WorldWideScience

Sample records for protein sap modulate

  1. Structural and binding studies of SAP-1 protein with heparin.

    Science.gov (United States)

    Yadav, Vikash K; Mandal, Rahul S; Puniya, Bhanwar L; Kumar, Rahul; Dey, Sharmistha; Singh, Sarman; Yadav, Savita

    2015-03-01

    SAP-1 is a low molecular weight cysteine protease inhibitor (CPI) which belongs to type-2 cystatins family. SAP-1 protein purified from human seminal plasma (HuSP) has been shown to inhibit cysteine and serine proteases and exhibit interesting biological properties, including high temperature and pH stability. Heparin is a naturally occurring glycosaminoglycan (with varied chain length) which interacts with a number of proteins and regulates multiple steps in different biological processes. As an anticoagulant, heparin enhances inhibition of thrombin by the serpin antithrombin III. Therefore, we have employed surface plasmon resonance (SPR) to improve our understanding of the binding interaction between heparin and SAP-1 (protease inhibitor). SPR data suggest that SAP-1 binds to heparin with a significant affinity (KD = 158 nm). SPR solution competition studies using heparin oligosaccharides showed that the binding of SAP-1 to heparin is dependent on chain length. Large oligosaccharides show strong binding affinity for SAP-1. Further to get insight into the structural aspect of interactions between SAP-1 and heparin, we used modelled structure of the SAP-1 and docked with heparin and heparin-derived polysaccharides. The results suggest that a positively charged residue lysine plays important role in these interactions. Such information should improve our understanding of how heparin, present in the reproductive tract, regulates cystatins activity. © 2014 John Wiley & Sons A/S.

  2. SAP

    DEFF Research Database (Denmark)

    Petersen, Bent; Nikerle-Uhthoff, Dominique; Schwaerzler, Helen

    2014-01-01

    In late 2011, SAP, the German leader in the enterprise software industry, announced a major investment plan for expanding in China and also acquired a leading American firm in cloud-based human capital management software. At first glance, these investments seemed rather unconnected. A closer look...... at SAP’s strategy, however, revealed a closely connected and coordinated network of strategic decisions and investments for which alignment and finding the right balance were key challenges. Hence, it was crucial to ask: What were the principal challenges for SAP in aligning its innovation and sourcing...

  3. SAP modulates B cell functions in a genetic background-dependent manner.

    Science.gov (United States)

    Detre, Cynthia; Yigit, Burcu; Keszei, Marton; Castro, Wilson; Magelky, Erica M; Terhorst, Cox

    2013-06-01

    Mutations affecting the SLAM-associated protein (SAP) are responsible for the X-linked lympho-proliferative syndrome (XLP), a severe primary immunodeficiency syndrome with disease manifestations that include fatal mononucleosis, B cell lymphoma and dysgammaglobulinemia. It is well accepted that insufficient help by SAP-/- CD4+ T cells, in particular during the germinal center reaction, is a component of dysgammaglobulinemia in XLP patients and SAP-/- animals. It is however not well understood whether in XLP patients and SAP-/- mice B cell functions are affected, even though B cells themselves do not express SAP. Here we report that B cell intrinsic responses to haptenated protein antigens are impaired in SAP-/- mice and in Rag-/- mice into which B cells derived from SAP-/- mice together with wt CD4+ T cells had been transferred. This impaired B cells functions are in part depending on the genetic background of the SAP-/- mouse, which affects B cell homeostasis. Surprisingly, stimulation with an agonistic anti-CD40 causes strong in vivo and in vitro B cell responses in SAP-/- mice. Taken together, the data demonstrate that genetic factors play an important role in the SAP-related B cell functions. The finding that anti-CD40 can in part restore impaired B cell responses in SAP-/- mice, suggests potentially novel therapeutic interventions in subsets of XLP patients. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Evaluasi Implementasi SAP Modul Material Management: Studi Kasus pada PT Bumitama Gunajaya Agro

    Directory of Open Access Journals (Sweden)

    Santo Fernandi Wijaya

    2012-06-01

    Full Text Available An integrated information system is a necessity for a company to help solve problems in business transactions management. SAP application is an application that is able to provide solutions to such problems. The purpose of this study was to evaluate the running business processes on the Material Management module;evaluate the performance of the running SAP systems associated with the implementation and maintenance of SAP applications as well as to give sugestions based on the development of evaluation results obtained, in terms of business processes, performance, and financial. Utilized for analysis is IT Balanced Scorecard method, while ASAP (Accelerated SAP method is used for the system development. This study produced an analysis of the evaluation of the enterprise business processes in implementing the SAP development of ERP system modulesMaterial Management.

  5. Molecular characterization of Trypanosoma cruzi SAP proteins with host-cell lysosome exocytosis-inducing activity required for parasite invasion.

    Science.gov (United States)

    Zanforlin, Tamiris; Bayer-Santos, Ethel; Cortez, Cristian; Almeida, Igor C; Yoshida, Nobuko; da Silveira, José Franco

    2013-01-01

    To invade target cells, Trypanosoma cruzi metacyclic forms engage distinct sets of surface and secreted molecules that interact with host components. Serine-, alanine-, and proline-rich proteins (SAP) comprise a multigene family constituted of molecules with a high serine, alanine and proline residue content. SAP proteins have a central domain (SAP-CD) responsible for interaction with and invasion of mammalian cells by metacyclic forms. Using a 513 bp sequence from SAP-CD in blastn analysis, we identified 39 full-length SAP genes in the genome of T. cruzi. Although most of these genes were mapped in the T. cruzi in silico chromosome TcChr41, several SAP sequences were spread out across the genome. The level of SAP transcripts was twice as high in metacyclic forms as in epimastigotes. Monoclonal (MAb-SAP) and polyclonal (anti-SAP) antibodies produced against the recombinant protein SAP-CD were used to investigate the expression and localization of SAP proteins. MAb-SAP reacted with a 55 kDa SAP protein released by epimastigotes and metacyclic forms and with distinct sets of SAP variants expressed in amastigotes and tissue culture-derived trypomastigotes (TCTs). Anti-SAP antibodies reacted with components located in the anterior region of epimastigotes and between the nucleus and the kinetoplast in metacyclic trypomastigotes. In contrast, anti-SAP recognized surface components of amastigotes and TCTs, suggesting that SAP proteins are directed to different cellular compartments. Ten SAP peptides were identified by mass spectrometry in vesicle and soluble-protein fractions obtained from parasite conditioned medium. Using overlapping sequences from SAP-CD, we identified a 54-aa peptide (SAP-CE) that was able to induce host-cell lysosome exocytosis and inhibit parasite internalization by 52%. This study provides novel information about the genomic organization, expression and cellular localization of SAP proteins and proposes a triggering role for extracellular SAP

  6. Intermolecular crosslinks mediate aggregation of phospholipid vesicles by pulmonary surfactant-associated protein SAP-35

    International Nuclear Information System (INIS)

    Ross, G.R.; Sawyer, J.; Whitsett, J.

    1987-01-01

    Pulmonary surfactant-associated protein, Mr=35,000 (SAP-35) is known to bind phospholipids and is hypothesized to function in the organization of surfactant lipid membranes. SAP-35 has been observed to accelerate the calcium-induced aggregation of phospholipid vesicles. In order to define the molecular domains of SAP-35 which function in phospholipid aggregation, they have measured the light scattering properties (400nm) of purified canine SAP-35-phospholipid vesicle suspensions. Accelerated aggregation of unilamellar vesicles, requires SAP-35 and at least 2mM free calcium. The initial rate of A 400 change is proportional to the amount of native SAP-35 added over lipid:protein molar ratios ranging from 100:1 to 5000:1. Removal of the SAP-35 collagen-like domain and a specific cysteine residue involved in intermolecular disulfide bonding by bacterial collagenase digestion destroys the protein's lipid aggregation activity. Pre-incubation of SAP-35 with dithiothreitol (DTT) under nondenaturing conditions also results in a time-dependent loss of aggregation activity. Sucrose density gradient floatation of SAP-35 with 14 C dipalmitoyl phosphatidycholine labelled vesicles in the absence or presence of DTT suggests retention of SAP-35 lipid binding capacity. These data demonstrate the importance of SAP-35 triple helix and disulfide crosslinking integrity for the aggregation of unilamellar phospholipid vesicles

  7. Mass spectrometric identification of isoforms of PR proteins in xylem sap of fungus-infected tomato

    NARCIS (Netherlands)

    Rep, Martijn; Dekker, Henk L.; Vossen, Jack H.; de Boer, Albert D.; Houterman, Petra M.; Speijer, Dave; Back, Jaap W.; de Koster, Chris G.; Cornelissen, Ben J. C.

    2002-01-01

    The protein content of tomato (Lycopersicon esculentum) xylem sap was found to change dramatically upon infection with the vascular wilt fungus Fusarium oxysporum. Peptide mass fingerprinting and mass spectrometric sequencing were used to identify the most abundant proteins appearing during

  8. Characterization and vaccine potential of Fasciola gigantica saposin-like protein 1 (SAP-1).

    Science.gov (United States)

    Kueakhai, Pornanan; Changklungmoa, Narin; Waseewiwat, Pinkamon; Thanasinpaiboon, Thanaporn; Cheukamud, Werachon; Chaichanasak, Pannigan; Sobhon, Prasert

    2017-01-15

    The recombinant Fasciola gigantica Saposin-like protien-1 (rFgSAP-1) was cloned by polymerase chain reaction (PCR) from NEJ cDNA, expressed in Escherichia coli BL21 (DE3) and used for production of a polyclonal antibody in rabbits (anti-rFgSAP-1). By immunoblotting and immunohistochemistry, rabbit IgG anti-rFgSAP-1 reacted with rFgSAP-1 at a molecular weight 12kDa, but not with rFgSAP-2. The rFgSAP-1 reacted with antisera from mouse infected with F. gigantica metacercariae collected at 2, 4, and 6 weeks after infection. The FgSAP-1 protein was expressed at a high level in the caecal epithelium of metacercariae and NEJs. The vaccination was performed in Imprinting Control Region (ICR) mice (n=10) by subcutaneous injection with 50μg of rFgSAP-1 combined with Alum adjuvant. Two weeks after the second boost, mice were infected with 15 metacercariae per mouse by the oral route. The percents protection of rFgSAP-1 vaccine were estimated to be 73.2% and 74.3% when compared with non vaccinated-infected and adjuvant-infected controls, respectively. The levels of IgG1 and IgG2a specific to rFgSAP-1 in the immune sera, which are indicative of Th2 and Th1 immune responses, were inversely and significantly correlated with the numbers of worm recoveries. The rFgSAP-1-vaccinated mice showed significantly reduced levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and liver damage. These indicated that rFgSAP-1 has strong potential as a vaccine candidate against F. gigantica, whose efficacy will be studied further in large economic animals including cattle, sheep, and goat. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. La proteína asociada a SLAM (SAP regula la expresión de IFN-g en lepra The SLAM-associated protein (SAP regulates IFN-g expression in leprosy

    Directory of Open Access Journals (Sweden)

    María F. Quiroga

    2004-10-01

    Full Text Available La inmunidad protectora contra Mycobacterium leprae requiere IFN-g. Los pacientes con lepra tuberculoide producen localmente citoquinas Th1, mientras que los pacientes lepromatosos producen citoquinas Th2. La molécula linfocitaria activadora de señales (SLAM y la proteína asociada a SLAM (SAP participan en la diferenciación celular que conduce a producción de patrones específicos de citoquinas. A fin de investigar la vía SLAM/SAP en la infección por M. leprae, determinamos expresión de ARN mensajero (ARNm de SAP, IFN-g y SLAM en pacientes con lepra. Observamos que la expresión de SLAM correlacionó en forma directa con la expresión de IFN-g, mientras que la expresión de SAP correlacionó inversamente con la expresión de ambas proteínas. Así, nuestros resultados indican que SAP interferiría con las respuestas de citoquinas Th1 mientras que SLAM contribuiría con la respuesta Th1 en lepra, señalando a la vía SLAM/SAP como potencial blanco modulador de citoquinas en enfermedades con respuestas Th2 disfuncionales.Tuberculoid leprosy patients locally produce Th1 cytokines, while lepromatous patients produce Th2 cytokines. Signaling lymphocytic activation molecule (SLAM and the SLAM-associated protein (SAP participate in the differentiation process that leads to the production of specific patterns of cytokines by activated T cells. To investigate the SLAM/SAP pathway in M. leprae infection, we determined the expression of SAP, IFN-g and SLAM RNA messenger in leprosy patients. We found a direct correlation of SLAM expression with IFN-g expression, whereas the expression of SAP was inversely correlated with the expression of both SLAM and IFN-g. Therefore, our data indicate that SAP might interfere with Th1 cytokine responses while SLAM expression may contribute to Th1 responses in leprosy. This study further suggests that the SLAM/SAP pathway might be a focal point for therapeutic modulation of T cell cytokine responses in diseases

  10. Protein and metabolite composition of xylem sap from field-grown soybeans (Glycine max).

    Science.gov (United States)

    Krishnan, Hari B; Natarajan, Savithiry S; Bennett, John O; Sicher, Richard C

    2011-05-01

    The xylem, in addition to transporting water, nutrients and metabolites, is also involved in long-distance signaling in response to pathogens, symbionts and environmental stresses. Xylem sap has been shown to contain a number of proteins including metabolic enzymes, stress-related proteins, signal transduction proteins and putative transcription factors. Previous studies on xylem sap have mostly utilized plants grown in controlled environmental chambers. However, plants in the field are subjected to high light and to environmental stress that is not normally found in growth chambers. In this study, we have examined the protein and metabolite composition of xylem sap from field-grown cultivated soybean plants. One-dimensional gel electrophoresis of xylem sap from determinate, indeterminate, nodulating and non-nodulating soybean cultivars revealed similar protein profiles consisting of about 8-10 prominent polypeptides. Two-dimensional gel electrophoresis of soybean xylem sap resulted in the visualization of about 60 distinct protein spots. A total of 38 protein spots were identified using MALDI-TOF MS and LC-MS/MS. The most abundant proteins present in the xylem sap were identified as 31 and 28 kDa vegetative storage proteins. In addition, several proteins that are conserved among different plant species were also identified. Diurnal changes in the metabolite profile of xylem sap collected during a 24-h cycle revealed that asparagine and aspartate were the two predominant amino acids irrespective of the time collected. Pinitol (D-3-O-methyl-chiro-inositol) was the most abundant carbohydrate present. The possible roles of xylem sap proteins and metabolites as nutrient reserves for sink tissue and as an indicator of biotic stress are also discussed.

  11. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis.

    Science.gov (United States)

    Sugio, Akiko; Kingdom, Heather N; MacLean, Allyson M; Grieve, Victoria M; Hogenhout, Saskia A

    2011-11-29

    Phytoplasmas are insect-transmitted phytopathogenic bacteria that can alter plant morphology and the longevity and reproduction rates and behavior of their insect vectors. There are various examples of animal and plant parasites that alter the host phenotype to attract insect vectors, but it is unclear how these parasites accomplish this. We hypothesized that phytoplasmas produce effectors that modulate specific targets in their hosts leading to the changes in plant development and insect performance. Previously, we sequenced and mined the genome of Aster Yellows phytoplasma strain Witches' Broom (AY-WB) and identified 56 candidate effectors. Here, we report that the secreted AY-WB protein 11 (SAP11) effector modulates plant defense responses to the advantage of the AY-WB insect vector Macrosteles quadrilineatus. SAP11 binds and destabilizes Arabidopsis CINCINNATA (CIN)-related TEOSINTE BRANCHED1, CYCLOIDEA, PROLIFERATING CELL FACTORS 1 and 2 (TCP) transcription factors, which control plant development and promote the expression of lipoxygenase (LOX) genes involved in jasmonate (JA) synthesis. Both the Arabidopsis SAP11 lines and AY-WB-infected plants produce less JA on wounding. Furthermore, the AY-WB insect vector produces more offspring on AY-WB-infected plants, SAP11 transgenic lines, and plants impaired in CIN-TCP and JA synthesis. Thus, SAP11-mediated destabilization of CIN-TCPs leads to the down-regulation of LOX2 expression and JA synthesis and an increase in M. quadrilineatus progeny. Phytoplasmas are obligate inhabitants of their plant host and insect vectors, in which the latter transmits AY-WB to a diverse range of plant species. This finding demonstrates that pathogen effectors can reach beyond the pathogen-host interface to modulate a third organism in the biological interaction.

  12. The adaptor protein SAP directly associates with PECAM-1 and regulates PECAM-1-mediated-cell adhesion in T-like cell lines.

    Science.gov (United States)

    Proust, Richard; Crouin, Catherine; Gandji, Leslie Yewakon; Bertoglio, Jacques; Gesbert, Franck

    2014-04-01

    SAP is a small cytosolic adaptor protein expressed in hematopoietic lineages whose main function is to regulate intracellular signaling pathways induced by the triggering of members of the SLAM receptor family. In this paper, we have identified the adhesion molecule PECAM-1 as a new partner for SAP in a conditional yeast two-hybrid screen. PECAM-1 is an immunoglobulin-like molecule expressed by endothelial cells and leukocytes, which possesses both pro- and anti-inflammatory properties. However, little is known about PECAM-1 functions in T cells. We show that SAP directly and specifically interacts with the cytosolic tyrosine 686 of PECAM-1. We generated different T-like cell lines in which SAP or PECAM-1 are expressed or down modulated and we demonstrate that a diminished SAP expression correlates with a diminished PECAM-1-mediated adhesion. Although SAP has mainly been shown to associate with SLAM receptors, we evidence here that SAP is a new actor downstream of PECAM-1. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Enhanced production and purification of recombinant surface array protein (Sap) for use in detection of Bacillus anthracis.

    Science.gov (United States)

    Puranik, Nidhi; Tripathi, N K; Pal, V; Goel, Ajay Kumar

    2018-05-01

    Surface array protein (Sap) can be an important biomarker for specific detection of Bacillus anthracis , which is released by the bacterium during its growth in culture broth. In the present work, we have cloned and expressed Sap in Escherichia coli . The culture conditions and cultivation media were optimized and used in batch fermentation process for scale up of Sap in soluble form. The recombinant Sap was purified employing affinity chromatography followed by diafiltration. The final yield of purified protein was 20 and 46 mg/l of culture during shake flasks and batch fermentation, respectively. The protein purity and its reactivity were confirmed employing SDS-PAGE and Western blot, respectively. The antibodies raised against purified Sap were evaluated by Western blotting for detection of Sap released by B. anthracis . Our results showed that the Sap could be a novel marker for detection and confirmation of B. anthracis .

  14. Proteomics approach to identify unique xylem sap proteins in Pierce's disease-tolerant Vitis species.

    Science.gov (United States)

    Basha, Sheikh M; Mazhar, Hifza; Vasanthaiah, Hemanth K N

    2010-03-01

    Pierce's disease (PD) is a destructive bacterial disease of grapes caused by Xylella fastidiosa which is xylem-confined. The tolerance level to this disease varies among Vitis species. Our research was aimed at identifying unique xylem sap proteins present in PD-tolerant Vitis species. The results showed wide variation in the xylem sap protein composition, where a set of polypeptides with pI between 4.5 and 4.7 and M(r) of 31 kDa were present in abundant amount in muscadine (Vitis rotundifolia, PD-tolerant), in reduced levels in Florida hybrid bunch (Vitis spp., PD-tolerant) and absent in bunch grapes (Vitis vinifera, PD-susceptible). Liquid chromatography/mass spectrometry/mass spectrometry analysis of these proteins revealed their similarity to beta-1, 3-glucanase, peroxidase, and a subunit of oxygen-evolving enhancer protein 1, which are known to play role in defense and oxygen generation. In addition, the amount of free amino acids and soluble sugars was found to be significantly lower in xylem sap of muscadine genotypes compared to V. vinifera genotypes, indicating that the higher nutritional value of bunch grape sap may be more suitable for Xylella growth. These data suggest that the presence of these unique proteins in xylem sap is vital for PD tolerance in muscadine and Florida hybrid bunch grapes.

  15. Microvillus-Specific Protein Tyrosine Phosphatase SAP-1 Plays a Role in Regulating the Intestinal Paracellular Transport of Macromolecules.

    Science.gov (United States)

    Mori, Shingo; Kamei, Noriyasu; Murata, Yoji; Takayama, Kozo; Matozaki, Takashi; Takeda-Morishita, Mariko

    2017-09-01

    The stomach cancer-associated protein tyrosine phosphatase 1 (SAP-1) is a receptor-type protein tyrosine phosphatase that is specifically expressed on the apical membrane of the intestinal epithelium. SAP-1 is known to maintain the balance of phosphorylation of proteins together with protein kinases; however, its biological function and impact on pharmacokinetics in the intestine remain unclear. The present study, therefore, aimed at clarifying the relationship between SAP-1 and the intestinal absorption behaviors of typical transporter substrates and macromolecules. The endogenous levels of glucose and total cholesterol in the blood were similar between wild-type and SAP-1-deficient mice (Sap1 -/- ), suggesting no contribution of SAP-1 to biogenic influx. Moreover, in vitro transport study with everted ileal sacs demonstrated that there was no difference in the absorption of breast cancer resistance protein, P-glycoprotein, and peptide transporter substrates between both mice. However, absorptive clearance of macromolecular model dextrans (FD-4 and FD-10) in Sap1 -/- mice was significantly higher than that in wild-type mice, and this was confirmed by the trend of increased FD-4 absorption from colonic loops of Sap1 -/- mice. Therefore, the results of this study suggest the partial contribution of SAP-1 to the regulated transport of hydrophilic macromolecules through paracellular tight junctions. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. SAP-like domain in nucleolar spindle associated protein mediates mitotic chromosome loading as well as interphase chromatin interaction

    Energy Technology Data Exchange (ETDEWEB)

    Verbakel, Werner, E-mail: werner.verbakel@chem.kuleuven.be [Laboratory of Biomolecular Dynamics, Katholieke Universiteit Leuven, Celestijnenlaan 200G, Bus 2403, 3001 Heverlee (Belgium); Carmeliet, Geert, E-mail: geert.carmeliet@med.kuleuven.be [Laboratory of Experimental Medicine and Endocrinology, Katholieke Universiteit Leuven, Herestraat 49, Bus 902, 3000 Leuven (Belgium); Engelborghs, Yves, E-mail: yves.engelborghs@fys.kuleuven.be [Laboratory of Biomolecular Dynamics, Katholieke Universiteit Leuven, Celestijnenlaan 200G, Bus 2403, 3001 Heverlee (Belgium)

    2011-08-12

    Highlights: {yields} The SAP-like domain in NuSAP is a functional DNA-binding domain with preference for dsDNA. {yields} This SAP-like domain is essential for chromosome loading during early mitosis. {yields} NuSAP is highly dynamic on mitotic chromatin, as evident from photobleaching experiments. {yields} The SAP-like domain also mediates NuSAP-chromatin interaction in interphase nucleoplasm. -- Abstract: Nucleolar spindle associated protein (NuSAP) is a microtubule-stabilizing protein that localizes to chromosome arms and chromosome-proximal microtubules during mitosis and to the nucleus, with enrichment in the nucleoli, during interphase. The critical function of NuSAP is underscored by the finding that its depletion in HeLa cells results in various mitotic defects. Moreover, NuSAP is found overexpressed in multiple cancers and its expression levels often correlate with the aggressiveness of cancer. Due to its localization on chromosome arms and combination of microtubule-stabilizing and DNA-binding properties, NuSAP takes a special place within the extensive group of spindle assembly factors. In this study, we identify a SAP-like domain that shows DNA binding in vitro with a preference for dsDNA. Deletion of the SAP-like domain abolishes chromosome arm binding of NuSAP during mitosis, but is not sufficient to abrogate its chromosome-proximal localization after anaphase onset. Fluorescence recovery after photobleaching experiments revealed the highly dynamic nature of this NuSAP-chromatin interaction during mitosis. In interphase cells, NuSAP also interacts with chromatin through its SAP-like domain, as evident from its enrichment on dense chromatin regions and intranuclear mobility, measured by fluorescence correlation spectroscopy. The obtained results are in agreement with a model where NuSAP dynamically stabilizes newly formed microtubules on mitotic chromosomes to enhance chromosome positioning without immobilizing these microtubules. Interphase NuSAP

  17. SAP-like domain in nucleolar spindle associated protein mediates mitotic chromosome loading as well as interphase chromatin interaction

    International Nuclear Information System (INIS)

    Verbakel, Werner; Carmeliet, Geert; Engelborghs, Yves

    2011-01-01

    Highlights: → The SAP-like domain in NuSAP is a functional DNA-binding domain with preference for dsDNA. → This SAP-like domain is essential for chromosome loading during early mitosis. → NuSAP is highly dynamic on mitotic chromatin, as evident from photobleaching experiments. → The SAP-like domain also mediates NuSAP-chromatin interaction in interphase nucleoplasm. -- Abstract: Nucleolar spindle associated protein (NuSAP) is a microtubule-stabilizing protein that localizes to chromosome arms and chromosome-proximal microtubules during mitosis and to the nucleus, with enrichment in the nucleoli, during interphase. The critical function of NuSAP is underscored by the finding that its depletion in HeLa cells results in various mitotic defects. Moreover, NuSAP is found overexpressed in multiple cancers and its expression levels often correlate with the aggressiveness of cancer. Due to its localization on chromosome arms and combination of microtubule-stabilizing and DNA-binding properties, NuSAP takes a special place within the extensive group of spindle assembly factors. In this study, we identify a SAP-like domain that shows DNA binding in vitro with a preference for dsDNA. Deletion of the SAP-like domain abolishes chromosome arm binding of NuSAP during mitosis, but is not sufficient to abrogate its chromosome-proximal localization after anaphase onset. Fluorescence recovery after photobleaching experiments revealed the highly dynamic nature of this NuSAP-chromatin interaction during mitosis. In interphase cells, NuSAP also interacts with chromatin through its SAP-like domain, as evident from its enrichment on dense chromatin regions and intranuclear mobility, measured by fluorescence correlation spectroscopy. The obtained results are in agreement with a model where NuSAP dynamically stabilizes newly formed microtubules on mitotic chromosomes to enhance chromosome positioning without immobilizing these microtubules. Interphase NuSAP-chromatin interaction

  18. Human SAP is a novel peptidoglycan recognition protein that induces complement- independent phagocytosis of Staphylococcus aureus

    Science.gov (United States)

    An, Jang-Hyun; Kurokawa, Kenji; Jung, Dong-Jun; Kim, Min-Jung; Kim, Chan-Hee; Fujimoto, Yukari; Fukase, Koichi; Coggeshall, K. Mark; Lee, Bok Luel

    2014-01-01

    The human pathogen Staphylococcus aureus is responsible for many community-acquired and hospital-associated infections and is associated with high mortality. Concern over the emergence of multidrug-resistant strains has renewed interest in the elucidation of host mechanisms that defend against S. aureus infection. We recently demonstrated that human serum mannose-binding lectin (MBL) binds to S. aureus wall teichoic acid (WTA), a cell wall glycopolymer, a discovery that prompted further screening to identify additional serum proteins that recognize S. aureus cell wall components. In this report, we incubated human serum with 10 different S. aureus mutants and determined that serum amyloid P component (SAP) bound specifically to a WTA-deficient S. aureus ΔtagO mutant, but not to tagO-complemented, WTA-expressing cells. Biochemical characterization revealed that SAP recognizes bacterial peptidoglycan as a ligand and that WTA inhibits this interaction. Although SAP binding to peptidoglycan was not observed to induce complement activation, SAP-bound ΔtagO cells were phagocytosed by human polymorphonuclear leukocytes in an Fcγ receptor-dependent manner. These results indicate that SAP functions as a host defense factor, similar to other peptidoglycan recognition proteins and nucleotide-binding oligomerization domain (NOD)-like receptors. PMID:23966633

  19. SCF(SAP) controls organ size by targeting PPD proteins for degradation in Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Zhibiao; Li, Na; Jiang, Shan; Gonzalez, Nathalie; Huang, Xiahe; Wang, Yingchun; Inzé, Dirk; Li, Yunhai

    2016-04-06

    Control of organ size by cell proliferation and growth is a fundamental process, but the mechanisms that determine the final size of organs are largely elusive in plants. We have previously revealed that the ubiquitin receptor DA1 regulates organ size by repressing cell proliferation in Arabidopsis. Here we report that a mutant allele of STERILE APETALA (SAP) suppresses the da1-1 mutant phenotype. We show that SAP is an F-box protein that forms part of a SKP1/Cullin/F-box E3 ubiquitin ligase complex and controls organ size by promoting the proliferation of meristemoid cells. Genetic analyses suggest that SAP may act in the same pathway with PEAPOD1 and PEAPOD2, which are negative regulators of meristemoid proliferation, to control organ size, but does so independently of DA1. Further results reveal that SAP physically associates with PEAPOD1 and PEAPOD2, and targets them for degradation. These findings define a molecular mechanism by which SAP and PEAPOD control organ size.

  20. Synthesis and processing of sphingolipid activator protein-2 (SAP-2) in cultured human fibroblasts

    International Nuclear Information System (INIS)

    Fujibayashi, S.; Wenger, D.A.

    1986-01-01

    Sphingolipid activator proteins (SAP) are relatively small molecular weight proteins that stimulate the enzymatic hydrolysis of sphingolipids in the presence of specific lysosomal hydrolases. SAP-2 has previously been demonstrated to activate the hydrolysis of glucosylceramide, galactosylceramide, and, possibly, sphingomyelin. Using monospecific rabbit antibodies against human spleen SAP-2, the synthesis and processing of SAP-2 were studied in cultured human fibroblasts. When [ 35 S]methionine was presented in the medium to control human cells for 4 h, five major areas of radiolabeling were found. These had apparent molecular weights of 73,000, 68,000, 50,000, 12,000, and 9000. Further studies indicated that the major extracellular product in normal cells given NH4Cl along with the [ 35 S]methionine and in medium from cultures from patients with I cell disease had an apparent molecular weight of 73,000. The Mr = 68,000 and 73,000 species can be converted to a species with an apparent molecular weight of 50,000 by the action of endoglycosidase F. After labeling cells for 1 h followed by a 1-h chase, the Mr = 12,000 and 9000 species appear. Treatment of the immunoprecipitated mixture with endoglycosidase F resulted in conversion of these species to one band with an apparent molecular weight of 7600. These studies indicate that this relatively low molecular weight protein is rapidly synthesized from a relatively large molecular weight highly glycosylated precursor

  1. Binding of complement proteins C1q and C4bp to serum amyloid P component (SAP) in solid contra liquid phase

    DEFF Research Database (Denmark)

    Sørensen, Inge Juul; Nielsen, EH; Andersen, Ove

    1996-01-01

    Serum amyloid P component (SAP), a member of the conserved pentraxin family of plasma proteins, binds calcium dependently to its ligands. The authors investigated SAPs interaction with the complement proteins C4b binding protein (C4bp) and C1q by ELISA, immunoelectrophoresis and electron microscopy....... Binding of these proteins to SAP was demonstrated when SAP was immobilized using F(ab')2 anti-SAP, but not when SAP reacted with these proteins in liquid phase; thus the binding to human SAP was markedly phase state dependent. Presaturation of solid phase SAP with heparin, which binds SAP with high...... affinity, did not interfere with the subsequent binding of C4bp or C1q to SAP. In contrast, collagen I and IV showed partial competition with the binding of C1q to SAP. Using fresh serum, immobilized native SAP bound C4bp whereas binding of C1q/C1 could not be demonstrated. Altogether the results indicate...

  2. Genome-wide identification and characterization of stress-associated protein (SAP gene family encoding A20/AN1 zinc-finger proteins in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Zhou Yong

    2018-01-01

    Full Text Available Stress associated proteins (SAPs play important roles in developmental processes, responses to various stresses and hormone stimulation in plants. However, little is known about the SAP gene family in Medicago truncatula. In this study, a total of 17 MtSAP genes encoding A20/AN1 zinc-finger proteins were characterized. Out of these 17 genes, 15 were distributed over all 8 chromosomes at different densities, and two segmental duplication events were detected. The phylogenetic analysis of these proteins and their orthologs from Arabidopsis and rice suggested that they could be classified into five out of the seven groups of SAP family genes, with genes in the same group showing similar structures and conserved domains. The cis-elements of the MtSAP promoters were studied, and many cis-elements related to stress and plant hormone responses were identified. We also investigated the stress-responsive expression patterns of the MtSAP genes under various stresses, including drought, exposure to NaCl and cold. The qRT-PCR results showed that numerous MtSAP genes exhibited transcriptional responses to multiple abiotic stresses. These results lay the foundation for further functional characterization of SAP genes. To the best of our knowledge, this is the first report of a genome-wide analysis of the SAP gene family in M. truncatula.

  3. Protein tyrosine phosphatase SAP-1 protects against colitis through regulation of CEACAM20 in the intestinal epithelium.

    Science.gov (United States)

    Murata, Yoji; Kotani, Takenori; Supriatna, Yana; Kitamura, Yasuaki; Imada, Shinya; Kawahara, Kohichi; Nishio, Miki; Daniwijaya, Edwin Widyanto; Sadakata, Hisanobu; Kusakari, Shinya; Mori, Munemasa; Kanazawa, Yoshitake; Saito, Yasuyuki; Okawa, Katsuya; Takeda-Morishita, Mariko; Okazawa, Hideki; Ohnishi, Hiroshi; Azuma, Takeshi; Suzuki, Akira; Matozaki, Takashi

    2015-08-04

    Intestinal epithelial cells contribute to regulation of intestinal immunity in mammals, but the detailed molecular mechanisms of such regulation have remained largely unknown. Stomach-cancer-associated protein tyrosine phosphatase 1 (SAP-1, also known as PTPRH) is a receptor-type protein tyrosine phosphatase that is localized specifically at microvilli of the brush border in gastrointestinal epithelial cells. Here we show that SAP-1 ablation in interleukin (IL)-10-deficient mice, a model of inflammatory bowel disease, resulted in a marked increase in the severity of colitis in association with up-regulation of mRNAs for various cytokines and chemokines in the colon. Tyrosine phosphorylation of carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 20, an intestinal microvillus-specific transmembrane protein of the Ig superfamily, was greatly increased in the intestinal epithelium of the SAP-1-deficient animals, suggesting that this protein is a substrate for SAP-1. Tyrosine phosphorylation of CEACAM20 by the protein tyrosine kinase c-Src and the consequent association of CEACAM20 with spleen tyrosine kinase (Syk) promoted the production of IL-8 in cultured cells through the activation of nuclear factor-κB (NF-κB). In addition, SAP-1 and CEACAM20 were found to form a complex through interaction of their ectodomains. SAP-1 and CEACAM20 thus constitute a regulatory system through which the intestinal epithelium contributes to intestinal immunity.

  4. Synapse associated protein 102 (SAP102 binds the C-terminal part of the scaffolding protein neurobeachin.

    Directory of Open Access Journals (Sweden)

    Juliane Lauks

    Full Text Available Neurobeachin (Nbea is a multidomain scaffold protein abundant in the brain, where it is highly expressed during development. Nbea-null mice have severe defects in neuromuscular synaptic transmission resulting in lethal paralysis of the newborns. Recently, it became clear that Nbea is important also for the functioning of central synapses, where it is suggested to play a role in trafficking membrane proteins to both, the pre- and post-synaptic sites. So far, only few binding partners of Nbea have been found and the precise mechanism of their trafficking remains unclear. Here, we used mass spectrometry to identify SAP102, a MAGUK protein implicated in trafficking of the ionotropic glutamate AMPA- and NMDA-type receptors during synaptogenesis, as a novel Nbea interacting protein in mouse brain. Experiments in heterologous cells confirmed this interaction and revealed that SAP102 binds to the C-terminal part of Nbea that contains the DUF, PH, BEACH and WD40 domains. Furthermore, we discovered that introducing a mutation in Nbea's PH domain, which disrupts its interaction with the BEACH domain, abolishes this binding, thereby creating an excellent starting point to further investigate Nbea-SAP102 function in the central nervous system.

  5. Analisis dan Perancangan Aplikasi Pendukung Erp Sap R/3 Modul Sales and Distribution PT. United Tractors, Tbk

    Directory of Open Access Journals (Sweden)

    Johan Johan

    2010-12-01

    Full Text Available The purpose of this research is to analyse sales process having been implementing Sales and Distribution module of ERP SAP R/3 and also to design a supporting application for sales process at PT United Tractor, Tbk. The benefit of this application is to help sales person and customer in doing inquiries, quotation and sales order also material information through short message. The method of this research is data capturing, literature review, object oriented analysis and design and Rational Unified process including UML ( Unified Modeling Language for application design. Based on the problem, we designed a web based and sms gateway application to support Sales and Distribution module ERP SAP R/3 to help customer and sales person in doing sales transaction and information inquiry. 

  6. Analisis dan Perancangan Aplikasi Pendukung Erp Sap R/3 Modul Sales And Distribution PT. United Tractors, Tbk

    OpenAIRE

    Johan, Johan; Susanto, Yokie; Joe, Yusmin; Robby, Robby

    2010-01-01

    The purpose of this research is to analyse sales process having been implementing Sales and Distribution module of ERP SAP R/3 and also to design a supporting application for sales process at PT United Tractor, Tbk. The benefit of this application is to help sales person and customer in doing inquiries, quotation and sales order also material information through short message. The method of this research is data capturing, literature review, object oriented analysis and design and Rational Un...

  7. The Adaptor Protein SAP Directly Associates with CD3ζ Chain and Regulates T Cell Receptor Signaling

    Science.gov (United States)

    Proust, Richard; Bertoglio, Jacques; Gesbert, Franck

    2012-01-01

    Mutations altering the gene encoding the SLAM associated protein (SAP) are responsible for the X-linked lymphoproliferative disease or XLP1. Its absence is correlated with a defective NKT cells development, a decrease in B cell functions and a reduced T cells and NK cells cytotoxic activities, thus leading to an immunodeficiency syndrome. SAP is a small 128 amino-acid long protein that is almost exclusively composed of an SH2 domain. It has been shown to interact with the CD150/SLAM family of receptors, and in a non-canonical manner with SH3 containing proteins such as Fyn, βPIX, PKCθ and Nck1. It would thus play the role of a minimal adaptor protein. It has been shown that SAP plays an important function in the activation of T cells through its interaction with the SLAM family of receptors. Therefore SAP defective T cells display a reduced activation of signaling events downstream of the TCR-CD3 complex triggering. In the present work, we evidence that SAP is a direct interactor of the CD3ζ chain. This direct interaction occurs through the first ITAM of CD3ζ, proximal to the membrane. Additionally, we show that, in the context of the TCR-CD3 signaling, an Sh-RNA mediated silencing of SAP is responsible for a decrease of several canonical T cell signaling pathways including Erk, Akt and PLCγ1 and to a reduced induction of IL-2 and IL-4 mRNA. Altogether, we show that SAP plays a central function in the T cell activation processes through a direct association with the CD3 complex. PMID:22912825

  8. The Adaptor Protein SAP Regulates Type II NKT Cell Development, Cytokine Production and Cytotoxicity Against Lymphoma1

    Science.gov (United States)

    Weng, Xiufang; Liao, Chia-Min; Bagchi, Sreya; Cardell, Susanna L.; Stein, Paul L.; Wang, Chyung-Ru

    2014-01-01

    CD1d-restricted NKT cells represent a unique lineage of immunoregulatory T cells that are divided into two groups, type I and type II, based on their TCR usage. Because there are no specific tools to identify type II NKT cells, little is known about their developmental requirements and functional regulation. In our previous study, we showed that signaling lymphocytic activation molecule-associated protein (SAP) is essential for the development of type II NKT cells. Here, using a type II NKT cell TCR transgenic mouse model (24αβTg), we demonstrated that CD1d-expressing hematopoietic cells but not thymic epithelial cells meditate efficient selection of type II NKT cells. Further, we showed that SAP regulates type II NKT cell development by controlling Egr2 and PLZF expression. SAP-deficient 24αβ transgenic T cells (24αβ T cells) exhibited an immature phenotype with reduced Th2 cytokine-producing capacity and diminished cytotoxicity to CD1d-expressing lymphoma cells. The impaired IL-4 production by SAP-deficient 24αβ T cells was associated with reduced IRF4 and GATA-3 induction following TCR stimulation. Collectively, these data suggest that SAP is critical for regulating type II NKT cell responses. Aberrant responses of these T cells may contribute to the immune dysregulation observed in X-linked lymphoproliferative disease caused by mutations in SAP. PMID:25236978

  9. Control objectives design for the human and resources module of SAP

    OpenAIRE

    Collado Antón, Jesús

    2010-01-01

    Català: En aquest projecte trobem la definició d'objectius de control i d'activitats de control per al módul de recursos humans de SAP, donant especial importància a l'adecuada segregació de funcions dins el módul. Castellano: En este proyecto de encuentra la definición de objetivos de control i actividades de control para el módulo de recursos humanos de SAP, dando especial importancia a la adecuada segregación de funciones dentro de éste módulo. English: In this project we can find th...

  10. The adaptor protein SAP regulates type II NKT-cell development, cytokine production, and cytotoxicity against lymphoma.

    Science.gov (United States)

    Weng, Xiufang; Liao, Chia-Min; Bagchi, Sreya; Cardell, Susanna L; Stein, Paul L; Wang, Chyung-Ru

    2014-12-01

    CD1d-restricted NKT cells represent a unique lineage of immunoregulatory T cells that are divided into two groups, type I and type II, based on their TCR usage. Because there are no specific tools to identify type II NKT cells, little is known about their developmental requirements and functional regulation. In our previous study, we showed that signaling lymphocytic activation molecule associated protein (SAP) is essential for the development of type II NKT cells. Here, using a type II NKT-cell TCR transgenic mouse model, we demonstrated that CD1d-expressing hematopoietic cells, but not thymic epithelial cells, meditate efficient selection of type II NKT cells. Furthermore, we showed that SAP regulates type II NKT-cell development by controlling early growth response 2 protein and promyelocytic leukemia zinc finger expression. SAP-deficient 24αβ transgenic T cells (24αβ T cells) exhibited an immature phenotype with reduced Th2 cytokine-producing capacity and diminished cytotoxicity to CD1d-expressing lymphoma cells. The impaired IL-4 production by SAP-deficient 24αβ T cells was associated with reduced IFN regulatory factor 4 and GATA-3 induction following TCR stimulation. Collectively, these data suggest that SAP is critical for regulating type II NKT cell responses. Aberrant responses of these T cells may contribute to the immune dysregulation observed in X-linked lymphoproliferative disease caused by mutations in SAP. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Pembelajaran Mandiri Aplikasi Enterprise Resource System: Studi Kasus pada Aplikasi SAPModul Sales and Distribution

    Directory of Open Access Journals (Sweden)

    Johan Johan

    2013-12-01

    Full Text Available ERP (enterprise resource planning is a solution needed by companies to assist the integration of all functional areas. A self-learning media of ERP system is needed for the successful use which is highly depended on the users mastery. The learning media must be flexible to time and place. Therefore, this research creates a self-learning application for ERP system based on a case study on SAP application. SAP is an ERP-based solution widely used by medium to large companies. The method used are data collection, analysis on running business processes and the identification of information needs, followed by the application design. Identificationof system requirements uses Flash CS5 Action Script 3.0. The result achieved in this research is a multimediabased learning tool which assists training for trainers and trainee and facilitates trainee supervision during training. The learning tool is found helpful in self learning process.

  12. Xylem sap proteomics.

    Science.gov (United States)

    de Bernonville, Thomas Dugé; Albenne, Cécile; Arlat, Matthieu; Hoffmann, Laurent; Lauber, Emmanuelle; Jamet, Elisabeth

    2014-01-01

    Proteomic analysis of xylem sap has recently become a major field of interest to understand several biological questions related to plant development and responses to environmental clues. The xylem sap appears as a dynamic fluid undergoing changes in its proteome upon abiotic and biotic stresses. Unlike cell compartments which are amenable to purification in sufficient amount prior to proteomic analysis, the xylem sap has to be collected in particular conditions to avoid contamination by intracellular proteins and to obtain enough material. A model plant like Arabidopsis thaliana is not suitable for such an analysis because efficient harvesting of xylem sap is difficult. The analysis of the xylem sap proteome also requires specific procedures to concentrate proteins and to focus on proteins predicted to be secreted. Indeed, xylem sap proteins appear to be synthesized and secreted in the root stele or to originate from dying differentiated xylem cells. This chapter describes protocols to collect xylem sap from Brassica species and to prepare total and N-glycoprotein extracts for identification of proteins by mass spectrometry analyses and bioinformatics.

  13. Phloem sap proteins from Cucurbita maxima and Ricinus communis have the capacity to traffic cell to cell through plasmodesmata

    Science.gov (United States)

    Balachandran, Suchandra; Xiang, Yu; Schobert, Christian; Thompson, Gary A.; Lucas, William J.

    1997-01-01

    In angiosperms, the functional enucleate sieve tube system of the phloem appears to be maintained by the surrounding companion cells. In this study, we tested the hypothesis that polypeptides present within the phloem sap traffic cell to cell from the companion cells, where they are synthesized, into the sieve tube via plasmodesmata. Coinjection of fluorescently labeled dextrans along with size-fractionated Cucurbita maxima phloem proteins, ranging in size from 10 to 200 kDa, as well as injection of individual fluorescently labeled phloem proteins, provided unambiguous evidence that these proteins have the capacity to interact with mesophyll plasmodesmata in cucurbit cotyledons to induce an increase in size exclusion limit and traffic cell to cell. Plasmodesmal size exclusion limit increased to greater than 20 kDa, but less than 40 kDa, irrespective of the size of the injected protein, indicating that partial protein unfolding may be a requirement for transport. A threshold concentration in the 20–100 nM range was required for cell-to-cell transport indicating that phloem proteins have a high affinity for the mesophyll plasmodesmal binding site(s). Parallel experiments with glutaredoxin and cystatin, phloem sap proteins from Ricinus communis, established that these proteins can also traffic through cucurbit mesophyll plasmodesmata. These results are discussed in terms of the requirements for regulated protein trafficking between companion cells and the sieve tube system. As the threshold value for plasmodesmal transport of phloem sap proteins falls within the same range as many plant hormones, the possibility is discussed that some of these proteins may act as long-distance signaling molecules. PMID:9391168

  14. Phloem sap proteins from Cucurbita maxima and Ricinus communis have the capacity to traffic cell to cell through plasmodesmata.

    Science.gov (United States)

    Balachandran, S; Xiang, Y; Schobert, C; Thompson, G A; Lucas, W J

    1997-12-09

    In angiosperms, the functional enucleate sieve tube system of the phloem appears to be maintained by the surrounding companion cells. In this study, we tested the hypothesis that polypeptides present within the phloem sap traffic cell to cell from the companion cells, where they are synthesized, into the sieve tube via plasmodesmata. Coinjection of fluorescently labeled dextrans along with size-fractionated Cucurbita maxima phloem proteins, ranging in size from 10 to 200 kDa, as well as injection of individual fluorescently labeled phloem proteins, provided unambiguous evidence that these proteins have the capacity to interact with mesophyll plasmodesmata in cucurbit cotyledons to induce an increase in size exclusion limit and traffic cell to cell. Plasmodesmal size exclusion limit increased to greater than 20 kDa, but less than 40 kDa, irrespective of the size of the injected protein, indicating that partial protein unfolding may be a requirement for transport. A threshold concentration in the 20-100 nM range was required for cell-to-cell transport indicating that phloem proteins have a high affinity for the mesophyll plasmodesmal binding site(s). Parallel experiments with glutaredoxin and cystatin, phloem sap proteins from Ricinus communis, established that these proteins can also traffic through cucurbit mesophyll plasmodesmata. These results are discussed in terms of the requirements for regulated protein trafficking between companion cells and the sieve tube system. As the threshold value for plasmodesmal transport of phloem sap proteins falls within the same range as many plant hormones, the possibility is discussed that some of these proteins may act as long-distance signaling molecules.

  15. Data on xylem sap proteins from Mn- and Fe-deficient tomato plants obtained using shotgun proteomics.

    Science.gov (United States)

    Ceballos-Laita, Laura; Gutierrez-Carbonell, Elain; Takahashi, Daisuke; Abadía, Anunciación; Uemura, Matsuo; Abadía, Javier; López-Millán, Ana Flor

    2018-04-01

    This article contains consolidated proteomic data obtained from xylem sap collected from tomato plants grown in Fe- and Mn-sufficient control, as well as Fe-deficient and Mn-deficient conditions. Data presented here cover proteins identified and quantified by shotgun proteomics and Progenesis LC-MS analyses: proteins identified with at least two peptides and showing changes statistically significant (ANOVA; p ≤ 0.05) and above a biologically relevant selected threshold (fold ≥ 2) between treatments are listed. The comparison between Fe-deficient, Mn-deficient and control xylem sap samples using a multivariate statistical data analysis (Principal Component Analysis, PCA) is also included. Data included in this article are discussed in depth in the research article entitled "Effects of Fe and Mn deficiencies on the protein profiles of tomato ( Solanum lycopersicum) xylem sap as revealed by shotgun analyses" [1]. This dataset is made available to support the cited study as well to extend analyses at a later stage.

  16. Chick Hairy1 protein interacts with Sap18, a component of the Sin3/HDAC transcriptional repressor complex

    Directory of Open Access Journals (Sweden)

    Andrade Raquel P

    2007-07-01

    Full Text Available Abstract Background The vertebrate adult axial skeleton, trunk and limb skeletal muscles and dermis of the back all arise from early embryonic structures called somites. Somites are symmetrically positioned flanking the embryo axial structures (neural tube and notochord and are periodically formed in a anterior-posterior direction from the presomitic mesoderm. The time required to form a somite pair is constant and species-specific. This extraordinary periodicity is proposed to depend on an underlying somitogenesis molecular clock, firstly evidenced by the cyclic expression of the chick hairy1 gene in the unsegmented presomitic mesoderm with a 90 min periodicity, corresponding to the time required to form a somite pair in the chick embryo. The number of hairy1 oscillations at any given moment is proposed to provide the cell with both temporal and positional information along the embryo's anterior-posterior axis. Nevertheless, how this is accomplished and what biological processes are involved is still unknown. Aiming at understanding the molecular events triggered by the somitogenesis clock Hairy1 protein, we have employed the yeast two-hybrid system to identify Hairy1 interaction partners. Results Sap18, an adaptor molecule of the Sin3/HDAC transcriptional repressor complex, was found to interact with the C-terminal portion of the Hairy1 protein in a yeast two-hybrid assay and the Hairy1/Sap18 interaction was independently confirmed by co-immunoprecipitation experiments. We have characterized the expression patterns of both sap18 and sin3a genes during chick embryo development, using in situ hybridization experiments. We found that both sap18 and sin3a expression patterns co-localize in vivo with hairy1 expression domains in chick rostral presomitic mesoderm and caudal region of somites. Conclusion Hairy1 belongs to the hairy-enhancer-of-split family of transcriptional repressor proteins. Our results indicate that during chick somitogenesis

  17. SAP Suppresses the Development of Experimental Autoimmune Encephalomyelitis in C57BL6 Mice

    Science.gov (United States)

    Ji, Zhe; Ke, Zun-Ji; Geng, Jian-Guo

    2012-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a CD4+ T cell-mediated disease of the CNS. Serum amyloid P component (SAP) is a highly conserved plasma protein named for its universal presence in amyloid deposits. Here we report SAP transgenic mice had unexpectedly attenuated EAE due to impaired encephalitogenic responses. Following induction with myelin oligodendroglial glycoprotein (MOG) peptide 35–55 in CFA, SAP transgenic mice showed reduced spinal cord inflammation with lower severity of EAE attacks as compared with control C57BL/6 mice. However in SAP-KO mice, the severity of EAE is enhanced. Adoptive transfer of Ag-restimulated T cells from wild-type to SAP transgenic mice or transfer of SAP transgenic Ag-restimulated T cells to control mice induced milder EAE. T cells from MOG-primed SAP transgenic mice showed weak proliferative responses. Furthermore, in SAP transgenic mice, there is little infiltration of CD45-positive cells in the spinal cord. In vitro, SAP suppressed the secretion of IL-2 stimulated by P-selectin, and blocked P-selectin binding to T cells. Moreover, SAP could change the affinity between α4-integrin and T cells. These data suggested that SAP could antagonize the development of the acute phase of inflammation accompanying EAE by modulating the function of P-selectin. PMID:21647172

  18. Targeted mutagenesis of the Sap47 gene of Drosophila: Flies lacking the synapse associated protein of 47 kDa are viable and fertile

    Directory of Open Access Journals (Sweden)

    Huber Saskia

    2004-04-01

    Full Text Available Abstract Background Conserved proteins preferentially expressed in synaptic terminals of the nervous system are likely to play a significant role in brain function. We have previously identified and molecularly characterized the Sap47 gene which codes for a novel synapse associated protein of 47 kDa in Drosophila. Sequence comparison identifies homologous proteins in numerous species including C. elegans, fish, mouse and human. First hints as to the function of this novel protein family can be obtained by generating mutants for the Sap47 gene in Drosophila. Results Attempts to eliminate the Sap47 gene through targeted mutagenesis by homologous recombination were unsuccessful. However, several mutants were generated by transposon remobilization after an appropriate insertion line had become available from the Drosophila P-element screen of the Bellen/Hoskins/Rubin/Spradling labs. Characterization of various deletions in the Sap47 gene due to imprecise excision of the P-element identified three null mutants and three hypomorphic mutants. Null mutants are viable and fertile and show no gross structural or obvious behavioural deficits. For cell-specific over-expression and "rescue" of the knock-out flies a transgenic line was generated which expresses the most abundant transcript under the control of the yeast enhancer UAS. In addition, knock-down of the Sap47 gene was achieved by generating 31 transgenic lines expressing Sap47 RNAi constructs, again under UAS control. When driven by a ubiquitously expressed yeast transcription factor (GAL4, Sap47 gene suppression in several of these lines is highly efficient resulting in residual SAP47 protein concentrations in heads as low as 6% of wild type levels. Conclusion The conserved synaptic protein SAP47 of Drosophila is not essential for basic synaptic function. The Sap47 gene region may be refractory to targeted mutagenesis by homologous recombination. RNAi using a construct linking genomic DNA to anti

  19. Deciphering complex dynamics of water counteraction around secondary structural elements of allosteric protein complex: Case study of SAP-SLAM system in signal transduction cascade.

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2018-01-28

    The first hydration shell of a protein exhibits heterogeneous behavior owing to several attributes, majorly local polarity and structural flexibility as revealed by solvation dynamics of secondary structural elements. We attempt to recognize the change in complex water counteraction generated due to substantial alteration in flexibility during protein complex formation. The investigation is carried out with the signaling lymphocytic activation molecule (SLAM) family of receptors, expressed by an array of immune cells, and interacting with SLAM-associated protein (SAP), composed of one SH2 domain. All atom molecular dynamics simulations are employed to the aqueous solutions of free SAP and SLAM-peptide bound SAP. We observed that water dynamics around different secondary structural elements became highly affected as well as nicely correlated with the SLAM-peptide induced change in structural rigidity obtained by thermodynamic quantification. A few instances of contradictory dynamic features of water to the change in structural flexibility are explained by means of occluded polar residues by the peptide. For βD, EFloop, and BGloop, both structural flexibility and solvent accessibility of the residues confirm the obvious contribution. Most importantly, we have quantified enhanced restriction in water dynamics around the second Fyn-binding site of the SAP due to SAP-SLAM complexation, even prior to the presence of Fyn. This observation leads to a novel argument that SLAM induced more restricted water molecules could offer more water entropic contribution during the subsequent Fyn binding and provide enhanced stability to the SAP-Fyn complex in the signaling cascade. Finally, SLAM induced water counteraction around the second binding site of the SAP sheds light on the allosteric property of the SAP, which becomes an integral part of the underlying signal transduction mechanism.

  20. Deciphering complex dynamics of water counteraction around secondary structural elements of allosteric protein complex: Case study of SAP-SLAM system in signal transduction cascade

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2018-01-01

    The first hydration shell of a protein exhibits heterogeneous behavior owing to several attributes, majorly local polarity and structural flexibility as revealed by solvation dynamics of secondary structural elements. We attempt to recognize the change in complex water counteraction generated due to substantial alteration in flexibility during protein complex formation. The investigation is carried out with the signaling lymphocytic activation molecule (SLAM) family of receptors, expressed by an array of immune cells, and interacting with SLAM-associated protein (SAP), composed of one SH2 domain. All atom molecular dynamics simulations are employed to the aqueous solutions of free SAP and SLAM-peptide bound SAP. We observed that water dynamics around different secondary structural elements became highly affected as well as nicely correlated with the SLAM-peptide induced change in structural rigidity obtained by thermodynamic quantification. A few instances of contradictory dynamic features of water to the change in structural flexibility are explained by means of occluded polar residues by the peptide. For βD, EFloop, and BGloop, both structural flexibility and solvent accessibility of the residues confirm the obvious contribution. Most importantly, we have quantified enhanced restriction in water dynamics around the second Fyn-binding site of the SAP due to SAP-SLAM complexation, even prior to the presence of Fyn. This observation leads to a novel argument that SLAM induced more restricted water molecules could offer more water entropic contribution during the subsequent Fyn binding and provide enhanced stability to the SAP-Fyn complex in the signaling cascade. Finally, SLAM induced water counteraction around the second binding site of the SAP sheds light on the allosteric property of the SAP, which becomes an integral part of the underlying signal transduction mechanism.

  1. A comparison of serum amyloid A (SAA) synthesis with that of the pentraxins: Serum amyloid P (SAP) and C-reactive protein (CRP)

    International Nuclear Information System (INIS)

    Tatsuta, E.; Shirahama, T.; Sipe, J.D.; Skinner, M.

    1986-01-01

    Serum amyloid A (SAA) and serum amyloid P (SAP) were detected in cultures of hepatocytes which had been isolated from normal CBA/J mice by the collagenase perfusion technique. SAP production in 24 h cultures was more resistant than SAA and total protein synthesis to inhibition by actinomycin D, but was more sensitive to inhibition by 48 h. However, the production of SAP was more sensitive to cycloheximide than SAA and total protein throughout the 48 hr incubation period. SAP and SAA levels in the culture media were suppressed by treatment of liver cells with 10 -6 M of colchicine for 48 h. Inhibition of SAP production by colchicine was the same regardless of culture condition, but the effect of colchicine on SAA synthesis varied according to the presence of serum of monokine. These observations also support the concept that the two amyloid proteins are produced under different regulatory mechanisms. When C-reactive protein (CRP) was not detected in the sera of patients with severe chronic liver diseases, the SAA levels were very low. When CRP was detected, SAA values were within the normal range. Thus, in order to produce SAA, liver cells in these patients not only were viable but also maintained their specialized function

  2. Accumulation of sphingolipid activator proteins (SAPs) A and D in granular osmiophilic deposits in miniature Schnauzer dogs with ceroid-lipofuscinosis.

    Science.gov (United States)

    Palmer, D N; Tyynelä, J; van Mil, H C; Westlake, V J; Jolly, R D

    1997-03-01

    The neuronal ceroid-lipofuscinoses (NCL, Batten disease) are fatal inherited neurodegenerative diseases of children characterized by retinal and brain atrophy and the accumulation of electron-dense storage bodies in cells. Mutations in different genes underlie different major forms. The infantile disease (CLN-1, McKusick 256730) is distinguished by the storage of the sphingolipid activator proteins (SAPs) A and D in distinctive granular osmiophilic deposits (GRODs). This contrasts with the other major forms, where subunit c of mitochondrial ATP synthase is stored in various multilamellar profiles. Ceroid-lipofuscinoses also occur in dogs, including a form in miniature Schnauzers with distinctive granular osmiophilic deposit-like storage bodies. Antisera to SAPs A and D reacted to these storage bodies in situ. The presence of SAP D was confirmed by Western blotting and of SAP A by protein sequencing. Neither subunit c of mitochondrial ATP synthase nor of vacuolar ATPase is stored. This suggests that there are two families of ceroid-lipofuscinoses, the subunit c-storing forms, and those in which SAPs A and D, and perhaps other proteins, accumulate. Further work is required to determine whether other forms with granular osmiophilic deposits belong to the latter class and the genetic relationships between them and the human infantile disease.

  3. Effects of Fe and Mn deficiencies on the protein profiles of tomato (Solanum lycopersicum) xylem sap as revealed by shotgun analyses

    Science.gov (United States)

    The aim of this work was to study the effects of Fe and Mn deficiencies on the xylem sap proteome of tomato using a shotgun proteomic approach, with the final goal of elucidating plant response mechanisms to these stresses. This approach yielded 643 proteins reliably identified and quantified with 7...

  4. Surface-Layer (S-Layer) Proteins Sap and EA1 Govern the Binding of the S-Layer-Associated Protein BslO at the Cell Septa of Bacillus anthracis

    Science.gov (United States)

    Kern, Valerie J.; Kern, Justin W.; Theriot, Julie A.; Schneewind, Olaf

    2012-01-01

    The Gram-positive pathogen Bacillus anthracis contains 24 genes whose products harbor the structurally conserved surface-layer (S-layer) homology (SLH) domain. Proteins endowed with the SLH domain associate with the secondary cell wall polysaccharide (SCWP) following secretion. Two such proteins, Sap and EA1, have the unique ability to self-assemble into a paracrystalline layer on the surface of bacilli and form S layers. Other SLH domain proteins can also be found within the S layer and have been designated Bacillus S-layer-associated protein (BSLs). While both S-layer proteins and BSLs bind the same SCWP, their deposition on the cell surface is not random. For example, BslO is targeted to septal peptidoglycan zones, where it catalyzes the separation of daughter cells. Here we show that an insertional lesion in the sap structural gene results in elongated chains of bacilli, as observed with a bslO mutant. The chain length of the sap mutant can be reduced by the addition of purified BslO in the culture medium. This complementation in trans can be explained by an increased deposition of BslO onto the surface of sap mutant bacilli that extends beyond chain septa. Using fluorescence microscopy, we observed that the Sap S layer does not overlap the EA1 S layer and slowly yields to the EA1 S layer in a growth-phase-dependent manner. Although present all over bacilli, Sap S-layer patches are not observed at septa. Thus, we propose that the dynamic Sap/EA1 S-layer coverage of the envelope restricts the deposition of BslO to the SCWP at septal rings. PMID:22609927

  5. SAP crm integration testing

    OpenAIRE

    Černiavskaitė, Marija

    2017-01-01

    This Bachelor's thesis presents SAP CRM and integration systems testing analysis: investigation in SAP CRM and SAP PO systems, presentation of relationship between systems, introduction to third-party system (non-SAP) – Network Informational System (NIS) which has integration with SAP, presentation of best CRM testing practises, analysis and recommendation of integration testing. Practical integration testing is done in accordance to recommendations.

  6. The adaptor molecule signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is essential in mechanisms involving the Fyn tyrosine kinase for induction and progression of collagen-induced arthritis.

    Science.gov (United States)

    Zhong, Ming-Chao; Veillette, André

    2013-11-01

    Signaling lymphocytic activation molecule-associated protein (SAP) is an Src homology 2 domain-only adaptor involved in multiple immune cell functions. It has also been linked to immunodeficiencies and autoimmune diseases, such as systemic lupus erythematosus. Here, we examined the role and mechanism of action of SAP in autoimmunity using a mouse model of autoimmune arthritis, collagen-induced arthritis (CIA). We found that SAP was essential for development of CIA in response to collagen immunization. It was also required for production of collagen-specific antibodies, which play a key role in disease pathogenesis. These effects required SAP expression in T cells, not in B cells. In mice immunized with a high dose of collagen, the activity of SAP was nearly independent of its ability to bind the protein tyrosine kinase Fyn and correlated with the capacity of SAP to promote full differentiation of follicular T helper (TFH) cells. However, with a lower dose of collagen, the role of SAP was more dependent on Fyn binding, suggesting that additional mechanisms other than TFH cell differentiation were involved. Further studies suggested that this might be due to a role of the SAP-Fyn interaction in natural killer T cell development through the ability of SAP-Fyn to promote Vav-1 activation. We also found that removal of SAP expression during progression of CIA attenuated disease severity. However, it had no effect on disease when CIA was clinically established. Together, these results indicate that SAP plays an essential role in CIA because of Fyn-independent and Fyn-dependent effects on TFH cells and, possibly, other T cell types.

  7. Genetic evidence for the involvement of the S-layer protein gene sap and the sporulation genes spo0A, spo0B, and spo0F in Phage AP50c infection of Bacillus anthracis.

    Science.gov (United States)

    Plaut, Roger D; Beaber, John W; Zemansky, Jason; Kaur, Ajinder P; George, Matroner; Biswas, Biswajit; Henry, Matthew; Bishop-Lilly, Kimberly A; Mokashi, Vishwesh; Hannah, Ryan M; Pope, Robert K; Read, Timothy D; Stibitz, Scott; Calendar, Richard; Sozhamannan, Shanmuga

    2014-03-01

    In order to better characterize the Bacillus anthracis typing phage AP50c, we designed a genetic screen to identify its bacterial receptor. Insertions of the transposon mariner or targeted deletions of the structural gene for the S-layer protein Sap and the sporulation genes spo0A, spo0B, and spo0F in B. anthracis Sterne resulted in phage resistance with concomitant defects in phage adsorption and infectivity. Electron microscopy of bacteria incubated with AP50c revealed phage particles associated with the surface of bacilli of the Sterne strain but not with the surfaces of Δsap, Δspo0A, Δspo0B, or Δspo0F mutants. The amount of Sap in the S layer of each of the spo0 mutant strains was substantially reduced compared to that of the parent strain, and incubation of AP50c with purified recombinant Sap led to a substantial reduction in phage activity. Phylogenetic analysis based on whole-genome sequences of B. cereus sensu lato strains revealed several closely related B. cereus and B. thuringiensis strains that carry sap genes with very high similarities to the sap gene of B. anthracis. Complementation of the Δsap mutant in trans with the wild-type B. anthracis sap or the sap gene from either of two different B. cereus strains that are sensitive to AP50c infection restored phage sensitivity, and electron microscopy confirmed attachment of phage particles to the surface of each of the complemented strains. Based on these data, we postulate that Sap is involved in AP50c infectivity, most likely acting as the phage receptor, and that the spo0 genes may regulate synthesis of Sap and/or formation of the S layer.

  8. Decreased SAP expression in T cells from patients with SLE contributes to early signaling abnormalities and reduced IL-2 production

    Science.gov (United States)

    Karampetsou, Maria P.; Comte, Denis; Kis-Toth, Katalin; Terhorst, Cox; Kyttaris, Vasileios C.; Tsokos, George C.

    2016-01-01

    T cells from patients with systemic lupus erythematosus (SLE) display a number of functions including increased early signaling events following engagement of the T cell receptor (TCR). Signaling lymphocytic activation molecule family (SLAMF) cell surface receptors and the X-chromosome-defined signaling lymphocytic activation molecule-associated protein (SAP) adaptor are important in the development of several immunocyte lineages and modulating immune response. Here we present evidence that SAP protein levels are decreased in T cells and in their main subsets isolated from 32 women and 3 men with SLE independently of disease activity. In SLE T cells the SAP protein is also subject to increased degradation by a caspase-3. Forced expression of SAP in SLE T cells simultaneously heightened IL-2 production, calcium (Ca2+) responses and tyrosine phosphorylation of a number of proteins. Exposure of normal T cells to SLE serum IgG, known to contain anti-CD3/TCR antibodies, resulted in SAP downregulation. We conclude that SLE T cells display reduced levels of the adaptor protein SAP probably as a result of continuous T cell activation and degradation by caspase-3. Restoration of SAP levels in SLE T cells corrects the overexcitable lupus T cell phenotype. PMID:27183584

  9. Effects of Fe and Mn deficiencies on the protein profiles of tomato (Solanum lycopersicum) xylem sap as revealed by shotgun analyses.

    Science.gov (United States)

    Ceballos-Laita, Laura; Gutierrez-Carbonell, Elain; Takahashi, Daisuke; Abadía, Anunciación; Uemura, Matsuo; Abadía, Javier; López-Millán, Ana Flor

    2018-01-06

    The aim of this work was to study the effects of Fe and Mn deficiencies on the xylem sap proteome of tomato using a shotgun proteomic approach, with the final goal of elucidating plant response mechanisms to these stresses. This approach yielded 643 proteins reliably identified and quantified with 70% of them predicted as secretory. Iron and Mn deficiencies caused statistically significant and biologically relevant abundance changes in 119 and 118 xylem sap proteins, respectively. In both deficiencies, metabolic pathways most affected were protein metabolism, stress/oxidoreductases and cell wall modifications. First, results suggest that Fe deficiency elicited more stress responses than Mn deficiency, based on the changes in oxidative and proteolytic enzymes. Second, both nutrient deficiencies affect the secondary cell wall metabolism, with changes in Fe deficiency occurring via peroxidase activity, and in Mn deficiency involving peroxidase, Cu-oxidase and fasciclin-like arabinogalactan proteins. Third, the primary cell wall metabolism was affected by both nutrient deficiencies, with changes following opposite directions as judged from the abundances of several glycoside-hydrolases with endo-glycolytic activities and pectin esterases. Fourth, signaling pathways via xylem involving CLE and/or lipids as well as changes in phosphorylation and N-glycosylation also play a role in the responses to these stresses. Biological significance In spite of being essential for the delivery of nutrients to the shoots, our knowledge of xylem responses to nutrient deficiencies is very limited. The present work applies a shotgun proteomic approach to unravel the effects of Fe and Mn deficiencies on the xylem sap proteome. Overall, Fe deficiency seems to elicit more stress in the xylem sap proteome than Mn deficiency, based on the changes measured in proteolytic and oxido-reductase proteins, whereas both nutrients exert modifications in the composition of the primary and secondary

  10. SAP ERP financial accounting and controlling configuration and use management

    CERN Document Server

    Okungbowa, Andrew

    2015-01-01

    SAP ERP modules are notoriously hard to configure and use effectively without a lot of practice and experience. But as SAP ERP Financial Accounting and Controlling: Configuration and Use Management shows, it doesn't have to be so difficult. The book takes a systematic approach that leads SAP Financial Accounting and Controlling (FICO) users step by step through configuring and using all the program's facets. This approach makes configuration complexities manageable. The book's author-SAP expert, trainer, and accountant Andrew Okun

  11. Nye integrerede ledelsesinformationssystemer SAP/R3

    DEFF Research Database (Denmark)

    Nielsen, Steen

    1998-01-01

    Artiklen beskriver og analyserer hovedindholdet i SAP/R3's controlling modul, speciel med sigte på hvilke forudsætninger systemet bygger på, dels med reference til den danske lønsomheds- og kapacitetsmodel.......Artiklen beskriver og analyserer hovedindholdet i SAP/R3's controlling modul, speciel med sigte på hvilke forudsætninger systemet bygger på, dels med reference til den danske lønsomheds- og kapacitetsmodel....

  12. Guanylate kinase domains of the MAGUK family scaffold proteins as specific phospho-protein-binding modules.

    Science.gov (United States)

    Zhu, Jinwei; Shang, Yuan; Xia, Caihao; Wang, Wenning; Wen, Wenyu; Zhang, Mingjie

    2011-11-25

    Membrane-associated guanylate kinases (MAGUKs) are a large family of scaffold proteins that play essential roles in tissue developments, cell-cell communications, cell polarity control, and cellular signal transductions. Despite extensive studies over the past two decades, the functions of the signature guanylate kinase domain (GK) of MAGUKs are poorly understood. Here we show that the GK domain of DLG1/SAP97 binds to asymmetric cell division regulatory protein LGN in a phosphorylation-dependent manner. The structure of the DLG1 SH3-GK tandem in complex with a phospho-LGN peptide reveals that the GMP-binding site of GK has evolved into a specific pSer/pThr-binding pocket. Residues both N- and C-terminal to the pSer are also critical for the specific binding of the phospho-LGN peptide to GK. We further demonstrate that the previously reported GK domain-mediated interactions of DLGs with other targets, such as GKAP/DLGAP1/SAPAP1 and SPAR, are also phosphorylation dependent. Finally, we provide evidence that other MAGUK GKs also function as phospho-peptide-binding modules. The discovery of the phosphorylation-dependent MAGUK GK/target interactions indicates that MAGUK scaffold-mediated signalling complex organizations are dynamically regulated.

  13. Decreased SAP Expression in T Cells from Patients with Systemic Lupus Erythematosus Contributes to Early Signaling Abnormalities and Reduced IL-2 Production.

    Science.gov (United States)

    Karampetsou, Maria P; Comte, Denis; Kis-Toth, Katalin; Terhorst, Cox; Kyttaris, Vasileios C; Tsokos, George C

    2016-06-15

    T cells from patients with systemic lupus erythematosus (SLE) display a number of abnormalities, including increased early signaling events following engagement of the TCR. Signaling lymphocytic activation molecule family cell surface receptors and the X-chromosome-defined signaling lymphocytic activation molecule-associated protein (SAP) adaptor are important in the development of several immunocyte lineages and modulating the immune response. We present evidence that SAP protein levels are decreased in T cells and in their main subsets isolated from 32 women and three men with SLE, independent of disease activity. In SLE T cells, SAP protein is also subject to increased degradation by caspase-3. Forced expression of SAP in SLE T cells normalized IL-2 production, calcium (Ca(2+)) responses, and tyrosine phosphorylation of a number of proteins. Exposure of normal T cells to SLE serum IgG, known to contain anti-CD3/TCR Abs, resulted in SAP downregulation. We conclude that SLE T cells display reduced levels of the adaptor protein SAP, probably as a result of continuous T cell activation and degradation by caspase-3. Restoration of SAP levels in SLE T cells corrects the overexcitable lupus T cell phenotype. Copyright © 2016 by The American Association of Immunologists, Inc.

  14. Positive modulator of bone morphogenic protein-2

    Science.gov (United States)

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY; Takahashi, Kazuyuki [Germantown, MD

    2009-01-27

    Compounds of the present invention of formula I and formula II are disclosed in the specification and wherein the compounds are modulators of Bone Morphogenic Protein activity. Compounds are synthetic peptides having a non-growth factor heparin binding region, a linker, and sequences that bind specifically to a receptor for Bone Morphogenic Protein. Uses of compounds of the present invention in the treatment of bone lesions, degenerative joint disease and to enhance bone formation are disclosed.

