cell surface was determined. Furthermore, the N-terminal 159 amino acids of hNUDC, but not C-terminal half, bound to Mpl in vivo and exhibited a similar localization pattern to that of full-length hNUDC in Cos-1 cells. Adenovirus-mediated overexpression of hNUDC or its N-terminal 159 residues in a human megakaryocyte cell line (Dami) resulted in increased levels of hNUDC or hNUDC(1-159) secretion. In contrast, depletion of Mpl by transfecting Dami cells with adenovirus bearing Mpl-targeting siRNA significantly blocked hNUDC secretion. Thus, we provide the first evidence that the N-terminal region of hNUDC contains all of the necessary information to complex with Mpl and traffic through the secretory pathway.

  3. Live-cell visualization of intracellular interaction between a nuclear migration protein (hNUDC and the thrombopoietin receptor (Mpl.

    Directory of Open Access Journals (Sweden)

    Yuan-Bin Zheng

    Full Text Available We previously demonstrated that endogenous hNUDC and Mpl co-localized in the perinuclear and cytoplasmic regions of megakaryocyte cells by indirect immunofluorescence. We further reported that hNUDC accumulated in the Golgi when NIH 3T3 cells were transfected with an hNUDC expression vector alone. However, co-transfection with hNUDC and Mpl expression vectors caused both proteins to co-localize predominantly in the cytosol. These observations led us to hypothesize that a complex containing hNUDC and Mpl may alter hNUDC subcellular location and induce its secretion. In the present study, we test this hypothesis by employing bimolecular fluorescence complementation (BiFC to detect and visualize the complex formation of hNUDC/Mpl in living cells. We further examined in detail the subcellular locations of the hNUDC/Mpl complex by co-transfection of BiFC chimeras with known subcellular markers. The distribution of hNUDC/Mpl in the endoplasmic reticulum (ER, Golgi and cell surface was determined. Furthermore, the N-terminal 159 amino acids of hNUDC, but not C-terminal half, bound to Mpl in vivo and exhibited a similar localization pattern to that of full-length hNUDC in Cos-1 cells. Adenovirus-mediated overexpression of hNUDC or its N-terminal 159 residues in a human megakaryocyte cell line (Dami resulted in increased levels of hNUDC or hNUDC(1-159 secretion. In contrast, depletion of Mpl by transfecting Dami cells with adenovirus bearing Mpl-targeting siRNA significantly blocked hNUDC secretion. Thus, we provide the first evidence that the N-terminal region of hNUDC contains all of the necessary information to complex with Mpl and traffic through the secretory pathway.

  4. Onderzoek Location Based Marketing: Mobile = location = effect

    NARCIS (Netherlands)

    Gisbergen, M.S. van; Huhn, A.E.; Khan, V.J.; Ketelaar, P.E.

    2011-01-01

    Onderzoekers van de NHTV (Internationaa Hoger Onderwijs Breda, Radboud Universiteit, DVJ Insights en Popai Benelux lieten consumenten in een virtuele supermarkt advertenties via de smartphone ontvangen wanneer men langs het geadverteerde product liep. De uitkomsten laten zien dat 'location based

  5. Subcellular trafficking of mycobacteria: Implications for virulence and immunogenicity

    OpenAIRE

    Houben, D.

    2011-01-01

    The aim of this thesis is to determine the properties of the compartment where mycobacteria end up after phagocytosis and which mycobacterial genes play a role in this process. In most cases, bacterial pathogens are taken up by the cell, processed in the endocytic pathway and eventually bacterial derived peptides are presented on MHC class II molecules to CD4+ T-cells. Proteins from viral pathogens in contrast, are degraded in the cytosol and transported into the ER for presentation on MHC cl...

  6. The subcellular localization of yeast glycogen synthase is dependent upon glycogen content

    OpenAIRE

    Wilson, Wayne A.; Boyer, Michael P.; Davis, Keri D.; Burke, Michael; Roach, Peter J.

    2010-01-01

    The budding yeast, Saccharomyces cerevisiae, accumulates the storage polysaccharide glycogen in response to nutrient limitation. Glycogen synthase, the major form of which is encoded by the GSY2 gene, catalyzes the key regulated step in glycogen storage. Here, we utilize Gsy2p fusions to green fluorescent protein (GFP) to determine where glycogen synthase is located within cells. We demonstrate that the localization pattern of Gsy2-GFP depends upon the glycogen content of the cell. When glyco...

