WorldWideScience

Sample records for protein regulates expression

  1. Myocardin-related transcription factor regulates Nox4 protein expression

    DEFF Research Database (Denmark)

    Rozycki, Matthew; Bialik, Janne Folke; Speight, Pam

    2016-01-01

    translocation of MRTF. Because the Nox4 promoter harbors a serum response factor/MRTF cis-element (CC(A/T)6GG box), we asked if MRTF (and thus cytoskeleton organization) could regulate Nox4 expression. We show that Nox4 protein is robustly induced in kidney tubular cells exclusively by combined application...... TGFβ/contact disruption-provoked Nox4 protein and mRNA expression, Nox4 promoter activation, and reactive oxygen species production. Mutation of the CC(A/T)6GG box eliminates the synergistic activation of the Nox4 promoter. Jasplakinolide-induced actin polymerization synergizes with TGFβ to facilitate...... MRTF-dependent Nox4 mRNA expression/promoter activation. Moreover, MRTF inhibition prevents Nox4 expression during TGFβ-induced fibroblast-myofibroblast transition as well. Although necessary, MRTF is insufficient; Nox4 expression also requires TGFβ-activated Smad3 and TAZ/YAP, two contact...

  2. Prion protein expression regulates embryonic stem cell pluripotency and differentiation.

    Directory of Open Access Journals (Sweden)

    Alberto Miranda

    2011-04-01

    Full Text Available Cellular prion protein (PRNP is a glycoprotein involved in the pathogenesis of transmissible spongiform encephalopathies (TSEs. Although the physiological function of PRNP is largely unknown, its key role in prion infection has been extensively documented. This study examines the functionality of PRNP during the course of embryoid body (EB differentiation in mouse Prnp-null (KO and WT embryonic stem cell (ESC lines. The first feature observed was a new population of EBs that only appeared in the KO line after 5 days of differentiation. These EBs were characterized by their expression of several primordial germ cell (PGC markers until Day 13. In a comparative mRNA expression analysis of genes playing an important developmental role during ESC differentiation to EBs, Prnp was found to participate in the transcription of a key pluripotency marker such as Nanog. A clear switching off of this gene on Day 5 was observed in the KO line as opposed to the WT line, in which maximum Prnp and Nanog mRNA levels appeared at this time. Using a specific antibody against PRNP to block PRNP pathways, reduced Nanog expression was confirmed in the WT line. In addition, antibody-mediated inhibition of ITGB5 (integrin αvβ5 in the KO line rescued the low expression of Nanog on Day 5, suggesting the regulation of Nanog transcription by Prnp via this Itgb5. mRNA expression analysis of the PRNP-related proteins PRND (Doppel and SPRN (Shadoo, whose PRNP function is known to be redundant, revealed their incapacity to compensate for the absence of PRNP during early ESC differentiation. Our findings provide strong evidence for a relationship between Prnp and several key pluripotency genes and attribute Prnp a crucial role in regulating self-renewal/differentiation status of ESC, confirming the participation of PRNP during early embryogenesis.

  3. Abscisic Acid (ABA) Regulation of Arabidopsis SR Protein Gene Expression

    Science.gov (United States)

    Cruz, Tiago M. D.; Carvalho, Raquel F.; Richardson, Dale N.; Duque, Paula

    2014-01-01

    Serine/arginine-rich (SR) proteins are major modulators of alternative splicing, a key generator of proteomic diversity and flexible means of regulating gene expression likely to be crucial in plant environmental responses. Indeed, mounting evidence implicates splicing factors in signal transduction of the abscisic acid (ABA) phytohormone, which plays pivotal roles in the response to various abiotic stresses. Using real-time RT-qPCR, we analyzed total steady-state transcript levels of the 18 SR and two SR-like genes from Arabidopsis thaliana in seedlings treated with ABA and in genetic backgrounds with altered expression of the ABA-biosynthesis ABA2 and the ABA-signaling ABI1 and ABI4 genes. We also searched for ABA-responsive cis elements in the upstream regions of the 20 genes. We found that members of the plant-specific SC35-Like (SCL) Arabidopsis SR protein subfamily are distinctively responsive to exogenous ABA, while the expression of seven SR and SR-related genes is affected by alterations in key components of the ABA pathway. Finally, despite pervasiveness of established ABA-responsive promoter elements in Arabidopsis SR and SR-like genes, their expression is likely governed by additional, yet unidentified cis-acting elements. Overall, this study pinpoints SR34, SR34b, SCL30a, SCL28, SCL33, RS40, SR45 and SR45a as promising candidates for involvement in ABA-mediated stress responses. PMID:25268622

  4. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression

    DEFF Research Database (Denmark)

    Dhamrait, Sukhbir S.; Maubaret, Cecilia; Pedersen-bjergaard, Ulrik

    2016-01-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin–angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial...... amongst UCP3-55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P 

  5. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression

    DEFF Research Database (Denmark)

    Dhamrait, Sukhbir S.; Maubaret, Cecilia; Pedersen-Bjergaard, Ulrik

    2016-01-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin-angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial...... amongst UCP3-55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P 

  6. Cellular prion protein expression is not regulated by the Alzheimer's amyloid precursor protein intracellular domain.

    Directory of Open Access Journals (Sweden)

    Victoria Lewis

    Full Text Available There is increasing evidence of molecular and cellular links between Alzheimer's disease (AD and prion diseases. The cellular prion protein, PrP(C, modulates the post-translational processing of the AD amyloid precursor protein (APP, through its inhibition of the β-secretase BACE1, and oligomers of amyloid-β bind to PrP(C which may mediate amyloid-β neurotoxicity. In addition, the APP intracellular domain (AICD, which acts as a transcriptional regulator, has been reported to control the expression of PrP(C. Through the use of transgenic mice, cell culture models and manipulation of APP expression and processing, this study aimed to clarify the role of AICD in regulating PrP(C. Over-expression of the three major isoforms of human APP (APP(695, APP(751 and APP(770 in cultured neuronal and non-neuronal cells had no effect on the level of endogenous PrP(C. Furthermore, analysis of brain tissue from transgenic mice over-expressing either wild type or familial AD associated mutant human APP revealed unaltered PrP(C levels. Knockdown of endogenous APP expression in cells by siRNA or inhibition of γ-secretase activity also had no effect on PrP(C levels. Overall, we did not detect any significant difference in the expression of PrP(C in any of the cell or animal-based paradigms considered, indicating that the control of cellular PrP(C levels by AICD is not as straightforward as previously suggested.

  7. Expression and Location of Glucose-regulated Protein 78 in Testis and Epididymis

    Directory of Open Access Journals (Sweden)

    W Wang

    2014-04-01

    Full Text Available Objective: To know the role of glucose-regulated protein 78 (GRP78/BiP/HSPA5 in spermatogenesis and its expression and location in the testis and epididymis. Methods: Immunohistochemistry and Western blot were used to detect GRP78 location and expression in the testis and epididymis. Results: Glucose-regulated protein 78 was observed in spermatocytes, round spermatids and interstitial cells of the testis and in principal cells of the epididymis. Glucose-regulated protein 78 was first detected in the rat testis at postnatal day 14. Thereafter, the protein level increased gradually with age and was maintained at a high and stable state after postnatal day 28. In the rat, GRP78 was expressed in the principal cells but not in clear cells of the epididymis. Conclusion: Glucose-regulated protein 78 participates in the process of spermatogenesis.

  8. N-MYC down-regulated-like proteins regulate meristem initiation by modulating auxin transport and MAX2 expression.

    Science.gov (United States)

    Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M

    2013-01-01

    N-MYC down-regulated-like (NDL) proteins interact with the Gβ subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development. Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation) confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele) mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem. NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients.

  9. N-MYC down-regulated-like proteins regulate meristem initiation by modulating auxin transport and MAX2 expression.

    Directory of Open Access Journals (Sweden)

    Yashwanti Mudgil

    Full Text Available N-MYC down-regulated-like (NDL proteins interact with the Gβ subunit (AGB1 of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development.Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem.NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients.

  10. Regulation of CD93 cell surface expression by protein kinase C isoenzymes.

    Science.gov (United States)

    Ikewaki, Nobunao; Kulski, Jerzy K; Inoko, Hidetoshi

    2006-01-01

    Human CD93, also known as complement protein 1, q subcomponent, receptor (C1qRp), is selectively expressed by cells with a myeloid lineage, endothelial cells, platelets, and microglia and was originally reported to be involved in the complement protein 1, q subcomponent (C1q)-mediated enhancement of phagocytosis. The intracellular molecular events responsible for the regulation of its expression on the cell surface, however, have not been determined. In this study, the effect of protein kinases in the regulation of CD93 expression on the cell surface of a human monocyte-like cell line (U937), a human NK-like cell line (KHYG-1), and a human umbilical vein endothelial cell line (HUV-EC-C) was investigated using four types of protein kinase inhibitors, the classical protein kinase C (cPKC) inhibitor Go6976, the novel PKC (nPKC) inhibitor Rottlerin, the protein kinase A (PKA) inhibitor H-89 and the protein tyrosine kinase (PTK) inhibitor herbimycin A at their optimum concentrations for 24 hr. CD93 expression was analyzed using flow cytometry and glutaraldehyde-fixed cellular enzyme-linked immunoassay (EIA) techniques utilizing a CD93 monoclonal antibody (mAb), mNI-11, that was originally established in our laboratory as a CD93 detection probe. The nPKC inhibitor Rottlerin strongly down-regulated CD93 expression on the U937 cells in a dose-dependent manner, whereas the other inhibitors had little or no effect. CD93 expression was down-regulated by Go6976, but not by Rottlerin, in the KHYG-1 cells and by both Rottlerin and Go6976 in the HUV-EC-C cells. The PKC stimulator, phorbol myristate acetate (PMA), strongly up-regulated CD93 expression on the cell surface of all three cell-lines and induced interleukin-8 (IL-8) production by the U937 cells and interferon-gamma (IFN-gamma) production by the KHYG-1 cells. In addition, both Go6976 and Rottlerin inhibited the up-regulation of CD93 expression induced by PMA and IL-8 or IFN-gamma production in the respective cell

  11. Isolation of nuclear proteins from flax (Linum usitatissimum L. seed coats for gene expression regulation studies

    Directory of Open Access Journals (Sweden)

    Renouard Sullivan

    2012-01-01

    Full Text Available Abstract Background While seed biology is well characterized and numerous studies have focused on this subject over the past years, the regulation of seed coat development and metabolism is for the most part still non-elucidated. It is well known that the seed coat has an essential role in seed development and its features are associated with important agronomical traits. It also constitutes a rich source of valuable compounds such as pharmaceuticals. Most of the cell genetic material is contained in the nucleus; therefore nuclear proteins constitute a major actor for gene expression regulation. Isolation of nuclear proteins responsible for specific seed coat expression is an important prerequisite for understanding seed coat metabolism and development. The extraction of nuclear proteins may be problematic due to the presence of specific components that can interfere with the extraction process. The seed coat is a rich source of mucilage and phenolics, which are good examples of these hindering compounds. Findings In the present study, we propose an optimized nuclear protein extraction protocol able to provide nuclear proteins from flax seed coat without contaminants and sufficient yield and quality for their use in transcriptional gene expression regulation by gel shift experiments. Conclusions Routinely, around 250 μg of nuclear proteins per gram of fresh weight were extracted from immature flax seed coats. The isolation protocol described hereafter may serve as an effective tool for gene expression regulation and seed coat-focused proteomics studies.

  12. Do cysteine residues regulate transient receptor potential canonical type 6 (TRPC6) channel protein expression?

    DEFF Research Database (Denmark)

    Thilo, Florian; Liu, Ying; Krueger, Katharina

    2012-01-01

    The regulation of calcium influx through transient receptor potential canonical type 6 channel is mandatory for the activity of human monocytes. We submit the first evidence that cysteine residues of homocysteine or acetylcysteine affect TRPC6 expression in human monocytes. We observed that patie......The regulation of calcium influx through transient receptor potential canonical type 6 channel is mandatory for the activity of human monocytes. We submit the first evidence that cysteine residues of homocysteine or acetylcysteine affect TRPC6 expression in human monocytes. We observed...... that patients with chronic renal failure had significantly elevated homocysteine levels and TRPC6 mRNA expression levels in monocytes compared to control subjects. We further observed that administration of homocysteine or acetylcysteine significantly increased TRPC6 channel protein expression compared...... to control conditions. We therefore hypothesize that cysteine residues increase TRPC6 channel protein expression in humans....

  13. Modulation of PML protein expression regulates JCV infection

    International Nuclear Information System (INIS)

    Gasparovic, Megan L.; Maginnis, Melissa S.; O'Hara, Bethany A.; Dugan, Aisling S.; Atwood, Walter J.

    2009-01-01

    JC virus (JCV) is a human polyomavirus that infects the majority of the human population worldwide. It is responsible for the fatal demyelinating disease Progressive Multifocal Leukoencephalopathy. JCV binds to cells using the serotonin receptor 5-HT 2A R and α(2-6)- or α(2-3)-linked sialic acid. It enters cells using clathrin-dependent endocytosis and traffics to the early endosome and possibly to the endoplasmic reticulum. Viral DNA is then delivered to the nucleus where transcription, replication, and assembly of progeny occur. We found that the early regulatory protein large T antigen accumulates in microdomains in the nucleus adjacent to ND-10 or PML domains. This observation prompted us to explore the role of these domains in JCV infection. We found that a reduction of nuclear PML enhanced virus infection and that an increase in nuclear PML reduced infection. Infection with JCV did not directly modulate nuclear levels of PML but our data indicate that a host response involving interferon beta is likely to restrict virus infection by increasing nuclear PML.

  14. Comparative vesicle proteomics reveals selective regulation of protein expression in chestnut blight fungus by a hypovirus.

    Science.gov (United States)

    Wang, Jinzi; Wang, Fangzhen; Feng, Youjun; Mi, Ke; Chen, Qi; Shang, Jinjie; Chen, Baoshan

    2013-01-14

    The chestnut blight fungus (Cryphonectria parasitica) and hypovirus constitute a model system to study fungal pathogenesis and mycovirus-host interaction. Knowledge in this field has been gained largely from investigations at gene transcription level so far. Here we report a systematic analysis of the vesicle proteins of the host fungus with/without hypovirus infection. Thirty-three differentially expressed protein spots were identified in the purified vesicle protein samples by two-dimensional electrophoresis and mass spectrometry. Down-regulated proteins were mostly cargo proteins involved in primary metabolism and energy generation and up-regulated proteins were mostly vesicle associated proteins and ABC transporter. A virus-encoded protein p48 was found to have four forms with different molecular mass in vesicles from the virus-infected strain. While a few of the randomly selected differentially expressed proteins were in accordance with their transcription profiles, majority were not in agreement with their mRNA accumulation patterns, suggesting that an extensive post-transcriptional regulation may have occurred in the host fungus upon a hypovirus infection. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Specific DNA-binding proteins and DNA sequences involved in steroid hormone regulation of gene expression

    International Nuclear Information System (INIS)

    Spelsberg, T.; Hora, J.; Horton, M.; Goldberger, A.; Littlefield, B.; Seelke, R.; Toyoda, H.

    1987-01-01

    Steroid hormones circulate in the blood and are taken by target cells via complexes with intracellular binding proteins termed receptors, that are hormone and tissue specific. Each receptor binds it specific steroid with very high affinity, having an equilibrium dissociation constant (K/sub d/) in the range of 10 -9 to 10 -10 M. Once bound by their specific steroid hormones, the steroid receptors undergo a conformational change which allows them to bind with high affinity to sites on chromatin, termed nuclear acceptor sites. There are estimated 5,000 to 10,000 of these sites expressed with an equal number not expressed (''masked'') in intact chromatin. The result of the binding to nuclear acceptor sites is an alteration of gene transcription or, in some cases, gene expression as measured by the changing levels of specific RNAs and proteins in that target tissue. Each steroid regulates specific effects on the RNA and protein profiles. The chronology of the above mechanism of action after injection of radiolabelled steroid as is follows: Steroid-receptor complex formation (1 minute), nuclear acceptor sites (2 minutes), effects on RNA synthesis (10 to 30 minutes), and finally the changing protein profiles via changes in protein synthesis and protein turnover (1 to 6 hours). Thus steroid receptors represent one of the first identified intracellular gene regulation proteins. The receptor molecules themselves are regulated by the presence or absence of the steroid molecule

  16. Sugar regulation of SUGAR TRANSPORTER PROTEIN 1 (STP1) expression in Arabidopsis thaliana

    Science.gov (United States)

    Cordoba, Elizabeth; Aceves-Zamudio, Denise Lizeth; Hernández-Bernal, Alma Fabiola; Ramos-Vega, Maricela; León, Patricia

    2015-01-01

    Sugars regulate the expression of many genes at the transcriptional level. In Arabidopsis thaliana, sugars induce or repress the expression of >1800 genes, including the STP1 (SUGAR TRANSPORTER PROTEIN 1) gene, which encodes an H+/monosaccharide cotransporter. STP1 transcript levels decrease more rapidly after the addition of low concentrations of sugars than the levels of other repressed genes, such as DIN6 (DARK-INDUCED 6). We found that this regulation is exerted at the transcriptional level and is initiated by phosphorylatable sugars. Interestingly, the sugar signal that modulates STP1 expression is transmitted through a HEXOKINASE 1-independent signalling pathway. Finally, analysis of the STP1 5′ regulatory region allowed us to delimit a region of 309bp that contains the cis elements implicated in the glucose regulation of STP1 expression. Putative cis-acting elements involved in this response were identified. PMID:25281700

  17. Dual localized mitochondrial and nuclear proteins as gene expression regulators in plants?

    Directory of Open Access Journals (Sweden)

    Philippe eGiegé

    2012-09-01

    Full Text Available Mitochondria heavily depend on the coordinated expression of both mitochondrial and nuclear genomes because some of their most significant activities are held by multi-subunit complexes composed of both mitochondrial and nuclear encoded proteins. Thus, precise communication and signaling pathways are believed to exist between the two compartments. Proteins dual localized to both mitochondria and the nucleus make excellent candidates for a potential involvement in the envisaged communication. Here, we review the identified instances of dual localized nucleo-mitochondrial proteins with an emphasis on plant proteins and discuss their functions, which are seemingly mostly related to gene expression regulation. We discuss whether dual localization could be achieved by dual targeting and / or by re-localization and try to apprehend the signals required for the respective processes. Finally, we propose that in some instances, dual localized mitochondrial and nuclear proteins might act as retrograde signaling molecules for mitochondrial biogenesis.

  18. Positive muscle protein net balance and differential regulation of atrogene expression after resistance exercise and milk protein supplementation

    DEFF Research Database (Denmark)

    Reitelseder, Søren; Agergaard, Jakob; Doessing, Simon

    2014-01-01

    Purpose Resistance exercise and amino acid availability are positive regulators of muscle protein net balance (NB). However, anabolic responses to resistance exercise and protein supplementation deserve further elucidation. The purpose was to compare intakes of whey, caseinate (both: 0.30 g/kg lean...... body mass), or a non-caloric control after heavy resistance exercise on protein turnover and mRNA expressions of forkhead homeobox type O (FOXO) isoforms, muscle RING finger 1 (MuRF1), and Atrogin1 in young healthy males. Methods Protein turnover was determined by stable isotope-labeled leucine...

  19. AR-v7 protein expression is regulated by protein kinase and phosphatase

    Science.gov (United States)

    Li, Yinan; Xie, Ning; Gleave, Martin E.; Rennie, Paul S.; Dong, Xuesen

    2015-01-01

    Failure of androgen-targeted therapy and progression of castration-resistant prostate cancer (CRPC) are often attributed to sustained expression of the androgen receptor (AR) and its major splice variant, AR-v7. Although the new generation of anti-androgens such as enzalutamide effectively inhibits AR activity, accumulating pre-clinical and clinical evidence indicates that AR-v7 remains constitutively active in driving CRPC progression. However, molecular mechanisms which control AR-v7 protein expression remain unclear. We apply multiple prostate cancer cell models to demonstrate that enzalutamide induces differential activation of protein phosphatase-1 (PP-1) and Akt kinase depending on the gene context of cancer cells. The balance between PP-1 and Akt activation governs AR phosphorylation status and activation of the Mdm2 ubiquitin ligase. Mdm2 recognizes phosphorylated serine 213 of AR-v7, and induces AR-v7 ubiquitination and protein degradation. These findings highlight the decisive roles of PP-1 and Akt for AR-v7 protein expression and activities when AR is functionally blocked. PMID:26378044

  20. Stromal Expression of Hypoxia Regulated Proteins Is an Adverse Prognostic Factor in Colorectal Carcinomas

    Directory of Open Access Journals (Sweden)

    Arjen H. G. Cleven

    2007-01-01

    Full Text Available Background: Hypoxia modifies the phenotype of tumors in a way that promotes tumor aggressiveness and resistance towards chemotherapy and radiotherapy. However, the expression and influence of hypoxia-regulated proteins on tumor biology are not well characterized in colorectal tumors. We studied the role of protein expression of hypoxia-inducible factor (HIF-1α, HIF-2α, carbonic anhydrase 9 (CA9 and glucose transporter 1 (GLUT1 in patients with colorectal adenocarcinomas. Methods: Expression of HIF-1α, HIF-2α, CA9 and GLUT1 was quantified by immunohistochemistry in 133 colorectal adenocarcinomas. The expression of hypoxia markers was correlated with clinicopathological variables and overall patient survival. Results: Expression of these hypoxia markers was detected in the epithelial compartment of the tumor cells as well as in tumor-associated stromal cells. Although tumor cells frequently showed expression of one or more of the investigated hypoxia markers, no correlation among these markers or with clinical response was found. However, within the tumor stroma, positive correlations between the hypoxia markers HIF-2α, CA9 and GLUT1 were observed. Furthermore expression of HIF-2α and CA9 in tumor-associated stroma were both associated with a significantly reduced overall survival. In the Cox proportional hazard model, stromal HIF-2α expression was an independent prognostic factor for survival. Conclusion: These observations show, that expression of hypoxia regulated proteins in tumor-associated stromal cells, as opposed to their expression in epithelial tumor cells, is associated with poor outcome in colorectal cancer. This study suggests that tumor hypoxia may influence tumor-associated stromal cells in a way that ultimately contributes to patient prognosis.

  1. Nutlin-3 down-regulates retinoblastoma protein expression and inhibits muscle cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Erica M. [Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 (United States); Niu, MengMeng; Bergholz, Johann [Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610014 China (China); Jim Xiao, Zhi-Xiong, E-mail: jxiao@bu.edu [Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 (United States); Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610014 China (China)

    2015-05-29

    The p53 tumor suppressor gene plays a critical role in regulation of proliferation, cell death and differentiation. The MDM2 oncoprotein is a major negative regulator for p53 by binding to and targeting p53 for proteasome-mediated degradation. The small molecule inhibitor, nutlin-3, disrupts MDM2-p53 interaction resulting in stabilization and activation of p53 protein. We have previously shown that nutlin-3 activates p53, leading to MDM2 accumulation as concomitant of reduced retinoblastoma (Rb) protein stability. It is well known that Rb is important in muscle development and myoblast differentiation and that rhabdomyosarcoma (RMS), or cancer of the skeletal muscle, typically harbors MDM2 amplification. In this study, we show that nutlin-3 inhibited myoblast proliferation and effectively prevented myoblast differentiation, as evidenced by lack of expression of muscle differentiation markers including myogenin and myosin heavy chain (MyHC), as well as a failure to form multinucleated myotubes, which were associated with dramatic increases in MDM2 expression and decrease in Rb protein levels. These results indicate that nutlin-3 can effectively inhibit muscle cell differentiation. - Highlights: • Nutlin-3 inhibits myoblast proliferation and prevents differentiation into myotubes. • Nutlin-3 increases MDM2 expression and down-regulates Rb protein levels. • This study has implication in nutlin-3 treatment of rhabdomyosarcomas.

  2. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression

    Science.gov (United States)

    Makino, Yuichi; Cao, Renhai; Svensson, Kristian; Bertilsson, Göran; Asman, Mikael; Tanaka, Hirotoshi; Cao, Yihai; Berkenstam, Anders; Poellinger, Lorenz

    2001-11-01

    Alteration of gene expression is a crucial component of adaptive responses to hypoxia. These responses are mediated by hypoxia-inducible transcription factors (HIFs). Here we describe an inhibitory PAS (Per/Arnt/Sim) domain protein, IPAS, which is a basic helix-loop-helix (bHLH)/PAS protein structurally related to HIFs. IPAS contains no endogenous transactivation function but demonstrates dominant negative regulation of HIF-mediated control of gene expression. Ectopic expression of IPAS in hepatoma cells selectively impairs induction of genes involved in adaptation to a hypoxic environment, notably the vascular endothelial growth factor (VEGF) gene, and results in retarded tumour growth and tumour vascular density in vivo. In mice, IPAS was predominantly expressed in Purkinje cells of the cerebellum and in corneal epithelium of the eye. Expression of IPAS in the cornea correlates with low levels of expression of the VEGF gene under hypoxic conditions. Application of an IPAS antisense oligonucleotide to the mouse cornea induced angiogenesis under normal oxygen conditions, and demonstrated hypoxia-dependent induction of VEGF gene expression in hypoxic corneal cells. These results indicate a previously unknown mechanism for negative regulation of angiogenesis and maintenance of an avascular phenotype.

  3. Protein kinase B/Akt1 inhibits autophagy by down-regulating UVRAG expression

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wonseok; Ju, Ji-hyun; Lee, Kyung-min; Nam, KeeSoo; Oh, Sunhwa [Department of Life Science, College of Natural Science, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Shin, Incheol, E-mail: incheol@hanyang.ac.kr [Department of Life Science, College of Natural Science, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2013-02-01

    Autophagy, or autophagocytosis, is a selective intracellular degradative process involving the cell's own lysosomal apparatus. An essential component in cell development, homeostasis, repair and resistance to stress, autophagy may result in either cell death or survival. The targeted region of the cell is sequestered within a membrane structure, the autophagosome, for regulation of the catabolic process. A key factor in both autophagosome formation and autophagosome maturation is a protein encoded by the ultraviolet irradiation resistance-associated gene (UVRAG). Conversely, the serine/threonine-specific protein kinase B (PKB, also known as Akt), which regulates survival in various cancers, inhibits autophagy through mTOR activation. We found that Akt1 may also directly inhibit autophagy by down-regulating UVRAG both in a 293T transient transfection system and breast cancer cells stably expressing Akt1. The UVRAG with mutations at putative Akt1-phosphorylation sites were still inhibited by Akt1, and dominant-negative Akt1 also inhibited UVRAG expression, suggesting that Akt1 down-regulates UVRAG by a kinase activity-independent mechanism. We showed that Akt1 overexpression in MDA-MB-231 breast cancer cells down-regulated UVRAG transcription. Cells over-expressing Akt1 were more resistant than control cells to ultraviolet light-induced autophagy and exhibited the associated reduction in cell viability. Levels of the autophagosome indicator protein LC3B-II and mRFP-GFP-LC3 were reduced in cells that over-expressing Akt1. Inhibiting Akt1 by siRNA or reintroducing UVRAG gene rescued the level of LC3B-II in UV-irradiation. Altogether, these data suggest that Akt1 may inhibit autophagy by decreasing UVRAG expression, which also sensitizes cancer cells to UV irradiation.

  4. Negative regulation of parathyroid hormone-related protein expression by steroid hormones

    International Nuclear Information System (INIS)

    Kajitani, Takashi; Tamamori-Adachi, Mimi; Okinaga, Hiroko; Chikamori, Minoru; Iizuka, Masayoshi; Okazaki, Tomoki

    2011-01-01

    Highlights: → Steroid hormones repress expression of PTHrP in the cell lines where the corresponding nuclear receptors are expressed. → Nuclear receptors are required for suppression of PTHrP expression by steroid hormones, except for androgen receptor. → Androgen-induced suppression of PTHrP expression appears to be mediated by estrogen receptor. -- Abstract: Elevated parathyroid hormone-related protein (PTHrP) is responsible for humoral hypercalcemia of malignancy (HHM), which is of clinical significance in treatment of terminal patients with malignancies. Steroid hormones were known to cause suppression of PTHrP expression. However, detailed studies linking multiple steroid hormones to PTHrP expression are lacking. Here we studied PTHrP expression in response to steroid hormones in four cell lines with excessive PTHrP production. Our study established that steroid hormones negatively regulate PTHrP expression. Vitamin D receptor, estrogen receptor α, glucocorticoid receptor, and progesterone receptor, were required for repression of PTHrP expression by the cognate ligands. A notable exception was the androgen receptor, which was dispensable for suppression of PTHrP expression in androgen-treated cells. We propose a pathway(s) involving nuclear receptors to suppress PTHrP expression.

  5. Salinity Regulates Claudin mRNA and Protein Expression in the Teleost Gill

    DEFF Research Database (Denmark)

    Tipsmark, Christian K; Baltzegar, David A; Ozden, Ozkan

    2008-01-01

    The teleost gill carries out NaCl uptake in fresh water (FW) and NaCl excretion in seawater (SW). This transformation with salinity requires close regulation of ion transporter capacity and epithelial permeability. This study investigates the regulation of tight junctional claudins during salinity...... was localized deep in the FW gill filament, whereas staining was found apically in SW gill. Claudin 4-like proteins are localized predominantly in the filament outer epithelial layer and staining appears more intense in gill of FW versus SW fish. Additionally, tilapia claudin 28a and 30 genes were characterized......, and mRNA expression was found to increase during FW acclimation. These studies are the first to detect putative claudin proteins in teleosts and show their localization and regulation with salinity in gill epithelium. The data indicate that claudins may be important in permeability changes associated...

  6. CCAAT/enhancer-binding proteins regulate expression of the human steroidogenic acute regulatory protein (StAR) gene.

    Science.gov (United States)

    Christenson, L K; Johnson, P F; McAllister, J M; Strauss, J F

    1999-09-10

    Two putative CCAAT/enhancer-binding protein (C/EBP) response elements were identified in the proximal promoter of the human steroidogenic acute regulatory protein (StAR) gene, which encodes a key protein-regulating steroid hormone synthesis. Expression of C/EBPalpha and -beta increased StAR promoter activity in COS-1 and HepG2 cells. Cotransfection of C/EBPalpha or -beta and steroidogenic factor 1, a transcription factor required for cAMP regulation of StAR expression, into COS-1 augmented 8-bromoadenosine 3':5'-cyclic monophosphate (8-Br-cAMP)-stimulated promoter activity. When the putative C/EBP response elements were mutated, individually or together, a pronounced decline in basal StAR promoter activity in human granulosa-lutein cells resulted, but the fold stimulation of promoter activity by 8-Br-cAMP was unaffected. Recombinant C/EBPalpha and -beta bound to the two identified sequences but not the mutated elements. Human granulosa-lutein cell nuclear extracts also bound these elements but not the mutated sequences. An antibody to C/EBPbeta, but not C/EBPalpha, supershifted the nuclear protein complex associated with the more distal element. The complex formed by nuclear extracts with the proximal element was not supershifted by either antibody. Western blot analysis revealed the presence of C/EBPalpha and C/EBPbeta in human granulosa-lutein cell nuclear extracts. C/EBPbeta levels were up-regulated 3-fold by 8-Br-cAMP treatment. Our studies demonstrate a role for C/EBPbeta as well as yet to be identified proteins, which can bind to C/EBP response elements, in the regulation of StAR gene expression and suggest a mechanism by which C/EBPbeta participates in the cAMP regulation of StAR gene transcription.

  7. Ku proteins function as corepressors to regulate farnesoid X receptor-mediated gene expression

    International Nuclear Information System (INIS)

    Ohno, Masae; Kunimoto, Masaaki; Nishizuka, Makoto; Osada, Shigehiro; Imagawa, Masayoshi

    2009-01-01

    The farnesoid X receptor (FXR; NR1H4) is a member of the nuclear receptor superfamily and regulates the expression of genes involved in enterohepatic circulation and the metabolism of bile acids. Based on functional analyses, nuclear receptors are divided into regions A-F. To explore the cofactors interacting with FXR, we performed a pull-down assay using GST-fused to the N-terminal A/B region and the C region, which are required for the ligand-independent transactivation and DNA-binding, respectively, of FXR, and nuclear extracts from HeLa cells. We identified DNA-dependent protein kinase catalytic subunit (DNA-PKcs), Ku80, and Ku70 as FXR associated factors. These proteins are known to have an important role in DNA repair, recombination, and transcription. DNA-PKcs mainly interacted with the A/B region of FXR, whereas the Ku proteins interacted with the C region and with the D region (hinge region). Chromatin immunoprecipitation assays revealed that the Ku proteins associated with FXR on the bile salt export pump (BSEP) promoter. Furthermore, we demonstrated that ectopic expression of the Ku proteins decreased the promoter activity and expression of BSEP gene mediated by FXR. These results suggest that the Ku proteins function as corepressors for FXR.

  8. Bombyx mori nucleopolyhedrovirus BM5 protein regulates progeny virus production and viral gene expression

    International Nuclear Information System (INIS)

    Kokusho, Ryuhei; Koh, Yoshikazu; Fujimoto, Masaru; Shimada, Toru; Katsuma, Susumu

    2016-01-01

    Bombyx mori nucleopolyhedrovirus (BmNPV) orf5 (Bm5) is a core gene of lepidopteran baculoviruses and encodes the protein with the conserved amino acid residues (DUF3627) in its C-terminus. Here, we found that Bm5 disruption resulted in lower titers of budded viruses and fewer numbers of occlusion bodies (OBs) in B. mori cultured cells and larvae, although viral genome replication was not affected. Bm5 disruption also caused aberrant expression of various viral genes at the very late stage of infection. Immunocytochemical analysis revealed that BM5 localized to the nuclear membrane. We also found that DUF3627 is important for OB production, transcriptional regulation of viral genes, and subcellular localization of BM5. Compared with wild-type BmNPV infection, larval death was delayed when B. mori larvae were infected with Bm5 mutants. These results suggest that BM5 is involved in progeny virus production and regulation of viral gene expression at the very late stage of infection. -- Highlights: •The role of BmNPV BM5 protein was examined in B. mori cultured cells and larvae. •BM5 contributes to efficient production of budded viruses and occlusion bodies. •BM5 regulates viral gene expression at the very late stage of infection. •BM5 dominantly localizes to the nuclear membrane. •Bm5 mutant showed v-cath down-regulation and resulting delay of larval death.

  9. Bombyx mori nucleopolyhedrovirus BM5 protein regulates progeny virus production and viral gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Kokusho, Ryuhei, E-mail: kokusho@ss.ab.a.u-tokyo.ac.jp; Koh, Yoshikazu; Fujimoto, Masaru; Shimada, Toru; Katsuma, Susumu, E-mail: katsuma@ss.ab.a.u-tokyo.ac.jp

    2016-11-15

    Bombyx mori nucleopolyhedrovirus (BmNPV) orf5 (Bm5) is a core gene of lepidopteran baculoviruses and encodes the protein with the conserved amino acid residues (DUF3627) in its C-terminus. Here, we found that Bm5 disruption resulted in lower titers of budded viruses and fewer numbers of occlusion bodies (OBs) in B. mori cultured cells and larvae, although viral genome replication was not affected. Bm5 disruption also caused aberrant expression of various viral genes at the very late stage of infection. Immunocytochemical analysis revealed that BM5 localized to the nuclear membrane. We also found that DUF3627 is important for OB production, transcriptional regulation of viral genes, and subcellular localization of BM5. Compared with wild-type BmNPV infection, larval death was delayed when B. mori larvae were infected with Bm5 mutants. These results suggest that BM5 is involved in progeny virus production and regulation of viral gene expression at the very late stage of infection. -- Highlights: •The role of BmNPV BM5 protein was examined in B. mori cultured cells and larvae. •BM5 contributes to efficient production of budded viruses and occlusion bodies. •BM5 regulates viral gene expression at the very late stage of infection. •BM5 dominantly localizes to the nuclear membrane. •Bm5 mutant showed v-cath down-regulation and resulting delay of larval death.

  10. PSG gene expression is up-regulated by lysine acetylation involving histone and nonhistone proteins.

    Directory of Open Access Journals (Sweden)

    Soledad A Camolotto

    Full Text Available BACKGROUND: Lysine acetylation is an important post-translational modification that plays a central role in eukaryotic transcriptional activation by modifying chromatin and transcription-related factors. Human pregnancy-specific glycoproteins (PSG are the major secreted placental proteins expressed by the syncytiotrophoblast at the end of pregnancy and represent early markers of cytotrophoblast differentiation. Low PSG levels are associated with complicated pregnancies, thus highlighting the importance of studying the mechanisms that control their expression. Despite several transcription factors having been implicated as key regulators of PSG gene family expression; the role of protein acetylation has not been explored. METHODOLOGY/PRINCIPAL FINDINGS: Here, we explored the role of acetylation on PSG gene expression in the human placental-derived JEG-3 cell line. Pharmacological inhibition of histone deacetylases (HDACs up-regulated PSG protein and mRNA expression levels, and augmented the amount of acetylated histone H3 associated with PSG 5'regulatory regions. Moreover, PSG5 promoter activation mediated by Sp1 and KLF6, via the core promoter element motif (CPE, -147/-140, was markedly enhanced in the presence of the HDAC inhibitor trichostatin A (TSA. This effect correlated with an increase in Sp1 acetylation and KLF6 nuclear localization as revealed by immunoprecipitation and subcellular fractionation assays. The co-activators PCAF, p300, and CBP enhanced Sp1-dependent PSG5 promoter activation through their histone acetylase (HAT function. Instead, p300 and CBP acetyltransferase domain was dispensable for sustaining co-activation of PSG5 promoter by KLF6. CONCLUSIONS/SIGNIFICANCE: Results are consistent with a regulatory role of lysine acetylation on PSG expression through a relaxed chromatin state and an increase in the transcriptional activity of Sp1 and KLF6 following an augmented Sp1 acetylation and KLF6 nuclear localization.

  11. Regulation of vascular endothelial growth factor expression by homeodomain-interacting protein kinase-2

    Directory of Open Access Journals (Sweden)

    D'Orazi Gabriella

    2008-07-01

    Full Text Available Abstract Background Homeodomain-interacting protein kinase-2 (HIPK2 plays an essential role in restraining tumor progression as it may regulate, by itself or within multiprotein complexes, many proteins (mainly transcription factors involved in cell growth and apoptosis. This study takes advantage of the recent finding that HIPK2 may repress the β-catenin transcription activity. Thus, we investigated whether HIPK2 overexpression may down-regulate vascular endothelial growth factor (VEGF levels (a β-catenin target gene and the role of β-catenin in this regulation, in order to consider HIPK2 as a tool for novel anti-tumoral therapeutical approaches. Methods The regulation of VEGF expression by HIPK2 was evaluated by using luciferase assay with VEGF reporter construct, after overexpression of the β-catenin transcription factor. Relative quantification of VEGF and β-catenin mRNAs were assessed by reverse-transcriptase-PCR (RT-PCR analyses, following HIPK2 overexpression, while β-catenin protein levels were evaluated by western immunoblotting. Results HIPK2 overexpression in tumor cells downregulated VEGF mRNA levels and VEGF promoter activity. The VEGF downregulation was partly depending on HIPK2-mediated β-catenin regulation. Thus, HIPK2 could induce β-catenin protein degradation that was prevented by cell treatment with proteasome inhibitor MG132. The β-catenin degradation was dependent on HIPK2 catalytic activity and independent of p53 and glycogen synthase kinase 3β (GSK-3β activities. Conclusion These results suggest that VEGF might be a target of HIPK2, at least in part, through regulation of β-catenin activity. These findings support the function of HIPK2 as tumor suppressor and hypothesise a role for HIPK2 as antiangiogenic tool in tumor therapy approaches.

  12. Detecting coordinated regulation of multi-protein complexes using logic analysis of gene expression

    Directory of Open Access Journals (Sweden)

    Yeates Todd O

    2009-12-01

    Full Text Available Abstract Background Many of the functional units in cells are multi-protein complexes such as RNA polymerase, the ribosome, and the proteasome. For such units to work together, one might expect a high level of regulation to enable co-appearance or repression of sets of complexes at the required time. However, this type of coordinated regulation between whole complexes is difficult to detect by existing methods for analyzing mRNA co-expression. We propose a new methodology that is able to detect such higher order relationships. Results We detect coordinated regulation of multiple protein complexes using logic analysis of gene expression data. Specifically, we identify gene triplets composed of genes whose expression profiles are found to be related by various types of logic functions. In order to focus on complexes, we associate the members of a gene triplet with the distinct protein complexes to which they belong. In this way, we identify complexes related by specific kinds of regulatory relationships. For example, we may find that the transcription of complex C is increased only if the transcription of both complex A AND complex B is repressed. We identify hundreds of examples of coordinated regulation among complexes under various stress conditions. Many of these examples involve the ribosome. Some of our examples have been previously identified in the literature, while others are novel. One notable example is the relationship between the transcription of the ribosome, RNA polymerase and mannosyltransferase II, which is involved in N-linked glycan processing in the Golgi. Conclusions The analysis proposed here focuses on relationships among triplets of genes that are not evident when genes are examined in a pairwise fashion as in typical clustering methods. By grouping gene triplets, we are able to decipher coordinated regulation among sets of three complexes. Moreover, using all triplets that involve coordinated regulation with the ribosome

  13. WRKY proteins: signaling and regulation of expression during abiotic stress responses.

    Science.gov (United States)

    Banerjee, Aditya; Roychoudhury, Aryadeep

    2015-01-01

    WRKY proteins are emerging players in plant signaling and have been thoroughly reported to play important roles in plants under biotic stress like pathogen attack. However, recent advances in this field do reveal the enormous significance of these proteins in eliciting responses induced by abiotic stresses. WRKY proteins act as major transcription factors, either as positive or negative regulators. Specific WRKY factors which help in the expression of a cluster of stress-responsive genes are being targeted and genetically modified to induce improved abiotic stress tolerance in plants. The knowledge regarding the signaling cascade leading to the activation of the WRKY proteins, their interaction with other proteins of the signaling pathway, and the downstream genes activated by them are altogether vital for justified targeting of the WRKY genes. WRKY proteins have also been considered to generate tolerance against multiple abiotic stresses with possible roles in mediating a cross talk between abiotic and biotic stress responses. In this review, we have reckoned the diverse signaling pattern and biological functions of WRKY proteins throughout the plant kingdom along with the growing prospects in this field of research.

  14. Effects of stress and adrenalectomy on activity-regulated cytoskeleton protein (Arc) gene expression

    DEFF Research Database (Denmark)

    Mikkelsen, Jens D; Larsen, Marianne Hald

    2006-01-01

    Activity-regulated cytoskeletal-associated protein (Arc) is an effector immediate early gene induced by novelty and involved in consolidation of long-term memory. Since activation of glucocorticoid receptors is a prerequisite for memory consolidation, we therefore aimed to study the effect of acute...... restraint stress on Arc gene expression in adrenalectomized rats. Acute stress produced a significant increase in Arc gene expression in the medial prefrontal cortex, but not in the parietal cortex or in the pyramidal cell layer of the hippocampus. The basal level of Arc mRNA in adrenalectomized animals...... was high in the medial prefrontal cortex and unaffected by acute stress in these animals. These data are consistent with the role of Arc as an integrative modulator of synaptic plasticity by emphasizing the potential role of stress and glucocorticoids in the control of Arc gene expression....

  15. Genome wide gene expression regulation by HIP1 Protein Interactor, HIPPI: Prediction and validation

    Directory of Open Access Journals (Sweden)

    Lahiri Ansuman

    2011-09-01

    Full Text Available Abstract Background HIP1 Protein Interactor (HIPPI is a pro-apoptotic protein that induces Caspase8 mediated apoptosis in cell. We have shown earlier that HIPPI could interact with a specific 9 bp sequence motif, defined as the HIPPI binding site (HBS, present in the upstream promoter of Caspase1 gene and regulate its expression. We also have shown that HIPPI, without any known nuclear localization signal, could be transported to the nucleus by HIP1, a NLS containing nucleo-cytoplasmic shuttling protein. Thus our present work aims at the investigation of the role of HIPPI as a global transcription regulator. Results We carried out genome wide search for the presence of HBS in the upstream sequences of genes. Our result suggests that HBS was predominantly located within 2 Kb upstream from transcription start site. Transcription factors like CREBP1, TBP, OCT1, EVI1 and P53 half site were significantly enriched in the 100 bp vicinity of HBS indicating that they might co-operate with HIPPI for transcription regulation. To illustrate the role of HIPPI on transcriptome, we performed gene expression profiling by microarray. Exogenous expression of HIPPI in HeLa cells resulted in up-regulation of 580 genes (p HIP1 was knocked down. HIPPI-P53 interaction was necessary for HIPPI mediated up-regulation of Caspase1 gene. Finally, we analyzed published microarray data obtained with post mortem brains of Huntington's disease (HD patients to investigate the possible involvement of HIPPI in HD pathogenesis. We observed that along with the transcription factors like CREB, P300, SREBP1, Sp1 etc. which are already known to be involved in HD, HIPPI binding site was also significantly over-represented in the upstream sequences of genes altered in HD. Conclusions Taken together, the results suggest that HIPPI could act as an important transcription regulator in cell regulating a vast array of genes, particularly transcription factors and at least, in part, play a

  16. DELLA proteins regulate expression of a subset of AM symbiosis-induced genes in Medicago truncatula.

    Science.gov (United States)

    Floss, Daniela S; Lévesque-Tremblay, Véronique; Park, Hee-Jin; Harrison, Maria J

    2016-01-01

    The majority of the vascular flowering plants form symbiotic associations with fungi from the phylum Glomeromycota through which both partners gain access to nutrients, either mineral nutrients in the case of the plant, or carbon, in the case of the fungus. (1) The association develops in the roots and requires substantial remodeling of the root cortical cells where branched fungal hyphae, called arbuscules, are housed in a new membrane-bound apoplastic compartment. (2) Nutrient exchange between the symbionts occurs over this interface and its development and maintenance is critical for symbiosis. Previously, we showed that DELLA proteins, which are well known as repressors of gibberellic acid signaling, also regulate development of AM symbiosis and are necessary to enable arbuscule development. (3) Furthermore, constitutive overexpression of a dominant DELLA protein (della1-Δ18) is sufficient to induce transcripts of several AM symbiosis-induced genes, even in the absence of the fungal symbiont. (4) Here we further extend this approach and identify AM symbiosis genes that respond transcriptionally to constitutive expression of a dominant DELLA protein and also genes that do respond to this treatment. Additionally, we demonstrate that DELLAs interact with REQUIRED FOR ARBUSCULE DEVELOPMENT 1 (RAD1) which further extends our knowledge of GRAS factor complexes that have the potential to regulate gene expression during AM symbiosis.

  17. Mitogen activated protein kinases selectively regulate palytoxin-stimulated gene expression in mouse keratinocytes

    International Nuclear Information System (INIS)

    Zeliadt, Nicholette A.; Warmka, Janel K.; Wattenberg, Elizabeth V.

    2003-01-01

    We have been investigating how the novel skin tumor promoter palytoxin transmits signals through mitogen activated protein kinases (MAPKs). Palytoxin activates three major MAPKs, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38, in a keratinocyte cell line derived from initiated mouse skin (308). We previously showed that palytoxin requires ERK to increase matrix metalloproteinase-13 (MMP-13) gene expression, an enzyme implicated in carcinogenesis. Diverse stimuli require JNK and p38 to increase MMP-13 gene expression, however. We therefore used the JNK and p38 inhibitors SP 600125 and SB 202190, respectively, to investigate the role of these MAPKs in palytoxin-induced MMP-13 gene expression. Surprisingly, palytoxin does not require JNK and p38 to increase MMP-13 gene expression. Accordingly, ERK activation, independent of palytoxin and in the absence of JNK and p38 activation, is sufficient to induce MMP-13 gene expression in 308 keratinocytes. Dexamethasone, a synthetic glucocorticoid that inhibits activator protein-1 (AP-1), blocked palytoxin-stimulated MMP-13 gene expression. Therefore, the AP-1 site present in the promoter of the MMP-13 gene appears to be functional and to play a key role in palytoxin-stimulated gene expression. Previous studies showed that palytoxin simulates an ERK-dependent selective increase in the c-Fos content of AP-1 complexes that bind to the promoter of the MMP-13 gene. JNK and p38 can also modulate c-Fos. Palytoxin does not require JNK or p38 to increase c-Fos binding, however. Altogether, these studies indicate that ERK plays a distinctly essential role in transmitting palytoxin-stimulated signals to specific nuclear targets in keratinocytes derived from initiated mouse skin

  18. CCAAT/Enhancer Binding Protein β Regulates Expression of Indian Hedgehog during Chondrocytes Differentiation

    Science.gov (United States)

    Ushijima, Takahiro; Okazaki, Ken; Tsushima, Hidetoshi; Ishihara, Kohei; Doi, Toshio; Iwamoto, Yukihide

    2014-01-01

    Background CCAAT/enhancer binding protein β (C/EBPβ) is a transcription factor that promotes hypertrophic differentiation of chondrocytes. Indian hedgehog (Ihh) also stimulates the hypertrophic transition of chondrocytes. Furthermore, runt-related transcription factor-2 (RUNX2) was reported to regulate chondrocyte maturation during skeletal development and to directly regulate transcriptional activity of Ihh. In this study, we investigated whether the interaction of C/EBPβ and RUNX2 regulates the expression of Ihh during chondrocyte differentiation. Methodology/Results Immunohistochemistry of embryonic growth plate revealed that both C/EBPβ and Ihh were strongly expressed in pre-hypertrophic and hypertrophic chondrocytes. Overexpression of C/EBPβ by adenovirus vector in ATDC5 cells caused marked stimulation of Ihh and Runx2. Conversely, knockdown of C/EBPβ by lentivirus expressing shRNA significantly repressed Ihh and Runx2 in ATDC5 cells. A reporter assay revealed that C/EBPβ stimulated transcriptional activity of Ihh. Deletion and mutation analysis showed that the C/EBPβ responsive element was located between −214 and −210 bp in the Ihh promoter. An electrophoretic mobility shift assay (EMSA) and a chromatin immunoprecipitation (ChIP) assay also revealed the direct binding of C/EBPβ to this region. Moreover, reporter assays demonstrated that RUNX2 failed to stimulate the transcriptional activity of the Ihh promoter harboring a mutation at the C/EBPβ binding site. EMSA and ChIP assays showed that RUNX2 interacted to this element with C/EBPβ. Immunoprecipitation revealed that RUNX2 and C/EBPβ formed heterodimer complex with each other in the nuclei of chondrocytes. These data suggested that the C/EBPβ binding element is also important for RUNX2 to regulate the expression of Ihh. Ex vivo organ culture of mouse limbs transfected with C/EBPβ showed that the expression of Ihh and RUNX2 was increased upon ectopic C/EBPβ expression. Conclusions C

  19. CCAAT/enhancer binding protein β regulates expression of Indian hedgehog during chondrocytes differentiation.

    Directory of Open Access Journals (Sweden)

    Takahiro Ushijima

    Full Text Available CCAAT/enhancer binding protein β (C/EBPβ is a transcription factor that promotes hypertrophic differentiation of chondrocytes. Indian hedgehog (Ihh also stimulates the hypertrophic transition of chondrocytes. Furthermore, runt-related transcription factor-2 (RUNX2 was reported to regulate chondrocyte maturation during skeletal development and to directly regulate transcriptional activity of Ihh. In this study, we investigated whether the interaction of C/EBPβ and RUNX2 regulates the expression of Ihh during chondrocyte differentiation.Immunohistochemistry of embryonic growth plate revealed that both C/EBPβ and Ihh were strongly expressed in pre-hypertrophic and hypertrophic chondrocytes. Overexpression of C/EBPβ by adenovirus vector in ATDC5 cells caused marked stimulation of Ihh and Runx2. Conversely, knockdown of C/EBPβ by lentivirus expressing shRNA significantly repressed Ihh and Runx2 in ATDC5 cells. A reporter assay revealed that C/EBPβ stimulated transcriptional activity of Ihh. Deletion and mutation analysis showed that the C/EBPβ responsive element was located between -214 and -210 bp in the Ihh promoter. An electrophoretic mobility shift assay (EMSA and a chromatin immunoprecipitation (ChIP assay also revealed the direct binding of C/EBPβ to this region. Moreover, reporter assays demonstrated that RUNX2 failed to stimulate the transcriptional activity of the Ihh promoter harboring a mutation at the C/EBPβ binding site. EMSA and ChIP assays showed that RUNX2 interacted to this element with C/EBPβ. Immunoprecipitation revealed that RUNX2 and C/EBPβ formed heterodimer complex with each other in the nuclei of chondrocytes. These data suggested that the C/EBPβ binding element is also important for RUNX2 to regulate the expression of Ihh. Ex vivo organ culture of mouse limbs transfected with C/EBPβ showed that the expression of Ihh and RUNX2 was increased upon ectopic C/EBPβ expression.C/EBPβ and RUNX2 cooperatively stimulate

  20. Protein Kinases C-Mediated Regulations of Drug Transporter Activity, Localization and Expression

    Directory of Open Access Journals (Sweden)

    Abdullah Mayati

    2017-04-01

    Full Text Available Drug transporters are now recognized as major actors in pharmacokinetics, involved notably in drug–drug interactions and drug adverse effects. Factors that govern their activity, localization and expression are therefore important to consider. In the present review, the implications of protein kinases C (PKCs in transporter regulations are summarized and discussed. Both solute carrier (SLC and ATP-binding cassette (ABC drug transporters can be regulated by PKCs-related signaling pathways. PKCs thus target activity, membrane localization and/or expression level of major influx and efflux drug transporters, in various normal and pathological types of cells and tissues, often in a PKC isoform-specific manner. PKCs are notably implicated in membrane insertion of bile acid transporters in liver and, in this way, are thought to contribute to cholestatic or choleretic effects of endogenous compounds or drugs. The exact clinical relevance of PKCs-related regulation of drug transporters in terms of drug resistance, pharmacokinetics, drug–drug interactions and drug toxicity remains however to be precisely determined. This issue is likely important to consider in the context of the development of new drugs targeting PKCs-mediated signaling pathways, for treating notably cancers, diabetes or psychiatric disorders.

  1. Regulation of expression of a select group of Bacillus anthracis spore coat proteins.

    Science.gov (United States)

    Aronson, Arthur

    2018-04-01

    The spore coat of Bacilli is a relatively complex structure comprised of about 70 species of proteins in 2 or 3 layers. While some are involved in assembly or protection, the regulation of many are not well defined so lacZ transcriptional fusions were constructed to six Bacillus anthracis spore coat genes in order to gain insight into their possible functions. The genes were selected on the basis of the location of the encoded proteins within the coat and distribution among spore forming species. Conditions tested were temperature and media either as solid or liquid. The most extensive differences were for the relatively well expressed fusions to the cotH and cotM genes, which were greatest at 30°C on plates of a nutrient rich medium. The cotJ operon was moderately expressed under all conditions although somewhat higher on enriched plates at 30°C. Cot S was low under all conditions except for a substantial increase in biofilm medium. Cot∝ and cotF were essentially invariant with a somewhat greater expression in the more enriched medium. The capacity of a subset of coat genes to respond to various conditions reflects a flexibility in spore coat structure that may be necessary for adaptation to environmental challenges. This could account, at least in part, for the complexity of this structure.

  2. Bombyx mori Serpin6 regulates prophenoloxidase activity and the expression of antimicrobial proteins.

    Science.gov (United States)

    Li, Bing; Yu, Hai-Zhong; Ye, Chong-Jun; Ma, Yan; Li, Xing; Fan, Tao; Chen, Fu-Sheng; Xu, Jia-Ping

    2017-04-30

    Serpins are a family of serine protease inhibitors that are found widely in insects. They play an important role in insect physiological responses, such as innate immunity and development. In this study, we obtained the Bombyx mori serpin6 (BmSerpin6) sequence from National Center for Biotechnology Information (NCBI) and the silkworm genome database (SilkDB). Reverse transcription PCR (RT-PCR) results showed that BmSerpin6 was expressed highly in hemocytes, the midgut, and the fat body. After challenging with Micrococcus luteus (Mi) and Serratia marcescens (Sm), the BmSerpin6 expression level was induced significantly. Transcript levels of gloverin2 and prophenoloxidase (PPO) activity were reduced significantly in the fat body and hemocytes after injecting the recombinant BmSerpin6 protein into silkworm larvae. A BmSerpin6 recombinant plasmid (BmSerpin6-pAC 5.1) was constructed successfully and transfected into Drosophila S2 cells, which resulted in significantly reduced expression of the drosomycin protein. These results indicated that BmSerpin6 might regulate silkworm immune responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Agitation down-regulates immunoglobulin binding protein EibG expression in Shiga toxin-producing Escherichia coli (STEC.

    Directory of Open Access Journals (Sweden)

    Thorsten Kuczius

    Full Text Available Shiga toxin (Stx-producing Escherichia coli (STEC carrying eibG synthesize Escherichia coli immunoglobulin binding protein (EibG. EibG nonspecifically binds to immunoglobulins and tends to aggregate in multimers but is poorly expressed in wild-type strains. To study synthesis of the proteins and their regulation in the pathogens, we identified natural growth conditions that increased EibG synthesis. EibG proteins as well as corresponding mRNA were highly expressed under static growth conditions while shearing stress created by agitation during growth repressed protein synthesis. Further regulation effects were driven by reduced oxygen tension, and pH up-regulated EibG expression, but to a lesser extent than growth conditions while decreased temperature down-regulated EibG. Bacteria with increased EibG expression during static growth conditions showed a distinct phenotype with chain formation and biofilm generation, which disappeared with motion. High and low EibG expression was reversible indicating a process with up- and down-regulation of the protein expression. Our findings indicate that shear stress represses EibG expression and might reduce bacterial attachments to cells and surfaces.

  4. Global regulation of gene expression by the MafR protein of Enterococcus faecalis

    Directory of Open Access Journals (Sweden)

    Sofía eRuiz-Cruz

    2016-01-01

    Full Text Available Enterococcus faecalis is a natural inhabitant of the human gastrointestinal tract. However, as an opportunistic pathogen, it is able to colonize other host niches and cause life-threatening infections. Its adaptation to new environments involves global changes in gene expression. The EF3013 gene (here named mafR of E. faecalis strain V583 encodes a protein (MafR, 482 residues that has sequence similarity to global response regulators of the Mga/AtxA family. The enterococcal OG1RF genome also encodes the MafR protein (gene OG1RF_12293. In this work, we have identified the promoter of the mafR gene using several in vivo approaches. Moreover, we show that MafR influences positively the transcription of many genes on a genome-wide scale. The most significant target genes encode components of PTS-type membrane transporters, components of ABC-type membrane transporters, and proteins involved in the metabolism of carbon sources. Some of these genes were previously reported to be up-regulated during the growth of E. faecalis in blood and/or in human urine. Furthermore, we show that a mafR deletion mutant strain induces a significant lower degree of inflammation in the peritoneal cavity of mice, suggesting that enterococcal cells deficient in MafR are less virulent. Our work indicates that MafR is a global transcriptional regulator. It might facilitate the adaptation of E. faecalis to particular host niches and, therefore, contribute to its potential virulence.

  5. Specificity Protein (Sp) Transcription Factors and Metformin Regulate Expression of the Long Non-coding RNA HULC

    Science.gov (United States)

    There is evidence that specificity protein 1 (Sp1) transcription factor (TF) regulates expression of long non-coding RNAs (lncRNAs) in hepatocellular carcinoma (HCC) cells. RNA interference (RNAi) studies showed that among several lncRNAs expressed in HepG2, SNU-449 and SK-Hep-1...

  6. Glucose-regulated protein 78 regulates the expression of mitochondrial genesis proteins in HBV-related hepatocellular carcinoma: a clinical analysis

    Directory of Open Access Journals (Sweden)

    LI Yaping

    2017-10-01

    Full Text Available ObjectiveTo investigate the expression of glucose-regulated protein 78 (GRP78 in HBV-related hepatocellular carcinoma (HBV-HCC and its association with clinicopathological features, as well as its regulatory effect on mitochondrial genesis proteins in hepatoma cells, and to provide a basis for new strategies for the prevention and treatment of HCC. MethodsTissue samples were collected from 54 patients with HBV-HCC, and immunohistochemistry and Western blot were used to measure the expression of GRP78, Lon, TFAM, and cytochrome C oxidase Ⅳ (COXⅣ. The expression of GRP78 in hepatoma cells was interfered by siRNA, and then the expression of GRP78, Lon, mitochondrial transcription factor A (TFAM, and COX Ⅳ was measured. Quantitative real-time PCR was used to measure the level of mitochondrial DNA (mtDNA in clinical specimens and HCC cells after GRP78 expression was interfered with. A statistical analysis was performed for clinical and experimental data. The t-test was used for comparison of continuous data between groups, the Fisher′s exact test was used for comparison of categorical data between groups, and the Kaplan-Meier method was used for survival analysis. Results Compared with the adjacent tissues, HBV-HCC tissues had significantly higher expression of GRP78 and Lon (t=9.135 and 5523, both P<0.0001 and significantly lower expression of the mitochondrial genesis proteins TFAM and COX Ⅳ and mtDNA level (t=2.765, 4260, and 12.280, P=0.011, <0.001, and <0.001. There were significant increases in the expression of the mitochondrial genesis proteins TFAM and COX Ⅳ and mtDNA level after the interference with GRP78 expression in hepatoma cells (all P<0.05. There were significant differences in the expression of GRP78 between patients with different numbers of tumors, patients with and without portal vein tumor thrombus, and patients with different tumor stages (P=0.016, 0.003, and 0.045. The patients with low GRP78

  7. Modulation of brassinosteroid-regulated gene expression by jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis

    OpenAIRE

    Yu, Xiaofei; Li, Li; Li, Lei; Guo, Michelle; Chory, Joanne; Yin, Yanhai

    2008-01-01

    Plant steroid hormones, brassinosteroids (BRs), are of great importance for plant growth and development. BRs signal through a cell surface receptor kinase, BRI1, and a GSK3-like kinase, BIN2, to regulate the BES1/BZR1 family of transcription factors, which directly bind to target gene promoters to activate or repress gene expression and mediate BR responses. To understand how BES1 regulates target gene expression, we identified two BES1-interacting proteins, ELF6 (early flowering 6) and its ...

  8. Control of Secreted Protein Gene Expression and the Mammalian Secretome by the Metabolic Regulator PGC-1α.

    Science.gov (United States)

    Minsky, Neri; Roeder, Robert G

    2017-01-06

    Secreted proteins serve pivotal roles in the development of multicellular organisms, acting as structural matrix, extracellular enzymes, and signal molecules. However, how the secretome is regulated remains incompletely understood. Here we demonstrate, unexpectedly, that peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α), a critical transcriptional co-activator of metabolic gene expression, functions to down-regulate the expression of diverse genes encoding secreted molecules and extracellular matrix components to modulate the secretome. Using cell lines, primary cells, and mice, we show that both endogenous and exogenous PGC-1α down-regulate the expression of numerous genes encoding secreted molecules. Mechanistically, results obtained using mRNA stability measurements as well as intronic RNA expression analysis are consistent with a transcriptional effect of PGC-1α on the expression of genes encoding secreted proteins. Interestingly, PGC-1α requires the central heat shock response regulator heat shock factor protein 1 (HSF1) to affect some of its targets, and both factors co-reside on several target genes encoding secreted molecules in cells. Finally, using a mass spectrometric analysis of secreted proteins, we demonstrate that PGC-1α modulates the secretome of mouse embryonic fibroblasts. Our results define a link between a key pathway controlling metabolic regulation and the regulation of the mammalian secretome. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Expression of GIMAP1, a GTPase of the immunity-associated protein family, is not up-regulated in malaria

    Directory of Open Access Journals (Sweden)

    Carter Christine

    2009-04-01

    Full Text Available Abstract Background GIMAP (GTPase of the immunity-associated protein family proteins are a family of putative GTPases believed to be regulators of cell death in lymphomyeloid cells. GIMAP1 was the first reported member of this gene family, identified as a gene up-regulated at the RNA level in the spleens of mice infected with the malarial parasite, Plasmodium chabaudi. Methods A monoclonal antibody against mouse GIMAP1 was developed and was used to analyse the expression of the endogenous protein in tissues of normal mice and in defined sub-populations of cells prepared from lymphoid tissues using flow cytometry. It was also used to assess the expression of GIMAP1 protein after infection and/or immunization of mice with P. chabaudi. Real-time PCR analysis was employed to measure the expression of GIMAP1 for comparison with the protein level analysis. Results GIMAP1 protein expression was detected in all lineages of lymphocytes (T, B, NK, in F4/80+ splenic macrophages and in some lymphoid cell lines. Additional evidence is presented suggesting that the strong expression by mature B cells of GIMAP1 and other GIMAP genes and proteins seen in mice may be a species-dependent characteristic. Unexpectedly, no increase was found in the expression of GIMAP1 in P. chabaudi infected mice at either the mRNA or protein level, and this remained so despite applying a number of variations to the protocol. Conclusion The model of up-regulation of GIMAP1 in response to infection/immunization with P. chabaudi is not a robustly reproducible experimental system. The GIMAP1 protein is widely expressed in lymphoid cells, with an interesting increase in expression in the later stages of B cell development. Alternative approaches will be required to define the functional role of this GTPase in immune cells.

  10. p38 mitogen-activated protein kinase plays a key role in regulating MAPKAPK2 expression

    International Nuclear Information System (INIS)

    Sudo, Tatsuhiko; Kawai, Kayoko; Matsuzaki, Hiroshi; Osada, Hiroyuki

    2005-01-01

    One of three major families of the mitogen-activated kinases (MAPK), p38 as well as JNK, has been shown to transduce extracellular stress stimuli into cellular responses by phospho-relay cascades. Among p38 families, p38α is a widely characterized isoform and the biological phenomena are explained by its kinase activity regulating functions of its downstream substrates. However, its specific contributions to each phenomenon are yet not fully elucidated. For better understanding of the role of MAPKs, especially p38α, we utilized newly established mouse fibroblast cell lines originated from a p38α null mouse, namely, a parental cell line without p38α gene locus, knockout of p38α (KOP), Zeosin-resistant (ZKOP), revertant of p38α (RKOP), and Exip revertant (EKOP). EKOP is smaller in size but grows faster than the others. Although comparable amounts of ERK and JNK are expressed in each cell line, ERK is highly phosphorylated in EKOP even in normal culture conditions. Serum stimulation after serum starvation led to ERK phosphorylation in RKOP and ZKOP, but not in EKOP as much. On the contrary, relative phosphorylation level of JNK to total JNK in response to UV was low in RKOP. And its phosphorylation as well as total JNK is slightly lower in EKOP. RKOP is less sensitive to UV irradiation as judged by the survival rate. Stress response upon UV or sorbitol stimuli, leading to mitogen activate protein kinase activated kinase 2 (MAPKAPK2) phosphorylation, was only observed in RKOP. Further experiments reveal that MAPKAPK2 expression is largely suppressed in ZKOP and EKOP. Its expression was recovered by re-introduction of p38α. The loss of MAPKAPK2 expression accompanied by the defect of p38α is confirmed in an embryonic extract prepared from p38α null mice. These data demonstrate that p38 signal pathway is regulated not only by phosphorylation but also by modulation of the expression of its component. Together, we have established cell lines that can be used in

  11. Ethanol extracts of black pepper or turmeric down-regulated SIRT1 protein expression in Daudi culture cells.

    Science.gov (United States)

    Nishimura, Yuri; Kitagishi, Yasuko; Yoshida, Hitomi; Okumura, Naoko; Matsuda, Satoru

    2011-01-01

    SIRT1 is a mammalian candidate molecule involved in longevity and diverse metabolic processes. The present study aimed to determine the effects of certain herbs and spices on SIRT1 expression. Human cell lines Daudi, Jurkat, U937 and K562 were cultured in RPMI-1640. Herb and spice powders were prepared and the supernatants were collected. RT-PCR was used to quantify the expression level of the gene. Protein samples were then analyzed by Western blotting. Western blotting revealed the down-regulation of SIRT1 protein expression in Daudi cells treated with extracts of black pepper or turmeric. On the other hand, the effect on the SIRT1 gene expression examined by reverse transcription polymerase chain reaction was unaltered. In conclusion, component(s) of certain herbs and spices may induce the down-regulation of SIRT1 protein.