  15. Positive modulator of bone morphogenic protein-2

    Energy Technology Data Exchange (ETDEWEB)

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua; Kazuyuki, Takahashi

    2017-06-06

    Compounds of the present invention of formula I and formula II are disclosed in the specification and wherein the compounds are modulators of Bone Morphogenic Protein activity. Compounds are synthetic peptides having a non-growth factor heparin binding region, a linker, and sequences that bind specifically to a receptor for Bone Morphogenic Protein. Uses of compounds of the present invention in the treatment of bone lesions, degenerative joint disease and to enhance bone formation are disclosed.

  16. Inferring modules from human protein interactome classes

    Directory of Open Access Journals (Sweden)

    Chaurasia Gautam

    2010-07-01

    Full Text Available Abstract Background The integration of protein-protein interaction networks derived from high-throughput screening approaches and complementary sources is a key topic in systems biology. Although integration of protein interaction data is conventionally performed, the effects of this procedure on the result of network analyses has not been examined yet. In particular, in order to optimize the fusion of heterogeneous interaction datasets, it is crucial to consider not only their degree of coverage and accuracy, but also their mutual dependencies and additional salient features. Results We examined this issue based on the analysis of modules detected by network clustering methods applied to both integrated and individual (disaggregated data sources, which we call interactome classes. Due to class diversity, we deal with variable dependencies of data features arising from structural specificities and biases, but also from possible overlaps. Since highly connected regions of the human interactome may point to potential protein complexes, we have focused on the concept of modularity, and elucidated the detection power of module extraction algorithms by independent validations based on GO, MIPS and KEGG. From the combination of protein interactions with gene expressions, a confidence scoring scheme has been proposed before proceeding via GO with further classification in permanent and transient modules. Conclusions Disaggregated interactomes are shown to be informative for inferring modularity, thus contributing to perform an effective integrative analysis. Validation of the extracted modules by multiple annotation allows for the assessment of confidence measures assigned to the modules in a protein pathway context. Notably, the proposed multilayer confidence scheme can be used for network calibration by enabling a transition from unweighted to weighted interactomes based on biological evidence.

  17. Sap fluxes from different parts of the rootzone modulate xylem ABA concentration during partial rootzone drying and re-wetting.

    Science.gov (United States)

    Pérez-Pérez, J G; Dodd, I C

    2015-04-01

    Previous studies with partial rootzone drying (PRD) irrigation demonstrated that alternating the wet and dry parts of the rootzone (PRD-Alternated) increased leaf xylem ABA concentration ([X-ABA]leaf) compared with maintaining the same wet and dry parts of the rootzone (PRD-Fixed). To determine the relative contributions of different parts of the rootzone to this ABA signal, [X-ABA]leaf of potted, split-root tomato (Solanum lycopersicum) plants was modelled by quantifying the proportional water uptake from different soil compartments, and [X-ABA]leaf responses to the entire pot soil-water content (θpot). Continuously measuring soil-moisture depletion by, or sap fluxes from, different parts of the root system revealed that water uptake rapidly declined (within hours) after withholding water from part of the rootzone, but was rapidly restored (within minutes) upon re-watering. Two hours after re-watering part of the rootzone, [X-ABA]leaf was equally well predicted according to θpot alone and by accounting for the proportional water uptake from different parts of the rootzone. Six hours after re-watering part of the rootzone, water uptake by roots in drying soil was minimal and, instead, occurred mainly from the newly irrigated part of the rootzone, thus [X-ABA]leaf was best predicted by accounting for the proportional water uptake from different parts of the rootzone. Contrary to previous results, alternating the wet and dry parts of the rootzone did not enhance [X-ABA]leaf compared with PRD-Fixed irrigation. Further work is required to establish whether altered root-to-shoot ABA signalling contributes to the improved yields of crops grown with alternate, rather than fixed, PRD. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Modulation of protein synthesis by polyamines.

    Science.gov (United States)

    Igarashi, Kazuei; Kashiwagi, Keiko

    2015-03-01

    Polyamines are ubiquitous small basic molecules that play important roles in cell growth and viability. Since polyamines mainly exist as a polyamine-RNA complex, we looked for proteins whose synthesis is preferentially stimulated by polyamines at the level of translation, and thus far identified 17 proteins in Escherichia coli and 6 proteins in eukaryotes. The mechanisms of polyamine stimulation of synthesis of these proteins were investigated. In addition, the role of eIF5A, containing hypusine formed from spermidine, on protein synthesis is described. These results clearly indicate that polyamines and eIF5A contribute to cell growth and viability through modulation of protein synthesis. © 2015 International Union of Biochemistry and Molecular Biology.

  19. Overexpression of a Medicago truncatula stress-associated protein gene (MtSAP1) leads to nitric oxide accumulation and confers osmotic and salt stress tolerance in transgenic tobacco.

    Science.gov (United States)

    Charrier, Aurélie; Planchet, Elisabeth; Cerveau, Delphine; Gimeno-Gilles, Christine; Verdu, Isabelle; Limami, Anis M; Lelièvre, Eric

    2012-08-01

    The impact of Medicago truncatula stress-associated protein gene (MtSAP1) overexpression has been investigated in Nicotiana tabacum transgenic seedlings. Under optimal conditions, transgenic lines overexpressing MtSAP1 revealed better plant development and higher chlorophyll content as compared to wild type seedlings. Interestingly, transgenic lines showed a stronger accumulation of nitric oxide (NO), a signaling molecule involved in growth and development processes. This NO production seemed to be partially nitrate reductase dependent. Due to the fact that NO has been also reported to play a role in tolerance acquisition of plants to abiotic stresses, the responses of MtSAP1 overexpressors to osmotic and salt stress have been studied. Compared to the wild type, transgenic lines were less affected in their growth and development. Moreover, NO content in MtSAP1 overexpressors was always higher than that detected in wild seedlings under stress conditions. It seems that this better tolerance induced by MtSAP1 overexpression could be associated with this higher NO production that would enable seedlings to reach a high protection level to prepare them to cope with abiotic stresses.

  20. SAPS, Crime statistics

    African Journals Online (AJOL)

    incidents' refer to 'incidents such as labour disputes and dissatisfaction with service delivery in which violence erupted and SAPS action was required to restore peace and order'.26. It is apparent from both the SAPS statistics and those provided by the Municipal IQ Hotspots. Monitor, that public protests and gatherings are.

  1. SAP HANA cookbook

    CERN Document Server

    Chandrasekhar

    2013-01-01

    An easy-to-understand guide, covering topics using practical scenarios and live examples, and answering all possible questions.If you are a solution architect, developer, modeler, sales leader, business transformation managers, directors, COO, or CIO; this book is perfect for you.If you are interested in other technologies and want to jump-start into SAP, this book gives you the chance to learn SAP HANA. Basic knowledge of RDBMS concepts enough is to get you started.

  2. Implementation of SAP Waste Management System

    International Nuclear Information System (INIS)

    Frost, M.L.; LaBorde, C.M.; Nichols, C.D.

    2008-01-01

    The Y-12 National Security Complex (Y-12) assumed responsibility for newly generated waste on October 1, 2005. To ensure effective management and accountability of newly generated waste, Y-12 has opted to utilize SAP, Y-12's Enterprise Resource Planning (ERP) tool, to track low-level radioactive waste (LLW), mixed waste (MW), hazardous waste, and non-regulated waste from generation through acceptance and disposal. SAP Waste will include the functionality of the current waste tracking system and integrate with the applicable modules of SAP already in use. The functionality of two legacy systems, the Generator Entry System (GES) and the Waste Information Tracking System (WITS), and peripheral spreadsheets, databases, and e-mail/fax communications will be replaced by SAP Waste. Fundamentally, SAP Waste will promote waste acceptance for certification and disposal, not storage. SAP Waste will provide a one-time data entry location where waste generators can enter waste container information, track the status of their waste, and maintain documentation. A benefit of the new system is that it will provide a single data repository where Y-12's Waste Management organization can establish waste profiles, verify and validate data, maintain inventory control utilizing hand-held data transfer devices, schedule and ship waste, manage project accounting, and report on waste handling activities. This single data repository will facilitate the production of detailed waste generation reports for use in forecasting and budgeting, provide the data for required regulatory reports, and generate metrics to evaluate the performance of the Waste Management organization and its subcontractors. SAP Waste will replace the outdated and expensive legacy system, establish tools the site needs to manage newly generated waste, and optimize the use of the site's ERP tool for integration with related business processes while promoting disposition of waste. (authors)

  3. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis

    OpenAIRE

    Sugio, Akiko; Kingdom, Heather N.; MacLean, Allyson M.; Grieve, Victoria M.; Hogenhout, Saskia A.

    2011-01-01

    Phytoplasmas are insect-transmitted phytopathogenic bacteria that can alter plant morphology and the longevity and reproduction rates and behavior of their insect vectors. There are various examples of animal and plant parasites that alter the host phenotype to attract insect vectors, but it is unclear how these parasites accomplish this. We hypothesized that phytoplasmas produce effectors that modulate specific targets in their hosts leading to the changes in plant development and insect per...

  4. Software development on the SAP HANA platform

    CERN Document Server

    Walker, Mark

    2013-01-01

    Software Development on the SAP HANA Platform is a general tutorial guide to SAP HANA.This book is written for beginners to the SAP HANA platform. No knowledge of SAP HANA is necessary to start using this book.

  5. SAP Nuclear Competence Centre

    International Nuclear Information System (INIS)

    Andrlova, Z.

    2009-01-01

    In this issue we continue and introduce the SAP Nuclear Competence Centre and its head Mr. Igor Dzama. SAP Nuclear Competence Centrum is one of the fi rst competence centres outside ENEL headquarters. It should operate in Slovakia and should have competencies within the whole Enel group. We are currently dealing with the issues of organisation and funding. We are trying to balance the accountability to the NPP directors and to the management of the competence centres at Enel headquarters; we are looking at the relations between the competence centres within the group and defining the services that we will provide for the NPPs. author)

  6. 7 CFR 1437.107 - Maple sap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Maple sap. 1437.107 Section 1437.107 Agriculture... Yield Coverage Using Actual Production History § 1437.107 Maple sap. (a) NAP assistance for maple sap is limited to maple sap produced on private property for sale as sap or syrup. Eligible maple sap must be...

  7. Restimulation-induced T-cell death through NTB-A/SAP signaling pathway is impaired in tuberculosis patients with depressed immune responses.

    Science.gov (United States)

    Hernández Del Pino, Rodrigo E; Pellegrini, Joaquín M; Rovetta, Ana I; Peña, Delfina; Álvarez, Guadalupe I; Rolandelli, Agustín; Musella, Rosa M; Palmero, Domingo J; Malbran, Alejandro; Pasquinelli, Virginia; García, Verónica E

    2017-09-01

    Production of IFN-γ contributes to host defense against Mycobacterium tuberculosis (Mtb) infection. We previously demonstrated that Signaling lymphocytic activation molecule-associated protein (SAP) expression on cells from tuberculosis (TB) patients was inversely correlated with IFN-γ production. Here we first investigated the role of NK, T- and B-cell antigen (NTB-A)/SAP pathway in the regulation of Th1 response against Mtb. Upon antigen stimulation, NTB-A phosphorylation rapidly increases and afterwards modulates IFN-γ and IL-17 secretion. To sustain a healthy immune system, controlled expansion and contraction of lymphocytes, both during and after an adaptive immune response, is essential. Besides, restimulation-induced cell death (RICD) results in an essential homeostatic mechanism for precluding excess T-cell accumulation and associated immunopathology during the course of certain infections. Accordingly, we found that the NTB-A/SAP pathway was required for RICD during active tuberculosis. In low responder (LR) TB patients, impaired RICD was associated with diminished FASL levels, IL-2 production and CD25 high expression after cell-restimulation. Interestingly, we next observed that SAP mediated the recruitment of the Src-related kinase FYNT, only in T cells from LR TB patients that were resistant to RICD. Together, we showed that the NTB-A/SAP pathway regulates T-cell activation and RICD during human TB. Moreover, the NTB-A/SAP/FYNT axis promotes polarization to an unfavorable Th2-phenotype.

  8. From Sap to Syrup

    Science.gov (United States)

    Bjork, Janna

    2005-01-01

    Warm days, cold nights, melting snow-signs winter is waning and spring is nearing. Though winter may just be getting started in some areas, it's always fun to appreciate the good things about winter, including the special time at the end of winter in New England known as "sugaring time." The sap starts flowing in the sugar maples, and…

  9. The installations maintenance control using SAP R/3; O controle de manutencao de instalacoes utilizando o SAP R/3

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Robison Tirre; Pereira, Paulo Manoel Borges; Jorge, Kemal Vieira [Transportadora Brasileira Gasoduto Bolivia Brasil S.A., Rio de Janeiro, RJ (Brazil)

    2004-07-01

    TBG (Transportadora Brasileira Gasoduto Bolivia Brasil S.A.) began their operations in 1999 and since the beginning the SAP R/3 PM module (Plant Maintenance) is used for the control of the maintenance activities and to manager the Master Maintenance and Inspection Plans. On these five years, a series of reports and SAP functionalities were developed or configured to adapt the system R/3 to the needs of TBG maintenance. Now, the whole management and control of the surface facilities maintenance (compression station, city gate, measurement station, etc) is accomplished by SAP R/3 system. (author)

  10. REA analysis of SAP HCM; some initial findings

    OpenAIRE

    Fallon, Richard; Polovina, Simon

    2013-01-01

    This paper explores further the claim that the Transaction-Oriented Architecture (TOA) based on the principles of Resources, Events, Agents (REA) can enhance Enterprise Resource Planning (ERP) systems by providing a principled theoretical basis that can underpin ERP business process implementations. We provide details of some of our initial findings of the REA/TOA analysis which we carried out on the SAP Human Capital Management (HCM) module. Given that SAP is recognized as the dominant ERP s...

  11. Dissection of SAP-dependent and SAP-independent SLAM family signaling in NKT cell development and humoral immunity

    Science.gov (United States)

    Cai, Chenxu; Liu, Guangao; Wang, Yuande; Du, Juan; Lin, Xin; Yang, Meixiang

    2017-01-01

    Signaling lymphocytic activation molecule (SLAM)–associated protein (SAP) mutations in X-linked lymphoproliferative disease (XLP) lead to defective NKT cell development and impaired humoral immunity. Because of the redundancy of SLAM family receptors (SFRs) and the complexity of SAP actions, how SFRs and SAP mediate these processes remains elusive. Here, we examined NKT cell development and humoral immunity in mice completely deficient in SFR. We found that SFR deficiency severely impaired NKT cell development. In contrast to SAP deficiency, SFR deficiency caused no apparent defect in follicular helper T (TFH) cell differentiation. Intriguingly, the deletion of SFRs completely rescued the severe defect in TFH cell generation caused by SAP deficiency, whereas SFR deletion had a minimal effect on the defective NKT cell development in SAP-deficient mice. These findings suggest that SAP-dependent activating SFR signaling is essential for NKT cell selection; however, SFR signaling is inhibitory in SAP-deficient TFH cells. Thus, our current study revises our understanding of the mechanisms underlying T cell defects in patients with XLP. PMID:28049627

  12. Dissection of SAP-dependent and SAP-independent SLAM family signaling in NKT cell development and humoral immunity.

    Science.gov (United States)

    Chen, Shasha; Cai, Chenxu; Li, Zehua; Liu, Guangao; Wang, Yuande; Blonska, Marzenna; Li, Dan; Du, Juan; Lin, Xin; Yang, Meixiang; Dong, Zhongjun

    2017-02-01

    Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) mutations in X-linked lymphoproliferative disease (XLP) lead to defective NKT cell development and impaired humoral immunity. Because of the redundancy of SLAM family receptors (SFRs) and the complexity of SAP actions, how SFRs and SAP mediate these processes remains elusive. Here, we examined NKT cell development and humoral immunity in mice completely deficient in SFR. We found that SFR deficiency severely impaired NKT cell development. In contrast to SAP deficiency, SFR deficiency caused no apparent defect in follicular helper T (T FH ) cell differentiation. Intriguingly, the deletion of SFRs completely rescued the severe defect in T FH cell generation caused by SAP deficiency, whereas SFR deletion had a minimal effect on the defective NKT cell development in SAP-deficient mice. These findings suggest that SAP-dependent activating SFR signaling is essential for NKT cell selection; however, SFR signaling is inhibitory in SAP-deficient T FH cells. Thus, our current study revises our understanding of the mechanisms underlying T cell defects in patients with XLP. © 2017 Chen et al.

  13. Serum Amyloid P Component (SAP) Interactome in Human Plasma Containing Physiological Calcium Levels.

    Science.gov (United States)

    Poulsen, Ebbe Toftgaard; Pedersen, Kata Wolff; Marzeda, Anna Maria; Enghild, Jan J

    2017-02-14

    The pentraxin serum amyloid P component (SAP) is secreted by the liver and found in plasma at a concentration of approximately 30 mg/L. SAP is a 25 kDa homopentamer known to bind both protein and nonprotein ligands, all in a calcium-dependent manner. The function of SAP is unclear but likely involves the humoral innate immune system spanning the complement system, inflammation, and coagulation. Also, SAP is known to bind to the generic structure of amyloid deposits and possibly to protect them against proteolysis. In this study, we have characterized the SAP interactome in human plasma containing the physiological Ca 2+ concentration using SAP affinity pull-down and co-immunoprecipitation experiments followed by mass spectrometry analyses. The analyses resulted in the identification of 33 proteins, of which 24 were direct or indirect interaction partners not previously reported. The SAP interactome can be divided into categories that include apolipoproteins, the complement system, coagulation, and proteolytic regulation.

  14. Modulating fracture properties of mixed protein systems

    NARCIS (Netherlands)

    Ersch, C.E.; Laak, I. ter; Linden, E. van der; Venema, P.; Martin, A.H.

    2015-01-01

    To design foods with desired textures it is important to understand structure build-up and breakdown. One can obtain a wide range of structures using mixtures of different structuring ingredients such as for example protein mixtures. Mixed soy protein isolate (SPI)/gelatine gels were analyzed for

  15. Membrane shape modulates transmembrane protein distribution.

    Science.gov (United States)

    Aimon, Sophie; Callan-Jones, Andrew; Berthaud, Alice; Pinot, Mathieu; Toombes, Gilman E S; Bassereau, Patricia

    2014-01-27

    Although membrane shape varies greatly throughout the cell, the contribution of membrane curvature to transmembrane protein targeting is unknown because of the numerous sorting mechanisms that take place concurrently in cells. To isolate the effect of membrane shape, we used cell-sized giant unilamellar vesicles (GUVs) containing either the potassium channel KvAP or the water channel AQP0 to form membrane nanotubes with controlled radii. Whereas the AQP0 concentrations in flat and curved membranes were indistinguishable, KvAP was enriched in the tubes, with greater enrichment in more highly curved membranes. Fluorescence recovery after photobleaching measurements showed that both proteins could freely diffuse through the neck between the tube and GUV, and the effect of each protein on membrane shape and stiffness was characterized using a thermodynamic sorting model. This study establishes the importance of membrane shape for targeting transmembrane proteins and provides a method for determining the effective shape and flexibility of membrane proteins. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Plasma protein haptoglobin modulates renal iron loading

    DEFF Research Database (Denmark)

    Fagoonee, Sharmila; Gburek, Jakub; Hirsch, Emilio

    2005-01-01

    Haptoglobin is the plasma protein with the highest binding affinity for hemoglobin. The strength of hemoglobin binding and the existence of a specific receptor for the haptoglobin-hemoglobin complex in the monocyte/macrophage system clearly suggest that haptoglobin may have a crucial role in heme...... distribution of hemoglobin in haptoglobin-deficient mice resulted in abnormal iron deposits in proximal tubules during aging. Moreover, iron also accumulated in proximal tubules after renal ischemia-reperfusion injury or after an acute plasma heme-protein overload caused by muscle injury, without affecting...... morphological and functional parameters of renal damage. These data demonstrate that haptoglobin crucially prevents glomerular filtration of hemoglobin and, consequently, renal iron loading during aging and following acute plasma heme-protein overload....

  17. Measuring Complexity of SAP Systems

    Directory of Open Access Journals (Sweden)

    Ilja Holub

    2016-10-01

    Full Text Available The paper discusses the reasons of complexity rise in ERP system SAP R/3. It proposes a method for measuring complexity of SAP. Based on this method, the computer program in ABAP for measuring complexity of particular SAP implementation is proposed as a tool for keeping ERP complexity under control. The main principle of the measurement method is counting the number of items or relations in the system. The proposed computer program is based on counting of records in organization tables in SAP.

  18. Deciphering peculiar protein-protein interacting modules in Deinococcus radiodurans

    Directory of Open Access Journals (Sweden)

    Barkallah Insaf

    2009-04-01

    Full Text Available Abstract Interactomes of proteins under positive selection from ionizing-radiation-resistant bacteria (IRRB might be a part of the answer to the question as to how IRRB, particularly Deinococcus radiodurans R1 (Deira, resist ionizing radiation. Here, using the Database of Interacting Proteins (DIP and the Protein Structural Interactome (PSI-base server for PSI map, we have predicted novel interactions of orthologs of the 58 proteins under positive selection in Deira and other IRRB, but which are absent in IRSB. Among these, 18 domains and their interactomes have been identified in DNA checkpoint and repair; kinases pathways; energy and nucleotide metabolisms were the important biological processes that were found to be involved. This finding provides new clues to the cellular pathways that can to be important for ionizing-radiation resistance in Deira.

  19. Xanthophylls as modulators of membrane protein function.

    Science.gov (United States)

    Ruban, Alexander V; Johnson, Matthew P

    2010-12-01

    This review discusses the structural aspect of the role of photosynthetic antenna xanthophylls. It argues that xanthophyll hydrophobicity/polarity could explain the reason for xanthophyll variety and help to understand their recently emerging function--control of membrane organization and the work of membrane proteins. The structure of a xanthophyll molecule is discussed in relation to other amphiphilic compounds like lipids, detergents, etc. Xanthophyll composition of membrane proteins, the role of their variety in protein function are discussed using as an example for the major light harvesting antenna complex of photosystem II, LHCII, from higher plants. A new empirical parameter, hydrophobicity parameter (H-parameter), has been introduced as an effective measure of the hydrophobicity of the xanthophyll complement of LHCII from different xanthophyll biosynthesis mutants of Arabidopsis. Photosystem II quantum efficiency was found to correlate well with the H-parameter of LHCII xanthophylls. PSII down-regulation by non-photochemical chlorophyll fluorescence quenching, NPQ, had optimum corresponding to the wild-type xanthophyll composition, where lutein occupies intrinsic sites, L1 and L2. Xanthophyll polarity/hydrophobicity alteration by the activity of the xanthophyll cycle explains the allosteric character of NPQ regulation, memory of illumination history and the hysteretic nature of the relationship between the triggering factor, ΔpH, and the energy dissipation process. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. SAP SE: Autism at Work

    DEFF Research Database (Denmark)

    Pisano, Gary P.; Austin, Robert D.

    2016-01-01

    This case describes SAP's 'Autism at Work' program, which integrates people with autism into the company's workforce. The company has a stated objective of making 1% o its workforce people with autism by 2020. SAP's rationale for the program is based on the belief that 'neurodiversity' contributes...

  1. Growing functional modules from a seed protein via integration of protein interaction and gene expression data

    Directory of Open Access Journals (Sweden)

    Dimitrakopoulou Konstantina

    2007-10-01

    Full Text Available Abstract Background Nowadays modern biology aims at unravelling the strands of complex biological structures such as the protein-protein interaction (PPI networks. A key concept in the organization of PPI networks is the existence of dense subnetworks (functional modules in them. In recent approaches clustering algorithms were applied at these networks and the resulting subnetworks were evaluated by estimating the coverage of well-established protein complexes they contained. However, most of these algorithms elaborate on an unweighted graph structure which in turn fails to elevate those interactions that would contribute to the construction of biologically more valid and coherent functional modules. Results In the current study, we present a method that corroborates the integration of protein interaction and microarray data via the discovery of biologically valid functional modules. Initially the gene expression information is overlaid as weights onto the PPI network and the enriched PPI graph allows us to exploit its topological aspects, while simultaneously highlights enhanced functional association in specific pairs of proteins. Then we present an algorithm that unveils the functional modules of the weighted graph by expanding a kernel protein set, which originates from a given 'seed' protein used as starting-point. Conclusion The integrated data and the concept of our approach provide reliable functional modules. We give proofs based on yeast data that our method manages to give accurate results in terms both of structural coherency, as well as functional consistency.

  2. NSP-CAS Protein Complexes: Emerging Signaling Modules in Cancer.

    Science.gov (United States)

    Wallez, Yann; Mace, Peter D; Pasquale, Elena B; Riedl, Stefan J

    2012-05-01

    The CAS (CRK-associated substrate) family of adaptor proteins comprises 4 members, which share a conserved modular domain structure that enables multiple protein-protein interactions, leading to the assembly of intracellular signaling platforms. Besides their physiological role in signal transduction downstream of a variety of cell surface receptors, CAS proteins are also critical for oncogenic transformation and cancer cell malignancy through associations with a variety of regulatory proteins and downstream effectors. Among the regulatory partners, the 3 recently identified adaptor proteins constituting the NSP (novel SH2-containing protein) family avidly bind to the conserved carboxy-terminal focal adhesion-targeting (FAT) domain of CAS proteins. NSP proteins use an anomalous nucleotide exchange factor domain that lacks catalytic activity to form NSP-CAS signaling modules. Additionally, the NSP SH2 domain can link NSP-CAS signaling assemblies to tyrosine-phosphorylated cell surface receptors. NSP proteins can potentiate CAS function by affecting key CAS attributes such as expression levels, phosphorylation state, and subcellular localization, leading to effects on cell adhesion, migration, and invasion as well as cell growth. The consequences of these activities are well exemplified by the role that members of both families play in promoting breast cancer cell invasiveness and resistance to antiestrogens. In this review, we discuss the intriguing interplay between the NSP and CAS families, with a particular focus on cancer signaling networks.

  3. Comparative analysis of the ternary complex factors Elk-1, SAP-1a and SAP-2 (ERP/NET).

    Science.gov (United States)

    Price, M A; Rogers, A E; Treisman, R

    1995-06-01

    A transcription factor ternary complex composed of Serum Response Factor (SRF) and Ternary Complex Factor (TCF) mediates the response of the c-fos Serum Response Element (SRE) to growth factors and mitogens. Three Ets domain proteins, Elk-1, SAP-1 and ERP/NET, have been reported to have the properties of TCF. Here we compare Elk-1 and SAP-1a with the human ERP/NET homologue SAP-2. All three TCF RNAs are ubiquitously expressed at similar relative levels. All three proteins contain conserved regions that interact with SRF and the c-fos SRE with comparable efficiency, but in vitro complex formation by SAP-2 is strongly inhibited by its C-terminal sequences. Similarly, only Elk-1 and SAP-1a efficiently bind the c-fos SRE in vivo; ternary complex formation by SAP-2 is weak and is substantially unaffected by serum stimulation or v-ras co-expression. All three TCFs contain C-terminal transcriptional activation domains that are phosphorylated following growth factor stimulation. Activation requires conserved S/T-P motifs found in all the TCF family members. Each TCF activation domain can be phosphorylated in vitro by partially purified ERK2, and ERK activation in vivo is sufficient to potentiate transcriptional activation.

  4. Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants.

    Science.gov (United States)

    MacLean, Allyson M; Sugio, Akiko; Makarova, Olga V; Findlay, Kim C; Grieve, Victoria M; Tóth, Réka; Nicolaisen, Mogens; Hogenhout, Saskia A

    2011-10-01

    Phytoplasmas are insect-transmitted bacterial plant pathogens that cause considerable damage to a diverse range of agricultural crops globally. Symptoms induced in infected plants suggest that these phytopathogens may modulate developmental processes within the plant host. We report herein that Aster Yellows phytoplasma strain Witches' Broom (AY-WB) readily infects the model plant Arabidopsis (Arabidopsis thaliana) ecotype Columbia, inducing symptoms that are characteristic of phytoplasma infection, such as the production of green leaf-like flowers (virescence and phyllody) and increased formation of stems and branches (witches' broom). We found that the majority of genes encoding secreted AY-WB proteins (SAPs), which are candidate effector proteins, are expressed in Arabidopsis and the AY-WB insect vector Macrosteles quadrilineatus (Hemiptera; Cicadellidae). To identify which of these effector proteins induce symptoms of phyllody and virescence, we individually expressed the effector genes in Arabidopsis. From this screen, we have identified a novel AY-WB effector protein, SAP54, that alters floral development, resulting in the production of leaf-like flowers that are similar to those produced by plants infected with this phytoplasma. This study offers novel insight into the effector profile of an insect-transmitted plant pathogen and reports to our knowledge the first example of a microbial pathogen effector protein that targets flower development in a host.

  5. Microscopic insight into thermodynamics of conformational changes of SAP-SLAM complex in signal transduction cascade

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-04-01

    The signalling lymphocytic activation molecule (SLAM) family of receptors, expressed by an array of immune cells, associate with SLAM-associated protein (SAP)-related molecules, composed of single SH2 domain architecture. SAP activates Src-family kinase Fyn after SLAM ligation, resulting in a SLAM-SAP-Fyn complex, where, SAP binds the Fyn SH3 domain that does not involve canonical SH3 or SH2 interactions. This demands insight into this SAP mediated signalling cascade. Thermodynamics of the conformational changes are extracted from the histograms of dihedral angles obtained from the all-atom molecular dynamics simulations of this structurally well characterized SAP-SLAM complex. The results incorporate the binding induced thermodynamic changes of individual amino acid as well as the secondary structural elements of the protein and the solvent. Stabilization of the peptide partially comes through a strong hydrogen bonding network with the protein, while hydrophobic interactions also play a significant role where the peptide inserts itself into a hydrophobic cavity of the protein. SLAM binding widens SAP's second binding site for Fyn, which is the next step in the signal transduction cascade. The higher stabilization and less fluctuation of specific residues of SAP in the Fyn binding site, induced by SAP-SLAM complexation, emerge as the key structural elements to trigger the recognition of SAP by the SH3 domain of Fyn. The thermodynamic quantification of the protein due to complexation not only throws deeper understanding in the established mode of SAP-SLAM interaction but also assists in the recognition of the relevant residues of the protein responsible for alterations in its activity.

  6. Distribution in rat tissues of modulator-binding protein of particulate nature

    International Nuclear Information System (INIS)

    Sobue, K.; Muramoto, Y.; Kakiuchi, S.; Yamazaki, R.

    1979-01-01

    Studies on Ca 2+ -activatable cyclic nucleotide phosphodiesterase led to the discovery of a protein modulator that is required for the activation of this enzyme by Ca 2+ . Later, this protein has been shown to cause the Ca 2+ -dependent activation of several enzymes that include phosphodiesterase, adenylate cyclase, a protein kinase from muscles, phosphorylase b kinase, actomyosin ATPase, membranous ATPase from erythrocytes and nerve synapses. Thus, modulator protein appears to be an intracellular mediator of actions of Ca 2+ . The present work shows the distribution of this particulate modulator-binding component in rat tissues. This paper also describes the labeling of modulator protein with tritium without deteriorating its biological activities and application of this 3 H-modulator protein to the determination of the Ca ++ dependent binding of modulator protein with membranous protein. This technique proves to be useful in studying enzymes or proteins whose functions are regulated by Ca ++ /modulator protein system. (Auth.)

  7. Modulation of protein properties in living cells using nanobodies.

    Science.gov (United States)

    Kirchhofer, Axel; Helma, Jonas; Schmidthals, Katrin; Frauer, Carina; Cui, Sheng; Karcher, Annette; Pellis, Mireille; Muyldermans, Serge; Casas-Delucchi, Corella S; Cardoso, M Cristina; Leonhardt, Heinrich; Hopfner, Karl-Peter; Rothbauer, Ulrich

    2010-01-01

    Protein conformation is critically linked to function and often controlled by interactions with regulatory factors. Here we report the selection of camelid-derived single-domain antibodies (nanobodies) that modulate the conformation and spectral properties of the green fluorescent protein (GFP). One nanobody could reversibly reduce GFP fluorescence by a factor of 5, whereas its displacement by a second nanobody caused an increase by a factor of 10. Structural analysis of GFP-nanobody complexes revealed that the two nanobodies induce subtle opposing changes in the chromophore environment, leading to altered absorption properties. Unlike conventional antibodies, the small, stable nanobodies are functional in living cells. Nanobody-induced changes were detected by ratio imaging and used to monitor protein expression and subcellular localization as well as translocation events such as the tamoxifen-induced nuclear localization of estrogen receptor. This work demonstrates that protein conformations can be manipulated and studied with nanobodies in living cells.

  8. Revaluasi Inventory dengan Menu Standard pada SAP-B1 Sesuaikah dengan IFRS

    Directory of Open Access Journals (Sweden)

    Eka Novianti

    2011-05-01

    Full Text Available Some available standard modules in SAP-B1 can be adapted for changes in accounting rules and regulations. One is the Inventory Revaluation menu of Inventory module. Users can use the menu to make Inventory value adjustments of value in SAP-B1, to be consistent with the values that must be presented in the financial statements. Based on the flexibility provided by SAP-B1menu, should not be too difficult for users of SAP-B1 to manage accounting transactions based on accounting rules that apply today, IFRS. IFRS requirements on inventory adjustment transactions with a value of SAP-B1 could be done more easily.

  9. Modulating nanoparticle superlattice structure using proteins with tunable bond distributions

    International Nuclear Information System (INIS)

    McMillan, Janet R.; Brodin, Jeffrey D.; Millan, Jaime A.; Lee, Byeongdu; Olvera de la Cruz, Monica; Mirkin, Chad A.

    2017-01-01

    Here, we investigate the use of proteins with tunable DNA modification distributions to modulate nanoparticle superlattice structure. Using Beta-galactosidase (βgal) as a model system, we have employed the orthogonal chemical reactivities of surface amines and thiols to synthesize protein-DNA conjugates with 36 evenly distributed or 8 specifically positioned oligonucleotides. When assembled into crystalline superlattices with AuNPs, we find that the distribution of DNA modifications modulates the favored structure: βgal with uniformly distributed DNA bonding elements results in body-centered cubic crystals, whereas DNA functionalization of cysteines results in AB 2 packing. We probe the role of protein oligonucleotide number and conjugate size on this observation, which revealed the importance of oligonucleotide distribution and number in this observed assembly behavior. These results indicate that proteins with defined DNA-modification patterns are powerful tools to control the nanoparticle superlattices architecture, and establish the importance of oligonucleotide distribution in the assembly behavior of protein-DNA conjugates.

  10. Molecular tweezers modulate 14-3-3 protein-protein interactions

    Science.gov (United States)

    Bier, David; Rose, Rolf; Bravo-Rodriguez, Kenny; Bartel, Maria; Ramirez-Anguita, Juan Manuel; Dutt, Som; Wilch, Constanze; Klärner, Frank-Gerrit; Sanchez-Garcia, Elsa; Schrader, Thomas; Ottmann, Christian

    2013-03-01

    Supramolecular chemistry has recently emerged as a promising way to modulate protein functions, but devising molecules that will interact with a protein in the desired manner is difficult as many competing interactions exist in a biological environment (with solvents, salts or different sites for the target biomolecule). We now show that lysine-specific molecular tweezers bind to a 14-3-3 adapter protein and modulate its interaction with partner proteins. The tweezers inhibit binding between the 14-3-3 protein and two partner proteins—a phosphorylated (C-Raf) protein and an unphosphorylated one (ExoS)—in a concentration-dependent manner. Protein crystallography shows that this effect arises from the binding of the tweezers to a single surface-exposed lysine (Lys214) of the 14-3-3 protein in the proximity of its central channel, which normally binds the partner proteins. A combination of structural analysis and computer simulations provides rules for the tweezers' binding preferences, thus allowing us to predict their influence on this type of protein-protein interactions.

  11. Functional modules by relating protein interaction networks and gene expression.

    Science.gov (United States)

    Tornow, Sabine; Mewes, H W

    2003-11-01

    Genes and proteins are organized on the basis of their particular mutual relations or according to their interactions in cellular and genetic networks. These include metabolic or signaling pathways and protein interaction, regulatory or co-expression networks. Integrating the information from the different types of networks may lead to the notion of a functional network and functional modules. To find these modules, we propose a new technique which is based on collective, multi-body correlations in a genetic network. We calculated the correlation strength of a group of genes (e.g. in the co-expression network) which were identified as members of a module in a different network (e.g. in the protein interaction network) and estimated the probability that this correlation strength was found by chance. Groups of genes with a significant correlation strength in different networks have a high probability that they perform the same function. Here, we propose evaluating the multi-body correlations by applying the superparamagnetic approach. We compare our method to the presently applied mean Pearson correlations and show that our method is more sensitive in revealing functional relationships.

  12. Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components.

    Science.gov (United States)

    Timasheff, Serge N

    2002-07-23

    Solvent additives (cosolvents, osmolytes) modulate biochemical reactions if, during the course of the reaction, there is a change in preferential interactions of solvent components with the reacting system. Preferential interactions can be expressed in terms of preferential binding of the cosolvent or its preferential exclusion (preferential hydration). The driving force is the perturbation by the protein of the chemical potential of the cosolvent. It is shown that the measured change of the amount of water in contact with protein during the course of the reaction modulated by an osmolyte is a change in preferential hydration that is strictly a measure of the cosolvent chemical potential perturbation by the protein in the ternary water-protein-cosolvent system. It is not equal to the change in water of hydration, because water of hydration is a reflection strictly of protein-water forces in a binary system. There is no direct relation between water of preferential hydration and water of hydration.

  13. Regulation of cortical contractility and spindle positioning by the protein phosphatase 6 PPH-6 in one-cell stage C. elegans embryos

    Science.gov (United States)

    Afshar, Katayoun; Werner, Michael E.; Tse, Yu Chung; Glotzer, Michael; Gönczy, Pierre

    2010-01-01

    Modulation of the microtubule and the actin cytoskeleton is crucial for proper cell division. Protein phosphorylation is known to be an important regulatory mechanism modulating these cytoskeletal networks. By contrast, there is a relative paucity of information regarding how protein phosphatases contribute to such modulation. Here, we characterize the requirements for protein phosphatase PPH-6 and its associated subunit SAPS-1 in one-cell stage C. elegans embryos. We establish that the complex of PPH-6 and SAPS-1 (PPH-6/SAPS-1) is required for contractility of the actomyosin network and proper spindle positioning. Our analysis demonstrates that PPH-6/SAPS-1 regulates the organization of cortical non-muscle myosin II (NMY-2). Accordingly, we uncover that PPH-6/SAPS-1 contributes to cytokinesis by stimulating actomyosin contractility. Furthermore, we demonstrate that PPH-6/SAPS-1 is required for the proper generation of pulling forces on spindle poles during anaphase. Our results indicate that this requirement is distinct from the role in organizing the cortical actomyosin network. Instead, we uncover that PPH-6/SAPS-1 contributes to the cortical localization of two positive regulators of pulling forces, GPR-1/2 and LIN-5. Our findings provide the first insights into the role of a member of the PP6 family of phosphatases in metazoan development. PMID:20040490

  14. American specialists and SAP project

    International Nuclear Information System (INIS)

    Andrlova, Z.

    2008-01-01

    Within the past days of November the project teams of SAP Nuclear in Slovenske elektrarne, a. s. incorporated the specialists from PSEG from New Jersey, U.S.A. The goal of their stay here was to pass on the professional experience and good practice from the implementation of quite demanding project in the nuclear power plants. We have learned more about the company and the objectives from an interview with Clay Warren, SAP Nuclear Project Manager in SE. (author)

  15. The adaptor molecule SAP plays essential roles during invariant NKT cell cytotoxicity and lytic synapse formation.

    Science.gov (United States)

    Das, Rupali; Bassiri, Hamid; Guan, Peng; Wiener, Susan; Banerjee, Pinaki P; Zhong, Ming-Chao; Veillette, André; Orange, Jordan S; Nichols, Kim E

    2013-04-25

    The adaptor molecule signaling lymphocytic activation molecule-associated protein (SAP) plays critical roles during invariant natural killer T (iNKT) cell ontogeny. As a result, SAP-deficient humans and mice lack iNKT cells. The strict developmental requirement for SAP has made it difficult to discern its possible involvement in mature iNKT cell functions. By using temporal Cre recombinase-mediated gene deletion to ablate SAP expression after completion of iNKT cell development, we demonstrate that SAP is essential for T-cell receptor (TCR)-induced iNKT cell cytotoxicity against T-cell and B-cell leukemia targets in vitro and iNKT-cell-mediated control of T-cell leukemia growth in vivo. These findings are not restricted to the murine system: silencing RNA-mediated suppression of SAP expression in human iNKT cells also significantly impairs TCR-induced cytolysis. Mechanistic studies reveal that iNKT cell killing requires the tyrosine kinase Fyn, a known SAP-binding protein. Furthermore, SAP expression is required within iNKT cells to facilitate their interaction with T-cell targets and induce reorientation of the microtubule-organizing center to the immunologic synapse (IS). Collectively, these studies highlight a novel and essential role for SAP during iNKT cell cytotoxicity and formation of a functional IS.

  16. The relationship between sap-flow rate and sap volume in dormant sugar maples

    Science.gov (United States)

    William J. Gabriel; Russell S. Walters; Donald W. Seegrist

    1972-01-01

    Sap-flow rate is closely correlated with the sap volume produced by dormant sugar maple trees (Acer saccharum Marsh.) and could be used in making phenotypic selections of trees for superior sap production.

  17. Dynamic control of osmolality and ionic composition of the xylem sap in two mangrove species.

    Science.gov (United States)

    López-Portillo, Jorge; Ewers, Frank W; Méndez-Alonzo, Rodrigo; Paredes López, Claudia L; Angeles, Guillermo; Alarcón Jiménez, Ana Luisa; Lara-Domínguez, Ana Laura; Torres Barrera, María Del Carmen

    2014-06-01

    • Premise of the study: Xylem sap osmolality and salinity is a critical unresolved issue in plant function with impacts on transport efficiency, pressure gradients, and living cell turgor pressure, especially for halophytes such as mangrove trees.• Methods: We collected successive xylem vessel sap samples from stems and shoots of Avicennia germinans and Laguncularia racemosa using vacuum and pressure extraction and measured their osmolality. Following a series of extractions with the pressure chamber, we depressurized the shoot and pressurized again after various equilibration periods (minutes to hours) to test for dynamic control of osmolality. Transpiration and final sap osmolality were measured in shoots perfused with deionized water or different seawater dilutions.• Key results: For both species, the sap osmolality values of consecutive samples collected by vacuum extraction were stable and matched those of the initial samples extracted with the pressure chamber. Further extraction of samples with the pressure chamber decreased sap osmolality, suggesting reverse osmosis occurred. However, sap osmolalities increased when longer equilibration periods after sap extraction were allowed. Analysis of expressed sap with HPLC indicated a 1:1 relation between measured osmolality and the osmolality of the inorganic ions in the sap (mainly Na + , K + , and Cl - ), suggesting no contamination by organic compounds. In stems perfused with deionized water, the sap osmolality increased to mimic the native sap osmolality.• Conclusions: Xylem sap osmolality and ionic contents are dynamically adjusted by mangroves and may help modulate turgor pressure, hydraulic conductivity, and water potential, thus being important for mangrove physiology, survival, and distribution. © 2014 Botanical Society of America, Inc.

  18. Molecular imaging of drug-modulated protein-protein interactions in living subjects.

    Science.gov (United States)

    Paulmurugan, Ramasamy; Massoud, Tarik F; Huang, Jing; Gambhir, Sanjiv S

    2004-03-15

    Networks of protein interactions mediate cellular responses to environmental stimuli and direct the execution of many different cellular functional pathways. Small molecules synthesized within cells or recruited from the external environment mediate many protein interactions. The study of small molecule-mediated interactions of proteins is important to understand abnormal signal transduction pathways in cancer and in drug development and validation. In this study, we used split synthetic renilla luciferase (hRLUC) protein fragment-assisted complementation to evaluate heterodimerization of the human proteins FRB and FKBP12 mediated by the small molecule rapamycin. The concentration of rapamycin required for efficient dimerization and that of its competitive binder ascomycin required for dimerization inhibition were studied in cell lines. The system was dually modulated in cell culture at the transcription level, by controlling nuclear factor kappaB promoter/enhancer elements using tumor necrosis factor alpha, and at the interaction level, by controlling the concentration of the dimerizer rapamycin. The rapamycin-mediated dimerization of FRB and FKBP12 also was studied in living mice by locating, quantifying, and timing the hRLUC complementation-based bioluminescence imaging signal using a cooled charged coupled device camera. This split reporter system can be used to efficiently screen small molecule drugs that modulate protein-protein interactions and also to assess drugs in living animals. Both are essential steps in the preclinical evaluation of candidate pharmaceutical agents targeting protein-protein interactions, including signaling pathways in cancer cells.

  19. SAP and life-cycle management in the upstream

    International Nuclear Information System (INIS)

    Davis, B.

    1997-01-01

    Business relationships today depend more than ever on changing alliances and partnerships to leverage risk in a commodity market. SAP is a fully integrated, enterprise-wide software system that uses business processes tightly integrated around a common data model to facilitate these business relationships across the oil and gas supply chain. The SAP modules contain the business processes that are needed to handle the logistics and operations maintenance for operating an oil or gas field. Each industry has unique business-process requirements that the core SAP application set may not cover. In the oil and gas business, there are unique financial requirements in the upstream for working in joint ventures. In the downstream business segment, handling bulk hydrocarbons requires additional functionality

  20. Prion protein modulates glucose homeostasis by altering intracellular iron.

    Science.gov (United States)

    Ashok, Ajay; Singh, Neena

    2018-04-26

    The prion protein (PrP C ), a mainly neuronal protein, is known to modulate glucose homeostasis in mouse models. We explored the underlying mechanism in mouse models and the human pancreatic β-cell line 1.1B4. We report expression of PrP C on mouse pancreatic β-cells, where it promoted uptake of iron through divalent-metal-transporters. Accordingly, pancreatic iron stores in PrP knockout mice (PrP -/- ) were significantly lower than wild type (PrP +/+ ) controls. Silencing of PrP C in 1.1B4 cells resulted in significant depletion of intracellular (IC) iron, and remarkably, upregulation of glucose transporter GLUT2 and insulin. Iron overloading, on the other hand, resulted in downregulation of GLUT2 and insulin in a PrP C -dependent manner. Similar observations were noted in the brain, liver, and neuroretina of iron overloaded PrP +/+ but not PrP -/- mice, indicating PrP C -mediated modulation of insulin and glucose homeostasis through iron. Peripheral challenge with glucose and insulin revealed blunting of the response in iron-overloaded PrP +/+ relative to PrP -/- mice, suggesting that PrP C -mediated modulation of IC iron influences both secretion and sensitivity of peripheral organs to insulin. These observations have implications for Alzheimer's disease and diabetic retinopathy, known complications of type-2-diabetes associated with brain and ocular iron-dyshomeostasis.

  1. Periodic and stochastic thermal modulation of protein folding kinetics.

    Science.gov (United States)

    Platkov, Max; Gruebele, Martin

    2014-07-21

    Chemical reactions are usually observed either by relaxation of a bulk sample after applying a sudden external perturbation, or by intrinsic fluctuations of a few molecules. Here we show that the two ideas can be combined to measure protein folding kinetics, either by periodic thermal modulation, or by creating artificial thermal noise that greatly exceeds natural thermal fluctuations. We study the folding reaction of the enzyme phosphoglycerate kinase driven by periodic temperature waveforms. As the temperature waveform unfolds and refolds the protein, its fluorescence color changes due to FRET (Förster resonant Energy Transfer) of two donor/acceptor fluorophores labeling the protein. We adapt a simple model of periodically driven kinetics that nicely fits the data at all temperatures and driving frequencies: The phase shifts of the periodic donor and acceptor fluorescence signals as a function of driving frequency reveal reaction rates. We also drive the reaction with stochastic temperature waveforms that produce thermal fluctuations much greater than natural fluctuations in the bulk. Such artificial thermal noise allows the recovery of weak underlying signals due to protein folding kinetics. This opens up the possibility for future detection of a stochastic resonance for protein folding subject to noise with controllable amplitude.

  2. Guanylate kinase domains of the MAGUK family scaffold proteins as specific phospho-protein-binding modules

    OpenAIRE

    Zhu, Jinwei; Shang, Yuan; Xia, Caihao; Wang, Wenning; Wen, Wenyu; Zhang, Mingjie

    2011-01-01

    Membrane-associated guanylate kinases (MAGUK) family proteins contain an inactive guanylate kinase (GK) domain, whose function has been elusive. Here, this domain is revealed as a new type of phospho-peptide-binding module, in which the GMP-binding site has evolved to accommodate phospho-serines or -threonines.

  3. Studi Kelayakan Implementasi SAP dengan Metode Fit/Gap Analysis dan CBA

    Directory of Open Access Journals (Sweden)

    Nurlina Nurlina

    2013-12-01

    Full Text Available An application system is required by a company to meet the needs of enterprise business processes so as to provide information quickly and accurately. Therefore, it is necessary to study the feasibility status of plan of enterprise system implementation. SAP R/3 contains various modules which is deserved to be considered as a company's information system solution. Results of the feasibility study through the analysis of fit/ gap analysis state that the implementation of SAP R/3 sales module is feasible and able to meet all the needs of the system.Results of cost and benefit analysis state that the strategy implementation of SAP R/3 module is feasible. Based on the analysis and research using the two methods above, a decision can be taken whether the SAP R/3 is worth to be implemented or not.

  4. C2 Domains as Protein-Protein Interaction Modules in the Ciliary Transition Zone

    Directory of Open Access Journals (Sweden)

    Kim Remans

    2014-07-01

    Full Text Available RPGR-interacting protein 1 (RPGRIP1 is mutated in the eye disease Leber congenital amaurosis (LCA and its structural homolog, RPGRIP1-like (RPGRIP1L, is mutated in many different ciliopathies. Both are multidomain proteins that are predicted to interact with retinitis pigmentosa G-protein regulator (RPGR. RPGR is mutated in X-linked retinitis pigmentosa and is located in photoreceptors and primary cilia. We solved the crystal structure of the complex between the RPGR-interacting domain (RID of RPGRIP1 and RPGR and demonstrate that RPGRIP1L binds to RPGR similarly. RPGRIP1 binding to RPGR affects the interaction with PDEδ, the cargo shuttling factor for prenylated ciliary proteins. RPGRIP1-RID is a C2 domain with a canonical β sandwich structure that does not bind Ca2+ and/or phospholipids and thus constitutes a unique type of protein-protein interaction module. Judging from the large number of C2 domains in most of the ciliary transition zone proteins identified thus far, the structure presented here seems to constitute a cilia-specific module that is present in multiprotein transition zone complexes.

  5. Auditing and GRC automation in SAP

    CERN Document Server

    Chuprunov, Maxim

    2013-01-01

    Going beyond current literature, this book extends internal controls to efficiency and profitability. Offers an audit guide for an SAP ERP system, covers risks and control descriptions, and shows how to automate compliance management based on SAP GRC.

  6. Physicochemical changes of raffia sap (Raphia mambillensis ...

    African Journals Online (AJOL)

    galax-07

    2013-10-09

    Oct 9, 2013 ... on fermentation on the raffia sap property, its physico-chemical and .... transformed organic nitrogen of the dried sap into mineral nitrogen ..... International Congress on Engineering and Food. March ... uses in vignification.

  7. Modulation of mitogen-activated protein kinase-activated protein kinase 3 by hepatitis C virus core protein

    DEFF Research Database (Denmark)

    Ngo, HT; Pham, Long; Kim, JW

    2013-01-01

    Hepatitis C virus (HCV) is highly dependent on cellular proteins for its own propagation. In order to identify the cellular factors involved in HCV propagation, we performed protein microarray assays using the HCV core protein as a probe. Of ~9,000 host proteins immobilized in a microarray...... inducers. Binding of HCV core to MAPKAPK3 was confirmed by in vitro pulldown assay and further verified by coimmunoprecipitation assay. HCV core protein interacted with MAPKAPK3 through amino acid residues 41 to 75 of core and the N-terminal half of kinase domain of MAPKAPK3. In addition, both RNA...... increased HCV IRES-mediated translation and MAPKAPK3-dependent HCV IRES activity was further increased by core protein. These data suggest that HCV core may modulate MAPKAPK3 to facilitate its own propagation....

  8. Modulation of P1798 lymphosarcoma proliferation by protein phosphorylation

    International Nuclear Information System (INIS)

    Michnoff, C.A.H.

    1983-01-01

    The role of protein kinases in modulating cell proliferation was examined. Studies characterized the regulation of cell proliferation by adenosine 3':5'-monophosphate-dependent protein kinase (cA-Pk). Calcium/calmodulin-dependent myosin light chain kinase (MLCK) was isolated and examined as a potential substrate regulated by cA-PK in the rapidly proliferating P1798 lymphosarcoma. Modulation of cell proliferation by cA-PK was characterized by quantitating cell division by [methyl- 3 H] thymidine ([ 3 H]-dT) incorporation into DNA, cAMP accumulations, and activation of cA-PK using P1798 lymphosarcoma cells. Epinephrine and prostaglandin E 1 (PGE 1 ) were demonstrated to suppress [ 3 H]-dT incorporation into DNA, to stimulate cAMP accumulation, and to activate cA-PK with dose-dependency. Calcium/calmodulin-dependent MLCK was partially purified from P1798 lymphosarcoma. P1798 MLCK phosphorylated myosin regulatory light chains (P-LC) from thymus, cardiac and skeletal muscles. One mol [ 32 Pi] was transferred into one mol cardiac or skeletal P-LC by P1798 MLCK. Apparent Km values of 65 μM and 51 μM were determined for ATP and cardiac P-LC, respectively. The apparent molecular weight of P1798 MLCK was 135,000. P1798 MLCK was phosphorylated by cA-PK. Phosphorylated MLCK showed a 41% decrease in calcium-dependent activity. Two additional protein kinases from P1798 lymphosarcoma phosphorylated cardiac and skeletal light chains

  9. Errors in the SAP reference model

    NARCIS (Netherlands)

    Mendling, J.; Aalst, van der W.M.P.; Dongen, van B.F.; Verbeek, H.M.W.

    2006-01-01

    The SAP Reference Model is a set of information models that is utilized to guide the configuration of SAP systems. A big part of these models are business process models represented in the Eventdriven Process Chains (EPC) notation. These EPC models provide a easy to comprehend overview of SAP

  10. Understanding curcumin-induced modulation of protein aggregation.

    Science.gov (United States)

    Ahmad, Basir; Borana, Mohanish S; Chaudhary, Ankur P

    2017-07-01

    Curcumin, a diarylheptanoid compound, found in spice turmeric is known to alter the aggregation of proteins and reduce the toxicity of the aggregates. This review looks at the molecular basis of modulating protein aggregation and toxicity of the aggregates. Foremost, we identify the interaction of curcumin and its derivatives with proteins/peptides and the effect of their interaction on the conformational stability and unfolding/folding pathway(s). The unfolding/folding processes generate partially folded/unfolded intermediate, which serve as aggregation precursor state. Secondly, we discuss the effect of curcumin binding on the kinetics parameters of the aggregation process, which give information about the mechanism of the aggregation inhibition. We describe, in addition, that curcumin can accelerate/promote fibril formation by binding to oligomeric intermediate(s) accumulated in the aggregation pathway. Finally, we discuss the correlation of curcumin-induced monomeric and/or oligomeric precursor states with aggregate structure and toxicity. On the basis of these discussions, we propose a model describing curcumin-induced inhibition/promotion of formation of amyloid-like fibrils. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Verification of SAP reference models

    NARCIS (Netherlands)

    Dongen, van B.F.; Jansen-Vullers, M.H.; Aalst, van der W.M.P.; Benatallah, B.; Casati, F.

    2005-01-01

    To configure a process-aware information system (e.g., a workflow system, an ERP system), a business model needs to be transformed into an executable process model. Due to similarities in these transformations for different companies, databases with reference models, such as ARIS for MySAP, have

  12. Tree Hydraulics: How Sap Rises

    Science.gov (United States)

    Denny, Mark

    2012-01-01

    Trees transport water from roots to crown--a height that can exceed 100 m. The physics of tree hydraulics can be conveyed with simple fluid dynamics based upon the Hagen-Poiseuille equation and Murray's law. Here the conduit structure is modelled as conical pipes and as branching pipes. The force required to lift sap is generated mostly by…

  13. Phytoplasma Effector SAP54 Induces Indeterminate Leaf-Like Flower Development in Arabidopsis Plants1[C][W][OA

    Science.gov (United States)

    MacLean, Allyson M.; Sugio, Akiko; Makarova, Olga V.; Findlay, Kim C.; Grieve, Victoria M.; Tóth, Réka; Nicolaisen, Mogens; Hogenhout, Saskia A.

    2011-01-01

    Phytoplasmas are insect-transmitted bacterial plant pathogens that cause considerable damage to a diverse range of agricultural crops globally. Symptoms induced in infected plants suggest that these phytopathogens may modulate developmental processes within the plant host. We report herein that Aster Yellows phytoplasma strain Witches’ Broom (AY-WB) readily infects the model plant Arabidopsis (Arabidopsis thaliana) ecotype Columbia, inducing symptoms that are characteristic of phytoplasma infection, such as the production of green leaf-like flowers (virescence and phyllody) and increased formation of stems and branches (witches’ broom). We found that the majority of genes encoding secreted AY-WB proteins (SAPs), which are candidate effector proteins, are expressed in Arabidopsis and the AY-WB insect vector Macrosteles quadrilineatus (Hemiptera; Cicadellidae). To identify which of these effector proteins induce symptoms of phyllody and virescence, we individually expressed the effector genes in Arabidopsis. From this screen, we have identified a novel AY-WB effector protein, SAP54, that alters floral development, resulting in the production of leaf-like flowers that are similar to those produced by plants infected with this phytoplasma. This study offers novel insight into the effector profile of an insect-transmitted plant pathogen and reports to our knowledge the first example of a microbial pathogen effector protein that targets flower development in a host. PMID:21849514

  14. Natural Modulators of Amyloid-Beta Precursor Protein Processing

    Science.gov (United States)

    Zhang, Can; Tanzi, Rudolph E.

    2013-01-01

    Alzheimer’s disease (AD) is a devastating neurodegenerative disease and the primary cause of dementia, with no cure currently available. The pathogenesis of AD is believed to be primarily driven by Aβ, the principal component of senile plaques. Aβ is an ~4 kDa peptide generated from the amyloid-β precursor protein (APP) through proteolytic secretases. Natural products, particularly those utilized in traditional Chinese medicine (TCM), have a long history alleviating common clinical disorders, including dementia. However, the cell/molecular pathways mediated by these natural products are largely unknown until recently when the underlying molecular mechanisms of the disorders begin to be elucidated. Here, the mechanisms with which natural products modulate the pathogenesis of AD are discussed, in particular, by focusing on their roles in the processing of APP. PMID:22998566

  15. SAP: structure, function, and its roles in immune-related diseases.

    Science.gov (United States)

    Xi, Dan; Luo, TianTian; Xiong, Haowei; Liu, Jichen; Lu, Hao; Li, Menghao; Hou, Yuqing; Guo, Zhigang

    2015-01-01

    Serum amyloid P component (SAP), also known as pentraxin-2, is a member of the pentraxin protein family with an established relationship to the immune response. In the last century, SAP has been used as a diagnostic marker in amyloidosis diagnosis and patient follow-up. SAP has been thought to have potential for treating and curing amyloidosis and fibrosis diseases. More recently, it has been shown that SAP may serve as both a diagnostic marker and a therapeutic target for many immune-related diseases, such as cardiovascular, pulmonary, nephritic, neurological and autoimmune diseases. In the cardiovascular system, SAP has been defined as the culprit in amyloidosis in the heart. SAP may also exert a protective role during the early stage of atherosclerosis and myocardial fibrosis. In noncardiovascular system diseases, SAP is being developed for the treatment of pulmonary fibrosis. In this review, we summarize SAP history, structure, and its roles in immune-related diseases in different systems with emphasis on the cardiovascular system. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Critical role of SAP in progression and reactivation but not maintenance of T cell-dependent humoral immunity.

    Science.gov (United States)

    Zhong, Ming-Chao; Veillette, André

    2013-03-01

    Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is a small adaptor molecule mutated in X-linked lymphoproliferative disease, a human immunodeficiency. SAP plays a critical role in the initiation of T cell-dependent B cell responses leading to germinal center reaction, the production of high-affinity antibodies, and B cell memory. However, whether SAP has a role in these responses beyond their initiation is not known. It is important to address this matter not only for mechanistic reasons but also because blockade of the SAP pathway is being contemplated as a means to treat autoimmune diseases in humans. Using an inducibly SAP deficient mouse, we found that SAP was required not only for the initiation but also for the progression of primary T cell-driven B cell responses to haptens. It was also necessary for the reactivation of T cell-dependent B cell immunity during secondary immune responses. These activities consistently correlated with the requirement of SAP for full expression of the lineage commitment factor Bcl-6 in follicular T helper (T(FH)) cells. However, once memory B cells and long-lived antibody-secreting cells were established, SAP became dispensable for maintaining T cell-dependent B cell responses. Thus, SAP is pivotal for nearly all phases, but not for maintenance, of T cell-driven B cell humoral immunity. These findings may have implications for the treatment of immune disorders by targeting the SAP pathway.

  17. Projecte d'integració entre SAP GH - SAP MM - Kàrdex

    OpenAIRE

    Perea Núñez, Yolanda

    2012-01-01

    Projecte d'integració entre dos sistemes SAP (gestió hospitalària i gestió de materials) amb un altre sistema aliè a SAP, el sistema de magatzem de medicaments Kàrdex, mitjançant comunicacions via SAP Process Integration. Proyecto de integración entre dos sistemas SAP (gestión hospitalaria y gestión de materiales) con otro sistema ajeno a SAP, el sistema de almacén de medicamentos Kardex, mediante comunicaciones vía SAP Process Integration.

  18. SAP expression in invariant NKT cells is required for cognate help to support B-cell responses.

    Science.gov (United States)

    Detre, Cynthia; Keszei, Marton; Garrido-Mesa, Natividad; Kis-Toth, Katalin; Castro, Wilson; Agyemang, Amma F; Veerapen, Natacha; Besra, Gurdyal S; Carroll, Michael C; Tsokos, George C; Wang, Ninghai; Leadbetter, Elizabeth A; Terhorst, Cox

    2012-07-05

    One of the manifestations of X-linked lymphoproliferative disease (XLP) is progressive agammaglobulinemia, caused by the absence of a functional signaling lymphocyte activation molecule (SLAM)-associated protein (SAP) in T, invariant natural killer T (NKT) cells and NK cells. Here we report that α-galactosylceramide (αGalCer) activated NKT cells positively regulate antibody responses to haptenated protein antigens at multiple checkpoints, including germinal center formation and affinity maturation. Whereas NKT cell-dependent B cell responses were absent in SAP(-/-).B6 mice that completely lack NKT cells, the small number of SAP-deficient NKT cells in SAP(-/-).BALB/c mice adjuvated antibody production, but not the germinal center reaction. To test the hypothesis that SAP-deficient NKT cells can facilitate humoral immunity, SAP was deleted after development in SAP(fl/fl).tgCreERT2.B6 mice. We find that NKT cell intrinsic expression of SAP is dispensable for noncognate helper functions, but is critical for providing cognate help to antigen-specific B cells. These results demonstrate that SLAM-family receptor-regulated cell-cell interactions are not limited to T-B cell conjugates. We conclude that in the absence of SAP, several routes of NKT cell-mediated antibody production are still accessible. The latter suggests that residual NKT cells in XLP patients might contribute to variations in dysgammaglobulinemia.

  19. Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence.

    OpenAIRE

    Hube, B; Sanglard, D; Odds, F C; Hess, D; Monod, M; Schäfer, W; Brown, A J; Gow, N A

    1997-01-01

    Secreted aspartyl proteinases (Saps), encoded by a gene family with at least nine members (SAP1 to SAP9), are one of the most discussed virulence factors produced by the human pathogen Candida albicans. In order to study the role of each Sap isoenzyme in pathogenicity, we have constructed strains which harbor mutations at selected SAP genes. SAP1, SAP2, and SAP3, which are regulated differentially in vitro, were mutated by targeted gene disruption. The growth rates of all homozygous null muta...

  20. Changes in the Proteome of Xylem Sap in Brassica oleracea in Response to Fusarium oxysporum Stress.

    Science.gov (United States)

    Pu, Zijing; Ino, Yoko; Kimura, Yayoi; Tago, Asumi; Shimizu, Motoki; Natsume, Satoshi; Sano, Yoshitaka; Fujimoto, Ryo; Kaneko, Kentaro; Shea, Daniel J; Fukai, Eigo; Fuji, Shin-Ichi; Hirano, Hisashi; Okazaki, Keiichi

    2016-01-01

    Fusarium oxysporum f.sp. conlutinans (Foc) is a serious root-invading and xylem-colonizing fungus that causes yellowing in Brassica oleracea. To comprehensively understand the interaction between F. oxysporum and B. oleracea, composition of the xylem sap proteome of the non-infected and Foc-infected plants was investigated in both resistant and susceptible cultivars using liquid chromatography-tandem mass spectrometry (LC-MS/MS) after in-solution digestion of xylem sap proteins. Whole genome sequencing of Foc was carried out and generated a predicted Foc protein database. The predicted Foc protein database was then combined with the public B. oleracea and B. rapa protein databases downloaded from Uniprot and used for protein identification. About 200 plant proteins were identified in the xylem sap of susceptible and resistant plants. Comparison between the non-infected and Foc-infected samples revealed that Foc infection causes changes to the protein composition in B. oleracea xylem sap where repressed proteins accounted for a greater proportion than those of induced in both the susceptible and resistant reactions. The analysis on the proteins with concentration change > = 2-fold indicated a large portion of up- and down-regulated proteins were those acting on carbohydrates. Proteins with leucine-rich repeats and legume lectin domains were mainly induced in both resistant and susceptible system, so was the case of thaumatins. Twenty-five Foc proteins were identified in the infected xylem sap and 10 of them were cysteine-containing secreted small proteins that are good candidates for virulence and/or avirulence effectors. The findings of differential response of protein contents in the xylem sap between the non-infected and Foc-infected samples as well as the Foc candidate effectors secreted in xylem provide valuable insights into B. oleracea-Foc interactions.

  1. Changes in the proteome of xylem sap in Brassica oleracea in response to Fusarium oxysporum stress

    Directory of Open Access Journals (Sweden)

    Zijing ePu

    2016-02-01

    Full Text Available Fusarium oxysporum f. sp. conlutinans (Foc is a serious root-invading and xylem-colonizing fungus that causes yellowing in Brassica oleracea. To comprehensively understand the interaction between F. oxysporum and B. oleracea, composition of the xylem sap proteome of the non-infected and Foc-infected plants was investigated in both resistant and susceptible cultivars using liquid chromatography-tandem mass spectrometry (LC-MS/MS after in-solution digestion of xylem sap proteins. Whole genome sequencing of Foc was carried out and generated a predicted Foc protein database. The predicted Foc protein database was then combined with the public B. oleracea and B. rapa protein databases downloaded from Uniprot and used for protein identification. About 200 plant proteins were identified in the xylem sap of susceptible and resistant plants. Comparison between the non-infected and Foc-infected samples revealed that Foc infection causes changes to the protein composition in B. oleracea xylem sap where repressed proteins accounted for a greater proportion than those of induced in both the susceptible and resistant reactions. The analysis on the proteins with concentration change >=2 fold indicated a large portion of up- and down-regulated proteins were those acting on carbohydrates. Proteins with leucine-rich repeats and legume lectin domains were mainly induced in both resistant and susceptible system, so was the case of thaumatins. Twenty-five Foc proteins were identified in the infected xylem sap and ten of them were cysteine-containing secreted small proteins that are good candidates for virulence and/or avirulence effectors. The findings of differential response of protein contents in the xylem sap between the non-infected and Foc-infected samples as well as the Foc candidate effectors secreted in xylem provide valuable insights into B. oleracea-Foc interactions.

  2. Biochemical characterization of sap (latex) of a few Indian mango varieties.

    Science.gov (United States)

    John, K Saby; Bhat, S G; Prasada Rao, U J S

    2003-01-01

    Mango sap (latex) from four Indian varieties was studied for its composition. Sap was separated into non-aqueous and aqueous phases. Earlier, we reported that the non-aqueous phase contained mainly mono-terpenes having raw mango aroma (Phytochemistry 52 (1999) 891). In the present study biochemical composition of the aqueous phase was studied. Aqueous phase contained little amount of protein (2.0-3.5 mg/ml) but showed high polyphenol oxidase (147-214 U/mg protein) and peroxidase (401-561 U/mg protein) activities. It contained low amounts of polyphenols and protease activities. On native PAGE, all the major protein bands exhibited both polyphenol oxidase and peroxidase activities. Both polyphenol oxidase and peroxidase activities were found to be stable in the aqueous phase of sap at 4 degrees C. Sap contained large amount of non-dialyzable and non-starchy carbohydrate (260-343 mg/ml sap) which may be responsible for maintaining a considerable pressure of fluid in the ducts. Thus, the mango sap could be a valuable by-product in the mango industry as it contains some of the valuable enzymes and aroma components.

  3. Modulation of PML protein expression regulates JCV infection

    International Nuclear Information System (INIS)

    Gasparovic, Megan L.; Maginnis, Melissa S.; O'Hara, Bethany A.; Dugan, Aisling S.; Atwood, Walter J.

    2009-01-01

    JC virus (JCV) is a human polyomavirus that infects the majority of the human population worldwide. It is responsible for the fatal demyelinating disease Progressive Multifocal Leukoencephalopathy. JCV binds to cells using the serotonin receptor 5-HT 2A R and α(2-6)- or α(2-3)-linked sialic acid. It enters cells using clathrin-dependent endocytosis and traffics to the early endosome and possibly to the endoplasmic reticulum. Viral DNA is then delivered to the nucleus where transcription, replication, and assembly of progeny occur. We found that the early regulatory protein large T antigen accumulates in microdomains in the nucleus adjacent to ND-10 or PML domains. This observation prompted us to explore the role of these domains in JCV infection. We found that a reduction of nuclear PML enhanced virus infection and that an increase in nuclear PML reduced infection. Infection with JCV did not directly modulate nuclear levels of PML but our data indicate that a host response involving interferon beta is likely to restrict virus infection by increasing nuclear PML.

  4. Analysis of hepatocellular carcinoma and metastatic hepatic carcinoma via functional modules in a protein-protein interaction network

    Directory of Open Access Journals (Sweden)

    Jun Pan

    2014-01-01

    Full Text Available Introduction: This study aims to identify protein clusters with potential functional relevance in the pathogenesis of hepatocellular carcinoma (HCC and metastatic hepatic carcinoma using network analysis. Materials and Methods: We used human protein interaction data to build a protein-protein interaction network with Cytoscape and then derived functional clusters using MCODE. Combining the gene expression profiles, we calculated the functional scores for the clusters and selected statistically significant clusters. Meanwhile, Gene Ontology was used to assess the functionality of these clusters. Finally, a support vector machine was trained on the gold standard data sets. Results: The differentially expressed genes of HCC were mainly involved in metabolic and signaling processes. We acquired 13 significant modules from the gene expression profiles. The area under the curve value based on the differentially expressed modules were 98.31%, which outweighed the classification with DEGs. Conclusions: Differentially expressed modules are valuable to screen biomarkers combined with functional modules.

  5. Semantic integration to identify overlapping functional modules in protein interaction networks

    Directory of Open Access Journals (Sweden)

    Ramanathan Murali

    2007-07-01

    Full Text Available Abstract Background The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms. Results We have developed novel metrics, called semantic similarity and semantic interactivity, which use Gene Ontology (GO annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. We presented a flow-based modularization algorithm to efficiently identify overlapping modules in the weighted interaction networks. The experimental results show that the semantic similarity and semantic interactivity of interacting pairs were positively correlated with functional co-occurrence. The effectiveness of the algorithm for identifying modules was evaluated using functional categories from the MIPS database. We demonstrated that our algorithm had higher accuracy compared to other competing approaches. Conclusion The integration of protein interaction networks with GO annotation data and the capability of detecting overlapping modules substantially improve the accuracy of module identification.

  6. Affinity purification mass spectrometry analysis of PD-1 uncovers SAP as a new checkpoint inhibitor.

    Science.gov (United States)

    Peled, Michael; Tocheva, Anna S; Sandigursky, Sabina; Nayak, Shruti; Philips, Elliot A; Nichols, Kim E; Strazza, Marianne; Azoulay-Alfaguter, Inbar; Askenazi, Manor; Neel, Benjamin G; Pelzek, Adam J; Ueberheide, Beatrix; Mor, Adam

    2018-01-16

    Programmed cell death-1 (PD-1) is an essential inhibitory receptor in T cells. Antibodies targeting PD-1 elicit durable clinical responses in patients with multiple tumor indications. Nevertheless, a significant proportion of patients do not respond to anti-PD-1 treatment, and a better understanding of the signaling pathways downstream of PD-1 could provide biomarkers for those whose tumors respond and new therapeutic approaches for those whose tumors do not. We used affinity purification mass spectrometry to uncover multiple proteins associated with PD-1. Among these proteins, signaling lymphocytic activation molecule-associated protein (SAP) was functionally and mechanistically analyzed for its contribution to PD-1 inhibitory responses. Silencing of SAP augmented and overexpression blocked PD-1 function. T cells from patients with X-linked lymphoproliferative disease (XLP), who lack functional SAP, were hyperresponsive to PD-1 signaling, confirming its inhibitory role downstream of PD-1. Strikingly, signaling downstream of PD-1 in purified T cell subsets did not correlate with PD-1 surface expression but was inversely correlated with intracellular SAP levels. Mechanistically, SAP opposed PD-1 function by acting as a molecular shield of key tyrosine residues that are targets for the tyrosine phosphatase SHP2, which mediates PD-1 inhibitory properties. Our results identify SAP as an inhibitor of PD-1 function and SHP2 as a potential therapeutic target in patients with XLP.

  7. Architecture of SAP ERP understand how successful software works

    CERN Document Server

    Boeder, Jochen

    2014-01-01

    This book - compiled by software architects from SAP - is a must for consultants, developers, IT managers, and students working with SAP ERP, but also users who want to know the world behind their SAP user interface.

