WorldWideScience

Sample records for protein remained stable

  1. Heat-stable proteins and abscisic acid action in barley aleurone cells

    International Nuclear Information System (INIS)

    Jacobsen, J.V.; Shaw, D.C.

    1989-01-01

    [ 35 S]Methionine labeling experiments showed that abscisic acid (ABA) induced the synthesis of at least 25 polypeptides in mature barley (Hordeum vulgare) aleurone cells. The polypeptides were not secreted. Whereas most of the proteins extracted from aleurone cells were coagulated by heating to 100 degree C for 10 minutes, most of the ABA-induced polypeptides remained in solution (heat-stable). ABA had little effect on the spectrum of polypeptides that were synthesized and secreted by aleurone cells, and most of these secreted polypeptides were also heat-stable. Coomassie blue staining of sodium dodecyl sulfate polyacrylamide gels indicated that ABA-induced polypeptides already occurred in high amounts in mature aleurone layers having accumulated during grain development. About 60% of the total protein extracted from mature aleurone was heat stable. Amino acid analyses of total preparations of heat-stable and heat-labile proteins showed that, compared to heat-labile proteins, heat-stable intracellular proteins were characterized by higher glutamic acid/glutamine (Glx) and glycine levels and lower levels of neutral amino acids. Secreted heat-stable proteins were rich in Glx and proline. The possibilities that the accumulation of the heat-stable polypeptides during grain development is controlled by ABA and that the function of these polypeptides is related to their abundance and extraordinary heat stability are considered

  2. Levels of acute phase proteins remain stable after ischemic stroke

    Directory of Open Access Journals (Sweden)

    Paik Myunghee C

    2006-10-01

    Full Text Available Abstract Background Inflammation and inflammatory biomarkers play an important role in atherosclerosis and cardiovascular disease. Little information is available, however, on time course of serum markers of inflammation after stroke. Methods First ischemic stroke patients ≥40 years old had levels of high-sensitivity C-reactive protein (hsCRP, serum amyloid A (SAA, and fibrinogen measured in plasma samples drawn at 1, 2, 3, 7, 14, 21 and 28 days after stroke. Levels were log-transformed as needed, and parametric and non-parametric statistical tests were used to test for evidence of a trend in levels over time. Levels of hsCRP and SAA were also compared with levels in a comparable population of stroke-free participants. Results Mean age of participants with repeated measures (n = 21 was 65.6 ± 11.6 years, and 13 (61.9% were men, and 15 (71.4% were Hispanic. Approximately 75% of patients (n = 15 had mild strokes (NIH Stroke Scale score 0–5. There was no evidence of a time trend in levels of hsCRP, SAA, or fibrinogen for any of the markers during the 28 days of follow-up. Mean log(hsCRP was 1.67 ± 1.07 mg/L (median hsCRP 6.48 mg/L among stroke participants and 1.00 ± 1.18 mg/L (median 2.82 mg/L in a group of 1176 randomly selected stroke-free participants from the same community (p = 0.0252. Conclusion Levels of hsCRP are higher in stroke patients than in stroke-free subjects. Levels of inflammatory biomarkers associated with atherosclerosis, including hsCRP, appear to be stable for at least 28 days after first ischemic stroke.

  3. Protein-based stable isotope probing.

    Science.gov (United States)

    Jehmlich, Nico; Schmidt, Frank; Taubert, Martin; Seifert, Jana; Bastida, Felipe; von Bergen, Martin; Richnow, Hans-Hermann; Vogt, Carsten

    2010-12-01

    We describe a stable isotope probing (SIP) technique that was developed to link microbe-specific metabolic function to phylogenetic information. Carbon ((13)C)- or nitrogen ((15)N)-labeled substrates (typically with >98% heavy label) were used in cultivation experiments and the heavy isotope incorporation into proteins (protein-SIP) on growth was determined. The amount of incorporation provides a measure for assimilation of a substrate, and the sequence information from peptide analysis obtained by mass spectrometry delivers phylogenetic information about the microorganisms responsible for the metabolism of the particular substrate. In this article, we provide guidelines for incubating microbial cultures with labeled substrates and a protocol for protein-SIP. The protocol guides readers through the proteomics pipeline, including protein extraction, gel-free and gel-based protein separation, the subsequent mass spectrometric analysis of peptides and the calculation of the incorporation of stable isotopes into peptides. Extraction of proteins and the mass fingerprint measurements of unlabeled and labeled fractions can be performed in 2-3 d.

  4. Formulation of stable protein powders by supercritical fluid drying

    NARCIS (Netherlands)

    Jovanović, N.

    2007-01-01

    Protein pharmaceuticals are potent drugs for the treatment of several chronic and life-threatening diseases. However, the complex and sensitive nature of protein molecules requires special attention in the development of stable dosage forms. Developing stable aqueous protein formulations is often a

  5. Protein Stable Isotope Fingerprinting (P-SIF): Multidimensional Protein Chromatography Coupled to Stable Isotope-Ratio Mass Spectrometry

    Science.gov (United States)

    Pearson, A.; Bovee, R. J.; Mohr, W.; Tang, T.

    2012-12-01

    As metagenomics increases our insight into microbial community diversity and metabolic potential, new approaches are required to determine the biogeochemical expression of this potential within ecosystems. Because stable isotopic analysis of the major bioactive elements (C, N) has been used historically to map flows of substrates and energy among macroscopic food webs, similar principles may apply to microbes. To address this challenge, we have developed a new analytical approach called Protein Stable Isotope Fingerprinting (P-SIF). P-SIF generates natural stable isotopic fingerprints of microbial individual or community proteomes. The main advantage of P-SIF is the potential to bridge the gap between diversity and function, thereby providing a window into the "black box" of environmental microbiology and helping to decipher the roles of uncultivated species. Our method implements a three-way, orthogonal scheme to separate mixtures of whole proteins into subfractions dominated by single or closely-related proteins. Protein extracts first are isoelectrically focused in a gel-free technique that yields 12 fractions separated over a gradient of pH 3-10. Each fraction then is separated by size-exclusion chromatography into 20 pools, ranging from >100kD to ~10kD. Finally, each of these pools is subjected to HPLC and collected in 40 time-slices based on protein hydrophobicity. Theoretical calculation reveals that the true chromatographic resolution of the total scheme is 5000, somewhat less than the 9600 resulting fractions. High-yielding fractions are subjected to δ13C analysis by spooling-wire microcombustion irMS (SWiM-irMS) optimized for samples containing 1-5 nmol carbon. Here we will present the method, results for a variety of pure cultures, and preliminary data for a sample of mixed environmental proteins. The data show the promise of this method for unraveling the metabolic complexity hidden within microbial communities.

  6. Stable isotopes, niche partitioning and the paucity of elasmosaur remains in the Maastrichtian type area

    NARCIS (Netherlands)

    Schulp, Anne S.; Janssen, Renée; Van Baal, Remy R.; Jagt, John W M; Mulder, Eric W A; Vonhof, Hubert B.

    2017-01-01

    Remains of elasmosaurid plesiosaurs are exceedingly rare in the type-Maastrichtian strata (Late Cretaceous, southeast Netherlands and northeast Belgium), in stark contrast to relatively common skeletal remains of mosasaurs. Here, we present an analysis of δ13C stable isotope values for tooth enamel

  7. Mis-translation of a Computationally Designed Protein Yields an Exceptionally Stable Homodimer: Implications for Protein Engineering and Evolution.

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, Gautam; Watters, Alexander L.; Lunde, Bradley; Eletr, Ziad; Isern, Nancy G.; Roseman, Toby; Lipfert, Jan; Doniach, Sebastian; Tompa, Martin; Kuhlman, Brian; Stoddard, Barry L.; Varani, Gabriele; Baker, David

    2006-10-06

    We recently used computational protein design to create an extremely stable, globular protein, Top7, with a sequence and fold not observed previously in nature. Since Top7 was created in the absence of genetic selection, it provides a rare opportunity to investigate aspects of the cellular protein production and surveillance machinery that are subject to natural selection. Here we show that a portion of the Top7 protein corresponding to the final 49 C-terminal residues is efficiently mistranslated and accumulates at high levels in E. coli. We used circular dichroism spectroscopy, size-exclusion chromatography, small-angle x-ray scattering, analytical ultra-centrifugation, and NMR spectroscopy to show that the resulting CFr protein adopts a compact, extremely-stable, obligate, symmetric, homo-dimeric structure. Based on the solution structure, we engineered an even more stable variant of CFr by disulfide-induced covalent circularisation that should be an excellent platform for design of novel functions. The accumulation of high levels of CFr exposes the high error rate of the protein translation machinery, and the rarity of correspondingly stable fragments in natural proteins implies a stringent evolutionary pressure against protein sub-fragments that can independently fold into stable structures. The symmetric self-association between two identical mistranslated CFr sub-units to generate an extremely stable structure parallels a mechanism for natural protein-fold evolution by modular recombination of stable protein sub-structures.

  8. Highly stable loading of Mcm proteins onto chromatin in living cells requires replication to unload

    Science.gov (United States)

    Kuipers, Marjorie A.; Stasevich, Timothy J.; Sasaki, Takayo; Wilson, Korey A.; Hazelwood, Kristin L.; McNally, James G.; Davidson, Michael W.

    2011-01-01

    The heterohexameric minichromosome maintenance protein complex (Mcm2-7) functions as the eukaryotic helicase during DNA replication. Mcm2-7 loads onto chromatin during early G1 phase but is not converted into an active helicase until much later during S phase. Hence, inactive Mcm complexes are presumed to remain stably bound from early G1 through the completion of S phase. Here, we investigated Mcm protein dynamics in live mammalian cells. We demonstrate that Mcm proteins are irreversibly loaded onto chromatin cumulatively throughout G1 phase, showing no detectable exchange with a gradually diminishing soluble pool. Eviction of Mcm requires replication; during replication arrest, Mcm proteins remained bound indefinitely. Moreover, the density of immobile Mcms is reduced together with chromatin decondensation within sites of active replication, which provides an explanation for the lack of colocalization of Mcm with replication fork proteins. These results provide in vivo evidence for an exceptionally stable lockdown mechanism to retain all loaded Mcm proteins on chromatin throughout prolonged cell cycles. PMID:21220507

  9. Working conditions remain stable in the Netherlands

    NARCIS (Netherlands)

    Houtman, I.; Hooftman, W.

    2008-01-01

    Despite significant changes in the national questionnaires on work and health, the quality of work as well as health complaints in the Netherlands appear to be relatively stable. Pace of work seems to be on the increase again and more people are working in excess of their contractual hours.

  10. Insights from quantitative metaproteomics and protein-stable isotope probing into microbial ecology.

    Science.gov (United States)

    von Bergen, Martin; Jehmlich, Nico; Taubert, Martin; Vogt, Carsten; Bastida, Felipe; Herbst, Florian-Alexander; Schmidt, Frank; Richnow, Hans-Hermann; Seifert, Jana

    2013-10-01

    The recent development of metaproteomics has enabled the direct identification and quantification of expressed proteins from microbial communities in situ, without the need for microbial enrichment. This became possible by (1) significant increases in quality and quantity of metagenome data and by improvements of (2) accuracy and (3) sensitivity of modern mass spectrometers (MS). The identification of physiologically relevant enzymes can help to understand the role of specific species within a community or an ecological niche. Beside identification, relative and absolute quantitation is also crucial. We will review label-free and label-based methods of quantitation in MS-based proteome analysis and the contribution of quantitative proteome data to microbial ecology. Additionally, approaches of protein-based stable isotope probing (protein-SIP) for deciphering community structures are reviewed. Information on the species-specific metabolic activity can be obtained when substrates or nutrients are labeled with stable isotopes in a protein-SIP approach. The stable isotopes ((13)C, (15)N, (36)S) are incorporated into proteins and the rate of incorporation can be used for assessing the metabolic activity of the corresponding species. We will focus on the relevance of the metabolic and phylogenetic information retrieved with protein-SIP studies and for detecting and quantifying the carbon flux within microbial consortia. Furthermore, the combination of protein-SIP with established tools in microbial ecology such as other stable isotope probing techniques are discussed.

  11. Directed evolution of an extremely stable fluorescent protein.

    Science.gov (United States)

    Kiss, Csaba; Temirov, Jamshid; Chasteen, Leslie; Waldo, Geoffrey S; Bradbury, Andrew R M

    2009-05-01

    In this paper we describe the evolution of eCGP123, an extremely stable green fluorescent protein based on a previously described fluorescent protein created by consensus engineering (CGP: consensus green protein). eCGP123 could not be denatured by a standard thermal melt, preserved almost full fluorescence after overnight incubation at 80 degrees C and possessed a free energy of denaturation of 12.4 kcal/mol. It was created from CGP by a recursive process involving the sequential introduction of three destabilizing heterologous inserts, evolution to overcome the destabilization and finally 'removal' of the destabilizing insert by gene synthesis. We believe that this approach may be generally applicable to the stabilization of other proteins.

  12. Recombinant protein production from stable mammalian cell lines and pools.

    Science.gov (United States)

    Hacker, David L; Balasubramanian, Sowmya

    2016-06-01

    We highlight recent developments for the production of recombinant proteins from suspension-adapted mammalian cell lines. We discuss the generation of stable cell lines using transposons and lentivirus vectors (non-targeted transgene integration) and site-specific recombinases (targeted transgene integration). Each of these methods results in the generation of cell lines with protein yields that are generally superior to those achievable through classical plasmid transfection that depends on the integration of the transfected DNA by non-homologous DNA end-joining. This is the main reason why these techniques can also be used for the generation of stable cell pools, heterogenous populations of recombinant cells generated by gene delivery and genetic selection without resorting to single cell cloning. This allows the time line from gene transfer to protein production to be reduced. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Protein labelling with stable isotopes: strategies

    International Nuclear Information System (INIS)

    Lirsac, P.N.; Gilles, N.; Jamin, N.; Toma, F.; Gabrielsen, O.; Boulain, J.C.; Menez, A.

    1994-01-01

    A protein labelling technique with stable isotopes has been developed at the CEA: a labelled complete medium has been developed, performing as well as the Luria medium, but differing from it because it contains not only free aminated acids and peptides, but also sugars (96% of D-glucopyrannose) and labelled nucleosides. These precursors are produced from a labelled photosynthetic micro-organisms biomass, obtained with micro-algae having incorporated carbon 13, nitrogen 15 and deuterium during their culture. Labelling costs are reduced. 1 fig., 1 tab., 3 refs

  14. Thermal green protein, an extremely stable, nonaggregating fluorescent protein created by structure-guided surface engineering.

    Science.gov (United States)

    Close, Devin W; Paul, Craig Don; Langan, Patricia S; Wilce, Matthew C J; Traore, Daouda A K; Halfmann, Randal; Rocha, Reginaldo C; Waldo, Geoffery S; Payne, Riley J; Rucker, Joseph B; Prescott, Mark; Bradbury, Andrew R M

    2015-07-01

    In this article, we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction of high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization. © 2014 Wiley Periodicals, Inc.

  15. TGP, an extremely stable, non-aggregating fluorescent protein created by structure-guided surface engineering

    OpenAIRE

    Close, Devin W.; Don Paul, Craig; Langan, Patricia S.; Wilce, Matthew C.J.; Traore, Daouda A.K.; Halfmann, Randal; Rocha, Reginaldo C.; Waldo, Geoffery S.; Payne, Riley J.; Rucker, Joseph B.; Prescott, Mark; Bradbury, Andrew R.M.

    2015-01-01

    In this paper we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP....

  16. Stable Protein-Repellent Zwitterionic Polymer Brushes Grafted from Silicon Nitride

    NARCIS (Netherlands)

    Nguyen, A.T.; Baggerman, J.; Paulusse, J.M.J.; Rijn, van C.J.M.; Zuilhof, H.

    2011-01-01

    Zwitterionic poly(sulfobetaine acrylamide) (SBMAA) brushes were grafted from silicon-rich silicon nitride (SixN4, x > 3) surfaces by atom transfer radical polymerization (ATRP) and studied in protein adsorption experiments. To this aim ATRP initiators were immobilized onto SixN4 through stable

  17. Stable Protein-Repellent Zwitterionic Polymer Brushes Grafted from Silicon Nitride

    NARCIS (Netherlands)

    Nguyen, Ai T.; Baggerman, Jacob; Paulusse, Jos Marie Johannes; van Rijn, Cees J.M.; Zuilhof, Han

    2011-01-01

    Zwitterionic poly(sulfobetaine acrylamide) (SBMAA) brushes were grafted from silicon-rich silicon nitride (SixN4, x > 3) surfaces by atom transfer radical polymerization (ATRP) and studied in protein adsorption experiments. To this aim ATRP initiators were immobilized onto SixN4 through stable Si−C

  18. Historical and contemporary stable isotope tracer approaches to studying mammalian protein metabolism

    Science.gov (United States)

    2016-01-01

    Over a century ago, Frederick Soddy provided the first evidence for the existence of isotopes; elements that occupy the same position in the periodic table are essentially chemically identical but differ in mass due to a different number of neutrons within the atomic nucleus. Allied to the discovery of isotopes was the development of some of the first forms of mass spectrometers, driven forward by the Nobel laureates JJ Thomson and FW Aston, enabling the accurate separation, identification, and quantification of the relative abundance of these isotopes. As a result, within a few years, the number of known isotopes both stable and radioactive had greatly increased and there are now over 300 stable or radioisotopes presently known. Unknown at the time, however, was the potential utility of these isotopes within biological disciplines, it was soon discovered that these stable isotopes, particularly those of carbon (13C), nitrogen (15N), oxygen (18O), and hydrogen (2H) could be chemically introduced into organic compounds, such as fatty acids, amino acids, and sugars, and used to “trace” the metabolic fate of these compounds within biological systems. From this important breakthrough, the age of the isotope tracer was born. Over the following 80 yrs, stable isotopes would become a vital tool in not only the biological sciences, but also areas as diverse as forensics, geology, and art. This progress has been almost exclusively driven through the development of new and innovative mass spectrometry equipment from IRMS to GC‐MS to LC‐MS, which has allowed for the accurate quantitation of isotopic abundance within samples of complex matrices. This historical review details the development of stable isotope tracers as metabolic tools, with particular reference to their use in monitoring protein metabolism, highlighting the unique array of tools that are now available for the investigation of protein metabolism in vivo at a whole body down to a single protein level

  19. Thermal-stable proteins of fruit of long-living Sacred Lotus Nelumbo nucifera Gaertn var. China Antique.

    Science.gov (United States)

    Shen-Miller, J; Lindner, Petra; Xie, Yongming; Villa, Sarah; Wooding, Kerry; Clarke, Steven G; Loo, Rachel R O; Loo, Joseph A

    2013-09-01

    Single-seeded fruit of the sacred lotus Nelumbo nucifera Gaertn var. China Antique from NE China have viability as long as ~1300 years determined by direct radiocarbon-dating, having a germination rate of 84%. The pericarp, a fruit tissue that encloses the single seeds of Nelumbo , is considered one of the major factors that contribute to fruit longevity. Proteins that are heat stable and have protective function may be equally important to seed viability. We show proteins of Nelumbo fruit that are able to withstand heating, 31% of which remained soluble in the 110°C-treated embryo-axis of a 549-yr-old fruit and 76% retained fluidity in its cotyledons. Genome of Nelumbo is published. The amino-acid sequences of 11 "thermal proteins" (soluble at 100°C) of modern Nelumbo embryo-axes and cotyledons, identified by mass spectrometry, Western blot and bioassay, are assembled and aligned with those of an archaeal-hyperthermophile Methancaldococcus jannaschii (Mj; an anaerobic methanogen having a growth optimum of 85°C) and with five mesophile angiosperms. These thermal proteins have roles in protection and repair under stress. More than half of the Nelumbo thermal proteins (55%) are present in the archaean Mj, indicating their long-term durability and history. One Nelumbo protein-repair enzyme exhibits activity at 100°C, having a higher heat-tolerance than that of Arabidopsis. A list of 30 sequenced but unassembled thermal proteins of Nelumbo is supplemented.

  20. Distribution of stable free radicals among amino acids of isolated soy proteins.

    Science.gov (United States)

    Lei, Qingxin; Liebold, Christopher M; Boatright, William L; Shah Jahan, M

    2010-09-01

    Application of deuterium sulfide to powdered isolated soy proteins (ISP) was used to quench stable free radicals and produce a single deuterium label on amino acids where free radicals reside. The deuterium labels rendered increases of isotope ratio for the specific ions of radical-bearing amino acids. Isotope ratio measurements were achieved by gas chromatography/mass spectrometry (GC/MS) analyses after the amino acids were released by acidic hydrolysis and converted to volatile derivatives with propyl chloroformate. The isotope enrichment data showed the stable free radicals were located on Ala, Gly, Leu, Ile, Asx (Asp+Asn), Glx (Glu+Gln), and Trp but not on Val, Pro, Met, Phe, Lys, and His. Due to the low abundance of Ser, Thr, and Cys derivatives and the impossibility to accurately measure their isotope ratios, the radical bearing status for these amino acids remained undetermined even though their derivatives were positively identified from ISP hydrolysates. The relative isotope enrichment for radical-bearing amino acids Ala, Gly, Leu, Ile, Asx (Asp+Asn), Glx (Glu+Gln), and Trp were 8.67%, 2.96%, 2.90%, 3.94%, 6.03%, 3.91%, and 21.48%, respectively. Isotope ratio increase for Tyr was also observed but further investigation revealed such increase was mainly from nonspecific deuterium-hydrogen exchange not free radical quenching. The results obtained from the present study provide important information for a better understanding of the mechanisms of free radical formation and stabilization in "dry" ISP.

  1. Leptospiral outer membrane protein LipL41 is not essential for acute leptospirosis but requires a small chaperone protein, lep, for stable expression.

    Science.gov (United States)

    King, Amy M; Bartpho, Thanatchaporn; Sermswan, Rasana W; Bulach, Dieter M; Eshghi, Azad; Picardeau, Mathieu; Adler, Ben; Murray, Gerald L

    2013-08-01

    Leptospirosis is a worldwide zoonosis caused by pathogenic Leptospira spp., but knowledge of leptospiral pathogenesis remains limited. However, the development of mutagenesis systems has allowed the investigation of putative virulence factors and their involvement in leptospirosis. LipL41 is the third most abundant lipoprotein found in the outer membranes of pathogenic leptospires and has been considered a putative virulence factor. LipL41 is encoded on the large chromosome 28 bp upstream of a small open reading frame encoding a hypothetical protein of unknown function. This gene was named lep, for LipL41 expression partner. In this study, lipL41 was found to be cotranscribed with lep. Two transposon mutants were characterized: a lipL41 mutant and a lep mutant. In the lep mutant, LipL41 protein levels were reduced by approximately 90%. Lep was shown through cross-linking and coexpression experiments to bind to LipL41. Lep is proposed to be a molecular chaperone essential for the stable expression of LipL41. The roles of LipL41 and Lep in the pathogenesis of Leptospira interrogans were investigated; surprisingly, neither of these two unique proteins was essential for acute leptospirosis.

  2. Protein remains stable at unusually high temperatures when solvated in aqueous mixtures of amino acid based ionic liquids

    DEFF Research Database (Denmark)

    Chevrot, Guillaume; Fileti, Eudes Eterno; Chaban, Vitaly V.

    2016-01-01

    Using molecular dynamics simulations, we investigated the thermal stability and real-time denaturation of a model mini-protein in four solvents: (1) water, (2) 1-ethyl-3-methylimidazolium alaninate [EMIM][ALA] (5 mol% in water), (3) methioninate [EMIM][MET] (5 mol% in water), and (4) tryptophanat...... (AAILs) than in water. This thermal stability was correlated with the thermodynamics and shear viscosity of the AAIL-containing mixtures. These results suggest that AAILs are generally favorable for protein conservation. [Figure not available: see fulltext.]...

  3. Extremely stable soluble high molecular mass multi-protein complex with DNase activity in human placental tissue.

    Directory of Open Access Journals (Sweden)

    Evgeniya E Burkova

    Full Text Available Human placenta is an organ which protects, feeds, and regulates the grooving of the embryo. Therefore, identification and characterization of placental components including proteins and their multi-protein complexes is an important step to understanding the placenta function. We have obtained and analyzed for the first time an extremely stable multi-protein complex (SPC, ∼ 1000 kDa from the soluble fraction of three human placentas. By gel filtration on Sepharose-4B, the SPC was well separated from other proteins of the placenta extract. Light scattering measurements and gel filtration showed that the SPC is stable in the presence of NaCl, MgCl2, acetonitrile, guanidinium chloride, and Triton in high concentrations, but dissociates efficiently in the presence of 8 M urea, 50 mM EDTA, and 0.5 M NaCl. Such a stable complex is unlikely to be a casual associate of different proteins. According to SDS-PAGE and MALDI mass spectrometry data, this complex contains many major glycosylated proteins with low and moderate molecular masses (MMs 4-14 kDa and several moderately abundant (79.3, 68.5, 52.8, and 27.2 kDa as well as minor proteins with higher MMs. The SPC treatment with dithiothreitol led to a disappearance of some protein bands and revealed proteins with lower MMs. The SPCs from three placentas efficiently hydrolyzed plasmid supercoiled DNA with comparable rates and possess at least two DNA-binding sites with different affinities for a 12-mer oligonucleotide. Progress in study of placental protein complexes can promote understanding of their biological functions.

  4. Stable strontium isotopic ratios from archaeological organic remains from the Thorsberg peat bog

    DEFF Research Database (Denmark)

    Nosch, Marie-Louise Bech; von Carnap-Bornheim, Claus; Grupe, Gisela

    2007-01-01

    Pilot study analysing stable strontium isotopic ratios from Iron Age textile and leather finds from the Thorsberg peat bog.......Pilot study analysing stable strontium isotopic ratios from Iron Age textile and leather finds from the Thorsberg peat bog....

  5. Cerebral water and ion balance remains stable when humans are exposed to acute hypoxic exercise

    DEFF Research Database (Denmark)

    Avnstorp, Magnus B; Rasmussen, Peter; Brassard, Patrice

    2015-01-01

    both circumstances. No cerebral net exchange of Na(+) or K(+) was evident. Likewise, no significant net-exchange of water over the brain was demonstrated and the arterial and jugular venous hemoglobin concentrations were similar. CONCLUSION: Challenging exercise in hypoxia for 30 min affected muscle......Avnstorp, Magnus B., Peter Rasmussen, Patrice Brassard, Thomas Seifert, Morten Overgaard, Peter Krustrup, Niels H. Secher, and Nikolai B. Nordsborg. Cerebral water and ion balance remains stable when humans are exposed to acute hypoxic exercise. High Alt Med Biol 16:000-000, 2015.-Background...... intense exercise is carried out in hypoxia and monitored the influence of muscle metabolism for changes in arterial variables. METHODS: On two separate days, in random order, 30 min cycling exercise was performed in either hypoxia (10% O2) or normoxia at an intensity that was exhaustive in the hypoxic...

  6. TGP, an extremely stable, non-aggregating fluorescent protein created by structure-guided surface engineering

    Science.gov (United States)

    Close, Devin W.; Don Paul, Craig; Langan, Patricia S.; Wilce, Matthew C.J.; Traore, Daouda A.K.; Halfmann, Randal; Rocha, Reginaldo C.; Waldo, Geoffery S.; Payne, Riley J.; Rucker, Joseph B.; Prescott, Mark; Bradbury, Andrew R.M.

    2014-01-01

    In this paper we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction of high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization. PMID:25287913

  7. Does the centre of mass remain stable during complex human postural equilibrium tasks in weightlessness?

    Science.gov (United States)

    Stapley, Paul; Pozzo, Thierry

    In normal gravity conditions the execution of voluntary movement involves the displacement of body segments as well as the maintenance of a stable reference value for equilibrium control. It has been suggested that centre of mass (CM) projection within the supporting base (BS) is the stabilised reference for voluntary action, and is conserved in weightlessness. The purpose of this study was to determine if the CM is stabilised during whole body reaching movements executed in weightlessness. The reaching task was conducted by two cosmonauts aboard the Russian orbital station MIR, during the Franco-Russian mission ALTAIR, 1993. Movements of reflective markers were recorded using a videocamera, successive images being reconstructed by computer every 40ms. The position of the CM, ankle joint torques and shank and thigh angles were computed for each subject pre- in- and post-flight using a 7-link mathematical model. Results showed that both cosmonauts adopted a backward leaning posture prior to reaching movements. Inflight, the CM was displaced throughout values in the horizontal axis three times those of pre-flight measures. In addition, ankle dorsi flexor torques inflight increased to values double those of pre- and post-flight tests. This study concluded that CM displacements do not remain stable during complex postural equilibrium tasks executed in weightlessness. Furthermore, in the absence of gravity, subjects changed their strategy for producing ankle torque during spaceflight from a forward to a backward leaning posture.

  8. Impact of contamination and pre-treatment on stable carbon and nitrogen isotopic composition of charred plant remains.

    Science.gov (United States)

    Vaiglova, Petra; Snoeck, Christophe; Nitsch, Erika; Bogaard, Amy; Lee-Thorp, Julia

    2014-12-15

    Stable isotope analysis of archaeological charred plants has become a useful tool for interpreting past agricultural practices and refining ancient dietary reconstruction. Charred material that lay buried in soil for millennia, however, is susceptible to various kinds of contamination, whose impact on the grain/seed isotopic composition is poorly understood. Pre-treatment protocols have been adapted in distinct forms from radiocarbon dating, but insufficient research has been carried out on evaluating their effectiveness and necessity for stable carbon and nitrogen isotope analysis. The effects of previously used pre-treatment protocols on the isotopic composition of archaeological and modern sets of samples were investigated. An archaeological sample was also artificially contaminated with carbonates, nitrates and humic acid and subjected to treatment aimed at removing the introduced contamination. The presence and removal of the contamination were investigated using Fourier transform infrared spectroscopy (FTIR) and δ(13)C and δ(15)N values. The results show a ca 1‰ decrease in the δ(15)N values of archaeological charred plant material caused by harsh acid treatments and ultra-sonication. This change is interpreted as being caused by mechanical distortion of the grains/seeds rather than by the removal of contamination. Furthermore, specific infrared peaks have been identified that can be used to detect the three types of contaminants studied. We argue that it is not necessary to try to remove humic acid contamination for stable isotope analysis. The advantages and disadvantages of crushing the grains/seeds before pre-treatment are discussed. We recommend the use of an acid-only procedure (0.5 M HCl for 30 min at 80 °C followed by three rinses in distilled water) for cleaning charred plant remains. This study fills an important gap in plant stable isotope research that will enable future researchers to evaluate potential sources of isotopic change and pre

  9. Stable and rigid DTPA-like paramagnetic tags suitable for in vitro and in situ protein NMR analysis.

    Science.gov (United States)

    Chen, Jia-Liang; Zhao, Yu; Gong, Yan-Jun; Pan, Bin-Bin; Wang, Xiao; Su, Xun-Cheng

    2018-02-01

    Organic synthesis of a ligand with high binding affinities for paramagnetic lanthanide ions is an effective way of generating paramagnetic effects on proteins. These paramagnetic effects manifested in high-resolution NMR spectroscopy are valuable dynamic and structural restraints of proteins and protein-ligand complexes. A paramagnetic tag generally contains a metal chelating moiety and a reactive group for protein modification. Herein we report two new DTPA-like tags, 4PS-PyDTTA and 4PS-6M-PyDTTA that can be site-specifically attached to a protein with a stable thioether bond. Both protein-tag adducts form stable lanthanide complexes, of which the binding affinities and paramagnetic tensors are tunable with respect to the 6-methyl group in pyridine. Paramagnetic relaxation enhancement (PRE) effects of Gd(III) complex on protein-tag adducts were evaluated in comparison with pseudocontact shift (PCS), and the results indicated that both 4PS-PyDTTA and 4PS-6M-PyDTTA tags are rigid and present high-quality PREs that are crucially important in elucidation of the dynamics and interactions of proteins and protein-ligand complexes. We also show that these two tags are suitable for in-situ protein NMR analysis.

  10. Role of stable isotope analyses in reconstructing past life-histories and the provenancing human skeletal remains: a review

    Directory of Open Access Journals (Sweden)

    Sehrawat Jagmahender Singh

    2017-09-01

    Full Text Available This article reviews the present scenario of use of stable isotopes (mainly δ13C, δ15N, δ18O, 87Sr to trace past life behaviours like breast feeding and weaning practices, the geographic origin, migration history, paleodiet and subsistence patterns of past populations from the chemical signatures of isotopes imprinted in human skeletal remains. This approach is based on the state that food-web isotopic signatures are seen in the human bones and teeth and such signatures can change parallely with a variety of biogeochemical processes. By measuring δ13C and δ15N isotopic values of subadult tissues of different ages, the level of breast milk ingestion at particular ages and the components of the complementary foods can be assessed. Strontium and oxygen isotopic analyses have been used for determining the geographic origins and reconstructing the way of life of past populations as these isotopes can map the isotopic outline of the area from where the person acquired water and food during initial lifetime. The isotopic values of strontium and oxygen values are considered specific to geographical areas and serve as reliable chemical signatures of migration history of past human populations (local or non-local to the site. Previous isotopic studies show that the subsistence patterns of the past human populations underwent extensive changes from nomadic to complete agricultural dependence strategies. The carbon and nitrogen isotopic values of local fauna of any archaeological site can be used to elucidate the prominence of freshwater resources in the diet of the past human populations found near the site. More extensive research covering isotopic descriptions of various prehistoric, historic and modern populations is needed to explore the role of stable isotope analysis for provenancing human skeletal remains and assessing human migration patterns/routes, geographic origins, paleodiet and subsistence practices of past populations.

  11. Determining synthesis rates of individual proteins in zebrafish (Danio rerio) with low levels of a stable isotope labelled amino acid.

    Science.gov (United States)

    Geary, Bethany; Magee, Kieran; Cash, Phillip; Young, Iain S; Whitfield, Phillip D; Doherty, Mary K

    2016-05-01

    The zebrafish is a powerful model organism for the analysis of human cardiovascular development and disease. Understanding these processes at the protein level not only requires changes in protein concentration to be determined but also the rate at which these changes occur on a protein-by-protein basis. The ability to measure protein synthesis and degradation rates on a proteome-wide scale, using stable isotope labelling in conjunction with mass spectrometry is now a well-established experimental approach. With the advent of more selective and sensitive mass spectrometers, it is possible to accurately measure lower levels of stable isotope incorporation, even when sample is limited. In order to challenge the sensitivity of this approach, we successfully determined the synthesis rates of over 600 proteins from the cardiac muscle of the zebrafish using a diet where either 30% or 50% of the L-leucine was replaced with a stable isotope labelled analogue ([(2) H7 ]L-leucine]. It was possible to extract sufficient protein from individual zebrafish hearts to determine the incorporation rate of the label into hundreds of proteins simultaneously, with the two labelling regimens showing a good correlation of synthesis rates. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cytocompatible and water stable ultrafine protein fibers for tissue engineering

    Science.gov (United States)

    Jiang, Qiuran

    This dissertation proposal focuses on the development of cytocompatible and water stable protein ultrafine fibers for tissue engineering. The protein-based ultrafine fibers have the potential to be used for biomedicine, due to their biocompatibility, biodegradability, similarity to natural extracellular matrix (ECM) in physical structure and chemical composition, and superior adsorption properties due to their high surface to volume ratio. However, the current technologies to produce the protein-based ultrafine fibers for biomedical applications still have several problems. For instance, the current electrospinning and phase separation technologies generate scaffolds composed of densely compacted ultrafine fibers, and cells can spread just on the surface of the fiber bulk, and hardly penetrate into the inner sections of scaffolds. Thus, these scaffolds can merely emulate the ECM as a two dimensional basement membrane, but are difficult to mimic the three dimensional ECM stroma. Moreover, the protein-based ultrafine fibers do not possess sufficient water stability and strength for biomedical applications, and need modifications such as crosslinking. However, current crosslinking methods are either high in toxicity or low in crosslinking efficiency. To solve the problems mentioned above, zein, collagen, and gelatin were selected as the raw materials to represent plant proteins, animal proteins, and denatured proteins in this dissertation. A benign solvent system was developed specifically for the fabrication of collagen ultrafine fibers. In addition, the gelatin scaffolds with a loose fibrous structure, high cell-accessibility and cell viability were produced by a novel ultralow concentration phase separation method aiming to simulate the structure of three dimensional (3D) ECM stroma. Non-toxic crosslinking methods using citric acid as the crosslinker were also developed for electrospun or phase separated scaffolds from these three proteins, and proved to be

  13. 24-Hour protein, arginine and citrulline metabolism in fed critically ill children – a stable isotope tracer study

    Science.gov (United States)

    de Betue, Carlijn T.I.; Garcia Casal, Xiomara C.; van Waardenburg, Dick A.; Schexnayder, Stephen M.; Joosten, Koen F.M.; Deutz, Nicolaas E.P.; Engelen, Marielle P.K.J.

    2017-01-01

    Background & aims The reference method to study protein and arginine metabolism in critically ill children is measuring plasma amino acid appearances with stable isotopes during a short (4–8h) time period and extrapolate results to 24-hour. However, 24-hour measurements may be variable due to critical illness related factors and a circadian rhythm could be present. Since only short duration stable isotope studies in critically ill children have been conducted before, the aim of this study was to investigate 24-hour appearance of specific amino acids representing protein and arginine metabolism, with stable isotope techniques in continuously fed critically ill children. Methods In eight critically ill children, admitted to the pediatric (n=4) or cardiovascular (n=4) intensive care unit, aged 0–10 years, receiving continuous (par)enteral nutrition with protein intake 1.0–3.7 g/kg/day, a 24-hour stable isotope tracer protocol was carried out. L-[ring-2H5]-phenylalanine, L-[3,3-2H2]-tyrosine, L-[5,5,5-2H3]-leucine, L-[guanido-15N2]-arginine and L-[5-13C-3,3,4,4-2H4]-citrulline were infused intravenously and L-[15N]-phenylalanine and L-[1-13C]leucine enterally. Arterial blood was sampled every hour. Results Coefficients of variation, representing intra-individual variability, of the amino acid appearances of phenylalanine, tyrosine, leucine, arginine and citrulline were high, on average 14–19% for intravenous tracers and 23–26% for enteral tracers. No evident circadian rhythm was present. The pattern and overall 24-hour level of whole body protein balance differed per individual. Conclusions In continuously fed stable critically ill children, the amino acid appearances of phenylalanine, tyrosine, leucine, arginine and citrulline show high variability. This should be kept in mind when performing stable isotope studies in this population. There was no apparent circadian rhythm. PMID:28089618

  14. Highly stable, protein capped gold nanoparticles as effective drug delivery vehicles for amino-glycosidic antibiotics

    International Nuclear Information System (INIS)

    Rastogi, Lori; Kora, Aruna Jyothi; Arunachalam, J.

    2012-01-01

    A method for the production of highly stable gold nanoparticles (Au NP) was optimized using sodium borohydride as reducing agent and bovine serum albumin as capping agent. The synthesized nanoparticles were characterized using UV–visible spectroscopy, transmission electron microscopy, X‐ray diffraction (XRD) and dynamic light scattering techniques. The formation of gold nanoparticles was confirmed from the appearance of pink colour and an absorption maximum at 532 nm. These protein capped nanoparticles exhibited excellent stability towards pH modification and electrolyte addition. The produced nanoparticles were found to be spherical in shape, nearly monodispersed and with an average particle size of 7.8 ± 1.7 nm. Crystalline nature of the nanoparticles in face centered cubic structure is confirmed from the selected‐area electron diffraction and XRD patterns. The nanoparticles were functionalized with various amino-glycosidic antibiotics for utilizing them as drug delivery vehicles. Using Fourier transform infrared spectroscopy, the possible functional groups of antibiotics bound to the nanoparticle surface have been examined. These drug loaded nanoparticle solutions were tested for their antibacterial activity against Gram-negative and Gram-positive bacterial strains, by well diffusion assay. The antibiotic conjugated Au NP exhibited enhanced antibacterial activity, compared to pure antibiotic at the same concentration. Being protein capped and highly stable, these gold nanoparticles can act as effective carriers for drugs and might have considerable applications in the field of infection prevention and therapeutics. - Highlights: ► Method for NaBH 4 reduced and BSA capped gold nanoparticle was standardized. ► Nanoparticles were spherical and nearly monodispersed with a size of 7.8 nm. ► Nanoparticles are extremely stable towards pH modification and electrolyte addition. ► Antibiotic conjugated nanoparticles exhibited enhanced antibacterial activity

  15. MALDI-based identification of stable hazelnut protein derived tryptic marker peptides.

    Science.gov (United States)

    Cucu, T; De Meulenaer, B; Devreese, B

    2012-01-01

    Food allergy is an important health problem especially in industrialised countries. Tree nuts, among which are hazelnuts (Corylus avellana), are typically causing serious and life-threatening symptoms in sensitive subjects. Hazelnut is used as a food ingredient in pastry, confectionary products, ice cream and meat products, therefore undeclared hazelnut can be often present as a cross-contaminant representing a threat for allergic consumers. Mass spectrometric techniques are used for the detection of food allergens in processed foods, but limited information regarding stable tryptic peptide markers for hazelnut is available. The aim of this study was to detect stable peptide markers from modified hazelnut protein through the Maillard reaction and oxidation in a buffered solution. Peptides ³⁹⁵Gly-Arg⁴⁰³ from Cor a 11 and ²⁰⁹Gln-Arg²¹⁷, ³⁵¹Ile-Arg³⁶³, ⁴⁶⁴Ala-Arg⁴⁷⁸ and ⁴⁰¹Val-Arg⁴¹⁷ from Cor a 9 hazelnut allergens proved to be the most stable and could be detected and confirmed with high scores in most of the modified samples. The identified peptides can be further used as analytical targets for the development of more robust quantitative methods for hazelnut detection in processed foods.

  16. Plasma Protein Turnover Rates in Rats Using Stable Isotope Labeling, Global Proteomics, and Activity-Based Protein Profiling

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jordan N.; Tyrrell, Kimberly J.; Hansen, Joshua R.; Thomas, Dennis G.; Murphree, Taylor A.; Shukla, Anil K.; Luders, Teresa; Madden, James M.; Li, Yunying; Wright, Aaron T.; Piehowski, Paul D.

    2017-12-06

    Protein turnover is important for general health on cellular and organism scales providing a strategy to replace old, damaged, or dysfunctional proteins. Protein turnover also informs of biomarker kinetics, as a better understanding of synthesis and degradation of proteins increases the clinical utility of biomarkers. Here, turnover rates of plasma proteins in rats were measured in vivo using a pulse-chase stable isotope labeling experiment. During the pulse, rats (n=5) were fed 13C6-labeled lysine (“heavy”) feed for 23 days to label proteins. During the chase, feed was changed to an unlabeled equivalent feed (“light”), and blood was repeatedly sampled from rats over 10 time points for 28 days. Plasma samples were digested with trypsin, and analyzed with liquid chromatography-tandem mass spectrometry (LC-MS/MS). MaxQuant was used to identify peptides and proteins, and quantify heavy:light lysine ratios. A system of ordinary differential equations was used to calculate protein turnover rates. Using this approach, 273 proteins were identified, and turnover rates were quantified for 157 plasma proteins with half-lives ranging 0.3-103 days. For the ~70 most abundant proteins, variability in turnover rates among rats was low (median coefficient of variation: 0.09). Activity-based protein profiling was applied to pooled plasma samples to enrich serine hydrolases using a fluorophosphonate (FP2) activity-based probe. This enrichment resulted in turnover rates for an additional 17 proteins. This study is the first to measure global plasma protein turnover rates in rats in vivo, measure variability of protein turnover rates in any animal model, and utilize activity-based protein profiling for enhancing measurements of targeted, low-abundant proteins, such as those commonly used as biomarkers. Measured protein turnover rates will be important for understanding of the role of protein turnover in cellular and organism health as well as increasing the utility of protein

  17. Analysis of human protein replacement stable cell lines established using snoMEN-PR vector.

    Directory of Open Access Journals (Sweden)

    Motoharu Ono

    Full Text Available The study of the function of many human proteins is often hampered by technical limitations, such as cytotoxicity and phenotypes that result from overexpression of the protein of interest together with the endogenous version. Here we present the snoMEN (snoRNA Modulator of gene ExpressioN vector technology for generating stable cell lines where expression of the endogenous protein can be reduced and replaced by an exogenous protein, such as a fluorescent protein (FP-tagged version. SnoMEN are snoRNAs engineered to contain complementary sequences that can promote knock-down of targeted RNAs. We have established and characterised two such partial protein replacement human cell lines (snoMEN-PR. Quantitative mass spectrometry was used to analyse the specificity of knock-down and replacement at the protein level and also showed an increased pull-down efficiency of protein complexes containing exogenous, tagged proteins in the protein replacement cell lines, as compared with conventional co-expression strategies. The snoMEN approach facilitates the study of mammalian proteins, particularly those that have so far been difficult to investigate by exogenous expression and has wide applications in basic and applied gene-expression research.

  18. Rapid protein production from stable CHO cell pools using plasmid vector and the cumate gene-switch.

    Science.gov (United States)

    Poulain, Adeline; Perret, Sylvie; Malenfant, Félix; Mullick, Alaka; Massie, Bernard; Durocher, Yves

    2017-08-10

    To rapidly produce large amounts of recombinant proteins, the generation of stable Chinese Hamster Ovary (CHO) cell pools represents a useful alternative to large-scale transient gene expression (TGE). We have developed a cell line (CHO BRI/rcTA ) allowing the inducible expression of recombinant proteins, based on the cumate gene switch. After the identification of optimal plasmid DNA topology (supercoiled vs linearized plasmid) for PEIpro™ mediated transfection and of optimal conditions for methionine sulfoximine (MSX) selection, we were able to generate CHO BRI/rcTA pools producing high levels of recombinant proteins. Volumetric productivities of up to 900mg/L were reproducibly achieved for a Fc fusion protein and up to 350mg/L for an antibody after 14days post-induction in non-optimized fed-batch cultures. In addition, we show that CHO pool volumetric productivities are not affected by a freeze-thaw cycle or following maintenance in culture for over one month in the presence of MSX. Finally, we demonstrate that volumetric protein production with the CR5 cumate-inducible promoter is three- to four-fold higher than with the human CMV or hybrid EF1α-HTLV constitutive promoters. These results suggest that the cumate-inducible CHO BRI/rcTA stable pool platform is a powerful and robust system for the rapid production of gram amounts of recombinant proteins. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  19. The Incidence of Postconcussion Syndrome Remains Stable Following Mild Traumatic Brain Injury in Children.

    Science.gov (United States)

    Barlow, Karen M; Crawford, Susan; Brooks, Brian L; Turley, Brenda; Mikrogianakis, Angelo

    2015-12-01

    Improving our knowledge about the natural history and persistence of symptoms following mild traumatic brain injury is a vital step in improving the provision of health care to children with postconcussion syndrome. The purposes of this study were to (1) determine the incidence and persistence of symptoms after mild traumatic brain injury and (2) ascertain whether Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV), symptom criteria for postconcussion syndrome in adults are appropriate for use in children. A tertiary care pediatric emergency department was the setting for this study. This was a prospective observational follow-up cohort study of children (ages 2 to 18 years) with mild traumatic brain injury. Data were collected in person during the acute presentation, and subsequent follow-up was performed by telephone at 7-10 days and 1, 2, and 3 months postinjury. Postconcussion Symptom Inventory for parents and children was used. The DSM-IV diagnostic criteria for postconcussion syndrome were explored using receiver operating characteristic curve analysis. A total of 467 children (62.5% boys, median age 12.04, range 2.34-18.0) with mild traumatic brain injury participated. The median time until symptom resolution was 29.0 days (95% confidence intervals: 26.09-31.91). Three months after injury, 11.8% of children with mild traumatic brain injury remained symptomatic. Receiver operating curve characteristic analysis of the postconcussion syndrome criteria successfully classified symptomatic participants at three months postinjury; the adolescent receiver operating characteristic curve was excellent with the area under the curve being 0.928 (P children presenting to the emergency room with a mild traumatic brain injury remain symptomatic at 3 months postinjury. This is the first study to demonstrate stable incidence rates of postconcussion syndrome in children and that modified DSM-IV criteria can be used to successfully classify

  20. Noninvasive imaging of protein metabolic labeling in single human cells using stable isotopes and Raman microscopy

    NARCIS (Netherlands)

    van Manen, H.J.; Lenferink, Aufrid T.M.; Otto, Cornelis

    2008-01-01

    We have combined nonresonant Raman microspectroscopy and spectral imaging with stable isotope labeling by amino acids in cell culture (SILAC) to selectively detect the incorporation of deuterium-labeled phenylalanine, tyrosine, and methionine into proteins in intact, single HeLa cells. The C−D

  1. Stable, precise, and reproducible patterning of bicoid and hunchback molecules in the early Drosophila embryo.

    Directory of Open Access Journals (Sweden)

    Yurie Okabe-Oho

    2009-08-01

    Full Text Available Precise patterning of morphogen molecules and their accurate reading out are of key importance in embryonic development. Recent experiments have visualized distributions of proteins in developing embryos and shown that the gradient of concentration of Bicoid morphogen in Drosophila embryos is established rapidly after fertilization and remains stable through syncytial mitoses. This stable Bicoid gradient is read out in a precise way to distribute Hunchback with small fluctuations in each embryo and in a reproducible way, with small embryo-to-embryo fluctuation. The mechanisms of such stable, precise, and reproducible patterning through noisy cellular processes, however, still remain mysterious. To address these issues, here we develop the one- and three-dimensional stochastic models of the early Drosophila embryo. The simulated results show that the fluctuation in expression of the hunchback gene is dominated by the random arrival of Bicoid at the hunchback enhancer. Slow diffusion of Hunchback protein, however, averages out this intense fluctuation, leading to the precise patterning of distribution of Hunchback without loss of sharpness of the boundary of its distribution. The coordinated rates of diffusion and transport of input Bicoid and output Hunchback play decisive roles in suppressing fluctuations arising from the dynamical structure change in embryos and those arising from the random diffusion of molecules, and give rise to the stable, precise, and reproducible patterning of Bicoid and Hunchback distributions.

  2. New stable isotope method to measure protein digestibility and response to pancreatic enzyme intake in cystic fibrosis.

    Science.gov (United States)

    Engelen, M P K J; Com, G; Anderson, P J; Deutz, N E P

    2014-12-01

    Adequate protein intake and digestion are necessary to prevent muscle wasting in cystic fibrosis (CF). Accurate and easy-to-use methodology to quantify protein maldigestion is lacking in CF. To measure protein digestibility and the response to pancreatic enzyme intake in CF by using a new stable isotope methodology. In 19 CF and 8 healthy subjects, protein digestibility was quantified during continuous (sip) feeding for 6 h by adding (15)N-labeled spirulina protein and L-[ring-(2)H5]phenylalanine (PHE) to the nutrition and measuring plasma ratio [(15)N]PHE to [(2)H5]PHE. Pancreatic enzymes were ingested after 2 h in CF and the response in protein digestibility was assessed. To exclude difference in mucosal function, postabsorptive whole-body citrulline (CIT) production rate was measured by L-[5-(13)C-5,5-(2)H2]-CIT pulse and blood samples were taken to analyze tracer-tracee ratios. Protein digestibility was severely reduced in the CF group (47% of healthy subjects; P digestibility in CF until 90% of values obtained by healthy subjects. Maximal digestibility was reached at 100 min and maintained for 80 min. Stratification into CF children (n = 10) and adults showed comparable values for protein digestibility and similar kinetic responses to pancreatic enzyme intake. Whole-body citrulline production was elevated in CF indicating preserved mucosal function. Protein digestibility is severely compromised in patients with CF as measured by this novel and easy-to-use stable isotope approach. Pancreatic enzymes are able to normalize protein digestibility in CF, albeit with a severe delay. Registration ClinicalTrials.gov = NCT01494909. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  3. Distribution and evolution of stable single α-helices (SAH domains in myosin motor proteins.

    Directory of Open Access Journals (Sweden)

    Dominic Simm

    Full Text Available Stable single-alpha helices (SAHs are versatile structural elements in many prokaryotic and eukaryotic proteins acting as semi-flexible linkers and constant force springs. This way SAH-domains function as part of the lever of many different myosins. Canonical myosin levers consist of one or several IQ-motifs to which light chains such as calmodulin bind. SAH-domains provide flexibility in length and stiffness to the myosin levers, and may be particularly suited for myosins working in crowded cellular environments. Although the function of the SAH-domains in human class-6 and class-10 myosins has well been characterised, the distribution of the SAH-domain in all myosin subfamilies and across the eukaryotic tree of life remained elusive. Here, we analysed the largest available myosin sequence dataset consisting of 7919 manually annotated myosin sequences from 938 species representing all major eukaryotic branches using the SAH-prediction algorithm of Waggawagga, a recently developed tool for the identification of SAH-domains. With this approach we identified SAH-domains in more than one third of the supposed 79 myosin subfamilies. Depending on the myosin class, the presence of SAH-domains can range from a few to almost all class members indicating complex patterns of independent and taxon-specific SAH-domain gain and loss.

  4. Tuning calcite morphology and growth acceleration by a rational design of highly stable protein-mimetics

    Science.gov (United States)

    Chen, Chun-Long; Qi, Jiahui; Tao, Jinhui; Zuckermann, Ronald N.; DeYoreo, James J.

    2014-01-01

    In nature, proteins play a significant role in biomineral formation. One of the ultimate goals of bioinspired materials science is to develop highly stable synthetic molecules that mimic the function of these natural proteins by controlling crystal formation. Here, we demonstrate that both the morphology and the degree of acceleration or inhibition observed during growth of calcite in the presence of peptoids can be rationally tuned by balancing the electrostatic and hydrophobic interactions, with hydrophobic interactions playing the dominant role. While either strong electrostatic or hydrophobic interactions inhibit growth and reduces expression of the {104} faces, correlations between peptoid-crystal binding energies and observed changes in calcite growth indicate moderate electrostatic interactions allow peptoids to weakly adsorb while moderate hydrophobic interactions cause disruption of surface-adsorbed water layers, leading to growth acceleration with retained expression of the {104} faces. This study provides fundamental principles for designing peptoids as crystallization promoters, and offers a straightforward screening method based on macroscopic crystal morphology. Because peptoids are sequence-specific, highly stable, and easily synthesized, peptoid-enhanced crystallization offers a broad range of potential applications. PMID:25189418

  5. Impacts of global warming on phenology of spring leaf unfolding remain stable in the long run.

    Science.gov (United States)

    Wang, Huanjiong; Rutishauser, This; Tao, Zexing; Zhong, Shuying; Ge, Quansheng; Dai, Junhu

    2017-02-01

    The impact of spring temperature forcing on the timing of leaf unfolding of plants (temperature sensitivity, S T ) is one important indicator of how and to what degree plant species track climate change. Fu et al. (Nature 526:104-107, 2015) found that S T has significantly decreased from the 1980-1994 to the 1999-2013 period for seven mid-latitude tree species in Europe. However, long-term changes in S T over the past 60 years are still not clear. Here, using in situ observations of leaf unfolding for seven dominant European tree species, we analyze the temporal change in S T over decadal time scales extending the data series back to 1951. Our results demonstrate that S T shows no statistically significant change within shifting 30-year windows from 1951 to 2013 and remains stable between 1951-1980 and 1984-2013 (3.6 versus 3.7 days °C -1 ). This result suggests that the significant decrease in S T over the past 33 years could not be sustained when examining the trends of phenological responses in the long run. Therefore, we could not conclude that tree spring phenology advances will slow down in the future, and the S T changes in warming scenarios are still uncertain.

  6. Highly Stable Trypsin-Aggregate Coatings on Polymer Nanofibers for Repeated Protein Digestion

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Chan; Lopez-Ferrer, Daniel; Lee, Sang-mok; Ahn, Hye-kyung; Nair, Sujith; Kim, Seong H.; Kim, Beom S.; Petritis, Konstantinos; Camp, David G.; Grate, Jay W.; Smith, Richard D.; Koo, Yoon-mo; Gu, Man Bock; Kim, Jungbae

    2009-04-01

    A stable and robust trypsin-based biocatalytic system was developed and demonstrated for proteomic applications. The system utilizes polymer nanofibers coated with trypsin aggregates for immobilized protease digestions. After covalently attaching an initial layer of trypsin to the polymer nanofibers, highly concentrated trypsin molecules are crosslinked to the layered trypsin by way of a glutaraldehyde treatment. This new process produced a 300-fold increase in trypsin activity compared with a conventional method for covalent trypsin immobilization and proved to be robust in that it still maintained a high level of activity after a year of repeated recycling. This highly stable form of immobilized trypsin was also resistant to autolysis, enabling repeated digestions of bovine serum albumin over 40 days and successful peptide identification by LC-MS/MS. Finally, the immobilized trypsin was resistant to proteolysis when exposed to other enzymes (i.e. chymotrypsin), which makes it suitable for use in “real-world” proteomic applications. Overall, the biocatalytic nanofibers with enzyme aggregate coatings proved to be an effective approach for repeated and automated protein digestion in proteomic analyses.

  7. Evaluation of behaviour in stabled draught horse foals fed diets with two protein levels.

    Science.gov (United States)

    Sartori, C; Guzzo, N; Normando, S; Bailoni, L; Mantovani, R

    2017-01-01

    The present work is aimed at evaluating the behaviour of Italian Heavy Draught Horse (IHDH) foals reared in semi-covered stables and fed two isoenergetic total mixed rations with different dietary protein levels (13.2% and 10.6% of CP on dry matter). The study was prompted by the restrictions for nitrate emissions in farms of the European Nitrate Directive. One suggested solution is to reduce dietary protein while maintaining normal performance and welfare, but there is a lack of literature in studies of horses. The behaviours of 20 foals of 437±60 kg of BW, aged 379±37 days and stabled in four pens by sex (S) and diet (D) were video recorded and analysed to build a suitable ethogram including 18 behaviours in six categories: ingestion, resting, maintenance, movement, social activities, other. The percentage of the daily time spent in each behavioural category and single behaviours was analysed via a single traits GLM including S, D and their interaction. Daily activity was consistent with existing literature: foals spent about 33% of the day in ingestion activities and 41% in resting, whereas social interactions constituted 8% of the time and individual maintenance draught breeds for foals in both dietary groups, a result that suggests the maintenance of well-being after dietary protein reduction. This result, together with the findings of a companion study showing no changes in growth performances of foals, showed that a reduction of CP in foal diet is reconcilable with the maintenance of performance and welfare.

  8. Stable markers of oxidant damage to proteins and their application in the study of human disease

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan; Fu, S; Wang, H

    1999-01-01

    The mechanisms of formation and the nature of the altered amino acid side chains formed on proteins subjected to oxidant attack are reviewed. The use of stable products of protein side chain oxidation as potential markers for assessing oxidative damage in vivo in humans is discussed. The methods...... developed in the authors laboratories are outlined, and the advantages and disadvantages of these techniques compared with other methodologies for assessing oxidative damage to proteins and other macromolecules. Evidence is presented to show that protein oxidation products are sensitive markers of oxidative...... damage, that the pattern of products detected may yield information as to the nature of the original oxidative insult, and that the levels of oxidized side-chains can, in certain circumstances, be much higher than those of other markers of oxidation such as lipid hydroperoxides....

  9. Cell-free expression and stable isotope labelling strategies for membrane proteins

    International Nuclear Information System (INIS)

    Sobhanifar, Solmaz; Reckel, Sina; Junge, Friederike; Schwarz, Daniel; Kai, Lei; Karbyshev, Mikhail; Loehr, Frank; Bernhard, Frank; Doetsch, Volker

    2010-01-01

    Membrane proteins are highly underrepresented in the structural data-base and remain one of the most challenging targets for functional and structural elucidation. Their roles in transport and cellular communication, furthermore, often make over-expression toxic to their host, and their hydrophobicity and structural complexity make isolation and reconstitution a complicated task, especially in cases where proteins are targeted to inclusion bodies. The development of cell-free expression systems provides a very interesting alternative to cell-based systems, since it circumvents many problems such as toxicity or necessity for the transportation of the synthesized protein to the membrane, and constitutes the only system that allows for direct production of membrane proteins in membrane-mimetic environments which may be suitable for liquid state NMR measurements. The unique advantages of the cell-free expression system, including strong expression yields as well as the direct incorporation of almost any combination of amino acids with very little metabolic scrambling, has allowed for the development of a wide-array of isotope labelling techniques which facilitate structural investigations of proteins whose spectral congestion and broad line-widths may have earlier rendered them beyond the scope of NMR. Here we explore various labelling strategies in conjunction with cell-free developments, with a particular focus on α-helical transmembrane proteins which benefit most from such methods.

  10. Identification of syntrophic acetate-oxidizing bacteria in anaerobic digesters by combined protein-based stable isotope probing and metagenomics

    OpenAIRE

    Mosbæk, Freya; Kjeldal, Henrik; Mulat, Daniel G; Albertsen, Mads; Ward, Alastair J; Feilberg, Anders; Nielsen, Jeppe L

    2016-01-01

    Inhibition of anaerobic digestion through accumulation of volatile fatty acids occasionally occurs as the result of unbalanced growth between acidogenic bacteria and methanogens. A fast recovery is a prerequisite for establishing an economical production of biogas. However, very little is known about the microorganisms facilitating this recovery. In this study, we investigated the organisms involved by a novel approach of mapping protein-stable isotope probing (protein-SIP) onto a binned meta...

  11. Site-specific tagging proteins with a rigid, small and stable transition metal chelator, 8-hydroxyquinoline, for paramagnetic NMR analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yin; Huang, Feng [Nankai University, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) (China); Huber, Thomas [Australian National University, Research School of Chemistry (Australia); Su, Xun-Cheng, E-mail: xunchengsu@nankai.edu.cn [Nankai University, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) (China)

    2016-02-15

    Design of a paramagnetic metal binding motif in a protein is a valuable way for understanding the function, dynamics and interactions of a protein by paramagnetic NMR spectroscopy. Several strategies have been proposed to site-specifically tag proteins with paramagnetic lanthanide ions. Here we report a simple approach of engineering a transition metal binding motif via site-specific labelling of a protein with 2-vinyl-8-hydroxyquinoline (2V-8HQ). The protein-2V-8HQ adduct forms a stable complex with transition metal ions, Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). The paramagnetic effects generated by these transition metal ions were evaluated by NMR spectroscopy. We show that 2V-8HQ is a rigid and stable transition metal binding tag. The coordination of the metal ion can be assisted by protein sidechains. More importantly, tunable paramagnetic tensors are simply obtained in an α-helix that possesses solvent exposed residues in positions i and i + 3, where i is the residue to be mutated to cysteine, i + 3 is Gln or Glu or i − 4 is His. The coordination of a sidechain carboxylate/amide or imidazole to cobalt(II) results in different structural geometries, leading to different paramagnetic tensors as shown by experimental data.

  12. Species A rotavirus NSP3 acquires its translation inhibitory function prior to stable dimer formation.

    Directory of Open Access Journals (Sweden)

    Hugo I Contreras-Treviño

    Full Text Available Species A rotavirus non-structural protein 3 (NSP3 is a translational regulator that inhibits or, under some conditions, enhances host cell translation. NSP3 binds to the translation initiation factor eIF4G1 and evicts poly-(A binding protein (PABP from eIF4G1, thus inhibiting translation of polyadenylated mRNAs, presumably by disrupting the effect of PABP bound to their 3'-ends. NSP3 has a long coiled-coil region involved in dimerization that includes a chaperone Hsp90-binding domain (HS90BD. We aimed to study the role in NSP3 dimerization of a segment of the coiled-coil region adjoining the HS90BD. We used a vaccinia virus system to express NSP3 with point mutations in conserved amino acids in the coiled-coil region and determined the effects of these mutations on translation by metabolic labeling of proteins as well as on accumulation of stable NSP3 dimers by non-dissociating Western blot, a method that separates stable NSP3 dimers from the monomer/dimerization intermediate forms of the protein. Four of five mutations reduced the total yield of NSP3 and the formation of stable dimers (W170A, K171E, R173E and R187E:K191E, whereas one mutation had the opposite effects (Y192A. Treatment with the proteasome inhibitor MG132 revealed that stable NSP3 dimers and monomers/dimerization intermediates are susceptible to proteasome degradation. Surprisingly, mutants severely impaired in the formation of stable dimers were still able to inhibit host cell translation, suggesting that NSP3 dimerization intermediates are functional. Our results demonstrate that rotavirus NSP3 acquires its function prior to stable dimer formation and remain as a proteasome target throughout dimerization.

  13. Induction of stable protein-deoxyribonucleic acid adducts in Chinese hamster cell chromatin by ultraviolet light

    International Nuclear Information System (INIS)

    Strniste, G.F.; Rall, S.C.

    1976-01-01

    Ultraviolet (uv)-light-mediated formation of protein-DNA adducts in Chinese hamster cell chromatin was investigated in an attempt to compare chromatin alterations induced in vitro with those observed in vivo. Three independent methods of analysis indicated stable protein-DNA associations: a membrane filter assay which retained DNA on the filter in the presence of high salt-detergent; a Sepharose 4B column assay in which protein eluted coincident with DNA; and a CsCl density gradient equilibrium assay which showed both protein and DNA banding at densities other than their respective native densities. Treatment of the irradiated chromatin with DNase provided further evidence that protein--DNA and not protein-protein adducts were being observed in the column assay. There is a fluence-dependent response of protein-DNA adduct formation when the chromatin is irradiated at low ionic strength and is linear for protein over the range studied. When the chromatin is exposed to differing conditions of pH, ionic strength, or divalent metal ion concentration, the quantity of adduct formed upon uv irradiation varies. Susceptibility to adduct formation can be partially explained in terms of the condensation state of the chromatin and other factors such as rearrangement, denaturation, and dissociation of the chromatin components. Besides providing information on the biological significance of these types of uv-induced lesions, this technique may be useful as a probe of chromatin structure

  14. Protein expression changes caused by spaceflight as measured for 18 Russian cosmonauts.

    Science.gov (United States)

    M Larina, Irina; Percy, Andrew J; Yang, Juncong; Borchers, Christoph H; M Nosovsky, Andrei; I Grigoriev, Anatoli; N Nikolaev, Evgeny

    2017-08-15

    The effects of spaceflight on human physiology is an increasingly studied field, yet the molecular mechanisms driving physiological changes remain unknown. With that in mind, this study was performed to obtain a deeper understanding of changes to the human proteome during space travel, by quantitating a panel of 125 proteins in the blood plasma of 18 Russian cosmonauts who had conducted long-duration missions to the International Space Station. The panel of labeled prototypic tryptic peptides from these proteins covered a concentration range of more than 5 orders of magnitude in human plasma. Quantitation was achieved by a well-established and highly-regarded targeted mass spectrometry approach involving multiple reaction monitoring in conjunction with stable isotope-labeled standards. Linear discriminant function analysis of the quantitative results revealed three distinct groups of proteins: 1) proteins with post-flight protein concentrations remaining stable, 2) proteins whose concentrations recovered slowly, or 3) proteins whose concentrations recovered rapidly to their pre-flight levels. Using a systems biology approach, nearly all of the reacting proteins could be linked to pathways that regulate the activities of proteases, natural immunity, lipid metabolism, coagulation cascades, or extracellular matrix metabolism.

  15. Stereoselective synthesis of stable-isotope-labeled amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, C.J.; Martinez, R.A.; Silks, L.A. III [Los Alamos National Laboratory, NM (United States); Lodwig, S.N. [Centralia College, WA (United States)

    1994-12-01

    For magnetic resonance and vibrational spectroscopies to reach their full potential, they must be used in combination with sophisticated site-specific stable isotope labeling of biological macromolecules. Labeled amino acids are required for the study of the structure and function of enzymes and proteins. Because there are 20 common amino acids, each with its own distinguishing chemistry, they remain a synthetic challenge. The Oppolzer chiral auxiliary provides a general tool with which to approach the synthesis of labeled amino acids. By using the Oppolzer auxiliary, amino acids can be constructed from several small molecules, which is ideal for stable isotope labeling. In addition to directing the stereochemistry at the {alpha}-carbon, the camphorsultam can be used for stereo-specific isotope labeling at prochiral centers in amino acids. By using the camphorsultam auxiliary we have the potential to synthesize virtually any isotopomer of all of the common amino acids.

  16. Stereoselective synthesis of stable-isotope-labeled amino acids

    International Nuclear Information System (INIS)

    Unkefer, C.J.; Martinez, R.A.; Silks, L.A. III; Lodwig, S.N.

    1994-01-01

    For magnetic resonance and vibrational spectroscopies to reach their full potential, they must be used in combination with sophisticated site-specific stable isotope labeling of biological macromolecules. Labeled amino acids are required for the study of the structure and function of enzymes and proteins. Because there are 20 common amino acids, each with its own distinguishing chemistry, they remain a synthetic challenge. The Oppolzer chiral auxiliary provides a general tool with which to approach the synthesis of labeled amino acids. By using the Oppolzer auxiliary, amino acids can be constructed from several small molecules, which is ideal for stable isotope labeling. In addition to directing the stereochemistry at the α-carbon, the camphorsultam can be used for stereo-specific isotope labeling at prochiral centers in amino acids. By using the camphorsultam auxiliary we have the potential to synthesize virtually any isotopomer of all of the common amino acids

  17. Protein intercalation in DNA as one of main modes of fixation of the most stable chromatin loop domains

    Directory of Open Access Journals (Sweden)

    М. I. Chopei

    2014-08-01

    Full Text Available The main mechanism of DNA track formation during comet assay of nucleoids, obtained after removal of cell membranes and most of proteins, is the extension to anode of negatively supercoiled DNA loops attached to proteins, remaining in nucleoid after lysis treatment. The composition of these residual protein structures and the nature of their strong interaction with the loop ends remain poorly studied. In this work we investigated the influence of chloroquine intercalation and denaturation of nucleoid proteins on the efficiency of electrophoretic track formation during comet assay. The results obtained suggest that even gentle protein denaturation is sufficient to reduce considerably the effectiveness of the DNA loop migration due to an increase in the loops size. The same effect was observed under local DNA unwinding upon chloroquine intercalation around the sites of the attachment of DNA to proteins. The topological interaction (protein intercalation into the double helix between DNA loop ends and nucleoid proteins is discussed.

  18. Stable Isotopic signatures of Adélie penguin remains provide long-term paleodietary records in Northern Victoria Land (Ross Sea, Antarctica)

    Science.gov (United States)

    Lorenzini, Sandra; Baroni, Carlo; Fallick, Anthony Edward; Baneschi, Ilaria; Salvatore, Maria Cristina; Zanchetta, Giovanni; Dallai, Luigi

    2010-05-01

    The stable isotopes geochemistry of carbon and nitrogen provides a powerful tools for investigating in animal dietary patterns and shifts during the past. The signature of C and N isotopes provide direct information about the diet of an individual and its dietary patterns, especially when the dietary sources consist of prey from different trophic levels (i.e. different C and N isotopic composition) (DeNiro and Epstein 1978, Minawaga and Wada 1984, Koch et al. 1994, Hobson 1995). By analyzing the isotopic composition of penguin remains, we present a new detailed Adélie penguin (Pygoscelis adeliae) paleodietary record for the area of Terra Nova Bay (Victoria Land, Ross Sea). Adélie penguins primarily feed on fish (mainly the silverfish Pleuragramma antarcticum) and krill (Euphausia superba, Euphausia cristallorophias) (Ainley 2002, Lorenzini et al. 2009) that belonging to two different trophic levels. Consequently, they are characterized by different isotopic signatures. Specifically, we analyzed 13C/12C and 15N/14N ratios of more than one thousand of modern and fossil Adélie penguin eggshell and guano samples collected from ornithogenic soils (penguin guano-formed) dated back to ≈7,200 years BP (Baroni and Orombelli 1994, Lambert et al. 2002, Baroni and Hall 2004, Hall et al. 2006). The expanded database of stable isotope values obtained from Adélie penguin remains define a detailed paleodietary record with an excellent temporal continuity over all the investigated time period. Our data indicate a significant dietary shift between fish and krill, with a gradual decrease from past to present time in the proportion of fish compared to krill in Adélie penguin diet. From 7200 yrs BP to 2000 yrs BP, δ13C and δ15N values indicate fish as the most eaten prey. The dietary contribution of lower-trophic prey in penguin diet started becoming evident not earlier than 2000 yrs BP, when the δ13C values reveal a mixed diet based on fish and krill consumption. Modern

  19. Stable Plastid Transformation for High-Level Recombinant Protein Expression: Promises and Challenges

    Directory of Open Access Journals (Sweden)

    Meili Gao

    2012-01-01

    Full Text Available Plants are a promising expression system for the production of recombinant proteins. However, low protein productivity remains a major obstacle that limits extensive commercialization of whole plant and plant cell bioproduction platform. Plastid genetic engineering offers several advantages, including high levels of transgenic expression, transgenic containment via maternal inheritance, and multigene expression in a single transformation event. In recent years, the development of optimized expression strategies has given a huge boost to the exploitation of plastids in molecular farming. The driving forces behind the high expression level of plastid bioreactors include codon optimization, promoters and UTRs, genotypic modifications, endogenous enhancer and regulatory elements, posttranslational modification, and proteolysis. Exciting progress of the high expression level has been made with the plastid-based production of two particularly important classes of pharmaceuticals: vaccine antigens, therapeutic proteins, and antibiotics and enzymes. Approaches to overcome and solve the associated challenges of this culture system that include low transformation frequencies, the formation of inclusion bodies, and purification of recombinant proteins will also be discussed.

  20. Stable Isotopes and Oral Tori in Greenlandic Norse and Inuit

    DEFF Research Database (Denmark)

    Baumann, M.; Lynnerup, N.; Scott, G. R.

    2017-01-01

    Palatine (PT) and mandibular torus (MT) have long been of interest to dental researchers and anthropologists, but their aetiology remains unresolved. Some combination of genetic and environmental factors influences their expression, but the relative role of each remains contentious. Previous...... research has shown that the Greenlandic Norse exhibit exceptionally high frequencies and pronounced expressions of PT and MT. In this regard, they are significantly different from genetically related medieval Scandinavian populations, so environmental factors have to be considered. An earlier study...... that estimated stable carbon and nitrogen isotope compositions for a Greenlandic Norse sample makes it possible to compare directly PT and MT expression with the relative degree of marine protein intake. For comparative purposes, parallel observations were made on a Greenlandic Inuit sample. Some researchers...

  1. Naturally occurring stable isotopes reflect changes in protein turnover and growth in gilthead sea bream (Sparus aurata) juveniles under different dietary protein levels.