  12. Microarray and Proteomic Analysis of Brassinosteroid- and Gibberellin-Regulated Gene and Protein Expression in Rice

    OpenAIRE

    Yang, Guangxiao; Komatsu, Setsuko

    2016-01-01

    Brassinosteroid (BR) and gibberellin (GA) are two groups of plant growth regulators essential for normal plant growth and development. To gain insight into the molecular mechanism by which BR and GA regulate the growth and development of plants, especially the monocot plant rice, it is necessary to identify and analyze more genes and proteins that are regulated by them. With the availability of draft sequences of two major types, japonica and indica rice, it has become possible to analyze exp...

  13. Dihydrotestosterone regulating apolipoprotein M expression mediates via protein kinase C in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Yi-zhou Ye

    2012-12-01

    Full Text Available Abstract Background Administration of androgens decreases plasma concentrations of high-density lipid cholesterol (HDL-C. However, the mechanisms by which androgens mediate lipid metabolism remain unknown. This present study used HepG2 cell cultures and ovariectomized C57BL/6 J mice to determine whether apolipoprotein M (ApoM, a constituent of HDL, was affected by dihydrotestosterone (DHT. Methods HepG2 cells were cultured in the presence of either DHT, agonist of protein kinase C (PKC, phorbol-12-myristate-13-acetate (PMA, blocker of androgen receptor flutamide together with different concentrations of DHT, or DHT together with staurosporine at different concentrations for 24 hrs. Ovariectomized C57BL/6 J mice were treated with DHT or vehicle for 7d or 14d and the levels of plasma ApoM and livers ApoM mRNA were measured. The mRNA levels of ApoM, ApoAI were determined by real-time RT-PCR. ApoM and ApoAI were determined by western blotting analysis. Results Addition of DHT to cell culture medium selectively down-regulated ApoM mRNA expression and ApoM secretion in a dose-dependent manner. At 10 nM DHT, the ApoM mRNA levels were about 20% lower than in untreated cells and about 40% lower at 1000 nM DHT than in the control cells. The secretion of ApoM into the medium was reduced to a similar extent. The inhibitory effect of DHT on ApoM secretion was not blocked by the classical androgen receptor blocker flutamide but by an antagonist of PKC, Staurosporine. Agonist of PKC, PMA, also reduced ApoM. At 0.5 μM PMA, the ApoM mRNA levels and the secretion of ApoM into the medium were about 30% lower than in the control cells. The mRNA expression levels and secretion of another HDL-associated apolipoprotein AI (ApoAI were not affected by DHT. The levels of plasma ApoM and liver ApoM mRNA of DHT-treated C57BL/6 J mice were lower than those of vehicle-treated mice. Conclusions DHT directly and selectively down-regulated the level of ApoM mRNA and the

  14. Expression of p53-regulated proteins in human cultured lymphoblastoid TSCE5 and WTK1 cell lines during spaceflight

    International Nuclear Information System (INIS)

    Takahashi, Akihisa; Suzuki, Hiromi; Shimazu, Toru; Omori, Katsunori; Ishioka, Noriaki; Ohnishi, Takeo; Seki, Masaya; Hashizume, Toko

    2012-01-01

    The aim of this study was to determine the biological effects of space radiations, microgravity, and the interaction of them on the expression of p53-regulated proteins. Space experiments were performed with two human cultured lymphoblastoid cell lines: one line (TSCE5) bears a wild-type p53 gene status, and another line (WTK1) bears a mutated p53 gene status. Under 1 gravity or microgravity conditions, the cells were grown in the cell biology experimental facility (CBEF) of the International Space Station for 8 days without experiencing the stress during launching and landing because the cells were frozen during these periods. Ground control samples were simultaneously cultured for 8 days in the CBEF on the ground for 8 days. After spaceflight, protein expression was analyzed using a Panorama TM Ab MicroArray protein chips. It was found that p53-dependent up-regulated proteins in response to space radiations and space environment were MeCP2 (methyl CpG binding protein 2), and Notch1 (Notch homolog 1), respectively. On the other hand, p53-dependent down-regulated proteins were TGF-β, TWEAKR (tumor necrosis factor-like weak inducer of apoptosis receptor), phosho-Pyk2 (Proline-rich tyrosine kinase 2), and 14-3-3θ/τ which were affected by microgravity, and DR4 (death receptor 4), PRMT1 (protein arginine methyltransferase 1) and ROCK-2 (Rho-associated, coiled-coil containing protein kinase 2) in response to space radiations. ROCK-2 was also suppressed in response to the space environment. The data provides the p53-dependent regulated proteins by exposure to space radiations and/or microgravity during spaceflight. Our expression data revealed proteins that might help to advance the basic space radiation biology. (author)

  15. Unfolded Protein Response (UPR Regulator Cib1 Controls Expression of Genes Encoding Secreted Virulence Factors in Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Martin Hampel

    Full Text Available The unfolded protein response (UPR, a conserved eukaryotic signaling pathway to ensure protein homeostasis in the endoplasmic reticulum (ER, coordinates biotrophic development in the corn smut fungus Ustilago maydis. Exact timing of UPR activation is required for virulence and presumably connected to the elevated expression of secreted effector proteins during infection of the host plant Zea mays. In the baker's yeast Saccharomyces cerevisiae, expression of UPR target genes is induced upon binding of the central regulator Hac1 to unfolded protein response elements (UPREs in their promoters. While a role of the UPR in effector secretion has been described previously, we investigated a potential UPR-dependent regulation of genes encoding secreted effector proteins. In silico prediction of UPREs in promoter regions identified the previously characterized effector genes pit2 and tin1-1, as bona fide UPR target genes. Furthermore, direct binding of the Hac1-homolog Cib1 to the UPRE containing promoter fragments of both genes was confirmed by quantitative chromatin immunoprecipitation (qChIP analysis. Targeted deletion of the UPRE abolished Cib1-dependent expression of pit2 and significantly affected virulence. Furthermore, ER stress strongly increased Pit2 expression and secretion. This study expands the role of the UPR as a signal hub in fungal virulence and illustrates, how biotrophic fungi can coordinate cellular physiology, development and regulation of secreted virulence factors.

  16. N-MYC DOWN-REGULATED-LIKE Proteins Regulate Meristem Initiation by Modulating Auxin Transport and MAX2 Expression

    OpenAIRE

    Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M.

    2013-01-01

    Background N-MYC DOWN-REGULATED-LIKE (NDL) proteins interact with the G? subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the presen...

  17. Multiple ETS family proteins regulate PF4 gene expression by binding to the same ETS binding site.

    Directory of Open Access Journals (Sweden)

    Yoshiaki Okada

    Full Text Available In previous studies on the mechanism underlying megakaryocyte-specific gene expression, several ETS motifs were found in each megakaryocyte-specific gene promoter. Although these studies suggested that several ETS family proteins regulate megakaryocyte-specific gene expression, only a few ETS family proteins have been identified. Platelet factor 4 (PF4 is a megakaryocyte-specific gene and its promoter includes multiple ETS motifs. We had previously shown that ETS-1 binds to an ETS motif in the PF4 promoter. However, the functions of the other ETS motifs are still unclear. The goal of this study was to investigate a novel functional ETS motif in the PF4 promoter and identify proteins binding to the motif. In electrophoretic mobility shift assays and a chromatin immunoprecipitation assay, FLI-1, ELF-1, and GABP bound to the -51 ETS site. Expression of FLI-1, ELF-1, and GABP activated the PF4 promoter in HepG2 cells. Mutation of a -51 ETS site attenuated FLI-1-, ELF-1-, and GABP-mediated transactivation of the promoter. siRNA analysis demonstrated that FLI-1, ELF-1, and GABP regulate PF4 gene expression in HEL cells. Among these three proteins, only FLI-1 synergistically activated the promoter with GATA-1. In addition, only FLI-1 expression was increased during megakaryocytic differentiation. Finally, the importance of the -51 ETS site for the activation of the PF4 promoter during physiological megakaryocytic differentiation was confirmed by a novel reporter gene assay using in vitro ES cell differentiation system. Together, these data suggest that FLI-1, ELF-1, and GABP regulate PF4 gene expression through the -51 ETS site in megakaryocytes and implicate the differentiation stage-specific regulation of PF4 gene expression by multiple ETS factors.

  18. A Hox Gene, Antennapedia, Regulates Expression of Multiple Major Silk Protein Genes in the Silkworm Bombyx mori.

    Science.gov (United States)

    Tsubota, Takuya; Tomita, Shuichiro; Uchino, Keiro; Kimoto, Mai; Takiya, Shigeharu; Kajiwara, Hideyuki; Yamazaki, Toshimasa; Sezutsu, Hideki

    2016-03-25

    Hoxgenes play a pivotal role in the determination of anteroposterior axis specificity during bilaterian animal development. They do so by acting as a master control and regulating the expression of genes important for development. Recently, however, we showed that Hoxgenes can also function in terminally differentiated tissue of the lepidopteranBombyx mori In this species,Antennapedia(Antp) regulates expression of sericin-1, a major silk protein gene, in the silk gland. Here, we investigated whether Antpcan regulate expression of multiple genes in this tissue. By means of proteomic, RT-PCR, and in situ hybridization analyses, we demonstrate that misexpression of Antpin the posterior silk gland induced ectopic expression of major silk protein genes such assericin-3,fhxh4, and fhxh5 These genes are normally expressed specifically in the middle silk gland as is Antp Therefore, the evidence strongly suggests that Antpactivates these silk protein genes in the middle silk gland. The putativesericin-1 activator complex (middle silk gland-intermolt-specific complex) can bind to the upstream regions of these genes, suggesting that Antpdirectly activates their expression. We also found that the pattern of gene expression was well conserved between B. moriand the wild species Bombyx mandarina, indicating that the gene regulation mechanism identified here is an evolutionarily conserved mechanism and not an artifact of the domestication of B. mori We suggest that Hoxgenes have a role as a master control in terminally differentiated tissues, possibly acting as a primary regulator for a range of physiological processes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Strong negative self regulation of Prokaryotic transcription factors increases the intrinsic noise of protein expression

    Directory of Open Access Journals (Sweden)

    Jenkins Dafyd J

    2008-01-01

    Full Text Available Abstract Background Many prokaryotic transcription factors repress their own transcription. It is often asserted that such regulation enables a cell to homeostatically maintain protein abundance. We explore the role of negative self regulation of transcription in regulating the variability of protein abundance using a variety of stochastic modeling techniques. Results We undertake a novel analysis of a classic model for negative self regulation. We demonstrate that, with standard approximations, protein variance relative to its mean should be independent of repressor strength in a physiological range. Consequently, in that range, the coefficient of variation would increase with repressor strength. However, stochastic computer simulations demonstrate that there is a greater increase in noise associated with strong repressors than predicted by theory. The discrepancies between the mathematical analysis and computer simulations arise because with strong repressors the approximation that leads to Michaelis-Menten-like hyperbolic repression terms ceases to be valid. Because we observe that strong negative feedback increases variability and so is unlikely to be a mechanism for noise control, we suggest instead that negative feedback is evolutionarily favoured because it allows the cell to minimize mRNA usage. To test this, we used in silico evolution to demonstrate that while negative feedback can achieve only a modest improvement in protein noise reduction compared with the unregulated system, it can achieve good improvement in protein response times and very substantial improvement in reducing mRNA levels. Conclusion Strong negative self regulation of transcription may not always be a mechanism for homeostatic control of protein abundance, but instead might be evolutionarily favoured as a mechanism to limit the use of mRNA. The use of hyperbolic terms derived from quasi-steady-state approximation should also be avoided in the analysis of stochastic

  20. Expression and characterization of an iron-regulated hemin-binding protein, HbpA, from Leptospira interrogans serovar Lai.

    Science.gov (United States)

    Asuthkar, Swapna; Velineni, Sridhar; Stadlmann, Johannes; Altmann, Friedrich; Sritharan, Manjula

    2007-09-01

    In an earlier study, based on the ferric enterobactin receptor FepA of Escherichia coli, we identified and modeled a TonB-dependent outer membrane receptor protein (LB191) from the genome of Leptospira interrogans serovar Lai. Based on in silico analysis, we hypothesized that this protein was an iron-dependent hemin-binding protein. In this study, we provide experimental evidence to prove that this protein, termed HbpA (hemin-binding protein A), is indeed an iron-regulated hemin-binding protein. We cloned and expressed the full-length 81-kDa recombinant rHbpA protein and a truncated 55-kDa protein from L. interrogans serovar Lai, both of which bind hemin-agarose. Assay of hemin-associated peroxidase activity and spectrofluorimetric analysis provided confirmatory evidence of hemin binding by HbpA. Immunofluorescence studies by confocal microscopy and the microscopic agglutination test demonstrated the surface localization and the iron-regulated expression of HbpA in L. interrogans. Southern blot analysis confirmed our earlier observation that the hbpA gene was present only in some of the pathogenic serovars and was absent in Leptospira biflexa. Hemin-agarose affinity studies showed another hemin-binding protein with a molecular mass of approximately 44 kDa, whose expression was independent of iron levels. This protein was seen in several serovars, including nonpathogenic L. biflexa. Sequence analysis and immunoreactivity with specific antibodies showed this protein to be LipL41.

  1. Differential regulation of amyloid-β-protein mRNA expression within hippocampal neuronal subpopulations in Alzheimer disease

    International Nuclear Information System (INIS)

    Higgins, G.A.; Lewis, D.A.; Bahmanyar, S.; Goldgaber, D.; Gajdusek, D.C.; Young, W.G.; Morrison, J.H.; Wilson, M.C.

    1988-01-01

    The authors have mapped the neuroanatomical distribution of amyloid-β-protein mRNA within neuronal subpopulations of the hippocampal formation in the cynomolgus monkey (Macaca fascicularis), normal aged human, and patients with Alzheimer disease. Amyloid-β-protein mRNA appears to be expressed in all hippocampal neurons, but at different levels of abundance. In the central nervous system of monkey and normal aged human, image analysis shows that neurons of the dentate gyrus and cornu Ammonis fields contain a 2.5-times-greater hybridization signal than is present in neurons of the subiculum and entorhinal cortex. In contrast, in the Alzheimer disease hippocampal formation, the levels of amyloid-β-protein mRNA in the cornu Ammonis field 3 and parasubiculum are equivalent. These findings suggest that within certain neuronal subpopulations cell type-specific regulation of amyloid-β-protein gene expression may be altered in Alzheimer disease

  2. Six1 induces protein synthesis signaling expression in duck myoblasts mainly via up-regulation of mTOR

    Directory of Open Access Journals (Sweden)

    Haohan Wang

    2016-03-01

    Full Text Available Abstract As a critical transcription factor, Six1 plays an important role in the regulation of myogenesis and muscle development. However, little is known about its regulatory mechanism associated with muscular protein synthesis. The objective of this study was to investigate the effects of overexpression ofSix1 on the expression of key protein metabolism-related genes in duck myoblasts. Through an experimental model where duck myoblasts were transfected with a pEGFP-duSix1 construct, we found that overexpression of duckSix1 could enhance cell proliferation activity and increase mRNA expression levels of key genes involved in the PI3K/Akt/mTOR signaling pathway, while the expression of FOXO1, MuRF1and MAFbx was not significantly altered, indicating thatSix1 could promote protein synthesis in myoblasts through up-regulating the expression of several related genes. Additionally, in duck myoblasts treated with LY294002 and rapamycin, the specific inhibitors ofPI3K and mTOR, respectively, the overexpression of Six1 could significantly ameliorate inhibitive effects of these inhibitors on protein synthesis. Especially, the mRNA expression levels of mTOR and S6K1 were observed to undergo a visible change, and a significant increase in protein expression of S6K1 was seen. These data suggested that Six1plays an important role in protein synthesis, which may be mainly due to activation of the mTOR signaling pathway.

  3. Resveratrol upregulates Egr-1 expression and activity involving extracellular signal-regulated protein kinase and ternary complex factors

    Energy Technology Data Exchange (ETDEWEB)

    Rössler, Oliver G.; Glatzel, Daniel; Thiel, Gerald, E-mail: gerald.thiel@uks.eu

    2015-03-01

    Many intracellular functions have been attributed to resveratrol, a polyphenolic phytoalexin found in grapes and in other plants. Here, we show that resveratrol induces the expression of the transcription factor Egr-1 in human embryonic kidney cells. Using a chromosomally embedded Egr-1-responsive reporter gene, we show that the Egr-1 activity was significantly elevated in resveratrol-treated cells, indicating that the newly synthesized Egr-1 protein was biologically active. Stimulus-transcription coupling leading to the resveratrol-induced upregulation of Egr-1 expression and activity requires the protein kinases Raf and extracellular signal-regulated protein kinase ERK, while MAP kinase phosphatase-1 functions as a nuclear shut-off device that interrupts the signaling cascade connecting resveratrol stimulation with enhanced Egr-1 expression. On the transcriptional level, Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, connects the intracellular signaling cascade elicited by resveratrol with transcription of the Egr-1 gene. These data were corroborated by the observation that stimulation of the cells with resveratrol increased the transcriptional activation potential of Elk-1. The SRE as well as the GC-rich DNA binding site of Egr-1 function as resveratrol-responsive elements. Thus, resveratrol regulates gene transcription via activation of the stimulus-regulated protein kinases Raf and ERK and the stimulus-responsive transcription factors TCF and Egr-1. - Highlights: • The plant polyphenol resveratrol upregulates Egr-1 expression and activity. • The stimulation of Egr-1 requires the protein kinases ERK and Raf. • Resveratrol treatment upregulates the transcriptional activation potential of Elk-1. • Resveratrol-induced stimulation of Egr-1 requires ternary complex factors. • Two distinct resveratrol-responsive elements were identified.

  4. Resveratrol upregulates Egr-1 expression and activity involving extracellular signal-regulated protein kinase and ternary complex factors

    International Nuclear Information System (INIS)

    Rössler, Oliver G.; Glatzel, Daniel; Thiel, Gerald

    2015-01-01

    Many intracellular functions have been attributed to resveratrol, a polyphenolic phytoalexin found in grapes and in other plants. Here, we show that resveratrol induces the expression of the transcription factor Egr-1 in human embryonic kidney cells. Using a chromosomally embedded Egr-1-responsive reporter gene, we show that the Egr-1 activity was significantly elevated in resveratrol-treated cells, indicating that the newly synthesized Egr-1 protein was biologically active. Stimulus-transcription coupling leading to the resveratrol-induced upregulation of Egr-1 expression and activity requires the protein kinases Raf and extracellular signal-regulated protein kinase ERK, while MAP kinase phosphatase-1 functions as a nuclear shut-off device that interrupts the signaling cascade connecting resveratrol stimulation with enhanced Egr-1 expression. On the transcriptional level, Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, connects the intracellular signaling cascade elicited by resveratrol with transcription of the Egr-1 gene. These data were corroborated by the observation that stimulation of the cells with resveratrol increased the transcriptional activation potential of Elk-1. The SRE as well as the GC-rich DNA binding site of Egr-1 function as resveratrol-responsive elements. Thus, resveratrol regulates gene transcription via activation of the stimulus-regulated protein kinases Raf and ERK and the stimulus-responsive transcription factors TCF and Egr-1. - Highlights: • The plant polyphenol resveratrol upregulates Egr-1 expression and activity. • The stimulation of Egr-1 requires the protein kinases ERK and Raf. • Resveratrol treatment upregulates the transcriptional activation potential of Elk-1. • Resveratrol-induced stimulation of Egr-1 requires ternary complex factors. • Two distinct resveratrol-responsive elements were identified

  5. Regulation of cellulase expression, sporulation, and morphogenesis by velvet family proteins in Trichoderma reesei.

    Science.gov (United States)

    Liu, Kuimei; Dong, Yanmei; Wang, Fangzhong; Jiang, Baojie; Wang, Mingyu; Fang, Xu

    2016-01-01

    Homologs of the velvet protein family are encoded by the ve1, vel2, and vel3 genes in Trichoderma reesei. To test their regulatory functions, the velvet protein-coding genes were disrupted, generating Δve1, Δvel2, and Δvel3 strains. The phenotypic features of these strains were examined to identify their functions in morphogenesis, sporulation, and cellulase expression. The three velvet-deficient strains produced more hyphal branches, indicating that velvet family proteins participate in the morphogenesis in T. reesei. Deletion of ve1 and vel3 did not affect biomass accumulation, while deletion of vel2 led to a significantly hampered growth when cellulose was used as the sole carbon source in the medium. The deletion of either ve1 or vel2 led to the sharp decrease of sporulation as well as a global downregulation of cellulase-coding genes. In contrast, although the expression of cellulase-coding genes of the ∆vel3 strain was downregulated in the dark, their expression in light condition was unaffected. Sporulation was hampered in the ∆vel3 strain. These results suggest that Ve1 and Vel2 play major roles, whereas Vel3 plays a minor role in sporulation, morphogenesis, and cellulase expression.

  6. Adenosine Receptors Differentially Regulate the Expression of Regulators of G-Protein Signalling (RGS 2, 3 and 4 in Astrocyte-Like Cells.

    Directory of Open Access Journals (Sweden)

    Till Nicolas Eusemann

    Full Text Available The "regulators of g-protein signalling" (RGS comprise a large family of proteins that limit by virtue of their GTPase accelerating protein domain the signal transduction of G-protein coupled receptors. RGS proteins have been implicated in various neuropsychiatric diseases such as schizophrenia, drug abuse, depression and anxiety and aggressive behaviour. Since conditions associated with a large increase of adenosine in the brain such as seizures or ischemia were reported to modify the expression of some RGS proteins we hypothesized that adenosine might regulate RGS expression in neural cells. We measured the expression of RGS-2,-3, and -4 in both transformed glia cells (human U373 MG astrocytoma cells and in primary rat astrocyte cultures stimulated with adenosine agonists. Expression of RGS-2 mRNA as well as RGS2 protein was increased up to 30-fold by adenosine agonists in astrocytes. The order of potency of agonists and the blockade by the adenosine A2B-antagonist MRS1706 indicated that this effect was largely mediated by adenosine A2B receptors. However, a smaller effect was observed due to activation of adenosine A2A receptors. In astrocytoma cells adenosine agonists elicited an increase in RGS-2 expression solely mediated by A2B receptors. Expression of RGS-3 was inhibited by adenosine agonists in both astrocytoma cells and astrocytes. However while this effect was mediated by A2B receptors in astrocytoma cells it was mediated by A2A receptors in astrocytes as assessed by the order of potency of agonists and selective blockade by the specific antagonists MRS1706 and ZM241385 respectively. RGS-4 expression was inhibited in astrocytoma cells but enhanced in astrocytes by adenosine agonists.

  7. HPV16 E6 regulates annexin 1 (ANXA1) protein expression in cervical carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Calmon, Marilia Freitas [Department of Biology, Institute of Bioscience, Language and Exact Science, São Paulo State University, São Jose do Rio Preto (Brazil); Sichero, Laura [Molecular Biology Laboratory, Centre for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo (Brazil); Boccardo, Enrique [Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo., São Paulo (Brazil); Villa, Luisa Lina [Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo (Brazil); Rahal, Paula, E-mail: rahalp@yahoo.com.br [Department of Biology, Institute of Bioscience, Language and Exact Science, São Paulo State University, São Jose do Rio Preto (Brazil)

    2016-09-15

    Annexin 1 (ANXA1) is a substrate for E6AP mediated ubiquitylation. It has been hypothesized that HPV 16 E6 protein redirects E6AP away from ANXA1, increasing its stability and possibly contributing to viral pathogenesis. We analyzed ANXA1 expression in HPV-positive and negative cervical carcinoma-derived cells, in cells expressing HPV-16 oncogenes and in cells transduced with shRNA targeting E6AP. We observed that ANXA1 protein expression increased in HPV-16-positive tumor cells, in keratinocytes expressing HPV-16 E6wt (wild-type) or E6/E7 and C33 cells expressing HPV-16 E6wt. ANXA1 protein expression decreased in cells transfected with E6 Dicer-substrate RNAs (DsiRNA) and C33 cells cotransduced with HPV-16 E6wt and E6AP shRNA. Moreover, colony number and proliferation rate decreased in HPV16-positive cells transduced with ANXA1 shRNA. We observed that in cells infected with HPV16, the E6 binds to E6AP to degrade p53 and upregulate ANXA1. We suggest that ANXA1 may play a role in HPV-mediated carcinogenesis. - Highlights: • ANXA1 upregulation requires the presence of E6 and E6AP and is dependent on E6 integrity. • E6 binds to E6AP to degrade p53 and upregulate ANXA1 in cells infected with HPV16. • ANXA1 plays a role in cell proliferation in HPV-positive cervical cells.

  8. HPV16 E6 regulates annexin 1 (ANXA1) protein expression in cervical carcinoma cell lines

    International Nuclear Information System (INIS)

    Calmon, Marilia Freitas; Sichero, Laura; Boccardo, Enrique; Villa, Luisa Lina; Rahal, Paula

    2016-01-01

    Annexin 1 (ANXA1) is a substrate for E6AP mediated ubiquitylation. It has been hypothesized that HPV 16 E6 protein redirects E6AP away from ANXA1, increasing its stability and possibly contributing to viral pathogenesis. We analyzed ANXA1 expression in HPV-positive and negative cervical carcinoma-derived cells, in cells expressing HPV-16 oncogenes and in cells transduced with shRNA targeting E6AP. We observed that ANXA1 protein expression increased in HPV-16-positive tumor cells, in keratinocytes expressing HPV-16 E6wt (wild-type) or E6/E7 and C33 cells expressing HPV-16 E6wt. ANXA1 protein expression decreased in cells transfected with E6 Dicer-substrate RNAs (DsiRNA) and C33 cells cotransduced with HPV-16 E6wt and E6AP shRNA. Moreover, colony number and proliferation rate decreased in HPV16-positive cells transduced with ANXA1 shRNA. We observed that in cells infected with HPV16, the E6 binds to E6AP to degrade p53 and upregulate ANXA1. We suggest that ANXA1 may play a role in HPV-mediated carcinogenesis. - Highlights: • ANXA1 upregulation requires the presence of E6 and E6AP and is dependent on E6 integrity. • E6 binds to E6AP to degrade p53 and upregulate ANXA1 in cells infected with HPV16. • ANXA1 plays a role in cell proliferation in HPV-positive cervical cells.

  9. SRSF3 represses the expression of PDCD4 protein by coordinated regulation of alternative splicing, export and translation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung Kuk; Jeong, Sunjoo, E-mail: sjsj@dankook.ac.kr

    2016-02-05

    Gene expression is regulated at multiple steps, such as transcription, splicing, export, degradation and translation. Considering diverse roles of SR proteins, we determined whether the tumor-related splicing factor SRSF3 regulates the expression of the tumor-suppressor protein, PDCD4, at multiple steps. As we have reported previously, knockdown of SRSF3 increased the PDCD4 protein level in SW480 colon cancer cells. More interestingly, here we showed that the alternative splicing and the nuclear export of minor isoforms of pdcd4 mRNA were repressed by SRSF3, but the translation step was unaffected. In contrast, only the translation step of the major isoform of pdcd4 mRNA was repressed by SRSF3. Therefore, overexpression of SRSF3 might be relevant to the repression of all isoforms of PDCD4 protein levels in most types of cancer cell. We propose that SRSF3 could act as a coordinator of the expression of PDCD4 protein via two mechanisms on two alternatively spliced mRNA isoforms.

  10. Epidermal growth factor-containing fibulin-like extracellular matrix protein 1 expression and regulation in uterine leiomyoma.

    Science.gov (United States)

    Marsh, Erica E; Chibber, Shani; Wu, Ju; Siegersma, Kendra; Kim, Julie; Bulun, Serdar

    2016-04-01

    To determine the presence, differential expression, and regulation of epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) in uterine leiomyomas. Laboratory in vivo and in vitro study with the use of human leiomyoma and myometrial tissue and primary cells. Academic medical center. Leiomyoma and myometrial tissue samples and cultured cells. 5-Aza-2'-deoxycytidine (5-aza-dC) treatment. Fold-change difference between EFEMP1 and fibulin-3 expression in leiomyoma tissue and cells compared with matched myometrial samples, and fold-change difference in EFEMP1 expression with 5-Aza-dC treatment. In vivo, EFEMP1 expression was 3.19-fold higher in myometrial tissue than in leiomyoma tissue. EFEMP1 expression in vitro was 5.03-fold higher in myometrial cells than in leiomyoma cells. Western blot and immunohistochemistry staining of tissue and cells confirmed similar findings in protein expression. Treatment of leiomyoma cells with 5-Aza-dC resulted in increased expression of EFEMP1 in vitro. The EFEMP1 gene and its protein product, fibulin-3, are both significantly down-regulated in leiomyoma compared with myometrium when studied both in vivo and in vitro. The increase in EFEMP1 expression in leiomyoma cells with 5-Aza-dC treatment suggest that differential methylation is responsible, in part, for the differences seen in gene expression. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  11. Amyloid precursor protein regulates migration and metalloproteinase gene expression in prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Toshiaki; Ikeda, Kazuhiro; Horie-Inoue, Kuniko [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241 (Japan); Inoue, Satoshi, E-mail: INOUE-GER@h.u-tokyo.ac.jp [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241 (Japan); Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan); Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan)

    2014-09-26

    Highlights: • APP knockdown reduced proliferation and migration of prostate cancer cells. • APP knockdown reduced expression of metalloproteinase and EMT-related genes. • APP overexpression promoted LNCaP cell migration. • APP overexpression increased expression of metalloproteinase and EMT-related genes. - Abstract: Amyloid precursor protein (APP) is a type I transmembrane protein, and one of its processed forms, β-amyloid, is considered to play a central role in the development of Alzheimer’s disease. We previously showed that APP is a primary androgen-responsive gene in prostate cancer and that its increased expression is correlated with poor prognosis for patients with prostate cancer. APP has also been implicated in several human malignancies. Nevertheless, the mechanism underlying the pro-proliferative effects of APP on cancers is still not well-understood. In the present study, we explored a pathophysiological role for APP in prostate cancer cells using siRNA targeting APP (siAPP). The proliferation and migration of LNCaP and DU145 prostate cancer cells were significantly suppressed by siAPP. Differentially expressed genes in siAPP-treated cells compared to control siRNA-treated cells were identified by microarray analysis. Notably, several metalloproteinase genes, such as ADAM10 and ADAM17, and epithelial–mesenchymal transition (EMT)-related genes, such as VIM, and SNAI2, were downregulated in siAPP-treated cells as compared to control cells. The expression of these genes was upregulated in LNCaP cells stably expressing APP when compared with control cells. APP-overexpressing LNCaP cells exhibited enhanced migration in comparison to control cells. These results suggest that APP may contribute to the proliferation and migration of prostate cancer cells by modulating the expression of metalloproteinase and EMT-related genes.

  12. Hepatitis B virus X protein suppresses caveolin-1 expression in hepatocellular carcinoma by regulating DNA methylation

    International Nuclear Information System (INIS)

    Yan, Jun; Lu, Qian; Dong, Jiahong; Li, Xiaowu; Ma, Kuansheng; Cai, Lei

    2012-01-01

    To understand the molecular mechanisms of caveolin-1 downregulation by hepatitis B virus X protein (HBx). The DNA methylation status of the caveolin-1 promoter was examined by nested methylation-specific PCR of 33 hepatitis B virus (HBV)-infected hepatocellular carcinoma (HCC) samples. The SMMC-7721 hepatoma cell line was transfected with a recombinant HBx adenoviral vector, and the effects of HBx protein on caveolin-1 expression and promoter methylation were examined and confirmed by sequencing. A reporter gene containing the caveolin-1 promoter region was constructed, and the effects of HBx on the transcriptional activity of the promoter were also studied. Methylation of the caveolin-1 promoter was detected in 84.8% (28/33) of HBV-infected HCC samples. Expression of caveolin-1 was significantly downregulated (P = 0.022), and multiple CpG sites in the promoter region of caveolin-1 were methylated in SMMC-7721 cells after HBx transfection. Transfected HBx significantly suppressed caveolin-1 promoter activity (P = 0.001). HBx protein induces methylation of the caveolin-1 promoter region and suppresses its expression

  13. Cell Cycle and Apoptosis Regulatory Protein (CARP)-1 is Expressed inOsteoblasts and Regulated by PTH

    International Nuclear Information System (INIS)

    Sharma, Sonali; Mahalingam, Chandrika D.; Das, Varsha; Jamal, Shazia; Levi, Edi; Rishi, Arun K.; Datta, Nabanita S.

    2013-01-01

    Highlights: •CARP-1 is identified for the first time in bone cells. •PTH downregulates CARP-1 expression in differentiated osteoblasts. •PTH displaces CARP-1 from nucleus to the cytoplasm in differentiated osteoblasts. •Downregulation of CARP-1 by PTH involves PKA, PKC and P-p38 MAPK pathways. -- Abstract: Bone mass is dependent on osteoblast proliferation, differentiation and life-span of osteoblasts. Parathyroid hormone (PTH) controls osteoblast cell cycle regulatory proteins and suppresses mature osteoblasts apoptosis. Intermittent administration of PTH increases bone mass but the mechanism of action are complex and incompletely understood. Cell Cycle and Apoptosis Regulatory Protein (CARP)-1 (aka CCAR1) is a novel transducer of signaling by diverse agents including cell growth and differentiation factors. To gain further insight into the molecular mechanism, we investigated involvement of CARP-1 in PTH signaling in osteoblasts. Immunostaining studies revealed presence of CARP-1 in osteoblasts and osteocytes, while a minimal to absent levels were noted in the chondrocytes of femora from 10 to 12-week old mice. Treatment of 7-day differentiated MC3T3-E1 clone-4 (MC-4) mouse osteoblastic cells and primary calvarial osteoblasts with PTH for 30 min to 5 h followed by Western blot analysis showed 2- to 3-fold down-regulation of CARP-1 protein expression in a dose- and time-dependent manner compared to the respective vehicle treated control cells. H-89, a Protein Kinase A (PKA) inhibitor, suppressed PTH action on CARP-1 protein expression indicating PKA-dependent mechanism. PMA, a Protein Kinase C (PKC) agonist, mimicked PTH action, and the PKC inhibitor, GF109203X, partially blocked PTH-dependent downregulation of CARP-1, implying involvement of PKC. U0126, a Mitogen-Activated Protein Kinase (MAPK) Kinase (MEK) inhibitor, failed to interfere with CARP-1 suppression by PTH. In contrast, SB203580, p38 inhibitor, attenuated PTH down-regulation of CARP-1

  14. Cell Cycle and Apoptosis Regulatory Protein (CARP)-1 is Expressed inOsteoblasts and Regulated by PTH

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Sonali; Mahalingam, Chandrika D.; Das, Varsha [Department of Internal Medicine/Endocrinology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Jamal, Shazia [Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Levi, Edi [Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Rishi, Arun K. [Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201 (United States); VA Medical Center, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Datta, Nabanita S., E-mail: ndatta@med.wayne.edu [Department of Internal Medicine/Endocrinology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201 (United States)

    2013-07-12

    Highlights: •CARP-1 is identified for the first time in bone cells. •PTH downregulates CARP-1 expression in differentiated osteoblasts. •PTH displaces CARP-1 from nucleus to the cytoplasm in differentiated osteoblasts. •Downregulation of CARP-1 by PTH involves PKA, PKC and P-p38 MAPK pathways. -- Abstract: Bone mass is dependent on osteoblast proliferation, differentiation and life-span of osteoblasts. Parathyroid hormone (PTH) controls osteoblast cell cycle regulatory proteins and suppresses mature osteoblasts apoptosis. Intermittent administration of PTH increases bone mass but the mechanism of action are complex and incompletely understood. Cell Cycle and Apoptosis Regulatory Protein (CARP)-1 (aka CCAR1) is a novel transducer of signaling by diverse agents including cell growth and differentiation factors. To gain further insight into the molecular mechanism, we investigated involvement of CARP-1 in PTH signaling in osteoblasts. Immunostaining studies revealed presence of CARP-1 in osteoblasts and osteocytes, while a minimal to absent levels were noted in the chondrocytes of femora from 10 to 12-week old mice. Treatment of 7-day differentiated MC3T3-E1 clone-4 (MC-4) mouse osteoblastic cells and primary calvarial osteoblasts with PTH for 30 min to 5 h followed by Western blot analysis showed 2- to 3-fold down-regulation of CARP-1 protein expression in a dose- and time-dependent manner compared to the respective vehicle treated control cells. H-89, a Protein Kinase A (PKA) inhibitor, suppressed PTH action on CARP-1 protein expression indicating PKA-dependent mechanism. PMA, a Protein Kinase C (PKC) agonist, mimicked PTH action, and the PKC inhibitor, GF109203X, partially blocked PTH-dependent downregulation of CARP-1, implying involvement of PKC. U0126, a Mitogen-Activated Protein Kinase (MAPK) Kinase (MEK) inhibitor, failed to interfere with CARP-1 suppression by PTH. In contrast, SB203580, p38 inhibitor, attenuated PTH down-regulation of CARP-1

  15. Modulation of inv gene expression by the OmpR two-component response regulator protein of Yersinia enterocolitica.

    Science.gov (United States)

    Raczkowska, A; Brzóstkowska, M; Kwiatek, A; Bielecki, J; Brzostek, K

    2011-07-01

    To elucidate the physiological meaning of OmpR-dependent expression of invasin gene (inv) inhibition in Yersinia enterocolitica, the function of the EnvZ/OmpR regulatory pathway in osmoregulation of inv expression was analyzed in detail. The osmoregulation of inv expression was found to be a multifaceted process involving both OmpR-dependent and -independent mechanisms. Analysis of inv transcription in strains lacking OmpR or EnvZ proteins indicated that kinase EnvZ is not the only regulator of OmpR phosphorylation. Using the transcriptional inv::lacZ fusion in a heterologous system (Escherichia coli) we tried to clarify the role of OmpR in the inv regulatory circuit composed of negative (H-NS) and positive (RovA) regulators of inv gene transcription. We were able to show a significant increase in inv expression in E. coli ompR background under H-NS( Ecoli )-repressed condition. Moreover, H-NS-mediated inv repression was relieved when RovA of Y. enterocolitica was expressed from a plasmid. Furthermore, we showed that RovA may activate inv expression irrespective on the presence of H-NS protein. Using this strategy we showed that OmpR of Y. enterocolitica decrease RovA-mediated inv activation.

  16. Stromal cells expressing hedgehog-interacting protein regulate the proliferation of myeloid neoplasms

    International Nuclear Information System (INIS)

    Kobune, M; Iyama, S; Kikuchi, S; Horiguchi, H; Sato, T; Murase, K; Kawano, Y; Takada, K; Ono, K; Kamihara, Y; Hayashi, T; Miyanishi, K; Sato, Y; Takimoto, R; Kato, J

    2012-01-01

    Aberrant reactivation of hedgehog (Hh) signaling has been described in a wide variety of human cancers including cancer stem cells. However, involvement of the Hh-signaling system in the bone marrow (BM) microenvironment during the development of myeloid neoplasms is unknown. In this study, we assessed the expression of Hh-related genes in primary human CD34 + cells, CD34 + blastic cells and BM stromal cells. Both Indian Hh (Ihh) and its signal transducer, smoothened (SMO), were expressed in CD34 + acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS)-derived cells. However, Ihh expression was relatively low in BM stromal cells. Remarkably, expression of the intrinsic Hh-signaling inhibitor, human Hh-interacting protein (HHIP) in AML/MDS-derived stromal cells was markedly lower than in healthy donor-derived stromal cells. Moreover, HHIP expression levels in BM stromal cells highly correlated with their supporting activity for SMO + leukemic cells. Knockdown of HHIP gene in stromal cells increased their supporting activity although control cells marginally supported SMO + leukemic cell proliferation. The demethylating agent, 5-aza-2′-deoxycytidine rescued HHIP expression via demethylation of HHIP gene and reduced the leukemic cell-supporting activity of AML/MDS-derived stromal cells. This indicates that suppression of stromal HHIP could be associated with the proliferation of AML/MDS cells

  17. Proteomic analysis of growth phase-dependent expression of Legionella pneumophila proteins which involves regulation of bacterial virulence traits.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Hayashi

    Full Text Available Legionella pneumophila, which is a causative pathogen of Legionnaires' disease, expresses its virulent traits in response to growth conditions. In particular, it is known to become virulent at a post-exponential phase in vitro culture. In this study, we performed a proteomic analysis of differences in expression between the exponential phase and post-exponential phase to identify candidates associated with L. pneumophila virulence using 2-Dimentional Fluorescence Difference Gel Electrophoresis (2D-DIGE combined with Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry (MALDI-TOF-MS. Of 68 identified proteins that significantly differed in expression between the two growth phases, 64 were up-regulated at a post-exponential phase. The up-regulated proteins included enzymes related to glycolysis, ketone body biogenesis and poly-3-hydroxybutyrate (PHB biogenesis, suggesting that L. pneumophila may utilize sugars and lipids as energy sources, when amino acids become scarce. Proteins related to motility (flagella components and twitching motility-associated proteins were also up-regulated, predicting that they enhance infectivity of the bacteria in host cells under certain conditions. Furthermore, 9 up-regulated proteins of unknown function were found. Two of them were identified as novel bacterial factors associated with hemolysis of sheep red blood cells (SRBCs. Another 2 were found to be translocated into macrophages via the Icm/Dot type IV secretion apparatus as effector candidates in a reporter assay with Bordetella pertussis adenylate cyclase. The study will be helpful for virulent analysis of L. pneumophila from the viewpoint of physiological or metabolic modulation dependent on growth phase.

  18. Axonal sprouting regulates myelin basic protein gene expression in denervated mouse hippocampus

    DEFF Research Database (Denmark)

    Jensen, M B; Poulsen, F R; Finsen, B

    2000-01-01

    to 35 days after transection of the entorhino-hippocampal perforant path axonal projection. In situ hybridization analysis showed that anterograde axonal and terminal degeneration lead to upregulated oligodendrocyte MBP mRNA expression starting between day 2 and day 4, in (1) the deep part of stratum...... axonal and terminal degeneration, myelin degenerative changes, microglial activation and axotomi-induced axonal sprouting. Oligodendrocyte MBP mRNA expression reached maximum in both these areas at day 7. MBP gene transcription remained constant in stratum radiatum, stratum pyramidale and stratum oriens...... of CA1, areas that were unaffected by perforant path transection. These results provide strong evidence that oligodendrocyte MBP gene expression can be regulated by axonal sprouting independently of microglial activation in the injured adult CNS....

  19. Regulation of Nuclear Receptor Interacting Protein 1 (NRIP1) Gene Expression in Response to Weight Loss and Exercise in Humans

    DEFF Research Database (Denmark)

    De Marinis, Yang Z; Sun, Jiangming; Bompada, Pradeep

    2017-01-01

    Objective: Nuclear receptor interacting protein 1 (NRIP1) is an important energy regulator, but few studies have addressed its role in humans. This study investigated adipose tissue and skeletal muscle NRIP1 gene expression and serum levels in response to weight loss and exercise in humans. Methods...... network/module. Conclusions: NRIP1 gene expression and serum levels are strongly associated with metabolic states such as obesity, weight loss, different types of exercise, and peripheral tissue insulin resistance, potentially as a mediator of sedentary effects.......: In patients with obesity, adipose tissue NRIP1 mRNA expression increased during weight loss and weight maintenance and showed strong associations with metabolic markers and anthropometric parameters. Serum NRIP1 protein levels also increased after weight loss. In skeletal muscle, imposed rest increased NRIP1...

  20. TGP attenuates endoplasmic reticulum stress and regulates the expression of thioredoxin-interacting protein in the kidneys of diabetic rats.

    Science.gov (United States)

    Shao, Yunxia; Qi, Xiangming; Xu, Xinxing; Wang, Kun; Wu, Yonggui; Xia, Lingling

    2017-01-16

    Recent evidence suggests that the endoplasmic reticulum stress (ERS)-thioredoxin-interacting protein (TXNIP)-inflammation chain contributes to diabetic renal injury. The aim of the current study was to investigate whether total glucosides of peony (TGP) could inhibit ERS and attenuate up-regulation of TXNIP in the kidneys of rats with streptozotocin-induced diabetes. TGP was orally administered daily at a dose of 50, 100, or 200 mg/kg for 8 weeks. The expression of glucose-regulated protein 78 (GRP78), phospho-protein kinase RNA-like ER kinase (p-PERK), phosphor- eukaryotic translation initiation factor 2α (p-eIF2α), C/EBP-homologous protein (CHOP), and TXNIP was assessed. Results indicated that TGP significantly decreased diabetes-induced albuminuria and it acted by down-regulating activation of the ERS-TXNIP-inflammation chain in the kidneys of diabetic rats. These findings indicate that renoprotection from TGP in diabetic rats possibly contributed to inhibition of ERS and decreased expression of TXNIP. These findings also offer a new perspective from which to study the molecular mechanisms of diabetic nephropathy and prevent its progression.

  1. A photo-responsive F-box protein FOF2 regulates floral initiation by promoting FLC expression in Arabidopsis.

    Science.gov (United States)

    He, Reqing; Li, Xinmei; Zhong, Ming; Yan, Jindong; Ji, Ronghuan; Li, Xu; Wang, Qin; Wu, Dan; Sun, Mengsi; Tang, Dongying; Lin, Jianzhong; Li, Hongyu; Liu, Bin; Liu, Hongtao; Liu, Xuanming; Zhao, Xiaoying; Lin, Chentao

    2017-09-01

    Floral initiation is regulated by various genetic pathways in response to light, temperature, hormones and developmental status; however, the molecular mechanisms underlying the interactions between different genetic pathways are not fully understood. Here, we show that the photoresponsive gene FOF2 (F-box of flowering 2) negatively regulates flowering. FOF2 encodes a putative F-box protein that interacts specifically with ASK14, and its overexpression results in later flowering under both long-day and short-day photoperiods. Conversely, transgenic plants expressing the F-box domain deletion mutant of FOF2 (FOF2ΔF), or double loss of function mutant of FOF2 and FOL1 (FOF2-LIKE 1) present early flowering phenotypes. The late flowering phenotype of the FOF2 overexpression lines is suppressed by the flc-3 loss-of-function mutation. Furthermore, FOF2 mRNA expression is regulated by autonomous pathway gene FCA, and the repressive effect of FOF2 in flowering can be overcome by vernalization. Interestingly, FOF2 expression is regulated by light. The protein level of FOF2 accumulates in response to light, whereas it is degraded under dark conditions via the 26S proteasome pathway. Our findings suggest a possible mechanistic link between light conditions and the autonomous floral promotion pathway in Arabidopsis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  2. Lipopolysaccharide regulated protein expression is only partly impaired in monocytes from patients with type I diabetes

    Directory of Open Access Journals (Sweden)

    Abke Sabine

    2006-03-01

    Full Text Available Abstract Background Monocytes play an important role in innate immunity and atherosclerosis. A disturbed secretion of cytokines in lipopolysaccharide (LPS activated monocytes from type 1 diabetes (T1D patients has been described and may contribute to the impaired inflammatory response in these individuals. In the present study the influence of LPS on five different proteins with a function in immunity and atherosclerosis was analyzed in monocytes from controls and T1D patients. Methods Monocytes were isolated from controls and T1D patients and the LPS-stimulated increase of IL-6, CXCL8, monocyte chemotactic protein 1 (CCL2, MCP-1 and superoxide dismutase (SOD 2, as well as the LPS-mediated decrease of apolipoprotein E (Apo E in primary human monocytes from controls and T1D patients was determined. Results CCL2 and IL-6 secretion in response to LPS was found significantly reduced in monocytes from T1D patients when compared to controls whereas basal CCL2 release was similar in control and T1D cells. In contrast, CXCL8 and apolipoprotein E secretion and SOD 2 expression upon LPS stimulation is similar from T1D and control monocytes. Conclusion These data indicate that LPS-mediated protein expression is only partly disturbed in monocytes from T1D patients. Reduced secretion of IL-6 and CCL2 in activated monocytes of these patients may contribute to an impaired inflammatory response and vascular disease.

  3. Exogenous short-term silicon application regulates macro-nutrients, endogenous phytohormones, and protein expression in Oryza sativa L.

    Science.gov (United States)

    Jang, Soo-Won; Kim, Yoonha; Khan, Abdul Latif; Na, Chae-In; Lee, In-Jung

    2018-01-04

    Silicon (Si) has been known to regulate plant growth; however, the underlying mechanisms of short-term exogenous Si application on the regulation of calcium (Ca) and nitrogen (N), endogenous phytohormones, and expression of essential proteins have been little understood. Exogenous Si application significantly increased Si content as compared to the control. Among Si treatments, 1.0 mM Si application showed increased phosphorus content as compared to other Si treatments (0.5, 2.0, and 4.0 mM). However, Ca accumulation was significantly reduced (1.8- to 2.0-fold) at the third-leaf stage in the control, whereas all Si treatments exhibited a dose-dependent increase in Ca as determined by radioisotope 45 Ca analysis. Similarly, the radioisotope 15 N for nitrogen localization and uptake showed a varying but reduced response (ranging from 1.03-10.8%) to different Si concentrations as compared to 15 N application alone. Physiologically active endogenous gibberellin (GA 1 ) was also significantly higher with exogenous Si (1.0 mM) as compared to GA 20 and the control plants. A similar response was noted for endogenous jasmonic and salicylic acid synthesis in rice plants with Si application. Proteomic analysis revealed the activation of several essential proteins, such as Fe-S precursor protein, putative thioredoxin, Ser/Thr phosphatase, glucose-6-phosphate isomerase (G6P), and importin alpha-1b (Imp3), with Si application. Among the most-expressed proteins, confirmatory gene expression analysis for G6P and Imp3 showed a similar response to those of the Si treatments. In conclusion, the current results suggest that short-term exogenous Si can significantly regulate rice plant physiology by influencing Ca, N, endogenous phytohormones, and proteins, and that 1.0 mM Si application is more beneficial to plants than higher concentrations.

  4. Immunohistochemical study of the expression of cell cycle regulating proteins at different stages of bladder cancer

    DEFF Research Database (Denmark)

    Primdahl, Hanne; von der Maase, Hans; Sørensen, Flemming Brandt

    2002-01-01

    PURPOSE: The cell cycle is known to be deregulated in cancer. We therefore analyzed the expression of the cell cycle related proteins p21, p27, p16, Rb, and L-myc by immunohistochemical staining of bladder tumors.METHODS: The tissue material consisted of bladder tumors from three groups of patients......; group 1, 23 patients with recurrent stage Ta (non-invasive) tumors; group 2, 22 patients presenting at their first admission with T2-4 (muscle invasive) tumors; group 3, 24 patients who experienced disease progression from Ta or T1 (invasive in connective tissue) to a higher stage...

  5. Nitrosative/oxidative stress conditions regulate thioredoxin-interacting protein (TXNIP) expression and thioredoxin-1 (TRX-1) nuclear localization.

    Science.gov (United States)

    Ogata, Fernando Toshio; Batista, Wagner Luiz; Sartori, Adriano; Gesteira, Tarsis Ferreira; Masutani, Hiroshi; Arai, Roberto Jun; Yodoi, Junji; Stern, Arnold; Monteiro, Hugo Pequeno

    2013-01-01

    Thioredoxin (TRX-1) is a multifunctional protein that controls the redox status of other proteins. TRX-1 can be found in the extracellular milieu, cytoplasm and nucleus, and it has distinct functions in each environment. Previously, we studied the intracellular localization of TRX-1 and its relationship with the activation of the p21Ras-ERK1/2 MAP Kinases signaling pathway. In situations where this pathway was activated by stress conditions evoked by a nitrosothiol, S-nitroso-N-acetylpenicillamine (SNAP), TRX-1 accumulated in the nuclear compartment due to nitrosylation of p21Ras and activation of downstream ERK1/2 MAP kinases. Presently, we demonstrate that ERK1/2 MAP Kinases activation and spatial distribution within cells trigger TRX-1 nuclear translocation through down-regulation of the physiological inhibitor of TRX-1, Thioredoxin Interacting Protein (TXNIP). Once activated by the oxidants, SNAP and H₂O₂, the ERK1/2 MAP kinases migrate to the nucleus. This is correlated with down-regulation of TXNIP. In the presence of the MEK inhibitors (PD98059 or UO126), or in cells transfected with the Protein Enriched in Astrocytes (PEA-15), a cytoplasmic anchor of ERK1/2 MAP kinases, TRX-1 nuclear migration and TXNIP down-regulation are no longer observed in cells exposed to oxidants. On the other hand, over-expression of TXNIP abolishes nuclear migration of TRX-1 under nitrosative/oxidative stress conditions, whereas gene silencing of TXNIP facilitates nuclear migration even in the absence of stress conditions. Studies based on the TXNIP promoter support this regulation. In conclusion, changes in TRX-1 compartmentalization under nitrosative/oxidative stress conditions are dependent on the expression levels of TXNIP, which are regulated by cellular compartmentalization and activation of the ERK1/2 MAP kinases.

  6. Nitrosative/oxidative stress conditions regulate thioredoxin-interacting protein (TXNIP expression and thioredoxin-1 (TRX-1 nuclear localization.

    Directory of Open Access Journals (Sweden)

    Fernando Toshio Ogata

    Full Text Available Thioredoxin (TRX-1 is a multifunctional protein that controls the redox status of other proteins. TRX-1 can be found in the extracellular milieu, cytoplasm and nucleus, and it has distinct functions in each environment. Previously, we studied the intracellular localization of TRX-1 and its relationship with the activation of the p21Ras-ERK1/2 MAP Kinases signaling pathway. In situations where this pathway was activated by stress conditions evoked by a nitrosothiol, S-nitroso-N-acetylpenicillamine (SNAP, TRX-1 accumulated in the nuclear compartment due to nitrosylation of p21Ras and activation of downstream ERK1/2 MAP kinases. Presently, we demonstrate that ERK1/2 MAP Kinases activation and spatial distribution within cells trigger TRX-1 nuclear translocation through down-regulation of the physiological inhibitor of TRX-1, Thioredoxin Interacting Protein (TXNIP. Once activated by the oxidants, SNAP and H₂O₂, the ERK1/2 MAP kinases migrate to the nucleus. This is correlated with down-regulation of TXNIP. In the presence of the MEK inhibitors (PD98059 or UO126, or in cells transfected with the Protein Enriched in Astrocytes (PEA-15, a cytoplasmic anchor of ERK1/2 MAP kinases, TRX-1 nuclear migration and TXNIP down-regulation are no longer observed in cells exposed to oxidants. On the other hand, over-expression of TXNIP abolishes nuclear migration of TRX-1 under nitrosative/oxidative stress conditions, whereas gene silencing of TXNIP facilitates nuclear migration even in the absence of stress conditions. Studies based on the TXNIP promoter support this regulation. In conclusion, changes in TRX-1 compartmentalization under nitrosative/oxidative stress conditions are dependent on the expression levels of TXNIP, which are regulated by cellular compartmentalization and activation of the ERK1/2 MAP kinases.

  7. C-reactive protein expression is up-regulated in apical lesions of endodontic origin in association with interleukin-6.

    Science.gov (United States)

    Garrido, Mauricio; Dezerega, Andrea; Bordagaray, María José; Reyes, Montserrat; Vernal, Rolando; Melgar-Rodríguez, Samantha; Ciuchi, Pía; Paredes, Rodolfo; García-Sesnich, Jocelyn; Ahumada-Montalva, Pablo; Hernández, Marcela

    2015-04-01

    C-reactive protein (CRP) is the prototype component of acute-phase proteins induced ultimately by interleukin (IL)-6 in the liver, but it is unknown whether periradicular tissues locally express CRP. The present study aimed to identify whether CRP messenger RNA synthesis occurs in situ within apical lesions of endodontic origin (ALEOs) and healthy periodontal ligament and its association with IL-6 and to determine their protein levels and tissue localization. Patients with asymptomatic apical periodontitis and healthy volunteers presenting at the School of Dentistry, University of Chile, Santiago, Chile, were enrolled. ALEOs and healthy teeth were obtained and processed for either immunohistochemistry and double immunofluorescence to assess IL-6 and CRP tissue localization, whereas healthy periodontal ligaments were processed as controls for real-time reverse-transcription polymerase chain reaction for their RNA expression levels and multiplex assay to determine their protein levels. Statistic analysis was performed using the unpaired t test or Mann-Whitney test according to data distribution and Pearson correlation. IL-6 and CRP were synthesized in ALEOs, whereas their RNA expression and protein levels were significantly higher when compared with healthy periodontal ligament. IL-6 and CRP immunolocalized to the inflammatory cells, vascular endothelial cells, and mesenchymal cells. Both, IL-6 and CRP colocalized in ALEOs, and a positive correlation was found between their expression levels (P periodontal ligament and up-regulated in ALEOs along with higher protein levels. Given their pleiotropic effects, IL-6 and CRP protein levels in apical tissues might partially explain the development and progression of ALEOs as well as potentially asymptomatic apical periodontitis-associated systemic low-grade inflammation. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. The Arabidopsis TOR Kinase Specifically Regulates the Expression of Nuclear Genes Coding for Plastidic Ribosomal Proteins and the Phosphorylation of the Cytosolic Ribosomal Protein S6.

    Science.gov (United States)

    Dobrenel, Thomas; Mancera-Martínez, Eder; Forzani, Céline; Azzopardi, Marianne; Davanture, Marlène; Moreau, Manon; Schepetilnikov, Mikhail; Chicher, Johana; Langella, Olivier; Zivy, Michel; Robaglia, Christophe; Ryabova, Lyubov A; Hanson, Johannes; Meyer, Christian

    2016-01-01

    Protein translation is an energy consuming process that has to be fine-tuned at both the cell and organism levels to match the availability of resources. The target of rapamycin kinase (TOR) is a key regulator of a large range of biological processes in response to environmental cues. In this study, we have investigated the effects of TOR inactivation on the expression and regulation of Arabidopsis ribosomal proteins at different levels of analysis, namely from transcriptomic to phosphoproteomic. TOR inactivation resulted in a coordinated down-regulation of the transcription and translation of nuclear-encoded mRNAs coding for plastidic ribosomal proteins, which could explain the chlorotic phenotype of the TOR silenced plants. We have identified in the 5' untranslated regions (UTRs) of this set of genes a conserved sequence related to the 5' terminal oligopyrimidine motif, which is known to confer translational regulation by the TOR kinase in other eukaryotes. Furthermore, the phosphoproteomic analysis of the ribosomal fraction following TOR inactivation revealed a lower phosphorylation of the conserved Ser240 residue in the C-terminal region of the 40S ribosomal protein S6 (RPS6). These results were confirmed by Western blot analysis using an antibody that specifically recognizes phosphorylated Ser240 in RPS6. Finally, this antibody was used to follow TOR activity in plants. Our results thus uncover a multi-level regulation of plant ribosomal genes and proteins by the TOR kinase.

  9. Lopinavir up-regulates expression of the antiviral protein ribonuclease L in human papillomavirus-positive cervical carcinoma cells.

    Science.gov (United States)

    Batman, Gavin; Oliver, Anthony W; Zehbe, Ingeborg; Richard, Christina; Hampson, Lynne; Hampson, Ian N

    2011-01-01

    We have previously shown that the HIV protease inhibitor lopinavir has selective toxicity against human papillomavirus (HPV)-positive cervical carcinoma cells via an unknown mechanism. SiHa cervical carcinoma cells were stably transfected with the proteasome sensor vector pZsProSensor-1 to confirm lopinavir inhibits the proteasome in these cells. The Panorama Xpress profiler 725 antibody array was then used to analyse specific changes in protein expression in lopinavir-treated versus control untreated SiHa cells followed by PCR and western blotting. Colorimetric growth assays of lopinavir-treated E6/E7 immortalised versus control human keratinocytes were performed. Targeted small interfering RNA gene silencing followed by growth assay comparison of lopinavir-treated/untreated SiHa cells was also used. Lopinavir induced an increase in the fluorescence of pZsProSensor-1 transfected SiHa cells, indicative of proteasomal inhibition. Ribonuclease L (RNASEL) protein was shown to be up-regulated in lopinavir-treated SiHa cells, which was confirmed by PCR and western blot. Targeted silencing of RNASEL reduced the sensitivity of SiHa cells to lopinavir. Selective toxicity against E6/E7 immortalised keratinocytes versus control cells was also seen with lopinavir and was associated with up-regulated RNASEL expression. These data are consistent with the toxicity of lopinavir against HPV-positive cervical carcinoma cells being related to its ability to block viral proteasome activation and induce an up-regulation of the antiviral protein RNASEL. This is supported by the drug's selective toxicity and up-regulation of RNASEL in E6/E7 immortalised keratinocytes combined with the increased resistance to lopinavir observed in SiHa cells following silencing of RNASEL gene expression.

  10. Sterol regulatory element-binding protein-1 participates in the regulation of fatty acid synthase expression in colorectal neoplasia.

    Science.gov (United States)

    Li, J N; Mahmoud, M A; Han, W F; Ripple, M; Pizer, E S

    2000-11-25

    Endogenous fatty acid synthesis has been observed in certain rapidly proliferating normal and neoplastic tissues. Sterol regulatory element-binding proteins (SREBPs) are transcription factors that regulate the expression of lipogenic genes including fatty acid synthase (FAS), the major biosynthetic enzyme for fatty acid synthesis. We have previously shown that SREBP-1, FAS, and Ki-67, a proliferation marker, colocalized in the crypts of the fetal gastrointestinal tract epithelium. This study sought to determine whether SREBP-1 participates in the regulation of proliferation-associated fatty acid synthesis in colorectal neoplasia. An immunohistochemical analysis of SREBP-1, FAS, and Ki-67 expression in 25 primary human colorectal carcinoma specimens showed colocalization in 22 of these. To elucidate a functional linkage between SREBP-1 activation and proliferation-associated FA synthesis, SREBP-1 and FAS content were assayed during the adaptive response of cultured HCT116 colon carcinoma cells to pharmacological inhibition of FA synthesis. Cerulenin and TOFA each inhibited the endogenous synthesis of fatty acids in a dose-dependent manner and each induced increases in both precursor and mature forms of SREBP-1. Subsequently, both the transcriptional activity of the FAS promoter in a luciferase reporter gene construct and the FAS expression increased. These results demonstrate that tumor cells recognize and respond to a deficiency in endogenous fatty acid synthesis by upregulating both SREBP-1 and FAS expression and support the model that SREBP-1 participates in the transcriptional regulation of lipogenic genes in colorectal neoplasia. Copyright 2000 Academic Press.

  11. Novelty-induced activity-regulated cytoskeletal-associated protein (Arc) expression in frontal cortex requires serotonin 2A receptor activation

    DEFF Research Database (Denmark)

    Santini, Martin; Klein, A B; El-Sayed, M

    2011-01-01

    environment. As an output of FC activation we measured expression of activity-regulated cytoskeletal-associated protein (Arc). Novelty-exposure (open-field arena) robustly up-regulated FC Arc mRNA expression (∼160%) in mice compared to home-cage controls. This response was inhibited with the 5-HT(2A...

  12. Novelty-induced activity-regulated cytoskeletal-associated protein (Arc) expression in frontal cortex requires serotonin 2A receptor activation

    DEFF Research Database (Denmark)

    Santini, Martin; Klein, A B; El-Sayed, M

    2011-01-01

    environment. As an output of FC activation we measured expression of activity-regulated cytoskeletal-associated protein (Arc). Novelty-exposure (open-field arena) robustly up-regulated FC Arc mRNA expression (~160%) in mice compared to home-cage controls. This response was inhibited with the 5-HT(2A...

  13. The Staphylococcus aureus Global Regulator MgrA Modulates Clumping and Virulence by Controlling Surface Protein Expression.

    Directory of Open Access Journals (Sweden)

    Heidi A Crosby

    2016-05-01

    Full Text Available Staphylococcus aureus is a human commensal and opportunistic pathogen that causes devastating infections in a wide range of locations within the body. One of the defining characteristics of S. aureus is its ability to form clumps in the presence of soluble fibrinogen, which likely has a protective benefit and facilitates adhesion to host tissue. We have previously shown that the ArlRS two-component regulatory system controls clumping, in part by repressing production of the large surface protein Ebh. In this work we show that ArlRS does not directly regulate Ebh, but instead ArlRS activates expression of the global regulator MgrA. Strains lacking mgrA fail to clump in the presence of fibrinogen, and clumping can be restored to an arlRS mutant by overexpressing either arlRS or mgrA, indicating that ArlRS and MgrA constitute a regulatory pathway. We used RNA-seq to show that MgrA represses ebh, as well as seven cell wall-associated proteins (SraP, Spa, FnbB, SasG, SasC, FmtB, and SdrD. EMSA analysis showed that MgrA directly represses expression of ebh and sraP. Clumping can be restored to an mgrA mutant by deleting the genes for Ebh, SraP and SasG, suggesting that increased expression of these proteins blocks clumping by steric hindrance. We show that mgrA mutants are less virulent in a rabbit model of endocarditis, and virulence can be partially restored by deleting the genes for the surface proteins ebh, sraP, and sasG. While mgrA mutants are unable to clump, they are known to have enhanced biofilm capacity. We demonstrate that this increase in biofilm formation is partially due to up-regulation of SasG, a surface protein known to promote intercellular interactions. These results confirm that ArlRS and MgrA constitute a regulatory cascade, and that they control expression of a number of genes important for virulence, including those for eight large surface proteins.

  14. Histone demethylase retinoblastoma binding protein 2 regulates the expression of α-smooth muscle actin and vimentin in cirrhotic livers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q. [Department of Microbiology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Medicine, Shandong University, Jinan (China); Wang, L.X. [Department of Pharmacology, School of Medicine, Shandong University, Jinan (China); Zeng, J.P. [Department of Biochemistry, School of Medicine, Shandong University, Jinan (China); Liu, X.J.; Liang, X.M.; Zhou, Y.B. [Department of Microbiology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Medicine, Shandong University, Jinan (China)

    2013-09-06

    Liver cirrhosis is one of the most common diseases of Chinese patients. Herein, we report the high expression of a newly identified histone 3 lysine 4 demethylase, retinoblastoma binding protein 2 (RBP2), and its role in liver cirrhosis in humans. The siRNA knockdown of RBP2 expression in hepatic stellate cells (HSCs) reduced levels of α-smooth muscle actin (α-SMA) and vimentin and decreased the proliferation of HSCs; and overexpression of RBP2 increased α-SMA and vimentin levels. Treatment with transforming growth factor β (TGF-β) upregulated the expression of RBP2, α-SMA, and vimentin, and the siRNA knockdown of RBP2 expression attenuated TGF-β-mediated upregulation of α-SMA and vimentin expression and HSC proliferation. Furthermore, RBP2 was highly expressed in cirrhotic rat livers. Therefore, RBP2 may participate in the pathogenesis of liver cirrhosis by regulating the expression of α-SMA and vimentin. RBP2 may be a useful marker for the diagnosis and treatment of liver cirrhosis.

  15. Histone demethylase retinoblastoma binding protein 2 regulates the expression of α-smooth muscle actin and vimentin in cirrhotic livers

    International Nuclear Information System (INIS)

    Wang, Q.; Wang, L.X.; Zeng, J.P.; Liu, X.J.; Liang, X.M.; Zhou, Y.B.

    2013-01-01

    Liver cirrhosis is one of the most common diseases of Chinese patients. Herein, we report the high expression of a newly identified histone 3 lysine 4 demethylase, retinoblastoma binding protein 2 (RBP2), and its role in liver cirrhosis in humans. The siRNA knockdown of RBP2 expression in hepatic stellate cells (HSCs) reduced levels of α-smooth muscle actin (α-SMA) and vimentin and decreased the proliferation of HSCs; and overexpression of RBP2 increased α-SMA and vimentin levels. Treatment with transforming growth factor β (TGF-β) upregulated the expression of RBP2, α-SMA, and vimentin, and the siRNA knockdown of RBP2 expression attenuated TGF-β-mediated upregulation of α-SMA and vimentin expression and HSC proliferation. Furthermore, RBP2 was highly expressed in cirrhotic rat livers. Therefore, RBP2 may participate in the pathogenesis of liver cirrhosis by regulating the expression of α-SMA and vimentin. RBP2 may be a useful marker for the diagnosis and treatment of liver cirrhosis

  16. Regulation of hepatic peroxisome proliferator-activated receptor alpha expression but not adiponectin by dietary protein in finishing pigs.