  8. A Structural Perspective on the Modulation of Protein-Protein Interactions with Small Molecules.

    Science.gov (United States)

    Demirel, Habibe Cansu; Dogan, Tunca; Tuncbag, Nurcan

    2018-05-31

    Protein-protein interactions (PPIs) are the key components in many cellular processes including signaling pathways, enzymatic reactions and epigenetic regulation. Abnormal interactions of some proteins may be pathogenic and cause various disorders including cancer and neurodegenerative diseases. Although inhibiting PPIs with small molecules is a challenging task, it gained an increasing interest because of its strong potential for drug discovery and design. The knowledge of the interface as well as the structural and chemical characteristics of the PPIs and their roles in the cellular pathways are necessary for a rational design of small molecules to modulate PPIs. In this study, we review the recent progress in the field and detail the physicochemical properties of PPIs including binding hot spots with a focus on structural methods. Then, we review recent approaches for structural prediction of PPIs. Finally, we revisit the concept of targeting PPIs in a systems biology perspective and we refer to the non-structural approaches, usually employed when the structural information is not present. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Effects of Acer okamotoanum sap on the function of polymorphonuclear neutrophilic leukocytes in vitro and in vivo.

    Science.gov (United States)

    An, Beum-Soo; Kang, Ji-Houn; Yang, Hyun; Yang, Mhan-Pyo; Jeung, Eui-Bae

    2013-02-01

    Sap is a plant fluid that primarily consists of water and small amounts of mineral elements, sugars, hormones and other nutrients. Acer mono (A. mono) is an endemic Korean mono maple which was recently suggested to have health benefits due to its abundant calcium and magnesium ion content. In the present study, we examined the effects of sap from Acer okamotoanum (A. okamotoanum) on the phagocytic response of mouse neutrophils in vivo and rat and canine neutrophils in vitro. We tested the regulation of phagocytic activity, oxidative burst activity (OBA) and the levels of filamentous polymeric actin (F-actin) in the absence and presence of dexamethasone (DEX) in vitro and in vivo. Our results showed that DEX primarily reduced OBA in the mouse neutrophils, and that this was reversed in the presence of the sap. By contrast, the phagocytic activity of the mouse cells was not regulated by either DEX or the sap. Rat and canine polymorphonuclear neutrophilic leukocytes (PMNs) responded in vitro to the sap in a similar manner by increasing OBA. However, regulation of phagocytic activity by the sap was different between the species. In canine PMNs, phagocytic activity was enhanced by the sap at a high dose, while it did not significantly modulate this activity in rat PMNs. These findings suggest that the sap of A. okamotoanum stimulates neutrophil activity in the mouse, rat and canine by increasing OBA in vivo and in vitro, and thus may have a potential antimicrobial effect in the PMNs of patients with infections.

  10. Regulating the ethylene response of a plant by modulation of F-box proteins

    Science.gov (United States)

    Guo, Hongwei [Beijing, CN; Ecker, Joseph R [Carlsbad, CA

    2014-01-07

    The relationship between F-box proteins and proteins invovled in the ethylene response in plants is described. In particular, F-box proteins may bind to proteins involved in the ethylene response and target them for degradation by the ubiquitin/proteasome pathway. The transcription factor EIN3 is a key transcription factor mediating ethylne-regulated gene expression and morphological responses. EIN3 is degraded through a ubiquitin/proteasome pathway mediated by F-box proteins EBF1 and EBF2. The link between F-box proteins and the ethylene response is a key step in modulating or regulating the response of a plant to ethylene. Described herein are transgenic plants having an altered sensitivity to ethylene, and methods for making transgenic plant haing an althered sensitivity to ethylene by modulating the level of activity of F-box proteins. Methods of altering the ethylene response in a plant by modulating the activity or expression of an F-box protein are described. Also described are methods of identifying compounds that modulate the ethylene response in plants by modulating the level of F-box protein expression or activity.

  11. Modulation of the renin-angiotensin system by food protein ...

    African Journals Online (AJOL)

    Chibuike

    high fat, high sugar, low fibre diet – is another modifiable risk factor for .... identifying appropriate proteolytic enzymes and food protein raw materials, based on .... consumption of milk protein hydrolysates enriched with the LTPs,. IPP/VPP ...

  12. Modulating surface rheology by electrostatic protein/polysaccharide interactions

    NARCIS (Netherlands)

    Ganzevles, R.A.; Zinoviadou, K.; Vliet, van T.; Cohen Stuart, M.A.; Jongh, de H.H.J.

    2006-01-01

    There is a large interest in mixed protein/polysaccharide layers at air-water and oil-water interfaces because of their ability to stabilize foams and emulsions. Mixed protein/polysaccharide adsorbed layers at air-water interfaces can be prepared either by adsorption of soluble protein/

  13. Simulation of modulated protein crystal structure and diffraction data in a supercell and in superspace

    Czech Academy of Sciences Publication Activity Database

    Lovelace, J.J.; Simone, P.D.; Petříček, Václav; Borgstahl, G.E.O.

    2013-01-01

    Roč. 69, Part 6 (2013), 1062-1072 ISSN 0907-4449 Institutional support: RVO:68378271 Keywords : protein crystallograhy * superspace approach * incommensurately modulated structures Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.232, year: 2013

  14. Allosteric modulation of G-protein coupled receptors

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Spalding, Tracy A

    2004-01-01

    are believed to activate (agonists) or inhibit (competitive antagonists) receptor signalling by binding the receptor at the same site as the endogenous agonist, the orthosteric site. In contrast, allosteric ligands modulate receptor function by binding to different regions in the receptor, allosteric sites....... In recent years, combinatorial chemistry and high throughput screening have helped identify several allosteric GPCR modulators with novel structures, several of which already have become valuable pharmacological tools and may be candidates for clinical testing in the near future. This mini review outlines...... the current status and perspectives of allosteric modulation of GPCR function with emphasis on the pharmacology of endogenous and synthesised modulators, their receptor interactions and the therapeutic prospects of allosteric ligands compared to orthosteric ligands....

  15. Recruitment of a SAP18-HDAC1 complex into HIV-1 virions and its requirement for viral replication.

    Directory of Open Access Journals (Sweden)

    Masha Sorin

    2009-06-01

    Full Text Available HIV-1 integrase (IN is a virally encoded protein required for integration of viral cDNA into host chromosomes. INI1/hSNF5 is a component of the SWI/SNF complex that interacts with HIV-1 IN, is selectively incorporated into HIV-1 (but not other retroviral virions, and modulates multiple steps, including particle production and infectivity. To gain further insight into the role of INI1 in HIV-1 replication, we screened for INI1-interacting proteins using the yeast two-hybrid system. We found that SAP18 (Sin3a associated protein 18 kD, a component of the Sin3a-HDAC1 complex, directly binds to INI1 in yeast, in vitro and in vivo. Interestingly, we found that IN also binds to SAP18 in vitro and in vivo. SAP18 and components of a Sin3A-HDAC1 complex were specifically incorporated into HIV-1 (but not SIV and HTLV-1 virions in an HIV-1 IN-dependent manner. Using a fluorescence-based assay, we found that HIV-1 (but not SIV virion preparations harbour significant deacetylase activity, indicating the specific recruitment of catalytically active HDAC into the virions. To determine the requirement of virion-associated HDAC1 to HIV-1 replication, an inactive, transdominant negative mutant of HDAC1 (HDAC1(H141A was utilized. Incorporation of HDAC1(H141A decreased the virion-associated histone deacetylase activity. Furthermore, incorporation of HDAC1(H141A decreased the infectivity of HIV-1 (but not SIV virions. The block in infectivity due to virion-associated HDAC1(H141A occurred specifically at the early reverse transcription stage, while entry of the virions was unaffected. RNA-interference mediated knock-down of HDAC1 in producer cells resulted in decreased virion-associated HDAC1 activity and a reduction in infectivity of these virions. These studies indicate that HIV-1 IN and INI1/hSNF5 bind SAP18 and selectively recruit components of Sin3a-HDAC1 complex into HIV-1 virions. Furthermore, HIV-1 virion-associated HDAC1 is required for efficient early post

  16. Surface dynamics in allosteric regulation of protein-protein interactions: modulation of calmodulin functions by Ca2+.

    Directory of Open Access Journals (Sweden)

    Yosef Y Kuttner

    2013-04-01

    Full Text Available Knowledge of the structural basis of protein-protein interactions (PPI is of fundamental importance for understanding the organization and functioning of biological networks and advancing the design of therapeutics which target PPI. Allosteric modulators play an important role in regulating such interactions by binding at site(s orthogonal to the complex interface and altering the protein's propensity for complex formation. In this work, we apply an approach recently developed by us for analyzing protein surfaces based on steered molecular dynamics simulation (SMD to the study of the dynamic properties of functionally distinct conformations of a model protein, calmodulin (CaM, whose ability to interact with target proteins is regulated by the presence of the allosteric modulator Ca(2+. Calmodulin is a regulatory protein that acts as an intracellular Ca(2+ sensor to control a wide variety of cellular processes. We demonstrate that SMD analysis is capable of pinpointing CaM surfaces implicated in the recognition of both the allosteric modulator Ca(2+ and target proteins. Our analysis of changes in the dynamic properties of the CaM backbone elicited by Ca(2+ binding yielded new insights into the molecular mechanism of allosteric regulation of CaM-target interactions.

  17. Presynaptic protein synthesis required for NT-3-induced long-term synaptic modulation

    Directory of Open Access Journals (Sweden)

    Je H

    2011-01-01

    Full Text Available Abstract Background Neurotrophins elicit both acute and long-term modulation of synaptic transmission and plasticity. Previously, we demonstrated that the long-term synaptic modulation requires the endocytosis of neurotrophin-receptor complex, the activation of PI3K and Akt, and mTOR mediated protein synthesis. However, it is unclear whether the long-term synaptic modulation by neurotrophins depends on protein synthesis in pre- or post-synaptic cells. Results Here we have developed an inducible protein translation blocker, in which the kinase domain of protein kinase R (PKR is fused with bacterial gyrase B domain (GyrB-PKR, which could be dimerized upon treatment with a cell permeable drug, coumermycin. By genetically targeting GyrB-PKR to specific cell types, we show that NT-3 induced long-term synaptic modulation requires presynaptic, but not postsynaptic protein synthesis. Conclusions Our results provide mechanistic insights into the cell-specific requirement for protein synthesis in the long-term synaptic modulation by neurotrophins. The GyrB-PKR system may be useful tool to study protein synthesis in a cell-specific manner.

  18. Helium implantation effects in SAP and aluminum

    International Nuclear Information System (INIS)

    Bauer, W.; Thomas, G.J.

    1976-02-01

    A series of 300 keV He implantations of Al and SAP 930 have been conducted at temperatures between 150 and 773K. The He re-emission was monitored during implantation and the samples were examined with a scanning electron microscope after implantation. Both Al and SAP 930 were found to blister after a critical He dose was reached at temperatures above 473K, both underwent flaking below that temperature, with blistering re-appearing in SAP 930 at an implantation temperature of 150K. The surface deformation and He re-emission are strongly dependent on microstructural effects in the intermediate temperature regime

  19. 46 CFR 16.203 - Employer, MRO, and SAP responsibilities.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Employer, MRO, and SAP responsibilities. 16.203 Section... CHEMICAL TESTING Required Chemical Testing § 16.203 Employer, MRO, and SAP responsibilities. (a) Employers...) Substance Abuse Professional (SAP). Individuals performing SAP functions must meet the training requirements...

  20. Optimisation of ultrafiltration of a highly viscous protein solution using spiral-wound modules

    DEFF Research Database (Denmark)

    Lipnizki, Jens; Casani, S.; Jonsson, Gunnar Eigil

    2005-01-01

    The ultrafiltration process of highly viscous protein process water with spiral-wound modules was optimised by analysing the fouling and developing a strategy to reduce it. It was shown that the flux reduction during filtration is mainly caused by the adsorption of proteins on the membrane and no...

  1. Protein conservation and variation suggest mechanisms of cell type-specific modulation of signaling pathways.

    Directory of Open Access Journals (Sweden)

    Martin H Schaefer

    2014-06-01

    Full Text Available Many proteins and signaling pathways are present in most cell types and tissues and yet perform specialized functions. To elucidate mechanisms by which these ubiquitous pathways are modulated, we overlaid information about cross-cell line protein abundance and variability, and evolutionary conservation onto functional pathway components and topological layers in the pathway hierarchy. We found that the input (receptors and the output (transcription factors layers evolve more rapidly than proteins in the intermediary transmission layer. In contrast, protein expression variability decreases from the input to the output layer. We observed that the differences in protein variability between the input and transmission layer can be attributed to both the network position and the tendency of variable proteins to physically interact with constitutively expressed proteins. Differences in protein expression variability and conservation are also accompanied by the tendency of conserved and constitutively expressed proteins to acquire somatic mutations, while germline mutations tend to occur in cell type-specific proteins. Thus, conserved core proteins in the transmission layer could perform a fundamental role in most cell types and are therefore less tolerant to germline mutations. In summary, we propose that the core signal transmission machinery is largely modulated by a variable input layer through physical protein interactions. We hypothesize that the bow-tie organization of cellular signaling on the level of protein abundance variability contributes to the specificity of the signal response in different cell types.

  2. Dynamic functional modules in co-expressed protein interaction networks of dilated cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Oyang Yen-Jen

    2010-10-01

    Full Text Available Abstract Background Molecular networks represent the backbone of molecular activity within cells and provide opportunities for understanding the mechanism of diseases. While protein-protein interaction data constitute static network maps, integration of condition-specific co-expression information provides clues to the dynamic features of these networks. Dilated cardiomyopathy is a leading cause of heart failure. Although previous studies have identified putative biomarkers or therapeutic targets for heart failure, the underlying molecular mechanism of dilated cardiomyopathy remains unclear. Results We developed a network-based comparative analysis approach that integrates protein-protein interactions with gene expression profiles and biological function annotations to reveal dynamic functional modules under different biological states. We found that hub proteins in condition-specific co-expressed protein interaction networks tended to be differentially expressed between biological states. Applying this method to a cohort of heart failure patients, we identified two functional modules that significantly emerged from the interaction networks. The dynamics of these modules between normal and disease states further suggest a potential molecular model of dilated cardiomyopathy. Conclusions We propose a novel framework to analyze the interaction networks in different biological states. It successfully reveals network modules closely related to heart failure; more importantly, these network dynamics provide new insights into the cause of dilated cardiomyopathy. The revealed molecular modules might be used as potential drug targets and provide new directions for heart failure therapy.

  3. Realizing block planning concepts in make-and-pack production using MILP modelling and SAP APO

    DEFF Research Database (Denmark)

    Günther, H.O.; Grunow, M.; Neuhaus, U.

    2006-01-01

    of a major producer of hair dyes as a case study. We present two different implementations of the block planning concept. One utilizes the Production Planning/Detailed Scheduling module of the SAP APO© software. The other approach is based on a mixed-integer linear programming formulation. In contrast...

  4. Rubella virus capsid protein modulation of viral genomic and subgenomic RNA synthesis

    International Nuclear Information System (INIS)

    Tzeng, W.-P.; Frey, Teryl K.

    2005-01-01

    The ratio of the subgenomic (SG) to genome RNA synthesized by rubella virus (RUB) replicons expressing the green fluorescent protein reporter gene (RUBrep/GFP) is substantially higher than the ratio of these species synthesized by RUB (4.3 for RUBrep/GFP vs. 1.3-1.4 for RUB). It was hypothesized that this modulation of the viral RNA synthesis was by one of the virus structural protein genes and it was found that introduction of the capsid (C) protein gene into the replicons as an in-frame fusion with GFP resulted in an increase of genomic RNA production (reducing the SG/genome RNA ratio), confirming the hypothesis and showing that the C gene was the moiety responsible for the modulation effect. The N-terminal one-third of the C gene was required for the effect of be exhibited. A similar phenomenon was not observed with the replicons of Sindbis virus, a related Alphavirus. Interestingly, modulation was not observed when RUBrep/GFP was co-transfected with either other RUBrep or plasmid constructs expressing the C gene, demonstrating that modulation could occur only when the C gene was provided in cis. Mutations that prevented translation of the C protein failed to modulate RNA synthesis, indicating that the C protein was the moiety responsible for modulation; consistent with this conclusion, modulation of RNA synthesis was maintained when synonymous codon mutations were introduced at the 5' end of the C gene that changed the C gene sequence without altering the amino acid sequence of the C protein. These results indicate that C protein translated in proximity of viral replication complexes, possibly from newly synthesized SG RNA, participate in regulating the replication of viral RNA

  5. Modulating Protein Adsorption on Oxygen Plasma Modified Polysiloxane Surfaces

    International Nuclear Information System (INIS)

    Marletta, G.

    2006-01-01

    In the present paper we report the study on the adsorption behaviour of three model globular proteins, Human Serum Albumin, Lactoferrin and Egg Chicken Lysozyme onto both unmodified surfaces of a silicon-based polymer and the corresponding plasma treated surfaces. In particular, thin films of hydrophobic polysiloxane (about 90 degree of static water contact angle, WCA) were converted by oxygen plasma treatment at reduced pressure into very hydrophilic phases of SiOx (WCA less than 5 degree). The kinetics of protein adsorption processes were investigated by QCM-D technique, while the chemical structure and topography of the protein adlayer have been studied by Angular resolved-XPS and AFM respectively. It turned out that Albumin and Lysozyme exhibited the opposite preferential adsorption respectively onto the hydrophobic and hydrophilic surfaces, while Lactoferrin did not exhibit significant differences. The observed protein behaviour are discussed both in terms of surface-dependent parameters, including surface free energy and chemical structure, and in terms of protein-dependent parameters, including charge as well as the average molecular orientation in the adlayers. Finally, some examples of differential adsorption behaviour of the investigated proteins are reported onto nanopatterned polysiloxane surfaces consisting of hydrophobic nanopores surrounded by hydrophilic (plasma-treated) matrix and the reverse

  6. CT measurements of SAP voids in concrete

    DEFF Research Database (Denmark)

    Laustsen, Sara; Bentz, Dale P.; Hasholt, Marianne Tange

    2010-01-01

    X-ray computed tomography (CT) scanning is used to determine the SAP void distribution in hardened concrete. Three different approaches are used to analyse a binary data set created from CT measurement. One approach classifies a cluster of connected, empty voxels (volumetric pixel of a 3D image......) as one void, whereas the other two approaches are able to classify a cluster of connected, empty voxels as a number of individual voids. Superabsorbent polymers (SAP) have been used to incorporate air into concrete. An advantage of using SAP is that it enables control of the amount and size...... of the created air voids. The results indicate the presence of void clusters. To identify the individual voids, special computational approaches are needed. The addition of SAP results in a dominant peak in two of the three air void distributions. Based on the position (void diameter) of the peak, it is possible...

  7. Differential protein modulation in midguts of Aedes aegypti infected with chikungunya and dengue 2 viruses.

    Directory of Open Access Journals (Sweden)

    Stéphane Tchankouo-Nguetcheu

    Full Text Available BACKGROUND: Arthropod borne virus infections cause several emerging and resurgent infectious diseases. Among the diseases caused by arboviruses, dengue and chikungunya are responsible for a high rate of severe human diseases worldwide. The midgut of mosquitoes is the first barrier for pathogen transmission and is a target organ where arboviruses must replicate prior to infecting other organs. A proteomic approach was undertaken to characterize the key virus/vector interactions and host protein modifications that happen in the midgut for viral transmission to eventually take place. METHODOLOGY AND PRINCIPAL FINDINGS: Using a proteomics differential approach with two-Dimensional Differential in-Gel Electrophoresis (2D-DIGE, we defined the protein modulations in the midgut of Aedes aegypti that were triggered seven days after an oral infection (7 DPI with dengue 2 (DENV-2 and chikungunya (CHIKV viruses. Gel profile comparisons showed that the level of 18 proteins was modulated by DENV-2 only and 12 proteins were modulated by CHIKV only. Twenty proteins were regulated by both viruses in either similar or different ways. Both viruses caused an increase of proteins involved in the generation of reactive oxygen species, energy production, and carbohydrate and lipid metabolism. Midgut infection by DENV-2 and CHIKV triggered an antioxidant response. CHIKV infection produced an increase of proteins involved in detoxification. CONCLUSION/SIGNIFICANCE: Our study constitutes the first analysis of the protein response of Aedes aegypti's midgut infected with viruses belonging to different families. It shows that the differentially regulated proteins in response to viral infection include structural, redox, regulatory proteins, and enzymes for several metabolic pathways. Some of these proteins like antioxidant are probably involved in cell protection. On the other hand, we propose that the modulation of other proteins like transferrin, hsp60 and alpha

  8. Differential protein modulation in midguts of Aedes aegypti infected with chikungunya and dengue 2 viruses.

    Science.gov (United States)

    Tchankouo-Nguetcheu, Stéphane; Khun, Huot; Pincet, Laurence; Roux, Pascal; Bahut, Muriel; Huerre, Michel; Guette, Catherine; Choumet, Valérie

    2010-10-05

    Arthropod borne virus infections cause several emerging and resurgent infectious diseases. Among the diseases caused by arboviruses, dengue and chikungunya are responsible for a high rate of severe human diseases worldwide. The midgut of mosquitoes is the first barrier for pathogen transmission and is a target organ where arboviruses must replicate prior to infecting other organs. A proteomic approach was undertaken to characterize the key virus/vector interactions and host protein modifications that happen in the midgut for viral transmission to eventually take place. Using a proteomics differential approach with two-Dimensional Differential in-Gel Electrophoresis (2D-DIGE), we defined the protein modulations in the midgut of Aedes aegypti that were triggered seven days after an oral infection (7 DPI) with dengue 2 (DENV-2) and chikungunya (CHIKV) viruses. Gel profile comparisons showed that the level of 18 proteins was modulated by DENV-2 only and 12 proteins were modulated by CHIKV only. Twenty proteins were regulated by both viruses in either similar or different ways. Both viruses caused an increase of proteins involved in the generation of reactive oxygen species, energy production, and carbohydrate and lipid metabolism. Midgut infection by DENV-2 and CHIKV triggered an antioxidant response. CHIKV infection produced an increase of proteins involved in detoxification. Our study constitutes the first analysis of the protein response of Aedes aegypti's midgut infected with viruses belonging to different families. It shows that the differentially regulated proteins in response to viral infection include structural, redox, regulatory proteins, and enzymes for several metabolic pathways. Some of these proteins like antioxidant are probably involved in cell protection. On the other hand, we propose that the modulation of other proteins like transferrin, hsp60 and alpha glucosidase, may favour virus survival, replication and transmission, suggesting a subversion of

  9. Ingestion of Casein in a Milk Matrix Modulates Dietary Protein Digestion and Absorption Kinetics but Does Not Modulate Postprandial Muscle Protein Synthesis in Older Men.

    Science.gov (United States)

    Churchward-Venne, Tyler A; Snijders, Tim; Linkens, Armand M A; Hamer, Henrike M; van Kranenburg, Janneau; van Loon, Luc J C

    2015-07-01

    The slow digestion and amino acid absorption kinetics of isolated micellar casein have been held responsible for its relatively lower postprandial muscle protein synthetic response compared with rapidly digested proteins such as isolated whey. However, casein is normally consumed within a milk matrix. We hypothesized that protein digestion and absorption kinetics and the subsequent muscle protein synthetic response after micellar casein ingestion are modulated by the milk matrix. The aim of this study was to determine the impact of a milk matrix on casein protein digestion and absorption kinetics and postprandial muscle protein synthesis in older men. In a parallel-group design, 32 healthy older men (aged 71 ± 1 y) received a primed continuous infusion of L-[ring-(2)H5]-phenylalanine, L-[ring-3,5-(2)H2]-tyrosine, and L-[1-(13)C]-leucine, and ingested 25 g intrinsically L-[1-(13)C]-phenylalanine and L-[1-(13)C]-leucine labeled casein dissolved in bovine milk serum (Cas+Serum) or water (Cas). Plasma samples and muscle biopsies were collected in the postabsorptive state and for 300 min in the postprandial period to examine whole-body and skeletal muscle protein metabolism. Casein ingestion increased plasma leucine and phenylalanine concentrations and L-[1-(13)C]-phenylalanine enrichments, with a more rapid rise after Cas vs. Cas+Serum. Nonetheless, dietary protein-derived phenylalanine availability did not differ between Cas+Serum (47 ± 2%, mean ± SEM) and Cas (46 ± 3%) when assessed over the 300-min postprandial period (P = 0.80). The milk matrix did not modulate postprandial myofibrillar protein synthesis rates from 0 to 120 min (0.038 ± 0.005 vs. 0.031 ± 0.007%/h) or from 120 to 300 min (0.052 ± 0.004 vs. 0.067 ± 0.005%/h) after Cas+Serum vs. Cas. Similarly, no treatment differences in muscle protein-bound L-[1-(13)C]-phenylalanine enrichments were observed at 120 min (0.003 ± 0.001 vs. 0.002 ± 0.001) or 300 min (0.015 ± 0.002 vs. 0.016 ± 0.002 mole

  10. DC-SIGN activation mediates the differential effects of SAP and CRP on the innate immune system and inhibits fibrosis in mice.

    Science.gov (United States)

    Cox, Nehemiah; Pilling, Darrell; Gomer, Richard H

    2015-07-07

    Fibrosis is caused by scar tissue formation in internal organs and is associated with 45% of deaths in the United States. Two closely related human serum proteins, serum amyloid P (SAP) and C-reactive protein (CRP), strongly affect fibrosis. In multiple animal models, and in Phase 1 and Phase 2 clinical trials, SAP affects several aspects of the innate immune system to reduce fibrosis, whereas CRP appears to potentiate fibrosis. However, SAP and CRP bind the same Fcγ receptors (FcγR) with similar affinities, and why SAP and CRP have opposing effects is unknown. Here, we report that SAP but not CRP binds the receptor DC-SIGN (SIGN-R1) to affect the innate immune system, and that FcγR are not necessary for SAP function. A polycyclic aminothiazole DC-SIGN ligand and anti-DC-SIGN antibodies mimic SAP effects in vitro. In mice, the aminothiazole reduces neutrophil accumulation in a model of acute lung inflammation and, at 0.001 mg/kg, alleviates pulmonary fibrosis by increasing levels of the immunosuppressant IL-10. DC-SIGN (SIGN-R1) is present on mouse lung epithelial cells, and SAP and the aminothiazole potentiate IL-10 production from these cells. Our data suggest that SAP activates DC-SIGN to regulate the innate immune system differently from CRP, and that DC-SIGN is a target for antifibrotics.

  11. The RecX protein interacts with the RecA protein and modulates its activity in Herbaspirillum seropedicae

    International Nuclear Information System (INIS)

    Galvão, C.W.; Souza, E.M.; Etto, R.M.; Pedrosa, F.O.; Chubatsu, L.S.; Yates, M.G.; Schumacher, J.; Buck, M.; Steffens, M.B.R.

    2012-01-01

    DNA repair is crucial to the survival of all organisms. The bacterial RecA protein is a central component in the SOS response and in recombinational and SOS DNA repairs. The RecX protein has been characterized as a negative modulator of RecA activity in many bacteria. The recA and recX genes of Herbaspirillum seropedicae constitute a single operon, and evidence suggests that RecX participates in SOS repair. In the present study, we show that the H. seropedicae RecX protein (RecX Hs ) can interact with the H. seropedicae RecA protein (RecA Hs ) and that RecA Hs possesses ATP binding, ATP hydrolyzing and DNA strand exchange activities. RecX Hs inhibited 90% of the RecA Hs DNA strand exchange activity even when present in a 50-fold lower molar concentration than RecA Hs . RecA Hs ATP binding was not affected by the addition of RecX, but the ATPase activity was reduced. When RecX Hs was present before the formation of RecA filaments (RecA-ssDNA), inhibition of ATPase activity was substantially reduced and excess ssDNA also partially suppressed this inhibition. The results suggest that the RecX Hs protein negatively modulates the RecA Hs activities by protein-protein interactions and also by DNA-protein interactions

  12. The RecX protein interacts with the RecA protein and modulates its activity in Herbaspirillum seropedicae

    Energy Technology Data Exchange (ETDEWEB)

    Galvão, C.W. [Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR (Brazil); Souza, E.M. [Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR (Brazil); Etto, R.M. [Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR (Brazil); Pedrosa, F.O.; Chubatsu, L.S.; Yates, M.G. [Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR (Brazil); Schumacher, J.; Buck, M. [Department of Life Sciences, Imperial College London, London (United Kingdom); Steffens, M.B.R. [Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR (Brazil)

    2012-10-15

    DNA repair is crucial to the survival of all organisms. The bacterial RecA protein is a central component in the SOS response and in recombinational and SOS DNA repairs. The RecX protein has been characterized as a negative modulator of RecA activity in many bacteria. The recA and recX genes of Herbaspirillum seropedicae constitute a single operon, and evidence suggests that RecX participates in SOS repair. In the present study, we show that the H. seropedicae RecX protein (RecX{sub Hs}) can interact with the H. seropedicae RecA protein (RecA{sub Hs}) and that RecA{sub Hs} possesses ATP binding, ATP hydrolyzing and DNA strand exchange activities. RecX{sub Hs} inhibited 90% of the RecA{sub Hs} DNA strand exchange activity even when present in a 50-fold lower molar concentration than RecA{sub Hs}. RecA{sub Hs} ATP binding was not affected by the addition of RecX, but the ATPase activity was reduced. When RecX{sub Hs} was present before the formation of RecA filaments (RecA-ssDNA), inhibition of ATPase activity was substantially reduced and excess ssDNA also partially suppressed this inhibition. The results suggest that the RecX{sub Hs} protein negatively modulates the RecA{sub Hs} activities by protein-protein interactions and also by DNA-protein interactions.

  13. The RecX protein interacts with the RecA protein and modulates its activity in Herbaspirillum seropedicae

    Directory of Open Access Journals (Sweden)

    C.W. Galvão

    2012-12-01

    Full Text Available DNA repair is crucial to the survival of all organisms. The bacterial RecA protein is a central component in the SOS response and in recombinational and SOS DNA repairs. The RecX protein has been characterized as a negative modulator of RecA activity in many bacteria. The recA and recX genes of Herbaspirillum seropedicae constitute a single operon, and evidence suggests that RecX participates in SOS repair. In the present study, we show that the H. seropedicae RecX protein (RecX Hs can interact with the H. seropedicaeRecA protein (RecA Hs and that RecA Hs possesses ATP binding, ATP hydrolyzing and DNA strand exchange activities. RecX Hs inhibited 90% of the RecA Hs DNA strand exchange activity even when present in a 50-fold lower molar concentration than RecA Hs. RecA Hs ATP binding was not affected by the addition of RecX, but the ATPase activity was reduced. When RecX Hs was present before the formation of RecA filaments (RecA-ssDNA, inhibition of ATPase activity was substantially reduced and excess ssDNA also partially suppressed this inhibition. The results suggest that the RecX Hs protein negatively modulates the RecA Hs activities by protein-protein interactions and also by DNA-protein interactions.

  14. The RecX protein interacts with the RecA protein and modulates its activity in Herbaspirillum seropedicae.

    Science.gov (United States)

    Galvão, C W; Souza, E M; Etto, R M; Pedrosa, F O; Chubatsu, L S; Yates, M G; Schumacher, J; Buck, M; Steffens, M B R

    2012-12-01

    DNA repair is crucial to the survival of all organisms. The bacterial RecA protein is a central component in the SOS response and in recombinational and SOS DNA repairs. The RecX protein has been characterized as a negative modulator of RecA activity in many bacteria. The recA and recX genes of Herbaspirillum seropedicae constitute a single operon, and evidence suggests that RecX participates in SOS repair. In the present study, we show that the H. seropedicae RecX protein (RecX Hs) can interact with the H. seropedicaeRecA protein (RecA Hs) and that RecA Hs possesses ATP binding, ATP hydrolyzing and DNA strand exchange activities. RecX Hs inhibited 90% of the RecA Hs DNA strand exchange activity even when present in a 50-fold lower molar concentration than RecA Hs. RecA Hs ATP binding was not affected by the addition of RecX, but the ATPase activity was reduced. When RecX Hs was present before the formation of RecA filaments (RecA-ssDNA), inhibition of ATPase activity was substantially reduced and excess ssDNA also partially suppressed this inhibition. The results suggest that the RecX Hs protein negatively modulates the RecA Hs activities by protein-protein interactions and also by DNA-protein interactions.

  15. Protein-directed modulation of high-LET hyperthermic radiosensitization

    International Nuclear Information System (INIS)

    Chang, P.Y.

    1991-01-01

    A pair of Chinese Hamster Ovary cell lines, the wild-type CHO-SC1, and its temperature-sensitive mutant (CHO-tsH1) was used to examine the importance of protein synthesis in the development of thermotolerance. The classical biphasic thermotolerant survival response to hyperthermia was observed in the SC1 cells after continuous heating at 41.5C to 42.5C, while tsH1 showed no thermotolerance. In separate experiments, each cell line was triggered and challenged at 45C. The heat doses were separated with graded incubaton periods at 35C or 40C for thermotolerance development. SC1 cells expressed thermoresistance, with the synthesis of heat shock proteins, under both incubation conditions. tsH1 cells expressed thermotolerance similar to that seen in the SC1 cells when incubated at 35C, but the survival response with the non-permissive 40C incubation was much reduced in the absence of protein synthesis. The combined effects of heavy-ion radiation and hyperthermia were examined using the same cell system. A mild heat dose of 41.5C was used in conjunction with Neon particle radiation of various high LET values. The cell killing effects were highly dependent on the sequence of application of heat and Neon radiation. Heat applied immediately after Neon irradiation was more cytotoxic to SC1 cells than when heat was applied prior to the irradiation. The ability of cells to synthesize new proteins plays a key role in this sequence-dependent thermal radiosensitization. In the absence of protein synthesis in the tsH1 cells, the high-LET thermal enhancement for cell-killing was unchanged regardless of the sequence. In the presence of protein synthetic activity in the SC1 cells, the thermal enhancement of radiation-induced cell killing was LET-dependent

  16. Infection by chikungunya virus modulates the expression of several proteins in Aedes aegypti salivary glands

    Directory of Open Access Journals (Sweden)

    Tchankouo-Nguetcheu Stephane

    2012-11-01

    Full Text Available Abstract Background Arthropod-borne viral infections cause several emerging and resurging infectious diseases. Among the diseases caused by arboviruses, chikungunya is responsible for a high level of severe human disease worldwide. The salivary glands of mosquitoes are the last barrier before pathogen transmission. Methods We undertook a proteomic approach to characterize the key virus/vector interactions and host protein modifications that occur in the salivary glands that could be responsible for viral transmission by using quantitative two-dimensional electrophoresis. Results We defined the protein modulations in the salivary glands of Aedes aegypti that were triggered 3 and 5 days after an oral infection (3 and 5 DPI with chikungunya virus (CHIKV. Gel profile comparisons showed that CHIKV at 3 DPI modulated the level of 13 proteins, and at 5 DPI 20 proteins. The amount of 10 putatively secreted proteins was regulated at both time points. These proteins were implicated in blood-feeding or in immunity, but many have no known function. CHIKV also modulated the quantity of proteins involved in several metabolic pathways and in cell signalling. Conclusion Our study constitutes the first analysis of the protein response of Aedes aegypti salivary glands infected with CHIKV. We found that the differentially regulated proteins in response to viral infection include structural proteins and enzymes for several metabolic pathways. Some may favour virus survival, replication and transmission, suggesting a subversion of the insect cell metabolism by arboviruses. For example, proteins involved in blood-feeding such as the short D7, an adenosine deaminase and inosine-uridine preferring nucleoside hydrolase, may favour virus transmission by exerting an increased anti-inflammatory effect. This would allow the vector to bite without the bite being detected. Other proteins, like the anti-freeze protein, may support vector protection.

  17. Use of hydrostatic pressure for modulation of protein chemical modification and enzymatic selectivity.

    Science.gov (United States)

    Makarov, Alexey A; Helmy, Roy; Joyce, Leo; Reibarkh, Mikhail; Maust, Mathew; Ren, Sumei; Mergelsberg, Ingrid; Welch, Christopher J

    2016-05-11

    Using hydrostatic pressure to induce protein conformational changes can be a powerful tool for altering the availability of protein reactive sites and for changing the selectivity of enzymatic reactions. Using a pressure apparatus, it has been demonstrated that hydrostatic pressure can be used to modulate the reactivity of lysine residues of the protein ubiquitin with a water-soluble amine-specific homobifunctional coupling agent. Fewer reactive lysine residues were observed when the reaction was carried out under elevated pressure of 3 kbar, consistent with a pressure-induced conformational change of ubiquitin that results in fewer exposed lysine residues. Additionally, modulation of the stereoselectivity of an enzymatic transamination reaction was observed at elevated hydrostatic pressure. In one case, the minor diasteromeric product formed at atmospheric pressure became the major product at elevated pressure. Such pressure-induced alterations of protein reactivity may provide an important new tool for enzymatic reactions and the chemical modification of proteins.

  18. Modulation of the Chromatin Phosphoproteome by the Haspin Protein Kinase

    DEFF Research Database (Denmark)

    Maiolica, Alessio; de Medina-Redondo, Maria; Schoof, Erwin

    2014-01-01

    , histone H3 is the only confirmed Haspin substrate. We used a combination of biochemical, pharmacological, and mass spectrometric approaches to study the consequences of Haspin inhibition in mitotic cells. We quantified 3964 phosphorylation sites on chromatin- associated proteins and identified a Haspin...

  19. Efficient and accurate Greedy Search Methods for mining functional modules in protein interaction networks.

    Science.gov (United States)

    He, Jieyue; Li, Chaojun; Ye, Baoliu; Zhong, Wei

    2012-06-25

    Most computational algorithms mainly focus on detecting highly connected subgraphs in PPI networks as protein complexes but ignore their inherent organization. Furthermore, many of these algorithms are computationally expensive. However, recent analysis indicates that experimentally detected protein complexes generally contain Core/attachment structures. In this paper, a Greedy Search Method based on Core-Attachment structure (GSM-CA) is proposed. The GSM-CA method detects densely connected regions in large protein-protein interaction networks based on the edge weight and two criteria for determining core nodes and attachment nodes. The GSM-CA method improves the prediction accuracy compared to other similar module detection approaches, however it is computationally expensive. Many module detection approaches are based on the traditional hierarchical methods, which is also computationally inefficient because the hierarchical tree structure produced by these approaches cannot provide adequate information to identify whether a network belongs to a module structure or not. In order to speed up the computational process, the Greedy Search Method based on Fast Clustering (GSM-FC) is proposed in this work. The edge weight based GSM-FC method uses a greedy procedure to traverse all edges just once to separate the network into the suitable set of modules. The proposed methods are applied to the protein interaction network of S. cerevisiae. Experimental results indicate that many significant functional modules are detected, most of which match the known complexes. Results also demonstrate that the GSM-FC algorithm is faster and more accurate as compared to other competing algorithms. Based on the new edge weight definition, the proposed algorithm takes advantages of the greedy search procedure to separate the network into the suitable set of modules. Experimental analysis shows that the identified modules are statistically significant. The algorithm can reduce the

  20. Altering protein surface charge with chemical modification modulates protein–gold nanoparticle aggregation

    International Nuclear Information System (INIS)

    Jamison, Jennifer A.; Bryant, Erika L.; Kadali, Shyam B.; Wong, Michael S.; Colvin, Vicki L.; Matthews, Kathleen S.; Calabretta, Michelle K.

    2011-01-01

    Gold nanoparticles (AuNP) can interact with a wide range of molecules including proteins. Whereas significant attention has focused on modifying the nanoparticle surface to regulate protein–AuNP assembly or influence the formation of the protein “corona,” modification of the protein surface as a mechanism to modulate protein–AuNP interaction has been less explored. Here, we examine this possibility utilizing three small globular proteins—lysozyme with high isoelectric point (pI) and established interactions with AuNP; α-lactalbumin with similar tertiary fold to lysozyme but low pI; and myoglobin with a different globular fold and an intermediate pI. We first chemically modified these proteins to alter their charged surface functionalities, and thereby shift protein pI, and then applied multiple methods to assess protein–AuNP assembly. At pH values lower than the anticipated pI of the modified protein, AuNP exposure elicits changes in the optical absorbance of the protein–NP solutions and other properties due to aggregate formation. Above the expected pI, however, protein–AuNP interaction is minimal, and both components remain isolated, presumably because both species are negatively charged. These data demonstrate that protein modification provides a powerful tool for modulating whether nanoparticle–protein interactions result in material aggregation. The results also underscore that naturally occurring protein modifications found in vivo may be critical in defining nanoparticle–protein corona compositions.

  1. The efficiency of mechanisms driving Subauroral Polarization Streams (SAPS

    Directory of Open Access Journals (Sweden)

    H. Wang

    2011-07-01

    Full Text Available We have investigated the seasonal and diurnal variation of SAPS (Subauroral Polarization Streams occurrence based on 3663 SAPS events identified in DMSP ion drift observations in the Northern Hemisphere during July 2001 and June 2003. Their relationships with high latitude convection electric field, substorm, and ionospheric conductivity have been addressed. SAPS occurrences show a clear seasonal and diurnal variation with the occurrence rates varying by a factor of 5. It is found that the convection electric field might play a dominant role in association with SAPS occurrence. Peak convection electric fields mark the occurrence maximum of SAPS. Substorm might play a secondary role related to SAPS occurrence. It account for the secondary maximum in SAPS occurrence rate during December solstice. Our work demonstrates that the substorm induced electric field can develop SAPS during relatively low global convection. Somewhat low fluxtube-integrated conductivity is favorable for SAPS to develop. Another topic is the temporal relationship between SAPS and substorm phases. SAPS can occur at substorm onset, substorm expansion and recovery phases. Most probably SAPS tend to occur 60 min/45 min after substorm onset during quiet/more disturbed geomagnetic activity, respectively. This indicates that enhanced global convection helps SAPS to develop quicker during substorms. The peak plasma velocity of SAPS is increased on average only by 5–10 % by the substorm process.

  2. Modulation of Membrane Protein Lateral Mobility by Polyphosphates and Polyamines

    Science.gov (United States)

    Schindler, Melvin; Koppel, Dennis E.; Sheetz, Michael P.

    1980-03-01

    The lateral mobility of fluorescein-labeled membrane glycoproteins was measured in whole unlysed erythrocytes and erythrocyte ghosts by the technique of ``fluorescence redistribution after fusion.'' Measurements were made on polyethylene glycol-fused cell pairs in which only one member of the couplet was initially fluorescently labeled. Diffusion coefficients were estimated from the rate of fluorescence redistribution determined from successive scans with a focused laser beam across individual fused pairs. This technique allows for the analysis of diffusion within cell membranes without the possible damaging photochemical events caused by photobleaching. It was found that lateral mobility of erythrocyte proteins can be increased by the addition of polyphosphates (i.e., ATP and 2,3-diphosphoglycerate) and decreased by the addition of organic polyamines (i.e., neomycin and spermine). This control is exerted by these molecules only when they contact the cytoplasmic side of the membrane and is not dependent upon high-energy phosphates. Microviscosity experiments employing diphenylhexatriene demonstrated no changes in membrane lipid state as a function of these reagents. Our results, in conjunction with data on the physical interactions of cytoskeletal proteins, suggest that the diffusion effector molecules alter the lateral mobility of erythrocyte membrane proteins through modifications of interactions in the shell, which is composed of spectrin, actin, and component 4.1.

  3. Ubiquilin 1 modulates amyloid precursor protein trafficking and Abeta secretion.

    Science.gov (United States)

    Hiltunen, Mikko; Lu, Alice; Thomas, Anne V; Romano, Donna M; Kim, Minji; Jones, Phill B; Xie, Zhongcong; Kounnas, Maria Z; Wagner, Steven L; Berezovska, Oksana; Hyman, Bradley T; Tesco, Giuseppina; Bertram, Lars; Tanzi, Rudolph E

    2006-10-27

    Ubiquilin 1 (UBQLN1) is a ubiquitin-like protein, which has been shown to play a central role in regulating the proteasomal degradation of various proteins, including the presenilins. We recently reported that DNA variants in UBQLN1 increase the risk for Alzheimer disease, by influencing expression of this gene in brain. Here we present the first assessment of the effects of UBQLN1 on the metabolism of the amyloid precursor protein (APP). For this purpose, we employed RNA interference to down-regulate UBQLN1 in a variety of neuronal and non-neuronal cell lines. We demonstrate that down-regulation of UBQLN1 accelerates the maturation and intracellular trafficking of APP, while not interfering with alpha-, beta-, or gamma-secretase levels or activity. UBQLN1 knockdown increased the ratio of APP mature/immature, increased levels of full-length APP on the cell surface, and enhanced the secretion of sAPP (alpha- and beta-forms). Moreover, UBQLN1 knockdown increased levels of secreted Abeta40 and Abeta42. Finally, employing a fluorescence resonance energy transfer-based assay, we show that UBQLN1 and APP come into close proximity in intact cells, independently of the presence of the presenilins. Collectively, our findings suggest that UBQLN1 may normally serve as a cytoplasmic "gatekeeper" that may control APP trafficking from intracellular compartments to the cell surface. These findings suggest that changes in UBQLN1 steady-state levels affect APP trafficking and processing, thereby influencing the generation of Abeta.

  4. Protein kinase inhibitor peptide (PKI): a family of endogenous neuropeptides that modulate neuronal cAMP-dependent protein kinase function.

    Science.gov (United States)

    Dalton, George D; Dewey, William L

    2006-02-01

    Signal transduction cascades involving cAMP-dependent protein kinase are highly conserved among a wide variety of organisms. Given the universal nature of this enzyme it is not surprising that cAMP-dependent protein kinase plays a critical role in numerous cellular processes. This is particularly evident in the nervous system where cAMP-dependent protein kinase is involved in neurotransmitter release, gene transcription, and synaptic plasticity. Protein kinase inhibitor peptide (PKI) is an endogenous thermostable peptide that modulates cAMP-dependent protein kinase function. PKI contains two distinct functional domains within its amino acid sequence that allow it to: (1) potently and specifically inhibit the activity of the free catalytic subunit of cAMP-dependent protein kinase and (2) export the free catalytic subunit of cAMP-dependent protein kinase from the nucleus. Three distinct PKI isoforms (PKIalpha, PKIbeta, PKIgamma) have been identified and each isoform is expressed in the brain. PKI modulates neuronal synaptic activity, while PKI also is involved in morphogenesis and symmetrical left-right axis formation. In addition, PKI also plays a role in regulating gene expression induced by cAMP-dependent protein kinase. Future studies should identify novel physiological functions for endogenous PKI both in the nervous system and throughout the body. Most interesting will be the determination whether functional differences exist between individual PKI isoforms which is an intriguing possibility since these isoforms exhibit: (1) cell-type specific tissue expression patterns, (2) different potencies for the inhibition of cAMP-dependent protein kinase activity, and (3) expression patterns that are hormonally, developmentally and cell-cycle regulated. Finally, synthetic peptide analogs of endogenous PKI will continue to be invaluable tools that are used to elucidate the role of cAMP-dependent protein kinase in a variety of cellular processes throughout the nervous

  5. Studies on the interactions of SAP-1 (an N-terminal truncated form of cystatin S) with its binding partners by CD-spectroscopic and molecular docking methods.

    Science.gov (United States)

    Yadav, Vikash Kumar; Mandal, Rahul Shubhra; Puniya, Bhanwar Lal; Singh, Sarman; Yadav, Savita

    2015-01-01

    SAP-1 is a 113 amino acid long single-chain protein which belongs to the type 2 cystatin gene family. In our previous study, we have purified SAP-1 from human seminal plasma and observed its cross-class inhibitory property. At this time, we report the interaction of SAP-1 with diverse proteases and its binding partners by CD-spectroscopic and molecular docking methods. The circular dichroism (CD) spectroscopic studies demonstrate that the conformation of SAP-1 is changed after its complexation with proteases, and the alterations in protein secondary structure are quantitatively calculated with increase of α-helices and reduction of β-strand content. To get insight into the interactions between SAP-1 and proteases, we make an effort to model the three-dimensional structure of SAP-1 by molecular modeling and verify its stability and viability through molecular dynamics simulations and finally complexed with different proteases using ClusPro 2.0 Server. A high degree of shape complementarity is examined within the complexes, stabilized by a number of hydrogen bonds (HBs) and hydrophobic interactions. Using HB analyses in different protein complexes, we have identified a series of key residues that may be involved in the interactions between SAP-1 and proteases. These findings will assist to understand the mechanism of inhibition of SAP-1 for different proteases and provide intimation for further research.

  6. Positive lysosomal modulation as a unique strategy to treat age-related protein accumulation diseases.

    Science.gov (United States)

    Bahr, Ben A; Wisniewski, Meagan L; Butler, David

    2012-04-01

    Lysosomes are involved in degrading and recycling cellular ingredients, and their disruption with age may contribute to amyloidogenesis, paired helical filaments (PHFs), and α-synuclein and mutant huntingtin aggregation. Lysosomal cathepsins are upregulated by accumulating proteins and more so by the modulator Z-Phe-Ala-diazomethylketone (PADK). Such positive modulators of the lysosomal system have been studied in the well-characterized hippocampal slice model of protein accumulation that exhibits the pathogenic cascade of tau aggregation, tubulin breakdown, microtubule destabilization, transport failure, and synaptic decline. Active cathepsins were upregulated by PADK; Rab proteins were modified as well, indicating enhanced trafficking, whereas lysosome-associated membrane protein and proteasome markers were unchanged. Lysosomal modulation reduced the pre-existing PHF deposits, restored tubulin structure and transport, and recovered synaptic components. Further proof-of-principle studies used Alzheimer disease mouse models. It was recently reported that systemic PADK administration caused dramatic increases in cathepsin B protein and activity levels, whereas neprilysin, insulin-degrading enzyme, α-secretase, and β-secretase were unaffected by PADK. In the transgenic models, PADK treatment resulted in clearance of intracellular amyloid beta (Aβ) peptide and concomitant reduction of extracellular deposits. Production of the less pathogenic Aβ(1-38) peptide corresponded with decreased levels of Aβ(1-42), supporting the lysosome's antiamyloidogenic role through intracellular truncation. Amelioration of synaptic and behavioral deficits also indicates a neuroprotective function of the lysosomal system, identifying lysosomal modulation as an avenue for disease-modifying therapies. From the in vitro and in vivo findings, unique lysosomal modulators represent a minimally invasive, pharmacologically controlled strategy against protein accumulation disorders to enhance

  7. Analysis list: SAP30 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SAP30 Blood,Pluripotent stem cell + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/SAP...30.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/SAP30.5.tsv http://dbarchive....biosciencedbc.jp/kyushu-u/hg19/target/SAP30.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/SAP...30.Blood.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/SAP30.Pluripote

  8. Cooperative DNA Recognition Modulated by an Interplay between Protein-Protein Interactions and DNA-Mediated Allostery.

    Directory of Open Access Journals (Sweden)

    Felipe Merino

    2015-06-01

    Full Text Available Highly specific transcriptional regulation depends on the cooperative association of transcription factors into enhanceosomes. Usually, their DNA-binding cooperativity originates from either direct interactions or DNA-mediated allostery. Here, we performed unbiased molecular simulations followed by simulations of protein-DNA unbinding and free energy profiling to study the cooperative DNA recognition by OCT4 and SOX2, key components of enhanceosomes in pluripotent cells. We found that SOX2 influences the orientation and dynamics of the DNA-bound configuration of OCT4. In addition SOX2 modifies the unbinding free energy profiles of both DNA-binding domains of OCT4, the POU specific and POU homeodomain, despite interacting directly only with the first. Thus, we demonstrate that the OCT4-SOX2 cooperativity is modulated by an interplay between protein-protein interactions and DNA-mediated allostery. Further, we estimated the change in OCT4-DNA binding free energy due to the cooperativity with SOX2, observed a good agreement with experimental measurements, and found that SOX2 affects the relative DNA-binding strength of the two OCT4 domains. Based on these findings, we propose that available interaction partners in different biological contexts modulate the DNA exploration routes of multi-domain transcription factors such as OCT4. We consider the OCT4-SOX2 cooperativity as a paradigm of how specificity of transcriptional regulation is achieved through concerted modulation of protein-DNA recognition by different types of interactions.

  9. Complement factor H family proteins in their non-canonical role as modulators of cellular functions.

    Science.gov (United States)

    Józsi, Mihály; Schneider, Andrea E; Kárpáti, Éva; Sándor, Noémi

    2018-01-04

    Complement factor H is a major regulator of the alternative pathway of the complement system. The factor H-related proteins are less characterized, but recent data indicate that they rather promote complement activation. These proteins have some common ligands with factor H and have both overlapping and distinct functions depending on domain composition and the degree of conservation of amino acid sequence. Factor H and some of the factor H-related proteins also appear in a non-canonical function that is beyond their role in the modulation of complement activation. This review covers our current understanding on this emerging role of factor H family proteins in modulating the activation and function of various cells by binding to receptors or receptor ligands. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Stability and structure of the membrane protein transporter Ffh is modulated by substrates and lipids

    DEFF Research Database (Denmark)

    Reinau, Marika Ejby; Otzen, Daniel

    2009-01-01

    the apoprotein. Escherichia coli lipid and DOPG (and to a smaller extent DOPC) increase Ffh's α-helical content, possibly related to Ffh's role in guiding membrane proteins to the membrane. Binding is largely mediated by electrostatic interactions but does not protect Ffh against trypsinolysis. We conclude...... that Ffh is a structurally flexible and dynamic protein whose stability is significantly modulated by the environment. © 2009 Elsevier Inc. All rights reserved....

  11. Constituents and Antioxidant Activity of Bleeding Sap from Various Xinjiang Grapes.

    Science.gov (United States)

    Le, Lv; Umar, Anwar; Iburaim, Arkin; Moore, Nicholas

    2017-10-01

    Wine grape sap or bleeding sap of grapes (GBS) is commonly used in Xinjiang (China) for therapeutic aims. Do variations in composition related to region and variety affect its properties? GBS samples originating in various parts of Xinjiang (Turpan, Hotan, Kashgar, and Atush) were tested for phenols and polyphenols, polysaccharides, saponin, proteins, individual amino acids, and minerals. Their antioxidant activity was measured using ascorbic acid as reference. Polyphenol content varied from 2.6 to 6.6 mg/L, polysaccharides 18.3-816 mg/L, saponin 6.25-106 mg/L, and protein 3.0-22.4 mg/L. Mineral elements and amino acids ranged from 6.20 to 201.2 mg/L and 0.06-118.7 mg/L, respectively. ·OH scavenging ability varied from 70% to over 90%, higher than Vitamin C. Grapes from Turpan had lower antioxidant activity than other grapes even though the polyphenol content was generally higher. Bleeding sap of Xinjiang grape is rich in amino acids, polysaccharides, polyphenols, and protein. The contents are different according to the origin, related possibly to species, climate, and environment. Antioxidant effects were not correlated with polyphenol content. Antioxidant activity of plants or plant extracts is often associated with polyphenolsBleeding sap of grapes has strong antioxidant propertiesBleeding sap from different grape varieties from different parts of Xinjiang (China) had different polyphenol concentrationsThere was no correlation of polyphenol concentrations with antioxidant activity. Abbreviations used: GBS: Bleeding sap of grapes; PITC: phenyl isothiocyanate.

  12. Targeting HSP90 and monoclonal protein trafficking modulates the unfolded protein response, chaperone regulation and apoptosis in myeloma cells

    International Nuclear Information System (INIS)

    Born, E J; Hartman, S V; Holstein, S A

    2013-01-01

    Multiple myeloma is characterized by the production of substantial quantities of monoclonal protein. We have previously demonstrated that select inhibitors of the isoprenoid biosynthetic pathway (IBP) induce apoptosis of myeloma cells via inhibition of Rab geranylgeranylation, leading to disruption of monoclonal protein trafficking and induction of the unfolded protein response (UPR) pathway. Heat-shock protein 90 (HSP90) inhibitors disrupt protein folding and are currently under clinical investigation in myeloma. The effects of combining IBP and HSP90 inhibitors on cell death, monoclonal protein trafficking, the UPR and chaperone regulation were investigated in monoclonal protein-producing cells. An enhanced induction of cell death was observed following treatment with IBP and HSP90 inhibitors, which occurred through both ER stress and non-ER stress pathways. The HSP90 inhibitor 17-AAG abrogated the effects of the IBP inhibitors on intracellular monoclonal protein levels and localization as well as induction of the UPR in myeloma cells. Disparate effects on chaperone expression were observed in myeloma vs amyloid light chain cells. Here we demonstrate that the novel strategy of targeting MP trafficking in concert with HSP90 enhances myeloma cell death via a complex modulation of ER stress, UPR, and cell death pathways

  13. Beneficial effects of Acer okamotoanum sap on L-NAME-induced hypertension-like symptoms in a rat model.

    Science.gov (United States)

    Yang, Hyun; Hwang, Inho; Koo, Tae-Hyoung; Ahn, Hyo-Jin; Kim, Sun; Park, Mi-Jin; Choi, Won-Sil; Kang, Ha-Young; Choi, In-Gyu; Choi, Kyung-Chul; Jeung, Eui-Bae

    2012-02-01

    The sap of Acer okamotoanum has been termed 'bone-benefit-water' in Korea owing to its mineral and sugar content. In particular, the calcium (Ca) and potassium (K) concentrations of the sap of Acer okamotoanum are 40- and 20-times higher, respectively, than commercial spring water. In the present study, we examined whether Acer okamotoanum sap improves or prevents hypertension-like symptoms in a rat model. Male Sprague-Dawley rats (8-weeks-old) were provided commercial spring water supplemented with 25, 50 or 100% Acer okamotoanum sap, 3% potassium ions (K+) or captopril, and treated daily for 2 weeks with NG-nitro-L-arginine methyl ester (L-NAME; 100 mg/kg/day) by subcutaneous injection, in order to induce hypertensive symptoms. Rats were euthanized 6 h following the final injection. To assess the effect of the sap on hypertension-like symptoms, we examined the mean blood pressure (BP), protein levels and localization of endothelial nitric oxide synthase (eNOS) in the descending aorta of the rats. BP levels were significantly lower in hypertensive rats received 25, 50 and 100% sap compared with rats who were administered only commercial spring water. Protein levels of eNOS were repressed in L-NAME-only-treated rats, but were elevated in the descending aorta of rats administered captopril, K+ water and Acer okamotoanum sap (25, 50 and 100%) up to the level of the sham group provided commercial spring water, and then injected with dimethyl sulfoxide for the same period of time. Localized eNOS protein was abundantly expressed in the perivascular descending aorta adipose tissue of the rats. Taken together, these results demonstrated that the sap of Acer okamotoanum ameliorated high BP induced by L-NAME treatment in a rat model.

  14. Cucurbit[8]uril templated supramolecular ring structure formation and protein assembly modulation

    NARCIS (Netherlands)

    Ramaekers, M.; Wijnands, S.P.W.; van Dongen, J.L.J.; Brunsveld, L.; Dankers, P.Y.W.

    2015-01-01

    The interplay of Phe-Gly-Gly (FGG)-tagged proteins and bivalent FGG-tagged penta(ethylene glycol) as guest molecules with cucurbit[8]uril (Q8) hosts is studied to modulate the supramolecular assembly process. Ring structure formation of the bivalent guest molecule with Q8 leads to enhanced binding

  15. Ceramide-Protein Interactions Modulate Ceramide-Associated Lipotoxic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Stanley M. Walls

    2018-03-01

    Full Text Available Lipotoxic cardiomyopathy (LCM is characterized by abnormal myocardial accumulation of lipids, including ceramide; however, the contribution of ceramide to the etiology of LCM is unclear. Here, we investigated the association of ceramide metabolism and ceramide-interacting proteins (CIPs in LCM in the Drosophila heart model. We find that ceramide feeding or ceramide-elevating genetic manipulations are strongly associated with cardiac dilation and defects in contractility. High ceramide-associated LCM is prevented by inhibiting ceramide synthesis, establishing a robust model of direct ceramide-associated LCM, corroborating previous indirect evidence in mammals. We identified several CIPs from mouse heart and Drosophila extracts, including caspase activator Annexin-X, myosin chaperone Unc-45, and lipogenic enzyme FASN1, and remarkably, their cardiac-specific manipulation can prevent LCM. Collectively, these data suggest that high ceramide-associated lipotoxicity is mediated, in part, through altering caspase activation, sarcomeric maintenance, and lipogenesis, thus providing evidence for conserved mechanisms in LCM pathogenesis in mammals.

  16. 21 CFR 133.186 - Sap sago cheese.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Sap sago cheese. 133.186 Section 133.186 Food and... Products § 133.186 Sap sago cheese. (a) Description. (1) Sap sago cheese is the food prepared by the... method described in § 133.5. Sap sago cheese is not less than 5 months old. (2) One or more of the dairy...

  17. Simplified Swarm Optimization-Based Function Module Detection in Protein–Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Xianghan Zheng

    2017-04-01

    Full Text Available Proteomics research has become one of the most important topics in the field of life science and natural science. At present, research on protein–protein interaction networks (PPIN mainly focuses on detecting protein complexes or function modules. However, existing approaches are either ineffective or incomplete. In this paper, we investigate detection mechanisms of functional modules in PPIN, including open database, existing detection algorithms, and recent solutions. After that, we describe the proposed approach based on the simplified swarm optimization (SSO algorithm and the knowledge of Gene Ontology (GO. The proposed solution implements the SSO algorithm for clustering proteins with similar function, and imports biological gene ontology knowledge for further identifying function complexes and improving detection accuracy. Furthermore, we use four different categories of species datasets for experiment: fruitfly, mouse, scere, and human. The testing and analysis result show that the proposed solution is feasible, efficient, and could achieve a higher accuracy of prediction than existing approaches.

  18. 49 CFR 655.52 - Substance abuse professional (SAP).

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Substance abuse professional (SAP). 655.52 Section 655.52 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL TRANSIT... OPERATIONS Drug and Alcohol Testing Procedures § 655.52 Substance abuse professional (SAP). The SAP must...

  19. [Rainfall effects on the sap flow of Hedysarum scoparium.

    Science.gov (United States)

    Yang, Qiang; Zha, Than Shan; Jia, Xin; Qin, Shu Gao; Qian, Duo; Guo, Xiao Nan; Chen, Guo Peng

    2016-03-01

    In arid and semi-arid areas, plant physiological responses to water availability depend largely on the intensity and frequency of rain events. Knowledge on the responses of xerophytic plants to rain events is important for predicting the structure and functioning of dryland ecosystems under changing climate. The sap flow of Hedysarum scoparium in the Mu Us Sand Land was continuously measured during the growing season of 2012 and 2013. The objectives were to quantify the dynamics of sap flow under different weather conditions, and to examine the responses of sap flow to rain events of different sizes. The results showed that the daily sap flow rates of H. scoparium were lower on rainy days than on clear days. On clear days, the sap flow of H. scoparium showed a midday plateau, and was positively correlated with solar radiation and relative humidity. On rainy days, the sap flow fluctuated at low levels, and was positively correlated with solar radiation and air temperature. Rain events not only affected the sap flow on rainy days through variations in climatic factors (e.g., solar radiation and air temperature), but also affected post-rainfall sap flow velocities though changes in soil moisture. Small rain events (sap flow, whereas large rain events (>20 mm) significantly increased the sap flow on days following rainfall. Rain-wetted soil conditions not only resulted in higher sap flow velocities, but also enhanced the sensitivity of sap flow to solar radiation, vapor pressure deficit and air temperature.

  20. Conservation of element concentration in xylem sap of red spruce

    Science.gov (United States)

    Kevin T. Smith; Walter C. Shortle

    2001-01-01

    We investigated the chemistry of xylem sap as a marker of red spruce metabolism and soil chemistry at three locations in northern New England. A Scholander pressure chamber was used to extract xylem sap from roots and branches cut from mature trees in early June and September. Root sap contained significantly greater concentrations of K, Ca, Mg, Mn, and A1 than branch...

  1. In Vitro Calcite Crystal Morphology Is Modulated by Otoconial Proteins Otolin-1 and Otoconin-90

    Science.gov (United States)

    Moreland, K. Trent; Hong, Mina; Lu, Wenfu; Rowley, Christopher W.; Ornitz, David M.; De Yoreo, James J.; Thalmann, Ruediger

    2014-01-01

    Otoconia are formed embryonically and are instrumental in detecting linear acceleration and gravity. Degeneration and fragmentation of otoconia in elderly patients leads to imbalance resulting in higher frequency of falls that are positively correlated with the incidence of bone fractures and death. In this work we investigate the roles otoconial proteins Otolin-1 and Otoconin 90 (OC90) perform in the formation of otoconia. We demonstrate by rotary shadowing and atomic force microscopy (AFM) experiments that Otolin-1 forms homomeric protein complexes and self-assembled networks supporting the hypothesis that Otolin-1 serves as a scaffold protein of otoconia. Our calcium carbonate crystal growth data demonstrate that Otolin-1 and OC90 modulate in vitro calcite crystal morphology but neither protein is sufficient to produce the shape of otoconia. Coadministration of these proteins produces synergistic effects on crystal morphology that contribute to morphology resembling otoconia. PMID:24748133

  2. Gs protein peptidomimetics as allosteric modulators of the β2-adrenergic receptor

    DEFF Research Database (Denmark)

    Boyhus, Lotte Emilie; Danielsen, Mia; Bengtson, Nina Smidt

    2018-01-01

    A series of Gs protein peptidomimetics were designed and synthesised based on the published X-ray crystal structure of the active state β2-Adrenergic receptor (β2AR) in complex with the Gs protein (PDB 3SN6). We hypothesised that such peptidomimetics may function as allosteric modulators...... that target the intracellular Gs protein binding site of the β2AR. Peptidomimetics were designed to mimic the 15 residue C-Terminal α-helix of the Gs protein and were pre-organised in a helical conformation by (i, i + 4)-stapling using copper catalysed azide alkyne cycloaddition. Linear and stapled...... be able to compete with the native Gs protein for the intracellular binding site to block ISO-induced cAMP formation, but are unable to stabilise an active-like receptor conformation....

  3. Reverse micelles as a tool for probing solvent modulation of protein dynamics: Reverse micelle encapsulated hemoglobin

    Science.gov (United States)

    Roche, Camille J.; Dantsker, David; Heller, Elizabeth R.; Sabat, Joseph E.; Friedman, Joel M.

    2013-08-01

    Hydration waters impact protein dynamics. Dissecting the interplay between hydration waters and dynamics requires a protein that manifests a broad range of dynamics. Proteins in reverse micelles (RMs) have promise as tools to achieve this objective because the water content can be manipulated. Hemoglobin is an appropriate tool with which to probe hydration effects. We describe both a protocol for hemoglobin encapsulation in reverse micelles and a facile method using PEG and cosolvents to manipulate water content. Hydration properties are probed using the water-sensitive fluorescence from Hb bound pyranine and covalently attached Badan. Protein dynamics are probed through ligand recombination traces derived from photodissociated carbonmonoxy hemoglobin on a log scale that exposes the potential role of both α and β solvent fluctuations in modulating protein dynamics. The results open the possibility of probing hydration level phenomena in this system using a combination of NMR and optical probes.

  4. The Natural Killer Cell Cytotoxic Function Is Modulated by HIV-1 Accessory Proteins

    Directory of Open Access Journals (Sweden)

    Edward Barker

    2011-07-01

    Full Text Available Natural killer (NK cells’ major role in the control of viruses is to eliminate established infected cells. The capacity of NK cells to kill virus-infected cells is dependent on the interactions between ligands on the infected cell and receptors on the NK cell surface. Because of the importance of ligand-receptor interactions in modulating the NK cell cytotoxic response, HIV has developed strategies to regulate various NK cell ligands making the infected cell surprisingly refractory to NK cell lysis. This is perplexing because the HIV-1 accessory protein Vpr induces expression of ligands for the NK cell activating receptor, NKG2D. In addition, the accessory protein Nef removes the inhibitory ligands HLA-A and -B. The reason for the ineffective killing by NK cells despite the strong potential to eliminate infected cells is due to HIV-1 Vpu’s ability to down modulate the co-activation ligand, NTB-A, from the cell surface. Down modulation of NTB-A prevents efficient NK cell degranulation. This review will focus on the mechanisms through which the HIV-1 accessory proteins modulate their respective ligands, and its implication for NK cell killing of HIV-infected cells.

  5. Comparison of size modulation and conventional standard automated perimetry with the 24-2 test protocol in glaucoma patients

    Science.gov (United States)

    Hirasawa, Kazunori; Shoji, Nobuyuki; Kasahara, Masayuki; Matsumura, Kazuhiro; Shimizu, Kimiya

    2016-05-01

    This prospective randomized study compared test results of size modulation standard automated perimetry (SM-SAP) performed with the Octopus 600 and conventional SAP (C-SAP) performed with the Humphrey Field Analyzer (HFA) in glaucoma patients. Eighty-eight eyes of 88 glaucoma patients underwent SM-SAP and C-SAP tests with the Octopus 600 24-2 Dynamic and HFA 24-2 SITA-Standard, respectively. Fovea threshold, mean defect, and square loss variance of SM-SAP were significantly correlated with the corresponding C-SAP indices (P < 0.001). The false-positive rate was slightly lower, and false-negative rate slightly higher, with SM-SAP than C-SAP (P = 0.002). Point-wise threshold values obtained with SM-SAP were moderately to strongly correlated with those obtained with C-SAP (P < 0.001). The correlation coefficients of the central zone were significantly lower than those of the middle to peripheral zone (P = 0.031). The size and depth of the visual field (VF) defect were smaller (P = 0.039) and greater (P = 0.043), respectively, on SM-SAP than on C-SAP. Although small differences were observed in VF sensitivity in the central zone, the defect size and depth and the reliability indices between SM-SAP and C-SAP, global indices of the two testing modalities were well correlated.

  6. Two Chimeric Regulators of G-protein Signaling (RGS) Proteins Differentially Modulate Soybean Heterotrimeric G-protein Cycle*

    Science.gov (United States)

    Roy Choudhury, Swarup; Westfall, Corey S.; Laborde, John P.; Bisht, Naveen C.; Jez, Joseph M.; Pandey, Sona

    2012-01-01

    Heterotrimeric G-proteins and the regulator of G-protein signaling (RGS) proteins, which accelerate the inherent GTPase activity of Gα proteins, are common in animals and encoded by large gene families; however, in plants G-protein signaling is thought to be more limited in scope. For example, Arabidopsis thaliana contains one Gα, one Gβ, three Gγ, and one RGS protein. Recent examination of the Glycine max (soybean) genome reveals a larger set of G-protein-related genes and raises the possibility of more intricate G-protein networks than previously observed in plants. Stopped-flow analysis of GTP-binding and GDP/GTP exchange for the four soybean Gα proteins (GmGα1–4) reveals differences in their kinetic properties. The soybean genome encodes two chimeric RGS proteins with an N-terminal seven transmembrane domain and a C-terminal RGS box. Both GmRGS interact with each of the four GmGα and regulate their GTPase activity. The GTPase-accelerating activities of GmRGS1 and -2 differ for each GmGα, suggesting more than one possible rate of the G-protein cycle initiated by each of the Gα proteins. The differential effects of GmRGS1 and GmRGS2 on GmGα1–4 result from a single valine versus alanine difference. The emerging picture suggests complex regulation of the G-protein cycle in soybean and in other plants with expanded G-protein networks. PMID:22474294

  7. Nucleation phenomena in protein folding: the modulating role of protein sequence

    International Nuclear Information System (INIS)

    Travasso, Rui D M; FaIsca, Patricia F N; Gama, Margarida M Telo da

    2007-01-01

    For the vast majority of naturally occurring, small, single-domain proteins, folding is often described as a two-state process that lacks detectable intermediates. This observation has often been rationalized on the basis of a nucleation mechanism for protein folding whose basic premise is the idea that, after completion of a specific set of contacts forming the so-called folding nucleus, the native state is achieved promptly. Here we propose a methodology to identify folding nuclei in small lattice polymers and apply it to the study of protein molecules with a chain length of N = 48. To investigate the extent to which protein topology is a robust determinant of the nucleation mechanism, we compare the nucleation scenario of a native-centric model with that of a sequence-specific model sharing the same native fold. To evaluate the impact of the sequence's finer details in the nucleation mechanism, we consider the folding of two non-homologous sequences. We conclude that, in a sequence-specific model, the folding nucleus is, to some extent, formed by the most stable contacts in the protein and that the less stable linkages in the folding nucleus are solely determined by the fold's topology. We have also found that, independently of the protein sequence, the folding nucleus performs the same 'topological' function. This unifying feature of the nucleation mechanism results from the residues forming the folding nucleus being distributed along the protein chain in a similar and well-defined manner that is determined by the fold's topological features

  8. Modulation of intracellular protein degradation by SSB1-SIS1 chaperon system in yeast S. cerevisiae.

    Science.gov (United States)

    Ohba, M

    1997-06-09

    In prokaryotes, DnaK-DnaJ chaperon is involved in the protein degradation catalyzed by proteases La and ClpA/B complex as shown in E. coli. To extend this into eukaryotic cells, we examined the effects of hsp70 genes, SSA1 and SSB1, and DnaJ genes, SIS1 and YDJ1, on the growth of proteasome subunit mutants of the yeast S. cerevisiae. The results identified SSB1 and SIS1 as a pair of chaperon genes specifically involved in efficient protein turnover in the yeast, whose overexpression suppressed the growth defects caused by the proteasome mutations. Moreover, a single amino acid substitution in the putative peptide-binding site of SSB1 protein profoundly enhanced the suppression activity, indicating that the activity is mediated by the peptide-binding activity of this chaperon. Thus SSB1, with its partner DnaJ, SIS1, modulates the efficiency of protein turnover through its chaperon activity.

  9. Effect of preservation methods of oil palm sap (Elaeis guineensis) on the reproductive indices of male wistar rats.

    Science.gov (United States)

    Ikegwu, Theophilus Maduabuchukwu; Okafor, Gabriel Ifeanyi; Ochiogu, Izuchukwu Shedrack

    2014-12-01

    Thirty male Wistar rats, split into five groups of six rats each, were administered different forms of oil palm tree (Elaeis guineensis) sap samples by gavage based on 1.5% of their weekly body weights. Group 1 which served as control received only water, group 2 received pasteurized palm sap (PPS), group 3 received market palm wine (MPW), group 4 received frozen palm sap (FPS), whereas group 5 received fresh palm sap (FrPS). Chemical composition of the sap samples was determined. Normal feed and water were fed ad libitum. After 2 months of treatment, each male rat group was allowed 7 days to mate with six female Wistar rats. Thereafter, blood and epididymal samples were collected for testosterone assay and sperm count, respectively, before they were humanely sacrificed and testicular tissues taken for testicular histology. Litter weight and size of the pups produced by the females of each group were determined at birth. The sap samples contained carbohydrate (0.01-11.71%), protein (1.56-1.95%), ash (0.22-0.35%), moisture (92.55-98.24%), and alcohol (0.26-3.50%). PPS-treated rat group had significantly (Psap, impacted negatively on the reproductive indices of male animals.