    Science.gov (United States)

    Martin-Perez, Miguel; Fernandez-Borras, Jaume; Ibarz, Antoni; Felip, Olga; Fontanillas, Ramon; Gutierrez, Joaquim; Blasco, Josefina

    2013-09-18

    Ideal nutritional conditions are crucial to sustainable aquaculture due to economic and environmental issues. Here we apply stable isotope analysis as an indicator of fish growth and feeding balance, to define the optimum diet for efficient growing conditions. Juveniles of gilthead sea bream were fed with six isoenergetic diets differing in protein to lipid proportion (from 41/26 to 57/20). As protein intake increased, δ¹⁵N and Δδ¹⁵N of muscle and Δδ¹⁵N and Δδ¹³C of its protein fraction decreased, indicating lower protein turnover and higher protein deposition in muscle. This is reflected in the inverse relationship found between Δδ¹⁵N and growth rate, although no differences were observed in either parameter beyond the protein/lipid proportion 47/23. Principal component analysis (PCA) also signaled 47/23 diet as the pivotal point with the highest growing efficiency, with isotopic parameters having the highest discrimination load. Thus, muscle isotope composition, especially ¹⁵N, can be used to evaluate nutritional status in farmed fish.

  2. Coronavirus envelope (E) protein remains at the site of assembly

    International Nuclear Information System (INIS)

    Venkatagopalan, Pavithra; Daskalova, Sasha M.; Lopez, Lisa A.; Dolezal, Kelly A.; Hogue, Brenda G.

    2015-01-01

    Coronaviruses (CoVs) assemble at endoplasmic reticulum Golgi intermediate compartment (ERGIC) membranes and egress from cells in cargo vesicles. Only a few molecules of the envelope (E) protein are assembled into virions. The role of E in morphogenesis is not fully understood. The cellular localization and dynamics of mouse hepatitis CoV A59 (MHV) E protein were investigated to further understanding of its role during infection. E protein localized in the ERGIC and Golgi with the amino and carboxy termini in the lumen and cytoplasm, respectively. E protein does not traffic to the cell surface. MHV was genetically engineered with a tetracysteine tag at the carboxy end of E. Fluorescence recovery after photobleaching (FRAP) showed that E is mobile in ERGIC/Golgi membranes. Correlative light electron microscopy (CLEM) confirmed the presence of E in Golgi cisternae. The results provide strong support that E proteins carry out their function(s) at the site of budding/assembly. - Highlights: • Mouse hepatitis coronavirus (MHV-CoV) E protein localizes in the ERGIC and Golgi. • MHV-CoV E does not transport to the cell surface. • MHV-CoV can be genetically engineered with a tetracysteine tag appended to E. • First FRAP and correlative light electron microscopy of a CoV E protein. • Live-cell imaging shows that E is mobile in ERGIC/Golgi membranes

  3. Coronavirus envelope (E) protein remains at the site of assembly

    Energy Technology Data Exchange (ETDEWEB)

    Venkatagopalan, Pavithra [The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401 (United States); School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401 (United States); Microbiology Graduate Program, Arizona State University, Tempe, AZ 85287-5401 (United States); Daskalova, Sasha M. [The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401 (United States); Department of Biochemistry and Chemistry, Arizona State University, Tempe, AZ 85287-5401 (United States); Lopez, Lisa A. [The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401 (United States); School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401 (United States); Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ 85287-5401 (United States); Dolezal, Kelly A. [The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401 (United States); School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401 (United States); Microbiology Graduate Program, Arizona State University, Tempe, AZ 85287-5401 (United States); Hogue, Brenda G., E-mail: Brenda.Hogue@asu.edu [The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401 (United States); School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401 (United States)

    2015-04-15

    Coronaviruses (CoVs) assemble at endoplasmic reticulum Golgi intermediate compartment (ERGIC) membranes and egress from cells in cargo vesicles. Only a few molecules of the envelope (E) protein are assembled into virions. The role of E in morphogenesis is not fully understood. The cellular localization and dynamics of mouse hepatitis CoV A59 (MHV) E protein were investigated to further understanding of its role during infection. E protein localized in the ERGIC and Golgi with the amino and carboxy termini in the lumen and cytoplasm, respectively. E protein does not traffic to the cell surface. MHV was genetically engineered with a tetracysteine tag at the carboxy end of E. Fluorescence recovery after photobleaching (FRAP) showed that E is mobile in ERGIC/Golgi membranes. Correlative light electron microscopy (CLEM) confirmed the presence of E in Golgi cisternae. The results provide strong support that E proteins carry out their function(s) at the site of budding/assembly. - Highlights: • Mouse hepatitis coronavirus (MHV-CoV) E protein localizes in the ERGIC and Golgi. • MHV-CoV E does not transport to the cell surface. • MHV-CoV can be genetically engineered with a tetracysteine tag appended to E. • First FRAP and correlative light electron microscopy of a CoV E protein. • Live-cell imaging shows that E is mobile in ERGIC/Golgi membranes.

  4. Quantifying inter-laboratory variability in stable isotope analysis of ancient skeletal remains.

    Directory of Open Access Journals (Sweden)

    William J Pestle

    Full Text Available Over the past forty years, stable isotope analysis of bone (and tooth collagen and hydroxyapatite has become a mainstay of archaeological and paleoanthropological reconstructions of paleodiet and paleoenvironment. Despite this method's frequent use across anthropological subdisciplines (and beyond, the present work represents the first attempt at gauging the effects of inter-laboratory variability engendered by differences in a sample preparation, and b analysis (instrumentation, working standards, and data calibration. Replicate analyses of a 14C-dated ancient human bone by twenty-one archaeological and paleoecological stable isotope laboratories revealed significant inter-laboratory isotopic variation for both collagen and carbonate. For bone collagen, we found a sizeable range of 1.8‰ for δ13Ccol and 1.9‰ for δ15Ncol among laboratories, but an interpretatively insignificant average pairwise difference of 0.2‰ and 0.4‰ for δ13Ccol and δ15Ncol respectively. For bone hydroxyapatite the observed range increased to a troublingly large 3.5‰ for δ13Cap and 6.7‰ for δ18Oap, with average pairwise differences of 0.6‰ for δ13Cap and a disquieting 2.0‰ for δ18Oap. In order to assess the effects of preparation versus analysis on isotopic variability among laboratories, a subset of the samples prepared by the participating laboratories were analyzed a second time on the same instrument. Based on this duplicate analysis, it was determined that roughly half of the isotopic variability among laboratories could be attributed to differences in sample preparation, with the other half resulting from differences in analysis (instrumentation, working standards, and data calibration. These findings have serious implications for choices made in the preparation and extraction of target biomolecules, the comparison of results obtained from different laboratories, and the interpretation of small differences in bone collagen and hydroxyapatite

  5. Quantifying inter-laboratory variability in stable isotope analysis of ancient skeletal remains.

    Science.gov (United States)

    Pestle, William J; Crowley, Brooke E; Weirauch, Matthew T

    2014-01-01

    Over the past forty years, stable isotope analysis of bone (and tooth) collagen and hydroxyapatite has become a mainstay of archaeological and paleoanthropological reconstructions of paleodiet and paleoenvironment. Despite this method's frequent use across anthropological subdisciplines (and beyond), the present work represents the first attempt at gauging the effects of inter-laboratory variability engendered by differences in a) sample preparation, and b) analysis (instrumentation, working standards, and data calibration). Replicate analyses of a 14C-dated ancient human bone by twenty-one archaeological and paleoecological stable isotope laboratories revealed significant inter-laboratory isotopic variation for both collagen and carbonate. For bone collagen, we found a sizeable range of 1.8‰ for δ13Ccol and 1.9‰ for δ15Ncol among laboratories, but an interpretatively insignificant average pairwise difference of 0.2‰ and 0.4‰ for δ13Ccol and δ15Ncol respectively. For bone hydroxyapatite the observed range increased to a troublingly large 3.5‰ for δ13Cap and 6.7‰ for δ18Oap, with average pairwise differences of 0.6‰ for δ13Cap and a disquieting 2.0‰ for δ18Oap. In order to assess the effects of preparation versus analysis on isotopic variability among laboratories, a subset of the samples prepared by the participating laboratories were analyzed a second time on the same instrument. Based on this duplicate analysis, it was determined that roughly half of the isotopic variability among laboratories could be attributed to differences in sample preparation, with the other half resulting from differences in analysis (instrumentation, working standards, and data calibration). These findings have serious implications for choices made in the preparation and extraction of target biomolecules, the comparison of results obtained from different laboratories, and the interpretation of small differences in bone collagen and hydroxyapatite isotope values

  6. Remain stable.; Schoen stabil bleiben.

    Energy Technology Data Exchange (ETDEWEB)

    Teroerde, Michael; Schulz, Detlef [Helmut-Schmidt-Univ., Hamburg (Germany). Professur fuer Elektrische Energiesysteme; Eckoldt, Hans-Joerg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Fachgebiet Magnetstromversorgung

    2013-11-15

    In the German power grid the increasing photovoltaic power plants and wind turbines provide due to their volatile energy supply high demands on the control of the power grid. In the case of malfunctions in the network short-term energy storage could participate in the grid control. Superconducting magnetic energy storage (SMES) belongs to the efficient short-term energy storage. A SMES system was investigated at DESY in Hamburg. [German] Im deutschen Stromnetz stellen die zunehmenden Photovoltaik- und Windkraftanlagen aufgrund ihrer stark schwankenden Energieeinspeisung hohe Anforderungen an die Regelung des Stromnetzes. Bei eventuell auftretenden Stoerungen im Netz koennten Kurzzeitenergiespeicher an der Netzregelung teilnehmen. Zu den effizienten Kurzzeitspeichern gehoeren supraleitende magnetische Energiespeicher (SMES). Ein SMES-System wurde bei DESY in Hamburg untersucht.

  7. Fault tolerance in protein interaction networks: stable bipartite subgraphs and redundant pathways.

    Science.gov (United States)

    Brady, Arthur; Maxwell, Kyle; Daniels, Noah; Cowen, Lenore J

    2009-01-01

    As increasing amounts of high-throughput data for the yeast interactome become available, more system-wide properties are uncovered. One interesting question concerns the fault tolerance of protein interaction networks: whether there exist alternative pathways that can perform some required function if a gene essential to the main mechanism is defective, absent or suppressed. A signature pattern for redundant pathways is the BPM (between-pathway model) motif, introduced by Kelley and Ideker. Past methods proposed to search the yeast interactome for BPM motifs have had several important limitations. First, they have been driven heuristically by local greedy searches, which can lead to the inclusion of extra genes that may not belong in the motif; second, they have been validated solely by functional coherence of the putative pathways using GO enrichment, making it difficult to evaluate putative BPMs in the absence of already known biological annotation. We introduce stable bipartite subgraphs, and show they form a clean and efficient way of generating meaningful BPMs which naturally discard extra genes included by local greedy methods. We show by GO enrichment measures that our BPM set outperforms previous work, covering more known complexes and functional pathways. Perhaps most importantly, since our BPMs are initially generated by examining the genetic-interaction network only, the location of edges in the protein-protein physical interaction network can then be used to statistically validate each candidate BPM, even with sparse GO annotation (or none at all). We uncover some interesting biological examples of previously unknown putative redundant pathways in such areas as vesicle-mediated transport and DNA repair.

  8. Deciphering systemic wound responses of the pumpkin extrafascicular phloem by metabolomics and stable isotope-coded protein labeling.

    Science.gov (United States)

    Gaupels, Frank; Sarioglu, Hakan; Beckmann, Manfred; Hause, Bettina; Spannagl, Manuel; Draper, John; Lindermayr, Christian; Durner, Jörg

    2012-12-01

    In cucurbits, phloem latex exudes from cut sieve tubes of the extrafascicular phloem (EFP), serving in defense against herbivores. We analyzed inducible defense mechanisms in the EFP of pumpkin (Cucurbita maxima) after leaf damage. As an early systemic response, wounding elicited transient accumulation of jasmonates and a decrease in exudation probably due to partial sieve tube occlusion by callose. The energy status of the EFP was enhanced as indicated by increased levels of ATP, phosphate, and intermediates of the citric acid cycle. Gas chromatography coupled to mass spectrometry also revealed that sucrose transport, gluconeogenesis/glycolysis, and amino acid metabolism were up-regulated after wounding. Combining ProteoMiner technology for the enrichment of low-abundance proteins with stable isotope-coded protein labeling, we identified 51 wound-regulated phloem proteins. Two Sucrose-Nonfermenting1-related protein kinases and a 32-kD 14-3-3 protein are candidate central regulators of stress metabolism in the EFP. Other proteins, such as the Silverleaf Whitefly-Induced Protein1, Mitogen Activated Protein Kinase6, and Heat Shock Protein81, have known defensive functions. Isotope-coded protein labeling and western-blot analyses indicated that Cyclophilin18 is a reliable marker for stress responses of the EFP. As a hint toward the induction of redox signaling, we have observed delayed oxidation-triggered polymerization of the major Phloem Protein1 (PP1) and PP2, which correlated with a decline in carbonylation of PP2. In sum, wounding triggered transient sieve tube occlusion, enhanced energy metabolism, and accumulation of defense-related proteins in the pumpkin EFP. The systemic wound response was mediated by jasmonate and redox signaling.

  9. Identification of a lysosome membrane protein which could mediate ATP-dependent stable association of lysosomes to microtubules

    International Nuclear Information System (INIS)

    Mithieux, G.; Rousset, B.

    1989-01-01

    We have previously reported that purified thyroid lysosomes bind to reconstituted microtubules to form stable complexes, a process which is inhibited by ATP. Among detergent-solubilized lysosomal membrane protein, we identified a 50-kDa molecular component which binds to preassembled microtubules. The binding of this polypeptide to microtubules was decreased in the presence of ATP. We purified this 50-kDa protein by affinity chromatography on immobilized ATP. The 50-kDa protein bound to the ATP column was eluted by 1 mM ATP. The purified protein, labeled with 125I, exhibited the ability of interacting with microtubules. The binding process was inhibited by increasing concentrations of ATP, the half-maximal inhibitory effect being obtained at an ATP concentration of 0.35 mM. The interaction of the 50-kDa protein with microtubules is a saturable phenomenon since the binding of the 125I-labeled 50-kDa protein was inhibited by unlabeled solubilized lysosomal membrane protein containing the 50-kDa polypeptide but not by the same protein fraction from which the 50-kDa polypeptide had been removed by the ATP affinity chromatography procedure. The 50-kDa protein has the property to bind to pure tubulin coupled to an insoluble matrix. The 50-kDa protein was eluted from the tubulin affinity column by ATP. These findings support the conclusion that a protein inserted into the lysosomal membrane is able to bind directly to microtubules in a process which can be regulated by ATP. We propose that this protein could account for the association of lysosomes to microtubules demonstrated both in vitro and in intact cells

  10. Oxygen consumption remains stable while ammonia excretion is reduced upon short time exposure to high salinity in Macrobrachium acanthurus (Caridae: Palaemonidae, a recent freshwater colonizer

    Directory of Open Access Journals (Sweden)

    Carolina A. Freire

    2017-10-01

    Full Text Available ABSTRACT Palaemonid shrimps occur in the tropical and temperate regions of South America and the Indo-Pacific, in brackish/freshwater habitats, and marine coastal areas. They form a clade that recently (i.e., ~30 mya invaded freshwater, and one included genus, Macrobrachium Bate, 1868, is especially successful in limnic habitats. Adult Macrobrachium acanthurus (Wiegmann, 1836 dwell in coastal freshwaters, have diadromous habit, and need brackish water to develop. Thus, they are widely recognized as euryhaline. Here we test how this species responds to a short-term exposure to increased salinity. We hypothesized that abrupt exposure to high salinity would result in reduced gill ventilation/perfusion and decreased oxygen consumption. Shrimps were subjected to control (0 psu and experimental salinities (10, 20, 30 psu, for four and eight hours (n = 8 in each group. The water in the experimental containers was saturated with oxygen before the beginning of the experiment; aeration was interrupted before placing the shrimp in the experimental container. Dissolved oxygen (DO, ammonia concentration, and pH were measured from the aquaria water, at the start and end of each experiment. After exposure, the shrimp’s hemolymph was sampled for lactate and osmolality assays. Muscle tissue was sampled for hydration content (Muscle Water Content, MWC. Oxygen consumption was not reduced and hemolymph lactate did not increase with increased salinity. The pH of the water decreased with time, under all conditions. Ammonia excretion decreased with increased salinity. Hemolymph osmolality and MWC remained stable at 10 and 20 psu, but osmolality increased (~50% and MWC decreased (~4% at 30 psu. The expected reduction in oxygen consumption was not observed. This shrimp is able to tolerate significant changes in water salt concentrations for a few hours by keeping its metabolism in aerobic mode, and putatively shutting down branchial salt uptake to avoid massive salt

  11. High levels of stable p53 protein and the expression of c-myc in cultured human epithelial tissue after cobalt-60 irradiation

    International Nuclear Information System (INIS)

    Mothersill, C.; Seymour, C.B.; Harney, J.; Hennessy, T.P.

    1994-01-01

    When explants of human uroepithelium or esophageal epithelium are exposed to acute doses of radiation (cobalt-60), the cells which grow out to form the primary cultures show a number of abnormal features. These include the development of characteristic nonsenescent foci. These foci have previously been shown to be c-myc positive and to have an abnormal, tumor-like ultrastructure. Expression of c-myc and the level of stable p53 proteins have now been examined in these cultures 2 weeks after irradiation. Both proteins occurred in dividing cells at the growing edge of the explant and in the foci. The expression of c-myc appeared to be correlated with growth. As expected, variation between individual cultures of normal human cells was noted in the expression of stable p53 protein. Most control uroepithelial cell cultures were negative, but a small cohort showed a wide range of values. The control cultures from the esophageal tissues had high expression of p53, and this decreased marginally after irradiation. Cells positive for p53 were always in cycle and were usually positive for c-myc as well. It would appear from these results that the expression of c-myc and the stable form of the p53 protein occur in irradiated primary cultures of normal human cells both in foci which also express a number of abnormalities and in open-quotes edgeclose quotes cells which are dividing. Cultures of unirradiated cells from esophagus and a small number of uroepithelial samples had high levels of p53. Possible reasons for this are discussed. 33 refs., 2 figs., 3 tabs

  12. Fault tolerance in protein interaction networks: stable bipartite subgraphs and redundant pathways.

    Directory of Open Access Journals (Sweden)

    Arthur Brady

    Full Text Available As increasing amounts of high-throughput data for the yeast interactome become available, more system-wide properties are uncovered. One interesting question concerns the fault tolerance of protein interaction networks: whether there exist alternative pathways that can perform some required function if a gene essential to the main mechanism is defective, absent or suppressed. A signature pattern for redundant pathways is the BPM (between-pathway model motif, introduced by Kelley and Ideker. Past methods proposed to search the yeast interactome for BPM motifs have had several important limitations. First, they have been driven heuristically by local greedy searches, which can lead to the inclusion of extra genes that may not belong in the motif; second, they have been validated solely by functional coherence of the putative pathways using GO enrichment, making it difficult to evaluate putative BPMs in the absence of already known biological annotation. We introduce stable bipartite subgraphs, and show they form a clean and efficient way of generating meaningful BPMs which naturally discard extra genes included by local greedy methods. We show by GO enrichment measures that our BPM set outperforms previous work, covering more known complexes and functional pathways. Perhaps most importantly, since our BPMs are initially generated by examining the genetic-interaction network only, the location of edges in the protein-protein physical interaction network can then be used to statistically validate each candidate BPM, even with sparse GO annotation (or none at all. We uncover some interesting biological examples of previously unknown putative redundant pathways in such areas as vesicle-mediated transport and DNA repair.

  13. Membrane-Sculpting BAR Domains Generate Stable Lipid Microdomains

    Science.gov (United States)

    Zhao, Hongxia; Michelot, Alphée; Koskela, Essi V.; Tkach, Vadym; Stamou, Dimitrios; Drubin, David G.; Lappalainen, Pekka

    2014-01-01

    SUMMARY Bin-Amphiphysin-Rvs (BAR) domain proteins are central regulators of many cellular processes involving membrane dynamics. BAR domains sculpt phosphoinositide-rich membranes to generate membrane protrusions or invaginations. Here, we report that, in addition to regulating membrane geometry, BAR domains can generate extremely stable lipid microdomains by “freezing” phosphoinositide dynamics. This is a general feature of BAR domains, because the yeast endocytic BAR and Fes/CIP4 homology BAR (F-BAR) domains, the inverse BAR domain of Pinkbar, and the eisosomal BAR protein Lsp1 induced phosphoinositide clustering and halted lipid diffusion, despite differences in mechanisms of membrane interactions. Lsp1 displays comparable low diffusion rates in vitro and in vivo, suggesting that BAR domain proteins also generate stable phosphoinositide microdomains in cells. These results uncover a conserved role for BAR superfamily proteins in regulating lipid dynamics within membranes. Stable microdomains induced by BAR domain scaffolds and specific lipids can generate phase boundaries and diffusion barriers, which may have profound impacts on diverse cellular processes. PMID:24055060

  14. Pregnancy associated plasma protein-A as a marker for myocardial infarction and death in patients with stable coronary artery disease: A prognostic study within the CLARICOR Trial

    DEFF Research Database (Denmark)

    Iversen, Kasper K; Teisner, Børge; Winkel, Per

    2011-01-01

    OBJECTIVE: Pregnancy associated plasma protein-A (PAPP-A) is a potential new marker for vulnerable plaques in the coronary arteries only examined in stable coronary disease (CAD) in patients undergoing coronary angiography. Here we address the prognostic value of serum PAPP-A in unselected stable...

  15. Motor function declines over time in human immunodeficiency virus and is associated with cerebrovascular disease, while HIV-associated neurocognitive disorder remains stable.

    Science.gov (United States)

    M Elicer, Isabel; Byrd, Desiree; Clark, Uraina S; Morgello, Susan; Robinson-Papp, Jessica

    2018-04-25

    HIV-associated neurocognitive disorders (HAND) remain prevalent in the combined antiretroviral therapy (CART) era, especially the milder forms. Despite these milder phenotypes, we have shown that motor abnormalities persist and have quantified them with the HIV Dementia Motor Scale (HDMS). Our objectives were to replicate, in an independent sample, our prior findings that the HDMS is associated with cognitive impairment in HIV, while adding consideration of age-associated comorbidities such as cerebrovascular disease, and to examine the longitudinal trajectories of cognitive and motor dysfunction. We included all participants enrolled in the Manhattan HIV Brain Bank (MHBB) from January 2007 to May 2017 who had complete baseline data (N = 164). MHBB participants undergo standardized longitudinal assessments including documentation of comorbidities and medications, blood work, the HDMS, and neurocognitive testing. We found that motor dysfunction, cognitive impairment, and cerebrovascular disease were significantly associated with each other at baseline. Cerebrovascular disease independently predicted cognitive impairment in a multivariable model. Longitudinal analysis in a subset of 78 participants with ≥ 4 years of follow-up showed a stable cognition but declining motor function. We conclude that the HDMS is a valid measurement of motor dysfunction in HIV-infected patients and is associated with cognitive impairment and the presence of cerebrovascular disease. Cognitive impairment is mild and stable in CART-treated HIV; however, motor function declines over time, which may be related to the accrual of comorbidities such as cerebrovascular disease. Further research should examine the mechanisms underlying motor dysfunction in HIV and its clinical impact.

  16. Escherichia coli cell-free protein synthesis and isotope labeling of mammalian proteins.

    Science.gov (United States)

    Terada, Takaho; Yokoyama, Shigeyuki

    2015-01-01

    This chapter describes the cell-free protein synthesis method, using an Escherichia coli cell extract. This is a cost-effective method for milligram-scale protein production and is particularly useful for the production of mammalian proteins, protein complexes, and membrane proteins that are difficult to synthesize by recombinant expression methods, using E. coli and eukaryotic cells. By adjusting the conditions of the cell-free method, zinc-binding proteins, disulfide-bonded proteins, ligand-bound proteins, etc., may also be produced. Stable isotope labeling of proteins can be accomplished by the cell-free method, simply by using stable isotope-labeled amino acid(s) in the cell-free reaction. Moreover, the cell-free protein synthesis method facilitates the avoidance of stable isotope scrambling and dilution over the recombinant expression methods and is therefore advantageous for amino acid-selective stable isotope labeling. Site-specific stable isotope labeling is also possible with a tRNA molecule specific to the UAG codon. By the cell-free protein synthesis method, coupled transcription-translation is performed from a plasmid vector or a PCR-amplified DNA fragment encoding the protein. A milligram quantity of protein can be produced with a milliliter-scale reaction solution in the dialysis mode. More than a thousand solution structures have been determined by NMR spectroscopy for uniformly labeled samples of human and mouse functional domain proteins, produced by the cell-free method. Here, we describe the practical aspects of mammalian protein production by the cell-free method for NMR spectroscopy. © 2015 Elsevier Inc. All rights reserved.

  17. DNA-, RNA-, and Protein-Based Stable-Isotope Probing for High-Throughput Biomarker Analysis of Active Microorganisms.

    Science.gov (United States)

    Jameson, Eleanor; Taubert, Martin; Coyotzi, Sara; Chen, Yin; Eyice, Özge; Schäfer, Hendrik; Murrell, J Colin; Neufeld, Josh D; Dumont, Marc G

    2017-01-01

    Stable-isotope probing (SIP) enables researchers to target active populations within complex microbial communities, which is achieved by providing growth substrates enriched in heavy isotopes, usually in the form of 13 C, 18 O, or 15 N. After growth on the substrate and subsequent extraction of microbial biomarkers, typically nucleic acids or proteins, the SIP technique is used for the recovery and analysis of isotope-labeled biomarkers from active microbial populations. In the years following the initial development of DNA- and RNA-based SIP, it was common practice to characterize labeled populations by targeted gene analysis. Such approaches usually involved fingerprint-based analyses or sequencing of clone libraries containing 16S rRNA genes or functional marker gene amplicons. Although molecular fingerprinting remains a valuable approach for rapid confirmation of isotope labeling, recent advances in sequencing technology mean that it is possible to obtain affordable and comprehensive amplicon profiles, metagenomes, or metatranscriptomes from SIP experiments. Not only can the abundance of microbial groups be inferred from metagenomes, but researchers can bin, assemble, and explore individual genomes to build hypotheses about the metabolic capabilities of labeled microorganisms. Analysis of labeled mRNA is a more recent advance that can provide independent metatranscriptome-based analysis of active microorganisms. The power of metatranscriptomics is that mRNA abundance often correlates closely with the corresponding activity of encoded enzymes, thus providing insight into microbial metabolism at the time of sampling. Together, these advances have improved the sensitivity of SIP methods and allow the use of labeled substrates at ecologically relevant concentrations. Particularly as methods improve and costs continue to drop, we expect that the integration of SIP with multiple omics-based methods will become prevalent components of microbial ecology studies

  18. The structure of mAG, a monomeric mutant of the green fluorescent protein Azami-Green, reveals the structural basis of its stable green emission

    International Nuclear Information System (INIS)

    Ebisawa, Tatsuki; Yamamura, Akihiro; Kameda, Yasuhiro; Hayakawa, Kou; Nagata, Koji; Tanokura, Masaru

    2010-01-01

    The crystal structure of a monomeric mutant of Azami-Green (mAG) from G. fascicularis was determined at 2.2 Å resolution. Monomeric Azami-Green (mAG) from the stony coral Galaxea fascicularis is the first known monomeric green-emitting fluorescent protein that is not a variant of Aequorea victoria green fluorescent protein (avGFP). These two green fluorescent proteins are only 27% identical in their amino-acid sequences. mAG is more similar in its amino-acid sequence to four fluorescent proteins: Dendra2 (a green-to-red irreversibly photoconverting fluorescent protein), Dronpa (a bright-and-dark reversibly photoswitchable fluorescent protein), KikG (a tetrameric green-emitting fluorescent protein) and Kaede (another green-to-red irreversibly photoconverting fluorescent protein). To reveal the structural basis of stable green emission by mAG, the 2.2 Å crystal structure of mAG has been determined and compared with the crystal structures of avGFP, Dronpa, Dendra2, Kaede and KikG. The structural comparison revealed that the chromophore formed by Gln62-Tyr63-Gly64 (QYG) and the fixing of the conformation of the imidazole ring of His193 by hydrogen bonds and van der Waals contacts involving His193, Arg66 and Thr69 are likely to be required for the stable green emission of mAG. The crystal structure of mAG will contribute to the design and development of new monomeric fluorescent proteins with faster maturation, brighter fluorescence, improved photostability, new colours and other preferable properties as alternatives to avGFP and its variants

  19. A stable aspirin-triggered lipoxin A4 analog blocks phosphorylation of leukocyte-specific protein 1 in human neutrophils.

    Science.gov (United States)

    Ohira, Taisuke; Bannenberg, Gerard; Arita, Makoto; Takahashi, Minoru; Ge, Qingyuan; Van Dyke, Thomas E; Stahl, Gregory L; Serhan, Charles N; Badwey, John A

    2004-08-01

    Lipoxins and their aspirin-triggered 15-epimers are endogenous anti-inflammatory agents that block neutrophil chemotaxis in vitro and inhibit neutrophil influx in several models of acute inflammation. In this study, we examined the effects of 15-epi-16-(p-fluoro)-phenoxy-lipoxin A(4) methyl ester, an aspirin-triggered lipoxin A(4)-stable analog (ATLa), on the protein phosphorylation pattern of human neutrophils. Neutrophils stimulated with the chemoattractant fMLP were found to exhibit intense phosphorylation of a 55-kDa protein that was blocked by ATLa (10-50 nM). This 55-kDa protein was identified as leukocyte-specific protein 1, a downstream component of the p38-MAPK cascade in neutrophils, by mass spectrometry, Western blotting, and immunoprecipitation experiments. ATLa (50 nM) also reduced phosphorylation/activation of several components of the p38-MAPK pathway in these cells (MAPK kinase 3/MAPK kinase 6, p38-MAPK, MAPK-activated protein kinase-2). These results indicate that ATLa exerts its anti-inflammatory effects, at least in part, by blocking activation of the p38-MAPK cascade in neutrophils, which is known to promote chemotaxis and other proinflammatory responses by these cells.

  20. A novel approach for the detection of potentially hazardous pepsin stable hazelnut proteins as contaminants in chocolate-based food.

    Science.gov (United States)

    Akkerdaas, Jaap H; Wensing, Marjolein; Knulst, André C; Stephan, Oliver; Hefle, Susan L; Aalberse, Rob C; van Ree, Ronald

    2004-12-15

    Contamination of food products with pepsin resistant allergens is generally believed to be a serious threat to patients with severe food allergy. A sandwich type enzyme-linked immunosorbent assay (ELISA) was developed to measure pepsin resistant hazelnut protein in food products. Capturing and detecting rabbit antibodies were raised against pepsin-digested hazelnut and untreated hazelnut protein, respectively. The assay showed a detection limit of 0.7 ng/mL hazelnut protein or food matrix and a maximum of 0.034% cross-reactivity (peanut). Chocolate samples spiked with 0.5-100 microg hazelnut/g chocolate showed a mean recovery of 97.3%. In 9/12 food products labeled "may contain nuts", hazelnut was detected between 1.2 and 417 microg hazelnut/g food. It can be concluded that the application of antibodies directed to pepsin-digested food extracts in ELISA can facilitate specific detection of stable proteins that have the highest potential of inducing severe food anaphylaxis.

  1. On the interconnection of stable protein complexes: inter-complex hubs and their conservation in Saccharomyces cerevisiae and Homo sapiens networks.

    Science.gov (United States)

    Guerra, Concettina

    2015-01-01

    Protein complexes are key molecular entities that perform a variety of essential cellular functions. The connectivity of proteins within a complex has been widely investigated with both experimental and computational techniques. We developed a computational approach to identify and characterise proteins that play a role in interconnecting complexes. We computed a measure of inter-complex centrality, the crossroad index, based on disjoint paths connecting proteins in distinct complexes and identified inter-complex hubs as proteins with a high value of the crossroad index. We applied the approach to a set of stable complexes in Saccharomyces cerevisiae and in Homo sapiens. Just as done for hubs, we evaluated the topological and biological properties of inter-complex hubs addressing the following questions. Do inter-complex hubs tend to be evolutionary conserved? What is the relation between crossroad index and essentiality? We found a good correlation between inter-complex hubs and both evolutionary conservation and essentiality.

  2. Expression of a Recombinant Anti-HIV and Anti-Tumor Protein, MAP30, in Nicotiana tobacum Hairy Roots: A pH-Stable and Thermophilic Antimicrobial Protein.

    Directory of Open Access Journals (Sweden)

    Ali Moghadam

    Full Text Available In contrast to conventional antibiotics, which microorganisms can readily evade, it is nearly impossible for a microbial strain that is sensitive to antimicrobial proteins to convert to a resistant strain. Therefore, antimicrobial proteins and peptides that are promising alternative candidates for the control of bacterial infections are under investigation. The MAP30 protein of Momordica charantia is a valuable type I ribosome-inactivating protein (RIP with anti-HIV and anti-tumor activities. Whereas the antimicrobial activity of some type I RIPs has been confirmed, less attention has been paid to the antimicrobial activity of MAP30 produced in a stable, easily handled, and extremely cost-effective protein-expression system. rMAP30-KDEL was expressed in Nicotiana tobacum hairy roots, and its effect on different microorganisms was investigated. Analysis of the extracted total proteins of transgenic hairy roots showed that rMAP30-KDEL was expressed effectively and that this protein exhibited significant antibacterial activity in a dose-dependent manner. rMAP30-KDEL also possessed thermal and pH stability. Bioinformatic analysis of MAP30 and other RIPs regarding their conserved motifs, amino-acid contents, charge, aliphatic index, GRAVY value, and secondary structures demonstrated that these factors accounted for their thermophilicity. Therefore, RIPs such as MAP30 and its derived peptides might have promising applications as food preservatives, and their analysis might provide useful insights into designing clinically applicable antibiotic agents.

  3. Interaction between Nbp35 and Cfd1 proteins of cytosolic Fe-S cluster assembly reveals a stable complex formation in Entamoeba histolytica.

    Directory of Open Access Journals (Sweden)

    Shadab Anwar

    Full Text Available Iron-Sulfur (Fe-S proteins are involved in many biological functions such as electron transport, photosynthesis, regulation of gene expression and enzymatic activities. Biosynthesis and transfer of Fe-S clusters depend on Fe-S clusters assembly processes such as ISC, SUF, NIF, and CIA systems. Unlike other eukaryotes which possess ISC and CIA systems, amitochondriate Entamoeba histolytica has retained NIF & CIA systems for Fe-S cluster assembly in the cytosol. In the present study, we have elucidated interaction between two proteins of E. histolytica CIA system, Cytosolic Fe-S cluster deficient 1 (Cfd1 protein and Nucleotide binding protein 35 (Nbp35. In-silico analysis showed that structural regions ranging from amino acid residues (P33-K35, G131-V135 and I147-E151 of Nbp35 and (G5-V6, M34-D39 and G46-A52 of Cfd1 are involved in the formation of protein-protein complex. Furthermore, Molecular dynamic (MD simulations study suggested that hydrophobic forces surpass over hydrophilic forces between Nbp35 and Cfd1 and Van-der-Waal interaction plays crucial role in the formation of stable complex. Both proteins were separately cloned, expressed as recombinant fusion proteins in E. coli and purified to homogeneity by affinity column chromatography. Physical interaction between Nbp35 and Cfd1 proteins was confirmed in vitro by co-purification of recombinant Nbp35 with thrombin digested Cfd1 and in vivo by pull down assay and immunoprecipitation. The insilico, in vitro as well as in vivo results prove a stable interaction between these two proteins, supporting the possibility of its involvement in Fe-S cluster transfer to target apo-proteins through CIA machinery in E. histolytica. Our study indicates that initial synthesis of a Fe-S precursor in mitochondria is not necessary for the formation of Cfd1-Nbp35 complex. Thus, Cfd1 and Nbp35 with the help of cytosolic NifS and NifU proteins can participate in the maturation of non-mitosomal Fe-S proteins

  4. Stable isotope labeling strategy based on coding theory

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Takuma; Koshiba, Seizo; Yokoyama, Jun; Kigawa, Takanori, E-mail: kigawa@riken.jp [RIKEN Quantitative Biology Center (QBiC), Laboratory for Biomolecular Structure and Dynamics (Japan)

    2015-10-15

    We describe a strategy for stable isotope-aided protein nuclear magnetic resonance (NMR) analysis, called stable isotope encoding. The basic idea of this strategy is that amino-acid selective labeling can be considered as “encoding and decoding” processes, in which the information of amino acid type is encoded by the stable isotope labeling ratio of the corresponding residue and it is decoded by analyzing NMR spectra. According to the idea, the strategy can diminish the required number of labelled samples by increasing information content per sample, enabling discrimination of 19 kinds of non-proline amino acids with only three labeled samples. The idea also enables this strategy to combine with information technologies, such as error detection by check digit, to improve the robustness of analyses with low quality data. Stable isotope encoding will facilitate NMR analyses of proteins under non-ideal conditions, such as those in large complex systems, with low-solubility, and in living cells.

  5. Stable isotope labeling strategy based on coding theory

    International Nuclear Information System (INIS)

    Kasai, Takuma; Koshiba, Seizo; Yokoyama, Jun; Kigawa, Takanori

    2015-01-01

    We describe a strategy for stable isotope-aided protein nuclear magnetic resonance (NMR) analysis, called stable isotope encoding. The basic idea of this strategy is that amino-acid selective labeling can be considered as “encoding and decoding” processes, in which the information of amino acid type is encoded by the stable isotope labeling ratio of the corresponding residue and it is decoded by analyzing NMR spectra. According to the idea, the strategy can diminish the required number of labelled samples by increasing information content per sample, enabling discrimination of 19 kinds of non-proline amino acids with only three labeled samples. The idea also enables this strategy to combine with information technologies, such as error detection by check digit, to improve the robustness of analyses with low quality data. Stable isotope encoding will facilitate NMR analyses of proteins under non-ideal conditions, such as those in large complex systems, with low-solubility, and in living cells

  6. On random age and remaining lifetime for populations of items

    DEFF Research Database (Denmark)

    Finkelstein, M.; Vaupel, J.

    2015-01-01

    We consider items that are incepted into operation having already a random (initial) age and define the corresponding remaining lifetime. We show that these lifetimes are identically distributed when the age distribution is equal to the equilibrium distribution of the renewal theory. Then we...... develop the population studies approach to the problem and generalize the setting in terms of stationary and stable populations of items. We obtain new stochastic comparisons for the corresponding population ages and remaining lifetimes that can be useful in applications. Copyright (c) 2014 John Wiley...

  7. Stable isotopic analysis of fossil chironomids as an approach to environmental reconstruction: state of development and future challenges

    Directory of Open Access Journals (Sweden)

    Oliver Heiri

    2012-10-01

    Full Text Available Remains of chironomid larvae, especially their strongly sclerotized head capsules, can be found abundantly and well preserved in most lake sediment records. These remains mainly consist of chitin and proteins and, since their chemical composition does not seem to be strongly affected by decompositional processes, they can be used to develop palaeoenvironmental reconstructions based on their stable isotopic composition. Here we review available stable isotope studies based on fossil chironomids and indicate future research necessary to further develop this still relatively new research approach. Efforts to produce stable isotope records based on fossil chironomids have mainly examined the elements H, N, C, and O. They have focussed on (1 developing the methodology for preparing samples for isotopic analysis, (2 laboratory studies cultivating chironomid larvae under controlled conditions to determine the factors affecting their stable isotopic composition, (3 ecosystem-scale studies relating stable isotopic measurements of fossil chironomid assemblages to environmental conditions, and (4 developing first down-core records describing past changes in the stable isotopic composition of chironomid assemblages. These studies have shown that chemical sample pretreatment may affect the isotopic composition for some elements. Laboratory runs suggest that the diet of the larvae influences their stable isotopic composition for H, N, C and O, whereas stable isotopes in the ambient water also strongly influence their oxygen and to a lesser extent hydrogen isotopic composition. These experiments also indicate only minor offsets between the nitrogen and carbon isotopic composition of chironomid soft tissue and the fossilizing head capsules, whereas for hydrogen and oxygen this offset remains to be explored. Though few datasets have been published, the available ecosystem studies and developed down-core sediment records indicate that stable isotopes in

  8. Stable Skin-specific Overexpression of Human CTLA4-Ig in Transgenic Mice through Seven Generations

    Institute of Scientific and Technical Information of China (English)

    Yong WANG; Yong NI; Hong WEI; Feng-Chao WANG; Liang-Peng GE; Xiang GAO

    2006-01-01

    Skin graft rejection is a typical cellular immune response, mainly mediated by T cells. Cytotoxic T lymphocyte associated antigen 4-immunoglobin (CTLA4-Ig) extends graft survival by blocking the T cell co-stimulation pathway and inhibiting T cell activation. To investigate the efficacy of CTLA4-Ig in prolonging skin graft survival, human CTLA4-Ig (hCTLA4-Ig) was engineered to overexpress in mouse skin by transgenesis using the K14 promoter. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot assay indicated that the expression of CTLA4-Ig remained skin-specific and relatively constant compared to the internal control protein, AKT, through seven generations. The presence and concentration of the hCTLA4-Ig protein in transgenic mouse sera was determined by enzyme-linked immunosorbent assay (ELISA), and the results indicated that the serum CTLA4-Ig concentration also remained constant through generations. Survival of transgenic mouse skins grafted onto rat wounds was remarkably prolonged compared to that of wild-type skins from the same mouse strain, and remained comparable among all seven generations. This suggested that the bioactive hCTLA4-Ig protein was stably expressed in transgenical mice through at least seven generations, which was consistent with the stable skin-specific CTLA4-Ig expression.The results demonstrated that the transgenic expression of hCTLA4-Ig in skin driven by the K14 promoter remained constant through generations, and a transgenic line can be established to provide transgenic skin with extended survival reproducibly.

  9. Protein-free transfection of CHO host cells with an IgG-fusion protein: selection and characterization of stable high producers and comparison to conventionally transfected clones.

    Science.gov (United States)

    Lattenmayer, Christine; Loeschel, Martina; Schriebl, Kornelia; Steinfellner, Willibald; Sterovsky, Thomas; Trummer, Evelyn; Vorauer-Uhl, Karola; Müller, Dethardt; Katinger, Hermann; Kunert, Renate

    2007-04-15

    In order to improve the current techniques of cell cultivation in the absence of serum, we have developed a protein-free transfection protocol for CHO cells, based on the Nucleofector technology. After starting with a heterogeneous pool of primary transfectants which express the fusion protein EpoFc, we isolated single clones and compared them with parallel clones generated by lipofection in serum-dependent cultivation. Our intensive characterization program was based on determination of specific productivity (q(p)) and analysis of genetic parameters. In two nucleofection experiments, transfection with 5 microg of DNA resulted in best productivities of the primary cell pools. After subcloning, the q(p) could be raised up to 27 pg x cells(-1) x day(-1). While the serum-dependent transfectants exhibited specific productivities up to 57 pg x cells(-1) x day(-1) in serum-dependent cultivation, a significant decrease that resulted in the range of q(p) of the protein-free transfectants was observed after switching to protein-free conditions. Investigation of genetic parameters revealed higher mRNA levels and gene copy numbers (GCN) for the protein-free adapted serum-dependent transfectants. Therefore, we assume that problems during protein-free adaptation (PFA) lead to a less efficient translation machinery after serum deprivation. We describe the generation of stable-producing recombinant CHO clones by protein-free transfection of a protein-free adapted host cell line, which reduces the risk of adverse clonal changes after PFA. The main advantage of this approach is the earlier predictability of clone behavior, which makes the generation of production clones by protein-free transfection, a viable and highly efficient strategy for recombinant cell line development. (c) 2006 Wiley Periodicals, Inc.

  10. Membrane-sculpting BAR domains generate stable lipid microdomains

    DEFF Research Database (Denmark)

    Zhao, Hongxia; Michelot, Alphée; Koskela, Essi V.

    2013-01-01

    Bin-Amphiphysin-Rvs (BAR) domain proteins are central regulators of many cellular processes involving membrane dynamics. BAR domains sculpt phosphoinositide-rich membranes to generate membrane protrusions or invaginations. Here, we report that, in addition to regulating membrane geometry, BAR...... domains can generate extremely stable lipid microdomains by "freezing" phosphoinositide dynamics. This is a general feature of BAR domains, because the yeast endocytic BAR and Fes/CIP4 homology BAR (F-BAR) domains, the inverse BAR domain of Pinkbar, and the eisosomal BAR protein Lsp1 induced...... phosphoinositide clustering and halted lipid diffusion, despite differences in mechanisms of membrane interactions. Lsp1 displays comparable low diffusion rates in vitro and in vivo, suggesting that BAR domain proteins also generate stable phosphoinositide microdomains in cells. These results uncover a conserved...

  11. Protein mediated synthesis of fluorescent Au-nanoclusters for metal sensory coatings

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Manja; Raff, Johannes [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biogeochemistry

    2017-06-01

    Fluorescent Au-nanocluster were successfully synthesized and used for the selective detection of Cu{sup 2} {sup +}. The synthesized Au-BSA-nanoclusters remain functional also after immobilization and show high thermal stability. Additionally, the transfer of the protein mediated Au-nanocluster synthesis route to S-layer proteins was achieved. (The presented work is part of the project BIONEWS dealing with long-term stable cells for the set-up and regeneration of sensor and actor materials for strategic relevant metals, in particular rare earth elements).

  12. Stable isotope dimethyl labelling for quantitative proteomics and beyond

    Science.gov (United States)

    Hsu, Jue-Liang; Chen, Shu-Hui

    2016-01-01

    Stable-isotope reductive dimethylation, a cost-effective, simple, robust, reliable and easy-to- multiplex labelling method, is widely applied to quantitative proteomics using liquid chromatography-mass spectrometry. This review focuses on biological applications of stable-isotope dimethyl labelling for a large-scale comparative analysis of protein expression and post-translational modifications based on its unique properties of the labelling chemistry. Some other applications of the labelling method for sample preparation and mass spectrometry-based protein identification and characterization are also summarized. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644970

  13. Applications of stable isotope analysis in mammalian ecology.

    Science.gov (United States)

    Walter, W David; Kurle, Carolyn M; Hopkins, John B

    2014-01-01

    In this editorial, we provide a brief introduction and summarize the 10 research articles included in this Special Issue on Applications of stable isotope analysis in mammalian ecology. The first three articles report correction and discrimination factors that can be used to more accurately estimate the diets of extinct and extant mammals using stable isotope analysis. The remaining seven applied research articles use stable isotope analysis to address a variety of wildlife conservation and management questions from the oceans to the mountains.

  14. Identification and characterization of stable membrane protein complexes

    NARCIS (Netherlands)

    Spelbrink, R.E.J.

    2007-01-01

    Many membrane proteins exist as oligomers. Such oligomers play an important role in a broad variety of cellular processes such as ion transport, energy transduction, osmosensing and cell wall synthesis. We developed an electrophoresis-based method of identifying oligomeric membrane proteins that are

  15. Applications of Protein Thermodynamic Database for Understanding Protein Mutant Stability and Designing Stable Mutants.

    Science.gov (United States)

    Gromiha, M Michael; Anoosha, P; Huang, Liang-Tsung

    2016-01-01

    Protein stability is the free energy difference between unfolded and folded states of a protein, which lies in the range of 5-25 kcal/mol. Experimentally, protein stability is measured with circular dichroism, differential scanning calorimetry, and fluorescence spectroscopy using thermal and denaturant denaturation methods. These experimental data have been accumulated in the form of a database, ProTherm, thermodynamic database for proteins and mutants. It also contains sequence and structure information of a protein, experimental methods and conditions, and literature information. Different features such as search, display, and sorting options and visualization tools have been incorporated in the database. ProTherm is a valuable resource for understanding/predicting the stability of proteins and it can be accessed at http://www.abren.net/protherm/ . ProTherm has been effectively used to examine the relationship among thermodynamics, structure, and function of proteins. We describe the recent progress on the development of methods for understanding/predicting protein stability, such as (1) general trends on mutational effects on stability, (2) relationship between the stability of protein mutants and amino acid properties, (3) applications of protein three-dimensional structures for predicting their stability upon point mutations, (4) prediction of protein stability upon single mutations from amino acid sequence, and (5) prediction methods for addressing double mutants. A list of online resources for predicting has also been provided.

  16. Effect of prescribing a high protein diet and increasing the dose of dialysis on nutrition in stable chronic haemodialysis patients : a randomized, controlled trial

    NARCIS (Netherlands)

    Kloppenburg, Wybe; Stegeman, CA; Kremer Hovinga, T; Vastenburg, G; Vos, P; de Jong, PE; Huisman, RM

    Background. Protein requirements in stable, adequately dialysed haemodialysis patients are not known and recommendations vary. It is not known whether increasing the dialysis dose above the accepted adequate level has a favourable effect on nutrition. The aim of this study was to determine whether

  17. Atazanavir intracellular concentrations remain stable during pregnancy in HIV-infected patients.

    Science.gov (United States)

    Focà, Emanuele; Calcagno, Andrea; Bonito, Andrea; Simiele, Marco; Domenighini, Elisabetta; D'Avolio, Antonio; Quiros Roldan, Eugenia; Trentini, Laura; Casari, Salvatore; Di Perri, Giovanni; Castelli, Francesco; Bonora, Stefano

    2017-11-01

    Atazanavir (300 mg) boosted by ritonavir (100 mg) is the preferred third drug in pregnancy. However, there is still discordance on atazanavir dose increase during the third trimester. To evaluate plasma and intracellular atazanavir and ritonavir concentrations in HIV-infected women during pregnancy and after delivery. This was an observational study. HIV-infected pregnant patients treated with atazanavir/ritonavir plus either tenofovir/emtricitabine or abacavir/lamivudine had been prospectively enrolled after having signed a written informed consent form. Plasma and intracellular atazanavir and ritonavir Ctrough (24 ± 3 h after drug intake) were measured at each visit during the first, second and third trimesters and post-partum using validated HPLC-MS and HPLC-photodiode array methods (with direct evaluation of cellular volume). Data are described as median (IQR) and compared through non-parametric tests. Twenty-five patients were enrolled; at baseline, the median age was 32 years (27-35). All patients had plasma HIV RNA  0.05). This is the first demonstration that intracellular atazanavir exposure remains unchanged during pregnancy supporting the standard 300/100 mg atazanavir/ritonavir dosing throughout pregnancy. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. FOXO/DAF-16 Activation Slows Down Turnover of the Majority of Proteins in C. elegans

    Directory of Open Access Journals (Sweden)

    Ineke Dhondt

    2016-09-01

    Full Text Available Most aging hypotheses assume the accumulation of damage, resulting in gradual physiological decline and, ultimately, death. Avoiding protein damage accumulation by enhanced turnover should slow down the aging process and extend the lifespan. However, lowering translational efficiency extends rather than shortens the lifespan in C. elegans. We studied turnover of individual proteins in the long-lived daf-2 mutant by combining SILeNCe (stable isotope labeling by nitrogen in Caenorhabditis elegans and mass spectrometry. Intriguingly, the majority of proteins displayed prolonged half-lives in daf-2, whereas others remained unchanged, signifying that longevity is not supported by high protein turnover. This slowdown was most prominent for translation-related and mitochondrial proteins. In contrast, the high turnover of lysosomal hydrolases and very low turnover of cytoskeletal proteins remained largely unchanged. The slowdown of protein dynamics and decreased abundance of the translational machinery may point to the importance of anabolic attenuation in lifespan extension, as suggested by the hyperfunction theory.

  19. Contribution of glucan-binding protein A to firm and stable biofilm formation by Streptococcus mutans.

    Science.gov (United States)

    Matsumi, Y; Fujita, K; Takashima, Y; Yanagida, K; Morikawa, Y; Matsumoto-Nakano, M

    2015-06-01

    Glucan-binding proteins (Gbps) of Streptococcus mutans, a major pathogen of dental caries, mediate the binding of glucans synthesized from sucrose by the action of glucosyltransferases (GTFs) encoded by gtfB, gtfC, and gtfD. Several stress proteins, including DnaK and GroEL encoded by dnaK and groEL, are related to environmental stress tolerance. The contribution of Gbp expression to biofilm formation was analyzed by focusing on the expression levels of genes encoding GTFs and stress proteins. Biofilm-forming assays were performed using GbpA-, GbpB-, and GbpC-deficient mutant strains and the parental strain MT8148. The expression levels of gtfB, gtfC, gtfD, dnaK, and groEL were evaluated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Furthermore, the structure of biofilms formed by these Gbp-deficient mutant strains was observed using confocal laser scanning microscopy (CLSM). Biofilm-forming assay findings demonstrated that the amount formed by the GbpA-deficient mutant strain (AD1) was nearly the same as that by the parental strain, while the GbpB- and GbpC-deficient mutant strains produced lower amounts than MT8148. Furthermore, RT-qPCR assay results showed that the expressions of gtfB, dnaK, and groEL in AD1 were elevated compared with MT8148. CLSM also revealed that the structure of biofilm formed by AD1 was prominently different compared with that formed by the parental strain. These results suggest that a defect in GbpA influences the expression of genes controlling biofilm formation, indicating its importance as a protein for firm and stable biofilm formation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Nuclear fuel market: Supplies remaining stable and secured in the mean range

    International Nuclear Information System (INIS)

    Braatz, U.; Dibbert, H.J.

    1988-01-01

    Installation of additional power plant will keep the demand for uranium at a level allowing a constant uranium production during the next few years to come, although production will have to be kept lower than demand, as inventories have to be cut in order to achieve a favourable price structure. Prospects on a mean-term basis show that natural uranium supplies are ensured, at favourable purchaser prices. Concluded contracts for new nuclear power plant indicate a better plant capacity utilization in uranium production to be attainable by the 1990s. Conversion capacity, however, is expected to remain as excessive as presently for quite a long period still, although reprocessing produces increasing amounts of recovered uranium to be converted. The capacity for uranium separative work is favourable for the customers. Existing and projected production facilities already today ensure safe supplies beyond the turn of the millenium, under conditions by far better in terms of long-term competing energy sources. (orig./HP) [de

  1. Deciphering Systemic Wound Responses of the Pumpkin Extrafascicular Phloem by Metabolomics and Stable Isotope-Coded Protein Labeling1[C][W

    Science.gov (United States)

    Gaupels, Frank; Sarioglu, Hakan; Beckmann, Manfred; Hause, Bettina; Spannagl, Manuel; Draper, John; Lindermayr, Christian; Durner, Jörg

    2012-01-01

    In cucurbits, phloem latex exudes from cut sieve tubes of the extrafascicular phloem (EFP), serving in defense against herbivores. We analyzed inducible defense mechanisms in the EFP of pumpkin (Cucurbita maxima) after leaf damage. As an early systemic response, wounding elicited transient accumulation of jasmonates and a decrease in exudation probably due to partial sieve tube occlusion by callose. The energy status of the EFP was enhanced as indicated by increased levels of ATP, phosphate, and intermediates of the citric acid cycle. Gas chromatography coupled to mass spectrometry also revealed that sucrose transport, gluconeogenesis/glycolysis, and amino acid metabolism were up-regulated after wounding. Combining ProteoMiner technology for the enrichment of low-abundance proteins with stable isotope-coded protein labeling, we identified 51 wound-regulated phloem proteins. Two Sucrose-Nonfermenting1-related protein kinases and a 32-kD 14-3-3 protein are candidate central regulators of stress metabolism in the EFP. Other proteins, such as the Silverleaf Whitefly-Induced Protein1, Mitogen Activated Protein Kinase6, and Heat Shock Protein81, have known defensive functions. Isotope-coded protein labeling and western-blot analyses indicated that Cyclophilin18 is a reliable marker for stress responses of the EFP. As a hint toward the induction of redox signaling, we have observed delayed oxidation-triggered polymerization of the major Phloem Protein1 (PP1) and PP2, which correlated with a decline in carbonylation of PP2. In sum, wounding triggered transient sieve tube occlusion, enhanced energy metabolism, and accumulation of defense-related proteins in the pumpkin EFP. The systemic wound response was mediated by jasmonate and redox signaling. PMID:23085839

  2. Polyglycerol coatings of glass vials for protein resistance.

    Science.gov (United States)

    Höger, Kerstin; Becherer, Tobias; Qiang, Wei; Haag, Rainer; Friess, Wolfgang; Küchler, Sarah

    2013-11-01

    Proteins are surface active molecules which undergo non-specific adsorption when getting in contact with surfaces such as the primary packaging material. This process is critical as it may cause a loss of protein content or protein aggregation. To prevent unspecific adsorption, protein repellent coatings are of high interest. We describe the coating of industrial relevant borosilicate glass vials with linear methoxylated polyglycerol, hyperbranched polyglycerol, and hyperbranched methoxylated polyglycerol. All coatings provide excellent protein repellent effects. The hyperbranched, non-methoxylated coating performed best. The protein repellent properties were maintained also after applying industrial relevant sterilization methods (≥200 °C). Marginal differences in antibody stability between formulations stored in bare glass vials and coated vials were detected after 3 months storage; the protein repellent effect remained largely stable. Here, we describe a new material suitable for the coating of primary packaging material of proteins which significantly reduces the protein adsorption and thus could present an interesting new possibility for biomedical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. CAG Expansions Are Genetically Stable and Form Nontoxic Aggregates in Cells Lacking Endogenous Polyglutamine Proteins

    Directory of Open Access Journals (Sweden)

    Ashley A. Zurawel

    2016-09-01

    Full Text Available Proteins containing polyglutamine (polyQ regions are found in almost all eukaryotes, albeit with various frequencies. In humans, proteins such as huntingtin (Htt with abnormally expanded polyQ regions cause neurodegenerative diseases such as Huntington’s disease (HD. To study how the presence of endogenous polyQ aggregation modulates polyQ aggregation and toxicity, we expressed polyQ expanded Htt fragments (polyQ Htt in Schizosaccharomyces pombe. In stark contrast to other unicellular fungi, such as Saccharomyces cerevisiae, S. pombe is uniquely devoid of proteins with more than 10 Q repeats. We found that polyQ Htt forms aggregates within S. pombe cells only with exceedingly long polyQ expansions. Surprisingly, despite the presence of polyQ Htt aggregates in both the cytoplasm and nucleus, no significant growth defect was observed in S. pombe cells. Further, PCR analysis showed that the repetitive polyQ-encoding DNA region remained constant following transformation and after multiple divisions in S. pombe, in contrast to the genetic instability of polyQ DNA sequences in other organisms. These results demonstrate that cells with a low content of polyQ or other aggregation-prone proteins can show a striking resilience with respect to polyQ toxicity and that genetic instability of repetitive DNA sequences may have played an important role in the evolutionary emergence and exclusion of polyQ expansion proteins in different organisms.

  4. Low protein diet and chronic renal failure in Buddhist monks.

    Science.gov (United States)

    Sitprija, V; Suvanpha, R

    1983-08-13

    Clinical observations were made in five Buddhist monks with chronic renal failure on a low protein diet. These monks consumed only one meal and meditated three to four times a day. The estimated protein intake was from 15 to 19 g a day. Renal function remained stable over three years of observation. The general condition was satisfactory without any evidence of protein energy malnutrition. The data were compared with those of another group of patients who had a comparable degree of impairment of renal function but who consumed three meals a day of low protein diet. Protein intake was estimated to be from 25 to 30 g a day. These patients developed uraemia with severe renal failure and protein deficiency within three years. The findings support the role of protein restriction in maintenance of renal function in chronic renal failure and perhaps suggest a beneficial role for meditation.

  5. Mechanical unfolding reveals stable 3-helix intermediates in talin and α-catenin.

    Directory of Open Access Journals (Sweden)

    Vasyl V Mykuliak

    2018-04-01

    Full Text Available Mechanical stability is a key feature in the regulation of structural scaffolding proteins and their functions. Despite the abundance of α-helical structures among the human proteome and their undisputed importance in health and disease, the fundamental principles of their behavior under mechanical load are poorly understood. Talin and α-catenin are two key molecules in focal adhesions and adherens junctions, respectively. In this study, we used a combination of atomistic steered molecular dynamics (SMD simulations, polyprotein engineering, and single-molecule atomic force microscopy (smAFM to investigate unfolding of these proteins. SMD simulations revealed that talin rod α-helix bundles as well as α-catenin α-helix domains unfold through stable 3-helix intermediates. While the 5-helix bundles were found to be mechanically stable, a second stable conformation corresponding to the 3-helix state was revealed. Mechanically weaker 4-helix bundles easily unfolded into a stable 3-helix conformation. The results of smAFM experiments were in agreement with the findings of the computational simulations. The disulfide clamp mutants, designed to protect the stable state, support the 3-helix intermediate model in both experimental and computational setups. As a result, multiple discrete unfolding intermediate states in the talin and α-catenin unfolding pathway were discovered. Better understanding of the mechanical unfolding mechanism of α-helix proteins is a key step towards comprehensive models describing the mechanoregulation of proteins.

  6. Semi-supervised Learning Predicts Approximately One Third of the Alternative Splicing Isoforms as Functional Proteins

    Directory of Open Access Journals (Sweden)

    Yanqi Hao

    2015-07-01

    Full Text Available Alternative splicing acts on transcripts from almost all human multi-exon genes. Notwithstanding its ubiquity, fundamental ramifications of splicing on protein expression remain unresolved. The number and identity of spliced transcripts that form stably folded proteins remain the sources of considerable debate, due largely to low coverage of experimental methods and the resulting absence of negative data. We circumvent this issue by developing a semi-supervised learning algorithm, positive unlabeled learning for splicing elucidation (PULSE; http://www.kimlab.org/software/pulse, which uses 48 features spanning various categories. We validated its accuracy on sets of bona fide protein isoforms and directly on mass spectrometry (MS spectra for an overall AU-ROC of 0.85. We predict that around 32% of “exon skipping” alternative splicing events produce stable proteins, suggesting that the process engenders a significant number of previously uncharacterized proteins. We also provide insights into the distribution of positive isoforms in various functional classes and into the structural effects of alternative splicing.

  7. Stable isotopes in Lithuanian bioarcheological material

    Science.gov (United States)

    Skipityte, Raminta; Jankauskas, Rimantas; Remeikis, Vidmantas

    2015-04-01

    Investigation of bioarcheological material of ancient human populations allows us to understand the subsistence behavior associated with various adaptations to the environment. Feeding habits are essential to the survival and growth of ancient populations. Stable isotope analysis is accepted tool in paleodiet (Schutkowski et al, 1999) and paleoenvironmental (Zernitskaya et al, 2014) studies. However, stable isotopes can be useful not only in investigating human feeding habits but also in describing social and cultural structure of the past populations (Le Huray and Schutkowski, 2005). Only few stable isotope investigations have been performed before in Lithuanian region suggesting a quite uniform diet between males and females and protein intake from freshwater fish and animal protein. Previously, stable isotope analysis has only been used to study a Stone Age population however, more recently studies have been conducted on Iron Age and Late medieval samples (Jacobs et al, 2009). Anyway, there was a need for more precise examination. Stable isotope analysis were performed on human bone collagen and apatite samples in this study. Data represented various ages (from 5-7th cent. to 18th cent.). Stable carbon and nitrogen isotope analysis on medieval populations indicated that individuals in studied sites in Lithuania were almost exclusively consuming C3 plants, C3 fed terrestrial animals, and some freshwater resources. Current investigation demonstrated social differences between elites and country people and is promising in paleodietary and daily life reconstruction. Acknowledgement I thank prof. dr. G. Grupe, Director of the Anthropological and Palaeoanatomical State Collection in Munich for providing the opportunity to work in her laboratory. The part of this work was funded by DAAD. Antanaitis-Jacobs, Indre, et al. "Diet in early Lithuanian prehistory and the new stable isotope evidence." Archaeologia Baltica 12 (2009): 12-30. Le Huray, Jonathan D., and Holger

  8. Measurement of Hepatic Protein Fractional Synthetic Rate with Stable Isotope Labeling Technique in Thapsigargin Stressed HepG2 Cells

    Science.gov (United States)

    Song, Juquan; Zhang, Xiao-jun; Boehning, Darren; Brooks, Natasha C.; Herndon, David N.; Jeschke, Marc G.

    2012-01-01

    Severe burn-induced liver damage and dysfunction is associated with endoplasmic reticulum (ER) stress. ER stress has been shown to regulate global protein synthesis. In the current study, we induced ER stress in vitro and estimated the effect of ER stress on hepatic protein synthesis. The aim was two-fold: (1) to establish an in vitro model to isotopically measure hepatic protein synthesis and (2) to evaluate protein fractional synthetic rate (FSR) in response to ER stress. Human hepatocellular carcinoma cells (HepG2) were cultured in medium supplemented with stable isotopes 1,2-13C2-glycine and L-[ring-13C6]phenylalanine. ER stress was induced by exposing the cells to 100 nM of thapsigargin (TG). Cell content was collected from day 0 to 14. Alterations in cytosolic calcium were measured by calcium imaging and ER stress markers were confirmed by Western blotting. The precursor and product enrichments were detected by GC-MS analysis for FSR calculation. We found that the hepatic protein FSR were 0.97±0.02 and 0.99±0.05%/hr calculated from 1,2-13C2-glycine and L-[ring-13C6]phenylalanine, respectively. TG depleted ER calcium stores and induced ER stress by upregulating p-IRE-1 and Bip. FSR dramatically decreased to 0.68±0.03 and 0.60±0.06%/hr in the TG treatment group (pisotope tracer incorporation technique is a useful method for studying the effects of ER stress on hepatic protein synthesis. PMID:22298954

  9. Charles River altered Schaedler flora (CRASF) remained stable for four years in a mouse colony housed in individually ventilated cages.

    Science.gov (United States)

    Stehr, Matthias; Greweling, Marina C; Tischer, Sabine; Singh, Mahavir; Blöcker, Helmut; Monner, David A; Müller, Werner

    2009-10-01

    As recommendations for specific pathogen-free housing change, mouse facilities need to re-derive their colonies repeatedly in order to eliminate specified bacteria or viruses. This paper describes the establishment of a new mouse facility using as starting point a small colony of CD-1 mice colonized with the Charles River altered Schaedler flora (CRASF) housed in individually ventilated cages (IVCs). The import of new strains was performed exclusively via embryo transfer using CD-1 mice as recipients. The integrity of the CRASF in caecum samples of the original CD-1 colony and of three inbred mouse lines imported into the colony was proven by a quantitative realtime polymerase chain reaction approach. Furthermore, we searched for bacterial contaminants in the gut flora using non-specific 16S rRNA primers. The bacterial sequences found were closely related to but not exclusively sequences of altered Schaedler flora (ASF) members, suggesting that the ASF is heterogeneous rather than restricted to the eight defined bacteria. Moreover, no pathogens were found, neither using the non-specific 16S rRNA primers nor in routine quarterly health monitoring. As one effect of this defined gut flora, interleukin-10 knockout mice are devoid of colitis in our facility. In conclusion, our approach building up a mouse facility using foster mothers and embryo transfer as well as a strict barrier system and IVCs is suitable to maintain a colony free from contaminating bacteria over the long term. CRASF remained stable for seven mouse generations and was efficiently transferred to the imported mouse strains.

  10. A self-organizing algorithm for modeling protein loops.

    Directory of Open Access Journals (Sweden)

    Pu Liu

    2009-08-01

    Full Text Available Protein loops, the flexible short segments connecting two stable secondary structural units in proteins, play a critical role in protein structure and function. Constructing chemically sensible conformations of protein loops that seamlessly bridge the gap between the anchor points without introducing any steric collisions remains an open challenge. A variety of algorithms have been developed to tackle the loop closure problem, ranging from inverse kinematics to knowledge-based approaches that utilize pre-existing fragments extracted from known protein structures. However, many of these approaches focus on the generation of conformations that mainly satisfy the fixed end point condition, leaving the steric constraints to be resolved in subsequent post-processing steps. In the present work, we describe a simple solution that simultaneously satisfies not only the end point and steric conditions, but also chirality and planarity constraints. Starting from random initial atomic coordinates, each individual conformation is generated independently by using a simple alternating scheme of pairwise distance adjustments of randomly chosen atoms, followed by fast geometric matching of the conformationally rigid components of the constituent amino acids. The method is conceptually simple, numerically stable and computationally efficient. Very importantly, additional constraints, such as those derived from NMR experiments, hydrogen bonds or salt bridges, can be incorporated into the algorithm in a straightforward and inexpensive way, making the method ideal for solving more complex multi-loop problems. The remarkable performance and robustness of the algorithm are demonstrated on a set of protein loops of length 4, 8, and 12 that have been used in previous studies.

  11. FOXO/DAF-16 Activation Slows Down Turnover of the Majority of Proteins in C. elegans.

    Science.gov (United States)

    Dhondt, Ineke; Petyuk, Vladislav A; Cai, Huaihan; Vandemeulebroucke, Lieselot; Vierstraete, Andy; Smith, Richard D; Depuydt, Geert; Braeckman, Bart P

    2016-09-13

    Most aging hypotheses assume the accumulation of damage, resulting in gradual physiological decline and, ultimately, death. Avoiding protein damage accumulation by enhanced turnover should slow down the aging process and extend the lifespan. However, lowering translational efficiency extends rather than shortens the lifespan in C. elegans. We studied turnover of individual proteins in the long-lived daf-2 mutant by combining SILeNCe (stable isotope labeling by nitrogen in Caenorhabditiselegans) and mass spectrometry. Intriguingly, the majority of proteins displayed prolonged half-lives in daf-2, whereas others remained unchanged, signifying that longevity is not supported by high protein turnover. This slowdown was most prominent for translation-related and mitochondrial proteins. In contrast, the high turnover of lysosomal hydrolases and very low turnover of cytoskeletal proteins remained largely unchanged. The slowdown of protein dynamics and decreased abundance of the translational machinery may point to the importance of anabolic attenuation in lifespan extension, as suggested by the hyperfunction theory. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Identification of syntrophic acetate-oxidizing bacteria in anaerobic digesters by combined protein-based stable isotope probing and metagenomics.

    Science.gov (United States)

    Mosbæk, Freya; Kjeldal, Henrik; Mulat, Daniel G; Albertsen, Mads; Ward, Alastair J; Feilberg, Anders; Nielsen, Jeppe L

    2016-10-01

    Inhibition of anaerobic digestion through accumulation of volatile fatty acids occasionally occurs as the result of unbalanced growth between acidogenic bacteria and methanogens. A fast recovery is a prerequisite for establishing an economical production of biogas. However, very little is known about the microorganisms facilitating this recovery. In this study, we investigated the organisms involved by a novel approach of mapping protein-stable isotope probing (protein-SIP) onto a binned metagenome. Under simulation of acetate accumulation conditions, formations of (13)C-labeled CO2 and CH4 were detected immediately following incubation with [U-(13)C]acetate, indicating high turnover rate of acetate. The identified (13)C-labeled peptides were mapped onto a binned metagenome for improved identification of the organisms involved. The results revealed that Methanosarcina and Methanoculleus were actively involved in acetate turnover, as were five subspecies of Clostridia. The acetate-consuming organisms affiliating with Clostridia all contained the FTFHS gene for formyltetrahydrofolate synthetase, a key enzyme for reductive acetogenesis, indicating that these organisms are possible syntrophic acetate-oxidizing (SAO) bacteria that can facilitate acetate consumption via SAO, coupled with hydrogenotrophic methanogenesis (SAO-HM). This study represents the first study applying protein-SIP for analysis of complex biogas samples, a promising method for identifying key microorganisms utilizing specific pathways.

  13. Identification of syntrophic acetate-oxidizing bacteria in anaerobic digesters by combined protein-based stable isotope probing and metagenomics

    Science.gov (United States)

    Mosbæk, Freya; Kjeldal, Henrik; Mulat, Daniel G; Albertsen, Mads; Ward, Alastair J; Feilberg, Anders; Nielsen, Jeppe L

    2016-01-01

    Inhibition of anaerobic digestion through accumulation of volatile fatty acids occasionally occurs as the result of unbalanced growth between acidogenic bacteria and methanogens. A fast recovery is a prerequisite for establishing an economical production of biogas. However, very little is known about the microorganisms facilitating this recovery. In this study, we investigated the organisms involved by a novel approach of mapping protein-stable isotope probing (protein-SIP) onto a binned metagenome. Under simulation of acetate accumulation conditions, formations of 13C-labeled CO2 and CH4 were detected immediately following incubation with [U-13C]acetate, indicating high turnover rate of acetate. The identified 13C-labeled peptides were mapped onto a binned metagenome for improved identification of the organisms involved. The results revealed that Methanosarcina and Methanoculleus were actively involved in acetate turnover, as were five subspecies of Clostridia. The acetate-consuming organisms affiliating with Clostridia all contained the FTFHS gene for formyltetrahydrofolate synthetase, a key enzyme for reductive acetogenesis, indicating that these organisms are possible syntrophic acetate-oxidizing (SAO) bacteria that can facilitate acetate consumption via SAO, coupled with hydrogenotrophic methanogenesis (SAO-HM). This study represents the first study applying protein-SIP for analysis of complex biogas samples, a promising method for identifying key microorganisms utilizing specific pathways. PMID:27128991

  14. Pierced Lasso Proteins

    Science.gov (United States)

    Jennings, Patricia

    Entanglement and knots are naturally occurring, where, in the microscopic world, knots in DNA and homopolymers are well characterized. The most complex knots are observed in proteins which are harder to investigate, as proteins are heteropolymers composed of a combination of 20 different amino acids with different individual biophysical properties. As new-knotted topologies and new proteins containing knots continue to be discovered and characterized, the investigation of knots in proteins has gained intense interest. Thus far, the principle focus has been on the evolutionary origin of tying a knot, with questions of how a protein chain `self-ties' into a knot, what the mechanism(s) are that contribute to threading, and the biological relevance and functional implication of a knotted topology in vivo gaining the most insight. Efforts to study the fully untied and unfolded chain indicate that the knot is highly stable, remaining intact in the unfolded state orders of magnitude longer than first anticipated. The persistence of ``stable'' knots in the unfolded state, together with the challenge of defining an unfolded and untied chain from an unfolded and knotted chain, complicates the study of fully untied protein in vitro. Our discovery of a new class of knotted proteins, the Pierced Lassos (PL) loop topology, simplifies the knotting approach. While PLs are not easily recognizable by the naked eye, they have now been identified in many proteins in the PDB through the use of computation tools. PL topologies are diverse proteins found in all kingdoms of life, performing a large variety of biological responses such as cell signaling, immune responses, transporters and inhibitors (http://lassoprot.cent.uw.edu.pl/). Many of these PL topologies are secreted proteins, extracellular proteins, as well as, redox sensors, enzymes and metal and co-factor binding proteins; all of which provide a favorable environment for the formation of the disulphide bridge. In the PL

  15. Stable transformation of sunflower (Helianthus annuus L.) using a non-meristematic regeneration protocol and green fluorescent protein as a vital marker.