    Science.gov (United States)

    Weber, T E; Kerr, B J; Spurlock, M E

    2008-10-01

    Soy protein regulates adiponectin and peroxisome proliferator-activated receptor alpha (PPARalpha) in some species, but the effect of dietary soy protein on adiponectin and PPARalpha in the pig has not been studied. Therefore, the objective of this study was to determine whether soya bean meal reduction or replacement influences serum adiponectin, adiponectin mRNA, serum metabolites and the expression of PPARalpha and other genes involved in lipid deposition. Thirty-three pigs (11 pigs per treatment) were subjected to one of three dietary treatments: (i) reduced crude protein (CP) diet containing soya bean meal (RCP-Soy), (ii) high CP diet containing soya bean meal (HCP-Soy) or (iii) high CP diet with corn gluten meal replacing soya bean meal (HCP-CGM) for 35 days. Dietary treatment had no effect on overall growth performance, feed intake or measures of body composition. There was no effect of dietary treatment on serum adiponectin or leptin. Dietary treatment did not affect the abundance of the mRNAs for adiponectin, PPARalpha, PPARgamma2, lipoprotein lipase or fatty acid synthase in adipose tissue. The mRNA expression of PPARalpha, PPARgamma2, lipoprotein lipase or fatty acid synthetase in loin muscle was not affected by dietary treatment. In liver tissue, the relative abundance of PPARalpha mRNA was greater (p Soy diets when compared to pigs fed RCP-Soy or HCP-CGM diets. Hepatic mRNA expression of acyl-CoA oxidase or fatty acid synthase was not affected by dietary treatment. Western blot analysis indicated that hepatic PPARalpha protein levels were decreased (p Soy diets when compared to pigs fed the HCP-Soy diets. These data suggest that increasing the soy protein content of swine diets increases hepatic expression of PPARalpha without associated changes in body composition.

  17. Akt/FOXO3a signaling modulates the endothelial stress response through regulation of heat shock protein 70 expression.

    Science.gov (United States)

    Kim, Hyo-Soo; Skurk, Carsten; Maatz, Henrike; Shiojima, Ichiro; Ivashchenko, Yuri; Yoon, Suk-Won; Park, Young-Bae; Walsh, Kenneth

    2005-06-01

    To identify new antiapoptotic targets of the PI3K-Akt signaling pathway in endothelial cells, adenovirus-mediated Akt1 gene transfer and oligonucleotide microarrays were used to examine Akt-regulated transcripts. DNA microarray analysis revealed that HSP70 expression underwent the greatest fold activation of 12,532 transcripts examined in human umbilical vein endothelial cells (HUVEC) transduced with constitutively active Akt1. Akt1 gene transfer increased HSP70 transcript expression by 24.8-fold as determined by quantitative PCR and promoted a dose-dependent up-regulation of HSP70 protein as determined by Western immunoblot analysis. Gene transfer of FOXO3a, a downstream target of Akt in endothelial cells, significantly suppressed both basal and stress-induced HSP70 protein expression. FOXO3a induced caspase-9-dependent apoptosis in HUVEC, and cotransduction with Ad-HSP70 rescued endothelial cells from FOXO3a-induced apoptosis under basal and stress conditions. Our results identify HSP70 as a new antiapoptotic target of Akt-FOXO3a signaling in endothelial cells that controls viability through modulation of the stress-induced intrinsic cell death pathway.

  18. The cellular prion protein negatively regulates phagocytosis and cytokine expression in murine bone marrow-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Min Wang

    Full Text Available The cellular prion protein (PrP(C is a glycosylphosphatidylinositol (GPI-anchored glycoprotein on the cell surface. Previous studies have demonstrated contradictory roles for PrP(C in connection with the phagocytic ability of macrophages. In the present work, we investigated the function of PrP(C in phagocytosis and cytokine expression in bone marrow-derived macrophages infected with Escherichia coli. E. coli infection induced an increase in the PRNP mRNA level. Knockout of PrP(C promoted bacterial uptake; upregulated Rab5, Rab7, and Eea1 mRNA expression; and increased the recruitment of lysosomal-associated membrane protein-2 to phagosomes, suggesting enhanced microbicidal activity. Remarkably, knockout of PrP(C suppressed the proliferation of internalized bacteria and increased the expression of cytokines such as interleukin-1β. Collectively, our data reveal an important role of PrP(C as a negative regulator for phagocytosis, phagosome maturation, cytokine expression, and macrophage microbicidal activity.

  19. Down-regulation of the expression of CCAAT/enhancer binding protein α gene in cervical squamous cell carcinoma

    International Nuclear Information System (INIS)

    Pan, Zemin; Shao, Renfu; Zheng, Weinan; Zhang, Jinli; Gao, Rui; Li, Dongmei; Guo, Xiaoqing; Han, Hu; Li, Feng; Qu, Shen

    2014-01-01

    Cervical carcinoma is the second most common cancer and is an important cause of death in women worldwide. CCAAT/enhancer binding proteins (C/EBPs) are a family of transcription factors that regulate cellular differentiation and proliferation in a variety of tissues. However, the role of C/EBPα gene in cervical cancer is still not clear. We investigated the expression of C/EBPα gene in cervical squamous cell carcinoma. C/EBPα mRNA level was measured by real-time quantitative RT-PCR in cervical cancer tissues and their adjacent normal tissues. C/EBPα protein level was measured by immunohistochemistry. Methylation in the promoter of C/EBPα gene was detected by MALDI TOF MassARRAY. We transfected HeLa cells with C/EBPα expression vector. C/EBPα expression in HeLa cells was examined and HeLa cell proliferation was measured by MTT assay and HeLa cells migration was analyzed by matrigel-coated transwell migration assays. There were significant difference in C/EBPα protein expression between chronic cervicitis and cervical carcinoma (P < 0.001). CEBPα mRNA level was significantly lower in cervical cancer tissues than in normal cervical tissues (P < 0.01). Methylation of the promoter of CEBPα gene in CpG 5, CpG-14.15, CpG-19.20 were significantly higher in cervical cancer than in normal cervical tissues (P < 0.05, P < 0.01, P < 0.05, respectively). CEBPα pcDNA3.1 construct transfected into HeLa cells inhibited cell proliferation and decreased cell migration. Our results indicate that reduced C/EBPα gene expression may play a role in the development of cervical squamous cell carcinoma

  20. Tumor protein D52 expression is post-transcriptionally regulated by T-cell intercellular antigen (TIA) 1 and TIA-related protein via mRNA stability.

    Science.gov (United States)

    Motohashi, Hiromi; Mukudai, Yoshiki; Ito, Chihiro; Kato, Kosuke; Shimane, Toshikazu; Kondo, Seiji; Shirota, Tatsuo

    2017-05-04

    Although tumor protein D52 (TPD52) family proteins were first identified nearly 20 years ago, their molecular regulatory mechanisms remain unclear. Therefore, we investigated the post-transcriptional regulation of TPD52 family genes. An RNA immunoprecipitation (RIP) assay showed the potential binding ability of TPD52 family mRNAs to several RNA-binding proteins, and an RNA degradation assay revealed that TPD52 is subject to more prominent post-transcriptional regulation than are TPD53 and TPD54. We subsequently focused on the 3'-untranslated region (3'-UTR) of TPD52 as a cis -acting element in post-transcriptional gene regulation. Several deletion mutants of the 3'-UTR of TPD52 mRNA were constructed and ligated to the 3'-end of a reporter green fluorescence protein gene. An RNA degradation assay revealed that a minimal cis -acting region, located in the 78-280 region of the 5'-proximal region of the 3'-UTR, stabilized the reporter mRNA. Biotin pull-down and RIP assays revealed specific binding of the region to T-cell intracellular antigen 1 (TIA-1) and TIA-1-related protein (TIAR). Knockdown of TIA-1/TIAR decreased not only the expression, but also the stability of TPD52 mRNA; it also decreased the expression and stability of the reporter gene ligated to the 3'-end of the 78-280 fragment. Stimulation of transforming growth factor-β and epidermal growth factor decreased the binding ability of these factors, resulting in decreased mRNA stability. These results indicate that the 78-280 fragment and TIA-1/TIAR concordantly contribute to mRNA stability as a cis -acting element and trans -acting factor(s), respectively. Thus, we here report the specific interactions between these elements in the post-transcriptional regulation of the TPD52 gene. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  1. Immunohistochemical study of the expression of cell cycle regulating proteins at different stages of bladder cancer

    DEFF Research Database (Denmark)

    Primdahl, Hanne; von der Maase, Hans; Sørensen, Flemming Brandt

    2002-01-01

    ; group 1, 23 patients with recurrent stage Ta (non-invasive) tumors; group 2, 22 patients presenting at their first admission with T2-4 (muscle invasive) tumors; group 3, 24 patients who experienced disease progression from Ta or T1 (invasive in connective tissue) to a higher stage......PURPOSE: The cell cycle is known to be deregulated in cancer. We therefore analyzed the expression of the cell cycle related proteins p21, p27, p16, Rb, and L-myc by immunohistochemical staining of bladder tumors.METHODS: The tissue material consisted of bladder tumors from three groups of patients......(kip1) ( P=0.03), Rb ( P=0.00002), and L-myc ( P=0.00000007) in muscle invasive tumors compared to noninvasive tumors. Tumors presenting as muscle invasive at first diagnosis had significantly lower levels of p16/CDKN2A ( P=0.01) when compared to muscle invasive tumors that followed Ta or T1 precursor...

  2. Protein Biochemistry and Expression Regulation of Cadmium/Zinc Pumping ATPases in the Hyperaccumulator Plants Arabidopsis halleri and Noccaea caerulescens

    Directory of Open Access Journals (Sweden)

    Seema Mishra

    2017-05-01

    Full Text Available P1B-ATPases are decisive for metal accumulation phenotypes, but mechanisms of their regulation are only partially understood. Here, we studied the Cd/Zn transporting ATPases NcHMA3 and NcHMA4 from Noccaea caerulescens as well as AhHMA3 and AhHMA4 from Arabidopsis halleri. Protein biochemistry was analyzed on HMA4 purified from roots of N. caerulescens in active state. Metal titration of NcHMA4 protein with an electrochromic dye as charge indicator suggested that HMA4 reaches maximal ATPase activity when all internal high-affinity Cd2+ binding sites are occupied. Although HMA4 was reported to be mainly responsible for xylem loading of heavy metals for root to shoot transport, the current study revealed high expression of NcHMA4 in shoots as well. Further, there were additional 20 and 40 kD fragments at replete Zn2+ and toxic Cd2+, but not at deficient Zn2+ concentrations. Altogether, the protein level expression analysis suggested a more multifunctional role of NcHMA4 than previously assumed. Organ-level transcription analysis through quantitative PCR of mRNA in N. caerulescens and A. halleri confirmed the strong shoot expression of both NcHMA4 and AhHMA4. Further, in shoots NcHMA4 was more abundant in 10 μM Zn2+ and AhHMA4 in Zn2+ deficiency. In roots, NcHMA4 was up-regulated in response to deficient Zn2+ when compared to replete Zn2+ and toxic Cd2+ treatment. In both species, HMA3 was much more expressed in shoots than in roots, and HMA3 transcript levels remained rather constant regardless of Zn2+ supply, but were up-regulated by 10 μM Cd2+. Analysis of cellular expression by quantitative mRNA in situ hybridisation showed that in A. halleri, both HMA3 and HMA4 mRNA levels were highest in the mesophyll, while in N. caerulescens they were highest in the bundle sheath of the vein. This is likely related to the different final storage sites for hyperaccumulated metals in both species: epidermis in N. caerulescens, mesophyll in A. halleri.

  3. RNA Binding Protein RBM38 Regulates Expression of the 11-Kilodalton Protein of Parvovirus B19, Which Facilitates Viral DNA Replication.

    Science.gov (United States)

    Ganaie, Safder S; Chen, Aaron Yun; Huang, Chun; Xu, Peng; Kleiboeker, Steve; Du, Aifang; Qiu, Jianming

    2018-04-15

    receptors and coreceptors on the cell surface but also on the intracellular host factors that support B19V replication. Our present study shows that B19V uses a host factor, RNA binding motif protein 38 (RBM38), for the processing of its pre-mRNA during virus replication. Specifically, RBM38 interacts with the intronic splicing enhancer 2 (ISE2) element of B19V pre-mRNA and promotes 11-kDa protein expression, thereby regulating the 11-kDa protein-mediated augmentation of B19V replication. The identification of this novel host-pathogen interaction will provide mechanistic insights into B19V replication and aid in finding new targets for anti-B19V therapeutics. Copyright © 2018 American Society for Microbiology.

  4. Acid or erythromycin stress significantly improves transformation efficiency through regulating expression of DNA binding proteins in Lactococcus lactis F44.

    Science.gov (United States)

    Wang, Binbin; Zhang, Huawei; Liang, Dongmei; Hao, Panlong; Li, Yanni; Qiao, Jianjun

    2017-12-01

    Lactococcus lactis is a gram-positive bacterium used extensively in the dairy industry and food fermentation, and its biological characteristics are usually improved through genetic manipulation. However, poor transformation efficiency was the main restriction factor for the construction of engineered strains. In this study, the transformation efficiency of L. lactis F44 showed a 56.1-fold increase in acid condition (pH 5.0); meanwhile, erythromycin stress (0.04 μg/mL) promoted the transformation efficiency more significantly (76.9-fold). Notably, the transformation efficiency of F44e (L. lactis F44 harboring empty pLEB124) increased up to 149.1-fold under the synergistic stresses of acid and erythromycin. In addition, the gene expression of some DNA binding proteins (DprA, RadA, RadC, RecA, RecQ, and SsbA) changed correspondingly. Especially for radA, 25.1-fold improvement was detected when F44e was exposed to pH 5.0. Overexpression of some DNA binding proteins could improve the transformation efficiency. The results suggested that acid or erythromycin stress could improve the transformation efficiency of L. lactis through regulating gene expression of DNA binding proteins. We have proposed a simple but promising strategy for improving the transformation efficiency of L. lactis and other hard-transformed microorganisms. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Silicon Mitigates Salinity Stress by Regulating the Physiology, Antioxidant Enzyme Activities, and Protein Expression in Capsicum annuum 'Bugwang'.

    Science.gov (United States)

    Manivannan, Abinaya; Soundararajan, Prabhakaran; Muneer, Sowbiya; Ko, Chung Ho; Jeong, Byoung Ryong

    2016-01-01

    Silicon- (Si-) induced salinity stress resistance was demonstrated at physiological and proteomic levels in Capsicum annuum for the first time. Seedlings of C. annuum were hydroponically treated with NaCl (50 mM) with or without Si (1.8 mM) for 15 days. The results illustrated that saline conditions significantly reduced plant growth and biomass and photosynthetic parameters and increased the electrolyte leakage potential, lipid peroxidation, and hydrogen peroxide level. However, supplementation of Si allowed the plants to recover from salinity stress by improving their physiology and photosynthesis. During salinity stress, Si prevented oxidative damage by increasing the activities of antioxidant enzymes. Furthermore, Si supplementation recovered the nutrient imbalance that had occurred during salinity stress. Additionally, proteomic analysis by two-dimensional gel electrophoresis (2DE) followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) revealed that Si treatment upregulated the accumulation of proteins involved in several metabolic processes, particularly those associated with nucleotide binding and transferase activity. Moreover, Si modulated the expression of vital proteins involved in ubiquitin-mediated nucleosome pathway and carbohydrate metabolism. Overall, the results illustrate that Si application induced resistance against salinity stress in C. annuum by regulating the physiology, antioxidant metabolism, and protein expression.

  6. Silicon Mitigates Salinity Stress by Regulating the Physiology, Antioxidant Enzyme Activities, and Protein Expression in Capsicum annuum ‘Bugwang'

    Science.gov (United States)

    Manivannan, Abinaya; Soundararajan, Prabhakaran; Muneer, Sowbiya; Ko, Chung Ho

    2016-01-01

    Silicon- (Si-) induced salinity stress resistance was demonstrated at physiological and proteomic levels in Capsicum annuum for the first time. Seedlings of C. annuum were hydroponically treated with NaCl (50 mM) with or without Si (1.8 mM) for 15 days. The results illustrated that saline conditions significantly reduced plant growth and biomass and photosynthetic parameters and increased the electrolyte leakage potential, lipid peroxidation, and hydrogen peroxide level. However, supplementation of Si allowed the plants to recover from salinity stress by improving their physiology and photosynthesis. During salinity stress, Si prevented oxidative damage by increasing the activities of antioxidant enzymes. Furthermore, Si supplementation recovered the nutrient imbalance that had occurred during salinity stress. Additionally, proteomic analysis by two-dimensional gel electrophoresis (2DE) followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) revealed that Si treatment upregulated the accumulation of proteins involved in several metabolic processes, particularly those associated with nucleotide binding and transferase activity. Moreover, Si modulated the expression of vital proteins involved in ubiquitin-mediated nucleosome pathway and carbohydrate metabolism. Overall, the results illustrate that Si application induced resistance against salinity stress in C. annuum by regulating the physiology, antioxidant metabolism, and protein expression. PMID:27088085

  7. Farnesoid X receptor up-regulates expression of Lipid transfer inhibitor protein in liver cells and mice

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liangpeng [Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Third Military Medical University, Chongqing 400038 (China); Liu, Hong [Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China); Peng, Jiahe; Wang, Yongchao; Zhang, Yan; Dong, Jinyu; Liu, Xiaohua; Guo, Dongmei [Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Third Military Medical University, Chongqing 400038 (China); Jiang, Yu, E-mail: yujiang61@gmail.com [Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Third Military Medical University, Chongqing 400038 (China)

    2013-11-29

    Highlights: •FXR up-regulates apoF. •It binds to ER1 element. •It activates apoF gene promoter. -- Abstract: Apolipoprotein F is a component protein mainly secreted by liver and resides on several lipoprotein classes. It can inhibit lipids transfer between different lipoproteins. FXR is a member of the nuclear receptor superfamily which is also highly expressed in the liver. It modulates bile acids synthesis and lipids metabolism by transcriptional regulation. We aimed to determine whether apoF can be regulated by FXR. The FXR agonist Chenodeoxycholic acid (CDCA) and GW4064 both can activate the expression of apoF in liver cell lines and in C57/BL6 mouse liver. This is dependent on the binding of FXR to the FXR element ER1 (−2904 to −2892 bp) in the apoF gene promoter. Taken together, we have identified apoF as likely another target gene of FXR.

  8. Expression of the Ly-6 family proteins Lynx1 and Ly6H in the rat brain is compartmentalized, cell-type specific, and developmentally regulated

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Cinar, Betül; Jensen, Majbrit Myrup

    2014-01-01

    regarding the distribution and developmental regulation of these proteins in the brain. We use protein cross-linking and synaptosomal fractions to demonstrate that the Ly-6 proteins Lynx1 and Ly6H are membrane-bound proteins in the brain, which are present on the cell surface and localize to synaptic...... demonstrate that Lynx1 and Ly6H are expressed in cultured neurons, but not cultured micro- or astroglial cultures. In addition, Lynx1, but not Ly6H was detected in the CSF. Finally, we show that the Ly-6 proteins Lynx1, Lynx2, Ly6H, and PSCA, display distinct expression patterns during postnatal development...

  9. Interleukin 6 signaling regulates promyelocytic leukemia protein gene expression in human normal and cancer cells

    Czech Academy of Sciences Publication Activity Database

    Hubáčková, Soňa; Krejčíková, Kateřina; Bartek, Jiří; Hodný, Zdeněk

    2012-01-01

    Roč. 287, č. 32 (2012), s. 26702-26714 ISSN 0021-9258 R&D Projects: GA ČR GA204/08/1418 Grant - others:Novo Nordisk(DK) R153-A12997; EK(XE) 223575 Institutional support: RVO:68378050 Keywords : cancer tumor promoter * DNA-binding protein * protein phosphorylation * tyrosine protein kinase * interleukin-6 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.651, year: 2012

  10. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies.

    Science.gov (United States)

    Dhamrait, Sukhbir S; Maubaret, Cecilia; Pedersen-Bjergaard, Ulrik; Brull, David J; Gohlke, Peter; Payne, John R; World, Michael; Thorsteinsson, Birger; Humphries, Steve E; Montgomery, Hugh E

    2016-07-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin-angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3-55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role. © 2016 The Authors. BioEssays published by WILEY Periodicals, Inc.

  11. Mitochondrial uncoupling proteins regulate angiotensin‐converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies

    Science.gov (United States)

    Maubaret, Cecilia; Pedersen‐Bjergaard, Ulrik; Brull, David J.; Gohlke, Peter; Payne, John R.; World, Michael; Thorsteinsson, Birger; Humphries, Steve E.; Montgomery, Hugh E.

    2015-01-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin‐converting enzyme (ACE) is the central component of endocrine and local tissue renin–angiotensin systems (RAS), which also regulate diverse aspects of whole‐body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3‐55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role. PMID:27347560

  12. Amyloid protein-mediated differential DNA methylation status regulates gene expression in Alzheimer’s disease model cell line

    International Nuclear Information System (INIS)

    Sung, Hye Youn; Choi, Eun Nam; Ahn Jo, Sangmee; Oh, Seikwan; Ahn, Jung-Hyuck

    2011-01-01

    Highlights: ► Genome-wide DNA methylation pattern in Alzheimer’s disease model cell line. ► Integrated analysis of CpG methylation and mRNA expression profiles. ► Identify three Swedish mutant target genes; CTIF, NXT2 and DDR2 gene. ► The effect of Swedish mutation on alteration of DNA methylation and gene expression. -- Abstract: The Swedish mutation of amyloid precursor protein (APP-sw) has been reported to dramatically increase beta amyloid production through aberrant cleavage at the beta secretase site, causing early-onset Alzheimer’s disease (AD). DNA methylation has been reported to be associated with AD pathogenesis, but the underlying molecular mechanism of APP-sw-mediated epigenetic alterations in AD pathogenesis remains largely unknown. We analyzed genome-wide interplay between promoter CpG DNA methylation and gene expression in an APP-sw-expressing AD model cell line. To identify genes whose expression was regulated by DNA methylation status, we performed integrated analysis of CpG methylation and mRNA expression profiles, and identified three target genes of the APP-sw mutant; hypomethylated CTIF (CBP80/CBP20-dependent translation initiation factor) and NXT2 (nuclear exporting factor 2), and hypermethylated DDR2 (discoidin domain receptor 2). Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored mRNA expression of these three genes, implying methylation-dependent transcriptional regulation. The profound alteration in the methylation status was detected at the −435, −295, and −271 CpG sites of CTIF, and at the −505 to −341 region in the promoter of DDR2. In the promoter region of NXT2, only one CpG site located at −432 was differentially unmethylated in APP-sw cells. Thus, we demonstrated the effect of the APP-sw mutation on alteration of DNA methylation and subsequent gene expression. This epigenetic regulatory mechanism may contribute to the pathogenesis of AD.

  13. Structural basis for regulation of rhizobial nodulation and symbiosis gene expression by the regulatory protein NolR.

    Science.gov (United States)

    Lee, Soon Goo; Krishnan, Hari B; Jez, Joseph M

    2014-04-29

    The symbiosis between rhizobial microbes and host plants involves the coordinated expression of multiple genes, which leads to nodule formation and nitrogen fixation. As part of the transcriptional machinery for nodulation and symbiosis across a range of Rhizobium, NolR serves as a global regulatory protein. Here, we present the X-ray crystal structures of NolR in the unliganded form and complexed with two different 22-base pair (bp) double-stranded operator sequences (oligos AT and AA). Structural and biochemical analysis of NolR reveals protein-DNA interactions with an asymmetric operator site and defines a mechanism for conformational switching of a key residue (Gln56) to accommodate variation in target DNA sequences from diverse rhizobial genes for nodulation and symbiosis. This conformational switching alters the energetic contributions to DNA binding without changes in affinity for the target sequence. Two possible models for the role of NolR in the regulation of different nodulation and symbiosis genes are proposed. To our knowledge, these studies provide the first structural insight on the regulation of genes involved in the agriculturally and ecologically important symbiosis of microbes and plants that leads to nodule formation and nitrogen fixation.

  14. Analysis of the regulation of fatty acid binding protein 7 expression in human renal carcinoma cell lines

    Directory of Open Access Journals (Sweden)

    Sugiyama Takayuki

    2011-07-01

    Full Text Available Abstract Background Improving the treatment of renal cell carcinoma (RCC will depend on the development of better biomarkers for predicting disease progression and aiding the design of appropriate therapies. One such marker may be fatty acid binding protein 7 (FABP7, also known as B-FABP and BLBP, which is expressed normally in radial glial cells of the developing central nervous system and cells of the mammary gland. Melanomas, glioblastomas, and several types of carcinomas, including RCC, overexpress FABP7. The abundant expression of FABP7 in primary RCCs compared to certain RCC-derived cell lines may allow the definition of the molecular components of FABP7's regulatory system. Results We determined FABP7 mRNA levels in six RCC cell lines. Two were highly expressed, whereas the other and the embryonic kidney cell line (HEK293 were weakly expressed FABP7 transcripts. Western blot analysis of the cell lines detected strong FABP7 expression only in one RCC cell line. Promoter activity in the RCC cell lines was 3- to 21-fold higher than that of HEK293. Deletion analysis demonstrated that three FABP7 promoter regions contributed to upregulated expression in RCC cell lines, but not in the HEK293 cell. Competition analysis of gel shifts indicated that OCT1, OCT6, and nuclear factor I (NFI bound to the FABP7 promoter region. Supershift experiments indicated that BRN2 (POU3F2 and NFI bound to the FABP7 promoter region as well. There was an inverse correlation between FABP7 promoter activity and BRN2 mRNA expression. The FABP7-positive cell line's NFI-DNA complex migrated faster than in other cell lines. Levels of NFIA mRNA were higher in the HEK293 cell line than in any of the six RCC cell lines. In contrast, NFIC mRNA expression was lower in the HEK293 cell line than in the six RCC cell lines. Conclusions Three putative FABP7 promoter regions drive reporter gene expression in RCC cell lines, but not in the HEK293 cell line. BRN2 and NFI may be key

  15. Expression, immunogenicity and variation of iron-regulated surface protein A from bovine isolates of Staphylococcus aureus.

    Science.gov (United States)

    Misra, Neha; Wines, Tyler F; Knopp, Colton L; McGuire, Mark A; Tinker, Juliette K

    2017-05-01

    Staphylococcus aureus iron-regulated surface protein A (IsdA) is a fibrinogen and fibronectin adhesin that also contributes to iron sequestration and resistance to innate immunity. IsdA is conserved in human isolates and has been investigated as a human vaccine candidate. Here we report the expression of isdA, the efficacy of anti-IsdA responses and the existence of IsdA sequence variants from bovine Staphylococcus. Clinical staphylococci were obtained from US dairy farms and assayed by PCR for the presence and expression of isdA. isdA-positive species from bovines included S. aureus, S. haemolyticus and S. chromogenes. Immunoassays on bovine milk and serum confirmed the induction and opsonophagocytic activity of anti-IsdA humoral responses. The variable region of isdA was sequenced and protein alignments predicted the presence of two main variants consistent with those from human S. aureus. Mouse antibodies against one IsdA variant reduced staphylococcal binding to fibronectin in vitro in an isotype-dependent manner. Purified IsdA variants bound distinctly to fibronectin and fibrinogen. Our findings demonstrate that variability within the C-terminus of this adhesin affects immune reactivity and binding specificity, but are consistent with the significance of IsdA in bovine disease and relevant for vaccine development. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Expression, immunogenicity and variation of iron-regulated surface protein A from bovine isolates of Staphylococcus aureus

    Science.gov (United States)

    Misra, Neha; Wines, Tyler F.; Knopp, Colton L.; McGuire, Mark A.; Tinker, Juliette K.

    2017-01-01

    Abstract Staphylococcus aureus iron-regulated surface protein A (IsdA) is a fibrinogen and fibronectin adhesin that also contributes to iron sequestration and resistance to innate immunity. IsdA is conserved in human isolates and has been investigated as a human vaccine candidate. Here we report the expression of isdA, the efficacy of anti-IsdA responses and the existence of IsdA sequence variants from bovine Staphylococcus. Clinical staphylococci were obtained from US dairy farms and assayed by PCR for the presence and expression of isdA. isdA-positive species from bovines included S. aureus, S. haemolyticus and S. chromogenes. Immunoassays on bovine milk and serum confirmed the induction and opsonophagocytic activity of anti-IsdA humoral responses. The variable region of isdA was sequenced and protein alignments predicted the presence of two main variants consistent with those from human S. aureus. Mouse antibodies against one IsdA variant reduced staphylococcal binding to fibronectin in vitro in an isotype-dependent manner. Purified IsdA variants bound distinctly to fibronectin and fibrinogen. Our findings demonstrate that variability within the C-terminus of this adhesin affects immune reactivity and binding specificity, but are consistent with the significance of IsdA in bovine disease and relevant for vaccine development. PMID:28430959

  17. The expression of proteins involved in digestion and detoxification are regulated in Helicoverpa armigera to cope up with chlorpyrifos insecticide.

    Science.gov (United States)

    Dawkar, Vishal V; Chikate, Yojana R; More, Tushar H; Gupta, Vidya S; Giri, Ashok P

    2016-02-01

    Helicoverpa armigera is a key pest in many vital crops, which is mainly controlled by chemical strategies. To manage this pest is becoming challenging due to its ability and evolution of resistance against insecticides. Further, its subsequent spread on nonhost plant is remarkable in recent times. Hence, decoding resistance mechanism against phytochemicals and synthetic insecticides is a major challenge. The present work describes that the digestion, defense and immunity related enzymes are associated with chlorpyrifos resistance in H. armigera. Proteomic analysis of H. armigera gut tissue upon feeding on chlorpyrifos containing diet (CH) and artificial diet (AD) using nano-liquid chromatography-mass spectrometry identified upregulated 23-proteins in CH fed larvae. Database searches combined with gene ontology analysis revealed that the identified gut proteins engrossed in digestion, proteins crucial for immunity, adaptive responses to stress, and detoxification. Biochemical and quantitative real-time polymerase chain reaction analysis of candidate proteins indicated that insects were struggling to get nutrients and energy in presence of CH, while at the same time endeavoring to metabolize chlorpyrifos. Moreover, we proposed a potential processing pathway of chlorpyrifos in H. armigera gut by examining the metabolites using gas chromatography-mass spectrometry. H. armigera exhibit a range of intriguing behavioral, morphological adaptations and resistance to insecticides by regulating expression of proteins involved in digestion and detoxification mechanisms to cope up with chlorpyrifos. In these contexts, as gut is a rich repository of biological information; profound analysis of gut tissues can give clues of detoxification and resistance mechanism in insects. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  18. Tissue- and subunit-specific regulation of G-protein expression by hypo- and hyperthyroidism

    NARCIS (Netherlands)

    Michel-Reher, M. B.; Gross, G.; Jasper, J. R.; Bernstein, D.; Olbricht, T.; Brodde, O. E.; Michel, M. C.

    1993-01-01

    Thyroid hormone status has profound effects on signal transduction in various tissues throughout the body. Therefore, we quantified the signal transducing G-proteins in the rat heart, cerebral cortex, vas deferens and liver by immunoblotting and pertussis toxin labeling in response to chemically

  19. Extracellular signal-regulated kinases control expression of G protein-coupled receptor kinase 2 (GRK2)

    DEFF Research Database (Denmark)

    Theilade, Juliane; Lerche Hansen, Jakob; Haunsø, Stig

    2002-01-01

    G protein-coupled receptor kinase 2 (GRK2) phosphorylates G protein-coupled receptors resulting in uncoupling from G proteins. Receptors modulate GRK2 expression, however the mechanistic basis for this effect is largely unknown. Here we report a novel mechanism by which receptors use...

  20. Photoperiodic regulation of PER1 and PER2 protein expression in rat peripheral tissues

    Czech Academy of Sciences Publication Activity Database

    Bendová, Zdeňka; Sumová, Alena

    2006-01-01

    Roč. 55, č. 6 (2006), s. 623-632 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GP309/02/D093; GA MŠk(CZ) LC554 Grant - others:EUCLOCK(XE) 018741 Institutional research plan: CEZ:AV0Z50110509 Keywords : circadian rhythms * peripheral tissue * PER proteins Subject RIV: FH - Neurology Impact factor: 2.093, year: 2006

  1. Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression

    OpenAIRE

    Kojima, Shihoko; Sher-Chen, Elaine L.; Green, Carla B.

    2012-01-01

    Green and colleagues perform a global analysis of circadian-controlled poly(A) tails and identify hundreds of mRNAs that display dynamic rhythmic polyadenylation states. They identify three distinct classes of mRNAs with rhythmic poly(A) tails. Interestingly, class III mRNAs are controlled not by transcription, but by rhythmic cytoplasmic polyadenylation, and are regulated by the components of the cytoplasmic polyadenylation machinery, CPEB2 in particular, which are themselves rhythmically ex...

  2. Zinc finger protein 219-like (ZNF219L) and Sox9a regulate synuclein-γ2 (sncgb) expression in the developing notochord of zebrafish.

    Science.gov (United States)

    Lien, Huang-Wei; Yang, Chung-Hsiang; Cheng, Chia-Hsiung; Liao, Yung-Feng; Han, Yu-San; Huang, Chang-Jen

    2013-12-13

    Zebrafish synuclein-γ2 (sncgb) has been reported to be expressed specifically in the notochord. However, the mechanism by which the sncgb gene promoter is regulated has not been described. In this paper, we demonstrate that Zinc finger protein 219-like (ZNF219L) and sox9a are involved in the regulation of sncgb gene expression. Furthermore, we observed that over-expression of both ZNF219L and Sox9a resulted in increased sncgb expression. In addition, ZNF219L is physically associated with Sox9a, and simultaneous morpholino knockdown of znf219L and sox9a caused a synergistic decrease of sncgb expression in the notochord. Taken together, our results reveal that coordination of ZNF219L with Sox9a is involved in the regulation of notochord-specific expression of sncgb. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  3. A Role for Protein Phosphatase 2A in Regulating p38 Mitogen Activated Protein Kinase Activation and Tumor Necrosis Factor-Alpha Expression during Influenza Virus Infection

    Directory of Open Access Journals (Sweden)

    Anna H. Y. Law

    2013-04-01

    Full Text Available Influenza viruses of avian origin continue to pose pandemic threats to human health. Some of the H5N1 and H9N2 virus subtypes induce markedly elevated cytokine levels when compared with the seasonal H1N1 virus. We previously showed that H5N1/97 hyperinduces tumor necrosis factor (TNF-alpha through p38 mitogen activated protein kinase (MAPK. However, the detailed mechanisms of p38MAPK activation and TNF-alpha hyperinduction following influenza virus infections are not known. Negative feedback regulations of cytokine expression play important roles in avoiding overwhelming production of proinflammatory cytokines. Here we hypothesize that protein phosphatases are involved in the regulation of cytokine expressions during influenza virus infection. We investigated the roles of protein phosphatases including MAPK phosphatase-1 (MKP-1 and protein phosphatase type 2A (PP2A in modulating p38MAPK activation and downstream TNF-alpha expressions in primary human monocyte-derived macrophages (PBMac infected with H9N2/G1 or H1N1 influenza virus. We demonstrate that H9N2/G1 virus activated p38MAPK and hyperinduced TNF-alpha production in PBMac when compared with H1N1 virus. H9N2/G1 induced PP2A activity in PBMac and, with the treatment of a PP2A inhibitor, p38MAPK phosphorylation and TNF-alpha production were further increased in the virus-infected macrophages. However, H9N2/G1 did not induce the expression of PP2A indicating that the activation of PP2A is not mediated by p38MAPK in virus-infected PBMac. On the other hand, PP2A may not be the targets of H9N2/G1 in the upstream of p38MAPK signaling pathways since H1N1 also induced PP2A activation in primary macrophages. Our results may provide new insights into the control of cytokine dysregulation.

  4. CXC chemokine receptor 7 (CXCR7 regulates CXCR4 protein expression and capillary tuft development in mouse kidney.

    Directory of Open Access Journals (Sweden)

    Sammy Haege

    Full Text Available BACKGROUND: The CXCL12/CXCR4 axis is involved in kidney development by regulating formation of the glomerular tuft. Recently, a second CXCL12 receptor was identified and designated CXCR7. Although it is established that CXCR7 regulates heart and brain development in conjunction with CXCL12 and CXCR4, little is known about the influence of CXCR7 on CXCL12 dependent kidney development. METHODOLOGY/PRINCIPAL FINDINGS: We provided analysis of CXCR7 expression and function in the developing mouse kidney. Using in situ hybridization, we identified CXCR7 mRNA in epithelial cells including podocytes at all nephron stages up to the mature glomerulus. CXCL12 mRNA showed a striking overlap with CXCR7 mRNA in epithelial structures. In addition, CXCL12 was detected in stromal cells and the glomerular tuft. Expression of CXCR4 was complementary to that of CXCR7 as it occurred in mesenchymal cells, outgrowing ureteric buds and glomerular endothelial cells but not in podocytes. Kidney examination in CXCR7 null mice revealed ballooning of glomerular capillaries as described earlier for CXCR4 null mice. Moreover, we detected a severe reduction of CXCR4 protein but not CXCR4 mRNA within the glomerular tuft and in the condensed mesenchyme. Malformation of the glomerular tuft in CXCR7 null mice was associated with mesangial cell clumping. CONCLUSIONS/SIGNIFICANCE: We established that there is a similar glomerular pathology in CXCR7 and CXCR4 null embryos. Based on the phenotype and the anatomical organization of the CXCL12/CXCR4/CXCR7 system in the forming glomerulus, we propose that CXCR7 fine-tunes CXCL12/CXCR4 mediated signalling between podocytes and glomerular capillaries.

  5. CXC Chemokine Receptor 7 (CXCR7) Regulates CXCR4 Protein Expression and Capillary Tuft Development in Mouse Kidney

    Science.gov (United States)

    Haege, Sammy; Mueller, Wiebke; Nietzsche, Sandor; Lupp, Amelie; Mackay, Fabienne; Schulz, Stefan; Stumm, Ralf

    2012-01-01

    Background The CXCL12/CXCR4 axis is involved in kidney development by regulating formation of the glomerular tuft. Recently, a second CXCL12 receptor was identified and designated CXCR7. Although it is established that CXCR7 regulates heart and brain development in conjunction with CXCL12 and CXCR4, little is known about the influence of CXCR7 on CXCL12 dependent kidney development. Methodology/Principal Findings We provided analysis of CXCR7 expression and function in the developing mouse kidney. Using in situ hybridization, we identified CXCR7 mRNA in epithelial cells including podocytes at all nephron stages up to the mature glomerulus. CXCL12 mRNA showed a striking overlap with CXCR7 mRNA in epithelial structures. In addition, CXCL12 was detected in stromal cells and the glomerular tuft. Expression of CXCR4 was complementary to that of CXCR7 as it occurred in mesenchymal cells, outgrowing ureteric buds and glomerular endothelial cells but not in podocytes. Kidney examination in CXCR7 null mice revealed ballooning of glomerular capillaries as described earlier for CXCR4 null mice. Moreover, we detected a severe reduction of CXCR4 protein but not CXCR4 mRNA within the glomerular tuft and in the condensed mesenchyme. Malformation of the glomerular tuft in CXCR7 null mice was associated with mesangial cell clumping. Conclusions/Significance We established that there is a similar glomerular pathology in CXCR7 and CXCR4 null embryos. Based on the phenotype and the anatomical organization of the CXCL12/CXCR4/CXCR7 system in the forming glomerulus, we propose that CXCR7 fine-tunes CXCL12/CXCR4 mediated signalling between podocytes and glomerular capillaries. PMID:22880115

  6. Degradation of the HilC and HilD regulator proteins by ATP-dependent Lon protease leads to downregulation of Salmonella pathogenicity island 1 gene expression.

    Science.gov (United States)

    Takaya, Akiko; Kubota, Yohsuke; Isogai, Emiko; Yamamoto, Tomoko

    2005-02-01

    Salmonella pathogenicity island 1 (SPI1) enables infecting Salmonella to cross the small intestinal barrier and to escape phagocytosis by inducing apoptosis. Several environmental signals and transcriptional regulators modulate the expression of hilA, which encodes a protein playing a central role in the regulatory hierarchy of SPI1 gene expression. We have previously shown that Lon, a stress-induced ATP-dependent protease, is a negative regulator of hilA, suggesting that it targets factors required for activating hilA expression. To elucidate the mechanisms by which Lon protease negatively regulates SPI1 transcription, we looked for its substrate proteins. We found that HilC and HilD, which are positive regulators of hilA expression, accumulate in Lon-depleted cells, and that the enhancement of SPI1 expression that occurs in a lon-disrupted mutant is not observed in the lon hilC hilD triple null mutant. Furthermore, we demonstrated that the half-lives of HilC and HilD are, respectively, about 12 times and three times longer in the Lon-depleted mutant, than in the Lon+ cells, suggesting that Lon targets both of HilC and HilD. In view of these findings, we suggest that the regulation of SPI1 expression is negatively controlled through degradation of the HilC and HilD transcriptional regulators by Lon.

  7. Hepatitis C virus core protein expression leads to biphasic regulation of the p21 cdk inhibitor and modulation of hepatocyte cell cycle

    International Nuclear Information System (INIS)

    Nguyen, Hau; Mudryj, Maria; Guadalupe, Moraima; Dandekar, Satya

    2003-01-01

    Hepatitis C virus (HCV) Core protein is implicated in viral pathogenesis by the modulation of hepatocyte gene expression and function. To determine the effect of Core protein on the cell-cycle control of hepatocytes, a HepG2 cell line containing a Flag-tagged Core under the control of an inducible promoter was generated. Initial Core protein expression included the presence of unprocessed (191 aa) and processed (173 aa) forms of the Core proteins with the processed form becoming dominant later. Expression of the 191 aa form of Core protein corresponded to an increase in the expression of the p21, a decrease in cdk2-dependent kinase activity, and a decrease in the percentage of cells in S-phase along with an accumulation of cells in the G 0 /G 1 phase of the cell cycle. As the processed form accumulated, the p21 levels started to decline, suggesting that Core protein regulates p21 expression in a biphasic manner. These findings implicate Core protein in potentially modulating hepatocyte cell cycle differentially in the early stages of infection through biphasic regulation of p21 cdk kinase inhibitor

  8. Protein expression profiling of the drosophila fragile X mutant brain reveals up-regulation of monoamine synthesis.

    Science.gov (United States)

    Zhang, Yong Q; Friedman, David B; Wang, Zhe; Woodruff, Elvin; Pan, Luyuan; O'donnell, Janis; Broadie, Kendal

    2005-03-01

    Fragile X syndrome is the most common form of inherited mental retardation, associated with both cognitive and behavioral anomalies. The disease is caused by silencing of the fragile X mental retardation 1 (fmr1) gene, which encodes the mRNA-binding, translational regulator FMRP. Previously we established a disease model through mutation of Drosophila fmr1 (dfmr1) and showed that loss of dFMRP causes defects in neuronal structure, function, and behavioral output similar to the human disease state. To uncover molecular targets of dFMRP in the brain, we use here a proteomic approach involving two-dimensional difference gel electrophoresis analyses followed by mass spectrometry identification of proteins with significantly altered expression in dfmr1 null mutants. We then focus on two misregulated enzymes, phenylalanine hydroxylase (Henna) and GTP cyclohydrolase (Punch), both of which mediate in concert the synthetic pathways of two key monoamine neuromodulators, dopamine and serotonin. Brain enzymatic assays show a nearly 2-fold elevation of Punch activity in dfmr1 null mutants. Consistently brain neurochemical assays show that both dopamine and serotonin are significantly increased in dfmr1 null mutants. At a cellular level, dfmr1 null mutant neurons display a highly significant elevation of the dense core vesicles that package these monoamine neuromodulators for secretion. Taken together, these data indicate that dFMRP normally down-regulates the monoamine pathway, which is consequently up-regulated in the mutant condition. Elevated brain levels of dopamine and serotonin provide a plausible mechanistic explanation for aspects of cognitive and behavioral deficits in human patients.

  9. PKC signaling is involved in the regulation of progranulin (acrogranin/PC-cell-derived growth factor/granulin-epithelin precursor) protein expression in human ovarian cancer cell lines.

    Science.gov (United States)

    Diaz-Cueto, Laura; Arechavaleta-Velasco, Fabian; Diaz-Arizaga, Adriana; Dominguez-Lopez, Pablo; Robles-Flores, Martha

    2012-07-01

    Overexpression of progranulin (also named acrogranin, PC-cell-derived growth factor, or granulin-epithelin precursor) is associated with ovarian cancer, specifically with cell proliferation, malignancy, chemoresistance, and shortened overall survival. The objective of the current study is to identify the signaling pathways involved in the regulation of progranulin expression in ovarian cancer cell lines. We studied the relation of protein kinase C (PKC), phosphatidylinositol 3-kinase, protein kinase A, P38, extracellular signal-regulated kinase, and Akt pathways on the modulation of progranulin expression levels in NIH-OVCAR-3 and SK-OV-3 ovarian cancer cell lines. The different pathways were examined using pharmacological inhibitors (calphostin C, LY294002, H89, SB203580, PD98059, and Akt Inhibitor), and mRNA and protein progranulin expression were analyzed by reverse transcriptase polymerase chain reaction and Western blot techniques, respectively. Inhibition of PKC signal transduction pathway by calphostin C decreased in a dose-dependent manner protein but not mRNA levels of progranulin in both ovarian cancer cell lines. LY294002 but not wortmannin, which are phosphatidylinositol 3-kinase inhibitors, also diminished the expression of progranulin in both cell lines. In addition, LY294002 treatment produced a significant reduction in cell viability. Inhibition of protein kinase A, P38, extracellular signal-regulated kinase, and Akt did not affect progranulin protein expression. These results suggest that the PKC signaling is involved in the regulation of progranulin protein expression in 2 different ovarian cancer cell lines. Inhibiting these intracellular signal transduction pathways may provide a future therapeutic target for hindering the cellular proliferation and invasion in ovarian cancer produced by progranulin.

  10. The stress-induced heat shock protein 70.3 expression is regulated by a dual-component mechanism involving alternative polyadenylation and HuR.

    Science.gov (United States)

    Kraynik, Stephen M; Gabanic, Andrew; Anthony, Sarah R; Kelley, Melissa; Paulding, Waltke R; Roessler, Anne; McGuinness, Michael; Tranter, Michael

    2015-06-01

    Heat shock protein 70.3 (Hsp70.3) expression increases in response to cellular stress and plays a cytoprotective role. We have previously shown that Hsp70.3 expression is controlled through coordinated post-transcriptional regulation by miRNAs and alternative polyadenylation (APA), and APA-mediated shortening of the Hsp70.3 3'-UTR facilitates increased protein expression. A stress-induced increase in Hsp70.3 mRNA and protein expression is accompanied by alternative polyadenylation (APA)-mediated truncation of the 3'UTR of the Hsp70.3 mRNA transcript. However, the role that APA plays in stress-induced expression of Hsp70.3 remains unclear. Our results show that APA-mediated truncation of the Hsp70.3 3'UTR increases protein expression through enhanced polyribosome loading. Additionally, we demonstrate that the RNA binding protein HuR, which has been previously shown to play a role in mediating APA, is necessary for heat shock mediated increase in Hsp70.3 mRNA and protein. However, it is somewhat surprising to note that HuR does not play a role in APA of the Hsp70.3 mRNA, and these two regulatory events appear to be mutually exclusive regulators of Hsp70.3 expression. These results not only provide important insight to the regulation of stress response genes following heat shock, but also contribute an enhanced understanding of how alternative polyadenylation contributes to gene regulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Autoimmune Regulator (AIRE) Is Expressed in Spermatogenic Cells, and It Altered the Expression of Several Nucleic-Acid-Binding and Cytoskeletal Proteins in Germ Cell 1 Spermatogonial (GC1-spg) Cells.

    Science.gov (United States)

    Radhakrishnan, Karthika; Bhagya, Kongattu P; Kumar, Anil Tr; Devi, Anandavalli N; Sengottaiyan, Jeeva; Kumar, Pradeep G

    2016-08-01

    Autoimmune regulator (AIRE) is a gene associated with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). AIRE is expressed heavily in the thymic epithelial cells and is involved in maintaining self-tolerance through regulating the expression of tissue-specific antigens. The testes are the most predominant extrathymic location where a heavy expression of AIRE is reported. Homozygous Aire-deficient male mice were infertile, possibly due to impaired spermatogenesis, deregulated germ cell apoptosis, or autoimmunity. We report that AIRE is expressed in the testes of neonatal, adolescent, and adult mice. AIRE expression was detected in glial cell derived neurotrophic factor receptor alpha (GFRα)(+) (spermatogonia), GFRα(-)/synaptonemal complex protein (SCP3)(+) (meiotic), and GFRα(-)/Phosphoglycerate kinase 2 (PGK2)(+) (postmeiotic) germ cells in mouse testes. GC1-spg, a germ-cell-derived cell line, did not express AIRE. Retinoic acid induced AIRE expression in GC1-spg cells. Ectopic expression of AIRE in GC1-spg cells using label-free LC-MS/MS identified a total of 371 proteins that were differentially expressed. 100 proteins were up-regulated, and 271 proteins were down-regulated. Data are available via ProteomeXchange with identifier PXD002511. Functional analysis of the differentially expressed proteins showed increased levels of various nucleic-acid-binding proteins and transcription factors and a decreased level of various cytoskeletal and structural proteins in the AIRE overexpressing cells as compared with the empty vector-transfected controls. The transcripts of a select set of the up-regulated proteins were also elevated. However, there was no corresponding decrease in the mRNA levels of the down-regulated set of proteins. Molecular function network analysis indicated that AIRE influenced gene expression in GC1-spg cells by acting at multiple levels, including transcription, translation, RNA processing, protein transport, protein

  12. Expression and organization of basement membranes and focal adhesion proteins in pregnant myometrium is regulated by uterine stretch.

    Science.gov (United States)

    Shynlova, Oksana; Chow, Michelle; Lye, Stephen J

    2009-10-01

    The mechanisms underlying the preparation of the uterus for labor are not fully understood. We have previously found a significant increase in the expression of messenger RNA (mRNAs) encoding extracellular basement membrane (BM) proteins of the smooth muscle cells (SMCs) in late pregnant rat myometrium. At term, the myometrium is stretched by growing fetuses and these mechanical signals are transmitted from extracellular matrix into SMCs through focal adhesions (FA). The aim of this study was to investigate the effect of gravidity on the expression and spatiotemporal distribution of major BM proteins, laminin-gamma2 and collagen IV, as well as typical FA constituents, vinculin and paxillin, in the myometrium during gestation and parturition, using a unilaterally pregnant rat model. We found that the expression of laminin-gamma2 and collagen IV proteins increased significantly with gestational age (P proteins were not affected. Near term, BM proteins from gravid horn myometrium demonstrated increased extracellular immunostaining and major rearrangement from sporadic protein distribution to organized, continuous, and regular structures surrounding the plasma membrane of each myocyte. Examination of FA proteins revealed that paxillin was translocated from the cytoplasm to the cell periphery, while vinculin was sequestered specifically to FAs. At labor, BM and FA proteins, organized in similar bead-like structures, were localized on opposing sides of SMC plasma membrane into 2 different compartments. We suggest that these stretch-induced changes facilitate formation of stable cell-matrix adhesions and provide the molecular basis for optimal force transduction during labor contractions.

  13. Effect of brain-derived neurotrophic factor on activity-regulated cytoskeleton-associated protein gene expression in primary frontal cortical neurons. Comparison with NMDA and AMPA

    DEFF Research Database (Denmark)

    El-Sayed, Mona; Hofman-Bang, Jacob; Mikkelsen, Jens D

    2011-01-01

    The effect of brain-derived neurotrophic factor (BDNF) on activity-regulated cytoskeleton-associated protein (Arc) mRNA levels in primary neuronal cultures of rat frontal cortex was characterized pharmacologically and compared to the effect on expression of c-fos, bdnf, neuritin, cox-2 as examples...

  14. Prion protein cleavage fragments regulate adult neural stem cell quiescence through redox modulation of mitochondrial fission and SOD2 expression.

    Science.gov (United States)

    Collins, Steven J; Tumpach, Carolin; Groveman, Bradley R; Drew, Simon C; Haigh, Cathryn L

    2018-03-24

    Neurogenesis continues in the post-developmental brain throughout life. The ability to stimulate the production of new neurones requires both quiescent and actively proliferating pools of neural stem cells (NSCs). Actively proliferating NSCs ensure that neurogenic demand can be met, whilst the quiescent pool makes certain NSC reserves do not become depleted. The processes preserving the NSC quiescent pool are only just beginning to be defined. Herein, we identify a switch between NSC proliferation and quiescence through changing intracellular redox signalling. We show that N-terminal post-translational cleavage products of the prion protein (PrP) induce a quiescent state, halting NSC cellular growth, migration, and neurite outgrowth. Quiescence is initiated by the PrP cleavage products through reducing intracellular levels of reactive oxygen species. First, inhibition of redox signalling results in increased mitochondrial fission, which rapidly signals quiescence. Thereafter, quiescence is maintained through downstream increases in the expression and activity of superoxide dismutase-2 that reduces mitochondrial superoxide. We further observe that PrP is predominantly cleaved in quiescent NSCs indicating a homeostatic role for this cascade. Our findings provide new insight into the regulation of NSC quiescence, which potentially could influence brain health throughout adult life.

  15. Expression of the calcium-binding proteins MRP8 and MRP14 in monocytes is regulated by a calcium-induced suppressor mechanism.

    OpenAIRE

    Roth, J; Goebeler, M; Wrocklage, V; van den Bos, C; Sorg, C

    1994-01-01

    MRP8 and MRP14 are two calcium-binding proteins of the S-100 family the expression of which is restricted to distinct stages of monocytic differentiation. Heteromeric MRP8/MRP14 complexes have been shown to represent their biologically active forms. However, it is not as yet clear whether biochemical modification of complexes, or regulation on the transcriptional level, are responsible for the control of MRP8/MRP14 expression. Employing Western-blot analysis and metabolic labelling we have de...

  16. Developmental Regulation of Gonadotropin-releasing Hormone Gene Expression by the MSX and DLX Homeodomain Protein Families*

    Science.gov (United States)

    Givens, Marjory L.; Rave-Harel, Naama; Goonewardena, Vinodha D.; Kurotani, Reiko; Berdy, Sara E.; Swan, Christo H.; Rubenstein, John L. R.; Robert, Benoit; Mellon, Pamela L.

    2010-01-01

    Gonadotropin-releasing hormone (GnRH) is the central regulator of the hypothalamic-pituitary-gonadal axis, controlling sexual maturation and fertility in diverse species from fish to humans. GnRH gene expression is limited to a discrete population of neurons that migrate through the nasal region into the hypothalamus during embryonic development. The GnRH regulatory region contains four conserved homeodomain binding sites (ATTA) that are essential for basal promoter activity and cell-specific expression of the GnRH gene. MSX and DLX are members of the Antennapedia class of non-Hox homeodomain transcription factors that regulate gene expression and influence development of the craniofacial structures and anterior forebrain. Here, we report that expression patterns of the Msx and Dlx families of homeodomain transcription factors largely coincide with the migratory route of GnRH neurons and co-express with GnRH in neurons during embryonic development. In addition, MSX and DLX family members bind directly to the ATTA consensus sequences and regulate transcriptional activity of the GnRH promoter. Finally, mice lacking MSX1 or DLX1 and 2 show altered numbers of GnRH-expressing cells in regions where these factors likely function. These findings strongly support a role for MSX and DLX in contributing to spatiotemporal regulation of GnRH transcription during development. PMID:15743757

  17. Developmental regulation of gonadotropin-releasing hormone gene expression by the MSX and DLX homeodomain protein families.

    Science.gov (United States)

    Givens, Marjory L; Rave-Harel, Naama; Goonewardena, Vinodha D; Kurotani, Reiko; Berdy, Sara E; Swan, Christo H; Rubenstein, John L R; Robert, Benoit; Mellon, Pamela L

    2005-05-13

    Gonadotropin-releasing hormone (GnRH) is the central regulator of the hypothalamic-pituitary-gonadal axis, controlling sexual maturation and fertility in diverse species from fish to humans. GnRH gene expression is limited to a discrete population of neurons that migrate through the nasal region into the hypothalamus during embryonic development. The GnRH regulatory region contains four conserved homeodomain binding sites (ATTA) that are essential for basal promoter activity and cell-specific expression of the GnRH gene. MSX and DLX are members of the Antennapedia class of non-Hox homeodomain transcription factors that regulate gene expression and influence development of the craniofacial structures and anterior forebrain. Here, we report that expression patterns of the Msx and Dlx families of homeodomain transcription factors largely coincide with the migratory route of GnRH neurons and co-express with GnRH in neurons during embryonic development. In addition, MSX and DLX family members bind directly to the ATTA consensus sequences and regulate transcriptional activity of the GnRH promoter. Finally, mice lacking MSX1 or DLX1 and 2 show altered numbers of GnRH-expressing cells in regions where these factors likely function. These findings strongly support a role for MSX and DLX in contributing to spatiotemporal regulation of GnRH transcription during development.

  18. Expression and subcellular localization of antiporter regulating ...

    African Journals Online (AJOL)

    We examined the expression and subcellular localization of antiporter regulating protein OsARP in a submergence tolerant rice (Oryza sativa L.) cultivar FR13A. In the public databases, this protein was designated as putative Os02g0465900 protein. The cDNA containing the full-length sequence of OsARP gene was ...

  19. Translational up-regulation and high-level protein expression from plasmid vectors by mTOR activation via different pathways in PC3 and 293T cells.

    Directory of Open Access Journals (Sweden)

    Prashanthi Karyala

    Full Text Available BACKGROUND: Though 293T cells are widely used for expression of proteins from transfected plasmid vectors, the molecular basis for the high-level expression is yet to be understood. We recently identified the prostate carcinoma cell line PC3 to be as efficient as 293T in protein expression. This study was undertaken to decipher the molecular basis of high-level expression in these two cell lines. METHODOLOGY/PRINCIPAL FINDINGS: In a survey of different cell lines for efficient expression of platelet-derived growth factor-B (PDGF-B, β-galactosidase (β-gal and green fluorescent protein (GFP from plasmid vectors, PC3 was found to express at 5-50-fold higher levels compared to the bone metastatic prostate carcinoma cell line PC3BM and many other cell lines. Further, the efficiency of transfection and level of expression of the reporters in PC3 were comparable to that in 293T. Comparative analyses revealed that the high level expression of the reporters in the two cell lines was due to increased translational efficiency. While phosphatidic acid (PA-mediated activation of mTOR, as revealed by drastic reduction in reporter expression by n-butanol, primarily contributed to the high level expression in PC3, multiple pathways involving PA, PI3K/Akt and ERK1/2 appear to contribute to the abundant reporter expression in 293T. Thus the extent of translational up-regulation attained through the concerted activation of mTOR by multiple pathways in 293T could be achieved through its activation primarily by the PA pathway in PC3. CONCLUSIONS/SIGNIFICANCE: Our studies reveal that the high-level expression of proteins from plasmid vectors is effected by translational up-regulation through mTOR activation via different signaling pathways in the two cell lines and that PC3 is as efficient as 293T for recombinant protein expression. Further, PC3 offers an advantage in that the level of expression of the protein can be regulated by simple addition of n-butanol to

  20. Molecular cloning and expression of a novel keratinocyte protein (psoriasis-associated fatty acid-binding protein [PA-FABP]) that is highly up-regulated in psoriatic skin and that shares similarity to fatty acid-binding proteins

    DEFF Research Database (Denmark)

    Madsen, Peder; Rasmussen, H H; Leffers, H

    1992-01-01

    termed PA-FABP (psoriasis-associated fatty acid-binding protein). The deduced sequence predicted a protein with molecular weight of 15,164 daltons and a calculated pI of 6.96, values that are close to those recorded in the keratinocyte 2D gel protein database. The protein comigrated with PA......-FABP as determined by 2D gel analysis of [35S]-methionine-labeled proteins expressed by transformed human amnion (AMA) cells transfected with clone 1592 using the vaccinia virus expression system and reacted with a rabbit polyclonal antibody raised against 2D gel purified PA-FABP. Structural analysis of the amino...... with epidermal growth factor (EGF), pituitary extract, and 10% fetal calf serum] revealed a strong up-regulation of PA-FABP, psoriasin, calgranulins A and B, and a few other proteins that are highly expressed in psoriatic skin. The levels of these proteins exceeded by far those observed in non-cultured normal...

  1. The Small Heal Shock Protein αA-Crystallin Is Expressed In Pancreas and Acts as Negative Regulator of Carcinogenesis

    OpenAIRE

    Deng , Mi; Chen , Pei-Chao; Xie , Sisi; Zhao , Junqiong; Gong , Lili; Liu , Jinping; Zhang , Lan; Sun , Shuming; Liu , Jiao; Ma , Haili; Batra , Surinder; Li , David Wan-Cheng

    2010-01-01

    Abstract The small heat shock protein ?A-crystallin is a structural protein in the ocular lens. In addition, recent studies have also revealed that it is a molecular chaperone, an autokinase and a strong anti-apoptotic regulator. Besides its lenticular distribution, a previous study demonstrates that a detectable level of ?A-crystallin is found in other tissues including thymus and spleen. In the present study, we have re-examined the distribution of ?A-crystallin in various normal...

  2. A PDZ-Like Motif in the Biliary Transporter ABCB4 Interacts with the Scaffold Protein EBP50 and Regulates ABCB4 Cell Surface Expression.

    Directory of Open Access Journals (Sweden)

    Quitterie Venot

    Full Text Available ABCB4/MDR3, a member of the ABC superfamily, is an ATP-dependent phosphatidylcholine translocator expressed at the canalicular membrane of hepatocytes. Defects in the ABCB4 gene are associated with rare biliary diseases. It is essential to understand the mechanisms of its canalicular membrane expression in particular for the development of new therapies. The stability of several ABC transporters is regulated through their binding to PDZ (PSD95/DglA/ZO-1 domain-containing proteins. ABCB4 protein ends by the sequence glutamine-asparagine-leucine (QNL, which shows some similarity to PDZ-binding motifs. The aim of our study was to assess the potential role of the QNL motif on the surface expression of ABCB4 and to determine if PDZ domain-containing proteins are involved. We found that truncation of the QNL motif decreased the stability of ABCB4 in HepG2-transfected cells. The deleted mutant ABCB4-ΔQNL also displayed accelerated endocytosis. EBP50, a PDZ protein highly expressed in the liver, strongly colocalized and coimmunoprecipitated with ABCB4, and this interaction required the QNL motif. Down-regulation of EBP50 by siRNA or by expression of an EBP50 dominant-negative mutant caused a significant decrease in the level of ABCB4 protein expression, and in the amount of ABCB4 localized at the canalicular membrane. Interaction of ABCB4 with EBP50 through its PDZ-like motif plays a critical role in the regulation of ABCB4 expression and stability at the canalicular plasma membrane.

  3. The FasX Small Regulatory RNA Negatively Regulates the Expression of Two Fibronectin-Binding Proteins in Group A Streptococcus.

    Science.gov (United States)

    Danger, Jessica L; Makthal, Nishanth; Kumaraswami, Muthiah; Sumby, Paul

    2015-12-01

    The group A Streptococcus (GAS; Streptococcus pyogenes) causes more than 700 million human infections each year. The success of this pathogen can be traced in part to the extensive arsenal of virulence factors that are available for expression in temporally and spatially specific manners. To modify the expression of these virulence factors, GAS use both protein- and RNA-based regulators, with the best-characterized RNA-based regulator being the small regulatory RNA (sRNA) FasX. FasX is a 205-nucleotide sRNA that contributes to GAS virulence by enhancing the expression of the thrombolytic secreted virulence factor streptokinase and by repressing the expression of the collagen-binding cell surface pili. Here, we have expanded the FasX regulon, showing that this sRNA also negatively regulates the expression of the adhesion- and internalization-promoting, fibronectin-binding proteins PrtF1 and PrtF2. FasX posttranscriptionally regulates the expression of PrtF1/2 through a mechanism that involves base pairing to the prtF1 and prtF2 mRNAs within their 5' untranslated regions, overlapping the mRNA ribosome-binding sites. Thus, duplex formation between FasX and the prtF1 and prtF2 mRNAs blocks ribosome access, leading to an inhibition of mRNA translation. Given that FasX positively regulates the expression of the spreading factor streptokinase and negatively regulates the expression of the collagen-binding pili and of the fibronectin-binding PrtF1/2, our data are consistent with FasX functioning as a molecular switch that governs the transition of GAS between the colonization and dissemination stages of infection. More than half a million deaths each year are a consequence of infections caused by GAS. Insights into how this pathogen regulates the production of proteins during infection may facilitate the development of novel therapeutic or preventative regimens aimed at inhibiting this activity. Here, we have expanded insight into the regulatory activity of the GAS small

  4. Allosteric Regulation of Proteins

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 1. Allosteric Regulation of Proteins: A Historical Perspective on the Development of Concepts and Techniques. General Article Volume 22 Issue 1 January 2017 pp 37-50 ...

  5. Transcriptomic and proteomic approach to identify differentially expressed genes and proteins in Arabidopsis thaliana mutants lacking chloroplastic 1 and cytosolic FBPases reveals several levels of metabolic regulation.

    Science.gov (United States)

    Soto-Suárez, Mauricio; Serrato, Antonio J; Rojas-González, José A; Bautista, Rocío; Sahrawy, Mariam

    2016-12-01

    During the photosynthesis, two isoforms of the fructose-1,6-bisphosphatase (FBPase), the chloroplastidial (cFBP1) and the cytosolic (cyFBP), catalyse the first irreversible step during the conversion of triose phosphates (TP) to starch or sucrose, respectively. Deficiency in cyFBP and cFBP1 isoforms provokes an imbalance of the starch/sucrose ratio, causing a dramatic effect on plant development when the plastidial enzyme is lacking. We study the correlation between the transcriptome and proteome profile in rosettes and roots when cFBP1 or cyFBP genes are disrupted in Arabidopsis thaliana knock-out mutants. By using a 70-mer oligonucleotide microarray representing the genome of Arabidopsis we were able to identify 1067 and 1243 genes whose expressions are altered in the rosettes and roots of the cfbp1 mutant respectively; whilst in rosettes and roots of cyfbp mutant 1068 and 1079 genes are being up- or down-regulated respectively. Quantitative real-time PCR validated 100% of a set of 14 selected genes differentially expressed according to our microarray analysis. Two-dimensional (2-D) gel electrophoresis-based proteomic analysis revealed quantitative differences in 36 and 26 proteins regulated in rosettes and roots of cfbp1, respectively, whereas the 18 and 48 others were regulated in rosettes and roots of cyfbp mutant, respectively. The genes differentially expressed and the proteins more or less abundant revealed changes in protein metabolism, RNA regulation, cell signalling and organization, carbon metabolism, redox regulation, and transport together with biotic and abiotic stress. Notably, a significant set (25%) of the proteins identified were also found to be regulated at a transcriptional level. This transcriptomic and proteomic analysis is the first comprehensive and comparative study of the gene/protein re-adjustment that occurs in photosynthetic and non-photosynthetic organs of Arabidopsis mutants lacking FBPase isoforms.

  6. Regulation of MLH1 mRNA and protein expression by promoter methylation in primary colorectal cancer

    DEFF Research Database (Denmark)

    Jensen, Lars Henrik; Rasmussen, Anders Aamann; Byriel, Lene

    2013-01-01

    In colorectal cancer MLH1 deficiency causes microsatellite instability, which is relevant for the patient's prognosis and treatment, and its putative heredity. Dysfunction of MLH1 is caused by sporadic gene promoter hypermethylation or by hereditary mutations as seen in Lynch Syndrome. The aim...... of this study was to determine in detail how DNA methylation regulates MLH1 expression and impacts clinical management....

  7. Sialotranscriptomics of Rhipicephalus zambeziensis reveals intricate expression profiles of secretory proteins and suggests tight temporal transcriptional regulation during blood-feeding.