  10. Management of setpoint information using SAP-PM; Gerenciamento das informacoes de setpoints usando o SAP-PM

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Robison Tirre; Pereira, Paulo Manoel Borges [TBG - Transportadora Brasileira Gasoduto Bolivia Brasil S.A., Rio de Janeiro, RJ (Brazil)

    2005-07-01

    It is always a challenge to assure that the set points of field instruments and valves (e.g., transmitters, regulator valves, shut off valves, safety valves, etc) are adjusted in conformity either to the originally designed values or the ones established by the operations team, specially when multiple teams are involved in the activity. In such circumstances, keeping these values updated on proper data sheets is also a defying task. The correct information is essential to the Control Room operators and its accuracy is a step ahead towards operational availability and safety. TBG, through CMMS (Computerized Maintenance Management System) - SAP R/3, PM Module, developed a set of automated tools to integrate data from different environments (reports, handhelds, workflows and procedures), thus allowing allow a better control over the set point adjustment process. (author)

  11. Projekt konverze měny SKK na EUR v ERP SAP

    OpenAIRE

    Kuročkin, Michal

    2008-01-01

    This diploma work is concerned about of euro conversion and its impact on information system ERP SAP in large multinational company. Theoretical part is focused on general scenarios of euro adoption and progress of adoption of euro in Slovakia. Next chapter is describing methods of project management, definitions, subjects and stakeholders, organizational structures and phases of the project. Theoretical parts ends with description of ERP functionality, basic functional modules and general in...

  12. The ribosomal protein uL22 modulates the shape of the nascent protein exit tunnel

    DEFF Research Database (Denmark)

    Wekselman, I.; Zimmerman, E.; Davidovich, C.

    2017-01-01

    in the entrance of theribosomal exit tunnel and interferes with the progression of nas-cent chains. Commonly, resistance to erythromycin is acquiredby alterations of rRNA nucleotides that interact with the drug.Mutations in theb-hairpin of ribosomal protein uL22, which israther distal to the erythromycin binding...... to erythromycin binding pocket and increases its flexi-bility. Based on our results, we suggest a feasble mechanism thatexplains how nanscent proteins can be translated when ery-thromycin is bound to the ribosome. Furthermore, our findingssupport recent studies showing that the interactions betweenuL22...

  13. Exploring protein structure and dynamics through a project-oriented biochemistry laboratory module.

    Science.gov (United States)

    Lipchock, James M; Ginther, Patrick S; Douglas, Bonnie B; Bird, Kelly E; Patrick Loria, J

    2017-09-01

    Here, we present a 10-week project-oriented laboratory module designed to provide a course-based undergraduate research experience in biochemistry that emphasizes the importance of biomolecular structure and dynamics in enzyme function. This module explores the impact of mutagenesis on an important active site loop for a biomedically-relevant human enzyme, protein tyrosine phosphatase 1B (PTP1B). Over the course of the semester students guide their own mutant of PTP1B from conception to characterization in a cost-effective manner and gain exposure to fundamental techniques in biochemistry, including site-directed DNA mutagenesis, bacterial recombinant protein expression, affinity column purification, protein quantitation, SDS-PAGE, and enzyme kinetics. This project-based approach allows an instructor to simulate a research setting and prepare students for productive research beyond the classroom. Potential modifications to expand or contract this module are also provided. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):403-410, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  14. [Validity of APACHE II, APACHE III, SAPS 2, SAPS 3 and SOFA scales in obstetric patients with sepsis].

    Science.gov (United States)

    Zabolotskikh, I B; Musaeva, T S; Denisova, E A

    2012-01-01

    to estimate efficiency of APACHE II, APACHE III, SAPS II, SAPS III, SOFA scales for obstetric patients with heavy sepsis. 186 medical cards retrospective analysis of pregnant women with pulmonary sepsis, 40 women with urosepsis and puerperas with abdominal sepsis--66 was performed. Middle age of women was 26.7 (22.4-34.5). In population of puerperas with abdominal sepsis APACHE II, APACHE III, SAPS 2, SAPS 3, SOFA scales showed to good calibration, however, high resolution was observed only in APACHE III, SAPS 3 and SOFA (AUROC 0.95; 0.93; 0.92 respectively). APACHE III and SOFA scales provided qualitative prognosis in pregnant women with urosepsis; resolution ratio of these scales considerably exceeds APACHE II, SAPS 2 and SAPS 3 (AUROC 0.73; 0.74; 0.79 respectively). APACHE II scale is inapplicable because of a lack of calibration (X2 = 13.1; p < 0.01), and at other scales (APACHE III, SAPS 2, SAPS 3, SOFA) was observed the insufficient resolution (AUROC < 0.9) in pregnant women with pulmonary sepsis. Prognostic possibilities assessment of score scales showed that APACHE III, SAPS 3 and SOFA scales can be used for a lethality prognosis for puerperas with abdominal sepsis, in population of pregnant women with urosepsis--only APACHE III and SOFA, and with pulmonary sepsis--SAPS 3 and APACHE III only in case of additional clinical information.

  15. Brucella Modulates Secretory Trafficking via Multiple Type IV Secretion Effector Proteins

    Science.gov (United States)

    Myeni, Sebenzile; Child, Robert; Ng, Tony W.; Kupko, John J.; Wehrly, Tara D.; Porcella, Stephen F.; Knodler, Leigh A.; Celli, Jean

    2013-01-01

    The intracellular pathogenic bacterium Brucella generates a replicative vacuole (rBCV) derived from the endoplasmic reticulum via subversion of the host cell secretory pathway. rBCV biogenesis requires the expression of the Type IV secretion system (T4SS) VirB, which is thought to translocate effector proteins that modulate membrane trafficking along the endocytic and secretory pathways. To date, only a few T4SS substrates have been identified, whose molecular functions remain unknown. Here, we used an in silico screen to identify putative T4SS effector candidate proteins using criteria such as limited homology in other bacterial genera, the presence of features similar to known VirB T4SS effectors, GC content and presence of eukaryotic-like motifs. Using β-lactamase and CyaA adenylate cyclase reporter assays, we identified eleven proteins translocated into host cells by Brucella, five in a VirB T4SS-dependent manner, namely BAB1_0678 (BspA), BAB1_0712 (BspB), BAB1_0847 (BspC), BAB1_1671 (BspE) and BAB1_1948 (BspF). A subset of the translocated proteins targeted secretory pathway compartments when ectopically expressed in HeLa cells, and the VirB effectors BspA, BspB and BspF inhibited protein secretion. Brucella infection also impaired host protein secretion in a process requiring BspA, BspB and BspF. Single or combined deletions of bspA, bspB and bspF affected Brucella ability to replicate in macrophages and persist in the liver of infected mice. Taken together, these findings demonstrate that Brucella modulates secretory trafficking via multiple T4SS effector proteins that likely act coordinately to promote Brucella pathogenesis. PMID:23950720

  16. Protein-protein interactions in paralogues: Electrostatics modulates specificity on a conserved steric scaffold.

    Directory of Open Access Journals (Sweden)

    Stefan M Ivanov

    Full Text Available An improved knowledge of protein-protein interactions is essential for better understanding of metabolic and signaling networks, and cellular function. Progress tends to be based on structure determination and predictions using known structures, along with computational methods based on evolutionary information or detailed atomistic descriptions. We hypothesized that for the case of interactions across a common interface, between proteins from a pair of paralogue families or within a family of paralogues, a relatively simple interface description could distinguish between binding and non-binding pairs. Using binding data for several systems, and large-scale comparative modeling based on known template complex structures, it is found that charge-charge interactions (for groups bearing net charge are generally a better discriminant than buried non-polar surface. This is particularly the case for paralogue families that are less divergent, with more reliable comparative modeling. We suggest that electrostatic interactions are major determinants of specificity in such systems, an observation that could be used to predict binding partners.

  17. Protein-protein interactions in paralogues: Electrostatics modulates specificity on a conserved steric scaffold.

    Science.gov (United States)

    Ivanov, Stefan M; Cawley, Andrew; Huber, Roland G; Bond, Peter J; Warwicker, Jim

    2017-01-01

    An improved knowledge of protein-protein interactions is essential for better understanding of metabolic and signaling networks, and cellular function. Progress tends to be based on structure determination and predictions using known structures, along with computational methods based on evolutionary information or detailed atomistic descriptions. We hypothesized that for the case of interactions across a common interface, between proteins from a pair of paralogue families or within a family of paralogues, a relatively simple interface description could distinguish between binding and non-binding pairs. Using binding data for several systems, and large-scale comparative modeling based on known template complex structures, it is found that charge-charge interactions (for groups bearing net charge) are generally a better discriminant than buried non-polar surface. This is particularly the case for paralogue families that are less divergent, with more reliable comparative modeling. We suggest that electrostatic interactions are major determinants of specificity in such systems, an observation that could be used to predict binding partners.

  18. Effects of Protein-pheromone Complexation on Correlated Chemical Shift Modulations

    International Nuclear Information System (INIS)

    Perazzolo, Chiara; Wist, Julien; Loth, Karine; Poggi, Luisa; Homans, Steve; Bodenhausen, Geoffrey

    2005-01-01

    Major urinary protein (MUP) is a pheromone-carrying protein of the lipocalin family. Previous studies by isothermal titration calorimetry (ITC) show that the affinity of MUP for the pheromone 2-methoxy-3-isobutylpyrazine (IBMP) is mainly driven by enthalpy, with a small unfavourable entropic contribution. Entropic terms can be attributed in part to changes in internal motions of the protein upon binding. Slow internal motions can lead to correlated or anti-correlated modulations of the isotropic chemical shifts of carbonyl C' and amide N nuclei. Correlated chemical shift modulations (CSM/CSM) in MUP have been determined by measuring differences of the transverse relaxation rates of zero- and double-quantum coherences ZQC{C'N} and DQC{C'N}, and by accounting for the effects of correlated fluctuations of dipole-dipole couplings (DD/DD) and chemical shift anisotropies (CSA/CSA). The latter can be predicted from tensor parameters of C' and N nuclei that have been determined in earlier work. The effects of complexation on slow time-scale protein dynamics can be determined by comparing the temperature dependence of the relaxation rates of APO-MUP (i.e., without ligand) and HOLO-MUP (i.e., with IBMP as a ligand)

  19. Effects of Protein-pheromone Complexation on Correlated Chemical Shift Modulations

    Energy Technology Data Exchange (ETDEWEB)

    Perazzolo, Chiara; Wist, Julien [Ecole Polytechnique Federale de Lausanne, Institut des Sciences et Ingenierie Chimiques (Switzerland); Loth, Karine; Poggi, Luisa [Ecole Normale Superieure, Departement de chimie, associe au CNRS (France); Homans, Steve [University of Leeds, School of Biochemistry and Microbiology (United Kingdom); Bodenhausen, Geoffrey [Ecole Polytechnique Federale de Lausanne, Institut des Sciences et Ingenierie Chimiques (Switzerland)], E-mail: Geoffrey.Bodenhausen@ens.fr

    2005-12-15

    Major urinary protein (MUP) is a pheromone-carrying protein of the lipocalin family. Previous studies by isothermal titration calorimetry (ITC) show that the affinity of MUP for the pheromone 2-methoxy-3-isobutylpyrazine (IBMP) is mainly driven by enthalpy, with a small unfavourable entropic contribution. Entropic terms can be attributed in part to changes in internal motions of the protein upon binding. Slow internal motions can lead to correlated or anti-correlated modulations of the isotropic chemical shifts of carbonyl C' and amide N nuclei. Correlated chemical shift modulations (CSM/CSM) in MUP have been determined by measuring differences of the transverse relaxation rates of zero- and double-quantum coherences ZQC{l_brace}C'N{r_brace} and DQC{l_brace}C'N{r_brace}, and by accounting for the effects of correlated fluctuations of dipole-dipole couplings (DD/DD) and chemical shift anisotropies (CSA/CSA). The latter can be predicted from tensor parameters of C' and N nuclei that have been determined in earlier work. The effects of complexation on slow time-scale protein dynamics can be determined by comparing the temperature dependence of the relaxation rates of APO-MUP (i.e., without ligand) and HOLO-MUP (i.e., with IBMP as a ligand)

  20. KCNQ1 channel modulation by KCNE proteins via the voltage-sensing domain.

    Science.gov (United States)

    Nakajo, Koichi; Kubo, Yoshihiro

    2015-06-15

    The gating of the KCNQ1 potassium channel is drastically regulated by auxiliary subunit KCNE proteins. KCNE1, for example, slows the activation kinetics of KCNQ1 by two orders of magnitude. Like other voltage-gated ion channels, the opening of KCNQ1 is regulated by the voltage-sensing domain (VSD; S1-S4 segments). Although it has been known that KCNE proteins interact with KCNQ1 via the pore domain, some recent reports suggest that the VSD movement may be altered by KCNE. The altered VSD movement of KCNQ1 by KCNE proteins has been examined by site-directed mutagenesis, the scanning cysteine accessibility method (SCAM), voltage clamp fluorometry (VCF) and gating charge measurements. These accumulated data support the idea that KCNE proteins interact with the VSDs of KCNQ1 and modulate the gating of the KCNQ1 channel. In this review, we will summarize recent findings and current views of the KCNQ1 modulation by KCNE via the VSD. In this context, we discuss our recent findings that KCNE1 may alter physical interactions between the S4 segment (VSD) and the S5 segment (pore domain) of KCNQ1. Based on these findings from ourselves and others, we propose a hypothetical mechanism for how KCNE1 binding alters the VSD movement and the gating of the channel. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  1. Application of TZERO calibrated modulated temperature differential scanning calorimetry to characterize model protein formulations.

    Science.gov (United States)

    Badkar, Aniket; Yohannes, Paulos; Banga, Ajay

    2006-02-17

    The objective of this study was to evaluate the feasibility of using T(ZERO) modulated temperature differential scanning calorimetry (MDSC) as a novel technique to characterize protein solutions using lysozyme as a model protein and IgG as a model monoclonal antibody. MDSC involves the application of modulated heating program, along with the standard heating program that enables the separation of overlapping thermal transitions. Although characterization of unfolding transitions for protein solutions requires the application of high sensitive DSC, separation of overlapping transitions like aggregation and other exothermic events may be possible only by use of MDSC. A newer T(ZERO) calibrated MDSC model from TA instruments that has improved sensitivity than previous models was used. MDSC analysis showed total, reversing and non-reversing heat flow signals. Total heat flow signals showed a combination of melting endotherms and overlapping exothermic events. Under the operating conditions used, the melting endotherms were seen in reversing heat flow signal while the exothermic events were seen in non-reversing heat flow signal. This enabled the separation of overlapping thermal transitions, improved data analysis and decreased baseline noise. MDSC was used here for characterization of lysozyme solutions, but its feasibility for characterizing therapeutic protein solutions needs further assessment.

  2. The bromodomain protein LEX-1 acts with TAM-1 to modulate gene expression in C. elegans.

    Science.gov (United States)

    Tseng, Rong-Jeng; Armstrong, Kristin R; Wang, Xiaodong; Chamberlin, Helen M

    2007-11-01

    In many organisms, repetitive DNA serves as a trigger for gene silencing. However, some gene expression is observed from repetitive genomic regions such as heterochromatin, suggesting mechanisms exist to modulate the silencing effects. From a genetic screen in C. elegans, we have identified mutations in two genes important for expression of repetitive sequences: lex-1 and tam-1. Here we show that lex-1 encodes a protein containing an ATPase domain and a bromodomain. LEX-1 is similar to the yeast Yta7 protein, which maintains boundaries between silenced and active chromatin. tam-1 has previously been shown to encode a RING finger/B-box protein that modulates gene expression from repetitive DNA. We find that lex-1, like tam-1, acts as a class B synthetic multivulva (synMuv) gene. However, since lex-1 and tam-1 mutants have normal P granule localization, it suggests they act through a mechanism distinct from other class B synMuvs. We observe intragenic (interallelic) complementation with lex-1 and a genetic interaction between lex-1 and tam-1, data consistent with the idea that the gene products function in the same biological process, perhaps as part of a protein complex. We propose that LEX-1 and TAM-1 function together to influence chromatin structure and to promote expression from repetitive sequences.

  3. Comparative Proteomic Analysis of Wild-Type and SAP Domain Mutant Foot-and-Mouth Disease Virus-Infected Porcine Cells Identifies the Ubiquitin-Activating Enzyme UBE1 Required for Virus Replication.

    Science.gov (United States)

    Zhu, Zixiang; Yang, Fan; Zhang, Keshan; Cao, Weijun; Jin, Ye; Wang, Guoqing; Mao, Ruoqing; Li, Dan; Guo, Jianhong; Liu, Xiangtao; Zheng, Haixue

    2015-10-02

    Leader protein (L(pro)) of foot-and-mouth disease virus (FMDV) manipulates the activities of several host proteins to promote viral replication and pathogenicity. L(pro) has a conserved protein domain SAP that is suggested to subvert interferon (IFN) production to block antiviral responses. However, apart from blocking IFN production, the roles of the SAP domain during FMDV infection in host cells remain unknown. Therefore, we identified host proteins associated with the SAP domain of L(pro) by a high-throughput quantitative proteomic approach [isobaric tags for relative and absolute quantitation (iTRAQ) in conjunction with liquid chromatography/electrospray ionization tandem mass spectrometry]. Comparison of the differentially regulated proteins in rA/FMDVΔmSAP- versus rA/FMDV-infected SK6 cells revealed 45 down-regulated and 32 up-regulated proteins that were mostly associated with metabolic, ribosome, spliceosome, and ubiquitin-proteasome pathways. The results also imply that the SAP domain has a function similar to SAF-A/B besides its potential protein inhibitor of activated signal transducer and activator of transcription (PIAS) function. One of the identified proteins UBE1 was further analyzed and displayed a novel role for the SAP domain of L(pro). Overexpression of UBE1 enhanced the replication of FMDV, and knockdown of UBE1 decreased FMDV replication. This shows that FMDV manipulates UBE1 for increased viral replication, and the SAP domain was involved in this process.

  4. AI User Support System for SAP ERP

    Science.gov (United States)

    Vlasov, Vladimir; Chebotareva, Victoria; Rakhimov, Marat; Kruglikov, Sergey

    2017-10-01

    An intelligent system for SAP ERP user support is proposed in this paper. It enables automatic replies on users’ requests for support, saving time for problem analysis and resolution and improving responsiveness for end users. The system is based on an ensemble of machine learning algorithms of multiclass text classification, providing efficient question understanding, and a special framework for evidence retrieval, providing the best answer derivation.

  5. Membrane proteins bind lipids selectively to modulate their structure and function.

    Science.gov (United States)

    Laganowsky, Arthur; Reading, Eamonn; Allison, Timothy M; Ulmschneider, Martin B; Degiacomi, Matteo T; Baldwin, Andrew J; Robinson, Carol V

    2014-06-05

    Previous studies have established that the folding, structure and function of membrane proteins are influenced by their lipid environments and that lipids can bind to specific sites, for example, in potassium channels. Fundamental questions remain however regarding the extent of membrane protein selectivity towards lipids. Here we report a mass spectrometry approach designed to determine the selectivity of lipid binding to membrane protein complexes. We investigate the mechanosensitive channel of large conductance (MscL) from Mycobacterium tuberculosis and aquaporin Z (AqpZ) and the ammonia channel (AmtB) from Escherichia coli, using ion mobility mass spectrometry (IM-MS), which reports gas-phase collision cross-sections. We demonstrate that folded conformations of membrane protein complexes can exist in the gas phase. By resolving lipid-bound states, we then rank bound lipids on the basis of their ability to resist gas phase unfolding and thereby stabilize membrane protein structure. Lipids bind non-selectively and with high avidity to MscL, all imparting comparable stability; however, the highest-ranking lipid is phosphatidylinositol phosphate, in line with its proposed functional role in mechanosensation. AqpZ is also stabilized by many lipids, with cardiolipin imparting the most significant resistance to unfolding. Subsequently, through functional assays we show that cardiolipin modulates AqpZ function. Similar experiments identify AmtB as being highly selective for phosphatidylglycerol, prompting us to obtain an X-ray structure in this lipid membrane-like environment. The 2.3 Å resolution structure, when compared with others obtained without lipid bound, reveals distinct conformational changes that re-position AmtB residues to interact with the lipid bilayer. Our results demonstrate that resistance to unfolding correlates with specific lipid-binding events, enabling a distinction to be made between lipids that merely bind from those that modulate membrane

  6. Fluid element in SAP IV

    International Nuclear Information System (INIS)

    Yilmaz, C.; Akkas, N.

    1979-01-01

    In previous studies a fluid element is incorporated in the widely used general purpose finite element program SAPIV. This type of problem is of interest in the design of nuclear components involving geometric complexities and nonlinearities. The elasticity matrix of a general-purpose finite element program is modified in such a way that it becomes possible to idealize fluid as a structural finite element with zero shear modulus and a given bulk modules. Using the modified version of SAPIV, several solid-fluid interactions problems are solved. The numerical solutions are compared with the available analytical solutions. They are shown to be in reasonable aggrement. It is also shown that by solving an exterior-fluid interaction problem, the pressure wave propagation in the acoustic medium can be solved with the same approach. In this study, two of the problem not studied in the previous work will be presented. These problems are namely the effects of the link elements used at solid-fluid interfaces and of the concentrated loads on the response of the fluid medium. Truss elements are used as the link elements. After these investigations, it is decided that general purpose finite element programs with slight modifications can be used in the safety analysis of nuclear reactor plants. By this procedure it is possible to handle two-dimensional plane strain and tridimensional axisymmetric problems of this type. (orig.)

  7. Dietary Nutrients and Bioactive Substances Modulate Heat Shock Protein (HSP) Expression: A Review.

    Science.gov (United States)

    Moura, Carolina Soares; Lollo, Pablo Christiano Barboza; Morato, Priscila Neder; Amaya-Farfan, Jaime

    2018-05-28

    Interest in the heat shock proteins (HSPs), as a natural physiological toolkit of living organisms, has ranged from their chaperone function in nascent proteins to the remedial role following cell stress. As part of the defence system, HSPs guarantee cell tolerance against a variety of stressors, including exercise, oxidative stress, hyper and hypothermia, hyper and hypoxia and improper diets. For the past couple of decades, research on functional foods has revealed a number of substances likely to trigger cell protection through mechanisms that involve the induction of HSP expression. This review will summarize the occurrence of the most easily inducible HSPs and describe the effects of dietary proteins, peptides, amino acids, probiotics, high-fat diets and other food-derived substances reported to induce HSP response in animals and humans studies. Future research may clarify the mechanisms and explore the usefulness of this natural alternative of defense and the modulating mechanism of each substance.

  8. Neuroplasticity pathways and protein-interaction networks are modulated by vortioxetine in rodents

    DEFF Research Database (Denmark)

    Waller, Jessica A.; Nygaard, Sara Holm; Li, Yan

    2017-01-01

    species and sexes, different brain regions, and in response to distinct routes of administration and regimens. Conclusions: A recurring theme, based on the present study as well as previous findings, is that networks related to synaptic plasticity, synaptic transmission, signal transduction...... and rat in response to distinct treatment regimens and in different brain regions. Furthermore, analysis of complexes of physically-interacting proteins reveal that biomarkers involved in transcriptional regulation, neurodevelopment, neuroplasticity, and endocytosis are modulated by vortioxetine....... A subsequent qPCR study examining the expression of targets in the protein-protein interactome space in response to chronic vortioxetine treatment over a range of doses provides further biological validation that vortioxetine engages neuroplasticity networks. Thus, the same biology is regulated in different...

  9. Integrating Protein Engineering and Bioorthogonal Click Conjugation for Extracellular Vesicle Modulation and Intracellular Delivery.

    Directory of Open Access Journals (Sweden)

    Ming Wang

    Full Text Available Exosomes are small, cell-secreted vesicles that transfer proteins and genetic information between cells. This intercellular transmission regulates many physiological and pathological processes. Therefore, exosomes have emerged as novel biomarkers for disease diagnosis and as nanocarriers for drug delivery. Here, we report an easy-to-adapt and highly versatile methodology to modulate exosome composition and conjugate exosomes for intracellular delivery. Our strategy combines the metabolic labeling of newly synthesized proteins or glycan/glycoproteins of exosome-secreting cells with active azides and bioorthogonal click conjugation to modify and functionalize the exosomes. The azide-integrated can be conjugated to a variety of small molecules and proteins and can efficiently deliver conjugates into cells. The metabolic engineering of exosomes diversifies the chemistry of exosomes and expands the functions that can be introduced into exosomes, providing novel, powerful tools to study the roles of exosomes in biology and expand the biomedical potential of exosomes.

  10. Rac1 modulates G-protein-coupled receptor-induced bronchial smooth muscle contraction.

    Science.gov (United States)

    Sakai, Hiroyasu; Kai, Yuki; Sato, Ken; Ikebe, Mitsuo; Chiba, Yohihiko

    2018-01-05

    Increasing evidence suggests a functional role of RhoA/Rho-kinase signalling as a mechanism for smooth muscle contraction; however, little is known regarding the roles of Rac1 and other members of the Rho protein family. This study aimed to examine whether Rac1 modulates bronchial smooth muscle contraction. Ring preparations of bronchi isolated from rats were suspended in an organ bath, and isometric contraction of circular smooth muscle was measured. Immunoblotting was used to examine myosin light chain phosphorylation in bronchial smooth muscle. Our results demonstrated that muscle contractions induced by carbachol (CCh) and endothelin-1 (ET-1) were inhibited by EHT1864, a selective Rac1 inhibitor, and NSC23766, a selective inhibitor of Rac1-specific guanine nucleotide exchange factors. Similarly, myosin light chain and myosin phosphatase target subunit 1 (MYPT1) at Thr853 phosphorylation induced by contractile agonist were inhibited with Rac1 inhibition. However, contractions induced by high K + , calyculin A (a potent protein phosphatase inhibitor) and K + /PDBu were not inhibited by these Rac1 inhibitors. Interestingly, NaF (a G-protein activator)-induced contractions were inhibited by EHT1864 but not by NSC23766. We next examined the effects of a trans-acting activator of transcription protein transduction domain (PTD) fusion protein with Rac1 (PTD-Rac1) on muscle contraction. The constitutively active form of PTD-Rac1 directly induced force development and contractions were abolished by EHT1864. These results suggest that Rac1, activated by G protein-coupled receptor agonists, such as CCh and ET-1, may induce myosin light chain and MYPT phosphorylation and modulate the contraction of bronchial smooth muscle. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The Ribosomal Protein uL22 Modulates the Shape of the Protein Exit Tunnel

    DEFF Research Database (Denmark)

    Wekselman, Itai; Zimmerman, Ella; Davidovich, Chen

    2017-01-01

    Erythromycin is a clinically useful antibiotic that binds to an rRNA pocket in the ribosomal exit tunnel. Commonly, resistance to erythromycin is acquired by alterations of rRNA nucleotides that interact with the drug. Mutations in the β hairpin of ribosomal protein uL22, which is rather distal...... of the β hairpin of the mutated uL22 toward the interior of the exit tunnel, triggering a cascade of structural alterations of rRNA nucleotides that propagate to the erythromycin binding pocket. Our findings support recent studies showing that the interactions between uL22 and specific sequences within...

  12. Does protein binding modulate the effect of angiotensin II receptor antagonists?

    Directory of Open Access Journals (Sweden)

    Marc P Maillard

    2001-03-01

    Full Text Available IntroductionAngiotensin II AT 1-receptor antagonists are highly bound to plasma proteins (≥ 99%. With some antagonists, such as DuP-532, the protein binding was such that no efficacy of the drug could be demonstrated clinically. Whether protein binding interferes with the efficacy of other antagonists is not known. We have therefore investigated in vitro how plasma proteins may affect the antagonistic effect of different AT1-receptor antagonists.MethodsA radio-receptor binding assay was used to analyse the interaction between proteins and the ability of various angiotensin II (Ang II antagonists to block AT1-receptors. In addition, the Biacore technology, a new technique which enables the real-time monitoring of binding events between two molecules, was used to evaluate the dissociation rate constants of five AT1-receptor antagonists from human serum albumin.ResultsThe in vitro AT 1-antagonistic effects of different Ang II receptor antagonists were differentially affected by the presence of human plasma, with rightward shifts of the IC50 ranging from one to several orders of magnitude. The importance of the shift correlates with the dissociation rate constants of these drugs from albumin. Our experiments also show that the way that AT1-receptor antagonists bind to proteins differs from one compound to another. These results suggest that the interaction with plasma proteins appears to modulate the efficacy of some Ang II antagonists.ConclusionAlthough the high binding level of Ang II receptor antagonist to plasma proteins appears to be a feature common to this class of compounds, the kinetics and characteristics of this binding is of great importance. With some antagonists, protein binding interferes markedly with their efficacy to block AT1-receptors.

  13. Cysteine regulation of protein function--as exemplified by NMDA-receptor modulation.

    Science.gov (United States)

    Lipton, Stuart A; Choi, Yun-Beom; Takahashi, Hiroto; Zhang, Dongxian; Li, Weizhong; Godzik, Adam; Bankston, Laurie A

    2002-09-01

    Until recently cysteine residues, especially those located extracellularly, were thought to be important for metal coordination, catalysis and protein structure by forming disulfide bonds - but they were not thought to regulate protein function. However, this is not the case. Crucial cysteine residues can be involved in modulation of protein activity and signaling events via other reactions of their thiol (sulfhydryl; -SH) groups. These reactions can take several forms, such as redox events (chemical reduction or oxidation), chelation of transition metals (chiefly Zn(2+), Mn(2+) and Cu(2+)) or S-nitrosylation [the catalyzed transfer of a nitric oxide (NO) group to a thiol group]. In several cases, these disparate reactions can compete with one another for the same thiol group on a single cysteine residue, forming a molecular switch composed of a latticework of possible redox, NO or Zn(2+) modifications to control protein function. Thiol-mediated regulation of protein function can also involve reactions of cysteine residues that affect ligand binding allosterically. This article reviews the basis for these molecular cysteine switches, drawing on the NMDA receptor as an exemplary protein, and proposes a molecular model for the action of S-nitrosylation based on recently derived crystal structures.

  14. Comparison of Colorimetric Assays with Quantitative Amino Acid Analysis for Protein Quantification of Generalized Modules for Membrane Antigens (GMMA)

    OpenAIRE

    Rossi, Omar; Maggiore, Luana; Necchi, Francesca; Koeberling, Oliver; MacLennan, Calman A.; Saul, Allan; Gerke, Christiane

    2014-01-01

    Genetically induced outer membrane particles from Gram-negative bacteria, called Generalized Modules for Membrane Antigens (GMMA), are being investigated as vaccines. Rapid methods are required for estimating the protein content for in-process assays during production. Since GMMA are complex biological structures containing lipid and polysaccharide as well as protein, protein determinations are not necessarily straightforward. We compared protein quantification by Bradford, Lowry, and Non-Int...

  15. Coxiella burnetii Nine Mile II proteins modulate gene expression of monocytic host cells during infection

    Directory of Open Access Journals (Sweden)

    Shaw Edward I

    2010-09-01

    Full Text Available Abstract Background Coxiella burnetii is an intracellular bacterial pathogen that causes acute and chronic disease in humans. Bacterial replication occurs within enlarged parasitophorous vacuoles (PV of eukaryotic cells, the biogenesis and maintenance of which is dependent on C. burnetii protein synthesis. These observations suggest that C. burnetii actively subverts host cell processes, however little is known about the cellular biology mechanisms manipulated by the pathogen during infection. Here, we examined host cell gene expression changes specifically induced by C. burnetii proteins during infection. Results We have identified 36 host cell genes that are specifically regulated when de novo C. burnetii protein synthesis occurs during infection using comparative microarray analysis. Two parallel sets of infected and uninfected THP-1 cells were grown for 48 h followed by the addition of chloramphenicol (CAM to 10 μg/ml in one set. Total RNA was harvested at 72 hpi from all conditions, and microarrays performed using Phalanx Human OneArray™ slides. A total of 784 (mock treated and 901 (CAM treated THP-1 genes were up or down regulated ≥2 fold in the C. burnetii infected vs. uninfected cell sets, respectively. Comparisons between the complementary data sets (using >0 fold, eliminated the common gene expression changes. A stringent comparison (≥2 fold between the separate microarrays revealed 36 host cell genes modulated by C. burnetii protein synthesis. Ontological analysis of these genes identified the innate immune response, cell death and proliferation, vesicle trafficking and development, lipid homeostasis, and cytoskeletal organization as predominant cellular functions modulated by C. burnetii protein synthesis. Conclusions Collectively, these data indicate that C. burnetii proteins actively regulate the expression of specific host cell genes and pathways. This is in addition to host cell genes that respond to the presence of the

  16. 49 CFR 40.311 - What are the requirements concerning SAP reports?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false What are the requirements concerning SAP reports... Process § 40.311 What are the requirements concerning SAP reports? (a) As the SAP conducting the required... ensure that you receive SAP written reports directly from the SAP performing the evaluation and that no...

  17. High pressure modulated transport and signaling functions of membrane proteins in models and in vivo

    International Nuclear Information System (INIS)

    Vogel, R F; Linke, K; Teichert, H; Ehrmann, M A

    2008-01-01

    Cellular membranes serve in the separation of compartments, recognition of the environment, selective transport and signal transduction. Membrane lipids and membrane proteins play distinct roles in these processes, which are affected by environmental chemical (e. g. pH) or physical (e. g. pressure and temperature) changes. High hydrostatic pressure (HHP) affects fluidity and integrity of bacterial membranes instantly during the ramp, resulting in a loss of membrane potential and vital membrane protein functions. We have used the multiple drug transporter LmrA from Lactococcus lactis and ToxR, a membrane protein sensor from Photobacterium profundum, a deep-sea bacterium, and Vibrio cholerae to study membrane protein interaction and functionality in proteolioposomes and by the use of in vivo reporter systems, respectively. Both proteins require dimerization in the phospholipid bilayer for their functionality, which was favoured in the liquid crystalline lipid phase with ToxR and LmrA. Whereas LmrA, which resides in liposomes consisting of DMPC, DMPC/cholesterol or natural lipids, lost its ATPase activity above 20 or 40 MPa, it maintained its active dimeric structure in DOPC/DPPC/cholesterol liposomes up to 120 MPa. By using a specific indicator strain in which the dimerisation of ToxR initiates the transcription of lacZ it was demonstrated, that the amino acid sequence of the transmembrane domain influences HHP stability of ToxR dimerization in vivo. Thus, both the lipid structure and the nature of the protein affect membrane protein interaction. It is suggested that the protein structure determines basic functionality, e.g. principle ability or kinetics to dimerize to a functional complex, while the lipid environment modulates this property

  18. High pressure modulated transport and signaling functions of membrane proteins in models and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, R F; Linke, K; Teichert, H; Ehrmann, M A [Technische Universitaet Muenchen, Technische Mikrobiologie, Weihenstephaner Steig 16, 85350 Freising (Germany)], E-mail: rudi.vogel@wzw.tum.de

    2008-07-15

    Cellular membranes serve in the separation of compartments, recognition of the environment, selective transport and signal transduction. Membrane lipids and membrane proteins play distinct roles in these processes, which are affected by environmental chemical (e. g. pH) or physical (e. g. pressure and temperature) changes. High hydrostatic pressure (HHP) affects fluidity and integrity of bacterial membranes instantly during the ramp, resulting in a loss of membrane potential and vital membrane protein functions. We have used the multiple drug transporter LmrA from Lactococcus lactis and ToxR, a membrane protein sensor from Photobacterium profundum, a deep-sea bacterium, and Vibrio cholerae to study membrane protein interaction and functionality in proteolioposomes and by the use of in vivo reporter systems, respectively. Both proteins require dimerization in the phospholipid bilayer for their functionality, which was favoured in the liquid crystalline lipid phase with ToxR and LmrA. Whereas LmrA, which resides in liposomes consisting of DMPC, DMPC/cholesterol or natural lipids, lost its ATPase activity above 20 or 40 MPa, it maintained its active dimeric structure in DOPC/DPPC/cholesterol liposomes up to 120 MPa. By using a specific indicator strain in which the dimerisation of ToxR initiates the transcription of lacZ it was demonstrated, that the amino acid sequence of the transmembrane domain influences HHP stability of ToxR dimerization in vivo. Thus, both the lipid structure and the nature of the protein affect membrane protein interaction. It is suggested that the protein structure determines basic functionality, e.g. principle ability or kinetics to dimerize to a functional complex, while the lipid environment modulates this property.

  19. High pressure modulated transport and signaling functions of membrane proteins in models and in vivo

    Science.gov (United States)

    Vogel, R. F.; Linke, K.; Teichert, H.; Ehrmann, M. A.

    2008-07-01

    Cellular membranes serve in the separation of compartments, recognition of the environment, selective transport and signal transduction. Membrane lipids and membrane proteins play distinct roles in these processes, which are affected by environmental chemical (e. g. pH) or physical (e. g. pressure and temperature) changes. High hydrostatic pressure (HHP) affects fluidity and integrity of bacterial membranes instantly during the ramp, resulting in a loss of membrane potential and vital membrane protein functions. We have used the multiple drug transporter LmrA from Lactococcus lactis and ToxR, a membrane protein sensor from Photobacterium profundum, a deep-sea bacterium, and Vibrio cholerae to study membrane protein interaction and functionality in proteolioposomes and by the use of in vivo reporter systems, respectively. Both proteins require dimerization in the phospholipid bilayer for their functionality, which was favoured in the liquid crystalline lipid phase with ToxR and LmrA. Whereas LmrA, which resides in liposomes consisting of DMPC, DMPC/cholesterol or natural lipids, lost its ATPase activity above 20 or 40 MPa, it maintained its active dimeric structure in DOPC/DPPC/cholesterol liposomes up to 120 MPa. By using a specific indicator strain in which the dimerisation of ToxR initiates the transcription of lacZ it was demonstrated, that the amino acid sequence of the transmembrane domain influences HHP stability of ToxR dimerization in vivo. Thus, both the lipid structure and the nature of the protein affect membrane protein interaction. It is suggested that the protein structure determines basic functionality, e.g. principle ability or kinetics to dimerize to a functional complex, while the lipid environment modulates this property.

  20. Modulating bacterial and gut mucosal interactions with engineered biofilm matrix proteins.

    Science.gov (United States)

    Duraj-Thatte, Anna M; Praveschotinunt, Pichet; Nash, Trevor R; Ward, Frederick R; Joshi, Neel S

    2018-02-22

    Extracellular appendages play a significant role in mediating communication between bacteria and their host. Curli fibers are a class of bacterial fimbria that is highly amenable to engineering. We demonstrate the use of engineered curli fibers to rationally program interactions between bacteria and components of the mucosal epithelium. Commensal E. coli strains were engineered to produce recombinant curli fibers fused to the trefoil family of human cytokines. Biofilms formed from these strains bound more mucins than those producing wild-type curli fibers, and modulated mucin rheology as well. When treated with bacteria producing the curli-trefoil fusions mammalian cells behaved identically in terms of their migration behavior as when they were treated with the corresponding soluble trefoil factors. Overall, this demonstrates the potential utility of curli fibers as a scaffold for the display of bioactive domains and an untapped approach to rationally modulating host-microbe interactions using bacterial matrix proteins.

  1. Modulation of Wound Healing and Scar Formation by MG53 Protein-mediated Cell Membrane Repair*

    Science.gov (United States)

    Li, Haichang; Duann, Pu; Lin, Pei-Hui; Zhao, Li; Fan, Zhaobo; Tan, Tao; Zhou, Xinyu; Sun, Mingzhai; Fu, Minghuan; Orange, Matthew; Sermersheim, Matthew; Ma, Hanley; He, Duofen; Steinberg, Steven M.; Higgins, Robert; Zhu, Hua; John, Elizabeth; Zeng, Chunyu; Guan, Jianjun; Ma, Jianjie

    2015-01-01

    Cell membrane repair is an important aspect of physiology, and disruption of this process can result in pathophysiology in a number of different tissues, including wound healing, chronic ulcer and scarring. We have previously identified a novel tripartite motif family protein, MG53, as an essential component of the cell membrane repair machinery. Here we report the functional role of MG53 in the modulation of wound healing and scarring. Although MG53 is absent from keratinocytes and fibroblasts, remarkable defects in skin architecture and collagen overproduction are observed in mg53−/− mice, and these animals display delayed wound healing and abnormal scarring. Recombinant human MG53 (rhMG53) protein, encapsulated in a hydrogel formulation, facilitates wound healing and prevents scarring in rodent models of dermal injuries. An in vitro study shows that rhMG53 protects against acute injury to keratinocytes and facilitates the migration of fibroblasts in response to scratch wounding. During fibrotic remodeling, rhMG53 interferes with TGF-β-dependent activation of myofibroblast differentiation. The resulting down-regulation of α smooth muscle actin and extracellular matrix proteins contributes to reduced scarring. Overall, these studies establish a trifunctional role for MG53 as a facilitator of rapid injury repair, a mediator of cell migration, and a modulator of myofibroblast differentiation during wound healing. Targeting the functional interaction between MG53 and TGF-β signaling may present a potentially effective means for promoting scarless wound healing. PMID:26306047

  2. Ribosomal protein S6 phosphorylation is controlled by TOR and modulated by PKA in Candida albicans.

    Science.gov (United States)

    Chowdhury, Tahmeena; Köhler, Julia R

    2015-10-01

    TOR and PKA signaling pathways control eukaryotic cell growth and proliferation. TOR activity in model fungi, such as Saccharomyces cerevisiae, responds principally to nutrients, e.g., nitrogen and phosphate sources, which are incorporated into the growing cell mass; PKA signaling responds to the availability of the cells' major energy source, glucose. In the fungal commensal and pathogen, Candida albicans, little is known of how these pathways interact. Here, the signal from phosphorylated ribosomal protein S6 (P-S6) was defined as a surrogate marker for TOR-dependent anabolic activity in C. albicans. Nutritional, pharmacologic and genetic modulation of TOR activity elicited corresponding changes in P-S6 levels. The P-S6 signal corresponded to translational activity of a GFP reporter protein. Contributions of four PKA pathway components to anabolic activation were then examined. In high glucose concentrations, only Tpk2 was required to upregulate P-S6 to physiologic levels, whereas all four tested components were required to downregulate P-S6 in low glucose. TOR was epistatic to PKA components with respect to P-S6. In many host niches inhabited by C. albicans, glucose is scarce, with protein being available as a nitrogen source. We speculate that PKA may modulate TOR-dependent cell growth to a rate sustainable by available energy sources, when monomers of anabolic processes, such as amino acids, are abundant. © 2015 John Wiley & Sons Ltd.

  3. Liquid effluent Sampling and Analysis Plan (SAP) implementation summary report

    International Nuclear Information System (INIS)

    Lueck, K.J.

    1995-01-01

    This report summarizes liquid effluent analytical data collected during the Sampling and Analysis Plan (SAP) Implementation Program, evaluates whether or not the sampling performed meets the requirements of the individual SAPs, compares the results to the WAC 173-200 Ground Water Quality Standards. Presented in the report are results from liquid effluent samples collected (1992-1994) from 18 of the 22 streams identified in the Consent Order (No. DE 91NM-177) requiring SAPs

  4. SH2 Domains Serve as Lipid-Binding Modules for pTyr-Signaling Proteins.

    Science.gov (United States)

    Park, Mi-Jeong; Sheng, Ren; Silkov, Antonina; Jung, Da-Jung; Wang, Zhi-Gang; Xin, Yao; Kim, Hyunjin; Thiagarajan-Rosenkranz, Pallavi; Song, Seohyeon; Yoon, Youngdae; Nam, Wonhee; Kim, Ilshin; Kim, Eui; Lee, Dong-Gyu; Chen, Yong; Singaram, Indira; Wang, Li; Jang, Myoung Ho; Hwang, Cheol-Sang; Honig, Barry; Ryu, Sungho; Lorieau, Justin; Kim, You-Me; Cho, Wonhwa

    2016-04-07

    The Src-homology 2 (SH2) domain is a protein interaction domain that directs myriad phosphotyrosine (pY)-signaling pathways. Genome-wide screening of human SH2 domains reveals that ∼90% of SH2 domains bind plasma membrane lipids and many have high phosphoinositide specificity. They bind lipids using surface cationic patches separate from pY-binding pockets, thus binding lipids and the pY motif independently. The patches form grooves for specific lipid headgroup recognition or flat surfaces for non-specific membrane binding and both types of interaction are important for cellular function and regulation of SH2 domain-containing proteins. Cellular studies with ZAP70 showed that multiple lipids bind its C-terminal SH2 domain in a spatiotemporally specific manner and thereby exert exquisite spatiotemporal control over its protein binding and signaling activities in T cells. Collectively, this study reveals how lipids control SH2 domain-mediated cellular protein-protein interaction networks and suggest a new strategy for therapeutic modulation of pY-signaling pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. The CRM domain: an RNA binding module derived from an ancient ribosome-associated protein.

    Science.gov (United States)

    Barkan, Alice; Klipcan, Larik; Ostersetzer, Oren; Kawamura, Tetsuya; Asakura, Yukari; Watkins, Kenneth P

    2007-01-01

    The CRS1-YhbY domain (also called the CRM domain) is represented as a stand-alone protein in Archaea and Bacteria, and in a family of single- and multidomain proteins in plants. The function of this domain is unknown, but structural data and the presence of the domain in several proteins known to interact with RNA have led to the proposal that it binds RNA. Here we describe a phylogenetic analysis of the domain, its incorporation into diverse proteins in plants, and biochemical properties of a prokaryotic and eukaryotic representative of the domain family. We show that a bacterial member of the family, Escherichia coli YhbY, is associated with pre-50S ribosomal subunits, suggesting that YhbY functions in ribosome assembly. GFP fused to a single-domain CRM protein from maize localizes to the nucleolus, suggesting that an analogous activity may have been retained in plants. We show further that an isolated maize CRM domain has RNA binding activity in vitro, and that a small motif shared with KH RNA binding domains, a conserved "GxxG" loop, contributes to its RNA binding activity. These and other results suggest that the CRM domain evolved in the context of ribosome function prior to the divergence of Archaea and Bacteria, that this function has been maintained in extant prokaryotes, and that the domain was recruited to serve as an RNA binding module during the evolution of plant genomes.

  6. Differential Modulation of Transcription Factors and Cytoskeletal Proteins in Prostate Carcinoma Cells by a Bacterial Lactone

    Directory of Open Access Journals (Sweden)

    Senthil R. Kumar

    2018-01-01

    Full Text Available The present study tested the effect of a bacterial lactone N-(3-oxododecanoyl-homoserine lactone (C12-HSL on the cytoskeletal and transcriptional genes and proteins in prostate adenocarcinoma (PA cells (DU145 and LNCaP and prostate small cell neuroendocrine carcinoma (SCNC PC3 cells including their cellular viability and apoptosis. Our data indicate that cell migration and colony formation were affected in the presence of C12-HSL. C12-HSL induced apoptosis and altered viability of both PA and SCNC cells in a concentration dependent manner as measured by fluorescence and chemiluminescence assays. Compared to PCa cells, noncancerous prostate epithelial cells (RWPE1 were resistant to modification by C12-HSL. Further, the viability of PC3 cells in 3D matrix was suppressed by C12-HSL treatment as detected using calcein AM fluorescence in situ. C12-HSL treatment induced cytoskeletal associated protein expression of vinculin and RhoC, which may have implications in cancer cell motility, adhesion, and metastasis. IQGAP protein expression was reduced in DU145 and RWPE1 cells in the presence of C12-HSL. C12-HSL decreased STAT3 phosphorylation in DU145 cells but increased STAT1 protein phosphorylation in PC3 and LNCaP cells. Overall, these studies indicate that C12-HSL can trigger changes in transcription factors and cytoskeletal proteins and thereby modulate growth and migration properties of PCa cells.

  7. Expression of measles virus nucleoprotein induces apoptosis and modulates diverse functional proteins in cultured mammalian cells.

    Directory of Open Access Journals (Sweden)

    Ashima Bhaskar

    Full Text Available BACKGROUND: Measles virus nucleoprotein (N encapsidates the viral RNA, protects it from endonucleases and forms a virus specific template for transcription and replication. It is the most abundant protein during viral infection. Its C-terminal domain is intrinsically disordered imparting it the flexibility to interact with several cellular and viral partners. PRINCIPAL FINDINGS: In this study, we demonstrate that expression of N within mammalian cells resulted in morphological transitions, nuclear condensation, DNA fragmentation and activation of Caspase 3 eventuating into apoptosis. The rapid generation of intracellular reactive oxygen species (ROS was involved in the mechanism of cell death. Addition of ascorbic acid (AA or inhibitor of caspase-3 in the extracellular medium partially reversed N induced apoptosis. We also studied the protein profile of cells expressing N protein. MS analysis revealed the differential expression of 25 proteins out of which 11 proteins were up regulated while 14 show signs of down regulation upon N expression. 2DE results were validated by real time and semi quantitative RT-PCR analysis. CONCLUSION: These results show the pro-apoptotic effects of N indicating its possible development as an apoptogenic tool. Our 2DE results present prima facie evidence that the MV nucleoprotein interacts with or causes differential expression of a wide range of cellular factors. At this stage it is not clear as to what the adaptive response of the host cell is and what reflects a strategic modulation exerted by the virus.

  8. Clofazimine modulates the expression of lipid metabolism proteins in Mycobacterium leprae-infected macrophages.

    Science.gov (United States)

    Degang, Yang; Akama, Takeshi; Hara, Takeshi; Tanigawa, Kazunari; Ishido, Yuko; Gidoh, Masaichi; Makino, Masahiko; Ishii, Norihisa; Suzuki, Koichi

    2012-01-01

    Mycobacterium leprae (M. leprae) lives and replicates within macrophages in a foamy, lipid-laden phagosome. The lipids provide essential nutrition for the mycobacteria, and M. leprae infection modulates expression of important host proteins related to lipid metabolism. Thus, M. leprae infection increases the expression of adipophilin/adipose differentiation-related protein (ADRP) and decreases hormone-sensitive lipase (HSL), facilitating the accumulation and maintenance of lipid-rich environments suitable for the intracellular survival of M. leprae. HSL levels are not detectable in skin smear specimens taken from leprosy patients, but re-appear shortly after multidrug therapy (MDT). This study examined the effect of MDT components on host lipid metabolism in vitro, and the outcome of rifampicin, dapsone and clofazimine treatment on ADRP and HSL expression in THP-1 cells. Clofazimine attenuated the mRNA and protein levels of ADRP in M. leprae-infected cells, while those of HSL were increased. Rifampicin and dapsone did not show any significant effects on ADRP and HSL expression levels. A transient increase of interferon (IFN)-β and IFN-γ mRNA was also observed in cells infected with M. leprae and treated with clofazimine. Lipid droplets accumulated by M. leprae-infection were significantly decreased 48 h after clofazimine treatment. Such effects were not evident in cells without M. leprae infection. In clinical samples, ADRP expression was decreased and HSL expression was increased after treatment. These results suggest that clofazimine modulates lipid metabolism in M. leprae-infected macrophages by modulating the expression of ADRP and HSL. It also induces IFN production in M. leprae-infected cells. The resultant decrease in lipid accumulation, increase in lipolysis, and activation of innate immunity may be some of the key actions of clofazimine.

  9. Adenosine monophosphate-activated protein kinase modulates the activated phenotype of hepatic stellate cells.

    Science.gov (United States)

    Caligiuri, Alessandra; Bertolani, Cristiana; Guerra, Cristina Tosti; Aleffi, Sara; Galastri, Sara; Trappoliere, Marco; Vizzutti, Francesco; Gelmini, Stefania; Laffi, Giacomo; Pinzani, Massimo; Marra, Fabio

    2008-02-01

    Adiponectin limits the development of liver fibrosis and activates adenosine monophosphate-activated protein kinase (AMPK). AMPK is a sensor of the cellular energy status, but its possible modulation of the fibrogenic properties of hepatic stellate cells (HSCs) has not been established. In this study, we investigated the role of AMPK activation in the biology of activated human HSCs. A time-dependent activation of AMPK was observed in response to a number of stimuli, including globular adiponectin, 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR), or metformin. All these compounds significantly inhibited platelet-derived growth factor (PDGF)-stimulated proliferation and migration of human HSCs and reduced the secretion of monocyte chemoattractant protein-1. In addition, AICAR limited the secretion of type I procollagen. Knockdown of AMPK by gene silencing increased the mitogenic effects of PDGF, confirming the negative modulation exerted by this pathway on HSCs. AMPK activation did not reduce PDGF-dependent activation of extracellular signal-regulated kinase (ERK) or Akt at early time points, whereas a marked inhibition was observed 24 hours after addition of PDGF, reflecting a block in cell cycle progression. In contrast, AICAR blocked short-term phosphorylation of ribosomal S6 kinase (p70(S6K)) and 4E binding protein-1 (4EBP1), 2 downstream effectors of the mammalian target of rapamycin (mTOR) pathway, by PDGF. The ability of interleukin-a (IL-1) to activate nuclear factor kappa B (NF-kappaB) was also reduced by AICAR. Activation of AMPK negatively modulates the activated phenotype of HSCs.

  10. Growth of Verticillium longisporum in Xylem Sap of Brassica napus is Independent from Cultivar Resistance but Promoted by Plant Aging.

    Science.gov (United States)

    Lopisso, Daniel Teshome; Knüfer, Jessica; Koopmann, Birger; von Tiedemann, Andreas

    2017-09-01

    As Verticillium stem striping of oilseed rape (OSR), a vascular disease caused by Verticillium longisporum, is extending into new geographic regions and no control with fungicides exists, the demand for understanding mechanisms of quantitative resistance increases. Because V. longisporum is strictly limited to the xylem and resistance is expressed in the systemic stage post root invasion, we investigated a potential antifungal role of soluble constituents and nutritional conditions in xylem sap as determinants of cultivar resistance of OSR to V. longisporum. Assessment of biometric and molecular genetic parameters applied to describe V. longisporum resistance (net area under disease progress curve, stunting, stem thickness, plant biomass, and V. longisporum DNA content) showed consistent susceptibility of cultivar 'Falcon' in contrast to two resistant genotypes, 'SEM' and 'Aviso'. Spectrophotometric analysis revealed a consistently stronger in vitro growth of V. longisporum in xylem sap extracted from OSR compared with the water control. Further comparisons of fungal growth in xylem sap of different cultivars revealed the absence of constitutive or V. longisporum induced antifungal activity in the xylem sap of resistant versus susceptible genotypes. The similar growth of V. longisporum in xylem sap, irrespective of cultivar, infection with V. longisporum and xylem sap filtration, was correlated with about equal amounts of total soluble proteins in xylem sap from these treatments. Interestingly, compared with younger plants, xylem sap from older plants induced significantly stronger fungal growth. Growth enhancement of V. longisporum in xylem sap of aging plants was reflected by increased contents of carbohydrates, which was consistent in mock or V. longisporum-infected plants and independent from cultivar resistance. The improved nutritional conditions in the xylem of more mature plants may explain the late appearance of disease symptoms, which are observed only in

  11. Faculty perceptions of the integration of SAP in academic programs

    Directory of Open Access Journals (Sweden)

    Sam Khoury

    2012-08-01

    Full Text Available In order to prepare students for the workforce, academic programs incorporate a variety of tools that students are likely to use in their future careers. One of these tools employed by business and technology programs is the integration of live software applications such as SAP through the SAP University Alliance (SAP UA program. Since the SAP UA program has been around for only about 10 years and the available literature on the topic is limited, research is needed to determine the strengths and weaknesses of the SAP UA program. A collaborative study of SAP UA faculty perceptions of their SAP UAs was conducted in the fall of 2011. Of the faculty invited to participate in the study, 31% completed the online survey. The results indicate that most faculty experienced difficulty implementing SAP into their programs and report that a need exists for more standardized curriculum and training, while a large percentage indicated that they are receiving the support they need from their schools and SAP.

  12. NK cell cytotoxicity mediated by 2B4 and NTB-A is dependent on SAP acting downstream of receptor phosphorylation

    Directory of Open Access Journals (Sweden)

    Stephan eMeinke

    2013-01-01

    Full Text Available 2B4 (CD244 and NK-T-B-antigen (NTB-A, CD352 are activating receptors on human NK cells and belong to the family of SLAM-related receptors. Engagement of these receptors leads to phosphorylation of their cytoplasmic tails and recruitment of the adapter proteins SAP and EAT-2. X-linked lymphoproliferative syndrome (XLP is a severe immunodeficiency that results from mutations in the SAP gene. 2B4 and NTB-A-mediated cytotoxicity are abrogated in XLP NK cells. To elucidate the molecular basis for this defect we analyzed early signaling events in SAP knockdown cells. Similar to XLP NK cells, knockdown of SAP in primary human NK cells leads to a reduction of 2B4 and NTB-A-mediated cytotoxicity. We found that early signaling events such as raft recruitment and receptor phosphorylation are not affected by the absence of SAP, indicating the defect in the absence of SAP is downstream of these events. In addition, knockdown of EAT-2 does not impair 2B4 or NTB-A-mediated cytotoxicity. Surprisingly, EAT-2 recruitment to both receptors is abrogated in the absence of SAP, revealing a novel cooperativity between these adapters.

  13. Modulation of protein C activation by histones, platelet factor 4, and heparinoids: new insights into activated protein C formation.

    Science.gov (United States)

    Kowalska, M Anna; Zhao, Guohua; Zhai, Li; David, George; Marcus, Stephen; Krishnaswamy, Sriram; Poncz, Mortimer

    2014-01-01

    Histones are detrimental in late sepsis. Both activated protein C (aPC) and heparin can reverse their effect. Here, we investigated whether histones can modulate aPC generation in a manner similar to another positively charged molecule, platelet factor 4, and how heparinoids (unfractionated heparin or oxygen-desulfated unfractionated heparin with marked decrease anticoagulant activity) may modulate this effect. We measured in vitro and in vivo effects of histones, platelet factor 4, and heparinoids on aPC formation, activated partial thromboplastin time, and murine survival. In vitro, histones and platelet factor 4 both affect thrombin/thrombomodulin aPC generation following a bell-shaped curve, with a peak of >5-fold enhancement. Heparinoids shift these curves rightward. Murine aPC generation studies after infusions of histones, platelet factor 4, and heparinoids supported the in vitro data. Importantly, although unfractionated heparin and 2-O, 3-O desulfated heparin both reversed the lethality of high-dose histone infusions, only mice treated with 2-O, 3-O desulfated heparin demonstrated corrected activated partial thromboplastin times and had significant levels of aPC. Our data provide a new contextual model of how histones affect aPC generation, and how heparinoid therapy may be beneficial in sepsis. These studies provide new insights into the complex interactions controlling aPC formation and suggest a novel therapeutic interventional strategy.

  14. Interaction between protein kinase C and protein kinase A can modulate transmitter release at the rat neuromuscular synapse.

    Science.gov (United States)

    Santafé, M M; Garcia, N; Lanuza, M A; Tomàs, M; Tomàs, J

    2009-02-15

    We used intracellular recording to investigate the functional interaction between protein kinase C (PKC) and protein kinase A (PKA) signal transduction cascades in the control of transmitter release in the neuromuscular synapses from adult rats. Our results indicate that: 1) PKA and PKC are independently involved in asynchronous release. 2) Evoked acetylcholine (ACh) release is enhanced with the PKA agonist Sp-8-BrcAMP and the PKC agonist phorbol ester (PMA). 3) PKA has a constitutive role in promoting a component of normal evoked transmitter release because, when the kinase is inhibited with H-89, the release diminishes. However, the PKC inhibitor calphostin C (CaC) does not affect ACh release. 4) PKA regulates neurotransmission without PKC involvement because, after PMA or CaC modulation of the PKC activity, coupling to the ACh release of PKA can normally be stimulated with Sp-8-BrcAMP or inhibited with H-89. 5) After PKA inhibition with H-89, PKC stimulation with PMA (or inhibition with CaC) does not lead to any change in evoked ACh release. However, in PKA-stimulated preparations with Sp-8-BrcAMP, PKC becomes tonically active, thus potentiating a component of release that can now be blocked with CaC. In normal conditions, therefore, PKA was able to modulate ACh release independently of PKC activity, whereas PKA stimulation caused the PKC coupling to evoked release. In contrast, PKA inhibition prevent PKC stimulation (with the phorbol ester) and coupling to ACh output. There was therefore some dependence of PKC on PKA activity in the fine control of the neuromuscular synaptic functionalism and ACh release.

  15. Alanine and proline content modulate global sensitivity to discrete perturbations in disordered proteins.

    Science.gov (United States)

    Perez, Romel B; Tischer, Alexander; Auton, Matthew; Whitten, Steven T

    2014-12-01

    Molecular transduction of biological signals is understood primarily in terms of the cooperative structural transitions of protein macromolecules, providing a mechanism through which discrete local structure perturbations affect global macromolecular properties. The recognition that proteins lacking tertiary stability, commonly referred to as intrinsically disordered proteins (IDPs), mediate key signaling pathways suggests that protein structures without cooperative intramolecular interactions may also have the ability to couple local and global structure changes. Presented here are results from experiments that measured and tested the ability of disordered proteins to couple local changes in structure to global changes in structure. Using the intrinsically disordered N-terminal region of the p53 protein as an experimental model, a set of proline (PRO) and alanine (ALA) to glycine (GLY) substitution variants were designed to modulate backbone conformational propensities without introducing non-native intramolecular interactions. The hydrodynamic radius (R(h)) was used to monitor changes in global structure. Circular dichroism spectroscopy showed that the GLY substitutions decreased polyproline II (PP(II)) propensities relative to the wild type, as expected, and fluorescence methods indicated that substitution-induced changes in R(h) were not associated with folding. The experiments showed that changes in local PP(II) structure cause changes in R(h) that are variable and that depend on the intrinsic chain propensities of PRO and ALA residues, demonstrating a mechanism for coupling local and global structure changes. Molecular simulations that model our results were used to extend the analysis to other proteins and illustrate the generality of the observed PRO and alanine effects on the structures of IDPs. © 2014 Wiley Periodicals, Inc.

  16. Expression of the Aeluropus littoralis AlSAP Gene Enhances Rice Yield under Field Drought at the Reproductive Stage

    Directory of Open Access Journals (Sweden)

    Thaura Ghneim-Herrera

    2017-06-01

    Full Text Available We evaluated the yields of Oryza sativa L. ‘Nipponbare’ rice lines expressing a gene encoding an A20/AN1 domain stress-associated protein, AlSAP, from the halophyte grass Aeluropus littoralis under the control of different promoters. Three independent field trials were conducted, with drought imposed at the reproductive stage. In all trials, the two transgenic lines, RN5 and RN6, consistently out-performed non-transgenic (NT and wild-type (WT controls, providing 50–90% increases in grain yield (GY. Enhancement of tillering and panicle fertility contributed to this improved GY under drought. In contrast with physiological records collected during previous greenhouse dry-down experiments, where drought was imposed at the early tillering stage, we did not observe significant differences in photosynthetic parameters, leaf water potential, or accumulation of antioxidants in flag leaves of AlSAP-lines subjected to drought at flowering. However, AlSAP expression alleviated leaf rolling and leaf drying induced by drought, resulting in increased accumulation of green biomass. Therefore, the observed enhanced performance of the AlSAP-lines subjected to drought at the reproductive stage can be tentatively ascribed to a primed status of the transgenic plants, resulting from a higher accumulation of biomass during vegetative growth, allowing reserve remobilization and maintenance of productive tillering and grain filling. Under irrigated conditions, the overall performance of AlSAP-lines was comparable with, or even significantly better than, the NT and WT controls. Thus, AlSAP expression inflicted no penalty on rice yields under optimal growth conditions. Our results support the use of AlSAP transgenics to reduce rice GY losses under drought conditions.

  17. Automating tasks in protein structure determination with the clipper python module.

    Science.gov (United States)

    McNicholas, Stuart; Croll, Tristan; Burnley, Tom; Palmer, Colin M; Hoh, Soon Wen; Jenkins, Huw T; Dodson, Eleanor; Cowtan, Kevin; Agirre, Jon

    2018-01-01

    Scripting programming languages provide the fastest means of prototyping complex functionality. Those with a syntax and grammar resembling human language also greatly enhance the maintainability of the produced source code. Furthermore, the combination of a powerful, machine-independent scripting language with binary libraries tailored for each computer architecture allows programs to break free from the tight boundaries of efficiency traditionally associated with scripts. In the present work, we describe how an efficient C++ crystallographic library such as Clipper can be wrapped, adapted and generalized for use in both crystallographic and electron cryo-microscopy applications, scripted with the Python language. We shall also place an emphasis on best practices in automation, illustrating how this can be achieved with this new Python module. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  18. Protein source in a high-protein diet modulates reductions in insulin resistance and hepatic steatosis in fa/fa Zucker rats.

    Science.gov (United States)

    Wojcik, Jennifer L; Devassy, Jessay G; Wu, Yinghong; Zahradka, Peter; Taylor, Carla G; Aukema, Harold M

    2016-01-01

    High-protein diets are being promoted to reduce insulin resistance and hepatic steatosis in metabolic syndrome. Therefore, the effect of protein source in high-protein diets on reducing insulin resistance and hepatic steatosis was examined. Fa/fa Zucker rats were provided normal-protein (15% of energy) casein, high-protein (35% of energy) casein, high-protein soy, or high-protein mixed diets with animal and plant proteins. The high-protein mixed diet reduced area under the curve for insulin during glucose tolerance testing, fasting serum insulin and free fatty acid concentrations, homeostatic model assessment index, insulin to glucose ratio, and pancreatic islet cell area. The high-protein mixed and the high-protein soy diets reduced hepatic lipid concentrations, liver to body weight ratio, and hepatic steatosis rating. These improvements were observed despite no differences in body weight, feed intake, or adiposity among high-protein diet groups. The high-protein casein diet had minimal benefits. A high-protein mixed diet was the most effective for modulating reductions in insulin resistance and hepatic steatosis independent of weight loss, indicating that the source of protein within a high-protein diet is critical for the management of these metabolic syndrome parameters. © 2015 The Obesity Society.

  19. Modulation of Caenorhabditis elegans transcription factor activity by HIM-8 and the related Zinc-Finger ZIM proteins.

    Science.gov (United States)

    Sun, Hongliu; Nelms, Brian L; Sleiman, Sama F; Chamberlin, Helen M; Hanna-Rose, Wendy

    2007-10-01

    The previously reported negative regulatory activity of HIM-8 on the Sox protein EGL-13 is shared by the HIM-8-related ZIM proteins. Furthermore, mutation of HIM-8 can modulate the effects of substitution mutations in the DNA-binding domains of at least four other transcription factors, suggesting broad regulatory activity by HIM-8.

  20. 49 CFR 40.295 - May employees or employers seek a second SAP evaluation if they disagree with the first SAP's...

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false May employees or employers seek a second SAP evaluation if they disagree with the first SAP's recommendations? 40.295 Section 40.295 Transportation Office... seek a second SAP evaluation if they disagree with the first SAP's recommendations? (a) As an employee...

  1. The heterotrimeric G protein Gβ1 interacts with the catalytic subunit of protein phosphatase 1 and modulates G protein-coupled receptor signaling in platelets.

    Science.gov (United States)

    Pradhan, Subhashree; Khatlani, Tanvir; Nairn, Angus C; Vijayan, K Vinod

    2017-08-11

    Thrombosis is caused by the activation of platelets at the site of ruptured atherosclerotic plaques. This activation involves engagement of G protein-coupled receptors (GPCR) on platelets that promote their aggregation. Although it is known that protein kinases and phosphatases modulate GPCR signaling, how serine/threonine phosphatases integrate with G protein signaling pathways is less understood. Because the subcellular localization and substrate specificity of the catalytic subunit of protein phosphatase 1 (PP1c) is dictated by PP1c-interacting proteins, here we sought to identify new PP1c interactors. GPCRs signal via the canonical heterotrimeric Gα and Gβγ subunits. Using a yeast two-hybrid screen, we discovered an interaction between PP1cα and the heterotrimeric G protein Gβ 1 subunit. Co-immunoprecipitation studies with epitope-tagged PP1c and Gβ 1 revealed that Gβ 1 interacts with the PP1c α, β, and γ1 isoforms. Purified PP1c bound to recombinant Gβ 1 -GST protein, and PP1c co-immunoprecipitated with Gβ 1 in unstimulated platelets. Thrombin stimulation of platelets induced the dissociation of the PP1c-Gβ 1 complex, which correlated with an association of PP1c with phospholipase C β3 (PLCβ3), along with a concomitant dephosphorylation of the inhibitory Ser 1105 residue in PLCβ3. siRNA-mediated depletion of GNB1 (encoding Gβ 1 ) in murine megakaryocytes reduced protease-activated receptor 4, activating peptide-induced soluble fibrinogen binding. Thrombin-induced aggregation was decreased in PP1cα -/- murine platelets and in human platelets treated with a small-molecule inhibitor of Gβγ. Finally, disruption of PP1c-Gβ 1 complexes with myristoylated Gβ 1 peptides containing the PP1c binding site moderately decreased thrombin-induced human platelet aggregation. These findings suggest that Gβ 1 protein enlists PP1c to modulate GPCR signaling in platelets.

  2. SAP deficiency mitigated atherosclerotic lesions in ApoE(-/-) mice.

    Science.gov (United States)

    Zheng, Lingyun; Wu, Teng; Zeng, Cuiling; Li, Xiangli; Li, Xiaoqiang; Wen, Dingwen; Ji, Tianxing; Lan, Tian; Xing, Liying; Li, Jiangchao; He, Xiaodong; Wang, Lijing

    2016-01-01

    Serum amyloid P conpoent (SAP), a member of the pentraxin family, interact with pathogens and cell debris to promote their removal by macrophages and neutrophils and is co-localized with atherosclerotic plaques in patients. However, the exact mechanism of SAP in atherogenesis is still unclear. We investigated whether SAP influence macrophage recruitment and foam cell formation and ultimately affect atherosclerotic progression. we generated apoE(-/-); SAP(-/-) (DKO) mice and fed them western diet for 4 and 8 weeks to characterize atherosclerosis development. SAP deficiency effectively reduced plaque size both in the aorta (p = 0.0006 for 4 wks; p = 0.0001 for 8 wks) and the aortic root (p = 0.0061 for 4 wks; p = 0.0079 for 8wks) compared with apoE(-/-) mice. Meanwhile, SAP deficiency inhibited oxLDL-induced foam cell formation (p = 0.0004) compared with apoE(-/-) mice and SAP treatment increases oxLDL-induced foam cell formation (p = 0.002) in RAW cells. Besides, SAP deficiency reduced macrophages recruitment (p = 0.035) in vivo and in vitro (p = 0.026). Furthermore, SAP treatment enhanced CD36 (p = 0.007) and FcγRI (p = 0.031) expression induced by oxLDL through upregulating JNK and p38 MAPK phosphorylation whereas specific JNK1/2 inhibitor reduced CD36 (p = 0.0005) and FcγRI (P = 0.0007) expression in RAW cell. SAP deficiency also significantly decreased the expression of M1 and M2 macrophage markers and inflammatory cytokines in oxLDL-induced macrophages. SAP deficiency mitigated foam cell formation and atherosclerotic development in apoE(-/-) mice, due to reduction in macrophages recruitment, polarization and pro-inflammatory cytokines and inhibition the CD36/FcγR-dependent signaling pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Statistical characterization of the Sub-Auroral Polarization Stream (SAPS)

    Science.gov (United States)

    Kunduri, B.; Baker, J. B.; Ruohoniemi, J. M.; Erickson, P. J.; Coster, A. J.; Oksavik, K.

    2017-12-01

    The Sub-Auroral Polarization Stream (SAPS) is a narrow region of westward directed plasma convection typically observed in the dusk-midnight sector equatorward of the main auroral oval. SAPS plays an important role in mid-latitude space weather dynamics and has a controlling influence on the evolution of large-scale plasma features, such as Storm Enhanced Density (SED) plumes. In this study, data from North American mid-latitude SuperDARN radars collected between January 2011 and December 2014 have been used to compile a database of SAPS events for statistical analysis. We examine the dependence of SAPS velocity magnitude and direction on geomagnetic activity and magnetic local time. The lowest speed limit and electric fields observed during SAPS are discussed and histograms of SAPS velocities for different Dst bins and MLAT-MLT locations are presented. We find significant differences in SAPS characteristics between periods of low and high geomagnetic activity, suggesting that SAPS are driven by different mechanisms during storm and non-storm conditions. To further explore this possibility, we have characterized the SAPS location and peak speed relative to the ionospheric trough specified by GPS Total Electron Content (TEC) data from the MIT Haystack Madrigal database. A particular emphasis is placed on identifying the extent to which the location, structure, and depth of the trough may play a controlling influence on SAPS speeds during storm and non-storm periods. The results are interpreted in terms of the current paradigm for active thermosphere-ionosphere feedback being an important component of SAPS physics.

  4. Trace levels of innate immune response modulating impurities (IIRMIs) synergize to break tolerance to therapeutic proteins.

    Science.gov (United States)

    Verthelyi, Daniela; Wang, Vivian

    2010-12-22

    Therapeutic proteins such as monoclonal antibodies, replacement enzymes and toxins have significantly improved the therapeutic options for multiple diseases, including cancer and inflammatory diseases as well as enzyme deficiencies and inborn errors of metabolism. However, immune responses to these products are frequent and can seriously impact their safety and efficacy. Of the many factors that can impact protein immunogenicity, this study focuses on the role of innate immune response modulating impurities (IIRMIs) that could be present despite product purification and whether these impurities can synergize to facilitate an immunogenic response to therapeutic proteins. Using lipopolysaccharide (LPS) and CpG ODN as IIRMIs we showed that trace levels of these impurities synergized to induce IgM, IFNγ, TNFα and IL-6 expression. In vivo, trace levels of these impurities synergized to increase antigen-specific IgG antibodies to ovalbumin. Further, whereas mice treated with human erythropoietin showed a transient increase in hematocrit, those that received human erythropoietin containing low levels of IIRMIs had reduced response to erythropoietin after the 1(st) dose and developed long-lasting anemia following subsequent doses. This suggests that the presence of IIRMIs facilitated a breach in tolerance to the endogenous mouse erythropoietin. Overall, these studies indicate that the risk of enhancing immunogenicity should be considered when establishing acceptance limits of IIRMIs for therapeutic proteins.

  5. Trace levels of innate immune response modulating impurities (IIRMIs synergize to break tolerance to therapeutic proteins.