    Science.gov (United States)

    Müller, A; Iser, M; Hess, D

    2001-10-01

    Stable transformation of sunflower was achieved using a non-meristematic hypocotyl explant regeneration protocol of public inbred HA300B. Uniformly transformed shoots were obtained after co-cultivation with Agrobacterium tumefaciens carrying a gfp (green fluorescent protein) gene containing an intron that blocks expression of gfp in Agrobacterium. Easily detectable, bright green fluorescence of transformed tissues was used to establish an optimal regeneration and transformation procedure. By Southern blot analysis, integration of the gfp and nptll genes was confirmed. Stable transformation efficiency was 0.1%. From 68 T1 plants analyzed, 17 showed transmission of transgene DNA and 15 of them contained the intact gfp gene. Expression of gfp was detected in 10 T1 plants carrying the intact gfp gene using a fluorimetric assay or western blot analysis. Expression of the nptll gene was confirmed in 13 T1 plants. The transformation system enables the rapid transfer of agronomically important genes.

  16. Health Benefits In 2016: Family Premiums Rose Modestly, And Offer Rates Remained Stable.

    Science.gov (United States)

    Claxton, Gary; Rae, Matthew; Long, Michelle; Damico, Anthony; Whitmore, Heidi; Foster, Gregory

    2016-10-01

    The annual Kaiser Family Foundation/Health Research and Educational Trust Employer Health Benefits Survey found that in 2016, average annual premiums (employer and worker contributions combined) were $6,435 for single coverage and $18,142 for family coverage. The family premium in 2016 was 3 percent higher than that in 2015. On average, workers contributed 18 percent of the premium for single coverage and 30 percent for family coverage. The share of firms offering health benefits (56 percent) and of workers covered by their employers' plans (62 percent) remained statistically unchanged from 2015. Employers continued to offer financial incentives for completing wellness or health promotion activities. Almost three in ten covered workers were enrolled in a high-deductible plan with a savings option-a significant increase from 2014. The 2016 survey included new questions on cost sharing for specialty drugs and on the prevalence of incentives for employees to seek care at alternative settings. Project HOPE—The People-to-People Health Foundation, Inc.

  17. Determining protein complex connectivity using a probabilistic deletion network derived from quantitative proteomics.

    Science.gov (United States)

    Sardiu, Mihaela E; Gilmore, Joshua M; Carrozza, Michael J; Li, Bing; Workman, Jerry L; Florens, Laurence; Washburn, Michael P

    2009-10-06

    Protein complexes are key molecular machines executing a variety of essential cellular processes. Despite the availability of genome-wide protein-protein interaction studies, determining the connectivity between proteins within a complex remains a major challenge. Here we demonstrate a method that is able to predict the relationship of proteins within a stable protein complex. We employed a combination of computational approaches and a systematic collection of quantitative proteomics data from wild-type and deletion strain purifications to build a quantitative deletion-interaction network map and subsequently convert the resulting data into an interdependency-interaction model of a complex. We applied this approach to a data set generated from components of the Saccharomyces cerevisiae Rpd3 histone deacetylase complexes, which consists of two distinct small and large complexes that are held together by a module consisting of Rpd3, Sin3 and Ume1. The resulting representation reveals new protein-protein interactions and new submodule relationships, providing novel information for mapping the functional organization of a complex.

  18. Application of stable isotope tracer methods to studies of amino acid, protein, and energy metabolism in malnourished populations of developing countries. Report of an IAEA consultants' meeting held in Vienna, Austria, 14-16 December 1992

    International Nuclear Information System (INIS)

    1993-01-01

    A Consultants' Meeting convened by the IAEA in December 1992, made recommendations on the organization of a Co-ordinated Research Programme (CRP) using stable isotopic techniques for international comparative studies of amino acid, protein, and energy metabolism in chronically undernourished people. The CRP will use recent developments in stable isotope tracer techniques ( 13 C and 15 N) to assess the impact of infection in undernourished people on the kinetics of protein breakdown, protein synthesis, amino acid metabolism, and on the synthetic rates of selected plasma proteins. Studies will be conducted in developing countries, particularly in young children. The programme goals are to (i) elaborate methods and model protocols which can be implemented in developing countries to investigate the impact on protein metabolism of infection superimposed on chronic undernutrition; (ii) test they hypothesis that dietary requirements for protein and amino acids are related to the place of nutrition and are altered substantially when infection is superimposed on chronic undernutrition. When feasible, the primary focus on protein/amino acid metabolism will be extended to assessments of protein/energy interactions when H 2 18 O becomes more readily available and/or at research sites with indirect calorimetry equipment. The data generated should be appropriate as a basis for reevaluating amino acid/protein requirements in these populations. Refs

  19. Stable Isotope Quantitative N-Glycan Analysis by Liquid Separation Techniques and Mass Spectrometry.

    Science.gov (United States)

    Mittermayr, Stefan; Albrecht, Simone; Váradi, Csaba; Millán-Martín, Silvia; Bones, Jonathan

    2017-01-01

    Liquid phase separation analysis and subsequent quantitation remains a challenging task for protein-derived oligosaccharides due to their inherent structural complexity and diversity. Incomplete resolution or co-detection of multiple glycan species complicates peak area-based quantitation and associated statistical analysis when optical detection methods are used. The approach outlined herein describes the utilization of stable isotope variants of commonly used fluorescent tags that allow for mass-based glycan identification and relative quantitation following separation by liquid chromatography (LC) or capillary electrophoresis (CE). Comparability assessment of glycoprotein-derived oligosaccharides is performed by derivatization with commercially available isotope variants of 2-aminobenzoic acid or aniline and analysis by LC- and CE-mass spectrometry. Quantitative information is attained from the extracted ion chromatogram/electropherogram ratios generated from the light and heavy isotope clusters.

  20. Stable glomerular filtration rate in normotensive IDDM patients with stable microalbuminuria. A 5-year prospective study

    DEFF Research Database (Denmark)

    Mathiesen, E R; Feldt-Rasmussen, B; Hommel, E

    1997-01-01

    patients with persistent microalbuminuria (mean urinary albumin excretion [UAE] 84 mg/24 h [range 30-300]) were followed prospectively for 5 years of clinical examinations that included the measurement of GFR (51Cr-labeled EDTA clearance) at least once a year. The mean GFR at baseline was 120 +/- 18 ml x....... Out of 40 patients, 14 progressed to diabetic nephropathy (UAE > 300 mg/24 h). These patients had a significant reduction in GFR (mean -2.2 +/- 3.8 ml x min-1 x year-1; P = 0.05), while GFR remained stable in the remaining 26 patients with nonprogressive microalbuminuria (change in GFR 0.5 +/- 2.1 ml...

  1. Co-ordinated research programme on applications of stable isotope tracers in human nutrition research

    International Nuclear Information System (INIS)

    1992-01-01

    This document provides a very brief report on the final Research Co-ordination Meeting of this Co-ordinated Research Project (CRP): the final report on the CRP will be published by the IAEA in the IAEA-TECDOC series. The present document contains a detailed proposal for a new Co-ordinated Research Programme on ''Stable Isotope Tracer Techniques for Studies on Protein-Energy Interactions'', and a brief series of notes on stable isotopic methods for investigating protein and amino-acid metabolism in man. Refs

  2. Protein stability in pulmonary drug delivery via nebulization.

    Science.gov (United States)

    Hertel, Sebastian P; Winter, Gerhard; Friess, Wolfgang

    2015-10-01

    Protein inhalation is a delivery route which offers high potential for direct local lung application of proteins. Liquid formulations are usually available in early stages of biopharmaceutical development and nebulizers are the device of choice for atomization avoiding additional process steps like drying and enabling fast progression to clinical trials. While some proteins were proven to remain stable throughout aerosolization e.g. DNase, many biopharmaceuticals are more susceptible towards the stresses encountered during nebulization. The main reason for protein instability is unfolding and aggregation at the air-liquid interface, a problem which is of particular challenge in the case of ultrasound and jet nebulizers due to recirculation of much of the generated droplets. Surfactants are an important formulation component to protect the sensitive biomolecules. A second important challenge is warming of ultrasound and vibrating mesh devices, which can be overcome by overfilling, precooled solutions or cooling of the reservoir. Ultimately, formulation development has to go hand in hand with device evaluation. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Variation in Protein and Calorie Consumption Following Protein Malnutrition in Rattus norvegicus

    Science.gov (United States)

    Jones, Donna C.; German, Rebecca Z.

    2013-01-01

    Simple Summary Catch-up growth following malnutrition is likely influenced by available protein and calories. We measured calorie and protein consumption following the removal of protein malnutrition after 40, 60 and 90 days, in laboratory rats. Following the transition in diet, animals self-selected fewer calories, implying elevated protein is sufficient to fuel catch-up growth, eventually resulting in body weights and bone lengths greater or equal to those of control animals. Rats rehabilitated at younger ages, had more drastic alterations in consumption. Variable responses in different ages and sex highlight the plasticity of growth and how nutrition affects body form. This work furthers our understanding of how humans and livestock can recover from protein-restriction malnutrition, which seems to employ different biological responses. Abstract Catch-up growth rates, following protein malnutrition, vary with timing and duration of insult, despite unlimited access to calories. Understanding changing patterns of post-insult consumption, relative rehabilitation timing, can provide insight into the mechanisms driving those differences. We hypothesize that higher catch-up growth rates will be correlated with increased protein consumption, while calorie consumption could remain stable. As catch-up growth rates decrease with age/malnutrition duration, we predict a dose effect in protein consumption with rehabilitation timing. We measured total and protein consumption, body mass, and long bone length, following an increase of dietary protein at 40, 60 and 90 days, with two control groups (chronic reduced protein or standard protein) for 150+ days. Immediately following rehabilitation, rats’ food consumption decreased significantly, implying that elevated protein intake is sufficient to fuel catch-up growth rates that eventually result in body weights and long bone lengths greater or equal to final measures of chronically fed standard (CT) animals. The duration of

  4. Stable isotope tracers and exercise physiology: past, present and future.

    Science.gov (United States)

    Wilkinson, Daniel J; Brook, Matthew S; Smith, Kenneth; Atherton, Philip J

    2017-05-01

    Stable isotope tracers have been invaluable assets in physiological research for over 80 years. The application of substrate-specific stable isotope tracers has permitted exquisite insight into amino acid, fatty-acid and carbohydrate metabolic regulation (i.e. incorporation, flux, and oxidation, in a tissue-specific and whole-body fashion) in health, disease and response to acute and chronic exercise. Yet, despite many breakthroughs, there are limitations to 'substrate-specific' stable isotope tracers, which limit physiological insight, e.g. the need for intravenous infusions and restriction to short-term studies (hours) in controlled laboratory settings. In recent years significant interest has developed in alternative stable isotope tracer techniques that overcome these limitations, in particular deuterium oxide (D 2 O or heavy water). The unique properties of this tracer mean that through oral administration, the turnover and flux through a number of different substrates (muscle proteins, lipids, glucose, DNA (satellite cells)) can be monitored simultaneously and flexibly (hours/weeks/months) without the need for restrictive experimental control. This makes it uniquely suited for the study of 'real world' human exercise physiology (amongst many other applications). Moreover, using D 2 O permits evaluation of turnover of plasma and muscle proteins (e.g. dynamic proteomics) in addition to metabolomics (e.g. fluxomics) to seek molecular underpinnings, e.g. of exercise adaptation. Here, we provide insight into the role of stable isotope tracers, from substrate-specific to novel D 2 O approaches, in facilitating our understanding of metabolism. Further novel potential applications of stable isotope tracers are also discussed in the context of integration with the snowballing field of 'omic' technologies. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  5. Susceptibility to viral infection is enhanced by stable expression of 3A or 3AB proteins from foot-and-mouth disease virus

    International Nuclear Information System (INIS)

    Rosas, Maria F.; Vieira, Yuri A.; Postigo, Raul; Martin-Acebes, Miguel A.; Armas-Portela, Rosario; Martinez-Salas, Encarnacion; Sobrino, Francisco

    2008-01-01

    The foot-and-mouth disease virus (FMDV) 3A protein is involved in virulence and host range. A distinguishing feature of FMDV 3B among picornaviruses is that three non-identical copies are encoded in the viral RNA and required for optimal replication in cell culture. Here, we have studied the involvement of the 3AB region on viral infection using constitutive and transient expression systems. BHK-21 stably transformed clones expressed low levels of FMDV 3A or 3A(B) proteins in the cell cytoplasm. Transformed cells stably expressing these proteins did not exhibit inner cellular rearrangements detectable by electron microscope analysis. Upon FMDV infection, clones expressing either 3A alone or 3A(B) proteins showed a significant increase in the percentage of infected cells, the number of plaque forming units and the virus yield. The 3A-enhancing effect was specific for FMDV as no increase in viral multiplication was observed in transformed clones infected with another picornavirus, encephalomyocarditis virus, or the negative-strand RNA virus vesicular stomatitis virus. A potential role of 3A protein in viral RNA translation was discarded by the lack of effect on FMDV IRES-dependent translation. Increased viral susceptibility was not caused by a released factor; neither the supernatant of transformed clones nor the addition of purified 3A protein to the infection medium was responsible for this effect. Unlike stable expression, high levels of 3A or 3A(B) protein transient expression led to unspecific inhibition of viral infection. Therefore, the effect observed on viral yield, which inversely correlated with the intracellular levels of 3A protein, suggests a transacting role operating on the FMDV multiplication cycle

  6. Mapping Protein-Protein Interactions by Quantitative Proteomics

    DEFF Research Database (Denmark)

    Dengjel, Joern; Kratchmarova, Irina; Blagoev, Blagoy

    2010-01-01

    spectrometry (MS)-based proteomics in combination with affinity purification protocols has become the method of choice to map and track the dynamic changes in protein-protein interactions, including the ones occurring during cellular signaling events. Different quantitative MS strategies have been used...... to characterize protein interaction networks. In this chapter we describe in detail the use of stable isotope labeling by amino acids in cell culture (SILAC) for the quantitative analysis of stimulus-dependent dynamic protein interactions.......Proteins exert their function inside a cell generally in multiprotein complexes. These complexes are highly dynamic structures changing their composition over time and cell state. The same protein may thereby fulfill different functions depending on its binding partners. Quantitative mass...

  7. A first-principles model of early evolution: emergence of gene families, species, and preferred protein folds.

    Directory of Open Access Journals (Sweden)

    Konstantin B Zeldovich

    2007-07-01

    Full Text Available In this work we develop a microscopic physical model of early evolution where phenotype--organism life expectancy--is directly related to genotype--the stability of its proteins in their native conformations-which can be determined exactly in the model. Simulating the model on a computer, we consistently observe the "Big Bang" scenario whereby exponential population growth ensues as soon as favorable sequence-structure combinations (precursors of stable proteins are discovered. Upon that, random diversity of the structural space abruptly collapses into a small set of preferred proteins. We observe that protein folds remain stable and abundant in the population at timescales much greater than mutation or organism lifetime, and the distribution of the lifetimes of dominant folds in a population approximately follows a power law. The separation of evolutionary timescales between discovery of new folds and generation of new sequences gives rise to emergence of protein families and superfamilies whose sizes are power-law distributed, closely matching the same distributions for real proteins. On the population level we observe emergence of species--subpopulations that carry similar genomes. Further, we present a simple theory that relates stability of evolving proteins to the sizes of emerging genomes. Together, these results provide a microscopic first-principles picture of how first-gene families developed in the course of early evolution.

  8. Live-cell FRET imaging reveals clustering of the prion protein at the cell surface induced by infectious prions.

    Science.gov (United States)

    Tavares, Evandro; Macedo, Joana A; Paulo, Pedro M R; Tavares, Catarina; Lopes, Carlos; Melo, Eduardo P

    2014-07-01

    Prion diseases are associated to the conversion of the prion protein into a misfolded pathological isoform. The mechanism of propagation of protein misfolding by protein templating remains largely unknown. Neuroblastoma cells were transfected with constructs of the prion protein fused to both CFP-GPI-anchored and to YFP-GPI-anchored and directed to its cell membrane location. Live-cell FRET imaging between the prion protein fused to CFP or YFP was measured giving consistent values of 10±2%. This result was confirmed by fluorescence lifetime imaging microscopy and indicates intermolecular interactions between neighbor prion proteins. In particular, considering that a maximum FRET efficiency of 17±2% was determined from a positive control consisting of a fusion CFP-YFP-GPI-anchored. A stable cell clone expressing the two fusions containing the prion protein was also selected to minimize cell-to-cell variability. In both, stable and transiently transfected cells, the FRET efficiency consistently increased in the presence of infectious prions - from 4±1% to 7±1% in the stable clone and from 10±2% to 16±1% in transiently transfected cells. These results clearly reflect an increased clustering of the prion protein on the membrane in the presence of infectious prions, which was not observed in negative control using constructs without the prion protein and upon addition of non-infected brain. Our data corroborates the recent view that the primary site for prion conversion is the cell membrane. Since our fluorescent cell clone is not susceptible to propagate infectivity, we hypothesize that the initial event of prion infectivity might be the clustering of the GPI-anchored prion protein. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Residues of the UL25 Protein of Herpes Simplex Virus That Are Required for Its Stable Interaction with Capsids ▿

    Science.gov (United States)

    Cockrell, Shelley K.; Huffman, Jamie B.; Toropova, Katerina; Conway, James F.; Homa, Fred L.

    2011-01-01

    The herpes simplex virus 1 (HSV-1) UL25 gene product is a minor capsid component that is required for encapsidation, but not cleavage, of replicated viral DNA. UL25 is located on the capsid surface in a proposed heterodimer with UL17, where five copies of the heterodimer are found at each of the capsid vertices. Previously, we demonstrated that amino acids 1 to 50 of UL25 are essential for its stable interaction with capsids. To further define the UL25 capsid binding domain, we generated recombinant viruses with either small truncations or amino acid substitutions in the UL25 N terminus. Studies of these mutants demonstrated that there are two important regions within the capsid binding domain. The first 27 amino acids are essential for capsid binding of UL25, while residues 26 to 39, which are highly conserved in the UL25 homologues of other alphaherpesviruses, were found to be critical for stable capsid binding. Cryo-electron microscopy reconstructions of capsids containing either a small tag on the N terminus of UL25 or the green fluorescent protein (GFP) fused between amino acids 50 and 51 of UL25 demonstrate that residues 1 to 27 of UL25 contact the hexon adjacent to the penton. A second region, most likely centered on amino acids 26 to 39, contacts the triplex that is one removed from the penton. Importantly, both of these UL25 capsid binding regions are essential for the stable packaging of full-length viral genomes. PMID:21411517

  10. Periodontal status affects C-reactive protein and lipids in patients with stable heart disease from a tertiary care cardiovascular clinic.

    Science.gov (United States)

    Flores, Manuela F; Montenegro, Marlon M; Furtado, Mariana V; Polanczyk, Carisi A; Rösing, Cassiano K; Haas, Alex N

    2014-04-01

    There are scarce data on the impact of the periodontal condition in the control of biomarkers in patients with cardiovascular disease (CVD). The aim of this study is to assess whether periodontal inflammation and tissue breakdown are associated with C-reactive protein (CRP) and lipids in patients with stable heart disease. This cross-sectional study included 93 patients with stable coronary artery disease (57 males; mean age: 63.5 ± 9.8 years) who were in outpatient care for at least 6 months. After applying a structured questionnaire, periodontal examinations were performed by two calibrated periodontists in six sites per tooth at all teeth. Blood samples were collected from patients on the day of periodontal examination to determine levels of CRP, lipids, and glycated hemoglobin. Multiple linear regression models were fitted to evaluate the association among different periodontal and blood parameters controlling for sex, body mass index, glycated hemoglobin, use of oral hypoglycemic drugs, and smoking. Overall, the sample presented high levels of periodontal inflammation and tissue breakdown. Unadjusted mean concentrations of triglycerides (TGs), very-low-density lipoprotein cholesterol, and glucose were significantly higher in individuals with severe periodontitis. When multiple linear regression models were applied, number of teeth with clinical attachment loss ≥6 mm and presence of severe periodontitis were significantly associated with higher CRP concentrations. Bleeding on probing was significantly associated with TGs, total cholesterol, and non-high-density lipoprotein cholesterol. In this sample of patients with stable CVD, current periodontal inflammation and tissue breakdown are associated with cardiovascular inflammatory markers, such as CRP and lipid profile.

  11. Cognitive performance of detoxified alcoholic Korsakoff syndrome patients remains stable over two years.

    Science.gov (United States)

    Fujiwara, Esther; Brand, Matthias; Borsutzky, Sabine; Steingass, Hans-P; Markowitsch, Hans J

    2008-07-01

    Excessive alcohol consumption is assumed to promote cognitive decline, eventually increasing the risk of dementia. However, little is known about the time course of cognitive functions in patients with chronic alcoholic Korsakoff syndrome (KS). Therefore, we assessed neuropsychological performance in 20 detoxified chronic KS inpatients at time 1 (T1) with a follow-up after two years (T2). The neuropsychological tests assessed verbal and visual short- and long-term memory, working memory, basic executive functions, language, general knowledge, and visual-spatial abilities. Surveys with caregivers and medical records provided information about current and previous disease-related parameters, drinking history, additional pathologies, as well as psychosocial and cognitive therapy within the two-year period. At both sessions, the majority of the KS patients' results were inferior to those of normal subjects. Comparing T1 and T2 revealed no significant decline in any of the investigated functions. Instead, general knowledge, visual long-term memory, and verbal fluency improved slightly after two years, though they still remained within pathological range. Comparing most improved and most deteriorated patients, better outcome occurred more frequently in men than women and was associated with higher premorbid education and fewer detoxifications in the past. In this sample of detoxified KS patients there was no indication of accelerated cognitive decline or onset of dementia-like symptoms over two years.

  12. The human vascular endothelial cell line HUV-EC-C harbors the integrated HHV-6B genome which remains stable in long term culture.

    Science.gov (United States)

    Shioda, Setsuko; Kasai, Fumio; Ozawa, Midori; Hirayama, Noriko; Satoh, Motonobu; Kameoka, Yousuke; Watanabe, Ken; Shimizu, Norio; Tang, Huamin; Mori, Yasuko; Kohara, Arihiro

    2018-02-01

    Human herpes virus 6 (HHV-6) is a common human pathogen that is most often detected in hematopoietic cells. Although human cells harboring chromosomally integrated HHV-6 can be generated in vitro, the availability of such cell lines originating from in vivo tissues is limited. In this study, chromosomally integrated HHV-6B has been identified in a human vascular endothelial cell line, HUV-EC-C (IFO50271), derived from normal umbilical cord tissue. Sequence analysis revealed that the viral genome was similar to the HHV-6B HST strain. FISH analysis using a HHV-6 DNA probe showed one signal in each cell, detected at the distal end of the long arm of chromosome 9. This was consistent with a digital PCR assay, validating one copy of the viral DNA. Because exposure of HUV-EC-C to chemicals did not cause viral reactivation, long term cell culture of HUV-EC-C was carried out to assess the stability of viral integration. The growth rate was altered depending on passage numbers, and morphology also changed during culture. SNP microarray profiles showed some differences between low and high passages, implying that the HUV-EC-C genome had changed during culture. However, no detectable change was observed in chromosome 9, where HHV-6B integration and the viral copy number remained unchanged. Our results suggest that integrated HHV-6B is stable in HUV-EC-C despite genome instability.

  13. Foams prepared from whey protein isolate and egg white protein: 2. Changes associated with angel food cake functionality.

    Science.gov (United States)

    Berry, Tristan K; Yang, Xin; Foegeding, E Allen

    2009-06-01

    The effects of sucrose on the physical properties and thermal stability of foams prepared from 10% (w/v) protein solutions of whey protein isolate (WPI), egg white protein (EWP), and their combinations (WPI/EWP) were investigated in wet foams and angel food cakes. Incorporation of 12.8 (w/v) sucrose increased EWP foam stability (drainage 1/2 life) but had little effect on the stability of WPI and WPI/EWP foams. Increased stability was not due to viscosity alone. Sucrose increased interfacial elasticity (E ') of EWP and decreased E' of WPI and WPI/EWP combinations, suggesting that altered interfacial properties increased stability in EWP foams. Although 25% WPI/75% EWP cakes had similar volumes as EWP cakes, cakes containing WPI had larger air cells. Changes during heating showed that EWP foams had network formation starting at 45 degrees C, which was not observed in WPI and WPI/EWP foams. Moreover, in batters, which are foams with additional sugar and flour, a stable foam network was observed from 25 to 85 degrees C for batters made from EWP foams. Batters containing WPI or WPI/EWP mixtures showed signs of destabilization starting at 25 degrees C. These results show that sucrose greatly improved the stability of wet EWP foams and that EWP foams form network structures that remain stable during heating. In contrast, sucrose had minimal effects on stability of WPI and WPI/EWP wet foams, and batters containing these foams showed destabilization prior to heating. Therefore, destabilization processes occurring in the wet foams and during baking account for differences in angel food cake quality.

  14. Determining protein complex connectivity using a probabilistic deletion network derived from quantitative proteomics.

    Directory of Open Access Journals (Sweden)

    Mihaela E Sardiu

    2009-10-01

    Full Text Available Protein complexes are key molecular machines executing a variety of essential cellular processes. Despite the availability of genome-wide protein-protein interaction studies, determining the connectivity between proteins within a complex remains a major challenge. Here we demonstrate a method that is able to predict the relationship of proteins within a stable protein complex. We employed a combination of computational approaches and a systematic collection of quantitative proteomics data from wild-type and deletion strain purifications to build a quantitative deletion-interaction network map and subsequently convert the resulting data into an interdependency-interaction model of a complex. We applied this approach to a data set generated from components of the Saccharomyces cerevisiae Rpd3 histone deacetylase complexes, which consists of two distinct small and large complexes that are held together by a module consisting of Rpd3, Sin3 and Ume1. The resulting representation reveals new protein-protein interactions and new submodule relationships, providing novel information for mapping the functional organization of a complex.

  15. Fundamentals of the LISA stable flight formation

    International Nuclear Information System (INIS)

    Dhurandhar, S V; Nayak, K Rajesh; Koshti, S; Vinet, J-Y

    2005-01-01

    The joint NASA-ESA mission, LISA, relies crucially on the stability of the three-spacecraft constellation. Each of the spacecraft is in heliocentric orbit forming a stable triangle. In this paper we explicitly show with the help of the Clohessy-Wiltshire equations that any configuration of spacecraft lying in the planes making angles of ±60 0 with the ecliptic and given suitable initial velocities within the plane, can be made stable in the sense that the inter-spacecraft distances remain constant to first order in the dimensions of the configuration compared with the distance to the Sun. Such analysis would be useful in order to carry out theoretical studies on the optical links, simulators, etc

  16. Stable convergence and stable limit theorems

    CERN Document Server

    Häusler, Erich

    2015-01-01

    The authors present a concise but complete exposition of the mathematical theory of stable convergence and give various applications in different areas of probability theory and mathematical statistics to illustrate the usefulness of this concept. Stable convergence holds in many limit theorems of probability theory and statistics – such as the classical central limit theorem – which are usually formulated in terms of convergence in distribution. Originated by Alfred Rényi, the notion of stable convergence is stronger than the classical weak convergence of probability measures. A variety of methods is described which can be used to establish this stronger stable convergence in many limit theorems which were originally formulated only in terms of weak convergence. Naturally, these stronger limit theorems have new and stronger consequences which should not be missed by neglecting the notion of stable convergence. The presentation will be accessible to researchers and advanced students at the master's level...

  17. General protein-protein cross-linking.

    Science.gov (United States)

    Alegria-Schaffer, Alice

    2014-01-01

    This protocol describes a general protein-to-protein cross-linking procedure using the water-soluble amine-reactive homobifunctional BS(3) (bis[sulfosuccinimidyl] suberate); however, the protocol can be easily adapted using other cross-linkers of similar properties. BS(3) is composed of two sulfo-NHS ester groups and an 11.4 Å linker. Sulfo-NHS ester groups react with primary amines in slightly alkaline conditions (pH 7.2-8.5) and yield stable amide bonds. The reaction releases N-hydroxysuccinimide (see an application of NHS esters on Labeling a protein with fluorophores using NHS ester derivitization). © 2014 Elsevier Inc. All rights reserved.

  18. Non-labile silver species in biosolids remain stable throughout 50 years of weathering and ageing

    International Nuclear Information System (INIS)

    Donner, E.; Scheckel, K.; Sekine, R.; Popelka-Filcoff, R.S.; Bennett, J.W.; Brunetti, G.; Naidu, R.; McGrath, S.P.; Lombi, E.

    2015-01-01

    Increasing commercial use of nanosilver has focussed attention on the fate of silver (Ag) in the wastewater release pathway. This paper reports the speciation and lability of Ag in archived, stockpiled, and contemporary biosolids from the UK, USA and Australia, and indicates that biosolids Ag concentrations have decreased significantly over recent decades. XANES revealed the importance of reduced-sulfur binding environments for Ag speciation in materials ranging from freshly produced sludge to biosolids weathered under ambient environmental conditions for more than 50 years. Isotopic dilution with 110m Ag showed that Ag was predominantly non-labile in both fresh and aged biosolids (13.7% mean lability), with E-values ranging from 0.3 to 60 mg/kg and 5 mM CaNO 3 extractable Ag from 1.2 to 609 μg/kg (0.002–3.4% of the total Ag). This study indicates that at the time of soil application, biosolids Ag will be predominantly Ag-sulfides and characterised by low isotopic lability. - Highlights: • Biosolids silver (Ag) concentrations appear to have decreased in recent decades. • Ag 2 S dominates Ag speciation in freshly produced sludge. • Ag 2 S is also the dominant species in aged biosolids. • Upon land application biosolids will mainly contain Ag-sulfides and have low isotopic lability. - Analysis of historic and contemporary biosolids from three continents indicated decreasing wastewater silver releases, and non-labile, extremely stable silver speciation

  19. Globular and disordered-the non-identical twins in protein-protein interactions

    DEFF Research Database (Denmark)

    Teilum, Kaare; Olsen, Johan Gotthardt; Kragelund, Birthe Brandt

    2015-01-01

    as a strong determinant for their function. This has fostered the notion that IDP's bind with low affinity but high specificity. Here we have analyzed available detailed thermodynamic data for protein-protein interactions to put to the test if the thermodynamic profiles of IDP interactions differ from those...... of other protein-protein interactions. We find that ordered proteins and the disordered ones act as non-identical twins operating by similar principles but where the disordered proteins complexes are on average less stable by 2.5 kcal mol(-1)....

  20. Benefit from autologous stem cell transplantation in primary refractory myeloma? Different outcomes in progressive versus stable disease

    Science.gov (United States)

    Rosiñol, Laura; García-Sanz, Ramón; Lahuerta, Juan José; Hernández-García, Miguel; Granell, Miquel; de la Rubia, Javier; Oriol, Albert; Hernández-Ruiz, Belén; Rayón, Consuelo; Navarro, Isabel; García-Ruiz, Juan Carlos; Besalduch, Joan; Gardella, Santiago; Jiménez, Javier López; Díaz-Mediavilla, Joaquín; Alegre, Adrián; Miguel, Jesús San; Bladé, Joan

    2012-01-01

    Background Several studies of autologous stem cell transplantation in primary refractory myeloma have produced encouraging results. However, the outcome of primary refractory patients with stable disease has not been analyzed separately from the outcome of patients with progressive disease. Design and Methods In the Spanish Myeloma Group 2000 trial, 80 patients with primary refractory myeloma (49 with stable disease and 31 with progressive disease), i.e. who were refractory to initial chemotherapy, were scheduled for tandem transplants (double autologous transplant or a single autologous transplant followed by an allogeneic transplant). Patients with primary refractory disease included those who never achieved a minimal response (≥25% M-protein decrease) or better. Responses were assessed using the European Bone Marrow Transplant criteria. Results There were no significant differences in the rates of partial response or better between patients with stable or progressive disease. However, 38% of the patients with stable disease at the time of transplantation remained in a stable condition or achieved a minimal response after transplantation versus 7% in the group with progressive disease (P=0.0017) and the rate of early progression after transplantation was significantly higher among the group with progressive disease at the time of transplantation (22% versus 2%; P=0.0043). After a median follow-up of 6.6 years, the median survival after first transplant of the whole series was 2.3 years. Progression-free and overall survival from the first transplant were shorter in patients with progressive disease (0.6 versus 2.3 years, P=0.00004 and 1.1 versus 6 years, P=0.00002, respectively). Conclusions Our results show that patients with progressive refractory myeloma do not benefit from autologous transplantation, while patients with stable disease have an outcome comparable to those with chemosensitive disease. (ClinicalTrials.gov:NCT00560053) PMID:22058223

  1. Assessing white matter ischemic damage in dementia patients by measurement of myelin proteins

    Science.gov (United States)

    Barker, Rachel; Wellington, Dannielle; Esiri, Margaret M; Love, Seth

    2013-01-01

    White matter ischemia is difficult to quantify histologically. Myelin-associated glycoprotein (MAG) is highly susceptible to ischemia, being expressed only adaxonally, far from the oligodendrocyte cell body. Myelin-basic protein (MBP) and proteolipid protein (PLP) are expressed throughout the myelin sheath. We compared MAG, MBP, and PLP levels in parietal white matter homogenates from 17 vascular dementia (VaD), 49 Alzheimer's disease (AD), and 33 control brains, after assessing the post-mortem stability of these proteins. Small vessel disease (SVD) and cerebral amyloid angiopathy (CAA) severity had been assessed in paraffin sections. The concentration of MAG remained stable post-mortem, declined with increasing SVD, and was significantly lower in VaD than controls. The concentration of MBP fell progressively post-mortem, limiting its diagnostic utility in this context. Proteolipid protein was stable post-mortem and increased significantly with SVD severity. The MAG/PLP ratio declined significantly with SVD and CAA severity. The MAG and PLP levels and MAG/PLP did not differ significantly between AD and control brains. We validated the utility of MAG and MAG/PLP measurements on analysis of 74 frontal white matter samples from an Oxford cohort in which SVD had previously been scored. MAG concentration and the MAG/PLP ratio are useful post-mortem measures of ante-mortem white matter ischemia. PMID:23532085

  2. Protein- protein interaction detection system using fluorescent protein microdomains

    Science.gov (United States)

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2010-02-23

    The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.

  3. Crystal Structure of the Human, FIC-Domain Containing Protein HYPE and Implications for Its Functions

    Science.gov (United States)

    Bunney, Tom D.; Cole, Ambrose R.; Broncel, Malgorzata; Esposito, Diego; Tate, Edward W.; Katan, Matilda

    2014-01-01

    Summary Protein AMPylation, the transfer of AMP from ATP to protein targets, has been recognized as a new mechanism of host-cell disruption by some bacterial effectors that typically contain a FIC-domain. Eukaryotic genomes also encode one FIC-domain protein, HYPE, which has remained poorly characterized. Here we describe the structure of human HYPE, solved by X-ray crystallography, representing the first structure of a eukaryotic FIC-domain protein. We demonstrate that HYPE forms stable dimers with structurally and functionally integrated FIC-domains and with TPR-motifs exposed for protein-protein interactions. As HYPE also uniquely possesses a transmembrane helix, dimerization is likely to affect its positioning and function in the membrane vicinity. The low rate of autoAMPylation of the wild-type HYPE could be due to autoinhibition, consistent with the mechanism proposed for a number of putative FIC AMPylators. Our findings also provide a basis to further consider possible alternative cofactors of HYPE and distinct modes of target-recognition. PMID:25435325

  4. Preparation, radioiodination and in vitro evaluation of a nido-carborane-dextran conjugate, a potential residualizing label for tumor targeting proteins and peptides

    International Nuclear Information System (INIS)

    Tolmachev, V.; Bruskin, A.; Uppsala University; Sjoeberg, S.; Carlsson, J.; Lundqvist, H.

    2004-01-01

    Polysaccharides are not degradable by proteolytic enzymes in lysosomes and do not diffuse through cellular membranes. Thus, attached to an internalizing, targeting protein, such polysaccharide linkers, will remain intracellularly after protein degradation. They can be labeled with halogens and provide then a so called residualizing label. Such an approach improves tumor-to-non-tumor radioactivity ratio and, consequently, the results of radionuclide diagnostics and therapy. A new approach to obtain a stable halogenation of the polysaccharide dextran using 7-(3-amino-propyl)-7,8-dicarba-nido-undecaborate (-) (ANC) is presented. Dextran T10 was partially oxidized by metaperiodate, and ANC was coupled to dextran by reductive amination. The conjugate was then labeled with 125 I using either Chloramine-T or IodoGen as oxidants. Labeling efficiency was 69-85%. Stability of the label was evaluated in rat liver homogenates. Under these conditions, the ANC-dextran conjugate was found to be more stable than labeled albumin, which was used as a control protein. (author)

  5. UV-induced cross-linking of abscisic acid to binding proteins

    International Nuclear Information System (INIS)

    Cornelussen, M.H.M.; Karssen, C.M.; Loon, L.C. van

    1995-01-01

    Conditions for UV-induced cross-linking of abscisic acid (ABA) through its enone chromophore to binding proteins were evaluated. The effects of a UV-light band between 260 and 530 nm on both unconjugated and protein-conjugated ABA, as well as on anti-ABA antibodies as models of ABA-binding proteins were determined. UV irradiation caused both isomerization and photolysis of ABA, but increasing the lower irradiation boundary to 345 nm strongly reduced photolysis and largely prevented isomerization. When conjugated to alkaline phosphatase (AP), ABA remained stable when using either a 320 or a 345 nm filter. At these wavelengths both binding of ABA to antibodies as well as AP enzymatic activity were maintained. UV-induced cross-linking of monoclonal anti-ABA antibodies to immobilized ABA was analysed by immunoassays. Optimal cross-linking was achieved after a 5 min irradiation period at 0°, using a long pass, cut-on filter to quench wavelengths below 290 nm. This cross-linking faithfully reflected cognate binding activity. (author)

  6. A comparative study on the iodine-labeled methods of protein and polypeptide

    International Nuclear Information System (INIS)

    Li Huaifen; Niu Huisheng; Yuan Mingyue; Yu Jinghua

    1994-01-01

    There are three methods: chloramine-T, Iodogen and lactoperoxidase(LPO). 125 I-ACTH, 125 I-insulin and 125 I-HSA are prepared by these techniques. The results show that lactoperoxidase is isolated and purified from fresh milk, meanwhile, the enzyme is used in experiments of 125 I-labeled protein, peptide hormone and mono-clone antibody, etc. LPO is a very successful method for it's mild, complete reaction, controllable, high labelling yield, higher purity of iodine-labeled compound and so on. It remains biological activation and stable character more than other two techniques

  7. Ancestral mutations as a tool for solubilizing proteins: The case of a hydrophobic phosphate-binding protein

    Directory of Open Access Journals (Sweden)

    Daniel Gonzalez

    2014-01-01

    Full Text Available Stable and soluble proteins are ideal candidates for functional and structural studies. Unfortunately, some proteins or enzymes can be difficult to isolate, being sometimes poorly expressed in heterologous systems, insoluble and/or unstable. Numerous methods have been developed to address these issues, from the screening of various expression systems to the modification of the target protein itself. Here we use a hydrophobic, aggregation-prone, phosphate-binding protein (HPBP as a case study. We describe a simple and fast method that selectively uses ancestral mutations to generate a soluble, stable and functional variant of the target protein, here named sHPBP. This variant is highly expressed in Escherichia coli, is easily purified and its structure was solved at much higher resolution than its wild-type progenitor (1.3 versus 1.9 Å, respectively.

  8. France's Administrative Tertiary: Stable Numbers for Occupations in Flux.

    Science.gov (United States)

    Liaroutzos, Olivier; Meriot, Sylvie-Anne

    1995-01-01

    During the past decade, the number of jobs in France's administrative service sector has remained stable. General administrative work has become more infrequent; however, the basic occupations of secretary and accountancy have been maintained. Although the number of typists has declined, the number of "secretarial" jobs has increased…

  9. Monoclonal protein reference change value as determined by gel-based serum protein electrophoresis.

    Science.gov (United States)

    Salamatmanesh, Mina; McCudden, Christopher R; McCurdy, Arleigh; Booth, Ronald A

    2018-01-01

    The International Myeloma Working Group recommendations for monitoring disease progression or response include quantitation of the involved monoclonal immunoglobulin. They have defined the minimum change criteria of ≧25% with an absolute change of no gel-based serum protein electrophoresis. Sixteen clinically stable MGUS patients were identified from our clinical hematology database. Individual biological variability (CVi) was determined and used to calculate a monoclonal protein reference change value (RCV). Analytical variability of the normal protein fractions (albumin, alpha-1, alpha-2, beta, total gamma) ranged from 1.3% for albumin to 5.8% for the alpha-1 globulins. CVa of low (5.6g/L) and high (32.2g/L) concentration monoclonal proteins were 3.1% and 22.2%, respectively. Individual CVi of stable patients ranged from 3.5% to 24.5% with a CVi of 12.9%. The reference change value (RCV) at a 95% probability was determined to be 36.7% (low) 39.6% (high) using our CVa and CVi. Serial monitoring of monoclonal protein concentration is important for MGUS and multiple myeloma patients. Accurate criteria for interpreting a change in monoclonal protein concentration are required for appropriate decision making. We used QC results and real-world conditions to assess imprecision of serum protein fractions including low and high monoclonal protein fractions and clinically stable MGUS patients to determine CVi and RCV. The calculated RCVs of 36.7% (low) and 39.6% (high) in this study were greater that reported previously and greater than the established criteria for relapse. Response criteria may be reassessed to increase sensitivity and specificity for detection of response. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  10. Proteins in the Cocoon of Silkworm Inhibit the Growth of Beauveria bassiana

    Science.gov (United States)

    Zhang, Yan; Li, Youshan; Liu, Huawei; Xia, Qingyou; Zhao, Ping

    2016-01-01

    Silk cocoons are composed of fiber proteins (fibroins) and adhesive glue proteins (sericins), which provide a physical barrier to protect the inside pupa. Moreover, other proteins were identified in the cocoon silk, many of which are immune related proteins. In this study, we extracted proteins from the silkworm cocoon by Tris-HCl buffer (pH7.5), and found that they had a strong inhibitory activity against fungal proteases and they had higher abundance in the outer cocoon layers than in the inner cocoon layers. Moreover, we found that extracted cocoon proteins can inhibit the germination of Beauveria bassiana spores. Consistent with the distribution of protease inhibitors, we found that proteins from the outer cocoon layers showed better inhibitory effects against B. bassiana spores than proteins from the inner layers. Liquid chromatography-tandem mass spectrometry was used to reveal the extracted components in the scaffold silk, the outermost cocoon layer. A total of 129 proteins were identified, 30 of which were annotated as protease inhibitors. Protease inhibitors accounted for 89.1% in abundance among extracted proteins. These protease inhibitors have many intramolecular disulfide bonds to maintain their stable structure, and remained active after being boiled. This study added a new understanding to the antimicrobial function of the cocoon. PMID:27032085

  11. Hypocaloric high-protein diet improves clinical and biochemical markers in patients with nonalcoholic fatty liver disease (NAFLD).

    Science.gov (United States)

    Bezerra Duarte, Sebastião Mauro; Faintuch, Joel; Stefano, José Tadeu; Sobral de Oliveira, Maria Beatriz; de Campos Mazo, Daniel Ferraz; Rabelo, Fabiola; Vanni, Denise; Nogueira, Monize Aydar; Carrilho, Flair José; Marques Souza de Oliveira, Claudia Pinto

    2014-01-01

    To investigate the role of hypocaloric highprotein diet, a prospective clinical study was conducted in NAFLD patients. Pre-versus post-interventional data were analyzed in 48 stable NAFLD patients (submitted to a hypocaloric high-protein diet during 75 days. Variables included anthropometrics (body mass index/ BMI and waist circumference/WC), whole-body and segmental bioimpedance analysis and biochemical tests. Diet compliance was assessed by interviews every two weeks. BMI, WC and body fat mass remained relatively stable (-1.3%, -1.8% and -2.5% respectively, no significance). HDL- cholesterol increased (P hypocaloric diet were associated with improvement of lipid profile, glucose homeostasis and liver enzymes in NAFLD independent on BMI decrease or body fat mass reduction.

  12. Radiation-induced dissociation of stable DNA-protein complexes in Erlich ascites carcinoma cells

    International Nuclear Information System (INIS)

    Juhasz, P.P.; Sirota, N.P.; Gaziev, A.I.

    1982-01-01

    DNA of Ehrlich ascites carcinoma cells prepared under conditions that were highly denaturing for proteins but not for DNA, contained a group of nonhistone residual proteins. The amount of these proteins increased during DNA replication. The DNA-protein complex observed was sensitive to proteolytic enzymes and/or SH-reagents. γ-irradiation cells with moderate doses leads to a decrease in the amount of DNA-protein complexes. High-dose gamma-irradiation produces enhanced linking of chromosomal proteins with DNA. (author)

  13. A Polycomb complex remains bound through DNA replication in the absence of other eukaryotic proteins

    KAUST Repository

    Lengsfeld, Bettina M.; Berry, Kayla N.; Ghosh, Sharmistha; Takahashi, Masateru; Francis, Nicole J.

    2012-01-01

    Propagation of chromatin states through DNA replication is central to epigenetic regulation and can involve recruitment of chromatin proteins to replicating chromatin through interactions with replication fork components. Here we show using a fully reconstituted T7 bacteriophage system that eukaryotic proteins are not required to tether the Polycomb complex PRC1 to templates during DNA replication. Instead, DNA binding by PRC1 can withstand passage of a simple replication fork.

  14. A Polycomb complex remains bound through DNA replication in the absence of other eukaryotic proteins

    KAUST Repository

    Lengsfeld, Bettina M.

    2012-09-17

    Propagation of chromatin states through DNA replication is central to epigenetic regulation and can involve recruitment of chromatin proteins to replicating chromatin through interactions with replication fork components. Here we show using a fully reconstituted T7 bacteriophage system that eukaryotic proteins are not required to tether the Polycomb complex PRC1 to templates during DNA replication. Instead, DNA binding by PRC1 can withstand passage of a simple replication fork.

  15. Does altered protein metabolism interfere with postmortem degradation analysis for PMI estimation?

    Science.gov (United States)

    Zissler, A; Ehrenfellner, B; Foditsch, E E; Monticelli, F C; Pittner, S

    2018-03-02

    An accurate estimation of the postmortem interval (PMI) is a central aspect in forensic routine. Recently, a novel approach based on the analysis of postmortem muscle protein degradation has been proposed. However, a number of questions remain to be answered until sensible application of this method to a broad variety of forensic cases is possible. To evaluate whether altered in vivo protein metabolism interferes with postmortem degradation patterns, we conducted a comparative study. We developed a standardized animal degradation model in rats, and collected additional muscle samples from animals recovering from muscle injury and from rats with developed disuse muscle atrophy after induced spinal cord injury. All samples were analyzed by SDS-PAGE and Western blot, labeling well-characterized muscle proteins. Tropomyosin was found to be stable throughout the investigated PMI and no alterations were detected in regenerating and atrophic muscles. In contrast, significant predictable postmortem changes occurred in desmin and vinculin protein band patterns. While no significant deviations from native patterns were detected in at-death samples of disuse muscle atrophy, interestingly, samples of rats recovering from muscle injury revealed additional desmin and vinculin degradation bands that did not occur in this form in any of the examined postmortem samples regardless of PMI. It remains to be investigated whether in vivo-altered metabolism influences postmortem degradation kinetics or if such muscle samples undergo postmortem degradation in a regular fashion.

  16. Stable isotope 15N-urea and clinical research in nephrology

    International Nuclear Information System (INIS)

    Sugino, Nobuhiro; Arai, Junko; Akimoto, Mitsuko; Miwa, Toichiro; Takuma, Takehide

    1990-01-01

    Stable isotope 15 N-compound, 15 N-urea, is useful marker to investigate nitrogen metabolism in clinical nephrology, particularly in chronic renal failure or dialysis. 15 N-urea incorporation into plasma albumin in addition to plasma 15 N disappearance was studied in 6 patients with endstage chronic renal failure. As a result, only minor fraction of administered 15 N-urea was incorporated into albumin in this study. In addition, it was also confirmed that high energy diet may promote protein synthesis through 15 N incorporation to plasma amino acids, such as alanine, in these patients with low protein meal. Therefore, administration of 15 N-compound to human subjects may contribute to provide us the important informations on nitrogen metabolism. For instance, urea kinetics are described in the endstage chronic renal failure in this review. However, less expensive 15 N-compounds should be provided and more simple but accurate measurement of 15 N activity should be developed for the further clinical application of the stable isotope. (author)

  17. A proteomic screen reveals the mitochondrial outer membrane protein Mdm34p as an essential target of the F-box protein Mdm30p.

    Science.gov (United States)

    Ota, Kazuhisa; Kito, Keiji; Okada, Satoshi; Ito, Takashi

    2008-10-01

    Ubiquitination plays various critical roles in eukaryotic cellular regulation and is mediated by a cascade of enzymes including ubiquitin protein ligase (E3). The Skp1-Cullin-F-box protein complex comprises the largest E3 family, in each member of which a unique F-box protein binds its targets to define substrate specificity. Although genome sequencing uncovers a growing number of F-box proteins, most of them have remained as "orphans" because of the difficulties in identification of their substrates. To address this issue, we tested a quantitative proteomic approach by combining the stable isotope labeling by amino acids in cell culture (SILAC), parallel affinity purification (PAP) that we had developed for efficient enrichment of ubiquitinated proteins, and mass spectrometry (MS). We applied this SILAC-PAP-MS approach to compare ubiquitinated proteins between yeast cells with and without over-expressed Mdm30p, an F-box protein implicated in mitochondrial morphology. Consequently, we identified the mitochondrial outer membrane protein Mdm34p as a target of Mdm30p. Furthermore, we found that mitochondrial defects induced by deletion of MDM30 are not only recapitulated by a mutant Mdm34p defective in interaction with Mdm30p but alleviated by ubiquitination-mimicking forms of Mdm34p. These results indicate that Mdm34p is a physiologically important target of Mdm30p.

  18. Biomimetic triblock copolymer membrane arrays: a stable template for functional membrane proteins

    DEFF Research Database (Denmark)

    Gonzalez-Perez, A.; Jensen, Karin Bagger Stibius; Vissing, Thomas

    2009-01-01

    It is demonstrated that biomimetic stable triblock copolymer membrane arrays can be prepared using a scaffold containing 64 apertures of 300 μm diameter each. The membranes were made from a stock solution of block copolymers with decane as a solvent using a new deposition method. By using decane...

  19. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2005-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeoclimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. (author). 52 refs., 11 figs., 2 tabs

  20. Leaf water stable isotopes and water transport outside the xylem.

    Science.gov (United States)

    Barbour, M M; Farquhar, G D; Buckley, T N

    2017-06-01

    How water moves through leaves, and where the phase change from liquid to vapour occurs within leaves, remain largely mysterious. Some time ago, we suggested that the stable isotope composition of leaf water may contain information on transport pathways beyond the xylem, through differences in the development of gradients in enrichment within the various pathways. Subsequent testing of this suggestion provided ambiguous results and even questioned the existence of gradients in enrichment within the mesophyll. In this review, we bring together recent theoretical developments in understanding leaf water transport pathways and stable isotope theory to map a path for future work into understanding pathways of water transport and leaf water stable isotope composition. We emphasize the need for a spatially, anatomically and isotopically explicit model of leaf water transport. © 2016 John Wiley & Sons Ltd.

  1. Ranking stability and super-stable nodes in complex networks.

    Science.gov (United States)

    Ghoshal, Gourab; Barabási, Albert-László

    2011-07-19

    Pagerank, a network-based diffusion algorithm, has emerged as the leading method to rank web content, ecological species and even scientists. Despite its wide use, it remains unknown how the structure of the network on which it operates affects its performance. Here we show that for random networks the ranking provided by pagerank is sensitive to perturbations in the network topology, making it unreliable for incomplete or noisy systems. In contrast, in scale-free networks we predict analytically the emergence of super-stable nodes whose ranking is exceptionally stable to perturbations. We calculate the dependence of the number of super-stable nodes on network characteristics and demonstrate their presence in real networks, in agreement with the analytical predictions. These results not only deepen our understanding of the interplay between network topology and dynamical processes but also have implications in all areas where ranking has a role, from science to marketing.

  2. England and Wales: Stable fertility and pronounced social status differences

    Directory of Open Access Journals (Sweden)

    Wendy Sigle-Rushton

    2008-07-01

    Full Text Available For nearly three decades, the total fertility rate in England and Wales has remained high relative to other European countries, and stable at about 1.7 births per woman. In this chapter, we examine trends in both period and cohort fertility throughout the twentieth century, and demonstrate some important differences across demographic and social groups in the timing and quantum of fertility. Breaking with a market-oriented and laissez-faire approach to work and family issues, the last 10 years have seen the introduction of new social and economic policies aimed at providing greater support to families with children. However, the effect of the changes is likely to be limited to families on the lower end of the income scale. Rather than facilitating work and parenthood, some policies create incentives for a traditional gendered division of labour. Fertility appears to have remained stable despite, rather than because of, government actions.

  3. Respiratory membrane permeability and bronchial hyperreactivity in patients with stable asthma. Effects of therapy with inhaled steroids

    NARCIS (Netherlands)

    van de Graaf, E. A.; Out, T. A.; Roos, C. M.; Jansen, H. M.

    1991-01-01

    In patients with stable asthma, we assayed plasma proteins in the bronchoalveolar lavage fluid to obtain information on plasma exudation into the airways. Fourteen nonsmoking patients with asthma who were in a stable period of their disease and eight nonsmoking healthy volunteers were studied. The

  4. On The Roman Domination Stable Graphs

    Directory of Open Access Journals (Sweden)

    Hajian Majid

    2017-11-01

    Full Text Available A Roman dominating function (or just RDF on a graph G = (V,E is a function f : V → {0, 1, 2} satisfying the condition that every vertex u for which f(u = 0 is adjacent to at least one vertex v for which f(v = 2. The weight of an RDF f is the value f(V (G = Pu2V (G f(u. The Roman domination number of a graph G, denoted by R(G, is the minimum weight of a Roman dominating function on G. A graph G is Roman domination stable if the Roman domination number of G remains unchanged under removal of any vertex. In this paper we present upper bounds for the Roman domination number in the class of Roman domination stable graphs, improving bounds posed in [V. Samodivkin, Roman domination in graphs: the class RUV R, Discrete Math. Algorithms Appl. 8 (2016 1650049].

  5. Stable intermediates determine proteins' primary unfolding sites in the presence of surfactants

    DEFF Research Database (Denmark)

    Petersen, Steen Vang; Andersen, Kell kleiner; Enghild, Jan J.

    2009-01-01

    Despite detailed knowledge of the overall structural changes and stoichiometries of surfactant binding, little is known about which protein regions constitute the preferred sites of attack for initial unfolding. Here we have exposed three proteins to limited proteolysis at anionic (SDS) and catio......Despite detailed knowledge of the overall structural changes and stoichiometries of surfactant binding, little is known about which protein regions constitute the preferred sites of attack for initial unfolding. Here we have exposed three proteins to limited proteolysis at anionic (SDS......) and cationic (DTAC) surfactant concentrations corresponding to specific conformational transitions, using the surfactant-robust broad-specificity proteases Savinase and Alcalase. Cleavage sites are identified by SDS-PAGE and N-terminal sequencing. We observe well-defined cleavage fragments, which suggest......, cleavage sites can be rationalized from the structure of the protein's folding transition state and the position of loops in the native state. Nevertheless, they are more sensitive to choice of surfactant and protease, probably reflecting a heterogeneous and fluctuating ensemble of partially unfolded...

  6. Stable isotope applications in biomolecular structure and mechanisms. A meeting to bring together producers and users of stable-isotope-labeled compounds to assess current and future needs

    International Nuclear Information System (INIS)

    Trewhella, J.; Cross, T.A.; Unkefer, C.J.

    1994-12-01

    Knowledge of biomolecular structure is a prerequisite for understanding biomolecular function, and stable isotopes play an increasingly important role in structure determination of biological molecules. The first Conference on Stable Isotope Applications in Biomolecular Structure and Mechanisms was held in Santa Fe, New Mexico, March 27--31, 1994. More than 120 participants from 8 countries and 44 institutions reviewed significant developments, discussed the most promising applications for stable isotopes, and addressed future needs and challenges. Participants focused on applications of stable isotopes for studies of the structure and function of proteins, peptides, RNA, and DNA. Recent advances in NMR techniques neutron scattering, EPR, and vibrational spectroscopy were highlighted in addition to the production and synthesis of labeled compounds. This volume includes invited speaker and poster presentations as well as a set of reports from discussion panels that focused on the needs of the scientific community and the potential roles of private industry, the National Stable Isotope Resource, and the National High Magnetic Field Laboratory in serving those needs. This is the leading abstract. Individual papers are processed separately for the database

  7. Stable isotope applications in biomolecular structure and mechanisms. A meeting to bring together producers and users of stable-isotope-labeled compounds to assess current and future needs

    Energy Technology Data Exchange (ETDEWEB)

    Trewhella, J.; Cross, T.A.; Unkefer, C.J. [eds.

    1994-12-01

    Knowledge of biomolecular structure is a prerequisite for understanding biomolecular function, and stable isotopes play an increasingly important role in structure determination of biological molecules. The first Conference on Stable Isotope Applications in Biomolecular Structure and Mechanisms was held in Santa Fe, New Mexico, March 27--31, 1994. More than 120 participants from 8 countries and 44 institutions reviewed significant developments, discussed the most promising applications for stable isotopes, and addressed future needs and challenges. Participants focused on applications of stable isotopes for studies of the structure and function of proteins, peptides, RNA, and DNA. Recent advances in NMR techniques neutron scattering, EPR, and vibrational spectroscopy were highlighted in addition to the production and synthesis of labeled compounds. This volume includes invited speaker and poster presentations as well as a set of reports from discussion panels that focused on the needs of the scientific community and the potential roles of private industry, the National Stable Isotope Resource, and the National High Magnetic Field Laboratory in serving those needs. This is the leading abstract. Individual papers are processed separately for the database.

  8. The retro-GCN4 leucine zipper sequence forms a stable three-dimensional structure

    Science.gov (United States)

    Mittl, Peer R. E.; Deillon, Christine; Sargent, David; Liu, Niankun; Klauser, Stephan; Thomas, Richard M.; Gutte, Bernd; Grütter, Markus G.

    2000-01-01

    The question of whether a protein whose natural sequence is inverted adopts a stable fold is still under debate. We have determined the 2.1-Å crystal structure of the retro-GCN4 leucine zipper. In contrast to the two-stranded helical coiled-coil GCN4 leucine zipper, the retro-leucine zipper formed a very stable, parallel four-helix bundle, which now lends itself to further structural and functional studies. PMID:10716989

  9. A comparative study on the iodine-labeled methods of protein and polypeptide

    Energy Technology Data Exchange (ETDEWEB)

    Huaifen, Li; Huisheng, Niu; Mingyue, Yuan; Jinghua, Yu [Chinese Academy of Medical Sciences, Tianjin (China). Inst. of Radiation Medicine

    1994-02-01

    There are three methods: chloramine-T, Iodogen and lactoperoxidase(LPO). [sup 125]I-ACTH, [sup 125]I-insulin and [sup 125]I-HSA are prepared by these techniques. The results show that lactoperoxidase is isolated and purified from fresh milk, meanwhile, the enzyme is used in experiments of [sup 125]I-labeled protein, peptide hormone and mono-clone antibody, etc. LPO is a very successful method for it's mild, complete reaction, controllable, high labelling yield, higher purity of iodine-labeled compound and so on. It remains biological activation and stable character more than other two techniques.

  10. Lah is a transmembrane protein and requires Spa10 for stable positioning of Woronin bodies at the septal pore of Aspergillus fumigatus.

    Science.gov (United States)

    Leonhardt, Yannik; Kakoschke, Sara Carina; Wagener, Johannes; Ebel, Frank

    2017-03-10

    Woronin bodies are specialized, fungal-specific organelles that enable an immediate closure of septal pores after injury to protect hyphae from excessive cytoplasmic bleeding. In most Ascomycetes, Woronin bodies are tethered at the septal pore by so-called Lah proteins. Using the pathogenic mold Aspergillus fumigatus as a model organism, we show that the C-terminal 288 amino acids of Lah (LahC 288 ) bind to the rim of the septal pore. LahC 288 essentially consists of a membrane spanning region and a putative extracellular domain, which are both required for the targeting to the septum. In an A. fumigatus rho4 deletion mutant that has a severe defect in septum formation, LahC 288 is recruited to spot-like structures in or at the lateral membrane. This suggests that LahC is recruited before Rho4 starts to govern the septation process. Accordingly, we found that in wild type hyphae Lah is bound before a cross-wall emerges and thus enables a tethering of Woronin bodies at the site of the newly formed septum. Finally, we identified Spa10, a member of a recently described family of septal pore-associated proteins, as a first protein that directly or indirectly interacts with LahC to allow a stable positioning of Woronin bodies at the mature septum.

  11. Tracing metabolic routes of dietary carbohydrate and protein in rainbow trout (Oncorhynchus mykiss) using stable isotopes ([¹³C]starch and [¹⁵N]protein): effects of gelatinisation of starches and sustained swimming.

    Science.gov (United States)

    Felip, Olga; Ibarz, Antoni; Fernández-Borràs, Jaume; Beltrán, Marta; Martín-Pérez, Miguel; Planas, Josep V; Blasco, Josefina

    2012-03-01

    Here we examined the use of stable isotopes, [¹³C]starch and [¹⁵N]protein, as dietary tracers to study carbohydrate assimilation and distribution and protein utilisation, respectively, by rainbow trout (Oncorhynchus mykiss). The capacity of glucose uptake and use by tissues was studied, first, by varying the digestibility of carbohydrate-rich diets (30 % carbohydrate), using raw starch and gelatinised starch (GS) and, second, by observing the effects of two regimens of activity (voluntary swimming, control; sustained swimming at 1·3 body lengths/s, exercise) on the GS diet. Isotopic ratio enrichment (¹³C and ¹⁵N) of the various tissue components (protein, lipid and glycogen) was measured in the liver, muscles, viscera and the rest of the fish at 11 and 24 h after a forced meal. A level of 30 % of digestible carbohydrates in the food exceeded the capacity of rainbow trout to use this nutrient, causing long-lasting hyperglycaemia that raises glucose uptake by tissues, and the synthesis of glycogen and lipid in liver. Total 13C recovered 24 h post-feeding in the GS group was lower than at 11 h, indicating a proportional increase in glucose oxidation, although the deposition of lipids in white muscle (WM) increased. Prolonged hyperglycaemia was prevented by exercise, since sustained swimming enhances the use of dietary carbohydrates, mainly through conversion to lipids in liver and oxidation in muscles, especially in red muscle (RM). Higher recoveries of total 15N for exercised fish at 24 h, mainly into the protein fraction of both RM and WM, provide evidence that sustained swimming improves protein deposition, resulting in an enhancement of the protein-sparing effect.

  12. Quantitative Proteomics Analysis of VEGF-Responsive Endothelial Protein S-Nitrosylation Using Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and LC-MS/MS.

    Science.gov (United States)

    Zhang, Hong-Hai; Lechuga, Thomas J; Chen, Yuezhou; Yang, Yingying; Huang, Lan; Chen, Dong-Bao

    2016-05-01

    Adduction of a nitric oxide moiety (NO•) to cysteine(s), termed S-nitrosylation (SNO), is a novel mechanism for NO to regulate protein function directly. However, the endothelial SNO-protein network that is affected by endogenous and exogenous NO is obscure. This study was designed to develop a quantitative proteomics approach using stable isotope labeling by amino acids in cell culture for comparing vascular endothelial growth factor (VEGFA)- and NO donor-responsive endothelial nitroso-proteomes. Primary placental endothelial cells were labeled with "light" (L-(12)C6 (14)N4-Arg and L-(12)C6 (14)N2-Lys) or "heavy" (L-(13)C6 (15)N4-Arg and L-(13)C6 (15)N2-Lys) amino acids. The light cells were treated with an NO donor nitrosoglutathione (GSNO, 1 mM) or VEGFA (10 ng/ml) for 30 min, while the heavy cells received vehicle as control. Equal amounts of cellular proteins from the light (GSNO or VEGFA treated) and heavy cells were mixed for labeling SNO-proteins by the biotin switch technique and then trypsin digested. Biotinylated SNO-peptides were purified for identifying SNO-proteins by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Ratios of light to heavy SNO-peptides were calculated for determining the changes of the VEGFA- and GSNO-responsive endothelial nitroso-proteomes. A total of 387 light/heavy pairs of SNO-peptides were identified, corresponding to 213 SNO-proteins that include 125 common and 27 VEGFA- and 61 GSNO-responsive SNO-proteins. The specific SNO-cysteine(s) in each SNO-protein were simultaneously identified. Pathway analysis revealed that SNO-proteins are involved in various endothelial functions, including proliferation, motility, metabolism, and protein synthesis. We collectively conclude that endogenous NO on VEGFA stimulation and exogenous NO from GSNO affect common and different SNO-protein networks, implicating SNO as a critical mechanism for VEGFA stimulation of angiogenesis. © 2016 by the Society for the Study of Reproduction

  13. Thymidylate synthase protein expression levels remain stable during paclitaxel and carboplatin treatment in non-small cell lung cancer

    DEFF Research Database (Denmark)

    Jakobsen, Jan Nyrop; Santoni-Rugiu, Eric; Sørensen, Jens Benn

    2014-01-01

    BACKGROUND: Thymidylate synthase (TS) is a potential predictive marker for efficacy of treatment with pemetrexed. The current study aimed at investigating whether TS expression changes during non-pemetrexed chemotherapy of non-small cell lung cancer (NSCLC), thus making rebiopsy necessary for dec...

  14. Covalent attachment of proteins to solid supports and surfaces via Sortase-mediated ligation.

    Directory of Open Access Journals (Sweden)

    Lilyan Chan

    Full Text Available BACKGROUND: There is growing interest in the attachment of proteins to solid supports for the development of supported catalysts, affinity matrices, and micro devices as well as for the development of planar and bead based protein arrays for multiplexed assays of protein concentration, interactions, and activity. A critical requirement for these applications is the generation of a stable linkage between the solid support and the immobilized, but still functional, protein. METHODOLOGY: Solid supports including crosslinked polymer beads, beaded agarose, and planar glass surfaces, were modified to present an oligoglycine motif to solution. A range of proteins were ligated to the various surfaces using the Sortase A enzyme of S. aureus. Reactions were carried out in aqueous buffer conditions at room temperature for times between one and twelve hours. CONCLUSIONS: The Sortase A transpeptidase of S. aureus provides a general, robust, and gentle approach to the selective covalent immobilization of proteins on three very different solid supports. The proteins remain functional and accessible to solution. Sortase mediated ligation is therefore a straightforward methodology for the preparation of solid supported enzymes and bead based assays, as well as the modification of planar surfaces for microanalytical devices and protein arrays.

  15. Globular and disordered – the non-identical twins in protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Kaare eTeilum

    2015-07-01

    Full Text Available In biology proteins from different structural classes interact across and within classes in ways that are optimized to achieve balanced functional outputs. The interactions between intrinsically disordered proteins (IDPs and other proteins rely on changes in flexibility and this is seen as a strong determinant for their function. This has fostered the notion that IDP’s bind with low affinity but high specificity. Here we have analyzed available detailed thermodynamic data for protein-protein interactions to put to the test if the thermodynamic profiles of IDP interactions differ from those of other protein-protein interactions. We find that ordered proteins and the disordered ones act as non identical twins operating by similar principles but where the disordered proteins complexes are on average less stable by 2.5 kcal mol-1.

  16. Expression, purification, crystallization and preliminary X-ray analysis of eCGP123, an extremely stable monomeric green fluorescent protein with reversible photoswitching properties

    International Nuclear Information System (INIS)

    Don Paul, Craig; Traore, Daouda A. K.; Byres, Emma; Rossjohn, Jamie; Devenish, Rodney J.; Kiss, Csaba; Bradbury, Andrew; Wilce, Matthew C. J.; Prescott, Mark

    2011-01-01

    eCGP123, an extremely stable GFP with photoswitching properties, has been expressed, purified and crystallized. A diffraction data set has been collected at 2.10 Å resolution. Enhanced consensus green protein variant 123 (eCGP123) is an extremely thermostable green fluorescent protein (GFP) that exhibits useful negative reversible photoswitching properties. eCGP123 was derived by the application of both a consensus engineering approach and a recursive evolutionary process. Diffraction-quality crystals of recombinant eCGP123 were obtained by the hanging-drop vapour-diffusion method using PEG 3350 as the precipitant. The eCGP123 crystal diffracted X-rays to 2.10 Å resolution. The data were indexed in space group P1, with unit-cell parameters a = 74.63, b = 75.38, c = 84.51 Å, α = 90.96, β = 89.92, γ = 104.03°. The Matthews coefficient (V M = 2.26 Å 3 Da −1 ) and a solvent content of 46% indicated that the asymmetric unit contained eight eCGP123 molecules

  17. Nucleation phenomena in protein folding: the modulating role of protein sequence

    International Nuclear Information System (INIS)

    Travasso, Rui D M; FaIsca, Patricia F N; Gama, Margarida M Telo da

    2007-01-01

    For the vast majority of naturally occurring, small, single-domain proteins, folding is often described as a two-state process that lacks detectable intermediates. This observation has often been rationalized on the basis of a nucleation mechanism for protein folding whose basic premise is the idea that, after completion of a specific set of contacts forming the so-called folding nucleus, the native state is achieved promptly. Here we propose a methodology to identify folding nuclei in small lattice polymers and apply it to the study of protein molecules with a chain length of N = 48. To investigate the extent to which protein topology is a robust determinant of the nucleation mechanism, we compare the nucleation scenario of a native-centric model with that of a sequence-specific model sharing the same native fold. To evaluate the impact of the sequence's finer details in the nucleation mechanism, we consider the folding of two non-homologous sequences. We conclude that, in a sequence-specific model, the folding nucleus is, to some extent, formed by the most stable contacts in the protein and that the less stable linkages in the folding nucleus are solely determined by the fold's topology. We have also found that, independently of the protein sequence, the folding nucleus performs the same 'topological' function. This unifying feature of the nucleation mechanism results from the residues forming the folding nucleus being distributed along the protein chain in a similar and well-defined manner that is determined by the fold's topological features

  18. Two-step membrane binding by the bacterial SRP receptor enable efficient and accurate Co-translational protein targeting.

    Science.gov (United States)

    Hwang Fu, Yu-Hsien; Huang, William Y C; Shen, Kuang; Groves, Jay T; Miller, Thomas; Shan, Shu-Ou

    2017-07-28

    The signal recognition particle (SRP) delivers ~30% of the proteome to the eukaryotic endoplasmic reticulum, or the bacterial plasma membrane. The precise mechanism by which the bacterial SRP receptor, FtsY, interacts with and is regulated at the target membrane remain unclear. Here, quantitative analysis of FtsY-lipid interactions at single-molecule resolution revealed a two-step mechanism in which FtsY initially contacts membrane via a Dynamic mode, followed by an SRP-induced conformational transition to a Stable mode that activates FtsY for downstream steps. Importantly, mutational analyses revealed extensive auto-inhibitory mechanisms that prevent free FtsY from engaging membrane in the Stable mode; an engineered FtsY pre-organized into the Stable mode led to indiscriminate targeting in vitro and disrupted FtsY function in vivo. Our results show that the two-step lipid-binding mechanism uncouples the membrane association of FtsY from its conformational activation, thus optimizing the balance between the efficiency and fidelity of co-translational protein targeting.

  19. Endemism hotspots are linked to stable climatic refugia.

    Science.gov (United States)

    Harrison, Susan; Noss, Reed

    2017-01-01

    Centres of endemism have received much attention from evolutionists, biogeographers, ecologists and conservationists. Climatic stability is often cited as a major reason for the occurrences of these geographic concentrations of species which are not found anywhere else. The proposed linkage between endemism and climatic stability raises unanswered questions about the persistence of biodiversity during the present era of rapidly changing climate. The current status of evidence linking geographic centres of endemism to climatic stability over evolutionary time was examined. The following questions were asked. Do macroecological analyses support such an endemism-stability linkage? Do comparative studies find that endemic species display traits reflecting evolution in stable climates? Will centres of endemism in microrefugia or macrorefugia remain relatively stable and capable of supporting high biological diversity into the future? What are the implications of the endemism-stability linkage for conservation? Recent work using the concept of climate change velocity supports the classic idea that centres of endemism occur where past climatic fluctuations have been mild and where mountainous topography or favourable ocean currents contribute to creating refugia. Our knowledge of trait differences between narrow endemics and more widely distributed species remains highly incomplete. Current knowledge suggests that centres of endemism will remain relatively climatically buffered in the future, with the important caveat that absolute levels of climatic change and species losses in these regions may still be large. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Stable isotopes

    International Nuclear Information System (INIS)

    Evans, D.K.

    1986-01-01

    Seventy-five percent of the world's stable isotope supply comes from one producer, Oak Ridge Nuclear Laboratory (ORNL) in the US. Canadian concern is that foreign needs will be met only after domestic needs, thus creating a shortage of stable isotopes in Canada. This article describes the present situation in Canada (availability and cost) of stable isotopes, the isotope enrichment techniques, and related research programs at Chalk River Nuclear Laboratories (CRNL)

  1. Use of stable isotopes in developing countries: safe markers for nutrition regime study

    International Nuclear Information System (INIS)

    Klein, P.D.; Klein, E.R.

    1987-01-01

    Possible use of stable radioisotopes in studies on nutrition and medicine problems that may be used in investigations of babies, children, pregnant women is shown. Attention is paid to behaviour of limited number of elements: hydrogen, carbon, nitrogen, oxygen. The IAEA plans implementation of a new coordinated research program on use of stable isotopes for studying nutrition problems and related diseases. The program emphasis will be placed on protein metabolism measurements and estimation of energy consumption in control population groups in developing countries

  2. Intergenotypic replacement of lyssavirus matrix proteins demonstrates the role of lyssavirus M proteins in intracellular virus accumulation.