  7. Comparative proteomic analysis of plasma membrane proteins between human osteosarcoma and normal osteoblastic cell lines

    International Nuclear Information System (INIS)

    Zhang, Zhiyu; Ma, Fang; Cai, Zhengdong; Zhang, Lijun; Hua, Yingqi; Jia, Xiaofang; Li, Jian; Hu, Shuo; Peng, Xia; Yang, Pengyuan; Sun, Mengxiong

    2010-01-01

    Osteosarcoma (OS) is the most common primary malignant tumor of bone in children and adolescents. However, the knowledge in diagnostic modalities has progressed less. To identify new biomarkers for the early diagnosis of OS as well as for potential novel therapeutic candidates, we performed a sub-cellular comparative proteomic research. An osteosarcoma cell line (MG-63) and human osteoblastic cells (hFOB1.19) were used as our comparative model. Plasma membrane (PM) was obtained by aqueous two-phase partition. Proteins were analyzed through iTRAQ-based quantitative differential LC/MS/MS. The location and function of differential proteins were analyzed through GO database. Protein-protein interaction was examined through String software. One of differentially expressed proteins was verified by immunohistochemistry. 342 non-redundant proteins were identified, 68 of which were differentially expressed with 1.5-fold difference, with 25 up-regulated and 43 down-regulated. Among those differential proteins, 69% ware plasma membrane, which are related to the biological processes of binding, cell structure, signal transduction, cell adhesion, etc., and interaction with each other. One protein--CD151 located in net nodes was verified to be over-expressed in osteosarcoma tissue by immunohistochemistry. It is the first time to use plasma membrane proteomics for studying the OS membrane proteins according to our knowledge. We generated preliminary but comprehensive data about membrane protein of osteosarcoma. Among these, CD151 was further validated in patient samples, and this small molecule membrane might be a new target for OS research. The plasma membrane proteins identified in this study may provide new insight into osteosarcoma biology and potential diagnostic and therapeutic biomarkers

  8. Heart research advances using database search engines, Human Protein Atlas and the Sydney Heart Bank.

    Science.gov (United States)

    Li, Amy; Estigoy, Colleen; Raftery, Mark; Cameron, Darryl; Odeberg, Jacob; Pontén, Fredrik; Lal, Sean; Dos Remedios, Cristobal G

    2013-10-01

    This Methodological Review is intended as a guide for research students who may have just discovered a human "novel" cardiac protein, but it may also help hard-pressed reviewers of journal submissions on a "novel" protein reported in an animal model of human heart failure. Whether you are an expert or not, you may know little or nothing about this particular protein of interest. In this review we provide a strategic guide on how to proceed. We ask: How do you discover what has been published (even in an abstract or research report) about this protein? Everyone knows how to undertake literature searches using PubMed and Medline but these are usually encyclopaedic, often producing long lists of papers, most of which are either irrelevant or only vaguely relevant to your query. Relatively few will be aware of more advanced search engines such as Google Scholar and even fewer will know about Quertle. Next, we provide a strategy for discovering if your "novel" protein is expressed in the normal, healthy human heart, and if it is, we show you how to investigate its subcellular location. This can usually be achieved by visiting the website "Human Protein Atlas" without doing a single experiment. Finally, we provide a pathway to discovering if your protein of interest changes its expression level with heart failure/disease or with ageing. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  9. Kinase Substrate Sensor (KISS), a mammalian in situ protein interaction sensor.

    Science.gov (United States)

    Lievens, Sam; Gerlo, Sarah; Lemmens, Irma; De Clercq, Dries J H; Risseeuw, Martijn D P; Vanderroost, Nele; De Smet, Anne-Sophie; Ruyssinck, Elien; Chevet, Eric; Van Calenbergh, Serge; Tavernier, Jan

    2014-12-01

    Probably every cellular process is governed by protein-protein interaction (PPIs), which are often highly dynamic in nature being modulated by in- or external stimuli. Here we present KISS, for KInase Substrate Sensor, a mammalian two-hybrid approach designed to map intracellular PPIs and some of the dynamic features they exhibit. Benchmarking experiments indicate that in terms of sensitivity and specificity KISS is on par with other binary protein interaction technologies while being complementary with regard to the subset of PPIs it is able to detect. We used KISS to evaluate interactions between different types of proteins, including transmembrane proteins, expressed at their native subcellular location. In situ analysis of endoplasmic reticulum stress-induced clustering of the endoplasmic reticulum stress sensor ERN1 and ligand-dependent β-arrestin recruitment to GPCRs illustrated the method's potential to study functional PPI modulation in complex cellular processes. Exploring its use as a tool for in cell evaluation of pharmacological interference with PPIs, we showed that reported effects of known GPCR antagonists and PPI inhibitors are properly recapitulated. In a three-hybrid setup, KISS was able to map interactions between small molecules and proteins. Taken together, we established KISS as a sensitive approach for in situ analysis of protein interactions and their modulation in a changing cellular context or in response to pharmacological challenges. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. The novel protein kinase C epsilon isoform at the adult neuromuscular synapse: location, regulation by synaptic activity-dependent muscle contraction through TrkB signaling and coupling to ACh release.