    Directory of Open Access Journals (Sweden)

    Daniela Verthelyi

    Full Text Available Therapeutic proteins such as monoclonal antibodies, replacement enzymes and toxins have significantly improved the therapeutic options for multiple diseases, including cancer and inflammatory diseases as well as enzyme deficiencies and inborn errors of metabolism. However, immune responses to these products are frequent and can seriously impact their safety and efficacy. Of the many factors that can impact protein immunogenicity, this study focuses on the role of innate immune response modulating impurities (IIRMIs that could be present despite product purification and whether these impurities can synergize to facilitate an immunogenic response to therapeutic proteins. Using lipopolysaccharide (LPS and CpG ODN as IIRMIs we showed that trace levels of these impurities synergized to induce IgM, IFNγ, TNFα and IL-6 expression. In vivo, trace levels of these impurities synergized to increase antigen-specific IgG antibodies to ovalbumin. Further, whereas mice treated with human erythropoietin showed a transient increase in hematocrit, those that received human erythropoietin containing low levels of IIRMIs had reduced response to erythropoietin after the 1(st dose and developed long-lasting anemia following subsequent doses. This suggests that the presence of IIRMIs facilitated a breach in tolerance to the endogenous mouse erythropoietin. Overall, these studies indicate that the risk of enhancing immunogenicity should be considered when establishing acceptance limits of IIRMIs for therapeutic proteins.

  6. Alteration of cardiac glycoside positive inotropic action by modulators of protein synthesis and degradation

    International Nuclear Information System (INIS)

    Nosek, T.M.; Adams, R.J.

    1986-01-01

    Numerous membrane bound and cytoplasmic proteins participate in the cardiac expression of the positive inotropic action (PIA) of digitalis glycosides including the Na,K-ATPase (NKA). Exposure of the myocardium to an inhibitor of protein synthesis (cycloheximide, CYC) or of protein degradation (leupeptin, LEU) alters the PIA of ouabain in isolated, paced guinea pig papillary muscles (PM) in opposite ways. In vivo exposure to CYC for 3 hr resulted in a 30% depression of the in vitro PIA of ouabain at 1.7μM compared to control. In vivo exposure to LEU for 1 hr resulted in a 47% enhancement of the in vitro PIA of 1.7μM ouabain. Neither drug had an apparent effect on the ouabain PIA ED50. Neither CYC nor LEU exposure to PM in vitro affect resting or developed tension or the response of skinned PM to calcium. The mechanisms of the PIA alterations by CYC or LEU do not involve a direct effect on the digitalis receptor. Exposure of isolated cardiac sarcolemma enriched in NKA to 10-100μM CYC or LEU did not affect NKA activity or 3 H-ouabain binding. Although direct physicochemical effects of CYC or LEU may be involved in the alterations of the ouabain PIA, it is possible that modulation of the cellular levels or turnover rate of short-lived proteins may affect cardiac regulation of the digitalis PIA

  7. Insulin Stimulates S100B Secretion and These Proteins Antagonistically Modulate Brain Glucose Metabolism.

    Science.gov (United States)

    Wartchow, Krista Minéia; Tramontina, Ana Carolina; de Souza, Daniela F; Biasibetti, Regina; Bobermin, Larissa D; Gonçalves, Carlos-Alberto

    2016-06-01

    Brain metabolism is highly dependent on glucose, which is derived from the blood circulation and metabolized by the astrocytes and other neural cells via several pathways. Glucose uptake in the brain does not involve insulin-dependent glucose transporters; however, this hormone affects the glucose influx to the brain. Changes in cerebrospinal fluid levels of S100B (an astrocyte-derived protein) have been associated with alterations in glucose metabolism; however, there is no evidence whether insulin modulates glucose metabolism and S100B secretion. Herein, we investigated the effect of S100B on glucose metabolism, measuring D-(3)H-glucose incorporation in two preparations, C6 glioma cells and acute hippocampal slices, and we also investigated the effect of insulin on S100B secretion. Our results showed that: (a) S100B at physiological levels decreases glucose uptake, through the multiligand receptor RAGE and mitogen-activated protein kinase/ERK signaling, and (b) insulin stimulated S100B secretion via PI3K signaling. Our findings indicate the existence of insulin-S100B modulation of glucose utilization in the brain tissue, and may improve our understanding of glucose metabolism in several conditions such as ketosis, streptozotocin-induced dementia and pharmacological exposure to antipsychotics, situations that lead to changes in insulin signaling and extracellular levels of S100B.

  8. Fringe proteins modulate Notch-ligand cis and trans interactions to specify signaling states.

    Science.gov (United States)

    LeBon, Lauren; Lee, Tom V; Sprinzak, David; Jafar-Nejad, Hamed; Elowitz, Michael B

    2014-09-25

    The Notch signaling pathway consists of multiple types of receptors and ligands, whose interactions can be tuned by Fringe glycosyltransferases. A major challenge is to determine how these components control the specificity and directionality of Notch signaling in developmental contexts. Here, we analyzed same-cell (cis) Notch-ligand interactions for Notch1, Dll1, and Jag1, and their dependence on Fringe protein expression in mammalian cells. We found that Dll1 and Jag1 can cis-inhibit Notch1, and Fringe proteins modulate these interactions in a way that parallels their effects on trans interactions. Fringe similarly modulated Notch-ligand cis interactions during Drosophila development. Based on these and previously identified interactions, we show how the design of the Notch signaling pathway leads to a restricted repertoire of signaling states that promote heterotypic signaling between distinct cell types, providing insight into the design principles of the Notch signaling system, and the specific developmental process of Drosophila dorsal-ventral boundary formation.

  9. Intracellular calcium levels determine differential modulation of allosteric interactions within G protein-coupled receptor heteromers.

    Science.gov (United States)

    Navarro, Gemma; Aguinaga, David; Moreno, Estefania; Hradsky, Johannes; Reddy, Pasham P; Cortés, Antoni; Mallol, Josefa; Casadó, Vicent; Mikhaylova, Marina; Kreutz, Michael R; Lluís, Carme; Canela, Enric I; McCormick, Peter J; Ferré, Sergi

    2014-11-20

    The pharmacological significance of the adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromer is well established and it is being considered as an important target for the treatment of Parkinson’s disease and other neuropsychiatric disorders. However, the physiological factors that control its distinctive biochemical properties are still unknown. We demonstrate that different intracellular Ca2+ levels exert a differential modulation of A2AR-D2R heteromer-mediated adenylyl-cyclase and MAPK signaling in striatal cells. This depends on the ability of low and high Ca2+ levels to promote a selective interaction of the heteromer with the neuronal Ca2+-binding proteins NCS-1 and calneuron-1, respectively. These Ca2+-binding proteins differentially modulate allosteric interactions within the A2AR-D2R heteromer, which constitutes a unique cellular device that integrates extracellular (adenosine and dopamine) and intracellular (Ca+2) signals to produce a specific functional response.

  10. The novel protein kinase C epsilon isoform modulates acetylcholine release in the rat neuromuscular junction.

    Science.gov (United States)

    Obis, Teresa; Hurtado, Erica; Nadal, Laura; Tomàs, Marta; Priego, Mercedes; Simon, Anna; Garcia, Neus; Santafe, Manel M; Lanuza, Maria A; Tomàs, Josep

    2015-12-01

    Various protein kinase C (PKC) isoforms contribute to the phosphorylating activity that modulates neurotransmitter release. In previous studies we showed that nPKCε is confined in the presynaptic site of the neuromuscular junction and its presynaptic function is activity-dependent. Furthermore, nPKCε regulates phorbol ester-induced acetylcholine release potentiation, which further indicates that nPKCε is involved in neurotransmission. The present study is designed to examine the nPKCε involvement in transmitter release at the neuromuscular junction. We use the specific nPKCε translocation inhibitor peptide εV1-2 and electrophysiological experiments to investigate the involvement of this isoform in acetylcholine release. We observed that nPKCε membrane translocation is key to the synaptic potentiation of NMJ, being involved in several conditions that upregulate PKC isoforms coupling to acetylcholine (ACh) release (incubation with high Ca(2+), stimulation with phorbol esters and protein kinase A, stimulation with adenosine 3',5'-cyclic monophosphorothioate, 8-Bromo-, Rp-isomer, sodium salt -Sp-8-BrcAMP-). In all these conditions, preincubation with the nPKCε translocation inhibitor peptide (εV1-2) impairs PKC coupling to acetylcholine release potentiation. In addition, the inhibition of nPKCε translocation and therefore its activity impedes that presynaptic muscarinic autoreceptors and adenosine autoreceptors modulate transmitter secretion. Together, these results point to the importance of nPKCε isoform in the control of acetylcholine release in the neuromuscular junction.

  11. Modulation of SOCS protein expression influences the interferon responsiveness of human melanoma cells

    International Nuclear Information System (INIS)

    Lesinski, Gregory B; Zimmerer, Jason M; Kreiner, Melanie; Trefry, John; Bill, Matthew A; Young, Gregory S; Becknell, Brian; Carson, William E III

    2010-01-01

    Endogenously produced interferons can regulate the growth of melanoma cells and are administered exogenously as therapeutic agents to patients with advanced cancer. We investigated the role of negative regulators of interferon signaling known as suppressors of cytokine signaling (SOCS) in mediating interferon-resistance in human melanoma cells. Basal and interferon-alpha (IFN-α) or interferon-gamma (IFN-γ)-induced expression of SOCS1 and SOCS3 proteins was evaluated by immunoblot analysis in a panel of n = 10 metastatic human melanoma cell lines, in human embryonic melanocytes (HEM), and radial or vertical growth phase melanoma cells. Over-expression of SOCS1 and SOCS3 proteins in melanoma cells was achieved using the PINCO retroviral vector, while siRNA were used to inhibit SOCS1 and SOCS3 expression. Tyr 701 -phosphorylated STAT1 (P-STAT1) was measured by intracellular flow cytometry and IFN-stimulated gene expression was measured by Real Time PCR. SOCS1 and SOCS3 proteins were expressed at basal levels in melanocytes and in all melanoma cell lines examined. Expression of the SOCS1 and SOCS3 proteins was also enhanced following stimulation of a subset of cell lines with IFN-α or IFN-γ. Over-expression of SOCS proteins in melanoma cell lines led to significant inhibition of Tyr 701 -phosphorylated STAT1 (P-STAT1) and gene expression following stimulation with IFN-α (IFIT2, OAS-1, ISG-15) or IFN-γ (IRF1). Conversely, siRNA inhibition of SOCS1 and SOCS3 expression in melanoma cells enhanced their responsiveness to interferon stimulation. These data demonstrate that SOCS proteins are expressed in human melanoma cell lines and their modulation can influence the responsiveness of melanoma cells to IFN-α and IFN-γ

  12. FOXP3 renders activated human regulatory T cells resistant to restimulation-induced cell death by suppressing SAP expression.

    Science.gov (United States)

    Katz, Gil; Voss, Kelsey; Yan, Toria F; Kim, Yong Chan; Kortum, Robert L; Scott, David W; Snow, Andrew L

    2018-05-01

    Restimulation-induced cell death (RICD) is an apoptotic program that regulates effector T cell expansion, triggered by repeated stimulation through the T cell receptor (TCR) in the presence of interleukin-2 (IL-2). Although CD4 + regulatory T cells (Tregs) consume IL-2 and experience frequent TCR stimulation, they are highly resistant to RICD. Resistance in Tregs is dependent on the forkhead box P3 (FOXP3) transcription factor, although the mechanism remains unclear. T cells from patients with X-linked lymphoproliferative disease (XLP-1), that lack the adaptor molecule SLAM-associated protein (SAP), are also resistant to RICD. Here we demonstrate that normal Tregs express very low levels of SAP compared to conventional T cells. FOXP3 reduces SAP expression by directly binding to and repressing the SH2D1A (SAP) promoter. Indeed, ectopic SAP expression restores RICD sensitivity in human FOXP3 + Tregs. Our findings illuminate the mechanism behind FOXP3-mediated RICD resistance in Tregs, providing new insight into their long-term persistence. Published by Elsevier Inc.

  13. BAG3 down-modulation reduces anaplastic thyroid tumor growth by enhancing proteasome-mediated degradation of BRAF protein.

    Science.gov (United States)

    Chiappetta, Gennaro; Basile, Anna; Arra, Claudio; Califano, Daniela; Pasquinelli, Rosa; Barbieri, Antonio; De Simone, Veronica; Rea, Domenica; Giudice, Aldo; Pezzullo, Luciano; De Laurenzi, Vincenzo; Botti, Gerardo; Losito, Simona; Conforti, Daniela; Turco, Maria Caterina

    2012-01-01

    Anaplastic thyroid tumors (ATC) express high levels of BAG3, a member of the BAG family of cochaperone proteins that is involved in regulating cell apoptosis through multiple mechanisms. The objective of the study was the investigation of the influence of B-cell lymphoma-2-associated athanogene 3 (BAG3) on ATC growth. We investigated the effects of BAG3 down-modulation, obtained by using a specific small interfering RNA, on in vitro and in vivo growth of the human ATC cell line 8505C. Because BRAF protein plays an important role in ATC cell growth, we analyzed the effects of BAG3 down-modulation on BRAF protein levels. Furthermore, by using a proteasome inhibitor, we verified whether BAG3-mediated regulation of BRAF levels involved a proteasome-dependent mechanism. BAG3 down-modulation significantly inhibits ATC growth in vitro and in vivo. BAG3 coimmunoprecipitates with BRAF protein, and its down-modulation results in a significant reduction of BRAF protein levels, which can be reverted by incubation with the proteasome inhibitor MG132. BAG3 protein sustains ATC growth in vitro and in vivo. The underlying molecular mechanism appears to rely on BAG3 binding to BRAF, thus protecting it from proteasome-dependent degradation. These results are in line with the reported ability of BAG3 to interfere with the proteasomal delivery of a number of other client proteins.

  14. Antidiarrhoeal Activity of Musa paradisiaca Sap in Wistar Rats.

    Science.gov (United States)

    Yakubu, Musa T; Nurudeen, Quadri O; Salimon, Saoban S; Yakubu, Monsurat O; Jimoh, Rukayat O; Nafiu, Mikhail O; Akanji, Musbau A; Oladiji, Adenike T; Williams, Felicia E

    2015-01-01

    The folkloric claim of Musa paradisiaca sap in the management of diarrhoea is yet to be substantiated or refuted with scientific data. Therefore, the aim of the current study was to screen the sap of M. paradisiaca for both its secondary metabolites and antidiarrhoeal activity at 0.25, 0.50, and 1.00 mL in rats. Secondary metabolites were screened using standard methods while the antidiarrhoeal activity was done by adopting the castor oil-induced diarrhoeal, castor oil-induced enteropooling, and gastrointestinal motility models. The sap contained flavonoids, phenolics, saponins, alkaloids, tannins, and steroids while cardiac glycosides, anthraquinones, triterpenes, cardenolides, and dienolides were not detected. In the castor oil-induced diarrhoeal model, the sap significantly (P sap were accompanied by increase in inhibition of intestinal fluid content in the enteropooling model. The sap decreased the charcoal meal transit in the gastrointestinal motility model. In all the models, the 1.00 mL of the sap produced changes that compared well with the reference drugs. Overall, the antidiarrhoeal activity of Musa paradisiaca sap attributed to the presence of alkaloids, phenolics, flavonoids, and/or saponins which may involve, among others, enhancing fluid and electrolyte absorption through de novo synthesis of the sodium potassium ATPase and/or reduced nitric oxide levels.

  15. SAPS simulation with GITM/UCLA-RCM coupled model

    Science.gov (United States)

    Lu, Y.; Deng, Y.; Guo, J.; Zhang, D.; Wang, C. P.; Sheng, C.

    2017-12-01

    Abstract: SAPS simulation with GITM/UCLA-RCM coupled model Author: Yang Lu, Yue Deng, Jiapeng Guo, Donghe Zhang, Chih-Ping Wang, Cheng Sheng Ion velocity in the Sub Aurora region observed by Satellites in storm time often shows a significant westward component. The high speed westward stream is distinguished with convection pattern. These kind of events are called Sub Aurora Polarization Stream (SAPS). In March 17th 2013 storm, DMSP F18 satellite observed several SAPS cases when crossing Sub Aurora region. In this study, Global Ionosphere Thermosphere Model (GITM) has been coupled to UCLA-RCM model to simulate the impact of SAPS during March 2013 event on the ionosphere/thermosphere. The particle precipitation and electric field from RCM has been used to drive GITM. The conductance calculated from GITM has feedback to RCM to make the coupling to be self-consistent. The comparison of GITM simulations with different SAPS specifications will be conducted. The neutral wind from simulation will be compared with GOCE satellite. The comparison between runs with SAPS and without SAPS will separate the effect of SAPS from others and illustrate the impact on the TIDS/TADS propagating to both poleward and equatorward directions.

  16. Superabsorbent polymers (SAP) enhance efficient and eco-friendly ...

    African Journals Online (AJOL)

    In arid and semiarid regions of northern China, there is an increasing interest in using reduced rate of chemical fertilizer along with water-saving superabsorbent polymer (SAP) for field crop production. The objective was to evaluate the effectiveness of different rates of SAP (low, 0.75; medium, 11.3 and high, 15.0 kg ha-1) ...

  17. Modulation of wound healing and scar formation by MG53 protein-mediated cell membrane repair.

    Science.gov (United States)

    Li, Haichang; Duann, Pu; Lin, Pei-Hui; Zhao, Li; Fan, Zhaobo; Tan, Tao; Zhou, Xinyu; Sun, Mingzhai; Fu, Minghuan; Orange, Matthew; Sermersheim, Matthew; Ma, Hanley; He, Duofen; Steinberg, Steven M; Higgins, Robert; Zhu, Hua; John, Elizabeth; Zeng, Chunyu; Guan, Jianjun; Ma, Jianjie

    2015-10-02

    Cell membrane repair is an important aspect of physiology, and disruption of this process can result in pathophysiology in a number of different tissues, including wound healing, chronic ulcer and scarring. We have previously identified a novel tripartite motif family protein, MG53, as an essential component of the cell membrane repair machinery. Here we report the functional role of MG53 in the modulation of wound healing and scarring. Although MG53 is absent from keratinocytes and fibroblasts, remarkable defects in skin architecture and collagen overproduction are observed in mg53(-/-) mice, and these animals display delayed wound healing and abnormal scarring. Recombinant human MG53 (rhMG53) protein, encapsulated in a hydrogel formulation, facilitates wound healing and prevents scarring in rodent models of dermal injuries. An in vitro study shows that rhMG53 protects against acute injury to keratinocytes and facilitates the migration of fibroblasts in response to scratch wounding. During fibrotic remodeling, rhMG53 interferes with TGF-β-dependent activation of myofibroblast differentiation. The resulting down-regulation of α smooth muscle actin and extracellular matrix proteins contributes to reduced scarring. Overall, these studies establish a trifunctional role for MG53 as a facilitator of rapid injury repair, a mediator of cell migration, and a modulator of myofibroblast differentiation during wound healing. Targeting the functional interaction between MG53 and TGF-β signaling may present a potentially effective means for promoting scarless wound healing. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Heterocomplexes of mannose-binding lectin and the pentraxins PTX3 or SAP trigger cross-activation of the complement system

    DEFF Research Database (Denmark)

    Ma, Ying Jie; Doni, Andrea; Skjødt, Mikkel-Ole

    2011-01-01

    The long pentraxin 3 (PTX3), serum amyloid P component (SAP) and C-reactive protein (CRP) belong to the pentraxin family of pattern recognition molecules involved in tissue homeostasis and innate immunity. They interact with C1q from the classical complement pathway. Whether this also occurs via...... the analogous mannose-binding lectin (MBL) from the lectin complement pathway is unknown. Thus, we investigated the possible interaction between MBL and the pentraxins. We report that MBL bound PTX3 and SAP partly via its collagen-like domain, but not CRP. MBL:PTX3 complex formation resulted in recruitment of C......1q, but this was not seen for the MBL:SAP complex. However, both MBL:PTX3 and MBL:SAP complexes enhanced C4 and C3 deposition and opsonophagocytosis of Candida albicans by polymorphonuclear leukocytes. Interaction between MBL and PTX3 lead to communication between the lectin and classical complement...

  19. Assessing the ERP-SAP implementation strategy from cultural perspectives

    Science.gov (United States)

    Wang, Gunawan; Syaiful, Bakhri; Sfenrianto; Nurul, Fajar Ahmad

    2017-09-01

    Implementing ERP-SAP projects in Indonesian large enterprises frequently create headaches for the consultants, since there are always be a large gap between the outcomes of the SAP with the expected results. Indonesian enterprises have experience with a huge amount of investments and ended up with minor benefits. Despite its unprecedented benefits, the SAP strategy is still considered as a mandatory enterprise system for every enterprise to compete in the marketplaces. The article examines the SAP implementation from cultural perspectives to present new horizon that commonly ignored by major Indonesian enterprises. The article applies the multiple case studies with three large Indonesia enterprises, such as KS, the largest steel producer; GEM, a subsidiary of conglomerate enterprise operates in the mining industry, and HS, a subsidiary of the largest retailer in Asia with more than 700 stores in Indonesia. The outcome of the article is expected to provide a comprehensive analysis from cultural perspectives regarding to common problems faced by SAP consultants.

  20. Axin and GSK3- control Smad3 protein stability and modulate TGF- signaling.

    Science.gov (United States)

    Guo, Xing; Ramirez, Alejandro; Waddell, David S; Li, Zhizhong; Liu, Xuedong; Wang, Xiao-Fan

    2008-01-01

    The broad range of biological responses elicited by transforming growth factor-beta (TGF-beta) in various types of tissues and cells is mainly determined by the expression level and activity of the effector proteins Smad2 and Smad3. It is not fully understood how the baseline properties of Smad3 are regulated, although this molecule is in complex with many other proteins at the steady state. Here we show that nonactivated Smad3, but not Smad2, undergoes proteasome-dependent degradation due to the concerted action of the scaffolding protein Axin and its associated kinase, glycogen synthase kinase 3-beta (GSK3-beta). Smad3 physically interacts with Axin and GSK3-beta only in the absence of TGF-beta. Reduction in the expression or activity of Axin/GSK3-beta leads to increased Smad3 stability and transcriptional activity without affecting TGF-beta receptors or Smad2, whereas overexpression of these proteins promotes Smad3 basal degradation and desensitizes cells to TGF-beta. Mechanistically, Axin facilitates GSK3-beta-mediated phosphorylation of Smad3 at Thr66, which triggers Smad3 ubiquitination and degradation. Thr66 mutants of Smad3 show altered protein stability and hence transcriptional activity. These results indicate that the steady-state stability of Smad3 is an important determinant of cellular sensitivity to TGF-beta, and suggest a new function of the Axin/GSK3-beta complex in modulating critical TGF-beta/Smad3-regulated processes during development and tumor progression.

  1. Interaction of dengue virus nonstructural protein 5 with Daxx modulates RANTES production

    Energy Technology Data Exchange (ETDEWEB)

    Khunchai, Sasiprapa [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Junking, Mutita [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Suttitheptumrong, Aroonroong; Yasamut, Umpa [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Sawasdee, Nunghathai [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Netsawang, Janjuree [Faculty of Medical Technology, Rangsit University, Bangkok (Thailand); Morchang, Atthapan [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Chaowalit, Prapaipit [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Noisakran, Sansanee [Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok (Thailand); Yenchitsomanus, Pa-thai, E-mail: grpye@mahidol.ac.th [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); and others

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer For the first time how DENV NS5 increases RANTES production. Black-Right-Pointing-Pointer DENV NS5 physically interacts with human Daxx. Black-Right-Pointing-Pointer Nuclear localization of NS5 is required for Daxx interaction and RANTES production. -- Abstract: Dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS), caused by dengue virus (DENV) infection, are important public health problems in the tropical and subtropical regions. Abnormal hemostasis and plasma leakage are the main patho-physiological changes in DHF/DSS. A remarkably increased production of cytokines, the so called 'cytokine storm', is observed in the patients with DHF/DSS. A complex interaction between DENV proteins and the host immune response contributes to cytokine production. However, the molecular mechanism(s) by which DENV nonstructural protein 5 (NS5) mediates these responses has not been fully elucidated. In the present study, yeast two-hybrid assay was performed to identify host proteins interacting with DENV NS5 and a death-domain-associate protein (Daxx) was identified. The in vivo relevance of this interaction was suggested by co-immunoprecipitation and nuclear co-localization of these two proteins in HEK293 cells expressing DENV NS5. HEK293 cells expressing DENV NS5-K/A, which were mutated at the nuclear localization sequences (NLS), were created to assess its functional roles in nuclear translocation, Daxx interaction, and cytokine production. In the absence of NLS, DENV NS5 could neither translocate into the nucleus nor interact with Daxx to increase the DHF-associated cytokine, RANTES (CCL5) production. This work demonstrates the interaction between DENV NS5 and Daxx and the role of the interaction on the modulation of RANTES production.

  2. Interaction of dengue virus nonstructural protein 5 with Daxx modulates RANTES production

    International Nuclear Information System (INIS)

    Khunchai, Sasiprapa; Junking, Mutita; Suttitheptumrong, Aroonroong; Yasamut, Umpa; Sawasdee, Nunghathai; Netsawang, Janjuree; Morchang, Atthapan; Chaowalit, Prapaipit; Noisakran, Sansanee; Yenchitsomanus, Pa-thai

    2012-01-01

    Highlights: ► For the first time how DENV NS5 increases RANTES production. ► DENV NS5 physically interacts with human Daxx. ► Nuclear localization of NS5 is required for Daxx interaction and RANTES production. -- Abstract: Dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS), caused by dengue virus (DENV) infection, are important public health problems in the tropical and subtropical regions. Abnormal hemostasis and plasma leakage are the main patho-physiological changes in DHF/DSS. A remarkably increased production of cytokines, the so called ‘cytokine storm’, is observed in the patients with DHF/DSS. A complex interaction between DENV proteins and the host immune response contributes to cytokine production. However, the molecular mechanism(s) by which DENV nonstructural protein 5 (NS5) mediates these responses has not been fully elucidated. In the present study, yeast two-hybrid assay was performed to identify host proteins interacting with DENV NS5 and a death-domain-associate protein (Daxx) was identified. The in vivo relevance of this interaction was suggested by co-immunoprecipitation and nuclear co-localization of these two proteins in HEK293 cells expressing DENV NS5. HEK293 cells expressing DENV NS5-K/A, which were mutated at the nuclear localization sequences (NLS), were created to assess its functional roles in nuclear translocation, Daxx interaction, and cytokine production. In the absence of NLS, DENV NS5 could neither translocate into the nucleus nor interact with Daxx to increase the DHF-associated cytokine, RANTES (CCL5) production. This work demonstrates the interaction between DENV NS5 and Daxx and the role of the interaction on the modulation of RANTES production.

  3. Podophyllum hexandrum (Himalayan mayapple) extract provides radioprotection by modulating the expression of proteins associated with apoptosis.

    Science.gov (United States)

    Kumar, Raj; Singh, Pankaj Kumar; Sharma, Ashok; Prasad, Jagdish; Sagar, Ravinder; Singh, Surender; Arora, Rajesh; Sharma, Rakesh Kumar

    2005-08-01

    demonstrated that P. hexandrum extract provides protection from gamma-radiation by the modulation of expression of proteins associated with cell death.

  4. Modulation of Epstein–Barr Virus Nuclear Antigen 2-dependent transcription by protein arginine methyltransferase 5

    International Nuclear Information System (INIS)

    Liu, Cheng-Der; Cheng, Chi-Ping; Fang, Jia-Shih; Chen, Ling-Chih; Zhao, Bo; Kieff, Elliott; Peng, Chih-Wen

    2013-01-01

    Highlights: ► Catalytic active PRMT5 substantially binds to the EBNA2 RG domain. ► PRMT5 augments the EBNA2-dependent transcription. ► PRMT5 triggers the symmetric dimethylation of the EBNA2 RG domain. ► PRMT5 enhances the promoter occupancy of EBNA2 on its target promoters. -- Abstract: Epstein–Barr Virus Nuclear Antigen (EBNA) 2 features an Arginine–Glycine repeat (RG) domain at amino acid positions 335–360, which is a known target for protein arginine methyltransferaser 5 (PRMT5). In this study, we performed protein affinity pull-down assays to demonstrate that endogenous PRMT5 derived from lymphoblastoid cells specifically associated with the protein bait GST-E2 RG. Transfection of a plasmid expressing PRMT5 induced a 2.5- to 3-fold increase in EBNA2-dependent transcription of both the LMP1 promoter in AKATA cells, which contain the EBV genome endogenously, and a Cp-Luc reporter plasmid in BJAB cells, which are EBV negative. Furthermore, we showed that there was a 2-fold enrichment of EBNA2 occupancy in target promoters in the presence of exogenous PRMT5. Taken together, we show that PRMT5 triggers the symmetric dimethylation of EBNA2 RG domain to coordinate with EBNA2-mediated transcription. This modulation suggests that PRMT5 may play a role in latent EBV infection

  5. Raf kinase inhibitory protein: a signal transduction modulator and metastasis suppressor.

    Science.gov (United States)

    Granovsky, Alexey E; Rosner, Marsha Rich

    2008-04-01

    Cells have a multitude of controls to maintain their integrity and prevent random switching from one biological state to another. Raf Kinase Inhibitory Protein (RKIP), a member of the phosphatidylethanolamine binding protein (PEBP) family, is representative of a new class of modulators of signaling cascades that function to maintain the "yin yang" or balance of biological systems. RKIP inhibits MAP kinase (Raf-MEK-ERK), G protein-coupled receptor (GPCR) kinase and NFkappaB signaling cascades. Because RKIP targets different kinases dependent upon its state of phosphorylation, RKIP also acts to integrate crosstalk initiated by multiple environmental stimuli. Loss or depletion of RKIP results in disruption of the normal cellular stasis and can lead to chromosomal abnormalities and disease states such as cancer. Since RKIP and the PEBP family have been reviewed previously, the goal of this analysis is to provide an update and highlight some of the unique features of RKIP that make it a critical player in the regulation of cellular signaling processes.

  6. A single mutation in the envelope protein modulates flavivirus antigenicity, stability, and pathogenesis.

    Directory of Open Access Journals (Sweden)

    Leslie Goo

    2017-02-01

    Full Text Available The structural flexibility or 'breathing' of the envelope (E protein of flaviviruses allows virions to sample an ensemble of conformations at equilibrium. The molecular basis and functional consequences of virus conformational dynamics are poorly understood. Here, we identified a single mutation at residue 198 (T198F of the West Nile virus (WNV E protein domain I-II hinge that regulates virus breathing. The T198F mutation resulted in a ~70-fold increase in sensitivity to neutralization by a monoclonal antibody targeting a cryptic epitope in the fusion loop. Increased exposure of this otherwise poorly accessible fusion loop epitope was accompanied by reduced virus stability in solution at physiological temperatures. Introduction of a mutation at the analogous residue of dengue virus (DENV, but not Zika virus (ZIKV, E protein also increased accessibility of the cryptic fusion loop epitope and decreased virus stability in solution, suggesting that this residue modulates the structural ensembles sampled by distinct flaviviruses at equilibrium in a context dependent manner. Although the T198F mutation did not substantially impair WNV growth kinetics in vitro, studies in mice revealed attenuation of WNV T198F infection. Overall, our study provides insight into the molecular basis and the in vitro and in vivo consequences of flavivirus breathing.

  7. SUMO-2 and PIAS1 Modulate Insoluble Mutant Huntingtin Protein Accumulation

    Directory of Open Access Journals (Sweden)

    Jacqueline Gire O’Rourke

    2013-07-01

    Full Text Available A key feature in Huntington disease (HD is the accumulation of mutant Huntingtin (HTT protein, which may be regulated by posttranslational modifications. Here, we define the primary sites of SUMO modification in the amino-terminal domain of HTT, show modification downstream of this domain, and demonstrate that HTT is modified by the stress-inducible SUMO-2. A systematic study of E3 SUMO ligases demonstrates that PIAS1 is an E3 SUMO ligase for both HTT SUMO-1 and SUMO-2 modification and that reduction of dPIAS in a mutant HTT Drosophila model is protective. SUMO-2 modification regulates accumulation of insoluble HTT in HeLa cells in a manner that mimics proteasome inhibition and can be modulated by overexpression and acute knockdown of PIAS1. Finally, the accumulation of SUMO-2-modified proteins in the insoluble fraction of HD postmortem striata implicates SUMO-2 modification in the age-related pathogenic accumulation of mutant HTT and other cellular proteins that occurs during HD progression.

  8. Structural Modulation of Phosducin by Phosphorylation and 14-3-3 Protein Binding

    Science.gov (United States)

    Rezabkova, Lenka; Kacirova, Miroslava; Sulc, Miroslav; Herman, Petr; Vecer, Jaroslav; Stepanek, Miroslav; Obsilova, Veronika; Obsil, Tomas

    2012-01-01

    Phosducin (Pdc), a highly conserved phosphoprotein, plays an important role in the regulation of G protein signaling, transcriptional control, and modulation of blood pressure. Pdc is negatively regulated by phosphorylation followed by binding to the 14-3-3 protein, whose role is still unclear. To gain insight into the role of 14-3-3 in the regulation of Pdc function, we studied structural changes of Pdc induced by phosphorylation and 14-3-3 protein binding using time-resolved fluorescence spectroscopy. Our data show that the phosphorylation of the N-terminal domain of Pdc at Ser-54 and Ser-73 affects the structure of the whole Pdc molecule. Complex formation with 14-3-3 reduces the flexibility of both the N- and C-terminal domains of phosphorylated Pdc, as determined by time-resolved tryptophan and dansyl fluorescence. Therefore, our data suggest that phosphorylated Pdc undergoes a conformational change when binding to 14-3-3. These changes involve the Gtβγ binding surface within the N-terminal domain of Pdc, and thus could explain the inhibitory effect of 14-3-3 on Pdc function. PMID:23199924

  9. Modulation of Epstein–Barr Virus Nuclear Antigen 2-dependent transcription by protein arginine methyltransferase 5

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cheng-Der; Cheng, Chi-Ping; Fang, Jia-Shih; Chen, Ling-Chih [Department of Life Sciences, Tzu-Chi University, 701 Chung-Yang Rd. Sec 3, Hualien 97004, Taiwan (China); Zhao, Bo; Kieff, Elliott [Department of Medicine and Microbiology and Molecular Genetics, Channing Laboratory, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Ave., Boston 02115, MA (United States); Peng, Chih-Wen, E-mail: pengcw@mail.tcu.edu.tw [Department of Life Sciences, Tzu-Chi University, 701 Chung-Yang Rd. Sec 3, Hualien 97004, Taiwan (China)

    2013-01-18

    Highlights: ► Catalytic active PRMT5 substantially binds to the EBNA2 RG domain. ► PRMT5 augments the EBNA2-dependent transcription. ► PRMT5 triggers the symmetric dimethylation of the EBNA2 RG domain. ► PRMT5 enhances the promoter occupancy of EBNA2 on its target promoters. -- Abstract: Epstein–Barr Virus Nuclear Antigen (EBNA) 2 features an Arginine–Glycine repeat (RG) domain at amino acid positions 335–360, which is a known target for protein arginine methyltransferaser 5 (PRMT5). In this study, we performed protein affinity pull-down assays to demonstrate that endogenous PRMT5 derived from lymphoblastoid cells specifically associated with the protein bait GST-E2 RG. Transfection of a plasmid expressing PRMT5 induced a 2.5- to 3-fold increase in EBNA2-dependent transcription of both the LMP1 promoter in AKATA cells, which contain the EBV genome endogenously, and a Cp-Luc reporter plasmid in BJAB cells, which are EBV negative. Furthermore, we showed that there was a 2-fold enrichment of EBNA2 occupancy in target promoters in the presence of exogenous PRMT5. Taken together, we show that PRMT5 triggers the symmetric dimethylation of EBNA2 RG domain to coordinate with EBNA2-mediated transcription. This modulation suggests that PRMT5 may play a role in latent EBV infection.

  10. Thermal-dissipation sap flow sensors may not yield consistent sap-flux estimates over multiple years

    Science.gov (United States)

    Georgianne W. Moore; Barbara J. Bond; Julia A. Jones; Frederick C. Meinzer

    2010-01-01

    Sap flow techniques, such as thermal dissipation, involve an empirically derived relationship between sap flux and the temperature differential between a heated thermocouple and a nearby reference thermocouple inserted into the sapwood. This relationship has been widely tested but mostly with newly installed sensors. Increasingly, sensors are used for extended periods...

  11. Prediction of the anti-inflammatory mechanisms of curcumin by module-based protein interaction network analysis

    Directory of Open Access Journals (Sweden)

    Yanxiong Gan

    2015-11-01

    Full Text Available Curcumin, the medically active component from Curcuma longa (Turmeric, is widely used to treat inflammatory diseases. Protein interaction network (PIN analysis was used to predict its mechanisms of molecular action. Targets of curcumin were obtained based on ChEMBL and STITCH databases. Protein–protein interactions (PPIs were extracted from the String database. The PIN of curcumin was constructed by Cytoscape and the function modules identified by gene ontology (GO enrichment analysis based on molecular complex detection (MCODE. A PIN of curcumin with 482 nodes and 1688 interactions was constructed, which has scale-free, small world and modular properties. Based on analysis of these function modules, the mechanism of curcumin is proposed. Two modules were found to be intimately associated with inflammation. With function modules analysis, the anti-inflammatory effects of curcumin were related to SMAD, ERG and mediation by the TLR family. TLR9 may be a potential target of curcumin to treat inflammation.

  12. Structural analysis of sumoylated proteins in Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Jørgensen, Maria Louise Mønster

    or Sap1-DNA interactions. In addition, the Sap1 function relationship was investigated in vivo by repeating a search for suppressors of the slow growth phenotype of abp1Δ cbh1Δ mutants. Autonomously replicating sequence binding protein 1 (Abp1) and cenp-B homologue 1 (Cbh1) co-localise with Sap1 in some...

  13. Modulation of CRISPR locus transcription by the repeat-binding protein Cbp1 in Sulfolobus

    DEFF Research Database (Denmark)

    Deng, Ling; Kenchappa, Chandra Shekar; Peng, Xu

    2012-01-01

    CRISPR loci are essential components of the adaptive immune system of archaea and bacteria. They consist of long arrays of repeats separated by DNA spacers encoding guide RNAs (crRNA), which target foreign genetic elements. Cbp1 (CRISPR DNA repeat binding protein) binds specifically to the multiple...... direct repeats of CRISPR loci of members of the acidothermophilic, crenarchaeal order Sulfolobales. cbp1 gene deletion from Sulfolobus islandicus REY15A produced a strong reduction in pre-crRNA yields from CRISPR loci but did not inhibit the foreign DNA targeting capacity of the CRISPR/Cas system....... Conversely, overexpression of Cbp1 in S. islandicus generated an increase in pre-crRNA yields while the level of reverse strand transcripts from CRISPR loci remained unchanged. It is proposed that Cbp1 modulates production of longer pre-crRNA transcripts from CRISPR loci. A possible mechanism...

  14. Different regions of the newcastle disease virus fusion protein modulate pathogenicity.

    Directory of Open Access Journals (Sweden)

    Sandra Heiden

    Full Text Available Newcastle disease virus (NDV, also designated as Avian paramyxovirus type 1 (APMV-1, is the causative agent of a notifiable disease of poultry but it exhibits different pathogenicity dependent on the virus strain. The molecular basis for this variability is not fully understood. The efficiency of activation of the fusion protein (F is determined by presence or absence of a polybasic amino acid sequence at an internal proteolytic cleavage site which is a major determinant of NDV virulence. However, other determinants of pathogenicity must exist since APMV-1 of high (velogenic, intermediate (mesogenic and low (lentogenic virulence specify a polybasic F cleavage site. We aimed at elucidation of additional virulence determinants by constructing a recombinant virus that consists of a lentogenic NDV Clone 30 backbone and the F protein gene from a mesogenic pigeon paramyxovirus-1 (PPMV-1 isolate with an intracerebral pathogenicity index (ICPI of 1.1 specifying the polybasic sequence R-R-K-K-R*F motif at the cleavage site. The resulting virus was characterized by an ICPI of 0.6, indicating a lentogenic pathotype. In contrast, alteration of the cleavage site G-R-Q-G-R*L of the lentogenic Clone 30 to R-R-K-K-R*F resulted in a recombinant virus with an ICPI of 1.36 which was higher than that of parental PPMV-1. Substitution of different regions of the F protein of Clone 30 by those of PPMV-1, while maintaining the polybasic amino acid sequence at the F cleavage site, resulted in recombinant viruses with ICPIs ranging from 0.59 to 1.36 suggesting that virulence is modulated by regions of the F protein other than the polybasic cleavage site.

  15. MAP Kinase Cascades Regulate the Cold Response by Modulating ICE1 Protein Stability.

    Science.gov (United States)

    Zhao, Chunzhao; Wang, Pengcheng; Si, Tong; Hsu, Chuan-Chih; Wang, Lu; Zayed, Omar; Yu, Zheping; Zhu, Yingfang; Dong, Juan; Tao, W Andy; Zhu, Jian-Kang

    2017-12-04

    Mitogen-activated protein kinase cascades are important signaling modules that convert environmental stimuli into cellular responses. We show that MPK3, MPK4, and MPK6 are rapidly activated after cold treatment. The mpk3 and mpk6 mutants display increased expression of CBF genes and enhanced freezing tolerance, whereas constitutive activation of the MKK4/5-MPK3/6 cascade in plants causes reduced expression of CBF genes and hypersensitivity to freezing, suggesting that the MKK4/5-MPK3/6 cascade negatively regulates the cold response. MPK3 and MPK6 can phosphorylate ICE1, a basic-helix-loop-helix transcription factor that regulates the expression of CBF genes, and the phosphorylation promotes the degradation of ICE1. Interestingly, the MEKK1-MKK2-MPK4 pathway constitutively suppresses MPK3 and MPK6 activities and has a positive role in the cold response. Furthermore, the MAPKKK YDA and two calcium/calmodulin-regulated receptor-like kinases, CRLK1 and CRLK2, negatively modulate the cold activation of MPK3/6. Our results uncover important roles of MAPK cascades in the regulation of plant cold response. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. A conserved PHD finger protein and endogenous RNAi modulate insulin signaling in Caenorhabditis elegans.

    Science.gov (United States)

    Mansisidor, Andres R; Cecere, Germano; Hoersch, Sebastian; Jensen, Morten B; Kawli, Trupti; Kennedy, Lisa M; Chavez, Violeta; Tan, Man-Wah; Lieb, Jason D; Grishok, Alla

    2011-09-01

    Insulin signaling has a profound effect on longevity and the oxidative stress resistance of animals. Inhibition of insulin signaling results in the activation of DAF-16/FOXO and SKN-1/Nrf transcription factors and increased animal fitness. By studying the biological functions of the endogenous RNA interference factor RDE-4 and conserved PHD zinc finger protein ZFP-1 (AF10), which regulate overlapping sets of genes in Caenorhabditis elegans, we identified an important role for these factors in the negative modulation of transcription of the insulin/PI3 signaling-dependent kinase PDK-1. Consistently, increased expression of pdk-1 in zfp-1 and rde-4 mutants contributed to their reduced lifespan and sensitivity to oxidative stress and pathogens due to the reduction in the expression of DAF-16 and SKN-1 targets. We found that the function of ZFP-1 in modulating pdk-1 transcription was important for the extended lifespan of the age-1(hx546) reduction-of-function PI3 kinase mutant, since the lifespan of the age-1; zfp-1 double mutant strain was significantly shorter compared to age-1(hx546). We further demonstrate that overexpression of ZFP-1 caused an increased resistance to oxidative stress in a DAF-16-dependent manner. Our findings suggest that epigenetic regulation of key upstream signaling components in signal transduction pathways through chromatin and RNAi may have a large impact on the outcome of signaling and expression of numerous downstream genes.

  17. Modulating the physicochemical and structural properties of gold-functionalized protein nanotubes through thiol surface modification.

    Science.gov (United States)

    Carreño-Fuentes, Liliana; Plascencia-Villa, Germán; Palomares, Laura A; Moya, Sergio E; Ramírez, Octavio T

    2014-12-16

    Biomolecules are advantageous scaffolds for the synthesis and ordering of metallic nanoparticles. Rotavirus VP6 nanotubes possess intrinsic affinity to metal ions, a property that has been exploited to synthesize gold nanoparticles over them. The resulting nanobiomaterials have unique properties useful for novel applications. However, the formed nanobiomaterials lack of colloidal stability and flocculate, limiting their functionality. Here we demonstrate that it is possible to synthesize thiol-protected gold nanoparticles over VP6 nanotubes, which resulted in soluble nanobiomaterials. With this strategy, it was possible to modulate the size, colloidal stability, and surface plasmon resonance of the synthesized nanoparticles by controlling the content of the thiolated ligands. Two types of water-soluble ligands were tested, a small linear ligand, sodium 3-mercapto-1-propanesulfonate (MPS), and a bulky ligand, 5-mercaptopentyl β-D-glucopyranoside (GlcC5SH). The synthesized nanobiomaterials had a higher stability in suspension, as determined by Z-potential measurements. To the extent of our knowledge, this is the first time that a rational strategy is developed to modulate the particular properties of metal nanoparticles in situ synthesized over a protein bioscaffold through thiol coating, achieving a high spatial and structural organization of nanoparticles in a single integrative hybrid structure.

  18. Ada Apa Dengan SAP (AADS Akrual?

    Directory of Open Access Journals (Sweden)

    Eka Findi Tresnawati

    2013-08-01

    Full Text Available This article provides anoverview regarding SAP accrual-based and its problems. It compares information content of PP 24/2005’s cash toward accrual and PP 71/2010’s accrual-based toshow the urgency of accrual-based financial reporting requirements. The analysis borrows Abeysekara’s accounting imperialism. Discussion also involves empirical evidence and evaluation of accrual-based implementation probability in Sumenep Regency. Findings show that accrual-based information is not an urgent need and tends to be difficult to be implemented. Reflecting the evidence in Sumenep, local governments are faced with the need of human resources, the question of the use-fulness of accrual information, and technical difficulties on implementation.

  19. Date palm sap collection: exploring opportunities to prevent Nipah transmission.

    Science.gov (United States)

    Nahar, Nazmun; Sultana, Rebeca; Gurley, Emily S; Hossain, M Jahangir; Luby, Stephen P

    2010-06-01

    Nipah virus (NiV) infection is a seasonal disease in Bangladesh that coincides with the date palm sap collection season. Raw date palm sap is a delicacy to drink in Bengali culture. If fruit bats that are infected with NiV gain access to the sap for drinking, they might occasionally contaminate the sap through saliva and urine. In February 2007, we conducted a qualitative study in six villages, interviewing 27 date palm sap collectors (gachhis) within the geographical area where NiV outbreaks have occurred since 2001. Gachhis reported that bats pose a challenge to successful collection of quality sap, because bats drink and defecate into the sap which markedly reduces its value. They know some methods to prevent access by bats and other pests but do not use them consistently, because of lack of time and resources. Further studies to explore the effectiveness of these methods and to motivate gachhis to invest their time and money to use them could reduce the risk of human Nipah infection in Bangladesh.

  20. The Severe Acute Respiratory Syndrome (SARS-coronavirus 3a protein may function as a modulator of the trafficking properties of the spike protein

    Directory of Open Access Journals (Sweden)

    Tan Yee-Joo

    2005-02-01

    Full Text Available Abstract Background A recent publication reported that a tyrosine-dependent sorting signal, present in cytoplasmic tail of the spike protein of most coronaviruses, mediates the intracellular retention of the spike protein. This motif is missing from the spike protein of the severe acute respiratory syndrome-coronavirus (SARS-CoV, resulting in high level of surface expression of the spike protein when it is expressed on its own in vitro. Presentation of the hypothesis It has been shown that the severe acute respiratory syndrome-coronavirus genome contains open reading frames that encode for proteins with no homologue in other coronaviruses. One of them is the 3a protein, which is expressed during infection in vitro and in vivo. The 3a protein, which contains a tyrosine-dependent sorting signal in its cytoplasmic domain, is expressed on the cell surface and can undergo internalization. In addition, 3a can bind to the spike protein and through this interaction, it may be able to cause the spike protein to become internalized, resulting in a decrease in its surface expression. Testing the hypothesis The effects of 3a on the internalization of cell surface spike protein can be examined biochemically and the significance of the interplay between these two viral proteins during viral infection can be studied using reverse genetics methodology. Implication of the hypothesis If this hypothesis is proven, it will indicate that the severe acute respiratory syndrome-coronavirus modulates the surface expression of the spike protein via a different mechanism from other coronaviruses. The interaction between 3a and S, which are expressed from separate subgenomic RNA, would be important for controlling the trafficking properties of S. The cell surface expression of S in infected cells significantly impacts viral assembly, viral spread and viral pathogenesis. Modulation by this unique pathway could confer certain advantages during the replication of the severe

  1. Modulation of expression and activity of intestinal multidrug resistance-associated protein 2 by xenobiotics

    Energy Technology Data Exchange (ETDEWEB)

    Tocchetti, Guillermo Nicolás [Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 570, 2000 Rosario (Argentina); Rigalli, Juan Pablo [Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 570, 2000 Rosario (Argentina); Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg (Germany); Arana, Maite Rocío; Villanueva, Silvina Stella Maris [Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 570, 2000 Rosario (Argentina); Mottino, Aldo Domingo, E-mail: amottino@unr.edu.ar [Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 570, 2000 Rosario (Argentina)

    2016-07-15

    The multidrug resistance-associated protein 2 (MRP2/ABCC2) is a transporter that belongs to the ATP-binding cassette (ABC) superfamily. In the intestine, it is localized to the apical membrane of the enterocyte and plays a key role in limiting the absorption of xenobiotics incorporated orally. MRP2 may also play a role in systemic clearance of xenobiotics available from the serosal side of the intestine. MRP2 transports a wide range of substrates, mainly organic anions conjugated with glucuronic acid, glutathione and sulfate and its expression can be modulated by xenobiotics at transcriptional- and post-transcriptional levels. Transcriptional regulation is usually mediated by a group of nuclear receptors. The pregnane X receptor (PXR) is a major member of this group. Relevant drugs described to up-regulate intestinal MRP2 via PXR are rifampicin, spironolactone and carbamazepine, among others. The constitutive androstane receptor (CAR, NR1I3) was also reported to modulate MRP2 expression, phenobarbital being a typical activator. Dietary compounds, including micronutrients and other natural products, are also capable of regulating intestinal MRP2 expression transcriptionally. We have given them particular attention since the composition of the food ingested daily is not necessarily supervised and may result in interactions with therapeutic drugs. Post-transcriptional regulation of MRP2 activity by xenobiotics, e.g. as a consequence of inhibitory actions, is also described in this review. Unfortunately, only few studies report on drug-drug or nutrient-drug interactions as a consequence of modulation of intestinal MRP2 activity by xenobiotics. Future clinical studies are expected to identify additional interactions resulting in changes in efficacy or safety of therapeutic drugs. - Highlights: • Intestinal MRP2 (ABCC2) expression and activity can be regulated by xenobiotics. • PXR and CAR are major MRP2 modulators through a transcriptional mechanism. • Rifampicin

  2. Long Distance Modulation of Disorder-to-Order Transitions in Protein Allostery.

    Science.gov (United States)

    Wang, Jingheng; Custer, Gregory; Beckett, Dorothy; Matysiak, Silvina

    2017-08-29

    Elucidation of the molecular details of allosteric communication between distant sites in a protein is key to understanding and manipulating many biological regulatory processes. Although protein disorder is acknowledged to play an important thermodynamic role in allostery, the molecular mechanisms by which this disorder is harnessed for long distance communication are known for a limited number of systems. Transcription repression by the Escherichia coli biotin repressor, BirA, is allosterically activated by binding of the small molecule effector biotinoyl-5'-AMP. The effector acts by promoting BirA dimerization, which is a prerequisite for sequence-specific binding to the biotin biosynthetic operon operator sequence. A 30 Å distance separates the effector binding and dimerization surfaces in BirA, and previous studies indicate that allostery is mediated, in part, by disorder-to-order transitions on the two coupled sites. In this work, combined experimental and computational methods have been applied to investigate the molecular basis of allosteric communication in BirA. Double-mutant cycle analysis coupled with thermodynamic measurements indicates functional coupling between residues in disordered loops on the two distant surfaces. All atom molecular dynamics simulations reveal that this coupling occurs through long distance reciprocal modulation of the structure and dynamics of disorder-to-order transitions on the two surfaces.

  3. Direct modulation of T-box riboswitch-controlled transcription by protein synthesis inhibitors.

    Science.gov (United States)

    Stamatopoulou, Vassiliki; Apostolidi, Maria; Li, Shuang; Lamprinou, Katerina; Papakyriakou, Athanasios; Zhang, Jinwei; Stathopoulos, Constantinos

    2017-09-29

    Recently, it was discovered that exposure to mainstream antibiotics activate numerous bacterial riboregulators that control antibiotic resistance genes including metabolite-binding riboswitches and other transcription attenuators. However, the effects of commonly used antibiotics, many of which exhibit RNA-binding properties, on the widespread T-box riboswitches, remain unknown. In Staphylococcus aureus, a species-specific glyS T-box controls the supply of glycine for both ribosomal translation and cell wall synthesis, making it a promising target for next-generation antimicrobials. Here, we report that specific protein synthesis inhibitors could either significantly increase T-box-mediated transcription antitermination, while other compounds could suppress it, both in vitro and in vivo. In-line probing of the full-length T-box combined with molecular modelling and docking analyses suggest that the antibiotics that promote transcription antitermination stabilize the T-box:tRNA complex through binding specific positions on stem I and the Staphylococcal-specific stem Sa. By contrast, the antibiotics that attenuate T-box transcription bind to other positions on stem I and do not interact with stem Sa. Taken together, our results reveal that the transcription of essential genes controlled by T-box riboswitches can be directly modulated by commonly used protein synthesis inhibitors. These findings accentuate the regulatory complexities of bacterial response to antimicrobials that involve multiple riboregulators. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. MCT-1 protein interacts with the cap complex and modulates messenger RNA translational profiles

    DEFF Research Database (Denmark)

    Reinert, Line; Shi, B; Nandi, S

    2006-01-01

    MCT-1 is an oncogene that was initially identified in a human T cell lymphoma and has been shown to induce cell proliferation as well as activate survival-related pathways. MCT-1 contains the PUA domain, a recently described RNA-binding domain that is found in several tRNA and rRNA modification...... enzymes. Here, we established that MCT-1 protein interacts with the cap complex through its PUA domain and recruits the density-regulated protein (DENR/DRP), containing the SUI1 translation initiation domain. Through the use of microarray analysis on polysome-associated mRNAs, we showed that up......-regulation of MCT-1 was able to modulate the translation profiles of BCL2L2, TFDP1, MRE11A, cyclin D1, and E2F1 mRNAs, despite equivalent levels of mRNAs in the cytoplasm. Our data establish a role for MCT-1 in translational regulation, and support a linkage between translational control and oncogenesis....

  5. HIV-1 accessory proteins VPR and Vif modulate antiviral response by targeting IRF-3 for degradation

    International Nuclear Information System (INIS)

    Okumura, Atsushi; Alce, Tim; Lubyova, Barbora; Ezelle, Heather; Strebel, Klaus; Pitha, Paula M.

    2008-01-01

    The activation of IRF-3 during the early stages of viral infection is critical for the initiation of the antiviral response; however the activation of IRF-3 in HIV-1 infected cells has not yet been characterized. We demonstrate that the early steps of HIV-1 infection do not lead to the activation and nuclear translocation of IRF-3; instead, the relative levels of IRF-3 protein are decreased due to the ubiquitin-associated proteosome degradation. Addressing the molecular mechanism of this effect we show that the degradation is independent of HIV-1 replication and that virion-associated accessory proteins Vif and Vpr can independently degrade IRF-3. The null mutation of these two genes reduced the capacity of the HIV-1 virus to down modulate IRF-3 levels. The degradation was associated with Vif- and Vpr-mediated ubiquitination of IRF-3 and was independent of the activation of IRF-3. N-terminal lysine residues were shown to play a critical role in the Vif- and Vpr-mediated degradation of IRF-3. These data implicate Vif and Vpr in the disruption of the initial antiviral response and point to the need of HIV-1 to circumvent the antiviral response during the very early phase of replication

  6. Lithium blocks ethanol-induced modulation of protein kinases in the developing brain

    International Nuclear Information System (INIS)

    Chakraborty, Goutam; Saito, Mitsuo; Mao, Rui-Fen; Wang, Ray; Vadasz, Csaba; Saito, Mariko

    2008-01-01

    Lithium has been shown to be neuroprotective against various insults including ethanol exposure. We previously reported that ethanol-induced apoptotic neurodegeneration in the postnatal day 7 (P7) mice is associated with decreases in phosphorylation levels of Akt, glycogen synthase kinase-3β (GSK-3β), and AMP-activated protein kinase (AMPK), and alteration in lipid profiles in the brain. Here, P7 mice were injected with ethanol and lithium, and the effects of lithium on ethanol-induced alterations in phosphorylation levels of protein kinases and lipid profiles in the brain were examined. Immunoblot and immunohistochemical analyses showed that lithium significantly blocked ethanol-induced caspase-3 activation and reduction in phosphorylation levels of Akt, GSK-3β, and AMPK. Further, lithium inhibited accumulation of cholesterol ester (ChE) and N-acylphosphatidylethanolamine (NAPE) triggered by ethanol in the brain. These results suggest that Akt, GSK-3β, and AMPK are involved in ethanol-induced neurodegeneration and the neuroprotective effects of lithium by modulating both apoptotic and survival pathways

  7. Contribution of a natural polymorphism, protein kinase G, modulates electroconvulsive seizure recovery in D. melanogaster.

    Science.gov (United States)

    Kelly, Stephanie P; Risley, Monica G; Miranda, Leonor E; Dawson-Scully, Ken

    2018-05-24

    Drosophila melanogaster is a well-characterized model for neurological disorders and is widely used for investigating causes of altered neuronal excitability leading to seizure-like behavior. One method used to analyze behavioral output of neuronal perturbance is recording the time to locomotor recovery from an electroconvulsive shock. Based on this behavior, we sought to quantify seizure susceptibility in larval D. melanogaster with differences in the enzymatic activity levels of a major protein, cGMP-dependent protein kinase (PKG). PKG, encoded by foraging , has two natural allelic variants and has previously been implicated in several important physiological characteristics including: foraging patterns, learning and memory, and environmental stress tolerance. The well-established NO/cGMP/PKG signaling pathway found in the fly, which potentially targets downstream K + channel(s), which ultimately impacts membrane excitability; leading to our hypothesis: altering PKG enzymatic activity modulates time to recovery from an electroconvulsive seizure. Our results show that by both genetically and pharmacologically increasing PKG enzymatic activity, we can decrease the locomotor recovery time from an electroconvulsive seizure in larval D. melanogaster . © 2018. Published by The Company of Biologists Ltd.

  8. pH modulates the binding of early growth response protein 1 transcription factor to DNA.

    Science.gov (United States)

    Mikles, David C; Bhat, Vikas; Schuchardt, Brett J; Deegan, Brian J; Seldeen, Kenneth L; McDonald, Caleb B; Farooq, Amjad

    2013-08-01

    The transcription factor early growth response protein (EGR)1 orchestrates a plethora of signaling cascades involved in cellular homeostasis, and its downregulation has been implicated in the development of prostate cancer. Herein, using a battery of biophysical tools, we show that the binding of EGR1 to DNA is tightly regulated by solution pH. Importantly, the binding affinity undergoes an enhancement of more than an order of magnitude with an increase in pH from 5 to 8, implying that the deprotonation of an ionizable residue accounts for such behavior. This ionizable residue is identified as His382 by virtue of the fact that its replacement by nonionizable residues abolishes the pH dependence of the binding of EGR1 to DNA. Notably, His382 inserts into the major groove of DNA, and stabilizes the EGR1-DNA interaction via both hydrogen bonding and van der Waals contacts. Remarkably, His382 is mainly conserved across other members of the EGR family, implying that histidine protonation-deprotonation may serve as a molecular switch for modulating the protein-DNA interactions that are central to this family of transcription factors. Collectively, our findings reveal an unexpected but a key step in the molecular recognition of the EGR family of transcription factors, and suggest that they may act as sensors of pH within the intracellular environment. © 2013 FEBS.

  9. Distinct activities of Bartonella henselae type IV secretion effector proteins modulate capillary-like sprout formation.

    Science.gov (United States)

    Scheidegger, F; Ellner, Y; Guye, P; Rhomberg, T A; Weber, H; Augustin, H G; Dehio, C

    2009-07-01

    The zoonotic pathogen Bartonella henselae (Bh) can lead to vasoproliferative tumour lesions in the skin and inner organs known as bacillary angiomatosis and bacillary peliosis. The knowledge on the molecular and cellular mechanisms involved in this pathogen-triggered angiogenic process is confined by the lack of a suitable animal model and a physiologically relevant cell culture model of angiogenesis. Here we employed a three-dimensional in vitro angiogenesis assay of collagen gel-embedded endothelial cell (EC) spheroids to study the angiogenic properties of Bh. Spheroids generated from Bh-infected ECs displayed a high capacity to form sprouts, which represent capillary-like projections into the collagen gel. The VirB/VirD4 type IV secretion system and a subset of its translocated Bartonella effector proteins (Beps) were found to profoundly modulate this Bh-induced sprouting activity. BepA, known to protect ECs from apoptosis, strongly promoted sprout formation. In contrast, BepG, triggering cytoskeletal rearrangements, potently inhibited sprouting. Hence, the here established in vitro model of Bartonella- induced angiogenesis revealed distinct and opposing activities of type IV secretion system effector proteins, which together with a VirB/VirD4-independent effect may control the angiogenic activity of Bh during chronic infection of the vasculature.

  10. 30 CFR 285.605 - What is a Site Assessment Plan (SAP)?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What is a Site Assessment Plan (SAP)? 285.605... Assessment Plan (SAP)? (a) A SAP describes the activities (e.g., installation of meteorological towers... project easement, or to test technology devices. (1) Your SAP must describe how you will conduct your...

  11. 30 CFR 285.614 - When may I begin conducting activities under my approved SAP?

    Science.gov (United States)

    2010-07-01

    ... approved SAP? 285.614 Section 285.614 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE... Plans and Information Requirements Activities Under An Approved Sap § 285.614 When may I begin conducting activities under my approved SAP? (a) You may begin conducting the activities approved in your SAP...

  12. Peripheral myelin protein-22 (PMP22 modulates alpha 6 integrin expression in the human endometrium

    Directory of Open Access Journals (Sweden)

    Braun Jonathan

    2011-04-01

    Full Text Available Abstract Background PMP22, a member of the GAS3 family of tetraspan proteins, is associated with a variety of neurological diseases. Previous studies have shown that PMP22 is expressed in proliferative endometrium, but its function within this tissue is poorly understood. In this study, we first characterized the expression of PMP22 in the human menstrual cycle and began to characterize its function in the endometrium. Methods Using a combination of immunohistochemistry and quantitative PCR, we characterized the expression of PMP22 in both proliferative and secretory endometrium. Differences in PMP22 expression between proliferative and secretory endometrium were determined using a Mann-Whitney U test. In order to investigate the influence of PMP22 on α6 integrin expression, cells were created that ectopically overexpressed PMP22 or expressed a siRNA to inhibit its expression. These cells were analyzed for changes in integrins and binding to extracellular matrices. Results In this study, we show that PMP22 expression is higher in proliferative phase than secretory phase. Functionally, we have begun to characterize the functional significance of this expression. Previous studies have suggested a link between PMP22 and α6 integrin, and therefore we asked whether PMP22 could associate or potentially modulate the expression of α6 integrin. Expression of both PMP22 and α6 integrin were detectable in endometrial epithelial and stromal cells, and we show that both proteins can associate and colocalize with each other. To understand if PMP22 directly altered the expression of a6 integrin, we examined cell lines with modulated levels of the protein. Overexpression of PMP22 was sufficient to increase α6 integrin surface expression with a concominant increase in binding to the extracellular matrix laminin, while a reduction in PMP22 suppressed α6 integrin surface expression. Conclusion These findings suggest a physiologic role for PMP22 on the

  13. Peripheral myelin protein-22 (PMP22) modulates alpha 6 integrin expression in the human endometrium.

    Science.gov (United States)

    Rao, Rajiv G; Sudhakar, Deepthi; Hogue, Claire P; Amici, Stephanie; Gordon, Lynn K; Braun, Jonathan; Notterpek, Lucia; Goodglick, Lee; Wadehra, Madhuri

    2011-04-25

    PMP22, a member of the GAS3 family of tetraspan proteins, is associated with a variety of neurological diseases. Previous studies have shown that PMP22 is expressed in proliferative endometrium, but its function within this tissue is poorly understood. In this study, we first characterized the expression of PMP22 in the human menstrual cycle and began to characterize its function in the endometrium. Using a combination of immunohistochemistry and quantitative PCR, we characterized the expression of PMP22 in both proliferative and secretory endometrium. Differences in PMP22 expression between proliferative and secretory endometrium were determined using a Mann-Whitney U test. In order to investigate the influence of PMP22 on α6 integrin expression, cells were created that ectopically overexpressed PMP22 or expressed a siRNA to inhibit its expression. These cells were analyzed for changes in integrins and binding to extracellular matrices. In this study, we show that PMP22 expression is higher in proliferative phase than secretory phase. Functionally, we have begun to characterize the functional significance of this expression. Previous studies have suggested a link between PMP22 and α6 integrin, and therefore we asked whether PMP22 could associate or potentially modulate the expression of α6 integrin. Expression of both PMP22 and α6 integrin were detectable in endometrial epithelial and stromal cells, and we show that both proteins can associate and colocalize with each other. To understand if PMP22 directly altered the expression of a6 integrin, we examined cell lines with modulated levels of the protein. Overexpression of PMP22 was sufficient to increase α6 integrin surface expression with a concominant increase in binding to the extracellular matrix laminin, while a reduction in PMP22 suppressed α6 integrin surface expression. These findings suggest a physiologic role for PMP22 on the expression of α6 integrin. We predict that this may be important for the

  14. Sapflow+: a four-needle heat-pulse sap flow sensor enabling nonempirical sap flux density and water content measurements.

    Science.gov (United States)

    Vandegehuchte, Maurits W; Steppe, Kathy

    2012-10-01

    • To our knowledge, to date, no nonempirical method exists to measure reverse, low or high sap flux density. Moreover, existing sap flow methods require destructive wood core measurements to determine sapwood water content, necessary to convert heat velocity to sap flux density, not only damaging the tree, but also neglecting seasonal variability in sapwood water content. • Here, we present a nonempirical heat-pulse-based method and coupled sensor which measure temperature changes around a linear heater in both axial and tangential directions after application of a heat pulse. By fitting the correct heat conduction-convection equation to the measured temperature profiles, the heat velocity and water content of the sapwood can be determined. • An identifiability analysis and validation tests on artificial and real stem segments of European beech (Fagus sylvatica L.) confirm the applicability of the method, leading to accurate determinations of heat velocity, water content and hence sap flux density. • The proposed method enables sap flux density measurements to be made across the entire natural occurring sap flux density range of woody plants. Moreover, the water content during low flows can be determined accurately, enabling a correct conversion from heat velocity to sap flux density without destructive core measurements. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  15. HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways

    Science.gov (United States)

    Guo, Fang; Zhao, Qiong; Cheng, Junjun; Qi, Yonghe; Su, Qing; Wei, Lai; Li, Wenhui; Chang, Jinhong

    2017-01-01

    Hepatitis B virus (HBV) core protein assembles viral pre-genomic (pg) RNA and DNA polymerase into nucleocapsids for reverse transcriptional DNA replication to take place. Several chemotypes of small molecules, including heteroaryldihydropyrimidines (HAPs) and sulfamoylbenzamides (SBAs), have been discovered to allosterically modulate core protein structure and consequentially alter the kinetics and pathway of core protein assembly, resulting in formation of irregularly-shaped core protein aggregates or “empty” capsids devoid of pre-genomic RNA and viral DNA polymerase. Interestingly, in addition to inhibiting nucleocapsid assembly and subsequent viral genome replication, we have now demonstrated that HAPs and SBAs differentially modulate the biosynthesis of covalently closed circular (ccc) DNA from de novo infection and intracellular amplification pathways by inducing disassembly of nucleocapsids derived from virions as well as double-stranded DNA-containing progeny nucleocapsids in the cytoplasm. Specifically, the mistimed cuing of nucleocapsid uncoating prevents cccDNA formation during de novo infection of hepatocytes, while transiently accelerating cccDNA synthesis from cytoplasmic progeny nucleocapsids. Our studies indicate that elongation of positive-stranded DNA induces structural changes of nucleocapsids, which confers ability of mature nucleocapsids to bind CpAMs and triggers its disassembly. Understanding the molecular mechanism underlying the dual effects of the core protein allosteric modulators on nucleocapsid assembly and disassembly will facilitate the discovery of novel core protein-targeting antiviral agents that can more efficiently suppress cccDNA synthesis and cure chronic hepatitis B. PMID:28945802

  16. HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways.

    Science.gov (United States)

    Guo, Fang; Zhao, Qiong; Sheraz, Muhammad; Cheng, Junjun; Qi, Yonghe; Su, Qing; Cuconati, Andrea; Wei, Lai; Du, Yanming; Li, Wenhui; Chang, Jinhong; Guo, Ju-Tao

    2017-09-01

    Hepatitis B virus (HBV) core protein assembles viral pre-genomic (pg) RNA and DNA polymerase into nucleocapsids for reverse transcriptional DNA replication to take place. Several chemotypes of small molecules, including heteroaryldihydropyrimidines (HAPs) and sulfamoylbenzamides (SBAs), have been discovered to allosterically modulate core protein structure and consequentially alter the kinetics and pathway of core protein assembly, resulting in formation of irregularly-shaped core protein aggregates or "empty" capsids devoid of pre-genomic RNA and viral DNA polymerase. Interestingly, in addition to inhibiting nucleocapsid assembly and subsequent viral genome replication, we have now demonstrated that HAPs and SBAs differentially modulate the biosynthesis of covalently closed circular (ccc) DNA from de novo infection and intracellular amplification pathways by inducing disassembly of nucleocapsids derived from virions as well as double-stranded DNA-containing progeny nucleocapsids in the cytoplasm. Specifically, the mistimed cuing of nucleocapsid uncoating prevents cccDNA formation during de novo infection of hepatocytes, while transiently accelerating cccDNA synthesis from cytoplasmic progeny nucleocapsids. Our studies indicate that elongation of positive-stranded DNA induces structural changes of nucleocapsids, which confers ability of mature nucleocapsids to bind CpAMs and triggers its disassembly. Understanding the molecular mechanism underlying the dual effects of the core protein allosteric modulators on nucleocapsid assembly and disassembly will facilitate the discovery of novel core protein-targeting antiviral agents that can more efficiently suppress cccDNA synthesis and cure chronic hepatitis B.

  17. HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways.

    Directory of Open Access Journals (Sweden)

    Fang Guo

    2017-09-01

    Full Text Available Hepatitis B virus (HBV core protein assembles viral pre-genomic (pg RNA and DNA polymerase into nucleocapsids for reverse transcriptional DNA replication to take place. Several chemotypes of small molecules, including heteroaryldihydropyrimidines (HAPs and sulfamoylbenzamides (SBAs, have been discovered to allosterically modulate core protein structure and consequentially alter the kinetics and pathway of core protein assembly, resulting in formation of irregularly-shaped core protein aggregates or "empty" capsids devoid of pre-genomic RNA and viral DNA polymerase. Interestingly, in addition to inhibiting nucleocapsid assembly and subsequent viral genome replication, we have now demonstrated that HAPs and SBAs differentially modulate the biosynthesis of covalently closed circular (ccc DNA from de novo infection and intracellular amplification pathways by inducing disassembly of nucleocapsids derived from virions as well as double-stranded DNA-containing progeny nucleocapsids in the cytoplasm. Specifically, the mistimed cuing of nucleocapsid uncoating prevents cccDNA formation during de novo infection of hepatocytes, while transiently accelerating cccDNA synthesis from cytoplasmic progeny nucleocapsids. Our studies indicate that elongation of positive-stranded DNA induces structural changes of nucleocapsids, which confers ability of mature nucleocapsids to bind CpAMs and triggers its disassembly. Understanding the molecular mechanism underlying the dual effects of the core protein allosteric modulators on nucleocapsid assembly and disassembly will facilitate the discovery of novel core protein-targeting antiviral agents that can more efficiently suppress cccDNA synthesis and cure chronic hepatitis B.

  18. Modulation of Protein S-Nitrosylation by Isoprene Emission in Poplar.

    Science.gov (United States)

    Vanzo, Elisa; Merl-Pham, Juliane; Velikova, Violeta; Ghirardo, Andrea; Lindermayr, Christian; Hauck, Stefanie M; Bernhardt, Jörg; Riedel, Katharina; Durner, Jörg; Schnitzler, Jörg-Peter

    2016-04-01

    Researchers have been examining the biological function(s) of isoprene in isoprene-emitting (IE) species for two decades. There is overwhelming evidence that leaf-internal isoprene increases the thermotolerance of plants and protects them against oxidative stress, thus mitigating a wide range of abiotic stresses. However, the mechanisms of abiotic stress mitigation by isoprene are still under debate. Here, we assessed the impact of isoprene on the emission of nitric oxide (NO) and the S-nitroso-proteome of IE and non-isoprene-emitting (NE) gray poplar (Populus × canescens) after acute ozone fumigation. The short-term oxidative stress induced a rapid and strong emission of NO in NE compared with IE genotypes. Whereas IE and NE plants exhibited under nonstressful conditions only slight differences in their S-nitrosylation pattern, the in vivo S-nitroso-proteome of the NE genotype was more susceptible to ozone-induced changes compared with the IE plants. The results suggest that the nitrosative pressure (NO burst) is higher in NE plants, underlining the proposed molecular dialogue between isoprene and the free radical NO Proteins belonging to the photosynthetic light and dark reactions, the tricarboxylic acid cycle, protein metabolism, and redox regulation exhibited increased S-nitrosylation in NE samples compared with IE plants upon oxidative stress. Because the posttranslational modification of proteins via S-nitrosylation often impacts enzymatic activities, our data suggest that isoprene indirectly regulates the production of reactive oxygen species (ROS) via the control of the S-nitrosylation level of ROS-metabolizing enzymes, thus modulating the extent and velocity at which the ROS and NO signaling molecules are generated within a plant cell. © 2016 American Society of Plant Biologists. All Rights Reserved.