    Science.gov (United States)

    de Castro, Minique Hilda; de Klerk, Daniel; Pienaar, Ronel; Rees, D Jasper G; Mans, Ben J

    2017-08-10

    Ticks secrete a diverse mixture of secretory proteins into the host to evade its immune response and facilitate blood-feeding, making secretory proteins attractive targets for the production of recombinant anti-tick vaccines. The largely neglected tick species, Rhipicephalus zambeziensis, is an efficient vector of Theileria parva in southern Africa but its available sequence information is limited. Next generation sequencing has advanced sequence availability for ticks in recent years and has assisted the characterisation of secretory proteins. This study focused on the de novo assembly and annotation of the salivary gland transcriptome of R. zambeziensis and the temporal expression of secretory protein transcripts in female and male ticks, before the onset of feeding and during early and late feeding. The sialotranscriptome of R. zambeziensis yielded 23,631 transcripts from which 13,584 non-redundant proteins were predicted. Eighty-six percent of these contained a predicted start and stop codon and were estimated to be putatively full-length proteins. A fifth (2569) of the predicted proteins were annotated as putative secretory proteins and explained 52% of the expression in the transcriptome. Expression analyses revealed that 2832 transcripts were differentially expressed among feeding time points and 1209 between the tick sexes. The expression analyses further indicated that 57% of the annotated secretory protein transcripts were differentially expressed. Dynamic expression profiles of secretory protein transcripts were observed during feeding of female ticks. Whereby a number of transcripts were upregulated during early feeding, presumably for feeding site establishment and then during late feeding, 52% of these were downregulated, indicating that transcripts were required at specific feeding stages. This suggested that secretory proteins are under stringent transcriptional regulation that fine-tunes their expression in salivary glands during feeding. No open

  8. Novel roles of folic acid as redox regulator: Modulation of reactive oxygen species sinker protein expression and maintenance of mitochondrial redox homeostasis on hepatocellular carcinoma.

    Science.gov (United States)

    Lai, Kun-Goung; Chen, Chi-Fen; Ho, Chun-Te; Liu, Jun-Jen; Liu, Tsan-Zon; Chern, Chi-Liang

    2017-06-01

    We provide herein several lines of evidence to substantiate that folic acid (or folate) is a micronutrient capable of functioning as a novel redox regulator on hepatocellular carcinoma. First, we uncovered that folate deficiency could profoundly downregulate two prominent anti-apoptotic effectors including survivin and glucose-regulated protein-78. Silencing of either survivin or glucose-regulated protein-78 via small interfering RNA interfering technique established that both effectors could serve as reactive oxygen species sinker proteins. Second, folate deficiency-triggered oxidative-nitrosative stress could strongly induce endoplasmic reticulum stress that in turn could provoke cellular glutathione depletion through the modulation of the following two crucial events: (1) folate deficiency could strongly inhibit Bcl-2 expression leading to severe suppression of the mitochondrial glutathione pool and (2) folate deficiency could also profoundly inhibit two key enzymes that governing cellular glutathione redox regulation including γ-glutamylcysteinyl synthetase heavy chain, a catalytic enzyme for glutathione biosynthesis, and mitochondrial isocitrate dehydrogenase 2, an enzyme responsible for providing nicotinamide adenine dinucleotide phosphate necessary for regenerating oxidized glutathione disulfide back to glutathione via mitochondrial glutathione reductase. Collectively, we add to the literature new data to strengthen the notion that folate is an essential micronutrient that confers a novel role to combat reactive oxygen species insults and thus serves as a redox regulator via upregulating reactive oxygen species sinker proteins and averting mitochondrial glutathione depletion through proper maintenance of redox homeostasis via positively regulating glutathione biosynthesis, glutathione transporting system, and mitochondrial glutathione recycling process.

  9. bHLH-O proteins balance the self-renewal and differentiation of Drosophila neural stem cells by regulating Earmuff expression.

    Science.gov (United States)

    Li, Xiaosu; Chen, Rui; Zhu, Sijun

    2017-11-15

    Balancing self-renewal and differentiation of stem cells requires differential expression of self-renewing factors in two daughter cells generated from the asymmetric division of the stem cells. In Drosophila type II neural stem cell (or neuroblast, NB) lineages, the expression of the basic helix-loop-helix-Orange (bHLH-O) family proteins, including Deadpan (Dpn) and E(spl) proteins, is required for maintaining the self-renewal and identity of type II NBs, whereas the absence of these self-renewing factors is essential for the differentiation of intermediate neural progenitors (INPs) generated from type II NBs. Here, we demonstrate that Dpn maintains type II NBs by suppressing the expression of Earmuff (Erm). We provide evidence that Dpn and E(spl) proteins suppress Erm by directly binding to C-sites and N-boxes in the cis-regulatory region of erm. Conversely, the absence of bHLH-O proteins in INPs allows activation of erm and Erm-mediated maturation of INPs. Our results further suggest that Pointed P1 (PntP1) mediates the dedifferentiation of INPs resulting from the loss of Erm or overexpression of Dpn or E(spl) proteins. Taken together, these findings reveal mechanisms underlying the regulation of the maintenance of type II NBs and differentiation of INPs through the differential expression of bHLH-O family proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. mRNA-binding protein TIA-1 reduces cytokine expression in human endometrial stromal cells and is down-regulated in ectopic endometrium.

    Science.gov (United States)

    Karalok, Hakan Mete; Aydin, Ebru; Saglam, Ozlen; Torun, Aysenur; Guzeloglu-Kayisli, Ozlem; Lalioti, Maria D; Kristiansson, Helena; Duke, Cindy M P; Choe, Gina; Flannery, Clare; Kallen, Caleb B; Seli, Emre

    2014-12-01

    Cytokines and growth factors play important roles in endometrial function and the pathogenesis of endometriosis. mRNAs encoding cytokines and growth factors undergo rapid turnover; primarily mediated by adenosine- and uridine-rich elements (AREs) located in their 3'-untranslated regions. T-cell intracellular antigen (TIA-1), an mRNA-binding protein, binds to AREs in target transcripts, leading to decreased gene expression. The purpose of this article was to determine whether TIA-1 plays a role in the regulation of endometrial cytokine and growth factor expression during the normal menstrual cycle and whether TIA-1 expression is altered in women with endometriosis. Eutopic endometrial tissue obtained from women without endometriosis (n = 30) and eutopic and ectopic endometrial tissues from women with endometriosis (n = 17) were immunostained for TIA-1. Staining intensities were evaluated by histological scores (HSCOREs). The regulation of endometrial TIA-1 expression by immune factors and steroid hormones was studied by treating primary cultured human endometrial stromal cells (HESCs) with vehicle, lipopolysaccharide, TNF-α, IL-6, estradiol, or progesterone, followed by protein blot analyses. HESCs were engineered to over- or underexpress TIA-1 to test whether TIA-1 regulates IL-6 or TNF-α expression in these cells. We found that TIA-1 is expressed in endometrial stromal and glandular cells throughout the menstrual cycle and that this expression is significantly higher in the perimenstrual phase. In women with endometriosis, TIA-1 expression in eutopic and ectopic endometrium was reduced compared with TIA-1 expression in eutopic endometrium of unaffected control women. Lipopolysaccharide and TNF-α increased TIA-1 expression in HESCs in vitro, whereas IL-6 or steroid hormones had no effect. In HESCs, down-regulation of TIA-1 resulted in elevated IL-6 and TNF-α expression, whereas TIA-1 overexpression resulted in decreased IL-6 and TNF-α expression. Endometrial

  11. Up-regulation of mRNA ventricular PRNP prion protein gene expression in air pollution highly exposed young urbanites: endoplasmic reticulum stress, glucose regulated protein 78, and nanosized particles.

    Science.gov (United States)

    Villarreal-Calderon, Rodolfo; Franco-Lira, Maricela; González-Maciel, Angélica; Reynoso-Robles, Rafael; Harritt, Lou; Pérez-Guillé, Beatriz; Ferreira-Azevedo, Lara; Drecktrah, Dan; Zhu, Hongtu; Sun, Qiang; Torres-Jardón, Ricardo; Aragón-Flores, Mariana; Calderón-Garcidueñas, Ana; Diaz, Philippe; Calderón-Garcidueñas, Lilian

    2013-11-28

    Mexico City Metropolitan Area children and young adults exposed to high concentrations of air pollutants including fine and ultrafine particulate matter (PM) vs. clean air controls, exhibit myocardial inflammation and inflammasome activation with a differential right and left ventricular expression of key inflammatory genes and inflammasomes. We investigated the mRNA expression levels of the prion protein gene PRNP, which plays an important role in the protection against oxidative stress and metal toxicity, and the glucose regulated protein 78, a key protein in endoplasmic reticulum (ER) stress signaling, in ventricular autopsy samples from 30 children and young adults age 19.97 ± 6.8 years with a lifetime of low (n:4) vs. high (n:26) air pollution exposures. Light microscopy and transmission electron microscopy studies were carried out in human ventricles, and electron microscopy studies were also done in 5 young, highly exposed Mexico City dogs. There was significant left ventricular PRNP and bi-ventricular GRP78 mRNA up-regulation in Mexico City young urbanites vs. controls. PRNP up-regulation in the left ventricle was significantly different from the right, p < 0.0001, and there was a strong left ventricular PRNP and GRP78 correlation (p = 0.0005). Marked abnormalities in capillary endothelial cells, numerous nanosized particles in myocardial ER and in abnormal mitochondria characterized the highly exposed ventricles. Early and sustained cardiac ER stress could result in detrimental irreversible consequences in urban children, and while highly complex systems maintain myocardial homeostasis, failure to compensate for chronic myocardial inflammation, oxidative and ER stress, and particles damaging myocardial organelles may prime the development of pathophysiological cardiovascular states in young urbanites. Nanosized PM could play a key cardiac myocyte toxicity role.

  12. Up-Regulation of mRNA Ventricular PRNP Prion Protein Gene Expression in Air Pollution Highly Exposed Young Urbanites: Endoplasmic Reticulum Stress, Glucose Regulated Protein 78, and Nanosized Particles

    Directory of Open Access Journals (Sweden)

    Rodolfo Villarreal-Calderon

    2013-11-01

    Full Text Available Mexico City Metropolitan Area children and young adults exposed to high concentrations of air pollutants including fine and ultrafine particulate matter (PM vs. clean air controls, exhibit myocardial inflammation and inflammasome activation with a differential right and left ventricular expression of key inflammatory genes and inflammasomes. We investigated the mRNA expression levels of the prion protein gene PRNP, which plays an important role in the protection against oxidative stress and metal toxicity, and the glucose regulated protein 78, a key protein in endoplasmic reticulum (ER stress signaling, in ventricular autopsy samples from 30 children and young adults age 19.97 ± 6.8 years with a lifetime of low (n:4 vs. high (n:26 air pollution exposures. Light microscopy and transmission electron microscopy studies were carried out in human ventricles, and electron microscopy studies were also done in 5 young, highly exposed Mexico City dogs. There was significant left ventricular PRNP and bi-ventricular GRP78 mRNA up-regulation in Mexico City young urbanites vs. controls. PRNP up-regulation in the left ventricle was significantly different from the right, p < 0.0001, and there was a strong left ventricular PRNP and GRP78 correlation (p = 0.0005. Marked abnormalities in capillary endothelial cells, numerous nanosized particles in myocardial ER and in abnormal mitochondria characterized the highly exposed ventricles. Early and sustained cardiac ER stress could result in detrimental irreversible consequences in urban children, and while highly complex systems maintain myocardial homeostasis, failure to compensate for chronic myocardial inflammation, oxidative and ER stress, and particles damaging myocardial organelles may prime the development of pathophysiological cardiovascular states in young urbanites. Nanosized PM could play a key cardiac myocyte toxicity role.

  13. Molecular cloning and expression of a novel keratinocyte protein (psoriasis-associated fatty acid-binding protein [PA-FABP]) that is highly up-regulated in psoriatic skin and that shares similarity to fatty acid-binding proteins

    DEFF Research Database (Denmark)

    Madsen, Peder; Rasmussen, H H; Leffers, H

    1992-01-01

    termed PA-FABP (psoriasis-associated fatty acid-binding protein). The deduced sequence predicted a protein with molecular weight of 15,164 daltons and a calculated pI of 6.96, values that are close to those recorded in the keratinocyte 2D gel protein database. The protein comigrated with PA-FABP...... as determined by 2D gel analysis of [35S]-methionine-labeled proteins expressed by transformed human amnion (AMA) cells transfected with clone 1592 using the vaccinia virus expression system and reacted with a rabbit polyclonal antibody raised against 2D gel purified PA-FABP. Structural analysis of the amino...... acid sequence revealed 48%, 52%, and 56% identity to known low-molecular-weight fatty acid-binding proteins belonging to the FABP family. Northern blot analysis showed that PA-FABP mRNA is indeed highly up-regulated in psoriatic keratinocytes. The transcript is present in human cell lines of epithelial...

  14. Interaction of hepatocyte nuclear factors in transcriptional regulation of tissue specific hormonal expression of human multidrug resistance-associated protein 2 (abcc2)

    International Nuclear Information System (INIS)

    Qadri, Ishtiaq; Hu, L.-J.; Iwahashi, Mieko; Al-Zuabi, Subhi; Quattrochi, Linda C.; Simon, Francis R.

    2009-01-01

    Multidrug resistance-associated protein 2 (MRP2) (ABCC2) is an ATP-binding cassette membrane protein located primarily on apical surface of hepatocytes that mediates transport of conjugated xenobiotics and endogenous compounds into bile. MRP2 is highly expressed in hepatocytes, and at lower levels in small intestines, stomach and kidney. Previous reports have characterized mammalian MRP2 promoters, but none have established the molecular mechanism(s) involved in liver enriched expression. This study aims to investigate the mechanism of hepatic MRP2 regulation. A 2130 bp of MRP2 promoter was cloned from PAC-1 clone P108G1-7, to identify putative liver specific/hormone responsive functional DNA binding sites. Using deletion analysis, site specific mutagenesis and co-transfection studies, liver specific expression was determined. MRP2 promoter-LUC constructs were highly expressed in liver cell lines compared to non-liver cells. The region extending from - 3 to+ 458 bp of MRP2 promoter starting from AUG contained the potential binding sites for CAAATT box enhancer binding protein (C/EBP), hepatocytes nuclear factor 1, 3 and 4 (HNF1, HNF3, and HNF4. Only HNF1 and HNF4 co-transfection with MRP2 luciferase increased expression. Site specific mutational analysis of HNF1 binding site indicated an important role for HNF1α. HNF4α induction of MRP2 was independent of HNF1 binding site. C/EBP, HNF3, and HNF6 inhibited HNF1α while HNF4α induced MRP2 luciferase expression and glucocorticoids stimulated MRP2 expression. This study emphasizes the complex regulation of MRP2 with HNF1α and HNF4α playing a central role. The coordinated regulation of xenobiotic transporters and oxidative conjugation may determine the adaptive responses to cellular detoxification processes

  15. Phototherapy up-regulates dentin matrix proteins expression and synthesis by stem cells from human-exfoliated deciduous teeth.

    Science.gov (United States)

    Turrioni, Ana Paula S; Basso, Fernanda G; Montoro, Liege A; Almeida, Leopoldina de Fátima D de; Costa, Carlos A de Souza; Hebling, Josimeri

    2014-10-01

    The aim of this study was to evaluate the effects of infrared LED (850nm) irradiation on dentin matrix proteins expression and synthesis by cultured stem cells from human exfoliated deciduous teeth (SHED). Near-exfoliation primary teeth were extracted (n=3), and SHED cultures were characterized by immunofluorescence using STRO-1, CD44, CD146, Nanog and OCT3/4 antibodies, before experimental protocol. The SHEDs were seeded (3×10(4) cells/cm(2)) with DMEM containing 10% FBS. After 24-h incubation, the culture medium was replaced by osteogenic differentiation medium, and the cells were irradiated with LED light at energy densities (EDs) of 0 (control), 2, or 4J/cm(2) (n=8). The irradiated SHEDs were then evaluated for alkaline phosphatase (ALP) activity, total protein (TP) production, and collagen synthesis (SIRCOL™ Assay), as well as ALP, collagen type I (Col I), dentin sialophosphoprotein (DSPP), and dentin matrix acidic phosphoprotein (DMP-1) gene expression (qPCR). Data were analyzed by Kruskal-Wallis and Mann-Whitney tests (α=0.05). Increased ALP activity and collagen synthesis, as well as gene expression of DSPP and ALP, were observed for both EDs compared with non-irradiated cells. The ED of 4J/cm(2) also increased gene expression of COL I and DMP-1. In conclusion, infrared LED irradiation was capable of biostimulating SHEDs by increasing the expression and synthesis of proteins related with mineralized tissue formation, with overall better results for the energy dose of 4J/cm(2). Phototherapy is an additional approach for the clinical application of LED in Restorative Dentistry. Infrared LED irradiation of the cavity's floor could biostimulate subjacent pulp cells, improving local tissue healing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Down-regulated expression of the protein-tyrosine phosphatase 1B (PTP1B) is associated with aggressive clinicopathologic features and poor prognosis in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Zheng, Long-Yi; Zhou, Dong-Xun; Lu, Jin; Zhang, Wen-Jun; Zou, Da-Jin

    2012-01-01

    Highlights: ► PTP1B protein showed decreased expression in 67.79% of the HCC patients. ► Low PTP1B expression predicts poor prognosis of HCC. ► Low PTP1B expression is correlated with expansion of OV6 + tumor-initiating cells. ► Down-regulation of PTP1B is associated with activation of Wnt/β-Catenin signaling. -- Abstract: The protein-tyrosine phosphatase 1B (PTP1B) is a classical non-transmembrane protein tyrosine phosphatase that plays a key role in metabolic signaling and can exert both tumor suppressing and tumor promoting effects in different cancers depending on the substrate involved and the cellular context. However, the expression level and function of PTP1B in hepatocellular carcinoma (HCC) remain unclear. In this study, PTP1B expression was detected by immunohistochemistry in normal liver tissue (n = 16) and hepatocellular carcinoma (n = 169). The correlations between PTP1B expression level and clinicopathologic features and patient survival were also analyzed. One hundred and eleven of 169 HCC patients (65.7%) had negative or low PTP1B expression in tumorous tissues, whereas normal tissues always expressed strong PTP1B. Decreased PTP1B expression was significantly associated with aggressive clinicopathologic features and poor prognosis. Immunohistochemistry also showed that low PTP1B expression level was correlated with high percentage of OV6 + tumor-initiating cells (T-ICs) and high frequency of nuclear β-Catenin expression in HCC specimens. Our findings demonstrate for the first time that the loss of inhibitory effect of PTP1B may contribute to progression and invasion of HCC through activation of Wnt/β-Catenin signaling and expansion of liver T-ICs. PTP1B may serve as a valuable prognostic biomarker and potential therapeutic target in HCC.

  17. Down-regulated expression of the protein-tyrosine phosphatase 1B (PTP1B) is associated with aggressive clinicopathologic features and poor prognosis in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Long-Yi [Department of Endocrinology, Changhai Hospital, 168 Changhai Road, Shanghai 200433 (China); Zhou, Dong-Xun [Department of Comprehensive Treatment II, Eastern Hepatobiliary Surgery Hospital, 225 Changhai Road, Shanghai 200438 (China); Lu, Jin [Department of Endocrinology, Changhai Hospital, 168 Changhai Road, Shanghai 200433 (China); Zhang, Wen-Jun [Department of Emergency, Changhai Hospital, 168 Changhai Road, Shanghai 200433 (China); Zou, Da-Jin, E-mail: dajinzou@hotmail.com [Department of Endocrinology, Changhai Hospital, 168 Changhai Road, Shanghai 200433 (China)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer PTP1B protein showed decreased expression in 67.79% of the HCC patients. Black-Right-Pointing-Pointer Low PTP1B expression predicts poor prognosis of HCC. Black-Right-Pointing-Pointer Low PTP1B expression is correlated with expansion of OV6{sup +} tumor-initiating cells. Black-Right-Pointing-Pointer Down-regulation of PTP1B is associated with activation of Wnt/{beta}-Catenin signaling. -- Abstract: The protein-tyrosine phosphatase 1B (PTP1B) is a classical non-transmembrane protein tyrosine phosphatase that plays a key role in metabolic signaling and can exert both tumor suppressing and tumor promoting effects in different cancers depending on the substrate involved and the cellular context. However, the expression level and function of PTP1B in hepatocellular carcinoma (HCC) remain unclear. In this study, PTP1B expression was detected by immunohistochemistry in normal liver tissue (n = 16) and hepatocellular carcinoma (n = 169). The correlations between PTP1B expression level and clinicopathologic features and patient survival were also analyzed. One hundred and eleven of 169 HCC patients (65.7%) had negative or low PTP1B expression in tumorous tissues, whereas normal tissues always expressed strong PTP1B. Decreased PTP1B expression was significantly associated with aggressive clinicopathologic features and poor prognosis. Immunohistochemistry also showed that low PTP1B expression level was correlated with high percentage of OV6{sup +} tumor-initiating cells (T-ICs) and high frequency of nuclear {beta}-Catenin expression in HCC specimens. Our findings demonstrate for the first time that the loss of inhibitory effect of PTP1B may contribute to progression and invasion of HCC through activation of Wnt/{beta}-Catenin signaling and expansion of liver T-ICs. PTP1B may serve as a valuable prognostic biomarker and potential therapeutic target in HCC.

  18. New Partners in Regulation of Gene Expression: The Enhancer of Trithorax and Polycomb Corto Interacts with Methylated Ribosomal Protein L12 Via Its Chromodomain

    Science.gov (United States)

    Coléno-Costes, Anne; Jang, Suk Min; de Vanssay, Augustin; Rougeot, Julien; Bouceba, Tahar; Randsholt, Neel B.; Gibert, Jean-Michel; Le Crom, Stéphane; Mouchel-Vielh, Emmanuèle

    2012-01-01

    Chromodomains are found in many regulators of chromatin structure, and most of them recognize methylated lysines on histones. Here, we investigate the role of the Drosophila melanogaster protein Corto's chromodomain. The Enhancer of Trithorax and Polycomb Corto is involved in both silencing and activation of gene expression. Over-expression of the Corto chromodomain (CortoCD) in transgenic flies shows that it is a chromatin-targeting module, critical for Corto function. Unexpectedly, mass spectrometry analysis reveals that polypeptides pulled down by CortoCD from nuclear extracts correspond to ribosomal proteins. Furthermore, real-time interaction analyses demonstrate that CortoCD binds with high affinity RPL12 tri-methylated on lysine 3. Corto and RPL12 co-localize with active epigenetic marks on polytene chromosomes, suggesting that both are involved in fine-tuning transcription of genes in open chromatin. RNA–seq based transcriptomes of wing imaginal discs over-expressing either CortoCD or RPL12 reveal that both factors deregulate large sets of common genes, which are enriched in heat-response and ribosomal protein genes, suggesting that they could be implicated in dynamic coordination of ribosome biogenesis. Chromatin immunoprecipitation experiments show that Corto and RPL12 bind hsp70 and are similarly recruited on gene body after heat shock. Hence, Corto and RPL12 could be involved together in regulation of gene transcription. We discuss whether pseudo-ribosomal complexes composed of various ribosomal proteins might participate in regulation of gene expression in connection with chromatin regulators. PMID:23071455

  19. Metabolic Genetic Screens Reveal Multidimensional Regulation of Virulence Gene Expression in Listeria monocytogenes and an Aminopeptidase That Is Critical for PrfA Protein Activation.

    Science.gov (United States)

    Friedman, Sivan; Linsky, Marika; Lobel, Lior; Rabinovich, Lev; Sigal, Nadejda; Herskovits, Anat A

    2017-06-01

    Listeria monocytogenes is an environmental saprophyte and intracellular bacterial pathogen. Upon invading mammalian cells, the bacterium senses abrupt changes in its metabolic environment, which are rapidly transduced to regulation of virulence gene expression. To explore the relationship between L. monocytogenes metabolism and virulence, we monitored virulence gene expression dynamics across a library of genetic mutants grown under two metabolic conditions known to activate the virulent state: charcoal-treated rich medium containing glucose-1-phosphate and minimal defined medium containing limiting concentrations of branched-chain amino acids (BCAAs). We identified over 100 distinct mutants that exhibit aberrant virulence gene expression profiles, the majority of which mapped to nonessential metabolic genes. Mutants displayed enhanced, decreased, and early and late virulence gene expression profiles, as well as persistent levels, demonstrating a high plasticity in virulence gene regulation. Among the mutants, one was noteworthy for its particularly low virulence gene expression level and mapped to an X-prolyl aminopeptidase (PepP). We show that this peptidase plays a role in posttranslational activation of the major virulence regulator, PrfA. Specifically, PepP mediates recruitment of PrfA to the cytoplasmic membrane, a step identified as critical for PrfA protein activation. This study establishes a novel step in the complex mechanism of PrfA activation and further highlights the cross regulation of metabolism and virulence. Copyright © 2017 American Society for Microbiology.

  20. Presenilins Regulate Neurotrypsin Gene Expression and Neurotrypsin-dependent Agrin Cleavage via Cyclic AMP Response Element-binding Protein (CREB) Modulation*

    Science.gov (United States)

    Almenar-Queralt, Angels; Kim, Sonia N.; Benner, Christopher; Herrera, Cheryl M.; Kang, David E.; Garcia-Bassets, Ivan; Goldstein, Lawrence S. B.

    2013-01-01

    Presenilins, the catalytic components of the γ-secretase complex, are upstream regulators of multiple cellular pathways via regulation of gene transcription. However, the underlying mechanisms and the genes regulated by these pathways are poorly characterized. In this study, we identify Tequila and its mammalian ortholog Prss12 as genes negatively regulated by presenilins in Drosophila larval brains and mouse embryonic fibroblasts, respectively. Prss12 encodes the serine protease neurotrypsin, which cleaves the heparan sulfate proteoglycan agrin. Altered neurotrypsin activity causes serious synaptic and cognitive defects; despite this, the molecular processes regulating neurotrypsin expression and activity are poorly understood. Using γ-secretase drug inhibitors and presenilin mutants in mouse embryonic fibroblasts, we found that a mature γ-secretase complex was required to repress neurotrypsin expression and agrin cleavage. We also determined that PSEN1 endoproteolysis or processing of well known γ-secretase substrates was not essential for this process. At the transcriptional level, PSEN1/2 removal induced cyclic AMP response element-binding protein (CREB)/CREB-binding protein binding, accumulation of activating histone marks at the neurotrypsin promoter, and neurotrypsin transcriptional and functional up-regulation that was dependent on GSK3 activity. Upon PSEN1/2 reintroduction, this active epigenetic state was replaced by a methyl CpG-binding protein 2 (MeCP2)-containing repressive state and reduced neurotrypsin expression. Genome-wide analysis revealed hundreds of other mouse promoters in which CREB binding is similarly modulated by the presence/absence of presenilins. Our study thus identifies Tequila and neurotrypsin as new genes repressed by presenilins and reveals a novel mechanism used by presenilins to modulate CREB signaling based on controlling CREB recruitment. PMID:24145027

  1. Presenilins regulate neurotrypsin gene expression and neurotrypsin-dependent agrin cleavage via cyclic AMP response element-binding protein (CREB) modulation.

    Science.gov (United States)

    Almenar-Queralt, Angels; Kim, Sonia N; Benner, Christopher; Herrera, Cheryl M; Kang, David E; Garcia-Bassets, Ivan; Goldstein, Lawrence S B

    2013-12-06

    Presenilins, the catalytic components of the γ-secretase complex, are upstream regulators of multiple cellular pathways via regulation of gene transcription. However, the underlying mechanisms and the genes regulated by these pathways are poorly characterized. In this study, we identify Tequila and its mammalian ortholog Prss12 as genes negatively regulated by presenilins in Drosophila larval brains and mouse embryonic fibroblasts, respectively. Prss12 encodes the serine protease neurotrypsin, which cleaves the heparan sulfate proteoglycan agrin. Altered neurotrypsin activity causes serious synaptic and cognitive defects; despite this, the molecular processes regulating neurotrypsin expression and activity are poorly understood. Using γ-secretase drug inhibitors and presenilin mutants in mouse embryonic fibroblasts, we found that a mature γ-secretase complex was required to repress neurotrypsin expression and agrin cleavage. We also determined that PSEN1 endoproteolysis or processing of well known γ-secretase substrates was not essential for this process. At the transcriptional level, PSEN1/2 removal induced cyclic AMP response element-binding protein (CREB)/CREB-binding protein binding, accumulation of activating histone marks at the neurotrypsin promoter, and neurotrypsin transcriptional and functional up-regulation that was dependent on GSK3 activity. Upon PSEN1/2 reintroduction, this active epigenetic state was replaced by a methyl CpG-binding protein 2 (MeCP2)-containing repressive state and reduced neurotrypsin expression. Genome-wide analysis revealed hundreds of other mouse promoters in which CREB binding is similarly modulated by the presence/absence of presenilins. Our study thus identifies Tequila and neurotrypsin as new genes repressed by presenilins and reveals a novel mechanism used by presenilins to modulate CREB signaling based on controlling CREB recruitment.

  2. The anti-apoptotic BAG3 protein is expressed in lung carcinomas and regulates small cell lung carcinoma (SCLC) tumor growth.

    Science.gov (United States)

    Chiappetta, Gennaro; Basile, Anna; Barbieri, Antonio; Falco, Antonia; Rosati, Alessandra; Festa, Michelina; Pasquinelli, Rosa; Califano, Daniela; Palma, Giuseppe; Costanzo, Raffaele; Barcaroli, Daniela; Capunzo, Mario; Franco, Renato; Rocco, Gaetano; Pascale, Maria; Turco, Maria Caterina; De Laurenzi, Vincenzo; Arra, Claudio

    2014-08-30

    BAG3, member the HSP70 co-chaperones family, has been shown to play a relevant role in the survival, growth and invasiveness of different tumor types. In this study, we investigate the expression of BAG3 in 66 specimens from different lung tumors and the role of this protein in small cell lung cancer (SCLC) tumor growth. Normal lung tissue did not express BAG3 while we detected the expression of BAG3 by immunohistochemistry in all the 13 squamous cell carcinomas, 13 adenocarcinomas and 4 large cell carcinomas. Furthermore, we detected BAG3 expression in 22 of the 36 SCLCs analyzed. The role on SCLC cell survival was determined by down-regulating BAG3 levels in two human SCLC cell lines, i.e. H69 and H446, in vitro and measuring cisplatin induced apoptosis. Indeed down-regulation of BAG3 determines increased cell death and sensitizes cells to cisplatin treatment. The effect of BAG3 down-regulation on tumor growth was also investigated in an in vivo xenograft model by treating mice with an adenovirus expressing a specific bag3 siRNA. Treatment with bag3 siRNA-Ad significantly reduced tumor growth and improved animal survival. In conclusion we show that a subset of SCLCs over express BAG3 that exerts an anti-apoptotic effect resulting in resistance to chemotherapy.

  3. The cAMP Response Element Binding protein (CREB) is activated by Insulin-like Growth Factor-1 (IGF-1) and regulates myostatin gene expression in skeletal myoblast

    International Nuclear Information System (INIS)

    Zuloaga, R.; Fuentes, E.N.; Molina, A.; Valdés, J.A.

    2013-01-01

    Highlights: •IGF-1 induces the activation of CREB via IGF-1R/PI3K/PLC signaling pathway. •Calcium dependent signaling pathways regulate myostatin gene expression. •IGF-1 regulates myostatin gene expression via CREB transcription in skeletal myoblast. -- Abstract: Myostatin, a member of the Transforming Growth Factor beta (TGF-β) superfamily, plays an important role as a negative regulator of skeletal muscle growth and differentiation. We have previously reported that IGF-1 induces a transient myostatin mRNA expression, through the activation of the Nuclear Factor of Activated T cells (NFAT) in an IP 3 /calcium-dependent manner. Here we examined the activation of CREB transcription factor as downstream targets of IGF-1 during myoblast differentiation and its role as a regulator of myostatin gene expression. In cultured skeletal myoblast, IGF-1 induced the phosphorylation and transcriptional activation of CREB via IGF-1 Receptor/Phosphatidylinositol 3-Kinase (PI3K)/Phospholipase C gamma (PLC γ), signaling pathways. Also, IGF-1 induced calcium-dependent molecules such as Calmodulin Kinase II (CaMK II), Extracellular signal-regulated Kinases (ERK), Protein Kinase C (PKC). Additionally, we examined myostatin mRNA levels and myostatin promoter activity in differentiated myoblasts stimulated with IGF-1. We found a significant increase in mRNA contents of myostatin and its reporter activity after treatment with IGF-1. The expression of myostatin in differentiated myoblast was downregulated by the transfection of siRNA–CREB and by pharmacological inhibitors of the signaling pathways involved in CREB activation. By using pharmacological and genetic approaches together these data demonstrate that IGF-1 regulates the myostatin gene expression via CREB transcription factor during muscle cell differentiation

  4. The cAMP Response Element Binding protein (CREB) is activated by Insulin-like Growth Factor-1 (IGF-1) and regulates myostatin gene expression in skeletal myoblast

    Energy Technology Data Exchange (ETDEWEB)

    Zuloaga, R. [Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago (Chile); Fuentes, E.N.; Molina, A. [Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción (Chile); Valdés, J.A., E-mail: jvaldes@unab.cl [Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción (Chile)

    2013-10-18

    Highlights: •IGF-1 induces the activation of CREB via IGF-1R/PI3K/PLC signaling pathway. •Calcium dependent signaling pathways regulate myostatin gene expression. •IGF-1 regulates myostatin gene expression via CREB transcription in skeletal myoblast. -- Abstract: Myostatin, a member of the Transforming Growth Factor beta (TGF-β) superfamily, plays an important role as a negative regulator of skeletal muscle growth and differentiation. We have previously reported that IGF-1 induces a transient myostatin mRNA expression, through the activation of the Nuclear Factor of Activated T cells (NFAT) in an IP{sub 3}/calcium-dependent manner. Here we examined the activation of CREB transcription factor as downstream targets of IGF-1 during myoblast differentiation and its role as a regulator of myostatin gene expression. In cultured skeletal myoblast, IGF-1 induced the phosphorylation and transcriptional activation of CREB via IGF-1 Receptor/Phosphatidylinositol 3-Kinase (PI3K)/Phospholipase C gamma (PLC γ), signaling pathways. Also, IGF-1 induced calcium-dependent molecules such as Calmodulin Kinase II (CaMK II), Extracellular signal-regulated Kinases (ERK), Protein Kinase C (PKC). Additionally, we examined myostatin mRNA levels and myostatin promoter activity in differentiated myoblasts stimulated with IGF-1. We found a significant increase in mRNA contents of myostatin and its reporter activity after treatment with IGF-1. The expression of myostatin in differentiated myoblast was downregulated by the transfection of siRNA–CREB and by pharmacological inhibitors of the signaling pathways involved in CREB activation. By using pharmacological and genetic approaches together these data demonstrate that IGF-1 regulates the myostatin gene expression via CREB transcription factor during muscle cell differentiation.

  5. Hypoxic regulation of β-1,3-glucuronyltransferase 1 expression in nucleus pulposus cells of the rat intervertebral disc: role of hypoxia-inducible factor proteins.

    Science.gov (United States)

    Gogate, Shilpa S; Nasser, Rena; Shapiro, Irving M; Risbud, Makarand V

    2011-07-01

    To determine whether hypoxia and hypoxia-inducible factor (HIF) proteins regulate expression of β-1,3-glucuronyltransferase 1 (GlcAT-1), a key enzyme in glycosaminoglycan synthesis in nucleus pulposus cells. Real-time reverse transcriptase-polymerase chain reaction and Western blotting were used to measure GlcAT-1 expression. Transfections were performed to determine the effect of HIF-1α and HIF-2α on GlcAT-1 promoter activity. Under hypoxic conditions there was an increase in GlcAT-1 expression; a significant increase in promoter activity was seen both in nucleus pulposus cells and in N1511 chondrocytes. We investigated whether HIF controlled GlcAT-1 expression. Suppression of HIF-1α and HIF-2α induced GlcAT-1 promoter activity and expression only in nucleus pulposus cells. Transfection with CA-HIF-1α as well as with CA-HIF-2α suppressed GlcAT-1 promoter activity only in nucleus pulposus cells, suggesting a cell type-specific regulation. Site-directed mutagenesis and deletion constructs were used to further confirm the suppressive effect of HIFs on GlcAT-1 promoter function in nucleus pulposus cells. Although it was evident that interaction of HIF with hypoxia-responsive elements resulted in suppression of basal promoter activity, it was not necessary for transcriptional suppression. This result suggested both a direct and an indirect mode of regulation, possibly through recruitment of a HIF-dependent repressor. Finally, we showed that hypoxic expression of GlcAT-1 was also partially dependent on MAPK signaling. These studies demonstrate that hypoxia regulates GlcAT-1 expression through a signaling network comprising both activator and suppressor molecules, and that this regulation is unique to nucleus pulposus cells. Copyright © 2011 by the American College of Rheumatology.

  6. Cyanide-induced death of dopaminergic cells is mediated by uncoupling protein-2 up-regulation and reduced Bcl-2 expression

    International Nuclear Information System (INIS)

    Zhang, X.; Li, L.; Zhang, L.; Borowitz, J.L.; Isom, G.E.

    2009-01-01

    Cyanide is a potent inhibitor of mitochondrial oxidative metabolism and produces mitochondria-mediated death of dopaminergic neurons and sublethal intoxications that are associated with a Parkinson-like syndrome. Cyanide toxicity is enhanced when mitochondrial uncoupling is stimulated following up-regulation of uncoupling protein-2 (UCP-2). In this study, the role of a pro-survival protein, Bcl-2, in cyanide-mediated cell death was determined in a rat dopaminergic immortalized mesencephalic cell line (N27 cells). Following pharmacological up-regulation of UCP-2 by treatment with Wy14,643, cyanide reduced cellular Bcl-2 expression by increasing proteasomal degradation of the protein. The increased turnover of Bcl-2 was mediated by an increase of oxidative stress following UCP-2 up-regulation. The oxidative stress involved depletion of mitochondrial glutathione (mtGSH) and increased H 2 O 2 generation. Repletion of mtGSH by loading cells with glutathione ethyl ester reduced H 2 O 2 generation and in turn blocked the cyanide-induced decrease of Bcl-2. To determine if UCP-2 mediated the response, RNAi knock down was conducted. The RNAi decreased cyanide-induced depletion of mtGSH, reduced H 2 O 2 accumulation, and inhibited down-regulation of Bcl-2, thus blocking cell death. To confirm the role of Bcl-2 down-regulation in the cell death, it was shown that over-expression of Bcl-2 by cDNA transfection attenuated the enhancement of cyanide toxicity after UCP-2 up-regulation. It was concluded that UCP-2 up-regulation sensitizes cells to cyanide by increasing cellular oxidative stress, leading to an increase of Bcl-2 degradation. Then the reduced Bcl-2 levels sensitize the cells to cyanide-mediated cell death.

  7. Hypoxic regulation of the expression of genes encoded estrogen related proteins in U87 glioma cells: eff ect of IRE1 inhibition.

    Science.gov (United States)

    Minchenko, D O; Riabovol, O O; Ratushna, O O; Minchenko, O H

    2017-01-01

    The aim of the present study was to examine the effect of inhibition of endoplasmic reticulum stress signaling, mediated by IRE1 (inositol requiring enzyme 1), which is a central mediator of the unfolded protein response on the expression of genes encoded estrogen related proteins (NRIP1/RIP140, TRIM16/EBBP, ESRRA/NR3B1, FAM162A/E2IG5, PGRMC2/PMBP, and SLC39A6/LIV-1) and their hypoxic regulation in U87 glioma cells for evaluation of their possible significance in the control of glioma cells proliferation. The expression of NRIP1, EBBP, ESRRA, E2IG5, PGRMC2, and SLC39A6 genes in U87 glioma cells, transfected by empty vector pcDNA3.1 (control) and cells without IRE1 signaling enzyme function (transfected by dnIRE1) upon hypoxia, was studied by a quantitative polymerase chain reaction. Inhibition of both enzymatic activities (kinase and endoribonuclease) of IRE1 signaling enzyme function up-regulates the expression of EBBP, E2IG5, PGRMC2, and SLC39A6 genes is in U87 glioma cells in comparison with the control glioma cells, with more significant changes for E2IG5 and PGRMC2 genes. At the same time, the expression of NRIP1 and ESRRA genes is strongly down-regulated in glioma cells upon inhibition of IRE1. We also showed that hypoxia increases the expression of E2IG5, PGRMC2, and EBBP genes and decreases NRIP1 and ESRRA genes expression in control glioma cells. Furthermore, the inhibition of IRE1 in U87 glioma cells decreases the eff ect of hypoxia on the expression of E2IG5 and PGRMC2 genes, eliminates hypoxic regulation of NRIP1 gene, and enhances the sensitivity of ESRRA gene to hypoxic condition. Furthermore, the expression of SLC39A6 gene is resistant to hypoxia in both the glioma cells with and without IRE1 signaling enzyme function. Results of this investigation demonstrate that inhibition of IRE1 signaling enzyme function affects the expression of NRIP1, EBBP, ESRRA, E2IG5, PGRMC2, and SLC39A6 genes in U87 glioma cells in gene specific manner and these changes

  8. Expression and clinical significance of Glucose Regulated Proteins GRP78 (BiP) and GRP94 (GP96) in human adenocarcinomas of the esophagus

    International Nuclear Information System (INIS)

    Langer, Rupert; Feith, Marcus; Siewert, Joerg Rüdiger; Wester, Hans-Juergen; Hoefler, Heinz

    2008-01-01

    Glucose regulated proteins (GRPs) are main regulators of cellular homeostasis due to their role as molecular chaperones. Moreover, the functions of GRPs suggest that they also may play important roles in cancer biology. In this study we investigated the glucose regulated proteins GRP78 (BiP) and GRP94 (GP96) in a series of human esophageal adenocarcinomas to determine their implications in cancer progression and prognosis. Formalin-fixed, paraffin-embedded tissues of primary resected esophageal (Barrett) adenocarcinomas (n = 137) and corresponding normal tissue were investigated. mRNA-gene expression levels of GRP78 and GRP94 were determined by quantitative real-time RT-PCR after mRNA extraction. Protein expression analysis was performed with immunohistochemical staining of the cases, assembled on a tissue micorarray. The results were correlated with pathologic features (pT, pN, G) and overall survival. GRP78 and GRP94 mRNA were expressed in all tumors. The relative gene expression of GRP78 was significantly higher in early cancers (pT1m and pT1sm) as compared to more advanced stages (pT2 and pT3) and normal tissue (p = 0.031). Highly differentiated tumors showed also higher GRP78 mRNA levels compared to moderate and low differentiated tumors (p = 0.035). In addition, patients with higher GRP78 levels tended to show a survival benefit (p = 0.07). GRP94 mRNA-levels showed no association to pathological features or clinical outcome. GRP78 and GRP94 protein expression was detectable by immunohistochemistry in all tumors. There was a significant correlation between a strong GRP78 protein expression and early tumor stages (pT1m and pT1sm, p = 0.038). For GRP94 low to moderate protein expression was significantly associated with earlier tumor stage (p = 0.001) and less lymph node involvement (p = 0.036). Interestingly, the patients with combined strong GRP78 and GRP94 protein expression exclusively showed either early (pT1m or pT1sm) or advanced (pT3) tumor stages and no

  9. Expression and clinical significance of Glucose Regulated Proteins GRP78 (BiP and GRP94 (GP96 in human adenocarcinomas of the esophagus

    Directory of Open Access Journals (Sweden)

    Wester Hans-Juergen

    2008-03-01

    Full Text Available Abstract Background Glucose regulated proteins (GRPs are main regulators of cellular homeostasis due to their role as molecular chaperones. Moreover, the functions of GRPs suggest that they also may play important roles in cancer biology. In this study we investigated the glucose regulated proteins GRP78 (BiP and GRP94 (GP96 in a series of human esophageal adenocarcinomas to determine their implications in cancer progression and prognosis. Methods Formalin-fixed, paraffin-embedded tissues of primary resected esophageal (Barrett adenocarcinomas (n = 137 and corresponding normal tissue were investigated. mRNA-gene expression levels of GRP78 and GRP94 were determined by quantitative real-time RT-PCR after mRNA extraction. Protein expression analysis was performed with immunohistochemical staining of the cases, assembled on a tissue micorarray. The results were correlated with pathologic features (pT, pN, G and overall survival. Results GRP78 and GRP94 mRNA were expressed in all tumors. The relative gene expression of GRP78 was significantly higher in early cancers (pT1m and pT1sm as compared to more advanced stages (pT2 and pT3 and normal tissue (p = 0.031. Highly differentiated tumors showed also higher GRP78 mRNA levels compared to moderate and low differentiated tumors (p = 0.035. In addition, patients with higher GRP78 levels tended to show a survival benefit (p = 0.07. GRP94 mRNA-levels showed no association to pathological features or clinical outcome. GRP78 and GRP94 protein expression was detectable by immunohistochemistry in all tumors. There was a significant correlation between a strong GRP78 protein expression and early tumor stages (pT1m and pT1sm, p = 0.038. For GRP94 low to moderate protein expression was significantly associated with earlier tumor stage (p = 0.001 and less lymph node involvement (p = 0.036. Interestingly, the patients with combined strong GRP78 and GRP94 protein expression exclusively showed either early (pT1m or p

  10. Regulator of G-protein signaling-5 is a marker of hepatic stellate cells and expression mediates response to liver injury.

    Directory of Open Access Journals (Sweden)

    Arya J Bahrami

    Full Text Available Liver fibrosis is mediated by hepatic stellate cells (HSCs, which respond to a variety of cytokine and growth factors to moderate the response to injury and create extracellular matrix at the site of injury. G-protein coupled receptor (GPCR-mediated signaling, via endothelin-1 (ET-1 and angiotensin II (AngII, increases HSC contraction, migration and fibrogenesis. Regulator of G-protein signaling-5 (RGS5, an inhibitor of vasoactive GPCR agonists, functions to control GPCR-mediated contraction and hypertrophy in pericytes and smooth muscle cells (SMCs. Therefore we hypothesized that RGS5 controls GPCR signaling in activated HSCs in the context of liver injury. In this study, we localize RGS5 to the HSCs and demonstrate that Rgs5 expression is regulated during carbon tetrachloride (CCl4-induced acute and chronic liver injury in Rgs5LacZ/LacZ reporter mice. Furthermore, CCl4 treated RGS5-null mice develop increased hepatocyte damage and fibrosis in response to CCl4 and have increased expression of markers of HSC activation. Knockdown of Rgs5 enhances ET-1-mediated signaling in HSCs in vitro. Taken together, we demonstrate that RGS5 is a critical regulator of GPCR signaling in HSCs and regulates HSC activation and fibrogenesis in liver injury.

  11. Human apolipoprotein CIII gene expression is regulated by positive and negative cis-acting elements and tissue-specific protein factors

    International Nuclear Information System (INIS)

    Reue, K.; Leff, T.; Breslow, J.L.

    1988-01-01

    Apolipoprotein CIII (apoCIII) is a major protein constituent of triglyceride-rich lipoproteins and is synthesized primarily in the liver. Cis-acting DNA elements required for liver-specific apoCIII gene transcription were identified with transient expression assays in the human hepatoma (HepG2) and epithelial carcinoma (HeLa) cell lines. In liver cells, 821 nucleotides of the human apoCIII gene 5'-flanking sequence were required for maximum levels of gene expression, while the proximal 110 nucleotides alone were sufficient. No expression was observed in similar studies with HeLa cells. The level of expression was modulated by a combination of positive and negative cis-acting sequences, which interact with distinct sets of proteins from liver and HeLa cell nuclear extracts. The proximal positive regulatory region shares homology with similarly located sequences of other genes strongly expressed in the liver, including α 1 -antitrypsin and other apolipoprotein genes. The negative regulatory region is striking homologous to the human β-interferon gene regulatory element. The distal positive region shares homology with some viral enhancers and has properties of a tissue-specific enhancer. The regulation of the apoCIII gene is complex but shares features with other genes, suggesting shuffling of regulatory elements as a common mechanism for cell type-specific gene expression

  12. Regulating ehrlich and demethiolation pathways for alcohols production by the expression of ubiquitin-protein ligase gene HUWE1.

    Science.gov (United States)

    Zhang, Quan; Jia, Kai-Zhi; Xia, Shi-Tao; Xu, Yang-Hua; Liu, Rui-Sang; Li, Hong-Mei; Tang, Ya-Jie

    2016-02-10

    Ehrlich and demethiolation pathways as two competing branches converted amino acid into alcohols. Controlling both pathways offers considerable potential for industrial applications including alcohols overproduction, flavor-quality control and developing new flavors. While how to regulate ehrlich and demethiolation pathways is still not applicable. Taking the conversion of methionine into methionol and methanethiol for example, we constructed two suppression subtractive cDNA libraries of Clonostachys rosea by using suppression subtractive hybridization (SSH) technology for screening regulators controlling the conversion. E3 ubiquitin-protein ligase gene HUWE1 screened from forward SSH library was validated to be related with the biosynthesis of end products. Overexpressing HUWE1 in C. rosea and S. cerevisiae significantly increased the biosynthesis of methanethiol and its derivatives in demethiolation pathway, while suppressed the biosynthesis of methional and methionol in ehrlich pathway. These results attained the directional regulation of both pathways by overexpressing HUWE1. Thus, HUWE1 has potential to be a key target for controlling and enhancing alcohols production by metabolic engineering.

  13. Protein kinase A and Epac activation by cAMP regulates the expression of glial fibrillary acidic protein in glial cells

    Directory of Open Access Journals (Sweden)

    Sugimoto Naotoshi

    2016-01-01

    Full Text Available Cyclic adenosine monophosphate (cAMP controls differentiation in several types of cells during brain development. However, the molecular mechanism of cAMP-controlled differentiation is not fully understood. We investigated the role of protein kinase A (PKA and exchange protein directly activated by cAMP (Epac on cAMP-induced glial fibrillary acidic protein (GFAP, an astrocyte marker, in cultured glial cells. B92 glial cells were treated with cAMP-elevating drugs, an activator of adenylate cyclase, phosphodiesterase inhibitor and a ß adrenal receptor agonist. These cAMP-elevating agents induced dramatic morphological changes and expression of GFAP. A cAMP analog, 8-Br-cAMP, which activates Epac as well as PKA, induced GFAP expression and morphological changes, while another cAMP analog, 8-CPT-cAMP, which activates Epac with greater efficacy when compared to PKA, induced GFAP expression but very weak morphological changes. Most importantly, the treatment with a PKA inhibitor partially reduced cAMP-induced GFAP expression. Taken together, these results indicate that cAMP-elevating drugs lead to the induction of GFAP via PKA and/or Epac activation in B92 glial cells.

  14. Regulation of gene expression for defensins and lipid transfer protein in Scots pine seedlings by necrotrophic pathogen Alternaria alternata (Fr.

    Directory of Open Access Journals (Sweden)

    Hrunyk Nataliya

    2017-06-01

    Full Text Available Damping-off disease in pine seedling, caused by fungi and oomycetes (Fusarium, Alternaria, Botrytis, Phytophthora and other species, is one of the most dangerous diseases in conifer nurseries and greenhouses worldwide. Alternaria alternata is a necrotrophic pathogen, which causes early blight in higher plants and results in massive economic losses in agro-industry as well as in forestry. Pine seedlings that lack strong lignificated and suberized cell walls at early stages of their growth are vulnerable to damping-off disease. So, triggering the synthesis of antimicrobial compounds, such as phytoalexins, anticipins and pathogenesis-related (PR proteins, is the main defense strategy to confine pathogens at early stages of pine ontogenesis. Defensins and lipid transfer proteins are members of two PR-protein families (PR-12 and PR-14 respectively and possess antimicrobial activities in vitro through contact toxicity, and the involvement in defense signalling. In this work, we describe the changes in the expression levels of four defensin genes and lipid transfer protein in Scots pine seedlings infected with A. alternata. The expression levels of PsDef1 and PsDef2 increased at 48 h.p.i. (hours post inoculation. The levels of PsDef4 transcripts have increased after 6 and 24 hours. Notably, at 48 h.p.i., the level of PsDef4 transcripts was decreased by 1.2 times compared to control. The level of PsDef3 transcripts was reduced at all three time points. On the other hand, the level of PsLTP1 transcripts increased at 6 h and 48 h.p.i.; while at 24 h.p.i., it decreased by 20% when compared to the control sample. Our results suggest that defensins and lipid transfer protein are involved in the defense response of young Scots pine to necrotrophic pathogen. Thus, those genes can be used as the molecular markers in forestry selection and development of the ecologically friendly remedies for coniferous seedlings cultivation in greenhouses and nurseries.

  15. Hypoxia regulates the expression and localization of CCAAT/enhancer binding protein α by hypoxia inducible factor-1α in bladder transitional carcinoma cells.

    Science.gov (United States)

    Xue, Mei; Li, Xu; Chen, Wei

    2015-08-01

    Hypoxia inducible factor-1α (HIF-1α) is overexpressed in various types of solid tumor in humans, including bladder cancer. HIF-1α regulates the expression of a series of genes, which are involved in cell proliferation, differentiation, apoptosis, angiogenesis, migration and invasion and represents a potential therapeutic target for the treatment of human cancer. Despite extensive investigation of the effects of HIF-1α in the progression and metastasis of bladder cancer, the possible regulatory mechanisms underlying the effects of HIF-1α on bladder cancer cell proliferation and differentiation remain to be elucidated. It has been suggested that the transcription factor CCAAT/enhancer binding protein α (C/EBPα) acts as a tumor suppressor in several types of cancer cell, which are involved in regulating cell differentiation, proliferation and apoptosis. The present study confirmed that, in bladder cancer cells, the expression and localization of C/EBPα was regulated by hypoxia through an HIF-1α -dependent mechanism, which may be significant in bladder cancer cell proliferation and differentiation. The 5637 and T24 bladder cancer cell lines were incubated under normoxic and hypoxic conditions. The expression levels of HIF-1α and C/EBPα were detected by reverse transcription-quantitative polymerase chain reaction, western blotting and immunofluorescence analysis. The results revealed that, under hypoxic conditions, the protein expression levels of HIF-1α were markedly upregulated, but the mRNA levels were not altered. However, the mRNA and protein levels of C/EBPα were significantly reduced. The present study further analyzed the subcellular localization of C/EBPα, which was markedly decreased in the nuclei under hypoxic conditions. Following HIF-1α small interference RNA silencing of HIF-1α, downregulation of C/EBPα was prevented in the bladder cancer cells cultured under hypoxic conditions. In addition, groups of cells treated with 3-(5'-hydroxymethyl

  16. MicroRNA-15b regulates reversion-inducing cysteine-rich protein with Kazal motifs (RECK) expression in human uterine leiomyoma.

    Science.gov (United States)

    Guan, Yichun; Guo, Lankai; Zukerberg, Lawrence; Rueda, Bo R; Styer, Aaron K

    2016-08-17

    Human uterine leiomyoma (fibroids; LYO) are the most common benign neoplasms in reproductive-aged women. Dysregulated extracellular matrix and irregular LYO reversion-inducing cysteine-rich protein with Kazal motifs (RECK) expression are thought to be mediated by aberrant microRNA (miR) expression. The relationship of miR-15b and RECK expression in LYO has not been studied. The expression levels of miR-15b and RECK were determined by quantitative RT-PCR, Western blot, and immunohistochemistry in cultures derived from commercial primary leiomyoma (cpLYO) and myometrial (cpMYO) cell lines and leiomyoma (pLYO) and myometrium (pMYO) tissue from surgical samples respectively. The relationship between miR-15b and RECK expression in cpLYO and pLYO (compared to their respective myometrial controls) was evaluated following transfection of cell cultures with either miR-15b mimic or inhibitor. Elevated levels of miR-15b were observed in cpLYO (2.82-fold; p = 0.04) and pLYO cell (1.30-fold; p = 0.0001) cultures respectively compared to corresponding MYO cell controls. Following transfection with miR-15b mimic, cpLYO cells (0.62-fold; p < 0.0001) and pLYO cells (0.68-fold; p < 0.0001) demonstrated reduced RECK protein expression. Following transfection with miR-15b inhibitor, cpLYO cells (1.20-fold; p < 0.0001) and pLYO cells (1.31-fold; p = 0.0007) demonstrated elevated RECK protein expression. RECK protein expression was reduced in pLYO tissues (0.73-fold; p < 0.0001) and pLYO (0.47-fold; p = 0.047) cells when compared to the corresponding MYO tissue controls. Our findings suggest that miR-15b negatively regulates RECK expression in LYO, and increased miR-15b and decreased RECK expression may contribute to the pathobiology of LYO. The functional significance of miR-15b and RECK expression warrants further investigation as potential therapeutic targets for the treatment of human LYO.

  17. [Cloning and expression analysis of a zinc-regulated transporters (ZRT), iron-regulated transporter (IRT)-like protein encoding gene in Dendrobium officinale].

    Science.gov (United States)

    Zhang, Gang; Li, Yi-Min; Li, Biao; Zhang, Da-Wei; Guo, Shun-Xing

    2015-01-01

    The zinc-regulated transporters (ZRT), iron-regulated transporter (IRT)-like protein (ZIP) plays an important role in the growth and development of plant. In this study, a full length cDNA of ZIP encoding gene, designed as DoZIP1 (GenBank accession KJ946203), was identified from Dendrobium officinale using RT-PCR and RACE. Bioinformatics analysis showed that DoZIP1 consisted of a 1,056 bp open reading frame (ORF) encoded a 351-aa protein with a molecular weight of 37.57 kDa and an isoelectric point (pI) of 6.09. The deduced DoZIP1 protein contained the conserved ZIP domain, and its secondary structure was composed of 50.71% alpha helix, 11.11% extended strand, 36.18% random coil, and beta turn 1.99%. DoZIP1 protein exhibited a signal peptide and eight transmembrane domains, presumably locating in cell membrane. The amino acid sequence had high homology with ZIP proteins from Arabidopsis, alfalfa and rice. A phylogenetic tree analysis demonstrated that DoZIP1 was closely related to AtZIP10 and OsZIP3, and they were clustered into one clade. Real time quantitative PCR analysis demonstrated that the transcription level of DoZIP1 in D. officinale roots was the highest (4.19 fold higher than that of stems), followed by that of leaves (1.12 fold). Molecular characters of DoZIP1 will be useful for further functional determination of the gene involving in the growth and development of D. officinale.

  18. Microarray analysis of androgen-regulated gene expression in testis: the use of the androgen-binding protein (ABP-transgenic mouse as a model

    Directory of Open Access Journals (Sweden)

    Grossman Gail

    2005-12-01

    Full Text Available Abstract Background Spermatogenesis is an androgen-dependent process, yet the molecular mechanisms of androgens' actions in testis are poorly understood. Transgenic mice overexpressing rat androgen-binding protein (ABP in their testes have reduced levels of intratesticular androgens and, as a result, show a progressive impairment of spermatogenesis. We used this model to characterize changes in global gene expression in testis in response to reduced bioavailability of androgens. Methods Total RNA was extracted from testes of 30-day old transgenic and wild-type control mice, converted to cRNA, labeled with biotin, and hybridized to oligonucleotide microarrays. Microarray results were confirmed by real-time reverse transcription polymerase chain reaction. Results Three-hundred-eighty-one genes (3.05% of all transcripts represented on the chips were up-regulated and 198 genes (1.59% were down-regulated by at least a factor of 2 in the androgen-deficient animals compared to controls. Genes encoding membrane proteins, intracellular signaling molecules, enzymes, proteins participating in the immune response, and those involved in cytoskeleton organization were significantly overrepresented in the up-regulated group. Among the down-regulated transcripts, those coding for extracellular proteins were overrepresented most dramatically, followed by those related to proteolysis, cell adhesion, immune response, and growth factor, cytokine, and ion channel activities. Transcripts with the greatest potential impact on cellular activities included several transcription factors, intracellular signal transducers, secreted signaling molecules and enzymes, and various cell surface molecules. Major nodes in the up-regulated network were IL-6, AGT, MYC, and A2M, those in the down-regulated network were IL-2, -4, and -10, MAPK8, SOCS1, and CREB1. Conclusion Microarray analysis followed by gene ontology profiling and connectivity analysis identified several functional

  19. Regulation of p53, nuclear factor κB and cyclooxygenase-2 expression by bromelain through targeting mitogen-activated protein kinase pathway in mouse skin

    International Nuclear Information System (INIS)

    Kalra, Neetu; Bhui, Kulpreet; Roy, Preeti; Srivastava, Smita; George, Jasmine; Prasad, Sahdeo; Shukla, Yogeshwer

    2008-01-01

    Bromelain is a pharmacologically active compound, present in stems and immature fruits of pineapples (Ananas cosmosus), which has been shown to have anti-edematous, anti-inflammatory, anti-thrombotic and anti-metastatic properties. In the present study, antitumorigenic activity of bromelain was recorded in 7,12-dimethylbenz(a)anthracene (DMBA)-initiated and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted 2-stage mouse skin model. Results showed that bromelain application delayed the onset of tumorigenesis and reduced the cumulative number of tumors, tumor volume and the average number of tumors/mouse. To establish a cause and effect relationship, we targeted the proteins involved in the cell death pathway. Bromelain treatment resulted in upregulation of p53 and Bax and subsequent activation of caspase 3 and caspase 9 with concomitant decrease in antiapoptotic protein Bcl-2 in mouse skin. Since persistent induction of cyclooxygenase-2 (Cox-2) is frequently implicated in tumorigenesis and is regulated by nuclear factor-kappa B (NF-κB), we also investigated the effect of bromelain on Cox-2 and NF-κB expression. Results showed that bromelain application significantly inhibited Cox-2 and inactivated NF-κB by blocking phosphorylation and subsequent degradation of IκBα. In addition, bromelain treatment attenuated DMBA-TPA-induced phosphorylation of extracellular signal-regulated protein kinase (ERK1/2), mitogen-activated protein kinase (MAPK) and Akt. Taken together, we conclude that bromelain induces apoptosis-related proteins along with inhibition of NF-κB-driven Cox-2 expression by blocking the MAPK and Akt/protein kinase B signaling in DMBA-TPA-induced mouse skin tumors, which may account for its anti-tumorigenic effects

  20. The XylS/Pm regulator/promoter system and its use in fundamental studies of bacterial gene expression, recombinant protein production and metabolic engineering.

    Science.gov (United States)

    Gawin, Agnieszka; Valla, Svein; Brautaset, Trygve

    2017-07-01

    The XylS/Pm regulator/promoter system originating from the Pseudomonas putida TOL plasmid pWW0 is widely used for regulated low- and high-level recombinant expression of genes and gene clusters in Escherichia coli and other bacteria. Induction of this system can be graded by using different cheap benzoic acid derivatives, which enter cells by passive diffusion, operate in a dose-dependent manner and are typically not metabolized by the host cells. Combinatorial mutagenesis and selection using the bla gene encoding β-lactamase as a reporter have demonstrated that the Pm promoter, the DNA sequence corresponding to the 5' untranslated end of its cognate mRNA and the xylS coding region can be modified and improved relative to various types of applications. By combining such mutant genetic elements, altered and extended expression profiles were achieved. Due to their unique properties, obtained systems serve as a genetic toolbox valuable for heterologous protein production and metabolic engineering, as well as for basic studies aiming at understanding fundamental parameters affecting bacterial gene expression. The approaches used to modify XylS/Pm should be adaptable for similar improvements also of other microbial expression systems. In this review, we summarize constructions, characteristics, refinements and applications of expression tools using the XylS/Pm system. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  1. Pentoxifylline Regulates Plasminogen Activator Inhibitor-1 Expression and Protein Kinase A Phosphorylation in Radiation-Induced Lung Fibrosis

    Directory of Open Access Journals (Sweden)

    Jong-Geol Lee

    2017-01-01

    Full Text Available Purpose. Radiation-induced lung fibrosis (RILF is a serious late complication of radiotherapy. In vitro studies have demonstrated that pentoxifylline (PTX has suppressing effects in extracellular matrix production in fibroblasts, while the antifibrotic action of PTX alone using clinical dose is yet unexplored. Materials and Methods. We used micro-computed tomography (micro-CT and histopathological analysis to evaluate the antifibrotic effects of PTX in a rat model of RILF. Results. Micro-CT findings showed that lung density, volume loss, and mediastinal shift are significantly increased at 16 weeks after irradiation. Simultaneously, histological analysis demonstrated thickening of alveolar walls, destruction of alveolar structures, and excessive collagen deposition in the irradiated lung. PTX treatment effectively attenuated the fibrotic changes based on both micro-CT and histopathological analyses. Western analysis also revealed increased levels of plasminogen activator inhibitor- (PAI- 1 and fibronectin (FN and PTX treatment reduced expression of PAI-1 and FN by restoring protein kinase A (PKA phosphorylation but not TGF-β/Smad in both irradiated lung tissues and epithelial cells. Conclusions. Our results demonstrate the antifibrotic effect of PTX on radiation-induced lung fibrosis and its effect on modulation of PKA and PAI-1 expression as possible antifibrotic mechanisms.

  2. Modifications in cell cycle kinetics and in expression of G1 phase-regulating proteins in human amniotic cells after exposure to electromagnetic fields and ionizing radiation.

    Science.gov (United States)

    Lange, S; Viergutz, T; Simkó, M

    2004-10-01

    Low-frequency electromagnetic fields are suspected of being involved in carcinogenesis, particularly in processes that could be related to cancer promotion. Because development of cancer is associated with deregulated cell growth and we previously observed a magnetic field-induced decrease in DNA synthesis [Lange et al. (2002) Alterations in the cell cycle and in the protein level of cyclin D1p, 21CIP1, and p16INK4a after exposure to 50 HZ. MF in human cells. Radiat. Environ. Biophys.41, 131], this study aims to document the influence of 50 Hz, 1 mT magnetic fields (MF), with or without initial gamma-ionizing radiation (IR), on the following cell proliferation-relevant parameters in human amniotic fluid cells (AFC): cell cycle distribution, expression of the G1 phase-regulating proteins Cdk4, cyclin D1, p21CIP1 and p16INK4a, and Cdk4 activity. While IR induced a G1 delay and a dose-dependent G2 arrest, no discernible changes in cell cycle kinetics were observed due to MF exposure. However, a significant decrease in the protein expression of cyclin D1 and an increase in p21CIP1- and p16INK4a-expression could be detected after exposure to MF alone. IR-exposure caused an augmentation of p21CIP1- and p16INK4a- levels as well, but did not alter cyclin D1 expression. A slight diminution of Cdk4 activity was noticed after MF exposure only, indicating that Cdk4 appears not to act as a mediator of MF- or IR-induced changes in the cell cycle of AFC cells. Co-exposure to MF/IR affected neither cell cycle distribution nor protein expression or kinase activity additionally or synergistically, and therefore MF seems not to modify the mutagenic potency of IR.

  3. Staphylococcus aureus regulates the expression and production of the staphylococcal superantigen-like secreted proteins in a Rot-dependent manner.

    Science.gov (United States)

    Benson, Meredith A; Lilo, Sarit; Wasserman, Gregory A; Thoendel, Matthew; Smith, Amanda; Horswill, Alexander R; Fraser, John; Novick, Richard P; Shopsin, Bo; Torres, Victor J

    2011-08-01

    Staphylococcus aureus overproduces a subset of immunomodulatory proteins known as the staphylococcal superantigen-like proteins (Ssls) under conditions of pore-mediated membrane stress. In this study we demonstrate that overproduction of Ssls during membrane stress is due to the impaired activation of the two-component module of the quorum-sensing accessory gene regulator (Agr) system. Agr-dependent repression of ssl expression is indirect and mediated by the transcription factor repressor of toxins (Rot). Surprisingly, we observed that Rot directly interacts with and activates the ssl promoters. The role of Agr and Rot as regulators of ssl expression was observed across several clinically relevant strains, suggesting that overproduction of immunomodulatory proteins benefits agr-defective strains. In support of this notion, we demonstrate that Ssls contribute to the residual virulence of S. aureus lacking agr in a murine model of systemic infection. Altogether, these results suggest that S. aureus compensates for the inactivation of Agr by producing immunomodulatory exoproteins that could protect the bacterium from host-mediated clearance. © 2011 Blackwell Publishing Ltd.