    Science.gov (United States)

    Obis, Teresa; Besalduch, Núria; Hurtado, Erica; Nadal, Laura; Santafe, Manel M; Garcia, Neus; Tomàs, Marta; Priego, Mercedes; Lanuza, Maria A; Tomàs, Josep

    2015-02-10

    Protein kinase C (PKC) regulates a variety of neural functions, including neurotransmitter release. Although various PKC isoforms can be expressed at the synaptic sites and specific cell distribution may contribute to their functional diversity, little is known about the isoform-specific functions of PKCs in neuromuscular synapse. The present study is designed to examine the location of the novel isoform nPKCε at the neuromuscular junction (NMJ), their synaptic activity-related expression changes, its regulation by muscle contraction, and their possible involvement in acetylcholine release. We use immunohistochemistry and confocal microscopy to demonstrate that the novel isoform nPKCε is exclusively located in the motor nerve terminals of the adult rat NMJ. We also report that electrical stimulation of synaptic inputs to the skeletal muscle significantly increased the amount of nPKCε isoform as well as its phosphorylated form in the synaptic membrane, and muscle contraction is necessary for these nPKCε expression changes. The results also demonstrate that synaptic activity-induced muscle contraction promotes changes in presynaptic nPKCε through the brain-derived neurotrophic factor (BDNF)-mediated tyrosine kinase receptor B (TrkB) signaling. Moreover, nPKCε activity results in phosphorylation of the substrate MARCKS involved in actin cytoskeleton remodeling and related with neurotransmission. Finally, blocking nPKCε with a nPKCε-specific translocation inhibitor peptide (εV1-2) strongly reduces phorbol ester-induced ACh release potentiation, which further indicates that nPKCε is involved in neurotransmission. Together, these results provide a mechanistic insight into how synaptic activity-induced muscle contraction could regulate the presynaptic action of the nPKCε isoform and suggest that muscle contraction is an important regulatory step in TrkB signaling at the NMJ.

  11. Altered subcellular localization of ornithine decarboxylase in Alzheimer's disease brain

    International Nuclear Information System (INIS)

    Nilsson, Tatjana; Bogdanovic, Nenad; Volkman, Inga; Winblad, Bengt; Folkesson, Ronnie; Benedikz, Eirikur

    2006-01-01

    The amyloid precursor protein can through ligand-mimicking induce expression of ornithine decarboxylase (ODC), the initial and rate-limiting enzyme in polyamine biosynthesis. We report here the regional distribution and cellular localization of ODC immunoreactivity in Alzheimer's disease (AD) brains. In frontal cortex and hippocampus of control cases, the most pronounced ODC immunoreactivity was found in the nucleus. In possible and definite AD the immunoreactivity had shifted to the cytoplasm. In cerebellum of control cases, ODC staining was found in a small portion of Purkinje cells, mostly in the nucleus. In AD, both possible and definite, the number of stained Purkinje cells increased significantly and immunoreactivity was shifted to the cytoplasm, even though it was still prominent in the nucleus. In conclusion, our study reveals an early shift of the ODC immunoreactivity in AD from the nuclear compartment towards the cytoplasm

  12. An experimental study of americium-241 biokinetics in the Lobster Homarus Gammarus. Analysis of the accumulation/storage and detoxification processes at the subcellular level

    International Nuclear Information System (INIS)

    Paquet, F.

    1993-01-01

    An experimental study of americium-241 kinetics has been conducted in the lobster Homarus gammmarus. The investigations were conducted at all the levels from the whole body to the subcellular and molecular levels. The animals were contaminated by a single or chronic ingestion of 241 Am labelled mussels. Assessments of accumulation, elimination and distribution of the radionuclide were established on organisms kept in the laboratory; they made it possible to demonstrate the importance of the digestive gland in the radionuclide transfer pathways. The preliminary results led to structural then ultrastructural investigations of the digestive gland in association with radioautographic studies and cellular extractions methods. Four cellular types were demonstrated, only two of them being implied in the radionuclide retention, the former being responsible for americium intake and the latter for its long-term retention. By means of biochemical techniques, subcellular accumulation was studied and the organelles implied in the nuclide retention were specified. Finally, a method of cellular nuclei dissociation was developed; it made it possible to analyse the molecular nature of americium ligands and to demonstrate the function of the protein nuclear matrix in the nuclide retention