  19. Modulation of Protein S-Nitrosylation by Isoprene Emission in Poplar1

    Science.gov (United States)

    Vanzo, Elisa; Velikova, Violeta; Ghirardo, Andrea; Lindermayr, Christian; Hauck, Stefanie M.; Riedel, Katharina; Durner, Jörg

    2016-01-01

    Researchers have been examining the biological function(s) of isoprene in isoprene-emitting (IE) species for two decades. There is overwhelming evidence that leaf-internal isoprene increases the thermotolerance of plants and protects them against oxidative stress, thus mitigating a wide range of abiotic stresses. However, the mechanisms of abiotic stress mitigation by isoprene are still under debate. Here, we assessed the impact of isoprene on the emission of nitric oxide (NO) and the S-nitroso-proteome of IE and non-isoprene-emitting (NE) gray poplar (Populus × canescens) after acute ozone fumigation. The short-term oxidative stress induced a rapid and strong emission of NO in NE compared with IE genotypes. Whereas IE and NE plants exhibited under nonstressful conditions only slight differences in their S-nitrosylation pattern, the in vivo S-nitroso-proteome of the NE genotype was more susceptible to ozone-induced changes compared with the IE plants. The results suggest that the nitrosative pressure (NO burst) is higher in NE plants, underlining the proposed molecular dialogue between isoprene and the free radical NO. Proteins belonging to the photosynthetic light and dark reactions, the tricarboxylic acid cycle, protein metabolism, and redox regulation exhibited increased S-nitrosylation in NE samples compared with IE plants upon oxidative stress. Because the posttranslational modification of proteins via S-nitrosylation often impacts enzymatic activities, our data suggest that isoprene indirectly regulates the production of reactive oxygen species (ROS) via the control of the S-nitrosylation level of ROS-metabolizing enzymes, thus modulating the extent and velocity at which the ROS and NO signaling molecules are generated within a plant cell. PMID:26850277

  20. Combined enteral infusion of glutamine, carbohydrates, and antioxidants modulates gut protein metabolism in humans.

    Science.gov (United States)

    Coëffier, Moïse; Claeyssens, Sophie; Lecleire, Stéphane; Leblond, Jonathan; Coquard, Aude; Bôle-Feysot, Christine; Lavoinne, Alain; Ducrotté, Philippe; Déchelotte, Pierre

    2008-11-01

    Available data suggest that nutrients can affect intestinal protein metabolism, which contributes to the regulation of gut barrier function. We aimed to assess whether an oral nutritional supplement (ONS) containing glutamine (as the dipeptide Ala-Gln), carbohydrates, and antioxidants would modulate duodenal protein metabolism in healthy humans. Thirty healthy control subjects were included and, over a period of 5 h, received by nasogastric tube either saline or ONS providing 11.7 kcal/kg as 0.877 g Ala-Gln/kg, 3.9 g carbohydrates/kg, and antioxidants (29.25 mg vitamin C/kg, 9.75 mg vitamin E/kg, 195 microg beta-carotene/kg, 5.85 mg Se/kg, and 390 microg Zn/kg) or glutamine (0.585 g/kg, 2.34 kcal/kg). Simultaneously, a continuous intravenous infusion of l-[1-(13)C]-leucine was done until endoscopy. Leucine enrichment was assessed by using gas chromatography-mass spectrometric analysis, and mucosal fractional synthesis rate was calculated by using intracellular amino acid enrichment as precursor. Mucosal proteolytic pathways were also evaluated. ONS infusion resulted in a doubling increase (P < 0.01) of duodenal fractional synthesis rate and a significant (P < 0.05) decrease in cathepsin D-mediated proteolysis compared with saline, whereas proteasome and Ca(2+)-dependent activities were unaffected. ONS infusion significantly (P < 0.01) decreased duodenal glutathione but not glutathione disulfide concentrations or the ratio of glutathione to glutathione disulfide. Insulinemia increased after ONS infusion, whereas plasma essential amino acids decreased. Infusion of glutamine alone did not reproduce ONS effects. ONS infusion improves duodenal protein balance in healthy humans. Further investigations are needed to study the origin of these effects and to evaluate ONS supply in stressed persons.

  1. Implementace modulu řízení lidstkých zdrojů systému SAP

    OpenAIRE

    Kroupa, Filip

    2009-01-01

    This thesis is focused on implementation of SAP ERP system, specifically its human capital management module (HCM), in a real organization. Its goal is to describe problems this organization had to face and suggest improvements so that these problems would not repeat. In the first part of the thesis, author gives an introduction to human resources and time management of the employees (attendances, absences etc.). The role of HR department in the organization, its evolution and tasks, and how ...

  2. Structures of a Nonribosomal Peptide Synthetase Module Bound to MbtH-like Proteins Support a Highly Dynamic Domain Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Bradley R.; Drake, Eric J.; Shi, Ce; Aldrich, Courtney C.; Gulick, Andrew M. (UMM); (HWMRI)

    2016-09-05

    Nonribosomal peptide synthetases (NRPSs) produce a wide variety of peptide natural products. During synthesis, the multidomain NRPSs act as an assembly line, passing the growing product from one module to the next. Each module generally consists of an integrated peptidyl carrier protein, an amino acid-loading adenylation domain, and a condensation domain that catalyzes peptide bond formation. Some adenylation domains interact with small partner proteins called MbtH-like proteins (MLPs) that enhance solubility or activity. A structure of an MLP bound to an adenylation domain has been previously reported using a truncated adenylation domain, precluding any insight that might be derived from understanding the influence of the MLP on the intact adenylation domain or on the dynamics of the entire NRPS module. Here, we present the structures of the full-length NRPS EntF bound to the MLPs from Escherichia coli and Pseudomonas aeruginosa. These new structures, along with biochemical and bioinformatics support, further elaborate the residues that define the MLP-adenylation domain interface. Additionally, the structures highlight the dynamic behavior of NRPS modules, including the module core formed by the adenylation and condensation domains as well as the orientation of the mobile thioesterase domain.

  3. A pp32-retinoblastoma protein complex modulates androgen receptor-mediated transcription and associates with components of the splicing machinery

    International Nuclear Information System (INIS)

    Adegbola, Onikepe; Pasternack, Gary R.

    2005-01-01

    We have previously shown pp32 and the retinoblastoma protein interact. pp32 and the retinoblastoma protein are nuclear receptor transcriptional coregulators: the retinoblastoma protein is a coactivator for androgen receptor, the major regulator of prostate cancer growth, while pp32, which is highly expressed in prostate cancer, is a corepressor of the estrogen receptor. We now show pp32 increases androgen receptor-mediated transcription and the retinoblastoma protein modulates this activity. Using affinity purification and mass spectrometry, we identify members of the pp32-retinoblastoma protein complex as PSF and nonO/p54nrb, proteins implicated in coordinate regulation of nuclear receptor-mediated transcription and splicing. We show that the pp32-retinoblastoma protein complex is modulated during TPA-induced K562 differentiation. Present evidence suggests that nuclear receptors assemble multiprotein complexes to coordinately regulate transcription and mRNA processing. Our results suggest that pp32 and the retinoblastoma protein may be part of a multiprotein complex that coordinately regulates nuclear receptor-mediated transcription and mRNA processing

  4. Modulation of intestinal and liver fatty acid-binding proteins in Caco-2 cells by lipids, hormones and cytokines.

    NARCIS (Netherlands)

    Dube, N.; Delvin, E.; Yotov, W.; Garofalo, C.; Bendayan, M.; Veerkamp, J.H.; Levy, E.

    2001-01-01

    Intestinal and liver fatty acid binding proteins (I- and L-FABP) are thought to play a role in enterocyte fatty acid (FA) trafficking. Their modulation by cell differentiation and various potential effectors was investigated in the human Caco-2 cell line. With the acquisition of enterocytic

  5. D1 dopamine receptor signaling is modulated by the R7 RGS protein EAT-16 and the R7 binding protein RSBP-1 in Caenoerhabditis elegans motor neurons.

    Directory of Open Access Journals (Sweden)

    Khursheed A Wani

    Full Text Available Dopamine signaling modulates voluntary movement and reward-driven behaviors by acting through G protein-coupled receptors in striatal neurons, and defects in dopamine signaling underlie Parkinson's disease and drug addiction. Despite the importance of understanding how dopamine modifies the activity of striatal neurons to control basal ganglia output, the molecular mechanisms that control dopamine signaling remain largely unclear. Dopamine signaling also controls locomotion behavior in Caenorhabditis elegans. To better understand how dopamine acts in the brain we performed a large-scale dsRNA interference screen in C. elegans for genes required for endogenous dopamine signaling and identified six genes (eat-16, rsbp-1, unc-43, flp-1, grk-1, and cat-1 required for dopamine-mediated behavior. We then used a combination of mutant analysis and cell-specific transgenic rescue experiments to investigate the functional interaction between the proteins encoded by two of these genes, eat-16 and rsbp-1, within single cell types and to examine their role in the modulation of dopamine receptor signaling. We found that EAT-16 and RSBP-1 act together to modulate dopamine signaling and that while they are coexpressed with both D1-like and D2-like dopamine receptors, they do not modulate D2 receptor signaling. Instead, EAT-16 and RSBP-1 act together to selectively inhibit D1 dopamine receptor signaling in cholinergic motor neurons to modulate locomotion behavior.

  6. Map of important transactions and master data in SAP ERP

    OpenAIRE

    Schermann, Michael

    2015-01-01

    This image represents the most important transactions and master data in SAP ERP as a tube map. As such, it covers most of the content of Magal & Word (2012) Integrated Business Processes with ERP Systems. Wiley, Hoboken, NJ, USA.

  7. Acyl-CoA-Binding Protein ACBP1 Modulates Sterol Synthesis during Embryogenesis1[OPEN

    Science.gov (United States)

    Hsiao, An-Shan; Xue, Yan

    2017-01-01

    Fatty acids (FAs) and sterols are primary metabolites that exert interrelated functions as structural and signaling lipids. Despite their common syntheses from acetyl-coenzyme A, homeostatic cross talk remains enigmatic. Six Arabidopsis (Arabidopsis thaliana) acyl-coenzyme A-binding proteins (ACBPs) are involved in FA metabolism. ACBP1 interacts with PHOSPHOLIPASE Dα1 and regulates phospholipid composition. Here, its specific role in the negative modulation of sterol synthesis during embryogenesis is reported. ACBP1, likely in a liganded state, interacts with STEROL C4-METHYL OXIDASE1-1 (SMO1-1), a rate-limiting enzyme in the sterol pathway. Proembryo abortion in the double mutant indicated that the ACBP1-SMO1-1 interaction is synthetic lethal, corroborating with their strong promoter activities in developing ovules. Gas chromatography-mass spectrometry revealed quantitative and compositional changes in FAs and sterols upon overexpression or mutation of ACBP1 and/or SMO1-1. Aberrant levels of these metabolites may account for the downstream defect in lipid signaling. GLABRA2 (GL2), encoding a phospholipid/sterol-binding homeodomain transcription factor, was up-regulated in developing seeds of acbp1, smo1-1, and ACBP1+/−smo1-1 in comparison with the wild type. Consistent with the corresponding transcriptional alteration of GL2 targets, high-oil, low-mucilage phenotypes of gl2 were phenocopied in ACBP1+/−smo1-1. Thus, ACBP1 appears to modulate the metabolism of two important lipid classes (FAs and sterols) influencing cellular signaling. PMID:28500265

  8. Acyl-CoA-Binding Protein ACBP1 Modulates Sterol Synthesis during Embryogenesis.

    Science.gov (United States)

    Lung, Shiu-Cheung; Liao, Pan; Yeung, Edward C; Hsiao, An-Shan; Xue, Yan; Chye, Mee-Len

    2017-07-01

    Fatty acids (FAs) and sterols are primary metabolites that exert interrelated functions as structural and signaling lipids. Despite their common syntheses from acetyl-coenzyme A, homeostatic cross talk remains enigmatic. Six Arabidopsis ( Arabidopsis thaliana ) acyl-coenzyme A-binding proteins (ACBPs) are involved in FA metabolism. ACBP1 interacts with PHOSPHOLIPASE Dα1 and regulates phospholipid composition. Here, its specific role in the negative modulation of sterol synthesis during embryogenesis is reported. ACBP1, likely in a liganded state, interacts with STEROL C4-METHYL OXIDASE1-1 (SMO1-1), a rate-limiting enzyme in the sterol pathway. Proembryo abortion in the double mutant indicated that the ACBP1-SMO1-1 interaction is synthetic lethal, corroborating with their strong promoter activities in developing ovules. Gas chromatography-mass spectrometry revealed quantitative and compositional changes in FAs and sterols upon overexpression or mutation of ACBP1 and/or SMO1-1 Aberrant levels of these metabolites may account for the downstream defect in lipid signaling. GLABRA2 ( GL2 ), encoding a phospholipid/sterol-binding homeodomain transcription factor, was up-regulated in developing seeds of acbp1 , smo1-1 , and ACBP1 +/- smo1-1 in comparison with the wild type. Consistent with the corresponding transcriptional alteration of GL2 targets, high-oil, low-mucilage phenotypes of gl2 were phenocopied in ACBP1 +/- smo1-1 Thus, ACBP1 appears to modulate the metabolism of two important lipid classes (FAs and sterols) influencing cellular signaling. © 2017 American Society of Plant Biologists. All Rights Reserved.

  9. Prolonged Adaptation to a Low or High Protein Diet Does Not Modulate Basal Muscle Protein Synthesis Rates - A Substudy.

    Science.gov (United States)

    Hursel, Rick; Martens, Eveline A P; Gonnissen, Hanne K J; Hamer, Henrike M; Senden, Joan M G; van Loon, Luc J C; Westerterp-Plantenga, Margriet S

    2015-01-01

    Based on controlled 36 h experiments a higher dietary protein intake causes a positive protein balance and a negative fat balance. A positive net protein balance may support fat free mass accrual. However, few data are available on the impact of more prolonged changes in habitual protein intake on whole-body protein metabolism and basal muscle protein synthesis rates. To assess changes in whole-body protein turnover and basal muscle protein synthesis rates following 12 weeks of adaptation to a low versus high dietary protein intake. A randomized parallel study was performed in 40 subjects who followed either a high protein (2.4 g protein/kg/d) or low protein (0.4 g protein/kg/d) energy-balanced diet (30/35/35% or 5/60/35% energy from protein/carbohydrate/fat) for a period of 12 weeks. A subgroup of 7 men and 8 women (body mass index: 22.8±2.3 kg/m2, age: 24.3±4.9 y) were selected to evaluate the impact of prolonged adaptation to either a high or low protein intake on whole body protein metabolism and basal muscle protein synthesis rates. After the diet, subjects received continuous infusions with L-[ring-2H5]phenylalanine and L-[ring-2H2]tyrosine in an overnight fasted state, with blood samples and muscle biopsies being collected to assess post-absorptive whole-body protein turnover and muscle protein synthesis rates in vivo in humans. After 12 weeks of intervention, whole-body protein balance in the fasted state was more negative in the high protein treatment when compared with the low protein treatment (-4.1±0.5 vs -2.7±0.6 μmol phenylalanine/kg/h;Pprotein breakdown (43.0±4.4 vs 37.8±3.8 μmol phenylalanine/kg/h;Psynthesis (38.9±4.2 vs 35.1±3.6 μmol phenylalanine/kg/h;Pprotein group. Basal muscle protein synthesis rates were maintained on a low vs high protein diet (0.042±0.01 vs 0.045±0.01%/h;P = 0.620). In the overnight fasted state, adaptation to a low-protein intake (0.4 g/kg/d) does not result in a more negative whole-body protein balance and

  10. Variability of sap flow on forest hillslopes: patterns and controls

    Science.gov (United States)

    Hassler, Sibylle; Blume, Theresa

    2013-04-01

    Sap flow in trees is an essential variable in integrated studies of hydrologic fluxes. It gives indication of transpiration rates for single trees and, with a suitable method of upscaling, for whole stands. This information is relevant for hydrologic and climate models, especially for the prediction of change in water fluxes in the soil-plant-atmosphere continuum under climate change. To this end, we do not only need knowledge concerning the response of sapflow to atmospheric forcing but also an understanding of the main controls on its spatial variability. Our study site consists of several subcatchments of the Attert basin in Luxembourg underlain by schists of the Ardennes massif. Within these subcatchments we measure sap flow in more than 20 trees on a range of forested hillslopes covered by a variety of temperate deciduous tree species such as beech, oak, hornbeam and maple as well as conifers such as firs. Our sap flow sensors are based on the heat pulse velocity method and consist of three needles, one needle acting as the heating device and the other two holding three thermistors each, enabling us to simultaneously measure sap flow velocity at three different depths within the tree. In close proximity to the trees we collect additional data on soil moisture, matric potential and groundwater levels. First results show that the sensor design seems promising for an upscaling of the measured sap flow velocities to sap flow at the tree level. The maximum depth of actively used sapwood as well as the decrease in sap flow velocity with increasing depth in the tree can be determined by way of the three thermistors. Marked differences in sap flow velocity profiles are visible between the different species, resulting in differences in sap flow for trees of similar diameter. We examine the range of tree sap flow values and variation due to species, size class, slope position and exposition and finally relate them to the dynamics of soil moisture conditions with the

  11. Implantación del sistema ERP SAP R/3

    OpenAIRE

    Muñoz Fernandez, Jorge Juan

    2012-01-01

    El objetivo del presente trabajo ha sido realizar un estudio de investigación y desarrollo sobre la implantación del sistema Enterprise Resource Planning (ERP) SAP R/3 de una empresa. L'objectiu d'aquest treball final de carrera ha estat realitzar un estudi d'investigació i desenvolupament sobre la implantació del sistema Enterprise Resource Planning (ERP) SAP R/3 d'una empresa.

  12. Sap-Sugar Content of Grafted Sugar Maple Trees

    Science.gov (United States)

    Maurice E. Jr. Demeritt; Maurice E. Jr. Demeritt

    1985-01-01

    In March and April 1983, 289 and 196 young grafted sugar maple trees were tapped and evaluated for sap-sugar content. In April, sap was collected from taps both above and below the graft union. Diameter of all tapped trees at 18 inches above the ground was measured. Analysis of the data revealed that: (1) trees selected for high sugar yield cannot be reproduced by...

  13. Antidiarrhoeal Activity of Musa paradisiaca Sap in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Musa T. Yakubu

    2015-01-01

    Full Text Available The folkloric claim of Musa paradisiaca sap in the management of diarrhoea is yet to be substantiated or refuted with scientific data. Therefore, the aim of the current study was to screen the sap of M. paradisiaca for both its secondary metabolites and antidiarrhoeal activity at 0.25, 0.50, and 1.00 mL in rats. Secondary metabolites were screened using standard methods while the antidiarrhoeal activity was done by adopting the castor oil-induced diarrhoeal, castor oil-induced enteropooling, and gastrointestinal motility models. The sap contained flavonoids, phenolics, saponins, alkaloids, tannins, and steroids while cardiac glycosides, anthraquinones, triterpenes, cardenolides, and dienolides were not detected. In the castor oil-induced diarrhoeal model, the sap significantly (P<0.05 prolonged the onset time of diarrhoea, decreased the number, fresh weight, and water content of feaces, and increased the inhibition of defecations. Na+-K+-ATPase activity in the small intestine increased significantly whereas nitric oxide content decreased. The decreases in the masses and volumes of intestinal fluid by the sap were accompanied by increase in inhibition of intestinal fluid content in the enteropooling model. The sap decreased the charcoal meal transit in the gastrointestinal motility model. In all the models, the 1.00 mL of the sap produced changes that compared well with the reference drugs. Overall, the antidiarrhoeal activity of Musa paradisiaca sap attributed to the presence of alkaloids, phenolics, flavonoids, and/or saponins which may involve, among others, enhancing fluid and electrolyte absorption through de novo synthesis of the sodium potassium ATPase and/or reduced nitric oxide levels.

  14. TMV-Cg Coat Protein stabilizes DELLA proteins and in turn negatively modulates salicylic acid-mediated defense pathway during Arabidopsis thaliana viral infection.

    Science.gov (United States)

    Rodriguez, Maria Cecilia; Conti, Gabriela; Zavallo, Diego; Manacorda, Carlos Augusto; Asurmendi, Sebastian

    2014-08-03

    Plant viral infections disturb defense regulatory networks during tissue invasion. Emerging evidence demonstrates that a significant proportion of these alterations are mediated by hormone imbalances. Although the DELLA proteins have been reported to be central players in hormone cross-talk, their role in the modulation of hormone signaling during virus infections remains unknown. This work revealed that TMV-Cg coat protein (CgCP) suppresses the salicylic acid (SA) signaling pathway without altering defense hormone SA or jasmonic acid (JA) levels in Arabidopsis thaliana. Furthermore, it was observed that the expression of CgCP reduces plant growth and delays the timing of floral transition. Quantitative RT-qPCR analysis of DELLA target genes showed that CgCP alters relative expression of several target genes, indicating that the DELLA proteins mediate transcriptional changes produced by CgCP expression. Analyses by fluorescence confocal microscopy showed that CgCP stabilizes DELLA proteins accumulation in the presence of gibberellic acid (GA) and that the DELLA proteins are also stabilized during TMV-Cg virus infections. Moreover, DELLA proteins negatively modulated defense transcript profiles during TMV-Cg infection. As a result, TMV-Cg accumulation was significantly reduced in the quadruple-DELLA mutant Arabidopsis plants compared to wild type plants. Taken together, these results demonstrate that CgCP negatively regulates the salicylic acid-mediated defense pathway by stabilizing the DELLA proteins during Arabidopsis thaliana viral infection, suggesting that CgCP alters the stability of DELLAs as a mechanism of negative modulation of antiviral defense responses.

  15. Modulation of Protein Quality Control and Proteasome to Autophagy Switch in Immortalized Myoblasts from Duchenne Muscular Dystrophy Patients

    Directory of Open Access Journals (Sweden)

    Marion Wattin

    2018-01-01

    Full Text Available The maintenance of proteome integrity is of primary importance in post-mitotic tissues such as muscle cells; thus, protein quality control mechanisms must be carefully regulated to ensure their optimal efficiency, a failure of these processes being associated with various muscular disorders. Duchenne muscular dystrophy (DMD is one of the most common and severe forms of muscular dystrophies and is caused by mutations in the dystrophin gene. Protein quality control modulations have been diversely observed in degenerating muscles of patients suffering from DMD or in animal models of the disease. In this study, we investigated whether modulations of protein quality control mechanisms already pre-exist in undifferentiated myoblasts originating from DMD patients. We report for the first time that the absence of dystrophin in human myoblasts is associated with protein aggregation stress characterized by an increase of protein aggregates. This stress is combined with BAG1 to BAG3 switch, NFκB activation and up-regulation of BAG3/HSPB8 complexes that ensure preferential routing of misfolded/aggregated proteins to autophagy rather than to deficient 26S proteasome. In this context, restoration of pre-existing alterations of protein quality control processes might represent an alternative strategy for DMD therapies.

  16. Stable-carbon isotopic composition of maple sap and foliage

    International Nuclear Information System (INIS)

    Leavitt, S.W.; Long, A.

    1985-01-01

    The 13 C/ 12 C ratios of Acer grandidentatum sap sugar collected during the dormant period are compared to those of buds, leaves, and wood developed over the following growing season. As the primary carbon source for cellulose manufacture at initiation of annual growth in deciduous trees, sap sucrose would be expected to have an isotopic composition similar to first-formed cellulose. Although constancy in concentration and 13 C/ 12 C ratios of the maple sap sugar suggests any gains or losses (e.g. to maintenance metabolism) do not appreciably alter composition, the 13 C/ 12 C ratios of cellulose of the enlarging buds in the spring are quite distinct from those of the sap sugar, seemingly precluding a simple direct biochemical pathway of sap sucrose→glucose→cellulose in favor of a more complex pathway with greater likelihood of isotopic fractionation. The 13 C/ 12 C ratios of the leaves and in the growth ring were initially similar to the sap sugar but decreased steadily over the growing season. (author)

  17. PRO40 is a scaffold protein of the cell wall integrity pathway, linking the MAP kinase module to the upstream activator protein kinase C.

    Directory of Open Access Journals (Sweden)

    Ines Teichert

    2014-09-01

    Full Text Available Mitogen-activated protein kinase (MAPK pathways are crucial signaling instruments in eukaryotes. Most ascomycetes possess three MAPK modules that are involved in key developmental processes like sexual propagation or pathogenesis. However, the regulation of these modules by adapters or scaffolds is largely unknown. Here, we studied the function of the cell wall integrity (CWI MAPK module in the model fungus Sordaria macrospora. Using a forward genetic approach, we found that sterile mutant pro30 has a mutated mik1 gene that encodes the MAPK kinase kinase (MAPKKK of the proposed CWI pathway. We generated single deletion mutants lacking MAPKKK MIK1, MAPK kinase (MAPKK MEK1, or MAPK MAK1 and found them all to be sterile, cell fusion-deficient and highly impaired in vegetative growth and cell wall stress response. By searching for MEK1 interaction partners via tandem affinity purification and mass spectrometry, we identified previously characterized developmental protein PRO40 as a MEK1 interaction partner. Although fungal PRO40 homologs have been implicated in diverse developmental processes, their molecular function is currently unknown. Extensive affinity purification, mass spectrometry, and yeast two-hybrid experiments showed that PRO40 is able to bind MIK1, MEK1, and the upstream activator protein kinase C (PKC1. We further found that the PRO40 N-terminal disordered region and the central region encompassing a WW interaction domain are sufficient to govern interaction with MEK1. Most importantly, time- and stress-dependent phosphorylation studies showed that PRO40 is required for MAK1 activity. The sum of our results implies that PRO40 is a scaffold protein for the CWI pathway, linking the MAPK module to the upstream activator PKC1. Our data provide important insights into the mechanistic role of a protein that has been implicated in sexual and asexual development, cell fusion, symbiosis, and pathogenicity in different fungal systems.

  18. Mua (HP0868) Is a Nickel-Binding Protein That Modulates Urease Activity in Helicobacter pylori

    Science.gov (United States)

    Benoit, Stéphane L.; Maier, Robert J.

    2011-01-01

    A novel mechanism aimed at controlling urease expression in Helicobacter pylori in the presence of ample nickel is described. Higher urease activities were observed in an hp0868 mutant (than in the wild type) in cells supplemented with nickel, suggesting that the HP0868 protein (herein named Mua for modulator of urease activity) represses urease activity when nickel concentrations are ample. The increase in urease activity in the Δmua mutant was linked to an increase in urease transcription and synthesis, as shown by quantitative real-time PCR, SDS-PAGE, and immunoblotting against UreAB. Increased urease synthesis was also detected in a Δmua ΔnikR double mutant strain. The Δmua mutant was more sensitive to nickel toxicity but more resistant to acid challenge than was the wild-type strain. Pure Mua protein binds 2 moles of Ni2+ per mole of dimer. Electrophoretic mobility shift assays did not reveal any binding of Mua to the ureA promoter or other selected promoters (nikR, arsRS, 5′ ureB-sRNAp). Previous yeast two-hybrid studies indicated that Mua and RpoD may interact; however, only a weak interaction was detected via cross-linking with pure components and this could not be verified by another approach. There was no significant difference in the intracellular nickel level between wild-type and mua mutant cells. Taken together, our results suggest the HP0868 gene product represses urease transcription when nickel levels are high through an as-yet-uncharacterized mechanism, thus counterbalancing the well-described NikR-mediated activation. PMID:21505055

  19. Odorant binding protein 69a connects social interaction to modulation of social responsiveness in Drosophila.

    Science.gov (United States)

    Bentzur, Assa; Shmueli, Anat; Omesi, Liora; Ryvkin, Julia; Knapp, Jon-Michael; Parnas, Moshe; Davis, Fred P; Shohat-Ophir, Galit

    2018-04-01

    Living in a social environment requires the ability to respond to specific social stimuli and to incorporate information obtained from prior interactions into future ones. One of the mechanisms that facilitates social interaction is pheromone-based communication. In Drosophila melanogaster, the male-specific pheromone cis-vaccenyl acetate (cVA) elicits different responses in male and female flies, and functions to modulate behavior in a context and experience-dependent manner. Although it is the most studied pheromone in flies, the mechanisms that determine the complexity of the response, its intensity and final output with respect to social context, sex and prior interaction, are still not well understood. Here we explored the functional link between social interaction and pheromone-based communication and discovered an odorant binding protein that links social interaction to sex specific changes in cVA related responses. Odorant binding protein 69a (Obp69a) is expressed in auxiliary cells and secreted into the olfactory sensilla. Its expression is inversely regulated in male and female flies by social interactions: cVA exposure reduces its levels in male flies and increases its levels in female flies. Increasing or decreasing Obp69a levels by genetic means establishes a functional link between Obp69a levels and the extent of male aggression and female receptivity. We show that activation of cVA-sensing neurons is sufficeint to regulate Obp69a levels in the absence of cVA, and requires active neurotransmission between the sensory neuron to the second order olfactory neuron. The cross-talk between sensory neurons and non-neuronal auxiliary cells at the olfactory sensilla, represents an additional component in the machinery that promotes behavioral plasticity to the same sensory stimuli in male and female flies.

  20. Spinal translocator protein (TSPO) modulates pain behavior in rats with CFA-induced monoarthritis.

    Science.gov (United States)

    Hernstadt, Hayley; Wang, Shuxing; Lim, Grewo; Mao, Jianren

    2009-08-25

    Translocator protein 18 kDa (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), is predominantly located in the mitochondrial outer membrane and plays an important role in steroidogenesis, immunomodulation, cell survival and proliferation. Previous studies have shown an increased expression of TSPO centrally in neuropathology, as well as in injured nerves. TSPO has also been implicated in modulation of nociception. In the present study, we examined the hypothesis that TSPO is involved in the initiation and maintenance of inflammatory pain using a rat model of Complete Freund's Adjuvant (CFA)-induced monoarthritis of the tibio-tarsal joint. Immunohistochemistry was performed using Iba-1 (microglia), NeuN (neurons), anti-Glial Fibrillary Acidic Protein, GFAP (astrocytes) and anti-PBR (TSPO) on Days 1, 7 and 14 after CFA-induced arthritis. Rats with CFA-induced monoarthritis showed mechanical allodynia and thermal hyperalgesia on the ipsilateral hindpaw, which correlated with the increased TSPO expression in ipsilateral laminae I-II on all experimental days. Iba-1 expression in the ipsilateral dorsal horn was also increased on Days 7 and 14. Moreover, TSPO was colocalized with Iba-1, GFAP and NeuN within the spinal cord dorsal horn. The TSPO agonist Ro5-4864, given intrathecally, dose-dependently retarded or prevented the development of mechanical allodynia and thermal hyperalgesia in rats with CFA-induced monoarthritis. These findings provide evidence that spinal TSPO is involved in the development and maintenance of inflammatory pain behaviors in rats. Thus, spinal TSPO may present a central target as a complementary therapy to reduce inflammatory pain.

  1. Arabidopsis SEIPIN Proteins Modulate Triacylglycerol Accumulation and Influence Lipid Droplet Proliferation[OPEN

    Science.gov (United States)

    2015-01-01

    The lipodystrophy protein SEIPIN is important for lipid droplet (LD) biogenesis in human and yeast cells. In contrast with the single SEIPIN genes in humans and yeast, there are three SEIPIN homologs in Arabidopsis thaliana, designated SEIPIN1, SEIPIN2, and SEIPIN3. Essentially nothing is known about the functions of SEIPIN homologs in plants. Here, a yeast (Saccharomyces cerevisiae) SEIPIN deletion mutant strain and a plant (Nicotiana benthamiana) transient expression system were used to test the ability of Arabidopsis SEIPINs to influence LD morphology. In both species, expression of SEIPIN1 promoted accumulation of large-sized lipid droplets, while expression of SEIPIN2 and especially SEIPIN3 promoted small LDs. Arabidopsis SEIPINs increased triacylglycerol levels and altered composition. In tobacco, endoplasmic reticulum (ER)-localized SEIPINs reorganized the normal, reticulated ER structure into discrete ER domains that colocalized with LDs. N-terminal deletions and swapping experiments of SEIPIN1 and 3 revealed that this region of SEIPIN determines LD size. Ectopic overexpression of SEIPIN1 in Arabidopsis resulted in increased numbers of large LDs in leaves, as well as in seeds, and increased seed oil content by up to 10% over wild-type seeds. By contrast, RNAi suppression of SEIPIN1 resulted in smaller seeds and, as a consequence, a reduction in the amount of oil per seed compared with the wild type. Overall, our results indicate that Arabidopsis SEIPINs are part of a conserved LD biogenesis machinery in eukaryotes and that in plants these proteins may have evolved specialized roles in the storage of neutral lipids by differentially modulating the number and sizes of lipid droplets. PMID:26362606

  2. Engineer Medium and Feed for Modulating N-Glycosylation of Recombinant Protein Production in CHO Cell Culture.

    Science.gov (United States)

    Fan, Yuzhou; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    2017-01-01

    Chinese hamster ovary (CHO) cells have become the primary expression system for the production of complex recombinant proteins due to their long-term success in industrial scale production and generating appropriate protein N-glycans similar to that of humans. Control and optimization of protein N-glycosylation is crucial, as the structure of N-glycans can largely influence both biological and physicochemical properties of recombinant proteins. Protein N-glycosylation in CHO cell culture can be controlled and tuned by engineering medium, feed, culture process, as well as genetic elements of the cell. In this chapter, we will focus on how to carry out experiments for N-glycosylation modulation through medium and feed optimization. The workflow and typical methods involved in the experiment process will be presented.

  3. G-protein-coupled inward rectifier potassium channels involved in corticostriatal presynaptic modulation.

    Science.gov (United States)

    Meneses, David; Mateos, Verónica; Islas, Gustavo; Barral, Jaime

    2015-09-01

    Presynaptic modulation has been associated mainly with calcium channels but recent data suggests that inward rectifier potassium channels (K(IR)) also play a role. In this work we set to characterize the role of presynaptic K(IR) channels in corticostriatal synaptic transmission. We elicited synaptic potentials in striatum by stimulating cortical areas and then determined the synaptic responses of corticostriatal synapsis by using paired pulse ratio (PPR) in the presence and absence of several potassium channel blockers. Unspecific potassium channels blockers Ba(2+) and Cs(+) reduced the PPR, suggesting that these channels are presynaptically located. Further pharmacological characterization showed that application of tertiapin-Q, a specific K(IR)3 channel family blocker, also induced a reduction of PPR, suggesting that K(IR)3 channels are present at corticostriatal terminals. In contrast, exposure to Lq2, a specific K(IR)1.1 inward rectifier potassium channel, did not induce any change in PPR suggesting the absence of these channels in the presynaptic corticostriatal terminals. Our results indicate that K(IR)3 channels are functionally expressed at the corticostriatal synapses, since blockage of these channels result in PPR decrease. Our results also help to explain how synaptic activity may become sensitive to extracellular signals mediated by G-protein coupled receptors. A vast repertoire of receptors may influence neurotransmitter release in an indirect manner through regulation of K(IR)3 channels. © 2015 Wiley Periodicals, Inc.

  4. Alzheimer's associated β-amyloid protein inhibits influenza A virus and modulates viral interactions with phagocytes.

    Directory of Open Access Journals (Sweden)

    Mitchell R White

    Full Text Available Accumulation of β-Amyloid (βA is a key pathogenetic factor in Alzheimer's disease; however, the normal function of βA is unknown. Recent studies have shown that βA can inhibit growth of bacteria and fungi. In this paper we show that βA also inhibits replication of seasonal and pandemic strains of H3N2 and H1N1 influenza A virus (IAV in vitro. The 42 amino acid fragment of βA (βA42 had greater activity than the 40 amino acid fragment. Direct incubation of the virus with βA42 was needed to achieve optimal inhibition. Using quantitative PCR assays βA42 was shown to reduce viral uptake by epithelial cells after 45 minutes and to reduce supernatant virus at 24 hours post infection. βA42 caused aggregation of IAV particles as detected by light transmission assays and electron and confocal microscopy. βA42 did not stimulate neutrophil H2O2 production or extracellular trap formation on its own, but it increased both responses stimulated by IAV. In addition, βA42 increased uptake of IAV by neutrophils. βA42 reduced viral protein synthesis in monocytes and reduced IAV-induced interleukin-6 production by these cells. Hence, we demonstrate for the first time that βA has antiviral activity and modulates viral interactions with phagocytes.

  5. Uncovering packaging features of co-regulated modules based on human protein interaction and transcriptional regulatory networks

    Directory of Open Access Journals (Sweden)

    He Weiming

    2010-07-01

    Full Text Available Abstract Background Network co-regulated modules are believed to have the functionality of packaging multiple biological entities, and can thus be assumed to coordinate many biological functions in their network neighbouring regions. Results Here, we weighted edges of a human protein interaction network and a transcriptional regulatory network to construct an integrated network, and introduce a probabilistic model and a bipartite graph framework to exploit human co-regulated modules and uncover their specific features in packaging different biological entities (genes, protein complexes or metabolic pathways. Finally, we identified 96 human co-regulated modules based on this method, and evaluate its effectiveness by comparing it with four other methods. Conclusions Dysfunctions in co-regulated interactions often occur in the development of cancer. Therefore, we focussed on an example co-regulated module and found that it could integrate a number of cancer-related genes. This was extended to causal dysfunctions of some complexes maintained by several physically interacting proteins, thus coordinating several metabolic pathways that directly underlie cancer.

  6. Impact of LbSapSal Vaccine in Canine Immunological and Parasitological Features before and after Leishmania chagasi-Challenge.

    Directory of Open Access Journals (Sweden)

    Lucilene Aparecida Resende

    Full Text Available Dogs represent the most important domestic reservoir of L. chagasi (syn. L. infantum. A vaccine against canine visceral leishmaniasis (CVL would be an important tool for decreasing the anxiety related to possible L. chagasi infection and for controlling human visceral leishmaniasis (VL. Because the sand fly salivary proteins are potent immunogens obligatorily co-deposited during transmission of Leishmania parasites, their inclusion in an anti-Leishmania vaccine has been investigated in past decades. We investigated the immunogenicity of the "LbSapSal" vaccine (L. braziliensis antigens, saponin as adjuvant, and Lutzomyia longipalpis salivary gland extract in dogs at baseline (T0, during the post-vaccination protocol (T3rd and after early (T90 and late (T885 times following L. chagasi-challenge. Our major data indicated that immunization with "LbSapSal" is able to induce biomarkers characterized by enhanced amounts of type I (tumor necrosis factor [TNF]-α, interleukin [IL]-12, interferon [IFN]-γ cytokines and reduction in type II cytokines (IL-4 and TGF-β, even after experimental challenge. The establishment of a prominent pro-inflammatory immune response after "LbSapSal" immunization supported the increased levels of nitric oxide production, favoring a reduction in spleen parasitism (78.9% and indicating long-lasting protection against L. chagasi infection. In conclusion, these results confirmed the hypothesis that the "LbSapSal" vaccination is a potential tool to control the Leishmania chagasi infection.

  7. Development of Two FhSAP2 Recombinant–Based Assays for Immunodiagnosis of Human Chronic Fascioliasis

    Science.gov (United States)

    Shin, Sun Hee; Hsu, Angel; Chastain, Holly M.; Cruz, Lorna A.; Elder, Eric S.; Sapp, Sarah G. H.; McAuliffe, Isabel; Espino, Ana M.; Handali, Sukwan

    2016-01-01

    In the United States, infection with Fasciola hepatica has been identified as an emerging disease, primarily in immigrants, refugees, and travelers. The laboratory test of choice for diagnosis of fascioliasis is detection of disease specific antibodies, most commonly uses excretory-secretory antigens for detection of IgG antibodies. Recently, recombinant proteins such as F. hepatica antigen (FhSAP2) have been used to detect IgG antibodies. The glutathione S-transferase (GST)–FhSAP2 recombinant antigen was used to develop Western blot (WB) and fluorescent bead-based (Luminex) assays to detect F. hepatica total IgG and IgG4 antibodies. The sensitivity and specificity of GST-FhSAP2 total IgG and IgG4 WB were similar at 94% and 98%, respectively. For the IgG Luminex assay, the sensitivity and specificity were 94% and 97%, and for the IgG4, the values were 100% and 99%, respectively. In conclusion, the GST-FhSAP2 antigen performs well in several assay formats and can be used for clinical diagnosis. PMID:27549636

  8. Development of Two FhSAP2 Recombinant-Based Assays for Immunodiagnosis of Human Chronic Fascioliasis.

    Science.gov (United States)

    Shin, Sun Hee; Hsu, Angel; Chastain, Holly M; Cruz, Lorna A; Elder, Eric S; Sapp, Sarah G H; McAuliffe, Isabel; Espino, Ana M; Handali, Sukwan

    2016-10-05

    In the United States, infection with Fasciola hepatica has been identified as an emerging disease, primarily in immigrants, refugees, and travelers. The laboratory test of choice for diagnosis of fascioliasis is detection of disease specific antibodies, most commonly uses excretory-secretory antigens for detection of IgG antibodies. Recently, recombinant proteins such as F. hepatica antigen (FhSAP2) have been used to detect IgG antibodies. The glutathione S-transferase (GST)-FhSAP2 recombinant antigen was used to develop Western blot (WB) and fluorescent bead-based (Luminex) assays to detect F. hepatica total IgG and IgG 4 antibodies. The sensitivity and specificity of GST-FhSAP2 total IgG and IgG 4 WB were similar at 94% and 98%, respectively. For the IgG Luminex assay, the sensitivity and specificity were 94% and 97%, and for the IgG 4 , the values were 100% and 99%, respectively. In conclusion, the GST-FhSAP2 antigen performs well in several assay formats and can be used for clinical diagnosis. © The American Society of Tropical Medicine and Hygiene.

  9. Binding specificity and in vivo targets of the EH domain, a novel protein-protein interaction module

    DEFF Research Database (Denmark)

    Salcini, A E; Confalonieri, S; Doria, M

    1997-01-01

    EH is a recently identified protein-protein interaction domain found in the signal transducers Eps15 and Eps15R and several other proteins of yeast nematode. We show that EH domains from Eps15 and Eps15R bind in vitro to peptides containing an asparagine-proline-phenylalanine (NPF) motif. Direct...

  10. Prolonged Adaptation to a Low or High Protein Diet Does Not Modulate Basal Muscle Protein Synthesis Rates - A Substudy.

    Directory of Open Access Journals (Sweden)

    Rick Hursel

    Full Text Available Based on controlled 36 h experiments a higher dietary protein intake causes a positive protein balance and a negative fat balance. A positive net protein balance may support fat free mass accrual. However, few data are available on the impact of more prolonged changes in habitual protein intake on whole-body protein metabolism and basal muscle protein synthesis rates.To assess changes in whole-body protein turnover and basal muscle protein synthesis rates following 12 weeks of adaptation to a low versus high dietary protein intake.A randomized parallel study was performed in 40 subjects who followed either a high protein (2.4 g protein/kg/d or low protein (0.4 g protein/kg/d energy-balanced diet (30/35/35% or 5/60/35% energy from protein/carbohydrate/fat for a period of 12 weeks. A subgroup of 7 men and 8 women (body mass index: 22.8±2.3 kg/m2, age: 24.3±4.9 y were selected to evaluate the impact of prolonged adaptation to either a high or low protein intake on whole body protein metabolism and basal muscle protein synthesis rates. After the diet, subjects received continuous infusions with L-[ring-2H5]phenylalanine and L-[ring-2H2]tyrosine in an overnight fasted state, with blood samples and muscle biopsies being collected to assess post-absorptive whole-body protein turnover and muscle protein synthesis rates in vivo in humans.After 12 weeks of intervention, whole-body protein balance in the fasted state was more negative in the high protein treatment when compared with the low protein treatment (-4.1±0.5 vs -2.7±0.6 μmol phenylalanine/kg/h;P<0.001. Whole-body protein breakdown (43.0±4.4 vs 37.8±3.8 μmol phenylalanine/kg/h;P<0.03, synthesis (38.9±4.2 vs 35.1±3.6 μmol phenylalanine/kg/h;P<0.01 and phenylalanine hydroxylation rates (4.1±0.6 vs 2.7±0.6 μmol phenylalanine/kg/h;P<0.001 were significantly higher in the high vs low protein group. Basal muscle protein synthesis rates were maintained on a low vs high protein diet (0.042

  11. Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux

    Directory of Open Access Journals (Sweden)

    Xia Chen

    2018-01-01

    Full Text Available An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with (Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora, and Eucalyptus grandis × urophylla and without (Castanopsis fissa, Schima superba, and Acacia auriculiformis photosynthetic stems, and the sap flux (Js and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the Fv/Fm (Maximum photochemical quantum yield of PSII and ΦPSII (effective photochemical quantum yield of PSII values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that Js,d (daytime sap flux and Js,n (nighttime sap flux of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (SlopeSMA = 2.680 than in non-photosynthetic stems species (SlopeSMA = 1.943. These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis.

  12. Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux.

    Science.gov (United States)

    Chen, Xia; Gao, Jianguo; Zhao, Ping; McCarthy, Heather R; Zhu, Liwei; Ni, Guangyan; Ouyang, Lei

    2018-01-01

    An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with ( Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora , and Eucalyptus grandis × urophylla ) and without ( Castanopsis fissa, Schima superba , and Acacia auriculiformis ) photosynthetic stems, and the sap flux ( J s ) and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the F v / F m (Maximum photochemical quantum yield of PSII) and Φ PSII (effective photochemical quantum yield of PSII) values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that J s,d (daytime sap flux) and J s,n (nighttime sap flux) of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (Slope SMA = 2.680) than in non-photosynthetic stems species (Slope SMA = 1.943). These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis.

  13. Pigmentiphaga aceris sp. nov., isolated from tree sap.

    Science.gov (United States)

    Lee, Soon Dong

    2017-09-01

    Two Gram-stain-negative bacterial strains, SAP-32T and SAP-36, were isolated from sap drawn from the Acer pictum from Mount Halla in Jeju, Republic of Korea. The organisms were strictly aerobic, non-sporulating, motile rods and showed growth at 10-30 °C, pH 7-8 and with 0-2 % NaCl. The major isoprenoid quinone was Q-8. The predominant fatty acids were C16 : 0, cyclo-C17 : 0, summed feature 3 and C18 : 0. The polar lipids contained phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, an unknown aminophosphoglycolipid, an unknown glycolipid, an unknown phospholipid and two unknown lipids. The DNA G+C content was 64.4 mol%. The results of phylogenetic analyses based on 16S rRNA gene sequences indicated that SAP-32T and SAP-36 formed a distinct cluster with members of the genus Pigmentiphaga within the family Alcaligenaceae. Both strains showed 16S rRNA gene sequence similarity of 100 % to each other. The closest relatives of the isolates were Pigmentiphaga daeguensis (97.08 % sequence similarity), Pigmentiphaga kullae (97.01 %) and Pigmentiphaga litoralis (96.73 %). On the basis of data from phenotypic, chemotaxonomic and phylogenetic analyses, SAP-32T (=KCTC 52619T=DSM 104039T) and SAP-36 (=KCTC 52620=DSM 104072) represent members of a novel species of the genus Pigmentiphaga, for which the name Pigmentiphaga aceris sp. nov. is proposed.

  14. Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux

    Science.gov (United States)

    Chen, Xia; Gao, Jianguo; Zhao, Ping; McCarthy, Heather R.; Zhu, Liwei; Ni, Guangyan; Ouyang, Lei

    2018-01-01

    An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with (Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora, and Eucalyptus grandis × urophylla) and without (Castanopsis fissa, Schima superba, and Acacia auriculiformis) photosynthetic stems, and the sap flux (Js) and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the Fv/Fm (Maximum photochemical quantum yield of PSII) and ΦPSII (effective photochemical quantum yield of PSII) values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that Js,d (daytime sap flux) and Js,n (nighttime sap flux) of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (SlopeSMA = 2.680) than in non-photosynthetic stems species (SlopeSMA = 1.943). These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis. PMID:29416547

  15. Reactive oxygen species modulator 1, a novel protein, combined with carcinoembryonic antigen in differentiating malignant from benign pleural effusion.

    Science.gov (United States)

    Chen, Xianmeng; Zhang, Na; Dong, Jiahui; Sun, Gengyun

    2017-05-01

    The differential diagnosis of malignant pleural effusion and benign pleural effusion remains a clinical problem. Reactive oxygen species modulator 1 is a novel protein overexpressed in various human tumors. The objective of this study was to evaluate the diagnostic value of joint detection of reactive oxygen species modulator 1 and carcinoembryonic antigen in the differential diagnosis of malignant pleural effusion and benign pleural effusion. One hundred two consecutive patients with pleural effusion (including 52 malignant pleural effusion and 50 benign pleural effusion) were registered in this study. Levels of reactive oxygen species modulator 1 and carcinoembryonic antigen were measured by enzyme-linked immunosorbent assay and radioimmunoassay, respectively. Results showed that the concentrations of reactive oxygen species modulator 1 both in pleural fluid and serum of patients with malignant pleural effusion were significantly higher than those of benign pleural effusion (both p pleural fluid reactive oxygen species modulator 1 were 61.54% and 82.00%, respectively, with the optimized cutoff value of 589.70 pg/mL. However, the diagnostic sensitivity and specificity of serum reactive oxygen species modulator 1 were only 41.38% and 86.21%, respectively, with the cutoff value of 27.22 ng/mL, indicating that serum reactive oxygen species modulator 1 may not be a good option in the differential diagnosis of malignant pleural effusion and benign pleural effusion. The sensitivity and specificity of pleural fluid carcinoembryonic antigen were 69.23% and 88.00%, respectively, at the cutoff value of 3.05 ng/mL, while serum carcinoembryonic antigen were 80.77% and 72.00% at the cutoff value of 2.60 ng/mL. The sensitivity could be raised to 88.17% in parallel detection of plural fluid reactive oxygen species modulator 1 and carcinoembryonic antigen concentration, and the specificity could be improved to 97.84% in serial detection.

  16. Habituation to low or high protein intake does not modulate basal or postprandial muscle protein synthesis rates: a randomized trial.

    Science.gov (United States)

    Gorissen, Stefan Hm; Horstman, Astrid Mh; Franssen, Rinske; Kouw, Imre Wk; Wall, Benjamin T; Burd, Nicholas A; de Groot, Lisette Cpgm; van Loon, Luc Jc

    2017-02-01

    Muscle mass maintenance is largely regulated by basal muscle protein synthesis rates and the ability to increase muscle protein synthesis after protein ingestion. To our knowledge, no previous studies have evaluated the impact of habituation to either low protein intake (LOW PRO) or high protein intake (HIGH PRO) on the postprandial muscle protein synthetic response. We assessed the impact of LOW PRO compared with HIGH PRO on basal and postprandial muscle protein synthesis rates after the ingestion of 25 g whey protein. Twenty-four healthy, older men [age: 62 ± 1 y; body mass index (in kg/m 2 ): 25.9 ± 0.4 (mean ± SEM)] participated in a parallel-group randomized trial in which they adapted to either a LOW PRO diet (0.7 g · kg -1 · d -1 ; n = 12) or a HIGH PRO diet (1.5 g · kg -1 · d -1 ; n = 12) for 14 d. On day 15, participants received primed continuous l-[ring- 2 H 5 ]-phenylalanine and l-[1- 13 C]-leucine infusions and ingested 25 g intrinsically l-[1- 13 C]-phenylalanine- and l-[1- 13 C]-leucine-labeled whey protein. Muscle biopsies and blood samples were collected to assess muscle protein synthesis rates as well as dietary protein digestion and absorption kinetics. Plasma leucine concentrations and exogenous phenylalanine appearance rates increased after protein ingestion (P 0.05). Plasma exogenous phenylalanine availability over the 5-h postprandial period was greater after LOW PRO than after HIGH PRO (61% ± 1% compared with 56% ± 2%, respectively; P protein synthesis rates increased from 0.031% ± 0.004% compared with 0.039% ± 0.007%/h in the fasted state to 0.062% ± 0.005% compared with 0.057% ± 0.005%/h in the postprandial state after LOW PRO compared with HIGH PRO, respectively (P protein-derived amino acids in the circulation and does not lower basal muscle protein synthesis rates or increase postprandial muscle protein synthesis rates after ingestion of 25 g protein in older men. This trial was registered at clinicaltrials.gov as NCT

  17. Modulation of firing and synaptic transmission of serotonergic neurons by intrinsic G protein-coupled receptors and ion channels

    Directory of Open Access Journals (Sweden)

    Takashi eMaejima

    2013-05-01

    Full Text Available Serotonergic neurons project to virtually all regions of the CNS and are consequently involved in many critical physiological functions such as mood, sexual behavior, feeding, sleep/wake cycle, memory, cognition, blood pressure regulation, breathing and reproductive success. Therefore serotonin release and serotonergic neuronal activity have to be precisely controlled and modulated by interacting brain circuits to adapt to specific emotional and environmental states. We will review the current knowledge about G protein-coupled receptors and ion channels involved in the regulation of serotonergic system, how their regulation is modulating the intrinsic activity of serotonergic neurons and its transmitter release and will discuss the latest methods for controlling the modulation of serotonin release and intracellular signaling in serotonergic neurons in vitro and in vivo.

  18. Comparison of colorimetric assays with quantitative amino acid analysis for protein quantification of Generalized Modules for Membrane Antigens (GMMA).

    Science.gov (United States)

    Rossi, Omar; Maggiore, Luana; Necchi, Francesca; Koeberling, Oliver; MacLennan, Calman A; Saul, Allan; Gerke, Christiane

    2015-01-01

    Genetically induced outer membrane particles from Gram-negative bacteria, called Generalized Modules for Membrane Antigens (GMMA), are being investigated as vaccines. Rapid methods are required for estimating the protein content for in-process assays during production. Since GMMA are complex biological structures containing lipid and polysaccharide as well as protein, protein determinations are not necessarily straightforward. We compared protein quantification by Bradford, Lowry, and Non-Interfering assays using bovine serum albumin (BSA) as standard with quantitative amino acid (AA) analysis, the most accurate currently available method for protein quantification. The Lowry assay has the lowest inter- and intra-assay variation and gives the best linearity between protein amount and absorbance. In all three assays, the color yield (optical density per mass of protein) of GMMA was markedly different from that of BSA with a ratio of approximately 4 for the Bradford assay, and highly variable between different GMMA; and approximately 0.7 for the Lowry and Non-Interfering assays, highlighting the need for calibrating the standard used in the colorimetric assay against GMMA quantified by AA analysis. In terms of a combination of ease, reproducibility, and proportionality of protein measurement, and comparability between samples, the Lowry assay was superior to Bradford and Non-Interfering assays for GMMA quantification.

  19. Identification and characterization of the host protein DNAJC14 as a broadly active flavivirus replication modulator.

    Directory of Open Access Journals (Sweden)

    Zhigang Yi

    2011-01-01

    Full Text Available Viruses in the Flavivirus genus of the Flaviviridae family are arthropod-transmitted and contribute to staggering numbers of human infections and significant deaths annually across the globe. To identify cellular factors with antiviral activity against flaviviruses, we screened a cDNA library using an iterative approach. We identified a mammalian Hsp40 chaperone protein (DNAJC14 that when overexpressed was able to mediate protection from yellow fever virus (YFV-induced cell death. Further studies revealed that DNAJC14 inhibits YFV at the step of viral RNA replication. Since replication of bovine viral diarrhea virus (BVDV, a member of the related Pestivirus genus, is also known to be modulated by DNAJC14, we tested the effect of this host factor on diverse Flaviviridae family members. Flaviviruses, including the pathogenic Asibi strain of YFV, Kunjin, and tick-borne Langat virus, as well as a Hepacivirus, hepatitis C virus (HCV, all were inhibited by overexpression of DNAJC14. Mutagenesis showed that both the J-domain and the C-terminal domain, which mediates self-interaction, are required for anti-YFV activity. We found that DNAJC14 does not block YFV nor HCV NS2-3 cleavage, and using non-inhibitory mutants demonstrate that DNAJC14 is recruited to YFV replication complexes. Immunofluorescence analysis demonstrated that endogenous DNAJC14 rearranges during infection and is found in replication complexes identified by dsRNA staining. Interestingly, silencing of endogenous DNAJC14 results in impaired YFV replication suggesting a requirement for DNAJC14 in YFV replication complex assembly. Finally, the antiviral activity of overexpressed DNAJC14 occurs in a time- and dose-dependent manner. DNAJC14 overexpression may disrupt the proper stoichiometry resulting in inhibition, which can be overcome upon restoration of the optimal ratios due to the accumulation of viral nonstructural proteins. Our findings, together with previously published work

  20. Pitavastatin Differentially Modulates MicroRNA-Associated Cholesterol Transport Proteins in Macrophages.

    Directory of Open Access Journals (Sweden)

    Haijun Zhang

    Full Text Available There is emerging evidence identifying microRNAs (miRNAs as mediators of statin-induced cholesterol efflux, notably through the ATP-binding cassette transporter A1 (ABCA1 in macrophages. The objective of this study was to assess the impact of an HMG-CoA reductase inhibitor, pitavastatin, on macrophage miRNAs in the presence and absence of oxidized-LDL, a hallmark of a pro-atherogenic milieu. Treatment of human THP-1 cells with pitavastatin prevented the oxLDL-mediated suppression of miR-33a, -33b and -758 mRNA in these cells, an effect which was not uniquely attributable to induction of SREBP2. Induction of ABCA1 mRNA and protein by oxLDL was inhibited (30% by pitavastatin, while oxLDL or pitavastatin alone significantly induced and repressed ABCA1 expression, respectively. These findings are consistent with previous reports in macrophages. miRNA profiling was also performed using a miRNA array. We identified specific miRNAs which were up-regulated (122 and down-regulated (107 in THP-1 cells treated with oxLDL plus pitavastatin versus oxLDL alone, indicating distinct regulatory networks in these cells. Moreover, several of the differentially expressed miRNAs identified are functionally associated with cholesterol trafficking (six miRNAs in cells treated with oxLDL versus oxLDL plus pitavastatin. Our findings indicate that pitavastatin can differentially modulate miRNA in the presence of oxLDL; and, our results provide evidence that the net effect on cholesterol homeostasis is mediated by a network of miRNAs.

  1. Kaempferol modulates Angiopoietin-like protein 2 expression to lessen the mastitis in mice.

    Science.gov (United States)

    Xiao, Hong-Bo; Sui, Guo-Guang; Lu, Xiang-Yang; Sun, Zhi-Liang

    2017-11-22

    Mastitis is inflammation of a breast (or udder). Angiopoietin-like protein 2 (ANGPTL2) has been found as a key inflammatory mediator in mastitis. Purpose of this research was to investigate the mechanisms about repressing effect of kaempferol on mastitis. Forty mice were randomly divided into 4 groups (n = 10): C57BL/6J control mice, untreated murine mastitis, 10 mg/kg kaempferol treated murine mastitis (ip), and 30 mg/kg kaempferol treated murine mastitis (ip). Primary cultured mouse mammary epithelial cells (MMEC) were indiscriminately divided into seven groups including control group, 10 mmol/L vehicle of kaempferol group, 10 μmol/L kaempferol treated group, 20 μg/mL LPS treated group, 1 μmol/L kaempferol plus LPS treated group, 3 μmol/L kaempferol plus LPS treated group, and 10 μmol/L kaempferol plus LPS treated group. In murine mastitis, kaempferol (10 or 30 mg/kg) treatment prevented mastitis development, decreased myeloperoxidase (MPO) production, interleukin (IL)-6 level, tumour necrosis factor-α (TNF-α) concentration, and ANGPTL2 expression. In MMEC, kaempferol (1, 3, or 10 μM) reduced MPO production, TNF-α concentration, IL-6 level, and ANGPTL2 expression. The results in present study show that kaempferol modulates the expression of ANGPTL2 to lessen the mastitis in mice. Copyright © 2018 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  2. Plasma protein corona modulates the vascular wall interaction of drug carriers in a material and donor specific manner.

    Directory of Open Access Journals (Sweden)

    Daniel J Sobczynski

    Full Text Available The nanoscale plasma protein interaction with intravenously injected particulate carrier systems is known to modulate their organ distribution and clearance from the bloodstream. However, the role of this plasma protein interaction in prescribing the adhesion of carriers to the vascular wall remains relatively unknown. Here, we show that the adhesion of vascular-targeted poly(lactide-co-glycolic-acid (PLGA spheres to endothelial cells is significantly inhibited in human blood flow, with up to 90% reduction in adhesion observed relative to adhesion in simple buffer flow, depending on the particle size and the magnitude and pattern of blood flow. This reduced PLGA adhesion in blood flow is linked to the adsorption of certain high molecular weight plasma proteins on PLGA and is donor specific, where large reductions in particle adhesion in blood flow (>80% relative to buffer is seen with ∼60% of unique donor bloods while others exhibit moderate to no reductions. The depletion of high molecular weight immunoglobulins from plasma is shown to successfully restore PLGA vascular wall adhesion. The observed plasma protein effect on PLGA is likely due to material characteristics since the effect is not replicated with polystyrene or silica spheres. These particles effectively adhere to the endothelium at a higher level in blood over buffer flow. Overall, understanding how distinct plasma proteins modulate the vascular wall interaction of vascular-targeted carriers of different material characteristics would allow for the design of highly functional delivery vehicles for the treatment of many serious human diseases.

  3. Interactions Between Flavonoid-Rich Extracts and Sodium Caseinate Modulate Protein Functionality and Flavonoid Bioaccessibility in Model Food Systems.

    Science.gov (United States)

    Elegbede, Jennifer L; Li, Min; Jones, Owen G; Campanella, Osvaldo H; Ferruzzi, Mario G

    2018-05-01

    With growing interest in formulating new food products with added protein and flavonoid-rich ingredients for health benefits, direct interactions between these ingredient classes becomes critical in so much as they may impact protein functionality, product quality, and flavonoids bioavailability. In this study, sodium caseinate (SCN)-based model products (foams and emulsions) were formulated with grape seed extract (GSE, rich in galloylated flavonoids) and green tea extract (GTE, rich in nongalloylated flavonoids), respectively, to assess changes in functional properties of SCN and impacts on flavonoid bioaccessibility. Experiments with pure flavonoids suggested that galloylated flavonoids reduced air-water interfacial tension of 0.01% SCN dispersions more significantly than nongalloylated flavonoids at high concentrations (>50 μg/mL). This observation was supported by changes in stability of 5% SCN foam, which showed that foam stability was increased at high levels of GSE (≥50 μg/mL, P < 0.05) but was not affected by GTE. However, flavonoid extracts had modest effects on SCN emulsion. In addition, galloylated flavonoids had higher bioaccessibility in both SCN foam and emulsion. These results suggest that SCN-flavonoid binding interactions can modulate protein functionality leading to difference in performance and flavonoid bioaccessibility of protein-based products. As information on the beneficial health effects of flavonoids expands, it is likely that usage of these ingredients in consumer foods will increase. However, the necessary levels to provide such benefits may exceed those that begin to impact functionality of the macronutrients such as proteins. Flavonoid inclusion within protein matrices may modulate protein functionality in a food system and modify critical consumer traits or delivery of these beneficial plant-derived components. The product matrices utilized in this study offer relevant model systems to evaluate how fortification with flavonoid

  4. Development and psychometric evaluation of the self-assessment of psoriasis symptoms (SAPS) - clinical trial and the SAPS - real world patient-reported outcomes.

    Science.gov (United States)

    Armstrong, April W; Banderas, Benjamin; Foley, Catherine; Stokes, Jonathan; Sundaram, Murali; Shields, Alan L

    2017-09-01

    The Self-Assessment of Psoriasis Symptoms - Clinical Trials (SAPS-CT) and SAPS - Real World (SAPS-RW) were simultaneously created to assess the experience of plaque psoriasis in two unique contexts. Qualitative and quantitative research was conducted in four phases namely concept elicitation, questionnaire construction, content evaluation and psychometric evaluation. Following concept elicitation, 18 concepts were selected to inform questionnaire construction of the SAPS-CT and SAPS-RW. To accommodate each context of use, the SAPS-CT asks respondents to rate the target symptom 'at its worst' in the 24 h prior to assessment, while the SAPS-RW asks respondents to rate the target symptom "on average" in the 7 days prior to assessment. Cognitive debriefing confirmed that patients could comprehend and provide meaningful responses to both versions and, after minor modifications, resulted in 11-item questionnaires administered in an observational study (N = 200). Results from the observational study informed further item reduction (SAPS-RW to six items and SAPS-CT to nine items) and demonstrated that scores from each were reliable (Cronbach's α > 0.90, test-retest intraclass correlation coefficient >0.70), construct valid and able to differentiate among clinically distinct groups. The SAPS-CT and SAPS-RW are content-valid PRO questionnaires capable of producing psychometrically sound scores when administered chronic to plaque psoriasis patients.

  5. PI3K/AKT signaling modulates transcriptional expression of EWS/FLI1 through specificity protein 1.

    Science.gov (United States)

    Giorgi, Chiara; Boro, Aleksandar; Rechfeld, Florian; Lopez-Garcia, Laura A; Gierisch, Maria E; Schäfer, Beat W; Niggli, Felix K

    2015-10-06

    Ewing sarcoma (ES) is the second most frequent bone cancer in childhood and is characterized by the presence of the balanced translocation t(11;22)(q24;q12) in more than 85% of cases, generating a dysregulated transcription factor EWS/FLI1. This fusion protein is an essential oncogenic component of ES development which is necessary for tumor cell maintenance and represents an attractive therapeutic target. To search for modulators of EWS/FLI1 activity we screened a library of 153 targeted compounds and identified inhibitors of the PI3K pathway to directly modulate EWS/FLI1 transcription. Surprisingly, treatment of four different ES cell lines with BEZ235 resulted in down regulation of EWS/FLI1 mRNA and protein by ~50% with subsequent modulation of target gene expression. Analysis of the EWS/FLI1 promoter region (-2239/+67) using various deletion constructs identified two 14 bp minimal elements as being important for EWS/FLI1 transcription. We identified SP1 as modulator of EWS/FLI1 gene expression and demonstrated direct binding to one of these regions in the EWS/FLI1 promoter by EMSA and ChIP experiments. These results provide the first insights on the transcriptional regulation of EWS/FLI1, an area that has not been investigated so far, and offer an additional molecular explanation for the known sensitivity of ES cell lines to PI3K inhibition.

  6. Conjugated Linoleic Acid Supplementation under a High-Fat Diet Modulates Stomach Protein Expression and Intestinal Microbiota in Adult Mice

    OpenAIRE

    Chaplin, Alice; Parra, Pilar; Serra, Francisca; Palou, Andreu

    2015-01-01

    The gastrointestinal tract constitutes a physiological interface integrating nutrient and microbiota-host metabolism. Conjugated linoleic acids (CLA) have been reported to contribute to decreased body weight and fat accretion. The modulation by dietary CLA of stomach proteins related to energy homeostasis or microbiota may be involved, although this has not been previously analysed. This is examined in the present study, which aims to underline the potential mechanisms of CLA which contribute...

  7. Arsenic speciation in xylem sap of cucumber (Cucumis sativus L.)

    Energy Technology Data Exchange (ETDEWEB)

    Mihucz, Victor G. [Joint Research Group of Environmental Chemistry of the Hungarian Academy of Sciences and L. Eoetvoes University, Budapest (Hungary); Hungarian Satellite Centre of Trace Elements Institute to UNESCO, Budapest (Hungary); Tatar, Eniko [Hungarian Satellite Centre of Trace Elements Institute to UNESCO, Budapest (Hungary); L. Eoetvoes University, Department of Inorganic and Analytical Chemistry, Budapest (Hungary); Virag, Istvan [L. Eoetvoes University, Department of Inorganic and Analytical Chemistry, Budapest (Hungary); Cseh, Edit; Fodor, Ferenc [L. Eoetvoes University, Department of Plant Physiology, Budapest (Hungary); Zaray, Gyula [Joint Research Group of Environmental Chemistry of the Hungarian Academy of Sciences and L. Eoetvoes University, Budapest (Hungary); Hungarian Satellite Centre of Trace Elements Institute to UNESCO, Budapest (Hungary); L. Eoetvoes University, Department of Inorganic and Analytical Chemistry, Budapest (Hungary)

    2005-10-01

    Flow injection analysis (FIA) and high-performance liquid chromatography double-focusing sector field inductively coupled plasma mass spectrometry (HPLC-DF-ICP-MS) were used for total arsenic determination and arsenic speciation of xylem sap of cucumber plants (Cucumis sativus L.) grown in hydroponics containing 2 {mu}mol dm{sup -3} arsenate or arsenite, respectively. Arsenite [As(III)], arsenate [As(V)] and dimethylarsinic acid (DMA) were identified in the sap of the plants. Arsenite was the predominant arsenic species in the xylem saps regardless of the type of arsenic treatment, and the following concentration order was determined: As(III) > As(V) > DMA. The amount of total As, calculated taking into consideration the mass of xylem sap collected, was almost equal for both treatments. Arsenite was taken up more easily by cucumber than arsenate. Partial oxidation of arsenite to arsenate (<10% in 48 h) was observed in the case of arsenite-containing nutrient solutions, which may explain the detection of arsenate in the saps of plants treated with arsenite. (orig.)

  8. Inner strategies of coping with operational work amongst SAPS officers

    Directory of Open Access Journals (Sweden)

    Masefako A. Gumani

    2013-11-01

    Research purpose: The objective of this study was to describe inner coping strategies used by officers in the Vhembe district (South Africa to reconstruct stressful and traumatic experiences at work. Motivation for the study: Most studies on coping amongst SAPS officers focus on organisational stress and not on the impact of the officers’ operational work. Research design, approach and method: An exploratory design was used and 20 SAPS officers were selected through purposive sampling. In-depth face-to-face and telephone interviews, as well as diaries were used to collect data, which were analysed using content thematic data analysis. Main findings: The results showed that the main categories of coping strategies that led to management of the impact of operational work amongst the selected sample were centred around problem-focused and emotion-focused strategies, with some use of reappraisal and minimal use of avoidance. Considering the context of the officers’ work, the list of dimensions of inner coping strategies amongst SAPS officers should be extended. Practical/managerial implications: Intervention programmes designed for the SAPS, including critical incident stress debriefing, should take the operational officers’ inner strategies into account to improve the management of the impact of their work. Contribution/value-add: This study contributes to the body of knowledge on the inner coping strategies amongst SAPS officers, with special reference to operational work in a specific setting.

  9. Auditoria fiscal previdenciária em ambiente SAP

    Directory of Open Access Journals (Sweden)

    Alexandre David Viva

    2006-12-01

    Full Text Available Este trabalho busca identificar meios para efetuar auditoria fiscal nos bancos de dados do SAP - o mais adotado ERP da atualidade (Bae e Ashcroft, 2004, 1 e 5; Khan, 2005, 5. Pretende-se concentrar no método de acesso às tabelas SAP, um dos cinco métodos de acesso aos bancos de dados de ERP (Neil Raden, 2004, 10. Em um primeiro momento, é necessário o levantamento, por empresa, de uma listagem dos cabeçalhos das tabelas com as quais ela trabalha, em bancos de dados que já alcançam os terabytes (SAP, SAP NetWeaver: 50. Como o SAP é um programa multilíngüe e multiempresarial, suas tabelas são criptografadas, isto é, os nomes das tabelas e de duas colunas não guardam a menor relação com os dados que elas registram (Saphir, 2004, 1. Em um segundo momento, então, por meio do ACL, a listagem de cabeçalhos de tabelas obtida é filtrada. As tabelas que interessam ao Fisco são solicitadas à empresa de uma forma mais precisa, de modo a não sobrecarregar nem a empresa nem do Fisco. Em um terceiro momento, ainda com auxílio do ACL, as tabelas especificadas são analisadas (Primeiros Passos, 2003, 3.

  10. Analysis of bleeding saps and radioactive measurements of deciduous trees

    International Nuclear Information System (INIS)

    Gomernik-Besser, E.

    1993-07-01

    Samples of bleeding sap of Betula pendula Roth, Betula lutea L., Betula papyrifera L., Betula mandshuria L., Salix melichoferi Saut., Cornus florida L., Evodea velutina L., Vitis amurensis L., Acer tartaricum L., Aesculus parviflora L., and Juglans regia L. in the botanical garden in Graz have been collected during springs of 1987, 1988, and 1989. After a special treatment (ion-exchange and freeze-drying) the bleeding saps have been searched for the compounds of sugars, amino acids and organic acids by gaschromatrography. LAMMA-spectra showed the ion composition, and radioactivity measurements on leaves of the trees have also been made. In all bleeding saps sugars could be identified in various concentrations, mainly glucose and fructose. All trees showed nearly the same acid spectrum, and the most common ingredient was malic acid. In the bleeding saps of the Betulaceae and Juglans regia the major constituent was citrulline. In Acer tartaricum allantoine was present in large concentration. In Evodea velutina, Aesculus parviflora, Vitis amurensis and Cornus florida glutamin could be identified in large concentration. After the reactor accident of Tschernobyl in April 1986 the number of synthetic radionuclides increased and they could be identified. The LAMMA-spectra showed high contents of potassium and calcium in the bleeding saps. (author)

  11. Analysis of bleeding saps and radioactive measurements of deciduous trees

    International Nuclear Information System (INIS)

    Gomernik-Besser, E.

    1993-07-01

    Samples of bleeding sap of Betula pendula Roth, Betula lutea L., Betula papyrifera L., Betula mandshuria L., Salix mielichoferi Saut., Cornus florida L., Evodea velutina L., Vitis amurensis L., Acer tartaricum L., Aesculus parviflora L., and Juglans regia L. in the botanical garden in Graz have been collected during springs of 1987, 1988, and 1989. After a special treatment (ion-exchange and freeze-drying) the bleeding saps have been searched for the compounds of sugars, amino acids and organic acids by gas-chromatrography. LAMMA-spectra showed the ion composition, and radioactivity measurements on leaves of the trees have also been made. In all bleeding saps sugars could be identified in various concentrations, mainly glucose and fructose. All trees showed nearly the same acid spectrum, and the most common ingredient was malic acid. In the bleeding saps of the Betulaceae and Juglans regia the major constituent was citrulline. In Acer tartaricum allantoine was present in large concentration. In Evodea velutina, Aesculus parviflora, Vitis amurensis and Cornus florida glutamin could be identified in large concentration. After the reactor accident of Tschernobyl in April 1986 the number of synthetic radionuclides increased and they could be identified. The LAMMA-spectra showed high contents of kalium and calcium in the bleeding saps. (author)

  12. Flux, rejection and fouling during microfiltration and ultrafiltration of sugar palm sap using a pilot plant scale

    Directory of Open Access Journals (Sweden)

    Wanichapichart, P.