    Science.gov (United States)

    Finke, Stefan; Granzow, Harald; Hurst, Jose; Pollin, Reiko; Mettenleiter, Thomas C

    2010-02-01

    Lyssavirus assembly depends on the matrix protein (M). We compared lyssavirus M proteins from different genotypes for their ability to support assembly and egress of genotype 1 rabies virus (RABV). Transcomplementation of M-deficient RABV with M from European bat lyssavirus (EBLV) types 1 and 2 reduced the release of infectious virus. Stable introduction of the heterogenotypic M proteins into RABV led to chimeric viruses with reduced virus release and intracellular accumulation of virus genomes. Although the chimeras indicated genotype-specific evolution of M, rapid selection of a compensatory mutant suggested conserved mechanisms of lyssavirus assembly and the requirement for only few adaptive mutations to fit the heterogenotypic M to a RABV backbone. Whereas the compensatory mutant replicated to similar infectious titers as RABV M-expressing virus, ultrastructural analysis revealed that both nonadapted EBLV M chimeras and the compensatory mutant differed from RABV M expressing viruses in the lack of intracellular viruslike structures that are enveloped and accumulate in cisterna of the degranulated and dilated rough endoplasmic reticulum compartment. Moreover, all viruses were able to bud at the plasma membrane. Since the lack of the intracellular viruslike structures correlated with the type of M protein but not with the efficiency of virus release, we hypothesize that the M proteins of EBLV-1 and RABV differ in their target membranes for virus assembly. Although the biological function of intracellular assembly and accumulation of viruslike structures in the endoplasmic reticulum remain unclear, the observed differences could contribute to diverse host tropism or pathogenicity.

  3. Energy landscape of all-atom protein-protein interactions revealed by multiscale enhanced sampling.

    Directory of Open Access Journals (Sweden)

    Kei Moritsugu

    2014-10-01

    Full Text Available Protein-protein interactions are regulated by a subtle balance of complicated atomic interactions and solvation at the interface. To understand such an elusive phenomenon, it is necessary to thoroughly survey the large configurational space from the stable complex structure to the dissociated states using the all-atom model in explicit solvent and to delineate the energy landscape of protein-protein interactions. In this study, we carried out a multiscale enhanced sampling (MSES simulation of the formation of a barnase-barstar complex, which is a protein complex characterized by an extraordinary tight and fast binding, to determine the energy landscape of atomistic protein-protein interactions. The MSES adopts a multicopy and multiscale scheme to enable for the enhanced sampling of the all-atom model of large proteins including explicit solvent. During the 100-ns MSES simulation of the barnase-barstar system, we observed the association-dissociation processes of the atomistic protein complex in solution several times, which contained not only the native complex structure but also fully non-native configurations. The sampled distributions suggest that a large variety of non-native states went downhill to the stable complex structure, like a fast folding on a funnel-like potential. This funnel landscape is attributed to dominant configurations in the early stage of the association process characterized by near-native orientations, which will accelerate the native inter-molecular interactions. These configurations are guided mostly by the shape complementarity between barnase and barstar, and lead to the fast formation of the final complex structure along the downhill energy landscape.

  4. Evaluation of spectral libraries and sample preparation for DIA-LC-MS analysis of host cell proteins: A case study of a bacterially expressed recombinant biopharmaceutical protein.

    Science.gov (United States)

    Heissel, Søren; Bunkenborg, Jakob; Kristiansen, Max Per; Holmbjerg, Anne Fich; Grimstrup, Marie; Mørtz, Ejvind; Kofoed, Thomas; Højrup, Peter

    2018-07-01

    Recombinantly expressed biopharmaceutical proteins often undergo a series of purification steps with the aim of removing contaminating material. Depending on the application of the protein, there are various requirements for the degree of purity, but host cell proteins (HCPs) will in general remain in small amounts. LC-MS has emerged as an orthogonal technique, capable of providing detailed information regarding the individual proteins. The aim of this case study was to characterize the HCPs associated with a biopharmaceutical protein, provided by Statens Serum Institut (DK), which is used in the field of tuberculosis and has not previously been studied by LC-MS. The developed method and acquired experiences served to develop a generalized strategy for HCP-characterization in our laboratory. We evaluated the use of different spectral libraries, recorded in data-dependent mode for obtaining the highest HCP coverage, combined with SWATH-based absolute quantification. The accuracy of two label-free absolute quantification strategies was evaluated using stable isotope peptides. Two different sample preparation workflows were evaluated for optimal HCP yield. . The label-free strategy produced accurate quantification across several orders of magnitude, and the calculated purity was found to be in agreement with previously obtained ELISA data. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Mechanical Properties of Stable Glasses Using Nanoindentation

    Science.gov (United States)

    Wolf, Sarah; Liu, Tianyi; Jiang, Yijie; Ablajan, Keyume; Zhang, Yue; Walsh, Patrick; Turner, Kevin; Fakhraai, Zahra

    Glasses with enhanced stability over ordinary, liquid quenched glasses have been formed via the process of Physical Vapor Deposition (PVD) by using a sufficiently slow deposition rate and a substrate temperature slightly below the glass transition temperature. These stable glasses have been shown to exhibit higher density, lower enthalpy, and better kinetic stability over ordinary glass, and are typically optically birefringent, due to packing and orientational anisotropy. Given these exceptional properties, it is of interest to further investigate how the properties of stable glasses compare to those of ordinary glass. In particular, the mechanical properties of stable glasses remain relatively under-investigated. While the speed of sound and elastic moduli have been shown to increase with increased stability, little is known about their hardness and fracture toughness compared to ordinary glasses. In this study, glasses of 9-(3,5-di(naphthalen-1-yl)phenyl)anthracene were deposited at varying temperatures relative to their glass transition temperature, and their mechanical properties measured by nanoindentation. Hardness and elastic modulus of the glasses were compared across substrate temperatures. After indentation, the topography of these films were studied using Atomic Force Microscopy (AFM) in order to further compare the relationship between thermodynamic and kinetic stability and mechanical failure. Z.F. and P.W. acknowledge funding from NSF(DMREF-1628407).

  6. Highly stable porous silicon-carbon composites as label-free optical biosensors.

    Science.gov (United States)

    Tsang, Chun Kwan; Kelly, Timothy L; Sailor, Michael J; Li, Yang Yang

    2012-12-21

    A stable, label-free optical biosensor based on a porous silicon-carbon (pSi-C) composite is demonstrated. The material is prepared by electrochemical anodization of crystalline Si in an HF-containing electrolyte to generate a porous Si template, followed by infiltration of poly(furfuryl) alcohol (PFA) and subsequent carbonization to generate the pSi-C composite as an optically smooth thin film. The pSi-C sensor is significantly more stable toward aqueous buffer solutions (pH 7.4 or 12) compared to thermally oxidized (in air, 800 °C), hydrosilylated (with undecylenic acid), or hydrocarbonized (with acetylene, 700 °C) porous Si samples prepared and tested under similar conditions. Aqueous stability of the pSi-C sensor is comparable to related optical biosensors based on porous TiO(2) or porous Al(2)O(3). Label-free optical interferometric biosensing with the pSi-C composite is demonstrated by detection of rabbit IgG on a protein-A-modified chip and confirmed with control experiments using chicken IgG (which shows no affinity for protein A). The pSi-C sensor binds significantly more of the protein A capture probe than porous TiO(2) or porous Al(2)O(3), and the sensitivity of the protein-A-modified pSi-C sensor to rabbit IgG is found to be ~2× greater than label-free optical biosensors constructed from these other two materials.

  7. The Role of the Nuclear Envelope Protein MAN1 in Mesenchymal Stem Cell Differentiation.

    Science.gov (United States)

    Bermeo, Sandra; Al-Saedi, Ahmed; Kassem, Moustapha; Vidal, Christopher; Duque, Gustavo

    2017-12-01

    Mutations in MAN1, a protein of the nuclear envelope, cause bone phenotypes characterized by hyperostosis. The mechanism of this pro-osteogenic phenotype remains unknown. We increased and decreased MAN1 expression in mesenchymal stem cells (MSC) upon which standard osteogenic and adipogenic differentiation were performed. MAN1 knockdown increased osteogenesis and mineralization. In contrast, osteogenesis remained stable upon MAN1 overexpression. Regarding a mechanism, we found that low levels of MAN1 facilitated the nuclear accumulation of regulatory smads and smads-related complexes, with a concurrently high expression of nuclear β-Catenin. In addition, we found adipogenesis to be decreased in both conditions, although predominantly affected by MAN1 overexpression. Finally, lamin A, a protein of the nuclear envelope that regulates MSC differentiation, was unaffected by changes in MAN1. In conclusion, our studies demonstrated that lower levels of MAN1 in differentiating MSC are associated with higher osteogenesis and lower adipogenesis. High levels of MAN1 only affected adipogenesis. These effects could have an important role in the understanding of the role of the proteins of the nuclear envelope in bone formation. J. Cell. Biochem. 118: 4425-4435, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Stable Isotope Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Tissue samples (skin, bone, blood, muscle) are analyzed for stable carbon, stable nitrogen, and stable sulfur analysis. Many samples are used in their entirety for...

  9. stableGP

    Data.gov (United States)

    National Aeronautics and Space Administration — The code in the stableGP package implements Gaussian process calculations using efficient and numerically stable algorithms. Description of the algorithms is in the...

  10. Water-in-Oil Microemulsions for Protein Delivery: Loading Optimization and Stability.

    Science.gov (United States)

    Perinelli, Diego R; Cespi, Marco; Pucciarelli, Stefania; Vincenzetti, Silvia; Casettari, Luca; Lam, Jenny K W; Logrippo, Serena; Canala, Elisa; Soliman, Mahmoud E; Bonacucina, Giulia; Palmieri, Giovanni F

    2017-01-01

    Microemulsions are attractive delivery systems for therapeutic proteins and peptides due to their ability to enhance bioavailability. Although different proteins and peptides have been successfully delivered through such ternary systems, no information can be found about protein loading and the formulation stability when such microemulsions are prepared with pharmaceuticallyapproved oils and surfactants. The aim of this work was to optimise a ternary system consisting of water/ ethyl oleate/Span® 80-Tween® 80 and to determine its protein loading capacity and stability, using bovine serum albumin (BSA) as a model of biomolecule. The optimization was carried out using a Central Composite Design and all the prepared formulations were characterised through dynamic light scattering, rheology, optical and polarized microscopy. Subsequently, the maximum loading capacity was determined and the stability of the final microemulsion with the highest content of protein was followed over six months. To investigate the structural features of the protein, BSA was recovered from the microemulsion and analysed through fluorescence spectroscopy. After incorporation of the protein in the microemulsion, a decrease of its aqueous solubility was observed. However, the formulation remained stable over six months and the native-like state of the recovered protein was demonstrated by fluorescence spectroscopy Conclusion: This study demonstrated the feasibility of preparing microemulsions with the highest content of protein and their long-term stability. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Immunosuppression Adherence in Stable Kidney Transplant Patients Converted From Immediate- to Prolonged-Release Tacrolimus in Clinical Practice: A Norwegian Study

    Directory of Open Access Journals (Sweden)

    Sadollah Abedini, MD, PhD

    2018-02-01

    Conclusions. There was disparity between high, patient-perceived and low, actual adherence. Converting stable KTPs from IR-T to PR-T in routine practice did not impact long-term adherence to immunosuppression; renal function remained stable.

  12. Highly thermostable fluorescent proteins

    Science.gov (United States)

    Bradbury, Andrew M [Santa Fe, NM; Waldo, Geoffrey S [Santa Fe, NM; Kiss, Csaba [Los Alamos, NM

    2011-03-22

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  13. Quantitative Proteomics Analysis of VEGF-Responsive Endothelial Protein S-Nitrosylation Using Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and LC-MS/MS1

    Science.gov (United States)

    Zhang, Hong-Hai; Lechuga, Thomas J.; Chen, Yuezhou; Yang, Yingying; Huang, Lan; Chen, Dong-Bao

    2016-01-01

    Adduction of a nitric oxide moiety (NO•) to cysteine(s), termed S-nitrosylation (SNO), is a novel mechanism for NO to regulate protein function directly. However, the endothelial SNO-protein network that is affected by endogenous and exogenous NO is obscure. This study was designed to develop a quantitative proteomics approach using stable isotope labeling by amino acids in cell culture for comparing vascular endothelial growth factor (VEGFA)- and NO donor-responsive endothelial nitroso-proteomes. Primary placental endothelial cells were labeled with “light” (L-12C614N4-Arg and L-12C614N2-Lys) or “heavy” (L-13C615N4-Arg and L-13C615N2-Lys) amino acids. The light cells were treated with an NO donor nitrosoglutathione (GSNO, 1 mM) or VEGFA (10 ng/ml) for 30 min, while the heavy cells received vehicle as control. Equal amounts of cellular proteins from the light (GSNO or VEGFA treated) and heavy cells were mixed for labeling SNO-proteins by the biotin switch technique and then trypsin digested. Biotinylated SNO-peptides were purified for identifying SNO-proteins by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Ratios of light to heavy SNO-peptides were calculated for determining the changes of the VEGFA- and GSNO-responsive endothelial nitroso-proteomes. A total of 387 light/heavy pairs of SNO-peptides were identified, corresponding to 213 SNO-proteins that include 125 common and 27 VEGFA- and 61 GSNO-responsive SNO-proteins. The specific SNO-cysteine(s) in each SNO-protein were simultaneously identified. Pathway analysis revealed that SNO-proteins are involved in various endothelial functions, including proliferation, motility, metabolism, and protein synthesis. We collectively conclude that endogenous NO on VEGFA stimulation and exogenous NO from GSNO affect common and different SNO-protein networks, implicating SNO as a critical mechanism for VEGFA stimulation of angiogenesis. PMID:27075618

  14. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2014-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeoclimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteoric waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author)

  15. Stable isotope geochemistry: definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2015-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeoclimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteoric waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author).

  16. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2016-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeoclimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteoric waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author).

  17. Protein retention assessment of four levels of poultry by-product substitution of fishmeal in rainbow trout (Oncorhynchus mykiss) diets using stable isotopes of nitrogen (δ15N) as natural tracers.

    Science.gov (United States)

    Badillo, Daniel; Herzka, Sharon Z; Viana, Maria Teresa

    2014-01-01

    This is second part from an experiment where the nitrogen retention of poultry by-product meal (PBM) compared to fishmeal (FM) was evaluated using traditional indices. Here a quantitative method using stable isotope ratios of nitrogen (δ(15)N values) as natural tracers of nitrogen incorporation into fish biomass is assessed. Juvenile rainbow trout (Oncorhynchus mykiss) were fed for 80 days on isotopically distinct diets in which 0, 33, 66 and 100% of FM as main protein source was replaced by PBM. The diets were isonitrogenous, isolipidic and similar in gross energy content. Fish in all treatments reached isotopic equilibrium by the end of the experiment. Two-source isotope mixing models that incorporated the isotopic composition of FM and PBM as well as that of formulated feeds, empirically derived trophic discrimination factors and the isotopic composition of fish that had reached isotopic equilibrium to the diets were used to obtain a quantitative estimate of the retention of each source of nitrogen. Fish fed the diets with 33 and 66% replacement of FM by PBM retained poultry by-product meal roughly in proportion to its level of inclusion in the diets, whereas no differences were detected in the protein efficiency ratio. Coupled with the similar biomass gain of fishes fed the different diets, our results support the inclusion of PBM as replacement for fishmeal in aquaculture feeds. A re-feeding experiment in which all fish were fed a diet of 100% FM for 28 days indicated isotopic turnover occurred very fast, providing further support for the potential of isotopic ratios as tracers of the retention of specific protein sources into fish tissues. Stable isotope analysis is a useful tool for studies that seek to obtain quantitative estimates of the retention of different protein sources.

  18. β-trace protein (prostaglandin D synthase - a stable and reliable protein in perilymph

    Directory of Open Access Journals (Sweden)

    Nekic, Marko

    2005-06-01

    Full Text Available Objective: Beta-trace protein (β-TP has been analysed in human cerebrospinal fluid (CSF and other body fluids. Beta-trace protein is a very sensitive and specific clinical marker and can confirm reliably the presence of CSF in patients with a suspected CSF leakage. Design: Perilymph specimens from the scala vestibuli (n=10 and from the lateral semicircular canal (n=4 were taken from patients undergoing stapedotomy or surgery for acoustic neuroma. During post-mortem examinations perilymph specimens from the scala vestibuli (n=70, the scala tympani (n=11, endolymph specimens (n=21 and CSF specimens (n=17 were obtained. All specimens were analyzed by a one-dimensional immunoelectrophoresis using a polyclonal, monospecific antibody. Results: Specimens from live surgery showed a mean concentration of 51.5 ± 48.9 mg/l β-TP in scala vestibuli perilymph. Specimens from post-mortem examinations revealed a mean concentration of 49.1 ± 17.7 mg/l in CSF, 71.9 ± 29.3 mg/l in perilymph and 68.0 ± 21.7 mg/l in endolymph. There was no evidence of a circadian alteration of β-TP in CSF or inner ear fluids. Conclusions: Our results demonstrated clearly that β-TP is contained in human perilymph and endolymph. This is the first published data that point out the aptitude of the β-TP-test in verifying traces of perilymph, a valuable diagnostic tool for the existence of perilymphatic leaks.

  19. Enhancing the productivity of soluble green fluorescent protein ...

    African Journals Online (AJOL)

    Yomi

    2012-01-16

    Jan 16, 2012 ... 1Department of Chemical Engineering, Pusan National University, Busan, South Korea. 2School ... protein sequences for consensus approach from whole sequence ..... stable proteins, especially if applied in buried or more.

  20. Silicon photonics: some remaining challenges

    Science.gov (United States)

    Reed, G. T.; Topley, R.; Khokhar, A. Z.; Thompson, D. J.; Stanković, S.; Reynolds, S.; Chen, X.; Soper, N.; Mitchell, C. J.; Hu, Y.; Shen, L.; Martinez-Jimenez, G.; Healy, N.; Mailis, S.; Peacock, A. C.; Nedeljkovic, M.; Gardes, F. Y.; Soler Penades, J.; Alonso-Ramos, C.; Ortega-Monux, A.; Wanguemert-Perez, G.; Molina-Fernandez, I.; Cheben, P.; Mashanovich, G. Z.

    2016-03-01

    This paper discusses some of the remaining challenges for silicon photonics, and how we at Southampton University have approached some of them. Despite phenomenal advances in the field of Silicon Photonics, there are a number of areas that still require development. For short to medium reach applications, there is a need to improve the power consumption of photonic circuits such that inter-chip, and perhaps intra-chip applications are viable. This means that yet smaller devices are required as well as thermally stable devices, and multiple wavelength channels. In turn this demands smaller, more efficient modulators, athermal circuits, and improved wavelength division multiplexers. The debate continues as to whether on-chip lasers are necessary for all applications, but an efficient low cost laser would benefit many applications. Multi-layer photonics offers the possibility of increasing the complexity and effectiveness of a given area of chip real estate, but it is a demanding challenge. Low cost packaging (in particular, passive alignment of fibre to waveguide), and effective wafer scale testing strategies, are also essential for mass market applications. Whilst solutions to these challenges would enhance most applications, a derivative technology is emerging, that of Mid Infra-Red (MIR) silicon photonics. This field will build on existing developments, but will require key enhancements to facilitate functionality at longer wavelengths. In common with mainstream silicon photonics, significant developments have been made, but there is still much left to do. Here we summarise some of our recent work towards wafer scale testing, passive alignment, multiplexing, and MIR silicon photonics technology.

  1. Effect of ingredients on rheological, nutritional and quality characteristics of fibre and protein enriched baked energy bars.

    Science.gov (United States)

    Rawat, Neelam; Darappa, Indrani

    2015-05-01

    Effect of substitution of brown flour (BF) with fiber rich ingredient mixture, FRIM (banana flour, psyllium husk, partially defatted coconut flour and oats) and protein rich ingredient mixture, PRIM (chickpea flour, sesame, soya protein isolate and whey protein concentrate) at the levels of 25, 50 and 75 % on the rheological, nutritional and quality characteristics of baked energy bars (BEB) were studied. Use of increasing amount of FRIM increased farinograph water absorption and amylograph peak viscosity while PRIM decreased the aforementioned parameters. Addition of FRIM or PRIM increased the bar dough hardness and decreased cohesiveness and springiness. The overall quality score of BEB increased only up to the substitution of 50 % of BF with FRIM or PRIM. The BEB with 50 % FRIM and PRIM remained chemically stable during storage up to 3 months and showed 9 times increase in dietary fiber content and about 2 times increase in protein content respectively.

  2. Stable isotope sup 15 N-urea and clinical research in nephrology

    Energy Technology Data Exchange (ETDEWEB)

    Sugino, Nobuhiro; Arai, Junko; Akimoto, Mitsuko; Miwa, Toichiro; Takuma, Takehide (Tokyo Women' s Medical Coll. (Japan))

    1990-08-01

    Stable isotope {sup 15}N-compound, {sup 15}N-urea, is useful marker to investigate nitrogen metabolism in clinical nephrology, particularly in chronic renal failure or dialysis. {sup 15}N-urea incorporation into plasma albumin in addition to plasma {sup 15}N disappearance was studied in 6 patients with endstage chronic renal failure. As a result, only minor fraction of administered {sup 15}N-urea was incorporated into albumin in this study. In addition, it was also confirmed that high energy diet may promote protein synthesis through {sup 15}N incorporation to plasma amino acids, such as alanine, in these patients with low protein meal. Therefore, administration of {sup 15}N-compound to human subjects may contribute to provide us the important informations on nitrogen metabolism. For instance, urea kinetics are described in the endstage chronic renal failure in this review. However, less expensive {sup 15}N-compounds should be provided and more simple but accurate measurement of {sup 15}N activity should be developed for the further clinical application of the stable isotope. (author).

  3. Correlation between C-Reactive Protein in Peripheral Vein and Coronary Sinus in Stable and Unstable Angina

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Weverton Ferreira, E-mail: wfleite@cardiol.br [Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, SP (Brazil); Hospital Beneficência Portuguesa de São Paulo, São Paulo, SP (Brazil); Ramires, José Antonio Franchini; Moreira, Luiz Felipe Pinho; Strunz, Célia Maria Cassaro [Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, SP (Brazil); Mangione, José Armando [Hospital Beneficência Portuguesa de São Paulo, São Paulo, SP (Brazil)

    2015-03-15

    High sensitivity C-reactive protein (hs-CRP) is commonly used in clinical practice to assess cardiovascular risk. However, a correlation has not yet been established between the absolute levels of peripheral and central hs-CRP. To assess the correlation between serum hs-CRP levels (mg/L) in a peripheral vein in the left forearm (LFPV) with those in the coronary sinus (CS) of patients with coronary artery disease (CAD) and a diagnosis of stable angina (SA) or unstable angina (UA). This observational, descriptive, and cross-sectional study was conducted at the Instituto do Coração, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, and at the Hospital Beneficência Portuguesa de Sao Paulo, where CAD patients referred to the hospital for coronary angiography were evaluated. Forty patients with CAD (20 with SA and 20 with UA) were included in the study. Blood samples from LFPV and CS were collected before coronary angiography. Furthermore, analysis of the correlation between serum levels of hs-CRP in LFPV versus CS showed a strong linear correlation for both SA (r = 0.993, p < 0.001) and UA (r = 0.976, p < 0.001) and for the entire sample (r = 0.985, p < 0.001). Our data suggest a strong linear correlation between hs-CRP levels in LFPV versus CS in patients with SA and UA.

  4. Advances in stable isotope assisted labeling strategies with information science.

    Science.gov (United States)

    Kigawa, Takanori

    2017-08-15

    Stable-isotope (SI) labeling of proteins is an essential technique to investigate their structures, interactions or dynamics by nuclear magnetic resonance (NMR) spectroscopy. The assignment of the main-chain signals, which is the fundamental first step in these analyses, is usually achieved by a sequential assignment method based on triple resonance experiments. Independently of the triple resonance experiment-based sequential assignment, amino acid-selective SI labeling is beneficial for discriminating the amino acid type of each signal; therefore, it is especially useful for the signal assignment of difficult targets. Various combinatorial selective labeling schemes have been developed as more sophisticated labeling strategies. In these strategies, amino acids are represented by combinations of SI labeled samples, rather than simply assigning one amino acid to one SI labeled sample as in the case of conventional amino acid-selective labeling. These strategies have proven to be useful for NMR analyses of difficult proteins, such as those in large complex systems, in living cells, attached or integrated into membranes, or with poor solubility. In this review, recent advances in stable isotope assisted labeling strategies will be discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Behavior of solvent-exposed hydrophobic groove in the anti-apoptotic Bcl-XL protein: clues for its ability to bind diverse BH3 ligands from MD simulations.

    Directory of Open Access Journals (Sweden)

    Dilraj Lama

    Full Text Available Bcl-XL is a member of Bcl-2 family of proteins involved in the regulation of intrinsic pathway of apoptosis. Its overexpression in many human cancers makes it an important target for anti-cancer drugs. Bcl-XL interacts with the BH3 domain of several pro-apoptotic Bcl-2 partners. This helical bundle protein has a pronounced hydrophobic groove which acts as a binding region for the BH3 domains. Eight independent molecular dynamics simulations of the apo/holo forms of Bcl-XL were carried out to investigate the behavior of solvent-exposed hydrophobic groove. The simulations used either a twin-range cut-off or particle mesh Ewald (PME scheme to treat long-range interactions. Destabilization of the BH3 domain-containing helix H2 was observed in all four twin-range cut-off simulations. Most of the other major helices remained stable. The unwinding of H2 can be related to the ability of Bcl-XL to bind diverse BH3 ligands. The loss of helical character can also be linked to the formation of homo- or hetero-dimers in Bcl-2 proteins. Several experimental studies have suggested that exposure of BH3 domain is a crucial event before they form dimers. Thus unwinding of H2 seems to be functionally very important. The four PME simulations, however, revealed a stable helix H2. It is possible that the H2 unfolding might occur in PME simulations at longer time scales. Hydrophobic residues in the hydrophobic groove are involved in stable interactions among themselves. The solvent accessible surface areas of bulky hydrophobic residues in the groove are significantly buried by the loop LB connecting the helix H2 and subsequent helix. These observations help to understand how the hydrophobic patch in Bcl-XL remains stable in the solvent-exposed state. We suggest that both the destabilization of helix H2 and the conformational heterogeneity of loop LB are important factors for binding of diverse ligands in the hydrophobic groove of Bcl-XL.

  6. New insight in the structural features of haloadaptation in α-amylases from halophilic Archaea following homology modeling strategy: folded and stable conformation maintained through low hydrophobicity and highly negative charged surface

    Science.gov (United States)

    Zorgani, Mohamed Amine; Patron, Kevin; Desvaux, Mickaël

    2014-07-01

    Proteins from halophilic archaea, which live in extreme saline conditions, have evolved to remain folded, active and stable at very high ionic strengths. Understanding the mechanism of haloadaptation is the first step toward engineering of halostable biomolecules. Amylases are one of the main enzymes used in industry. Yet, no three-dimensional structure has been experimentally resolved for α-amylases from halophilic archaea. In this study, homology structure modeling of α-amylases from the halophilic archaea Haloarcula marismortui, Haloarcula hispanica, and Halalkalicoccus jeotgali were performed. The resulting models were subjected to energy minimization, evaluation, and structural analysis. Calculations of the amino acid composition, salt bridges and hydrophobic interactions were also performed and compared to a set of non-halophilic counterparts. It clearly appeared that haloarchaeal α-amylases exhibited lower propensities for helix formation and higher propensities for coil-forming regions. Furthermore, they could maintain a folded and stable conformation in high salt concentration through highly negative charged surface with over representation of acidic residues, especially Asp, and low hydrophobicity with increase of salt bridges and decrease in hydrophobic interactions on the protein surface. This study sheds some light on the stability of α-amylases from halophilic archaea and provides strong basis not only to understand haloadaptation mechanisms of proteins in microorganisms from hypersalines environments but also for biotechnological applications.

  7. Proposal for a coordination research programme (CRP) of the International Atomic Energy Agency (IAEA) on stable isotope tracer techniques for studies on protein-energy interactions

    International Nuclear Information System (INIS)

    Shetty, P.; James, W.P.T.

    1993-01-01

    This Report provides a rationale and justification for the initiation of a Coordinated Research programme to support studies using stable isotopic tracer techniques to address priority areas of human protein-energy interactions with special emphasis on the problems of human nutrition in developing countries. The Report suggests a modus for establishing such a practically oriented Coordinated Research Programme under the aegis of the International Atomic Energy Agency with concrete suggestions for its organization and the identification of probable participants in such a programme. The likely sources of additional funding to sustain such an activity viable for a period of 4 to 5 years are also indicated. 8 refs

  8. Dynamic, electronically switchable surfaces for membrane protein microarrays.

    Science.gov (United States)

    Tang, C S; Dusseiller, M; Makohliso, S; Heuschkel, M; Sharma, S; Keller, B; Vörös, J

    2006-02-01

    Microarray technology is a powerful tool that provides a high throughput of bioanalytical information within a single experiment. These miniaturized and parallelized binding assays are highly sensitive and have found widespread popularity especially during the genomic era. However, as drug diagnostics studies are often targeted at membrane proteins, the current arraying technologies are ill-equipped to handle the fragile nature of the protein molecules. In addition, to understand the complex structure and functions of proteins, different strategies to immobilize the probe molecules selectively onto a platform for protein microarray are required. We propose a novel approach to create a (membrane) protein microarray by using an indium tin oxide (ITO) microelectrode array with an electronic multiplexing capability. A polycationic, protein- and vesicle-resistant copolymer, poly(l-lysine)-grafted-poly(ethylene glycol) (PLL-g-PEG), is exposed to and adsorbed uniformly onto the microelectrode array, as a passivating adlayer. An electronic stimulation is then applied onto the individual ITO microelectrodes resulting in the localized release of the polymer thus revealing a bare ITO surface. Different polymer and biological moieties are specifically immobilized onto the activated ITO microelectrodes while the other regions remain protein-resistant as they are unaffected by the induced electrical potential. The desorption process of the PLL-g-PEG is observed to be highly selective, rapid, and reversible without compromising on the integrity and performance of the conductive ITO microelectrodes. As such, we have successfully created a stable and heterogeneous microarray of biomolecules by using selective electronic addressing on ITO microelectrodes. Both pharmaceutical diagnostics and biomedical technology are expected to benefit directly from this unique method.

  9. Investigation of mercury-containing proteins by enriched stable isotopic tracer and size-exclusion chromatography hyphenated to inductively coupled plasma-isotope dilution mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Shi Junwen [Laboratory for Bio-Environmental Health Sciences of Nanoscale Materials and Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)]|[Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Feng Weiyue [Laboratory for Bio-Environmental Health Sciences of Nanoscale Materials and Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)]. E-mail: fengwy@mail.ihep.ac.cn; Wang Meng [Laboratory for Bio-Environmental Health Sciences of Nanoscale Materials and Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)]|[Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Zhang Fang [Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Li Bai [Laboratory for Bio-Environmental Health Sciences of Nanoscale Materials and Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wang Bing; Zhu Motao [Laboratory for Bio-Environmental Health Sciences of Nanoscale Materials and Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)]|[Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Chai Zhifang [Laboratory for Bio-Environmental Health Sciences of Nanoscale Materials and Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)]|[Institute of Nuclear Technology, Shenzhen University, Shenzhen 518060 (China)]|[Institute of Nanochemistry and Nanosafety, Shanghai University, Shanghai (China)

    2007-01-30

    In order to investigate trace mercury-containing proteins in maternal rat and their offspring, a method of enriched stable isotopic tracer ({sup 196}Hg and {sup 198}Hg) combined with size-exclusion chromatography (SEC) coupled to inductively coupled plasma-isotope dilution mass spectrometry (ICP-IDMS) was developed. Prior to the analysis, {sup 196}Hg- and {sup 198}Hg-enriched methylmercury was administrated to the pregnant rats. Then the mercury-containing proteins in serum and brain cytosol of the dam and pup rats were separated by size-exclusion columns and the mercury was detected by ICP-MS. The ICP-MS spectrogram of the tracing samples showed significantly elevated {sup 196}Hg and {sup 198}Hg isotopic signals compared with the natural ones, indicating that the detection sensitivity could be increased by the tracer method. The contents of mercury in chromatographic fractions of the dam and pup rat brain cytosol were quantitatively estimated by post-column reverse ID-ICP-MS. The quantitative speciation differences of mercury in brain cytosol between the dam and pup rats were observed, indicating that such studies could be useful for toxicological estimation. Additionally, the isotopic ratio measurement of {sup 198}Hg/{sup 202}Hg in the tracing samples could be used to identify the artifact mercury species caused in the analytical procedure. The study demonstrates that the tracer method combined with high-performance liquid chromatography (HPLC)-ICP-IDMS could provide reliably qualitative and quantitative information on mercury-containing proteins in organisms.

  10. Investigation of mercury-containing proteins by enriched stable isotopic tracer and size-exclusion chromatography hyphenated to inductively coupled plasma-isotope dilution mass spectrometry

    International Nuclear Information System (INIS)

    Shi Junwen; Feng Weiyue; Wang Meng; Zhang Fang; Li Bai; Wang Bing; Zhu Motao; Chai Zhifang

    2007-01-01

    In order to investigate trace mercury-containing proteins in maternal rat and their offspring, a method of enriched stable isotopic tracer ( 196 Hg and 198 Hg) combined with size-exclusion chromatography (SEC) coupled to inductively coupled plasma-isotope dilution mass spectrometry (ICP-IDMS) was developed. Prior to the analysis, 196 Hg- and 198 Hg-enriched methylmercury was administrated to the pregnant rats. Then the mercury-containing proteins in serum and brain cytosol of the dam and pup rats were separated by size-exclusion columns and the mercury was detected by ICP-MS. The ICP-MS spectrogram of the tracing samples showed significantly elevated 196 Hg and 198 Hg isotopic signals compared with the natural ones, indicating that the detection sensitivity could be increased by the tracer method. The contents of mercury in chromatographic fractions of the dam and pup rat brain cytosol were quantitatively estimated by post-column reverse ID-ICP-MS. The quantitative speciation differences of mercury in brain cytosol between the dam and pup rats were observed, indicating that such studies could be useful for toxicological estimation. Additionally, the isotopic ratio measurement of 198 Hg/ 202 Hg in the tracing samples could be used to identify the artifact mercury species caused in the analytical procedure. The study demonstrates that the tracer method combined with high-performance liquid chromatography (HPLC)-ICP-IDMS could provide reliably qualitative and quantitative information on mercury-containing proteins in organisms

  11. Forensic Applications of Light-Element Stable Isotope Ratios of Ricinus communis Seeds and Ricin Preparations

    Energy Technology Data Exchange (ETDEWEB)

    Kreuzer, Helen W.; West, Jason B.; Ehleringer, James

    2013-01-01

    Seeds of the castor plant Ricinus communis, also known as castor beans, are of forensic interest because they are the source of the poison ricin. We have tested whether stable isotope ratios of castor seeds and ricin prepared by various methods can be used as a forensic signature. We collected over 300 castor seed samples from locations around the world and measured the C, N, O, and H stable isotope ratios of the whole seeds, oil, and three types of ricin preparations. Our results demonstrate that N isotope ratios can be used to correlate ricin prepared by any of these methods to source seeds. Further, stable isotope ratios distinguished >99% of crude and purified ricin protein samples in pair-wise comparison tests. Stable isotope ratios therefore constitute a valuable forensic signature for ricin preparations.

  12. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2009-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeolimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteroic waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author). 56 refs., 11 figs., 2 tabs.

  13. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2012-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeoclimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteoric waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author). 89 refs., 12 figs., 2 tabs.

  14. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2008-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeolimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteroic waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author). 56 refs., 11 figs., 2 tabs

  15. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2009-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeolimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteroic waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author). 56 refs., 11 figs., 2 tabs

  16. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2013-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeoclimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteoric waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author). 91 refs., 12 figs., 2 tabs.

  17. Protein aggregation in bacteria: the thin boundary between functionality and toxicity.

    Science.gov (United States)

    Bednarska, Natalia G; Schymkowitz, Joost; Rousseau, Frederic; Van Eldere, Johan

    2013-09-01

    Misfolding and aggregation of proteins have a negative impact on all living organisms. In recent years, aggregation has been studied in detail due to its involvement in neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's diseases, and type II diabetes--all associated with accumulation of amyloid fibrils. This research highlighted the central importance of protein homeostasis, or proteostasis for short, defined as the cellular state in which the proteome is both stable and functional. It implicates an equilibrium between synthesis, folding, trafficking, aggregation, disaggregation and degradation. In accordance with the eukaryotic systems, it has been documented that protein aggregation also reduces fitness of bacterial cells, but although our understanding of the cellular protein quality control systems is perhaps most detailed in bacteria, the use of bacterial proteostasis as a drug target remains little explored. Here we describe protein aggregation as a normal physiological process and its role in bacterial virulence and we shed light on how bacteria defend themselves against the toxic threat of aggregates. We review the impact of aggregates on bacterial viability and look at the ways that bacteria use to maintain a balance between aggregation and functionality. The proteostasis in bacteria can be interrupted via overexpression of proteins, certain antibiotics such as aminoglycosides, as well as antimicrobial peptides--all leading to loss of cell viability. Therefore intracellular protein aggregation and disruption of proteostatic balance in bacteria open up another strategy that should be explored towards the discovery of new antimicrobials.

  18. Polyphenol-enriched berry extracts naturally modulate reactive proteins in model foods.

    Science.gov (United States)

    Lila, Mary Ann; Schneider, Maggie; Devlin, Amy; Plundrich, Nathalie; Laster, Scott; Foegeding, E Allen

    2017-12-13

    Healthy foods like polyphenol-rich berries and high quality edible proteins are in demand in today's functional food marketplace, but it can be difficult to formulate convenient food products with physiologically-relevant amounts of these ingredients and still maintain product quality. In part, this is because proteins can interact with other food ingredients and precipitate destabilizing events, which can disrupt food structure and diminish shelf life. Proteins in foods can also interact with human receptors to provoke adverse consequences such as allergies. When proteins and polyphenols were pre-aggregated into stable colloidal particles prior to use as ingredients, highly palatable food formulations (with reduced astringency of polyphenols) could be prepared, and the overall structural properties of food formulations were significantly improved. All of the nutritive and phytoactive benefits of the proteins and concentrated polyphenols remained highly bioavailable, but the protein molecules in the particle matrix did not self-aggregate into networks or react with other food ingredients. Both the drainage half-life (a marker of structural stability) and the yield stress (resistance to flow) of model foams made with the protein-polyphenol particles were increased in a dose-dependent manner. Of high significance in this complexation process, the reactive allergenic epitopes of certain proteins were effectively blunted by binding with polyphenols, attenuating the allergenicity of the food proteins. Porcine macrophages produced TNF-α proinflammatory cytokine when provoked with whey protein, but, this response was blocked completely when the cells were stimulated with particles that complexed whey protein with cinnamon-derived polyphenols. Cytokine and chemokine production characteristic of allergic reactions were blocked by the polyphenols, allowing for the potential creation of hypoallergenic protein-berry polyphenol enriched foods.

  19. Polysaccharides-based polyelectrolyte nanoparticles as protein drugs delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Shu Shujun; Sun Lei; Zhang Xinge, E-mail: zhangxinge@nankai.edu.cn [Nankai University, Key Laboratory of Functional Polymer Materials Ministry of Education, Institute of Polymer Chemistry (China); Wu Zhongming [Tianjin Medical University, Metabolic Diseases Hospital (China); Wang Zhen; Li Chaoxing, E-mail: lcx@nankai.edu.cn [Nankai University, Key Laboratory of Functional Polymer Materials Ministry of Education, Institute of Polymer Chemistry (China)

    2011-09-15

    Polysaccharides-based nanoparticles were prepared by synthesized quaternized chitosan and dextran sulfate through simple ionic-gelation self-assembled method. Introduction of quaternized groups was intended to increase water solubility of chitosan and make the nanoparticles have broader pH sensitive range which can remain more stable in physiological pH and decrease the loss of protein drugs caused by the gastric cavity. The load of BSA was affected by molecular parameter, i.e., degree of substitution, and average molecular weight of quaternized chitosan, as well as concentration of BSA. Fast release occurred in phosphate buffer solution (pH 7.4) while the release was slow in hydrochloric acid (pH 1.4). The drug release mechanism is Fickian diffusion through release kinetics analysis. Cell uptake demonstrated nanoparicles can internalize into Caco-2 cells, which suggested that nanoparticles had good biocompatibility. No significant conformation change was noted for the released BSA in comparison with native BSA using circular dichroism spectroscopy. This kind of novel composite nanoparticles may be a promising delivery system for oral protein and peptide drugs.

  20. Serum YKL-40 predicts long-term mortality in patients with stable coronary disease

    DEFF Research Database (Denmark)

    Harutyunyan, Marina; Gøtze, Jens P; Winkel, Per

    2013-01-01

    We investigated whether the inflammatory biomarker YKL-40 could improve the long-term prediction of death made by common risk factors plus high-sensitivity C-reactive protein (hs-CRP) and N-terminal-pro-B natriuretic peptide (NT-proBNP) in patients with stable coronary artery disease (CAD)....

  1. Remaining useful life assessment of lithium-ion batteries in implantable medical devices

    Science.gov (United States)

    Hu, Chao; Ye, Hui; Jain, Gaurav; Schmidt, Craig

    2018-01-01

    This paper presents a prognostic study on lithium-ion batteries in implantable medical devices, in which a hybrid data-driven/model-based method is employed for remaining useful life assessment. The method is developed on and evaluated against data from two sets of lithium-ion prismatic cells used in implantable applications exhibiting distinct fade performance: 1) eight cells from Medtronic, PLC whose rates of capacity fade appear to be stable and gradually decrease over a 10-year test duration; and 2) eight cells from Manufacturer X whose rates appear to be greater and show sharp increase after some period over a 1.8-year test duration. The hybrid method enables online prediction of remaining useful life for predictive maintenance/control. It consists of two modules: 1) a sparse Bayesian learning module (data-driven) for inferring capacity from charge-related features; and 2) a recursive Bayesian filtering module (model-based) for updating empirical capacity fade models and predicting remaining useful life. A generic particle filter is adopted to implement recursive Bayesian filtering for the cells from the first set, whose capacity fade behavior can be represented by a single fade model; a multiple model particle filter with fixed-lag smoothing is proposed for the cells from the second data set, whose capacity fade behavior switches between multiple fade models.

  2. The promyelocytic leukemia gene product (PML) forms stable complexes with the retinoblastoma protein

    DEFF Research Database (Denmark)

    Alcalay, M; Tomassoni, L; Colombo, E

    1998-01-01

    PML is a nuclear protein with growth-suppressive properties originally identified in the context of the PML-retinoic acid receptor alpha (RAR alpha) fusion protein of acute promyelocytic leukemia. PML localizes within distinct nuclear structures, called nuclear bodies, which are disrupted by the ...

  3. Photoreactive elastin-like proteins for use as versatile bioactive materials and surface coatings.

    Science.gov (United States)

    Raphel, Jordan; Parisi-Amon, Andreina; Heilshorn, Sarah

    2012-10-07

    Photocrosslinkable, protein-engineered biomaterials combine a rapid, controllable, cytocompatible crosslinking method with a modular design strategy to create a new family of bioactive materials. These materials have a wide range of biomedical applications, including the development of bioactive implant coatings, drug delivery vehicles, and tissue engineering scaffolds. We present the successful functionalization of a bioactive elastin-like protein with photoreactive diazirine moieties. Scalable synthesis is achieved using a standard recombinant protein expression host followed by site-specific modification of lysine residues with a heterobifunctional N-hydroxysuccinimide ester-diazirine crosslinker. The resulting biomaterial is demonstrated to be processable by spin coating, drop casting, soft lithographic patterning, and mold casting to fabricate a variety of two- and three-dimensional photocrosslinked biomaterials with length scales spanning the nanometer to millimeter range. Protein thin films proved to be highly stable over a three-week period. Cell-adhesive functional domains incorporated into the engineered protein materials were shown to remain active post-photo-processing. Human adipose-derived stem cells achieved faster rates of cell adhesion and larger spread areas on thin films of the engineered protein compared to control substrates. The ease and scalability of material production, processing versatility, and modular bioactive functionality make this recombinantly engineered protein an ideal candidate for the development of novel biomaterial coatings, films, and scaffolds.

  4. System in biology leading to cell pathology: stable protein-protein interactions after covalent modifications by small molecules or in transgenic cells.

    Science.gov (United States)

    Malina, Halina Z

    2011-01-19

    The physiological processes in the cell are regulated by reversible, electrostatic protein-protein interactions. Apoptosis is such a regulated process, which is critically important in tissue homeostasis and development and leads to complete disintegration of the cell. Pathological apoptosis, a process similar to apoptosis, is associated with aging and infection. The current study shows that pathological apoptosis is a process caused by the covalent interactions between the signaling proteins, and a characteristic of this pathological network is the covalent binding of calmodulin to regulatory sequences. Small molecules able to bind covalently to the amino group of lysine, histidine, arginine, or glutamine modify the regulatory sequences of the proteins. The present study analyzed the interaction of calmodulin with the BH3 sequence of Bax, and the calmodulin-binding sequence of myristoylated alanine-rich C-kinase substrate in the presence of xanthurenic acid in primary retinal epithelium cell cultures and murine epithelial fibroblast cell lines transformed with SV40 (wild type [WT], Bid knockout [Bid-/-], and Bax-/-/Bak-/- double knockout [DKO]). Cell death was observed to be associated with the covalent binding of calmodulin, in parallel, to the regulatory sequences of proteins. Xanthurenic acid is known to activate caspase-3 in primary cell cultures, and the results showed that this activation is also observed in WT and Bid-/- cells, but not in DKO cells. However, DKO cells were not protected against death, but high rates of cell death occurred by detachment. The results showed that small molecules modify the basic amino acids in the regulatory sequences of proteins leading to covalent interactions between the modified sequences (e.g., calmodulin to calmodulin-binding sites). The formation of these polymers (aggregates) leads to an unregulated and, consequently, pathological protein network. The results suggest a mechanism for the involvement of small molecules

  5. Biomimicry of surfactant protein C.

    Science.gov (United States)

    Brown, Nathan J; Johansson, Jan; Barron, Annelise E

    2008-10-01

    Since the widespread use of exogenous lung surfactant to treat neonatal respiratory distress syndrome, premature infant survival and respiratory morbidity have dramatically improved. Despite the effectiveness of the animal-derived surfactant preparations, there still remain some concerns and difficulties associated with their use. This has prompted investigation into the creation of synthetic surfactant preparations. However, to date, no clinically used synthetic formulation is as effective as the natural material. This is largely because the previous synthetic formulations lacked analogues of the hydrophobic proteins of the lung surfactant system, SP-B and SP-C, which are critical functional constituents. As a result, recent investigation has turned toward the development of a new generation of synthetic, biomimetic surfactants that contain synthetic phospholipids along with a mimic of the hydrophobic protein portion of lung surfactant. In this Account, we detail our efforts in creating accurate mimics of SP-C for use in a synthetic surfactant replacement therapy. Despite SP-C's seemingly simple structure, the predominantly helical protein is extraordinarily challenging to work with given its extreme hydrophobicity and structural instability, which greatly complicates the creation of an effective SP-C analogue. Drawing inspiration from Nature, two promising biomimetic approaches have led to the creation of rationally designed biopolymers that recapitulate many of SP-C's molecular features. The first approach utilizes detailed SP-C structure-activity relationships and amino acid folding propensities to create a peptide-based analogue, SP-C33. In SP-C33, the problematic and metastable polyvaline helix is replaced with a structurally stable polyleucine helix and includes a well-placed positive charge to prevent aggregation. SP-C33 is structurally stable and eliminates the association propensity of the native protein. The second approach follows the same design

  6. PsVPS1, a dynamin-related protein, is involved in cyst germination and soybean infection of Phytophthora sojae.

    Directory of Open Access Journals (Sweden)

    Delong Li

    Full Text Available Plant pathogens secrete effector proteins to suppress plant immunity. However, the mechanism by which oomycete pathogens deliver effector proteins during plant infection remains unknown. In this report, we characterized a Phytophthora sojae vps1 gene. This gene encodes a homolog of the Saccharomyces cerevisiae vacuolar protein sorting gene vps1 that mediates budding of clathrin-coated vesicles from the late Golgi, which are diverted from the general secretory pathway to the vacuole. PsVPS1-silenced mutants were generated using polyethylene glycol-mediated protoplast stable transformation and were viable but had reduced extracellular protein activity. The PsVPS1-silenced mutants showed impaired hyphal growth, and the shapes of the vacuoles were highly fragmented. Silencing of PsVPS1 affected cyst germination as well as the polarized growth of germinated cysts. Silenced mutants showed impaired invasion of susceptible soybean plants regardless of wounding. These results suggest that PsVPS1 is involved in vacuole morphology and cyst development. Moreover, it is essential for the virulence of P. sojae and extracellular protein secretion.

  7. Effectiveness of training programmes used in two stables of thoroughbred race horses.

    Science.gov (United States)

    Szarska, E; Cywińska, A; Ostaszewski, P; Kowalska, A

    2014-01-01

    The purpose of this study was to compare the training methods used in two stables and their effects on selected blood parameters and race results. A total number of 36 thoroughbred race horses was examined in two groups, trained by two trainers. Twenty-four horses (group A) were trained at Sluzewiec and the remaining twelve horses (group B) were kept and trained in a private stable. The experiment lasted for five months. The activities of CPK (creatine phosphokinase) and AST (aspartate aminotransferase) and the concentration of LA (lactic acid) were determined. The speed was controlled and recorded by a Garmin GPS system. The analysis of the General Handicap rating demonstrated that the training methods used in stable A were more effective and resulted in better classification of these horses. Training methods in both stables were evaluated and compared on the basis of maximal speeds during training sessions and related post exercise LA concentrations. The main differences between training methods used in both stables concerned the workload and the time of work with the rider. Analysis of the values measured in individual horses from stable B have shown that AST and CK activities were high not only in all young, 2-year-old horses but also in three older ones. This seems to confirm the lack of balance and proper movement coordination in these horses, resulting in high activities of muscle enzymes.

  8. Osteoprotegerin independently predicts mortality in patients with stable coronary artery disease: the CLARICOR trial

    DEFF Research Database (Denmark)

    Bjerre, Mette; Hilden, Jørgen; Kastrup, Jens

    2014-01-01

    OBJECTIVES: To elucidate the prognostic power of serum osteoprotegerin (OPG) in patients with stable coronary artery disease (CAD). METHODS: Serum OPG levels were measured in the CLARICOR trial cohort of 4063 patients with stable CAD on blood samples drawn at randomization. The follow-up was 2...... predictor for all-cause mortality. Importantly, OPG remained an independent predictor of mortality even after adjustment for both clinical and conventional cardiovascular risk markers (HR 2.5 [95% CI 1.6-3.9, p power as to all...

  9. SOLO: a meiotic protein required for centromere cohesion, coorientation, and SMC1 localization in Drosophila melanogaster.

    Science.gov (United States)

    Yan, Rihui; Thomas, Sharon E; Tsai, Jui-He; Yamada, Yukihiro; McKee, Bruce D

    2010-02-08

    Sister chromatid cohesion is essential to maintain stable connections between homologues and sister chromatids during meiosis and to establish correct centromere orientation patterns on the meiosis I and II spindles. However, the meiotic cohesion apparatus in Drosophila melanogaster remains largely uncharacterized. We describe a novel protein, sisters on the loose (SOLO), which is essential for meiotic cohesion in Drosophila. In solo mutants, sister centromeres separate before prometaphase I, disrupting meiosis I centromere orientation and causing nondisjunction of both homologous and sister chromatids. Centromeric foci of the cohesin protein SMC1 are absent in solo mutants at all meiotic stages. SOLO and SMC1 colocalize to meiotic centromeres from early prophase I until anaphase II in wild-type males, but both proteins disappear prematurely at anaphase I in mutants for mei-S332, which encodes the Drosophila homologue of the cohesin protector protein shugoshin. The solo mutant phenotypes and the localization patterns of SOLO and SMC1 indicate that they function together to maintain sister chromatid cohesion in Drosophila meiosis.

  10. F pocket flexibility influences the tapasin dependence of two differentially disease-associated MHC Class I proteins.

    Science.gov (United States)

    Abualrous, Esam T; Fritzsche, Susanne; Hein, Zeynep; Al-Balushi, Mohammed S; Reinink, Peter; Boyle, Louise H; Wellbrock, Ursula; Antoniou, Antony N; Springer, Sebastian

    2015-04-01

    The human MHC class I protein HLA-B*27:05 is statistically associated with ankylosing spondylitis, unlike HLA-B*27:09, which differs in a single amino acid in the F pocket of the peptide-binding groove. To understand how this unique amino acid difference leads to a different behavior of the proteins in the cell, we have investigated the conformational stability of both proteins using a combination of in silico and experimental approaches. Here, we show that the binding site of B*27:05 is conformationally disordered in the absence of peptide due to a charge repulsion at the bottom of the F pocket. In agreement with this, B*27:05 requires the chaperone protein tapasin to a greater extent than the conformationally stable B*27:09 in order to remain structured and to bind peptide. Taken together, our data demonstrate a method to predict tapasin dependence and physiological behavior from the sequence and crystal structure of a particular class I allotype. Also watch the Video Abstract. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The potential and biological test on cloned cassava crop remains on local sheep

    Science.gov (United States)

    Ginting, R.; Umar, S.; Hanum, C.

    2018-02-01

    This research aims at knowing the potential of cloned cassava crop remains dry matter and the impact of the feeding of the cloned cassava crop remains based complete feed on the consumption, the body weight gain, and the feed conversion of the local male sheep with the average of initial body weight of 7.75±1.75 kg. The design applied in the first stage research was random sampling method with two frames of tile and the second stage research applied Completely Randomized Design (CRD) with three (3) treatments and four (4) replicates. These treatments consisted of P1 (100% grass); P2 (50% grass, 50% complete feed pellet); P3 (100% complete feed from the raw material of cloned cassava crop remaining). Statistical tests showed that the feeding of complete feed whose raw material was from cloned cassava crop remains gave a highly significant impact on decreasing feed consumption, increasing body weight, lowering feed conversion, and increasing crude protein digestibility. The conclusion is that the cloned cassava crop remains can be used as complete sheep feed to replace green grass and can give the best result.

  12. Stable functionalization of germanium surface and its application in biomolecules immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Qi [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No.865, Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No.19A, Yuquan Road, Beijing 100049 (China); Xu, Baojian [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No.865, Changning Road, Shanghai 200050 (China); Ye, Lin [Sate Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No.865, Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No.19A, Yuquan Road, Beijing 100049 (China); Tang, Teng; Huang, Shanluo; Du, Xiaowei [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No.865, Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No.19A, Yuquan Road, Beijing 100049 (China); Bian, Xiaojun; Zhang, Jishen [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No.865, Changning Road, Shanghai 200050 (China); Di, Zengfeng, E-mail: zfdi@mail.sim.ac.cn [Sate Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No.865, Changning Road, Shanghai 200050 (China); Jin, Qinghui [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No.865, Changning Road, Shanghai 200050 (China); Zhao, Jianlong, E-mail: jlzhao@mail.sim.ac.cn [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No.865, Changning Road, Shanghai 200050 (China)

    2014-10-15

    Highlights: • An effective method to immobilize biomolecules on the functionalized Ge surface. • The surface of Ge was functionalized with 11-Mercaptoundecanoic acid (11-MUA). • Stable and uniform SAMs was obtained on Ge surface after 11-MUA treatment. • The functionalized Ge was employed as substrate for protein immobilization. • Paving the way of Ge for further applications in bioelectronics field. - Abstract: As a typical semiconductor material, germanium (Ge) has the potential to be utilized in microelectronics and bioelectronics. Herein, we present a simple and effective method to immobilize biomolecules on the surface of functionalized Ge. The surface oxide of Ge was removed with the pretreatment of hydrochloric acid and the Cl-terminated Ge reacted with 11-Mercaptoundecanoic acid (11-MUA). The surface of Ge was coated with 11-MUA self-assembled monolayers (SAMs) due to the bonding reaction between the sulfhydryl group of 11-MUA and Cl-terminated Ge. Furthermore, typical biomolecule, a green fluorescent protein was chosen to be immobilized on the surface of the functionalized Ge. Contact angle analysis, atomic force microscopy and X-ray photoelectron spectroscopy were used to study the characteristics including wettability, stability, roughness and component of the functionalized Ge, respectively. Fluorescence microscopy was utilized to indicate the efficiency of protein immobilization on the surface of the functionalized Ge. With these studies, stable and uniform functionalized monolayer was obtained on the surface of Ge after 11-MUA treatment and the functionalized Ge was effectively applied in protein immobilization. Furthermore, this study may pave the way for further applications such as the integration of bioelectronics and biosensors with the attractive semiconductor material-Ge in future work.

  13. Protein Charge and Mass Contribute to the Spatio-temporal Dynamics of Protein-Protein Interactions in a Minimal Proteome

    Science.gov (United States)

    Xu, Yu; Wang, Hong; Nussinov, Ruth; Ma, Buyong

    2013-01-01

    We constructed and simulated a ‘minimal proteome’ model using Langevin dynamics. It contains 206 essential protein types which were compiled from the literature. For comparison, we generated six proteomes with randomized concentrations. We found that the net charges and molecular weights of the proteins in the minimal genome are not random. The net charge of a protein decreases linearly with molecular weight, with small proteins being mostly positively charged and large proteins negatively charged. The protein copy numbers in the minimal genome have the tendency to maximize the number of protein-protein interactions in the network. Negatively charged proteins which tend to have larger sizes can provide large collision cross-section allowing them to interact with other proteins; on the other hand, the smaller positively charged proteins could have higher diffusion speed and are more likely to collide with other proteins. Proteomes with random charge/mass populations form less stable clusters than those with experimental protein copy numbers. Our study suggests that ‘proper’ populations of negatively and positively charged proteins are important for maintaining a protein-protein interaction network in a proteome. It is interesting to note that the minimal genome model based on the charge and mass of E. Coli may have a larger protein-protein interaction network than that based on the lower organism M. pneumoniae. PMID:23420643

  14. Involvement of protein kinase C in the mechanism of action of Escherichia coli heat-stable enterotoxin (STa) in a human colonic carcinoma cell line, COLO-205

    International Nuclear Information System (INIS)

    Gupta, Dyuti Datta; Saha, Subhrajit; Chakrabarti, Manoj K.

    2005-01-01

    The present study was undertaken to determine the involvement of calcium-protein kinase C pathway in the mechanism of action of Escherichia coli heat stable enterotoxin (STa) apart from STa-induced activation of guanylate cyclase in human colonic carcinoma cell line COLO-205, which was used as a model cultured cell line to study the mechanism of action of E. coli STa. In response to E. coli STa, protein kinase C (PKC) activity was increased in a time-dependent manner with its physical translocation from cytosol to membrane. Inhibition of the PKC activity in membrane fraction and inhibition of its physical translocation in response to IP 3 -mediated calcium release inhibitor dantrolene suggested the involvement of intracellular store depletion in the regulation of PKC activity. Among different PKC isoforms, predominant involvement of calcium-dependent protein kinase C (PKCα) was specified using isotype-specific pseudosubstrate, which showed pronounce enzyme activity. Inhibition of enzyme activity by PKCα-specific inhibitor Goe6976 and immunoblott study employing isotype-specific antibody further demonstrated the involvement of calcium-dependent isoform of PKC in the mechanism of action of E. coli STa. Moreover, inhibition of guanylate cyclase activity by PKCα-specific inhibitor Goe6976 suggested the involvement of PKCα in the regulation of guanylate cyclase activity

  15. Protein-lipid interactions: from membrane domains to cellular networks

    National Research Council Canada - National Science Library

    Tamm, Lukas K

    2005-01-01

    ... membranes is the lipid bilayer. Embedded in the fluid lipid bilayer are proteins of various shapes and traits. This volume illuminates from physical, chemical and biological angles the numerous - mostly quite weak - interactions between lipids, proteins, and proteins and lipids that define the delicate, highly dynamic and yet so stable fabri...

  16. Processed Meat Protein and Heat-Stable Peptide Marker Identification Using Microwave-Assisted Tryptic Digestion

    Directory of Open Access Journals (Sweden)

    Magdalena Montowska

    2016-01-01

    Full Text Available New approaches to rapid examination of proteins and peptides in complex food matrices are of great interest to the community of food scientists. The aim of the study is to examine the influence of microwave irradiation on the acceleration of enzymatic cleavage and enzymatic digestion of denatured proteins in cooked meat of five species (cattle, horse, pig, chicken and turkey and processed meat products (coarsely minced, smoked, cooked and semi-dried sausages. Severe protein aggregation occurred not only in heated meat under harsh treatment at 190 °C but also in processed meat products. All the protein aggregates were thoroughly hydrolyzed aft er 1 h of trypsin treatment with short exposure times of 40 and 20 s to microwave irradiation at 138 and 303 W. There were much more missed cleavage sites observed in all microwave-assisted digestions. Despite the incompleteness of microwave-assisted digestion, six unique peptide markers were detected, which allowed unambiguous identification of processed meat derived from the examined species. Although the microwave-assisted tryptic digestion can serve as a tool for rapid and high-throughput protein identification, great caution and pre-evaluation of individual samples is recommended in protein quantitation.

  17. Sodium deoxycholate-decorated zein nanoparticles for a stable colloidal drug delivery system.

    Science.gov (United States)

    Gagliardi, Agnese; Paolino, Donatella; Iannone, Michelangelo; Palma, Ernesto; Fresta, Massimo; Cosco, Donato

    2018-01-01

    The use of biopolymers is increasing in drug delivery, thanks to the peculiar properties of these compounds such as their biodegradability, availability, and the possibility of modulating their physico-chemical characteristics. In particular, protein-based systems such as albumin are able to interact with many active compounds, modulating their biopharmaceutical properties. Zein is a protein of 20-40 kDa made up of many hydrophobic amino acids, generally regarded as safe (GRAS) and used as a coating material. In this investigation, zein was combined with various surfactants in order to obtain stable nanosystems by means of the nanoprecipitation technique. Specific parameters, eg, temperature, pH value, Turbiscan Stability Index, serum stability, in vitro cytotoxicity and entrapment efficiency of various model compounds were investigated, in order to identify the nanoformulation most useful for a systemic drug delivery application. The use of non-ionic and ionic surfactants such as Tween 80, poloxamer 188, and sodium deoxycholate allowed us to obtain nanoparticles characterized by a mean diameter of 100-200 nm when a protein concentration of 2 mg/mL was used. The surface charge was modulated by means of the protein concentration and the nature of the stabilizer. The most suitable nanoparticle formulation to be proposed as a colloidal drug delivery system was obtained using sodium deoxycholate (1.25% w/v) because it was characterized by a narrow size distribution, a good storage stability after freeze-drying and significant feature of retaining lipophilic and hydrophilic compounds. The sodium deoxycholate-coated zein nanoparticles are stable biocompatible colloidal carriers to be used as useful drug delivery systems.

  18. Salt-bridge energetics in halophilic proteins.

    Science.gov (United States)

    Nayek, Arnab; Sen Gupta, Parth Sarthi; Banerjee, Shyamashree; Mondal, Buddhadev; Bandyopadhyay, Amal K

    2014-01-01

    Halophilic proteins have greater abundance of acidic over basic and very low bulky hydrophobic residues. Classical electrostatic stabilization was suggested as the key determinant for halophilic adaptation of protein. However, contribution of specific electrostatic interactions (i.e. salt-bridges) to overall stability of halophilic proteins is yet to be understood. To understand this, we use Adaptive-Poison-Boltzmann-Solver Methods along with our home-built automation to workout net as well as associated component energy terms such as desolvation energy, bridge energy and background energy for 275 salt-bridges from 20 extremely halophilic proteins. We then perform extensive statistical analysis on general and energetic attributes on these salt-bridges. On average, 8 salt-bridges per 150 residues protein were observed which is almost twice than earlier report. Overall contributions of salt-bridges are -3.0 kcal mol-1. Majority (78%) of salt-bridges in our dataset are stable and conserved in nature. Although, average contributions of component energy terms are equal, their individual details vary greatly from one another indicating their sensitivity to local micro-environment. Notably, 35% of salt-bridges in our database are buried and stable. Greater desolvation penalty of these buried salt-bridges are counteracted by stable network salt-bridges apart from favorable equal contributions of bridge and background terms. Recruitment of extensive network salt-bridges (46%) with a net contribution of -5.0 kcal mol-1 per salt-bridge, seems to be a halophilic design wherein favorable average contribution of background term (-10 kcal mol-1) exceeds than that of bridge term (-7 kcal mol-1). Interiors of proteins from halophiles are seen to possess relatively higher abundance of charge and polar side chains than that of mesophiles which seems to be satisfied by cooperative network salt-bridges. Overall, our theoretical analyses provide insight into halophilic signature in its

  19. Temporal Changes of Protein Composition in Breast Milk of Chinese Urban Mothers and Impact of Caesarean Section Delivery

    Directory of Open Access Journals (Sweden)

    Michael Affolter

    2016-08-01

    Full Text Available Human breast milk (BM protein composition may be impacted by lactation stage or factors related to geographical location. The present study aimed at assessing the temporal changes of BM major proteins over lactation stages and the impact of mode of delivery on immune factors, in a large cohort of urban mothers in China. 450 BM samples, collected in three Chinese cities, covering 8 months of lactation were analyzed for α-lactalbumin, lactoferrin, serum albumin, total caseins, immunoglobulins (IgA, IgM and IgG and transforming growth factor (TGF β1 and β2 content by microfluidic chip- or ELISA-based quantitative methods. Concentrations and changes over lactation were aligned with previous reports. α-lactalbumin, lactoferrin, IgA, IgM and TGF-β1 contents followed similar variations characterized by highest concentrations in early lactation that rapidly decreased before remaining stable up to end of lactation. TGF-β2 content displayed same early dynamics before increasing again. Total caseins followed a different pattern, showing initial increase before decreasing back to starting values. Serum albumin and IgG levels appeared stable throughout lactation. In conclusion, BM content in major proteins of urban mothers in China was comparable with previous studies carried out in other parts of the world and C-section delivery had only very limited impact on BM immune factors.

  20. Protein methylation in pea chloroplasts

    International Nuclear Information System (INIS)

    Niemi, K.J.; Adler, J.; Selman, B.R.

    1990-01-01

    The methylation of chloroplast proteins has been investigated by incubating intact pea (Pisum sativum) chloroplasts with [ 3 H-methyl]-S-adenosylmethionine. Incubation in the light increases the amount of methylation in both the thylakoid and stromal fractions. Numerous thylakoid proteins serve as substrates for the methyltransfer reactions. Three of these thylakoid proteins are methylated to a significantly greater extent in the light than in the dark. The primary stromal polypeptide methylated is the large subunit of ribulose bisphosphate carboxylase/oxygenase. One other stromal polypeptide is also methylated much more in the light than in the dark. Two distinct types of protein methylation occur. One methylinkage is stable to basic conditions whereas a second type is base labile. The base-stable linkage is indicative of N-methylation of amino acid residues while base-lability is suggestive of carboxymethylation of amino acid residues. Labeling in the light increases the percentage of methylation that is base labile in the thylakoid fraction while no difference is observed in the amount of base-labile methylations in light-labeled and dark-labeled stromal proteins. Also suggestive of carboxymethylation is the detection of volatile [ 3 H]methyl radioactivity which increases during the labeling period and is greater in chloroplasts labeled in the light as opposed to being labeled in the dark; this implies in vivo turnover of the [ 3 H]methyl group

  1. Dynamic organization of genetic recombination proteins and chromosomes

    International Nuclear Information System (INIS)

    Essers, J.; Van Cappellen, G.; Van Drunen, E.; Theil, A.; Jaspers, N.N.G.J.; Houtsmuller, A.B.; Vermeulen, W.; Kanaar, R.

    2003-01-01

    Homologous recombination requires the co-ordinated action of the RAD52 group proteins, including Rad51, Rad52 and Rad54. Upon treatment of mammalian cells with ionizing radiation, these proteins accumulate into foci at sites of DSB induction. We probed the nature of the DNA damage-induced foci in living cells with the use of photobleaching techniques. These foci are not static assemblies of DNA repair proteins. Instead, they are dynamic structures of which Rad51 is a stable core component, while Rad52 and Rad54 reversibly interact with the structure. Furthermore, even though the RAD52 group proteins colocalize in the DNA damage-induced foci, the majority of the proteins are not part of the same multi-protein complex in the absence of DNA damage. Executing DNA transactions through dynamic multi-protein complexes, rather than stable holo-complexes, allows greater flexibility during the transaction. In case of DNA repair, for example, it allows cross talk between different DNA repair pathways and coupling to other DNA transactions, such as replication. In addition to the behavior of proteins in living cells, we have tracked chromosomes during cell division. Our results suggest that the relative position of chromosomes in the mother cell is conserved in its daughter cells

  2. The first millennium AD climate fluctuations in the Tavoliere Plain (Apulia, Italy): New preliminary data from the 14C AMS-dated plant remains from the archaeological site of Faragola

    International Nuclear Information System (INIS)

    Fiorentino, G.; Caracuta, V.; Volpe, G.; Turchiano, M.; Quarta, G.; D'Elia, M.; Calcagnile, L.

    2010-01-01

    The identification of ancient climate fluctuations represents an hard challenge for studies intended to outline the human-environment interaction in fragile ecosystems. The aim of this work is to test the potentialities of carbon stable isotopic content of AMS-dated archaeological plant remains as tool to infer variations in rainfall/temperature regimes. The results obtained in the analysis of the carbon stable isotopic content of 10 plant remains selected among the archaeobotanical remains collected at the archaeological site in Faragola (Apulia, Italy) and radiocarbon-dated by AMS are presented. The variation of δ 13 C values was considered on a chronological scale covering a time range comprised between the II century BC and the VII century AD. The obtained patterns were also compared with local and global-scale palaeoclimatic records.

  3. Polycomb Group Protein YY1 Is an Essential Regulator of Hematopoietic Stem Cell Quiescence

    Directory of Open Access Journals (Sweden)

    Zhanping Lu

    2018-02-01

    Full Text Available Yin yang 1 (YY1 is a ubiquitous transcription factor and mammalian polycomb group protein (PcG with important functions to regulate embryonic development, lineage differentiation, and cell proliferation. YY1 mediates stable PcG-dependent transcriptional repression via recruitment of PcG proteins that catalyze histone modifications. Many questions remain unanswered regarding how cell- and tissue-specificity is achieved by PcG proteins. Here, we demonstrate that a conditional knockout of Yy1 in hematopoietic stem cells (HSCs decreases long-term repopulating activity and ectopic YY1 expression expands HSCs. Although the YY1 PcG domain is required for Igκ chain rearrangement in B cells, the YY1 mutant lacking the PcG domain retained the capacity to stimulate HSC self-renewal. YY1 deficiency deregulated the genetic network governing HSC cell proliferation and impaired stem cell factor/c-Kit signaling, disrupting mechanisms conferring HSC quiescence. These results reveal a mechanism for how a ubiquitously expressed transcriptional repressor mediates lineage-specific functions to control adult hematopoiesis.

  4. Intrinsically Disordered Proteins in a Physics-Based World

    Directory of Open Access Journals (Sweden)

    Jianhan Chen

    2010-12-01

    Full Text Available Intrinsically disordered proteins (IDPs are a newly recognized class of functional proteins that rely on a lack of stable structure for function. They are highly prevalent in biology, play fundamental roles, and are extensively involved in human diseases. For signaling and regulation, IDPs often fold into stable structures upon binding to specific targets. The mechanisms of these coupled binding and folding processes are of significant importance because they underlie the organization of regulatory networks that dictate various aspects of cellular decision-making. This review first discusses the challenge in detailed experimental characterization of these heterogeneous and dynamics proteins and the unique and exciting opportunity for physics-based modeling to make crucial contributions, and then summarizes key lessons from recent de novo simulations of the structure and interactions of several regulatory IDPs.

  5. Clusters of proteins in bio-membranes: insights into the roles of interaction potential shapes and of protein diversity

    OpenAIRE

    Meilhac, Nicolas; Destainville, Nicolas

    2011-01-01

    It has recently been proposed that proteins embedded in lipidic bio-membranes can spontaneously self-organize into stable small clusters, or membrane nano-domains, due to the competition between short-range attractive and longer-range repulsive forces between proteins, specific to these systems. In this paper, we carry on our investigation, by Monte Carlo simulations, of different aspects of cluster phases of proteins in bio-membranes. First, we compare different long-range potentials (includ...

  6. Template-based protein-protein docking exploiting pairwise interfacial residue restraints

    NARCIS (Netherlands)

    Xue, Li C; Garcia Lopes Maia Rodrigues, João; Dobbs, Drena; Honavar, Vasant; Bonvin, Alexandre M J J

    2016-01-01

    Although many advanced and sophisticatedab initioapproaches for modeling protein-protein complexes have been proposed in past decades, template-based modeling (TBM) remains the most accurate and widely used approach, given a reliable template is available. However, there are many different ways to

  7. Personality stability is associated with better cognitive performance in adulthood: are the stable more able?

    Science.gov (United States)

    Graham, Eileen K; Lachman, Margie E

    2012-09-01

    Although personality is relatively stable over time, there are individual differences in the patterns and magnitude of change. There is some evidence that personality change in adulthood is related to physical health and longevity. The present study expanded this work to consider whether personality stability or change would be associated with better cognitive functioning, especially in later adulthood. A total of 4,974 individuals participated in two waves of The Midlife in the United States Study (MIDUS) in 1994-1995 and 2004-2005. Participants completed the MIDUS personality inventory at both times and the Brief Test of Adult Cognition by Telephone cognitive battery at Time 2. Multiple regression and analysis of covariance analyses showed that, consistent with predictions, individuals remaining stable in openness to experience and neuroticism had faster reaction times and better inductive reasoning than those who changed. Among older adults, those who remained stable or decreased in neuroticism had significantly faster reaction times than those who increased. As predicted, personality stability on some traits was associated with more adaptive cognitive performance on reasoning and reaction time. Personality is discussed as a possible resource for protecting against or minimizing age-related declines in cognition.

  8. Metabolic Turnover of Synaptic Proteins: Kinetics, Interdependencies and Implications for Synaptic Maintenance

    Science.gov (United States)

    Cohen, Laurie D.; Zuchman, Rina; Sorokina, Oksana; Müller, Anke; Dieterich, Daniela C.; Armstrong, J. Douglas; Ziv, Tamar; Ziv, Noam E.