  4. Androgen-androgen receptor system improves chronic inflammatory conditions by suppressing monocyte chemoattractant protein-1 gene expression in adipocytes via transcriptional regulation

    Energy Technology Data Exchange (ETDEWEB)

    Morooka, Nobukatsu, E-mail: amorooka@gunma-u.ac.jp [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan); Ueguri, Kei [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan); Yee, Karen Kar Lye [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan); Human Resources Cultivation Center, Gunma University, 1-5-1 Tenjin-cho, Kiryushi, Gunma, 376-8515 (Japan); Yanase, Toshihiko [Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University, Jonan-ku, Fukuoka, 814-0180 (Japan); Sato, Takashi [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan)

    2016-09-02

    Age-related decreases in sex hormones are closely related to chronic inflammation in obesity and metabolic diseases. Particularly, the molecular basis of androgen activity in regulating inflammation and controlling metabolism remains largely unknown. Obese adipocytes secrete monocyte chemoattractant protein-1 (MCP-1), a key chemokine that promotes the infiltration of monocytes/macrophages into adipose tissue, thereby leading to metabolic disorders. Here, we studied the role of androgen-androgen receptor (AR) action in regulating MCP-1 expression in adipose tissue. We observed the induction of Mcp-1 expression in 3T3-L1 adipocytes co-cultured with RAW264.7 macrophages. Additionally, Mcp-1 expression was upregulated by culturing in conditioned medium derived from inflammatory macrophages (M1-Mφ) containing tumor necrosis factor-alpha (TNF-α). We found that sex hormones downregulated TNF-α-induced Mcp-1 and interleukin (Il)-6 expression in 3T3-L1 adipocytes. Furthermore, luciferase-reporter analysis indicated that MCP-1 promoter activity was predominantly suppressed by dihydrotestosterone (DHT)-AR interactions through functional canonical nuclear factor-kappa B (NF-κB) sites, whereas non-canonical NF-κB site containing important flanking sequences exhibited minor contributions to DHT-AR transcriptional repression. These findings suggested that androgen-AR suppressed obesity-induced chronic inflammation in adipose tissue. - Highlights: • DHT, non-aromatizable androgen suppresses Mcp-1 expression in adipocytes. • Mcp-1 transcription was negatively regulated by DHT-AR action. • DHT-AR selectively regulates Mcp-1 transcription through distinct NF-κB sites.

  5. Androgen-androgen receptor system improves chronic inflammatory conditions by suppressing monocyte chemoattractant protein-1 gene expression in adipocytes via transcriptional regulation

    International Nuclear Information System (INIS)

    Morooka, Nobukatsu; Ueguri, Kei; Yee, Karen Kar Lye; Yanase, Toshihiko; Sato, Takashi

    2016-01-01

    Age-related decreases in sex hormones are closely related to chronic inflammation in obesity and metabolic diseases. Particularly, the molecular basis of androgen activity in regulating inflammation and controlling metabolism remains largely unknown. Obese adipocytes secrete monocyte chemoattractant protein-1 (MCP-1), a key chemokine that promotes the infiltration of monocytes/macrophages into adipose tissue, thereby leading to metabolic disorders. Here, we studied the role of androgen-androgen receptor (AR) action in regulating MCP-1 expression in adipose tissue. We observed the induction of Mcp-1 expression in 3T3-L1 adipocytes co-cultured with RAW264.7 macrophages. Additionally, Mcp-1 expression was upregulated by culturing in conditioned medium derived from inflammatory macrophages (M1-Mφ) containing tumor necrosis factor-alpha (TNF-α). We found that sex hormones downregulated TNF-α-induced Mcp-1 and interleukin (Il)-6 expression in 3T3-L1 adipocytes. Furthermore, luciferase-reporter analysis indicated that MCP-1 promoter activity was predominantly suppressed by dihydrotestosterone (DHT)-AR interactions through functional canonical nuclear factor-kappa B (NF-κB) sites, whereas non-canonical NF-κB site containing important flanking sequences exhibited minor contributions to DHT-AR transcriptional repression. These findings suggested that androgen-AR suppressed obesity-induced chronic inflammation in adipose tissue. - Highlights: • DHT, non-aromatizable androgen suppresses Mcp-1 expression in adipocytes. • Mcp-1 transcription was negatively regulated by DHT-AR action. • DHT-AR selectively regulates Mcp-1 transcription through distinct NF-κB sites.

  6. [Low-molecular-weight regulators of biogenic polyamine metabolism affect cytokine production and expression of hepatitis С virus proteins in Huh7.5 human hepatocarcinoma cells].

    Science.gov (United States)

    Masalova, O V; Lesnova, E I; Samokhvalov, E I; Permyakova, K Yu; Ivanov, A V; Kochetkov, S N; Kushch, A A

    2017-01-01

    Hepatitis C virus (HCV) induces the expression of the genes of proinflammatory cytokines, the excessive production of which may cause cell death, and contribute to development of liver fibrosis and hepatocarcinoma. The relationship between cytokine production and metabolic disorders in HCV-infected cells remains obscure. The levels of biogenic polyamines, spermine, spermidine, and their precursor putrescine, may be a potential regulator of these processes. The purpose of the present work was to study the effects of the compounds which modulate biogenic polyamines metabolism on cytokine production and HCV proteins expression. Human hepatocarcinoma Huh7.5 cells have been transfected with the plasmids that encode HCV proteins and further incubated with the following low-molecular compounds that affect different stages of polyamine metabolism: (1) difluoromethylornithine (DFMO), the inhibitor of ornithine decarboxylase, the enzyme that catalyzes the biosynthesis of polyamines; (2) N,N'-bis(2,3-butane dienyl)-1,4-diaminobutane (MDL72.527), the inhibitor of proteins involved in polyamine degradation; and (3) synthetic polyamine analog N^(I),N^(II)-diethylnorspermine (DENSpm), an inducer of polyamine degradation enzyme. The intracellular accumulation and secretion of cytokines (IL-6, IL-1β, TNF-α, and TGF-β) was assessed by immunocytochemistry and in the immunoenzyme assay, while the cytokine gene expression was studied using reverse transcription and PCR. The effects of the compounds under analysis on the expression of HCV proteins were analyzed using the indirect immunofluorescence with anti-HCV monoclonal antibodies. It has been demonstrated that, in cells transfected with HCV genes, DFMO reduces the production of three out of four tested cytokines, namely, TNF-α and TGF-β in cells that express HCV core, Е1Е2, NS3, NS5A, and NS5B proteins, and IL-1β in the cells that express HCV core, Е1Е2, and NS3 proteins. MDL72527 and DENSpm decreased cytokine production

  7. Cloning and Characterization of an Outer Membrane Protein of Vibrio vulnificus Required for Heme Utilization: Regulation of Expression and Determination of the Gene Sequence

    Science.gov (United States)

    Litwin, Christine M.; Byrne, Burke L.

    1998-01-01

    Vibrio vulnificus is a halophilic, marine pathogen that has been associated with septicemia and serious wound infections in patients with iron overload and preexisting liver disease. For V. vulnificus, the ability to acquire iron from the host has been shown to correlate with virulence. V. vulnificus is able to use host iron sources such as hemoglobin and heme. We previously constructed a fur mutant of V. vulnificus which constitutively expresses at least two iron-regulated outer membrane proteins, of 72 and 77 kDa. The N-terminal amino acid sequence of the 77-kDa protein purified from the V. vulnificus fur mutant had 67% homology with the first 15 amino acids of the mature protein of the Vibrio cholerae heme receptor, HutA. In this report, we describe the cloning, DNA sequence, mutagenesis, and analysis of transcriptional regulation of the structural gene for HupA, the heme receptor of V. vulnificus. DNA sequencing of hupA demonstrated a single open reading frame of 712 amino acids that was 50% identical and 66% similar to the sequence of V. cholerae HutA and similar to those of other TonB-dependent outer membrane receptors. Primer extension analysis localized one promoter for the V. vulnificus hupA gene. Analysis of the promoter region of V. vulnificus hupA showed a sequence homologous to the consensus Fur box. Northern blot analysis showed that the transcript was strongly regulated by iron. An internal deletion in the V. vulnificus hupA gene, done by using marker exchange, resulted in the loss of expression of the 77-kDa protein and the loss of the ability to use hemin or hemoglobin as a source of iron. The hupA deletion mutant of V. vulnificus will be helpful in future studies of the role of heme iron in V. vulnificus pathogenesis. PMID:9632577

  8. Increased expression of protein kinase A inhibitor alpha (PKI-alpha) and decreased PKA-regulated genes in chronic intermittent alcohol exposure.

    Science.gov (United States)

    Repunte-Canonigo, Vez; Lutjens, Robert; van der Stap, Lena D; Sanna, Pietro Paolo

    2007-03-23

    Intermittent models of alcohol exposure that mimic human patterns of alcohol consumption produce profound physiological and biochemical changes and induce rapid increases in alcohol self-administration. We used high-density oligonucleotide microarrays to investigate gene expression changes during chronic intermittent alcohol exposure in three brain regions that receive mesocorticolimbic dopaminergic projections and that are believed to be involved in alcohol's reinforcing actions: the medial prefrontal cortex, the nucleus accumbens and the amygdala. An independent replication of the experiment was used for RT-PCR validation of the microarray results. The protein kinase A inhibitor alpha (PKI-alpha, Pkia), a member of the endogenous PKI family implicated in reducing nuclear PKA activity, was found to be increased in all three regions tested. Conversely, we observed a downregulation of the expression of several PKA-regulated transcripts in one or more of the brain regions studied, including the activity and neurotransmitter-regulated early gene (Ania) - 1, -3, -7, -8, the transcription factors Egr1 and NGFI-B (Nr4a1) and the neuropeptide NPY. Reduced expression of PKA-regulated genes in mesocorticolimbic projection areas may have motivational significance in the rapid increase in alcohol self-administration induced by intermittent alcohol exposure.

  9. Ectopic expression of X-linked lymphocyte-regulated protein pM1 renders tumor cells resistant to antitumor immunity.

    Science.gov (United States)

    Kang, Tae Heung; Noh, Kyung Hee; Kim, Jin Hee; Bae, Hyun Cheol; Lin, Ken Y; Monie, Archana; Pai, Sara I; Hung, Chien-Fu; Wu, T-C; Kim, Tae Woo

    2010-04-15

    Tumor immune escape is a major obstacle in cancer immunotherapy, but the mechanisms involved remain poorly understood. We have previously developed an immune evasion tumor model using an in vivo immune selection strategy and revealed Akt-mediated immune resistance to antitumor immunity induced by various cancer immunotherapeutic agents. In the current study, we used microarray gene analysis to identify an Akt-activating candidate molecule overexpressed in immune-resistant tumors compared with parental tumors. X-linked lymphocyte-regulated protein pM1 (XLR) gene was the most upregulated in immune-resistant tumors compared with parental tumor cells. Furthermore, the retroviral transduction of XLR in parental tumor cells led to activation of Akt, resulting in upregulation of antiapoptotic proteins and the induction of immune resistance phenotype in parental tumor cells. In addition, we found that transduction of parental tumor cells with other homologous genes from the mouse XLR family, such as synaptonemal complex protein 3 (SCP3) and XLR-related, meiosis-regulated protein (XMR) and its human counterpart of SCP3 (hSCP3), also led to activation of Akt, resulting in the upregulation of antiapoptotic proteins and induction of immune resistance phenotype. Importantly, characterization of a panel of human cervical cancers revealed relatively higher expression levels of hSCP3 in human cervical cancer tissue compared with normal cervical tissue. Thus, our data indicate that ectopic expression of XLR and its homologues in tumor cells represents a potentially important mechanism for tumor immune evasion and serves as a promising molecular target for cancer immunotherapy. (c) 2010 AACR.

  10. Distinct regulation of c-myb gene expression by HoxA9, Meis1 and Pbx proteins in normal hematopoietic progenitors and transformed myeloid cells

    International Nuclear Information System (INIS)

    Dassé, E; Volpe, G; Walton, D S; Wilson, N; Del Pozzo, W; O'Neill, L P; Slany, R K; Frampton, J; Dumon, S

    2012-01-01

    The proto-oncogenic protein c-Myb is an essential regulator of hematopoiesis and is frequently deregulated in hematological diseases such as lymphoma and leukemia. To gain insight into the mechanisms underlying the aberrant expression of c-Myb in myeloid leukemia, we analyzed and compared c-myb gene transcriptional regulation using two cell lines modeling normal hematopoietic progenitor cells (HPCs) and transformed myelomonocytic blasts. We report that the transcription factors HoxA9, Meis1, Pbx1 and Pbx2 bind in vivo to the c-myb locus and maintain its expression through different mechanisms in HPCs and leukemic cells. Our analysis also points to a critical role for Pbx2 in deregulating c-myb expression in murine myeloid cells cotransformed by the cooperative activity of HoxA9 and Meis1. This effect is associated with an intronic positioning of epigenetic marks and RNA polymerase II binding in the orthologous region of a previously described alternative promoter for c-myb. Taken together, our results could provide a first hint to explain the abnormal expression of c-myb in leukemic cells

  11. ERG protein expression over time

    DEFF Research Database (Denmark)

    Berg, Kasper Drimer; Brasso, Klaus; Thomsen, Frederik Birkebæk

    2015-01-01

    AIMS: We evaluated the consistency in ERG protein expression from diagnostic specimens through rebiopsies to radical prostatectomies in patients with clinically localised prostate cancer to investigate the validity of ERG status in biopsies. METHODS: ERG expression was assessed by immunohistochem......AIMS: We evaluated the consistency in ERG protein expression from diagnostic specimens through rebiopsies to radical prostatectomies in patients with clinically localised prostate cancer to investigate the validity of ERG status in biopsies. METHODS: ERG expression was assessed...

  12. Expression of adenosine 5'-monophosphate-Activated protein kinase (AMPK) in ovine testis (Ovis aries): In vivo regulation by nutritional state.

    Science.gov (United States)

    Taibi, N; Dupont, J; Bouguermouh, Z; Froment, P; Ramé, C; Anane, A; Amirat, Z; Khammar, F

    2017-03-01

    In the present study, we identified AMPK and investigated its potential role in steroidogenesis in vivo in the ovine testis in response to variation in nutritional status (fed control vs. restricted). We performed immunoblotting to show that both active and non-active forms of AMPK exist in ovine testis and liver. In testis, we confirmed these results by immunohistochemistry. We found a correlation between ATP (Adenosine-Triphosphate) levels and the expression of AMPK in liver. Also, low and high caloric diets induce isoform-dependent AMPK expression, with an increase in α2, ß1ß2 and γ1 activity levels. Although the restricted group exhibited an increase in lipid balance, only the triglyceride and HC-VLDL (Cholesterol-Very low density lipoprotein) fractions showed significant differences between groups, suggesting an adaptive mechanism. Moreover, the relatively low rate of non-esterified fatty acid released into the circulation implies re-esterification to compensate for the physiological need. In the fed control group, AMPK activates the production of testosterone in Leydig cells; this is, in turn, associated with an increase in the expression of 3ß-HSD (3 beta hydroxy steroid deshydrogenase), p450scc (Cholesterol side-chain cleavage enzyme) and StAR (Steroidogenic acute regulatory protein) proteins induced by decreased MAPK ERK½ (Extracellular signal-regulated kinase -Mitogen-activated protein kinase) phosphorylation. In contrast, in the restricted group, testosterone secretion was reduced but intracellular cholesterol concentration was not. Furthermore, the combination of high levels of lipoproteins and emergence of the p38 MAP kinase pathway suggest the involvement of pro-inflammatory cytokines, as confirmed by transcriptional repression of the StAR protein. Taken together, these results suggest that AMPK expression is tissue dependent. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Lamprey Prohibitin2 Arrest G2/M Phase Transition of HeLa Cells through Down-regulating Expression and Phosphorylation Level of Cell Cycle Proteins.

    Science.gov (United States)

    Shi, Ying; Guo, Sicheng; Wang, Ying; Liu, Xin; Li, Qingwei; Li, Tiesong

    2018-03-02

    Prohibitin 2(PHB2) is a member of the SFPH trans-membrane family proteins. It is a highly conserved and functionally diverse protein that plays an important role in preserving the structure and function of the mitochondria. In this study, the lamprey PHB2 gene was expressed in HeLa cells to investigate its effect on cell proliferation. The effect of Lm-PHB2 on the proliferation of HeLa cells was determined by treating the cells with pure Lm-PHB2 protein followed by MTT assay. Using the synchronization method with APC-BrdU and PI double staining revealed rLm-PHB2 treatment induced the decrease of both S phase and G0/G1 phase and then increase of G2/M phase. Similarly, cells transfected with pEGFP-N1-Lm-PHB2 also exhibited remarkable reduction in proliferation. Western blot and quantitative real-time PCR(qRT-PCR) assays suggested that Lm-PHB2 caused cell cycle arrest in HeLa cells through inhibition of CDC25C and CCNB1 expression. According to our western blot analysis, Lm-PHB2 was also found to reduce the expression level of Wee1 and PLK1 and the phosphorylation level of CCNB1, CDC25C and CDK1 in HeLa cells. Lamprey prohibitin 2 could arrest G2/M phase transition of HeLa cells through down-regulating expression and phosphorylation level of cell cycle proteins.

  14. Thyroid Hormone Receptor β (TRβ) and Liver X Receptor (LXR) Regulate Carbohydrate-response Element-binding Protein (ChREBP) Expression in a Tissue-selective Manner*

    Science.gov (United States)

    Gauthier, Karine; Billon, Cyrielle; Bissler, Marie; Beylot, Michel; Lobaccaro, Jean-Marc; Vanacker, Jean-Marc; Samarut, Jacques

    2010-01-01

    Thyroid hormone (TR) and liver X (LXR) receptors are transcription factors involved in lipogenesis. Both receptors recognize the same consensus DNA-response element in vitro. It was previously shown that their signaling pathways interact in the control of cholesterol elimination in the liver. In the present study, carbohydrate-response element-binding protein (ChREBP), a major transcription factor controlling the activation of glucose-induced lipogenesis in liver, is characterized as a direct target of thyroid hormones (TH) in liver and white adipose tissue (WAT), the two main lipogenic tissues in mice. Using genetic and molecular approaches, ChREBP is shown to be specifically regulated by TRβ but not by TRα in vivo, even in WAT where both TR isoforms are expressed. However, this isotype specificity is not found in vitro. This TRβ specific regulation correlates with the loss of TH-induced lipogenesis in TRβ−/− mice. Fasting/refeeding experiments show that TRβ is not required for the activation of ChREBP expression particularly marked in WAT following refeeding. However, TH can stimulate ChREBP expression in WAT even under fasting conditions, suggesting completely independent pathways. Because ChREBP has been described as an LXR target, the interaction of LXR and TRβ in ChREBP regulation was assayed both in vitro and in vivo. Each receptor recognizes a different response element on the ChREBP promoter, located only 8 bp apart. There is a cross-talk between LXR and TRβ signaling on the ChREBP promoter in liver but not in WAT where LXR does not regulate ChREBP expression. The molecular basis for this cross-talk has been determined in in vitro systems. PMID:20615868

  15. Zac1, an Sp1-like protein, regulates human p21{sup WAF1/Cip1} gene expression in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pei-Yao [Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, ROC (China); Hsieh, Tsai-Yuan [Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, ROC (China); Liu, Shu-Ting; Chang, Yung-Lung [Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan, ROC (China); Lin, Wei-Shiang [Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, ROC (China); Wang, Wei-Ming, E-mail: ades0431@ms38.hinet.net [Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, ROC (China); Department of Dermatology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, ROC (China); Huang, Shih-Ming, E-mail: shihming@ndmctsgh.edu.tw [Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, ROC (China); Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan, ROC (China)

    2011-12-10

    Zac1 functions as both a transcription factor and a transcriptional cofactor for p53, nuclear receptors (NRs) and NR coactivators. Zac1 might also act as a transcriptional repressor via the recruitment of histone deacetylase 1 (HDAC1). The ability of Zac1 to interact directly with GC-specific elements indicates that Zac1 possibly binds to Sp1-responsive elements. In the present study, our data show that Zac1 is able to interact directly with the Sp1-responsive element in the p21{sup WAF1/Cip1} gene promoter and enhance the transactivation activity of Sp1 through direct physical interaction. Our data further demonstrate that Zac1 might enhance Sp1-specific promoter activity by interacting with the Sp1-responsive element, affecting the transactivation activity of Sp1 via a protein-protein interaction, or competing the HDAC1 protein away from the pre-existing Sp1/HDAC1 complex. Finally, the synergistic regulation of p21{sup WAF1/Cip1} gene expression by Zac1 and Sp1 is mediated by endogenous p53 protein and p53-responsive elements in HeLa cells. Our work suggests that Zac1 might serve as an Sp1-like protein that directly interacts with the Sp1-responsive element to oligomerize with and/or to coactivate Sp1.

  16. Constraint-induced movement therapy promotes motor function recovery and downregulates phosphorylated extracellular regulated protein kinase expression in ischemic brain tissue of rats

    Directory of Open Access Journals (Sweden)

    Bei Zhang

    2015-01-01

    Full Text Available Motor function impairment is a common outcome of stroke. Constraint-induced movement therapy (CIMT involving intensive use of the impaired limb while restraining the unaffected limb is widely used to overcome the effects of ′learned non-use′ and improve limb function after stroke. However, the underlying mechanism of CIMT remains unclear. In the present study, rats were randomly divided into a middle cerebral artery occlusion (model group, a CIMT + model (CIMT group, or a sham group. Restriction of the affected limb by plaster cast was performed in the CIMT and sham groups. Compared with the model group, CIMT significantly improved the forelimb functional performance in rats. By western blot assay, the expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi of cerebral ischemic rats in the CIMT group was significantly lower than that in the model group, and was similar to sham group levels. These data suggest that functional recovery after CIMT may be related to decreased expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi.

  17. Experimental study of inhibitory effects of diallyl trisulfide on the growth of human osteosarcoma Saos-2 cells by downregulating expression of glucose-regulated protein 78

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2018-01-01

    Full Text Available Yue Zhang,1,* Wen-Peng Xie,1,* Yong-Kui Zhang,2 Yi-Qiang Chen,3 Dong-Li Wang,2 Gang Li,2 Dong-Hui Guan2 1First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China; 2Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China; 3Department of Orthopedics, The First People’s Hospital of Taian City, Taian, People’s Republic of China *These authors contributed equally to the paper Background: Diallyl trisulfide (DATS is a natural organic sulfur compound isolated from garlic that has good anticancer activity according to many previous reports. There are many studies pointing out that DATS can downregulate expression of the glucose-regulated protein 78 (GRP78, which is associated with poor prognosis and drug resistance in various types of human cancers. However, it remains unknown whether DATS has the same effect on human osteosarcoma cells. This study attempted to clarify the potential molecular mechanisms of the action of DATS in human osteosarcoma Saos-2 cells.Methods: We used an inverted phase microscope and immunofluorescent staining to observe the morphological changes of Saos-2 cells after being cultured in different concentrations of DATS (0, 25, 50, and 100 µM for 24 h, or for four time periods (24, 48, 72, and 96 h in the same DATS concentration (50 µM. Quantitative real-time polymerase chain reaction and Western blot were used to detect the expression level of GRP78 mRNA and proteins in Saos-2 cells. GRP78 expression was suppressed in Saos-2 cells by utilizing small-interfering RNA, and the cells were subsequently used to study the anti-proliferative effects of DATS treatment.Results: The expression level of GRP78 mRNA and proteins was significantly downregulated due to the increased concentration and effective times of DATS (P<0.05. In addition, there were significant associations between GRP78

  18. Characterization of gene expression regulated by human OTK18 ...

    Indian Academy of Sciences (India)

    ing regulated by interactions with the Tat protein (Carlson et al. 2004a). In contrast, OTK18 is ubiquitously expressed in all normal human tissues, and OTK18 expression in HIV-1 ..... and Social Sciences and the UNK Biology Department.

  19. Osmotic regulation of expression of two extracellular matrix-binding proteins and a haemolysin of Leptospira interrogans: differential effects on LigA and Sph2 extracellular release.

    Science.gov (United States)

    Matsunaga, James; Medeiros, Marco A; Sanchez, Yolanda; Werneid, Kristian F; Ko, Albert I

    2007-10-01

    The life cycle of the pathogen Leptospira interrogans involves stages outside and inside the host. Entry of L. interrogans from moist environments into the host is likely to be accompanied by the induction of genes encoding virulence determinants and the concomitant repression of genes encoding products required for survival outside of the host. The expression of the adhesin LigA, the haemolysin Sph2 (Lk73.5) and the outer-membrane lipoprotein LipL36 of pathogenic Leptospira species have been reported to be regulated by mammalian host signals. A previous study demonstrated that raising the osmolarity of the leptospiral growth medium to physiological levels encountered in the host by addition of various salts enhanced the levels of cell-associated LigA and LigB and extracellular LigA. In this study, we systematically examined the effects of osmotic upshift with ionic and non-ionic solutes on expression of the known mammalian host-regulated leptospiral genes. The levels of cell-associated LigA, LigB and Sph2 increased at physiological osmolarity, whereas LipL36 levels decreased, corresponding to changes in specific transcript levels. These changes in expression occurred irrespective of whether sodium chloride or sucrose was used as the solute. The increase of cellular LigA, LigB and Sph2 protein levels occurred within hours of adding sodium chloride. Extracellular Sph2 levels increased when either sodium chloride or sucrose was added to achieve physiological osmolarity. In contrast, enhanced levels of extracellular LigA were observed only with an increase in ionic strength. These results indicate that the mechanisms for release of LigA and Sph2 differ during host infection. Thus, osmolarity not only affects leptospiral gene expression by affecting transcript levels of putative virulence determinants but also affects the release of such proteins into the surroundings.

  20. O-linked N-acetylglucosamine transferase enhances secretory clusterin expression via liver X receptors and sterol response element binding protein regulation in cervical cancer.

    Science.gov (United States)

    Kim, Min Jun; Choi, Mee Young; Lee, Dong Hoon; Roh, Gu Seob; Kim, Hyun Joon; Kang, Sang Soo; Cho, Gyeong Jae; Kim, Yoon Sook; Choi, Wan Sung

    2018-01-12

    O-linked N-acetylglucosamine transferase (OGT) expression is increased in various cancer types, indicating the potential importance of O-GlcNAcylation in tumorigenesis. Secretory clusterin (sCLU) is involved in cancer cell proliferation and drug resistance, and recently, liver X receptors (LXRs) and sterol response element binding protein-1 (SREBP-1) were reported to regulate sCLU transcription. Here, we found that sCLU is significantly increased in cervical cancer cell lines, which have higher expression levels of O-GlcNAc and OGT than keratinocytes. OGT knockdown decreased expression of LXRs, SREBP-1 and sCLU through hypo-O-GlcNAcylation of LXRs. Additionally, treatment with Thiamet G, O-GlcNAcase OGA inhibitor, increased expression of O-GlcNAcylation and sCLU, and high glucose increased levels of LXRs, SREBP-1 and sCLU in HeLa cells. Moreover, OGT knockdown induced G 0 /G 1 phase cell cycle arrest and late apoptosis in cisplatin-treated HeLa cells, and decreased viability compared to OGT intact HeLa cells. Taken together, these findings suggest that OGT, O-GlcNAcylated LXRs, and SREBP-1 increase sCLU expression in cervical cancer cells, which contributes to drug resistance.

  1. Allosteric Regulation of Proteins

    Indian Academy of Sciences (India)

    interactions with other proteins, or binding of small molecules. Covalent .... vealed through structural elucidation of the protein in free and oxygen-bound forms .... stance, molecular dynamic simulation of glutamine binding pro- tein shows that ...

  2. AS160 associates with the Na+,K+-ATPase and mediates the adenosine monophosphate-stimulated protein kinase-dependent regulation of sodium pump surface expression.

    Science.gov (United States)

    Alves, Daiane S; Farr, Glen A; Seo-Mayer, Patricia; Caplan, Michael J

    2010-12-01

    The Na(+),K(+)-ATPase is the major active transport protein found in the plasma membranes of most epithelial cell types. The regulation of Na(+),K(+)-ATPase activity involves a variety of mechanisms, including regulated endocytosis and recycling. Our efforts to identify novel Na(+),K(+)-ATPase binding partners revealed a direct association between the Na(+),K(+)-ATPase and AS160, a Rab-GTPase-activating protein. In COS cells, coexpression of AS160 and Na(+),K(+)-ATPase led to the intracellular retention of the sodium pump. We find that AS160 interacts with the large cytoplasmic NP domain of the α-subunit of the Na(+),K(+)-ATPase. Inhibition of the activity of the adenosine monophosphate-stimulated protein kinase (AMPK) in Madin-Darby canine kidney cells through treatment with Compound C induces Na(+),K(+)-ATPase endocytosis. This effect of Compound C is prevented through the short hairpin RNA-mediated knockdown of AS160, demonstrating that AMPK and AS160 participate in a common pathway to modulate the cell surface expression of the Na(+),K(+)-ATPase.

  3. Areca nut extract up-regulates prostaglandin production, cyclooxygenase-2 mRNA and protein expression of human oral keratinocytes.

    Science.gov (United States)

    Jeng, J H; Ho, Y S; Chan, C P; Wang, Y J; Hahn, L J; Lei, D; Hsu, C C; Chang, M C

    2000-07-01

    There are about 600 million betel quid (BQ) chewers in the world. BQ chewing is associated with increased incidence of oral cancer and submucous fibrosis. In this study, areca nut (AN) extract (200-800 microg/ml) induced the prostaglandin E(2) (PGE(2)) production by 1. 4-3.4-fold and 6-keto-PGF(1 alpha) production by 1.1-1.7-fold of gingival keratinocytes (GK), respectively, following 24 h of exposure. Exposure of GK to AN extract (>400 microg/ml) led to cell retraction and intracellular vacuoles formation. At concentrations of 800 and 1200 microg/ml, AN extract induced cell death at 21-24 and 32-52% as detected by MTT assay and cellular lactate dehydrogenase release, respectively. Interestingly, AN-induced morphological changes of GK are reversible. GK can still proliferate following exposure to AN extract. Cytotoxicity of AN extract cannot be inhibited by indomethacin (1 microM) and aspirin (50 microM), indicating that prostaglandin (PG) production is not the major factor responsible for AN cytotoxicity. PGE(2) exhibited little effect on the growth of GK at concentrations ranging from 100-1000 pg/ml. Stimulating GK production of PGs by AN extract could be due to induction of cyclooxygenase-2 (COX-2) mRNA expression and protein production. These results suggest that AN ingredients are critical in the pathogenesis of oral submucous fibrosis and oral cancer via their stimulatory effects on the PGs, COX-2 production and associated tissue inflammatory responses. AN cytotoxicity to GK is not directly mediated by COX-2 stimulation and PG production.

  4. Drug-induced regulation of target expression

    DEFF Research Database (Denmark)

    Iskar, Murat; Campillos, Monica; Kuhn, Michael

    2010-01-01

    Drug perturbations of human cells lead to complex responses upon target binding. One of the known mechanisms is a (positive or negative) feedback loop that adjusts the expression level of the respective target protein. To quantify this mechanism systems-wide in an unbiased way, drug......-induced differential expression of drug target mRNA was examined in three cell lines using the Connectivity Map. To overcome various biases in this valuable resource, we have developed a computational normalization and scoring procedure that is applicable to gene expression recording upon heterogeneous drug treatments....... In 1290 drug-target relations, corresponding to 466 drugs acting on 167 drug targets studied, 8% of the targets are subject to regulation at the mRNA level. We confirmed systematically that in particular G-protein coupled receptors, when serving as known targets, are regulated upon drug treatment. We...

  5. Zac1, an Sp1-like protein, regulates human p21WAF1/Cip1 gene expression in HeLa cells

    International Nuclear Information System (INIS)

    Liu, Pei-Yao; Hsieh, Tsai-Yuan; Liu, Shu-Ting; Chang, Yung-Lung; Lin, Wei-Shiang; Wang, Wei-Ming; Huang, Shih-Ming

    2011-01-01

    Zac1 functions as both a transcription factor and a transcriptional cofactor for p53, nuclear receptors (NRs) and NR coactivators. Zac1 might also act as a transcriptional repressor via the recruitment of histone deacetylase 1 (HDAC1). The ability of Zac1 to interact directly with GC-specific elements indicates that Zac1 possibly binds to Sp1-responsive elements. In the present study, our data show that Zac1 is able to interact directly with the Sp1-responsive element in the p21 WAF1/Cip1 gene promoter and enhance the transactivation activity of Sp1 through direct physical interaction. Our data further demonstrate that Zac1 might enhance Sp1-specific promoter activity by interacting with the Sp1-responsive element, affecting the transactivation activity of Sp1 via a protein–protein interaction, or competing the HDAC1 protein away from the pre-existing Sp1/HDAC1 complex. Finally, the synergistic regulation of p21 WAF1/Cip1 gene expression by Zac1 and Sp1 is mediated by endogenous p53 protein and p53-responsive elements in HeLa cells. Our work suggests that Zac1 might serve as an Sp1-like protein that directly interacts with the Sp1-responsive element to oligomerize with and/or to coactivate Sp1.

  6. Hepatitis B Virus X Protein Up-Regulates AKR1C1 Expression Through Nuclear Factor-Y in Human Hepatocarcinoma Cells.

    Science.gov (United States)

    Li, Kai; Ding, Shijia; Chen, Ke; Qin, Dongdong; Qu, Jialin; Wang, Sen; Sheng, Yanrui; Zou, Chengcheng; Chen, Limin; Tang, Hua

    2013-01-01

    The hepatitis B virus X (HBx) protein has long been recognized as an important transcriptional transactivator of several genes. Human aldo-keto reductase family 1, member C1 (AKR1C1), a member of the family of AKR1CS, is significantly increased in HBx-expressed cells. This study aimed to investigate the possible mechanism of HBx in regulating AKR1C1 expression in HepG2.2.15 cells and the role of AKR1C1 for HBV-induced HCC. RT-PCR was performed to detect AKR1C1 expression on mRNA level in HepG2 and HepG2.2.15 cell. The promoter activity of AKR1C1 was assayed by transient transfection and Dual-luciferase reporter assay system. The AKR1C1 promoter sequence was screened using the TFSEARCH database and the ALIBABA 2.0 software. The potential transcription factors binding sites were identified using 5' functional deletion analysis and site-directed mutagenesis. In this study, we found that HBx promoted AKR1C1 expression in HepG2.2.15 cells. Knockdown of HBx inhibited AKR1C1 activation. The role of HBx expression in regulating the promoter activity of human AKR1C1 gene was analyzed. The 5'functional deletion analysis identified that the region between -128 and -88 was the minimal promoter region of HBx to activate AKR1C1 gene expression. Site-directed mutagenesis studies suggested that nuclear factor-Y (NF-Y) plays an important role in this HBx-induced AKR1C1 activation. In HepG2.2.1.5 cell, HBx can promote AKR1C1 promoter activity and thus activates the basal transcription of AKR1C1 gene. This process is mediated by the transcription factor NF-Y. This study explored the mechanism for the regulation of HBV on AKR1C1 expression and has provided a new understanding of HBV-induced HCC.

  7. Ethanol activation of protein kinase A regulates GABA-A receptor subunit expression in the cerebral cortex and contributes to ethanol-induced hypnosis

    Directory of Open Access Journals (Sweden)

    Sandeep eKumar

    2012-04-01

    Full Text Available Protein kinases are implicated in neuronal cell functions such as modulation of ion channel function, trafficking and synaptic excitability. Both protein kinase C (PKC and A (PKA are involved in regulation of γ-aminobutyric acid type A (GABA-A receptors through phosphorylation. However, the role of PKA in regulating GABA-A receptors following acute ethanol exposure is not known. The present study investigated the role of PKA in ethanol effects on GABA-A receptor α1 subunit expression in the P2 synaptosomal fraction of the rat cerebral cortex. Additionally, GABA-related behaviors were also examined. Rats were administered ethanol (2.0 – 3.5 g/kg or saline and PKC, PKA and GABA-A receptor α1 subunit levels were measured by Western blot analysis. Ethanol (3.5 g/kg transiently increased GABA-A receptor α1 subunit expression and PKA RIIβ subunit expression at similar time points whereas PKA RIIα was increased at later time points. In contrast, PKC isoform expression remained unchanged. Notably, the moderate ethanol dose (2.0g/kg had no effect on GABA-A α1 subunit levels although PKA RIIα and RIIβ were increased at 10 and 60 minutes, when PKC isozymes are also known to be elevated. To determine if PKA activation was responsible for the ethanol-induced elevation of GABA-A α1 subunits, the PKA antagonist H89 was administered to rats prior to ethanol exposure. H89 administration prevented ethanol-induced increases in GABA-A receptor α1 subunit expression. Moreover, increasing PKA activity intracerebroventricularly with Sp-cAMP prior to a hypnotic dose of ethanol increased ethanol-induced loss of righting reflex duration. This effect appears to be mediated in part by GABA-A receptors as increasing PKA activity also increased the duration of muscimol-induced loss of righting reflex. Overall these data suggest that PKA mediates ethanol-induced GABA-A receptor expression and contributes to ethanol behavioral effects involving GABA-A receptors.

  8. Regulation of eucaryotic gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Brent, R.; Ptashne, M.S

    1989-05-23

    This patent describes a method of regulating the expression of a gene in a eucaryotic cell. The method consists of: providing in the eucaryotic cell, a peptide, derived from or substantially similar to a peptide of a procaryotic cell able to bind to DNA upstream from or within the gene, the amount of the peptide being sufficient to bind to the gene and thereby control expression of the gene.

  9. Neuroprotection via RNA-binding protein RBM3 expression is regulated by hypothermia but not by hypoxia in human SK-N-SH neurons

    Directory of Open Access Journals (Sweden)

    Rosenthal LM

    2017-05-01

    Full Text Available Lisa-Maria Rosenthal,1 Giang Tong,1 Christoph Walker,1 Sylvia J Wowro,1 Jana Krech,1 Constanze Pfitzer,1,2 Georgia Justus,1 Felix Berger,1,3 Katharina Rose Luise Schmitt1 1Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, 2Berlin Institute of Health (BIH, 3Department of Pediatric Cardiology, Charité – University Medical Center, Berlin, Germany Objective: Therapeutic hypothermia is an established treatment for perinatal asphyxia. Yet, many term infants continue to die or suffer from neurodevelopmental disability. Several experimental studies have demonstrated a beneficial effect of mild-to-moderate hypothermia after hypoxic injury, but the understanding of hypothermia-induced neuroprotection remains incomplete. In general, global protein synthesis is attenuated by hypothermia, but a small group of RNA-binding proteins including the RNA-binding motif 3 (RBM3 is upregulated in response to cooling. The aim of this study was to establish an in vitro model to investigate the effects of hypoxia and hypothermia on neuronal cell survival, as well as to examine the kinetics of concurrent cold-shock protein RBM3 gene expression. Methods: Experiments were performed by using human SK-N-SH neurons exposed to different oxygen concentrations (21%, 8%, or 0.2% O2 for 24 hours followed by moderate hypothermia (33.5°C or normothermia for 24, 48, or 72 hours. Cell death was determined by quantification of lactate dehydrogenase and neuron-specific enolase releases into the cell cultured medium, and cell morphology was assessed by using immunofluorescence staining. The regulation of RBM3 gene expression was assessed by reverse transcriptase-quantitative polymerase chain reaction and Western blot analysis.Results: Exposure to hypoxia (0.2% O2 for 24 hours resulted in significantly increased cell death in SK-N-SH neurons, whereas exposure to 8% O2 had no significant impact on cell viability. Post-hypoxia treatment with

  10. Korean Byungkyul - Citrus platymamma Hort.et Tanaka flavonoids induces cell cycle arrest and apoptosis, regulating MMP protein expression in Hep3B hepatocellular carcinoma cells.

    Science.gov (United States)

    Hong, Gyeong Eun; Lee, Ho Jeong; Kim, Jin A; Yumnam, Silvia; Raha, Suchismita; Venkatarame Gowda Saralamma, Venu; Heo, Jeong Doo; Lee, Sang Joon; Kim, Eun Hee; Won, Chun Kil; Kim, Gon Sup

    2017-02-01

    Citrus platymamma Hort.et Tanaka is an indigenous fruit of Jeju island in Korea. In this study the bioactivity of C. platymamma flavonoids were evaluated on human hepatoma Hep3B cell lines. Eleven flavonoids were identified from the peels of C. platymamma Hort.et Tanaka through high-performance liquid chromatography-Tandem mass spectrometry and the anticancer effect of these C. platymamma flavonoids on human hepatoma Hep3B were studied. Chromatin condensation was observed in Hep3B cells treated with C. platymamma flavonoids. DNA fragmentation was confirmed through agarose gel electrophoresis and TUNEL assay. An increase in the total apoptotic cells and G2/M cell cycle arrest with decreased protein expression of CDC25C, CDK1, cyclin B1 and p21 were observed in Hep3B cells treated with flavonoids of C. platymamma. Further, protein expression of Bcl-XL, Bax, caspase-3 and -9 were also modulated by C. platymamma flavonoids treatment indicating that cell death is through intrinsic apoptotic pathway. Moreover, C. platymamma flavonoids also regulated the phosphorylation of MAPKs, PI3K, and Akt in Hep3B cells. Relevant to inhibiting metastasis, C. platymamma treatment reduced wound closure of Hep3B cells and the protein expression of matrix metalloproteinase-2 and -9 were reduced in C. platymamma treated cells. The results show that C. platymamma flavonoids induce cell cycle arrest and apoptosis following activation of MAPKs and suppression of PI3K/Akt pathway which eventually inhibits cell migration in Hep3B cells. The finding provides evidence on biochemical activities of C. platymamma Hort.et Tanaka, which would be an essential agent for hepatocellular carcinoma (HCC) treatment.

  11. SmgGDS is a transient nucleolar protein that protects cells from nucleolar stress and promotes the cell cycle by regulating DREAM complex gene expression.

    Science.gov (United States)

    Gonyo, P; Bergom, C; Brandt, A C; Tsaih, S-W; Sun, Y; Bigley, T M; Lorimer, E L; Terhune, S S; Rui, H; Flister, M J; Long, R M; Williams, C L

    2017-12-14

    The chaperone protein and guanine nucleotide exchange factor SmgGDS (RAP1GDS1) is a key promoter of cancer cell proliferation and tumorigenesis. SmgGDS undergoes nucleocytoplasmic shuttling, suggesting that it has both cytoplasmic and nuclear functions that promote cancer. Previous studies indicate that SmgGDS binds cytoplasmic small GTPases and promotes their trafficking to the plasma membrane. In contrast, little is known about the functions of SmgGDS in the nucleus, or how these nuclear functions might benefit cancer cells. Here we show unique nuclear localization and regulation of gene transcription pathways by SmgGDS. Strikingly, SmgGDS depletion significantly reduces expression of over 600 gene products that are targets of the DREAM complex, which is a transcription factor complex that regulates expression of proteins controlling the cell cycle. The cell cycle regulators E2F1, MYC, MYBL2 (B-Myb) and FOXM1 are among the DREAM targets that are diminished by SmgGDS depletion. E2F1 is well known to promote G1 cell cycle progression, and the loss of E2F1 in SmgGDS-depleted cells provides an explanation for previous reports that SmgGDS depletion characteristically causes a G1 cell cycle arrest. We show that SmgGDS localizes in nucleoli, and that RNAi-mediated depletion of SmgGDS in cancer cells disrupts nucleolar morphology, signifying nucleolar stress. We show that nucleolar SmgGDS interacts with the RNA polymerase I transcription factor upstream binding factor (UBF). The RNAi-mediated depletion of UBF diminishes nucleolar localization of SmgGDS and promotes proteasome-mediated degradation of SmgGDS, indicating that nucleolar sequestration of SmgGDS by UBF stabilizes SmgGDS protein. The ability of SmgGDS to interact with UBF and localize in the nucleolus is diminished by expressing DiRas1 or DiRas2, which are small GTPases that bind SmgGDS and act as tumor suppressors. Taken together, our results support a novel nuclear role for SmgGDS in protecting malignant

  12. Up-regulated expression of cartilage intermediate-layer protein and ANK in articular hyaline cartilage from patients with calcium pyrophosphate dihydrate crystal deposition disease.

    Science.gov (United States)

    Hirose, Jun; Ryan, Lawrence M; Masuda, Ikuko

    2002-12-01

    Excess accumulation of extracellular inorganic pyrophosphate (ePPi) in aged human cartilage is crucial in calcium pyrophosphate dihydrate (CPPD) crystal formation in cartilage matrix. Two sources of ePPi are ePPi-generating ectoenzymes (NTPPPH) and extracellular transport of intracellular PPi by ANK. This study was undertaken to evaluate the role of NTPPPH and ANK in ePPi elaboration, by investigating expression of NTPPPH enzymes (cartilage intermediate-layer protein [CILP] and plasma cell membrane glycoprotein 1 [PC-1]) and ANK in human chondrocytes from osteoarthritic (OA) articular cartilage containing CPPD crystals and without crystals. Chondrocytes were harvested from knee cartilage at the time of arthroplasty (OA with CPPD crystals [CPPD], n = 8; OA without crystals [OA], n = 10). Normal adult human chondrocytes (n = 1) were used as a control. Chondrocytes were cultured with transforming growth factor beta1 (TGFbeta1), which stimulates ePPi elaboration, and/or insulin-like growth factor 1 (IGF-1), which inhibits ePPi elaboration. NTPPPH and ePPi were measured in the media at 48 hours. Media CILP, PC-1, and ANK were determined by dot-immunoblot analysis. Chondrocyte messenger RNA (mRNA) was extracted for reverse transcriptase-polymerase chain reaction to study expression of mRNA for CILP, PC-1, and ANK. NTPPPH and ANK mRNA and protein were also studied in fresh frozen cartilage. Basal ePPi elaboration and NTPPPH activity in conditioned media from CPPD chondrocytes were elevated compared with normal chondrocytes, and tended to be higher compared with OA chondrocytes. Basal expression of mRNA for CILP (chondrocytes) and ANK (cartilage) was higher in both CPPD chondrocytes and CPPD cartilage extract than in OA or normal samples. PC-1 mRNA was less abundant in CPPD chondrocytes and cartilage extract than in OA chondrocytes and extract, although the difference was not significant. CILP, PC-1, and ANK protein levels were similar in CPPD, OA, and normal chondrocytes

  13. A lentiviral sponge for miR-101 regulates RanBP9 expression and amyloid precursor protein metabolism in hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Christian eBarbato

    2014-02-01

    Full Text Available Neurodegeneration associated with amyloid β (Aβ peptide accumulation, synaptic loss, and memory impairment are pathophysiological features of Alzheimer's disease (AD. Numerous microRNAs regulate amyloid precursor protein (APP expression and metabolism. We previously reported that miR-101 is a negative regulator of APP expression in cultured hippocampal neurons. In this study, a search for predicted APP metabolism-associated miR-101 targets led to the identification of a conserved miR-101 binding site within the 3’ untranslated region (UTR of the mRNA encoding Ran-binding protein 9 (RanBP9. RanBP9 increases APP processing by β-amyloid converting enzyme 1 (BACE1, secretion of soluble APPβ (sAPPβ, and generation of Aβ. MiR-101 significantly reduced reporter gene expression when co-transfected with a RanBP9 3'-UTR reporter construct, while site-directed mutagenesis of the predicted miR-101 target site eliminated the reporter response. To investigate the effect of stable inhibition of miR-101 both in vitro and in vivo, a microRNA sponge was developed to bind miR-101 and derepress its targets. Four tandem bulged miR-101 responsive elements (REs, located downstream of the enhanced green fluorescence protein (EGFP open reading frame and driven by the synapsin promoter, were placed in a lentiviral vector to create the pLSyn-miR-101 sponge. Delivery of the sponge to primary hippocampal neurons significantly increased both APP and RanBP9 expression, as well as sAPPβ levels in the conditioned medium. Importantly, silencing of endogenous RanBP9 reduced sAPPβ levels in miR-101 sponge-containing hippocampal cultures, indicating that miR-101 inhibition may increase amyloidogenic processing of APP by RanBP9. Lastly, the impact of miR-101 on its targets was demonstrated in vivo by intrahippocampal injection of the pLSyn-miR-101 sponge into C57BL6 mice. This study thus provides the basis for studying the consequences of long-term miR-101 inhibition on

  14. Triptolide inhibits proliferation of Epstein–Barr virus-positive B lymphocytes by down-regulating expression of a viral protein LMP1

    International Nuclear Information System (INIS)

    Zhou, Heng; Guo, Wei; Long, Cong; Wang, Huan; Wang, Jingchao; Sun, Xiaoping

    2015-01-01

    Highlights: • Triptolide inhibits proliferation of EBV-positive lymphoma cells in vitro and in vivo. • Triptolide reduces expression of LMP1 by decreasing its transcription level. • Triptolide inhibits ED-L1 promoter activity. - Abstract: Epstein–Barr virus (EBV) infects various types of cells and mainly establishes latent infection in B lymphocytes. The viral latent membrane protein 1 (LMP1) plays important roles in transformation and proliferation of B lymphocytes infected with EBV. Triptolide is a compound of Tripterygium extracts, showing anti-inflammatory, immunosuppressive, and anti-cancer activities. In this study, it is determined whether triptolide inhibits proliferation of Epstein–Barr virus-positive B lymphocytes. The CCK-8 assays were performed to examine cell viabilities of EBV-positive B95-8 and P3HR-1 cells treated by triptolide. The mRNA and protein levels of LMP1 were examined by real time-PCR and Western blotting, respectively. The activities of two LMP1 promoters (ED-L1 and TR-L1) were determined by Dual luciferase reportor assay. The results showed that triptolide inhibited the cell viability of EBV-positive B lymphocytes, and the over-expression of LMP1 attenuated this inhibitory effect. Triptolide decreased the LMP1 expression and transcriptional levels in EBV-positive B cells. The activity of LMP1 promoter ED-L1 in type III latent infection was strongly suppressed by triptolide treatment. In addition, triptolide strongly reduced growth of B95-8 induced B lymphoma in BALB/c nude mice. These results suggest that triptolide decreases proliferation of EBV-induced B lymphocytes possibly by a mechanism related to down-regulation of the LMP1 expression

  15. Triptolide inhibits proliferation of Epstein–Barr virus-positive B lymphocytes by down-regulating expression of a viral protein LMP1

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Heng [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Guo, Wei [Department of Pathology and Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Long, Cong; Wang, Huan; Wang, Jingchao [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Sun, Xiaoping, E-mail: xsun6@whu.edu.cn [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); State Key Laboratory of Virology, Wuhan University, Wuhan 430072 (China)

    2015-01-16

    Highlights: • Triptolide inhibits proliferation of EBV-positive lymphoma cells in vitro and in vivo. • Triptolide reduces expression of LMP1 by decreasing its transcription level. • Triptolide inhibits ED-L1 promoter activity. - Abstract: Epstein–Barr virus (EBV) infects various types of cells and mainly establishes latent infection in B lymphocytes. The viral latent membrane protein 1 (LMP1) plays important roles in transformation and proliferation of B lymphocytes infected with EBV. Triptolide is a compound of Tripterygium extracts, showing anti-inflammatory, immunosuppressive, and anti-cancer activities. In this study, it is determined whether triptolide inhibits proliferation of Epstein–Barr virus-positive B lymphocytes. The CCK-8 assays were performed to examine cell viabilities of EBV-positive B95-8 and P3HR-1 cells treated by triptolide. The mRNA and protein levels of LMP1 were examined by real time-PCR and Western blotting, respectively. The activities of two LMP1 promoters (ED-L1 and TR-L1) were determined by Dual luciferase reportor assay. The results showed that triptolide inhibited the cell viability of EBV-positive B lymphocytes, and the over-expression of LMP1 attenuated this inhibitory effect. Triptolide decreased the LMP1 expression and transcriptional levels in EBV-positive B cells. The activity of LMP1 promoter ED-L1 in type III latent infection was strongly suppressed by triptolide treatment. In addition, triptolide strongly reduced growth of B95-8 induced B lymphoma in BALB/c nude mice. These results suggest that triptolide decreases proliferation of EBV-induced B lymphocytes possibly by a mechanism related to down-regulation of the LMP1 expression.

  16. The PR/SET Domain Zinc Finger Protein Prdm4 Regulates Gene Expression in Embryonic Stem Cells but Plays a Nonessential Role in the Developing Mouse Embryo

    Science.gov (United States)

    Bogani, Debora; Morgan, Marc A. J.; Nelson, Andrew C.; Costello, Ita; McGouran, Joanna F.; Kessler, Benedikt M.

    2013-01-01

    Prdm4 is a highly conserved member of the Prdm family of PR/SET domain zinc finger proteins. Many well-studied Prdm family members play critical roles in development and display striking loss-of-function phenotypes. Prdm4 functional contributions have yet to be characterized. Here, we describe its widespread expression in the early embryo and adult tissues. We demonstrate that DNA binding is exclusively mediated by the Prdm4 zinc finger domain, and we characterize its tripartite consensus sequence via SELEX (systematic evolution of ligands by exponential enrichment) and ChIP-seq (chromatin immunoprecipitation-sequencing) experiments. In embryonic stem cells (ESCs), Prdm4 regulates key pluripotency and differentiation pathways. Two independent strategies, namely, targeted deletion of the zinc finger domain and generation of a EUCOMM LacZ reporter allele, resulted in functional null alleles. However, homozygous mutant embryos develop normally and adults are healthy and fertile. Collectively, these results strongly suggest that Prdm4 functions redundantly with other transcriptional partners to cooperatively regulate gene expression in the embryo and adult animal. PMID:23918801

  17. Steady-state levels of G-protein beta-subunit expression are regulated by treatment of cells with bacterial toxins

    International Nuclear Information System (INIS)

    Watkins, D.C.; Northup, J.K.; Malbon, C.C.

    1987-01-01

    Cultures of 3T3-L1 cells were incubated with either 10 ng/ml cholera toxin or 10 ng/ml pertussis toxin from 4 days prior to the initiation of differentiation and throughout the subsequent incubation. Toxin concentrations were sufficient to completely prevent the labelling of alpha-subunits with [ 32 P]NAD + and pertussis toxin and to prevent by more than 90% the labelling with [ 32 P]NAD + and cholera toxin in membranes prepared from these cells. Neither toxin prevented the differentiation to the adipocyte phenotype. Neither toxin prevented the increases in the relative amounts of G-proteins which occur upon differentiation. Both toxins dramatically decreased the amount of beta-subunits. As measured by quantitative immunoblotting with antisera specific for both the 35 kDa and 36 kDa beta-subunits, levels of beta-subunit were decreased by more than 50% of steady-state level of control cells. Thus, bacterial toxins which modifies G-protein alpha-subunits are capable of modulating the levels of beta-subunits in vivo. The basis for the regulation of G-protein subunit expression by bacterial toxins is under study

  18. Prolyl isomerase Pin1 is highly expressed in Her2-positive breast cancer and regulates erbB2 protein stability

    Directory of Open Access Journals (Sweden)

    Lu Kun

    2008-12-01

    Full Text Available Abstract Overexpression of HER-2/Neu occurs in about 25–30% of breast cancer patients and is indicative of poor prognosis. While Her2/Neu overexpression is primarily a result of erbB2 amplification, it has recently been recognized that erbB2 levels are also regulated on the protein level. However, factors that regulate Her2/Neu protein stability are less well understood. The prolyl isomerase Pin1 catalyzes the isomerization of specific pSer/Thr-Pro motifs that have been phosphorylated in response to mitogenic signaling. We have previously reported that Pin1-catalyzed post-phosphorylational modification of signal transduction modulates the oncogenic pathways downstream from c-neu. The goal of this study was to examine the expression of prolyl isomerase Pin1 in human Her2+ breast cancer, and to study if Pin1 affects the expression of Her2/Neu itself. Methods Immunohistochemistry for Her2 and Pin1 were performed on two hundred twenty-three human breast cancers, with 59% of the specimen from primary cancers and 41% from metastatic sites. Pin1 inhibition was achieved using siRNA in Her2+ breast cancer cell lines, and its effects were studied using cell viability assays, immunoblotting and immunofluorescence. Results Sixty-four samples (28.7% stained positive for Her2 (IHC 3+, and 54% (122/223 of all breast cancers stained positive for Pin1. Of the Her2-positive cancers 40 (62.5% were also Pin1-positive, based on strong nuclear or nuclear and cytoplasmic staining. Inhibition of Pin1 via RNAi resulted in significant suppression of Her2-positive tumor cell growth in BT474, SKBR3 and AU565 cells. Pin1 inhibition greatly increased the sensitivity of Her2-positive breast cancer cells to the mTOR inhibitor Rapamycin, while it did not increase their sensitivity to Trastuzumab, suggesting that Pin1 might act on Her2 signaling. We found that Pin1 interacted with the protein complex that contains ubiquitinated erbB2 and that Pin1 inhibition accelerated erbB2

  19. Yes-associated protein and WW-containing transcription regulator 1 regulate the expression of sex-determining genes in Sertoli cells, but their inactivation does not cause sex reversal.

    Science.gov (United States)

    Levasseur, Adrien; Paquet, Marilène; Boerboom, Derek; Boyer, Alexandre

    2017-07-01

    Yes-associated protein (YAP) and WW-containing transcription regulator 1 (WWTR1) are two functionally redundant transcriptional regulators that are downstream effectors of the Hippo signaling pathway, and that act as major regulators of cell growth and differentiation. To elucidate their role in Sertoli cells, primary Sertoli cell culture from Yapflox/flox; Wwtr1flox/flox animals were infected with a Cre recombinase-expressing adenovirus. Concomitant inactivation of Yap and Wwtr1 resulted in a decrease in the mRNA levels of the male sex differentiation genes Dhh, Dmrt1, Sox9, and Wt1, whereas those of genes involved in female differentiation (Wnt4, Rspo1, and Foxl2) were induced. SOX9, FOXL2, and WNT4 proteins were regulated in the same manner as their mRNAs in response to loss of YAP and WWTR1. To further characterize the role of YAP and WWTR1 in Sertoli cells, we generated a mouse model (Yapflox/flox; Wwtr1flox/flox; Amhcre/+) in which Yap and Wwtr1 were conditionally deleted in Sertoli cells. An increase in the number of apoptotic cells was observed in the seminiferous tubules of 4 dpp mutant mice, leading to a reduction in testis weights and a decrease in the number of Sertoli cells in adult animals. Gene expression analyses of testes from 4 dpp Yapflox/flox; Wwtr1flox/flox; Amhcre/+ mice showed that Sertoli cell differentiation is initially altered, as Dhh, Dmrt1, and Sox9 mRNA levels were downregulated, whereas Wnt4 mRNA levels were increased. However, expression of these genes was not changed in older animals. Together, these results suggest a novel role of the Hippo signaling pathway in the mechanisms of sex differentiation. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Tissue-specific expression and regulation by 1,25(OH)2D3 of chick protein kinase inhibitor (PKI) mRNA.

    Science.gov (United States)

    Marchetto, G S; Henry, H L

    1997-02-01

    The heat-stable protein kinase inhibitor (PKI) protein is a specific and potent competitive inhibitor of the catalytic subunit of cAMP-dependent protein kinase (PKA). Previously, it has been shown that vitamin D status affects chick kidney PKI activity: a 5- to 10-fold increase in PKI activity was observed in kidneys of chronically vitamin D-deficient chicks and treatment with 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) in cultured kidney cells resulted in a 95% decrease in PKI activity. The authors have recently cloned the cDNA for chick kidney PKI and have used the coding sequence to study the regulation of PKI mRNA. Northern analysis showed the expression of two PKI messages, which are 2.7 and 3.3 kb in size. These mRNAs are expressed in brain, muscle, testis, and kidney, but not in pancreas, liver, or intestine. PKI mRNA steady-state levels are downregulated by 47% in kidneys from vitamin D-replete chicks as compared to vitamin D-deficient chicks. PKI mRNA levels in brain, muscle, and testis are not affected by vitamin D status. Treatment of primary chick kidney cultures treated with 10(-7) M 1,25(OH)2D3 for 24h resulted in a 20-30% decrease in PKI mRNA. 1,25(OH)2D3 treatment does not affect the stability of PKI mRNA as determined by treatment of cell cultures with actinomycin D. This study shows that 1,25(OH)2D3 directly and tissue-specifically downregulates PKI mRNA in the chick kidney.

  1. Heterochromatin protein 1 (HP1a positively regulates euchromatic gene expression through RNA transcript association and interaction with hnRNPs in Drosophila.

    Directory of Open Access Journals (Sweden)

    Lucia Piacentini

    2009-10-01

    Full Text Available Heterochromatin Protein 1 (HP1a is a well-known conserved protein involved in heterochromatin formation and gene silencing in different species including humans. A general model has been proposed for heterochromatin formation and epigenetic gene silencing in different species that implies an essential role for HP1a. According to the model, histone methyltransferase enzymes (HMTases methylate the histone H3 at lysine 9 (H3K9me, creating selective binding sites for itself and the chromodomain of HP1a. This complex is thought to form a higher order chromatin state that represses gene activity. It has also been found that HP1a plays a role in telomere capping. Surprisingly, recent studies have shown that HP1a is present at many euchromatic sites along polytene chromosomes of Drosophila melanogaster, including the developmental and heat-shock-induced puffs, and that this protein can be removed from these sites by in vivo RNase treatment, thus suggesting an association of HP1a with the transcripts of many active genes. To test this suggestion, we performed an extensive screening by RIP-chip assay (RNA-immunoprecipitation on microarrays, and we found that HP1a is associated with transcripts of more than one hundred euchromatic genes. An expression analysis in HP1a mutants shows that HP1a is required for positive regulation of these genes. Cytogenetic and molecular assays show that HP1a also interacts with the well known proteins DDP1, HRB87F, and PEP, which belong to different classes of heterogeneous nuclear ribonucleoproteins (hnRNPs involved in RNA processing. Surprisingly, we found that all these hnRNP proteins also bind heterochromatin and are dominant suppressors of position effect variegation. Together, our data show novel and unexpected functions for HP1a and hnRNPs proteins. All these proteins are in fact involved both in RNA transcript processing and in heterochromatin formation. This suggests that, in general, similar epigenetic mechanisms

  2. Expression of human papilloma virus type 16 E5 protein in amelanotic melanoma cells regulates endo-cellular pH and restores tyrosinase activity

    Directory of Open Access Journals (Sweden)

    Coccia Raffaella

    2009-01-01

    Full Text Available Abstract Background Melanin synthesis, the elective trait of melanocytes, is regulated by tyrosinase activity. In tyrosinase-positive amelanotic melanomas this rate limiting enzyme is inactive because of acidic endo-melanosomal pH. The E5 oncogene of the Human Papillomavirus Type 16 is a small transmembrane protein with a weak transforming activity and a role during the early steps of viral infections. E5 has been shown to interact with 16 kDa subunit C of the trans-membrane Vacuolar ATPase proton pump ultimately resulting in its functional suppressions. However, the cellular effects of such an interaction are still under debate. With this work we intended to explore whether the HPV16 E5 oncoprotein does indeed interact with the vacuolar ATPase proton pump once expressed in intact human cells and whether this interaction has functional consequences on cell metabolism and phenotype. Methods The expression of the HPV16-E5 oncoproteins was induced in two Tyrosinase-positive amelanotic melanomas (the cell lines FRM and M14 by a retroviral expression construct. Modulation of the intracellular pH was measured with Acridine orange and fluorescence microscopy. Expression of tyrosinase and its activity was followed by RT-PCR, Western Blot and enzyme assay. The anchorage-independence growth and the metabolic activity of E5 expressing cells were also monitored. Results We provide evidence that in the E5 expressing cells interaction between E5 and V-ATPase determines an increase of endo-cellular pH. The cellular alkalinisation in turn leads to the post-translational activation of tyrosinase, melanin synthesis and phenotype modulation. These effects are associated with an increased activation of tyrosine analogue anti-blastic drugs. Conclusion Once expressed within intact human cells the HPV16-E5 oncoprotein does actually interact with the vacuolar V-ATPase proton pump and this interaction induces a number of functional effects. In amelanotic melanomas these

  3. Characterization of a Vibrio vulnificus LysR homologue, HupR, which regulates expression of the haem uptake outer membrane protein, HupA.

    Science.gov (United States)

    Litwin, C M; Quackenbush, J

    2001-12-01

    In Vibrio vulnificus, the ability to acquire iron from the host has been shown to correlate with virulence. Here, we show that the DNA upstream of hupA (haem uptake receptor) in V. vulnificus encodes a protein in the inverse orientation to hupA (named hupR). HupR shares homology with the LysR family of positive transcriptional activators. A hupA-lacZ fusion contained on a plasmid was transformed into Fur(-), Fur(+)and HupR(-)strains of V. vulnificus. The beta-galactosidase assays and Northern blot analysis showed that transcription of hupA is negatively regulated by iron and the Fur repressor in V. vulnificus. Under low-iron conditions with added haemin, the expression of hupA in the hupR mutant was significantly lower than in the wild-type. This diminished response to haem was detected by both Northern blot and hupA-lacZ fusion analysis. The haem response of hupA in the hupR mutant was restored to wild-type levels when complemented with hupR in trans. These studies suggest that HupR may act as a positive regulator of hupA transcription under low-iron conditions in the presence of haemin. Copyright 2001 Academic Press.

  4. Paxillin and embryonic PolyAdenylation Binding Protein (ePABP) engage to regulate androgen-dependent Xenopus laevis oocyte maturation - A model of kinase-dependent regulation of protein expression.

    Science.gov (United States)

    Miedlich, Susanne U; Taya, Manisha; Young, Melissa Rasar; Hammes, Stephen R

    2017-06-15

    Steroid-triggered Xenopus laevis oocyte maturation is an elegant physiologic model of nongenomic steroid signaling, as it proceeds completely independent of transcription. We previously demonstrated that androgens are the main physiologic stimulator of oocyte maturation in Xenopus oocytes, and that the adaptor protein paxillin plays a crucial role in mediating this process through a positive feedback loop in which paxillin first enhances Mos protein translation, ensued by Erk2 activation and Erk-dependent phosphorylation of paxillin on serine residues. Phosphoserine-paxillin then further augments Mos protein translation and downstream Erk2 activation, resulting in meiotic progression. We hypothesized that paxillin enhances Mos translation by interacting with embryonic PolyAdenylation Binding Protein (ePABP) on polyadenylated Mos mRNA. Knockdown of ePABP phenocopied paxillin knockdown, with reduced Mos protein expression, Erk2 and Cdk1 activation, as well as oocyte maturation. In both Xenopus oocytes and mammalian cells (HEK-293), paxillin and ePABP constitutively interacted. Testosterone (Xenopus) or EGF (HEK-293) augmented ePABP-paxillin binding, as well as ePABP binding to Mos mRNA (Xenopus), in an Erk-dependent fashion. Thus, ePABP and paxillin work together in an Erk-dependent fashion to enhance Mos protein translation and promote oocyte maturation. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Coordinated Expression of Borrelia burgdorferi Complement Regulator-Acquiring Surface Proteins during the Lyme Disease Spirochete's Mammal-Tick Infection Cycle▿

    OpenAIRE

    Bykowski, Tomasz; Woodman, Michael E.; Cooley, Anne E.; Brissette, Catherine A.; Brade, Volker; Wallich, Reinhard; Kraiczy, Peter; Stevenson, Brian

    2007-01-01

    The Lyme disease spirochete, Borrelia burgdorferi, is largely resistant to being killed by its hosts’ alternative complement activation pathway. One possible resistance mechanism of these bacteria is to coat their surfaces with host complement regulators, such as factor H. Five different B. burgdorferi outer surface proteins having affinities for factor H have been identified: complement regulator-acquiring surface protein 1 (BbCRASP-1), encoded by cspA; BbCRASP-2, encoded by cspZ; and three ...

  6. Differential Expression of the Activator Protein 1 Transcription Factor Regulates Interleukin-1ß Induction of Interleukin 6 in the Developing Enterocyte.