    2006-07-01

    Full Text Available The possibility of using a pilot plant scale microfiltration (MF and ultrafiltration (UF to clarify and reduce number of bacteria, yeast and mould of sugar palm sap was studied. The membrane used was multi channel tubular ceramic membrane (ZrO2-TiO2 with membrane pore size 0.2 and 0.1 μm and molecular weight cut off (MWCO 300 and 50 kDa for microfiltration and ultrafiltration respectively. The experiment was carried out to investigate the rejection of the components in sugar palm sap, permeate flux and fouling characteristics. The results showed that the turbidity, the total solid, the viscosity and the numbers of bacteria, yeast and mould in the permeate obtained by MF and UF were reduced significantly compared to those of fresh sugar palm sap. The total soluble solid, total sugar, reducing sugar and pH were not affected by MF and UF. The permeate fluxes for all membranes were reduced greatly as the volume concentration ratio (VCR increased due to severe fouling. The irreversible fouling on membrane surface and/or inside the membrane tended to increase with increasing membrane pore size or MWCO. The result also suggested that protein and small particle in the sugar palm sap were probably responsible for the internal fouling of large pore size membrane. According to the physical, chemical and microorganism quality results, both MF and UF showed the potential use for improving the quality of sugar palm sap but flux reduction due to fouling was a major problem affecting the process performance.

  13. Dauer pheromone and G-protein signaling modulate the coordination of intraflagellar transport kinesin motor proteins in C. elegans

    NARCIS (Netherlands)

    J.A. Burghoorn (Jan); M.P.J. Dekkers (Martijn); S. Rademakers (Suzanne); A.A.W. de Jong (Ton); R. Willemsen (Rob); P. Swoboda (Peter); J. McCafferty (Gert)

    2010-01-01

    textabstractCilia length and function are dynamically regulated by modulation of intraflagellar transport (IFT). The cilia of C. elegans amphid channel neurons provide an excellent model to study this process, since they use two different kinesins for anterograde transport: kinesin-II and OSM-3

  14. Exploring Protein Structure and Dynamics through a Project-Oriented Biochemistry Laboratory Module

    Science.gov (United States)

    Lipchock, James M.; Ginther, Patrick S.; Douglas, Bonnie B.; Bird, Kelly E.; Loria, J. Patrick

    2017-01-01

    Here, we present a 10-week project-oriented laboratory module designed to provide a course-based undergraduate research experience in biochemistry that emphasizes the importance of biomolecular structure and dynamics in enzyme function. This module explores the impact of mutagenesis on an important active site loop for a biomedically-relevant…

  15. Possible role of HIWI2 in modulating tight junction proteins in retinal pigment epithelial cells through Akt signaling pathway.

    Science.gov (United States)

    Sivagurunathan, Suganya; Palanisamy, Karthikka; Arunachalam, Jayamuruga Pandian; Chidambaram, Subbulakshmi

    2017-03-01

    PIWI subfamily of proteins is shown to be primarily expressed in germline cells. They maintain the genomic integrity by silencing the transposable elements. Although the role of PIWI proteins in germ cells has been documented, their presence and function in somatic cells remains unclear. Intriguingly, we detected all four members of PIWI-like proteins in human ocular tissues and somatic cell lines. When HIWI2 was knocked down in retinal pigment epithelial cells, the typical honeycomb morphology was affected. Further analysis showed that the expression of tight junction (TJ) proteins, CLDN1, and TJP1 were altered in HIWI2 knockdown. Moreover, confocal imaging revealed disrupted TJP1 assembly at the TJ. Previous studies report the role of GSK3β in regulating TJ proteins. Accordingly, phospho-kinase proteome profiler array indicated increased phosphorylation of Akt and GSK3α/β in HIWI2 knockdown, suggesting that HIWI2 might affect TJ proteins through Akt-GSK3α/β signaling axis. Moreover, treating the HIWI2 knockdown cells with wortmannin increased the levels of TJP1 and CLDN1. Taken together, our study demonstrates the presence of PIWI-like proteins in somatic cells and the possible role of HIWI2 in preserving the functional integrity of epithelial cells probably by modulating the phosphorylation status of Akt.

  16. Localization of a region in the fusion protein of avian metapneumovirus that modulates cell-cell fusion.

    Science.gov (United States)

    Wei, Yongwei; Feng, Kurtis; Yao, Xiangjie; Cai, Hui; Li, Junan; Mirza, Anne M; Iorio, Ronald M; Li, Jianrong

    2012-11-01

    The genus Metapneumovirus within the subfamily Pneumovirinae of the family Paramyxoviridae includes two members, human metapneumovirus (hMPV) and avian metapneumovirus (aMPV), causing respiratory tract infections in humans and birds, respectively. Paramyxoviruses enter host cells by fusing the viral envelope with a host cell membrane. Membrane fusion of hMPV appears to be unique, in that fusion of some hMPV strains requires low pH. Here, we show that the fusion (F) proteins of aMPV promote fusion in the absence of the attachment protein and low pH is not required. Furthermore, there are notable differences in cell-cell fusion among aMPV subtypes. Trypsin was required for cell-cell fusion induced by subtype B but not subtypes A and C. The F protein of aMPV subtype A was highly fusogenic, whereas those from subtypes B and C were not. By construction and evaluation of chimeric F proteins composed of domains from the F proteins of subtypes A and B, we localized a region composed of amino acid residues 170 to 338 in the F protein that is responsible for the hyperfusogenic phenotype of the F from subtype A. Further mutagenesis analysis revealed that residues R295, G297, and K323 in this region collectively contributed to the hyperfusogenicity. Taken together, we have identified a region in the aMPV F protein that modulates the extent of membrane fusion. A model for fusion consistent with these data is presented.

  17. Protein kinase A mediates adenosine A2a receptor modulation of neurotransmitter release via synapsin I phosphorylation in cultured cells from medulla oblongata.

    Science.gov (United States)

    Matsumoto, Joao Paulo Pontes; Almeida, Marina Gomes; Castilho-Martins, Emerson Augusto; Costa, Maisa Aparecida; Fior-Chadi, Debora Rejane

    2014-08-01

    Synaptic transmission is an essential process for neuron physiology. Such process is enabled in part due to modulation of neurotransmitter release. Adenosine is a synaptic modulator of neurotransmitter release in the Central Nervous System, including neurons of medulla oblongata, where several nuclei are involved with neurovegetative reflexes. Adenosine modulates different neurotransmitter systems in medulla oblongata, specially glutamate and noradrenaline in the nucleus tractussolitarii, which are involved in hypotensive responses. However, the intracellular mechanisms involved in this modulation remain unknown. The adenosine A2a receptor modulates neurotransmitter release by activating two cAMP protein effectors, the protein kinase A and the exchange protein activated by cAMP. Therefore, an in vitro approach (cultured cells) was carried out to evaluate modulation of neurotransmission by adenosine A2a receptor and the signaling intracellular pathway involved. Results show that the adenosine A2a receptor agonist, CGS 21680, increases neurotransmitter release, in particular, glutamate and noradrenaline and such response is mediated by protein kinase A activation, which in turn increased synapsin I phosphorylation. This suggests a mechanism of A2aR modulation of neurotransmitter release in cultured cells from medulla oblongata of Wistar rats and suggest that protein kinase A mediates this modulation of neurotransmitter release via synapsin I phosphorylation. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  18. SAP FLOW RESPONSE OF CHERRY TREES TO WEATHER CONDITION

    Directory of Open Access Journals (Sweden)

    Á. JUHÁSZ

    2011-03-01

    Full Text Available Sap flow response of cherry trees to weather condition. Themain goal of our study is to measure water-demand of cherry trees budded ontodifferent rootstocks by sapflow equipment and to study the sap flow response to themeteorological factors. The investigations are carried out in Soroksár in Hungary at‘Rita’ sweet cherry orchard. The pattern of sapflow was analyzed in relation ofsolar radiation, vapour pressure deficit and air temperature. Between solar radiationand sap flow was found a parabolic relation, daily pattern of sapflow is in closerelation (cubic also to vapour pressure deficit. No significant relationship existedbetween sapflow and air temperature. The sapflow performance of sweet cherrytrees on different rootstocks showed typical daily characters.

  19. Potential of Jatropha multifida sap against traumatic ulcer

    Directory of Open Access Journals (Sweden)

    Basri A. Gani

    2015-09-01

    Full Text Available Background: Traumatic ulcer is a lesion in oral mucosa as a result of physical and mechanical trauma, as well as changes in salivary pH. Jatropha multifida sap can act as antimicrobial, anti-inflammatory and re-epithelialization, and can also trigger the healing process of ulcers. Purpose: Research was aimed to determine the potential of Jatropha multifida sap against traumatic ulcer base on clinical and histopathological healing process. Method: This research was conducted laboratory experimental model, with rats (Rattus norvegicus as the subject as well as Jatropha multifida sap for ulcer healing. Those subjects were divided into four groups: two treatment groups administrated with pellet and Jatropha multifida sap, one group as the positive control group administrated with 0.1% triamcinolone acetonide, and one group as the negative control group administrated with 0.9% NaCl. Ulcer manipulation was used 30% H2O2, and evaluation of ulcer healing was used clinical and histopathological approach. Result: Clinically, the healing process of ulcers in the treatment group with Jatropha multifida sap was faster than that in the positive control group with 0.1% triamcinolone acetonide, indicated with the reduction of the ulcer size until the missing of the ulcers started from the third day to the seventh one (p≤0.05. Histopathologically inflammatory cells (lymphocytes, and plasma cells declined started from the third day, and the formation of collagen and re-epithelialization then occurred. On the seventh day, the epithelial cells thickened, and the inflammatory cells infiltrated. Statistically, those groups were significant (p≤0.05. Conclusion: Jatropha multifida sap has a significant potential to cure traumatic ulcers on oral mucosa clinically and histopathologically.

  20. SAPFLUXNET: towards a global database of sap flow measurements.

    Science.gov (United States)

    Poyatos, Rafael; Granda, Víctor; Molowny-Horas, Roberto; Mencuccini, Maurizio; Steppe, Kathy; Martínez-Vilalta, Jordi

    2016-12-01

    Plant transpiration is the main evaporative flux from terrestrial ecosystems; it controls land surface energy balance, determines catchment hydrological responses and influences regional and global climate. Transpiration regulation by plants is a key (and still not completely understood) process that underlies vegetation drought responses and land evaporative fluxes under global change scenarios. Thermometric methods of sap flow measurement have now been widely used to quantify whole-plant and stand transpiration in forests, shrublands and orchards around the world. A large body of research has applied sap flow methods to analyse seasonal and diurnal patterns of transpiration and to quantify their responses to hydroclimatic variability, but syntheses of sap flow data at regional to global scales are extremely rare. Here we present the SAPFLUXNET initiative, aimed at building the first global database of plant-level sap flow measurements. A preliminary metadata survey launched in December 2015 showed an encouraging response by the sap flow community, with sap flow data sets from field studies representing >160 species and >120 globally distributed sites. The main goal of SAPFLUXNET is to analyse the ecological factors driving plant- and stand-level transpiration. SAPFLUXNET will open promising research avenues at an unprecedented global scope, namely: (i) exploring the spatio-temporal variability of plant transpiration and its relationship with plant and stand attributes, (ii) summarizing physiological regulation of transpiration by means of few water-use traits, usable for land surface models, (iii) improving our understanding of the coordination between gas exchange and plant-level traits (e.g., hydraulics) and (iv) analysing the ecological factors controlling stand transpiration and evapotranspiration partitioning. Finally, SAPFLUXNET can provide a benchmark to test models of physiological controls of transpiration, contributing to improve the accuracy of

  1. Conjugated Linoleic Acid Supplementation under a High-Fat Diet Modulates Stomach Protein Expression and Intestinal Microbiota in Adult Mice.

    Directory of Open Access Journals (Sweden)

    Alice Chaplin

    Full Text Available The gastrointestinal tract constitutes a physiological interface integrating nutrient and microbiota-host metabolism. Conjugated linoleic acids (CLA have been reported to contribute to decreased body weight and fat accretion. The modulation by dietary CLA of stomach proteins related to energy homeostasis or microbiota may be involved, although this has not been previously analysed. This is examined in the present study, which aims to underline the potential mechanisms of CLA which contribute to body weight regulation. Adult mice were fed either a normal fat (NF, 12% kJ content as fat or a high-fat (HF, 43% kJ content as fat diet. In the latter case, half of the animals received daily oral supplementation of CLA. Expression and content of stomach proteins and specific bacterial populations from caecum were analysed. CLA supplementation was associated with an increase in stomach protein expression, and exerted a prebiotic action on both Bacteroidetes/Prevotella and Akkermansia muciniphila. However, CLA supplementation was not able to override the negative effects of HF diet on Bifidobacterium spp., which was decreased in both HF and HF+CLA groups. Our data show that CLA are able to modulate stomach protein expression and exert a prebiotic effect on specific gut bacterial species.

  2. Conjugated Linoleic Acid Supplementation under a High-Fat Diet Modulates Stomach Protein Expression and Intestinal Microbiota in Adult Mice.

    Science.gov (United States)

    Chaplin, Alice; Parra, Pilar; Serra, Francisca; Palou, Andreu

    2015-01-01

    The gastrointestinal tract constitutes a physiological interface integrating nutrient and microbiota-host metabolism. Conjugated linoleic acids (CLA) have been reported to contribute to decreased body weight and fat accretion. The modulation by dietary CLA of stomach proteins related to energy homeostasis or microbiota may be involved, although this has not been previously analysed. This is examined in the present study, which aims to underline the potential mechanisms of CLA which contribute to body weight regulation. Adult mice were fed either a normal fat (NF, 12% kJ content as fat) or a high-fat (HF, 43% kJ content as fat) diet. In the latter case, half of the animals received daily oral supplementation of CLA. Expression and content of stomach proteins and specific bacterial populations from caecum were analysed. CLA supplementation was associated with an increase in stomach protein expression, and exerted a prebiotic action on both Bacteroidetes/Prevotella and Akkermansia muciniphila. However, CLA supplementation was not able to override the negative effects of HF diet on Bifidobacterium spp., which was decreased in both HF and HF+CLA groups. Our data show that CLA are able to modulate stomach protein expression and exert a prebiotic effect on specific gut bacterial species.

  3. The efficiency of SAP in improving the HR performance case study ...

    African Journals Online (AJOL)

    The efficiency of SAP in improving the HR performance case study: Masdar ... administrative and strategic levels, as well as identifying the contribution of ... Keywords: SAP, human resources management, Masdar Building Materials Company ...

  4. Managing the Technology Acquisition Integration Paradox at SAP

    DEFF Research Database (Denmark)

    Henningsson, Stefan; Kude, Thomas; Popp, Karl Michael

    2016-01-01

    rests in ensuring critical speed while not compromising accuracy in the integration process. For SAP, the Product Council became a vital component in its technology acquisition capability that allows the company to retain its technological edge in the hypercompetitive software industry.......In this paper, we report on a novel approach developed by SAP AG, the German enterprise software company, for managing the integration of acquisitions of companies to access innovative technologies and related capabilities: the Product Council approach. The value of the Product Council approach...

  5. Indiscriminate Fisheries: Understanding the Foodweb of the Great Tonle Sap Lake, Cambodia

    Science.gov (United States)

    Hannah, L.; Kaufman, L.

    2014-12-01

    Indiscriminate fisheries target multiple species with multiple gear types. In contrast to well-studied, industrialized single-species, single-gear fisheries, little theory and little but growing literature on practice exists for indiscriminate fisheries. Indiscriminate fisheries are disproportionately important in low-income countries, providing most of the animal protein intake in countries such as Cambodia and Bangladesh. Indiscriminate fisheries may be either freshwater or marine, but here we focus on what may be the largest freshwater indiscriminate fishery in the world. Cambodia's freshwater fishery stands out because it provides the majority of animal protein to over 3 million people living in poverty. The fishery of the Tonle Sap lake is one of the largest, if not the largest contributor to this freshwater fish take, and is perhaps the largest freshwater fishery in the world. In contrast to its importance, very little is known about the foodweb ecology of this system, or how community management which now governs the entire fishery, interacts with biological and physical factors such as climate change.The foodweb of the Tonle Sap has changed dramatically due to high fishing pressure. A system that once harbored giant catfish, barbs and stingrays is now dominated by fish under 20cm in length. The simplification of the system may not have reduced its productivity. Theory of indiscriminate fisheries suggests that r-selected species may be favored and that biomass available for harvest may be maximized, while being more sensitive to environmental fluctuations such as climate change due to food web simplification. The r-selection and size predictions of theory have been confirmed by observations of the Tonle Sap. Early model results suggest sensitivity to environmental stochasticity. The interaction of these ecological changes with social systems will be tested in the Tonle Sap. Fisheries management across the lake has been transferred to community management

  6. 49 CFR 40.281 - Who is qualified to act as a SAP?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Who is qualified to act as a SAP? 40.281 Section... § 40.281 Who is qualified to act as a SAP? To be permitted to act as a SAP in the DOT drug and alcohol.... (2) You must be knowledgeable about the SAP function as it relates to employer interests in safety...

  7. 30 CFR 285.610 - What must I include in my SAP?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What must I include in my SAP? 285.610 Section... Requirements Contents of the Site Assessment Plan § 285.610 What must I include in my SAP? Your SAP must... SAP, you must provide the following information: ER29AP09.115 (b) You must provide the results of...

  8. Five years' experience of the new SAPs: overview and way forward

    International Nuclear Information System (INIS)

    Pape, R.P.

    1998-01-01

    This paper gives an overview of the five years' experience gained in applying the new safety assessment principles (SAPs). Beginning with a brief history of SAPs, it goes on to discuss their structure and their relevance to safety matters. It develops some of the more basic issues which users have to bear in mind and also considers how SAPs are used by NII. Finally, there is a look forward to future developments in SAPs usage and application. (author)

  9. Human protein status modulates brain reward responses to food cues1–3

    NARCIS (Netherlands)

    Griffioen-Roose, S.; Smeets, P.A.M.; Heuvel, van den E.M.; Boesveldt, S.; Finlayson, G.; Graaf, de C.

    2014-01-01

    Background: Protein is indispensable in the human diet, and its intake appears tightly regulated. The role of sensory attributes of foods in protein intake regulation is far from clear. Objective: We investigated the effect of human protein status on neural responses to different food cues with the

  10. Brassinosteroids Regulate OFP1, a DLT Interacting Protein, to Modulate Plant Architecture and Grain Morphology in Rice

    Directory of Open Access Journals (Sweden)

    Yunhua Xiao

    2017-09-01

    Full Text Available Brassinosteroids (BRs regulate important agronomic traits in rice, including plant height, leaf angle, and grain size. However, the underlying mechanisms remain not fully understood. We previously showed that GSK2, the central negative regulator of BR signaling, targets DLT, the GRAS family protein, to regulate BR responses. Here, we identified Ovate Family Protein 1 (OFP1 as a DLT interacting protein. OFP1 was ubiquitously expressed and the protein was localized in both cytoplasm and nucleus. Overexpression of OFP1 led to enlarged leaf angles, reduced plant height, and altered grain shape, largely resembled DLT overexpression plants. Genetic analysis showed that the regulation of plant architecture by OFP1 depends on DLT function. In addition, we found OFP1 was greatly induced by BR treatment, and OsBZR1, the critical transcription factor of BR signaling, was physically associated with the OFP1 promoter. Moreover, we showed that gibberellin synthesis was greatly repressed in OFP1 overexpression plants, suggesting OFP1 participates in the inhibition of plant growth by high BR or elevated BR signaling. Furthermore, we revealed that OFP1 directly interacts with GSK2 kinase, and inhibition of the kinase activity significantly promotes OFP1 protein accumulation in plant. Taken together, we identified OFP1 as an additional regulator of BR responses and revealed how BRs promote OFP1 at both transcription and protein levels to modulate plant architecture and grain morphology in rice.

  11. Medium pH in submerged cultivation modulates differences in the intracellular protein profile of Fusarium oxysporum.

    Science.gov (United States)

    da Rosa-Garzon, Nathália Gonsales; Laure, Hélen Julie; Souza-Motta, Cristina Maria de; Rosa, José César; Cabral, Hamilton

    2017-08-09

    Fusarium oxysporum is a filamentous fungus that damages a wide range of plants and thus causes severe crop losses. In fungal pathogens, the genes and proteins involved in virulence are known to be controlled by environmental pH. Here, we report the influence of culture-medium pH (5, 6, 7, and 8) on the production of degradative enzymes involved in the pathogenesis of F. oxysporum URM 7401 and on the 2D-electrophoresis profile of intracellular proteins in this fungus. F. oxysporum URM 7401 was grown in acidic, neutral, and alkaline culture media in a submerged bioprocess. After 96 hr, the crude extract was processed to enzyme activity assays, while the intracellular proteins were obtained from mycelium and analyzed using 2D electrophoresis and mass spectrometry. We note that the diversity of secreted enzymes was changed quantitatively in different culture-medium pH. Also, the highest accumulated biomass and the intracellular protein profile of F. oxysporum URM 7401 indicate an increase in metabolism in neutral-alkaline conditions. The differential profiles of secreted enzymes and intracellular proteins under the evaluated conditions indicate that the global protein content in F. oxysporum URM 7401 is modulated by extracellular pH.

  12. 49 CFR 40.285 - When is a SAP evaluation required?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false When is a SAP evaluation required? 40.285 Section... § 40.285 When is a SAP evaluation required? (a) As an employee, when you have violated DOT drug and... unless you complete the SAP evaluation, referral, and education/treatment process set forth in this...

  13. 30 CFR 285.613 - How will MMS process my SAP?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How will MMS process my SAP? 285.613 Section... Requirements Contents of the Site Assessment Plan § 285.613 How will MMS process my SAP? (a) The MMS will review your submitted SAP, and additional information provided pursuant to § 285.611, to determine if it...

  14. 30 CFR 285.606 - What must I demonstrate in my SAP?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What must I demonstrate in my SAP? 285.606 Section 285.606 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE... demonstrate in my SAP? (a) Your SAP must demonstrate that you have planned and are prepared to conduct the...

  15. 49 CFR 40.289 - Are employers required to provide SAP and treatment services to employees?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Are employers required to provide SAP and... Professionals and the Return-to-Duty Process § 40.289 Are employers required to provide SAP and treatment services to employees? (a) As an employer, you are not required to provide a SAP evaluation or any...

  16. 49 CFR 40.297 - Does anyone have the authority to change a SAP's initial evaluation?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Does anyone have the authority to change a SAP's... the Return-to-Duty Process § 40.297 Does anyone have the authority to change a SAP's initial... managed-care provider, any service agent) may change in any way the SAP's evaluation or recommendations...

  17. DMPD: The SAP family of adaptors in immune regulation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15541655 The SAP family of adaptors in immune regulation. Latour S, Veillette A. Se...min Immunol. 2004 Dec;16(6):409-19. (.png) (.svg) (.html) (.csml) Show The SAP family of adaptors in immune ...regulation. PubmedID 15541655 Title The SAP family of adaptors in immune regulation. Authors Latour S, Veill

  18. Characterisation of microRNAs from apple (Malus domestica 'Royal Gala') vascular tissue and phloem sap.

    Science.gov (United States)

    Varkonyi-Gasic, Erika; Gould, Nick; Sandanayaka, Manoharie; Sutherland, Paul; MacDiarmid, Robin M

    2010-08-04

    Plant microRNAs (miRNAs) are a class of small, non-coding RNAs that play an important role in development and environmental responses. Hundreds of plant miRNAs have been identified to date, mainly from the model species for which there are available genome sequences. The current challenge is to characterise miRNAs from plant species with agricultural and horticultural importance, to aid our understanding of important regulatory mechanisms in crop species and enable improvement of crops and rootstocks. Based on the knowledge that many miRNAs occur in large gene families and are highly conserved among distantly related species, we analysed expression of twenty-one miRNA sequences in different tissues of apple (Malus x domestica 'Royal Gala'). We identified eighteen sequences that are expressed in at least one of the tissues tested. Some, but not all, miRNAs expressed in apple tissues including the phloem tissue were also detected in the phloem sap sample derived from the stylets of woolly apple aphids. Most of the miRNAs detected in apple phloem sap were also abundant in the phloem sap of herbaceous species. Potential targets for apple miRNAs were identified that encode putative proteins shown to be targets of corresponding miRNAs in a number of plant species. Expression patterns of potential targets were analysed and correlated with expression of corresponding miRNAs. This study validated tissue-specific expression of apple miRNAs that target genes responsible for plant growth, development, and stress response. A subset of characterised miRNAs was also present in the apple phloem translocation stream. A comparative analysis of phloem miRNAs in herbaceous species and woody perennials will aid our understanding of non-cell autonomous roles of miRNAs in plants.

  19. Ligand-regulated peptides: a general approach for modulating protein-peptide interactions with small molecules.

    Science.gov (United States)

    Binkowski, Brock F; Miller, Russell A; Belshaw, Peter J

    2005-07-01

    We engineered a novel ligand-regulated peptide (LiRP) system where the binding activity of intracellular peptides is controlled by a cell-permeable small molecule. In the absence of ligand, peptides expressed as fusions in an FKBP-peptide-FRB-GST LiRP scaffold protein are free to interact with target proteins. In the presence of the ligand rapamycin, or the nonimmunosuppressive rapamycin derivative AP23102, the scaffold protein undergoes a conformational change that prevents the interaction of the peptide with the target protein. The modular design of the scaffold enables the creation of LiRPs through rational design or selection from combinatorial peptide libraries. Using these methods, we identified LiRPs that interact with three independent targets: retinoblastoma protein, c-Src, and the AMP-activated protein kinase. The LiRP system should provide a general method to temporally and spatially regulate protein function in cells and organisms.

  20. Phenotypic Screening Identifies Modulators of Amyloid Precursor Protein Processing in Human Stem Cell Models of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Philip W. Brownjohn

    2017-04-01

    Full Text Available Summary: Human stem cell models have the potential to provide platforms for phenotypic screens to identify candidate treatments and cellular pathways involved in the pathogenesis of neurodegenerative disorders. Amyloid precursor protein (APP processing and the accumulation of APP-derived amyloid β (Aβ peptides are key processes in Alzheimer's disease (AD. We designed a phenotypic small-molecule screen to identify modulators of APP processing in trisomy 21/Down syndrome neurons, a complex genetic model of AD. We identified the avermectins, commonly used as anthelmintics, as compounds that increase the relative production of short Aβ peptides at the expense of longer, potentially more toxic peptides. Further studies demonstrated that this effect is not due to an interaction with the core γ-secretase responsible for Aβ production. This study demonstrates the feasibility of phenotypic drug screening in human stem cell models of Alzheimer-type dementia, and points to possibilities for indirectly modulating APP processing, independently of γ-secretase modulation. : In this article, Livesey and colleagues perform a phenotypic drug screen in a human stem cell model of Alzheimer's disease. The anthelminthic avermectins are identified as a family of compounds that increase the production of short Aβ peptides over longer more toxic Aβ forms. The effect is analogous to existing γ-secretase modulators, but is independent of the core γ-secretase complex. Keywords: neural stem cells, Alzheimer's disease, phenotypic screening, iPSCs, human neurons, dementia, Down syndrome, amyloid beta, ivermectin, selamectin

  1. Phloem-specific expression of the lectin gene from Allium sativum confers resistance to the sap-sucker Nilaparvata lugens.

    Science.gov (United States)

    Chandrasekhar, Kottakota; Vijayalakshmi, Muvva; Vani, Kalasamudramu; Kaul, Tanushri; Reddy, Malireddy K

    2014-05-01

    Rice production is severely hampered by insect pests. Garlic lectin gene (ASAL) holds great promise in conferring protection against chewing (lepidopteran) and sap-sucking (homopteran) insect pests. We have developed transgenic rice lines resistant to sap-sucking brown hopper (Nilaparvata lugens) by ectopic expression of ASAL in their phloem tissues. Molecular analyses of T0 lines confirmed stable integration of transgene. T1 lines (NP 1-2, 4-3, 11-6 & 17-7) showed active transcription and translation of ASAL transgene. ELISA revealed ASAL expression was as high as 0.95% of total soluble protein. Insect bioassays on T2 homozygous lines (NP 18 & 32) revealed significant reduction (~74-83%) in survival rate, development and fecundity of brown hoppers in comparison to wild type. Transgenics exhibited enhanced resistance (1-2 score) against brown hoppers, minimal plant damage and no growth penalty or phenotypic abnormalities.

  2. Loss of Heterozygosity at an Unlinked Genomic Locus Is Responsible for the Phenotype of a Candida albicans sapsapsap6Δ Mutant ▿

    OpenAIRE

    Dunkel, Nico; Morschhäuser, Joachim

    2011-01-01

    The diploid genome of the pathogenic yeast Candida albicans exhibits a high degree of heterozygosity. Genomic alterations that result in a loss of heterozygosity at specific loci may affect phenotypes and confer a selective advantage under certain conditions. Such genomic rearrangements can also occur during the construction of C. albicans mutants and remain undetected. The SAP2 gene on chromosome R encodes a secreted aspartic protease that is induced and required for growth of C. albicans wh...

  3. Ribosome-dependent ATPase interacts with conserved membrane protein in Escherichia coli to modulate protein synthesis and oxidative phosphorylation.

    Directory of Open Access Journals (Sweden)

    Mohan Babu

    Full Text Available Elongation factor RbbA is required for ATP-dependent deacyl-tRNA release presumably after each peptide bond formation; however, there is no information about the cellular role. Proteomic analysis in Escherichia coli revealed that RbbA reciprocally co-purified with a conserved inner membrane protein of unknown function, YhjD. Both proteins are also physically associated with the 30S ribosome and with members of the lipopolysaccharide transport machinery. Genome-wide genetic screens of rbbA and yhjD deletion mutants revealed aggravating genetic interactions with mutants deficient in the electron transport chain. Cells lacking both rbbA and yhjD exhibited reduced cell division, respiration and global protein synthesis as well as increased sensitivity to antibiotics targeting the ETC and the accuracy of protein synthesis. Our results suggest that RbbA appears to function together with YhjD as part of a regulatory network that impacts bacterial oxidative phosphorylation and translation efficiency.

  4. Protein-Enriched Liquid Preloads Varying in Macronutrient Content Modulate Appetite and Appetite-Regulating Hormones in Healthy Adults.

    Science.gov (United States)

    Dougkas, Anestis; Östman, Elin

    2016-03-01

    Dietary protein is considered the most satiating macronutrient, yet there is little evidence on whether the effects observed are attributable to the protein or to the concomitant manipulation of carbohydrates and fat. The aim was to examine the effect of consumption of preloads varying in macronutrient content on appetite, energy intake, and biomarkers of satiety. Using a randomized, within-subjects, 2-level factorial design, 36 adults [mean ± SD age: 27 ± 5 y; body mass index (in kg/m(2)): 24.3 ± 1.6) received a breakfast consisting of 1 of 7 isovolumetric (670 mL) and isoenergetic (2100 kJ) liquid preloads matched for energy density and sensory properties but with different macronutrient composition (levels: 9%, 24%, or 40% of energy from protein combined with a carbohydrate-to-fat ratio of 0.4, 2, or 3.6, respectively). Appetite ratings and blood samples were collected and assessed at baseline and every 30 and 60 min, respectively, until a lunch test meal, which participants consumed ad libitum, was served 3.5 h after breakfast. Prospective consumption was 12% lower after intake of the high-protein (40%)/3.6 carbohydrate:fat preload than after intake of the low-protein (9%)/0.4 carbohydrate:fat preload (P = 0.02) solely because of the increased protein, irrespective of the manipulation of the other macronutrients. Most appetite ratings tended to be suppressed (13%) with increasing protein content of the preloads (P appetite than did carbohydrates and fat. Modulating the nutritional profile of a meal by replacing fat with protein can influence appetite in healthy adults. This trial was registered at www.clinicaltrials.gov as NCT01849302. © 2016 American Society for Nutrition.

  5. The catechin flavonoid reduces proliferation and induces apoptosis of murine lymphoma cells LB02 through modulation of antiapoptotic proteins

    Directory of Open Access Journals (Sweden)

    Daniela Laura Papademetrio

    2013-06-01

    Full Text Available Flavonoids are products of secondary metabolism of plants. They are present in herbs and trees and also act as natural chemopreventives and anticancer agents. Ligaria cuneifolia (Ruiz & Pav. Tiegh., Loranthaceae, is a hemiparasite species that belongs to Argentine flora. Phytochemical studies have disclosed the presence of quercetin, catechin-4β-ol and pro-anthocyanidine as polyphenolic compounds in the active extracts. We previously demonstrated that ethyl acetate extract was capable of reducing cell proliferation and inducing apoptotic death of lymphoid tumor cells. The aim of the current study is to determine whether or not catechin, isolated from L. cuneifolia extracts can induce leukemia cell death and to determine its effect on the cytoplasmatic proteins that modulate cell survival. Our results show that catechin can reduce proliferation of murine lymphoma cell line LB02. The effect is mediated by apoptosis at concentrations upper to 100 µg/mL. Cell death is related to the loss of mitochondrial membrane potential (ΔΨm and a down regulation of survivin and Bcl-2 together with the increase of pro-apoptotic protein Bax. In summary, the current study indicates that catechin present in the extract of L. cuneifolia is in part, responsible for the anti-proliferative activity of whole extracts by induction of ΔΨm disruption and modulation of the anti-apoptotic proteins over expressed in tumor cells. These results give new findings into the potential anticancer and chemopreventive activities of L. cuneifolia.

  6. The catechin flavonoid reduces proliferation and induces apoptosis of murine lymphoma cells LB02 through modulation of antiapoptotic proteins

    Directory of Open Access Journals (Sweden)

    Daniela Laura Papademetrio

    2013-03-01

    Full Text Available Flavonoids are products of secondary metabolism of plants. They are present in herbs and trees and also act as natural chemopreventives and anticancer agents. Ligaria cuneifolia (Ruiz & Pav. Tiegh., Loranthaceae, is a hemiparasite species that belongs to Argentine flora. Phytochemical studies have disclosed the presence of quercetin, catechin-4β-ol and pro-anthocyanidine as polyphenolic compounds in the active extracts. We previously demonstrated that ethyl acetate extract was capable of reducing cell proliferation and inducing apoptotic death of lymphoid tumor cells. The aim of the current study is to determine whether or not catechin, isolated from L. cuneifolia extracts can induce leukemia cell death and to determine its effect on the cytoplasmatic proteins that modulate cell survival. Our results show that catechin can reduce proliferation of murine lymphoma cell line LB02. The effect is mediated by apoptosis at concentrations upper to 100 µg/mL. Cell death is related to the loss of mitochondrial membrane potential (ΔΨm and a down regulation of survivin and Bcl-2 together with the increase of pro-apoptotic protein Bax. In summary, the current study indicates that catechin present in the extract of L. cuneifolia is in part, responsible for the anti-proliferative activity of whole extracts by induction of ΔΨm disruption and modulation of the anti-apoptotic proteins over expressed in tumor cells. These results give new findings into the potential anticancer and chemopreventive activities of L. cuneifolia.

  7. The NLR-related protein NWD1 is associated with prostate cancer and modulates androgen receptor signaling.

    Science.gov (United States)

    Correa, Ricardo G; Krajewska, Maryla; Ware, Carl F; Gerlic, Motti; Reed, John C

    2014-03-30

    Prostate cancer (PCa) is among the leading causes of cancer-related death in men. Androgen receptor (AR) signaling plays a seminal role in prostate development and homeostasis, and dysregulation of this pathway is intimately linked to prostate cancer pathogenesis and progression. Here, we identify the cytosolic NLR-related protein NWD1 as a novel modulator of AR signaling. We determined that expression of NWD1 becomes elevated during prostate cancer progression, based on analysis of primary tumor specimens. Experiments with cultured cells showed that NWD1 expression is up-regulated by the sex-determining region Y (SRY) family proteins. Gene silencing procedures, in conjunction with transcriptional profiling, showed that NWD1 is required for expression of PDEF (prostate-derived Ets factor), which is known to bind and co-regulate AR. Of note, NWD1 modulates AR protein levels. Depleting NWD1 in PCa cell lines reduces AR levels and suppresses activity of androgen-driven reporter genes. NWD1 knockdown potently suppressed growth of androgen-dependent LNCaP prostate cancer cells, thus showing its functional importance in an AR-dependent tumor cell model. Proteomic analysis suggested that NWD1 associates with various molecular chaperones commonly related to AR complexes. Altogether, these data suggest a role for tumor-associated over-expression of NWD1 in dysregulation of AR signaling in PCa.

  8. Rat vas deferens SERCA2 is modulated by Ca2+/calmodulin protein kinase II-mediated phosphorylation

    International Nuclear Information System (INIS)

    Rodriguez, J.B.R.; Muzi-Filho, H.; Valverde, R.H.F.; Quintas, L.E.M.; Noel, F.; Einicker-Lamas, M.; Cunha, V.M.N.

    2013-01-01

    Ca 2+ pumps are important players in smooth muscle contraction. Nevertheless, little information is available about these pumps in the vas deferens. We have determined which subtype of sarco(endo)plasmic reticulum Ca 2+ -ATPase isoform (SERCA) is expressed in rat vas deferens (RVD) and its modulation by calmodulin (CaM)-dependent mechanisms. The thapsigargin-sensitive Ca 2+ -ATPase from a membrane fraction containing the highest SERCA levels in the RVD homogenate has the same molecular mass (∼115 kDa) as that of SERCA2 from the rat cerebellum. It has a very high affinity for Ca 2+ (Ca 0.5 = 780 nM) and a low sensitivity to vanadate (IC 50 = 41 µM). These facts indicate that SERCA2 is present in the RVD. Immunoblotting for CaM and Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) showed the expression of these two regulatory proteins. Ca 2+ and CaM increased serine-phosphorylated residues of the 115-kDa protein, indicating the involvement of CaMKII in the regulatory phosphorylation of SERCA2. Phosphorylation is accompanied by an 8-fold increase of thapsigargin-sensitive Ca 2+ accumulation in the lumen of vesicles derived from these membranes. These data establish that SERCA2 in the RVD is modulated by Ca 2+ and CaM, possibly via CaMKII, in a process that results in stimulation of Ca 2+ pumping activity

  9. Determining sap sweetness in small sugar maple trees

    Science.gov (United States)

    Melvin R. Koelling

    1967-01-01

    Describes a technique based on the use of a hypodermic needle for determining sap-sugar concentrations in small trees. The technique is applicable to pot cultures in greenhouses and also, with the use of a movable shelter, to seedlings in nursery beds.

  10. Accounting Control Technology Using SAP: A Case-Based Approach

    Science.gov (United States)

    Ragan, Joseph; Puccio, Christopher; Talisesky, Brandon

    2014-01-01

    The Sarbanes-Oxley Act (SOX) revolutionized the accounting and audit industry. The use of preventative and process controls to evaluate the continuous audit process done via an SAP ERP ECC 6.0 system is key to compliance with SOX and managing costs. This paper can be used in a variety of ways to discuss issues associated with auditing and testing…

  11. SAP BusinessObjects Dashboards 4.1 cookbook

    CERN Document Server

    Lai, David

    2015-01-01

    If you are a developer with a good command and knowledge of creating dashboards, but are not yet an advanced user of SAP BusinessObjects Dashboards, then this is the perfect book for you. Prerequisites include a good working knowledge of Microsoft Excel as well as knowledge of basic dashboard practices.

  12. Application of Super Absorbent Polymers (SAP) in Concrete Construction State-of-the-Art Report Prepared by Technical Committee 225-SAP

    CERN Document Server

    Reinhardt, Hans-Wolf

    2012-01-01

    This is the state-of-the-art report prepared by the RILEM TC “Application of Super Absorbent Polymers (SAP) in concrete construction”. It gives a comprehensive overview of the properties of SAP, specific water absorption and desorption behaviour of SAP in fresh and hardening concrete, effects of the SAP addition on rheological properties of fresh concrete, changes of cement paste microstructure and mechanical properties of concrete. Furthermore, the key advantages of using SAP are described in detail: the ability of this material to act as an internal curing agent to mitigate autogenous shrinkage of high-performance concrete, the possibility to use SAP as an alternative to air-entrainment agents in order to increase the frost resistance of concrete, and finally, the benefit of steering the rheology of fresh cement-based materials. The final chapter describes the first existing and numerous prospective applications for this new concrete additive.

  13. Polyphenol-enriched berry extracts naturally modulate reactive proteins in model foods.

    Science.gov (United States)

    Lila, Mary Ann; Schneider, Maggie; Devlin, Amy; Plundrich, Nathalie; Laster, Scott; Foegeding, E Allen

    2017-12-13

    Healthy foods like polyphenol-rich berries and high quality edible proteins are in demand in today's functional food marketplace, but it can be difficult to formulate convenient food products with physiologically-relevant amounts of these ingredients and still maintain product quality. In part, this is because proteins can interact with other food ingredients and precipitate destabilizing events, which can disrupt food structure and diminish shelf life. Proteins in foods can also interact with human receptors to provoke adverse consequences such as allergies. When proteins and polyphenols were pre-aggregated into stable colloidal particles prior to use as ingredients, highly palatable food formulations (with reduced astringency of polyphenols) could be prepared, and the overall structural properties of food formulations were significantly improved. All of the nutritive and phytoactive benefits of the proteins and concentrated polyphenols remained highly bioavailable, but the protein molecules in the particle matrix did not self-aggregate into networks or react with other food ingredients. Both the drainage half-life (a marker of structural stability) and the yield stress (resistance to flow) of model foams made with the protein-polyphenol particles were increased in a dose-dependent manner. Of high significance in this complexation process, the reactive allergenic epitopes of certain proteins were effectively blunted by binding with polyphenols, attenuating the allergenicity of the food proteins. Porcine macrophages produced TNF-α proinflammatory cytokine when provoked with whey protein, but, this response was blocked completely when the cells were stimulated with particles that complexed whey protein with cinnamon-derived polyphenols. Cytokine and chemokine production characteristic of allergic reactions were blocked by the polyphenols, allowing for the potential creation of hypoallergenic protein-berry polyphenol enriched foods.

  14. Reverse micelles as a tool for probing solvent modulation of protein dynamics: Reverse micelle encapsulated hemoglobin☆

    OpenAIRE

    Roche, Camille J.; Dantsker, David; Heller, Elizabeth R.; Sabat, Joseph E.; Friedman, Joel M.

    2013-01-01

    Hydration waters impact protein dynamics. Dissecting the interplay between hydration waters and dynamics requires a protein that manifests a broad range of dynamics. Proteins in reverse micelles (RMs) have promise as tools to achieve this objective because the water content can be manipulated. Hemoglobin is an appropriate tool with which to probe hydration effects. We describe both a protocol for hemoglobin encapsulation in reverse micelles and a facile method using PEG and cosolvents to mani...

  15. Water relations in silver birch during springtime: How is sap pressurised?

    Science.gov (United States)

    Hölttä, T; Dominguez Carrasco, M D R; Salmon, Y; Aalto, J; Vanhatalo, A; Bäck, J; Lintunen, A

    2018-05-06

    Positive sap pressures are produced in the xylem of birch trees in boreal conditions during the time between the thawing of the soil and bud break. During this period, xylem embolisms accumulated during wintertime are refilled with water. The mechanism for xylem sap pressurization and its environmental drivers are not well known. We measured xylem sap flow, xylem sap pressure, xylem sap osmotic concentration, xylem and whole stem diameter changes, and stem and root non-structural carbohydrate concentrations, along with meteorological conditions at two sites in Finland during and after the sap pressurisation period. The diurnal dynamics of xylem sap pressure and sap flow during the sap pressurisation period varied, but were more often opposite to the diurnal pattern after bud burst, i.e. sap pressure increased and sap flow rate mostly decreased when temperature increased. Net conversion of soluble sugars to starch in the stem and roots occurred during the sap pressurisation period. Xylem sap osmotic pressure was small in comparison to total sap pressure, and it did not follow changes in environmental conditions or tree water relations. Based on these findings, we suggest that xylem sap pressurisation and embolism refilling occur gradually over a few weeks through water transfer from parenchyma cells to xylem vessels during daytime, and then the parenchyma are refilled mostly during nighttime by water uptake from soil. Possible drivers for water transfer from parenchyma cells to vessels are discussed. Also the functioning of thermal dissipation probes in conditions of changing stem water content is discussed. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  16. HuR/ELAVL1 RNA binding protein modulates interleukin-8 induction by muco-active ribotoxin deoxynivalenol

    International Nuclear Information System (INIS)

    Choi, Hye Jin; Yang, Hyun; Park, Seong Hwan; Moon, Yuseok

    2009-01-01

    HuR/Elav-like RNA binding protein 1 (ELAVL1) positively regulates mRNA stability of AU-rich elements (ARE)-containing transcript such as pro-inflammatory cytokines. Ribotoxic stresses can trigger the production of pro-inflammatory mediators by enhancing mRNA stability and the transcriptional activity. We investigated the effects of ribotoxin deoxynivalenol (DON) on HuR translocation and its involvement in the regulation of the pro-inflammatory interleukin-8 (IL-8) mRNA stability. Exposure to the muco-active DON induced nuclear export of both endogenous and exogenous HuR RNA binding protein in human intestinal epithelial cells. Moreover, the interference with HuR protein production suppressed ribotoxic DON-induced IL-8 secretion and its mRNA stability. Cytoplasmic HuR protein interacted with IL-8 mRNA and the complex stabilization was due to the presence of 3'-untranslated region of the transcript. Partly in terms of IL-8-modulating transcription factors, HuR protein was demonstrated to be positively and negatively associated with DON-induced early growth response gene 1 (EGR-1) and activating transcription factor 3 (ATF3), respectively. HuR was a critical mechanistic link between ribotoxic stress and the pro-inflammatory cytokine production, and may have a broader functional significance with regard to mucosal insults since ribotoxic stress responses are also produced upon interactions with the diverse environment of gut.

  17. Modulation of telomere binding proteins: a future area of research for skin protection and anti-aging target.

    Science.gov (United States)

    Imbert, Isabelle; Botto, Jean-Marie; Farra, Claude D; Domloge, Nouha

    2012-06-01

    Telomere shortening is considered as one of the main characteristics of cellular aging by limiting cellular division. Besides the fundamental advances through the discoveries of telomere and telomerase, which were recognized by a Nobel Prize, telomere protection remains an essential area of research. Recently, it was evidenced that studying the cross-talks between the proteins associated with telomere should provide a better understanding of the mechanistic basis for telomere-associated aging phenotypes. In this review, we discuss the current knowledge on telomere shortening, telomerase activity, and the essential role of telomere binding proteins in telomere stabilization and telomere-end protection. This review highlights the capacity of telomere binding proteins to limit cellular senescence and to maintain skin tissue homeostasis, which is of key importance to reduce accelerated tissue aging. Future studies addressing telomere protection and limitation of DNA damage response in human skin should include investigations on telomere binding proteins. As little is known about the expression of telomere binding proteins in human skin and modulation of their expression with aging, it remains an interesting field of skin research and a key area for future skin protection and anti-aging developments. © 2012 Wiley Periodicals, Inc.

  18. The Arabidopsis CROWDED NUCLEI genes regulate seed germination by modulating degradation of ABI5 protein.

    Science.gov (United States)

    Zhao, Wenming; Guan, Chunmei; Feng, Jian; Liang, Yan; Zhan, Ni; Zuo, Jianru; Ren, Bo

    2016-07-01

    In Arabidopsis, the phytohormone abscisic acid (ABA) plays a vital role in inhibiting seed germination and in post-germination seedling establishment. In the ABA signaling pathway, ABI5, a basic Leu zipper transcription factor, has important functions in the regulation of seed germination. ABI5 protein localizes in nuclear bodies, along with AFP, COP1, and SIZ1, and was degraded through the 26S proteasome pathway. However, the mechanisms of ABI5 nuclear body formation and ABI5 protein degradation remain obscure. In this study, we found that the Arabidopsis CROWDED NUCLEI (CRWN) proteins, predicted nuclear matrix proteins essential for maintenance of nuclear morphology, also participate in ABA-controlled seed germination by regulating the degradation of ABI5 protein. During seed germination, the crwn mutants are hypersensitive to ABA and have higher levels of ABI5 protein compared to wild type. Genetic analysis suggested that CRWNs act upstream of ABI5. The observation that CRWN3 colocalizes with ABI5 in nuclear bodies indicates that CRWNs might participate in ABI5 protein degradation in nuclear bodies. Moreover, we revealed that the extreme C-terminal of CRWN3 protein is necessary for its function in the response to ABA in germination. Our results suggested important roles of CRWNs in ABI5 nuclear body organization and ABI5 protein degradation during seed germination. © 2015 Institute of Botany, Chinese Academy of Sciences.

  19. Food-cooking processes modulate allergenic properties of hen's egg white proteins.

    Science.gov (United States)

    Liu, Xiaoyu; Feng, Bai-Sui; Kong, Xiaoli; Xu, Hong; Li, Xiumin; Yang, Ping-Chang; Liu, Zhigang

    2013-01-01

    Reducing the allergenicity of food allergens can suppress the clinical symptoms of food allergy. The objective of the present study was to investigate the effects of processing on the allergenic properties of hen's egg white proteins. Eggs were processed by traditional Chinese cooking, including steaming, water boiling, frying, spicing and tea boiling. The contents of processed egg protein were assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis; the allergenicity was evaluated by Western blotting, enzyme-linked immunosorbent assay and enzyme allergosorbent test inhibition. Circular dichroism spectrum analysis of four major egg allergens from various egg products was performed as well. A mouse model of food allergy was developed to test the allergenicity of processed egg protein in vivo. Protein degradation was significant following tea boiling and spiced-tea boiling. The total allergenic potential of water-boiled egg and fried egg was relatively higher than that of steamed egg, spiced egg and tea-boiled egg. Challenge with proteins from raw egg, water-boiled egg and fried egg induced skewed T-helper 2 pattern responses (Th2 responses) in the intestine of mice sensitized to egg proteins; however, when the mice sensitized to egg proteins were challenged with proteins from steamed egg, spiced egg and tea-boiled egg, respectively, only weak Th2 responses were induced in their intestine. Processing by steaming, spicing, or tea boiling can weaken the allergenicity of egg proteins. Copyright © 2012 S. Karger AG, Basel.

  20. Dengue Virus Non-structural Protein 1 Modulates Infectious Particle Production via Interaction with the Structural Proteins.

    Directory of Open Access Journals (Sweden)

    Pietro Scaturro

    Full Text Available Non-structural protein 1 (NS1 is one of the most enigmatic proteins of the Dengue virus (DENV, playing distinct functions in immune evasion, pathogenesis and viral replication. The recently reported crystal structure of DENV NS1 revealed its peculiar three-dimensional fold; however, detailed information on NS1 function at different steps of the viral replication cycle is still missing. By using the recently reported crystal structure, as well as amino acid sequence conservation, as a guide for a comprehensive site-directed mutagenesis study, we discovered that in addition to being essential for RNA replication, DENV NS1 is also critically required for the production of infectious virus particles. Taking advantage of a trans-complementation approach based on fully functional epitope-tagged NS1 variants, we identified previously unreported interactions between NS1 and the structural proteins Envelope (E and precursor Membrane (prM. Interestingly, coimmunoprecipitation revealed an additional association with capsid, arguing that NS1 interacts via the structural glycoproteins with DENV particles. Results obtained with mutations residing either in the NS1 Wing domain or in the β-ladder domain suggest that NS1 might have two distinct functions in the assembly of DENV particles. By using a trans-complementation approach with a C-terminally KDEL-tagged ER-resident NS1, we demonstrate that the secretion of NS1 is dispensable for both RNA replication and infectious particle production. In conclusion, our results provide an extensive genetic map of NS1 determinants essential for viral RNA replication and identify a novel role of NS1 in virion production that is mediated via interaction with the structural proteins. These studies extend the list of NS1 functions and argue for a central role in coordinating replication and assembly/release of infectious DENV particles.

  1. Novel Entropically Driven Conformation-specific Interactions with Tomm34 Protein Modulate Hsp70 Protein Folding and ATPase Activities

    Czech Academy of Sciences Publication Activity Database

    Durech, M.; Trčka, F.; Man, Petr; Blackburn, E.A.; Hernychová, L.; Dvořáková, P.; Coufalová, D.; Kavan, Daniel; Vojtěšek, B.; Muller, P.

    2016-01-01

    Roč. 15, č. 5 (2016), s. 1710-1727 ISSN 1535-9476 R&D Projects: GA MŠk(CZ) LO1509 EU Projects: Wellcome Trust(CZ) 01527/Z/13/Z Institutional support: RVO:61388971 Keywords : HEAT-SHOCK-PROTEIN * MOLECULAR CHAPERONE DNAK * SUBSTRATE-BINDING DOMAIN * INVASIVE BREAST - CANCER Subject RIV: CE - Biochemistry Impact factor: 6.540, year: 2016

  2. CHIPMUNK: A Virtual Synthesizable Small-Molecule Library for Medicinal Chemistry, Exploitable for Protein-Protein Interaction Modulators.

    Science.gov (United States)

    Humbeck, Lina; Weigang, Sebastian; Schäfer, Till; Mutzel, Petra; Koch, Oliver

    2018-03-20

    A common issue during drug design and development is the discovery of novel scaffolds for protein targets. On the one hand the chemical space of purchasable compounds is rather limited; on the other hand artificially generated molecules suffer from a grave lack of accessibility in practice. Therefore, we generated a novel virtual library of small molecules which are synthesizable from purchasable educts, called CHIPMUNK (CHemically feasible In silico Public Molecular UNiverse Knowledge base). Altogether, CHIPMUNK covers over 95 million compounds and encompasses regions of the chemical space that are not covered by existing databases. The coverage of CHIPMUNK exceeds the chemical space spanned by the Lipinski rule of five to foster the exploration of novel and difficult target classes. The analysis of the generated property space reveals that CHIPMUNK is well suited for the design of protein-protein interaction inhibitors (PPIIs). Furthermore, a recently developed structural clustering algorithm (StruClus) for big data was used to partition the sub-libraries into meaningful subsets and assist scientists to process the large amount of data. These clustered subsets also contain the target space based on ChEMBL data which was included during clustering. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Functional dependency between the logistics security system and the MySAP ERP in metallurgy

    Directory of Open Access Journals (Sweden)

    P. Ranitović

    2013-10-01

    Full Text Available MySAP ERP - Enterprise Resource Planning (system - solution which provides a whole set of functions for the business analytics, finance, human resources management, logistics and corporate services has developed from SAP R/3. It is one of the main products of the SAP AG German multinational company and as such, it is a very important element of the international industrial and technological security system. By defining the functional dependency between the security systems (logistics security systems and the IT (My SAP ERP systems in metallurgy, a concept for designing MY SAP ERP system in metallurgic industry is defined, based on the security aspects.

  4. Gene and process level modulation to overcome the bottlenecks of recombinant proteins expression in Pichia pastoris.

    Science.gov (United States)

    Prabhu, Ashish A; Boro, Bibari; Bharali, Biju; Chakraborty, Shuchishloka; Dasu, V Venkata

    2018-03-28

    Process development involving system metabolic engineering and bioprocess engineering has become one of the major thrust for the development of therapeutic proteins or enzymes. Pichia pastoris has emerged as a prominent host for the production of therapeutic protein or enzymes. Despite of producing high protein titers, various cellular and process level bottlenecks hinders the expression of recombinant proteins in P. pastoris. In the present review, we have summarized the recent developments in the expression of foreign proteins in P. pastoris. Further, we have discussed various cellular engineering strategies which include codon optimization, pathway engineering, signal peptide processing, development of protease deficient strain and glyco-engineered strains for the high yield protein secretion of recombinant protein. Bioprocess development of recombinant proteins in large scale bioreactor including medium optimization, optimum feeding strategy and co-substrate feeding in fed batch as well as continuous cultivation have been described. The recent advances in system and synthetic biology studies including metabolic flux analysis in understanding the phenotypic characteristics of recombinant Pichia and genome editing with CRISPR-CAS system have also been summarized. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Proteins modulation in human skeletal muscle in the early phase of adaptation to hypobaric hypoxia

    DEFF Research Database (Denmark)

    Vigano, A.; Ripamonti, M.; Palma, S. De

    2008-01-01

    High altitude hypoxia is a paraphysiological condition triggering redox status disturbances of cell organization leading, via oxidative stress, to proteins, lipids, and DNA damage. In man, skeletal muscle, after prolonged exposure to hypoxia, undergoes mass reduction and alterations at the cellul......, whereas the mammalian target of rapamycin (mTOR), a marker of protein synthesis, was reduced Udgivelsesdato: 2008/11...

  6. Endoplasmic reticulum stress and N-glycosylation modulate expression of WFS1 protein

    International Nuclear Information System (INIS)

    Yamaguchi, Suguru; Ishihara, Hisamitsu; Tamura, Akira; Yamada, Takahiro; Takahashi, Rui; Takei, Daisuke; Katagiri, Hideki; Oka, Yoshitomo

    2004-01-01

    Mutations of the WFS1 gene are responsible for two hereditary diseases, Wolfram syndrome and low frequency sensorineural hearing loss. The WFS1 protein is a glycoprotein located in the endoplasmic reticulum (ER) membrane but its function is poorly understood. Herein we show WFS1 mRNA and protein levels in pancreatic islets to be increased with ER-stress inducers, thapsigargin and dithiothreitol. Another ER-stress inducer, the N-glycosylation inhibitor tunicamycin, also raised WFS1 mRNA but not protein levels. Site-directed mutagenesis showed both Asn-663 and Asn-748 to be N-glycosylated in mouse WFS1 protein. The glycosylation-defective WFS1 protein, in which Asn-663 and Asn-748 had been substituted with aspartate, exhibited an increased protein turnover rate. Consistent with this, the WFS1 protein was more rapidly degraded in the presence of tunicamycin. These data indicate that ER-stress and N-glycosylation play important roles in WFS1 expression and stability, and also suggest regulatory roles for this protein in ER-stress induced cell death

  7. Regulating the ethylene response of a plant by modulation of F-box proteins

    Science.gov (United States)

    Guo, Hongwei; Ecker, Joseph R.

    2010-02-02

    The invention relates to transgenic plants having reduced sensitivity to ethylene as a result of having a recombinant nucleic acid encoding a F-box protein, and a method of producing a transgenic plant with reduced ethylene sensitivity by transforming the plant with a nucleic acid sequence encoding a F-box protein.

  8. Holocene evolution of the Tonle Sap Lake: valley network infill and rates of sedimentation in Cambodia's Great Lake

    Science.gov (United States)

    Best, J.; Darby, S. E.; Langdon, P. G.; Hackney, C. R.; Leyland, J.; Parsons, D. R.; Aalto, R. E.; Marti, M.

    2017-12-01

    Tonle Sap Lake, the largest freshwater lake in SE Asia (c. 120km long and 35 km wide), is a vital ecosystem that provides 40-60% of the protein for the population of Cambodia. The lake is fed by flow from the Mekong River that causes the lake rise in level by c. 8m during monsoonal and cyclone-related floods, with drainage of the lake following the monsoon. Hydropower dam construction on the Mekong River has raised concerns as to the fragility of the Tonle Sap habitat due to any changing water levels and sedimentation rates within the lake. This paper details results of sub-bottom profiling surveys of Tonle Sap Lake in October 2014 that detailed the stratigraphy of the lake and assessed rates of infill. An Innomar Parametric Echo Sounder (PES) was used to obtain c. 250 km of sub-bottom profiles, with penetration up to 15m below the lake bed at a vertical resolution of c. 0.20m. These PES profiles were linked to cores from the north of the lake and previous literature. The PES profiles reveal a network of valleys, likely LGM, with relief up to c. 15-20m, that have been infilled by a suite of Holocene sediments. The valley surface is picked out as a strong reflector throughout the lake, and displays a series of valleys that are up to c. 15m deep and commonly 50-200m wide, although some of the largest valleys are 1.2km in width. Modelling of channel network incision during LGM conditions generates landscapes consistent with our field observations. The Tonle Sap valley network is infilled by sediments that show firstly fluvial and/or subaerial slope sedimentation, and then by extensive, parallel-bedded, lacustrine sedimentation. Lastly, the top c. 1m of sedimentation is marked by a distinct basal erosional surface that can be traced over much of the Tonle Sap Lake, and that is overlain by a series of parallel PES reflections. This upper sediment layer is interpreted to represent sedimentation in the Tonle Sap lake due to sediment suspension settling but after a period

  9. Localization of a Region in the Fusion Protein of Avian Metapneumovirus That Modulates Cell-Cell Fusion

    Science.gov (United States)

    Wei, Yongwei; Feng, Kurtis; Yao, Xiangjie; Cai, Hui; Li, Junan; Mirza, Anne M.; Iorio, Ronald M.

    2012-01-01

    The genus Metapneumovirus within the subfamily Pneumovirinae of the family Paramyxoviridae includes two members, human metapneumovirus (hMPV) and avian metapneumovirus (aMPV), causing respiratory tract infections in humans and birds, respectively. Paramyxoviruses enter host cells by fusing the viral envelope with a host cell membrane. Membrane fusion of hMPV appears to be unique, in that fusion of some hMPV strains requires low pH. Here, we show that the fusion (F) proteins of aMPV promote fusion in the absence of the attachment protein and low pH is not required. Furthermore, there are notable differences in cell-cell fusion among aMPV subtypes. Trypsin was required for cell-cell fusion induced by subtype B but not subtypes A and C. The F protein of aMPV subtype A was highly fusogenic, whereas those from subtypes B and C were not. By construction and evaluation of chimeric F proteins composed of domains from the F proteins of subtypes A and B, we localized a region composed of amino acid residues 170 to 338 in the F protein that is responsible for the hyperfusogenic phenotype of the F from subtype A. Further mutagenesis analysis revealed that residues R295, G297, and K323 in this region collectively contributed to the hyperfusogenicity. Taken together, we have identified a region in the aMPV F protein that modulates the extent of membrane fusion. A model for fusion consistent with these data is presented. PMID:22915815

  10. An ultra-HTS process for the identification of small molecule modulators of orphan G-protein-coupled receptors.

    Science.gov (United States)

    Cacace, Angela; Banks, Martyn; Spicer, Timothy; Civoli, Francesca; Watson, John

    2003-09-01

    G-protein-coupled receptors (GPCRs) are the most successful target proteins for drug discovery research to date. More than 150 orphan GPCRs of potential therapeutic interest have been identified for which no activating ligands or biological functions are known. One of the greatest challenges in the pharmaceutical industry is to link these orphan GPCRs with human diseases. Highly automated parallel approaches that integrate ultra-high throughput and focused screening can be used to identify small molecule modulators of orphan GPCRs. These small molecules can then be employed as pharmacological tools to explore the function of orphan receptors in models of human disease. In this review, we describe methods that utilize powerful ultra-high-throughput screening technologies to identify surrogate ligands of orphan GPCRs.

  11. A Small Ras-like protein Ray/Rab1c modulates the p53-regulating activity of PRPK

    International Nuclear Information System (INIS)

    Abe, Yasuhito; Takeuchi, Takashi; Imai, Yoshinori; Murase, Ryuichi; Kamei, Yoshiaki; Fujibuchi, Taketsugu; Matsumoto, Suguru; Ueda, Norifumi; Ogasawara, Masahito; Shigemoto, Kazuhiro; Kito, Katsumi

    2006-01-01

    PRPK phosphorylates serine-15 residue of p53 and enhances transcriptional activity. PRPK possesses a bipartite nuclear localization signal and localizes in nucleus when over-expressed in cells. However, intrinsic PRPK localizes mainly in the cytosol in situ. While studying the mechanisms in the distribution of intrinsic PRPK, we identified a PRPK binding protein, an ubiquitously expressed Small Ras-like GTPase, Rab1c, also named Ray or Rab35. The over-expressed Ray was distributed in the nucleus, cytosol, and cell membrane. Both Ray wild type and GTP-restrictively binding mutant Ray-Q67L, but not guanine nucleotide unstable binding mutant Ray-N120I, partially distributed the over-expressed PRPK to the cytosol and also suppressed the PRPK-induced p53-transcriptional activity profoundly. A Small Ras-like GTPase protein Ray was thus indicated to modulate p53 transcriptional activity of PRPK

  12. Multiple sensory G proteins in the olfactory, gustatory and nociceptive neurons modulate longevity in Caenorhabditis elegans

    NARCIS (Netherlands)

    H. Lans (Hannes); G. Jansen (Gert)

    2007-01-01

    textabstractThe life span of the nematode Caenorhabditis elegans is under control of sensory signals detected by the amphid neurons. In these neurons, C. elegans expresses at least 13 Galpha subunits and a Ggamma subunit, which are involved in the transduction and modulation of sensory signals.

  13. Subauroral Polarization Streams (SAPS) Duration as Determined From Van Allen Probe Successive Electric Drift Measurements

    Science.gov (United States)

    Lejosne, Solène; Mozer, F. S.

    2017-09-01

    We examine a characteristic feature of the magnetosphere-ionosphere coupling, namely, the persistent and latitudinally narrow bands of rapid westward ion drifts called the subauroral polarization streams (SAPS). Despite countless works on SAPS, information relative to their durations is lacking. Here we report on the first statistical analysis of more than 200 near-equatorial SAPS observations based on more than 2 years of Van Allen Probe electric drift measurements. First, we present results relative to SAPS radial locations and amplitudes. Then, we introduce two different ways to estimate SAPS durations. In both cases, SAPS activity is estimated to last for about 9 h on average. However, our estimates for SAPS duration are limited either by the relatively long orbital periods of the spacecraft or by the relatively small number of observations involved. Fifty percent of the events fit within the time interval [0;18] hours.

  14. A diet containing whey protein, glutamine, and TGFbeta modulates gut protein metabolism during chemotherapy-induced mucositis in rats.

    Science.gov (United States)

    Boukhettala, Nabile; Ibrahim, Ayman; Claeyssens, Sophie; Faure, Magali; Le Pessot, Florence; Vuichoud, Jacques; Lavoinne, Alain; Breuillé, Denis; Déchelotte, Pierre; Coëffier, Moïse

    2010-08-01

    Mucositis, a common side effect of chemotherapy, is characterized by compromised digestive function, barrier integrity and immune competence. Our aim was to evaluate the impact of a specifically designed diet Clinutren Protect (CP), which contains whey proteins, TGFbeta-rich casein, and free glutamine, on mucositis in rats. Mucositis was induced by three consecutive injections (day 0, day 1, day 2) of methotrexate (2.5 mg/kg). Rats had free access to CP or placebo diets from days -7 to 9. In the placebo diet, whey proteins and TGFbeta-rich casein were replaced by TGFbeta-free casein and glutamine by alanine. Intestinal parameters were assessed at day 3 and 9. Values, expressed as mean +/- SEM, were compared using two-way ANOVA. At day 3, villus height was markedly decreased in the placebo (296 +/- 11 microm) and CP groups (360 +/- 10 microm) compared with controls (464 +/- 27 microm), but more markedly in the placebo as compared to CP group. The intestinal damage score was also reduced in the CP compared with the placebo group. Glutathione content increased in the CP compared with the placebo group (2.2 +/- 0.2 vs. 1.7 +/- 0.2 micromol/g tissue). Gut protein metabolism was more affected in the placebo than in the CP group. The fractional synthesis rate was decreased in the placebo group (93.8 +/- 4.9%/day) compared with controls (121.5 +/- 12.1, P < 0.05), but not in the CP group (106.0 +/- 13.1). In addition, at day 9, rats exhibited improved body weight and food intake recovery in the CP compared to the placebo group. Clinutren Protect feeding reduces intestinal injury in the acute phase of methotrexate-induced mucositis in rats and improves recovery.

  15. Nonstructural 3 Protein of Hepatitis C Virus Modulates the Tribbles Homolog 3/Akt Signaling Pathway for Persistent Viral Infection

    Science.gov (United States)

    Tran, Si C.; Pham, Tu M.; Nguyen, Lam N.; Park, Eun-Mee; Lim, Yun-Sook

    2016-01-01

    ABSTRACT Hepatitis C virus (HCV) infection often causes chronic hepatitis, liver cirrhosis, and ultimately hepatocellular carcinoma. However, the mechanisms underlying HCV-induced liver pathogenesis are still not fully understood. By transcriptome sequencing (RNA-Seq) analysis, we recently identified host genes that were significantly differentially expressed in cell culture-grown HCV (HCVcc)-infected cells. Of these, tribbles homolog 3 (TRIB3) was selected for further characterization. TRIB3 was initially identified as a binding partner of protein kinase B (also known as Akt). TRIB3 blocks the phosphorylation of Akt and induces apoptosis under endoplasmic reticulum (ER) stress conditions. HCV has been shown to enhance Akt phosphorylation for its own propagation. In the present study, we demonstrated that both mRNA and protein levels of TRIB3 were increased in the context of HCV replication. We further showed that promoter activity of TRIB3 was increased by HCV-induced ER stress. Silencing of TRIB3 resulted in increased RNA and protein levels of HCV, whereas overexpression of TRIB3 decreased HCV replication. By employing an HCV pseudoparticle entry assay, we further showed that TRIB3 was a negative host factor involved in HCV entry. Both in vitro binding and immunoprecipitation assays demonstrated that HCV NS3 specifically interacted with TRIB3. Consequently, the association of TRIB3 and Akt was disrupted by HCV NS3, and thus, TRIB3-Akt signaling was impaired in HCV-infected cells. Moreover, HCV modulated TRIB3 to promote extracellular signal-regulated kinase (ERK) phosphorylation, activator protein 1 (AP-1) activity, and cell migration. Collectively, these data indicate that HCV exploits the TRIB3-Akt signaling pathway to promote persistent viral infection and may contribute to HCV-mediated pathogenesis. IMPORTANCE TRIB3 is a pseudokinase protein that acts as an adaptor in signaling pathways for important cellular processes. So far, the functional involvement of

  16. Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease

    NARCIS (Netherlands)

    Lowe-Power, Tiffany M.; Hendrich, Connor G.; Roepenack-Lahaye, von Edda; Li, Bin; Wu, Dousheng; Mitra, Raka; Dalsing, Beth L.; Ricca, Patrizia; Naidoo, Jacinth; Cook, David; Jancewicz, Amy; Masson, Patrick; Thomma, Bart; Lahaye, Thomas; Michael, Anthony J.; Allen, Caitilyn

    2018-01-01

    Ralstonia solanacearum thrives in plant xylem vessels and causes bacterial wilt disease despite the low nutrient content of xylem sap. We found that R. solanacearum manipulates its host to increase nutrients in tomato xylem sap, enabling it to grow better in sap from infected plants than in sap from

  17. Modulation of GDP-fucose level for generating proteins with reduced rate of fucosylation (WO2010141855).

    Science.gov (United States)

    Taupin, Philippe

    2011-09-01

    The application (WO2010141855) is in the field of glycobiology, and involves the control of the rate of fucosylation of proteins by exogenous factors. It aims at controlling the rate of protein fucosylation with inhibitors (drugs or nucleic acid antagonists) of enzymes involved in the synthesis of GDP-fucose. Mammalian cell lines were cultured in the presence of inhibitors, for example, siRNA. The rates of GDP-fucose in cells and during protein fucosylation were characterized. The level of protein fucosylation decreases rapidly in response to a decrease in GDP-fucose level. The relationship between the rate of fucosylation of proteins and the level of GDP-fucose in a cell is non-linear. Reduction in the rate of protein fucosylation can be achieved with a minimal reduction of the level of GDP-fucose in cells. The paradigm may be used to synthesize proteins and antibodies, with a reduced rate of fucosylation. The application claims that the use of drugs or nucleic acid antagonists that inhibit the enzymes involved in GDP-fucose biosynthesis optimizes the level of GDP-fucose present in cells, and reduces the rate of fucosylation of glycoproteins.

  18. Identification and Characterization of a Novel Human Methyltransferase Modulating Hsp70 Protein Function through Lysine Methylation*

    Science.gov (United States)

    Jakobsson, Magnus E.; Moen, Anders; Bousset, Luc; Egge-Jacobsen, Wolfgang; Kernstock, Stefan; Melki, Ronald; Falnes, Pål Ø.

    2013-01-01

    Hsp70 proteins constitute an evolutionarily conserved protein family of ATP-dependent molecular chaperones involved in a wide range of biological processes. Mammalian Hsp70 proteins are subject to various post-translational modifications, including methylation, but for most of these, a functional role has not been attributed. In this study, we identified the methyltransferase METTL21A as the enzyme responsible for trimethylation of a conserved lysine residue found in several human Hsp70 (HSPA) proteins. This enzyme, denoted by us as HSPA lysine (K) methyltransferase (HSPA-KMT), was found to catalyze trimethylation of various Hsp70 family members both in vitro and in vivo, and the reaction was stimulated by ATP. Furthermore, we show that HSPA-KMT exclusively methylates 70-kDa proteins in mammalian protein extracts, demonstrating that it is a highly specific enzyme. Finally, we show that trimethylation of HSPA8 (Hsc70) has functional consequences, as it alters the affinity of the chaperone for both the monomeric and fibrillar forms of the Parkinson disease-associated protein α-synuclein. PMID:23921388

  19. Modulation of the maladaptive stress response to manage diseases of protein folding.

    Directory of Open Access Journals (Sweden)

    Daniela Martino Roth

    2014-11-01

    Full Text Available Diseases of protein folding arise because of the inability of an altered peptide sequence to properly engage protein homeostasis components that direct protein folding and function. To identify global principles of misfolding disease pathology we examined the impact of the local folding environment in alpha-1-antitrypsin deficiency (AATD, Niemann-Pick type C1 disease (NPC1, Alzheimer's disease (AD, and cystic fibrosis (CF. Using distinct models, including patient-derived cell lines and primary epithelium, mouse brain tissue, and Caenorhabditis elegans, we found that chronic expression of misfolded proteins not only triggers the sustained activation of the heat shock response (HSR pathway, but that this sustained activation is maladaptive. In diseased cells, maladaptation alters protein structure-function relationships, impacts protein folding in the cytosol, and further exacerbates the disease state. We show that down-regulation of this maladaptive stress response (MSR, through silencing of HSF1, the master regulator of the HSR, restores cellular protein folding and improves the disease phenotype. We propose that restoration of a more physiological proteostatic environment will strongly impact the management and progression of loss-of-function and gain-of-toxic-function phenotypes common in human disease.

  20. Novel Aggregation Properties of Candida albicans Secreted Aspartyl Proteinase Sap6 Mediate Virulence in Oral Candidiasis.