    2013-01-01

    Chemical synapses contain multitudes of proteins, which in common with all proteins, have finite lifetimes and therefore need to be continuously replaced. Given the huge numbers of synaptic connections typical neurons form, the demand to maintain the protein contents of these connections might be expected to place considerable metabolic demands on each neuron. Moreover, synaptic proteostasis might differ according to distance from global protein synthesis sites, the availability of distributed protein synthesis facilities, trafficking rates and synaptic protein dynamics. To date, the turnover kinetics of synaptic proteins have not been studied or analyzed systematically, and thus metabolic demands or the aforementioned relationships remain largely unknown. In the current study we used dynamic Stable Isotope Labeling with Amino acids in Cell culture (SILAC), mass spectrometry (MS), Fluorescent Non–Canonical Amino acid Tagging (FUNCAT), quantitative immunohistochemistry and bioinformatics to systematically measure the metabolic half-lives of hundreds of synaptic proteins, examine how these depend on their pre/postsynaptic affiliation or their association with particular molecular complexes, and assess the metabolic load of synaptic proteostasis. We found that nearly all synaptic proteins identified here exhibited half-lifetimes in the range of 2–5 days. Unexpectedly, metabolic turnover rates were not significantly different for presynaptic and postsynaptic proteins, or for proteins for which mRNAs are consistently found in dendrites. Some functionally or structurally related proteins exhibited very similar turnover rates, indicating that their biogenesis and degradation might be coupled, a possibility further supported by bioinformatics-based analyses. The relatively low turnover rates measured here (∼0.7% of synaptic protein content per hour) are in good agreement with imaging-based studies of synaptic protein trafficking, yet indicate that the metabolic load

  9. Trends in the use of stable isotopes in biochemistry and pharmacology

    International Nuclear Information System (INIS)

    Matwiyoff, N.A.; Walker, T.E.

    1977-01-01

    Recent trends in the use of the stable isotopes 13 C, 15 N and 18 O in biochemistry and pharmacology are reviewed with emphasis on the studies that have employed nuclear magnetic resonance (nmr) spectroscopy and mass spectrometry as analytical techniques. Pharmacological studies with drugs and other compounds labelled with stable isotopes have developed in parallel with the rapid progress in the enhancement of sensitivity and selectivity of gas chromatography - mass spectrometric analyses, and have been directed largely to an evaluation of pharmako-kinetics and drug metabolic pathways. In these studies, illustrated with selected samples, isotopically labelled compounds have been used to advantage as internal standards for the mass spectrometric analyses and as in vivo tracers for metabolites. In the broader discipline of biochemistry, stable isotopes and isotopically labelled compounds have been used increasingly in conjuction with both nmr spectroscopy and mass spectrometry in tracer and structural studies. The more recent trends in the use of stable isotopes in these biochemical studies are discussed in the context of the improvements in analytical techniques. Specific examples will be drawn from investigations of the biosynthesis of natural products by micro-organisms; the protein, fat and carbohydrate fluxes in humans; and the structure and function of enzymes, membranes and other macro-molecular assemblages. The potential for the future development of stable isotopes in biochemistry and pharmacology are considered briefly, together with some of the problems that must be solved if their considerable potential is to be realized. (author)

  10. Comparing side chain packing in soluble proteins, protein-protein interfaces, and transmembrane proteins.

    Science.gov (United States)

    Gaines, J C; Acebes, S; Virrueta, A; Butler, M; Regan, L; O'Hern, C S

    2018-05-01

    We compare side chain prediction and packing of core and non-core regions of soluble proteins, protein-protein interfaces, and transmembrane proteins. We first identified or created comparable databases of high-resolution crystal structures of these 3 protein classes. We show that the solvent-inaccessible cores of the 3 classes of proteins are equally densely packed. As a result, the side chains of core residues at protein-protein interfaces and in the membrane-exposed regions of transmembrane proteins can be predicted by the hard-sphere plus stereochemical constraint model with the same high prediction accuracies (>90%) as core residues in soluble proteins. We also find that for all 3 classes of proteins, as one moves away from the solvent-inaccessible core, the packing fraction decreases as the solvent accessibility increases. However, the side chain predictability remains high (80% within 30°) up to a relative solvent accessibility, rSASA≲0.3, for all 3 protein classes. Our results show that ≈40% of the interface regions in protein complexes are "core", that is, densely packed with side chain conformations that can be accurately predicted using the hard-sphere model. We propose packing fraction as a metric that can be used to distinguish real protein-protein interactions from designed, non-binding, decoys. Our results also show that cores of membrane proteins are the same as cores of soluble proteins. Thus, the computational methods we are developing for the analysis of the effect of hydrophobic core mutations in soluble proteins will be equally applicable to analyses of mutations in membrane proteins. © 2018 Wiley Periodicals, Inc.

  11. Probing the ability of the coat and vertex protein of the membrane-containing bacteriophage PRD1 to display a meningococcal epitope

    International Nuclear Information System (INIS)

    Huiskonen, Juha T.; Laakkonen, Liisa; Toropainen, Maija; Sarvas, Matti; Bamford, Dennis H.; Bamford, Jaana K.H.

    2003-01-01

    Bacteriophage PRD1 is an icosahedral dsDNA virus with a diameter of 740 A and an outer protein shell composed of 720 copies of major coat protein P3. Spike complexes at the vertices are composed of a pentameric base (protein P31) and a spike structure (proteins P5 and P2) where the N-terminal region of the trimeric P5 is associated with the base and the C-terminal region of P5 is associated with receptor-binding protein P2. The functionality of proteins P3 and P5 was investigated using insertions and deletions. It was observed that P3 did not tolerate changes whereas P5 tolerated changes much more freely. These properties support the hypothesis that viruses have core structures and functions, which remain stable over time, as well as other elements, responsible for host interactions, which are evolutionally more fluid. The insertional probe used was the apex of exposed loop 4 of group B meningococcal outer membrane protein PorA, a medically important subunit vaccine candidate. It was demonstrated that the epitope could be displayed on the virus surface as part of spike protein P5

  12. Mass spectrometric analysis of protein interactions

    DEFF Research Database (Denmark)

    Borch, Jonas; Jørgensen, Thomas J. D.; Roepstorff, Peter

    2005-01-01

    Mass spectrometry is a powerful tool for identification of interaction partners and structural characterization of protein interactions because of its high sensitivity, mass accuracy and tolerance towards sample heterogeneity. Several tools that allow studies of protein interaction are now...... available and recent developments that increase the confidence of studies of protein interaction by mass spectrometry include quantification of affinity-purified proteins by stable isotope labeling and reagents for surface topology studies that can be identified by mass-contributing reporters (e.g. isotope...... labels, cleavable cross-linkers or fragment ions. The use of mass spectrometers to study protein interactions using deuterium exchange and for analysis of intact protein complexes recently has progressed considerably....

  13. Role of zein proteins in structure and assembly of protein bodies and endosperm texture. Progress report and appendix 1 - preliminary data

    Energy Technology Data Exchange (ETDEWEB)

    Larkins, B.

    1997-05-01

    Although funding for this project was initiated less than two years ago, we have made significant progress with our research objectives. We have cloned the gene responsible for the fl2 mutation. In fl2, the mutant phenotype appears to result from a defective signal peptide in an alpha-zein protein. As a consequence, the signal peptide remains attached when the protein accumulates in the protein body. A mutation like fl2 could explain other semidominant and dominant opaque mutants on the basis of abnormal zein polypeptides. A manuscript describing the research that led to the cloning of fl2 is in press, and a second manuscript on the characterization of this gene has been prepared for publication. We found that increased amounts of the 27-kD gamma-zein protein enlarge the proportion of vitreous endosperm and increases the hardness of o2 mutants. This protein also enhances these properties in wild type seeds. The mechanism by which the gamma-zein protein brings about these changes is unclear, and is under investigation. We have found and characterized several mutants that reduce gamma-zein synthesis. The mutations do not significantly affect synthesis of any other type of zein protein. They appear to create an opaque phenotype by reducing the number rather than the size of protein bodies. Interestingly, the mutant seeds fail to germinate. A manuscript describing one of these mutants, o15, has been prepared for publication. We have created a number of transgenic tobacco plants that can produce alpha-, beta-, gamma(27-kD)-, or delta-zeins, as well as combinations of these proteins. Analysis of seeds from these plants and crosses of these plants has shown that tobacco endosperm can serve as a heterologous system to study zein interactions. We have obtained evidence that interactions between alpha- and gamma-zein proteins are required for stable accumulation of alpha-zeins in the endosperm. These and other preliminary results are illustrated in Appendix 1.

  14. Occurrence of protein disulfide bonds in different domains of life: a comparison of proteins from the Protein Data Bank.

    Science.gov (United States)

    Bošnjak, I; Bojović, V; Šegvić-Bubić, T; Bielen, A

    2014-03-01

    Disulfide bonds (SS bonds) are important post-translational modifications of proteins. They stabilize a three-dimensional (3D) structure (structural SS bonds) and also have the catalytic or regulatory functions (redox-active SS bonds). Although SS bonds are present in all groups of organisms, no comparative analyses of their frequency in proteins from different domains of life have been made to date. Using the Protein Data Bank, the number and subcellular locations of SS bonds in Archaea, Bacteria and Eukarya have been compared. Approximately three times higher frequency of proteins with SS bonds in eukaryotic secretory organelles (e.g. endoplasmic reticulum) than in bacterial periplasmic/secretory pathways was calculated. Protein length also affects the SS bond frequency: the average number of SS bonds is positively correlated with the length for longer proteins (>200 amino acids), while for the shorter and less stable proteins (proteins (250-350 amino acids) indicated a high number of SS bonds only in Archaea which could be explained by the need for additional protein stabilization in hyperthermophiles. The results emphasize higher capacity for the SS bond formation and isomerization in Eukarya when compared with Archaea and Bacteria.

  15. Positive muscle protein net balance and differential regulation of atrogene expression after resistance exercise and milk protein supplementation

    DEFF Research Database (Denmark)

    Reitelseder, Søren; Agergaard, Jakob; Doessing, Simon

    2014-01-01

    Purpose Resistance exercise and amino acid availability are positive regulators of muscle protein net balance (NB). However, anabolic responses to resistance exercise and protein supplementation deserve further elucidation. The purpose was to compare intakes of whey, caseinate (both: 0.30 g/kg lean...... body mass), or a non-caloric control after heavy resistance exercise on protein turnover and mRNA expressions of forkhead homeobox type O (FOXO) isoforms, muscle RING finger 1 (MuRF1), and Atrogin1 in young healthy males. Methods Protein turnover was determined by stable isotope-labeled leucine...

  16. UNiquant, a Program for Quantitative Proteomics Analysis Using Stable Isotope Labeling

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xin; Tolmachev, Aleksey V.; Shen, Yulei; Liu, Miao; Huang, Lin; Zhang, Zhixin; Anderson, Gordon A.; Smith, Richard D.; Chan, Wing C.; Hinrichs, Steven; Fu, Kai; Ding, Shi-Jian

    2011-03-04

    We present UNiquant, a new software program for analyzing stable isotope labeling (SIL) based quantitative proteomics data. UNiquant surpassed the performance of two other platforms, MaxQuant and Mascot Distiller, using complex proteome mixtures having either known or unknown heavy/light ratios. UNiquant is compatible with a broad spectrum of search engines and SIL methods, providing outstanding peptide pair identification and accurate measurement of the relative peptide/protein abundance.

  17. Perioperative plasma concentrations of stable nitric oxide products are predictive of cognitive dysfunction after laparoscopic cholecystectomy.

    LENUS (Irish Health Repository)

    Iohom, G

    2012-02-03

    In this study our objectives were to determine the incidence of postoperative cognitive dysfunction (POCD) after laparoscopic cholecystectomy under sevoflurane anesthesia in patients aged >40 and <85 yr and to examine the associations between plasma concentrations of i) S-100beta protein and ii) stable nitric oxide (NO) products and POCD in this clinical setting. Neuropsychological tests were performed on 42 ASA physical status I-II patients the day before, and 4 days and 6 wk after surgery. Patient spouses (n = 13) were studied as controls. Cognitive dysfunction was defined as deficit in one or more cognitive domain(s). Serial measurements of serum concentrations of S-100beta protein and plasma concentrations of stable NO products (nitrate\\/nitrite, NOx) were performed perioperatively. Four days after surgery, new cognitive deficit was present in 16 (40%) patients and in 1 (7%) control subject (P = 0.01). Six weeks postoperatively, new cognitive deficit was present in 21 (53%) patients and 3 (23%) control subjects (P = 0.03). Compared with the "no deficit" group, patients who demonstrated a new cognitive deficit 4 days postoperatively had larger plasma NOx at each perioperative time point (P < 0.05 for each time point). Serum S-100beta protein concentrations were similar in the 2 groups. In conclusion, preoperative (and postoperative) plasma concentrations of stable NO products (but not S-100beta) are associated with early POCD. The former represents a potential biochemical predictor of POCD.

  18. One-dimensional stable distributions

    CERN Document Server

    Zolotarev, V M

    1986-01-01

    This is the first book specifically devoted to a systematic exposition of the essential facts known about the properties of stable distributions. In addition to its main focus on the analytic properties of stable laws, the book also includes examples of the occurrence of stable distributions in applied problems and a chapter on the problem of statistical estimation of the parameters determining stable laws. A valuable feature of the book is the author's use of several formally different ways of expressing characteristic functions corresponding to these laws.

  19. Validation of ICD-9 Codes for Stable Miscarriage in the Emergency Department.

    Science.gov (United States)

    Quinley, Kelly E; Falck, Ailsa; Kallan, Michael J; Datner, Elizabeth M; Carr, Brendan G; Schreiber, Courtney A

    2015-07-01

    International Classification of Disease, Ninth Revision (ICD-9) diagnosis codes have not been validated for identifying cases of missed abortion where a pregnancy is no longer viable but the cervical os remains closed. Our goal was to assess whether ICD-9 code "632" for missed abortion has high sensitivity and positive predictive value (PPV) in identifying patients in the emergency department (ED) with cases of stable early pregnancy failure (EPF). We studied females ages 13-50 years presenting to the ED of an urban academic medical center. We approached our analysis from two perspectives, evaluating both the sensitivity and PPV of ICD-9 code "632" in identifying patients with stable EPF. All patients with chief complaints "pregnant and bleeding" or "pregnant and cramping" over a 12-month period were identified. We randomly reviewed two months of patient visits and calculated the sensitivity of ICD-9 code "632" for true cases of stable miscarriage. To establish the PPV of ICD-9 code "632" for capturing missed abortions, we identified patients whose visits from the same time period were assigned ICD-9 code "632," and identified those with actual cases of stable EPF. We reviewed 310 patient records (17.6% of 1,762 sampled). Thirteen of 31 patient records assigned ICD-9 code for missed abortion correctly identified cases of stable EPF (sensitivity=41.9%), and 140 of the 142 patients without EPF were not assigned the ICD-9 code "632"(specificity=98.6%). Of the 52 eligible patients identified by ICD-9 code "632," 39 cases met the criteria for stable EPF (PPV=75.0%). ICD-9 code "632" has low sensitivity for identifying stable EPF, but its high specificity and moderately high PPV are valuable for studying cases of stable EPF in epidemiologic studies using administrative data.

  20. A method for investigating protein-protein interactions related to Salmonella typhimurium pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Saiful M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shi, Liang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yoon, Hyunjin [Dartmouth College, Hanover, NH (United States); Ansong, Charles [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rommereim, Leah M. [Dartmouth College, Hanover, NH (United States); Norbeck, Angela D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Auberry, Kenneth J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moore, R. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Adkins, Joshua N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Heffron, Fred [Oregon Health and Science Univ., Portland, OR (United States); Smith, Richard D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-02-10

    We successfully modified an existing method to investigate protein-protein interactions in the pathogenic bacterium Salmonella typhimurium (STM). This method includes i) addition of a histidine-biotin-histidine tag to the bait proteins via recombinant DNA techniques; ii) in vivo cross-linking with formaldehyde; iii) tandem affinity purification of bait proteins under fully denaturing conditions; and iv) identification of the proteins cross-linked to the bait proteins by liquid-chromatography in conjunction with tandem mass-spectrometry. In vivo cross-linking stabilized protein interactions permitted the subsequent two-step purification step conducted under denaturing conditions. The two-step purification greatly reduced nonspecific binding of non-cross-linked proteins to bait proteins. Two different negative controls were employed to reduce false-positive identification. In an initial demonstration of this approach, we tagged three selected STM proteins- HimD, PduB and PhoP- with known binding partners that ranged from stable (e.g., HimD) to transient (i.e., PhoP). Distinct sets of interacting proteins were identified with each bait protein, including the known binding partners such as HimA for HimD, as well as anticipated and unexpected binding partners. Our results suggest that novel protein-protein interactions may be critical to pathogenesis by Salmonella typhimurium. .

  1. Bi-stable optical actuator

    Science.gov (United States)

    Holdener, Fred R.; Boyd, Robert D.

    2000-01-01

    The present invention is a bi-stable optical actuator device that is depowered in both stable positions. A bearing is used to transfer motion and smoothly transition from one state to another. The optical actuator device may be maintained in a stable position either by gravity or a restraining device.

  2. Structural studies of the toxin-antitoxin proteins RelE and RelB from E. coli

    DEFF Research Database (Denmark)

    Andersen, Kasper Røjkjær; Overgaard, Martin; Gerdes, Kenn

    the special tRNA-mRNA mimic, tmRNA [1]. Questions to be addressed Many questions remain to be answered in the bacterial toxin-antitoxin system. The crystal structure of RelBE from Pyrococcus horikoshii OT3 was previously solved at 2.3Å [2]. This structure shows the molecule in an inactive state, but OT3......The bacterial toxin-antitoxin system The relBE operon in E. coli encodes two small proteins: A toxin, RelE (12 kDa) and an antitoxin, RelB (9 kDa). RelE is activated under nutritional stress and is able to inhibit protein synthesis by cleaving the mRNA in the ribosomal A-site. This stress response...... serves to down-regulate metabolism in the cell when growth conditions are limited. RelB is expressed in excess over RelE during balanced growth, and inhibits the toxicity of RelE by forming an extremely stable toxin-antitoxin complex. The activation of RelE is induced when the labile RelB protein...

  3. The calcineurin activity profiles of cyclosporin and tacrolimus are different in stable renal transplant patients

    DEFF Research Database (Denmark)

    Koefoed-Nielsen, Pernille Bundgaard; Karamperis, Nikolaos; Jørgensen, Kaj Anker

    2006-01-01

    in determining optimal doses. Forty stable renal transplant patients were investigated three times in a 6-month period. Blood samples were drawn at 0, 1, 2, 3 and 4 h after oral intake of tacrolimus (FK) or cyclosporin at days 1 and 180. At day 90, one blood sample at trough level (FK) or C2 level (cyclosporin A...... significantly different effects on calcineurin activity in renal transplant patients with stable, well-functioning grafts and that tacrolimus-treated patients can maintain good, stable graft function with minimal CaN inhibition.......Cyclosporin and tacrolimus remain the cornerstone immunosuppressive drugs in organ transplantation. Dosing and monitoring these drugs is based on pharmacokinetic protocols, but measuring a pharmacodynamic parameter, calcineurin phosphatase (CaN) activity, could be a valuable supplement...

  4. Stable isotope fractionation during bacterial sulfate reduction is controlled by reoxidation of intermediates

    Science.gov (United States)

    Mangalo, Muna; Meckenstock, Rainer U.; Stichler, Willibald; Einsiedl, Florian

    2007-09-01

    Bacterial sulfate reduction is one of the most important respiration processes in anoxic habitats and is often assessed by analyzing the results of stable isotope fractionation. However, stable isotope fractionation is supposed to be influenced by the reduction rate and other parameters, such as temperature. We studied here the mechanistic basics of observed differences in stable isotope fractionation during bacterial sulfate reduction. Batch experiments with four sulfate-reducing strains ( Desulfovibrio desulfuricans, Desulfobacca acetoxidans, Desulfonatronovibrio hydrogenovorans, and strain TRM1) were performed. These microorganisms metabolize different carbon sources (lactate, acetate, formate, and toluene) and showed broad variations in their sulfur isotope enrichment factors. We performed a series of experiments on isotope exchange of 18O between residual sulfate and ambient water. Batch experiments were conducted with 18O-enriched (δ 18O water = +700‰) and depleted water (δ 18O water = -40‰), respectively, and the stable 18O isotope shift in the residual sulfate was followed. For Desulfovibrio desulfuricans and Desulfonatronovibrio hydrogenovorans, which are both characterized by low sulfur isotope fractionation ( ɛS > -13.2‰), δ 18O values in the remaining sulfate increased by only 50‰ during growth when 18O-enriched water was used for the growth medium. In contrast, with Desulfobacca acetoxidans and strain TRM1 ( ɛS factor ( ɛS exchange with water during sulfate reduction. However, this neither takes place in the sulfate itself nor during formation of APS (adenosine-5'-phosphosulfate), but rather in intermediates of the sulfate reduction pathway. These may in turn be partially reoxidized to form sulfate. This reoxidation leads to an incorporation of oxygen from water into the "recycled" sulfate changing the overall 18O isotopic composition of the remaining sulfate fraction. Our study shows that such incorporation of 18O is correlated with the

  5. Analysis of Secreted Proteins Using SILAC

    DEFF Research Database (Denmark)

    Henningsen, Jeanette; Blagoev, Blagoy; Kratchmarova, Irina

    2014-01-01

    Secreted proteins serve a crucial role in the communication between cells, tissues, and organs. Proteins released to the extracellular environment exert their function either locally or at distant points of the organism. Proteins are secreted in a highly dynamic fashion by cells and tissues...... in the body responding to the stimuli and requirements presented by the extracellular milieu. Characterization of secretomes derived from various cell types has been performed using different quantitative mass spectrometry-based proteomics strategies, several of them taking advantage of labeling with stable...

  6. Remarks on stable and quasi-stable k-strings at large N

    International Nuclear Information System (INIS)

    Armoni, A.; Shifman, M.

    2003-01-01

    We discuss k-strings in the large-N Yang-Mills theory and its supersymmetric extension. Whereas the tension of the bona fide (stable) QCD string is expected to depend only on the N-ality of the representation, tensions that depend on specific representation R are often reported in the lattice literature. In particular, adjoint strings are discussed and found in certain simulations. We clarify this issue by systematically exploiting the notion of the quasi-stable strings which becomes well-defined at large N. The quasi-stable strings with representation-dependent tensions decay, but the decay rate (per unit length per unit time) is suppressed as Λ 2 F(N) where F(N) falls off as a function of N. It can be determined on the case-by-case basis. The quasi-stable strings eventually decay into stable strings whose tension indeed depends only on the N-ality. We also briefly review large-N arguments showing why the Casimir formula for the string tension cannot be correct, and present additional arguments in favor of the sine formula. Finally, we comment on the relevance of our estimates to Euclidean lattice measurements

  7. Current strategies for protein production and purification enabling membrane protein structural biology.

    Science.gov (United States)

    Pandey, Aditya; Shin, Kyungsoo; Patterson, Robin E; Liu, Xiang-Qin; Rainey, Jan K

    2016-12-01

    Membrane proteins are still heavily under-represented in the protein data bank (PDB), owing to multiple bottlenecks. The typical low abundance of membrane proteins in their natural hosts makes it necessary to overexpress these proteins either in heterologous systems or through in vitro translation/cell-free expression. Heterologous expression of proteins, in turn, leads to multiple obstacles, owing to the unpredictability of compatibility of the target protein for expression in a given host. The highly hydrophobic and (or) amphipathic nature of membrane proteins also leads to challenges in producing a homogeneous, stable, and pure sample for structural studies. Circumventing these hurdles has become possible through the introduction of novel protein production protocols; efficient protein isolation and sample preparation methods; and, improvement in hardware and software for structural characterization. Combined, these advances have made the past 10-15 years very exciting and eventful for the field of membrane protein structural biology, with an exponential growth in the number of solved membrane protein structures. In this review, we focus on both the advances and diversity of protein production and purification methods that have allowed this growth in structural knowledge of membrane proteins through X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM).

  8. Design of ultra-stable insulin analogues for the developing world

    Directory of Open Access Journals (Sweden)

    Michael A Weiss

    2013-01-01

    Full Text Available The engineering of insulin analogues illustrates the application of structure-based protein design to clinical medicine. Such design has traditionally been based on structures of wild-type insulin hexamers in an effort to optimize the pharmacokinetic (PK and pharmacodynamic properties of the hormone. Rapid-acting insulin analogues (in chronological order of their clinical introduction, Humalog ® [Eli Lilly & Co.], Novolog ® [Novo-Nordisk], and Apidra ® [Sanofi-Aventis] exploit the targeted destabilization of subunit interfaces to facilitate capillary absorption. Conversely, long-acting insulin analogues exploit the stability of the insulin hexamer and its higher-order self-assembly within the subcutaneous depot to enhance basal glycemic control. Current products either operate through isoelectric precipitation (insulin glargine, the active component of Lantus ® ; Sanofi-Aventis or employ an albumin-binding acyl tether (insulin detemir, the active component of Levemir ® ; Novo-Nordisk. Such molecular engineering has often encountered a trade-off between PK goals and product stability. Given the global dimensions of the diabetes pandemic and complexity of an associated cold chain of insulin distribution, we envisage that concurrent engineering of ultra-stable protein analogue formulations would benefit the developing world, especially for patients exposed to high temperatures with inconsistent access to refrigeration. We review the principal mechanisms of insulin degradation above room temperature and novel molecular approaches toward the design of ultra-stable rapid-acting and basal formulations.

  9. Evolutionary Stable Strategy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Evolutionary Stable Strategy: Application of Nash Equilibrium in Biology. General Article Volume 21 Issue 9 September 2016 pp 803- ... Keywords. Evolutionary game theory, evolutionary stable state, conflict, cooperation, biological games.

  10. [Construction of cTnC-linker-TnI (P) Genes, Expression of Fusion Protein and Preparation of Lyophilized Protein].

    Science.gov (United States)

    Song, Xiaoli; Liu, Xiaoyun; Cai, Lei; Wu, Jianwei; Wang, Jihua

    2015-12-01

    In order to construct and express human cardiac troponin C-linker-troponin I(P) [ cTnC-linker-TnI(P)] fusion protein, detect its activity and prepare lyophilized protein, we searched the CDs of human cTnC and cTnI from GenBank, synthesized cTnC and cTnI(30-110aa) into cloning vector by a short DNA sequence coding for 15 neutral amino acid residues. pCold I-cTnC-linker-TnI(P) was constructed and transformed into E. coli BL21(DE3). Then, cTnC-linker-TnI(P) fusion protein was induced by isopropyl-β-D-thiogalactopyranoside (IPTG). Soluable expression of cTnC-linker-TnI(P) in prokaryotic system was successfully obtained. The fusion protein was purified by Ni²⁺ Sepharose 6 Fast Flow affinity chromatography with over 95% purity and prepared into lyophilized protein. The activity of purified cTnC-linker-TnI(P) and its lyophilized protein were detected by Wondfo Finecare™ cTnI Test. Lyophilized protein of cTnC-linker-TnI(P) was stable for 10 or more days at 37 °C and 4 or more months at 25 °C and 4 °C. The expression system established in this research is feasible and efficient. Lyophilized protein is stable enough to be provided as biological raw materials for further research.

  11. In vitro degradation of the 32kDa PS II reaction centre protein

    International Nuclear Information System (INIS)

    Eckenswiller, L.C.; Greenberg, B.M.

    1989-01-01

    The 32kDa thylakoid membrane protein is an integral component of the PS II reaction centre. The protein, although stable in the dark, undergoes light dependent turnover. Light from the UV, visible and far-red spectral regions induce 32kDa protein degradation. To better understand 32kDa protein metabolism, an in vitro degradation system is being developed. It consists of isolated thylakoid membranes than contain radiolabelled protein. The 32kDa protein is actively and specifically degraded when the thylakoid preparation is exposed to UV or visible radiation. The protein is stable in the dark. The herbicides (atrazine and DCMU) inhibit degradation in the in vitro system as they do in vivo. Additionally, several methods of isolating thylakoids are being compared to optimize the 32kDa protein degradation reaction. The preparations will be evaluated based on their ability to permit light dependent degradation of the 32kDa protein without affecting the other membrane components

  12. Survey of large protein complexes D. vulgaris reveals great structural diversity

    Energy Technology Data Exchange (ETDEWEB)

    Han, B.-G.; Dong, M.; Liu, H.; Camp, L.; Geller, J.; Singer, M.; Hazen, T. C.; Choi, M.; Witkowska, H. E.; Ball, D. A.; Typke, D.; Downing, K. H.; Shatsky, M.; Brenner, S. E.; Chandonia, J.-M.; Biggin, M. D.; Glaeser, R. M.

    2009-08-15

    An unbiased survey has been made of the stable, most abundant multi-protein complexes in Desulfovibrio vulgaris Hildenborough (DvH) that are larger than Mr {approx} 400 k. The quaternary structures for 8 of the 16 complexes purified during this work were determined by single-particle reconstruction of negatively stained specimens, a success rate {approx}10 times greater than that of previous 'proteomic' screens. In addition, the subunit compositions and stoichiometries of the remaining complexes were determined by biochemical methods. Our data show that the structures of only two of these large complexes, out of the 13 in this set that have recognizable functions, can be modeled with confidence based on the structures of known homologs. These results indicate that there is significantly greater variability in the way that homologous prokaryotic macromolecular complexes are assembled than has generally been appreciated. As a consequence, we suggest that relying solely on previously determined quaternary structures for homologous proteins may not be sufficient to properly understand their role in another cell of interest.

  13. A Novel Protein Interaction between Nucleotide Binding Domain of Hsp70 and p53 Motif

    Directory of Open Access Journals (Sweden)

    Asita Elengoe

    2015-01-01

    Full Text Available Currently, protein interaction of Homo sapiens nucleotide binding domain (NBD of heat shock 70 kDa protein (PDB: 1HJO with p53 motif remains to be elucidated. The NBD-p53 motif complex enhances the p53 stabilization, thereby increasing the tumor suppression activity in cancer treatment. Therefore, we identified the interaction between NBD and p53 using STRING version 9.1 program. Then, we modeled the three-dimensional structure of p53 motif through homology modeling and determined the binding affinity and stability of NBD-p53 motif complex structure via molecular docking and dynamics (MD simulation. Human DNA binding domain of p53 motif (SCMGGMNR retrieved from UniProt (UniProtKB: P04637 was docked with the NBD protein, using the Autodock version 4.2 program. The binding energy and intermolecular energy for the NBD-p53 motif complex were −0.44 Kcal/mol and −9.90 Kcal/mol, respectively. Moreover, RMSD, RMSF, hydrogen bonds, salt bridge, and secondary structure analyses revealed that the NBD protein had a strong bond with p53 motif and the protein-ligand complex was stable. Thus, the current data would be highly encouraging for designing Hsp70 structure based drug in cancer therapy.

  14. [Protein content in urine of male and female water vole (Arvicola amphibious) at the period of spring growth and sexual maturation].

    Science.gov (United States)

    Nazarova, G G; Proskurniak, L P

    2012-01-01

    The study was carried out on the captive bread water voles Arvicola amphibious kept in vivarium. At the first decade of January, March, and June, the body length and anogenital distance were measured, the body mass was determined, and urine was collected for determination of its protein content. The obtained results have shown that the protein content depends on sex of the animals and is connected with the reproductive status of males and their dimension-weight characteristics. The urinary protein excretion level in females remained stable at different months, whereas in males its sharp rise was noted at the period of spring growth and sexual maturation. The significant sexual differences were established in March and enhanced in June. In March the urine protein content in males was noted to correlate positively with the body mass and length and with the anogenital distance. The males reached sexual maturity at the earlier calendar terms than the females did; in sexually mature males the urine protein content was significantly higher than in the sexually immature ones.

  15. Optimization of protein samples for NMR using thermal shift assays

    International Nuclear Information System (INIS)

    Kozak, Sandra; Lercher, Lukas; Karanth, Megha N.; Meijers, Rob; Carlomagno, Teresa; Boivin, Stephane

    2016-01-01

    Maintaining a stable fold for recombinant proteins is challenging, especially when working with highly purified and concentrated samples at temperatures >20 °C. Therefore, it is worthwhile to screen for different buffer components that can stabilize protein samples. Thermal shift assays or ThermoFluor"® provide a high-throughput screening method to assess the thermal stability of a sample under several conditions simultaneously. Here, we describe a thermal shift assay that is designed to optimize conditions for nuclear magnetic resonance studies, which typically require stable samples at high concentration and ambient (or higher) temperature. We demonstrate that for two challenging proteins, the multicomponent screen helped to identify ingredients that increased protein stability, leading to clear improvements in the quality of the spectra. Thermal shift assays provide an economic and time-efficient method to find optimal conditions for NMR structural studies.

  16. Optimization of protein samples for NMR using thermal shift assays

    Energy Technology Data Exchange (ETDEWEB)

    Kozak, Sandra [European Molecular Biology Laboratory (EMBL), Hamburg Outstation, SPC Facility (Germany); Lercher, Lukas; Karanth, Megha N. [European Molecular Biology Laboratory (EMBL), SCB Unit (Germany); Meijers, Rob [European Molecular Biology Laboratory (EMBL), Hamburg Outstation, SPC Facility (Germany); Carlomagno, Teresa, E-mail: teresa.carlomagno@oci.uni-hannover.de [European Molecular Biology Laboratory (EMBL), SCB Unit (Germany); Boivin, Stephane, E-mail: sboivin77@hotmail.com, E-mail: s.boivin@embl-hamburg.de [European Molecular Biology Laboratory (EMBL), Hamburg Outstation, SPC Facility (Germany)

    2016-04-15

    Maintaining a stable fold for recombinant proteins is challenging, especially when working with highly purified and concentrated samples at temperatures >20 °C. Therefore, it is worthwhile to screen for different buffer components that can stabilize protein samples. Thermal shift assays or ThermoFluor{sup ®} provide a high-throughput screening method to assess the thermal stability of a sample under several conditions simultaneously. Here, we describe a thermal shift assay that is designed to optimize conditions for nuclear magnetic resonance studies, which typically require stable samples at high concentration and ambient (or higher) temperature. We demonstrate that for two challenging proteins, the multicomponent screen helped to identify ingredients that increased protein stability, leading to clear improvements in the quality of the spectra. Thermal shift assays provide an economic and time-efficient method to find optimal conditions for NMR structural studies.

  17. Stable SET knockdown in breast cell carcinoma inhibits cell migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China); Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Yang, Xi-fei [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Ren, Xiao-hu [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China); Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Meng, Xiao-jing [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China); Huang, Hai-yan [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Zhao, Qiong-hui [Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen (China); Yuan, Jian-hui; Hong, Wen-xu; Xia, Bo; Huang, Xin-feng; Zhou, Li [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Liu, Jian-jun, E-mail: bio-research@hotmail.com [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Zou, Fei, E-mail: zoufei616@163.com [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China)

    2014-10-10

    Highlights: • We employed RNA interference to knockdown SET expression in breast cancer cells. • Knockdown of SET expression inhibits cell proliferation, migration and invasion. • Knockdown of SET expression increases the activity and expression of PP2A. • Knockdown of SET expression decreases the expression of MMP-9. - Abstract: Breast cancer is the most malignant tumor for women, however, the mechanisms underlying this devastating disease remain unclear. SET is an endogenous inhibitor of protein phosphatase 2A (PP2A) and involved in many physiological and pathological processes. SET could promote the occurrence of tumor through inhibiting PP2A. In this study, we explore the role of SET in the migration and invasion of breast cancer cells MDA-MB-231 and ZR-75-30. The stable suppression of SET expression through lentivirus-mediated RNA interference (RNAi) was shown to inhibit the growth, migration and invasion of breast cancer cells. Knockdown of SET increases the activity and expression of PP2Ac and decrease the expression of matrix metalloproteinase 9 (MMP-9). These data demonstrate that SET may be involved in the pathogenic processes of breast cancer, indicating that SET can serve as a potential therapeutic target for the treatment of breast cancer.

  18. Stable SET knockdown in breast cell carcinoma inhibits cell migration and invasion

    International Nuclear Information System (INIS)

    Li, Jie; Yang, Xi-fei; Ren, Xiao-hu; Meng, Xiao-jing; Huang, Hai-yan; Zhao, Qiong-hui; Yuan, Jian-hui; Hong, Wen-xu; Xia, Bo; Huang, Xin-feng; Zhou, Li; Liu, Jian-jun; Zou, Fei

    2014-01-01

    Highlights: • We employed RNA interference to knockdown SET expression in breast cancer cells. • Knockdown of SET expression inhibits cell proliferation, migration and invasion. • Knockdown of SET expression increases the activity and expression of PP2A. • Knockdown of SET expression decreases the expression of MMP-9. - Abstract: Breast cancer is the most malignant tumor for women, however, the mechanisms underlying this devastating disease remain unclear. SET is an endogenous inhibitor of protein phosphatase 2A (PP2A) and involved in many physiological and pathological processes. SET could promote the occurrence of tumor through inhibiting PP2A. In this study, we explore the role of SET in the migration and invasion of breast cancer cells MDA-MB-231 and ZR-75-30. The stable suppression of SET expression through lentivirus-mediated RNA interference (RNAi) was shown to inhibit the growth, migration and invasion of breast cancer cells. Knockdown of SET increases the activity and expression of PP2Ac and decrease the expression of matrix metalloproteinase 9 (MMP-9). These data demonstrate that SET may be involved in the pathogenic processes of breast cancer, indicating that SET can serve as a potential therapeutic target for the treatment of breast cancer

  19. Complex cobordism and stable homotopy groups of spheres

    CERN Document Server

    Ravenel, Douglas C

    2003-01-01

    Since the publication of its first edition, this book has served as one of the few available on the classical Adams spectral sequence, and is the best account on the Adams-Novikov spectral sequence. This new edition has been updated in many places, especially the final chapter, which has been completely rewritten with an eye toward future research in the field. It remains the definitive reference on the stable homotopy groups of spheres. The first three chapters introduce the homotopy groups of spheres and take the reader from the classical results in the field though the computational aspects

  20. Lapita diet in remote oceania: new stable isotope evidence from the 3000-year-old Teouma site, Efate Island, Vanuatu.

    Directory of Open Access Journals (Sweden)

    Rebecca Kinaston

    Full Text Available Remote Oceania was colonized ca. 3000 BP by populations associated with the Lapita Cultural Complex, marking a major event in the prehistoric settlement of the Pacific Islands. Although over 250 Lapita sites have been found throughout the Western Pacific, human remains associated with Lapita period sites are rare. The site of Teouma, on Efate Island, Vanuatu has yielded the largest burial assemblage (n=68 inhumations of Lapita period humans ever discovered, providing a unique opportunity for assessing human adaptation to the environment in a colonizing population. Stable isotope ratios (δ13C, δ15N, δ34S of human bone collagen from forty-nine Teouma adults were analyzed against a comprehensive dietary baseline to assess the paleodiet of some of Vanuatu's earliest inhabitants. The isotopic dietary baseline included both modern plants and animals (n=98 and prehistoric fauna from the site (n=71. The human stable isotope data showed that dietary protein at Teouma included a mixture of reef fish and inshore organisms and a variety of higher trophic marine (e.g. marine turtle and terrestrial animals (e.g. domestic animals and fruit bats. The domestic pigs and chickens at Teouma primarily ate food from a C3 terrestrial environment but their δ15N values indicated that they were eating foods from higher trophic levels than those of plants, such as insects or human fecal matter, suggesting that animal husbandry at the site may have included free range methods. The dietary interpretations for the humans suggest that broad-spectrum foraging and the consumption of domestic animals were the most important methods for procuring dietary protein at the site. Males displayed significantly higher δ15N values compared with females, possibly suggesting dietary differences associated with labor specialization or socio-cultural practices relating to food distribution.

  1. Spastin-Interacting Protein NA14/SSNA1 Functions in Cytokinesis and Axon Development

    Science.gov (United States)

    Chang, Jaerak; Blackstone, Craig

    2014-01-01

    Hereditary spastic paraplegias (HSPs) are a genetically diverse group of inherited neurological disorders (SPG1-72) with the cardinal feature of prominent lower-extremity spasticity due to a length-dependent axonopathy of corticospinal motor neurons. The most frequent form of autosomal dominant HSP results from mutations of the SPG4 gene product spastin. This is an ATPase associated with diverse cellular activities (AAA) protein that binds to and severs microtubules. While spastin participates in crucial cellular processes such as cytokinesis, endosomal tubulation, and axon development, its role in HSP pathogenesis remains unclear. Spastin interacts in cells with the NA14 protein, a major target for auto-antibodies in Sjögren's syndrome (nuclear autoantigen 1; SSNA1). Our analysis of endogenous spastin and NA14 proteins in HeLa cells and rat cortical neurons in primary culture revealed a clear distribution of both proteins to centrosomes, with NA14 localizing specifically to centrioles. Stable NA14 knockdown in cell lines dramatically affected cell division, in particular cytokinesis. Furthermore, overexpression of NA14 in neurons significantly increased axon outgrowth and branching, while also enhancing neuronal differentiation. We postulate that NA14 may act as an adaptor protein regulating spastin localization to centrosomes, temporally and spatially regulating the microtubule-severing activity of spastin that is particularly critical during the cell cycle and neuronal development. PMID:25390646

  2. Spastin-interacting protein NA14/SSNA1 functions in cytokinesis and axon development.

    Directory of Open Access Journals (Sweden)

    Uma Goyal

    Full Text Available Hereditary spastic paraplegias (HSPs are a genetically diverse group of inherited neurological disorders (SPG1-72 with the cardinal feature of prominent lower-extremity spasticity due to a length-dependent axonopathy of corticospinal motor neurons. The most frequent form of autosomal dominant HSP results from mutations of the SPG4 gene product spastin. This is an ATPase associated with diverse cellular activities (AAA protein that binds to and severs microtubules. While spastin participates in crucial cellular processes such as cytokinesis, endosomal tubulation, and axon development, its role in HSP pathogenesis remains unclear. Spastin interacts in cells with the NA14 protein, a major target for auto-antibodies in Sjögren's syndrome (nuclear autoantigen 1; SSNA1. Our analysis of endogenous spastin and NA14 proteins in HeLa cells and rat cortical neurons in primary culture revealed a clear distribution of both proteins to centrosomes, with NA14 localizing specifically to centrioles. Stable NA14 knockdown in cell lines dramatically affected cell division, in particular cytokinesis. Furthermore, overexpression of NA14 in neurons significantly increased axon outgrowth and branching, while also enhancing neuronal differentiation. We postulate that NA14 may act as an adaptor protein regulating spastin localization to centrosomes, temporally and spatially regulating the microtubule-severing activity of spastin that is particularly critical during the cell cycle and neuronal development.

  3. Induction of UV-resistant DNA replication in Escherichia coli: Induced stable DNA replication as an SOS function

    International Nuclear Information System (INIS)

    Kogoma, T.; Torrey, T.A.; Connaughton, M.J.

    1979-01-01

    The striking similarity between the treatments that induce SOS functions and those that result in stable DNA replication (continuous DNA replication in the absence of protein synthesis) prompted us to examine the possibility of stable DNA replication being a recA + lexA + -dependent SOS function. In addition to the treatments previously reported, ultraviolet (UV) irradiation or treatment with mitomycin C was also found to induce stable DNA replication. The thermal treatment of tif-1 strains did not result in detectable levels of stable DNA replication, but nalidixic acid readily induced the activity in these strains. The induction of stable DNA replication with nalidixic acid was severely suppressed in tif-1 lex A mutant strains. The inhibitory activity of lexA3 was negated by the presence of the spr-5l mutation, an intragenic suppressor of lexA3. Induced stable DNA replication was found to be considerably more resistant to UV irradiation than normal replication both in a uvr A6 strain and a uvr + strain. The UV-resistant replication occurred mostly in the semiconservative manner. The possible roles of stable DNA replication in repair of damaged DNA are discussed. (orig.)

  4. Pharmacological chaperone reshapes the energy landscape for folding and aggregation of the prion protein

    Science.gov (United States)

    Gupta, Amar Nath; Neupane, Krishna; Rezajooei, Negar; Cortez, Leonardo M.; Sim, Valerie L.; Woodside, Michael T.

    2016-06-01

    The development of small-molecule pharmacological chaperones as therapeutics for protein misfolding diseases has proven challenging, partly because their mechanism of action remains unclear. Here we study Fe-TMPyP, a tetrapyrrole that binds to the prion protein PrP and inhibits misfolding, examining its effects on PrP folding at the single-molecule level with force spectroscopy. Single PrP molecules are unfolded with and without Fe-TMPyP present using optical tweezers. Ligand binding to the native structure increases the unfolding force significantly and alters the transition state for unfolding, making it more brittle and raising the barrier height. Fe-TMPyP also binds the unfolded state, delaying native refolding. Furthermore, Fe-TMPyP binding blocks the formation of a stable misfolded dimer by interfering with intermolecular interactions, acting in a similar manner to some molecular chaperones. The ligand thus promotes native folding by stabilizing the native state while also suppressing interactions driving aggregation.

  5. Protective role of salt in catalysis and maintaining structure of halophilic proteins against denaturation

    Science.gov (United States)

    Sinha, Rajeshwari; Khare, Sunil K.

    2014-01-01

    Search for new industrial enzymes having novel properties continues to be a desirable pursuit in enzyme research. The halophilic organisms inhabiting under saline/ hypersaline conditions are considered as promising source of useful enzymes. Their enzymes are structurally adapted to perform efficient catalysis under saline environment wherein n0n-halophilic enzymes often lose their structure and activity. Haloenzymes have been documented to be polyextremophilic and withstand high temperature, pH, organic solvents, and chaotropic agents. However, this stability is modulated by salt. Although vast amount of information have been generated on salt mediated protection and structure function relationship in halophilic proteins, their clear understanding and correct perspective still remain incoherent. Furthermore, understanding their protein architecture may give better clue for engineering stable enzymes which can withstand harsh industrial conditions. The article encompasses the current level of understanding about haloadaptations and analyzes structural basis of their enzyme stability against classical denaturants. PMID:24782853

  6. Split green fluorescent protein as a modular binding partner for protein crystallization

    International Nuclear Information System (INIS)

    Nguyen, Hau B.; Hung, Li-Wei; Yeates, Todd O.; Terwilliger, Thomas C.; Waldo, Geoffrey S.

    2013-01-01

    A strategy using a new split green fluorescent protein (GFP) as a modular binding partner to form stable protein complexes with a target protein is presented. The modular split GFP may open the way to rapidly creating crystallization variants. A modular strategy for protein crystallization using split green fluorescent protein (GFP) as a crystallization partner is demonstrated. Insertion of a hairpin containing GFP β-strands 10 and 11 into a surface loop of a target protein provides two chain crossings between the target and the reconstituted GFP compared with the single connection afforded by terminal GFP fusions. This strategy was tested by inserting this hairpin into a loop of another fluorescent protein, sfCherry. The crystal structure of the sfCherry-GFP(10–11) hairpin in complex with GFP(1–9) was determined at a resolution of 2.6 Å. Analysis of the complex shows that the reconstituted GFP is attached to the target protein (sfCherry) in a structurally ordered way. This work opens the way to rapidly creating crystallization variants by reconstituting a target protein bearing the GFP(10–11) hairpin with a variety of GFP(1–9) mutants engineered for favorable crystallization

  7. Phosphorylcholine functionalized dendrimers for the formation of highly stable and reactive gold nanoparticles and their glucose conjugation for biosensing

    International Nuclear Information System (INIS)

    Jia Lan; Lv Liping; Xu Jianping; Ji Jian

    2011-01-01

    Phosphorylcholine (PC)-functionalized poly(amido amine) (PAMAM) dendrimers were prepared and used as both reducing and stabilizing agents for synthesis of highly stable and reactive gold nanoparticles (Au NPs). Biomimetic PC-functionalized PAMAM dendrimers-stabilized gold nanoparticles (Au DSNPs) were formed by simply mixing the PC modified amine-terminated fifth-generation PAMAM dendrimers (G5-PC) with AuCl 4 − ions by controlling the pH, no additional reducing agents or other stabilizers were needed. The obtained Au DSNPs were shown to be spherical, with particle diameters ranging from 5 to 12 nm, the sizes and growth kinetics of Au DSNPs could be tuned by changing the pH and the initial molar ratio of dendrimers to gold as indicated by transmission electron microscopy (TEM) and UV–Vis data. The prepared Au DSNPs showed excellent stability including: (1) stable at wide pH (7–13) values; (2) stable at high salt concentrations up to 2 M NaCl; (3) non-specific protein adsorption resistance. More importantly, surface functionalization could be performed by introducing desired functional groups onto the remained reactive amine groups. This was exemplified by the glucose conjugation. The glucose conjugated Au DSNPs showed bio-specific interaction with Concanavalin A (Con A), which induced aggregation of the Au NPs. Colorimetric detection of Con A based on the plasmon resonance of the glucose conjugated Au DSNPs was realized. A limit of detection (LOD) for Con A was 0.6 μM, based on a signal-to-noise ratio (S/N) of 3. These findings demonstrated that the PC modified Au DSNPs could potentially serve as a versatile nano-platform for the biomedical applications.

  8. Conservative, unconditionally stable discretization methods for Hamiltonian equations, applied to wave motion in lattice equations modeling protein molecules

    Science.gov (United States)

    LeMesurier, Brenton

    2012-01-01

    A new approach is described for generating exactly energy-momentum conserving time discretizations for a wide class of Hamiltonian systems of DEs with quadratic momenta, including mechanical systems with central forces; it is well-suited in particular to the large systems that arise in both spatial discretizations of nonlinear wave equations and lattice equations such as the Davydov System modeling energetic pulse propagation in protein molecules. The method is unconditionally stable, making it well-suited to equations of broadly “Discrete NLS form”, including many arising in nonlinear optics. Key features of the resulting discretizations are exact conservation of both the Hamiltonian and quadratic conserved quantities related to continuous linear symmetries, preservation of time reversal symmetry, unconditional stability, and respecting the linearity of certain terms. The last feature allows a simple, efficient iterative solution of the resulting nonlinear algebraic systems that retain unconditional stability, avoiding the need for full Newton-type solvers. One distinction from earlier work on conservative discretizations is a new and more straightforward nearly canonical procedure for constructing the discretizations, based on a “discrete gradient calculus with product rule” that mimics the essential properties of partial derivatives. This numerical method is then used to study the Davydov system, revealing that previously conjectured continuum limit approximations by NLS do not hold, but that sech-like pulses related to NLS solitons can nevertheless sometimes arise.

  9. Massively parallel de novo protein design for targeted therapeutics

    KAUST Repository

    Chevalier, Aaron

    2017-09-26

    De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37-43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing.

  10. Massively parallel de novo protein design for targeted therapeutics

    KAUST Repository

    Chevalier, Aaron; Silva, Daniel-Adriano; Rocklin, Gabriel J.; Hicks, Derrick R.; Vergara, Renan; Murapa, Patience; Bernard, Steffen M.; Zhang, Lu; Lam, Kwok-Ho; Yao, Guorui; Bahl, Christopher D.; Miyashita, Shin-Ichiro; Goreshnik, Inna; Fuller, James T.; Koday, Merika T.; Jenkins, Cody M.; Colvin, Tom; Carter, Lauren; Bohn, Alan; Bryan, Cassie M.; Ferná ndez-Velasco, D. Alejandro; Stewart, Lance; Dong, Min; Huang, Xuhui; Jin, Rongsheng; Wilson, Ian A.; Fuller, Deborah H.; Baker, David

    2017-01-01

    De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37-43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing.

  11. Massively parallel de novo protein design for targeted therapeutics

    Science.gov (United States)

    Chevalier, Aaron; Silva, Daniel-Adriano; Rocklin, Gabriel J.; Hicks, Derrick R.; Vergara, Renan; Murapa, Patience; Bernard, Steffen M.; Zhang, Lu; Lam, Kwok-Ho; Yao, Guorui; Bahl, Christopher D.; Miyashita, Shin-Ichiro; Goreshnik, Inna; Fuller, James T.; Koday, Merika T.; Jenkins, Cody M.; Colvin, Tom; Carter, Lauren; Bohn, Alan; Bryan, Cassie M.; Fernández-Velasco, D. Alejandro; Stewart, Lance; Dong, Min; Huang, Xuhui; Jin, Rongsheng; Wilson, Ian A.; Fuller, Deborah H.; Baker, David

    2018-01-01

    De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37–43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing. PMID:28953867

  12. A Bayesian least-squares support vector machine method for predicting the remaining useful life of a microwave component

    Directory of Open Access Journals (Sweden)

    Fuqiang Sun

    2017-01-01

    Full Text Available Rapid and accurate lifetime prediction of critical components in a system is important to maintaining the system’s reliable operation. To this end, many lifetime prediction methods have been developed to handle various failure-related data collected in different situations. Among these methods, machine learning and Bayesian updating are the most popular ones. In this article, a Bayesian least-squares support vector machine method that combines least-squares support vector machine with Bayesian inference is developed for predicting the remaining useful life of a microwave component. A degradation model describing the change in the component’s power gain over time is developed, and the point and interval remaining useful life estimates are obtained considering a predefined failure threshold. In our case study, the radial basis function neural network approach is also implemented for comparison purposes. The results indicate that the Bayesian least-squares support vector machine method is more precise and stable in predicting the remaining useful life of this type of components.

  13. A stable and convenient protein electrophoresis titration device with bubble removing system.

    Science.gov (United States)

    Zhang, Qiang; Fan, Liu-Yin; Li, Wen-Lin; Cong, Feng-Song; Zhong, Ran; Chen, Jing-Jing; He, Yu-Chen; Xiao, Hua; Cao, Cheng-Xi

    2017-07-01

    Moving reaction boundary titration (MRBT) has a potential application to immunoassay and protein content analysis with high selectivity. However, air bubbles often impair the accuracy of MRBT, and the leakage of electrolyte greatly decreases the safety and convenience of electrophoretic titration. Addressing these two issues a reliable MRBT device with modified electrolyte chamber of protein titration was designed. Multiphysics computer simulation was conducted for optimization according to two-phase flow. The single chamber was made of two perpendicular cylinders with different diameters. After placing electrophoretic tube, the resident air in the junction next to the gel could be eliminated by a simple fast electrolyte flow. Removing the electrophoretic tube automatically prevented electrolyte leakage at the junction due to the gravity-induced negative pressure within the chamber. Moreover, the numerical simulation and experiments showed that the improved MRBT device has following advantages: (i) easy and rapid setup of electrophoretic tube within 20 s; (ii) simple and quick bubble dissipates from the chamber of titration within 2 s; (iii) no electrolyte leakage from the two chambers: and (iv) accurate protein titration and safe instrumental operation. The developed technique and apparatus greatly improves the performance of the previous MRBT device, and providing a new route toward practical application. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. NifI inhibits nitrogenase by competing with Fe protein for binding to the MoFe protein

    International Nuclear Information System (INIS)

    Dodsworth, Jeremy A.; Leigh, John A.

    2007-01-01

    Reduction of substrate by nitrogenase requires direct electron transfer from the Fe protein to the MoFe protein. Inhibition of nitrogenase activity in Methanococcus maripaludis occurs when the regulatory protein NifI 1,2 binds the MoFe protein. This inhibition is relieved by 2-oxoglutarate. Here we present evidence that NifI 1,2 binding prevents association of the two nitrogenase components. Increasing amounts of Fe protein competed with NifI 1,2 , decreasing its inhibitory effect. NifI 1,2 prevented the co-purification of MoFe protein with a mutant form of the Fe protein that forms a stable complex with the MoFe protein, and NifI 1,2 was unable to bind to an AlF 4 - -stabilized Fe protein:MoFe protein complex. NifI 1,2 inhibited ATP- and MoFe protein-dependent oxidation of the Fe protein, and 2OG relieved this inhibition. These results support a model where NifI 1,2 competes with the Fe protein for binding to MoFe protein and prevents electron transfer

  15. Effect of high-protein or normal-protein diet on weight loss, body composition, hormone, and metabolic profile in southern Brazilian women with polycystic ovary syndrome: a randomized study.

    Science.gov (United States)

    Toscani, Mariana K; Mario, Fernanda M; Radavelli-Bagatini, Simone; Wiltgen, Denusa; Matos, Maria Cristina; Spritzer, Poli Maria

    2011-11-01

    The aim of the present study was to assess the effects of a high protein (HP) and a normal protein (NP) diet on patients with polycystic ovary syndrome (PCOS) and body mass index-matched controls in a sample of southern Brazilian women. This 8-week randomized trial was carried out at a university gynecological endocrinology clinic and included 18 patients with PCOS and 22 controls. Changes in weight, body composition, hormone, and metabolic profile were analyzed in women randomized to receive HP (30% protein, 40% carbohydrate, and 30% lipid) or NP (15% protein, 55% carbohydrate, and 30% lipid). The energy content was estimated for each participant at 20-25 kcal/kg current weight/day. Physical activity, blood pressure, homeostasis model assessment (HOMA) index, and fasting and 2-h glucose and insulin remained stable during the intervention in PCOS and controls, even in the presence of weight loss. There were no changes in lipid profile in either group. In contrast, body weight, body mass index (BMI), waist circumference, percent of body fat, and sum of trunk skinfolds decreased significantly after both diets in both groups. Total testosterone also decreased in PCOS and controls regardless of diet. In conclusion, calorie reduction, rather than protein content, seemed to affect body composition and hormonal profile in this short-term study. These findings emphasize the role of non-pharmacological interventions to reduce weight and ameliorate the anthropometric and clinical phenotype in PCOS.

  16. Existence of life-time stable proteins in mature rats-Dating of proteins' age by repeated short-term exposure to labeled amino acids throughout age

    DEFF Research Database (Denmark)

    Bechshøft, Cecilie Leidesdorff; Schjerling, Peter; Bornø, Andreas

    2017-01-01

    In vivo turnover rates of proteins covering the processes of protein synthesis and breakdown rates have been measured in many tissues and protein pools using various techniques. Connective tissue and collagen protein turnover is of specific interest since existing results are rather diverging. Th...... living days, indicating very slow turnover. The data support the hypothesis that some proteins synthesized during the early development and growth still exist much later in life of animals and hence has a very slow turnover rate.......In vivo turnover rates of proteins covering the processes of protein synthesis and breakdown rates have been measured in many tissues and protein pools using various techniques. Connective tissue and collagen protein turnover is of specific interest since existing results are rather diverging....... The aim of this study is to investigate whether we can verify the presence of protein pools within the same tissue with very distinct turnover rates over the life-span of rats with special focus on connective tissue. Male and female Lewis rats (n = 35) were injected with five different isotopically...

  17. A robust and rapid method of producing soluble, stable, and functional G-protein coupled receptors.

    Directory of Open Access Journals (Sweden)

    Karolina Corin

    Full Text Available Membrane proteins, particularly G-protein coupled receptors (GPCRs, are notoriously difficult to express. Using commercial E. coli cell-free systems with the detergent Brij-35, we could rapidly produce milligram quantities of 13 unique GPCRs. Immunoaffinity purification yielded receptors at >90% purity. Secondary structure analysis using circular dichroism indicated that the purified receptors were properly folded. Microscale thermophoresis, a novel label-free and surface-free detection technique that uses thermal gradients, showed that these receptors bound their ligands. The secondary structure and ligand-binding results from cell-free produced proteins were comparable to those expressed and purified from HEK293 cells. Our study demonstrates that cell-free protein production using commercially available kits and optimal detergents is a robust technology that can be used to produce sufficient GPCRs for biochemical, structural, and functional analyses. This robust and simple method may further stimulate others to study the structure and function of membrane proteins.

  18. A long-term stable power supply μDMFC stack for wireless sensor node applications

    International Nuclear Information System (INIS)

    Wu, Z L; Wang, X H; Teng, F; Li, X Z; Wu, X M; Liu, L T

    2013-01-01

    A passive, air-breathing 4-cell micro direct methanol fuel cell (μDMFC) stack is presented featured by a fuel delivery structure for a long-term and stable power supply. The fuel is reserved in a T shape tank and diffuses through the porous diffusion layer to the catalyst at anode. The stack has a maximum power output of 110mW with 3M methanol at room temperature and output a stable power even thought 5% fuel is the remained in reservoir. Its performance decreases less than 3% for 100 hours continuous work. As such, it is believed to be more applicable for powering the wireless sensor nodes

  19. Group living in squamate reptiles: a review of evidence for stable aggregations.

    Science.gov (United States)

    Gardner, Michael G; Pearson, Sarah K; Johnston, Gregory R; Schwarz, Michael P

    2016-11-01

    How sociality evolves and is maintained remains a key question in evolutionary biology. Most studies to date have focused on insects, birds, and mammals but data from a wider range of taxonomic groups are essential to identify general patterns and processes. The extent of social behaviour among squamate reptiles is under-appreciated, yet they are a promising group for further studies. Living in aggregations is posited as an important step in the evolution of more complex sociality. We review data on aggregations among squamates and find evidence for some form of aggregations in 94 species across 22 families. Of these, 18 species across 7 families exhibited 'stable' aggregations that entail overlapping home ranges and stable membership in long-term (years) or seasonal aggregations. Phylogenetic analysis suggests that stable aggregations have evolved multiple times in squamates. We: (i) identify significant gaps in our understanding; (ii) outline key traits which should be the focus of future research; and (iii) outline the potential for utilising reproductive skew theory to provide insights into squamate sociality. © 2015 Cambridge Philosophical Society.

  20. Stable Boundary Layer Issues

    OpenAIRE

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The development of robust stable boundary layer parameterizations for use in NWP and climate models is hampered by the multiplicity of processes and their unknown interactions. As a result, these models suffer ...

  1. Stabilities and Dynamics of Protein Folding Nuclei by Molecular Dynamics Simulation

    Science.gov (United States)

    Song, Yong-Shun; Zhou, Xin; Zheng, Wei-Mou; Wang, Yan-Ting

    2017-07-01

    To understand how the stabilities of key nuclei fragments affect protein folding dynamics, we simulate by molecular dynamics (MD) simulation in aqueous solution four fragments cut out of a protein G, including one α-helix (seqB: KVFKQYAN), two β-turns (seqA: LNGKTLKG and seqC: YDDATKTF), and one β-strand (seqD: DGEWTYDD). The Markov State Model clustering method combined with the coarse-grained conformation letters method are employed to analyze the data sampled from 2-μs equilibrium MD simulation trajectories. We find that seqA and seqB have more stable structures than their native structures which become metastable when cut out of the protein structure. As expected, seqD alone is flexible and does not have a stable structure. Throughout our simulations, the native structure of seqC is stable but cannot be reached if starting from a structure other than the native one, implying a funnel-shape free energy landscape of seqC in aqueous solution. All the above results suggest that different nuclei have different formation dynamics during protein folding, which may have a major contribution to the hierarchy of protein folding dynamics. Supported by the National Basic Research Program of China under Grant No. 2013CB932804, the National Natural Science Foundation of China under Grant No. 11421063, and the CAS Biophysics Interdisciplinary Innovation Team Project

  2. Mechanisms of stable lipid loss in a social insect

    Science.gov (United States)

    Ament, Seth A.; Chan, Queenie W.; Wheeler, Marsha M.; Nixon, Scott E.; Johnson, S. Peir; Rodriguez-Zas, Sandra L.; Foster, Leonard J.; Robinson, Gene E.

    2011-01-01

    SUMMARY Worker honey bees undergo a socially regulated, highly stable lipid loss as part of their behavioral maturation. We used large-scale transcriptomic and proteomic experiments, physiological experiments and RNA interference to explore the mechanistic basis for this lipid loss. Lipid loss was associated with thousands of gene expression changes in abdominal fat bodies. Many of these genes were also regulated in young bees by nutrition during an initial period of lipid gain. Surprisingly, in older bees, which is when maximum lipid loss occurs, diet played less of a role in regulating fat body gene expression for components of evolutionarily conserved nutrition-related endocrine systems involving insulin and juvenile hormone signaling. By contrast, fat body gene expression in older bees was regulated more strongly by evolutionarily novel regulatory factors, queen mandibular pheromone (a honey bee-specific social signal) and vitellogenin (a conserved yolk protein that has evolved novel, maturation-related functions in the bee), independent of nutrition. These results demonstrate that conserved molecular pathways can be manipulated to achieve stable lipid loss through evolutionarily novel regulatory processes. PMID:22031746

  3. Mechanisms of stable lipid loss in a social insect.

    Science.gov (United States)

    Ament, Seth A; Chan, Queenie W; Wheeler, Marsha M; Nixon, Scott E; Johnson, S Peir; Rodriguez-Zas, Sandra L; Foster, Leonard J; Robinson, Gene E

    2011-11-15

    Worker honey bees undergo a socially regulated, highly stable lipid loss as part of their behavioral maturation. We used large-scale transcriptomic and proteomic experiments, physiological experiments and RNA interference to explore the mechanistic basis for this lipid loss. Lipid loss was associated with thousands of gene expression changes in abdominal fat bodies. Many of these genes were also regulated in young bees by nutrition during an initial period of lipid gain. Surprisingly, in older bees, which is when maximum lipid loss occurs, diet played less of a role in regulating fat body gene expression for components of evolutionarily conserved nutrition-related endocrine systems involving insulin and juvenile hormone signaling. By contrast, fat body gene expression in older bees was regulated more strongly by evolutionarily novel regulatory factors, queen mandibular pheromone (a honey bee-specific social signal) and vitellogenin (a conserved yolk protein that has evolved novel, maturation-related functions in the bee), independent of nutrition. These results demonstrate that conserved molecular pathways can be manipulated to achieve stable lipid loss through evolutionarily novel regulatory processes.

  4. Antigenic stability of pecan [Carya illinoinensis (Wangenh.) K. Koch] proteins: effects of thermal treatments and in vitro digestion.

    Science.gov (United States)

    Venkatachalam, Mahesh; Teuber, Suzanne S; Peterson, W Rich; Roux, Kenneth H; Sathe, Shridhar K

    2006-02-22

    Rabbit polyclonal antibody-based inhibition ELISA as well as immunoblotting analyses of proteins extracted from variously processed pecans (cv. Desirable) indicate that pecan proteins are antigenically stable. Pecan antigens were more sensitive to moist heat than dry heat processing treatments. SDS-PAGE and immunoblotting analysis of the native and heat-denatured proteins that were previously subjected to in vitro simulated gastric fluid digestions indicate that stable antigenic peptides were produced. Both enzyme-to-substrate ratio and digestion time were influential in determining the stability of pecan polypeptides. The stable antigenic polypeptides may serve as useful markers in developing assays suitable for the detection of trace amounts of pecans in foods.

  5. Wall-crossing between stable and co-stable ADHM data

    Science.gov (United States)

    Ohkawa, Ryo

    2018-06-01

    We prove formula between Nekrasov partition functions defined from stable and co-stable ADHM data for the plane following method by Nakajima and Yoshioka (Kyoto J Math 51(2):263-335, 2011) based on the theory of wall-crossing formula developed by Mochizuki (Donaldson type invariants for algebraic surfaces: transition of moduli stacks, Lecture notes in mathematics, vol 1972, Springer, Berlin, 2009). This formula is similar to conjectures by Ito et al. [J High Energy Phys 2013(5):045, 2013, (4.1), (4.2)] for A1 singularity.

  6. Identification of miRNA targets with stable isotope labeling by amino acids in cell culture

    DEFF Research Database (Denmark)

    Vinther, Jeppe; Hedegaard, Mads Marquardt; Gardner, Paul Phillip

    2006-01-01

    miRNAs are small noncoding RNAs that regulate gene expression. We have used stable isotope labeling by amino acids in cell culture (SILAC) to investigate the effect of miRNA-1 on the HeLa cell proteome. Expression of 12 out of 504 investigated proteins was repressed by miRNA-1 transfection...

  7. Femtosecond UV-laser pulses to unveil protein-protein interactions in living cells.

    Science.gov (United States)

    Itri, Francesco; Monti, Daria M; Della Ventura, Bartolomeo; Vinciguerra, Roberto; Chino, Marco; Gesuele, Felice; Lombardi, Angelina; Velotta, Raffaele; Altucci, Carlo; Birolo, Leila; Piccoli, Renata; Arciello, Angela

    2016-02-01

    A hallmark to decipher bioprocesses is to characterize protein-protein interactions in living cells. To do this, the development of innovative methodologies, which do not alter proteins and their natural environment, is particularly needed. Here, we report a method (LUCK, Laser UV Cross-linKing) to in vivo cross-link proteins by UV-laser irradiation of living cells. Upon irradiation of HeLa cells under controlled conditions, cross-linked products of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were detected, whose yield was found to be a linear function of the total irradiation energy. We demonstrated that stable dimers of GAPDH were formed through intersubunit cross-linking, as also observed when the pure protein was irradiated by UV-laser in vitro. We proposed a defined patch of aromatic residues located at the enzyme subunit interface as the cross-linking sites involved in dimer formation. Hence, by this technique, UV-laser is able to photofix protein surfaces that come in direct contact. Due to the ultra-short time scale of UV-laser-induced cross-linking, this technique could be extended to weld even transient protein interactions in their native context.

  8. Stable Water Use Efficiency under Climate Change of Three Sympatric Conifer Species at the Alpine Treeline.

    Science.gov (United States)

    Wieser, Gerhard; Oberhuber, Walter; Gruber, Andreas; Leo, Marco; Matyssek, Rainer; Grams, Thorsten Erhard Edgar

    2016-01-01

    The ability of treeline associated conifers in the Central Alps to cope with recent climate warming and increasing CO2 concentration is still poorly understood. We determined tree ring stable carbon and oxygen isotope ratios of Pinus cembra, Picea abies, and Larix decidua trees from 1975 to 2010. Stable isotope ratios were compared with leaf level gas exchange measurements carried out in situ between 1979 and 2007. Results indicate that tree ring derived intrinsic water-use efficiency (iWUE) of P. cembra, P. abies and L. decidua remained constant during the last 36 years despite climate warming and rising atmospheric CO2. Temporal patterns in Δ(13)C and Δ(18)O mirrored leaf level gas exchange assessments, suggesting parallel increases of CO2-fixation and stomatal conductance of treeline conifer species. As at the study site soil water availability was not a limiting factor iWUE remained largely stable throughout the study period. The stability in iWUE was accompanied by an increase in basal area increment (BAI) suggesting that treeline trees benefit from both recent climate warming and CO2 fertilization. Finally, our results suggest that iWUE may not change species composition at treeline in the Austrian Alps due to similar ecophysiological responses to climatic changes of the three sympatric study species.

  9. Quantitative imaging of subcellular metabolism with stable isotopes and multi-isotope imaging mass spectrometry

    Science.gov (United States)

    Steinhauser, Matthew L.; Lechene, Claude P.

    2014-01-01

    Multi-isotope imaging mass spectrometry (MIMS) is the quantitative imaging of stable isotope labels in cells with a new type of secondary ion mass spectrometer (NanoSIMS). The power of the methodology is attributable to (i) the immense advantage of using non-toxic stable isotope labels, (ii) high resolution imaging that approaches the resolution of usual transmission electron microscopy and (iii) the precise quantification of label down to 1 part-per-million and spanning several orders of magnitude. Here we review the basic elements of MIMS and describe new applications of MIMS to the quantitative study of metabolic processes including protein and nucleic acid synthesis in model organisms ranging from microbes to humans. PMID:23660233

  10. Angina Pectoris (Stable Angina)

    Science.gov (United States)

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More Angina Pectoris (Stable Angina) Updated:Aug 21,2017 You may have heard the term “angina pectoris” or “stable angina” in your doctor’s office, ...

  11. Legume Protein Isolates for Stable Acidic Emulsions Prepared by Premix Membrane Emulsification

    NARCIS (Netherlands)

    Ladjal Ettoumi, Yakoub; Berton-Carabin, Claire; Chibane, Mohamed; Schroën, Karin

    2017-01-01

    Proteins originating from dry legumes are not that much used in food formulations, yet, they are interesting components from a sustainability point of view, and could have interesting functional properties, e.g. for emulsion preparation. Therefore, this work focuses on the potential of the water

  12. The Ser/Thr Protein Kinase Protein-Protein Interaction Map of M. tuberculosis.

    Science.gov (United States)

    Wu, Fan-Lin; Liu, Yin; Jiang, He-Wei; Luan, Yi-Zhao; Zhang, Hai-Nan; He, Xiang; Xu, Zhao-Wei; Hou, Jing-Li; Ji, Li-Yun; Xie, Zhi; Czajkowsky, Daniel M; Yan, Wei; Deng, Jiao-Yu; Bi, Li-Jun; Zhang, Xian-En; Tao, Sheng-Ce

    2017-08-01

    Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, the leading cause of death among all infectious diseases. There are 11 eukaryotic-like serine/threonine protein kinases (STPKs) in Mtb, which are thought to play pivotal roles in cell growth, signal transduction and pathogenesis. However, their underlying mechanisms of action remain largely uncharacterized. In this study, using a Mtb proteome microarray, we have globally identified the binding proteins in Mtb for all of the STPKs, and constructed the first STPK protein interaction (KPI) map that includes 492 binding proteins and 1,027 interactions. Bioinformatics analysis showed that the interacting proteins reflect diverse functions, including roles in two-component system, transcription, protein degradation, and cell wall integrity. Functional investigations confirmed that PknG regulates cell wall integrity through key components of peptidoglycan (PG) biosynthesis, e.g. MurC. The global STPK-KPIs network constructed here is expected to serve as a rich resource for understanding the key signaling pathways in Mtb, thus facilitating drug development and effective control of Mtb. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Normal modified stable processes

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Shephard, N.

    2002-01-01

    Gaussian (NGIG) laws. The wider framework thus established provides, in particular, for added flexibility in the modelling of the dynamics of financial time series, of importance especially as regards OU based stochastic volatility models for equities. In the special case of the tempered stable OU process......This paper discusses two classes of distributions, and stochastic processes derived from them: modified stable (MS) laws and normal modified stable (NMS) laws. This extends corresponding results for the generalised inverse Gaussian (GIG) and generalised hyperbolic (GH) or normal generalised inverse...

  14. Stable isotope labelling with amino acids in cell culture for human embryonic stem cell proteomic analysis

    DEFF Research Database (Denmark)

    Harkness, Linda; Prokhorova, Tatyana A; Kassem, Moustapha

    2012-01-01

    The identification and quantitative measurements of proteins in human embryonic stem cells (hESC) is a fast growing interdisciplinary area with an enormous impact on understanding the biology of hESC and the mechanism controlling self-renewal and differentiation. Using a quantitative mass...... spectroscopic method of stable isotope labelling with amino acids during cell culture (SILAC), we are able to analyse differential expression of proteins from different cellular compartments and to identify intracellular signalling pathways involved in self-renewal and differentiation. In this chapter, we...

  15. Serum levels of C-reactive protein in patients with stable coronary artery disease: JUPITER in perspective.

    Science.gov (United States)

    Saely, Christoph H; Rein, Philipp; Vonbank, Alexander; Drexel, Heinz

    2010-10-29

    The JUPITER trial has recently demonstrated an outstanding reduction of cardiovascular events by 20 mg rosuvastatin/day in subjects with high CRP who were apparently healthy at baseline. However, absence of atherosclerosis in JUPITER was based on the subjects' history and not proven objectively. To put the results of JUPITER in perspective, we evaluated serum CRP in a consecutive series of 703 statin-naïve Caucasian patients with angiographically proven stable CAD. From these stable CAD patients, only 69.2% met the ≥2.0 mg/l serum CRP inclusion criterion of the JUPITER trial. Median CRP [interquartile range] in our CAD patients was 3.3 [1.6-6.6] mg/l, which was significantly (pJUPITER (4.2 mg/l). Our results point to considerable subclinical atherosclerosis in the patients studied in JUPITER. The impressive results of that trial may not be generalizable to healthy populations all over the world. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.