    Directory of Open Access Journals (Sweden)

    Catherine M Cahill

    Full Text Available The innate immune response is characterized by activation of transcription factors, nuclear factor kappa B and activator protein-1 and their downstream targets, the pro-inflammatory cytokines including interleukin 1β and interleukin 6. Normal development of this response in the intestine is critical to survival of the human neonate and delays can cause the onset of devastating inflammatory diseases such as necrotizing enterocolitis. Previous studies have addressed the role of nuclear factor kappa B in the development of the innate immune response in the enterocyte, however despite its central role in the control of multiple pro-inflammatory cytokine genes, little is known on the role of Activator Protein 1 in this response in the enterocyte. Here we show that the canonical Activator Protein 1 members, cJun and cFos and their upstream kinases JNK and p38 play an essential role in the regulation of interleukin 6 in the immature enterocyte. Our data supports a model whereby the cFos/cJun heterodimer and the more potent cJun homodimer downstream of JNK are replaced by less efficient JunD containing dimers, contributing to the decreased responsiveness to interleukin 1β and decreased interleukin 6 secretion observed in the mature enterocyte. The tissue specific expression of JunB in colonocytes and colon derived tissues together with its ability to repress Interleukin-1β induction of an Interleukin-6 gene reporter in the NCM-460 colonocyte suggests that induction of JunB containing dimers may offer an attractive therapeutic strategy for the control of IL-6 secretion during inflammatory episodes in this area of the intestine.

  7. RegA, an AraC-Like Protein, Is a Global Transcriptional Regulator That Controls Virulence Gene Expression in Citrobacter rodentium▿

    Science.gov (United States)

    Hart, Emily; Yang, Ji; Tauschek, Marija; Kelly, Michelle; Wakefield, Matthew J.; Frankel, Gad; Hartland, Elizabeth L.; Robins-Browne, Roy M.

    2008-01-01

    Citrobacter rodentium is an attaching and effacing pathogen which causes transmissible colonic hyperplasia in mice. Infection with C. rodentium serves as a model for infection of humans with enteropathogenic and enterohemorrhagic Escherichia coli. To identify novel colonization factors of C. rodentium, we screened a signature-tagged mutant library of C. rodentium in mice. One noncolonizing mutant had a single transposon insertion in an open reading frame (ORF) which we designated regA because of its homology to genes encoding members of the AraC family of transcriptional regulators. Deletion of regA in C. rodentium resulted in markedly reduced colonization of the mouse intestine. Examination of lacZ transcriptional fusions using promoter regions of known and putative virulence-associated genes of C. rodentium revealed that RegA strongly stimulated transcription of two newly identified genes located close to regA, which we designated adcA and kfcC. The cloned adcA gene conferred autoaggregation and adherence to mammalian cells to E. coli strain DH5α, and a kfc mutation led to a reduction in the duration of intestinal colonization, but the kfc mutant was far less attenuated than the regA mutant. These results indicated that other genes of C. rodentium whose expression required activation by RegA were required for colonization. Microarray analysis revealed a number of RegA-regulated ORFs encoding proteins homologous to known colonization factors. Transcription of these putative virulence determinants was activated by RegA only in the presence of sodium bicarbonate. Taken together, these results show that RegA is a global regulator of virulence in C. rodentium which activates factors that are required for intestinal colonization. PMID:18765720

  8. RegA, an AraC-like protein, is a global transcriptional regulator that controls virulence gene expression in Citrobacter rodentium.

    Science.gov (United States)

    Hart, Emily; Yang, Ji; Tauschek, Marija; Kelly, Michelle; Wakefield, Matthew J; Frankel, Gad; Hartland, Elizabeth L; Robins-Browne, Roy M

    2008-11-01

    Citrobacter rodentium is an attaching and effacing pathogen which causes transmissible colonic hyperplasia in mice. Infection with C. rodentium serves as a model for infection of humans with enteropathogenic and enterohemorrhagic Escherichia coli. To identify novel colonization factors of C. rodentium, we screened a signature-tagged mutant library of C. rodentium in mice. One noncolonizing mutant had a single transposon insertion in an open reading frame (ORF) which we designated regA because of its homology to genes encoding members of the AraC family of transcriptional regulators. Deletion of regA in C. rodentium resulted in markedly reduced colonization of the mouse intestine. Examination of lacZ transcriptional fusions using promoter regions of known and putative virulence-associated genes of C. rodentium revealed that RegA strongly stimulated transcription of two newly identified genes located close to regA, which we designated adcA and kfcC. The cloned adcA gene conferred autoaggregation and adherence to mammalian cells to E. coli strain DH5alpha, and a kfc mutation led to a reduction in the duration of intestinal colonization, but the kfc mutant was far less attenuated than the regA mutant. These results indicated that other genes of C. rodentium whose expression required activation by RegA were required for colonization. Microarray analysis revealed a number of RegA-regulated ORFs encoding proteins homologous to known colonization factors. Transcription of these putative virulence determinants was activated by RegA only in the presence of sodium bicarbonate. Taken together, these results show that RegA is a global regulator of virulence in C. rodentium which activates factors that are required for intestinal colonization.

  9. Fibrates down-regulate IL-1-stimulated C-reactive protein gene expression in hepatocytes by reducing nuclear p50-NFκB-C/EBP-β complex formation

    NARCIS (Netherlands)

    Kleemann, R.; Gervois, P.P.; Verschuren, L.; Staels, B.; Princen, H.M.G.; Kooistra, T.

    2003-01-01

    C-reactive protein (CRP) is a major acute-phase protein in humans. Elevated plasma CRP levels are a risk factor for cardiovascular disease. CRP is predominantly expressed in hepatocytes and is induced by interleukin-1 (IL-1) and IL-6 under inflammatory situations, such as the acute phase. Fibrates

  10. Exercise induced regulation of muscular Na+,K+ pump, FXYD1, and NHE1 mRNA and protein expression: importance of training status, intensity, and muscle type

    DEFF Research Database (Denmark)

    Rasmussen, Martin Krøyer; Juel, Carsten; Nordsborg, Nikolai Baastrup

    2011-01-01

    It is investigated if exercise induced mRNA changes cause similar protein expression changes of Na(+), K(+) pump isoforms (a1, a2, ß1, ß2), FXYD1 and NHE1 in rat skeletal muscle. Expression was evaluated (n=8 per group) in Soleus and EDL after 1 day, 3 days and 3 weeks (5 sessions per week...

  11. Protein kinase A-alpha directly phosphorylates FoxO1 in vascular endothelial cells to regulate expression of vascular cellular adhesion molecule-1 mRNA.

    Science.gov (United States)

    Lee, Ji-Won; Chen, Hui; Pullikotil, Philomena; Quon, Michael J

    2011-02-25

    FoxO1, a forkhead box O class transcription factor, is abundant in insulin-responsive tissues. Akt, downstream from phosphatidylinositol 3-kinase in insulin signaling, phosphorylates FoxO1 at Thr(24), Ser(256), and Ser(319), negatively regulating its function. We previously reported that dehydroepiandrosterone-stimulated phosphorylation of FoxO1 in endothelial cells requires cAMP-dependent protein kinase α (PKA-α). Therefore, we hypothesized that FoxO1 is a novel direct substrate for PKA-α. Using an immune complex kinase assay with [γ-(32)P]ATP, purified PKA-α directly phosphorylated wild-type FoxO1 but not FoxO1-AAA (mutant with alanine substitutions at known Akt phosphorylation sites). Phosphorylation of wild-type FoxO1 (but not FoxO1-AAA) was detectable using phospho-specific antibodies. Similar results were obtained using purified GST-FoxO1 protein as the substrate. Thus, FoxO1 is a direct substrate for PKA-α in vitro. In bovine aortic endothelial cells, interaction between endogenous PKA-α and endogenous FoxO1 was detected by co-immunoprecipitation. In human aortic endothelial cells (HAEC), pretreatment with H89 (PKA inhibitor) or siRNA knockdown of PKA-α decreased forskolin- or prostaglandin E(2)-stimulated phosphorylation of FoxO1. In HAEC transfected with a FoxO-promoter luciferase reporter, co-expression of the catalytic domain of PKA-α, catalytically inactive mutant PKA-α, or siRNA against PKA-α caused corresponding increases or decreases in transactivation of the FoxO promoter. Expression of vascular cellular adhesion molecule-1 mRNA, up-regulated by FoxO1 in endothelial cells, was enhanced by siRNA knockdown of PKA-α or treatment of HAEC with the PKA inhibitor H89. Adhesion of monocytes to endothelial cells was enhanced by H89 treatment or overexpression of FoxO1-AAA, similar to effects of TNF-α treatment. We conclude that FoxO1 is a novel physiological substrate for PKA-α in vascular endothelial cells.

  12. Toll-like receptor 3 signalling up-regulates expression of the HIV co-receptor G-protein coupled receptor 15 on human CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Miriam Kiene

    Full Text Available BACKGROUND: Many HIV-2 and SIV isolates, as well as some HIV-1 strains, can use the orphan 7-transmembrane receptor GPR15 as co-receptor for efficient entry into host cells. GPR15 is expressed on central memory and effector memory CD4(+ T cells in healthy individuals and a subset of these cells is susceptible to HIV-1 and SIV infection. However, it has not been determined whether GPR15 expression is altered in the context of HIV-1 infection. RESULTS: Here, we show that GPR15 expression in CD4(+ T cells is markedly up-regulated in some HIV-1 infected individuals compared to the rest of the infected patients and to healthy controls. Infection of the PM1 T cell line with primary HIV-1 isolates was found to up-regulate GPR15 expression on the infected cells, indicating that viral components can induce GPR15 expression. Up-regulation of GPR15 expression on CD4(+ T cells was induced by activation of Toll-like receptor 3 signalling via TIR-domain-containing adapter-inducing interferon-β (TRIF and was more prominent on gut-homing compared to lymph node-homing CD4(+ T cells. CONCLUSION: These results suggest that infection-induced up-regulation of GPR15 expression could increase susceptibility of CD4(+ T cells to HIV infection and target cell availability in the gut in some infected individuals.

  13. Up-regulated EMMPRIN/CD147 protein expression might play a role in colorectal carcinogenesis and its subsequent progression without an alteration of its glycosylation and mRNA level.

    Science.gov (United States)

    Zheng, Hua-chuan; Wang, Wei; Xu, Xiao-yan; Xia, Pu; Yu, Miao; Sugiyama, Toshiro; Takano, Yasuo

    2011-04-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) was reported to involve in the invasion and metastasis of malignancies by regulating the expression of vascular endothelial growth factor (VEGF) in stromal and cancer cells. The study aimed to clarify the role of EMMPRIN expression in tumorigenesis and progression of colorectal carcinomas (CRC). EMMPRIN expression was examined on tissue microarray containing colorectal carcinomas, adenoma and non-neoplastic mucosa (NNM) by immunohistochemistry and in situ hybridization (ISH). Colorectal carcinoma cell lines (DLD-1, HCT-15, SW480 and WiDr) and tissues were studied for EMMPRIN expression by Western blot or RT-PCR, followed by sequencing. All carcinoma cell lines showed EMMPRIN expression at both mRNA and protein levels. Two synonymous mutations were found in carcinoma cell lines at codon109 (GCT → GCC: Ala) or 179 (GAT → GAC: Asp). Frozen CRC tissues displayed higher EMMPRIN expression than paired NNM (P EMMPRIN expression was immunohistochemically stronger in colorectal high-grade adenoma, adenocarcinoma and metastatic carcinoma than non-neoplastic superficial epithelium and low-grade adenoma (P 0.05). Immunohistochemically, EMMPRIN expression was positively correlated with tumor size, depth of invasion, vascular or lymphatic invasion, grade of infiltration (INF), ki-67 and VEGF expression of CRCs (P EMMPRIN expression in CRCs (P EMMPRIN protein expression might contribute to colorectal carcinogenesis without the alteration of its glycosylation and mRNA level. Aberrant EMMPRIN protein expression might promote growth or invasion of CRCs possibly through increased ki-67 expression and inducible angiogenesis via up-regulating VEGF expression.

  14. Kaempferol Reduces Matrix Metalloproteinase-2 Expression by Down-Regulating ERK1/2 and the Activator Protein-1 Signaling Pathways in Oral Cancer Cells

    Science.gov (United States)

    Lin, Chiao-Wen; Chen, Pei-Ni; Chen, Mu-Kuan; Yang, Wei-En; Tang, Chih-Hsin; Yang, Shun-Fa; Hsieh, Yih-Shou

    2013-01-01

    Background Kaempferol has been proposed as a potential drug for cancer chemoprevention and treatment because it is a natural polyphenol contained in plant-based foods. Recent studies have demonstrated that kaempferol protects against cardiovascular disease and cancer. Based on this finding, we investigated the mechanisms by which kaempferol produces the anti-metastatic effect in human tongue squamous cell carcinoma SCC4 cells. Methodology/Principal Findings In this study, we provided molecular evidence associated with the anti-metastatic effect of kaempferol by demonstrating a substantial suppression of SCC4 cell migration and invasion. This effect was associated with reduced expressions of MMP-2 and TIMP-2 mRNA and protein levels. Analysis of the transcriptional regulation indicated that kaempferol inhibited MMP-2 transcription by suppressing c-Jun activity. Kaempferol also produced an inhibitory effect on the phosphorylation of ERK1/2. Conclusions These findings provide new insights into the molecular mechanisms involved in the anti-metastatic effect of kaempferol, and are valuable in the prevention of oral cancer metastasis. PMID:24278338

  15. Fluoxetine up-regulates expression of cellular FLICE-inhibitory protein and inhibits LPS-induced apoptosis in hippocampus-derived neural stem cell

    International Nuclear Information System (INIS)

    Chiou, S.-H.; Chen, S.-J.; Peng, C-H.; Chang, Y.-L.; Ku, H.-H.; Hsu, W.-M.; Ho, Larry L.-T.; Lee, C.-H.

    2006-01-01

    Fluoxetine is a widely used antidepressant compound which inhibits the reuptake of serotonin in the central nervous system. Recent studies have shown that fluoxetine can promote neurogenesis and improve the survival rate of neurons. However, whether fluoxetine modulates the proliferation or neuroprotection effects of neural stem cells (NSCs) needs to be elucidated. In this study, we demonstrated that 20 μM fluoxetine can increase the cell proliferation of NSCs derived from the hippocampus of adult rats by MTT test. The up-regulated expression of Bcl-2, Bcl-xL and the cellular FLICE-inhibitory protein (c-FLIP) in fluoxetine-treated NSCs was detected by real-time RT-PCR. Our results further showed that fluoxetine protects the lipopolysaccharide-induced apoptosis in NSCs, in part, by activating the expression of c-FLIP. Moreover, c-FLIP induction by fluoxetine requires the activation of the c-FLIP promoter region spanning nucleotides -414 to -133, including CREB and SP1 sites. This effect appeared to involve the phosphatidylinositol-3-kinase-dependent pathway. Furthermore, fluoxetine treatment significantly inhibited the induction of proinflammatory factor IL-1β, IL-6, and TNF-α in the culture medium of LPS-treated NSCs (p < 0.01). The results of high performance liquid chromatography coupled to electrochemical detection further confirmed that fluoxentine increased the functional production of serotonin in NSCs. Together, these data demonstrate the specific activation of c-FLIP by fluoxetine and indicate the novel role of fluoxetine for neuroprotection in the treatment of depression

  16. Molecular cloning, occurrence, and expression of a novel partially secreted protein "psoriasin" that is highly up-regulated in psoriatic skin

    DEFF Research Database (Denmark)

    Madsen, Peder; Rasmussen, H H; Leffers, H

    1991-01-01

    the vaccinia virus expression system. Analysis of the predicted sequence revealed a potential calcium-binding sequence of the EF-hand type, as well as the absence of a signal sequence at its amino terminal. Psoriasin is not related to other proteins that migrate closely in 2D gels (MRP 14, also known...... as calgranulin B, L1 and calprotectin; MRP 8, or calgranulin A and cystatin A or stefin A), and bears no significant sequence homology with any other protein of known primary structure. Increased expression of psoriasin mRNA in psoriatic keratinocytes was confirmed by Northern blotting and in situ hybridization...

  17. Ghrelin agonists impact on Fos protein expression in brain areas related to food intake regulation in male C57BL/6 mice.

    Science.gov (United States)

    Pirnik, Z; Bundziková, J; Holubová, M; Pýchová, M; Fehrentz, J A; Martinez, J; Zelezná, B; Maletínská, L; Kiss, A

    2011-11-01

    Many peripheral substances, including ghrelin, induce neuronal activation in the brain. In the present study, we compared the effect of subcutaneously administered ghrelin and its three stable agonists: Dpr(3)ghr ([Dpr(N-octanoyl)(3)] ghrelin) (Dpr - diaminopropionic acid), YA GHRP-6 (H-Tyr-Ala-His-DTrp-Ala-Trp-DPhe-Lys-NH(2)), and JMV1843 (H-Aib-DTrp-D-gTrp-CHO) on the Fos expression in food intake-responsive brain areas such as the hypothalamic paraventricular (PVN) and arcuate (ARC) nuclei, the nucleus of the solitary tract (NTS), and area postrema (AP) in male C57BL/6 mice. Immunohistochemical analysis showed that acute subcutaneous dose of each substance (5mg/kg b.w.), which induced a significant food intake increase, elevated Fos protein expression in all brain areas studied. Likewise ghrelin, each agonist tested induced distinct Fos expression overall the PVN. In the ARC, ghrelin and its agonists specifically activated similarly distributed neurons. Fos occurrence extended from the anterior (aARC) to middle (mARC) ARC region. In the latter part of the ARC, the Fos profiles were localized bilaterally, especially in the ventromedial portions of the nucleus. In the NTS, all substances tested also significantly increased the number of Fos profiles in neurons, which also revealed specific location, i.e., in the NTS dorsomedial subnucleus (dmNTS) and the area subpostrema (AsP). In addition, cells located nearby the NTS, in the AP, also revealed a significant increase in number of Fos-activated cells. These results demonstrate for the first time that ghrelin agonists, regardless of their different chemical nature, have a significant and similar activating impact on specific groups of neurons that can be a part of the circuits involved in the food intake regulation. Therefore there is a real potency for ghrelin agonists to treat cachexia and food intake disorders. Thus, likewise JMV1843, the other ghrelin agonists represent substances that might be involved in

  18. Regulation of methane genes and genome expression

    Energy Technology Data Exchange (ETDEWEB)

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  19. The predictive nature of transcript expression levels on protein expression in adult human brain.

    Science.gov (United States)

    Bauernfeind, Amy L; Babbitt, Courtney C

    2017-04-24

    Next generation sequencing methods are the gold standard for evaluating expression of the transcriptome. When determining the biological implications of such studies, the assumption is often made that transcript expression levels correspond to protein levels in a meaningful way. However, the strength of the overall correlation between transcript and protein expression is inconsistent, particularly in brain samples. Following high-throughput transcriptomic (RNA-Seq) and proteomic (liquid chromatography coupled with tandem mass spectrometry) analyses of adult human brain samples, we compared the correlation in the expression of transcripts and proteins that support various biological processes, molecular functions, and that are located in different areas of the cell. Although most categories of transcripts have extremely weak predictive value for the expression of their associated proteins (R 2 values of < 10%), transcripts coding for protein kinases and membrane-associated proteins, including those that are part of receptors or ion transporters, are among those that are most predictive of downstream protein expression levels. The predictive value of transcript expression for corresponding proteins is variable in human brain samples, reflecting the complex regulation of protein expression. However, we found that transcriptomic analyses are appropriate for assessing the expression levels of certain classes of proteins, including those that modify proteins, such as kinases and phosphatases, regulate metabolic and synaptic activity, or are associated with a cellular membrane. These findings can be used to guide the interpretation of gene expression results from primate brain samples.

  20. Translational control and differential RNA decay are key elements regulating postsegregational expression of the killer protein encoded by the parB locus of plasmid R1

    DEFF Research Database (Denmark)

    Gerdes, K; Helin, K; Christensen, O W

    1988-01-01

    The parB locus of plasmid R1, which mediates plasmid stability via postsegregational killing of plasmid-free cells, encodes two genes, hok and sok. The hok gene product is a potent cell-killing protein. The hok gene is regulated at the translational level by the sok gene-encoded repressor, a small...

  1. The NF-κB family member RelB regulates microRNA miR-146a to suppress cigarette smoke-induced COX-2 protein expression in lung fibroblasts.

    Science.gov (United States)

    Zago, Michela; Rico de Souza, Angela; Hecht, Emelia; Rousseau, Simon; Hamid, Qutayba; Eidelman, David H; Baglole, Carolyn J

    2014-04-21

    Diseases due to cigarette smoke exposure, including chronic obstructive pulmonary disease (COPD) and lung cancer, are associated with chronic inflammation typified by the increased expression of cyclooxygenase-2 (COX-2) protein. RelB is an NF-κB family member that suppresses cigarette smoke induction of COX-2 through an unknown mechanism. The ability of RelB to regulate COX-2 expression may be via miR-146a, a miRNA that attenuates COX-2 in lung fibroblasts. In this study we tested whether RelB attenuation of cigarette smoke-induced COX-2 protein is due to miR-146a. Utilizing pulmonary fibroblasts deficient in RelB expression, together with siRNA knock-down of RelB, we show the essential role of RelB in diminishing smoke-induced COX-2 protein expression despite robust activation of the canonical NF-κB pathway and subsequent induction of Cox-2 mRNA. RelB did not regulate COX-2 protein expression at the level of mRNA stability. Basal levels of miR-146a were significantly lower in Relb-deficient cells and cigarette smoke increased miR-146a expression only in Relb-expressing cells. Inhibition of miR-146a had no effects on Relb expression or induction of Cox-2 mRNA by cigarette smoke but significantly increased COX-2 protein. These data highlight the potential of a RelB-miR-146a axis as a novel regulatory pathway that attenuates inflammation in response to respiratory toxicants. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. N-glycosylation of asparagine 8 regulates surface expression of major histocompatibility complex class I chain-related protein A (MICA) alleles dependent on threonine 24

    DEFF Research Database (Denmark)

    Pedersen, Maiken Mellergaard; Skovbakke, Sarah Line; Schneider, Christine L.

    2014-01-01

    for cell-surface expression and sought to identify the essential residues. We found that a single N-glycosylation site (N8) was important for MICA018 surface expression. The frequently expressed MICA allele 008, with an altered transmembrane and intracellular domain, was not affected by mutation of this N......-glycosylation site. Mutational analysis revealed that a single amino acid (T24) in the extracellular domain of MICA018 was essential for the N-glycosylation dependency, while the intracellular domain was not involved. The HHV7 immunoevasin, U21, was found to inhibit MICA018 surface expression by affecting N......-glycosylation and the retention was rescued by T24A substitution. Our study reveals N-glycosylation as an allele-specific regulatory mechanism important for regulation of surface expression of MICA018 and we pinpoint the residues essential for this N-glycosylation dependency. In addition we show that this regulatory mechanism...

  3. Bone morphogenetic protein 4 inhibits insulin secretion from rodent beta cells through regulation of calbindin1 expression and reduced voltage-dependent calcium currents

    DEFF Research Database (Denmark)

    Christensen, Gitte L.; Jacobsen, Maria L. B.; Wendt, Anna

    2015-01-01

    AIMS/HYPOTHESIS: Type 2 diabetes is characterised by progressive loss of pancreatic beta cell mass and function. Therefore, it is of therapeutic interest to identify factors with the potential to improve beta cell proliferation and insulin secretion. Bone morphogenetic protein 4 (BMP4) expression...

  4. Ha-ras oncogene expression directed by a milk protein gene promoter: tissue specificity, hormonal regulation, and tumor induction in transgenic mice

    International Nuclear Information System (INIS)

    Andres, A.C.; Schoenenberger, C.A.; Groner, B.; Henninghausen, L.; LeMeur, M.; Gelinger, P.

    1987-01-01

    The activated human Ha-ras oncogene was subjected to the control of the promoter region of the murine whey acidic protein (Wap) gene, which is expressed in mammary epithelial cells in response to lactogenic hormones. The Wap-ras gene was stably introduced into the mouse germ line of five transgenic mice (one male and four females). Wap-ras expression was observed in the mammary glands of lactating females in two lines derived from female founders. The tissue-directed and hormone-dependent Wap expression was conferred on the Ha-ras oncogene. The signals governing Wap expression are located within 2.5 kilobases of 5' flanking sequence. The other two lines derived from female founders did not express the chimeric gene. In the line derived from the male founder the Wap-ras gene is integrated into the Y chromosome. Expression was found in the salivary gland of male animals only. After a long latency, Wap-ras-expressing mice developed tumors. The tumors arose in tissues expressing Wap-ras - i.e., mammary or salivary glands. Compared to the corresponding nonmalignant tissues, Wap-ras expression was enhanced in the tumors

  5. Linking patient outcome to high throughput protein expression data identifies novel regulators of colorectal adenocarcinoma aggressiveness [v1; ref status: indexed, http://f1000r.es/5ad

    Directory of Open Access Journals (Sweden)

    Christi L. French

    2015-04-01

    Full Text Available A key question in cancer systems biology is how to use molecular data to predict the biological behavior of tumors from individual patients. While genomics data have been heavily used, protein signaling data are more directly connected to biological phenotype and might predict cancer phenotypes such as invasion, metastasis, and patient survival. In this study, we mined publicly available data for colorectal adenocarcinoma from the Cancer Genome Atlas and identified protein expression and signaling changes that are statistically associated with patient outcome. Our analysis identified a number of known and potentially new regulators of colorectal cancer. High levels of insulin growth factor binding protein 2 (IGFBP2 were associated with both recurrence and death, and this was validated by immunohistochemical staining of a tissue microarray for a secondary patient dataset. Interestingly, GATA binding protein 3 (GATA3 was the protein most frequently associated with death in our analysis, and GATA3 expression was significantly decreased in tumor samples from stage I-II deceased patients. Experimental studies using engineered colon cancer cell lines show that exogenous expression of GATA3 decreases three-dimensional colony growth and invasiveness of colon cancer cells but does not affect two-dimensional proliferation. These findings suggest that protein data are useful for biomarker discovery and identify GATA3 as a regulator of colorectal cancer  aggressiveness.

  6. Hindbrain A2 noradrenergic neuron adenosine 5'-monophosphate-activated protein kinase activation, upstream kinase/phosphorylase protein expression, and receptivity to hormone and fuel reporters of short-term food deprivation are regulated by estradiol.

    Science.gov (United States)

    Briski, Karen P; Alenazi, Fahaad S H; Shakya, Manita; Sylvester, Paul W

    2017-07-01

    Estradiol (E) mitigates acute and postacute adverse effects of 12 hr-food deprivation (FD) on energy balance. Hindbrain 5'-monophosphate-activated protein kinase (AMPK) regulates hyperphagic and hypothalamic metabolic neuropeptide and norepinephrine responses to FD in an E-dependent manner. Energy-state information from AMPK-expressing hindbrain A2 noradrenergic neurons shapes neural responses to metabolic imbalance. Here we investigate the hypothesis that FD causes divergent changes in A2 AMPK activity in E- vs. oil (O)-implanted ovariectomized female rats, alongside dissimilar adjustments in circulating metabolic fuel (glucose, free fatty acids [FFA]) and energy deficit-sensitive hormone (corticosterone, glucagon, leptin) levels. FD decreased blood glucose in oil (O)- but not E-implanted ovariectomized female rats and elevated and reduced glucagon levels in O and E, respectively. FD decreased circulating leptin in O and E, but increased corticosterone and FFA concentrations in E only. Western blot analysis of laser-microdissected A2 neurons showed that glucocorticoid receptor type II and very-long-chain acyl-CoA synthetase 3 protein profiles were amplified in FD/E vs. FD/O. A2 total AMPK protein was elevated without change in activity in FD/O, whereas FD/E exhibited increased AMPK activation along with decreased upstream phosphatase expression. The catecholamine biosynthetic enzyme dopamine-β-hydroxylase (DβH) was increased in FD/O but not FD/E A2 cells. The data show discordance between A2 AMPK activation and glycemic responses to FD; sensor activity was refractory to glucose decrements in FD/O but augmented in FD/E despite stabilized glucose and elevated FFA levels. E-dependent amplification of AMPK activity may reflect adaptive conversion to fatty acid oxidation and/or glucocorticoid stimulation. FD augmentation of A2 DβH protein profiles in FD/O but not FD/E animals suggests that FD may correspondingly regulate NE synthesis vs. metabolism/release in the

  7. Duodenal-jejunal bypass surgery up-regulates the expression of the hepatic insulin signaling proteins and the key regulatory enzymes of intestinal gluconeogenesis in diabetic Goto-Kakizaki rats.

    Science.gov (United States)

    Sun, Dong; Wang, Kexin; Yan, Zhibo; Zhang, Guangyong; Liu, Shaozhuang; Liu, Fengjun; Hu, Chunxiao; Hu, Sanyuan

    2013-11-01

    Duodenal-jejunal bypass (DJB), which is not routinely applied in metabolic surgery, is an effective surgical procedure in terms of type 2 diabetes mellitus resolution. However, the underlying mechanisms are still undefined. Our aim was to investigate the diabetic improvement by DJB and to explore the changes in hepatic insulin signaling proteins and regulatory enzymes of gluconeogenesis after DJB in a non-obese diabetic rat model. Sixteen adult male Goto-Kakizaki rats were randomly divided into DJB and sham-operated groups. The body weight, food intake, hormone levels, and glucose metabolism were measured. The levels of protein expression and phosphorylation of insulin receptor-beta (IR-β) and insulin receptor substrate 2 (IRS-2) were evaluated in the liver. We also detected the expression of key regulatory enzymes of gluconeogenesis [phosphoenoylpyruvate carboxykinase-1 (PCK1), glucose-6-phosphatase-alpha (G6Pase-α)] in small intestine and liver. DJB induced significant diabetic improvement with higher postprandial glucagons-like peptide 1, peptide YY, and insulin levels, but without weight loss. The DJB group exhibited increased expression and phosphorylation of IR-β and IRS-2 in liver, up-regulated the expression of PCK1 and G6Pase-α in small intestine, and down-regulated the expression of these enzymes in liver. DJB is effective in up-regulating the expression of the key proteins in the hepatic insulin signaling pathway and the key regulatory enzymes of intestinal gluconeogenesis and down-regulating the expression of the key regulatory enzymes of hepatic gluconeogenesis without weight loss. Our study helps to reveal the potential role of hepatic insulin signaling pathway and intestinal gluconeogenesis in ameliorating insulin resistance after metabolic surgery.

  8. Role of Light and Dark Cycle and Different Temperatures in the Regulation of Growth and Protein Expression in Oscillatoria agardhii Strain

    Directory of Open Access Journals (Sweden)

    Gajendra Kumar Dautania

    2014-12-01

    Full Text Available The cyanobacterium Oscillatoria agardhii was isolated from the fresh water Mawatha lake, Jaipur and was grown in Zarrouk's medium at 25 ± 2°C, illuminated with white fluorescent light at the intensity of 2 500 lux with 12:12 h light and dark photoperiod. The effects of photoperiod and temperature on the growth and protein expression by Oscillatoria agardhii were studied under different controlled culture conditions (ALR, ALC, CLR, CLC, and NDL, measuring optical density, cell count and dry weight. Protein content was measured quantitatively by Bradford assay and qualitatively by SDS-PAGE. The densitometric analysis was also carried out for the measurement of the expression level of different proteins/peptides under different culture conditions. Maximum growth and protein content were observed in ALR condition while minimum was in the CLC. Alternate light and dark periods proved efficient as contrasting banding patterns were observed with many new unique polypeptides such as 32, 36.3, 47.9, 60.8, and 67.0 kDa, whereas, expressions of three polypeptides of 57.2, 110.1, and 117.3 kDa were inhibited in constant light cultures.

  9. The long N-terminus of the human monocarboxylate transporter 8 is a target of ubiquitin-dependent proteasomal degradation which regulates protein expression and oligomerization capacity.

    Science.gov (United States)

    Zwanziger, Denise; Schmidt, Mathias; Fischer, Jana; Kleinau, Gunnar; Braun, Doreen; Schweizer, Ulrich; Moeller, Lars Christian; Biebermann, Heike; Fuehrer, Dagmar

    2016-10-15

    Monocarboxylate transporter 8 (MCT8) equilibrates thyroid hormones between the extra- and the intracellular sides. MCT8 exists either with a short or a long N-terminus, but potential functional differences between both variants are yet not known. We, therefore, generated MCT8 constructs which are different in N-terminal length: MCT8(1-613), MCT8(25-613), MCT8(49-613) and MCT8(75-613). The M75G substitution prevents translation of MCT8(75-613) and ensures expression of full-length MCT8 protein. The K56G substitution was made to prevent ubiquitinylation. Cell-surface expression, localization and proteasomal degradation were investigated using C-terminally GFP-tagged MCT8 constructs (HEK293 and MDCK1 cells) and oligomerization capacity was determined using N-terminally HA- and C-terminally FLAG-tagged MCT8 constructs (COS7 cells). MCT8(1-613)-GFP showed a lower protein expression than the shorter MCT8(75-613)-GFP protein. The proteasome inhibitor lactacystin increased MCT8(1-613)-GFP protein amount, suggesting proteasomal degradation of MCT8 with the long N-terminus. Ubiquitin conjugation of MCT8(1-613)-GFP was found by immuno-precipitation. A diminished ubiquitin conjugation caused by K56G substitution resulted in increased MCT8(1-613)-GFP protein expression. Sandwich ELISA was performed to investigate if the bands at higher molecular weight observed in Western blot analysis are due to MCT8 oligomerization, which was indeed shown. Our data imply a role of the long N-terminus of MCT8 as target of ubiquitin-dependent proteasomal degradation affecting MCT8 amount and subsequently oligomerization capacity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Biphasic Modulation of NOS Expression, Protein and Nitrite Products by Hydroxocobalamin Underlies Its Protective Effect in Endotoxemic Shock: Downstream Regulation of COX-2, IL-1β, TNF-α, IL-6, and HMGB1 Expression

    Science.gov (United States)

    Sampaio, André L. F.; Dalli, Jesmond; Brancaleone, Vincenzo; D'Acquisto, Fulvio; Perretti, Mauro; Wheatley, Carmen

    2013-01-01

    Background. NOS/•NO inhibitors are potential therapeutics for sepsis, yet they increase clinical mortality. However, there has been no in vivo investigation of the (in vitro) •NO scavenger, cobalamin's (Cbl) endogenous effects on NOS/•NO/inflammatory mediators during the immune response to sepsis. Methods. We used quantitative polymerase chain reaction (qPCR), ELISA, Western blot, and NOS Griess assays, in a C57BL/6 mouse, acute endotoxaemia model. Results. During the immune response, pro-inflammatory phase, parenteral hydroxocobalamin (HOCbl) treatment partially inhibits hepatic, but not lung, iNOS mRNA and promotes lung eNOS mRNA, but attenuates the LPS hepatic rise in eNOS mRNA, whilst paradoxically promoting high iNOS/eNOS protein translation, but relatively moderate •NO production. HOCbl/NOS/•NO regulation is reciprocally associated with lower 4 h expression of TNF-α, IL-1β, COX-2, and lower circulating TNF-α, but not IL-6. In resolution, 24 h after LPS, HOCbl completely abrogates a major late mediator of sepsis mortality, high mobility group box 1 (HMGB1) mRNA, inhibits iNOS mRNA, and attenuates LPS-induced hepatic inhibition of eNOS mRNA, whilst showing increased, but still moderate, NOS activity, relative to LPS only. experiments (LPS+D-Galactosamine) HOCbl afforded significant, dose-dependent protection in mice Conclusions. HOCbl produces a complex, time- and organ-dependent, selective regulation of NOS/•NO during endotoxaemia, corollary regulation of downstream inflammatory mediators, and increased survival. This merits clinical evaluation. PMID:23781123

  11. Post-Translational Regulation of Polycystin-2 Protein Expression as a Novel Mechanism of Cholangiocyte Reaction and Repair from Biliary Damage

    Science.gov (United States)

    Spirli, Carlo; Villani, Ambra; Mariotti, Valeria; Fabris, Luca; Fiorotto, Romina; Strazzabosco, Mario

    2015-01-01

    Polycystin-2 (PC2 /TRPP2), a member of the transient receptor potential channels (TRP) family, is a non-selective calcium channel. Mutations in PC2/TRPP2 are associated with Polycystic Liver Diseases. PC2-defective cholangiocytes shows increased production of cAMP, PKA-dependent activation of the ERK1/2 pathway, HIF1α-mediated VEGF production, and stimulation of cyst growth and progression. Activation of the ERK/HIF1α/VEGF pathway in cholangiocytes plays a key role during repair from biliary damage. We hypothesized that PC2 levels are modulated during biliary damage/repair, resulting in activation of the ERK/HIF1α/VEGF pathway. Results PC2 protein expression, but not its gene expression, was significantly reduced in mouse livers with biliary damage (Mdr2−/−-KO, bile duct ligation, DDC-treatment). Treatment of colangiocytes with pro-inflammatory cytokines, nitric oxide (NO) donors and ER stressors), increased ERK1/2 phosphorylation, HIF1α transcriptional activity, secretion of VEGF, VEGFR2 phosphorylation and downregulated PC2 protein expression without affecting PC2 gene expression. Expression of Herp and NEK, ubiquitin-like proteins that promote proteosomal PC2 degradation was increased. Pre-treatment with the proteasome inhibitor MG-132 restored the expression of PC2 in cells treated with cytokines but not in cells treated with NO donors or with ER stressors. In these conditions, PC2 degradation was instead inhibited by interfering with the autophagy pathway. Treatment of DDC-mice and of Mdr2−/−-mice with the proteasome inhibitor bortezomib, restored PC2 expression and significantly reduced the ductular reaction, fibrosis and p-ERK1/2. In conclusion, in response to biliary damage, PC2 expression is modulated post-translationally by the proteasome or the autophagy pathways. PC2-dowregulation is associated with activation of ERK1/2 and increase of HIF1α-mediated VEGF secretion. Treatments able to restore PC2 expression and to reduce ductular reaction

  12. Comparison of SH3 and SH2 domain dynamics when expressed alone or in an SH(3+2) construct: the role of protein dynamics in functional regulation.

    Science.gov (United States)

    Engen, J R; Smithgall, T E; Gmeiner, W H; Smith, D L

    1999-04-02

    Protein dynamics play an important role in protein function and regulation of enzymatic activity. To determine how additional interactions with surrounding structure affects local protein dynamics, we have used hydrogen exchange and mass spectrometry to investigate the SH2 and SH3 domains of the protein tyrosine kinase Hck. Exchange rates of isolated Hck SH3 and SH2 domains were compared with rates for the same domains when part of a larger SH(3+2) construct. Increased deuterium incorporation was observed for the SH3 domain in the joint construct, particularly near the SH2 interface and the short sequence that connects SH3 to SH2, implying greater flexibility of SH3 when it is part of SH(3+2). Slow cooperative unfolding of the SH3 domain occurred at the same rate in isolated SH3 as in the SH(3+2) construct, suggesting a functional significance for this unfolding. The SH2 domain displayed relatively smaller changes in flexibility when part of the SH(3+2) construct. These results suggest that the domains influence each other. Further, our results imply a link between functional regulation and structural dynamics of SH3 and SH2 domains. Copyright 1999 Academic Press.

  13. The WOPR Protein Ros1 Is a Master Regulator of Sporogenesis and Late Effector Gene Expression in the Maize Pathogen Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Marie Tollot

    2016-06-01

    Full Text Available The biotrophic basidiomycete fungus Ustilago maydis causes smut disease in maize. Hallmarks of the disease are large tumors that develop on all aerial parts of the host in which dark pigmented teliospores are formed. We have identified a member of the WOPR family of transcription factors, Ros1, as major regulator of spore formation in U. maydis. ros1 expression is induced only late during infection and hence Ros1 is neither involved in plant colonization of dikaryotic fungal hyphae nor in plant tumor formation. However, during late stages of infection Ros1 is essential for fungal karyogamy, massive proliferation of diploid fungal cells and spore formation. Premature expression of ros1 revealed that Ros1 counteracts the b-dependent filamentation program and induces morphological alterations resembling the early steps of sporogenesis. Transcriptional profiling and ChIP-seq analyses uncovered that Ros1 remodels expression of about 30% of all U. maydis genes with 40% of these being direct targets. In total the expression of 80 transcription factor genes is controlled by Ros1. Four of the upregulated transcription factor genes were deleted and two of the mutants were affected in spore development. A large number of b-dependent genes were differentially regulated by Ros1, suggesting substantial changes in this regulatory cascade that controls filamentation and pathogenic development. Interestingly, 128 genes encoding secreted effectors involved in the establishment of biotrophic development were downregulated by Ros1 while a set of 70 "late effectors" was upregulated. These results indicate that Ros1 is a master regulator of late development in U. maydis and show that the biotrophic interaction during sporogenesis involves a drastic shift in expression of the fungal effectome including the downregulation of effectors that are essential during early stages of infection.

  14. CCAAT/Enhancer-Binding Protein α Is a Crucial Regulator of Human Fat Mass and Obesity Associated Gene Transcription and Expression

    Directory of Open Access Journals (Sweden)

    Wei Ren

    2014-01-01

    Full Text Available Several susceptibility loci have been reported associated with obesity and T2DM in GWAS. Fat mass and obesity associated gene (FTO is the first gene associated with body mass index (BMI and risk for diabetes in diverse patient populations. FTO is highly expressed in the brain and pancreas, and is involved in regulating dietary intake and energy expenditure. While much is known about the epigenetic mutations contributing to obesity and T2DM, less is certain with the expression regulation of FTO gene. In this study, a highly conserved canonical C/EBPα binding site was located around position −45~−54 bp relative to the human FTO gene transcriptional start site. Site-directed mutagenesis of the putative C/EBPα binding sites decreased FTO promoter activity. Overexpression and RNAi studies also indicated that C/EBPα was required for the expression of FTO. Chromatin immunoprecipitation (ChIP experiment was carried out and the result shows direct binding of C/EBPα to the putative binding regions in the FTO promoter. Collectively, our data suggest that C/EBPα may act as a positive regulator binding to FTO promoter and consequently, activates the gene transcription.

  15. The regulation of pituitary-thyroid abnormalities by peripheral administration of levothyroxine increased brain-derived neurotrophic factor and reelin protein expression in an animal model of Alzheimer's disease.

    Science.gov (United States)

    Shabani, Sahreh; Farbood, Yaghoob; Mard, Seyyed Ali; Sarkaki, Alireza; Ahangarpour, Akram; Khorsandi, Layasadat

    2018-03-01

    Alzheimer's disease (AD) is associated with decreased serum levels of thyroid hormones (THs), increased levels of thyroid-stimulating hormone (TSH), and decreased protein expression of brain-derived neurotrophic factor (BDNF) and reelin in the hippocampus. In this study, we have evaluated the effect of subcutaneous administration of levothyroxine (L-T 4 ) on levels of THs and TSH as well as protein expression of BDNF and reelin in AD rats. To make an animal model of AD, amyloid-beta peptide (Aβ) plus ibotenic acid were infused intrahippocampally, and rats were treated with L-T 4 and (or) saline for 10 days. The levels of THs and TSH were measured by ELISA kits. Protein synthesis was detected by Western blotting method. Results have been shown that serum level of THs, BDNF, and reelin protein expression in the hippocampus were significantly decreased (P < 0.001) in AD animals and elevated significantly in AD rats treated with L-T 4 (P < 0.01). Data showed that TSH level significantly decreased in AD rats treated with L-T 4 (P < 0.05). These findings indicated that L-T 4 increased BDNF and reelin protein expression by regulation of serum THs and TSH level in Aβ-induced AD rats.

  16. Claudins, dietary milk proteins, and intestinal barrier regulation.

    Science.gov (United States)

    Kotler, Belinda M; Kerstetter, Jane E; Insogna, Karl L

    2013-01-01

    The family of claudin proteins plays an important role in regulating the intestinal barrier by modulating the permeability of tight junctions. The impact of dietary protein on claudin biology has not been studied extensively. Whey proteins have been reported to improve intestinal barrier function, but their mechanism of action is not clear. Recent studies, however, have demonstrated increased intestinal claudin expression in response to milk protein components. Reviewed here are new findings suggesting that whey-protein-derived transforming growth factor β transcriptionally upregulates claudin-4 expression via a Smad-4-dependent pathway. These and other data, including limited clinical studies, are summarized below and, in the aggregate, suggest a therapeutic role for whey protein in diseases of intestinal barrier dysfunction, perhaps, in part, by regulating claudin expression. © 2013 International Life Sciences Institute.

  17. Redox regulation of photosynthetic gene expression.

    Science.gov (United States)

    Queval, Guillaume; Foyer, Christine H

    2012-12-19

    Redox chemistry and redox regulation are central to the operation of photosynthesis and respiration. However, the roles of different oxidants and antioxidants in the regulation of photosynthetic or respiratory gene expression remain poorly understood. Leaf transcriptome profiles of a range of Arabidopsis thaliana genotypes that are deficient in either hydrogen peroxide processing enzymes or in low molecular weight antioxidant were therefore compared to determine how different antioxidant systems that process hydrogen peroxide influence transcripts encoding proteins targeted to the chloroplasts or mitochondria. Less than 10 per cent overlap was observed in the transcriptome patterns of leaves that are deficient in either photorespiratory (catalase (cat)2) or chloroplastic (thylakoid ascorbate peroxidase (tapx)) hydrogen peroxide processing. Transcripts encoding photosystem II (PSII) repair cycle components were lower in glutathione-deficient leaves, as were the thylakoid NAD(P)H (nicotinamide adenine dinucleotide (phosphate)) dehydrogenases (NDH) mRNAs. Some thylakoid NDH mRNAs were also less abundant in tAPX-deficient and ascorbate-deficient leaves. Transcripts encoding the external and internal respiratory NDHs were increased by low glutathione and low ascorbate. Regulation of transcripts encoding specific components of the photosynthetic and respiratory electron transport chains by hydrogen peroxide, ascorbate and glutathione may serve to balance non-cyclic and cyclic electron flow pathways in relation to oxidant production and reductant availability.

  18. Regulation of SFRP-1 expression in the rat dental follicle.

    Science.gov (United States)

    Liu, Dawen; Yao, Shaomian; Wise, Gary E

    2012-01-01

    Tooth eruption requires osteoclastogenesis and subsequent bone resorption. Secreted frizzled-related protein-1 (SFRP-1) negatively regulates osteoclastogenesis. Our previous studies indicated that SFRP-1 is expressed in the rat dental follicle (DF), with reduced expression at days 3 and 9 close to the times for the major and minor bursts of osteoclastogenesis, respectively; but it remains unclear as to what molecules contribute to its reduced expression at these critical times. Thus, it was the aim of this study to determine which molecules regulate the expression of SFRP-1 in the DF. To that end, the DF cells were treated with cytokines that are maximally expressed at days 3 or 9, and SFRP-1 expression was determined. Our study indicated that colony-stimulating factor-1 (CSF-1), a molecule maximally expressed in the DF at day 3, down-regulated SFRP-1 expression. As to endothelial monocyte-activating polypeptide II (EMAP-II), a highly expressed molecule in the DF at day 3, it had no effect on the expression of SFRP-1. However, when EMAP-II was knocked down by siRNA, the expression of SFRP-1 was elevated, and this elevated SFRP-1 expression could be reduced by adding recombinant EMAP-II protein. This suggests that EMAP-II maintained a lower level of SFRP-1 in the DF. TNF-α is a molecule maximally expressed at day 9, and this study indicated that it also down-regulated the expression of SFRP-1 in the DF cells. In conclusion, CSF-1 and EMAP-II may contribute to the reduced SFRP-1 expression seen on day 3, while TNF-α may contribute to the reduced SFRP-1 expression at day 9.

  19. Up-regulation of miR-26a promotes apoptosis of hypoxic rat neonatal cardiomyocytes by repressing GSK-3β protein expression.

    Science.gov (United States)

    Suh, Jong Hui; Choi, Eunmi; Cha, Min-Ji; Song, Byeong-Wook; Ham, Onju; Lee, Se-Yeon; Yoon, Cheesoon; Lee, Chang-Yeon; Park, Jun-Hee; Lee, Sun Hee; Hwang, Ki-Chul

    2012-06-29

    Myocardial ischemia is the major cause of morbidity and mortality due to cardiovascular diseases. This disease is a severe stress condition that causes extensive biochemical changes which trigger cardiac cell death. Stress conditions such as deprivation of glucose and oxygen activate the endoplasmic reticulum in the cytoplasm of cells, including cardiomyocytes, to generate and propagate apoptotic signals in response to these conditions. microRNAs (miRNAs) are a class of small non-coding RNAs that mediate posttranscriptional gene silencing. The miRNAs play important roles in regulating cardiac physiological and pathological events such as hypertrophy, apoptosis, and heart failure. However, the roles of miRNAs in reactive oxygen species (ROS)-mediated injury on cardiomyocytes are uncertain. In this study, we identified at the apoptotic concentration of H(2)O(2), miR-26a expression was increased. To determine the potential roles of miR-26a in H(2)O(2)-mediated cardiac apoptosis, miR-26a expression was regulated by a miR-26a or an anti-miR-26a. Overexpression of miR-26a increased apoptosis as determined by upregulation of Annexin V/PI positive cell population, caspase-3 activity and expression of pro-apoptotic signal molecules, whereas inhibition of miR-26a reduced apoptosis. We identified GSK3B as a direct downstream target of miR-26a. Furthermore, miR-26a attenuated viability and increased caspase-3 activity in normal cardiomyocytes. This study demonstrates that miR-26a promotes ROS-induced apoptosis in cardiomyocytes. Thus, miR-26a affects ROS-mediated gene regulation and cellular injury response. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Molecular regulation of MHC class I chain-related protein A expression after HDAC-inhibitor treatment of Jurkat T cells

    DEFF Research Database (Denmark)

    Andresen, Lars; Jensen, Helle; Pedersen, Marianne T

    2007-01-01

    In this study, we characterize the molecular signal pathways that lead to MHC class I chain-related protein A (MICA) expression after histone deacetylase (HDAC)-inhibitor (HDAC-i) treatment of Jurkat T cells. Chelating calcium with BAPTA-AM or EGTA potently inhibited HDAC- and CMV-mediated MICA......1 site from position -113 to -93 relative to the mRNA start site was important for HDAC and CMV-induced promoter activity. Sp1 was subsequently shown to be important, as targeted mutation of the Sp1 binding sequence or siRNA mediated down modulation of Sp1-inhibited MICA promoter activity...

  1. Calcium regulates caveolin-1 expression at the transcriptional level

    International Nuclear Information System (INIS)

    Yang, Xiao-Yan; Huang, Cheng-Cheng; Kan, Qi-Ming; Li, Yan; Liu, Dan; Zhang, Xue-Cheng; Sato, Toshinori; Yamagata, Sadako; Yamagata, Tatsuya

    2012-01-01

    Highlights: ► Caveolin-1 expression is regulated by calcium signaling at the transcriptional level. ► An inhibitor of or siRNA to L-type calcium channel suppressed caveolin-1 expression. ► Cyclosporine A or an NFAT inhibitor markedly reduced caveolin-1 expression. ► Caveolin-1 regulation by calcium signaling is observed in several mouse cell lines. -- Abstract: Caveolin-1, an indispensable component of caveolae serving as a transformation suppressor protein, is highly expressed in poorly metastatic mouse osteosarcoma FBJ-S1 cells while highly metastatic FBJ-LL cells express low levels of caveolin-1. Calcium concentration is higher in FBJ-S1 cells than in FBJ-LL cells; therefore, we investigated the possibility that calcium signaling positively regulates caveolin-1 in mouse FBJ-S1 cells. When cells were treated with the calcium channel blocker nifedipine, cyclosporin A (a calcineurin inhibitor), or INCA-6 (a nuclear factor of activated T-cells [NFAT] inhibitor), caveolin-1 expression at the mRNA and protein levels decreased. RNA silencing of voltage-dependent L-type calcium channel subunit alpha-1C resulted in suppression of caveolin-1 expression. This novel caveolin-1 regulation pathway was also identified in mouse NIH 3T3 cells and Lewis lung carcinoma cells. These results indicate that caveolin-1 is positively regulated at the transcriptional level through a novel calcium signaling pathway mediated by L-type calcium channel/Ca 2+ /calcineurin/NFAT.

  2. α-linolenic acid reduces TNF-induced apoptosis in C2C12 myoblasts by regulating expression of apoptotic proteins

    Directory of Open Access Journals (Sweden)

    Felicia Carotenuto

    2016-11-01

    Full Text Available Impaired regeneration and consequent muscle wasting is a major feature of muscle degenerative diseases. Nutritional interventions as adjuvant strategy for preventing such conditions are recently gaining increasing attention. Ingestion of n3-polyunsaturated fatty acids has been suggested to have a positive impact on muscle diseases. We recently demonstrated that the dietary n3-fatty acid, alpha-linolenic acid (ALA, exerts potent beneficial effects in preserving skeletal muscle regeneration in models of muscle dystrophy. To better elucidate the underlying mechanism we investigate here on the expression level of the anti- and pro-apototic proteins, as well as caspase-3 activity, in C2C12 myoblasts challenged with pathological levels of TNF. The results demonstrated that ALA protective effect on C2C12 myoblasts was associated to an increased Bcl-2/Bax ratio. Indeed, the effect of ALA was directed to rescue Bcl-2 expression and decrease Bax expression both affected in an opposite way by TNF treatment. This effect was associated with a decrease in caspase-3 activity by ALA. TNF is a major pro-inflammatory cytokine that is expressed in damaged skeletal muscle, therefore, counteract inflammatory signals in the muscle microenvironment represents a critical strategy to ameliorate skeletal muscle pathologies

  3. Daikenchuto, a Kampo medicine, regulates intestinal fibrosis associated with decreasing expression of heat shock protein 47 and collagen content in a rat colitis model.

    Science.gov (United States)

    Inoue, Ken; Naito, Yuji; Takagi, Tomohisa; Hayashi, Natsuko; Hirai, Yasuko; Mizushima, Katsura; Horie, Ryusuke; Fukumoto, Kohei; Yamada, Shinya; Harusato, Akihito; Hirata, Ikuhiro; Omatsu, Tatsushi; Yoshida, Naohisa; Uchiyama, Kazuhiko; Ishikawa, Takeshi; Handa, Osamu; Konishi, Hideyuki; Wakabayashi, Naoki; Yagi, Nobuaki; Ichikawa, Hiroshi; Kokura, Satoshi; Yoshikawa, Toshikazu

    2011-01-01

    Heat shock protein (HSP) 47 may play an important role in the pathogenesis of intestinal fibrosis. Daikenchuto (DKT), a traditional Japanese herbal (Kampo) medicine, has been reported to ameliorate intestinal inflammation. The aims of this study were to determine time-course profiles of several parameters of fibrosis in a rat model, to confirm the HSP47-expressing cells in the colon, and finally to evaluate DKT's effects on intestinal fibrosis. Colitis was induced in male Wistar rats weighing 200 g using an enema of trinitrobenzene sulfonic acid (TNBS). HSP47 localization was determined by immunohistochemistry. Colonic inflammation and fibrosis were assessed by macroscopic, histological, morphometric, and immunohistochemical analyses. Colonic mRNA expression of transforming growth factor β1 (TGF-β1), HSP47, and collagen type I were assessed by real time-polymerase chain reaction (PCR). DKT was administered orally once a day from 8 to 14 d after TNBS administration. The colon was removed on the 15th day. HSP47 immunoreactivity was coexpressed with α-smooth muscle actin-positive cells located in the subepithelial space. Intracolonic administration of TNBS resulted in grossly visible ulcers. Colonic inflammation persisted for 6 weeks, and fibrosis persisted for 4 weeks after cessation of TNBS treatment. The expression levels of mRNA and proteins for TGF-β1, HSP47, and collagen I were elevated in colonic mucosa treated with TNBS. These fibrosis markers indicated that DKT treatment significantly inhibited TNBS-induced fibrosis. These findings suggest that DKT reduces intestinal fibrosis associated with decreasing expression of HSP47 and collagen content in the intestine.

  4. Herpes simplex virus induces the marked up-regulation of the zinc finger transcriptional factor INSM1, which modulates the expression and localization of the immediate early protein ICP0

    Directory of Open Access Journals (Sweden)

    Kimura Hiroshi

    2011-05-01

    Full Text Available Abstract Background Herpes simplex viruses (HSVs rapidly shut off macromolecular synthesis in host cells. In contrast, global microarray analyses have shown that HSV infection markedly up-regulates a number of host cell genes that may play important roles in HSV-host cell interactions. To understand the regulatory mechanisms involved, we initiated studies focusing on the zinc finger transcription factor insulinoma-associated 1 (INSM1, a host cell protein markedly up-regulated by HSV infection. Results INSM1 gene expression in HSV-1-infected normal human epidermal keratinocytes increased at least 400-fold 9 h after infection; INSM1 promoter activity was also markedly stimulated. Expression and subcellular localization of the immediate early HSV protein ICP0 was affected by INSM1 expression, and chromatin immunoprecipitation (ChIP assays revealed binding of INSM1 to the ICP0 promoter. Moreover, the role of INSM1 in HSV-1 infection was further clarified by inhibition of HSV-1 replication by INSM1-specific siRNA. Conclusions The results suggest that INSM1 up-regulation plays a positive role in HSV-1 replication, probably by binding to the ICP0 promoter.

  5. Supplementation of branched-chain amino acids in protein-restricted diets modulates the expression levels of amino acid transporters and energy metabolism associated regulators in the adipose tissue of growing pigs

    Directory of Open Access Journals (Sweden)

    Yinghui Li

    2016-03-01

    Full Text Available This experiment was conducted to investigate the effects of branched-chain amino acids (BCAA supplemented in protein-restricted diets on the growth performance and the expression profile of amino acid transporters and energy metabolism related regulators in the white adipose tissue (WAT of different regional depots including dorsal subcutaneous adipose (DSA and abdominal subcutaneous adipose (ASA. A total of 24 crossbred barrows (7.40 ± 0.70 kg were randomly divided into 4 groups and were fed the following isocaloric diets for 33 days: 1 a recommended adequate protein diet (AP, 20% CP, as a positive control; 2 a low protein diet (LP, 17% CP; 3 the LP diet supplemented with BCAA (LP + B, 17% CP to reach the same level of the AP diet group; 4 the LP diet supplemented with 2 times the amount of BCAA (LP + 2B, 17% CP. The daily gain and daily feed intake of the LP diet group were the lowest among all the treatments (P  0.05. Moreover, BCAA supplementation down-regulated the expression levels of amino acid transporters including L-type amino acid transporter 1 and sodium-coupled neutral amino acid transporter 2 in DSA, but up-regulated the expression level of L-type amino acid transporter 4 in ASA (P < 0.05. Meanwhile, the energy sensor AMP-activated protein kinase α was activated in the DSA of pigs fed LP diet and in the ASA of the pigs fed AP or LP + 2B diets (P < 0.05. The mRNA expression profile of the selected mitochondrial component and mitochondrial biogenesis associated regulators in DSA and ASA also responded differently to dietary BCAA supplementation. These results suggested that the growth performance of growing pigs fed protein restricted diets supplemented with BCAA could catch up to that of the pigs fed AP diets. The results also partly demonstrated that the regulation mechanisms of BCAA are different in the adipose tissues of different depots.

  6. Regulation of CCL2 expression by an upstream TALE homeodomain protein-binding site that synergizes with the site created by the A-2578G SNP.

    Science.gov (United States)

    Page, Stephen H; Wright, Edward K; Gama, Lucio; Clements, Janice E

    2011-01-01

    CC Chemokine Ligand 2 (CCL2) is a potent chemoattractant produced by macrophages and activated astrocytes during periods of inflammation within the central nervous system. Increased CCL2 expression is correlated with disease progression and severity, as observed in pulmonary tuberculosis, HCV-related liver disease, and HIV-associated dementia. The CCL2 distal promoter contains an A/G polymorphism at position -2578 and the homozygous -2578 G/G genotype is associated with increased CCL2 production and inflammation. However, the mechanisms that contribute to the phenotypic differences in CCL2 expression are poorly understood. We previously demonstrated that the -2578 G polymorphism creates a TALE homeodomain protein binding site (TALE binding site) for PREP1/PBX2 transcription factors. In this study, we identified the presence of an additional TALE binding site 22 bp upstream of the site created by the -2578 G polymorphism and demonstrated the synergistic effects of the two sites on the activation of the CCL2 promoter. Using chromatin immunoprecipitation (ChIP) assays, we demonstrated increased binding of the TALE proteins PREP1 and PBX2 to the -2578 G allele, and binding of IRF1 to both the A and G alleles. The presence of TALE binding sites that form inverted repeats within the -2578 G allele results in increased transcriptional activation of the CCL2 distal promoter while the presence of only the upstream TALE binding site within the -2578 A allele exerts repression of promoter activity.

  7. Expression of multiple proteins in transgenic plants

    Science.gov (United States)

    Vierstra, Richard D.; Walker, Joseph M.

    2002-01-01

    A method is disclosed for the production of multiple proteins in transgenic plants. A DNA construct for introduction into plants includes a provision to express a fusion protein of two proteins of interest joined by a linking domain including plant ubiquitin. When the fusion protein is produced in the cells of a transgenic plant transformed with the DNA construction, native enzymes present in plant cells cleave the fusion protein to release both proteins of interest into the cells of the transgenic plant. Since the proteins are produced from the same fusion protein, the initial quantities of the proteins in the cells of the plant are approximately equal.

  8. Regulation of T cell activation by HIV-1 accessory proteins: Vpr acts via distinct mechanisms to cooperate with Nef in NFAT-directed gene expression and to promote transactivation by CREB

    International Nuclear Information System (INIS)

    Lahti, Anna L.; Manninen, Aki; Saksela, Kalle

    2003-01-01

    Nef and Vpr are lentiviral accessory proteins that have been implicated in regulation of cellular gene expression. We noticed that Vpr can potentiate Nef-induced activation of nuclear factor of activated T cells (NFAT)-dependent transcription. Unlike Nef, which stimulated calcium signaling to activate NFAT, Vpr functioned farther downstream. Similar to the positive effects of Vpr on most of the transcriptional test systems that we used, potentiation of NFAT-directed gene expression was relatively modest in magnitude (two- to threefold) and depended on the cell cycle-arresting capacity of Vpr. By contrast, we found that Vpr could cause more than fivefold upregulation of cyclic AMP response element (CRE)-directed transcription via a mechanism that did not require Vpr-induced G2/M arrest. This effect, however, was only evident under suboptimal conditions known to lead to serine phosphorylation of the CRE binding factor (CREB) but not to CREB-dependent gene expression. This suggested that Vpr may act by stabilizing interactions with CREB and its transcriptional cofactor CREB binding protein (CBP). Indeed, this effect could be blocked by cotransfection of the adenoviral CBP inhibitor E1A. These results provide additional evidence for cell cycle-independent regulation of gene expression by Vpr and implicate CREB as a potentially important target for Vpr action in HIV-infected host cells

  9. NMDA and dopamine D1 receptors within NAc-shell regulate IEG proteins expression in reward circuit during cocaine memory reconsolidation.

    Science.gov (United States)

    Li, Y; Ge, S; Li, N; Chen, L; Zhang, S; Wang, J; Wu, H; Wang, X; Wang, X

    2016-02-19

    Reactivation of consolidated memory initiates a memory reconsolidation process, during which the reactivated memory is susceptible to strengthening, weakening or updating. Therefore, effective interference with the memory reconsolidation process is expected to be an important treatment for drug addiction. The nucleus accumbens (NAc) has been well recognized as a pathway component that can prevent drug relapse, although the mechanism underlying this function is poorly understood. We aimed to clarify the regulatory role of the NAc in the cocaine memory reconsolidation process, by examining the effect of applying different pharmacological interventions to the NAc on Zif 268 and Fos B expression in the entire reward circuit after cocaine memory reactivation. Through the cocaine-induced conditioned place preference (CPP) model, immunohistochemical and immunofluorescence staining for Zif 268 and Fos B were used to explore the functional activated brain nuclei after cocaine memory reactivation. Our results showed that the expression of Zif 268 and Fos B was commonly increased in the medial prefrontal cortex (mPFC), the infralimbic cortex (IL), the NAc-core, the NAc-shell, the hippocampus (CA1, CA2, and CA3 subregions), the amygdala, the ventral tegmental area (VTA), and the supramammillary nucleus (SuM) following memory reconsolidation, and Zif 268/Fos B co-expression was commonly observed (for Zif 268: 51-68%; for Fos B: 52-66%). Further, bilateral NAc-shell infusion of MK 801 and SCH 23390, but not raclopride or propranolol, prior to addictive memory reconsolidation, decreased Zif 268 and Fos B expression in the entire reward circuit, except for the amygdala, and effectively disturbed subsequent CPP-related behavior. In summary, N-methyl-d-aspartate (NMDA) and dopamine D1 receptors, but not dopamine D2 or β adrenergic receptors, within the NAc-shell, may regulate Zif 268 and Fos B expression in most brain nuclei of the reward circuit after cocaine memory reactivation

  10. Regulation of ADAR1 expression

    DEFF Research Database (Denmark)

    Lykke-Andersen, Søren

    2005-01-01

    Ét gen kan kode for flere beslægtede proteiner, og reguleringen af dette sker bl.a. på RNA niveau. De livsnødvendige ADAR enzymer kan ændre på et RNA’s egenskaber ved en proces, der kaldes editering. Aktiviteten af en række receptorer i centralnervesystemet kontrolleres af ADAR enzymerne vha. nøj...

  11. Decorin gene expression and its regulation in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Velez-DelValle, Cristina; Marsch-Moreno, Meytha; Castro-Munozledo, Federico [Department of Cell Biology, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo. Postal 14-740, Mexico D.F. 07000 (Mexico); Kuri-Harcuch, Walid, E-mail: walidkuri@gmail.com [Department of Cell Biology, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo. Postal 14-740, Mexico D.F. 07000 (Mexico)

    2011-07-22

    Highlights: {yields} We showed that cultured human diploid epidermal keratinocytes express and synthesize decorin. {yields} Decorin is found intracytoplasmic in suprabasal cells of cultures and in human epidermis. {yields} Decorin mRNA expression in cHEK is regulated by pro-inflammatory and proliferative cytokines. {yields} Decorin immunostaining of psoriatic lesions showed a lower intensity and altered intracytoplasmic arrangements. -- Abstract: In various cell types, including cancer cells, decorin is involved in regulation of cell attachment, migration and proliferation. In skin, decorin is seen in dermis, but not in keratinocytes. We show that decorin gene (DCN) is expressed in the cultured keratinocytes, and the protein is found in the cytoplasm of differentiating keratinocytes and in suprabasal layers of human epidermis. RT-PCR experiments showed that DCN expression is regulated by pro-inflammatory and proliferative cytokines. Our data suggest that decorin should play a significant role in keratinocyte terminal differentiation, cutaneous homeostasis and dermatological diseases.

  12. Down-regulation of activity and expression of three transport-related proteins in the gills of the euryhaline green crab, Carcinus maenas, in response to high salinity acclimation.

    Science.gov (United States)

    Jillette, Nathaniel; Cammack, Lauren; Lowenstein, Margaret; Henry, Raymond P

    2011-02-01

    The euryhaline green crab, Carcinus maenas, undergoes an annual cycle of salinity exposure, having to adapt to low salinity during its annual spring migration into estuaries, and then having to re-adapt to high salinity when it moves off-shore at the end of summer. Most studies have focused on low salinity acclimation, the activation of osmoregulatory mechanisms, and the induction of transport protein and transport-related enzyme activity and gene expression. In this study we followed the changes in hemolymph osmolality, carbonic anhydrase activity, and mRNA expression of three proteins through a complete cycle of low (15 ppt) and high (32 ppt) salinity acclimation. One week of low salinity acclimation resulted in hemolymph osmoregulation and a four-fold induction of branchial carbonic anhydrase activity. Relative mRNA expression increased for two CA isoforms (CAc 100-fold, and CAg 7-fold) and the α-subunit of the Na/K-ATPase (8-fold). Upon re-exposure to high salinity, hemolymph osmolality increased to 32 ppt acclimated levels by 6 h, and mRNA levels returned to high salinity, baseline levels within 1 week. However, CA activity remained unchanged in response to high salinity exposure for the first week and then gradually declined to baseline levels over 4 weeks. The relative timing of these changes suggests that while whole-organism physiological adaptations and regulation at the gene level can be very rapid, changes at the level of protein expression and turnover are much slower. It is possible that the high metabolic cost of protein synthesis and/or processing could be the underlying reason for long biological life spans of physiologically important proteins. Published by Elsevier Inc.