    Science.gov (United States)

    Kumar, Rohitashw; Saraswat, Darpan; Tati, Swetha; Edgerton, Mira

    2015-07-01

    Candida albicans, a commensal fungus of the oral microbiome, causes oral candidiasis in humans with localized or systemic immune deficiencies. Secreted aspartic proteinases (Saps) are a family of 10 related proteases and are virulence factors due to their proteolytic activity, as well as their roles in adherence and colonization of host tissues. We found that mice infected sublingually with C. albicans cells overexpressing Sap6 (SAP6 OE and a Δsap8 strain) had thicker fungal plaques and more severe oral infection, while infection with the Δsap6 strain was attenuated. These hypervirulent strains had highly aggregative colony structure in vitro and higher secreted proteinase activity; however, the levels of proteinase activity of C. albicans Saps did not uniformly match their abilities to damage cultured oral epithelial cells (SCC-15 cells). Hyphal induction in cells overexpressing Sap6 (SAP6 OE and Δsap8 cells) resulted in formation of large cell-cell aggregates. These aggregates could be produced in germinated wild-type cells by addition of native or heat-inactivated Sap6. Sap6 bound only to germinated cells and increased C. albicans adhesion to oral epithelial cells. The adhesion properties of Sap6 were lost upon deletion of its integrin-binding motif (RGD) and could be inhibited by addition of RGD peptide or anti-integrin antibodies. Thus, Sap6 (but not Sap5) has an alternative novel function in cell-cell aggregation, independent of its proteinase activity, to promote infection and virulence in oral candidiasis.

  1. Spatial and temporal variations in sap flux density in Japanese cedar (Cryptomeria japonica) trees, central Taiwan

    Science.gov (United States)

    Tseng, Han; Chiu, Chen-Wei; Wey, Tsong-Huei; Kume, Tomonori

    2013-04-01

    Sap flow measurement method is a technique widely used for measuring forest transpiration. However, variations in sap flow distribution can make accurately estimating individual tree-scale transpiration difficult. Significant spatial variations in sap flow across the sapwood within tree have been reported in many studies. In contrast, few studies have discussed azimuthal variations in sap flow, and even fewer have examined their seasonal change characteristics. This study was undertaken to clarify within-tree special and temporal variations in sap flow, and to propose an appropriate design for individual-tree scale transpiration estimates for Japanese cedar trees. The measurement was conducted in a Japanese cedar plantation located in Central Taiwan. Spatial distribution of sap flux density through the sapwood cross-section was measured using Granier's thermal dissipation technique. Sensors were installed at 1.3 m high on the east, west, north and south sides of the stem at 0-2 cm in 8 trees, and at 2-4 cm in the 6 larger trees. We found, in radial profile analysis, that sap flux densities measured at the depth of 2-4 cm were 50 % in average of those measured at depth of 0-2 cm. In azimuthal profile analysis, we found significant azimuthal variations in sap flux density. In one individual tree, the ratio of sap flux density on one aspect to another could be approximately 40-190 %, with no dependency on directions. Both radial and azimuthal profiles in most sample trees were fairly consistent throughout the measurement period. We concluded that radial and azimuthal variations in sap flow across sapwood might introduce significant errors in individual tree-scale transpiration estimations based on single point sap flow measurement, and seasonal change of within-tree spatial variations in sap flow could have insignificant impacts on accuracy of long-term individual tree-scale transpiration estimates. Keywords: transpiration, sap flow measurement, scaling up, sap flow

  2. The Orphan G Protein-coupled Receptor Gpr175 (Tpra40) Enhances Hedgehog Signaling by Modulating cAMP Levels.

    Science.gov (United States)

    Singh, Jaskirat; Wen, Xiaohui; Scales, Suzie J

    2015-12-04

    The Hedgehog (Hh) signaling pathway plays an essential role in vertebrate embryonic tissue patterning of many developing organs. Signaling occurs predominantly in primary cilia and is initiated by the entry of the G protein-coupled receptor (GPCR)-like protein Smoothened into cilia and culminates in gene transcription via the Gli family of transcription factors upon their nuclear entry. Here we identify an orphan GPCR, Gpr175 (also known as Tpra1 or Tpra40: transmembrane protein, adipocyte associated 1 or of 40 kDa), which also localizes to primary cilia upon Hh stimulation and positively regulates Hh signaling. Interaction experiments place Gpr175 at the level of PKA and upstream of the Gαi component of heterotrimeric G proteins, which itself localizes to cilia and can modulate Hh signaling. Gpr175 or Gαi1 depletion leads to increases in cellular cAMP levels and in Gli3 processing into its repressor form. Thus we propose that Gpr175 coupled to Gαi1 normally functions to inhibit the production of cAMP by adenylyl cyclase upon Hh stimulation, thus maximizing signaling by turning off PKA activity and hence Gli3 repressor formation. Taken together our data suggest that Gpr175 is a novel positive regulator of the Hh signaling pathway. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. The association of metabotropic glutamate receptor type 5 with the neuronal Ca2+-binding protein 2 modulates receptor function.

    Science.gov (United States)

    Canela, Laia; Fernández-Dueñas, Víctor; Albergaria, Catarina; Watanabe, Masahiko; Lluís, Carme; Mallol, Josefa; Canela, Enric I; Franco, Rafael; Luján, Rafael; Ciruela, Francisco

    2009-10-01

    Metabotropic glutamate (mGlu) receptors mediate in part the CNS effects of glutamate. These receptors interact with a large array of intracellular proteins in which the final role is to regulate receptor function. Here, using co-immunoprecipitation and pull-down experiments we showed a close and specific interaction between mGlu(5) receptor and NECAB2 in both transfected human embryonic kidney cells and rat hippocampus. Interestingly, in pull-down experiments increasing concentrations of calcium drastically reduced the ability of these two proteins to interact, suggesting that NECAB2 binds to mGlu(5) receptor in a calcium-regulated manner. Immunoelectron microscopy detection of NECAB2 and mGlu(5) receptor in the rat hippocampal formation indicated that both proteins are codistributed in the same subcellular compartment of pyramidal cells. In addition, the NECAB2/mGlu(5) receptor interaction regulated mGlu(5b)-mediated activation of both inositol phosphate accumulation and the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway. Overall, these findings indicate that NECAB2 by its physical interaction with mGlu(5b) receptor modulates receptor function.

  4. Structural Modulation of Phosducin by Phosphorylation and 14-3-3 Protein Binding

    Czech Academy of Sciences Publication Activity Database

    Řežábková, L.; Kacířová, M.; Šulc, Miroslav; Herman, P.; Večeř, J.; Štěpánek, M.; Obšilová, Veronika; Obšil, T.

    2012-01-01

    Roč. 103, č. 9 (2012), s. 1960-1969 ISSN 0006-3495 Institutional support: RVO:61388971 ; RVO:67985823 Keywords : phosducin * 14-3-3 protein * fluorescence Subject RIV: CE - Biochemistry Impact factor: 3.668, year: 2012

  5. Enterococcus faecium NCIMB 10415 Modulates Epithelial Integrity, Heat Shock Protein, and Proinflammatory Cytokine Response in Intestinal Cells

    Directory of Open Access Journals (Sweden)

    Shanti Klingspor

    2015-01-01

    Full Text Available Probiotics have shown positive effects on gastrointestinal diseases; they have barrier-modulating effects and change the inflammatory response towards pathogens in studies in vitro. The aim of this investigation has been to examine the response of intestinal epithelial cells to Enterococcus faecium NCIMB 10415 (E. faecium, a probiotic positively affecting diarrhea incidence in piglets, and two pathogenic Escherichia coli (E. coli strains, with specific focus on the probiotic modulation of the response to the pathogenic challenge. Porcine (IPEC-J2 and human (Caco-2 intestinal cells were incubated without bacteria (control, with E. faecium, with enteropathogenic (EPEC or enterotoxigenic E. coli (ETEC each alone or in combination with E. faecium. The ETEC strain decreased transepithelial resistance (TER and increased IL-8 mRNA and protein expression in both cell lines compared with control cells, an effect that could be prevented by pre- and coincubation with E. faecium. Similar effects were observed for the increased expression of heat shock protein 70 in Caco-2 cells. When the cells were challenged by the EPEC strain, no such pattern of changes could be observed. The reduced decrease in TER and the reduction of the proinflammatory and stress response of enterocytes following pathogenic challenge indicate the protective effect of the probiotic.

  6. Melatonin ameliorates oxidative stress, modulates death receptor pathway proteins, and protects the rat cerebrum against bisphenol-A-induced apoptosis.

    Science.gov (United States)

    El-Missiry, Mohamed A; Othman, Azza I; Al-Abdan, Monera A; El-Sayed, Aml A

    2014-12-15

    Epidemiological reports have indicated a correlation between the increasing of bisphenol-A (BPA) levels in the environment and the incidence of neurodegenerative diseases. In the present study, the protective effect of melatonin on oxidative stress and the death receptor apoptotic proteins in the cerebrum of the bisphenol-A-treated rats were examined. Adult male rats were orally administered melatonin (10mg/kg bw) concurrently with BPA (50mg/kg bw) 3 days a week for 6 weeks. BPA exposure resulted in significant elevations of oxidative stress, as evidenced by the increased malondialdehyde level and the decreased glutathione level and superoxide dismutase activity in the cerebrum. BPA caused an upregulation of p53 and CD95-Fas and activation of capsases-3 and 8, resulting in cerebral cell apoptosis. Melatonin significantly attenuated the BPA-evoked brain oxidative stress, modulated apoptotic-regulating proteins and protected against apoptosis. These data suggest that melatonin modulated important steps in the death receptor apoptotic pathway which likely related to its redox control properties. Melatonin is a promising pharmacological agent for preventing the potential neurotoxicity of BPA following occupational or environmental exposures. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Epididymosomes: transfer of fertility-modulating proteins to the sperm surface.

    Science.gov (United States)

    Martin-DeLeon, Patricia A

    2015-01-01

    A variety of glycosylphosphatidylinositol (GPI)-linked proteins are acquired on spermatozoa from epididymal luminal fluids (ELF) during sperm maturation. These proteins serve roles in immunoprotection and in key steps of fertilization such as capacitation, acrosomal exocytosis and sperm-egg interactions. Their acquisition on sperm cells is mediated both by membrane vesicles (epididymosomes, EP) which were first reported to dock on the sperm surface, and by lipid carriers which facilitate the transfer of proteins associated with the membrane-free fraction of ELF. While the nonvesicular fraction is more efficient, both pathways are dependent on hydrophobic interactions between the GPI-anchor and the external lipid layer of the sperm surface. More recently proteomic and hypothesis-driven studies have shown that EP from several mammals carry transmembrane (TM) proteins, including plasma membrane Ca 2 + -ATPase 4 (PMCA4). Synthesized in the testis, PMCA4 is an essential protein and the major Ca 2 + efflux pump in murine spermatozoa. Delivery of PMCA4 to spermatozoa from bovine and mouse EP during epididymal maturation and in vitro suggests that the docking of EP on the sperm surface precedes fusion, and experimental evidence supports a fusogenic mechanism for TM proteins. Fusion is facilitated by CD9, which generates fusion-competent sites on membranes. On the basis of knowledge of PMCA4's interacting partners a number of TM and membrane-associated proteins have been identified or are predicted to be present, in the epididymosomal cargo deliverable to spermatozoa. These Ca 2 + -dependent proteins, undetected in proteomic studies, play essential roles in sperm motility and fertility, and their detection highlights the usefulness of the hypothesis-driven approach.

  8. Epididymosomes: transfer of fertility-modulating proteins to the sperm surface

    Directory of Open Access Journals (Sweden)

    Patricia A Martin-DeLeon

    2015-01-01

    Full Text Available A variety of glycosylphosphatidylinositol (GPI-linked proteins are acquired on spermatozoa from epididymal luminal fluids (ELF during sperm maturation. These proteins serve roles in immunoprotection and in key steps of fertilization such as capacitation, acrosomal exocytosis and sperm-egg interactions. Their acquisition on sperm cells is mediated both by membrane vesicles (epididymosomes, EP which were first reported to dock on the sperm surface, and by lipid carriers which facilitate the transfer of proteins associated with the membrane-free fraction of ELF. While the nonvesicular fraction is more efficient, both pathways are dependent on hydrophobic interactions between the GPI-anchor and the external lipid layer of the sperm surface. More recently proteomic and hypothesis-driven studies have shown that EP from several mammals carry transmembrane (TM proteins, including plasma membrane Ca 2 + -ATPase 4 (PMCA4. Synthesized in the testis, PMCA4 is an essential protein and the major Ca 2 + efflux pump in murine spermatozoa. Delivery of PMCA4 to spermatozoa from bovine and mouse EP during epididymal maturation and in vitro suggests that the docking of EP on the sperm surface precedes fusion, and experimental evidence supports a fusogenic mechanism for TM proteins. Fusion is facilitated by CD9, which generates fusion-competent sites on membranes. On the basis of knowledge of PMCA4′s interacting partners a number of TM and membrane-associated proteins have been identified or are predicted to be present, in the epididymosomal cargo deliverable to spermatozoa. These Ca 2 + -dependent proteins, undetected in proteomic studies, play essential roles in sperm motility and fertility, and their detection highlights the usefulness of the hypothesis-driven approach.

  9. Epididymosomes: transfer of fertility-modulating proteins to the sperm surface

    OpenAIRE

    Patricia A Martin-DeLeon

    2015-01-01

    A variety of glycosylphosphatidylinositol (GPI)-linked proteins are acquired on spermatozoa from epididymal luminal fluids (ELF) during sperm maturation. These proteins serve roles in immunoprotection and in key steps of fertilization such as capacitation, acrosomal exocytosis and sperm-egg interactions. Their acquisition on sperm cells is mediated both by membrane vesicles (epididymosomes, EP) which were first reported to dock on the sperm surface, and by lipid carriers which facilitate the ...

  10. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    Science.gov (United States)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  11. Effect of the protein corona on nanoparticles for modulating cytotoxicity and immunotoxicity

    Directory of Open Access Journals (Sweden)

    Lee YK

    2014-12-01

    Full Text Available Yeon Kyung Lee,1,* Eun-Ju Choi,2,* Thomas J Webster,3 Sang-Hyun Kim,4 Dongwoo Khang1 1Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea; 2Division of Sport Science, College of Science and Technology, Konkuk University, Chungju, South Korea; 3Department of Chemical Engineering and Program in Bioengineering, Northeastern University, Boston, MA, USA; 4Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea *These authors contributed equally to this work Abstract: Although the cytotoxicity of nanoparticles (NPs is greatly influenced by their interactions with blood proteins, toxic effects resulting from blood interactions are often ignored in the development and use of nanostructured biomaterials for in vivo applications. Protein coronas created during the initial reaction with NPs can determine the subsequent immunological cascade, and protein coronas formed on NPs can either stimulate or mitigate the immune response. Along these lines, the understanding of NP-protein corona formation in terms of physiochemical surface properties of the NPs and NP interactions with the immune system components in blood is an essential step for evaluating NP toxicity for in vivo therapeutics. This article reviews the most recent developments in NP-based protein coronas through the modification of NP surface properties and discusses the associated immune responses. Keywords: nanostructured biomaterials, blood response, cytotoxicity, immunotoxicity, protein corona

  12. Sinup, a novel Siaz-interacting nuclear protein, modulates neural plate formation in the zebrafish embryos

    International Nuclear Information System (INIS)

    Ro, Hyunju; Won, Minho; Lee, Su-Ui; Kim, Kyoon E.; Huh, Tae-Lin; Kim, Cheol-Hee; Rhee, Myungchull

    2005-01-01

    Siah, the vertebrate homologue of the Drosophila seven in absentia (sina) gene, is well conserved from Drosophila to mammal and involved in ubiquitination and proteasome-dependent degradation of various target proteins. To identify cellular proteins interacting with Siah, we screened a zebrafish cDNA library with zebrafish Siah (Siaz) as bait in a yeast two-hybrid assay. We identified a cDNA encoding a novel protein composed of 145 amino acids and termed it as Sinup (Siaz-interacting-nuclear-protein). Sinup is a novel nuclear protein that binds to the highly conserved C-terminal protein-interacting domain of Siaz both in vivo and in vitro. During development, sinup transcripts are abundant from the one-cell stage to the early blastula and then markedly diminished, suggesting sinup largely exists as maternal transcripts. sinup overexpression induced lateral expansion of the neural plate and in consequence caused ectopic expression of otx-2 and hoxb1b during the late gastrula stage. In addition, the lateral/paraxial expression of wnt8 at the onset of gastrulation is suppressed by the forced expression of sinup while the expression levels of various dorso-ventral markers are unaffected. In contrast, interfering with sinup functions using sinup morpholino oligonucleotides gradually diminished the anterior neuroectoderm from the posterior region, and resulted in compete loss of hindbrain at the 3-somites stage. Our report suggests that sinup expression should be tightly regulated during early embryonic development for the proper neural plate formation

  13. Structural Basis for Prereceptor Modulation of Plant Hormones by GH3 Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Westfall, Corey S.; Zubieta, Chloe; Herrmann, Jonathan; Kapp, Ulrike; Nanao, Max H.; Jez, Joseph M. (WU); (EMBL); (ESRF)

    2013-04-08

    Acyl acid amido synthetases of the GH3 family act as critical prereceptor modulators of plant hormone action; however, the molecular basis for their hormone selectivity is unclear. Here, we report the crystal structures of benzoate-specific Arabidopsis thaliana AtGH3.12/PBS3 and jasmonic acid-specific AtGH3.11/JAR1. These structures, combined with biochemical analysis, define features for the conjugation of amino acids to diverse acyl acid substrates and highlight the importance of conformational changes in the carboxyl-terminal domain for catalysis. We also identify residues forming the acyl acid binding site across the GH3 family and residues critical for amino acid recognition. Our results demonstrate how a highly adaptable three-dimensional scaffold is used for the evolution of promiscuous activity across an enzyme family for modulation of plant signaling molecules.

  14. Complex interplay between the P-glycoprotein multidrug efflux pump and the membrane: its role in modulating protein function

    Directory of Open Access Journals (Sweden)

    Frances Jane Sharom

    2014-03-01

    Full Text Available Multidrug resistance in cancer is linked to expression of the P-glycoprotein multidrug transporter (Pgp, ABCB1, which exports many structurally diverse compounds from cells. Substrates first partition into the bilayer and then interact with a large flexible binding pocket within the transporter’s transmembrane regions. Pgp has been described as a hydrophobic vacuum cleaner or an outwardly-directed drug/lipid flippase. Recent X-ray crystal structures have shed some light on the nature of the drug-binding pocket and suggested routes by which substrates can enter it from the membrane. Detergents have profound effects on Pgp function, and several appear to be substrates. Biochemical and biophysical studies in vitro, some using purified reconstituted protein, have explored the effects of the membrane environment. They have demonstrated that Pgp is involved in a complex relationship with its lipid environment, which modulates the behaviour of its substrates, as well as various functions of the protein, including ATP hydrolysis, drug binding and drug transport. Membrane lipid composition and fluidity, phospholipid headgroup and acyl chain length all influence Pgp function. Recent studies focusing on thermodynamics and kinetics have revealed some important principles governing Pgp-lipid and substrate-lipid interactions, and how these affect drug binding and transport. In some cells, Pgp is associated with cholesterol-rich microdomains which may modulate its functions. The relationship between Pgp and cholesterol remains an open question; however it clearly affects several aspects of its function in addition to substrate-membrane partitioning. The action of Pgp modulators appears to depend on their membrane permeability, and membrane fluidizers and surfactants reverse drug resistance, likely via an indirect mechanism. A detailed understanding of how the membrane affects Pgp substrates and Pgp’s catalytic cycle may lead to new strategies to combat

  15. Module structure of interphotoreceptor retinoid-binding protein (IRBP may provide bases for its complex role in the visual cycle – structure/function study of Xenopus IRBP

    Directory of Open Access Journals (Sweden)

    Ghosh Debashis

    2007-08-01

    Full Text Available Abstract Background Interphotoreceptor retinoid-binding protein's (IRBP remarkable module structure may be critical to its role in mediating the transport of all-trans and 11-cis retinol, and 11-cis retinal between rods, cones, RPE and Müller cells during the visual cycle. We isolated cDNAs for Xenopus IRBP, and expressed and purified its individual modules, module combinations, and the full-length polypeptide. Binding of all-trans retinol, 11-cis retinal and 9-(9-anthroyloxy stearic acid were characterized by fluorescence spectroscopy monitoring ligand-fluorescence enhancement, quenching of endogenous protein fluorescence, and energy transfer. Finally, the X-ray crystal structure of module-2 was used to predict the location of the ligand-binding sites, and compare their structures among modules using homology modeling. Results The full-length Xenopus IRBP cDNA codes for a polypeptide of 1,197 amino acid residues beginning with a signal peptide followed by four homologous modules each ~300 amino acid residues in length. Modules 1 and 3 are more closely related to each other than either is to modules 2 and 4. Modules 1 and 4 are most similar to the N- and C-terminal modules of the two module IRBP of teleosts. Our data are consistent with the model that vertebrate IRBPs arose through two genetic duplication events, but that the middle two modules were lost during the evolution of the ray finned fish. The sequence of the expressed full-length IRBP was confirmed by liquid chromatography-tandem mass spectrometry. The recombinant full-length Xenopus IRBP bound all-trans retinol and 11-cis retinaldehyde at 3 to 4 sites with Kd's of 0.2 to 0.3 μM, and was active in protecting all-trans retinol from degradation. Module 2 showed selectivity for all-trans retinol over 11-cis retinaldehyde. The binding data are correlated to the results of docking of all-trans-retinol to the crystal structure of Xenopus module 2 suggesting two ligand-binding sites

  16. Hepatitis C Virus Core Protein Modulates Endoglin (CD105) Signaling Pathway for Liver Pathogenesis.

    Science.gov (United States)

    Kwon, Young-Chan; Sasaki, Reina; Meyer, Keith; Ray, Ranjit

    2017-11-01

    Endoglin is part of the TGF-β receptor complex and has a crucial role in fibrogenesis and angiogenesis. It is also an important protein for tumor growth, survival, and cancer cell metastasis. In a previous study, we have shown that hepatitis C virus (HCV) infection induces epithelial-mesenchymal transition (EMT) state and cancer stem-like cell (CSC) properties in human hepatocytes. Our array data suggested that endoglin (CD105) mRNA is significantly upregulated in HCV-associated CSCs. In this study, we have observed increased endoglin expression on the cell surface of an HCV core-expressing hepatocellular carcinoma (HepG2) cell line or immortalized human hepatocytes (IHH) and activation of its downstream signaling molecules. The status of phospho-SMAD1/5 and the expression of inhibitor of DNA binding protein 1 (ID1) were upregulated in HCV-infected cells or viral core gene-transfected cells. Additionally, we observed upregulation of endoglin/ID1 mRNA expression in chronic HCV patient liver biopsy samples. CSC generation by HCV core protein was dependent on the endoglin signaling pathway using activin receptor-like kinase 1 (ALK1) Fc blocking peptide and endoglin small interfering RNA (siRNA). Further, follow-up from in vitro analysis suggested that the antiapoptosis Bcl2 protein, proliferation-related cyclin D1 protein, and CSC-associated Hes1, Notch1, Nanog, and Sox2 proteins are enhanced during infection or ectopic expression of HCV core protein. IMPORTANCE Endoglin plays a crucial role in fibrogenesis and angiogenesis and is an important protein for tumor growth, survival, and cancer cell metastasis. Endoglin enhances ALK1-SMAD1/5 signaling in different cell types, leading to increased proliferation and migration responses. We have observed endoglin expression on the HCV core-expressing cell surface of human hepatocyte origin and activation of phospho-SMAD1/5 and ID1 downstream signaling molecules. ID1 protein plays a role in CSC properties, and we found that

  17. Growth-Phase-Specific Modulation of Cell Morphology and Gene Expression by an Archaeal Histone Protein.

    Science.gov (United States)

    Dulmage, Keely A; Todor, Horia; Schmid, Amy K

    2015-09-08

    In all three domains of life, organisms use nonspecific DNA-binding proteins to compact and organize the genome as well as to regulate transcription on a global scale. Histone is the primary eukaryotic nucleoprotein, and its evolutionary roots can be traced to the archaea. However, not all archaea use this protein as the primary DNA-packaging component, raising questions regarding the role of histones in archaeal chromatin function. Here, quantitative phenotyping, transcriptomic, and proteomic assays were performed on deletion and overexpression mutants of the sole histone protein of the hypersaline-adapted haloarchaeal model organism Halobacterium salinarum. This protein is highly conserved among all sequenced haloarchaeal species and maintains hallmark residues required for eukaryotic histone functions. Surprisingly, despite this conservation at the sequence level, unlike in other archaea or eukaryotes, H. salinarum histone is required to regulate cell shape but is not necessary for survival. Genome-wide expression changes in histone deletion strains were global, significant but subtle in terms of fold change, bidirectional, and growth phase dependent. Mass spectrometric proteomic identification of proteins from chromatin enrichments yielded levels of histone and putative nucleoid-associated proteins similar to those of transcription factors, consistent with an open and transcriptionally active genome. Taken together, these data suggest that histone in H. salinarum plays a minor role in DNA compaction but important roles in growth-phase-dependent gene expression and regulation of cell shape. Histone function in haloarchaea more closely resembles a regulator of gene expression than a chromatin-organizing protein like canonical eukaryotic histone. Histones comprise the major protein component of eukaryotic chromatin and are required for both genome packaging and global regulation of expression. The current paradigm maintains that archaea whose genes encode

  18. Membrane Stored Curvature Elastic Stress Modulates Recruitment of Maintenance Proteins PspA and Vipp1.

    Science.gov (United States)

    McDonald, Christopher; Jovanovic, Goran; Ces, Oscar; Buck, Martin

    2015-09-01

    Phage shock protein A (PspA), which is responsible for maintaining inner membrane integrity under stress in enterobacteria, and vesicle-inducting protein in plastids 1 (Vipp1), which functions for membrane maintenance and thylakoid biogenesis in cyanobacteria and plants, are similar peripheral membrane-binding proteins. Their homologous N-terminal amphipathic helices are required for membrane binding; however, the membrane features recognized and required for expressing their functionalities have remained largely uncharacterized. Rigorously controlled, in vitro methodologies with lipid vesicles and purified proteins were used in this study and provided the first biochemical and biophysical characterizations of membrane binding by PspA and Vipp1. Both proteins are found to sense stored curvature elastic (SCE) stress and anionic lipids within the membrane. PspA has an enhanced sensitivity for SCE stress and a higher affinity for the membrane than Vipp1. These variations in binding may be crucial for some of the proteins' differing roles in vivo. Assays probing the transcriptional regulatory function of PspA in the presence of vesicles showed that a relief of transcription inhibition occurs in an SCE stress-specific manner. This in vitro recapitulation of membrane stress-dependent transcription control suggests that the Psp response may be mounted in vivo when a cell's inner membrane experiences increased SCE stress. All cell types maintain the integrity of their membrane systems. One widely distributed membrane stress response system in bacteria is the phage shock protein (Psp) system. The central component, peripheral membrane protein PspA, which mitigates inner membrane stress in bacteria, has a counterpart, Vipp1, which functions for membrane maintenance and thylakoid biogenesis in plants and photosynthetic bacteria. Membrane association of both these proteins is accepted as playing a pivotal role in their functions. Here we show that direct membrane binding by

  19. The Unfolded Protein Response in Homeostasis and Modulation of Mammalian Immune Cells.

    Science.gov (United States)

    Martins, Ana Sofia; Alves, Inês; Helguero, Luisa; Domingues, Maria Rosário; Neves, Bruno Miguel

    2016-11-01

    The endoplasmic reticulum (ER) plays important roles in eukaryotic protein folding and lipid biosynthesis. Several exogenous and endogenous cellular sources of stress can perturb ER homeostasis leading to the accumulation of unfolded proteins in the lumen. Unfolded protein accumulation triggers a signal-transduction cascade known as the unfolded protein response (UPR), an adaptive mechanism which aims to protect cells from protein aggregates and to restore ER functions. Further to this protective mechanism, in immune cells, UPR molecular effectors have been shown to participate in a wide range of biological processes such as cell differentiation, survival and immunoglobulin and cytokine production. Recent findings also highlight the involvement of the UPR machinery in the maturational program and antigen presentation capacities of dendritic cells. UPR is therefore a key element in immune system homeostasis with direct implications on both adaptive and innate immune responses. The present review summarizes the knowledge on the emerging roles of UPR signaling cascades in mammalian immune cells as well as the consequences of their dysregulation in relation to the pathogenesis of several diseases.

  20. Resveratrol Modulation of Protein Expression in parkin-Mutant Human Skin Fibroblasts: A Proteomic Approach

    Directory of Open Access Journals (Sweden)

    Daniele Vergara

    2017-01-01

    Full Text Available In this study, we investigated by two-dimensional gel electrophoresis (2-DE and mass spectrometry (MS analysis the effects of resveratrol treatment on skin primary fibroblasts from a healthy subject and from a parkin-mutant early onset Parkinson’s disease patient. Parkin, an E3 ubiquitin ligase, is the most frequently mutated gene in hereditary Parkinson’s disease. Functional alteration of parkin leads to impairment of the ubiquitin-proteasome system, resulting in the accumulation of misfolded or aggregated proteins accountable for the neurodegenerative process. The identification of proteins differentially expressed revealed that resveratrol treatment can act on deregulated specific biological process and molecular function such as cellular redox balance and protein homeostasis. In particular, resveratrol was highly effective at restoring the heat-shock protein network and the protein degradation systems. Moreover, resveratrol treatment led to a significant increase in GSH level, reduction of GSSG/GSH ratio, and decrease of reduced free thiol content in patient cells compared to normal fibroblasts. Thus, our findings provide an experimental evidence of the beneficial effects by which resveratrol could contribute to preserve the cellular homeostasis in parkin-mutant fibroblasts.

  1. Hydroxyapatite coating on the titanium substrate modulated by a recombinant collagen-like protein

    International Nuclear Information System (INIS)

    Pan Mingli; Kong Xiangdong; Cai Yurong; Yao Juming

    2011-01-01

    Research highlights: → Hydroxyapatite was deposited on alkali-heat treated Ti substrate by immersing in 1.5 x SBF solution containing the recombinant collagen-like protein. → The recombinant collagen-like protein accelerated the preferential nucleation and growth of hydroxyapatite along c axis on the Ti substrate. → Hydroxyapatite-collagen composite on the Ti substrate promoted the attachment, subsequently proliferation and differentiation of MG-63 cells. - Abstract: Plenty of techniques have been developed to modify the surface character of titanium (Ti) and its alloys in order to realize their biological bond to natural bone. In this work, a biomimetic process was employed to form a hydroxyapatite (HAp) coating on the alkali-heat treated Ti substrate in 1.5 times simulated body fluid (1.5 x SBF) with the addition of a recombinant collagen-like protein. The coating was characterized using SEM-EDX, FESEM, and XRD. Results showed that the recombinant collagen-like protein could accelerate the preferential nucleation and directional growth along c axis of HAp on the pretreated Ti substrates. The investigation of in vitro cell cultivation showed that the existence of recombinant collagen-like protein in coating could improve the initial cell adhesion, proliferation and differentiation of MG-63 cells, which implied the materials possessed excellent biocompatibility and had a wide potential in biomedical application.

  2. Resveratrol Modulation of Protein Expression in parkin-Mutant Human Skin Fibroblasts: A Proteomic Approach

    Science.gov (United States)

    Gaballo, Antonio; Signorile, Anna; Tanzarella, Paola; Pacelli, Consiglia; Di Paola, Marco

    2017-01-01

    In this study, we investigated by two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) analysis the effects of resveratrol treatment on skin primary fibroblasts from a healthy subject and from a parkin-mutant early onset Parkinson's disease patient. Parkin, an E3 ubiquitin ligase, is the most frequently mutated gene in hereditary Parkinson's disease. Functional alteration of parkin leads to impairment of the ubiquitin-proteasome system, resulting in the accumulation of misfolded or aggregated proteins accountable for the neurodegenerative process. The identification of proteins differentially expressed revealed that resveratrol treatment can act on deregulated specific biological process and molecular function such as cellular redox balance and protein homeostasis. In particular, resveratrol was highly effective at restoring the heat-shock protein network and the protein degradation systems. Moreover, resveratrol treatment led to a significant increase in GSH level, reduction of GSSG/GSH ratio, and decrease of reduced free thiol content in patient cells compared to normal fibroblasts. Thus, our findings provide an experimental evidence of the beneficial effects by which resveratrol could contribute to preserve the cellular homeostasis in parkin-mutant fibroblasts. PMID:29138676

  3. The quaternary structure of the recombinant bovine odorant-binding protein is modulated by chemical denaturants.

    Directory of Open Access Journals (Sweden)

    Olga V Stepanenko

    Full Text Available A large group of odorant-binding proteins (OBPs has attracted great scientific interest as promising building blocks in constructing optical biosensors for dangerous substances, such as toxic and explosive molecules. Native tissue-extracted bovine OBP (bOBP has a unique dimer folding pattern that involves crossing the α-helical domain in each monomer over the other monomer's β-barrel. In contrast, recombinant bOBP maintaining the high level of stability inherent to native tissue bOBP is produced in a stable native-like state with a decreased tendency for dimerization and is a mixture of monomers and dimers in a buffered solution. This work is focused on the study of the quaternary structure and the folding-unfolding processes of the recombinant bOBP in the absence and in the presence of guanidine hydrochloride (GdnHCl. Our results show that the recombinant bOBP native dimer is only formed at elevated GdnHCl concentrations (1.5 M. This process requires re-organizing the protein structure by progressing through the formation of an intermediate state. The bOBP dimerization process appears to be irreversible and it occurs before the protein unfolds. Though the observed structural changes for recombinant bOBP at pre-denaturing GdnHCl concentrations show a local character and the overall protein structure is maintained, such changes should be considered where the protein is used as a sensitive element in a biosensor system.

  4. A peptide export-import control circuit modulating bacterial development regulates protein phosphatases of the phosphorelay.

    Science.gov (United States)

    Perego, M

    1997-08-05

    The phosphorelay signal transduction system activates developmental transcription in sporulation of Bacillus subtilis by phosphorylation of aspartyl residues of the Spo0F and Spo0A response regulators. The phosphorylation level of these response regulators is determined by the opposing activities of protein kinases and protein aspartate phosphatases that interpret positive and negative signals for development in a signal integration circuit. The RapA protein aspartate phosphatase of the phosphorelay is regulated by a peptide that directly inhibits its activity. This peptide is proteolytically processed from an inactive pre-inhibitor protein encoded in the phrA gene. The pre-inhibitor is cleaved by the protein export apparatus to a putative pro-inhibitor that is further processed to the active inhibitor peptide and internalized by the oligopeptide permease. This export-import circuit is postulated to be a mechanism for timing phosphatase activity where the processing enzymes regulate the rate of formation of the active inhibitor. The processing events may, in turn, be controlled by a regulatory hierarchy. Chromosome sequencing has revealed several other phosphatase-prepeptide gene pairs in B. subtilis, suggesting that the use of this mechanism may be widespread in signal transduction.

  5. Hydroxyapatite coating on the titanium substrate modulated by a recombinant collagen-like protein

    Energy Technology Data Exchange (ETDEWEB)

    Pan Mingli [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Kong Xiangdong [College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Cai Yurong [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Yao Juming, E-mail: yaoj@zstu.edu.cn [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2011-04-15

    Research highlights: {yields} Hydroxyapatite was deposited on alkali-heat treated Ti substrate by immersing in 1.5 x SBF solution containing the recombinant collagen-like protein. {yields} The recombinant collagen-like protein accelerated the preferential nucleation and growth of hydroxyapatite along c axis on the Ti substrate. {yields} Hydroxyapatite-collagen composite on the Ti substrate promoted the attachment, subsequently proliferation and differentiation of MG-63 cells. - Abstract: Plenty of techniques have been developed to modify the surface character of titanium (Ti) and its alloys in order to realize their biological bond to natural bone. In this work, a biomimetic process was employed to form a hydroxyapatite (HAp) coating on the alkali-heat treated Ti substrate in 1.5 times simulated body fluid (1.5 x SBF) with the addition of a recombinant collagen-like protein. The coating was characterized using SEM-EDX, FESEM, and XRD. Results showed that the recombinant collagen-like protein could accelerate the preferential nucleation and directional growth along c axis of HAp on the pretreated Ti substrates. The investigation of in vitro cell cultivation showed that the existence of recombinant collagen-like protein in coating could improve the initial cell adhesion, proliferation and differentiation of MG-63 cells, which implied the materials possessed excellent biocompatibility and had a wide potential in biomedical application.

  6. Sap flow measurements combining sap-flux density radial profiles with punctual sap-flux density measurements in oak trees (Quercus ilex and Quercus pyrenaica) - water-use implications in a water-limited savanna-

    Science.gov (United States)

    Reyes, J. Leonardo; Lubczynski1, Maciek W.

    2010-05-01

    Sap flow measurement is a key aspect for understanding how plants use water and their impacts on the ecosystems. A variety of sensors have been developed to measure sap flow, each one with its unique characteristics. When the aim of a research is to have accurate tree water use calculations, with high temporal and spatial resolution (i.e. scaled), a sensor with high accuracy, high measurement efficiency, low signal-to-noise ratio and low price is ideal, but such has not been developed yet. Granier's thermal dissipation probes (TDP) have been widely used in many studies and various environmental conditions because of its simplicity, reliability, efficiency and low cost. However, it has two major flaws when is used in semi-arid environments and broad-stem tree species: it is often affected by high natural thermal gradients (NTG), which distorts the measurements, and it cannot measure the radial variability of sap-flux density in trees with sapwood thicker than two centimeters. The new, multi point heat field deformation sensor (HFD) is theoretically not affected by NTG, and it can measure the radial variability of the sap flow at different depths. However, its high cost is a serious limitation when simultaneous measurements are required in several trees (e.g. catchment-scale studies). The underlying challenge is to develop a monitoring schema in which HFD and TDP are combined to satisfy the needs of measurement efficiency and accuracy in water accounting. To assess the level of agreement between TDP and HFD methods in quantifying sap flow rates and temporal patterns on Quercus ilex (Q.i ) and Quercus pyrenaica trees (Q.p.), three measurement schemas: standard TDP, TDP-NTG-corrected and HFD were compared in dry season at the semi-arid Sardon area, near Salamanca in Spain in the period from June to September 2009. To correct TDP measurements with regard to radial sap flow variability, a radial sap flux density correction factor was applied and tested by adjusting TDP

  7. Rat vas deferens SERCA2 is modulated by Ca{sup 2+}/calmodulin protein kinase II-mediated phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.B.R.; Muzi-Filho, H. [Programa de Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Valverde, R.H.F. [Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Quintas, L.E.M. [Programa de Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Noel, F. [Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Einicker-Lamas, M. [Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ (Brazil); Cunha, V.M.N. [Programa de Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil)

    2013-03-19

    Ca{sup 2+} pumps are important players in smooth muscle contraction. Nevertheless, little information is available about these pumps in the vas deferens. We have determined which subtype of sarco(endo)plasmic reticulum Ca{sup 2+}-ATPase isoform (SERCA) is expressed in rat vas deferens (RVD) and its modulation by calmodulin (CaM)-dependent mechanisms. The thapsigargin-sensitive Ca{sup 2+}-ATPase from a membrane fraction containing the highest SERCA levels in the RVD homogenate has the same molecular mass (∼115 kDa) as that of SERCA2 from the rat cerebellum. It has a very high affinity for Ca{sup 2+} (Ca{sub 0.5} = 780 nM) and a low sensitivity to vanadate (IC{sub 50} = 41 µM). These facts indicate that SERCA2 is present in the RVD. Immunoblotting for CaM and Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) showed the expression of these two regulatory proteins. Ca{sup 2+} and CaM increased serine-phosphorylated residues of the 115-kDa protein, indicating the involvement of CaMKII in the regulatory phosphorylation of SERCA2. Phosphorylation is accompanied by an 8-fold increase of thapsigargin-sensitive Ca{sup 2+} accumulation in the lumen of vesicles derived from these membranes. These data establish that SERCA2 in the RVD is modulated by Ca{sup 2+} and CaM, possibly via CaMKII, in a process that results in stimulation of Ca{sup 2+} pumping activity.

  8. Klp10A modulates the localization of centriole-associated proteins during Drosophila male gametogenesis.

    Science.gov (United States)

    Gottardo, Marco; Callaini, Giuliano; Riparbelli, Maria Giovanna

    2016-12-16

    Mutations in Klp10A, a microtubule-depolymerising Kinesin-13, lead to overly long centrioles in Drosophila male germ cells. We demonstrated that the loss of Klp10A modifies the distribution of typical proteins involved in centriole assembly and function. In the absence of Klp10A the distribution of Drosophila pericentrin-like protein (Dplp), Sas-4 and Sak/Plk4 that are restricted in control testes to the proximal end of the centriole increase along the centriole length. Remarkably, the cartwheel is lacking or it appears abnormal in mutant centrioles, suggesting that this structure may spatially delimit protein localization. Moreover, the parent centrioles that in control cells have the same dimensions grow at different rates in mutant testes with the mother centrioles longer than the daughters. Daughter centrioles have often an ectopic position with respect to the proximal end of the mothers and failed to recruit Dplp.

  9. Implantación de SAP ERP en una distribuidora

    OpenAIRE

    Martínez Costales, Guillermo

    2013-01-01

    En este trabajo se pretende reflejar en qué consistiría un proyecto de implantación de un ERP, en nuestro caso SAP ERP, en una empresa del sector de la distribución alimenticia. Para llevarlo a cabo se empleará la metodología ASAP, pretendiendo ser el resultado final del proyecto el análisis y diseño del mismo. En aquest treball es pretén reflectir en què consistiria un projecte d'implantació d'un ERP, en el nostre cas SAP ERP, en una empresa del sector de la distribució alimentària. Per f...

  10. Stormtime Simulations of Sub-Auroral Polarization Streams (SAPS)

    Science.gov (United States)

    Huba, J.; Sazykin, S. Y.; Coster, A. J.

    2017-12-01

    We present simulation results from the self-consistently coupled SAMI3/RCM code on the impact of geomagnetic storms on the ionosphere/plasmasphere system with an emphasis on the development of sub-auroral plasma streams (SAPS). We consider the following storm events: March 31, 2001, March 17, 2013, March 17, 2015, September 3, 2012, and June 23, 2015. We compare and contrast the development of SAPS for these storms. The main results are the development of sub-auroral (< 60 degrees) low-density, high-speed flows (1 - 2 km/s). Additionally, we discuss the impact on plasmaspheric dynamics. We compare our model results to data (e.g., Millstone Hill radar, GPS TEC).

  11. Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis.

    Directory of Open Access Journals (Sweden)

    Robert W Tilghman

    Full Text Available Tumor cells in vivo encounter diverse types of microenvironments both at the site of the primary tumor and at sites of distant metastases. Understanding how the various mechanical properties of these microenvironments affect the biology of tumor cells during disease progression is critical in identifying molecular targets for cancer therapy.This study uses flexible polyacrylamide gels as substrates for cell growth in conjunction with a novel proteomic approach to identify the properties of rigidity-dependent cancer cell lines that contribute to their differential growth on soft and rigid substrates. Compared to cells growing on more rigid/stiff substrates (>10,000 Pa, cells on soft substrates (150-300 Pa exhibited a longer cell cycle, due predominantly to an extension of the G1 phase of the cell cycle, and were metabolically less active, showing decreased levels of intracellular ATP and a marked reduction in protein synthesis. Using stable isotope labeling of amino acids in culture (SILAC and mass spectrometry, we measured the rates of protein synthesis of over 1200 cellular proteins under growth conditions on soft and rigid/stiff substrates. We identified cellular proteins whose syntheses were either preferentially inhibited or preserved on soft matrices. The former category included proteins that regulate cytoskeletal structures (e.g., tubulins and glycolysis (e.g., phosphofructokinase-1, whereas the latter category included proteins that regulate key metabolic pathways required for survival, e.g., nicotinamide phosphoribosyltransferase, a regulator of the NAD salvage pathway.The cellular properties of rigidity-dependent cancer cells growing on soft matrices are reminiscent of the properties of dormant cancer cells, e.g., slow growth rate and reduced metabolism. We suggest that the use of relatively soft gels as cell culture substrates would allow molecular pathways to be studied under conditions that reflect the different mechanical

  12. The Unstructured Paramyxovirus Nucleocapsid Protein Tail Domain Modulates Viral Pathogenesis through Regulation of Transcriptase Activity.

    Science.gov (United States)

    Thakkar, Vidhi D; Cox, Robert M; Sawatsky, Bevan; da Fontoura Budaszewski, Renata; Sourimant, Julien; Wabbel, Katrin; Makhsous, Negar; Greninger, Alexander L; von Messling, Veronika; Plemper, Richard K

    2018-04-15

    The paramyxovirus replication machinery comprises the viral large (L) protein and phosphoprotein (P-protein) in addition to the nucleocapsid (N) protein, which encapsidates the single-stranded RNA genome. Common to paramyxovirus N proteins is a C-terminal tail (Ntail). The mechanistic role and relevance for virus replication of the structurally disordered central Ntail section are unknown. Focusing initially on members of the Morbillivirus genus, a series of measles virus (MeV) and canine distemper virus (CDV) N proteins were generated with internal deletions in the unstructured tail section. N proteins with large tail truncations remained bioactive in mono- and polycistronic minireplicon assays and supported efficient replication of recombinant viruses. Bioactivity of Ntail mutants extended to N proteins derived from highly pathogenic Nipah virus. To probe an effect of Ntail truncations on viral pathogenesis, recombinant CDVs were analyzed in a lethal CDV/ferret model of morbillivirus disease. The recombinant viruses displayed different stages of attenuation ranging from ameliorated clinical symptoms to complete survival of infected animals, depending on the molecular nature of the Ntail truncation. Reinfection of surviving animals with pathogenic CDV revealed robust protection against a lethal challenge. The highly attenuated virus was genetically stable after ex vivo passaging and recovery from infected animals. Mechanistically, gradual viral attenuation coincided with stepwise altered viral transcriptase activity in infected cells. These results identify the central Ntail section as a determinant for viral pathogenesis and establish a novel platform to engineer gradual virus attenuation for next-generation paramyxovirus vaccine design. IMPORTANCE Investigating the role of the paramyxovirus N protein tail domain (Ntail) in virus replication, we demonstrated in this study that the structurally disordered central Ntail region is a determinant for viral

  13. Scotopic vision in the monkey is modulated by the G protein-coupled receptor 55

    DEFF Research Database (Denmark)

    Bouskila, Joseph; Harrar, Vanessa; Javadi, Pasha

    2016-01-01

    The endogenous cannabinoid system plays important roles in the retina of mice and monkeys via their classic CB1 and CB2 receptors. We have previously reported that the G protein-coupled receptor 55 (GPR55), a putative cannabinoid receptor, is exclusively expressed in rod photoreceptors in the mon......The endogenous cannabinoid system plays important roles in the retina of mice and monkeys via their classic CB1 and CB2 receptors. We have previously reported that the G protein-coupled receptor 55 (GPR55), a putative cannabinoid receptor, is exclusively expressed in rod photoreceptors...

  14. High-protein enteral nutrition enriched with immune-modulating nutrients vs standard high-protein enteral nutrition and nosocomial infections in the ICU: a randomized clinical trial.

    Science.gov (United States)

    van Zanten, Arthur R H; Sztark, François; Kaisers, Udo X; Zielmann, Siegfried; Felbinger, Thomas W; Sablotzki, Armin R; De Waele, Jan J; Timsit, Jean-François; Honing, Marina L H; Keh, Didier; Vincent, Jean-Louis; Zazzo, Jean-Fabien; Fijn, Harvey B M; Petit, Laurent; Preiser, Jean-Charles; van Horssen, Peter J; Hofman, Zandrie

    2014-08-06

    Enteral administration of immune-modulating nutrients (eg, glutamine, omega-3 fatty acids, selenium, and antioxidants) has been suggested to reduce infections and improve recovery from critical illness. However, controversy exists on the use of immune-modulating enteral nutrition, reflected by lack of consensus in guidelines. To determine whether high-protein enteral nutrition enriched with immune-modulating nutrients (IMHP) reduces the incidence of infections compared with standard high-protein enteral nutrition (HP) in mechanically ventilated critically ill patients. The MetaPlus study, a randomized, double-blind, multicenter trial, was conducted from February 2010 through April 2012 including a 6-month follow-up period in 14 intensive care units (ICUs) in the Netherlands, Germany, France, and Belgium. A total of 301 adult patients who were expected to be ventilated for more than 72 hours and to require enteral nutrition for more than 72 hours were randomized to the IMHP (n = 152) or HP (n = 149) group and included in an intention-to-treat analysis, performed for the total population as well as predefined medical, surgical, and trauma subpopulations. High-protein enteral nutrition enriched with immune-modulating nutrients vs standard high-protein enteral nutrition, initiated within 48 hours of ICU admission and continued during the ICU stay for a maximum of 28 days. The primary outcome measure was incidence of new infections according to the Centers for Disease Control and Prevention (CDC) definitions. Secondary end points included mortality, Sequential Organ Failure Assessment (SOFA) scores, mechanical ventilation duration, ICU and hospital lengths of stay, and subtypes of infections according CDC definitions. There were no statistically significant differences in incidence of new infections between the groups: 53% (95% CI, 44%-61%) in the IMHP group vs 52% (95% CI, 44%-61%) in the HP group (P = .96). No statistically significant differences were

  15. N-MYC down-regulated-like proteins regulate meristem initiation by modulating auxin transport and MAX2 expression.

    Science.gov (United States)

    Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M

    2013-01-01

    N-MYC down-regulated-like (NDL) proteins interact with the Gβ subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development. Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation) confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele) mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem. NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients.

  16. N-MYC down-regulated-like proteins regulate meristem initiation by modulating auxin transport and MAX2 expression.

    Directory of Open Access Journals (Sweden)

    Yashwanti Mudgil

    Full Text Available N-MYC down-regulated-like (NDL proteins interact with the Gβ subunit (AGB1 of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development.Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem.NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients.

  17. A compact, multifunctional fusion module directs cholesterol-dependent homomultimerization and syncytiogenic efficiency of reovirus p10 FAST proteins.

    Directory of Open Access Journals (Sweden)

    Tim Key

    2014-03-01

    Full Text Available The homologous p10 fusion-associated small transmembrane (FAST proteins of the avian (ARV and Nelson Bay (NBV reoviruses are the smallest known viral membrane fusion proteins, and are virulence determinants of the fusogenic reoviruses. The small size of FAST proteins is incompatible with the paradigmatic membrane fusion pathway proposed for enveloped viral fusion proteins. Understanding how these diminutive viral fusogens mediate the complex process of membrane fusion is therefore of considerable interest, from both the pathogenesis and mechanism-of-action perspectives. Using chimeric ARV/NBV p10 constructs, the 36-40-residue ectodomain was identified as the major determinant of the differing fusion efficiencies of these homologous p10 proteins. Extensive mutagenic analysis determined the ectodomain comprises two distinct, essential functional motifs. Syncytiogenesis assays, thiol-specific surface biotinylation, and liposome lipid mixing assays identified an ∼25-residue, N-terminal motif that dictates formation of a cystine loop fusion peptide in both ARV and NBV p10. Surface immunofluorescence staining, FRET analysis and cholesterol depletion/repletion studies determined the cystine loop motif is connected through a two-residue linker to a 13-residue membrane-proximal ectodomain region (MPER. The MPER constitutes a second, independent motif governing reversible, cholesterol-dependent assembly of p10 multimers in the plasma membrane. Results further indicate that: (1 ARV and NBV homomultimers segregate to distinct, cholesterol-dependent microdomains in the plasma membrane; (2 p10 homomultimerization and cholesterol-dependent microdomain localization are co-dependent; and (3 the four juxtamembrane MPER residues present in the multimerization motif dictate species-specific microdomain association and homomultimerization. The p10 ectodomain therefore constitutes a remarkably compact, multifunctional fusion module that directs syncytiogenic

  18. The Verticillium-specific protein VdSCP7 localizes to the plant nucleus and modulates immunity to fungal infections.

    Science.gov (United States)

    Zhang, Lisha; Ni, Hao; Du, Xuan; Wang, Sheng; Ma, Xiao-Wei; Nürnberger, Thorsten; Guo, Hui-Shan; Hua, Chenlei

    2017-07-01

    Fungal pathogens secrete effector proteins to suppress plant basal defense for successful colonization. Resistant plants, however, can recognize effectors by cognate R proteins to induce effector-triggered immunity (ETI). By analyzing secretomes of the vascular fungal pathogen Verticillium dahliae, we identified a novel secreted protein VdSCP7 that targets the plant nucleus. The green fluorescent protein (GFP)-tagged VdSCP7 gene with either a mutated nuclear localization signal motif or with additional nuclear export signal was transiently expressed in Nicotiana benthamiana, and investigated for induction of plant immunity. The role of VdSCP7 in V. dahliae pathogenicity was characterized by gene knockout and complementation, and GFP labeling. Expression of the VdSCP7 gene in N. benthamiana activated both salicylic acid and jasmonate signaling, and altered the plant's susceptibility to the pathogens Botrytis cinerea and Phytophthora capsici. The immune response activated by VdSCP7 was highly dependent on its initial extracellular secretion and subsequent nuclear localization in plants. Knockout of the VdSCP7 gene significantly enhanced V. dahliae aggressiveness on cotton. GFP-labeled VdSCP7 is secreted by V. dahliae and accumulates in the plant nucleus. We conclude that VdSCP7 is a novel effector protein that targets the host nucleus to modulate plant immunity, and suggest that plants can recognize VdSCP7 to activate ETI during fungal infection. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  19. Receptor activity modifying proteins (RAMPs) interact with the VPAC1 receptor: evidence for differential RAMP modulation of multiple signalling pathways

    International Nuclear Information System (INIS)

    Christopoulos, G.; Morfis, M.; Sexton, P.M.; Christopoulos, A.; Laburthe, M.; Couvineau, A.

    2001-01-01

    Full text: Receptor activity modifying proteins (RAMP) constitute a family of three accessory proteins that affect the expression and/or phenotype of the calcitonin receptor (CTR) or CTR-like receptor (CRLR). In this study we screened a range of class II G protein-coupled receptors (PTH1, PTH2, GHRH, VPAC1, VPAC2 receptors) for possible RAMP interactions by measurement of receptor-induced translocation of c-myc tagged RAMP1 or HA tagged RAMP3. Of these, only the VPAC1 receptor caused significant translocation of c-myc-RAMP1 or HA-RAMP3 to the cell surface. Co-transfection of VPAC1 and RAMPs did not alter 125 I-VIP binding and specificity. VPAC1 receptor function was subsequently analyzed through parallel determinations of cAMP accumulation and phosphoinositide (PI) hydrolysis in the presence and absence of each of the three RAMPs. In contrast to CTR-RAMP interaction, where there was an increase in cAMP Pharmacologisand a decrease in PI hydrolysis, VPAC1-RAMP interaction was characterized by a specific increase in agonist-mediated PI hydrolysis when co-transfected with RAMP2. This change was due to an enhancement of Emax with no change in EC 50 value for VIP. No significant change in cAMP accumulation was observed. This is the first demonstration of an interaction of RAMPs with a G protein-coupled receptor outside the CTR family and may suggest a more generalized role for RAMPs in modulating G protein-coupled receptor signaling. Copyright (2001) Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists

  20. A Novel Nuclear Trafficking Module Regulates the Nucleocytoplasmic Localization of the Rabies Virus Interferon Antagonist, P Protein*

    Science.gov (United States)

    Oksayan, Sibil; Wiltzer, Linda; Rowe, Caitlin L.; Blondel, Danielle; Jans, David A.; Moseley, Gregory W.

    2012-01-01

    Regulated nucleocytoplasmic transport of proteins is central to cellular function and dysfunction during processes such as viral infection. Active protein trafficking into and out of the nucleus is dependent on the presence within cargo proteins of intrinsic specific modular signals for nuclear import (nuclear localization signals, NLSs) and export (nuclear export signals, NESs). Rabies virus (RabV) phospho (P) protein, which is largely responsible for antagonising the host anti-viral response, is expressed as five isoforms (P1–P5). The subcellular trafficking of these isoforms is thought to depend on a balance between the activities of a dominant N-terminal NES (N-NES) and a distinct C-terminal NLS (C-NLS). Specifically, the N-NES-containing isoforms P1 and P2 are cytoplasmic, whereas the shorter P3–P5 isoforms, which lack the N-NES, are believed to be nuclear through the activity of the C-NLS. Here, we show for the first time that RabV P contains an additional strong NLS in the N-terminal region (N-NLS), which, intriguingly, overlaps with the N-NES. This arrangement represents a novel nuclear trafficking module where the N-NLS is inactive in P1 but becomes activated in P3, concomitant with truncation of the N-NES, to become the principal targeting signal conferring nuclear accumulation. Understanding this unique switch arrangement of overlapping, co-regulated NES/NLS sequences is vital to delineating the critical role of RabV P protein in viral infection. PMID:22700958

  1. Cost of Maple Sap Production for Various Size Tubing Operations

    Science.gov (United States)

    Niel K. Huyler

    2000-01-01

    Reports sap production costs for small (500 to 1,000 taps), medium (1,000 to 5,000), and large (5,000 to 15,000) maple syrup operations that use plastic tubing with vacuum pumping. The average annual operating cost per tap ranged from $4.64 for a 500-tap sugarbush operation to $1.84 for a sugarbush with 10,000 taps. The weighted average was $2.87 per tap or $11.48 per...

  2. Uses of tree saps in northern and eastern parts of Europe

    Directory of Open Access Journals (Sweden)

    Ingvar Svanberg

    2012-12-01

    Full Text Available In this article we review the use of tree saps in northern and eastern Europe. Published accounts by travellers, ethnologists and ethnobotanists were searched for historical and contemporary details. Field observations made by the authors have also been used. The presented data shows that the use of tree sap has occurred in most north and eastern European countries. It can be assumed that tree saps were most used where there were extensive stands of birch or maple trees, as these two genera generally produce the largest amount of sap. The taxa most commonly used have been Betula pendula, B. pubescens, and Acer platanoides, but scattered data on the use of several other taxa are presented. Tree sap was used as a fresh drink, but also as an ingredient in food and beverages. It was also fermented to make light alcoholic products like ale and wine. Other folk uses of tree saps vary from supplementary nutrition in the form of sugar, minerals and vitamins, to cosmetic applications for skin and hair and folk medicinal use. Russia, Ukraine, Belarus, Estonia, Latvia and Lithuania are the only countries where the gathering and use of sap (mainly birch sap has remained an important activity until recently, due to the existence of large birch forests, low population density and the incorporation of sap into the former Soviet economic system. It is evident that gathering sap from birch and other trees was more widespread in earlier times. There are records indicating extensive use of tree saps from Scandinavia, Poland, Slovakia and Romania, but it is primarily of a historical character. The extraction of tree sap in these countries is nowadays viewed as a curiosity carried out only by a few individuals. However, tree saps have been regaining popularity in urban settings through niche trading.

  3. Adulteration and Contamination of Commercial Sap of Hymenaea Species

    Directory of Open Access Journals (Sweden)

    Katyuce de Souza Farias

    2017-01-01

    Full Text Available The Hymenaea stigonocarpa and Hymenaea martiana species, commonly known as “jatobá,” produce a sap which is extracted by perforation of the trunk and is commonly used in folk medicine as a tonic. For this study, the authenticity of commercial samples of jatobá was verified by the identification of the main compounds and multivariate analysis and contamination by microbial presence analysis. The acute toxicity of the authentic jatobá sap was also evaluated. The metabolites composition and multivariate analysis revealed that none of the commercial samples were authentic. In the microbiological contamination analysis, five of the six commercial samples showed positive cultures within the range of 1,700–100,000 CFU/mL and the authentic sap produced no signs of toxicity, and from a histological point of view, there was the maintenance of tissue integrity. In brief, the commercial samples were deemed inappropriate for consumption and represent a danger to the population.

  4. Levels of the E2 interacting protein TopBP1 modulate papillomavirus maintenance stage replication

    Energy Technology Data Exchange (ETDEWEB)

    Kanginakudru, Sriramana, E-mail: skangina@iu.edu [Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN (United States); DeSmet, Marsha, E-mail: mdesmet@iupui.edu [Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN (United States); Thomas, Yanique, E-mail: ysthomas@umail.iu.edu [Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN (United States); Morgan, Iain M., E-mail: immorgan@vcu.edu [VCU Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia (United States); Androphy, Elliot J., E-mail: eandro@iu.edu [Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN (United States); Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN (United States)

    2015-04-15

    The evolutionarily conserved DNA topoisomerase II beta-binding protein 1 (TopBP1) functions in DNA replication, DNA damage response, and cell survival. We analyzed the role of TopBP1 in human and bovine papillomavirus genome replication. Consistent with prior reports, TopBP1 co-localized in discrete nuclear foci and was in complex with papillomavirus E2 protein. Similar to E2, TopBP1 is recruited to the region of the viral origin of replication during G1/S and early S phase. TopBP1 knockdown increased, while over-expression decreased transient virus replication, without affecting cell cycle. Similarly, using cell lines harboring HPV-16 or HPV-31 genome, TopBP1 knockdown increased while over-expression reduced viral copy number relative to genomic DNA. We propose a model in which TopBP1 serves dual roles in viral replication: it is essential for initiation of replication yet it restricts viral copy number. - Highlights: • Protein interaction study confirmed In-situ interaction between TopBP1 and E2. • TopBP1 present at papillomavirus ori in G1/S and early S phase of cell cycle. • TopBP1 knockdown increased, over-expression reduced virus replication. • TopBP1 protein level change did not influence cell survival or cell cycle. • TopBP1 displaced from papillomavirus ori after initiation of replication.

  5. Protein kinase C prevents oligodendrocyte differentiation : Modulation of actin cytoskeleton and cognate polarized membrane traffic

    NARCIS (Netherlands)

    Baron, W; de Vries, EJ; de Vries, H; Hoekstra, D

    1999-01-01

    In a previous study, we showed that activation of protein kinase C (PKC) prevents oligodendrocyte differentiation at the pro-oligodendrocyte stage. The present study was undertaken to identify downstream targets of PKC action in oligodendrocyte progenitor cells. Activation of PKC induced the

  6. Consumption of milk-protein combined with green tea modulates diet-induced thermogenesis.

    Science.gov (United States)

    Hursel, Rick; Westerterp-Plantenga, Margriet S

    2011-08-01

    Green tea and protein separately are able to increase diet-induced thermogenesis. Although their effects on long-term weight-maintenance were present separately, they were not additive. Therefore, the effect of milk-protein (MP) in combination with green tea on diet-induced thermogenesis (DIT) was examined in 18 subjects (aged 18-60 years; BMI: 23.0 ± 2.1 kg/m(2)). They participated in an experiment with a randomized, 6 arms, crossover design, where energy expenditure and respiratory quotient (RQ) were measured. Green tea (GT)vs. placebo (PL) capsules were either given in combination with water or with breakfasts containing milk protein in two different dosages: 15 g (15 MP) (energy% P/C/F: 15/47/38; 1.7 MJ/500 mL), and 3.5 g (3.5 MP) (energy% P/C/F: 41/59/0; 146.4 kJ/100 mL). After measuring resting energy expenditure (REE) for 30 min, diet-induced energy expenditure was measured for another 3.5 h after the intervention. There was an overall significant difference observed between conditions (p milk-protein inhibits the effect of green tea on DIT.

  7. Levels of the E2 interacting protein TopBP1 modulate papillomavirus maintenance stage replication

    International Nuclear Information System (INIS)

    Kanginakudru, Sriramana; DeSmet, Marsha; Thomas, Yanique; Morgan, Iain M.; Androphy, Elliot J.

    2015-01-01

    The evolutionarily conserved DNA topoisomerase II beta-binding protein 1 (TopBP1) functions in DNA replication, DNA damage response, and cell survival. We analyzed the role of TopBP1 in human and bovine papillomavirus genome replication. Consistent with prior reports, TopBP1 co-localized in discrete nuclear foci and was in complex with papillomavirus E2 protein. Similar to E2, TopBP1 is recruited to the region of the viral origin of replication during G1/S and early S phase. TopBP1 knockdown increased, while over-expression decreased transient virus replication, without affecting cell cycle. Similarly, using cell lines harboring HPV-16 or HPV-31 genome, TopBP1 knockdown increased while over-expression reduced viral copy number relative to genomic DNA. We propose a model in which TopBP1 serves dual roles in viral replication: it is essential for initiation of replication yet it restricts viral copy number. - Highlights: • Protein interaction study confirmed In-situ interaction between TopBP1 and E2. • TopBP1 present at papillomavirus ori in G1/S and early S phase of cell cycle. • TopBP1 knockdown increased, over-expression reduced virus replication. • TopBP1 protein level change did not influence cell survival or cell cycle. • TopBP1 displaced from papillomavirus ori after initiation of replication

  8. Modulation of the Extent of Cooperative Structural Change During Protein Folding by Chemical Denaturant.

    Science.gov (United States)

    Jethva, Prashant N; Udgaonkar, Jayant B

    2017-09-07

    Protein folding and unfolding reactions invariably appear to be highly cooperative reactions, but the structural and sequence determinants of cooperativity are poorly understood. Importantly, it is not known whether cooperative structural change occurs throughout the protein, or whether some parts change cooperatively and other parts change noncooperatively. In the current study, hydrogen exchange mass spectrometry has been used to show that the mechanism of unfolding of the PI3K SH3 domain is similar in the absence and presence of 5 M urea. The data are well described by a four state N ↔ I N ↔ I 2 ↔ U model, in which structural changes occur noncooperatively during the N ↔ I N and I N ↔ I 2 transitions, and occur cooperatively during the I 2 ↔ U transition. The nSrc-loop and RT-loop, as well as β strands 4 and 5 undergo noncooperative unfolding, while β strands 1, 2, and 3 unfold cooperatively in the absence of urea. However, in the presence of 5 M urea, the unfolding of β strand 4 switches to become cooperative, leading to an increase in the extent of cooperative structural change. The current study highlights the relationship between protein stability and cooperativity, by showing how the extent of cooperativity can be varied, using chemical denaturant to alter protein stability.

  9. New integrative modules for multicolor-protein labeling and live-cell imaging in Saccharomyces cerevisiae

    Czech Academy of Sciences Publication Activity Database

    Malcová, Ivana; Farkasovky, M.; Senohrábková, Lenka; Vašicová, Pavla; Hašek, Jiří

    2016-01-01

    Roč. 16, č. 3 (2016), fow027 ISSN 1567-1356 R&D Projects: GA ČR GAP305/12/0480; GA ČR(CZ) GA16-05497S Institutional support: RVO:61388971 Keywords : fluorescent proteins * dominant selectable markers * Integrative cassettes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.299, year: 2016

  10. Mycobacterium avium subspecies paratuberculosis recombinant proteins modulate antimycobacterial functions of bovine macrophages

    Science.gov (United States)

    It has been shown that Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) activates the Mitogen Activated Protein Kinase (MAPK) p38 pathway, yet it is unclear which components of M. paratuberculosis are involved in the process. Therefore, a set of 42 M. paratuberculosis recombinan...

  11. Ciliopathy proteins regulate paracrine signaling by modulating proteasomal degradation of mediators

    Science.gov (United States)

    Liu, Yangfan P.; Tsai, I-Chun; Morleo, Manuela; Oh, Edwin C.; Leitch, Carmen C.; Massa, Filomena; Lee, Byung-Hoon; Parker, David S.; Finley, Daniel; Zaghloul, Norann A.; Franco, Brunella; Katsanis, Nicholas

    2014-01-01

    Cilia are critical mediators of paracrine signaling; however, it is unknown whether proteins that contribute to ciliopathies converge on multiple paracrine pathways through a common mechanism. Here, we show that loss of cilopathy-associated proteins Bardet-Biedl syndrome 4 (BBS4) or oral-facial-digital syndrome 1 (OFD1) results in the accumulation of signaling mediators normally targeted for proteasomal degradation. In WT cells, several BBS proteins and OFD1 interacted with proteasomal subunits, and loss of either BBS4 or OFD1 led to depletion of multiple subunits from the centrosomal proteasome. Furthermore, overexpression of proteasomal regulatory components or treatment with proteasomal activators sulforaphane (SFN) and mevalonolactone (MVA) ameliorated signaling defects in cells lacking BBS1, BBS4, and OFD1, in morphant zebrafish embryos, and in induced neurons from Ofd1-deficient mice. Finally, we tested the hypothesis that other proteasome-dependent pathways not known to be associated with ciliopathies are defective in the absence of ciliopathy proteins. We found that loss of BBS1, BBS4, or OFD1 led to decreased NF-κB activity and concomitant IκBβ accumulation and that these defects were ameliorated with SFN treatment. Taken together, our data indicate that basal body proteasomal regulation governs paracrine signaling pathways and suggest that augmenting proteasomal function might benefit ciliopathy patients. PMID:24691443

  12. 5-Lipoxygenase-Activating Protein as a Modulator of Olanzapine-Induced Lipid Accumulation in Adipocyte

    Directory of Open Access Journals (Sweden)

    Svetlana Dzitoyeva

    2013-01-01

    Full Text Available Experiments were performed in 3T3-L1 preadipocytes differentiated in vitro into adipocytes. Cells were treated with olanzapine and a 5-lipoxygenase (5-LOX activating protein (FLAP inhibitor MK-886. Lipid content was measured using an Oil Red O assay; 5-LOX and FLAP mRNA content was measured using quantitative real-time PCR; the corresponding protein contents were measured using quantitative Western blot assay. Olanzapine did not affect the cell content of 5-LOX mRNA and protein; it decreased FLAP mRNA and protein content at day five but not 24 hours after olanzapine addition. In the absence of MK-886, low concentrations of olanzapine increased lipid content only slightly, whereas a 56% increase was induced by 50 μM olanzapine. A 5-day cotreatment with 10 μM MK-886 potentiated the lipid increasing action of low concentrations of olanzapine. In contrast, in the presence of 50 μM olanzapine nanomolar and low micromolar concentrations of MK-886 reduced lipid content. These data suggest that FLAP system in adipocytes is affected by olanzapine and that it may modify how these cells respond to the second-generation antipsychotic drugs (SGADs. Clinical studies could evaluate whether the FLAP/5-LOX system could play a role in setting a variable individual susceptibility to the metabolic side effects of SGADs.

  13. IBR5 Modulates Temperature-Dependent, R Protein CHS3-Mediated Defense Responses in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jingyan Liu

    2015-10-01

    Full Text Available Plant responses to low temperature are tightly associated with defense responses. We previously characterized the chilling-sensitive mutant chs3-1 resulting from the activation of the Toll and interleukin 1 receptor-nucleotide binding-leucine-rich repeat (TIR-NB-LRR-type resistance (R protein harboring a C-terminal LIM (Lin-11, Isl-1 and Mec-3 domains domain. Here we report the identification of a suppressor of chs3, ibr5-7 (indole-3-butyric acid response 5, which largely suppresses chilling-activated defense responses. IBR5 encodes a putative dual-specificity protein phosphatase. The accumulation of CHS3 protein at chilling temperatures is inhibited by the IBR5 mutation. Moreover, chs3-conferred defense phenotypes were synergistically suppressed by mutations in HSP90 and IBR5. Further analysis showed that IBR5, with holdase activity, physically associates with CHS3, HSP90 and SGT1b (Suppressor of the G2 allele of skp1 to form a complex that protects CHS3. In addition to the positive role of IBR5 in regulating CHS3, IBR5 is also involved in defense responses mediated by R genes, including SNC1 (Suppressor of npr1-1, Constitutive 1, RPS4 (Resistance to P. syringae 4 and RPM1 (Resistance to Pseudomonas syringae pv. maculicola 1. Thus, the results of the present study reveal a role for IBR5 in the regulation of multiple R protein-mediated defense responses.

  14. Physical interaction between Wilms tumor 1 and p73 proteins modulates their functions

    NARCIS (Netherlands)

    Scharnhorst, V.; Dekker, P.; Eb, van der A.J.; Jochemsen, A.G.

    2014-01-01

    The WT1 gene, which is heterozygously mutated or deleted in congenital anomaly syndromes and homozygously mutated in about 15% of all Wilms tumors, encodes tissue-specific developmental regulators. Through alternative mRNA splicing, four main WT1 protein isoforms are synthesized. All isoforms can

  15. IGF-1 modulates gene expression of proteins involved in inflammation, cytoskeleton, and liver architecture.

    Science.gov (United States)

    Lara-Diaz, V J; Castilla-Cortazar, I; Martín-Estal, I; García-Magariño, M; Aguirre, G A; Puche, J E; de la Garza, R G; Morales, L A; Muñoz, U

    2017-05-01

    Even though the liver synthesizes most of circulating IGF-1, it lacks its receptor under physiological conditions. However, according to previous studies, a damaged liver expresses the receptor. For this reason, herein, we examine hepatic histology and expression of genes encoding proteins of the cytoskeleton, extracellular matrix, and cell-cell molecules and inflammation-related proteins. A partial IGF-1 deficiency murine model was used to investigate IGF-1's effects on liver by comparing wild-type controls, heterozygous igf1 +/- , and heterozygous mice treated with IGF-1 for 10 days. Histology, microarray for mRNA gene expression, RT-qPCR, and lipid peroxidation were assessed. Microarray analyses revealed significant underexpression of igf1 in heterozygous mice compared to control mice, restoring normal liver expression after treatment, which then normalized its circulating levels. IGF-1 receptor mRNA was overexpressed in Hz mice liver, while treated mice displayed a similar expression to that of the controls. Heterozygous mice showed overexpression of several genes encoding proteins related to inflammatory and acute-phase proteins and underexpression or overexpression of genes which coded for extracellular matrix, cytoskeleton, and cell junction components. Histology revealed an altered hepatic architecture. In addition, liver oxidative damage was found increased in the heterozygous group. The mere IGF-1 partial deficiency is associated with relevant alterations of the hepatic architecture and expression of genes involved in cytoskeleton, hepatocyte polarity, cell junctions, and extracellular matrix proteins. Moreover, it induces hepatic expression of the IGF-1 receptor and elevated acute-phase and inflammation mediators, which all resulted in liver oxidative damage.

  16. Modulation of catalytic activity in multi-domain protein tyrosine phosphatases.

    Directory of Open Access Journals (Sweden)

    Lalima L Madan

    Full Text Available Signaling mechanisms involving protein tyrosine phosphatases govern several cellular and developmental processes. These enzyme