  16. Interplay between chaperones and protein disorder promotes the evolution of protein networks.

    Directory of Open Access Journals (Sweden)

    Sebastian Pechmann

    2014-06-01

    Full Text Available Evolution is driven by mutations, which lead to new protein functions but come at a cost to protein stability. Non-conservative substitutions are of interest in this regard because they may most profoundly affect both function and stability. Accordingly, organisms must balance the benefit of accepting advantageous substitutions with the possible cost of deleterious effects on protein folding and stability. We here examine factors that systematically promote non-conservative mutations at the proteome level. Intrinsically disordered regions in proteins play pivotal roles in protein interactions, but many questions regarding their evolution remain unanswered. Similarly, whether and how molecular chaperones, which have been shown to buffer destabilizing mutations in individual proteins, generally provide robustness during proteome evolution remains unclear. To this end, we introduce an evolutionary parameter λ that directly estimates the rate of non-conservative substitutions. Our analysis of λ in Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens sequences reveals how co- and post-translationally acting chaperones differentially promote non-conservative substitutions in their substrates, likely through buffering of their destabilizing effects. We further find that λ serves well to quantify the evolution of intrinsically disordered proteins even though the unstructured, thus generally variable regions in proteins are often flanked by very conserved sequences. Crucially, we show that both intrinsically disordered proteins and highly re-wired proteins in protein interaction networks, which have evolved new interactions and functions, exhibit a higher λ at the expense of enhanced chaperone assistance. Our findings thus highlight an intricate interplay of molecular chaperones and protein disorder in the evolvability of protein networks. Our results illuminate the role of chaperones in enabling protein evolution, and underline the

  17. Stable lentiviral transformation of CHO cells for the expression of the hemagglutinin H5 of avian influenza virus in suspension culture

    Directory of Open Access Journals (Sweden)

    Alaín González Pose

    2014-09-01

    Full Text Available Avian influenza virus H5N1 has caused extensive damage worldwide among poultry and humans. Effective expression systems are needed for the production of viral proteins required for monitoring this devastating disease. The present study deals with the establishment of a stable expression system for the hemagglutinin H5 (HAH5 of avian influenza virus using CHO cells in suspension culture transduced with a recombinant lentiviral vector. The synthetic gene coding the HAH5 protein was inserted in a lentiviral vector with the aim of performing a stable transduction of CHO cells. After the selection of recombinant clones, the one with the highest expression level was adapted to suspension culture and the HAH5 protein was purified by immunoaffinity chromatography from the culture supernatant. There were no significant differences when this protein, purified or direct from the culture supernatant of CHO or SiHa cells, was utilized in an immunologic assay using positive and negative sera as reference. It was also demonstrated that the HAH5 protein in its purified form is able to bind anti-HAH5 antibodies generated with proper and non-proper folded proteins. The results demonstrate that the CHO cell line stably transduced with a lentiviral vector coding the sequence of the HAH5 protein and cultured in suspension can be a suitable expression system to obtain this protein for diagnostic purpose in a consistent and reliable manner.

  18. Increased protein intake and meal frequency reduces abdominal fat during energy balance and energy deficit.

    Science.gov (United States)

    Arciero, Paul J; Ormsbee, Michael J; Gentile, Christopher L; Nindl, Bradley C; Brestoff, Jonathan R; Ruby, Maxwell

    2013-07-01

    Unrefined, complex carbohydrates and lean protein diets are used to combat obesity, although it's unknown whether more frequent meals may improve this response. The effects of consuming traditional (~15%) versus higher (~35%) protein intakes as three or six meals/day on abdominal fat, postprandial thermogenesis (TEM), and cardiometabolic biomarkers in overweight individuals during 28 days of energy balance (BAL) and deficit (NEG), respectively were compared. Overweight individuals (n = 30) were randomized into three groups: two high-protein groups (35% of energy) consumed as three (HP3) or six (HP6) meals/day and one group consumed three meals/day of a traditional intake (TD3). Following a 5-day baseline control (CON), subjects consumed their respective diets throughout a 56-day intervention consisting of two, 28 day phases: a BAL followed by a NEG phase (75% of energy needs). Total body fat (BF) and abdominal BF (ABF), body weight (BW), TEM, and fasting biomarkers were assessed at the end of CON, BAL, and NEG phases. BW remained stable throughout CON and BAL in all groups, whereas BF (P meals/day in overweight individuals during both BAL and NEG. Copyright © 2013 The Obesity Society.

  19. Uses of stable isotopes

    International Nuclear Information System (INIS)

    Axente, Damian

    1998-01-01

    The most important fields of stable isotope use with examples are presented. These are: 1. Isotope dilution analysis: trace analysis, measurements of volumes and masses; 2. Stable isotopes as tracers: transport phenomena, environmental studies, agricultural research, authentication of products and objects, archaeometry, studies of reaction mechanisms, structure and function determination of complex biological entities, studies of metabolism, breath test for diagnostic; 3. Isotope equilibrium effects: measurement of equilibrium effects, investigation of equilibrium conditions, mechanism of drug action, study of natural processes, water cycle, temperature measurements; 4. Stable isotope for advanced nuclear reactors: uranium nitride with 15 N as nuclear fuel, 157 Gd for reactor control. In spite of some difficulties of stable isotope use, particularly related to the analytical techniques, which are slow and expensive, the number of papers reporting on this subject is steadily growing as well as the number of scientific meetings organized by International Isotope Section and IAEA, Gordon Conferences, and regional meeting in Germany, France, etc. Stable isotope application development on large scale is determined by improving their production technologies as well as those of labeled compound and the analytical techniques. (author)

  20. Protein Adaptations in Archaeal Extremophiles

    Directory of Open Access Journals (Sweden)

    Christopher J. Reed

    2013-01-01

    Full Text Available Extremophiles, especially those in Archaea, have a myriad of adaptations that keep their cellular proteins stable and active under the extreme conditions in which they live. Rather than having one basic set of adaptations that works for all environments, Archaea have evolved separate protein features that are customized for each environment. We categorized the Archaea into three general groups to describe what is known about their protein adaptations: thermophilic, psychrophilic, and halophilic. Thermophilic proteins tend to have a prominent hydrophobic core and increased electrostatic interactions to maintain activity at high temperatures. Psychrophilic proteins have a reduced hydrophobic core and a less charged protein surface to maintain flexibility and activity under cold temperatures. Halophilic proteins are characterized by increased negative surface charge due to increased acidic amino acid content and peptide insertions, which compensates for the extreme ionic conditions. While acidophiles, alkaliphiles, and piezophiles are their own class of Archaea, their protein adaptations toward pH and pressure are less discernible. By understanding the protein adaptations used by archaeal extremophiles, we hope to be able to engineer and utilize proteins for industrial, environmental, and biotechnological applications where function in extreme conditions is required for activity.

  1. Protein Adaptations in Archaeal Extremophiles

    Science.gov (United States)

    Reed, Christopher J.; Lewis, Hunter; Trejo, Eric; Winston, Vern; Evilia, Caryn

    2013-01-01

    Extremophiles, especially those in Archaea, have a myriad of adaptations that keep their cellular proteins stable and active under the extreme conditions in which they live. Rather than having one basic set of adaptations that works for all environments, Archaea have evolved separate protein features that are customized for each environment. We categorized the Archaea into three general groups to describe what is known about their protein adaptations: thermophilic, psychrophilic, and halophilic. Thermophilic proteins tend to have a prominent hydrophobic core and increased electrostatic interactions to maintain activity at high temperatures. Psychrophilic proteins have a reduced hydrophobic core and a less charged protein surface to maintain flexibility and activity under cold temperatures. Halophilic proteins are characterized by increased negative surface charge due to increased acidic amino acid content and peptide insertions, which compensates for the extreme ionic conditions. While acidophiles, alkaliphiles, and piezophiles are their own class of Archaea, their protein adaptations toward pH and pressure are less discernible. By understanding the protein adaptations used by archaeal extremophiles, we hope to be able to engineer and utilize proteins for industrial, environmental, and biotechnological applications where function in extreme conditions is required for activity. PMID:24151449

  2. Entropy-stable summation-by-parts discretization of the Euler equations on general curved elements

    Science.gov (United States)

    Crean, Jared; Hicken, Jason E.; Del Rey Fernández, David C.; Zingg, David W.; Carpenter, Mark H.

    2018-03-01

    We present and analyze an entropy-stable semi-discretization of the Euler equations based on high-order summation-by-parts (SBP) operators. In particular, we consider general multidimensional SBP elements, building on and generalizing previous work with tensor-product discretizations. In the absence of dissipation, we prove that the semi-discrete scheme conserves entropy; significantly, this proof of nonlinear L2 stability does not rely on integral exactness. Furthermore, interior penalties can be incorporated into the discretization to ensure that the total (mathematical) entropy decreases monotonically, producing an entropy-stable scheme. SBP discretizations with curved elements remain accurate, conservative, and entropy stable provided the mapping Jacobian satisfies the discrete metric invariants; polynomial mappings at most one degree higher than the SBP operators automatically satisfy the metric invariants in two dimensions. In three-dimensions, we describe an elementwise optimization that leads to suitable Jacobians in the case of polynomial mappings. The properties of the semi-discrete scheme are verified and investigated using numerical experiments.

  3. Aging Is Accompanied by a Blunted Muscle Protein Synthetic Response to Protein Ingestion.

    Directory of Open Access Journals (Sweden)

    Benjamin Toby Wall

    Full Text Available Progressive loss of skeletal muscle mass with aging (sarcopenia forms a global health concern. It has been suggested that an impaired capacity to increase muscle protein synthesis rates in response to protein intake is a key contributor to sarcopenia. We assessed whether differences in post-absorptive and/or post-prandial muscle protein synthesis rates exist between large cohorts of healthy young and older men.We performed a cross-sectional, retrospective study comparing in vivo post-absorptive muscle protein synthesis rates determined with stable isotope methodologies between 34 healthy young (22±1 y and 72 older (75±1 y men, and post-prandial muscle protein synthesis rates between 35 healthy young (22±1 y and 40 older (74±1 y men.Post-absorptive muscle protein synthesis rates did not differ significantly between the young and older group. Post-prandial muscle protein synthesis rates were 16% lower in the older subjects when compared with the young. Muscle protein synthesis rates were >3 fold more responsive to dietary protein ingestion in the young. Irrespective of age, there was a strong negative correlation between post-absorptive muscle protein synthesis rates and the increase in muscle protein synthesis rate following protein ingestion.Aging is associated with the development of muscle anabolic inflexibility which represents a key physiological mechanism underpinning sarcopenia.

  4. Crystal structure of human protein kinase CK2

    DEFF Research Database (Denmark)

    Niefind, K; Guerra, B; Ermakowa, I

    2001-01-01

    The crystal structure of a fully active form of human protein kinase CK2 (casein kinase 2) consisting of two C-terminally truncated catalytic and two regulatory subunits has been determined at 3.1 A resolution. In the CK2 complex the regulatory subunits form a stable dimer linking the two catalyt...... as a docking partner for various protein kinases. Furthermore it shows an inter-domain mobility in the catalytic subunit known to be functionally important in protein kinases and detected here for the first time directly within one crystal structure.......The crystal structure of a fully active form of human protein kinase CK2 (casein kinase 2) consisting of two C-terminally truncated catalytic and two regulatory subunits has been determined at 3.1 A resolution. In the CK2 complex the regulatory subunits form a stable dimer linking the two catalytic...... subunits, which make no direct contact with one another. Each catalytic subunit interacts with both regulatory chains, predominantly via an extended C-terminal tail of the regulatory subunit. The CK2 structure is consistent with its constitutive activity and with a flexible role of the regulatory subunit...

  5. Stable isotopes labelled compounds

    International Nuclear Information System (INIS)

    1982-09-01

    The catalogue on stable isotopes labelled compounds offers deuterium, nitrogen-15, and multiply labelled compounds. It includes: (1) conditions of sale and delivery, (2) the application of stable isotopes, (3) technical information, (4) product specifications, and (5) the complete delivery programme

  6. Stable Boundary Layer Issues

    NARCIS (Netherlands)

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The

  7. Graphene oxide as a protein matrix: influence on protein biophysical properties.

    Science.gov (United States)

    Hernández-Cancel, Griselle; Suazo-Dávila, Dámaris; Ojeda-Cruzado, Axel J; García-Torres, Desiree; Cabrera, Carlos R; Griebenow, Kai

    2015-10-19

    This study provides fundamental information on the influence of graphene oxide (GO) nanosheets and glycans on protein catalytic activity, dynamics, and thermal stability. We provide evidence of protein stabilization by glycans and how this strategy could be implemented when GO nanosheets is used as protein immobilization matrix. A series of bioconjugates was constructed using two different strategies: adsorbing or covalently attaching native and glycosylated bilirubin oxidase (BOD) to GO. Bioconjugate formation was followed by FT-IR, zeta-potential, and X-ray photoelectron spectroscopy measurements. Enzyme kinetic parameters (k(m) and k(cat)) revealed that the substrate binding affinity was not affected by glycosylation and immobilization on GO, but the rate of enzyme catalysis was reduced. Structural analysis by circular dichroism showed that glycosylation did not affect the tertiary or the secondary structure of BOD. However, GO produced slight changes in the secondary structure. To shed light into the biophysical consequence of protein glycosylation and protein immobilization on GO nanosheets, we studied structural protein dynamical changes by FT-IR H/D exchange and thermal inactivation. It was found that glycosylation caused a reduction in structural dynamics that resulted in an increase in thermostability and a decrease in the catalytic activity for both, glycoconjugate and immobilized enzyme. These results establish the usefulness of chemical glycosylation to modulate protein structural dynamics and stability to develop a more stable GO-protein matrix.

  8. Both core and F proteins of hepatitis C virus could enhance cell proliferation in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wen-Ta [Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan (China); Li, Hui-Chun [Department of Biochemistry, Tzu Chi University, Hualien, Taiwan (China); Lee, Shen-Kao; Ma, Hsin-Chieh; Yang, Chee-Hing; Chen, Hung-Ling [Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan (China); Lo, Shih-Yen, E-mail: losylo@mail.tcu.edu.tw [Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan (China); Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan (China)

    2013-05-24

    Highlights: •HCV core and F proteins could induce hepatocyte proliferation in the transgenic mice. •β-Catenin signaling pathway was activated by core protein in the transgenic mice. •β-Catenin signaling pathway was activated by myc-F protein in the transgenic mice. •Expression of SMA protein was enhanced by core but not myc-F protein. -- Abstract: The role of the protein encoded by the alternative open reading frame (ARF/F/core+1) of the Hepatitis C virus (HCV) genome in viral pathogenesis remains unknown. The different forms of ARF/F/core+1 protein were labile in cultured cells, a myc-tag fused at the N-terminus of the F protein made it more stable. To determine the role of core and F proteins in HCV pathogenesis, transgenic mice with either protein expression under the control of Albumin promoter were generated. Expression of core protein and F protein with myc tag (myc-F) could be detected by Western blotting analysis in the livers of these mice. The ratio of liver to body weight is increased for both core and myc-F transgenic mice compared to that of wild type mice. Indeed, the proliferating cell nuclear antigen protein, a proliferation marker, was up-regulated in the transgenic mice with core or myc-F protein. Further analyses by microarray and Western blotting suggested that β-catenin signaling pathway was activated by either core or myc-F protein in the transgenic mice. These transgenic mice were further treated with either Diethynitrosamine (a tumor initiator) or Phenobarbital (a tumor promoter). Phenobarbital but not Diethynitrosamine treatment could increase the liver/body weight ratio of these mice. However, no tumor formation was observed in these mice. In conclusion, HCV core and myc-F proteins could induce hepatocyte proliferation in the transgenic mice possibly through β-catenin signaling pathway.

  9. Both core and F proteins of hepatitis C virus could enhance cell proliferation in transgenic mice

    International Nuclear Information System (INIS)

    Hu, Wen-Ta; Li, Hui-Chun; Lee, Shen-Kao; Ma, Hsin-Chieh; Yang, Chee-Hing; Chen, Hung-Ling; Lo, Shih-Yen

    2013-01-01

    Highlights: •HCV core and F proteins could induce hepatocyte proliferation in the transgenic mice. •β-Catenin signaling pathway was activated by core protein in the transgenic mice. •β-Catenin signaling pathway was activated by myc-F protein in the transgenic mice. •Expression of SMA protein was enhanced by core but not myc-F protein. -- Abstract: The role of the protein encoded by the alternative open reading frame (ARF/F/core+1) of the Hepatitis C virus (HCV) genome in viral pathogenesis remains unknown. The different forms of ARF/F/core+1 protein were labile in cultured cells, a myc-tag fused at the N-terminus of the F protein made it more stable. To determine the role of core and F proteins in HCV pathogenesis, transgenic mice with either protein expression under the control of Albumin promoter were generated. Expression of core protein and F protein with myc tag (myc-F) could be detected by Western blotting analysis in the livers of these mice. The ratio of liver to body weight is increased for both core and myc-F transgenic mice compared to that of wild type mice. Indeed, the proliferating cell nuclear antigen protein, a proliferation marker, was up-regulated in the transgenic mice with core or myc-F protein. Further analyses by microarray and Western blotting suggested that β-catenin signaling pathway was activated by either core or myc-F protein in the transgenic mice. These transgenic mice were further treated with either Diethynitrosamine (a tumor initiator) or Phenobarbital (a tumor promoter). Phenobarbital but not Diethynitrosamine treatment could increase the liver/body weight ratio of these mice. However, no tumor formation was observed in these mice. In conclusion, HCV core and myc-F proteins could induce hepatocyte proliferation in the transgenic mice possibly through β-catenin signaling pathway

  10. Is early-onset microsatellite and chromosomally stable colorectal cancer a hallmark of a genetic susceptibility syndrome?

    Science.gov (United States)

    Kets, C M; van Krieken, J H J M; van Erp, P E J; Feuth, T; Jacobs, Y H A; Brunner, H G; Ligtenberg, M J L; Hoogerbrugge, N

    2008-02-15

    Most colorectal cancers show either microsatellite or chromosomal instability. A subset of colorectal cancers, especially those diagnosed at young age, is known to show neither of these forms of genetic instability and thus might have a distinct pathogenesis. Colorectal cancers diagnosed at young age are suggestive for hereditary predisposition. We investigate whether such early-onset microsatellite and chromosomally stable colorectal cancers are a hallmark of a genetic susceptibility syndrome. The ploidy status of microsatellite stable (familial) colorectal cancers of patients diagnosed before age 50 (n = 127) was analyzed in relation to the histopathological characteristics and family history. As a control the ploidy status of sporadic colorectal cancer, with normal staining of mismatch repair proteins, diagnosed at the age of 69 years or above (n = 70) was determined. A diploid DNA content was used as a marker for chromosomal stability. Within the group of patients with (familial) early onset microsatellite stable colorectal cancer the chromosomally stable tumors did not differ from chromosomally unstable tumors with respect to mean age at diagnosis, fulfillment of Amsterdam criteria or pathological characteristics. Segregation analysis did not reveal any family with microsatellite and chromosomally stable colorectal cancer in 2 relatives. The prevalence of microsatellite and chromosomally stable colorectal cancer was not significantly different for the early and late onset group (28 and 21%, respectively). We find no evidence that early-onset microsatellite and chromosomally stable colorectal cancer is a hallmark of a hereditary colorectal cancer syndrome. (c) 2007 Wiley-Liss, Inc.

  11. Tennessee's forest land area was stable 1999-2005 but early successional forest area declined

    Science.gov (United States)

    Christopher M. Oswalt

    2008-01-01

    A new analysis of the most recent (2005) annualized moving average data for Tennessee indicates that the area of forest land in the State remained stable between 1999 and 2005. Although trends in forest land area vary from region to region within the State, Tennessee neither lost nor gained forest land between 1999 and 2005. However, Tennessee had more than 2.5 times...

  12. Effect of initial protein concentration and pH on in vitro gastric digestion of heated whey proteins.

    Science.gov (United States)

    Zhang, Sha; Vardhanabhuti, Bongkosh

    2014-02-15

    The in vitro digestion of heated whey protein aggregates having different structure and physicochemical properties was evaluated under simulated gastric conditions. Aggregates were formed by heating whey protein isolates (WPI) at 3-9% w/w initial protein concentration and pH 3.0-7.0. Results showed that high protein concentration led to formation of larger WPI aggregates with fewer remaining monomers. Aggregates formed at high protein concentrations showed slower degradation rate compared to those formed at low protein concentration. The effect of initial protein concentration on peptide release pattern was not apparent. Heating pH was a significant factor affecting digestion pattern. At pH above the isoelectric point, the majority of the proteins involved in the aggregation, and aggregates formed at pH 6.0 were more susceptible to pepsin digestion than at pH 7.0. At acidic conditions, only small amount of proteins was involved in the aggregation and heated aggregates were easily digested by pepsin, while the remaining unaggregated proteins were very resistant to gastric digestion. The potential physiological implication of these results on satiety was discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Structure of acid-stable carmine.

    Science.gov (United States)

    Sugimoto, Naoki; Kawasaki, Yoko; Sato, Kyoko; Aoki, Hiromitsu; Ichi, Takahito; Koda, Takatoshi; Yamazaki, Takeshi; Maitani, Tamio

    2002-02-01

    Acid-stable carmine has recently been distributed in the U.S. market because of its good acid stability, but it is not permitted in Japan. We analyzed and determined the structure of the major pigment in acid-stable carmine, in order to establish an analytical method for it. Carminic acid was transformed into a different type of pigment, named acid-stable carmine, through amination when heated in ammonia solution. The features of the structure were clarified using a model compound, purpurin, in which the orientation of hydroxyl groups on the A ring of the anthraquinone skeleton is the same as that of carminic acid. By spectroscopic means and the synthesis of acid-stable carmine and purpurin derivatives, the structure of the major pigment in acid-stable carmine was established as 4-aminocarminic acid, a novel compound.

  14. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics

    DEFF Research Database (Denmark)

    Ong, S.E.; Blagoev, B.; Kratchmarova, I.

    2002-01-01

    Quantitative proteomics has traditionally been performed by two-dimensional gel electrophoresis, but recently, mass spectrometric methods based on stable isotope quantitation have shown great promise for the simultaneous and automated identification and quantitation of complex protein mixtures. H...

  15. Applications of stable isotopes

    International Nuclear Information System (INIS)

    Letolle, R.; Mariotti, A.; Bariac, T.

    1991-06-01

    This report reviews the historical background and the properties of stable isotopes, the methods used for their measurement (mass spectrometry and others), the present technics for isotope enrichment and separation, and at last the various present and foreseeable application (in nuclear energy, physical and chemical research, materials industry and research; tracing in industrial, medical and agronomical tests; the use of natural isotope variations for environmental studies, agronomy, natural resources appraising: water, minerals, energy). Some new possibilities in the use of stable isotope are offered. A last chapter gives the present state and forecast development of stable isotope uses in France and Europe

  16. Protein Detection with Aptamer Biosensors

    Directory of Open Access Journals (Sweden)

    Regina Stoltenburg

    2008-07-01

    Full Text Available Aptamers have been developed for different applications. Their use as new biological recognition elements in biosensors promises progress for fast and easy detection of proteins. This new generation of biosensor (aptasensors will be more stable and well adapted to the conditions of real samples because of the specific properties of aptamers.

  17. Computational and biological characterization of fusion proteins of two insecticidal proteins for control of insect pests.

    Science.gov (United States)

    Javaid, Shaista; Naz, Sehrish; Amin, Imran; Jander, Georg; Ul-Haq, Zaheer; Mansoor, Shahid

    2018-03-19

    Sucking pests pose a serious agricultural challenge, as available transgenic technologies such as Bacillus thuringiensis crystal toxins (Bt) are not effective against them. One approach is to produce fusion protein toxins for the control of these pests. Two protein toxins, Hvt (ω-atracotoxin from Hadronyche versuta) and onion leaf lectin, were translationally fused to evaluate the negative effects of fusion proteins on Phenacoccus solenopsis (mealybug), a phloem-feeding insect pest. Hvt was cloned both N-terminally (HL) and then C-terminally (LH) in the fusion protein constructs, which were expressed transiently in Nicotiana tabacum using a Potato Virus X (PVX) vector. The HL fusion protein was found to be more effective against P. solenopsis, with an 83% mortality rate, as compared to the LH protein, which caused 65% mortality. Hvt and lectin alone caused 42% and 45%, respectively, under the same conditions. Computational studies of both fusion proteins showed that the HL protein is more stable than the LH protein. Together, these results demonstrate that translational fusion of two insecticidal proteins improved the insecticidal activity relative to each protein individually and could be expressed in transgenic plants for effective control of sucking pests.

  18. Evaluation of stable isotope labelling strategies for the quantitation of CP4 EPSPS in genetically modified soya

    Energy Technology Data Exchange (ETDEWEB)

    Ocana, Mireia Fernandez [Centre for Chemical and Bioanalytical Sciences, Royal Holloway, University of London, Egham TW20 0EX (United Kingdom)], E-mail: Mireia.FernandezOcana@pfizer.com; Fraser, Paul D. [Centre for Chemical and Bioanalytical Sciences, Royal Holloway, University of London, Egham TW20 0EX (United Kingdom); Patel, Raj K.P.; Halket, John M. [Specialist Bioanalytical Services Ltd., Royal Holloway, University of London, Egham TW20 0EX (United Kingdom); Bramley, Peter M. [Centre for Chemical and Bioanalytical Sciences, Royal Holloway, University of London, Egham TW20 0EX (United Kingdom)

    2009-02-16

    The introduction of genetically modified (GM) crops into the market has raised a general alertness relating to the control and safety of foods. The applicability of protein separation hyphenated to mass spectrometry to identify the bacterial enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS) protein expressed in GM crops has been previously reported [M.F. Ocana, P.D. Fraser, R.K.P. Patel, J.M. Halket, P.M. Bramley, Rapid Commun. Mass Spectrom. 21 (2007) 319.]. Herein, we investigate the suitability of two strategies that employ heavy stable isotopes, i.e. AQUA and iTRAQ, to quantify different levels of CP4 EPSPS in up to four GM preparations. Both quantification strategies showed potential to determine whether the presence of GM material is above the limits established by the European Union. The AQUA quantification procedure involved protein solubilisation/fractionation and subsequent separation using SDS-PAGE. A segment of the gel in which the protein of interest was located was excised, the stable isotope labeled peptide added at a known concentration and proteolytic digestion initiated. Following recovery of the peptides, on-line separation and detection using LC-MS was carried out. A similar approach was used for the iTRAQ workflow with the exception that proteins were digested in solution and generated tryptic peptides were chemically tagged. Both procedures demonstrated the potential for quantitative detection at 0.5% (w/w) GM soya which is a level below the current European Union's threshold for food-labelling. In this context, a comparison between the two procedures is provided within the present study.

  19. Evaluation of stable isotope labelling strategies for the quantitation of CP4 EPSPS in genetically modified soya

    International Nuclear Information System (INIS)

    Ocana, Mireia Fernandez; Fraser, Paul D.; Patel, Raj K.P.; Halket, John M.; Bramley, Peter M.

    2009-01-01

    The introduction of genetically modified (GM) crops into the market has raised a general alertness relating to the control and safety of foods. The applicability of protein separation hyphenated to mass spectrometry to identify the bacterial enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS) protein expressed in GM crops has been previously reported [M.F. Ocana, P.D. Fraser, R.K.P. Patel, J.M. Halket, P.M. Bramley, Rapid Commun. Mass Spectrom. 21 (2007) 319.]. Herein, we investigate the suitability of two strategies that employ heavy stable isotopes, i.e. AQUA and iTRAQ, to quantify different levels of CP4 EPSPS in up to four GM preparations. Both quantification strategies showed potential to determine whether the presence of GM material is above the limits established by the European Union. The AQUA quantification procedure involved protein solubilisation/fractionation and subsequent separation using SDS-PAGE. A segment of the gel in which the protein of interest was located was excised, the stable isotope labeled peptide added at a known concentration and proteolytic digestion initiated. Following recovery of the peptides, on-line separation and detection using LC-MS was carried out. A similar approach was used for the iTRAQ workflow with the exception that proteins were digested in solution and generated tryptic peptides were chemically tagged. Both procedures demonstrated the potential for quantitative detection at 0.5% (w/w) GM soya which is a level below the current European Union's threshold for food-labelling. In this context, a comparison between the two procedures is provided within the present study

  20. High-yield secretion of recombinant proteins expressed in tobacco cell culture with a designer glycopeptide tag: Process development.

    Science.gov (United States)

    Zhang, Ningning; Gonzalez, Maria; Savary, Brett; Xu, Jianfeng

    2016-03-01

    Low-yield protein production remains the most significant economic hurdle with plant cell culture technology. Fusions of recombinant proteins with hydroxyproline-O-glycosylated designer glycopeptide tags have consistently boosted secreted protein yields. This prompted us to study the process development of this technology aiming to achieve productivity levels necessary for commercial viability. We used a tobacco BY-2 cell culture expressing EGFP as fusion with a glycopeptide tag comprised of 32 repeat of "Ser-Pro" dipeptide, or (SP)32 , to study cell growth and protein secretion, culture scale-up, and establishment of perfusion cultures for continuous production. The BY-2 cells accumulated low levels of cell biomass (~7.5 g DW/L) in Schenk & Hildebrandt medium, but secreted high yields of (SP)32 -tagged EGFP (125 mg/L). Protein productivity of the cell culture has been stable for 6.0 years. The BY-2 cells cultured in a 5-L bioreactor similarly produced high secreted protein yield at 131 mg/L. Successful operation of a cell perfusion culture for 30 days was achieved under the perfusion rate of 0.25 and 0.5 day(-1) , generating a protein volumetric productivity of 17.6 and 28.9 mg/day/L, respectively. This research demonstrates the great potential of the designer glycopeptide technology for use in commercial production of valuable proteins with plant cell cultures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. AR-v7 protein expression is regulated by protein kinase and phosphatase

    Science.gov (United States)

    Li, Yinan; Xie, Ning; Gleave, Martin E.; Rennie, Paul S.; Dong, Xuesen

    2015-01-01

    Failure of androgen-targeted therapy and progression of castration-resistant prostate cancer (CRPC) are often attributed to sustained expression of the androgen receptor (AR) and its major splice variant, AR-v7. Although the new generation of anti-androgens such as enzalutamide effectively inhibits AR activity, accumulating pre-clinical and clinical evidence indicates that AR-v7 remains constitutively active in driving CRPC progression. However, molecular mechanisms which control AR-v7 protein expression remain unclear. We apply multiple prostate cancer cell models to demonstrate that enzalutamide induces differential activation of protein phosphatase-1 (PP-1) and Akt kinase depending on the gene context of cancer cells. The balance between PP-1 and Akt activation governs AR phosphorylation status and activation of the Mdm2 ubiquitin ligase. Mdm2 recognizes phosphorylated serine 213 of AR-v7, and induces AR-v7 ubiquitination and protein degradation. These findings highlight the decisive roles of PP-1 and Akt for AR-v7 protein expression and activities when AR is functionally blocked. PMID:26378044

  2. A stable demand for money despite financial crisis: The case of Venezuela

    OpenAIRE

    Bjørnland, Hilde C.

    2003-01-01

    This paper investigates the demand for broad money in Venezuela, over a period of financial crisis and substantial exchange rate fluctuations. The analysis shows that there exist a long run relationship between real money, real income, inflation, the exchange rate and the domestic interest rate, that remains stable over major policy changes and large shocks. The long run properties emphasize that both inflation and exchange rate depreciations have negative effects on real money demand. The lo...

  3. Macromolecular neutron crystallography at the Protein Crystallography Station (PCS)

    OpenAIRE

    Kovalevsky, Andrey; Fisher, Zoe; Johnson, Hannah; Mustyakimov, Marat; Waltman, Mary Jo; Langan, Paul

    2010-01-01

    The Protein Crystallography Station user facility at Los Alamos National Laboratory not only offers open access to a high-performance neutron beamline, but also actively supports and develops new methods in protein expression, deuteration, purification, robotic crystallization and the synthesis of substrates with stable isotopes and provides assistance with data-reduction and structure-refinement software and comprehensive neutron structure analysis.

  4. Stable water use efficiency under climate change of three sympatric conifer species at the Alpine treeline

    Directory of Open Access Journals (Sweden)

    Gerhard eWieser

    2016-06-01

    Full Text Available The ability of treeline associated conifers in the Central Alps to cope with recent climate warming and increasing CO2 concentration is still poorly understood. We determined tree ring stable carbon and oxygen isotope ratios of Pinus cembra, Picea abies and Larix decidua trees from 1975-2010. Stable isotope ratios were compared with leaf level gas exchange measurements carried out in situ between 1979 and 2007. Results indicate that tree ring derived intrinsic water-use efficiency (iWUE of P. cembra, P. abies and L. decidua remained constant during the last 36 years despite climate warming and rising atmospheric CO2. Temporal patterns in Δ13C and Δ18O mirrored leaf level gas exchange assessments, suggesting parallel increases of CO2-fixation and stomatal conductance of treeline conifer species. As at the study site soil water availability was not a limiting factor iWUE remained largely stable throughout the study period. The stability in iWUE was accompanied by an increase in basal area increment (BAI suggesting that treeline trees benefit from both recent climate warming and CO2 fertilization. Finally, our results suggest that iWUE may not change species composition at treeline in the Austrian Alps due to similar ecophysiological responses to climatic changes of the three sympatric study species.

  5. Internal motion time scales of a small, highly stable and disulfide-rich protein: A 15N, 13C NMR and molecular dynamics study

    International Nuclear Information System (INIS)

    Guenneugues, Marc; Gilquin, Bernard; Wolff, Nicolas; Menez, Andre; Zinn-Justin, Sophie

    1999-01-01

    Motions of the backbone CαHα and threonine CβHβ bonds of toxin α were investigated using natural abundance 13C NMR and molecular dynamics. Measurement of the 13C longitudinal and transverse relaxation rates employed ACCORDION techniques together with coherence selection by pulsed field gradients and sensitivity enhancement through the use of preservation of equivalent pathway, thus allowing a considerable reduction of the required spectrometer time. 13C R1, R2, 1H → 13C NOE were obtained, as well as the variations of R1ρ(90 deg.) as a function of the rf field strength. These data were compared to those recorded by 1H and 15N NMR on a labelled sample of the toxin [Guenneugues et al. (1997) Biochemistry, 36, 16097-16108]. Both sets of data showed that picosecond to nanosecond time scale motions are well correlated to the secondary structure of the protein. This was further reinforced by the analysis of a 1 ns molecular dynamics simulation in water. Several CαHα and threonine CβHβ experimentally exhibit fast motions with a correlation time longer than 500 ps, that cannot be sampled along the simulation. In addition, the backbone exhibits motions on the microsecond to millisecond time scale on more than half of its length. Thus, toxin α, a highly stable protein (Tm=75 deg. C at acidic pH) containing 61 amino acids and 4 disulfides, shows important internal motions on time scales ranging from 0.1-0.5 ps, to 10-100 ps, 1 ns, and about 30 μs to 10 ms

  6. Effects of an endurance cycling competition on resting serum insulin-like growth factor I (IGF-I) and its binding proteins IGFBP-1 and IGFBP-3

    Science.gov (United States)

    Chicharro, J; Lopez-Calderon, A; Hoyos, J; Martin-Velasco, A; Villa, G; Villanua, M; Lucia, A

    2001-01-01

    Objectives—To determine whether consecutive bouts of intense endurance exercise over a three week period alters serum concentrations of insulin-like growth factor I (IGF-I) and/or its binding proteins. Methods—Seventeen professional cyclists (mean (SEM) VO2MAX, 74.7 (2.1) ml/kg/min; age, 27 (1) years) competing in a three week tour race were selected as subjects. Blood samples were collected at each of the following time points: t0 (control, before the start of competition), t1 (end of first week), and t3 (end of third week). Serum levels of both total and free IGF-I and IGF binding proteins 1 and 3 (IGFBP-1 and IGFBP-3) were measured in each of the samples. Cortisol levels were measured in nine subjects. Results—A significant (p<0.01) increase was found in total IGF-I and IGFBP-1 at both t1 and t3 compared with to (IGF-I: 110.9 (17.7), 186.8 (12.0), 196.9 (14.7) ng/ml at t0, t1, and t3 respectively; IGFBP-1: 54.6 (6.6), 80.6 (8.0), and 89.2 (7.9) ng/ml at t0, t1, and t3 respectively). A significant (p<0.01) decrease was noted in free IGF-I at t3 compared with both to and t1 (t0: 0.9 (0.1) ng/ml; t1: 0.9 (0.1) ng/ml; t3: 0.7 (0.1) ng/ml); in contrast, IGFBP-3 levels remained stable throughout the race. Conclusions—It would appear that the increase in circulating levels of both IGF-I and its binding protein IGFBP-1 is a short term (one week) endocrine adaptation to endurance exercise. After three weeks of training, total IGF-I and IGFBP-1 remained stable, whereas free IGF-I fell below starting levels. Key Words: cycling; insulin-like growth factor; exercise; endurance; binding proteins PMID:11579061

  7. Casein protein results in higher prandial and exercise induced whole body protein anabolism than whey protein in chronic obstructive pulmonary disease.

    Science.gov (United States)

    Engelen, Mariëlle P K J; Rutten, Erica P A; De Castro, Carmen L N; Wouters, Emiel F M; Schols, Annemie M W J; Deutz, Nicolaas E P

    2012-09-01

    Exercise is known to improve physical functioning and health status in Chronic Obstructive Pulmonary Disease (COPD). Recently, disturbances in protein turnover and amino acid kinetics have been observed after exercise in COPD. The objective was to investigate which dairy protein is able to positively influence the protein metabolic response to exercise in COPD. 8 COPD patients and 8 healthy subjects performed a cycle test on two days while ingesting casein or whey protein. Whole body protein breakdown (WbPB), synthesis (WbPS), splanchnic amino acid extraction (SPE), and NetWbPS (=WbPS-WbPB) were measured using stable isotope methodology during 20 min of exercise (at 50% peak work load of COPD group). The controls performed a second exercise test at the same relative workload. Exercise was followed by 1 h of recovery. In the healthy group, WbPS, SPE, and NetPS were higher during casein than during whey feeding (Pexercise, independent of exercise intensity (Pexercise during casein and whey feeding in COPD (Pexercise were higher in COPD (Pexercise, lower NetPS values were found independent of protein type in both groups. Casein resulted in more protein anabolism than whey protein which was maintained during and following exercise in COPD. Optimizing protein intake might be of importance for muscle maintenance during daily physical activities in COPD. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Structurally stable graphene oxide-based nanofiltration membranes with bioadhesive polydopamine coating

    Science.gov (United States)

    Wang, Chongbin; Li, Zhiyuan; Chen, Jianxin; Yin, Yongheng; Wu, Hong

    2018-01-01

    Graphene oxide (GO)-based membranes possess promising potential in liquid separation for its high flux. The state-of-art GO-based membranes need to be supported by a substrate to ensure that the ultra-thin GO layer can withstand transmembrane pressure in practical applications. The interfacial compatibility of this kind of composite membrane remains a great challenge due to the intrinsic difference in chemical/physical properties between the GO sheets and the substrate. In this paper, a structurally stable GO-based composite nanofiltration membrane was fabricated by coupling the mussel-inspired adhesive platform and filtration-assisted assembly of GO laminates. The water flux for the prepared GO-based nanofiltration membrane reached up to 85 L m-2 h-1 bar-1 with a high retention above 95% and 100% for Orange G and Congo Red, respectively. The membrane exhibited highly stable structure owing to the covalent and noncovalent interactions between GO separation layer and dopamine adhesive platform.

  9. A protein-based set of reference markers for liver tissues and hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Sun, Stella; Yi, Xin; Poon, Ronnie TP; Yeung, Chun; Day, Philip JR; Luk, John M

    2009-01-01

    During the last decade, investigations have focused on revealing genes or proteins that are involved in HCC carcinogenesis using either genetic or proteomic techniques. However, these studies are overshadowed by a lack of good internal reference standards. The need to identify 'housekeeping' markers, whose expression is stable in various experimental and clinical conditions, is therefore of the utmost clinical relevance in quantitative studies. This is the first study employed 2-DE analysis to screen for potential reference markers and aims to correlate the abundance of these proteins with their level of transcript expression. A Chinese cohort of 224 liver tissues samples (105 cancerous, 103 non-tumourous cirrhotic, and 16 normal) was profiled using 2-DE analysis. Expression of the potential reference markers was confirmed by western blot, immunohistochemistry and real-time quantitative PCR. geNorm algorithm was employed for gene stability measure of the identified reference markers. The expression levels of three protein markers beta-actin (ACTB), heat shock protein 60 (HSP60), and protein disulphide isomerase (PDI) were found to be stable using p-values (p > 0.99) as a ranking tool in all 224 human liver tissues examined by 2-DE analysis. Of high importance, ACTB and HSP 60 were successfully validated at both protein and mRNA levels in human hepatic tissues by western blot, immunohistochemistry and real-time quantitative PCR. In addition, no significant correlation of these markers with any clinicopathological features of HCC and cirrhosis was found. Gene stability measure of these two markers with other conventionally applied housekeeping genes was assessed by the geNorm algorithm, which ranked ACTB and HSP60 as the most stable genes among this cohort of clinical samples. Our findings identified 2 reference markers that exhibited stable expression across human liver tissues with different conditions thus should be regarded as reliable reference

  10. Hibernating black bears (Ursus americanus) experience skeletal muscle protein balance during winter anorexia.

    Science.gov (United States)

    Lohuis, T D; Harlow, H J; Beck, T D I

    2007-05-01

    Black bears spend four to seven months every winter confined to their den and anorexic. Despite potential for skeletal muscle atrophy and protein loss, bears appear to retain muscle integrity throughout winter dormancy. Other authors have suggested that bears are capable of net protein anabolism during this time. The present study was performed to test this hypothesis by directly measuring skeletal muscle protein metabolism during the summer, as well as early and late hibernation periods. Muscle biopsies were taken from the vastus lateralis of six free-ranging bears in the summer, and from six others early in hibernation and again in late winter. Protein synthesis and breakdown were measured on biopsies using (14)C-phenylalanine as a tracer. Muscle protein, nitrogen, and nucleic acid content, as well as nitrogen stable isotope enrichment, were also measured. Protein synthesis was greater than breakdown in summer bears, suggesting that they accumulate muscle protein during periods of seasonal food availability. Protein synthesis and breakdown were both lower in winter compared to summer but were equal during both early and late denning, indicating that bears are in protein balance during hibernation. Protein and nitrogen content, nucleic acid, and stable isotope enrichment measurements of the biopsies support this conclusion.

  11. Requirement of T-lymphokine-activated killer cell-originated protein kinase for TRAIL resistance of human HeLa cervical cancer cells

    International Nuclear Information System (INIS)

    Kwon, Hyeok-Ran; Lee, Ki Won; Dong, Zigang; Lee, Kyung Bok; Oh, Sang-Muk

    2010-01-01

    T-lymphokine-activated killer cell-originated protein kinase (TOPK) appears to be highly expressed in various cancer cells and to play an important role in maintaining proliferation of cancer cells. However, the underlying mechanism by which TOPK regulates growth of cancer cells remains elusive. Here we report that upregulated endogenous TOPK augments resistance of cancer cells to apoptosis induced by tumor necrosis factor-related apoptosis inducing ligand (TRAIL). Stable knocking down of TOPK markedly increased TRAIL-mediated apoptosis of human HeLa cervical cancer cells, as compared with control cells. Caspase 8 or caspase 3 activities in response to TRAIL were greatly incremented in TOPK-depleted cells. Ablation of TOPK negatively regulated TRAIL-mediated NF-κB activity. Furthermore, expression of NF-κB-dependent genes, FLICE-inhibitory protein (FLIP), inhibitor of apoptosis protein 1 (c-IAP1), or X-linked inhibitor of apoptosis protein (XIAP) was reduced in TOPK-depleted cells. Collectively, these findings demonstrated that TOPK contributed to TRAIL resistance of cancer cells via NF-κB activity, suggesting that TOPK might be a potential molecular target for successful cancer therapy using TRAIL.

  12. Tracking ENSO with tropical trees: Progress in stable isotope dendroclimatology

    Science.gov (United States)

    Evans, M. N.; Poussart, P. F.; Saleska, S. R.; Schrag, D. P.

    2002-12-01

    The terrestrial tropics remain an important gap in the growing proxy network used to characterize past ENSO behavior. Here we describe a strategy for development of proxy estimates of paleo-ENSO, via proxy rainfall estimates derived from stable isotope (δ18O) measurements made on tropical trees. The approach applies a new model of oxygen isotopic composition of alpha-cellulose (Roden et al., 2000), a rapid method for cellulose extraction from raw wood (Brendel et al., 2000), and continuous flow isotope ratio mass spectrometry (Brand, 1996) to develop proxy chronological, rainfall and growth rate estimates from tropical trees, even those lacking annual rings. The promise and pitfalls of the approach are illustrated in pilot datasets from the US, Costa Rica, Brazil, and Peru, which show isotopic cycles of 4-6 per mil, and interannual anomalies of up to 8 per mil. Together with the mature ENSO proxies (corals, extratropical tree-rings, varved sediments, and ice cores), replicated and well-dated stable isotope chronologies from tropical trees may eventually improve our understanding of ENSO history over the past several hundred years.

  13. Waggawagga-CLI: A command-line tool for predicting stable single α-helices (SAH-domains, and the SAH-domain distribution across eukaryotes.

    Directory of Open Access Journals (Sweden)

    Dominic Simm

    Full Text Available Stable single-alpha helices (SAH-domains function as rigid connectors and constant force springs between structural domains, and can provide contact surfaces for protein-protein and protein-RNA interactions. SAH-domains mainly consist of charged amino acids and are monomeric and stable in polar solutions, characteristics which distinguish them from coiled-coil domains and intrinsically disordered regions. Although the number of reported SAH-domains is steadily increasing, genome-wide analyses of SAH-domains in eukaryotic genomes are still missing. Here, we present Waggawagga-CLI, a command-line tool for predicting and analysing SAH-domains in protein sequence datasets. Using Waggawagga-CLI we predicted SAH-domains in 24 datasets from eukaryotes across the tree of life. SAH-domains were predicted in 0.5 to 3.5% of the protein-coding content per species. SAH-domains are particularly present in longer proteins supporting their function as structural building block in multi-domain proteins. In human, SAH-domains are mainly used as alternative building blocks not being present in all transcripts of a gene. Gene ontology analysis showed that yeast proteins with SAH-domains are particular enriched in macromolecular complex subunit organization, cellular component biogenesis and RNA metabolic processes, and that they have a strong nuclear and ribonucleoprotein complex localization and function in ribosome and nucleic acid binding. Human proteins with SAH-domains have roles in all types of RNA processing and cytoskeleton organization, and are predicted to function in RNA binding, protein binding involved in cell and cell-cell adhesion, and cytoskeletal protein binding. Waggawagga-CLI allows the user to adjust the stabilizing and destabilizing contribution of amino acid interactions in i,i+3 and i,i+4 spacings, and provides extensive flexibility for user-designed analyses.

  14. Effects of constant immigration on the dynamics and persistence of stable and unstable Drosophila populations

    Science.gov (United States)

    Dey, Snigdhadip; Joshi, Amitabh

    2013-01-01

    Constant immigration can stabilize population size fluctuations but its effects on extinction remain unexplored. We show that constant immigration significantly reduced extinction in fruitfly populations with relatively stable or unstable dynamics. In unstable populations with oscillations of amplitude around 1.5 times the mean population size, persistence and constancy were unrelated. Low immigration enhanced persistence without affecting constancy whereas high immigration increased constancy without enhancing persistence. In relatively stable populations with erratic fluctuations of amplitude close to the mean population size, both low and high immigration enhanced persistence. In these populations, the amplitude of fluctuations relative to mean population size went down due to immigration, and their dynamics were altered to low-period cycles. The effects of immigration on the population size distribution and intrinsic dynamics of stable versus unstable populations differed considerably, suggesting that the mechanisms by which immigration reduced extinction risk depended on underlying dynamics in complex ways. PMID:23470546

  15. Population Games, Stable Games, and Passivity

    Directory of Open Access Journals (Sweden)

    Michael J. Fox

    2013-10-01

    Full Text Available The class of “stable games”, introduced by Hofbauer and Sandholm in 2009, has the attractive property of admitting global convergence to equilibria under many evolutionary dynamics. We show that stable games can be identified as a special case of the feedback-system-theoretic notion of a “passive” dynamical system. Motivated by this observation, we develop a notion of passivity for evolutionary dynamics that complements the definition of the class of stable games. Since interconnections of passive dynamical systems exhibit stable behavior, we can make conclusions about passive evolutionary dynamics coupled with stable games. We show how established evolutionary dynamics qualify as passive dynamical systems. Moreover, we exploit the flexibility of the definition of passive dynamical systems to analyze generalizations of stable games and evolutionary dynamics that include forecasting heuristics as well as certain games with memory.

  16. Genetic diversity and evolution of human metapneumovirus fusion protein over twenty years

    Directory of Open Access Journals (Sweden)

    Liem Alexis

    2009-09-01

    Full Text Available Abstract Background Human metapneumovirus (HMPV is an important cause of acute respiratory illness in children. We examined the diversity and molecular evolution of HMPV using 85 full-length F (fusion gene sequences collected over a 20-year period. Results The F gene sequences fell into two major groups, each with two subgroups, which exhibited a mean of 96% identity by predicted amino acid sequences. Amino acid identity within and between subgroups was higher than nucleotide identity, suggesting structural or functional constraints on F protein diversity. There was minimal progressive drift over time, and the genetic lineages were stable over the 20-year period. Several canonical amino acid differences discriminated between major subgroups, and polymorphic variations tended to cluster in discrete regions. The estimated rate of mutation was 7.12 × 10-4 substitutions/site/year and the estimated time to most recent common HMPV ancestor was 97 years (95% likelihood range 66-194 years. Analysis suggested that HMPV diverged from avian metapneumovirus type C (AMPV-C 269 years ago (95% likelihood range 106-382 years. Conclusion HMPV F protein remains conserved over decades. HMPV appears to have diverged from AMPV-C fairly recently.

  17. Genetic diversity and evolution of human metapneumovirus fusion protein over twenty years

    Science.gov (United States)

    Yang, Chin-Fen; Wang, Chiaoyin K; Tollefson, Sharon J; Piyaratna, Rohith; Lintao, Linda D; Chu, Marla; Liem, Alexis; Mark, Mary; Spaete, Richard R; Crowe, James E; Williams, John V

    2009-01-01

    Background Human metapneumovirus (HMPV) is an important cause of acute respiratory illness in children. We examined the diversity and molecular evolution of HMPV using 85 full-length F (fusion) gene sequences collected over a 20-year period. Results The F gene sequences fell into two major groups, each with two subgroups, which exhibited a mean of 96% identity by predicted amino acid sequences. Amino acid identity within and between subgroups was higher than nucleotide identity, suggesting structural or functional constraints on F protein diversity. There was minimal progressive drift over time, and the genetic lineages were stable over the 20-year period. Several canonical amino acid differences discriminated between major subgroups, and polymorphic variations tended to cluster in discrete regions. The estimated rate of mutation was 7.12 × 10-4 substitutions/site/year and the estimated time to most recent common HMPV ancestor was 97 years (95% likelihood range 66-194 years). Analysis suggested that HMPV diverged from avian metapneumovirus type C (AMPV-C) 269 years ago (95% likelihood range 106-382 years). Conclusion HMPV F protein remains conserved over decades. HMPV appears to have diverged from AMPV-C fairly recently. PMID:19740442

  18. Decomposition of overlapping protein complexes: A graph theoretical method for analyzing static and dynamic protein associations

    Directory of Open Access Journals (Sweden)

    Guimarães Katia S

    2006-04-01

    Full Text Available Abstract Background Most cellular processes are carried out by multi-protein complexes, groups of proteins that bind together to perform a specific task. Some proteins form stable complexes, while other proteins form transient associations and are part of several complexes at different stages of a cellular process. A better understanding of this higher-order organization of proteins into overlapping complexes is an important step towards unveiling functional and evolutionary mechanisms behind biological networks. Results We propose a new method for identifying and representing overlapping protein complexes (or larger units called functional groups within a protein interaction network. We develop a graph-theoretical framework that enables automatic construction of such representation. We illustrate the effectiveness of our method by applying it to TNFα/NF-κB and pheromone signaling pathways. Conclusion The proposed representation helps in understanding the transitions between functional groups and allows for tracking a protein's path through a cascade of functional groups. Therefore, depending on the nature of the network, our representation is capable of elucidating temporal relations between functional groups. Our results show that the proposed method opens a new avenue for the analysis of protein interaction networks.

  19. Protein nanocrystallography: growth mechanism and atomic structure of crystals induced by nanotemplates.

    Science.gov (United States)

    Pechkova, E; Vasile, F; Spera, R; Fiordoro, S; Nicolini, C

    2005-11-01

    Protein nanocrystallography, a new technology for crystal growth based on protein nanotemplates, has recently been shown to produce diffracting, stable and radiation-resistant lysozyme crystals. This article, by computing these lysozyme crystals' atomic structures, obtained by the diffraction patterns of microfocused synchrotron radiation, provides a possible mechanism for this increased stability, namely a significant decrease in water content accompanied by a minor but significant alpha-helix increase. These data are shown to be compatible with the circular dichroism and two-dimensional Fourier transform spectra of high-resolution H NMR of proteins dissolved from the same nanotemplate-based crystal versus those from a classical crystal. Finally, evidence for protein direct transfer from the nanotemplate to the drop and the participation of the template proteins in crystal nucleation and growth is provided by high-resolution NMR spectrometry and mass spectrometry. Furthermore, the lysozyme nanotemplate appears stable up to 523 K, as confirmed by a thermal denaturation study using spectropolarimetry. The overall data suggest that heat-proof lysozyme presence in the crystal provides a possible explanation of the crystal's resistance to synchrotron radiation.

  20. Detecting significant changes in protein abundance

    Directory of Open Access Journals (Sweden)

    Kai Kammers

    2015-06-01

    Full Text Available We review and demonstrate how an empirical Bayes method, shrinking a protein's sample variance towards a pooled estimate, leads to far more powerful and stable inference to detect significant changes in protein abundance compared to ordinary t-tests. Using examples from isobaric mass labelled proteomic experiments we show how to analyze data from multiple experiments simultaneously, and discuss the effects of missing data on the inference. We also present easy to use open source software for normalization of mass spectrometry data and inference based on moderated test statistics.

  1. New insight on the formation of whey protein microbeads by a microfluidic system

    Science.gov (United States)

    Andoyo, Robi; Guyomarc'h, Fanny; Tabuteau, Hervé; Famelart, Marie-Hélène

    2018-02-01

    The current paper describes the formation of whey protein microbeads (WPM) having a spherical shape and a monodispersed size distribution. A microfluidic flow-focusing geometry was used to control the production of whey protein microdroplets in a hydrophobic phase. The microfluidic system consists of two inlet channels where the WPI solution and the lipophilic phase were separately injected towards the flow-focusing (FF) junction where they eventually meet, then co-flow. A whey protein isolate (WPI) solution of 150 g/kg protein and two types of hydrophobic phases, i.e. sunflower oil and n-dodecane, were tested as the continuous phase. The formation of WPM was observed microscopically. The aim of the present study was to describe the production of stable monodisperse WPM in suspension in milk ultrafiltrate using a microfluidic system. Hints to perform the control of the running parameters, i.e. choice of the hydrophobic phase or fluids flowrates, are provided. The results showed that in the sunflower oil, microdroplets had a large polydisperse size distribution, while in n-dodecane, microdroplets with narrow size distribution were obtained. Stabilization of the whey protein microdroplets through heat-gelation at 75 °C for 20 min in n-dodecane produced WPM and no change in shape nor size is observed. Meanwhile replacing the n-dodecane by MUF using centrifugation and washing caused the swelling of the WPM, but dispersity remained low. From this study, microfluidic system seemed to be a suitable method to be used for producing small quantities of monodisperse WPM.

  2. Changes of Protein and Lipid Contents, Amino Acid and Fatty Acid Compositions in Eggs and Yolk-Sac Larvae of American Shad ( Alosa sapidissima)

    Science.gov (United States)

    Liu, Zhifeng; Gao, Xiaoqiang; Yu, Jiuxiang; Wang, Yaohui; Guo, Zhenglong; Huang, Bin; Liu, Baoliang; Hong, Lei

    2018-04-01

    To investigate the changes of the biochemical composition of American shad ( Alosa sapidissima) eggs and larvae at embryonic and early larval stages, samples were collected at different development stages from artificial fertilization to the end of yolk absorption including 2 h, 12 h and 30 h after fertilization and newly hatched larvae including 1 and 3 days after hatching. The composition of lipid, fatty acids, protein and amino acids were analyzed. The content of total protein exhibited a decreasing trend during embryogenesis and larval development, and a significant reduction was detected after hatching ( P acids after hatching except for glycine ( P fatty acids remained stable during the period of embryogenesis. But after hatching, a significant decrease was found in the content of C18:2n-6, C18:3n-6, SFA and ratio of EPA/ARA ( P acids.

  3. Stable isotope usage in developing countries: Safe tracer tools to measure human nutritional status

    International Nuclear Information System (INIS)

    Klein, P.D.; Klein, E.R.

    1987-01-01

    How many calories are used when a nursing mother feeds her infant? How much milk does an infant receive in one week? What is the impact of the environment on the energy needs of children? How adequately does dietary protein sustain the synthesis of body constituents? What types of foods best nourish a child recovering from intestinal diseases such as diarrhoea? Quantitative answers to questions such as these can be obtained from the use of stable, non-radioactive isotopic tracers. Answers to these questions are important in assessing the nutritional status of infants, children, pregnant women and nursing mothers, as well as that of individuals who subsist on marginal food supplies. Because stable isotopic tracers are completely safe and without hazard, they can be used freely in health, nutrition, and agriculture studies in all populations

  4. Molecular mechanisms for protein-encoded inheritance

    Science.gov (United States)

    Wiltzius, Jed J. W.; Landau, Meytal; Nelson, Rebecca; Sawaya, Michael R.; Apostol, Marcin I.; Goldschmidt, Lukasz; Soriaga, Angela B.; Cascio, Duilio; Rajashankar, Kanagalaghatta; Eisenberg, David

    2013-01-01

    Strains are phenotypic variants, encoded by nucleic acid sequences in chromosomal inheritance and by protein “conformations” in prion inheritance and transmission. But how is a protein “conformation” stable enough to endure transmission between cells or organisms? Here new polymorphic crystal structures of segments of prion and other amyloid proteins offer structural mechanisms for prion strains. In packing polymorphism, prion strains are encoded by alternative packings (polymorphs) of β-sheets formed by the same segment of a protein; in a second mechanism, segmental polymorphism, prion strains are encoded by distinct β-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring “conformations,” capable of encoding strains. These molecular mechanisms for transfer of information into prion strains share features with the familiar mechanism for transfer of information by nucleic acid inheritance, including sequence specificity and recognition by non-covalent bonds. PMID:19684598

  5. Study of chromium speciation in normal and diabetic rats by activable enriched stable isotope technique

    International Nuclear Information System (INIS)

    Feng, W.Y.; Qian, Q.F.; Ding, W.J.; Chai, Z.F.

    2000-01-01

    Chromium speciation was investigated in the liver cytosol, serum and urine of normal and diabetic rats after a single intravenous injection of enriched stable isotope 50 Cr tracer solution. Sephadex G-25 gel chromatography combined with instrumental neutron activation analysis was used to isolate and characterize protein-bound chromium in the above materials. The results indicate that Cr is mainly combined with a high-molecular-weight protein either in liver cytosol or serum. A low-molecular-weight, Cr-containing compound (LMWCr) was found in all the observed liver, serum and urine samples of both normal and diabetic rats. Chromium is excreted chiefly as LMWCr in urine. (author)

  6. Protein instability and immunogenicity: roadblocks to clinical application of injectable protein delivery systems for sustained release.

    Science.gov (United States)

    Jiskoot, Wim; Randolph, Theodore W; Volkin, David B; Middaugh, C Russell; Schöneich, Christian; Winter, Gerhard; Friess, Wolfgang; Crommelin, Daan J A; Carpenter, John F

    2012-03-01

    Protein instability and immunogenicity are two main roadblocks to the clinical success of novel protein drug delivery systems. In this commentary, we discuss the need for more extensive analytical characterization in relation to concerns about protein instability in injectable drug delivery systems for sustained release. We then will briefly address immunogenicity concerns and outline current best practices for using state-of-the-art analytical assays to monitor protein stability for both conventional and novel therapeutic protein dosage forms. Next, we provide a summary of the stresses on proteins arising during preparation of drug delivery systems and subsequent in vivo release. We note the challenges and difficulties in achieving the absolute requirement of quantitatively assessing the degradation of protein molecules in a drug delivery system. We describe the potential roles for academic research in further improving protein stability and developing new analytical technologies to detect protein degradation byproducts in novel drug delivery systems. Finally, we provide recommendations for the appropriate approaches to formulation design and assay development to ensure that stable, minimally immunogenic formulations of therapeutic proteins are created. These approaches should help to increase the probability that novel drug delivery systems for sustained protein release will become more readily available as effective therapeutic agents to treat and benefit patients. Copyright © 2011 Wiley Periodicals, Inc.

  7. Computational Protein Design

    DEFF Research Database (Denmark)

    Johansson, Kristoffer Enøe

    Proteins are the major functional group of molecules in biology. The impact of protein science on medicine and chemical productions is rapidly increasing. However, the greatest potential remains to be realized. The fi eld of protein design has advanced computational modeling from a tool of support...... to a central method that enables new developments. For example, novel enzymes with functions not found in natural proteins have been de novo designed to give enough activity for experimental optimization. This thesis presents the current state-of-the-art within computational design methods together...... with a novel method based on probability theory. With the aim of assembling a complete pipeline for protein design, this work touches upon several aspects of protein design. The presented work is the computational half of a design project where the other half is dedicated to the experimental part...

  8. Production of membrane proteins without cells or detergents.

    Science.gov (United States)

    Rajesh, Sundaresan; Knowles, Timothy; Overduin, Michael

    2011-04-30

    The production of membrane proteins in cellular systems is besieged by several problems due to their hydrophobic nature which often causes misfolding, protein aggregation and cytotoxicity, resulting in poor yields of stable proteins. Cell-free expression has emerged as one of the most versatile alternatives for circumventing these obstacles by producing membrane proteins directly into designed hydrophobic environments. Efficient optimisation of expression and solubilisation conditions using a variety of detergents, membrane mimetics and lipids has yielded structurally and functionally intact membrane proteins, with yields several fold above the levels possible from cell-based systems. Here we review recently developed techniques available to produce functional membrane proteins, and discuss amphipols, nanodisc and styrene maleic acid lipid particle (SMALP) technologies that can be exploited alongside cell-free expression of membrane proteins. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Flow-induced structuring of dense protein dispersions

    NARCIS (Netherlands)

    Manski, J.M.

    2007-01-01

    Both health and sustainability are drivers for the increased interest in the creation of novel foods comprising a high protein content. The key challenge is the formation of an attractive, stable and palatable food texture, which is mainly determined by the food structure. In this research, new

  10. [PALEOPATHOLOGY OF HUMAN REMAINS].

    Science.gov (United States)

    Minozzi, Simona; Fornaciari, Gino

    2015-01-01

    Many diseases induce alterations in the human skeleton, leaving traces of their presence in ancient remains. Paleopathological examination of human remains not only allows the study of the history and evolution of the disease, but also the reconstruction of health conditions in the past populations. This paper describes the most interesting diseases observed in skeletal samples from the Roman Imperial Age necropoles found in urban and suburban areas of Rome during archaeological excavations in the last decades. The diseases observed were grouped into the following categories: articular diseases, traumas, infections, metabolic or nutritional diseases, congenital diseases and tumours, and some examples are reported for each group. Although extensive epidemiological investigation in ancient skeletal records is impossible, the palaeopathological study allowed to highlight the spread of numerous illnesses, many of which can be related to the life and health conditions of the Roman population.

  11. Assessing various Infrared (IR) microscopic imaging techniques for post-mortem interval evaluation of human skeletal remains

    Science.gov (United States)

    Roider, Clemens; Ritsch-Marte, Monika; Pemberger, Nadin; Cemper-Kiesslich, Jan; Hatzer-Grubwieser, Petra; Parson, Walther; Pallua, Johannes Dominikus

    2017-01-01

    Due to the influence of many environmental processes, a precise determination of the post-mortem interval (PMI) of skeletal remains is known to be very complicated. Although methods for the investigation of the PMI exist, there still remains much room for improvement. In this study the applicability of infrared (IR) microscopic imaging techniques such as reflection-, ATR- and Raman- microscopic imaging for the estimation of the PMI of human skeletal remains was tested. PMI specific features were identified and visualized by overlaying IR imaging data with morphological tissue structures obtained using light microscopy to differentiate between forensic and archaeological bone samples. ATR and reflection spectra revealed that a more prominent peak at 1042 cm-1 (an indicator for bone mineralization) was observable in archeological bone material when compared with forensic samples. Moreover, in the case of the archaeological bone material, a reduction in the levels of phospholipids, proteins, nucleic acid sugars, complex carbohydrates as well as amorphous or fully hydrated sugars was detectable at (reciprocal wavelengths/energies) between 3000 cm-1 to 2800 cm-1. Raman spectra illustrated a similar picture with less ν2PO43−at 450 cm-1 and ν4PO43− from 590 cm-1 to 584 cm-1, amide III at 1272 cm-1 and protein CH2 deformation at 1446 cm-1 in archeological bone material/samples/sources. A semi-quantitative determination of various distributions of biomolecules by chemi-maps of reflection- and ATR- methods revealed that there were less carbohydrates and complex carbohydrates as well as amorphous or fully hydrated sugars in archaeological samples compared with forensic bone samples. Raman- microscopic imaging data showed a reduction in B-type carbonate and protein α-helices after a PMI of 3 years. The calculated mineral content ratio and the organic to mineral ratio displayed that the mineral content ratio increases, while the organic to mineral ratio decreases with

  12. Assessing various Infrared (IR microscopic imaging techniques for post-mortem interval evaluation of human skeletal remains.

    Directory of Open Access Journals (Sweden)

    Claudia Woess

    Full Text Available Due to the influence of many environmental processes, a precise determination of the post-mortem interval (PMI of skeletal remains is known to be very complicated. Although methods for the investigation of the PMI exist, there still remains much room for improvement. In this study the applicability of infrared (IR microscopic imaging techniques such as reflection-, ATR- and Raman- microscopic imaging for the estimation of the PMI of human skeletal remains was tested. PMI specific features were identified and visualized by overlaying IR imaging data with morphological tissue structures obtained using light microscopy to differentiate between forensic and archaeological bone samples. ATR and reflection spectra revealed that a more prominent peak at 1042 cm-1 (an indicator for bone mineralization was observable in archeological bone material when compared with forensic samples. Moreover, in the case of the archaeological bone material, a reduction in the levels of phospholipids, proteins, nucleic acid sugars, complex carbohydrates as well as amorphous or fully hydrated sugars was detectable at (reciprocal wavelengths/energies between 3000 cm-1 to 2800 cm-1. Raman spectra illustrated a similar picture with less ν2PO43-at 450 cm-1 and ν4PO43- from 590 cm-1 to 584 cm-1, amide III at 1272 cm-1 and protein CH2 deformation at 1446 cm-1 in archeological bone material/samples/sources. A semi-quantitative determination of various distributions of biomolecules by chemi-maps of reflection- and ATR- methods revealed that there were less carbohydrates and complex carbohydrates as well as amorphous or fully hydrated sugars in archaeological samples compared with forensic bone samples. Raman- microscopic imaging data showed a reduction in B-type carbonate and protein α-helices after a PMI of 3 years. The calculated mineral content ratio and the organic to mineral ratio displayed that the mineral content ratio increases, while the organic to mineral ratio

  13. Assessing various Infrared (IR) microscopic imaging techniques for post-mortem interval evaluation of human skeletal remains.

    Science.gov (United States)

    Woess, Claudia; Unterberger, Seraphin Hubert; Roider, Clemens; Ritsch-Marte, Monika; Pemberger, Nadin; Cemper-Kiesslich, Jan; Hatzer-Grubwieser, Petra; Parson, Walther; Pallua, Johannes Dominikus

    2017-01-01

    Due to the influence of many environmental processes, a precise determination of the post-mortem interval (PMI) of skeletal remains is known to be very complicated. Although methods for the investigation of the PMI exist, there still remains much room for improvement. In this study the applicability of infrared (IR) microscopic imaging techniques such as reflection-, ATR- and Raman- microscopic imaging for the estimation of the PMI of human skeletal remains was tested. PMI specific features were identified and visualized by overlaying IR imaging data with morphological tissue structures obtained using light microscopy to differentiate between forensic and archaeological bone samples. ATR and reflection spectra revealed that a more prominent peak at 1042 cm-1 (an indicator for bone mineralization) was observable in archeological bone material when compared with forensic samples. Moreover, in the case of the archaeological bone material, a reduction in the levels of phospholipids, proteins, nucleic acid sugars, complex carbohydrates as well as amorphous or fully hydrated sugars was detectable at (reciprocal wavelengths/energies) between 3000 cm-1 to 2800 cm-1. Raman spectra illustrated a similar picture with less ν2PO43-at 450 cm-1 and ν4PO43- from 590 cm-1 to 584 cm-1, amide III at 1272 cm-1 and protein CH2 deformation at 1446 cm-1 in archeological bone material/samples/sources. A semi-quantitative determination of various distributions of biomolecules by chemi-maps of reflection- and ATR- methods revealed that there were less carbohydrates and complex carbohydrates as well as amorphous or fully hydrated sugars in archaeological samples compared with forensic bone samples. Raman- microscopic imaging data showed a reduction in B-type carbonate and protein α-helices after a PMI of 3 years. The calculated mineral content ratio and the organic to mineral ratio displayed that the mineral content ratio increases, while the organic to mineral ratio decreases with time

  14. Prediction of the remaining lifetime of stainless steels under conditions of stress corrosion cracking

    International Nuclear Information System (INIS)

    Tandler, M.; Vehovar, L.; Dolecek, V.; Rotnik, U.

    2003-01-01

    The prediction of the lifetime of metal structures and equipment under conditions of stress corrosion is very complicated because of the complexity of this process of degradation. Recently a new method, based on the so-called corrosion elongation curves, has been found, which can be used to predict the time to failure under these conditions. By upgrading of these curves (and thus obtaining Upgraded Corrosion Elongation Curves - UCEC's) it has been possible to obtain a precise definition of the time needed for the initiation of the corrosion crack, and for its stable growth. It is upon this basis that diagrams for the prediction of remaining lifetime (DPRL's) have been developed. DPRL's can also be used to predict the values of various critical parameters which have to be achieved if a stress corrosion crack is to occur. (Abstract Copyright [2003], Wiley Periodicals, Inc.) [de

  15. Randomly organized lipids and marginally stable proteins: a coupling of weak interactions to optimize membrane signaling.

    Science.gov (United States)

    Rice, Anne M; Mahling, Ryan; Fealey, Michael E; Rannikko, Anika; Dunleavy, Katie; Hendrickson, Troy; Lohese, K Jean; Kruggel, Spencer; Heiling, Hillary; Harren, Daniel; Sutton, R Bryan; Pastor, John; Hinderliter, Anne

    2014-09-01

    Eukaryotic lipids in a bilayer are dominated by weak cooperative interactions. These interactions impart highly dynamic and pliable properties to the membrane. C2 domain-containing proteins in the membrane also interact weakly and cooperatively giving rise to a high degree of conformational plasticity. We propose that this feature of weak energetics and plasticity shared by lipids and C2 domain-containing proteins enhance a cell's ability to transduce information across the membrane. We explored this hypothesis using information theory to assess the information storage capacity of model and mast cell membranes, as well as differential scanning calorimetry, carboxyfluorescein release assays, and tryptophan fluorescence to assess protein and membrane stability. The distribution of lipids in mast cell membranes encoded 5.6-5.8bits of information. More information resided in the acyl chains than the head groups and in the inner leaflet of the plasma membrane than the outer leaflet. When the lipid composition and information content of model membranes were varied, the associated C2 domains underwent large changes in stability and denaturation profile. The C2 domain-containing proteins are therefore acutely sensitive to the composition and information content of their associated lipids. Together, these findings suggest that the maximum flow of signaling information through the membrane and into the cell is optimized by the cooperation of near-random distributions of membrane lipids and proteins. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Protein methylation reactions in intact pea chloroplasts

    International Nuclear Information System (INIS)

    Niemi, K.J.

    1989-01-01

    Post-translational protein methylation was investigated in Pisum sativum chloroplasts. Intact pea chloroplasts were incubated with ( 3 H-methyl)-S-adenosylmethionine under various conditions. The chloroplasts were then separated into stromal and thylakoid fractions and analyzed for radioactivity transferred to protein. Light enhanced the magnitude of labeling in both fractions. One thylakoid polypeptide with an apparent molecular mass of 43 kDa was labeled only in the light. Several other thylakoid and stromal proteins were labeled in both light and dark-labeling conditions. Both base-labile methylation, carboxy-methylesters and base-stable groups, N-methylations were found. Further characterization of the methyl-transfer reactions will be presented

  17. TRF1 and TRF2 use different mechanisms to find telomeric DNA but share a novel mechanism to search for protein partners at telomeres.

    Science.gov (United States)

    Lin, Jiangguo; Countryman, Preston; Buncher, Noah; Kaur, Parminder; E, Longjiang; Zhang, Yiyun; Gibson, Greg; You, Changjiang; Watkins, Simon C; Piehler, Jacob; Opresko, Patricia L; Kad, Neil M; Wang, Hong

    2014-02-01

    Human telomeres are maintained by the shelterin protein complex in which TRF1 and TRF2 bind directly to duplex telomeric DNA. How these proteins find telomeric sequences among a genome of billions of base pairs and how they find protein partners to form the shelterin complex remains uncertain. Using single-molecule fluorescence imaging of quantum dot-labeled TRF1 and TRF2, we study how these proteins locate TTAGGG repeats on DNA tightropes. By virtue of its basic domain TRF2 performs an extensive 1D search on nontelomeric DNA, whereas TRF1's 1D search is limited. Unlike the stable and static associations observed for other proteins at specific binding sites, TRF proteins possess reduced binding stability marked by transient binding (∼ 9-17 s) and slow 1D diffusion on specific telomeric regions. These slow diffusion constants yield activation energy barriers to sliding ∼ 2.8-3.6 κ(B)T greater than those for nontelomeric DNA. We propose that the TRF proteins use 1D sliding to find protein partners and assemble the shelterin complex, which in turn stabilizes the interaction with specific telomeric DNA. This 'tag-team proofreading' represents a more general mechanism to ensure a specific set of proteins interact with each other on long repetitive specific DNA sequences without requiring external energy sources.