  13. Regulation of cAMP Responsive Element Binding Protein 3-Like 1 (Creb3l1 Expression by Orphan Nuclear Receptor Nr4a1

    Directory of Open Access Journals (Sweden)

    Michael P. Greenwood

    2017-12-01

    Full Text Available Cyclic AMP (cAMP inducible transcription factor cAMP responsive element binding protein 3 like 1 (Creb3l1 is strongly activated in the hypothalamus in response to hyperosmotic cues such as dehydration (DH. We have recently shown that Creb3l1 expression is upregulated by cAMP pathways in vitro, however the exact mechanisms are not known. Here we show that increasing Creb3l1 transcription by raising cAMP levels in mouse pituitary AtT20 cells automatically initiates cleavage of Creb3l1, leading to a greater abundance of the transcriptionally active N-terminal portion. Inhibiting protein synthesis indicated that de novo protein synthesis of an intermediary transcription factor was required for Creb3l1 induction. Strategic mining of our microarray data from dehydrated rodent hypothalamus revealed four candidates, reduced to two by analysis of acute hyperosmotic-induced transcriptional activation profiles in the hypothalamus, and one, orphan nuclear receptor Nr4a1, by direct shRNA mediated silencing in AtT20 cells. We show that activation of Creb3l1 transcription by Nr4a1 involves interaction with a single NBRE site in the promoter region. The ability to activate Creb3l1 transcription by this pathway in vitro is dictated by the level of methylation of a CpG island within the proximal promoter/5′UTR of this gene. We thus identify a novel cAMP-Nr4a1-Creb3l1 transcriptional pathway in AtT20 cells and also, our evidence would suggest, in the hypothalamus.

  14. The Ku Protein Complex Interacts with YY1, Is Up-Regulated in Human Heart Failure, and Represses α Myosin Heavy-Chain Gene Expression

    Science.gov (United States)

    Sucharov, Carmen C.; Helmke, Steve M.; Langer, Stephen J.; Perryman, M. Benjamin; Bristow, Michael; Leinwand, Leslie

    2004-01-01

    Human heart failure is accompanied by repression of genes such as α myosin heavy chain (αMyHC) and SERCA2A and the induction of fetal genes such as βMyHC and atrial natriuretic factor. It seems likely that changes in MyHC isoforms contribute to the poor contractility seen in heart failure, because small changes in isoform composition can have a major effect on the contractility of cardiac myocytes and the heart. Our laboratory has recently shown that YY1 protein levels are increased in human heart failure and that YY1 represses the activity of the human αMyHC promoter. We have now identified a region of the αMyHC promoter that binds a factor whose expression is increased sixfold in failing human hearts. Through peptide mass spectrometry, we identified this binding activity to be a heterodimer of Ku70 and Ku80. Expression of Ku represses the human αMyHC promoter in neonatal rat ventricular myocytes. Moreover, overexpression of Ku70/80 decreases αMyHC mRNA expression and increases skeletal α-actin. Interestingly, YY1 interacts with Ku70 and Ku80 in HeLa cells. Together, YY1, Ku70, and Ku80 repress the αMyHC promoter to an extent that is greater than that with YY1 or Ku70/80 alone. Our results suggest that Ku is an important factor in the repression of the human αMyHC promoter during heart failure. PMID:15367688

  15. Predictable tuning of protein expression in bacteria

    DEFF Research Database (Denmark)

    Bonde, Mads; Pedersen, Margit; Klausen, Michael Schantz

    2016-01-01

    We comprehensively assessed the contribution of the Shine-Dalgarno sequence to protein expression and used the data to develop EMOPEC (Empirical Model and Oligos for Protein Expression Changes; http://emopec.biosustain.dtu.dk). EMOPEC is a free tool that makes it possible to modulate the expressi...

  16. Estradiol and progesterone regulate the expression of insulin-like growth factor-I receptor and insulin-like growth factor binding protein-2 in the hypothalamus of adult female rats.

    Science.gov (United States)

    Cardona-Gómez, G P; Chowen, J A; Garcia-Segura, L M

    2000-06-05

    resulted in a marked decrease in IGF-IR protein levels. Estradiol administration to ovariectomized rats increased IGFBP-2 immunoreactive levels in the hypothalamus. While progesterone did not significantly affect IGFBP-2 expression, the simultaneous injection of estradiol and progesterone resulted in a marked decrease in IGFBP-2 protein levels. The effect of estradiol on IGFBP-2 was observed both in protein and mRNA levels, suggesting a transcriptional regulation. However, the simultaneous administration of progesterone and estradiol had different effects on IGF-IR protein and IGF-IR mRNA levels, as well as on IGFBP-2 protein and IGFBP-2 mRNA levels, suggesting a postranscriptional action. These findings indicate that estradiol and progesterone regulate the expression of IGF-IR and IGFBP-2 in the mediobasal hypothalamus of adult female rats. Regulation of the hypothalamic IGF-I system by ovarian hormones may be physiologically relevant for neuroendocrine regulation and for synaptic plasticity during the estrous cycle. These results do not support the hypothesis that estrogen-induced accumulation of IGF-I by tanycytes is mediated by the hormonal regulation of IGF-IR. However, estrogen-induced up-regulation of IGFBP-2 and progesterone-induced down-regulation of IGF-IR and IGFBP-2 levels in the apical plasma membrane of tanycytes may be involved in the fluctuation of IGF-I levels in the mediobasal hypothalamus during the estrous cycle. Copyright 2000 John Wiley & Sons, Inc.

  17. The heat shock protein-90 co-chaperone, Cyclophilin 40, promotes ALK-positive, anaplastic large cell lymphoma viability and its expression is regulated by the NPM-ALK oncoprotein

    International Nuclear Information System (INIS)

    Pearson, Joel D; Mohammed, Zubair; Bacani, Julinor T C; Lai, Raymond; Ingham, Robert J

    2012-01-01

    Anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma (ALK+ ALCL) is a T cell lymphoma defined by the presence of chromosomal translocations involving the ALK tyrosine kinase gene. These translocations generate fusion proteins (e.g. NPM-ALK) with constitutive tyrosine kinase activity, which activate numerous signalling pathways important for ALK+ ALCL pathogenesis. The molecular chaperone heat shock protein-90 (Hsp90) plays a critical role in allowing NPM-ALK and other signalling proteins to function in this lymphoma. Co-chaperone proteins are important for helping Hsp90 fold proteins and for directing Hsp90 to specific clients; however the importance of co-chaperone proteins in ALK+ ALCL has not been investigated. Our preliminary findings suggested that expression of the immunophilin co-chaperone, Cyclophilin 40 (Cyp40), is up-regulated in ALK+ ALCL by JunB, a transcription factor activated by NPM-ALK signalling. In this study we examined the regulation of the immunophilin family of co-chaperones by NPM-ALK and JunB, and investigated whether the immunophilin co-chaperones promote the viability of ALK+ ALCL cell lines. NPM-ALK and JunB were knocked-down in ALK+ ALCL cell lines with siRNA, and the effect on the expression of the three immunophilin co-chaperones: Cyp40, FK506-binding protein (FKBP) 51, and FKBP52 examined. Furthermore, the effect of knock-down of the immunophilin co-chaperones, either individually or in combination, on the viability of ALK+ ALCL cell lines and NPM-ALK levels and activity was also examined. We found that NPM-ALK promoted the transcription of Cyp40 and FKBP52, but only Cyp40 transcription was promoted by JunB. We also observed reduced viability of ALK+ ALCL cell lines treated with Cyp40 siRNA, but not with siRNAs directed against FKBP52 or FKBP51. Finally, we demonstrate that the decrease in the viability of ALK+ ALCL cell lines treated with Cyp40 siRNA does not appear to be due to a decrease in NPM-ALK levels or the

  18. Natural diterpenes from coffee, cafestol and kahweol induce apoptosis through regulation of specificity protein 1 expression in human malignant pleural mesothelioma

    Directory of Open Access Journals (Sweden)

    Lee Kyung-Ae

    2012-06-01

    Full Text Available Abstract Background Malignant pleural mesothelioma (MPM is a highly aggressive cancer with a very poor prognosis. Several clinical studies such as immunotherapy, gene therapy and molecular targeting agents have been tried for treatment of malignant mesothelioma, however, there is no application for effective clinical treatment. Coffee has various biological functions such as anti-oxidant, anti-inflammatory, anti-mutagenic and anti-carcinogenic activities. The therapeutic activities of the bioactive compounds in coffee was sugested to influence intracellular signaling of MPM. Regarding to the cancer-related functions, In this study, suppression of Sp1 protein level followed by induction of MSTO-211H cell apoptosis by cafestol and kahweol were investigated in oreder to determine Sp1's potential as a significant target for human MPM therapy as well. Methods Cells were treated separately with final concentration of cafestol and kahweol and the results were analyzed by MTS assay, DAPI staining, PI staining, luciferase assay, RT-PCR, and immunoblotting. Results Viability of MSTO-211H and H28 cells were decreased, and apoptotic cell death was increased in MSTO-211H as a result of cafestol and kahweol treatment. Cafestol and kahweol increased Sub-G1 population and nuclear condensation in MSTO-211H cells. Roles of Sp1 in cell proliferation and apoptosis of the MSTO-211H cells by the Sp1 inhibitor of Mithramycin A were previously confirmed. Cafestol and kahweol significantly suppressed Sp1 protein levels. Kahweol slightly attenuated Sp1 mRNA, while Cafestol did not affect in MSTO-211H cells. Cafestol and kahweol modulated the promoter activity and protein expression level of the Sp1 regulatory genes including Cyclin D1, Mcl-1, and Survivin in mesothelioma cells. Apoptosis signaling cascade was activated by cleavages of Bid, Caspase-3, and PARP with cafestol and by upregulation of Bax, and downregulation of Bcl-xl by kahweol. Conclusions Sp1 can be a novel

  19. Expression of brain derived neurotrophic factor, activity-regulated cytoskeleton protein mRNA, and enhancement of adult hippocampal neurogenesis in rats after sub-chronic and chronic treatment with the triple monoamine re-uptake inhibitor tesofensine

    DEFF Research Database (Denmark)

    Larsen, Marianne Hald; Rosenbrock, Holger; Sams-Dodd, Frank

    2007-01-01

    The changes of gene expression resulting from long-term exposure to monoamine antidepressant drugs in experimental animals are key to understanding the mechanisms of action of this class of drugs in man. Many of these genes and their products are either relevant biomarkers or directly involved...... in structural changes that are perhaps necessary for the antidepressant effect. Tesofensine is a novel triple monoamine reuptake inhibitor that acts to increase noradrenaline, serotonin, and dopamine neurotransmission. This study was undertaken to examine the effect of sub-chronic (5 days) and chronic (14 days......) administration of Tesofensine on the expression of brain derived neurotrophic factor (BDNF) and activity-regulated cytoskeleton protein (Arc) in the rat hippocampus. Furthermore, hippocampi from the same animals were used to investigate the effect on cell proliferation by means of Ki-67- and Neuro...

  20. [Regulation of heat shock gene expression in response to stress].

    Science.gov (United States)

    Garbuz, D G

    2017-01-01

    Heat shock (HS) genes, or stress genes, code for a number of proteins that collectively form the most ancient and universal stress defense system. The system determines the cell capability of adaptation to various adverse factors and performs a variety of auxiliary functions in normal physiological conditions. Common stress factors, such as higher temperatures, hypoxia, heavy metals, and others, suppress transcription and translation for the majority of genes, while HS genes are upregulated. Transcription of HS genes is controlled by transcription factors of the HS factor (HSF) family. Certain HSFs are activated on exposure to higher temperatures or other adverse factors to ensure stress-induced HS gene expression, while other HSFs are specifically activated at particular developmental stages. The regulation of the main mammalian stress-inducible factor HSF1 and Drosophila melanogaster HSF includes many components, such as a variety of early warning signals indicative of abnormal cell activity (e.g., increases in intracellular ceramide, cytosolic calcium ions, or partly denatured proteins); protein kinases, which phosphorylate HSFs at various Ser residues; acetyltransferases; and regulatory proteins, such as SUMO and HSBP1. Transcription factors other than HSFs are also involved in activating HS gene transcription; the set includes D. melanogaster GAF, mammalian Sp1 and NF-Y, and other factors. Transcription of several stress genes coding for molecular chaperones of the glucose-regulated protein (GRP) family is predominantly regulated by another stress-detecting system, which is known as the unfolded protein response (UPR) system and is activated in response to massive protein misfolding in the endoplasmic reticulum and mitochondrial matrix. A translational fine tuning of HS protein expression occurs via changing the phosphorylation status of several proteins involved in translation initiation. In addition, specific signal sequences in the 5'-UTRs of some HS

  1. Cocaine- and amphetamine-regulated transcript peptide in the nucleus accumbens shell inhibits cocaine-induced locomotor sensitization to transient over-expression of α-Ca2+ /calmodulin-dependent protein kinase II.

    Science.gov (United States)

    Xiong, Lixia; Meng, Qing; Sun, Xi; Lu, Xiangtong; Fu, Qiang; Peng, Qinghua; Yang, Jianhua; Oh, Ki-Wan; Hu, Zhenzhen

    2018-01-04

    Cocaine- and amphetamine-regulated transcript (CART) peptide is a widely distributed neurotransmitter that attenuates cocaine-induced locomotor activity when injected into the nucleus accumbens (NAc). Our previous work first confirmed that the inhibitory mechanism of the CART peptide on cocaine-induced locomotor activity is related to a reduction in cocaine-enhanced phosphorylated Ca 2+ /calmodulin-dependent protein kinaseIIα (pCaMKIIα) and the enhancement of cocaine-induced D3R function. This study investigated whether CART peptide inhibited cocaine-induced locomotor activity via inhibition of interactions between pCaMKIIα and the D3 dopamine receptor (D3R). We demonstrated that lentivirus-mediated gene transfer transiently increased pCaMKIIα expression, which peaked at 10 days after microinjection into the rat NAc shell, and induced a significant increase in Ca 2+ influx along with greater behavioral sensitivity in the open field test after intraperitoneal injections of cocaine (15 mg/kg). However, western blot analysis and coimmunoprecipitation demonstrated that CART peptide treatment in lentivirus-transfected CaMKIIα-over-expressing NAc rat tissues or cells prior to cocaine administration inhibited the cocaine-induced Ca 2+ influx and attenuated the cocaine-increased pCaMKIIα expression in lentivirus-transfected CaMKIIα-over-expressing cells. CART peptide decreased the cocaine-enhanced phosphorylated cAMP response element binding protein (pCREB) expression via inhibition of the pCaMKIIα-D3R interaction, which may account for the prolonged locomotor sensitization induced by repeated cocaine treatment in lentivirus-transfected CaMKIIα-over-expressing cells. These results provide strong evidence for the inhibitory modulation of CART peptide in cocaine-induced locomotor sensitization. © 2018 International Society for Neurochemistry.

  2. High Brain Ammonia Tolerance and Down-Regulation of Na+:K+:2Cl- Cotransporter 1b mRNA and Protein Expression in the Brain of the Swamp Eel, Monopterus albus, Exposed to Environmental Ammonia or Terrestrial Conditions

    Science.gov (United States)

    Ip, Yuen K.; Hou, Zhisheng; Chen, Xiu L.; Ong, Jasmine L. Y.; Chng, You R.; Ching, Biyun; Hiong, Kum C.; Chew, Shit F.

    2013-01-01

    Na+:K+:2Cl- cotransporter 1 (NKCC1) has been implicated in mediating ischemia-, trauma- or ammonia-induced astrocyte swelling/brain edema in mammals. This study aimed to determine the effects of ammonia or terrestrial exposure on ammonia concentrations in the plasma and brain, and the mRNA expression and protein abundance of nkcc/Nkcc in the brain, of the swamp eel Monopterus albus . Ammonia exposure led to a greater increase in the ammonia concentration in the brain of M. albus than terrestrial exposure. The brain ammonia concentration of M. albus reached 4.5 µmol g-1 and 2.7 µmol g-1 after 6 days of exposure to 50 mmol l-1 NH4Cl and terrestrial conditions, respectively. The full cDNA coding sequence of nkcc1b from M. albus brain comprised 3276 bp and coded for 1092 amino acids with an estimated molecular mass of 119.6 kDa. A molecular characterization indicated that it could be activated through phosphorylation and/or glycosylation by osmotic and/or oxidative stresses. Ammonia exposure for 1 day or 6 days led to significant decreases in the nkcc1b mRNA expression and Nkcc1b protein abundance in the brain of M. albus. In comparison, a significant decrease in nkcc1b mRNA expression was observed in the brain of M. albus only after 6 days of terrestrial exposure, but both 1 day and 6 days of terrestrial exposure resulted in significant decreases in the protein abundance of Nkcc1b. These results are novel because it has been established in mammals that ammonia up-regulates NKCC1 expression in astrocytes and NKCC1 plays an important role in ammonia-induced astrocyte swelling and brain edema. By contrast, our results indicate for the first time that M. albus is able to down-regulate the mRNA and protein expression of nkcc1b/Nkcc1b in the brain when confronted with ammonia toxicity, which could be one of the contributing factors to its extraordinarily high brain ammonia tolerance. PMID:24069137

  3. Regulation of meiotic gene expression in plants

    Directory of Open Access Journals (Sweden)

    Adele eZhou

    2014-08-01

    Full Text Available With the recent advances in genomics and sequencing technologies, databases of transcriptomes representing many cellular processes have been built. Meiotic transcriptomes in plants have been studied in Arabidopsis thaliana, rice (Oryza sativa, wheat (Triticum aestivum, petunia (Petunia hybrida, sunflower (Helianthus annuus, and maize (Zea mays. Studies in all organisms, but particularly in plants, indicate that a very large number of genes are expressed during meiosis, though relatively few of them seem to be required for the completion of meiosis. In this review, we focus on gene expression at the RNA level and analyze the meiotic transcriptome datasets and explore expression patterns of known meiotic genes to elucidate how gene expression could be regulated during meiosis. We also discuss mechanisms, such as chromatin organization and non-coding RNAs, that might be involved in the regulation of meiotic transcription patterns.

  4. Lipoxin A4 regulates expression of the estrogen receptor and inhibits 17β-estradiol induced p38 mitogen-activated protein kinase phosphorylation in human endometriotic stromal cells.

    Science.gov (United States)

    Chen, Shuo; Wu, Rong-Feng; Su, Lin; Zhou, Wei-Dong; Zhu, Mao-Bi; Chen, Qiong-Hua

    2014-07-01

    To study the role of lipoxin A4 (LXA4) in endometriosis. Molecular analysis in human samples and primary human endometriotic stromal cells (ESCs). University hospital. Forty-nine premenopausal women (30 patients with endometriosis and 19 controls). Normal and ectopic endometrial biopsies obtained during surgery performed during the proliferative phase of the menstrual cycle; ESCs used for in vitro studies. Levels of LXA4 measured by enzyme-linked immunosorbent assay (ELISA); mRNA levels of the estrogen receptor (ER), progestogen receptor (PR), tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6) quantified by quantitative reverse-transcription polymerase chain reaction (qRT-PCR); and p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation evaluated by Western blotting. The LXA4 expression level decreased in ectopic tissue as well as ERα and PR, although the expression of ERβ increased in ectopic endometrium compared with the controls. Investigations with correlation analysis revealed the expression of LXA4 was positively correlated with ERα and negatively correlated with ERβ in vivo. Moreover, administering LXA4 could augment ERβ expression in ESCs and inhibit the 17β-estradiol-induced phosphorylation of p38 MAPK very likely through ERβ. Our findings indicate that LXA4 regulates ERβ expression and inhibits 17β-estradiol-induced phosphorylation of p38 MAPK, very likely through ERβ in ESCs. Copyright © 2014. Published by Elsevier Inc.

  5. Estrogen regulation of TRPM8 expression in breast cancer cells

    International Nuclear Information System (INIS)

    Chodon, Dechen; Guilbert, Arnaud; Dhennin-Duthille, Isabelle; Gautier, Mathieu; Telliez, Marie-Sophie; Sevestre, Henri; Ouadid-Ahidouch, Halima

    2010-01-01

    The calcium-permeable cation channel TRPM8 (melastatin-related transient receptor potential member 8) is over-expressed in several cancers. The present study aimed at investigating the expression, function and potential regulation of TRPM8 channels by ER alpha (estrogen receptor alpha) in breast cancer. RT-PCR, Western blot, immuno-histochemical, and siRNA techniques were used to investigate TRPM8 expression, its regulation by estrogen receptors, and its expression in breast tissue. To investigate the channel activity in MCF-7 cells, we used the whole cell patch clamp and the calcium imaging techniques. TRPM8 channels are expressed at both mRNA and protein levels in the breast cancer cell line MCF-7. Bath application of the potent TRPM8 agonist Icilin (20 μM) induced a strong outwardly rectifying current at depolarizing potentials, which is associated with an elevation of cytosolic calcium concentration, consistent with established TRPM8 channel properties. RT-PCR experiments revealed a decrease in TRPM8 mRNA expression following steroid deprivation for 48 and 72 hours. In steroid deprived medium, addition of 17-beta-estradiol (E 2 , 10 nM) increased both TRPM8 mRNA expression and the number of cells which respond to Icilin, but failed to affect the Ca 2+ entry amplitude. Moreover, silencing ERα mRNA expression with small interfering RNA reduced the expression of TRPM8. Immuno-histochemical examination of the expression of TRPM8 channels in human breast tissues revealed an over-expression of TRPM8 in breast adenocarcinomas, which is correlated with estrogen receptor positive (ER + ) status of the tumours. Taken together, these results show that TRPM8 channels are expressed and functional in breast cancer and that their expression is regulated by ER alpha

  6. Tropoelastin regulates chemokine expression in fibroblasts in Costello syndrome

    International Nuclear Information System (INIS)

    Tatano, Yutaka; Fujinawa, Reiko; Kozutsumi, Yasunori; Takahashi, Tsutomu; Tsuji, Daisuke; Takeuchi, Naohiro; Tsuta, Kohji; Takada, Goro; Sakuraba, Hitoshi; Itoh, Kohji

    2008-01-01

    Costello syndrome is a multiple congenital anomaly associated with growth and mental retardation, cardiac and skeletal anomalies, and a predisposition to develop neoplasia. Comprehensive expression analysis revealed remarkable up-regulation of several cytokines and chemokines including Gro family proteins, interleukin-1β (IL-1β), IL-8 and MCP-1 but down-regulation of extracellular matrix components including collagens and proteoglycans of skin fibroblasts derived from a Japanese Costello syndrome patient characterized by significantly reduced tropoelastin mRNA, impaired elastogenesis and enhanced cell proliferation. In contrast, decreases in these chemokines and IL-1β expression were observed in Costello fibroblastic cell lines stably expressing the bovine tropoelastin (btEln) gene and in restored elastic fibers. These results strongly suggest that the human TE gene (ELN) transfer could be applicable for the gene therapy of a group of Costello syndrome patients with reduced ELN gene expression

  7. TRPM4 protein expression in prostate cancer

    DEFF Research Database (Denmark)

    Berg, Kasper Drimer; Soldini, Davide; Jung, Maria

    2016-01-01

    BACKGROUND: Transient receptor potential cation channel, subfamily M, member 4 (TRPM4) messenger RNA (mRNA) has been shown to be upregulated in prostate cancer (PCa) and might be a new promising tissue biomarker. We evaluated TRPM4 protein expression and correlated the expression level.......79-2.62; p = 0.01-0.03 for the two observers) when compared to patients with a lower staining intensity. CONCLUSIONS: TRPM4 protein expression is widely expressed in benign and cancerous prostate tissue, with highest staining intensities found in PCa. Overexpression of TRPM4 in PCa (combination of high...

  8. A Bifunctional Intronic Element Regulates the Expression of the Arginine/Lysine Transporter Cat-1 via Mechanisms Involving the Purine-rich Element Binding Protein A (Purα)*

    Science.gov (United States)

    Huang, Charlie C.; Chiribau, Calin-Bogdan; Majumder, Mithu; Chiang, Cheng-Ming; Wek, Ronald C.; Kelm, Robert J.; Khalili, Kamel; Snider, Martin D.; Hatzoglou, Maria

    2009-01-01

    Expression of the arginine/lysine transporter Cat-1 is highly induced in proliferating and stressed cells via mechanisms that include transcriptional activation. A bifunctional INE (intronic element) within the first intron of the Cat-1 gene was identified and characterized in this study. The INE had high sequence homology to an amino acid response element and was shown to act as a transcriptional enhancer in unstressed cells by binding the transcription factor, purine-rich element binding protein A (Purα). During endoplasmic reticulum stress, binding of Purα to the INE decreased; the element acted as a positive regulator in early stress by binding of the transcription factor ATF4 and as a negative regulator in prolonged stress by binding the stress-induced C/EBP family member, CHOP. We conclude that transcriptional control of the Cat-1 gene is tightly controlled by multiple cis-DNA elements, contributing to regulation of cationic amino acid transport for cell growth and proliferation. In addition, we propose that genes may use stress-response elements such as the INE to support basal expression in the absence of stress. PMID:19720825

  9. Temporal protein expression pattern in intracellular signalling ...

    Indian Academy of Sciences (India)

    Supplementary figure 1. Protein expression dynamics observed in Experiment, Synchronous and. Asynchronous simulation. .... molecular basis for T cell suppression by IL-10: CD28-asso- ciated IL-10 receptor inhibits CD28 tyrosine ...

  10. A novel neuron-enriched protein SDIM1 is down regulated in Alzheimer's brains and attenuates cell death induced by DNAJB4 over-expression in neuro-progenitor cells

    Directory of Open Access Journals (Sweden)

    Lei Joy X

    2011-01-01

    Full Text Available Abstract Background Molecular changes in multiple biological processes contribute to the development of chronic neurodegeneration such as late onset Alzheimer's disease (LOAD. To discover how these changes are reflected at the level of gene expression, we used a subtractive transcription-based amplification of mRNA procedure to identify novel genes that have altered expression levels in the brains of Alzheimer's disease (AD patients. Among the genes altered in expression level in AD brains was a transcript encoding a novel protein, SDIM1, that contains 146 amino acids, including a typical signal peptide and two transmembrane domains. Here we examined its biochemical properties and putative roles in neuroprotection/neurodegeneration. Results QRT-PCR analysis of additional AD and control post-mortem human brains showed that the SDIM1 transcript was indeed significantly down regulated in all AD brains. SDIM1 is more abundant in NT2 neurons than astrocytes and present throughout the cytoplasm and neural processes, but not in the nuclei. In NT2 neurons, it is highly responsive to stress conditions mimicking insults that may cause neurodegeneration in AD brains. For example, SDIM1 was significantly down regulated 2 h after oxygen-glucose deprivation (OGD, though had recovered 16 h later, and also appeared significantly up regulated compared to untreated NT2 neurons. Overexpression of SDIM1 in neuro-progenitor cells improved cells' ability to survive after injurious insults and its downregulation accelerated cell death induced by OGD. Yeast two-hybrid screening and co-immunoprecipitation approaches revealed, both in vitro and in vivo, an interaction between SDIM1 and DNAJB4, a heat shock protein hsp40 homolog, recently known as an enhancer of apoptosis that also interacts with the mu opioid receptor in human brain. Overexpression of DNAJB4 alone significantly reduced cell viability and SDIM1 co-overexpression was capable of attenuating the cell death

  11. DMBT1 expression is down-regulated in breast cancer

    International Nuclear Information System (INIS)

    Braidotti, P; Pietra, GG; Nuciforo, PG; Mollenhauer, J; Poustka, A; Pellegrini, C; Moro, A; Bulfamante, G; Coggi, G; Bosari, S

    2004-01-01

    We studied the expression of DMBT1 (deleted in malignant brain tumor 1), a putative tumor suppressor gene, in normal, proliferative, and malignant breast epithelium and its possible relation to cell cycle. Sections from 17 benign lesions and 55 carcinomas were immunostained with anti DMBT1 antibody (DMBTh12) and sections from 36 samples, were double-stained also with anti MCM5, one of the 6 pre-replicative complex proteins with cell proliferation-licensing functions. DMBT1 gene expression at mRNA level was assessed by RT-PCR in frozen tissues samples from 39 patients. Normal glands and hyperplastic epithelium in benign lesions displayed a luminal polarized DMBTh12 immunoreactivity. Normal and hyperplastic epithelium adjacent to carcinomas showed a loss of polarization, with immunostaining present in basal and perinuclear cytoplasmic compartments. DMBT1 protein expression was down-regulated in the cancerous lesions compared to the normal and/or hyperplastic epithelium adjacent to carcinomas (3/55 positive carcinomas versus 33/42 positive normal/hyperplastic epithelia; p = 0.0001). In 72% of cases RT-PCR confirmed immunohistochemical results. Most of normal and hyperplastic mammary cells positive with DMBTh12 were also MCM5-positive. The redistribution and up-regulation of DMBT1 in normal and hyperplastic tissues flanking malignant tumours and its down-regulation in carcinomas suggests a potential role in breast cancer. Moreover, the concomitant expression of DMTB1 and MCM5 suggests its possible association with the cell-cycle regulation

  12. Glucose Regulates the Expression of the Apolipoprotein A5 Gene

    Energy Technology Data Exchange (ETDEWEB)

    Fruchart, Jamila; Nowak, Maxime; Helleboid-Chapman, Audrey; Jakel, Heidelinde; Moitrot, Emmanuelle; Rommens, Corinne; Pennacchio, Len A.; Fruchart-Najib, Jamila; Fruchart, Jean-Charles

    2008-04-07

    The apolipoprotein A5 gene (APOA5) is a key player in determining triglyceride concentrations in humans and mice. Since diabetes is often associated with hypertriglyceridemia, this study explores whether APOA5 gene expression is regulated by alteration in glucose homeostasis and the related pathways. D-glucose activates APOA5 gene expression in a time- and dose-dependent manner in hepatocytes, and the glycolytic pathway involved was determined using D-glucose analogs and metabolites. Together, transient transfections, electrophoretic mobility shift assays and chromatin immunoprecipitation assays show that this regulation occurs at the transcriptional level through an increase of USF1/2 binding to an E-box in the APOA5 promoter. We show that this phenomenon is not due to an increase of mRNA or protein expression levels of USF. Using protein phosphatases 1 and 2A inhibitor, we demonstrate that D-glucose regulates APOA5 gene via a dephosphorylation mechanism, thereby resulting in an enhanced USF1/2-promoter binding. Last, subsequent suppressions of USF1/2 and phosphatases mRNA through siRNA gene silencing abolished the regulation. We demonstrate that APOA5 gene is up regulated by D-glucose and USF through phosphatase activation. These findings may provide a new cross talk between glucose and lipid metabolism.

  13. Major cancer protein amplifies global gene expression

    Science.gov (United States)

    Scientists may have discovered why a protein called MYC can provoke a variety of cancers. Like many proteins associated with cancer, MYC helps regulate cell growth. A new study carried out by researchers at the National Institutes of Health and colleagues

  14. Role of protein farnesylation events in the ABA-mediated regulation of the Pinoresinol-Lariciresinol Reductase 1 (LuPLR1) gene expression and lignan biosynthesis in flax (Linum usitatissimum L.).

    Science.gov (United States)

    Corbin, Cyrielle; Decourtil, Cédric; Marosevic, Djurdjica; Bailly, Marlène; Lopez, Tatiana; Renouard, Sullivan; Doussot, Joël; Dutilleul, Christelle; Auguin, Daniel; Giglioli-Guivarc'h, Nathalie; Lainé, Eric; Lamblin, Frédéric; Hano, Christophe

    2013-11-01

    A Linum usitatissimum LuERA1 gene encoding a putative ortholog of the ERA1 (Enhanced Response to ABA 1) gene of Arabidopsis thaliana (encoding the beta subunit of a farnesyltransferase) was analyzed in silico and for its expression in flax. The gene and the protein sequences are highly similar to other sequences already characterized in plants and all the features of a farnesyltransferase were detected. Molecular modeling of LuERA1 protein confirmed its farnesyltransferase nature. LuERA1 is expressed in the vegetative organs and also in the outer seedcoat of the flaxseed, where it could modulate the previously observed regulation operated by ABA on lignan synthesis. This effect could be mediated by the regulation of the transcription of a key gene for lignan synthesis in flax, the LuPLR1 gene, encoding a pinoresinol lariciresinol reductase. The positive effect of manumycin A, a specific inhibitor of farnesyltransferase, on lignan biosynthesis in flax cell suspension systems supports the hypothesis of the involvement of such an enzyme in the negative regulation of ABA action. In Arabidopsis, ERA1 is able to negatively regulate the ABA effects and the mutant era1 has an enhanced sensitivity to ABA. When expressed in an Arabidopsis cell suspension (heterologous system) LuERA1 is able to reverse the effect of the era1 mutation. RNAi experiments in flax targeting the farnesyltransferase β-subunit encoded by the LuERA1 gene led to an increase LuPLR1 expression level associated with an increased content of lignan in transgenic calli. Altogether these results strongly suggest a role of the product of this LuERA1 gene in the ABA-mediated upregulation of lignan biosynthesis in flax cells through the activation of LuPLR1 promoter. This ABA signaling pathway involving ERA1 probably acts through the ABRE box found in the promoter sequence of LuPLR1, a key gene for lignan synthesis in flax, as demonstrated by LuPLR1 gene promoter-reporter experiments in flax cells using wild

  15. Bcl-2 protein expression is associated with p27 and p53 protein expressions and MIB-1 counts in breast cancer

    International Nuclear Information System (INIS)

    Tsutsui, Shinichi; Yasuda, Kazuhiro; Suzuki, Kosuke; Takeuchi, Hideya; Nishizaki, Takashi; Higashi, Hidefumi; Era, Shoichi

    2006-01-01

    Recent experimental studies have shown that Bcl-2, which has been established as a key player in the control of apoptosis, plays a role in regulating the cell cycle and proliferation. The aim of this study was to investigate the relationship between Bcl-2 and p27 protein expression, p53 protein expression and the proliferation activity as defined by the MIB-1 counts. The prognostic implication of Bcl-2 protein expression in relation to p27 and p53 protein expressions and MIB-1 counts for breast cancer was also evaluated. The immunohistochemical expression of Bcl-2 protein was evaluated in a series of 249 invasive ductal carcinomas of the breast, in which p27 and p53 protein expressions and MIB-1 counts had been determined previously. The Bcl-2 protein expression was found to be decreased in 105 (42%) cases. A decreased Bcl-2 protein expression was significantly correlated with a nuclear grade of III, a negative estrogen receptor, a decreased p27 protein expression, a positive p53 protein expression, positive MIB-1 counts and a positive HER2 protein expression. The incidence of a nuclear grade of III and positive MIB-1 counts increased as the number of abnormal findings of Bcl-2, p27 and p53 protein expressions increased. A univariate analysis indicated a decreased Bcl-2 protein expression to be significantly (p = 0.0089) associated with a worse disease free survival (DFS), while a multivariate analysis indicated the lymph node status and MIB-1 counts to be independently significant prognostic factors for the DFS. The Bcl-2 protein expression has a close correlation with p27 and p53 protein expressions and the proliferation activity determined by MIB-1 counts in invasive ductal carcinoma of the breast. The prognostic value of Bcl-2 as well as p27 and p53 protein expressions was dependent on the proliferation activity in breast cancer

  16. Bcl-2 protein expression is associated with p27 and p53 protein expressions and MIB-1 counts in breast cancer

    Directory of Open Access Journals (Sweden)

    Nishizaki Takashi

    2006-07-01

    Full Text Available Abstract Background Recent experimental studies have shown that Bcl-2, which has been established as a key player in the control of apoptosis, plays a role in regulating the cell cycle and proliferation. The aim of this study was to investigate the relationship between Bcl-2 and p27 protein expression, p53 protein expression and the proliferation activity as defined by the MIB-1 counts. The prognostic implication of Bcl-2 protein expression in relation to p27 and p53 protein expressions and MIB-1 counts for breast cancer was also evaluated. Methods The immunohistochemical expression of Bcl-2 protein was evaluated in a series of 249 invasive ductal carcinomas of the breast, in which p27 and p53 protein expressions and MIB-1 counts had been determined previously. Results The Bcl-2 protein expression was found to be decreased in 105 (42% cases. A decreased Bcl-2 protein expression was significantly correlated with a nuclear grade of III, a negative estrogen receptor, a decreased p27 protein expression, a positive p53 protein expression, positive MIB-1 counts and a positive HER2 protein expression. The incidence of a nuclear grade of III and positive MIB-1 counts increased as the number of abnormal findings of Bcl-2, p27 and p53 protein expressions increased. A univariate analysis indicated a decreased Bcl-2 protein expression to be significantly (p = 0.0089 associated with a worse disease free survival (DFS, while a multivariate analysis indicated the lymph node status and MIB-1 counts to be independently significant prognostic factors for the DFS. Conclusion The Bcl-2 protein expression has a close correlation with p27 and p53 protein expressions and the proliferation activity determined by MIB-1 counts in invasive ductal carcinoma of the breast. The prognostic value of Bcl-2 as well as p27 and p53 protein expressions was dependent on the proliferation activity in breast cancer.

  17. Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2 in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues

    Directory of Open Access Journals (Sweden)

    Hyun Uk Kim

    2014-01-01

    Full Text Available The LEAFY COTYLEDON2 (LEC2 gene plays critically important regulatory roles during both early and late embryonic development. Here, we report the identification of the LEC2 gene from the castor bean plant (Ricinus communis, and characterize the effects of its overexpression on gene regulation and lipid metabolism in transgenic Arabidopsis plants. LEC2 exists as a single-copy gene in castor bean, is expressed predominantly in embryos, and encodes a protein with a conserved B3 domain, but different N- and C-terminal domains to those found in LEC2 from Arabidopsis. Ectopic overexpression of LEC2 from castor bean under the control of the cauliflower mosaic virus (CaMV 35S promoter in Arabidopsis plants induces the accumulation of transcripts that encodes five major transcription factors (the LEAFY COTYLEDON1 (LEC1, LEAFY COTYLEDON1-LIKE (L1L, FUSCA3 (FUS3, and ABSCISIC ACID INSENSITIVE 3 (ABI3 transcripts for seed maturation, and WRINKELED1 (WRI1 transcripts for fatty acid biosynthesis, as well as OLEOSIN transcripts for the formation of oil bodies in vegetative tissues. Transgenic Arabidopsis plants that express the LEC2 gene from castor bean show a range of dose-dependent morphological phenotypes and effects on the expression of LEC2-regulated genes during seedling establishment and vegetative growth. Expression of castor bean LEC2 in Arabidopsis increased the expression of fatty acid elongase 1 (FAE1 and induced the accumulation of triacylglycerols, especially those containing the seed-specific fatty acid, eicosenoic acid (20:1Δ11, in vegetative tissues.

  18. Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2) in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues.

    Science.gov (United States)

    Kim, Hyun Uk; Jung, Su-Jin; Lee, Kyeong-Ryeol; Kim, Eun Ha; Lee, Sang-Min; Roh, Kyung Hee; Kim, Jong-Bum

    2013-01-01

    The LEAFY COTYLEDON2 (LEC2) gene plays critically important regulatory roles during both early and late embryonic development. Here, we report the identification of the LEC2 gene from the castor bean plant (Ricinus communis), and characterize the effects of its overexpression on gene regulation and lipid metabolism in transgenic Arabidopsis plants. LEC2 exists as a single-copy gene in castor bean, is expressed predominantly in embryos, and encodes a protein with a conserved B3 domain, but different N- and C-terminal domains to those found in LEC2 from Arabidopsis. Ectopic overexpression of LEC2 from castor bean under the control of the cauliflower mosaic virus (CaMV) 35S promoter in Arabidopsis plants induces the accumulation of transcripts that encodes five major transcription factors (the LEAFY COTYLEDON1 (LEC1), LEAFY COTYLEDON1-LIKE (L1L), FUSCA3 (FUS3), and ABSCISIC ACID INSENSITIVE 3 (ABI3) transcripts for seed maturation, and WRINKELED1 (WRI1) transcripts for fatty acid biosynthesis), as well as OLEOSIN transcripts for the formation of oil bodies in vegetative tissues. Transgenic Arabidopsis plants that express the LEC2 gene from castor bean show a range of dose-dependent morphological phenotypes and effects on the expression of LEC2-regulated genes during seedling establishment and vegetative growth. Expression of castor bean LEC2 in Arabidopsis increased the expression of fatty acid elongase 1 (FAE1) and induced the accumulation of triacylglycerols, especially those containing the seed-specific fatty acid, eicosenoic acid (20:1(Δ11)), in vegetative tissues.

  19. Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2) in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues☆

    Science.gov (United States)

    Kim, Hyun Uk; Jung, Su-Jin; Lee, Kyeong-Ryeol; Kim, Eun Ha; Lee, Sang-Min; Roh, Kyung Hee; Kim, Jong-Bum

    2013-01-01

    The LEAFY COTYLEDON2 (LEC2) gene plays critically important regulatory roles during both early and late embryonic development. Here, we report the identification of the LEC2 gene from the castor bean plant (Ricinus communis), and characterize the effects of its overexpression on gene regulation and lipid metabolism in transgenic Arabidopsis plants. LEC2 exists as a single-copy gene in castor bean, is expressed predominantly in embryos, and encodes a protein with a conserved B3 domain, but different N- and C-terminal domains to those found in LEC2 from Arabidopsis. Ectopic overexpression of LEC2 from castor bean under the control of the cauliflower mosaic virus (CaMV) 35S promoter in Arabidopsis plants induces the accumulation of transcripts that encodes five major transcription factors (the LEAFY COTYLEDON1 (LEC1), LEAFY COTYLEDON1-LIKE (L1L), FUSCA3 (FUS3), and ABSCISIC ACID INSENSITIVE 3 (ABI3) transcripts for seed maturation, and WRINKELED1 (WRI1) transcripts for fatty acid biosynthesis), as well as OLEOSIN transcripts for the formation of oil bodies in vegetative tissues. Transgenic Arabidopsis plants that express the LEC2 gene from castor bean show a range of dose-dependent morphological phenotypes and effects on the expression of LEC2-regulated genes during seedling establishment and vegetative growth. Expression of castor bean LEC2 in Arabidopsis increased the expression of fatty acid elongase 1 (FAE1) and induced the accumulation of triacylglycerols, especially those containing the seed-specific fatty acid, eicosenoic acid (20:1Δ11), in vegetative tissues. PMID:24363987

  20. Human immunodeficiency virus type 1 enhancer-binding protein 3 is essential for the expression of asparagine-linked glycosylation 2 in the regulation of osteoblast and chondrocyte differentiation.

    Science.gov (United States)

    Imamura, Katsuyuki; Maeda, Shingo; Kawamura, Ichiro; Matsuyama, Kanehiro; Shinohara, Naohiro; Yahiro, Yuhei; Nagano, Satoshi; Setoguchi, Takao; Yokouchi, Masahiro; Ishidou, Yasuhiro; Komiya, Setsuro

    2014-04-04

    Human immunodeficiency virus type 1 enhancer-binding protein 3 (Hivep3) suppresses osteoblast differentiation by inducing proteasomal degradation of the osteogenesis master regulator Runx2. In this study, we tested the possibility of cooperation of Hivep1, Hivep2, and Hivep3 in osteoblast and/or chondrocyte differentiation. Microarray analyses with ST-2 bone stroma cells demonstrated that expression of any known osteochondrogenesis-related genes was not commonly affected by the three Hivep siRNAs. Only Hivep3 siRNA promoted osteoblast differentiation in ST-2 cells, whereas all three siRNAs cooperatively suppressed differentiation in ATDC5 chondrocytes. We further used microarray analysis to identify genes commonly down-regulated in both MC3T3-E1 osteoblasts and ST-2 cells upon knockdown of Hivep3 and identified asparagine-linked glycosylation 2 (Alg2), which encodes a mannosyltransferase residing on the endoplasmic reticulum. The Hivep3 siRNA-mediated promotion of osteoblast differentiation was negated by forced Alg2 expression. Alg2 suppressed osteoblast differentiation and bone formation in cultured calvarial bone. Alg2 was immunoprecipitated with Runx2, whereas the combined transfection of Runx2 and Alg2 interfered with Runx2 nuclear localization, which resulted in suppression of Runx2 activity. Chondrocyte differentiation was promoted by Hivep3 overexpression, in concert with increased expression of Creb3l2, whose gene product is the endoplasmic reticulum stress transducer crucial for chondrogenesis. Alg2 silencing suppressed Creb3l2 expression and chondrogenesis of ATDC5 cells, whereas infection of Alg2-expressing virus promoted chondrocyte maturation in cultured cartilage rudiments. Thus, Alg2, as a downstream mediator of Hivep3, suppresses osteogenesis, whereas it promotes chondrogenesis. To our knowledge, this study is the first to link a mannosyltransferase gene to osteochondrogenesis.

  1. BAR domain proteins regulate Rho GTPase signaling.

    Science.gov (United States)

    Aspenström, Pontus

    2014-01-01

    BAR proteins comprise a heterogeneous group of multi-domain proteins with diverse biological functions. The common denominator is the Bin-Amphiphysin-Rvs (BAR) domain that not only confers targeting to lipid bilayers, but also provides scaffolding to mold lipid membranes into concave or convex surfaces. This function of BAR proteins is an important determinant in the dynamic reconstruction of membrane vesicles, as well as of the plasma membrane. Several BAR proteins function as linkers between cytoskeletal regulation and membrane dynamics. These links are provided by direct interactions between BAR proteins and actin-nucleation-promoting factors of the Wiskott-Aldrich syndrome protein family and the Diaphanous-related formins. The Rho GTPases are key factors for orchestration of this intricate interplay. This review describes how BAR proteins regulate the activity of Rho GTPases, as well as how Rho GTPases regulate the function of BAR proteins. This mutual collaboration is a central factor in the regulation of vital cellular processes, such as cell migration, cytokinesis, intracellular transport, endocytosis, and exocytosis.

  2. SREBP-1c regulates glucose-stimulated hepatic clusterin expression

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gukhan [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Geun Hyang; Oh, Gyun-Sik; Yoon, Jin [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Hae Won [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Min-Seon [Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Seung-Whan, E-mail: swkim7@amc.seoul.kr [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of)

    2011-05-20

    Highlights: {yields} This is the first report to show nutrient-regulated clusterin expression. {yields} Clusterin expression in hepatocytes was increased by high glucose concentration. {yields} SREBP-1c is directly involved in the transcriptional activation of clusterin by glucose. {yields} This glucose-stimulated activation process is mediated through tandem E-box motifs. -- Abstract: Clusterin is a stress-response protein that is involved in diverse biological processes, including cell proliferation, apoptosis, tissue differentiation, inflammation, and lipid transport. Its expression is upregulated in a broad spectrum of diverse pathological states. Clusterin was recently reported to be associated with diabetes, metabolic syndrome, and their sequelae. However, the regulation of clusterin expression by metabolic signals was not addressed. In this study we evaluated the effects of glucose on hepatic clusterin expression. Interestingly, high glucose concentrations significantly increased clusterin expression in primary hepatocytes and hepatoma cell lines, but the conventional promoter region of the clusterin gene did not respond to glucose stimulation. In contrast, the first intronic region was transcriptionally activated by high glucose concentrations. We then defined a glucose response element (GlRE) of the clusterin gene, showing that it consists of two E-box motifs separated by five nucleotides and resembles carbohydrate response element (ChoRE). Unexpectedly, however, these E-box motifs were not activated by ChoRE binding protein (ChREBP), but were activated by sterol regulatory element binding protein-1c (SREBP-1c). Furthermore, we found that glucose induced recruitment of SREBP-1c to the E-box of the clusterin gene intronic region. Taken together, these results suggest that clusterin expression is increased by glucose stimulation, and SREBP-1c plays a crucial role in the metabolic regulation of clusterin.

  3. ASIC proteins regulate smooth muscle cell migration.

    Science.gov (United States)

    Grifoni, Samira C; Jernigan, Nikki L; Hamilton, Gina; Drummond, Heather A

    2008-03-01

    The purpose of the present study was to investigate Acid Sensing Ion Channel (ASIC) protein expression and importance in cellular migration. We recently demonstrated that Epithelial Na(+)Channel (ENaC) proteins are required for vascular smooth muscle cell (VSMC) migration; however, the role of the closely related ASIC proteins has not been addressed. We used RT-PCR and immunolabeling to determine expression of ASIC1, ASIC2, ASIC3 and ASIC4 in A10 cells. We used small interference RNA to silence individual ASIC expression and determine the importance of ASIC proteins in wound healing and chemotaxis (PDGF-bb)-initiated migration. We found ASIC1, ASIC2, and ASIC3, but not ASIC4, expression in A10 cells. ASIC1, ASIC2, and ASIC3 siRNA molecules significantly suppressed expression of their respective proteins compared to non-targeting siRNA (RISC) transfected controls by 63%, 44%, and 55%, respectively. Wound healing was inhibited by 10, 20, and 26% compared to RISC controls following suppression of ASIC1, ASIC2, and ASIC3, respectively. Chemotactic migration was inhibited by 30% and 45%, respectively, following suppression of ASIC1 and ASIC3. ASIC2 suppression produced a small, but significant, increase in chemotactic migration (4%). Our data indicate that ASIC expression is required for normal migration and may suggest a novel role for ASIC proteins in cellular migration.

  4. Regulation of cardiac C-protein phosphorylation

    International Nuclear Information System (INIS)

    Titus, F.L.

    1985-01-01

    Molecular mechanisms of cardiac sympathetic and parasympathetic responses were addressed by studying subcellular changes in protein phosphorylation, cAMP-dependent protein kinase activity and protein phosphatase activity in frog hearts. B-adrenergic agonists increased and muscarinic cholinergic agonists decreased [ 32 P]phosphate incorporation into C-protein, a thick filament component. Regulation of protein phosphatase activity by Iso and methacholine (MCh) was assayed using extracts of drug treated frog hearts and [ 32 P]phospho-C-protein as substrate. Total phosphatase activity decreased 21% in extracts from hearts perfused with 0.1 μM Iso and 17% in hearts exposed to Iso plus 1 μM methacholine. This decrease reflected decreased phosphatase-2A activity. No changes in total phosphatase activity were measurable in broken cells treated with Iso or MCh. The results suggest adrenergic stimulation changes contractile activity in frog hearts by activating cAMP-dependent protein kinase associated with particulate cellular elements and inactivating soluble protein phosphatase-2A. This is the first demonstration of coordinated regulation of these enzymes by B-adrenergic agonists favoring phosphorylation of effector proteins. Coordinated regulation by methacholine in the presence of Iso was not observed

  5. ASIC PROTEINS REGULATE SMOOTH MUSCLE CELL MIGRATION

    OpenAIRE

    Grifoni, Samira C.; Jernigan, Nikki L.; Hamilton, Gina; Drummond, Heather A.

    2007-01-01

    The purpose of the present study was to investigate Acid Sensing Ion Channel (ASIC) protein expression and importance in cellular migration. We recently demonstrated Epithelial Na+ Channel (ENaC) proteins are required for vascular smooth muscle cell (VSMC) migration, however the role of the closely related ASIC proteins has not been addressed. We used RT-PCR and immunolabeling to determine expression of ASIC1, ASIC2, ASIC3 and ASIC4 in A10 cells. We used small interference RNA to silence indi...

  6. Low intensity ultrasound promotes the sensitivity of rat brain glioma to Doxorubicin by down-regulating the expressions of p-glucoprotein and multidrug resistance protein 1 in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    Full Text Available The overall prognosis for malignant glioma is extremely poor, and treatment options are limited in part because of multidrug resistant proteins. Our previous findings suggest low intensity ultrasound (LIUS can induce apoptosis of glioma cells. Given this finding, we were interested in determining if LIUS could help treat glioma by inhibiting multidrug resistant proteins, and if so, which pathways are involved. In this study, the toxicity sensitivity and multidrug resistance proteins of glioma induced by LIUS were investigated using CCK-8, immunohistochemistry, immunofluorency, and RT-PCR in tissue samples and cultured cells. LIUS inhibited increase of C6 cells in an intensity- and time-dependent manner. The toxicity sensitivity of C6 cells increased significantly after LIUS sonication (intensity of 142.0 mW/cm(2 or Doxorubicin (DOX at different concentration, particularly by the combination of LIUS sonication and DOX. The expressions of P-gp and MRP1 decreased significantly post-sonication at intensity of 142.0 mW/cm(2 both in vitro and in vivo. The expressions of p110 delta (PI3K, NF-κB-p65, Akt/PKB, and p-Akt/PKB were downregulated by LIUS sonication and DOX treatment separately or in combination at the same parameters in rat glioma. These results indicate that LIUS could increase the toxicity sensitivity of glioma by down-regulating the expressions of P-gp and MRP1, which might be mediated by the PI3K/Akt/NF-κB pathway.

  7. Regulation of Gene Expression in Protozoa Parasites

    Directory of Open Access Journals (Sweden)

    Consuelo Gomez

    2010-01-01

    Full Text Available Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis.

  8. Regulation of gene expression in protozoa parasites.

    Science.gov (United States)

    Gomez, Consuelo; Esther Ramirez, M; Calixto-Galvez, Mercedes; Medel, Olivia; Rodríguez, Mario A

    2010-01-01

    Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis.

  9. Rab proteins: The key regulators of intracellular vesicle transport

    International Nuclear Information System (INIS)

    Bhuin, Tanmay; Roy, Jagat Kumar

    2014-01-01

    Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes. - Highlights: • Rab proteins regulate different signalling pathways. • Deregulation of Rabs is the fundamental causes of a variety of human diseases. • This paper gives potential directions in developing therapeutic targets. • This paper also gives ample directions for modulating pathways central to normal physiology. • These are the huge challenges for drug discovery and delivery in near future

  10. Rab proteins: The key regulators of intracellular vesicle transport

    Energy Technology Data Exchange (ETDEWEB)

    Bhuin, Tanmay [Cell and Developmental Biology Unit, Department of Zoology, The University of Burdwan, Golapbag 713104 (India); Roy, Jagat Kumar, E-mail: jkroy@bhu.ac.in [Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005 (India)

    2014-10-15

    Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes. - Highlights: • Rab proteins regulate different signalling pathways. • Deregulation of Rabs is the fundamental causes of a variety of human diseases. • This paper gives potential directions in developing therapeutic targets. • This paper also gives ample directions for modulating pathways central to normal physiology. • These are the huge challenges for drug discovery and delivery in near future.

  11. Expression of multidrug resistance proteins in retinoblastoma

    Directory of Open Access Journals (Sweden)

    Swati Shukla

    2017-11-01

    Full Text Available AIM: To elucidate the mechanism of multidrug resistance in retinoblastoma, and to acquire more insights into in vivo drug resistance. METHODS: Three anticancer drug resistant Y79 human RB cells were generated against vincristine, etoposide or carboplatin, which are used for conventional chemotherapy in RB. Primary cultures from enucleated eyes after chemotherapy (PCNC were also prepared. Their chemosensitivity to chemotherapeutic agents (vincristine, etoposide and carboplatin were measured using MTT assay. Western blot analysis was performed to evaluate the expression of p53, Bcl-2 and various multidrug resistant proteins in retinoblastoma cells. RESULTS: Following exposure to chemotherapeutic drugs, PCNC showed less sensitivity to drugs. No significant changes observed in the p53 expression, whereas Bcl-2 expression was found to be increased in the drug resistant cells as well as in PCNC. Increased expression of P-glycoprotein (P-gp was observed in drug resistant Y79 cells; however there was no significant change in the expression of P-gp found between primary cultures of primarily enucleated eyes and PCNC. Multidrug resistance protein 1 (Mrp-1 expression was found to be elevated in the drug resistant Y79 cells as well as in PCNC. No significant change in the expression of lung resistance associated protein (Lrp was observed in the drug resistant Y79 cells as well as in PCNC. CONCLUSION: Our results suggest that multidrug resistant proteins are intrinsically present in retinoblastoma which causes treatment failure in managing retinoblastoma with chemotherapy.

  12. Expression of multidrug resistance proteins in retinoblastoma.

    Science.gov (United States)

    Shukla, Swati; Srivastava, Arpna; Kumar, Sunil; Singh, Usha; Goswami, Sandeep; Chawla, Bhavna; Bajaj, Mandeep Singh; Kashyap, Seema; Kaur, Jasbir

    2017-01-01

    To elucidate the mechanism of multidrug resistance in retinoblastoma, and to acquire more insights into in vivo drug resistance. Three anticancer drug resistant Y79 human RB cells were generated against vincristine, etoposide or carboplatin, which are used for conventional chemotherapy in RB. Primary cultures from enucleated eyes after chemotherapy (PCNC) were also prepared. Their chemosensitivity to chemotherapeutic agents (vincristine, etoposide and carboplatin) were measured using MTT assay. Western blot analysis was performed to evaluate the expression of p53, Bcl-2 and various multidrug resistant proteins in retinoblastoma cells. Following exposure to chemotherapeutic drugs, PCNC showed less sensitivity to drugs. No significant changes observed in the p53 expression, whereas Bcl-2 expression was found to be increased in the drug resistant cells as well as in PCNC. Increased expression of P-glycoprotein (P-gp) was observed in drug resistant Y79 cells; however there was no significant change in the expression of P-gp found between primary cultures of primarily enucleated eyes and PCNC. Multidrug resistance protein 1 (Mrp-1) expression was found to be elevated in the drug resistant Y79 cells as well as in PCNC. No significant change in the expression of lung resistance associated protein (Lrp) was observed in the drug resistant Y79 cells as well as in PCNC. Our results suggest that multidrug resistant proteins are intrinsically present in retinoblastoma which causes treatment failure in managing retinoblastoma with chemotherapy.

  13. Expression of multidrug resistance proteins in retinoblastoma

    Science.gov (United States)

    Shukla, Swati; Srivastava, Arpna; Kumar, Sunil; Singh, Usha; Goswami, Sandeep; Chawla, Bhavna; Bajaj, Mandeep Singh; Kashyap, Seema; Kaur, Jasbir

    2017-01-01

    AIM To elucidate the mechanism of multidrug resistance in retinoblastoma, and to acquire more insights into in vivo drug resistance. METHODS Three anticancer drug resistant Y79 human RB cells were generated against vincristine, etoposide or carboplatin, which are used for conventional chemotherapy in RB. Primary cultures from enucleated eyes after chemotherapy (PCNC) were also prepared. Their chemosensitivity to chemotherapeutic agents (vincristine, etoposide and carboplatin) were measured using MTT assay. Western blot analysis was performed to evaluate the expression of p53, Bcl-2 and various multidrug resistant proteins in retinoblastoma cells. RESULTS Following exposure to chemotherapeutic drugs, PCNC showed less sensitivity to drugs. No significant changes observed in the p53 expression, whereas Bcl-2 expression was found to be increased in the drug resistant cells as well as in PCNC. Increased expression of P-glycoprotein (P-gp) was observed in drug resistant Y79 cells; however there was no significant change in the expression of P-gp found between primary cultures of primarily enucleated eyes and PCNC. Multidrug resistance protein 1 (Mrp-1) expression was found to be elevated in the drug resistant Y79 cells as well as in PCNC. No significant change in the expression of lung resistance associated protein (Lrp) was observed in the drug resistant Y79 cells as well as in PCNC. CONCLUSION Our results suggest that multidrug resistant proteins are intrinsically present in retinoblastoma which causes treatment failure in managing retinoblastoma with chemotherapy. PMID:29181307

  14. Structural analysis of DNA binding by C.Csp231I, a member of a novel class of R-M controller proteins regulating gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Shevtsov, M. B.; Streeter, S. D.; Thresh, S.-J.; Swiderska, A.; McGeehan, J. E.; Kneale, G. G., E-mail: geoff.kneale@port.ac.uk [University of Portsmouth, Portsmouth PO1 2DY (United Kingdom)

    2015-02-01

    The structure of the new class of controller proteins (exemplified by C.Csp231I) in complex with its 21 bp DNA-recognition sequence is presented, and the molecular basis of sequence recognition in this class of proteins is discussed. An unusual extended spacer between the dimer binding sites suggests a novel interaction between the two C-protein dimers. In a wide variety of bacterial restriction–modification systems, a regulatory ‘controller’ protein (or C-protein) is required for effective transcription of its own gene and for transcription of the endonuclease gene found on the same operon. We have recently turned our attention to a new class of controller proteins (exemplified by C.Csp231I) that have quite novel features, including a much larger DNA-binding site with an 18 bp (∼60 Å) spacer between the two palindromic DNA-binding sequences and a very different recognition sequence from the canonical GACT/AGTC. Using X-ray crystallography, the structure of the protein in complex with its 21 bp DNA-recognition sequence was solved to 1.8 Å resolution, and the molecular basis of sequence recognition in this class of proteins was elucidated. An unusual aspect of the promoter sequence is the extended spacer between the dimer binding sites, suggesting a novel interaction between the two C-protein dimers when bound to both recognition sites correctly spaced on the DNA. A U-bend model is proposed for this tetrameric complex, based on the results of gel-mobility assays, hydrodynamic analysis and the observation of key contacts at the interface between dimers in the crystal.

  15. Structural analysis of DNA binding by C.Csp231I, a member of a novel class of R-M controller proteins regulating gene expression

    International Nuclear Information System (INIS)

    Shevtsov, M. B.; Streeter, S. D.; Thresh, S.-J.; Swiderska, A.; McGeehan, J. E.; Kneale, G. G.

    2015-01-01

    The structure of the new class of controller proteins (exemplified by C.Csp231I) in complex with its 21 bp DNA-recognition sequence is presented, and the molecular basis of sequence recognition in this class of proteins is discussed. An unusual extended spacer between the dimer binding sites suggests a novel interaction between the two C-protein dimers. In a wide variety of bacterial restriction–modification systems, a regulatory ‘controller’ protein (or C-protein) is required for effective transcription of its own gene and for transcription of the endonuclease gene found on the same operon. We have recently turned our attention to a new class of controller proteins (exemplified by C.Csp231I) that have quite novel features, including a much larger DNA-binding site with an 18 bp (∼60 Å) spacer between the two palindromic DNA-binding sequences and a very different recognition sequence from the canonical GACT/AGTC. Using X-ray crystallography, the structure of the protein in complex with its 21 bp DNA-recognition sequence was solved to 1.8 Å resolution, and the molecular basis of sequence recognition in this class of proteins was elucidated. An unusual aspect of the promoter sequence is the extended spacer between the dimer binding sites, suggesting a novel interaction between the two C-protein dimers when bound to both recognition sites correctly spaced on the DNA. A U-bend model is proposed for this tetrameric complex, based on the results of gel-mobility assays, hydrodynamic analysis and the observation of key contacts at the interface between dimers in the crystal

  16. High glucose enhances cAMP level and extracellular signal-regulated kinase phosphorylation in Chinese hamster ovary cell: Usage of Br-cAMP in foreign protein β-galactosidase expression.

    Science.gov (United States)

    Lin, Hsiao-Hsien; Lee, Tsung-Yih; Liu, Ting-Wei; Tseng, Ching-Ping

    2017-07-01

    Glucose is a carbon source for Chinese hamster ovary (CHO) cell growth, while low growth rate is considered to enhance the production of recombinant proteins. The present study reveals that glucose concentrations higher than 1 g/L reduce the growth rate and substantially increase in cAMP (∼300%) at a high glucose concentration (10 g/L). High glucose also enhances the phosphorylation of extracellular signal-regulated kinase (ERK) and p27 kip by Western blot analysis. To determine whether the phosphorylation of ERK is involved in the mechanism, a cyclic-AMP dependent protein kinase A (PKA) inhibitor (H-8) or MEK (MAPKK) inhibitor (PD98059) was added to block ERK phosphorylation. We show that both the high glucose-induced ERK phosphorylation and growth rate return to baseline levels. These results suggest that the cAMP/PKA and MAP signaling pathways are involved in the abovementioned mechanism. Interestingly, the direct addition of 8-bromo-cAMP (Br-cAMP), a membrane-permeable cAMP analog, can mimic the similar effects produced by high glucose. Subsequently Br-cAMP could induce β-galactosidase (β-Gal) recombinant protein expression by 1.6-fold. Furthermore, Br-cAMP can additionally enhance the β-Gal production (from 2.8- to 4.5-fold) when CHO cells were stimulated with glycerol, thymidine, dimethyl sulfoxide, pentanoic acid, or sodium butyrate. Thus, Br-cAMP may be used as an alternative agent in promoting foreign protein expression for CHO cells. Copyright © 2017. Published by Elsevier B.V.

  17. Different Expression of Extracellular Signal-Regulated Kinases (ERK) 1/2 and Phospho-Erk Proteins in MBA-MB-231 and MCF-7 Cells after Chemotherapy with Doxorubicin or Docetaxel.

    Science.gov (United States)

    Taherian, Aliakbar; Mazoochi, Tahereh

    2012-01-01

    Curative treatment of breast cancer patients using chemotherapy often fails as a result of intrinsic or acquired resistance of the tumor to the drug. ERK is one of the main components of the Ras/Raf/MEK/ERK cascade, which mediates signal from cell surface receptors to transcription factors to regulate different gene expression. In this study, cytotoxicity and the expression of Erk1/2 and phospho-ERK was compared in MDA-MB-231 (ER-) and MCF-7 (ER+) cell lines after treatment with doxorubicin (DOX) or docetaxel (DOCT). Cell cytotoxicity of DOX or DOCT was calculated using MTT assay. Immonofluorescent technique was used to show MDR-1 protein in MDA-MB-231 and MCF-7 cells after treatment with DOX or DOCT. The expression of ERK1/2 and phpspho-ERK was assayed with immunoblotting. Comparing IC50 values showed that MDA-MB-231 cells are more sensitive than MCF-7 cells to DOX or DOCT. Immonofluorescent results confirmed the expression of MDR-1 in these two cell lines after DOX or DOCT treatment. In MDA-MB-231 cells the expression of ERK1/2 and phospho-ERK was decreased after DOX treatment in a dose-dependent manner. In contrast in MCF-7 cells the expression of ERK1/2 and phospho-ERK was increased after DOX treatment. DOCT treatment demonstrated the same result with less significant differences than DOX. The heterogeneity seen in cell lines actually reflects the heterogeneity of breast cancers. That is why, patients categorized in one group respond differently to a single treatment. These results emphasize the importance of a more accurate classification and a more specific treatment of breast cancer subtypes.

  18. Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts

    International Nuclear Information System (INIS)

    Carmona-Rodriguez, Bruno; Alvarez-Perez, Marco Antonio; Narayanan, A. Sampath; Zeichner-David, Margarita; Reyes-Gasga, Jose; Molina-Guarneros, Juan; Garcia-Hernandez, Ana Lilia; Suarez-Franco, Jose Luis; Chavarria, Ivet Gil; Villarreal-Ramirez, Eduardo; Arzate, Higinio

    2007-01-01

    We recently presented evidence showing that a human cementoblastoma-derived protein, named Cementum Protein 1 (CEMP1) may play a role as a local regulator of cementoblast differentiation and cementum-matrix mineralization. This protein was shown to be expressed by cementoblasts and progenitor cells localized in the periodontal ligament. In this study we demonstrate that transfection of CEMP1 into human gingival fibroblasts (HGF) induces mineralization and expression of bone and cementum-matrix proteins. The transfected HGF cells had higher alkaline phosphatase activity and proliferation rate and they expressed genes for alkaline phosphatase, bone sialoprotein, osteocalcin, osteopontin, the transcription factor Runx2/Cbfa1, and cementum attachment protein (CAP). They also produced biological-type hydroxyapatite. These findings indicate that the CEMP1 might participate in differentiation and mineralization of nonosteogenic cells, and that it might have a potential function in cementum and bone formation

  19. Glucose transporters: expression, regulation and cancer

    Directory of Open Access Journals (Sweden)

    RODOLFO A. MEDINA

    2002-01-01

    Full Text Available Mammalian cells depend on glucose as a major substrate for energy production. Glucose is transported into the cell via facilitative glucose transporters (GLUT present in all cell types. Many GLUT isoforms have been described and their expression is cell-specific and subject to hormonal and environmental control. The kinetic properties and substrate specificities of the different isoforms are specifically suited to the energy requirements of the particular cell types. Due to the ubiquitousness of these transporters, their differential expression is involved in various disease states such as diabetes, ischemia and cancer. The majority of cancers and isolated cancer cell lines over-express the GLUT family members which are present in the respective tissue of origin under non-cancerous conditions. Moreover, due to the requirement of energy to feed uncontrolled proliferation, cancer cells often express GLUTs which under normal conditions would not be present in these tissues. This over-expression is predominantly associated with the likelihood of metastasis and hence poor patient prognosis. This article presents a review of the current literature on the regulation and expression of GLUT family members and has compiled clinical and research data on GLUT expression in human cancers and in isolated human cancer cell lines.