  13. Imaging of Caenorhabditis elegans samples and sub-cellular localization of new generation photosensitizers for photodynamic therapy, using non-linear microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Filippidis, G [Institute of Electronic Structure and Laser, Foundation of Research and Technology-Hellas, PO Box 1527, 71110 Heraklion (Greece); Kouloumentas, C [Institute of Electronic Structure and Laser, Foundation of Research and Technology-Hellas, PO Box 1527, 71110 Heraklion (Greece); Kapsokalyvas, D [Institute of Electronic Structure and Laser, Foundation of Research and Technology-Hellas, PO Box 1527, 71110 Heraklion (Greece); Voglis, G [Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, Heraklion 71110, Crete (Greece); Tavernarakis, N [Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, Heraklion 71110, Crete (Greece); Papazoglou, T G [Institute of Electronic Structure and Laser, Foundation of Research and Technology-Hellas, PO Box 1527, 71110 Heraklion (Greece)

    2005-08-07

    Two-photon excitation fluorescence (TPEF) and second-harmonic generation (SHG) are relatively new promising tools for the imaging and mapping of biological structures and processes at the microscopic level. The combination of the two image-contrast modes in a single instrument can provide unique and complementary information concerning the structure and the function of tissues and individual cells. The extended application of this novel, innovative technique by the biological community is limited due to the high price of commercial multiphoton microscopes. In this study, a compact, inexpensive and reliable setup utilizing femtosecond pulses for excitation was developed for the TPEF and SHG imaging of biological samples. Specific cell types of the nematode Caenorhabditis elegans were imaged. Detection of the endogenous structural proteins of the worm, which are responsible for observation of SHG signals, was achieved. Additionally, the binding of different photosensitizers in the HL-60 cell line was investigated, using non-linear microscopy. The sub-cellular localization of photosensitizers of a new generation, very promising for photodynamic therapy (PDT) (Hypericum perforatum L. extracts) was achieved. The sub-cellular localization of these novel photosensitizers was linked with their photodynamic action during PDT, and the possible mechanisms for cell killing have been elucidated.

  14. Determination of the topology of endoplasmic reticulum membrane proteins using redox-sensitive green-fluorescence protein fusions.

    Science.gov (United States)

    Tsachaki, Maria; Birk, Julia; Egert, Aurélie; Odermatt, Alex

    2015-07-01

    Membrane proteins of the endoplasmic reticulum (ER) are involved in a wide array of essential cellular functions. Identification of the topology of membrane proteins can provide significant insight into their mechanisms of action and biological roles. This is particularly important for membrane enzymes, since their topology determines the subcellular site where a biochemical reaction takes place and the dependence on luminal or cytosolic co-factor pools and substrates. The methods currently available for the determination of topology of proteins are rather laborious and require post-lysis or post-fixation manipulation of cells. In this work, we have developed a simple method for defining intracellular localization and topology of ER membrane proteins in living cells, based on the fusion of the respective protein with redox-sensitive green-fluorescent protein (roGFP). We validated the method and demonstrated that roGFP fusion proteins constitute a reliable tool for the study of ER membrane protein topology, using as control microsomal 11β-hydroxysteroid dehydrogenase (11β-HSD) proteins whose topology has been resolved, and comparing with an independent approach. We then implemented this method to determine the membrane topology of six microsomal members of the 17β-hydroxysteroid dehydrogenase (17β-HSD) family. The results revealed a luminal orientation of the catalytic site for three enzymes, i.e. 17β-HSD6, 7 and 12. Knowledge of the intracellular location of the catalytic site of these enzymes will enable future studies on their biological functions and on the role of the luminal co-factor pool. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Distribution of polycyclic aromatic hydrocarbons in subcellular root tissues of ryegrass (Lolium multiflorum Lam.)

    Science.gov (United States)

    2010-01-01

    Background Because of the increasing quantity and high toxicity to humans of polycyclic aromatic hydrocarbons (PAHs) in the environment, several bioremediation mechanisms and protocols have been investigated to restore PAH-contaminated sites. The transport of organic contaminants among plant cells via tissues and their partition in roots, stalks, and leaves resulting from transpiration and lipid content have been extensively investigated. However, information about PAH distributions in intracellular tissues is lacking, thus limiting the further development of a mechanism-based phytoremediation strategy to improve treatment efficiency. Results Pyrene exhibited higher uptake and was more recalcitrant to metabolism in ryegrass roots than was phenanthrene. The kinetic processes of uptake from ryegrass culture medium revealed that these two PAHs were first adsorbed onto root cell walls, and they then penetrated cell membranes and were distributed in intracellular organelle fractions. At the beginning of uptake (< 50 h), adsorption to cell walls dominated th