  18. New developments in the use of stable activable tracers in environmental science

    International Nuclear Information System (INIS)

    Loveland, W.; Keasler, K.; Ghannam, L.; Borovik, A.

    1980-01-01

    Recent developments in the use of stable activable tracers (SATs) in environmental science are reported. (A stable activable tracer is a stable material injected into a system under study and whose concentration is measured by post-sampling activation analysis.) The activable nuclear parts of the tracers studied have been rare earth nuclides with short-lived activation products or Cu. To trace the fate of fluid-bound pollutants (and/or water masses) in marine waters, we have used anionic DTPA complexes of the rare earths. These tracers were shown to be stable (80 to 90% nondissociated) in extensive laboratory tests involving solutions of the tracer in estuarine water including large amounts of marine sediments. Results of a field study in which the flushing time and other hydrological characteristics of an estuarine marina were measured by simultaneously using a fluorescent dye and a SAT are presented. To trace the path of potentially toxic organic molecules, three stable activable tracers, dysprosium(III)-trisacetylacetonate DY(acac) 3 3H 2 O), dysprosium(III)-trisdibenzoylmethane (DY(dbm) 3 H 2 O and copper oxinate Cu (C 9 H 6 ON) 2 were synthesized. Their octanol/water partition coefficients and their solubility in water were measured and used to correlate the tracer species and its biological activity with that of known toxic materials. In a project to demonstrate the simple use of SATs to trace the origin of common insecticides and herbicides, seven common insecticides and herbicides were marked with anionic rare earth DTPA complexes and shown to be detectable at dilutions of 1 part in 10 12 . Two arsenical herbicides were chosen for further study and the tracer/herbicide ratio was shown to remain constant in samples of herbicide material collected on plant surfaces and runoff waters in the environment for long periods

  19. Developmentally inspired programming of adult human mesenchymal stromal cells toward stable chondrogenesis.

    Science.gov (United States)

    Occhetta, Paola; Pigeot, Sebastien; Rasponi, Marco; Dasen, Boris; Mehrkens, Arne; Ullrich, Thomas; Kramer, Ina; Guth-Gundel, Sabine; Barbero, Andrea; Martin, Ivan

    2018-05-01

    It is generally accepted that adult human bone marrow-derived mesenchymal stromal cells (hMSCs) are default committed toward osteogenesis. Even when induced to chondrogenesis, hMSCs typically form hypertrophic cartilage that undergoes endochondral ossification. Because embryonic mesenchyme is obviously competent to generate phenotypically stable cartilage, it is questioned whether there is a correspondence between mesenchymal progenitor compartments during development and in adulthood. Here we tested whether forcing specific early events of articular cartilage development can program hMSC fate toward stable chondrogenesis. Inspired by recent findings that spatial restriction of bone morphogenetic protein (BMP) signaling guides embryonic progenitors toward articular cartilage formation, we hypothesized that selective inhibition of BMP drives the phenotypic stability of hMSC-derived chondrocytes. Two BMP type I receptor-biased kinase inhibitors were screened in a microfluidic platform for their time- and dose-dependent effect on hMSC chondrogenesis. The different receptor selectivity profile of tested compounds allowed demonstration that transient blockade of both ALK2 and ALK3 receptors, while permissive to hMSC cartilage formation, is necessary and sufficient to maintain a stable chondrocyte phenotype. Remarkably, even upon compound removal, hMSCs were no longer competent to undergo hypertrophy in vitro and endochondral ossification in vivo, indicating the onset of a constitutive change. Our findings demonstrate that adult hMSCs effectively share properties of embryonic mesenchyme in the formation of transient but also of stable cartilage. This opens potential pharmacological strategies to articular cartilage regeneration and more broadly indicates the relevance of developmentally inspired protocols to control the fate of adult progenitor cell systems.

  20. CmRBP50 protein phosphorylation is essential for assembly of a stable phloem-mobile high-affinity ribonucleoprotein complex.

    Science.gov (United States)

    Li, Pingfang; Ham, Byung-Kook; Lucas, William J

    2011-07-01

    RNA-binding proteins (RBPs) form ribonucleoprotein (RNP) complexes that play crucial roles in RNA processing for gene regulation. The angiosperm sieve tube system contains a unique population of transcripts, some of which function as long-distance signaling agents involved in regulating organ development. These phloem-mobile mRNAs are translocated as RNP complexes. One such complex is based on a phloem RBP named Cucurbita maxima RNA-binding protein 50 (CmRBP50), a member of the polypyrimidine track binding protein family. The core of this RNP complex contains six additional phloem proteins. Here, requirements for assembly of this CmRBP50 RNP complex are reported. Phosphorylation sites on CmRBP50 were mapped, and then coimmunoprecipitation and protein overlay studies established that the phosphoserine residues, located at the C terminus of CmRBP50, are critical for RNP complex assembly. In vitro pull-down experiments revealed that three phloem proteins, C. maxima phloem protein 16, C. maxima GTP-binding protein, and C. maxima phosphoinositide-specific phospholipase-like protein, bind directly with CmRBP50. This interaction required CmRBP50 phosphorylation. Gel mobility-shift assays demonstrated that assembly of the CmRBP50-based protein complex results in a system having enhanced binding affinity for phloem-mobile mRNAs carrying polypyrimidine track binding motifs. This property would be essential for effective long-distance translocation of bound mRNA to the target tissues.

  1. In vivo trace element speciation study by using enriched stable isotopic tracer technique

    International Nuclear Information System (INIS)

    Feng Weiyue; Chai Zhifang; Shi Junwen; Ding Wenjun

    2005-01-01

    In contrast to the radioactive tracer method, the enriched stable isotopic technique used in life sciences will not cause radiation damage to cells and its operation will be no radioactive risk, In our laboratory, the enriched stable isotopes Cr-50, Hg-196 and Hg-198 combined with biochemical separation, neutron activation analysis (NAA) and inductively coupled plasma mass spectrometry (ICP-IVIS) have been used to investigate the element speciation in vivo. Chromium (Cr) is proposed to act as a potentiator of insulin action in animals and human beings. Its deficiency induces the symptoms resembling diabetes and its supplement can alleviate these symptoms. However, as the concentration of Cr in vivo is usually at ultratrace level(- ng/g), its speciation study is usually difficult, since it is almost impossible to avoid the exogenous Cr contamination caused by separation and determination processes. Therefore, in this study, 50 Cr 2 O 3 with 94.2% 50 Cr was used as a tracer combined with gel chromatography to study the Cr speciation in serum, liver, urine and other tissues of healthy and diabetic rats. The Cr concentrations can be determined via 50 Cr(n, γ) 51 Cr by NAA, which is ideally suited for the ultratrace element analyses due to its high precision, accuracy and sensitivity. Such research have found that the most quantity of chromium in vivo is mainly combined with high molecular weight proteins, which is later identified as transferrin and low molecular weight protein is mainly excreted from urine. Mercury is listed by the International Program of Chemical Safety as one of the six most dangerous chemicals in the global environment. Mercury compounds in the environment are often difficult to degrade. However, the mechanism on mercury toxicity to developing children following long term and low dose of mercury exposure is still not clear. Therefore, high sensitive method in vivo needs to be developed to study such low level mercury toxicity to fetus In this

  2. Room Temperature Stable PspA-Based Nanovaccine Induces Protective Immunity

    Directory of Open Access Journals (Sweden)

    Danielle A. Wagner-Muñiz

    2018-03-01

    Full Text Available Streptococcus pneumoniae is a major causative agent of pneumonia, a debilitating disease particularly in young and elderly populations, and is the leading worldwide cause of death in children under the age of five. While there are existing vaccines against S. pneumoniae, none are protective across all serotypes. Pneumococcal surface protein A (PspA, a key virulence factor of S. pneumoniae, is an antigen that may be incorporated into future vaccines to address the immunological challenges presented by the diversity of capsular antigens. PspA has been shown to be immunogenic and capable of initiating a humoral immune response that is reactive across approximately 94% of pneumococcal strains. Biodegradable polyanhydrides have been studied as a nanoparticle-based vaccine (i.e., nanovaccine platform to stabilize labile proteins, to provide adjuvanticity, and enhance patient compliance by providing protective immunity in a single dose. In this study, we designed a room temperature stable PspA-based polyanhydride nanovaccine that eliminated the need for a free protein component (i.e., 100% encapsulated within the nanoparticles. Mice were immunized once with the lead nanovaccine and upon challenge, presented significantly higher survival rates than animals immunized with soluble protein alone, even with a 25-fold reduction in protein dose. This lead nanovaccine formulation performed similarly to protein adjuvanted with Alum, however, with much less tissue reactogenicity at the site of immunization. By eliminating the free PspA from the nanovaccine formulation, the lead nanovaccine was efficacious after being stored dry for 60 days at room temperature, breaking the need for maintaining the cold chain. Altogether, this study demonstrated that a single dose PspA-based nanovaccine against S. pneumoniae induced protective immunity and provided thermal stability when stored at room temperature for at least 60 days.

  3. Structural and Function Prediction of Musa acuminata subsp. Malaccensis Protein

    Directory of Open Access Journals (Sweden)

    Anum Munir

    2016-03-01

    Full Text Available Hypothetical proteins (HPs are the proteins whose presence has been anticipated, yet in vivo function has not been built up. Illustrating the structural and functional privileged insights of these HPs might likewise prompt a superior comprehension of the protein-protein associations or networks in diverse types of life. Bananas (Musa acuminata spp., including sweet and cooking types, are giant perennial monocotyledonous herbs of the order Zingiberales, a sister grouped to the all-around considered Poales, which incorporate oats. Bananas are crucial for nourishment security in numerous tropical and subtropical nations and the most prominent organic product in industrialized nations. In the present study, the hypothetical protein of M. acuminata (Banana was chosen for analysis and modeling by distinctive bioinformatics apparatuses and databases. As indicated by primary and secondary structure analysis, XP_009393594.1 is a stable hydrophobic protein containing a noteworthy extent of α-helices; Homology modeling was done utilizing SWISS-MODEL server where the templates identity with XP_009393594.1 protein was less which demonstrated novelty of our protein. Ab initio strategy was conducted to produce its 3D structure. A few evaluations of quality assessment and validation parameters determined the generated protein model as stable with genuinely great quality. Functional analysis was completed by ProtFun 2.2, and KEGG (KAAS, recommended that the hypothetical protein is a transcription factor with cytoplasmic domain as zinc finger. The protein was observed to be vital for translation process, involved in metabolism, signaling and cellular processes, genetic information processing and Zinc ion binding. It is suggested that further test approval would help to anticipate the structures and functions of other uncharacterized proteins of different plants and living being.

  4. Stable preparations of tyrosine hydroxylase provide the solution structure of the full-length enzyme

    Science.gov (United States)

    Bezem, Maria T.; Baumann, Anne; Skjærven, Lars; Meyer, Romain; Kursula, Petri; Martinez, Aurora; Flydal, Marte I.

    2016-01-01

    Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the biosynthesis of catecholamine neurotransmitters. TH is a highly complex enzyme at mechanistic, structural, and regulatory levels, and the preparation of kinetically and conformationally stable enzyme for structural characterization has been challenging. Here, we report on improved protocols for purification of recombinant human TH isoform 1 (TH1), which provide large amounts of pure, stable, active TH1 with an intact N-terminus. TH1 purified through fusion with a His-tagged maltose-binding protein on amylose resin was representative of the iron-bound functional enzyme, showing high activity and stabilization by the natural feedback inhibitor dopamine. TH1 purified through fusion with a His-tagged ZZ domain on TALON is remarkably stable, as it was partially inhibited by resin-derived cobalt. This more stable enzyme preparation provided high-quality small-angle X-ray scattering (SAXS) data and reliable structural models of full-length tetrameric TH1. The SAXS-derived model reveals an elongated conformation (Dmax = 20 nm) for TH1, different arrangement of the catalytic domains compared with the crystal structure of truncated forms, and an N-terminal region with an unstructured tail that hosts the phosphorylation sites and a separated Ala-rich helical motif that may have a role in regulation of TH by interacting with binding partners. PMID:27462005

  5. The role of DNA dependent protein kinase in synapsis of DNA ends

    NARCIS (Netherlands)

    E.P.W.C. Weterings (Eric); N.S. Verkaik (Nicole); H.T. Brüggenwirth (Hennie); D.C. van Gent (Dik); J.H.J. Hoeijmakers (Jan)

    2003-01-01

    textabstractDNA dependent protein kinase (DNA-PK) plays a central role in the non-homologous end-joining pathway of DNA double strand break repair. Its catalytic subunit (DNA-PK(CS)) functions as a serine/threonine protein kinase. We show that DNA-PK forms a stable complex at DNA termini that blocks

  6. Cyclin B1 Destruction Box-Mediated Protein Instability: The Enhanced Sensitivity of Fluorescent-Protein-Based Reporter Gene System

    Directory of Open Access Journals (Sweden)

    Chao-Hsun Yang

    2013-01-01

    Full Text Available The periodic expression and destruction of several cyclins are the most important steps for the exact regulation of cell cycle. Cyclins are degraded by the ubiquitin-proteasome system during cell cycle. Besides, a short sequence near the N-terminal of cyclin B called the destruction box (D-box; CDB is also required. Fluorescent-protein-based reporter gene system is insensitive to analysis because of the overly stable fluorescent proteins. Therefore, in this study, we use human CDB fused with both enhanced green fluorescent protein (EGFP at C-terminus and red fluorescent protein (RFP, DsRed at N-terminus in the transfected human melanoma cells to examine the effects of CDB on different fluorescent proteins. Our results indicated that CDB-fused fluorescent protein can be used to examine the slight gene regulations in the reporter gene system and have the potential to be the system for screening of functional compounds in the future.

  7. Carotenoid-protein complexes and their stability towards oxygen and radiation

    International Nuclear Information System (INIS)

    Ramakrishnan, T.V.; Francis, F.J.

    1980-01-01

    Carotenoid-protein complexes isolated from fresh mangoes were found to be more stable to oxygen and radiation when dissolved in water as compared with β-carotene in petroleum ether. Part of the pigment could be released from the complex by gamma irradiation. Observations on the stability of the carotenoid (98% β-carotene) in the complex indicated that the pigment is either associated with the lipid prosthetic group of the protein or loosely attached to the protein by weak hydrophobic bonds. (author)

  8. Stable particles

    International Nuclear Information System (INIS)

    Samios, N.P.

    1993-01-01

    I have been asked to review the subject of stable particles, essentially the particles that eventually comprised the meson and baryon octets. with a few more additions -- with an emphasis on the contributions made by experiments utilizing the bubble chamber technique. In this activity, much work had been done by the photographic emulsion technique and cloud chambers-exposed to cosmic rays as well as accelerator based beams. In fact, many if not most of the stable particles were found by these latter two techniques, however, the forte of the bubble chamber (coupled with the newer and more powerful accelerators) was to verify, and reinforce with large statistics, the existence of these states, to find some of the more difficult ones, mainly neutrals and further to elucidate their properties, i.e., spin, parity, lifetimes, decay parameters, etc

  9. Influence of horse stable environment on human airways

    Directory of Open Access Journals (Sweden)

    Pringle John

    2009-05-01

    Full Text Available Abstract Background Many people spend considerable amount of time each day in equine stable environments either as employees in the care and training of horses or in leisure activity. However, there are few studies available on how the stable environment affects human airways. This study examined in one horse stable qualitative differences in indoor air during winter and late summer conditions and assessed whether air quality was associated with clinically detectable respiratory signs or alterations to selected biomarkers of inflammation and lung function in stable personnel. Methods The horse stable environment and stable-workers (n = 13 in one stable were investigated three times; first in the winter, second in the interjacent late summer and the third time in the following winter stabling period. The stable measurements included levels of ammonia, hydrogen sulphide, total and respirable dust, airborne horse allergen, microorganisms, endotoxin and glucan. The stable-workers completed a questionnaire on respiratory symptoms, underwent nasal lavage with subsequent analysis of inflammation markers, and performed repeated measurements of pulmonary function. Results Measurements in the horse stable showed low organic dust levels and high horse allergen levels. Increased viable level of fungi in the air indicated a growing source in the stable. Air particle load as well as 1,3-β-glucan was higher at the two winter time-points, whereas endotoxin levels were higher at the summer time-point. Two stable-workers showed signs of bronchial obstruction with increased PEF-variability, increased inflammation biomarkers relating to reported allergy, cold or smoking and reported partly work-related symptoms. Furthermore, two other stable-workers reported work-related airway symptoms, of which one had doctor's diagnosed asthma which was well treated. Conclusion Biomarkers involved in the development of airway diseases have been studied in relation to

  10. Influence of horse stable environment on human airways.

    Science.gov (United States)

    Elfman, Lena; Riihimäki, Miia; Pringle, John; Wålinder, Robert

    2009-05-25

    Many people spend considerable amount of time each day in equine stable environments either as employees in the care and training of horses or in leisure activity. However, there are few studies available on how the stable environment affects human airways. This study examined in one horse stable qualitative differences in indoor air during winter and late summer conditions and assessed whether air quality was associated with clinically detectable respiratory signs or alterations to selected biomarkers of inflammation and lung function in stable personnel. The horse stable environment and stable-workers (n = 13) in one stable were investigated three times; first in the winter, second in the interjacent late summer and the third time in the following winter stabling period. The stable measurements included levels of ammonia, hydrogen sulphide, total and respirable dust, airborne horse allergen, microorganisms, endotoxin and glucan. The stable-workers completed a questionnaire on respiratory symptoms, underwent nasal lavage with subsequent analysis of inflammation markers, and performed repeated measurements of pulmonary function. Measurements in the horse stable showed low organic dust levels and high horse allergen levels. Increased viable level of fungi in the air indicated a growing source in the stable. Air particle load as well as 1,3-beta-glucan was higher at the two winter time-points, whereas endotoxin levels were higher at the summer time-point. Two stable-workers showed signs of bronchial obstruction with increased PEF-variability, increased inflammation biomarkers relating to reported allergy, cold or smoking and reported partly work-related symptoms. Furthermore, two other stable-workers reported work-related airway symptoms, of which one had doctor's diagnosed asthma which was well treated. Biomarkers involved in the development of airway diseases have been studied in relation to environmental exposure levels in equine stables. Respirable dust and 1

  11. Synthesis of stable nanosilver particles (AgNPs) by the proteins of seagrass Syringodium isoetifolium and its biomedicinal properties

    Digital Repository Service at National Institute of Oceanography (India)

    Ahila, N.K.; Ramkumar, V.S.; Prakash, S.; Manikandan, B.; Ravindran, J.; Dhanalakshmi, P.K.; Kannapirana, E.

    A simple eco-friendly approach for the hasty synthesis of stable, potent and benign silver nanoparticles (AgNPs) using seagrass, Syringodium isoetifolium was proposed and described here. The UV–Vis, DLS, XRD, AFM, FESEM, EDX and HRTEM analysis...

  12. IGF1 is a common target gene of Ewing's sarcoma fusion proteins in mesenchymal progenitor cells.

    Directory of Open Access Journals (Sweden)

    Luisa Cironi

    Full Text Available BACKGROUND: The EWS-FLI-1 fusion protein is associated with 85-90% of Ewing's sarcoma family tumors (ESFT, the remaining 10-15% of cases expressing chimeric genes encoding EWS or FUS fused to one of several ets transcription factor family members, including ERG-1, FEV, ETV1 and ETV6. ESFT are dependent on insulin-like growth factor-1 (IGF-1 for growth and survival and recent evidence suggests that mesenchymal progenitor/stem cells constitute a candidate ESFT origin. METHODOLOGY/PRINCIPAL FINDINGS: To address the functional relatedness between ESFT-associated fusion proteins, we compared mouse progenitor cell (MPC permissiveness for EWS-FLI-1, EWS-ERG and FUS-ERG expression and assessed the corresponding expression profile changes. Whereas all MPC isolates tested could stably express EWS-FLI-1, only some sustained stable EWS-ERG expression and none could express FUS-ERG for more than 3-5 days. Only 14% and 4% of the total number of genes that were respectively induced and repressed in MPCs by the three fusion proteins were shared. However, all three fusion proteins, but neither FLI-1 nor ERG-1 alone, activated the IGF1 promoter and induced IGF1 expression. CONCLUSION/SIGNIFICANCE: Whereas expression of different ESFT-associated fusion proteins may require distinct cellular microenvironments and induce transcriptome changes of limited similarity, IGF1 induction may provide one common mechanism for their implication in ESFT pathogenesis.

  13. Stable configurations in social networks

    Science.gov (United States)

    Bronski, Jared C.; DeVille, Lee; Ferguson, Timothy; Livesay, Michael

    2018-06-01

    We present and analyze a model of opinion formation on an arbitrary network whose dynamics comes from a global energy function. We study the global and local minimizers of this energy, which we call stable opinion configurations, and describe the global minimizers under certain assumptions on the friendship graph. We show a surprising result that the number of stable configurations is not necessarily monotone in the strength of connection in the social network, i.e. the model sometimes supports more stable configurations when the interpersonal connections are made stronger.

  14. Development of Stable Isotope Technology

    International Nuclear Information System (INIS)

    Jeong, Do Young; Kim, Cheol Jung; Han, Jae Min

    2009-03-01

    KAERI has obtained an advanced technology with singular originality for laser stable isotope separation. Objectives for this project are to get production technology of Tl-203 stable isotope used for medical application and are to establish the foundation of the pilot system, while we are taking aim at 'Laser Isotope Separation Technology to make resistance to the nuclear proliferation'. And we will contribute to ensuring a nuclear transparency in the world society by taking part in a practical group of NSG and being collaboration with various international groups related to stable isotope separation technology

  15. Bioreactor scale up and protein product quality characterization of piggyBac transposon derived CHO pools.

    Science.gov (United States)

    Rajendra, Yashas; Balasubramanian, Sowmya; Peery, Robert B; Swartling, James R; McCracken, Neil A; Norris, Dawn L; Frye, Christopher C; Barnard, Gavin C

    2017-03-01

    Chinese hamster ovary (CHO) cells remain the most popular host for the production of biopharmaceutical drugs, particularly monoclonal antibodies (mAbs), bispecific antibodies, and Fc-fusion proteins. Creating and characterizing the stable CHO clonally-derived cell lines (CDCLs) needed to manufacture these therapeutic proteins is a lengthy and laborious process. Therefore, CHO pools have increasingly been used to rapidly produce protein to support and enable preclinical drug development. We recently described the generation of CHO pools yielding mAb titers as high as 7.6 g/L in a 16 day bioprocess using piggyBac transposon-mediated gene integration. In this study, we wanted to understand why the piggyBac pool titers were significantly higher (2-10 fold) than the control CHO pools. Higher titers were the result of a combination of increased average gene copy number, significantly higher messenger RNA levels and the homogeneity (i.e. less diverse population distribution) of the piggyBac pools, relative to the control pools. In order to validate the use of piggyBac pools to support preclinical drug development, we then performed an in-depth product quality analysis of purified protein. The product quality of protein obtained from the piggyBac pools was very similar to the product quality profile of protein obtained from the control pools. Finally, we demonstrated the scalability of these pools from shake flasks to 36L bioreactors. Overall, these results suggest that gram quantities of therapeutic protein can be rapidly obtained from piggyBac CHO pools without significantly changing product quality attributes. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:534-540, 2017. © 2017 American Institute of Chemical Engineers.

  16. Calcium stable isotope geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Gausonne, Nikolaus [Muenster Univ. (Germany). Inst. fuer Mineralogie; Schmitt, Anne-Desiree [Strasbourg Univ. (France). LHyGeS/EOST; Heuser, Alexander [Bonn Univ. (Germany). Steinmann-Inst. fuer Geologie, Mineralogie und Palaeontologie; Wombacher, Frank [Koeln Univ. (Germany). Inst. fuer Geologie und Mineralogie; Dietzel, Martin [Technische Univ. Graz (Austria). Inst. fuer Angewandte Geowissenschaften; Tipper, Edward [Cambridge Univ. (United Kingdom). Dept. of Earth Sciences; Schiller, Martin [Copenhagen Univ. (Denmark). Natural History Museum of Denmark

    2016-08-01

    This book provides an overview of the fundamentals and reference values for Ca stable isotope research, as well as current analytical methodologies including detailed instructions for sample preparation and isotope analysis. As such, it introduces readers to the different fields of application, including low-temperature mineral precipitation and biomineralisation, Earth surface processes and global cycling, high-temperature processes and cosmochemistry, and lastly human studies and biomedical applications. The current state of the art in these major areas is discussed, and open questions and possible future directions are identified. In terms of its depth and coverage, the current work extends and complements the previous reviews of Ca stable isotope geochemistry, addressing the needs of graduate students and advanced researchers who want to familiarize themselves with Ca stable isotope research.

  17. Calcium stable isotope geochemistry

    International Nuclear Information System (INIS)

    Gausonne, Nikolaus; Schmitt, Anne-Desiree; Heuser, Alexander; Wombacher, Frank; Dietzel, Martin; Tipper, Edward; Schiller, Martin

    2016-01-01

    This book provides an overview of the fundamentals and reference values for Ca stable isotope research, as well as current analytical methodologies including detailed instructions for sample preparation and isotope analysis. As such, it introduces readers to the different fields of application, including low-temperature mineral precipitation and biomineralisation, Earth surface processes and global cycling, high-temperature processes and cosmochemistry, and lastly human studies and biomedical applications. The current state of the art in these major areas is discussed, and open questions and possible future directions are identified. In terms of its depth and coverage, the current work extends and complements the previous reviews of Ca stable isotope geochemistry, addressing the needs of graduate students and advanced researchers who want to familiarize themselves with Ca stable isotope research.

  18. Mitochondrial protein acetylation mediates nutrient sensing of mitochondrial protein synthesis and mitonuclear protein balance.

    Science.gov (United States)

    Di Domenico, Antonella; Hofer, Annette; Tundo, Federica; Wenz, Tina

    2014-11-01

    Changes in nutrient supply require global metabolic reprogramming to optimize the utilization of the nutrients. Mitochondria as a central component of the cellular metabolism play a key role in this adaptive process. Since mitochondria harbor their own genome, which encodes essential enzymes, mitochondrial protein synthesis is a determinant of metabolic adaptation. While regulation of cytoplasmic protein synthesis in response to metabolic challenges has been studied in great detail, mechanisms which adapt mitochondrial translation in response to metabolic challenges remain elusive. Our results suggest that the mitochondrial acetylation status controlled by Sirt3 and its proposed opponent GCN5L1 is an important regulator of the metabolic adaptation of mitochondrial translation. Moreover, both proteins modulate regulators of cytoplasmic protein synthesis as well as the mitonuclear protein balance making Sirt3 and GCN5L1 key players in synchronizing mitochondrial and cytoplasmic translation. Our results thereby highlight regulation of mitochondrial translation as a novel component in the cellular nutrient sensing scheme and identify mitochondrial acetylation as a new regulatory principle for the metabolic competence of mitochondrial protein synthesis. © 2014 International Union of Biochemistry and Molecular Biology.

  19. National uses and needs for separated stable isotopes in physics, chemistry, and geoscience research

    International Nuclear Information System (INIS)

    Zisman, M.S.

    1982-01-01

    Present uses of separated stable isotopes in the fields of physics, chemistry, and the geosciences have been surveyed to identify current supply problems and to determine future needs. Demand for separated isotopes remains strong, with 220 different nuclides having been used in the past three years. The largest needs, in terms of both quantity and variety of isotopes, are found in nuclear physics research. Current problems include a lack of availability of many nuclides, unsatisfactory enrichment of rare species, and prohibitively high costs for certain important isotopes. It is expected that demands for separated isotopes will remain roughly at present levels, although there will be a shift toward more requests for highly enriched rare isotopes. Significantly greater use will be made of neutron-rich nuclides below A = 100 for producing exotic ion beams at various accelerators. Use of transition metal nuclei for nuclear magnetic resonance spectroscopy will expand. In addition, calibration standards will be required for the newer techniques of radiological dating, such as the Sm/Nd and Lu/Hf methods, but in relatively small quantities. Most members of the research community would be willing to pay considerably more than they do now to maintain adequate supplies of stable isotopes

  20. National uses and needs for separated stable isotopes in physics, chemistry, and geoscience research

    Energy Technology Data Exchange (ETDEWEB)

    Zisman, M.S.

    1982-01-01

    Present uses of separated stable isotopes in the fields of physics, chemistry, and the geosciences have been surveyed to identify current supply problems and to determine future needs. Demand for separated isotopes remains strong, with 220 different nuclides having been used in the past three years. The largest needs, in terms of both quantity and variety of isotopes, are found in nuclear physics research. Current problems include a lack of availability of many nuclides, unsatisfactory enrichment of rare species, and prohibitively high costs for certain important isotopes. It is expected that demands for separated isotopes will remain roughly at present levels, although there will be a shift toward more requests for highly enriched rare isotopes. Significantly greater use will be made of neutron-rich nuclides below A = 100 for producing exotic ion beams at various accelerators. Use of transition metal nuclei for nuclear magnetic resonance spectroscopy will expand. In addition, calibration standards will be required for the newer techniques of radiological dating, such as the Sm/Nd and Lu/Hf methods, but in relatively small quantities. Most members of the research community would be willing to pay considerably more than they do now to maintain adequate supplies of stable isotopes.

  1. Alpha Shapes and Proteins

    DEFF Research Database (Denmark)

    Winter, Pawel; Sterner, Henrik; Sterner, Peter

    2009-01-01

    We provide a unified description of (weighted) alpha shapes, beta shapes and the corresponding simplicialcomplexes. We discuss their applicability to various protein-related problems. We also discuss filtrations of alpha shapes and touch upon related persistence issues.We claim that the full...... potential of alpha-shapes and related geometrical constructs in protein-related problems yet remains to be realized and verified. We suggest parallel algorithms for (weighted) alpha shapes, and we argue that future use of filtrations and kinetic variants for larger proteins will need such implementation....

  2. Topical tazarotene vs. coal tar in stable plaque psoriasis

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, U.; Kaur, I.; Dogra, S.; De, D.; Kumar, B. [Postgraduate Institute of Medical Education & Research, Chandigarh (India)

    2010-07-15

    The efficacy of topical tazarotene has not previously been compared with the conventional topical treatment of crude coal tar (CCT) in stable plaque psoriasis. In this nonblinded side-to-side comparison study, patients with chronic stable plaque psoriasis, who had bilaterally symmetrical plaques on the limbs, applied 0.1% tazarotene gel on the right side and 5% CCT ointment on the left side once daily for 12 weeks followed by an 8-week treatment-free follow up period. Severity of psoriatic lesions and response to treatment was evaluated by scoring erythema, scaling and induration (ESI). Of 30 patients recruited, 27 could be assessed. In the per-protocol analysis, the mean percentage reduction in ESI score at the end of the treatment period was 74.15% {+-} 9.43 and 77.37% {+-} 10.93 with tazarotene and CCT, respectively (P {gt} 0.05). A reduction in ESI score of {gt} 75% was seen in 11 (40.74%) and 16 (59.26%) patients with tazarotene and CCT, respectively, at the end of 12 weeks. Side-effects were seen in 48.14% of patients treated with tazarotene, but in no patient treated with CCT. Tazarotene 0.1% gel has comparable clinical efficacy to CCT 5% ointment. CCT ointment remains a cost-effective therapy for plaque psoriasis.

  3. Emergence, Retention and Selection: A Trilogy of Origination for Functional De Novo Proteins from Ancestral LncRNAs in Primates.

    Directory of Open Access Journals (Sweden)

    Jia-Yu Chen

    2015-07-01

    Full Text Available While some human-specific protein-coding genes have been proposed to originate from ancestral lncRNAs, the transition process remains poorly understood. Here we identified 64 hominoid-specific de novo genes and report a mechanism for the origination of functional de novo proteins from ancestral lncRNAs with precise splicing structures and specific tissue expression profiles. Whole-genome sequencing of dozens of rhesus macaque animals revealed that these lncRNAs are generally not more selectively constrained than other lncRNA loci. The existence of these newly-originated de novo proteins is also not beyond anticipation under neutral expectation, as they generally have longer theoretical lifespan than their current age, due to their GC-rich sequence property enabling stable ORFs with lower chance of non-sense mutations. Interestingly, although the emergence and retention of these de novo genes are likely driven by neutral forces, population genetics study in 67 human individuals and 82 macaque animals revealed signatures of purifying selection on these genes specifically in human population, indicating a proportion of these newly-originated proteins are already functional in human. We thus propose a mechanism for creation of functional de novo proteins from ancestral lncRNAs during the primate evolution, which may contribute to human-specific genetic novelties by taking advantage of existed genomic contexts.

  4. Unpredictably Stable

    DEFF Research Database (Denmark)

    Failla, Virgilio; Melillo, Francesca; Reichstein, Toke

    2014-01-01

    Is entrepreneurship a more stable career choice for high employment turnover individuals? We find that a transition to entrepreneurship induces a shift towards stayer behavior and identify job matching, job satisfaction and lock-in effects as main drivers. These findings have major implications...

  5. The role of oligomerization and cooperative regulation in protein function: the case of tryptophan synthase.

    Directory of Open Access Journals (Sweden)

    M Qaiser Fatmi

    Full Text Available The oligomerization/co-localization of protein complexes and their cooperative regulation in protein function is a key feature in many biological systems. The synergistic regulation in different subunits often enhances the functional properties of the multi-enzyme complex. The present study used molecular dynamics and Brownian dynamics simulations to study the effects of allostery, oligomerization and intermediate channeling on enhancing the protein function of tryptophan synthase (TRPS. TRPS uses a set of α/β-dimeric units to catalyze the last two steps of L-tryptophan biosynthesis, and the rate is remarkably slower in the isolated monomers. Our work shows that without their binding partner, the isolated monomers are stable and more rigid. The substrates can form fairly stable interactions with the protein in both forms when the protein reaches the final ligand-bound conformations. Our simulations also revealed that the α/β-dimeric unit stabilizes the substrate-protein conformation in the ligand binding process, which lowers the conformation transition barrier and helps the protein conformations shift from an open/inactive form to a closed/active form. Brownian dynamics simulations with a coarse-grained model illustrate how protein conformations affect substrate channeling. The results highlight the complex roles of protein oligomerization and the fine balance between rigidity and dynamics in protein function.

  6. A Way Forward to Improve Nutrition with Stable Isotopes

    International Nuclear Information System (INIS)

    Gorisek, Aleksandra Sasa

    2014-01-01

    People need food and water to survive, but nutritious food is central to healthy living. Energy-dense fat, protein and carbohydrates need to be accompanied by vitamins and minerals (micronutrients) to ensure proper nutrition. Malnutrition, an inappropriate balance of nutrients, can occur with too much or too little of food. The IAEA works with other agencies to evaluate interventions in Member States that are designed to address the problem of malnutrition. Stable isotope techniques can be used to validate the information collected through the use of questionnaires and simple measurements. Capacity building through training and the provision of equipment enables nutritionists worldwide to use these methods in community settings as they are safe, non-invasive and can be used with adults and children of all ages

  7. Quantifying Kinase-Specific Phosphorylation Stoichiometry Using Stable Isotope Labeling In a Reverse In-Gel Kinase Assay

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang; Cox, Jonathan T.; Huang, Weiliang; Kane, Maureen; Tang, Keqi; Bieberich, Charles J.

    2016-12-06

    Reversible protein phosphorylation regulates essentially all cellular activities. Aberrant protein phosphorylation is an etiological factor in a wide array of diseases, including cancer1, diabetes2, and Alzheimer’s3. Given the broad impact of protein phosphorylation on cellular biology and organismal health, understanding how protein phosphorylation is regulated and the consequences of gain and loss of phosphoryl moieties from proteins is of primary importance. Advances in instrumentation, particularly in mass spectrometry, coupled with high throughput approaches have recently yielded large datasets cataloging tens of thousands of protein phosphorylation sites in multiple organisms4-6. While these studies are seminal in term of data collection, our understanding of protein phosphorylation regulation remains largely one-dimensional.

  8. Lipid rafts exist as stable cholesterol-independent microdomains in the brush border membrane of enterocytes

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Immerdal, Lissi; Thorsen, Evy

    2001-01-01

    Glycosphingolipid/cholesterol-rich membranes ("rafts")can be isolated from many types of cells, but their existence as stable microdomains in the cell membrane has been elusive. Addressing this problem, we studied the distribution of galectin-4, a raft marker, and lactase, a protein excluded from...... rafts, on microvillar vesicles from the enterocyte brush border membrane. Magnetic beads coated with either anti-galectin-4 or anti-lactase antibodies were used for immunoisolation of vesicles followed by double immunogold labeling of the two proteins. A morphometric analysis revealed subpopulations...... of raft-rich and raft-poor vesicles by the following criteria: 1) the lactase/galectin-4 labeling ratio/vesicle captured by the anti-lactase beads was significantly higher (p

  9. Solution structure of the Equine Infectious Anemia Virus p9 protein: a rationalization of its different ALIX binding requirements compared to the analogous HIV-p6 protein

    Directory of Open Access Journals (Sweden)

    Henklein Peter

    2009-12-01

    Full Text Available Abstract Background The equine infection anemia virus (EIAV p9 Gag protein contains the late (L- domain required for efficient virus release of nascent virions from the cell membrane of infected cell. Results In the present study the p9 protein and N- and C-terminal fragments (residues 1-21 and 22-51, respectively were chemically synthesized and used for structural analyses. Circular dichroism and 1H-NMR spectroscopy provide the first molecular insight into the secondary structure and folding of this 51-amino acid protein under different solution conditions. Qualitative 1H-chemical shift and NOE data indicate that in a pure aqueous environment p9 favors an unstructured state. In its most structured state under hydrophobic conditions, p9 adopts a stable helical structure within the C-terminus. Quantitative NOE data further revealed that this α-helix extends from Ser-27 to Ser-48, while the N-terminal residues remain unstructured. The structural elements identified for p9 differ substantially from that of the functional homologous HIV-1 p6 protein. Conclusions These structural differences are discussed in the context of the different types of L-domains regulating distinct cellular pathways in virus budding. EIAV p9 mediates virus release by recruiting the ALG2-interacting protein X (ALIX via the YPDL-motif to the site of virus budding, the counterpart of the YPXnL-motif found in p6. However, p6 contains an additional PTAP L-domain that promotes HIV-1 release by binding to the tumor susceptibility gene 101 (Tsg101. The notion that structures found in p9 differ form that of p6 further support the idea that different mechanisms regulate binding of ALIX to primary versus secondary L-domains types.

  10. Impact of Power Ultrasound on Antihypertensive Activity, Functional Properties, and Thermal Stability of Rapeseed Protein Hydrolysates

    Directory of Open Access Journals (Sweden)

    Asif Wali

    2017-01-01

    Full Text Available The effects of power ultrasound pretreatments on the degree of hydrolysis (DH, angiotensin-I-converting enzyme (ACE inhibitory activity, amino acid composition, surface hydrophobicity, protein solubility, and thermal stability of ACE inhibition of rapeseed protein hydrolysates were evaluated. Ultrasonic pretreatments before enzymolysis in terms of power and exposure time increased the DH and ACE inhibitory activities over the control (without sonication. In this study, maximum DH 22.07% and ACE inhibitory activity 72.13% were achieved at 600 W and 12 min pretreatment. Compared to the hydrolysates obtained without sonication, the amino acid profile of ultrasound pretreated hydrolysates showed significant changes particularly in the proline content and hydrophobic amino acids with an increased rate of 2.47% and 6.31%, respectively. Ultrasound pretreatment (600 watts, 12 min improved functional properties of protein hydrolysates over control by enhancing surface hydrophobicity and solubility index with an increased rate of 130.76% and 34.22%. Moreover, the stability test showed that the ACE inhibitory activity remains stable against heat treatments. However, extensive heat, prolonged heating time, and alkaline conditions were not in the favor of stability test, while under mild heat and acidic conditions their ACE inhibitory activities were not significantly different from unheated samples.

  11. Development of fish protein powder as an ingredient for food applications: a review

    OpenAIRE

    Shaviklo, Amir Reza

    2013-01-01

    The increasing awareness that dried fish protein can be applied for food fortification and production of value added/functional foods has encouraged the food industry to examine different methods for developing fish protein ingredient from different raw materials. Fish protein powder (FPP) is a dried and stable fish product, intended for human consumption, in which the protein is more concentrated than in the original fish flesh. Quality and acceptability of FPP depend on several factors. The...

  12. Nucleolar protein trafficking in response to HIV-1 Tat: rewiring the nucleolus.

    Science.gov (United States)

    Jarboui, Mohamed Ali; Bidoia, Carlo; Woods, Elena; Roe, Barbara; Wynne, Kieran; Elia, Giuliano; Hall, William W; Gautier, Virginie W

    2012-01-01

    The trans-activator Tat protein is a viral regulatory protein essential for HIV-1 replication. Tat trafficks to the nucleoplasm and the nucleolus. The nucleolus, a highly dynamic and structured membrane-less sub-nuclear compartment, is the site of rRNA and ribosome biogenesis and is involved in numerous cellular functions including transcriptional regulation, cell cycle control and viral infection. Importantly, transient nucleolar trafficking of both Tat and HIV-1 viral transcripts are critical in HIV-1 replication, however, the role(s) of the nucleolus in HIV-1 replication remains unclear. To better understand how the interaction of Tat with the nucleolar machinery contributes to HIV-1 pathogenesis, we investigated the quantitative changes in the composition of the nucleolar proteome of Jurkat T-cells stably expressing HIV-1 Tat fused to a TAP tag. Using an organellar proteomic approach based on mass spectrometry, coupled with Stable Isotope Labelling in Cell culture (SILAC), we quantified 520 proteins, including 49 proteins showing significant changes in abundance in Jurkat T-cell nucleolus upon Tat expression. Numerous proteins exhibiting a fold change were well characterised Tat interactors and/or known to be critical for HIV-1 replication. This suggests that the spatial control and subcellular compartimentaliation of these cellular cofactors by Tat provide an additional layer of control for regulating cellular machinery involved in HIV-1 pathogenesis. Pathway analysis and network reconstruction revealed that Tat expression specifically resulted in the nucleolar enrichment of proteins collectively participating in ribosomal biogenesis, protein homeostasis, metabolic pathways including glycolytic, pentose phosphate, nucleotides and amino acids biosynthetic pathways, stress response, T-cell signaling pathways and genome integrity. We present here the first differential profiling of the nucleolar proteome of T-cells expressing HIV-1 Tat. We discuss how these

  13. Studies to Prevent Degradation of Recombinant Fc-Fusion Protein Expressed in Mammalian Cell Line and Protein Characterization

    Directory of Open Access Journals (Sweden)

    Sanjukta Chakrabarti

    2016-06-01

    Full Text Available Clipping of recombinant proteins is a major issue in animal cell cultures. A recombinant Fc-fusion protein, VEGFR1(D1–D3-Fc expressed in CHOK1SV GS-KO cells was observed to be undergoing clippings in lab scale cultures. Partial cleaving of expressed protein initiated early on in cell culture and was observed to increase over time in culture and also on storage. In this study, a few parameters were explored in a bid to inhibit clipping in the fusion protein The effects of culture temperature, duration of culture, the addition of an anti-clumping agent, ferric citrate and use of protease inhibitor cocktail on inhibition of proteolysis of the Fc fusion were studied. Lowering of culture temperature from 37 to 30 °C alone appears to be the best solution for reducing protein degradation from the quality, cost and regulatory points of view. The obtained Fc protein was characterized and found to be in its stable folded state, exhibiting a high affinity for its ligand and also biological and functional activities.

  14. Study on the plasma proteins of A-bomb survived patients including those suffered by the remained radioactivities. Report 2. Quantitative observation of the plasma protein fractions by electrophoretic test and to solve the problems for physiological clinical significance of its patterns

    Energy Technology Data Exchange (ETDEWEB)

    Makidono, J; Takanashi, S; Yoshimoto, T; Kai, T; Yoshimoto, K; Matsutani, M; Miura, M

    1963-10-01

    The plasma proteins of A-bombed survivors, healthy persons, long term x-ray equipment handling people (for instance the radiologists and x-ray technicians), cancer patients, and tumor irradiated cancer patients were examined by the electrophoretic test. It was found that the electrophoretic patterns of plasma proteins could be divided into normal (N-pattern) and abnormal (..beta.. and ..gamma.. patterns) patterns, when they were classified according to the accents of each fraction. The patterns of the healthy persons and the long term x-ray handling people showed normal (N) pattern, however, it showed 43% abnormal patterns in A-bombed survivors and 48% in cancer patients. Furthermore, the patterns could be changed by radiotherapy to cancer, ie., from N to ..beta.. or vice versa. As a result of the quantitative observation about individual pattern, the accents of ..beta..-globulins in ..beta..-patterns and ..gamma..-globulins in ..gamma..-patterns were found. The globulins increased in the A bomb survivors and the long term x-ray handling people, and this increase was also seen in the cases of cancer patients which showed 85% of them were effected with uclers (self disintegrated) by clinical examinations. A physiological clinical significance of these abnormal patterns (..beta.. and ..gamma..) in the plasma proteins indicates the disorders in its body and an important immunological meaning. Abnormal patterns in those who suffered by the remained radioactivities caused by the A-bomb showed 70%, whose average was much higher than those of direct A-bombed survivors. It is pointed out that, in recent days, there is a trend of more and gradual increase in the malignant neoplamsm than the disorders of direct A-bombed survivors.

  15. Determination of human muscle protein fractional synthesis rate

    DEFF Research Database (Denmark)

    Bornø, Andreas; Hulston, Carl J; van Hall, Gerrit

    2014-01-01

    In the present study, different MS methods for the determination of human muscle protein fractional synthesis rate (FSR) using [ring-(13)C6 ]phenylalanine as a tracer were evaluated. Because the turnover rate of human skeletal muscle is slow, only minute quantities of the stable isotopically...

  16. Protein supplementation with sports protein bars in renal patients.

    Science.gov (United States)

    Meade, Anthony

    2007-05-01

    bars as the preferred supplement. The major reasons for not continuing were taste and chewability, especially in older patients with dentures. Serum potassium and phosphate levels were not increased with supplementation. Measured serum albumin and protein catabolic rate were considered unreliable indicators because not all patients were medically stable. Sports protein bars are an acceptable protein and energy supplement for patients on hemodialysis. Sports protein bars are well accepted by patients except when dentures limit chewability. Sports protein bars have advantages over fluid-based supplements in patients with fluid restrictions.

  17. Mammalian-enabled (MENA) protein enhances oncogenic potential and cancer stem cell-like phenotype in hepatocellular carcinoma cells.

    Science.gov (United States)

    Hu, Kunpeng; Huang, Pinzhu; Luo, Hui; Yao, Zhicheng; Wang, Qingliang; Xiong, Zhiyong; Lin, Jizong; Huang, He; Xu, Shilei; Zhang, Peng; Liu, Bo

    2017-08-01

    Mammalian-enabled (MENA) protein is an actin-regulatory protein that influences cell motility and adhesion. It is known to play a role in tumorigenicity of hepatocellular carcinoma (HCC) but the underlying molecular mechanism remains unknown. This study aimed to investigate the oncogenic potential of MENA and its capacity to regulate cancer stem cell (CSC)-like phenotypes in HCC cells. Real-time-PCR and western blot were used to assess mRNA and protein levels of target genes in human HCC tissue specimens and HCC cell lines, respectively. Stable MENA-overexpressing HCC cells were generated from HCC cell lines. Transwell cell migration and colony formation assays were employed to evaluate tumorigenicity. Ectopic expression of MENA significantly enhanced cell migration and colony-forming ability in HCC cells. Overexpression of MENA upregulated several hepatic progenitor/stem cell markers in HCC cells. A high MENA protein level was associated with high mRNA levels of MENA, CD133, cytokeratin 19 (CK19), and epithelial cell adhesion molecule (EpCAM) in human HCC tissues. Overexpression of MENA enhanced epithelial-to-mesenchymal transition (EMT) markers, extracellular signal-regulated kinases (ERK) phosphorylation, and the level of β-catenin in HCC cells. This study demonstrated that overexpression of MENA in HCC cells promoted stem cell markers, EMT markers, and tumorigenicity. These effects may involve, at least partially, the ERK and β-catenin signaling pathways.

  18. Quantitative protein localization signatures reveal an association between spatial and functional divergences of proteins.

    Science.gov (United States)

    Loo, Lit-Hsin; Laksameethanasan, Danai; Tung, Yi-Ling

    2014-03-01

    Protein subcellular localization is a major determinant of protein function. However, this important protein feature is often described in terms of discrete and qualitative categories of subcellular compartments, and therefore it has limited applications in quantitative protein function analyses. Here, we present Protein Localization Analysis and Search Tools (PLAST), an automated analysis framework for constructing and comparing quantitative signatures of protein subcellular localization patterns based on microscopy images. PLAST produces human-interpretable protein localization maps that quantitatively describe the similarities in the localization patterns of proteins and major subcellular compartments, without requiring manual assignment or supervised learning of these compartments. Using the budding yeast Saccharomyces cerevisiae as a model system, we show that PLAST is more accurate than existing, qualitative protein localization annotations in identifying known co-localized proteins. Furthermore, we demonstrate that PLAST can reveal protein localization-function relationships that are not obvious from these annotations. First, we identified proteins that have similar localization patterns and participate in closely-related biological processes, but do not necessarily form stable complexes with each other or localize at the same organelles. Second, we found an association between spatial and functional divergences of proteins during evolution. Surprisingly, as proteins with common ancestors evolve, they tend to develop more diverged subcellular localization patterns, but still occupy similar numbers of compartments. This suggests that divergence of protein localization might be more frequently due to the development of more specific localization patterns over ancestral compartments than the occupation of new compartments. PLAST enables systematic and quantitative analyses of protein localization-function relationships, and will be useful to elucidate protein

  19. Introducing Stable Radicals into Molecular Machines.

    Science.gov (United States)

    Wang, Yuping; Frasconi, Marco; Stoddart, J Fraser

    2017-09-27

    Ever since their discovery, stable organic radicals have received considerable attention from chemists because of their unique optical, electronic, and magnetic properties. Currently, one of the most appealing challenges for the chemical community is to develop sophisticated artificial molecular machines that can do work by consuming external energy, after the manner of motor proteins. In this context, radical-pairing interactions are important in addressing the challenge: they not only provide supramolecular assistance in the synthesis of molecular machines but also open the door to developing multifunctional systems relying on the various properties of the radical species. In this Outlook, by taking the radical cationic state of 1,1'-dialkyl-4,4'-bipyridinium (BIPY •+ ) as an example, we highlight our research on the art and science of introducing radical-pairing interactions into functional systems, from prototypical molecular switches to complex molecular machines, followed by a discussion of the (i) limitations of the current systems and (ii) future research directions for designing BIPY •+ -based molecular machines with useful functions.

  20. Binary polypeptide system for permanent and oriented protein immobilization

    Directory of Open Access Journals (Sweden)

    Bailes Julian

    2010-05-01

    Full Text Available Abstract Background Many techniques in molecular biology, clinical diagnostics and biotechnology rely on binary affinity tags. The existing tags are based on either small molecules (e.g., biotin/streptavidin or glutathione/GST or peptide tags (FLAG, Myc, HA, Strep-tag and His-tag. Among these, the biotin-streptavidin system is most popular due to the nearly irreversible interaction of biotin with the tetrameric protein, streptavidin. The major drawback of the stable biotin-streptavidin system, however, is that neither of the two tags can be added to a protein of interest via recombinant means (except for the Strep-tag case leading to the requirement for chemical coupling. Results Here we report a new immobilization system which utilizes two monomeric polypeptides which self-assemble to produce non-covalent yet nearly irreversible complex which is stable in strong detergents, chaotropic agents, as well as in acids and alkali. Our system is based on the core region of the tetra-helical bundle known as the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex. This irreversible protein attachment system (IPAS uses either a shortened syntaxin helix and fused SNAP25-synaptobrevin or a fused syntaxin-synaptobrevin and SNAP25 allowing a two-component system suitable for recombinant protein tagging, capture and immobilization. We also show that IPAS is suitable for use with traditional beads and chromatography, planar surfaces and Biacore, gold nanoparticles and for protein-protein interaction in solution. Conclusions IPAS offers an alternative to chemical cross-linking, streptavidin-biotin system and to traditional peptide affinity tags and can be used for a wide range of applications in nanotechnology and molecular sciences.

  1. Optimum dietary protein requirement in nondiabetic maintenance hemodialysis patients.

    Science.gov (United States)

    Ohkawa, Sakae; Kaizu, Yukiko; Odamaki, Mari; Ikegaya, Naoki; Hibi, Ikuo; Miyaji, Kunihiko; Kumagai, Hiromichi

    2004-03-01

    There is controversy about whether the dietary protein requirement of 1.2 g/kg/d for hemodialysis (HD) patients, in the nutritional guidelines recommended by the National Kidney Foundation-Kidney Disease Outcomes Quality Initiative (NKF-KDOQI), is reasonable. A cross-sectional study was conducted in 129 stable HD patients without diabetes (84 men, 45 women) to investigate the association between the protein equivalent of nitrogen appearance normalized by ideal body weight (nPNAibw), an index of protein intake, and skeletal muscle mass or other metabolic consequences. Patients were divided into 5 groups according to nPNAibw index. Midthigh muscle area (TMA), midthigh subcutaneous fat area (TSFA), abdominal muscle area (AMA), abdominal subcutaneous fat area (ASFA), and visceral fat area (AVFA) were measured using computed tomography, and various nutritional parameters were compared among these groups. TMA and AMA values increased with increasing dietary protein intake from less than 0.7 g/kg/d to 0.9-1.1 g/kg/d and showed a plateau at greater than 0.9 to 1.1 g/kg/d of dietary protein intake. Conversely, fat mass, including TSFA, ASFA, and AVFA, and serum potassium concentration increased with graded protein intake, and no plateau was formed. Patients with nPNAibw greater than 1.3 g/kg/d satisfied the criterion of visceral obesity. Although serum prealbumin levels showed a trend similar to that of muscle mass, there was no significant difference in serum albumin levels among the study groups. Optimal dietary protein requirement for patients undergoing maintenance HD in a stable condition appears to be less than the level recommended by the NKF-KDOQI nutritional guidelines.

  2. The differential role of cortical protein synthesis in taste memory formation and persistence

    Science.gov (United States)

    Levitan, David; Gal-Ben-Ari, Shunit; Heise, Christopher; Rosenberg, Tali; Elkobi, Alina; Inberg, Sharon; Sala, Carlo; Rosenblum, Kobi

    2016-05-01

    The current dogma suggests that the formation of long-term memory (LTM) is dependent on protein synthesis but persistence of the memory trace is not. However, many of the studies examining the effect of protein synthesis inhibitors (PSIs) on LTM persistence were performed in the hippocampus, which is known to have a time-dependent role in memory storage, rather than the cortex, which is considered to be the main structure to store long-term memories. Here we studied the effect of PSIs on LTM formation and persistence in male Wistar Hola (n⩾5) rats by infusing the protein synthesis inhibitor, anisomycin (100 μg, 1 μl), into the gustatory cortex (GC) during LTM formation and persistence in conditioned taste aversion (CTA). We found that local anisomycin infusion to the GC before memory acquisition impaired LTM formation (P=8.9E-5), but had no effect on LTM persistence when infused 3 days post acquisition (P=0.94). However, when we extended the time interval between treatment with anisomycin and testing from 3 days to 14 days, LTM persistence was enhanced (P=0.01). The enhancement was on the background of stable and non-declining memory, and was not recapitulated by another amnesic agent, APV (10 μg, 1 μl), an N-methyl-D-aspartate receptor antagonist (P=0.54). In conclusion, CTA LTM remains sensitive to the action of PSIs in the GC even 3 days following memory acquisition. This sensitivity is differentially expressed between the formation and persistence of LTM, suggesting that increased cortical protein synthesis promotes LTM formation, whereas decreased protein synthesis promotes LTM persistence.

  3. Thermal stability of chemically denatured green fluorescent protein (GFP) A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Attila; Malnasi-Csizmadia, Andras; Somogyi, Bela; Lorinczy, Denes

    2004-02-09

    Green fluorescent protein (GFP) is a light emitter in the bioluminescence reaction of the jellyfish Aequorea victoria. The protein consist of 238 amino acids and produces green fluorescent light ({lambda}{sub max}=508 nm), when irradiated with near ultraviolet light. The fluorescence is due to the presence of chromophore consisting of an imidazolone ring, formed by a post-translational modification of the tripeptide -Ser{sup 65}-Tyr{sup 66}-Gly{sup 67}-, which buried into {beta}-barrel. GFP is extremely compact and heat stable molecule. In this work, we present data for the effect of chemical denaturing agent on the thermal stability of GFP. When denaturing agent is applied, global thermal stability and the melting point of the molecule is decreases, that can be monitored with differential scanning calorimetry. The results indicate, that in 1-6 M range of GuHCl the melting temperature is decreasing continuously from 83 to 38 deg. C. Interesting finding, that the calculated calorimetric enthalpy decreases with GuHCl concentration up to 3 M (5.6-0.2 kJ mol{sup -1}), but at 4 M it jumps to 8.4 and at greater concentration it is falling down to 1.1 kJ mol{sup -1}. First phenomena, i.e. the decrease of melting point with increasing GuHCl concentration can be easily explained by the effect of the extended chemical denaturation, when less and less amount of heat required to diminish the remaining hydrogen bonds in {beta}-barrel. The surprising increase of calorimetric enthalpy at 4 M concentration of GuHCl could be the consequence of a dimerization or a formation of stable complex between GFP and denaturing agent as well as a precipitation at an extreme GuHCl concentration. We are planning further experiments to elucidate fluorescent consequence of these processes.

  4. From Advance Euthanasia Directive to Euthanasia: Stable Preference in Older People?

    Science.gov (United States)

    Bolt, Eva E; Pasman, H Roeline W; Deeg, Dorly J H; Onwuteaka-Philipsen, Bregje D

    2016-08-01

    To determine whether older people with advance directive for euthanasia (ADEs) are stable in their advance desire for euthanasia in the last years of life, how frequently older people with an ADE eventually request euthanasia, and what factors determine this. Mortality follow-back study nested in a cohort study. The Netherlands. Proxies of deceased members of a cohort representative of Dutch older people (n = 168) and a cohort of people with advance directives (n = 154). Data from cohort members (possession of ADE) combined with after-death proxy information on cohort members' last 3 months of life. Multiple logistic regression analysis was performed on determinants of a euthanasia request in individuals with an ADE. Response rate was 65%. One hundred forty-two cohort members had an ADE at baseline. Three months before death, 87% remained stable in their desire for euthanasia; 47% eventually requested euthanasia (vs 6% without an ADE), and 16% died after euthanasia. People with an ADE were more likely to request euthanasia if they worried about loss of dignity. The majority of older adults who complete an ADE will have a stable preference over time, but an advance desire for euthanasia does not necessarily result in a euthanasia request. Writing an ADE may reflect a person's need for reassurance that they can request euthanasia in the future. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  5. Alternative Stable States, Coral Reefs, and Smooth Dynamics with a Kick.

    Science.gov (United States)

    Ippolito, Stephen; Naudot, Vincent; Noonburg, Erik G

    2016-03-01

    We consider a computer simulation, which was found to be faithful to time series data for Caribbean coral reefs, and an analytical model to help understand the dynamics of the simulation. The analytical model is a system of ordinary differential equations (ODE), and the authors claim this model demonstrates the existence of alternative stable states. The existence of an alternative stable state should consider a sudden shift in coral and macroalgae populations, while the grazing rate remains constant. The results of such shifts, however, are often confounded by changes in grazing rate. Although the ODE suggest alternative stable states, the ODE need modification to explicitly account for shifts or discrete events such as hurricanes. The goal of this paper will be to study the simulation dynamics through a simplified analytical representation. We proceed by modifying the original analytical model through incorporating discrete changes into the ODE. We then analyze the resulting dynamics and their bifurcations with respect to changes in grazing rate and hurricane frequency. In particular, a "kick" enabling the ODE to consider impulse events is added. Beyond adding a "kick" we employ the grazing function that is suggested by the simulation. The extended model was fit to the simulation data to support its use and predicts the existence cycles depending nonlinearly on grazing rates and hurricane frequency. These cycles may bring new insights into consideration for reef health, restoration and dynamics.

  6. Stable isotopic variation in tropical forest plants for applications in primatology.

    Science.gov (United States)

    Blumenthal, Scott A; Rothman, Jessica M; Chritz, Kendra L; Cerling, Thure E

    2016-10-01

    Stable isotope analysis is a promising tool for investigating primate ecology although nuanced ecological applications remain challenging, in part due to the complex nature of isotopic variability in plant-animal systems. The aim of this study is to investigate sources of carbon and nitrogen isotopic variation at the base of primate food webs that reflect aspects of primate ecology. The majority of primates inhabit tropical forest ecosystems, which are dominated by C3 vegetation. We used stable isotope ratios in plants from Kibale National Park, Uganda, a well-studied closed-canopy tropical forest, to investigate sources of isotopic variation among C3 plants related to canopy stratification, leaf age, and plant part. Unpredictably, our results demonstrate that vertical stratification within the canopy does not explain carbon or nitrogen isotopic variation in leaves. Leaf age can be a significant source of isotopic variation, although the direction and magnitude of this difference is not consistent across tree species. Some plant parts are clearly differentiated in carbon and nitrogen isotopic composition, particularly leaves compared to non-photosynthetic parts such as reproductive parts and woody stem parts. Overall, variation in the isotopic composition of floral communities, plant species, and plant parts demonstrates that stable isotope studies must include analysis of local plant species and parts consumed by the primates under study from within the study area. Am. J. Primatol. 78:1041-1054, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  7. Susceptibility of Spodoptera frugiperda and S. exigua to Bacillus thuringiensis Vip3Aa insecticidal protein.

    Science.gov (United States)

    Chakroun, Maissa; Bel, Yolanda; Caccia, Silvia; Abdelkefi-Mesrati, Lobna; Escriche, Baltasar; Ferré, Juan

    2012-07-01

    The Vip3Aa protein is an insecticidal protein secreted by Bacillus thuringiensis during the vegetative stage of growth. The activity of this protein has been tested after different steps/protocols of purification using Spodoptera frugiperda as a control insect. The results showed that the Vip3Aa protoxin was stable and retained full toxicity after being subjected to common biochemical steps used in protein purification. Bioassays with the protoxin in S. frugiperda and S. exigua showed pronounced differences in LC(50) values when mortality was measured at 7 vs. 10d. At 7d most live larvae were arrested in their development. LC(50) values of "functional mortality" (dead larvae plus larvae remaining in the first instar), measured at 7d, were similar or even lower than the LC(50) values of mortality at 10d. This strong growth inhibition was not observed when testing the trypsin-activated protein (62 kDa) in either species. S. exigua was less susceptible than S. frugiperda to the protoxin form, with LC(50) values around 10-fold higher. However, both species were equally susceptible to the trypsin-activated form. Processing of Vip3Aa protoxin to the activated form was faster with S. frugiperda midgut juice than with S. exigua midgut juice. The results strongly suggest that the differences in the rate of activation of the Vip3Aa protoxin between both species are the basis for the differences in susceptibility towards the protoxin form. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Stable rotating dipole solitons in nonlocal media

    DEFF Research Database (Denmark)

    Lopez-Aguayo, Servando; Skupin, Stefan; Desyatnikov, Anton S.

    2006-01-01

    We present the first example of stable rotating two-soliton bound states in nonlinear optical media with nonlocal response. We show that, in contrast to media with local response, nonlocality opens possibilities to generate stable azimuthons.......We present the first example of stable rotating two-soliton bound states in nonlinear optical media with nonlocal response. We show that, in contrast to media with local response, nonlocality opens possibilities to generate stable azimuthons....

  9. Stable isotope labeling of glycoprotein expressed in silkworms using immunoglobulin G as a test molecule

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Hirokazu [Nagoya City University, Faculty and Graduate School of Pharmaceutical Sciences (Japan); Nakamura, Masatoshi [National Institute of Agrobiological Sciences, Genetic Resources Conservation Research Unit, Genetic Resources Center (Japan); Yokoyama, Jun [Taiyo Nippon Sanso Corporation, Tsukuba Laboratories (Japan); Zhang, Ying; Yamaguchi, Takumi [National Institutes of Natural Sciences, Institute for Molecular Science and Okazaki Institute for Integrative Bioscience (Japan); Kondo, Sachiko [Nagoya City University, Faculty and Graduate School of Pharmaceutical Sciences (Japan); Kobayashi, Jun [Yamaguchi University, Department of Biological and Environmental Sciences, Faculty of Agriculture (Japan); Kato, Tatsuya; Park, Enoch Y. [Shizuoka University, Laboratory of Biotechnology, Research Institute of Green Science and Technology (Japan); Nakazawa, Shiori [Nagoya University, Sugashima Marine Biological Laboratory, Graduate School of Science (Japan); Hashii, Noritaka; Kawasaki, Nana [National Institute of Health Sciences, Division of Biological Chemistry and Biologicals (Japan); Kato, Koichi, E-mail: kkato@phar.nagoya-cu.ac.jp [Nagoya City University, Faculty and Graduate School of Pharmaceutical Sciences (Japan)

    2015-06-15

    Silkworms serve as promising bioreactors for the production of recombinant proteins, including glycoproteins and membrane proteins, for structural and functional protein analyses. However, lack of methodology for stable isotope labeling has been a major deterrent to using this expression system for nuclear magnetic resonance (NMR) structural biology. Here we developed a metabolic isotope labeling technique using commercially available silkworm larvae. The fifth instar larvae were infected with baculoviruses for co-expression of recombinant human immunoglobulin G (IgG) as a test molecule, with calnexin as a chaperone. They were subsequently reared on an artificial diet containing {sup 15}N-labeled yeast crude protein extract. We harvested 0.1 mg of IgG from larva with a {sup 15}N-enrichment ratio of approximately 80 %. This allowed us to compare NMR spectral data of the Fc fragment cleaved from the silkworm-produced IgG with those of an authentic Fc glycoprotein derived from mammalian cells. Therefore, we successfully demonstrated that our method enables production of isotopically labeled glycoproteins for NMR studies.

  10. Creation of Hybrid Nanorods From Sequences of Natural Trimeric Fibrous Proteins Using the Fibritin Trimerization Motif

    Science.gov (United States)

    Papanikolopoulou, Katerina; van Raaij, Mark J.; Mitraki, Anna

    Stable, artificial fibrous proteins that can be functionalized open new avenues in fields such as bionanomaterials design and fiber engineering. An important source of inspiration for the creation of such proteins are natural fibrous proteins such as collagen, elastin, insect silks, and fibers from phages and viruses. The fibrous parts of this last class of proteins usually adopt trimeric, β-stranded structural folds and are appended to globular, receptor-binding domains. It has been recently shown that the globular domains are essential for correct folding and trimerization and can be successfully substituted by a very small (27-amino acid) trimerization motif from phage T4 fibritin. The hybrid proteins are correctly folded nanorods that can withstand extreme conditions. When the fibrous part derives from the adenovirus fiber shaft, different tissue-targeting specificities can be engineered into the hybrid proteins, which therefore can be used as gene therapy vectors. The integration of such stable nanorods in devices is also a big challenge in the field of biomechanical design. The fibritin foldon domain is a versatile trimerization motif and can be combined with a variety of fibrous motifs, such as coiled-coil, collagenous, and triple β-stranded motifs, provided the appropriate linkers are used. The combination of different motifs within the same fibrous molecule to create stable rods with multiple functions can even be envisioned. We provide a comprehensive overview of the experimental procedures used for designing, creating, and characterizing hybrid fibrous nanorods using the fibritin trimerization motif.

  11. Stable, metastable, and kinetically trapped amyloid aggregate phases.

    Science.gov (United States)

    Miti, Tatiana; Mulaj, Mentor; Schmit, Jeremy D; Muschol, Martin

    2015-01-12

    Self-assembly of proteins into amyloid fibrils plays a key role in a multitude of human disorders that range from Alzheimer's disease to type II diabetes. Compact oligomeric species, observed early during amyloid formation, are reported as the molecular entities responsible for the toxic effects of amyloid self-assembly. However, the relation between early-stage oligomeric aggregates and late-stage rigid fibrils, which are the hallmark structure of amyloid plaques, has remained unclear. We show that these different structures occupy well-defined regions in a peculiar phase diagram. Lysozyme amyloid oligomers and their curvilinear fibrils only form after they cross a salt and protein concentration-dependent threshold. We also determine a boundary for the onset of amyloid oligomer precipitation. The oligomeric aggregates are structurally distinct from rigid fibrils and are metastable against nucleation and growth of rigid fibrils. These experimentally determined boundaries match well with colloidal model predictions that account for salt-modulated charge repulsion. The model also incorporates the metastable and kinetic character of oligomer phases. Similarities and differences of amyloid oligomer assembly to metastable liquid-liquid phase separation of proteins and to surfactant aggregation are discussed.

  12. Self-Healing Textile: Enzyme Encapsulated Layer-by-Layer Structural Proteins.

    Science.gov (United States)

    Gaddes, David; Jung, Huihun; Pena-Francesch, Abdon; Dion, Genevieve; Tadigadapa, Srinivas; Dressick, Walter J; Demirel, Melik C

    2016-08-10

    Self-healing materials, which enable an autonomous repair response to damage, are highly desirable for the long-term reliability of woven or nonwoven textiles. Polyelectrolyte layer-by-layer (LbL) films are of considerable interest as self-healing coatings due to the mobility of the components comprising the film. In this work mechanically stable self-healing films were fabricated through construction of a polyelectrolyte LbL film containing squid ring teeth (SRT) proteins. SRTs are structural proteins with unique self-healing properties and high elastic modulus in both dry and wet conditions (>2 GPa) due to their semicrystalline architecture. We demonstrate LbL construction of multilayers containing native and recombinant SRT proteins capable of self-healing defects. Additionally, we show these films are capable of utilizing functional biomolecules by incorporating an enzyme into the SRT multilayer. Urease was chosen as a model enzyme of interest to test its activity via fluorescence assay. Successful construction of the SRT films demonstrates the use of mechanically stable self-healing coatings, which can incorporate biomolecules for more complex protective functionalities for advanced functional fabrics.

  13. A SIMPLE FLUORESCENT LABELING METHOD FOR STUDIES OF PROTEIN OXIDATION, PROTEIN MODIFICATION, AND PROTEOLYSIS

    Science.gov (United States)

    Pickering, Andrew. M.; Davies, Kelvin. J. A.

    2014-01-01

    Proteins are sensitive to oxidation, and oxidized proteins are excellent substrates for degradation by proteolytic enzymes such as the Proteasome and the mitochondrial Lon protease. Protein labeling is required for studies of protein turnover. Unfortunately, most labeling techniques involve 3H or 14C methylation which is expensive, exposes researchers to radioactivity, generates large amounts of radioactive waste, and allows only single-point assays because samples require acid-precipitation. Alternative labeling methods, have largely proven unsuitable, either because the probe itself is modified by the oxidant(s) being studied, or because the alternative labeling techniques are too complex or too costly for routine use. What is needed is a simple, quick, and cheap labeling technique that uses a non-radioactive marker, that binds strongly to proteins, is resistant to oxidative modification, and emits a strong signal. We have devised a new reductive method for labeling free carboxyl groups of proteins with the small fluorophore 7-amino-4-methycoumarin (AMC). When bound to target proteins, AMC fluoresces very weakly but when AMC is released by proteinases, proteases, or peptidases, it fluoresces strongly. Thus, without acid-precipitation, the proteolysis of any target protein can be studied continuously, in multiwell plates. In direct comparisons, 3H-labeled proteins and AMC-labeled proteins exhibited essentially identical degradation patterns during incubation with trypsin, cell extracts, and purified proteasome. AMC-labeled proteins are well-suited to study increased proteolytic susceptibility following protein modification, since the AMC-protein bond is resistant to oxidizing agents such as hydrogen peroxide and peroxynitrite, and is stable over time and to extremes of pH, temperature (even boiling), freeze-thawing, mercaptoethanol, and methanol. PMID:21988844

  14. A Low Protein Binding Cationic Poly(2-oxazoline) as Non-Viral Vector

    KAUST Repository

    He, Zhijian

    2015-04-02

    © 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Developing safe and efficient non-viral gene delivery systems remains a major challenge. We present a new cationic poly(2-oxazoline) (CPOx) block copolymer for gene therapy that was synthesized by sequential polymerization of non-ionic 2-methyl-2-oxazoline and a new 2-oxazoline monomer, 2-(N-methyl, N-Boc-amino)-methyl-2-oxazoline, followed by deprotection of the pendant secondary amine groups. Upon mixing with plasmid DNA (pDNA), CPOx forms small (diameter ≈80 nm) and narrowly dispersed polyplexes (PDI <0.2), which are stable upon dilution in saline and against thermal challenge. These polyplexes exhibited low plasma protein binding and very low cytotoxicity in vitro compared to the polyplexes of pDNA and poly(ethylene glycol)-b-poly(L-lysine) (PEG-b-PLL). CPOx/pDNA polyplexes at N/P = 5 bound considerably less plasma protein compared to polyplexes of PEG-b-PLL at the same N/P ratio. This is a unique aspect of the developed polyplexes emphasizing their potential for systemic delivery in vivo. The transfection efficiency of the polyplexes in B16 murine melanoma cells was low after 4 h, but increased significantly for 10 h exposure time, indicative of slow internalization of polyplexes. Addition of Pluronic P85 boosted the transfection using CPOx/pDNA polyplexes considerably. The low protein binding of CPOx/pDNA polyplexes is particularly interesting for the future development of targeted gene delivery.

  15. Efficient and stable single-dopant white OLEDs based on 9,10-bis (2-naphthyl) anthracene

    International Nuclear Information System (INIS)

    Tao Silu; Peng Zhaokuai; Zhang Xiaohong; Wu Shikang

    2006-01-01

    Efficient white organic light-emitting diodes (WOLEDs) are fabricated with a thin layer of 9,10-bis (2-naphthyl) anthracene (ADN) doped with Rubrene as the source of white emission. A device with the structure of ITO/NPB (70nm)/ADN: 0.5% Rubrene (30nm)/Alq 3 (50nm)/MgAg shows a maximum current efficiency of 3.7cd/A, with the CIE coordinates of x=0.33, y=0.43. The EL spectrum of the devices and the CIE coordinates remains almost the same when the voltage is increased from 10 to 15V and the current efficiency remains quite stable with the current density increased from 20 to 250mA/cm 2

  16. Endogenous protein "barcode" for data validation and normalization in quantitative MS analysis.

    Science.gov (United States)

    Lee, Wooram; Lazar, Iulia M

    2014-07-01

    Quantitative proteomic experiments with mass spectrometry detection are typically conducted by using stable isotope labeling and label-free quantitation approaches. Proteins with housekeeping functions and stable expression level such actin, tubulin, and glyceraldehyde-3-phosphate dehydrogenase are frequently used as endogenous controls. Recent studies have shown that the expression level of such common housekeeping proteins is, in fact, dependent on various factors such as cell type, cell cycle, or disease status and can change in response to a biochemical stimulation. The interference of such phenomena can, therefore, substantially compromise their use for data validation, alter the interpretation of results, and lead to erroneous conclusions. In this work, we advance the concept of a protein "barcode" for data normalization and validation in quantitative proteomic experiments. The barcode comprises a novel set of proteins that was generated from cell cycle experiments performed with MCF7, an estrogen receptor positive breast cancer cell line, and MCF10A, a nontumorigenic immortalized breast cell line. The protein set was selected from a list of ~3700 proteins identified in different cellular subfractions and cell cycle stages of MCF7/MCF10A cells, based on the stability of spectral count data generated with an LTQ ion trap mass spectrometer. A total of 11 proteins qualified as endogenous standards for the nuclear and 62 for the cytoplasmic barcode, respectively. The validation of the protein sets was performed with a complementary SKBR3/Her2+ cell line.

  17. Development of shelf stable, processed, low acid food products using heat-irradiation combination treatments

    International Nuclear Information System (INIS)

    Minnaar, A.

    1998-01-01

    The amount of ionizing irradiation needed to sterilize low acid vegetable and starch products (with and without sauces) commercially impairs their sensorial and nutritive qualities, and use of thermal processes for the same purpose may also have an adverse effect on the product quality. A systematic approach to the establishment of optimized combination parameters was developed for heat-irradiation processing to produce high quality, shelf stable, low acid food products. The effects of selected heat, heat-irradiation combination and irradiation treatments on the quality of shelf stable mushrooms in brine and rice, stored at ambient temperature, were studied. From a quality viewpoint, use of heat-irradiation combination treatments favouring low irradiation dose levels offered a feasible alternative to thermally processed or radappertized mushrooms in brine. However, shelf stable rice produced by heat-irradiation combination treatments offered a feasible alternative only to radappertized rice from the standpoint of quality. The technical requirements for the heat and irradiation processing of a long grain rice cultivar from the United States of America oppose each other directly, thereby reducing the feasibility of using heat-irradiation combination processing to produce shelf stable rice. The stability of starch thickened white sauces was found to be affected severely during high dose irradiation and subsequent storage at ambient temperature. However, use of pea protein isolate as a thickener in white sauces was found to have the potential to maintain the viscosity of sauces for irradiated meat and sauce products throughout processing and storage. (author)

  18. PknB remains an essential and a conserved target for drug development in susceptible and MDR strains of M. Tuberculosis.

    Science.gov (United States)

    Gupta, Anamika; Pal, Sudhir K; Pandey, Divya; Fakir, Najneen A; Rathod, Sunita; Sinha, Dhiraj; SivaKumar, S; Sinha, Pallavi; Periera, Mycal; Balgam, Shilpa; Sekar, Gomathi; UmaDevi, K R; Anupurba, Shampa; Nema, Vijay

    2017-08-18

    The Mycobacterium tuberculosis (M.tb) protein kinase B (PknB) which is now proved to be essential for the growth and survival of M.tb, is a transmembrane protein with a potential to be a good drug target. However it is not known if this target remains conserved in otherwise resistant isolates from clinical origin. The present study describes the conservation analysis of sequences covering the inhibitor binding domain of PknB to assess if it remains conserved in susceptible and resistant clinical strains of mycobacteria picked from three different geographical areas of India. A total of 116 isolates from North, South and West India were used in the study with a variable profile of their susceptibilities towards streptomycin, isoniazid, rifampicin, ethambutol and ofloxacin. Isolates were also spoligotyped in order to find if the conservation pattern of pknB gene remain consistent or differ with different spoligotypes. The impact of variation as found in the study was analyzed using Molecular dynamics simulations. The sequencing results with 115/116 isolates revealed the conserved nature of pknB sequences irrespective of their susceptibility status and spoligotypes. The only variation found was in one strains wherein pnkB sequence had G to A mutation at 664 position translating into a change of amino acid, Valine to Isoleucine. After analyzing the impact of this sequence variation using Molecular dynamics simulations, it was observed that the variation is causing no significant change in protein structure or the inhibitor binding. Hence, the study endorses that PknB is an ideal target for drug development and there is no pre-existing or induced resistance with respect to the sequences involved in inhibitor binding. Also if the mutation that we are reporting for the first time is found again in subsequent work, it should be checked with phenotypic profile before drawing the conclusion that it would affect the activity in any way. Bioinformatics analysis in our study

  19. Tempered stable laws as random walk limits

    OpenAIRE

    Chakrabarty, Arijit; Meerschaert, Mark M.

    2010-01-01

    Stable laws can be tempered by modifying the L\\'evy measure to cool the probability of large jumps. Tempered stable laws retain their signature power law behavior at infinity, and infinite divisibility. This paper develops random walk models that converge to a tempered stable law under a triangular array scheme. Since tempered stable laws and processes are useful in statistical physics, these random walk models can provide a basic physical model for the underlying physical phenomena.

  20. Casein and soy protein meals differentially affect whole-body and splanchnic protein metabolism in healthy humans.

    Science.gov (United States)

    Luiking, Yvette C; Deutz, Nicolaas E P; Jäkel, Martin; Soeters, Peter B

    2005-05-01

    Dietary protein quality is considered to be dependent on the degree and velocity with which protein is digested, absorbed as amino acids, and retained in the gut as newly synthesized protein. Metabolic animal studies suggest that the quality of soy protein is inferior to that of casein protein, but confirmatory studies in humans are lacking. The study objective was to assess the quality of casein and soy protein by comparing their metabolic effects in healthy human subjects. Whole-body protein kinetics, splanchnic leucine extraction, and urea production rates were measured in the postabsorptive state and during 8-h enteral intakes of isonitrogenous [0.42 g protein/(kg body weight . 8 h)] protein-based test meals, which contained either casein (CAPM; n = 12) or soy protein (SOPM; n = 10) in 2 separate groups. Stable isotope techniques were used to study metabolic effects. With enteral food intake, protein metabolism changed from net protein breakdown to net protein synthesis. Net protein synthesis was greater in the CAPM group than in the SOPM group [52 +/- 14 and 17 +/- 14 nmol/(kg fat-free mass (FFM) . min), respectively; P CAPM (P = 0.07). Absolute splanchnic extraction of leucine was higher in the subjects that consumed CAPM [306 +/- 31 nmol/(kg FFM . min)] vs. those that consumed SOPM [235 +/- 29 nmol/(kg FFM . min); P < 0.01]. In conclusion, a significantly larger portion of soy protein is degraded to urea, whereas casein protein likely contributes to splanchnic utilization (probably protein synthesis) to a greater extent. The biological value of soy protein must be considered inferior to that of casein protein in humans.

  1. Stable nuclide tracer studies and human amino acid requirements. A summary

    International Nuclear Information System (INIS)

    Young, V.R.

    1994-01-01

    The nutritional requirements for proteins have been estimated for various age groups. The current status of knowledge concerning the quantitative needs for specific indispensable amino acids was reviewed and it was concluded that, except for infants, current values for pre-school children, school age children and healthy adults are based on limited experimental data and/or on results from nitrogen balance determinations which are open to serious question regarding their nutritional significance. A review of 13 C-labelled tracer studies carried out in MIT laboratories was undertaken to demonstrate the applicability of stable nuclide tracer studies for purposes of determining the amino acid requirements of humans. 5 refs

  2. Better preservation of residual renal function in peritoneal dialysis patients treated with a low-protein diet supplemented with keto acids: a prospective, randomized trial.

    Science.gov (United States)

    Jiang, Na; Qian, Jiaqi; Sun, Weilan; Lin, Aiwu; Cao, Liou; Wang, Qin; Ni, Zhaohui; Wan, Yanping; Linholm, Bengt; Axelsson, Jonas; Yao, Qiang

    2009-08-01

    While a low-protein diet may preserve residual renal function (RRF) in chronic kidney disease (CKD) patients before the start of dialysis, a high-protein intake is usually recommended in dialysis patients to prevent protein-energy wasting. Keto acids, which were often recommended to pre-dialysis CKD patients treated with a low-protein diet, had also been reported to be associated with both RRF and nutrition maintenance. We conducted a randomized trial to test whether a low-protein diet with or without keto acids would be safe and associated with a preserved RRF during peritoneal dialysis (PD). To assess the safety of low protein, we first conducted a nitrogen balance study in 34 incident PD patients randomized to receive in-centre diets containing 1.2, 0.9 or 0.6 g of protein/kg ideal body weight (IBW)/day for 10 days. Second, 60 stable PD patients [RRF 4.04 +/- 2.30 ml/ min/1.73 m(2), urine output 1226 +/- 449 ml/day, aged 53.6 +/- 12.8 years, PD duration 8.8 (1.5-17.8) months] were randomized to receive either a low- (LP: 0.6-0.8 g/kg IBW/day), keto acid-supplemented low- (sLP: 0.6-0.8 g/kg IBW/day with 0.12 g/kg IBW/day of keto acids) or high-protein (HP: 1.0-1.2 g/kg IBW/day) diet. The groups were followed for 1 year and RRF as well as nutritional status was evaluated serially. A neutral or positive nitrogen balance was achieved in all three groups. RRF remained stable in group sLP (3.84 +/- 2.17 to 3.39 +/- 3.23 ml/min/1.73 m(2), P = ns) while it decreased in group LP (4.02 +/- 2.49 to 2.29 +/- 1.72 ml/min/1.73 m(2), P diet containing 0.6-0.8 g of protein/kg IBW/day is safe and, when combined with keto acids, is associated with an improved preservation of RRF in relatively new PD patients without significant malnutrition or inflammation.

  3. The Sporothrix schenckii Gene Encoding for the Ribosomal Protein L6 Has Constitutive and Stable Expression and Works as an Endogenous Control in Gene Expression Analysis

    Directory of Open Access Journals (Sweden)

    Elías Trujillo-Esquivel

    2017-09-01

    Full Text Available Sporothrix schenckii is one of the causative agents of sporotrichosis, a worldwide-distributed mycosis that affects humans and other mammals. The interest in basic and clinical features of this organism has significantly increased in the last years, yet little progress in molecular aspects has been reported. Gene expression analysis is a set of powerful tools that helps to assess the cell response to changes in the extracellular environment, the genetic networks controlling metabolic pathways, and the adaptation to different growth conditions. Most of the quantitative methodologies used nowadays require data normalization, and this is achieved measuring the expression of endogenous control genes. Reference genes, whose expression is assumed to suffer minimal changes regardless the cell morphology, the stage of the cell cycle or the presence of harsh extracellular conditions are commonly used as controls in Northern blotting assays, microarrays, and semi-quantitative or quantitative RT-PCR. Since the biology of the organisms is usually species specific, it is difficult to find a reliable group of universal genes that can be used as controls for data normalization in experiments addressing the gene expression, regardless the taxonomic classification of the organism under study. Here, we compared the transcriptional stability of the genes encoding for elongation factor 1A, Tfc1, a protein involved in transcription initiation on Pol III promoters, ribosomal protein L6, histone H2A, β-actin, β-tubulin, glyceraldehyde 3-phosphate dehydrogenase, UAF30, the upstream activating factor 30, and the transcription initiation factor TFIID subunit 10, during the fungal growth in different culture media and cell morphologies. Our results indicated that only the gene encoding for the ribosomal protein L6 showed a stable and constant expression. Furthermore, it displayed not transcriptional changes when S. schenckii infected larvae of Galleria mellonella or

  4. Chronic stable angina is associated with lower health-related quality of life: evidence from Chinese patients.

    Directory of Open Access Journals (Sweden)

    Jing Wu

    Full Text Available OBJECTIVES: To compare health-related quality of life (HRQoL between patients with stable angina and the general population in China and to examine factors associated with HRQoL among patients with stable angina. METHODS: A cross-sectional HRQoL survey of stable angina patients recruited from 4 hospitals (n = 411 and the general population recruited from 3 Physical Examination Centers (n = 549 was conducted from July to December, 2011 in two large cities, Tianjin and Chengdu. HRQoL was assessed using the EQ-5D, EQ-VAS, and SF-6D instruments. The health status specific to patients with stable angina was assessed using the Seattle Angina Questionnaire (SAQ. Information on socio-demographic, clinical, and lifestyle factors were also collected. Nested regressions were performed to explore how these factors were associated with HRQoL in patients with stable angina. RESULTS: Compared with the general population (44.2 ± 10 years, 49.9% females, stable angina patients (68.1 ± 12 years, 50.4% females had significantly lower HRQoL scores in EQ-5D utility index (0.75 ± 0.19 vs. 0.90 ± 0.20, p<0.05, SF-6D utility index (0.68 ± 0.12 vs. 0.85 ± 0.11, p<0.05, and EQ-VAS (71.2 ± 12.3 vs. 83.9 ± 10.9, p<0.05. The differences remained (-0.05 for EQ-5D, -9.27 for EQ-VAS and -0.13 for SF-6D after controlling for socio-economic characteristics. SAQ scores showed that stable angina patients experienced impaired disease-specific health status, especially in angina stability (40.5 ± 34.6. Nested regressions indicated stable angina-specific health status explained most of the variation in HRQoL, among which disease perception, physical limitation, and angina stability were the strongest predictors. More physical exercise and better sleep were positively related with HRQoL. CONCLUSIONS: Compared to the general population, stable angina patients were associated with lower HRQoL and lower health utility scores, which were largely impacted by clinical symptoms

  5. Germ-line transformation of the Queensland fruit fly, Bactrocera tryoni, using a piggyBac vector in the presence of endogenous piggyBac elements

    Science.gov (United States)

    We report the stable genetic transformation of the Queensland fruit fly Bactrocera tryoni using a piggyBac vector marked with either the fluorescent protein DsRed or EGFP.A transformation frequency of 5–10% was obtained.Inheritance of the transgenes has remained stable over eight generations despite...

  6. Green Fluorescent Protein (GFP) as a reporter gene for the plant pathogenic oomycete Phytophthora ramorum

    Science.gov (United States)

    Marko Riedel; Gautier Calmin; Lassaad Belbahri; Francois Lefort; Monika Gotz; Stefan Wagner; Sabine. Werres

    2009-01-01

    Transgenic Phytophthora ramorum strains that produce green fluorescent protein (GFP) constitutively were obtained after stable DNA integration using a polyethylene glycol and CaCl2-based transformation protocol. Green fluorescent protein production was studied in developing colonies and in different propagules of the pathogen...

  7. Leucine-Enriched Essential Amino Acids Augment Mixed Protein Synthesis, But Not Collagen Protein Synthesis, in Rat Skeletal Muscle after Downhill Running

    OpenAIRE

    Kato, Hiroyuki; Suzuki, Hiromi; Inoue, Yoshiko; Suzuki, Katsuya; Kobayashi, Hisamine

    2016-01-01

    Mixed and collagen protein synthesis is elevated for as many as 3 days following exercise. Immediately after exercise, enhanced amino acid availability increases synthesis of mixed muscle protein, but not muscle collagen protein. However, the potential for synergic effects of amino acid ingestion with exercise on both mixed and collagen protein synthesis remains unclear. We investigated muscle collagen protein synthesis in rats following post-exercise ingestion of leucine-enriched essential a...

  8. Changes of microbial spoilage, lipid-protein oxidation and physicochemical properties during post mortem refrigerated storage of goat meat.

    Science.gov (United States)

    Sabow, Azad Behnan; Sazili, Awis Qurni; Aghwan, Zeiad Amjad; Zulkifli, Idrus; Goh, Yong Meng; Ab Kadir, Mohd Zainal Abidin; Nakyinsige, Khadijah; Kaka, Ubedullah; Adeyemi, Kazeem Dauda

    2016-06-01

    Examined was the effect of post mortem refrigerated storage on microbial spoilage, lipid-protein oxidation and physicochemical traits of goat meat. Seven Boer bucks were slaughtered, eviscerated and aged for 24 h. The Longissimus lumborum (LL) and Semitendinosus (ST) muscles were excised and subjected to 13 days post mortem refrigerated storage. The pH, lipid and protein oxidation, tenderness, color and drip loss were determined in LL while microbiological analysis was performed on ST. Bacterial counts generally increased with increasing aging time and the limit for fresh meat was reached at day 14 post mortem. Significant differences were observed in malondialdehyde (MDA) content at day 7 of storage. The thiol concentration significantly reduced as aging time increased. The band intensities of myosin heavy chain (MHC) and troponin-T significantly decreased as storage progressed, while actin remained relatively stable. After 14 days of aging, tenderness showed significant improvement while muscle pH and drip loss reduced with increase in storage time. Samples aged for 14 days had higher lightness (P goat meat. © 2016 Japanese Society of Animal Science.

  9. Immunosuppression Adherence in Stable Kidney Transplant Patients Converted From Immediate- to Prolonged-Release Tacrolimus in Clinical Practice: A Norwegian Study.

    Science.gov (United States)

    Abedini, Sadollah; Gøransson, Lasse; Cockburn, Elinor; Kilany, Suzanne; Holdaas, Hallvard

    2018-02-01

    This study investigated medication adherence in kidney transplant patients (KTPs) converted from immediate-release tacrolimus (IR-T) to prolonged-release tacrolimus (PR-T)-based immunosuppression in routine practice. Noninterventional, observational, multicenter study in Norway. Included adult KTPs with stable graft function, converted from IR-T (baseline) to PR-T (1 mg:1 mg) in routine practice. Data were collected at baseline, and months 1, 3, 6, and 12 postconversion. Primary endpoint: adherence using the Basel Assessment of Adherence to Immunosuppressive Medication Scale. Secondary assessments: tacrolimus dose and trough levels (target, 3-7 ng/mL), clinical laboratory parameters (eg, estimated glomerular filtration rate [Modified Diet in Renal Disease]), and adverse events. Ninety-one KTPs (mean ± SD age 47.7 ± 14.3 years) were analyzed. Mean ± SD change in PR-T dose from baseline (4.4 ± 2.4 mg/d) to month 12 was -0.1 ± 0.9 mg/d; mean tacrolimus trough levels remained within target. Overall medication adherence increased from 45.6% at baseline to 58.1% at month 1, but was similar to baseline thereafter; taking and timing adherence followed a similar pattern. Odds ratio (OR) for adherence at month 1 (but not at other time points) was greater versus baseline for overall (OR, 1.71; P = 0.0205), taking (OR, 3.38; P = 0.0004), and timing (OR, 1.77, P = 0.0252) dimensions. Mean ± SD Basel Assessment of Adherence to Immunosuppressive Medication Scale visual analogue scale score at baseline was 96.4 ± 5.5%, and increased postconversion. Estimated glomerular filtration rate remained stable (month 12, 61.6 ± 17.7 mL/min per 1.73 m 2 ), as did other laboratory parameters. Two (2.2%) patients had adverse events considered probably/possibly treatment-related. There was disparity between high, patient-perceived and low, actual adherence. Converting stable KTPs from IR-T to PR-T in routine practice did not impact long-term adherence to immunosuppression; renal

  10. γ-Tubulin complex in Trypanosoma brucei: molecular composition, subunit interdependence and requirement for axonemal central pair protein assembly.

    Science.gov (United States)

    Zhou, Qing; Li, Ziyin

    2015-11-01

    γ-Tubulin complex constitutes a key component of the microtubule-organizing center and nucleates microtubule assembly. This complex differs in complexity in different organisms: the budding yeast contains the γ-tubulin small complex (γTuSC) composed of γ-tubulin, gamma-tubulin complex protein (GCP)2 and GCP3, whereas animals contain the γ-tubulin ring complex (γTuRC) composed of γTuSC and three additional proteins, GCP4, GCP5 and GCP6. In Trypanosoma brucei, the composition of the γ-tubulin complex remains elusive, and it is not known whether it also regulates assembly of the subpellicular microtubules and the spindle microtubules. Here we report that the γ-tubulin complex in T. brucei is composed of γ-tubulin and three GCP proteins, GCP2-GCP4, and is primarily localized in the basal body throughout the cell cycle. Depletion of GCP2 and GCP3, but not GCP4, disrupted the axonemal central pair microtubules, but not the subpellicular microtubules and the spindle microtubules. Furthermore, we showed that the γTuSC is required for assembly of two central pair proteins and that γTuSC subunits are mutually required for stability. Together, these results identified an unusual γ-tubulin complex in T. brucei, uncovered an essential role of γTuSC in central pair protein assembly, and demonstrated the interdependence of individual γTuSC components for maintaining a stable complex. © 2015 John Wiley & Sons Ltd.

  11. Protein energy malnutrition.

    Science.gov (United States)

    Grover, Zubin; Ee, Looi C

    2009-10-01

    Protein energy malnutrition (PEM) is a common problem worldwide and occurs in both developing and industrialized nations. In the developing world, it is frequently a result of socioeconomic, political, or environmental factors. In contrast, protein energy malnutrition in the developed world usually occurs in the context of chronic disease. There remains much variation in the criteria used to define malnutrition, with each method having its own limitations. Early recognition, prompt management, and robust follow up are critical for best outcomes in preventing and treating PEM.

  12. Temperature and Humidity Control in Livestock Stables

    DEFF Research Database (Denmark)

    Hansen, Michael; Andersen, Palle; Nielsen, Kirsten M.

    2010-01-01

    The paper describes temperature and humidity control of a livestock stable. It is important to have a correct air flow pattern in the livestock stable in order to achieve proper temperature and humidity control as well as to avoid draught. In the investigated livestock stable the air flow...

  13. Fluorescent sensors based on bacterial fusion proteins

    International Nuclear Information System (INIS)

    Mateu, Batirtze Prats; Pum, Dietmar; Sleytr, Uwe B; Toca-Herrera, José L; Kainz, Birgit

    2014-01-01

    Fluorescence proteins are widely used as markers for biomedical and technological purposes. Therefore, the aim of this project was to create a fluorescent sensor, based in the green and cyan fluorescent protein, using bacterial S-layers proteins as scaffold for the fluorescent tag. We report the cloning, expression and purification of three S-layer fluorescent proteins: SgsE-EGFP, SgsE-ECFP and SgsE-13aa-ECFP, this last containing a 13-amino acid rigid linker. The pH dependence of the fluorescence intensity of the S-layer fusion proteins, monitored by fluorescence spectroscopy, showed that the ECFP tag was more stable than EGFP. Furthermore, the fluorescent fusion proteins were reassembled on silica particles modified with cationic and anionic polyelectrolytes. Zeta potential measurements confirmed the particle coatings and indicated their colloidal stability. Flow cytometry and fluorescence microscopy showed that the fluorescence of the fusion proteins was pH dependent and sensitive to the underlying polyelectrolyte coating. This might suggest that the fluorescent tag is not completely exposed to the bulk media as an independent moiety. Finally, it was found out that viscosity enhanced the fluorescence intensity of the three fluorescent S-layer proteins. (paper)

  14. On the control of ribosomal protein biosynthesis in Escherichia coli

    International Nuclear Information System (INIS)

    Pichon, J.; Marvaldi, J.; Coeroli, C.; Cozzone, A.; Marchis-Mouren, G.

    1977-01-01

    The rate of individual ribosomal protein synthesis relative to total protein synthesis has been determined in Escherichia coli rel + and rel - cells, under valyl-tRNA deprivation. These strains have a temperature-sensitive valyl-tRNA synthetase. Starvation was obtained following transfer of the cells to non-permissive temperature. Ribosomal proteins were obtained by treatment of either total lysates of freeze-thawed lysozyme spheroplasts or ammonium sulphate precipitate of ribosomes, with acetic acid. Differential labelling of the ribosomal proteins was observed in both strains: proteins from the rel + strain appear more labelled than those from the rel - strain, the rate of labelling of individual proteins being about the same in both strains. Moreover ribosomal proteins were found as stable during starvation as total protein. It is thus concluded that in starving cells individual ribosomal proteins are not synthesized at equal rates. This indicates that the synthesis of ribosomal proteins is not only under the control of the rel gene

  15. Proof of concept of a "greener" protein purification/enrichment method based on carboxylate-terminated carbosilane dendrimer-protein interactions.

    Science.gov (United States)

    González-García, Estefanía; Maly, Marek; de la Mata, Francisco Javier; Gómez, Rafael; Marina, María Luisa; García, María Concepción

    2016-11-01

    Protein sample preparation is a critical and an unsustainable step since it involves the use of tedious methods that usually require high amount of solvents. The development of new materials offers additional opportunities in protein sample preparation. This work explores, for the first time, the potential application of carboxylate-terminated carbosilane dendrimers to the purification/enrichment of proteins. Studies on dendrimer binding to proteins, based on protein fluorescence intensity and emission wavelengths measurements, demonstrated the interaction between carboxylate-terminated carbosilane dendrimers and proteins at all tested pH levels. Interactions were greatly affected by the protein itself, pH, and dendrimer concentration and generation. Especially interesting was the interaction at acidic pH since it resulted in a significant protein precipitation. Dendrimer-protein interactions were modeled observing stable complexes for all proteins. Carboxylate-terminated carbosilane dendrimers at acidic pH were successfully used in the purification/enrichment of proteins extracted from a complex sample. Graphical Abstract Images showing the growing turbidity of solutions containing a mixture of proteins (lysozyme, myoglobin, and BSA) at different protein:dendrimer ratios (1:0, 1:1, 1:8, and 1:20) at acidic pH and SDS-PAGE profiles of the corresponsing supernatants. Comparison of SDS-PAGE profiles for the pellets obtained during the purification of proteins present in a complex sample using a conventional "no-clean" method based on acetone precipitation and the proposed "greener" method using carboxylate-terminated carbosilane dendrimer at a 1:20 protein:dendrimer ratio.

  16. Formation of highly stable chimeric trimers by fusion of an adenovirus fiber shaft fragment with the foldon domain of bacteriophage t4 fibritin.

    Science.gov (United States)

    Papanikolopoulou, Katerina; Forge, Vincent; Goeltz, Pierrette; Mitraki, Anna

    2004-03-05

    The folding of beta-structured, fibrous proteins is a largely unexplored area. A class of such proteins is used by viruses as adhesins, and recent studies revealed novel beta-structured motifs for them. We have been studying the folding and assembly of adenovirus fibers that consist of a globular C-terminal domain, a central fibrous shaft, and an N-terminal part that attaches to the viral capsid. The globular C-terminal, or "head" domain, has been postulated to be necessary for the trimerization of the fiber and might act as a registration signal that directs its correct folding and assembly. In this work, we replaced the head of the fiber by the trimerization domain of the bacteriophage T4 fibritin, termed "foldon." Two chimeric proteins, comprising the foldon domain connected at the C-terminal end of four fiber shaft repeats with or without the use of a natural linker sequence, fold into highly stable, SDS-resistant trimers. The structural signatures of the chimeric proteins as seen by CD and infrared spectroscopy are reported. The results suggest that the foldon domain can successfully replace the fiber head domain in ensuring correct trimerization of the shaft sequences. Biological implications and implications for engineering highly stable, beta-structured nanorods are discussed.

  17. Preparation of novel stable antibacterial nanoparticles using hydroxyethylcellulose and application in paper.

    Science.gov (United States)

    Wei, Dafu; Chen, Yan; Zhang, Youwei

    2016-01-20

    Taking advantage of the self-assembly between the components, novel stable antibacterial nanoparticles were efficiently fabricated via a facile one-step co-polymerization of acrylic acid (AA) and N,N'-methylenebisacrylamide (MBA) on a mixed aqueous solution of poly(hexamethylene guanidine hydrochloride) (PHMG) and hydroxyethylcellulose (HEC). The z-average hydrodynamic diameters of the nanoparticles ranged from 220 nm to 450 nm. The inner layer of the nanoparticles is composed of water-insoluble interpolymer complexes of PHMG and PAA networks, while the outer layer is composed of PHMG and HEC. The nanoparticles are stabilized by electrostatic interactions, hydrogen bonding interactions, and the chemical bonds. The nanoparticle solution remained stable in a wide pH range of 2.0-12.0 and at salt concentrations below 0.25 mol/L. The nanoparticles were incorporated into handsheets using a dipping treatment. The resulted handsheets exhibited excellent antimicrobial activities even after multiple water washing treatments. The nanoparticles are promising in fabricating paper, water-based coatings and textiles with permanent antibacterial activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The Myopic Stable Set for Social Environments

    NARCIS (Netherlands)

    Demuynck, Thomas; Herings, P. Jean-Jacques; Saulle, Riccardo; Seel, Christian

    2017-01-01

    We introduce a new solution concept for models of coalition formation, called the myopic stable set. The myopic stable set is defined for a very general class of social environments and allows for an infinite state space. We show that the myopic stable set exists and is non-empty. Under minor

  19. Refining low protein modular feeds for children on low protein tube feeds with organic acidaemias.

    Science.gov (United States)

    Daly, A; Evans, S; Ashmore, C; Chahal, S; Santra, S; MacDonald, A

    2017-12-01

    Children with inherited metabolic disorders (IMD) who are dependent on tube feeding and require a protein restriction are commonly fed by 'modular tube feeds' consisting of several ingredients. A longitudinal, prospective two-phase study, conducted over 18 months assessed the long-term efficacy of a pre-measured protein-free composite feed. This was specifically designed to meet the non-protein nutritional requirements of children (aged over 1 year) with organic acidaemias on low protein enteral feeds and to be used as a supplement with an enteral feeding protein source. All non-protein individual feed ingredients were replaced with one protein-free composite feed supplying fat, carbohydrate, and micronutrients. Thirteen subjects, median age 7.4y (3-15.5y), all nutritionally tube dependent (supplying nutritional intake: ≥ 90%, n = 12; 75%, n = 1), and diagnosed with organic acidaemias (Propionic acidaemia, n = 6; Vitamin B 12 non-responsive methyl malonic acidaemia, n = 4; Isovaleric acidaemia, n = 2; Glutaric aciduria type1, n = 1); were studied. Nutritional intake, biochemistry and anthropometry were monitored at week - 8, 0, 12, 26 and 79. Energy intake remained unchanged, providing 76% of estimated energy requirements. Dietary intakes of vitamins, minerals and essential fatty acids significantly increased from week 0 to week 79, but sodium, potassium, magnesium, decosahexanoic acid and fibre did not meet suggested requirements. Plasma zinc, selenium, haemoglobin and MCV significantly improved, and growth remained satisfactory. Natural protein intake met WHO/FAO/UNU 2007 recommendations. A protein-free composite feed formulated to meet the non-protein nutritional requirements of children aged over 1 year improved nutritional intake, biochemical nutritional status, and simplified enteral tube feeding regimens in children with organic acidaemias.

  20. Stable isotope analysis in primatology: a critical review.

    Science.gov (United States)

    Sandberg, Paul A; Loudon, James E; Sponheimer, Matt

    2012-11-01

    Stable isotope analysis has become an important tool in ecology over the last 25 years. A wealth of ecological information is stored in animal tissues in the relative abundances of the stable isotopes of several elements, particularly carbon and nitrogen, because these isotopes navigate through ecological processes in predictable ways. Stable carbon and nitrogen isotopes have been measured in most primate taxonomic groups and have yielded information about dietary content, dietary variability, and habitat use. Stable isotopes have recently proven useful for addressing more fine-grained questions about niche dynamics and anthropogenic effects on feeding ecology. Here, we discuss stable carbon and nitrogen isotope systematics and critically review the published stable carbon and nitrogen isotope data for modern primates with a focus on the problems and prospects for future stable isotope applications in primatology. © 2012 Wiley Periodicals, Inc.

  1. Insights into Hox protein function from a large scale combinatorial analysis of protein domains.

    Directory of Open Access Journals (Sweden)

    Samir Merabet

    2011-10-01

    Full Text Available Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA, we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences.

  2. Folding 19 proteins to their native state and stability of large proteins from a coarse-grained model.

    Science.gov (United States)

    Kapoor, Abhijeet; Travesset, Alex

    2014-03-01

    We develop an intermediate resolution model, where the backbone is modeled with atomic resolution but the side chain with a single bead, by extending our previous model (Proteins (2013) DOI: 10.1002/prot.24269) to properly include proline, preproline residues and backbone rigidity. Starting from random configurations, the model properly folds 19 proteins (including a mutant 2A3D sequence) into native states containing β sheet, α helix, and mixed α/β. As a further test, the stability of H-RAS (a 169 residue protein, critical in many signaling pathways) is investigated: The protein is stable, with excellent agreement with experimental B-factors. Despite that proteins containing only α helices fold to their native state at lower backbone rigidity, and other limitations, which we discuss thoroughly, the model provides a reliable description of the dynamics as compared with all atom simulations, but does not constrain secondary structures as it is typically the case in more coarse-grained models. Further implications are described. Copyright © 2013 Wiley Periodicals, Inc.

  3. Stable cycling in discrete-time genetic models.

    OpenAIRE

    Hastings, A

    1981-01-01

    Examples of stable cycling are discussed for two-locus, two-allele, deterministic, discrete-time models with constant fitnesses. The cases that cycle were found by using numerical techniques to search for stable Hopf bifurcations. One consequence of the results is that apparent cases of directional selection may be due to stable cycling.

  4. Stable cycling in discrete-time genetic models.

    Science.gov (United States)

    Hastings, A

    1981-11-01

    Examples of stable cycling are discussed for two-locus, two-allele, deterministic, discrete-time models with constant fitnesses. The cases that cycle were found by using numerical techniques to search for stable Hopf bifurcations. One consequence of the results is that apparent cases of directional selection may be due to stable cycling.

  5. Local Search Approaches in Stable Matching Problems

    Directory of Open Access Journals (Sweden)

    Toby Walsh

    2013-10-01

    Full Text Available The stable marriage (SM problem has a wide variety of practical applications, ranging from matching resident doctors to hospitals, to matching students to schools or, more generally, to any two-sided market. In the classical formulation, n men and n women express their preferences (via a strict total order over the members of the other sex. Solving an SM problem means finding a stable marriage where stability is an envy-free notion: no man and woman who are not married to each other would both prefer each other to their partners or to being single. We consider both the classical stable marriage problem and one of its useful variations (denoted SMTI (Stable Marriage with Ties and Incomplete lists where the men and women express their preferences in the form of an incomplete preference list with ties over a subset of the members of the other sex. Matchings are permitted only with people who appear in these preference lists, and we try to find a stable matching that marries as many people as possible. Whilst the SM problem is polynomial to solve, the SMTI problem is NP-hard. We propose to tackle both problems via a local search approach, which exploits properties of the problems to reduce the size of the neighborhood and to make local moves efficiently. We empirically evaluate our algorithm for SM problems by measuring its runtime behavior and its ability to sample the lattice of all possible stable marriages. We evaluate our algorithm for SMTI problems in terms of both its runtime behavior and its ability to find a maximum cardinality stable marriage. Experimental results suggest that for SM problems, the number of steps of our algorithm grows only as O(n log(n, and that it samples very well the set of all stable marriages. It is thus a fair and efficient approach to generate stable marriages. Furthermore, our approach for SMTI problems is able to solve large problems, quickly returning stable matchings of large and often optimal size, despite the

  6. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  7. Stable isotope research pool inventory

    International Nuclear Information System (INIS)

    1980-12-01

    This report contains a listing of electromagnetically separated stable isotopes which are available for distribution within the United States for non-destructive research use from the Oak Ridge National Laboratory on a loan basis. This inventory includes all samples of stable isotopes in the Materials Research Collection and does not designate whether a sample is out on loan or in reprocessing

  8. MetaGO: Predicting Gene Ontology of Non-homologous Proteins Through Low-Resolution Protein Structure Prediction and Protein-Protein Network Mapping.

    Science.gov (United States)

    Zhang, Chengxin; Zheng, Wei; Freddolino, Peter L; Zhang, Yang

    2018-03-10

    Homology-based transferal remains the major approach to computational protein function annotations, but it becomes increasingly unreliable when the sequence identity between query and template decreases below 30%. We propose a novel pipeline, MetaGO, to deduce Gene Ontology attributes of proteins by combining sequence homology-based annotation with low-resolution structure prediction and comparison, and partner's homology-based protein-protein network mapping. The pipeline was tested on a large-scale set of 1000 non-redundant proteins from the CAFA3 experiment. Under the stringent benchmark conditions where templates with >30% sequence identity to the query are excluded, MetaGO achieves average F-measures of 0.487, 0.408, and 0.598, for Molecular Function, Biological Process, and Cellular Component, respectively, which are significantly higher than those achieved by other state-of-the-art function annotations methods. Detailed data analysis shows that the major advantage of the MetaGO lies in the new functional homolog detections from partner's homology-based network mapping and structure-based local and global structure alignments, the confidence scores of which can be optimally combined through logistic regression. These data demonstrate the power of using a hybrid model incorporating protein structure and interaction networks to deduce new functional insights beyond traditional sequence homology-based referrals, especially for proteins that lack homologous function templates. The MetaGO pipeline is available at http://zhanglab.ccmb.med.umich.edu/MetaGO/. Copyright © 2018. Published by Elsevier Ltd.

  9. Measurement of Endogenous versus Exogenous Formaldehyde-Induced DNA-Protein Crosslinks in Animal Tissues by Stable Isotope Labeling and Ultrasensitive Mass Spectrometry.

    Science.gov (United States)

    Lai, Yongquan; Yu, Rui; Hartwell, Hadley J; Moeller, Benjamin C; Bodnar, Wanda M; Swenberg, James A

    2016-05-01

    DNA-protein crosslinks (DPC) arise from a wide range of endogenous and exogenous chemicals, such as chemotherapeutic drugs and formaldehyde. Importantly, recent identification of aldehydes as endogenous genotoxins in Fanconi anemia has provided new insight into disease causation. Because of their bulky nature, DPCs pose severe threats to genome stability, but previous methods to measure formaldehyde-induced DPCs were incapable of discriminating between endogenous and exogenous sources of chemical. In this study, we developed methods that provide accurate and distinct measurements of both exogenous and endogenous DPCs in a structurally specific manner. We exposed experimental animals to stable isotope-labeled formaldehyde ([(13)CD2]-formaldehyde) by inhalation and performed ultrasensitive mass spectrometry to measure endogenous (unlabeled) and exogenous ((13)CD2-labeled) DPCs. We found that exogenous DPCs readily accumulated in nasal respiratory tissues but were absent in tissues distant to the site of contact. This observation, together with the finding that endogenous formaldehyde-induced DPCs were present in all tissues examined, suggests that endogenous DPCs may be responsible for increased risks of bone marrow toxicity and leukemia. Furthermore, the slow rate of DPC repair provided evidence for the persistence of DPCs. In conclusion, our method for measuring endogenous and exogenous DPCs presents a new perspective for the potential health risks inflicted by endogenous formaldehyde and may inform improved disease prevention and treatment strategies. Cancer Res; 76(9); 2652-61. ©2016 AACR. ©2016 American Association for Cancer Research.

  10. Engineering nutritious proteins: improvement of stability in the designer protein MB-1 via introduction of disulfide bridges.

    Science.gov (United States)

    Doucet, Alain; Williams, Martin; Gagnon, Mylene C; Sasseville, Maxime; Beauregard, Marc

    2002-01-02

    Protein design is currently used for the creation of new proteins with desirable traits. In this laboratory the focus has been on the synthesis of proteins with high essential amino acid content having potential applications in animal nutrition. One of the limitations faced in this endeavor is achieving stable proteins despite a highly biased amino acid content. Reported here are the synthesis and characterization of two disulfide-bridged mutants derived from the MB-1 designer protein. Both mutants outperformed their parent protein MB-1 with their bridge formed, as shown by circular dichroism, size exclusion chromatography, thermal denaturation, and proteolytic degradation experiments. When the disulfide bridges were cleaved, the mutants' behavior changed: the mutants significantly unfolded, suggesting that the introduction of Cys residues was deleterious to MB-1-folding. In an attempt to compensate for the mutations used, a Tyr62-Trp mutation was performed, leading to an increase in bulk and hydrophobicity in the core. The Trp-containing disulfide-bridged mutants did not behave as well as the original MB-1Trp, suggesting that position 62 might not be adequate for a compensatory mutation.

  11. Astatine-211 labelled proteins and their stability in vivo

    International Nuclear Information System (INIS)

    Yi Changhou; Jin Jannan; Zhang Shuyuan; Wang Ketai; Zhang Dayuan; Zhou Maolun

    1989-01-01

    211 At or 131 I labelled proteins, e.g. 211 At-IgG or 211 At-BSA (bovine serum albumin) were prepared by 211 At reaction with the diazo-compound of para-aminobenzoic acid, which is then conjugated with IgG or BSA via an acylation reaction. The 211 At-carbon bond was found metabolically stable under in vivo conditions. For the labelling of proteins with 211 At or 131 I, other methods of direct oxidation are also described. The results show that for the labelling of proteins with 211 At, high rate of incorporation can be obtained with hydrogen peroxide as oxidant, but the labelling of proteins with 131 I is more favourable with the strong oxidant Chloramine-T. (author) 12 refs.; 6 figs

  12. Rapid directed evolution of stabilized proteins with cellular high-throughput encapsulation solubilization and screening (CHESS).

    Science.gov (United States)

    Yong, K J; Scott, D J

    2015-03-01

    Directed evolution is a powerful method for engineering proteins towards user-defined goals and has been used to generate novel proteins for industrial processes, biological research and drug discovery. Typical directed evolution techniques include cellular display, phage display, ribosome display and water-in-oil compartmentalization, all of which physically link individual members of diverse gene libraries to their translated proteins. This allows the screening or selection for a desired protein function and subsequent isolation of the encoding gene from diverse populations. For biotechnological and industrial applications there is a need to engineer proteins that are functional under conditions that are not compatible with these techniques, such as high temperatures and harsh detergents. Cellular High-throughput Encapsulation Solubilization and Screening (CHESS), is a directed evolution method originally developed to engineer detergent-stable G proteins-coupled receptors (GPCRs) for structural biology. With CHESS, library-transformed bacterial cells are encapsulated in detergent-resistant polymers to form capsules, which serve to contain mutant genes and their encoded proteins upon detergent mediated solubilization of cell membranes. Populations of capsules can be screened like single cells to enable rapid isolation of genes encoding detergent-stable protein mutants. To demonstrate the general applicability of CHESS to other proteins, we have characterized the stability and permeability of CHESS microcapsules and employed CHESS to generate thermostable, sodium dodecyl sulfate (SDS) resistant green fluorescent protein (GFP) mutants, the first soluble proteins to be engineered using CHESS. © 2014 Wiley Periodicals, Inc.

  13. Effectiveness and risks of stable iodine prophylaxis

    International Nuclear Information System (INIS)

    Waight, P.J.

    1995-01-01

    The factors upon which the efficacy of stable iodine prophylaxis depends are reviewed, with particular reference to the dose of stable iodine, the timing of the dose, the influence of dietary iodine and the impact of the other prospective actions. The risks of stable iodine ingestion are estimated, and their application to the principle of Justification in outlined. (Author)

  14. Lysine-functionalized nanodiamonds as gene carriers: development of stable colloidal dispersion for in vitro cellular uptake studies and siRNA delivery application

    Science.gov (United States)

    Alwani, Saniya; Kaur, Randeep; Michel, Deborah; Chitanda, Jackson M; Verrall, Ronald E; Karunakaran, Chithra; Badea, Ildiko

    2016-01-01

    Purpose Nanodiamonds (NDs) are emerging as an attractive tool for gene therapeutics. To reach their full potential for biological application, NDs should maintain their colloidal stability in biological milieu. This study describes the behavior of lysine-functionalized ND (lys-ND) in various dispersion media, with an aim to limit aggregation and improve the colloidal stability of ND-gene complexes called diamoplexes. Furthermore, cellular and macromolecular interactions of lys-NDs are also analyzed in vitro to establish the understanding of ND-mediated gene transfer in cells. Methods lys-NDs were synthesized earlier through covalent conjugation of lysine amino acid to carboxylated NDs surface generated through re-oxidation in strong oxidizing acids. In this study, dispersions of lys-NDs were prepared in various media, and the degree of sedimentation was monitored for 72 hours. Particle size distributions and zeta potential measurements were performed for a period of 25 days to characterize the physicochemical stability of lys-NDs in the medium. The interaction profile of lys-NDs with fetal bovine serum showed formation of a protein corona, which was evaluated by size and charge distribution measurements. Uptake of lys-NDs in cervical cancer cells was analyzed by scanning transmission X-ray microscopy, flow cytometry, and confocal microscopy. Cellular uptake of diamoplexes (complex of lys-NDs with small interfering RNA) was also analyzed using flow cytometry. Results Aqueous dispersion of lys-NDs showed minimum sedimentation and remained stable over a period of 25 days. Size distributions showed good stability, remaining under 100 nm throughout the testing period. A positive zeta potential of >+20 mV indicated a preservation of surface charges. Size distribution and zeta potential changed for lys-NDs after incubation with blood serum, suggesting an interaction with biomolecules, mainly proteins, and a possible formation of a protein corona. Cellular internalization

  15. Lysine-functionalized nanodiamonds as gene carriers: development of stable colloidal dispersion for in vitro cellular uptake studies and siRNA delivery application.

    Science.gov (United States)

    Alwani, Saniya; Kaur, Randeep; Michel, Deborah; Chitanda, Jackson M; Verrall, Ronald E; Karunakaran, Chithra; Badea, Ildiko

    2016-01-01

    Nanodiamonds (NDs) are emerging as an attractive tool for gene therapeutics. To reach their full potential for biological application, NDs should maintain their colloidal stability in biological milieu. This study describes the behavior of lysine-functionalized ND (lys-ND) in various dispersion media, with an aim to limit aggregation and improve the colloidal stability of ND-gene complexes called diamoplexes. Furthermore, cellular and macromolecular interactions of lys-NDs are also analyzed in vitro to establish the understanding of ND-mediated gene transfer in cells. lys-NDs were synthesized earlier through covalent conjugation of lysine amino acid to carboxylated NDs surface generated through re-oxidation in strong oxidizing acids. In this study, dispersions of lys-NDs were prepared in various media, and the degree of sedimentation was monitored for 72 hours. Particle size distributions and zeta potential measurements were performed for a period of 25 days to characterize the physicochemical stability of lys-NDs in the medium. The interaction profile of lys-NDs with fetal bovine serum showed formation of a protein corona, which was evaluated by size and charge distribution measurements. Uptake of lys-NDs in cervical cancer cells was analyzed by scanning transmission X-ray microscopy, flow cytometry, and confocal microscopy. Cellular uptake of diamoplexes (complex of lys-NDs with small interfering RNA) was also analyzed using flow cytometry. Aqueous dispersion of lys-NDs showed minimum sedimentation and remained stable over a period of 25 days. Size distributions showed good stability, remaining under 100 nm throughout the testing period. A positive zeta potential of >+20 mV indicated a preservation of surface charges. Size distribution and zeta potential changed for lys-NDs after incubation with blood serum, suggesting an interaction with biomolecules, mainly proteins, and a possible formation of a protein corona. Cellular internalization of lys-NDs was confirmed

  16. Forensic Stable Isotope Biogeochemistry

    Science.gov (United States)

    Cerling, Thure E.; Barnette, Janet E.; Bowen, Gabriel J.; Chesson, Lesley A.; Ehleringer, James R.; Remien, Christopher H.; Shea, Patrick; Tipple, Brett J.; West, Jason B.

    2016-06-01

    Stable isotopes are being used for forensic science studies, with applications to both natural and manufactured products. In this review we discuss how scientific evidence can be used in the legal context and where the scientific progress of hypothesis revisions can be in tension with the legal expectations of widely used methods for measurements. Although this review is written in the context of US law, many of the considerations of scientific reproducibility and acceptance of relevant scientific data span other legal systems that might apply different legal principles and therefore reach different conclusions. Stable isotopes are used in legal situations for comparing samples for authenticity or evidentiary considerations, in understanding trade patterns of illegal materials, and in understanding the origins of unknown decedents. Isotope evidence is particularly useful when considered in the broad framework of physiochemical processes and in recognizing regional to global patterns found in many materials, including foods and food products, drugs, and humans. Stable isotopes considered in the larger spatial context add an important dimension to forensic science.

  17. Enhanced tumor growth in the remaining lung after major lung resection.

    Science.gov (United States)

    Sano, Fumiho; Ueda, Kazuhiro; Murakami, Junichi; Hayashi, Masataro; Nishimoto, Arata; Hamano, Kimikazu

    2016-05-01

    Pneumonectomy induces active growth of the remaining lung in order to compensate for lost lung tissue. We hypothesized that tumor progression is enhanced in the activated local environment. We examined the effects of mechanical strain on the activation of lung growth and tumor progression in mice. The mechanical strain imposed on the right lung after left pneumonectomy was neutralized by filling the empty space that remained after pneumonectomy with a polypropylene prosthesis. The neutralization of the strain prevented active lung growth. According to an angiogenesis array, stronger monocyte chemoattractant protein-1 (MCP-1) expression was found in the strain-induced growing lung. The neutralization of the strain attenuated the release of MCP-1 from the lung cells. The intravenous injection of Lewis lung cancer cells resulted in the enhanced development of metastatic foci in the strain-induced growing lung, but the enhanced development was canceled by the neutralization of the strain. An immunohistochemical analysis revealed the prominent accumulation of tumor-associated macrophages in tumors arising in the strain-induced growing lung, and that there was a relationship between the accumulation and the MCP-1 expression status. Our results suggested that mechanical lung strain, induced by pulmonary resection, triggers active lung growth, thereby creating a tumor-friendly environment. The modification of that environment, as well as the minimizing of surgical stress, may be a meaningful strategy to improve the therapeutic outcome after lung cancer surgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Ballooning stable high beta tokamak equilibria

    International Nuclear Information System (INIS)

    Tuda, Takashi; Azumi, Masafumi; Kurita, Gen-ichi; Takizuka, Tomonori; Takeda, Tatsuoki

    1981-04-01

    The second stable regime of ballooning modes is numerically studied by using the two-dimensional tokamak transport code with the ballooning stability code. Using the simple FCT heating scheme, we find that the plasma can locally enter this second stable regime. And we obtained equilibria with fairly high beta (β -- 23%) stable against ballooning modes in a whole plasma region, by taking into account of finite thermal diffusion due to unstable ballooning modes. These results show that a tokamak fusion reactor can operate in a high beta state, which is economically favourable. (author)

  19. Purification of Ovine Respiratory Complex I Results in a Highly Active and Stable Preparation*

    Science.gov (United States)

    Letts, James A.; Degliesposti, Gianluca; Fiedorczuk, Karol; Skehel, Mark; Sazanov, Leonid A.

    2016-01-01

    NADH-ubiquinone oxidoreductase (complex I) is the largest (∼1 MDa) and the least characterized complex of the mitochondrial electron transport chain. Because of the ease of sample availability, previous work has focused almost exclusively on bovine complex I. However, only medium resolution structural analyses of this complex have been reported. Working with other mammalian complex I homologues is a potential approach for overcoming these limitations. Due to the inherent difficulty of expressing large membrane protein complexes, screening of complex I homologues is limited to large mammals reared for human consumption. The high sequence identity among these available sources may preclude the benefits of screening. Here, we report the characterization of complex I purified from Ovis aries (ovine) heart mitochondria. All 44 unique subunits of the intact complex were identified by mass spectrometry. We identified differences in the subunit composition of subcomplexes of ovine complex I as compared with bovine, suggesting differential stability of inter-subunit interactions within the complex. Furthermore, the 42-kDa subunit, which is easily lost from the bovine enzyme, remains tightly bound to ovine complex I. Additionally, we developed a novel purification protocol for highly active and stable mitochondrial complex I using the branched-chain detergent lauryl maltose neopentyl glycol. Our data demonstrate that, although closely related, significant differences exist between the biochemical properties of complex I prepared from ovine and bovine mitochondria and that ovine complex I represents a suitable alternative target for further structural studies. PMID:27672209

  20. The Snf1 Protein Kinase in the Yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Usaite, Renata

    2008-01-01

    4 on the regulation of glucose and galactose metabolism, I physiologically characterized Δsnf1, Δsnf4, and Δsnf1Δsnf4 CEN.PK background yeast strains in glucose and glucose-galactose mixture batch cultivations (chapter 2). The results of this study showed that delayed induction of galactose...... that the stable isotope labeling approach is highly reproducible among biological replicates when complex protein mixtures containing small expression changes were analyzed. Where poor correlation between stable isotope labeling and spectral counting was found, the major reason behind the discrepancy was the lack...

  1. Biomimetic devices functionalized by membrane channel proteins

    Science.gov (United States)

    Schmidt, Jacob

    2004-03-01

    We are developing a new family of active materials which derive their functional properties from membrane proteins. These materials have two primary components: the proteins and the membranes themselves. I will discuss our recent work directed toward development of a generic platform for a "plug-and-play" philosophy of membrane protein engineering. By creating a stable biomimetic polymer membrane a single molecular monolayer thick, we will enable the exploitation of the function of any membrane protein, from pores and pumps to sensors and energy transducers. Our initial work has centered on the creation, study, and characterization of the biomimetic membranes. We are attempting to make large areas of membrane monolayers using Langmuir-Blodgett film formation as well as through arrays of microfabricated black lipid membrane-type septa. A number of techniques allow the insertion of protein into the membranes. As a benchmark, we have been employing a model system of voltage-gated pore proteins, which have electrically controllable porosities. I will report on the progress of this work, the characterization of the membranes, protein insertion processes, and the yield and functionality of the composite.

  2. Protein Data Bank Project at Rutgers University

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Helen

    2002-07-18

    The central activities of the Protein Data Base continue to be the collection, archiving and distribution of high quality structural data to the scientific community on a timely basis. The systems that have been developed for doing this has become increasingly reliable and stable. We have completed the inventory of magnetic and paper media that was received from Brookhaven National Laboratory.

  3. Protein stability and enzyme activity at extreme biological temperatures

    International Nuclear Information System (INIS)

    Feller, Georges

    2010-01-01

    Psychrophilic microorganisms thrive in permanently cold environments, even at subzero temperatures. To maintain metabolic rates compatible with sustained life, they have improved the dynamics of their protein structures, thereby enabling appropriate molecular motions required for biological activity at low temperatures. As a consequence of this structural flexibility, psychrophilic proteins are unstable and heat-labile. In the upper range of biological temperatures, thermophiles and hyperthermophiles grow at temperatures > 100 0 C and synthesize ultra-stable proteins. However, thermophilic enzymes are nearly inactive at room temperature as a result of their compactness and rigidity. At the molecular level, both types of extremophilic proteins have adapted the same structural factors, but in opposite directions, to address either activity at low temperatures or stability in hot environments. A model based on folding funnels is proposed accounting for the stability-activity relationships in extremophilic proteins. (topical review)

  4. Detecting animal by-product intake using stable isotope ratio mass spectrometry (IRMS).

    Science.gov (United States)

    da Silva, D A F; Biscola, N P; Dos Santos, L D; Sartori, M M P; Denadai, J C; da Silva, E T; Ducatti, C; Bicudo, S D; Barraviera, B; Ferreira, R S

    2016-11-01

    Sheep are used in many countries as food and for manufacturing bioproducts. However, when these animals consume animal by-products (ABP), which is widely prohibited, there is a risk of transmitting scrapie - a fatal prion disease in human beings. Therefore, it is essential to develop sensitive methods to detect previous ABP intake to select safe animals for producing biopharmaceuticals. We used stable isotope ratio mass spectrometry (IRMS) for 13 C and 15 N to trace animal proteins in the serum of three groups of sheep: 1 - received only vegetable protein (VP) for 89 days; 2 - received animal and vegetable protein (AVP); and 3 - received animal and vegetable protein with animal protein subsequently removed (AVPR). Groups 2 and 3 received diets with 30% bovine meat and bone meal (MBM) added to a vegetable diet (from days 16-89 in the AVP group and until day 49 in the AVPR group, when MBM was removed). The AVPR group showed 15 N equilibrium 5 days after MBM removal (54th day). Conversely, 15 N equilibrium in the AVP group occurred 22 days later (76th day). The half-life differed between these groups by 3.55 days. In the AVPR group, 15 N elimination required 53 days, which was similar to this isotope's incorporation time. Turnover was determined based on natural 15 N signatures. IRMS followed by turnover calculations was used to evaluate the time period for the incorporation and elimination of animal protein in sheep serum. The δ 13 C and δ 15 N values were used to track animal protein in the diet. This method is biologically and economically relevant for the veterinary field because it can track protein over time or make a point assessment of animal feed with high sensitivity and resolution, providing a low-cost analysis coupled with fast detection. Isotopic profiles could be measured throughout the experimental period, demonstrating the potential to use the method for traceability and certification assessments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Structure-function correlations of pulmonary surfactant protein SP-B and the saposin-like family of proteins.

    Science.gov (United States)

    Olmeda, Bárbara; García-Álvarez, Begoña; Pérez-Gil, Jesús

    2013-03-01

    Pulmonary surfactant is a lipid-protein complex secreted by the respiratory epithelium of mammalian lungs, which plays an essential role in stabilising the alveolar surface and so reducing the work of breathing. The surfactant protein SP-B is part of this complex, and is strictly required for the assembly of pulmonary surfactant and its extracellular development to form stable surface-active films at the air-liquid alveolar interface, making the lack of SP-B incompatible with life. In spite of its physiological importance, a model for the structure and the mechanism of action of SP-B is still needed. The sequence of SP-B is homologous to that of the saposin-like family of proteins, which are membrane-interacting polypeptides with apparently diverging activities, from the co-lipase action of saposins to facilitate the degradation of sphingolipids in the lysosomes to the cytolytic actions of some antibiotic proteins, such as NK-lysin and granulysin or the amoebapore of Entamoeba histolytica. Numerous studies on the interactions of these proteins with membranes have still not explained how a similar sequence and a potentially related fold can sustain such apparently different activities. In the present review, we have summarised the most relevant features of the structure, lipid-protein and protein-protein interactions of SP-B and the saposin-like family of proteins, as a basis to propose an integrated model and a common mechanistic framework of the apparent functional versatility of the saposin fold.

  6. The effect of periodontal therapy on C-reactive protein, endothelial function, lipids and proinflammatory biomarkers in patients with stable coronary artery disease: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Saffi, Marco Aurélio Lumertz; Furtado, Mariana Vargas; Montenegro, Márlon Munhoz; Ribeiro, Ingrid Webb Josephson; Kampits, Cassio; Rabelo-Silva, Eneida Rejane; Polanczyk, Carisi Anne; Rösing, Cassiano Kuchenbecker; Haas, Alex Nogueira

    2013-09-06

    Scarce information exists regarding the preventive effect of periodontal treatment in the recurrence of cardiovascular events. Prevention may be achieved by targeting risk factors for recurrent coronary artery disease (CAD) in patients with previous history of cardiovascular events. The aim of this trial is to compare the effect of two periodontal treatment approaches on levels of C-reactive protein, lipids, flow-mediated dilation and serum concentrations of proinflammatory and endothelial markers in stable CAD patients with periodontitis over a period of 12 months. This is a randomized, parallel design, examiner blinded, controlled clinical trial. Individuals from both genders, 35 years of age and older, with concomitant diagnosis of CAD and periodontitis will be included. CAD will be defined as the occurrence of at least one of the following events 6 months prior to entering the trial: documented history of myocardial infarction; surgical or percutaneous myocardial revascularization and lesion >50% in at least one coronary artery assessed by angiography; presence of angina and positive noninvasive testing of ischemia. Diagnosis of periodontitis will be defined using the CDC-AAP case definition (≥2 interproximal sites with clinical attachment loss ≥6 mm and ≥1 interproximal site with probing depth ≥5 mm). Individuals will have to present at least ten teeth present to be included. One hundred individuals will be allocated to test (intensive periodontal treatment comprised by scaling and root planing) or control (community periodontal treatment consisting of one session of supragingival plaque removal only) treatment groups. Full-mouth six sites per tooth periodontal examinations and subgingival biofilm samples will be conducted at baseline, 3, 6 and 12 months after treatment. The primary outcome of this study will be C-reactive protein changes over time. Secondary outcomes include levels of total cholesterol, LDL-C, HDL-C, triglycerides, IL-1β, IL-6, TNF

  7. Briquettes of plant remains from the greenhouses of Almeria (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Callejon-Ferre, A. J.; Lopez-Martinez, J. A.

    2009-07-01

    Since ancient times, plant biomass has been used as a primary fuel, and today, with the impending depletion of fossil fuels, these vegetal sources constitute a cleaner alternative and furthermore have a multitude of uses. The aim of the present study is to design a method of recycling and reuse of plant wastes from intensive agriculture under plastic, by manufacturing briquettes in an environmentally friendly manner. In Almeria (SE Spain), agriculture generates 769,500 t year{sup -}1 of plant remains from greenhouse-grown horticultural crops, a resource currently used for composting and for producing electricity.With the machinery and procedures of the present study, another potential use has been developed by detoxifying and eliminating the plastic wastes of the original biomass for the fabrication of briquettes for fireplaces. The results were slightly inferior to the commercial briquette from other non-horticultural plant materials (no forestry material), specifically 2512 kJ kg{sup -}1, in the least favourable case. On the contrary, the heating value with respect to the two charcoals was significantly lower, with a difference of 12,142 kJ kg{sup -}1. In conclusion; a procedure, applicable in ecological cultivation without agrochemicals or plastic cords, has been developed and tested to reuse and transform plant materials from intensive cultivation into a stable non-toxic product similar to composite logs, applicable in commercial settings or in residential fireplaces. (Author) 48 refs.

  8. Measurement of protein digestibility in humans by a dual-tracer method.

    Science.gov (United States)

    Devi, Sarita; Varkey, Aneesia; Sheshshayee, M S; Preston, Thomas; Kurpad, Anura V

    2018-06-01

    Recent evaluations of the risk of dietary protein deficiency have indicated that protein digestibility may be a key limiting factor in the provision of indispensable amino acids (IAAs), particularly for vulnerable populations living in challenging environments where intestinal dysfunction may exist. Since the digestion of protein occurs only in the small intestine, and the metabolic activity of colonic bacteria confounds measurements at the fecal level, there is a need to develop noninvasive protein digestibility measurements at the ileal level. We used a dual-tracer method with stable isotopes to characterize the digestibility of uniformly labeled [13C]-spirulina protein as a standard protein, in comparison to a mixture of 2H-labeled crystalline amino acids, and then demonstrated the use of this standard protein to measure the digestibility of selected legumes (chick pea and mung bean) through the use of proteins that were intrinsically labeled with 2H. The digestibility of uniformly labeled [13C]-spirulina was first measured in 6 healthy volunteers (3 males and 3 females) by feeding it along with a standard mixture of 2H-labeled amino acids, in a dual-tracer, plateau-fed test meal approach. Next, intrinsically labeled legume protein digestibility was studied with a similar dual-tracer approach, with uniformly labeled [13C]-spirulina as the standard, when processed differently before consumption. The average digestibility of IAA in spirulina protein was 85.2%. The average IAA digestibility of intrinsically 2H-labeled chick pea and mung bean protein was 56.6% and 57.7%, respectively. Dehulling of mung bean before ingestion increased the average IAA digestibility by 9.9% in comparison to whole mung bean digestibility. An innovative, minimally invasive "dual-stable-isotope" method was developed to measure protein digestibility, in which the ingestion of an intrinsically 2H-labeled test protein along with a 13C-labeled standard protein of known digestibility allows

  9. Structural characterization of the fusion core in syncytin, envelope protein of human endogenous retrovirus family W

    International Nuclear Information System (INIS)

    Gong Rui; Peng Xiaoxue; Kang Shuli; Feng Huixing; Huang Jianying; Zhang Wentao; Lin Donghai; Tien Po; Xiao Gengfu

    2005-01-01

    Syncytin is a captive retroviral envelope protein, possibly involved in the formation of the placental syncytiotrophoblast layer generated by trophoblast cell fusion at the maternal-fetal interface. We found that syncytin and type I viral envelope proteins shared similar structural profiling, especially in the regions of N- and C-terminal heptad repeats (NHR and CHR). We expressed the predicted regions of NHR (41 aa) and CHR (34 aa) in syncytin as a native single chain (named 2-helix protein) to characterize it. 2-helix protein exists as a trimer and is highly α-helix, thermo-stable, and denatured by low pH. NHR and CHR could form a protease-resistant complex. The complex structure built by the molecular docking demonstrated that NHR and CHR associated in an antiparallel manner. Overall, the 2-helix protein could form a thermo-stable coiled coil trimer. The fusion core structure of syncytin was first demonstrated in endogenous retrovirus. These results support the explanation how syncytin mediates cytotrophoblast cell fusion involved in placental morphogenesis

  10. Thermodynamic effects of replacements of Pro residues in helix interiors of maltose-binding protein.

    Science.gov (United States)

    Prajapati, R S; Lingaraju, G M; Bacchawat, Kiran; Surolia, Avadhesha; Varadarajan, Raghavan

    2003-12-01

    Introduction of Pro residues into helix interiors results in protein destabilization. It is currently unclear if the converse substitution (i.e., replacement of Pro residues that naturally occur in helix interiors would be stabilizing). Maltose-binding protein is a large 370-amino acid protein that contains 21 Pro residues. Of these, three nonconserved residues (P48, P133, and P159) occur at helix interiors. Each of the residues was replaced with Ala and Ser. Stabilities were characterized by differential scanning calorimetry (DSC) as a function of pH and by isothermal urea denaturation studies as a function of temperature. The P48S and P48A mutants were found to be marginally more stable than the wild-type protein. In the pH range of 5-9, there is an average increase in T(m) values of P48A and P48S of 0.4 degrees C and 0.2 degrees C, respectively, relative to the wild-type protein. The other mutants are less stable than the wild type. Analysis of the effects of such Pro substitutions in MBP and in three other proteins studied to date suggests that substitutions are more likely to be stabilizing if the carbonyl group i-3 or i-4 to the mutation site is not hydrogen bonded in the wild-type protein. Copyright 2003 Wiley-Liss, Inc.

  11. Facilitated receptor-recognition and enhanced bioactivity of bone morphogenetic protein-2 on magnesium-substituted hydroxyapatite surface

    Science.gov (United States)

    Huang, Baolin; Yuan, Yuan; Li, Tong; Ding, Sai; Zhang, Wenjing; Gu, Yuantong; Liu, Changsheng

    2016-01-01

    Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, molecular dynamic simulations were performed to calculate the preferred orientations, conformation changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration implants/scaffolds. PMID:27075233

  12. Glycated Lysine Residues: A Marker for Non-Enzymatic Protein Glycation in Age-Related Diseases

    OpenAIRE

    Ansari, Nadeem A.; Moinuddin,; Ali, Rashid

    2011-01-01

    Nonenzymatic glycosylation or glycation of macromolecules, especially proteins leading to their oxidation, play an important role in diseases. Glycation of proteins primarily results in the formation of an early stage and stable Amadori-lysine product which undergo further irreversible chemical reactions to form advanced glycation endproducts (AGEs). This review focuses these products in lysine rich proteins such as collagen and human serum albumin for their role in aging and age-related dise...

  13. Tukey max-stable processes for spatial extremes

    KAUST Repository

    Xu, Ganggang

    2016-09-21

    We propose a new type of max-stable process that we call the Tukey max-stable process for spatial extremes. It brings additional flexibility to modeling dependence structures among spatial extremes. The statistical properties of the Tukey max-stable process are demonstrated theoretically and numerically. Simulation studies and an application to Swiss rainfall data indicate the effectiveness of the proposed process. © 2016 Elsevier B.V.

  14. Passage of stable isotope-labeled grass silage fiber and fiber-bound protein through the gastroinstestinal tract of dairy cows

    NARCIS (Netherlands)

    Warner, D.; Dijkstra, J.; Hendriks, W.H.; Pellikaan, W.F.

    2013-01-01

    Fractional passage rates are required to predict nutrient absorption in ruminants but data on nutrient-specific passage kinetics are largely lacking. With the use of the stable isotope ratio (d) as an internal marker, we assessed passage kinetics of fiber and fiber-bound nitrogen (N) of

  15. Recapitulation of physiological spatiotemporal signals promotes in vitro formation of phenotypically stable human articular cartilage

    Science.gov (United States)

    Wei, Yiyong; Zhou, Bin; Bernhard, Jonathan; Robinson, Samuel; Burapachaisri, Aonnicha; Guo, X. Edward

    2017-01-01

    Standard isotropic culture fails to recapitulate the spatiotemporal gradients present during native development. Cartilage grown from human mesenchymal stem cells (hMSCs) is poorly organized and unstable in vivo. We report that human cartilage with physiologic organization and in vivo stability can be grown in vitro from self-assembling hMSCs by implementing spatiotemporal regulation during induction. Self-assembling hMSCs formed cartilage discs in Transwell inserts following isotropic chondrogenic induction with transforming growth factor β to set up a dual-compartment culture. Following a switch in the basal compartment to a hypertrophic regimen with thyroxine, the cartilage discs underwent progressive deep-zone hypertrophy and mineralization. Concurrent chondrogenic induction in the apical compartment enabled the maintenance of functional and hyaline cartilage. Cartilage homeostasis, chondrocyte maturation, and terminal differentiation markers were all up-regulated versus isotropic control groups. We assessed the in vivo stability of the cartilage formed under different induction regimens. Cartilage formed under spatiotemporal regulation in vitro resisted endochondral ossification, retained the expression of cartilage markers, and remained organized following s.c. implantation in immunocompromised mice. In contrast, the isotropic control groups underwent endochondral ossification. Cartilage formed from hMSCs remained stable and organized in vivo. Spatiotemporal regulation during induction in vitro recapitulated some aspects of native cartilage development, and potentiated the maturation of self-assembling hMSCs into stable and organized cartilage resembling the native articular cartilage. PMID:28228529

  16. Phosphorylation of mitogen-activated protein kinase (MAPK) is required for cytokinesis and progression of cell cycle in tobacco BY-2 cells.

    Science.gov (United States)

    Ma, Zhaowu; Yu, Guanghui

    2010-02-15

    The role of mitogen-activated protein kinase (MAPK) in plant cytokinesis remains largely uncharacterized. To elucidate its role, tobacco Bright Yellow-2 (BY-2) cells have been synchronized using a two-step procedure, and the different phases of the cell cycle identified by Histone 4 gene expression and the mitotic index. MAPK expression was analyzed by semi-quantitative (SQ) RT-PCR and protein gel blot analysis for phosphorylated MAPK during cell cycle progression. The SQ RT-PCR analysis indicated that MAPK expression is lower in mitosis than in interphase (G1, G2 and S). However, the amount of phosphorylated MAPK remained stable throughout the cell cycle, indicating that MAPK activity is predominantly regulated at the post-translational level and that phosphorylation of MAPK plays an important role in mitosis. Application of the specific MAPK phosphorylation inhibitor U0126 revealed that while U0126 treatment decreases the phosphorylation of MAPK and the progression from telophase to early cytokinesis is significantly inhibited. The formation of the phragmoplast is also negatively affected at this stage. These results demonstrate that MAPK phosphorylation is involved in the formation of the cell plate within the phragmoplast during cytokinesis and that MAPK predominantly functions during the cytokinesis stage of the cell cycle in tobacco BY-2 cells. Copyright 2009 Elsevier GmbH. All rights reserved.

  17. Induction and evaluation of mutations for improved protein production in certain species of yeasts in the Philippines

    International Nuclear Information System (INIS)

    Borromeo, J.D.

    1976-02-01

    The species of yeasts included in the studies are Saccharomyces cerevisiae, Rhodeterula rubra, Rhodeterula pilimane and those isolated from fruits such as citrus, papaya and banana. Part of the project involved induction of sporulation to obtain haploid cells for crossing to produce stable disploids exhibiting improved protein production. Although S. cerevisiae produce less protein than Rhodeterula, it produces ascesperes which are haploid cells. These haploid cells can be used to obtain stable diploids with the desirable characteristics by crossing cultures. Rhodeterula, a fungus that does not produce ascesperes will be subjected to certain adverse conditions to induce, hopefully, sperulation

  18. Chance and stability stable distributions and their applications

    CERN Document Server

    Uchaikin, Vladimir V

    1999-01-01

    An introduction to the theory of stable distributions and their applications. It contains a modern outlook on the mathematical aspects of the theory. The authors explain numerous peculiarities of stable distributions and describe the principle concept of probability theory and function analysis. A significant part of the book is devoted to applications of stable distributions. Another notable feature is the material on the interconnection of stable laws with fractals, chaos and anomalous transport processes.

  19. Lipid transfer proteins from fruit: cloning, expression and quantification

    NARCIS (Netherlands)

    Zuidmeer, Laurian; van Leeuwen, W. Astrid; Budde, Ilona Kleine; Cornelissen, Jessica; Bulder, Ingrid; Rafalska, Ilona; Besolí, Noèlia Telléz; Akkerdaas, Jaap H.; Asero, Riccardo; Fernandez Rivas, Montserrat; Rivas, Montserrat Fernandez; Gonzalez Mancebo, Eloina; Mancebo, Eloina Gonzalez; van Ree, Ronald

    2005-01-01

    BACKGROUND: Lipid transfer proteins (LTP) are stable, potentially life-threatening allergens in fruits and many other vegetable foods. The aim of this study was to clone and express recombinant apple LTP (Mal d 3), as has previously been done for peach LTP (Pru p 3) and set up quantitative tests for

  20. Prion protein inhibits microtubule assembly by inducing tubulin oligomerization

    International Nuclear Information System (INIS)

    Nieznanski, Krzysztof; Podlubnaya, Zoya A.; Nieznanska, Hanna

    2006-01-01

    A growing body of evidence points to an association of prion protein (PrP) with microtubular cytoskeleton. Recently, direct binding of PrP to tubulin has also been found. In this work, using standard light scattering measurements, sedimentation experiments, and electron microscopy, we show for First time the effect of a direct interaction between these proteins on tubulin polymerization. We demonstrate that full-length recombinant PrP induces a rapid increase in the turbidity of tubulin diluted below the critical concentration for microtubule assembly. This effect requires magnesium ions and is weakened by NaCl. Moreover, the PrP-induced light scattering structures of tubulin are cold-stable. In preparations of diluted tubulin incubated with PrP, electron microscopy revealed the presence of ∼50 nm disc-shaped structures not reported so far. These unique tubulin oligomers may form large aggregates. The effect of PrP is more pronounced under the conditions promoting microtubule formation. In these tubulin samples, PrP induces formation of the above oligomers associated with short protofilaments and sheets of protofilaments into aggregates. Noticeably, this is accompanied by a significant reduction of the number and length of microtubules. Hence, we postulate that prion protein may act as an inhibitor of microtubule assembly by inducing formation of stable tubulin oligomers