  20. miRNA-130a regulates C/EBP-ε expression during granulopoiesis

    DEFF Research Database (Denmark)

    Larsen, Maria T; Häger, Mattias; Glenthøj, Andreas

    2014-01-01

    cells. In contrast, C/EBP-ε protein is virtually detectable only in the MC/MM population, indicating that expression in more immature cells could be inhibited by microRNAs (miRNAs). We found that miRNA-130a (miR-130a) regulates C/EBP-ε protein expression in both murine and human granulocytic precursors...... target site for miR-130a restored both C/EBP-ε production, expression of Camp and Lcn2, and resulted in the cells having a more mature phenotype. We conclude that miR-130a is important for the regulation of the timed expression of C/EBP-ε during granulopoiesis.......CCAAT/enhancer binding protein-ε (C/EBP-ε) is considered a master transcription factor regulating terminal neutrophil maturation. It is essential for expression of secondary granule proteins, but it also regulates proliferation, cell cycle, and maturation during granulopoiesis. Cebpe(-/-) mice have...

  1. Hypoxic-induced stress protein expression in rat cardiac myocytes

    International Nuclear Information System (INIS)

    Howard, G.; Geoghegan, T.E.

    1986-01-01

    Mammalian stress proteins can be induced in cells and tissues exposed to a variety of conditions including hyperthermia and diminished O 2 supply. The authors have previously shown that the expression of three stress proteins (71, 85, and 95 kDa) was induced in cardiac tissue from mice exposed to hypoxic conditions. The expression of mRNAs coding for the 85 and 95 kDa proteins increase with time of exposure to hypoxia, while the mRNA coding for the 71 kDa protein is transiently induced. The authors extended these studies to investigate the expression of stress proteins in isolated rat cardiac myocytes. Freshly prepared myocytes were exposed to control, hypoxic, anoxic, or heat-shock environments for up to 16 h. The proteins were then labeled for 6 hours with [ 35 S]methionine. Analysis of the solubilized proteins by SDS-PAGE and autoradiography showed that there was a 6-fold increase in synthesis of the 85 kDa protein upon exposure to hypoxia but not heat-shock conditions. The 71 kDa protein was present at high levels in both control and treated myocyte protein preparations, and presumably had been induced during the isolation procedure. Total RNA isolated from intact rat heart and isolated myocytes was compared by cell-free translation analysis and showed induction of RNAs coding for several stress proteins in the myocyte preparation. The induced proteins at 85 and 95 kDa have molecular weights similar to reported cell stress and/or glucose-regulated proteins

  2. Identification of proteins regulated by curcumin in cerebral ischemia.

    Science.gov (United States)

    Shah, Fawad-Ali; Gim, Sang-Ah; Sung, Jin-Hee; Jeon, Seong-Jun; Kim, Myeong-Ok; Koh, Phil-Ok

    2016-03-01

    Curcumin is known to have a neuroprotective effect against cerebral ischemia. The objective of this study was to identify various proteins that are differentially expressed by curcumin treatment in focal cerebral ischemia using a proteomic approach. Adult male rats were treated with vehicle or curcumin 1 h after middle cerebral artery occlusion. Brain tissues were collected 24 h after the onset of middle cerebral artery occlusion, and cerebral cortices proteins were identified by two-dimensional gel electrophoresis and mass spectrometry. We detected several proteins with altered expression levels between vehicle- and curcumin-treated animals. Among these proteins, ubiquitin carboxy-terminal hydrolase L1, isocitrate dehydrogenase, adenosylhomocysteinase, and eukaryotic initiation factor 4A were decreased in the vehicle-treated animal, and curcumin treatment attenuated the injury-induced decreases of these proteins. Conversely, pyridoxal phosphate phosphatase was increased in the vehicle-treated animal, and curcumin treatment prevented decreases in this protein. The identified altered proteins are associated with cellular metabolism and differentiation. The results of this study suggest that curcumin exerts a neuroprotective effect by regulating the expression of various proteins in focal cerebral ischemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Expression, Delivery and Function of Insecticidal Proteins Expressed by Recombinant Baculoviruses

    Science.gov (United States)

    Kroemer, Jeremy A.; Bonning, Bryony C.; Harrison, Robert L.

    2015-01-01

    Since the development of methods for inserting and expressing genes in baculoviruses, a line of research has focused on developing recombinant baculoviruses that express insecticidal peptides and proteins. These recombinant viruses have been engineered with the goal of improving their pesticidal potential by shortening the time required for infection to kill or incapacitate insect pests and reducing the quantity of crop damage as a consequence. A wide variety of neurotoxic peptides, proteins that regulate insect physiology, degradative enzymes, and other potentially insecticidal proteins have been evaluated for their capacity to reduce the survival time of baculovirus-infected lepidopteran host larvae. Researchers have investigated the factors involved in the efficient expression and delivery of baculovirus-encoded insecticidal peptides and proteins, with much effort dedicated to identifying ideal promoters for driving transcription and signal peptides that mediate secretion of the expressed target protein. Other factors, particularly translational efficiency of transcripts derived from recombinant insecticidal genes and post-translational folding and processing of insecticidal proteins, remain relatively unexplored. The discovery of RNA interference as a gene-specific regulation mechanism offers a new approach for improvement of baculovirus biopesticidal efficacy through genetic modification. PMID:25609310

  4. Anchoring Proteins as Regulators of Signaling Pathways

    Science.gov (United States)

    Perino, Alessia; Ghigo, Alessandra; Scott, John D.; Hirsch, Emilio

    2012-01-01

    Spatial and temporal organization of signal transduction is coordinated through the segregation of signaling enzymes in selected cellular compartments. This highly evolved regulatory mechanism ensures the activation of selected enzymes only in the vicinity of their target proteins. In this context, cAMP-responsive triggering of protein kinase A is modulated by a family of scaffold proteins referred to as A-kinase anchoring proteins. A-kinase anchoring proteins form the core of multiprotein complexes and enable simultaneous but segregated cAMP signaling events to occur in defined cellular compartments. In this review we will focus on the description of A-kinase anchoring protein function in the regulation of cardiac physiopathology. PMID:22859670

  5. Neisseria meningitidis rifampicin resistant strains: analysis of protein differentially expressed

    Directory of Open Access Journals (Sweden)

    Schininà Maria

    2010-09-01

    Full Text Available Abstract Background Several mutations have been described as responsible for rifampicin resistance in Neisseria meningitidis. However, the intriguing question on why these strains are so rare remains open. The aim of this study was to investigate the protein content and to identify differential expression in specific proteins in two rifampicin resistant and one susceptible meningococci using two-dimensional electrophoresis (2-DE combined with mass spectrometry. Results In our experimental conditions, able to resolve soluble proteins with an isoelectric point between 4 and 7, twenty-three proteins have been found differentially expressed in the two resistant strains compared to the susceptible. Some of them, involved in the main metabolic pathways, showed an increased expression, mainly in the catabolism of pyruvate and in the tricarboxylic acid cycle. A decreased expression of proteins belonging to gene regulation and to those involved in the folding of polypeptides has also been observed. 2-DE analysis showed the presence of four proteins displaying a shift in their isoelectric point in both resistant strains, confirmed by the presence of amino acid changes in the sequence analysis, absent in the susceptible. Conclusions The analysis of differentially expressed proteins suggests that an intricate series of events occurs in N. meningitidis rifampicin resistant strains and the results here reported may be considered a starting point in understanding their decreased invasion capacity. In fact, they support the hypothesis that the presence of more than one protein differentially expressed, having a role in the metabolism of the meningococcus, influences its ability to infect and to spread in the population. Different reports have described and discussed how a drug resistant pathogen shows a high biological cost for survival and that may also explain why, for some pathogens, the rate of resistant organisms is relatively low considering the

  6. Regulation of MYCN expression in human neuroblastoma cells

    International Nuclear Information System (INIS)

    Jacobs, Joannes FM; Bokhoven, Hans van; Leeuwen, Frank N van; Hulsbergen-van de Kaa, Christina A; Vries, I Jolanda M de; Adema, Gosse J; Hoogerbrugge, Peter M; Brouwer, Arjan PM de

    2009-01-01

    Amplification of the MYCN gene in neuroblastoma (NB) is associated with a poor prognosis. However, MYCN-amplification does not automatically result in higher expression of MYCN in children with NB. We hypothesized that the discrepancy between MYCN gene expression and prognosis in these children might be explained by the expression of either MYCN-opposite strand (MYCNOS) or the shortened MYCN-isoform (ΔMYCN) that was recently identified in fetal tissues. Both MYCNOS and ΔMYCN are potential inhibitors of MYCN either at the mRNA or at the protein level. Expression of MYCN, MYCNOS and ΔMYCN was measured in human NB tissues of different stages. Transcript levels were quantified using a real-time reverse transcriptase polymerase chain reaction assay (QPCR). In addition, relative expression of these three transcripts was compared to the number of MYCN copies, which was determined by genomic real-time PCR (gQPCR). Both ΔMYCN and MYCNOS are expressed in all NBs examined. In NBs with MYCN-amplification, these transcripts are significantly higher expressed. The ratio of MYCN:ΔMYCN expression was identical in all tested NBs. This indicates that ΔMYCN and MYCN are co-regulated, which suggests that ΔMYCN is not a regulator of MYCN in NB. However, the ratio of MYCNOS:MYCN expression is directly correlated with NB disease stage (p = 0.007). In the more advanced NB stages and NBs with MYCN-amplification, relatively more MYCNOS is present as compared to MYCN. Expression of the antisense gene MYCNOS might be relevant to the progression of NB, potentially by directly inhibiting MYCN transcription by transcriptional interference at the DNA level. The MYCNOS:MYCN-ratio in NBs is significantly correlated with both MYCN-amplification and NB-stage. Our data indicate that in NB, MYCN expression levels might be influenced by MYCNOS but not by ΔMYCN

  7. The alpha7 nicotinic receptor agonist SSR180711 increases activity regulated cytoskeleton protein (Arc) gene expression in the prefrontal cortex of the rat

    DEFF Research Database (Denmark)

    Kristensen, Søren E; Thomsen, Morten S; Hansen, Henrik H

    2007-01-01

    Nicotinic alpha7 acetylcholine receptors (alpha7 nAChR) have been shown to enhance attentional function and aspects of memory function in experimental models and in man. The protein Arc encoded by the effector immediate early gene arc or arg3.1 has been shown to be strongly implicated in long...

  8. AUXIN BINDING PROTEIN 4 is involved in the Ca2+/auxin-regulated expression of ZCAX3 gene in maize (Zea mays)

    Czech Academy of Sciences Publication Activity Database

    Jurišić-Knežev, Dejana; Bergougnoux, Véronique; Milde, D.; Fellner, Martin

    2014-01-01

    Roč. 92, č. 5 (2014), s. 332-339 ISSN 1916-2790 R&D Projects: GA MŠk 1P05ME792 Institutional support: RVO:61389030 Keywords : auxin-binding protein * ABP4 * AtCAX1 Subject RIV: EF - Botanics Impact factor: 1.278, year: 2014

  9. Transmembrane adaptor protein TRIM regulates T cell receptor (TCR) expression and TCR-mediated signaling via an association with the TCR zeta chain

    Czech Academy of Sciences Publication Activity Database

    Kirchgesser, H.; Dietrich, J.; Scherer, J.; Isomaki, P.; Kořínek, Vladimír; Hilgert, Ivan; Bruyns, E.; Leo, A.; Cope, A. P.; Schraven, B.

    2001-01-01

    Roč. 193, č. 11 (2001), s. 1269-1283 ISSN 0022-1007 R&D Projects: GA ČR GA204/99/0367 Institutional research plan: CEZ:AV0Z5052915 Keywords : receptor * adaptor protein * signaling Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 15.340, year: 2001

  10. sarA negatively regulates Staphylococcus epidermidis biofilm formation by modulating expression of 1 MDa extracellular matrix binding protein and autolysis‐dependent release of eDNA

    DEFF Research Database (Denmark)

    Christner, Martin; Heinze, Constanze; Busch, Michael

    2012-01-01

    to biofilm formation in mutant 1585ΔsarA. Increased eDNA amounts indirectly resulted from upregulation of metalloprotease SepA, leading to boosted processing of autolysin AtlE, in turn inducing augmented autolysis and release of eDNA. Hence, this study identifies sarA as a negative regulator of Embp‐ and e...

  11. Hypercholesterolemia and apolipoprotein B expression: Regulation by selenium status

    Directory of Open Access Journals (Sweden)

    Bansal Mohinder P

    2005-11-01

    Full Text Available Abstract Background Apolipoprotein B (apoB contains ligand-binding domain for the binding of LDL to LDL-R site, which enables the removal of LDL from circulation. Our recent data showed that selenium (Se is involved in the lipid metabolism. The present study was aimed to understand the effect of Se deficiency (0.02 ppm and selenium supplementation (1 ppm on apoB expression in liver during hypercholesterolemia in male Sprague Dawley rats. Animals were fed with control and high cholesterol diet (2% for 1 and 2 months. ApoB levels by ELISA and protein expression by western blot was done. Hepatic LDL receptor (LDL-R activity (in vivo and mRNA expression by RT-PCR was monitored. Results In selenium deficiency and on high cholesterol diet (HCD feeding apoB levels increased and LDL-R expression decreased significantly after 2 months. On 1 ppm selenium supplementation apoB expression significantly decreased and LDL-R expression increased after 2 months. But after one month of treatment there was no significant change observed in apoB and LDL-R expression. Conclusion So the present study demonstrates that Se deficiency leads to up regulation of apoB expression during experimental hypercholesterolemia. Selenium supplementation upto 1 ppm leads to downregulation of apoB expression. Further, this study will highlight the nutritional value of Se supplementation in lipid metabolism.

  12. Thyroid hormones regulate selenoprotein expression and selenium status in mice.

    Directory of Open Access Journals (Sweden)

    Jens Mittag

    Full Text Available Impaired expression of selenium-containing proteins leads to perturbed thyroid hormone (TH levels, indicating the central importance of selenium for TH homeostasis. Moreover, critically ill patients with declining serum selenium develop a syndrome of low circulating TH and a central downregulation of the hypothalamus-pituitary-thyroid axis. This prompted us to test the reciprocal effect, i.e., if TH status would also regulate selenoprotein expression and selenium levels. To investigate the TH dependency of selenium metabolism, we analyzed mice expressing a mutant TH receptor α1 (TRα1+m that confers a receptor-mediated hypothyroidism. Serum selenium was reduced in these animals, which was a direct consequence of the mutant TRα1 and not related to their metabolic alterations. Accordingly, hyperthyroidism, genetically caused by the inactivation of TRβ or by oral TH treatment of adult mice, increased serum selenium levels in TRα1+m and controls, thus demonstrating a novel and specific role for TRα1 in selenium metabolism. Furthermore, TH affected the mRNA levels for several enzymes involved in selenoprotein biosynthesis as well as serum selenoprotein P concentrations and the expression of other antioxidative selenoproteins. Taken together, our results show that TH positively affects the serum selenium status and regulates the expression of several selenoproteins. This demonstrates that selenium and TH metabolism are interconnected through a feed-forward regulation, which can in part explain the rapid parallel downregulation of both systems in critical illness.

  13. Regulation of catalase expression in healthy and cancerous cells.

    Science.gov (United States)

    Glorieux, Christophe; Zamocky, Marcel; Sandoval, Juan Marcelo; Verrax, Julien; Calderon, Pedro Buc

    2015-10-01

    Catalase is an important antioxidant enzyme that dismutates hydrogen peroxide into water and molecular oxygen. The catalase gene has all the characteristics of a housekeeping gene (no TATA box, no initiator element sequence, high GC content in promoter) and a core promoter that is highly conserved among species. We demonstrate in this review that within this core promoter, the presence of DNA binding sites for transcription factors, such as NF-Y and Sp1, plays an essential role in the positive regulation of catalase expression. Additional transcription factors, such as FoxO3a, are also involved in this regulatory process. There is strong evidence that the protein Akt/PKB in the PI3K signaling pathway plays a major role in the expression of catalase by modulating the activity of FoxO3a. Over the past decade, other transcription factors (PPARγ, Oct-1, etc.), as well as genetic, epigenetic, and posttranscriptional processes, have emerged as crucial contributors to the regulation of catalase expression. Altered expression levels of catalase have been reported in cancer tissues compared to their normal counterparts. Deciphering the molecular mechanisms that regulate catalase expression could, therefore, be of crucial importance for the future development of pro-oxidant cancer chemotherapy. Copyright © 2015. Published by Elsevier Inc.

  14. Regulation of Expressive Behavior as Reflecting Affect Socialization.

    Science.gov (United States)

    Saarni, Carolyn

    Regulated expressiveness (the modification of expressive behavior) is a complex phenomenon. Accomplished basically in four ways, regulated expressiveness has developmental dimensions, motivational precursors, and cognitive antecedents, including perspective-taking ability and the growth of self-awareness. Ability to regulate expressiveness appears…

  15. Gravity-regulated gene expression in Arabidopsis thaliana

    Science.gov (United States)

    Sederoff, Heike; Brown, Christopher S.; Heber, Steffen; Kajla, Jyoti D.; Kumar, Sandeep; Lomax, Terri L.; Wheeler, Benjamin; Yalamanchili, Roopa

    Plant growth and development is regulated by changes in environmental signals. Plants sense environmental changes and respond to them by modifying gene expression programs to ad-just cell growth, differentiation, and metabolism. Functional expression of genes comprises many different processes including transcription, translation, post-transcriptional and post-translational modifications, as well as the degradation of RNA and proteins. Recently, it was discovered that small RNAs (sRNA, 18-24 nucleotides long), which are heritable and systemic, are key elements in regulating gene expression in response to biotic and abiotic changes. Sev-eral different classes of sRNAs have been identified that are part of a non-cell autonomous and phloem-mobile network of regulators affecting transcript stability, translational kinetics, and DNA methylation patterns responsible for heritable transcriptional silencing (epigenetics). Our research has focused on gene expression changes in response to gravistimulation of Arabidopsis roots. Using high-throughput technologies including microarrays and 454 sequencing, we iden-tified rapid changes in transcript abundance of genes as well as differential expression of small RNA in Arabidopsis root apices after minutes of reorientation. Some of the differentially regu-lated transcripts are encoded by genes that are important for the bending response. Functional mutants of those genes respond faster to reorientation than the respective wild type plants, indicating that these proteins are repressors of differential cell elongation. We compared the gravity responsive sRNAs to the changes in transcript abundances of their putative targets and identified several potential miRNA: target pairs. Currently, we are using mutant and transgenic Arabidopsis plants to characterize the function of those miRNAs and their putative targets in gravitropic and phototropic responses in Arabidopsis.

  16. Parts Characterization for Tunable Protein Expression

    DEFF Research Database (Denmark)

    Klausen, Michael Schantz; Sommer, Morten Otto Alexander

    2018-01-01

    Flow-seq combines flexible genome engineering methods with flow cytometry-based cell sorting and deep DNA sequencing to enable comprehensive interrogation of genotype to phenotype relationships. One application is to study the effect of specific regulatory elements on protein expression. Construc......Flow-seq combines flexible genome engineering methods with flow cytometry-based cell sorting and deep DNA sequencing to enable comprehensive interrogation of genotype to phenotype relationships. One application is to study the effect of specific regulatory elements on protein expression...

  17. Regulation of protease-activated receptor 1 signaling by the adaptor protein complex 2 and R4 subfamily of regulator of G protein signaling proteins.

    Science.gov (United States)

    Chen, Buxin; Siderovski, David P; Neubig, Richard R; Lawson, Mark A; Trejo, Joann

    2014-01-17

    The G protein-coupled protease-activated receptor 1 (PAR1) is irreversibly proteolytically activated by thrombin. Hence, the precise regulation of PAR1 signaling is important for proper cellular responses. In addition to desensitization, internalization and lysosomal sorting of activated PAR1 are critical for the termination of signaling. Unlike most G protein-coupled receptors, PAR1 internalization is mediated by the clathrin adaptor protein complex 2 (AP-2) and epsin-1, rather than β-arrestins. However, the function of AP-2 and epsin-1 in the regulation of PAR1 signaling is not known. Here, we report that AP-2, and not epsin-1, regulates activated PAR1-stimulated phosphoinositide hydrolysis via two different mechanisms that involve, in part, a subset of R4 subfamily of "regulator of G protein signaling" (RGS) proteins. A significantly greater increase in activated PAR1 signaling was observed in cells depleted of AP-2 using siRNA or in cells expressing a PAR1 (420)AKKAA(424) mutant with defective AP-2 binding. This effect was attributed to AP-2 modulation of PAR1 surface expression and efficiency of G protein coupling. We further found that ectopic expression of R4 subfamily members RGS2, RGS3, RGS4, and RGS5 reduced activated PAR1 wild-type signaling, whereas signaling by the PAR1 AKKAA mutant was minimally affected. Intriguingly, siRNA-mediated depletion analysis revealed a function for RGS5 in the regulation of signaling by the PAR1 wild type but not the AKKAA mutant. Moreover, activation of the PAR1 wild type, and not the AKKAA mutant, induced Gαq association with RGS3 via an AP-2-dependent mechanism. Thus, AP-2 regulates activated PAR1 signaling by altering receptor surface expression and through recruitment of RGS proteins.

  18. Post-transcriptional regulation of gene expression in Yersinia species

    Directory of Open Access Journals (Sweden)

    Chelsea A Schiano

    2012-11-01

    Full Text Available Proper regulation of gene expression is required by bacterial pathogens to respond to continually changing environmental conditions and the host response during the infectious process. While transcriptional regulation is perhaps the most well understood form of controlling gene expression, recent studies have demonstrated the importance of post-transcriptional mechanisms of gene regulation that allow for more refined management of the bacterial response to host conditions. Yersinia species of bacteria are known to use various forms of post-transcriptional regulation for control of many virulence-associated genes. These include regulation by cis- and trans-acting small non-coding RNAs, RNA-binding proteins, RNases, and thermoswitches. The effects of these and other regulatory mechanisms on Yersinia physiology can be profound and have been shown to influence type III secretion, motility, biofilm formation, host cell invasion, intracellular survival and replication, and more. In this review, we will discuss these and other post-transcriptional mechanisms and their influence on virulence gene regulation, with a particular emphasis on how these processes influence the virulence of Yersinia in the host.

  19. Transcriptional regulation by Polycomb group proteins

    DEFF Research Database (Denmark)

    Di Croce, Luciano; Helin, Kristian

    2013-01-01

    Polycomb group (PcG) proteins are epigenetic regulators of transcription that have key roles in stem-cell identity, differentiation and disease. Mechanistically, they function within multiprotein complexes, called Polycomb repressive complexes (PRCs), which modify histones (and other proteins......) and silence target genes. The dynamics of PRC1 and PRC2 components has been the focus of recent research. Here we discuss our current knowledge of the PRC complexes, how they are targeted to chromatin and how the high diversity of the PcG proteins allows these complexes to influence cell identity....

  20. Anorexigenic and Orexigenic Hormone Modulation of Mammalian Target of Rapamycin Complex 1 Activity and the Regulation of Hypothalamic Agouti-Related Protein mRNA Expression

    Directory of Open Access Journals (Sweden)

    Kenneth R. Watterson

    2012-03-01

    Full Text Available Activation of mammalian target of rapamycin 1 (mTORC1 by nutrients, insulin and leptin leads to appetite suppression (anorexia. Contrastingly, increased AMP-activated protein kinase (AMPK activity by ghrelin promotes appetite (orexia. However, the interplay between these mechanisms remains poorly defined. The relationship between the anorexigenic hormones, insulin and leptin, and the orexigenic hormone, ghrelin, on mTORC1 signalling was examined using S6 kinase phosphorylation as a marker for changes in mTORC1 activity in mouse hypothalamic GT1-7 cells. Additionally, the contribution of AMPK and mTORC1 signalling in relation to insulin-, leptin- and ghrelin-driven alterations to mouse hypothalamic agouti-related protein (AgRP mRNA levels was examined. Insulin and leptin increase mTORC1 activity in a phosphoinositide-3-kinase (PI3K- and protein kinase B (PKB-dependent manner, compared to vehicle controls, whereas increasing AMPK activity inhibits mTORC1 activity and blocks the actions of the anorexigenic hormones. Ghrelin mediates an AMPK-dependent decrease in mTORC1 activity and increases hypothalamic AgRP mRNA levels, the latter effect being prevented by insulin in an mTORC1-dependent manner. In conclusion, mTORC1 acts as an integration node in hypothalamic neurons for hormone-derived PI3K and AMPK signalling and mediates at least part of the assimilated output of anorexigenic and orexigenic hormone actions in the hypothalamus.

  1. Differentially expressed proteins on postoperative 3

    Directory of Open Access Journals (Sweden)

    Jialili Ainuer

    2011-04-01

    Full Text Available 【Abstract】Objectives: Surgical repair of Achilles tendon (AT rupture should immediately be followed by active tendon mobilization. The optimal time as to when the mobilization should begin is important yet controversial. Early kinesitherapy leads to reduced rehabilitation period. However, an insight into the detailed mechanism of this process has not been gained. Proteomic technique can be used to separate and purify the proteins by differential expression profile which is related to the function of different proteins, but research in the area of proteomic analysis of AT 3 days after repair has not been studied so far. Methods: Forty-seven New Zealand white rabbits were randomized into 3 groups. Group A (immobilization group, n=16 received postoperative cast immobilization; Group B (early motion group, n=16 received early active motion treatments immediately following the repair of AT rupture from tenotomy. Another 15 rabbits served as control group (Group C. The AT samples were prepared 3 days following the microsurgery. The proteins were separated employing twodimensional polyacrylamide gel electrophoresis (2D-PAGE. PDQuest software version 8.0 was used to identify differentially expressed proteins, followed by peptide mass fingerprint (PMF and tandem mass spectrum analysis, using the National Center for Biotechnology Information (NCBI protein database retrieval and then for bioinformatics analysis. Results: A mean of 446.33, 436.33 and 462.67 protein spots on Achilles tendon samples of 13 rabbits in Group A, 14 rabbits in Group B and 13 rabbits in Group C were successfully detected in the 2D-PAGE. There were 40, 36 and 79 unique proteins in Groups A, B and C respectively. Some differentially expressed proteins were enzyme with the gel, matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS. We successfully identified 9 and 11 different proteins in Groups A and B, such as GAPDH, phosphoglycerate kinase 1

  2. MGMT expression: insights into its regulation. 1. Epigenetic factors

    Directory of Open Access Journals (Sweden)

    Iatsyshyna A. P.

    2013-03-01

    Full Text Available O6-methylguanine-DNA methyltransferase (MGMT is the DNA repair enzyme responsible for removing of alkylation adducts from the O6-guanine in DNA. Despite MGMT prevents mutations and cell death, this enzyme can provide resistance of cancer cells to alkylating agents of chemotherapy. The high intra- and inter-individual variations in the human MGMT expression level have been observed indicating to a complicated regulation of this gene. This review is focused on the study of epigenetic factors which could be potentially involved in regulation of the human MGMT gene expression. These include chromatin remodeling via histone modifications and DNA methylation of promoter region and gene body, as well as RNA-based mechanisms, alternative splicing, protein post- translational modifications, and other.

  3. Wrecked regulation of intrinsically disordered proteins in diseases: Pathogenicity of deregulated regulators

    Directory of Open Access Journals (Sweden)

    Vladimir N. Uversky

    2014-07-01

    Full Text Available Biologically active proteins without stable tertiary structure are common in all known proteomes. Functions of these intrinsically disordered proteins (IDPs are typically related to regulation, signaling and control. Cellular levels of these important regulators are tightly regulated by a variety mechanisms ranging from firmly controlled expression to precisely targeted degradation. Functions of IDPs are controlled by binding to specific partners, alternative splicing, and posttranslational modifications among other means. In the norm, right amounts of precisely activated IDPs have to be present in right time at right places. Wrecked regulation brings havoc to the ordered world of disordered proteins, leading to protein misfolding, misidentification, and missignaling that give rise to numerous human diseases, such as cancer, cardiovascular disease, neurodegenerative diseases, and diabetes. Among factors inducing pathogenic transformations of IDPs are various cellular mechanisms, such as chromosomal translocations, damaged splicing, altered expression, frustrated posttranslational modifications, aberrant proteolytic degradation, and defective trafficking. This review presents some of the aspects of deregulated regulation of IDPs leading to human diseases.

  4. Immunohistochemical expression of latent membrane protein 1 ...

    African Journals Online (AJOL)

    Methods: Archival formalin-fixed, paraffin-embedded NPC biopsies were evaluated in 23 Moroccan patients for the presence of LMP1 and p53 using immunohistochemistry (IHC). Results: No LMP1 expression was observed whereas 8 of 23 cases (34. 7%) had detectable p53 protein in the nuclei of tumor cells.

  5. Bluetongue virus non-structural protein 1 is a positive regulator of viral protein synthesis

    Directory of Open Access Journals (Sweden)

    Boyce Mark

    2012-08-01

    Full Text Available Abstract Background Bluetongue virus (BTV is a double-stranded RNA (dsRNA virus of the Reoviridae family, which encodes its genes in ten linear dsRNA segments. BTV mRNAs are synthesised by the viral RNA-dependent RNA polymerase (RdRp as exact plus sense copies of the genome segments. Infection of mammalian cells with BTV rapidly replaces cellular protein synthesis with viral protein synthesis, but the regulation of viral gene expression in the Orbivirus genus has not been investigated. Results Using an mRNA reporter system based on genome segment 10 of BTV fused with GFP we identify the protein characteristic of this genus, non-structural protein 1 (NS1 as sufficient to upregulate translation. The wider applicability of this phenomenon among the viral genes is demonstrated using the untranslated regions (UTRs of BTV genome segments flanking the quantifiable Renilla luciferase ORF in chimeric mRNAs. The UTRs of viral mRNAs are shown to be determinants of the amount of protein synthesised, with the pre-expression of NS1 increasing the quantity in each case. The increased expression induced by pre-expression of NS1 is confirmed in virus infected cells by generating a replicating virus which expresses the reporter fused with genome segment 10, using reverse genetics. Moreover, NS1-mediated upregulation of expression is restricted to mRNAs which lack the cellular 3′ poly(A sequence identifying the 3′ end as a necessary determinant in specifically increasing the translation of viral mRNA in the presence of cellular mRNA. Conclusions NS1 is identified as a positive regulator of viral protein synthesis. We propose a model of translational regulation where NS1 upregulates the synthesis of viral proteins, including itself, and creates a positive feedback loop of NS1 expression, which rapidly increases the expression of all the viral proteins. The efficient translation of viral reporter mRNAs among cellular mRNAs can account for the observed

  6. Bluetongue virus non-structural protein 1 is a positive regulator of viral protein synthesis.

    Science.gov (United States)

    Boyce, Mark; Celma, Cristina C P; Roy, Polly

    2012-08-29

    Bluetongue virus (BTV) is a double-stranded RNA (dsRNA) virus of the Reoviridae family, which encodes its genes in ten linear dsRNA segments. BTV mRNAs are synthesised by the viral RNA-dependent RNA polymerase (RdRp) as exact plus sense copies of the genome segments. Infection of mammalian cells with BTV rapidly replaces cellular protein synthesis with viral protein synthesis, but the regulation of viral gene expression in the Orbivirus genus has not been investigated. Using an mRNA reporter system based on genome segment 10 of BTV fused with GFP we identify the protein characteristic of this genus, non-structural protein 1 (NS1) as sufficient to upregulate translation. The wider applicability of this phenomenon among the viral genes is demonstrated using the untranslated regions (UTRs) of BTV genome segments flanking the quantifiable Renilla luciferase ORF in chimeric mRNAs. The UTRs of viral mRNAs are shown to be determinants of the amount of protein synthesised, with the pre-expression of NS1 increasing the quantity in each case. The increased expression induced by pre-expression of NS1 is confirmed in virus infected cells by generating a replicating virus which expresses the reporter fused with genome segment 10, using reverse genetics. Moreover, NS1-mediated upregulation of expression is restricted to mRNAs which lack the cellular 3' poly(A) sequence identifying the 3' end as a necessary determinant in specifically increasing the translation of viral mRNA in the presence of cellular mRNA. NS1 is identified as a positive regulator of viral protein synthesis. We propose a model of translational regulation where NS1 upregulates the synthesis of viral proteins, including itself, and creates a positive feedback loop of NS1 expression, which rapidly increases the expression of all the viral proteins. The efficient translation of viral reporter mRNAs among cellular mRNAs can account for the observed replacement of cellular protein synthesis with viral protein

  7. The regulation of CD5 expression in murine T cells

    Directory of Open Access Journals (Sweden)

    Herzenberg Leonard A

    2001-05-01

    Full Text Available Abstract Background CD5 is a pan-T cell surface marker that is also present on a subset of B cells, B-1a cells.Functional and developmental subsets of T cells express characteristic CD5 levels that vary over roughly a 30-fold range. Previous investigators have cloned a 1.7 Kb fragment containing the CD5 promoter and showed that it can confer similar lymphocyte-specific expression pattern as observed for endogenous CD5 expression. Results We further characterize the CD5 promoter and identify minimal and regulatory regions on the CD5 promoter. Using a luciferase reporter system, we show that a 43 bp region on the CD5 promoter regulates CD5 expression in resting mouse thymoma EL4 T cells and that an Ets binding site within the 43 bp region mediates the CD5 expression. In addition, we show that Ets-1, a member of the Ets family of transcription factors, recognizes the Ets binding site in the electrophoretic mobility shift assay (EMSA. This Ets binding site is directly responsible for the increase in reporter activity when co-transfected with increasing amounts of Ets-1 expression plasmid. We also identify two additional evolutionarily-conserved regions in the CD5 promoter (CD5X and CD5Y and demonstrate the respective roles of the each region in the regulation of CD5 transcription. Conclusion Our studies define a minimal and regulatory promoter for CD5 and show that the CD5 expression level in T cells is at least partially dependent on the level of Ets-1 protein. Based on the findings in this report, we propose a model of CD5 transcriptional regulation in T cells.

  8. Biphasic Modulation of NOS Expression, Protein and Nitrite Products by Hydroxocobalamin Underlies Its Protective Effect in Endotoxemic Shock: Downstream Regulation of COX-2, IL-1β, TNF-α, IL-6, and HMGB1 Expression

    Directory of Open Access Journals (Sweden)

    André L. F. Sampaio

    2013-01-01

    mice Conclusions. HOCbl produces a complex, time- and organ-dependent, selective regulation of NOS/•NO during endotoxaemia, corollary regulation of downstream inflammatory mediators, and increased survival. This merits clinical evaluation.

  9. Sphingomyelin synthases regulate protein trafficking and secretion.

    Directory of Open Access Journals (Sweden)

    Marimuthu Subathra

    Full Text Available Sphingomyelin synthases (SMS1 and 2 represent a class of enzymes that transfer a phosphocholine moiety from phosphatidylcholine onto ceramide thus producing sphingomyelin and diacylglycerol (DAG. SMS1 localizes at the Golgi while SMS2 localizes both at the Golgi and the plasma membrane. Previous studies from our laboratory showed that modulation of SMS1 and, to a lesser extent, of SMS2 affected the formation of DAG at the Golgi apparatus. As a consequence, down-regulation of SMS1 and SMS2 reduced the localization of the DAG-binding protein, protein kinase D (PKD, to the Golgi. Since PKD recruitment to the Golgi has been implicated in cellular secretion through the trans golgi network (TGN, the effect of down-regulation of SMSs on TGN-to-plasma membrane trafficking was studied. Down regulation of either SMS1 or SMS2 significantly retarded trafficking of the reporter protein vesicular stomatitis virus G protein tagged with GFP (VSVG-GFP from the TGN to the cell surface. Inhibition of SMSs also induced tubular protrusions from the trans Golgi network reminiscent of inhibited TGN membrane fission. Since a recent study demonstrated the requirement of PKD activity for insulin secretion in beta cells, we tested the function of SMS in this model. Inhibition of SMS significantly reduced insulin secretion in rat INS-1 cells. Taken together these results provide the first direct evidence that both enzymes (SMS1 and 2 are capable of regulating TGN-mediated protein trafficking and secretion, functions that are compatible with PKD being a down-stream target for SMSs in the Golgi.

  10. Zfp206 regulates ES cell gene expression and differentiation.

    Science.gov (United States)

    Zhang, Wen; Walker, Emily; Tamplin, Owen J; Rossant, Janet; Stanford, William L; Hughes, Timothy R

    2006-01-01

    Understanding transcriptional regulation in early developmental stages is fundamental to understanding mammalian development and embryonic stem (ES) cell properties. Expression surveys suggest that the putative SCAN-Zinc finger transcription factor Zfp206 is expressed specifically in ES cells [Zhang,W., Morris,Q.D., Chang,R., Shai,O., Bakowski,M.A., Mitsakakis,N., Mohammad,N., Robinson,M.D., Zirngibl,R., Somogyi,E. et al., (2004) J. Biol., 3, 21; Brandenberger,R., Wei,H., Zhang,S., Lei,S., Murage,J., Fisk,G.J., Li,Y., Xu,C., Fang,R., Guegler,K. et al., (2004) Nat. Biotechnol., 22, 707-716]. Here, we confirm this observation, and we show that ZFP206 expression decreases rapidly upon differentiation of cultured mouse ES cells, and during development of mouse embryos. We find that there are at least six isoforms of the ZFP206 transcript, the longest being predominant. Overexpression and depletion experiments show that Zfp206 promotes formation of undifferentiated ES cell clones, and positively regulates abundance of a very small set of transcripts whose expression is also specific to ES cells and the two- to four-cell stages of preimplantation embryos. This set includes members of the Zscan4, Thoc4, Tcstv1 and eIF-1A gene families, none of which have been functionally characterized in vivo but whose members include apparent transcription factors, RNA-binding proteins and translation factors. Together, these data indicate that Zfp206 is a regulator of ES cell differentiation that controls a set of genes expressed very early in development, most of which themselves appear to be regulators.

  11. The Temporal Dynamics of Arc Expression Regulate Cognitive Flexibility.

    Science.gov (United States)

    Wall, Mark J; Collins, Dawn R; Chery, Samantha L; Allen, Zachary D; Pastuzyn, Elissa D; George, Arlene J; Nikolova, Viktoriya D; Moy, Sheryl S; Philpot, Benjamin D; Shepherd, Jason D; Müller, Jürgen; Ehlers, Michael D; Mabb, Angela M; Corrêa, Sonia A L

    2018-05-24

    Neuronal activity regulates the transcription and translation of the immediate-early gene Arc/Arg3.1, a key mediator of synaptic plasticity. Proteasome-dependent degradation of Arc tightly limits its temporal expression, yet the significance of this regulation remains unknown. We disrupted the temporal control of Arc degradation by creating an Arc knockin mouse (ArcKR) where the predominant Arc ubiquitination sites were mutated. ArcKR mice had intact spatial learning but showed specific deficits in selecting an optimal strategy during reversal learning. This cognitive inflexibility was coupled to changes in Arc mRNA and protein expression resulting in a reduced threshold to induce mGluR-LTD and enhanced mGluR-LTD amplitude. These findings show that the abnormal persistence of Arc protein limits the dynamic range of Arc signaling pathways specifically during reversal learning. Our work illuminates how the precise temporal control of activity-dependent molecules, such as Arc, regulates synaptic plasticity and is crucial for cognition. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  12. ApoER2 expression increases Aβ production while decreasing Amyloid Precursor Protein (APP endocytosis: Possible role in the partitioning of APP into lipid rafts and in the regulation of γ-secretase activity

    Directory of Open Access Journals (Sweden)

    Bu Guojun

    2007-07-01

    Full Text Available Abstract Background The generation of the amyloid-β peptide (Aβ through the proteolytic processing of the amyloid precursor protein (APP is a central event in the pathogenesis of Alzheimer's disease (AD. Recent studies highlight APP endocytosis and localization to lipid rafts as important events favoring amyloidogenic processing. However, the precise mechanisms underlying these events are poorly understood. ApoER2 is a member of the low density lipoprotein receptor (LDL-R family exhibiting slow endocytosis rate and a significant association with lipid rafts. Despite the important neurophysiological roles described for ApoER2, little is known regarding how ApoER2 regulates APP trafficking and processing. Results Here, we demonstrate that ApoER2 physically interacts and co-localizes with APP. Remarkably, we found that ApoER2 increases cell surface APP levels and APP association with lipid rafts. The increase of cell surface APP requires the presence of ApoER2 cytoplasmic domain and is a result of decreased APP internalization rate. Unexpectedly, ApoER2 expression correlated with a significant increase in Aβ production and reduced levels of APP-CTFs. The increased Aβ production was dependent on the integrity of the NPxY endocytosis motif of ApoER2. We also found that expression of ApoER2 increased APP association with lipid rafts and increased γ-secretase activity, both of which might contribute to increased Aβ production. Conclusion These findings show that ApoER2 negatively affects APP internalization. However, ApoER2 expression stimulates Aβ production by shifting the proportion of APP from the non-rafts to the raft membrane domains, thereby promoting β-secretase and γ-secretase mediated amyloidogenic processing and also by incrementing the activity of γ-secretase.

  13. The E4 protein; structure, function and patterns of expression

    Energy Technology Data Exchange (ETDEWEB)

    Doorbar, John, E-mail: jdoorba@nimr.mrc.ac.uk

    2013-10-15

    The papillomavirus E4 open reading frame (ORF) is contained within the E2 ORF, with the primary E4 gene-product (E1{sup ∧}E4) being translated from a spliced mRNA that includes the E1 initiation codon and adjacent sequences. E4 is located centrally within the E2 gene, in a region that encodes the E2 protein′s flexible hinge domain. Although a number of minor E4 transcripts have been reported, it is the product of the abundant E1{sup ∧}E4 mRNA that has been most extensively analysed. During the papillomavirus life cycle, the E1{sup ∧}E4 gene products generally become detectable at the onset of vegetative viral genome amplification as the late stages of infection begin. E4 contributes to genome amplification success and virus synthesis, with its high level of expression suggesting additional roles in virus release and/or transmission. In general, E4 is easily visualised in biopsy material by immunostaining, and can be detected in lesions caused by diverse papillomavirus types, including those of dogs, rabbits and cattle as well as humans. The E4 protein can serve as a biomarker of active virus infection, and in the case of high-risk human types also disease severity. In some cutaneous lesions, E4 can be expressed at higher levels than the virion coat proteins, and can account for as much as 30% of total lesional protein content. The E4 proteins of the Beta, Gamma and Mu HPV types assemble into distinctive cytoplasmic, and sometimes nuclear, inclusion granules. In general, the E4 proteins are expressed before L2 and L1, with their structure and function being modified, first by kinases as the infected cell progresses through the S and G2 cell cycle phases, but also by proteases as the cell exits the cell cycle and undergoes true terminal differentiation. The kinases that regulate E4 also affect other viral proteins simultaneously, and include protein kinase A, Cyclin-dependent kinase, members of the MAP Kinase family and protein kinase C. For HPV16 E1{sup

  14. Androgen-Dependent Regulation of Human MUC1 Mucin Expression

    Directory of Open Access Journals (Sweden)

    Stephen Mitchell

    2002-01-01

    Full Text Available MUC1 mucin is transcriptionally regulated by estrogen, progesterone, and glucocorticoids. Our objective was to determine whether androgen receptor. (20AR activation regulates expression of MUC1. The following breast and prostatic cell lines were phenotyped and grouped according to AR and MUC1protein expression: 1 AR+MUCi + [DAR17+19. (20AR transfectants of DU-145, ZR-75-1, MDA-MB-453, and T47D]; 2 AR-MUCi+ [DZeoi. (20AR- vector control, DU-145, BT20, MDA-MB231, and MCF7]; 3 AIR +MUCi -. (20LNCaP and LNCaP-r. Cell proliferation was determined using the MTT assay in the presence of synthetic androgen R1881, 0.1 pM to 1 µM. Cell surface MUC1expression was determined by flow cytometry in the presence or absence of oestradiol, medroxy progesterone acetate or R1881, with and without 4 hydroxy-flutamide. (204-OH, a nonsteroidal AR antagonist. The functional significance of MUC1expression was investigated with a cell-cell aggregation assay. Only AR+ MUC1 + cell lines showed a significant increase in MUC1expression with AR activation. (20P. (20range =.01 to .0001, reversed in the presence of 4-OHF. Cell proliferation was unaffected. Increased expression of MUC1was associated with a significant. (20P. (20range =.002 to .001 reduction in cell-cell adhesion. To our knowledge, this is the first description of androgen-dependent regulation of MUC1mucin. This is also functionally associated with decreased cell-cell adhesion, a recognised feature of progressive malignancy. These findings have important implications for physiological and pathological processes.

  15. Mcl-1 Ubiquitination: Unique Regulation of an Essential Survival Protein

    Directory of Open Access Journals (Sweden)

    Barbara Mojsa

    2014-05-01

    Full Text Available Mcl-1 is an anti-apoptotic protein of the Bcl-2 family that is essential for the survival of multiple cell lineages and that is highly amplified in human cancer. Under physiological conditions, Mcl-1 expression is tightly regulated at multiple levels, involving transcriptional, post-transcriptional and post-translational processes. Ubiquitination of Mcl-1, that targets it for proteasomal degradation, allows for rapid elimination of the protein and triggering of cell death, in response to various cellular events. In the last decade, a number of studies have elucidated different pathways controlling Mcl-1 ubiquitination and degradation. Four different E3 ubiquitin-ligases (e.g., Mule, SCFβ-TrCP, SCFFbw7 and Trim17 and one deubiquitinase (e.g., USP9X, that respectively mediate and oppose Mcl-1 ubiquitination, have been formerly identified. The interaction between Mule and Mcl-1 can be modulated by other Bcl-2 family proteins, while recognition of Mcl-1 by the other E3 ubiquitin-ligases and deubiquitinase is influenced by phosphorylation of specific residues in Mcl-1. The protein kinases and E3 ubiquitin-ligases that are involved in the regulation of Mcl-1 stability vary depending on the cellular context, highlighting the complexity and pivotal role of Mcl-1 regulation. In this review, we attempt to recapitulate progress in understanding Mcl-1 regulation by the ubiquitin-proteasome system.

  16. Prostacyclin synthase expression and epigenetic regulation in nonsmall cell lung cancer.

    LENUS (Irish Health Repository)

    Cathcart, Mary-Clare

    2012-02-01

    BACKGROUND: Prostacyclin synthase (PGIS) metabolizes prostaglandin H(2), into prostacyclin. This study aimed to determine the expression profile of PGIS in nonsmall cell lung cancer (NSCLC) and examine potential mechanisms involved in PGIS regulation. METHODS: PGIS expression was examined in human NSCLC and matched controls by reverse transcriptase polymerase chain reaction (RT-PCR), Western analysis, and immunohistochemistry. A 204-patient NSCLC tissue microarray was stained for PGIS and cyclooxygenase 2 (COX2) expression. Staining intensity was correlated with clinical parameters. Epigenetic mechanisms underpinning PGIS promoter expression were examined using RT-PCR, methylation-specific PCR, and chromatin immunoprecipitation analysis. RESULTS: PGIS expression was reduced\\/absent in human NSCLC protein samples (P < .0001), but not mRNA relative to matched controls. PGIS tissue expression was higher in squamous cell carcinoma (P = .004) and in male patients (P < .05). No significant correlation of PGIS or COX2 expression with overall patient survival was observed, although COX2 was prognostic for short-term (2-year) survival (P < .001). PGIS mRNA expression was regulated by DNA CpG methylation and histone acetylation in NSCLC cell lines, with chromatin remodeling taking place directly at the PGIS gene. PGIS mRNA expression was increased by both demethylation agents and histone deacetylase inhibitors. Protein levels were unaffected by demethylation agents, whereas PGIS protein stability was negatively affected by histone deacetylase inhibitors. CONCLUSIONS: PGIS protein expression is reduced in NSCLC, and does not correlate with overall patient survival. PGIS expression is regulated through epigenetic mechanisms. Differences in expression patterns between mRNA and protein levels suggest that PGIS expression and protein stability are regulated post-translationally. PGIS protein stability may have an important therapeutic role in NSCLC.

  17. Regulation of homologous recombination repair protein Rad51 by Ku70

    International Nuclear Information System (INIS)

    Du Liqing; Liu Qiang; Wang Yan; Xu Chang; Cao Jia; Fu Yue; Chen Fenghua; Fan Feiyue

    2013-01-01

    Objective: To explore the regulative effect of non-homologous end joining (NHEJ)protein Ku70 on homologous recombination repair protein Rad51, and to investigate the synergistic mechanism of homologous recombination repair in combination with NHEJ. Methods: Observed Rad51 protein expression after transfect Ku70 small interfering RNA or Ku70 plasmid DNA into tumor cells using Western blot. Results: Expression of Rad51 was obviously reduced after pretreated with Ku70 small interfering RNA. And with the increasing expression of Ku70 protein after transfection of Ku70 plasmid DNA PGCsi3.0-hKu70 into tumor cell lines, the Rad51 protein expression was increased. Conclusion: Ku70 protein has regulating effect on gene expression of Rad51, and it might participate in the collaboration between homologous recombination repair and NHEJ. (authors)

  18. Regulation of neuronal APL-1 expression by cholesterol starvation.

    Directory of Open Access Journals (Sweden)

    Mary Wiese

    Full Text Available BACKGROUND: Alzheimer's disease (AD is a neurodegenerative disorder characterized by the deposition of β-amyloid plaques composed primarily of the amyloid-β peptide, a cleavage product of amyloid precursor protein (APP. While mutations in APP lead to the development of Familial Alzheimer's Disease (FAD, sporadic AD has only one clear genetic modifier: the ε4 allele of the apolipoprotein E (ApoE gene. Cholesterol starvation in Caenorhabditis elegans leads to molting and arrest phenotypes similar to loss-of-function mutants of the APP ortholog, apl-1 (amyloid precursor-like protein 1, and lrp-1 (lipoprotein receptor-related protein 1, suggesting a potential interaction between apl-1 and cholesterol metabolism. METHODOLOGY/PRINCIPAL FINDINGS: Previously, we found that RNAi knock-down of apl-1 leads to aldicarb hypersensitivity, indicating a defect in synaptic function. Here we find the same defect is recapitulated during lrp-1 knock-down and by cholesterol starvation. A cholesterol-free diet or loss of lrp-1 directly affects APL-1 levels as both lead to loss of APL-1::GFP fluorescence in neurons. However, loss of cholesterol does not affect global transcription or protein levels as seen by qPCR and Western blot. CONCLUSIONS: Our results show that cholesterol and lrp-1 are involved in the regulation of synaptic transmission, similar to apl-1. Both are able to modulate APL-1 protein levels in neurons, however cholesterol changes do not affect global apl-1 transcription or APL-1 protein indicating the changes are specific to neurons. Thus, regulation of synaptic transmission and molting by LRP-1 and cholesterol may be mediated by their ability to control APL-1 neuronal protein expression.

  19. Developmental expression of Drosophila Wiskott-Aldrich Syndrome family proteins

    Science.gov (United States)

    Rodriguez-Mesa, Evelyn; Abreu-Blanco, Maria Teresa; Rosales-Nieves, Alicia E.; Parkhurst, Susan M.

    2012-01-01

    Background Wiskott-Aldrich Syndrome (WASP) family proteins participate in many cellular processes involving rearrangements of the actin cytoskeleton. To the date, four WASP subfamily members have been described in Drosophila: Wash, WASp, SCAR, and Whamy. Wash, WASp, and SCAR are essential during early Drosophila development where they function in orchestrating cytoplasmic events including membrane-cytoskeleton interactions. A mutant for Whamy has not yet been reported. Results We generated monoclonal antibodies that are specific to Drosophila Wash, WASp, SCAR, and Whamy, and use these to describe their spatial and temporal localization patterns. Consistent with the importance of WASP family proteins in flies, we find that Wash, WASp, SCAR, and Whamy are dynamically expressed throughout oogenesis and embryogenesis. For example, we find that Wash accumulates at the oocyte cortex. WASp is highly expressed in the PNS, while SCAR is the most abundantly expressed in the CNS. Whamy exhibits an asymmetric subcellular localization that overlaps with mitochondria and is highly expressed in muscle. Conclusion All four WASP family members show specific expression patterns, some of which reflect their previously known roles and others revealing new potential functions. The monoclonal antibodies developed offer valuable new tools to investigate how WASP family proteins regulate actin cytoskeleton dynamics. PMID:22275148

  20. Protein phosphorylation in bcterial signaling and regulation

    KAUST Repository

    Mijakovic, Ivan

    2016-01-26

    In 2003, it was demonstrated for the first time that bacteria possess protein-tyrosine kinases (BY-kinases), capable of phosphorylating other cellular proteins and regulating their activity. It soon became apparent that these kinases phosphorylate a number of protein substrates, involved in different cellular processes. More recently, we found out that BY-kinases can be activated by several distinct protein interactants, and are capable of engaging in cross-phosphorylation with other kinases. Evolutionary studies based on genome comparison indicate that BY-kinases exist only in bacteria. They are non-essential (present in about 40% bacterial genomes), and their knockouts lead to pleiotropic phenotypes, since they phosphorylate many substrates. Surprisingly, BY-kinase genes accumulate mutations at an increased rate (non-synonymous substitution rate significantly higher than other bacterial genes). One direct consequence of this phenomenon is no detectable co-evolution between kinases and their substrates. Their promiscuity towards substrates thus seems to be “hard-wired”, but why would bacteria maintain such promiscuous regulatory devices? One explanation is the maintenance of BY-kinases as rapidly evolving regulators, which can readily adopt new substrates when environmental changes impose selective pressure for quick evolution of new regulatory modules. Their role is clearly not to act as master regulators, dedicated to triggering a single response, but they might rather be employed to contribute to fine-tuning and improving robustness of various cellular responses. This unique feature makes BY-kinases a potentially useful tool in synthetic biology. While other bacterial kinases are very specific and their signaling pathways insulated, BY-kinase can relatively easily be engineered to adopt new substrates and control new biosynthetic processes. Since they are absent in humans, and regulate some key functions in pathogenic bacteria, they are also very promising

  1. Regulation of stem cell factor expression in inflammation and asthma

    Directory of Open Access Journals (Sweden)

    Carla A Da Silva

    2005-03-01

    Full Text Available Stem cell factor (SCF is a major mast cell growth factor, which could be involved in the local increase of mast cell number in the asthmatic airways. In vivo, SCF expression increases in asthmatic patients and this is reversed after treatment with glucocorticoids. In vitro in human lung fibroblasts in culture, IL-1beta, a pro-inflammatory cytokine, confirms this increased SCF mRNA and protein expression implying the MAP kinases p38 and ERK1/2 very early post-treatment, and glucocorticoids confirm this decrease. Surprisingly, glucocorticoids potentiate the IL-1beta-enhanced SCF expression at short term treatment, implying increased SCF mRNA stability and SCF gene transcription rate. This potentiation involves p38 and ERK1/2. Transfection experiments with the SCF promoter including intron1 also confirm this increase and decrease of SCF expression by IL-1beta and glucocorticoids, and the potentiation by glucocorticoids of the IL-1beta-induced SCF expression. Deletion of the GRE or kappaB sites abolishes this potentiation, and the effect of IL-1beta or glucocorticoids alone. DNA binding of GR and NF-kappaB are also demonstrated for these effects. In conclusion, this review concerns new mechanisms of regulation of SCF expression in inflammation that could lead to potential therapeutic strategy allowing to control mast cell number in the asthmatic airways.

  2. Regulation of protein phosphorylation in oat mitochondria

    International Nuclear Information System (INIS)

    Pike, C.; Kopeck, K.; Sceppa, E.

    1989-01-01

    We sought to identify phosphorylated proteins in isolated oat mitocchondria and to characterize the enzymatic and regulatory properties of the protein kinase(s). Mitochondria from oats (Avena sativa L. cv. Garry) were purified on Percoll gradients. Mitochondria were incubated with 32 P-γ-ATP; proteins were separated by SDS-PAGE. A small number of bands was detected on autoradiograms, most prominently at 70 kD and 42 kD; the latter band has been tentatively identified as a subunit of the pyruvate dehydrogenase complex, a well-known phosphoprotein. The protein kinase(s) could also phosphorylate casein, but not histone. Spermine enhanced the phosphorylation of casein and inhibited the phosphorylation of the 42 kD band. These studies were carried out on both intact and burst mitochondria. Control by calcium and other ions was investigated. The question of the action of regulators on protein kinase or protein phosphatase was studied by the use of 35 S-adenosine thiotriphosphate

  3. Control of striatal signaling by G protein regulators

    Directory of Open Access Journals (Sweden)

    Keqiang eXie

    2011-08-01

    Full Text Available Signaling via heterotrimeric G proteins plays a crucial role in modulating the responses of striatal neurons that ultimately shape core behaviors mediated by the basal ganglia circuitry, such as reward valuation, habit formation and movement coordination. Activation of G-protein-coupled receptors (GPCRs by extracellular signals activates heterotrimeric G proteins by promoting the binding of GTP to their α subunits. G proteins exert their effects by influencing the activity of key effector proteins in this region, including ion channels, second messenger enzymes and protein kinases. Striatal neurons express a staggering number of GPCRs whose activation results in the engagement of downstream signaling pathways and cellular responses with unique profiles but common molecular mechanisms. Studies over the last decade have revealed that the extent and duration of GPCR signaling are controlled by a conserved protein family named Regulator of G protein Signaling (RGS. RGS proteins accelerate GTP hydrolysis by the α subunits of G proteins, thus promoting deactivation of GPCR signaling. In this review, we discuss the progress made in understanding the roles of RGS proteins in controlling striatal G protein signaling and providing integration and selectivity of signal transmission. We review evidence on the formation of a macromolecular complex between RGS proteins and other components of striatal signaling pathways, their molecular regulatory mechanisms and impacts on GPCR signaling in the striatum obtained from biochemical studies and experiments involving genetic mouse models. Special emphasis is placed on RGS9-2, a member of the RGS family that is highly enriched in the striatum and plays critical roles in drug addiction and motor control.

  4. Noncell- and cell-autonomous G-protein-signaling converges with Ca2+/mitogen-activated protein kinase signaling to regulate str-2 receptor gene expression in Caenorhabditis elegans.

    NARCIS (Netherlands)

    H. Lans (Hannes); G. Jansen (Gert)

    2006-01-01

    textabstractIn the sensory system of C. elegans, the candidate odorant receptor gene str-2 is strongly expressed in one of the two AWC neurons and weakly in both ASI neurons. Asymmetric AWC expression results from suppression of str-2 expression by a Ca2+/MAPK signaling pathway in one of the AWC

  5. Retrotransposons as regulators of gene expression.

    Science.gov (United States)

    Elbarbary, Reyad A; Lucas, Bronwyn A; Maquat, Lynne E

    2016-02-12

    Transposable elements (TEs) are both a boon and a bane to eukaryotic organisms, depending on where they integrate into the genome and how their sequences function once integrated. We focus on two types of TEs: long interspersed elements (LINEs) and short interspersed elements (SINEs). LINEs and SINEs are retrotransposons; that is, they transpose via an RNA intermediate. We discuss how LINEs and SINEs have expanded in eukaryotic genomes and contribute to genome evolution. An emerging body of evidence indicates that LINEs and SINEs function to regulate gene expression by affecting chromatin structure, gene transcription, pre-mRNA processing, or aspects of mRNA metabolism. We also describe how adenosine-to-inosine editing influences SINE function and how ongoing retrotransposition is countered by the body's defense mechanisms. Copyright © 2016, American Association for the Advancement of Science.

  6. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing

    Science.gov (United States)

    Church, George M.; Esvelt, Kevin; Mali, Prashant

    2017-03-07

    Methods of modulating expression of a target nucleic acid in a cell are provided including use of multiple orthogonal Cas9 proteins to simultaneously and independently regulate corresponding genes or simultaneously and independently edit corresponding genes.

  7. Thioredoxin 1 regulation of protein S-desulfhydration

    Directory of Open Access Journals (Sweden)

    Youngjun Ju

    2016-03-01

    Full Text Available The importance of H2S in biology and medicine has been widely recognized in recent years, and protein S-sulfhydration is proposed to mediate the direct actions of H2S bioactivity in the body. Thioredoxin 1 (Trx1 is an important reducing enzyme that cleaves disulfides in proteins and acts as an S-denitrosylase. The regulation of Trx1 on protein S-sulfhydration is unclear. Here we showed that Trx1 facilitates protein S-desulfhydration. Overexpression of Trx1 attenuated the basal level and H2S-induced protein S-sulfhydration by direct interaction with S-sulfhydrated proteins, i.e., glyceraldehyde 3-phosphate dehydrogenase and pyruvate carboxylase. In contrast, knockdown of Trx1 mRNA expression by short interfering RNA or blockage of Trx1 redox activity with PX12 or 2,4-dinitrochlorobenzene enhanced protein S-sulfhydration. Mutation of cysteine-32 but not cysteine-35 in the Trp–Cys32–Gly–Pro–Cys35 motif eliminated the binding of Trx1 with S-sulfhydrated proteins and abolished the S-desulfhydrating effect of Trx1. All these data suggest that Trx1 acts as an S-desulfhydrase.

  8. Acute myotube protein synthesis regulation by IL-6-related cytokines.

    Science.gov (United States)

    Gao, Song; Durstine, J Larry; Koh, Ho-Jin; Carver, Wayne E; Frizzell, Norma; Carson, James A

    2017-11-01

    IL-6 and leukemia inhibitory factor (LIF), members of the IL-6 family of cytokines, play recognized paradoxical roles in skeletal muscle mass regulation, being associated with both growth and atrophy. Overload or muscle contractions can induce a transient increase in muscle IL-6 and LIF expression, which has a regulatory role in muscle hypertrophy. However, the cellular mechanisms involved in this regulation have not been completely identified. The induction of mammalian target of rapamycin complex 1 (mTORC1)-dependent myofiber protein synthesis is an established regulator of muscle hypertrophy, but the involvement of the IL-6 family of cytokines in this process is poorly understood. Therefore, we investigated the acute effects of IL-6 and LIF administration on mTORC1 signaling and protein synthesis in C2C12 myotubes. The role of glycoprotein 130 (gp130) receptor and downstream signaling pathways, including phosphoinositide 3-kinase (PI3K)-Akt-mTORC1 and signal transducer and activator of transcription 3 (STAT3)-suppressor of cytokine signaling 3 (SOCS3), was investigated by administration of specific siRNA or pharmaceutical inhibitors. Acute administration of IL-6 and LIF induced protein synthesis, which was accompanied by STAT3 activation, Akt-mTORC1 activation, and increased SOCS3 expression. This induction of protein synthesis was blocked by both gp130 siRNA knockdown and Akt inhibition. Interestingly, STAT3 inhibition or Akt downstream mTORC1 signaling inhibition did not fully block the IL-6 or LIF induction of protein synthesis. SOCS3 siRNA knockdown increased basal protein synthesis and extended the duration of the protein synthesis induction by IL-6 and LIF. These results demonstrate that either IL-6 or LIF can activate gp130-Akt signaling axis, which induces protein synthesis via mTORC1-independent mechanisms in cultured myotubes. However, IL-6- or LIF-induced SOCS3 negatively regulates the activation of myotube protein synthesis. Copyright © 2017 the

  9. Regulation of bone morphogenetic proteins in early embryonic development

    Science.gov (United States)

    Yamamoto, Yukiyo; Oelgeschläger, Michael

    2004-11-01

    Bone morphogenetic proteins (BMPs), a large subgroup of the TGF-β family of secreted growth factors, control fundamental events in early embryonic development, organogenesis and adult tissue homeostasis. The plethora of dose-dependent cellular processes regulated by BMP signalling demand a tight regulation of BMP activity. Over the last decade, a number of proteins have been identified that bind BMPs in the extracellular space and regulate the interaction of BMPs with their cognate receptors, including the secreted BMP antagonist Chordin. In the early vertebrate embryo, the localized secretion of BMP antagonists from the dorsal blastopore lip establishes a functional BMP signalling gradient that is required for the determination of the dorsoventral or back to belly body axis. In particular, inhibition of BMP activity is essential for the formation of neural tissue in the development of vertebrate and invertebrate embryos. Here we review recent studies that have provided new insight into the regulation of BMP signalling in the extracellular space. In particular, we discuss the recently identified Twisted gastrulation protein that modulates, in concert with metalloproteinases of the Tolloid family, the interaction of Chordin with BMP and a family of proteins that share structural similarities with Chordin in the respective BMP binding domains. In addition, genetic and functional studies in zebrafish and frog provide compelling evidence that the secreted protein Sizzled functionally interacts with the Chd BMP pathway, despite being expressed ventrally in the early gastrula-stage embryo. These intriguing discoveries may have important implications, not only for our current concept of early embryonic patterning, but also for the regulation of BMP activity at later developmental stages and tissue homeostasis in the adult.

  10. Drosha regulates gene expression independently of RNA cleavage function

    DEFF Research Database (Denmark)

    Gromak, Natalia; Dienstbier, Martin; Macias, Sara

    2013-01-01

    Drosha is the main RNase III-like enzyme involved in the process of microRNA (miRNA) biogenesis in the nucleus. Using whole-genome ChIP-on-chip analysis, we demonstrate that, in addition to miRNA sequences, Drosha specifically binds promoter-proximal regions of many human genes in a transcription......-dependent manner. This binding is not associated with miRNA production or RNA cleavage. Drosha knockdown in HeLa cells downregulated nascent gene transcription, resulting in a reduction of polyadenylated mRNA produced from these gene regions. Furthermore, we show that this function of Drosha is dependent on its N......-terminal protein-interaction domain, which associates with the RNA-binding protein CBP80 and RNA Polymerase II. Consequently, we uncover a previously unsuspected RNA cleavage-independent function of Drosha in the regulation of human gene expression....

  11. Cloning-free regulated monitoring of reporter and gene expression

    Directory of Open Access Journals (Sweden)

    Demirkaya Omer

    2009-03-01

    Full Text Available Abstract Background The majority of the promoters, their regulatory elements, and their variations in the human genome remain unknown. Reporter gene technology for transcriptional activity is a widely used tool for the study of promoter structure, gene regulation, and signaling pathways. Construction of transcriptional reporter vectors, including use of cis-acting sequences, requires cloning and time-demanding manipulations, particularly with introduced mutations. Results In this report, we describe a cloning-free strategy to generate transcriptionally-controllable linear reporter constructs. This approach was applied in common transcriptional models of inflammatory response and the interferon system. In addition, it was used to delineate minimal transcriptional activity of selected ribosomal protein promoters. The approach was tested for conversion of genes into TetO-inducible/repressible expression cassettes. Conclusion The simple introduction and tuning of any transcriptional control in the linear DNA product renders promoter activation and regulated gene studies simple and versatile.

  12. Roles of HMGA proteins in cancer: Expression, pathways, and redundancies

    Directory of Open Access Journals (Sweden)

    Giancotti V

    2016-10-01

    Full Text Available The expression of the High Mobility Group A (HMGA proteins, their participation in cancer signalling pathways, and their redundant functions have been reviewed in seven types of cancer: breast, colorectal, prostate, lung, ovarian, thyroid, and brain. The analysis of cell lines and tumours revealed an elevated level of their expression in all fully transformed cancer systems, which represents a step of the main cancer signalling pathways. In breast, colorectal, prostate, and lung cancers Wnt/β-catenin pathway is a master inducer of cell transformation in which are deeply involved HMG A1 and A2 proteins. On the other hand, IL-6/Stat3 pathway is responsible for cancer transformation in breast, lung, and prostate. The expression of HMGA1 in lung and ovarian cancers is due to an active PI3K/Akt pathway. The let-7 family of microRNA represses the expression of HMGA showing specificity by its different forms: the let-7b form is able to inhibit both proteins A1 and A2, the last also inhibited by a, c, d, and g forms. Moreover, both proteins are down-regulated by the repressor couple p53/microRNA-34a. The protein A1 and A2 participate to the Epithelial-Mesenchymal Transition cooperating with the three couples of factors Twist1/2, Snai1/2, and Zeb1/2. Through a combination of pathways, there is the simultaneous presence of high levels of both A1 and A2 together with the expression of other factors: a high co-operating efficiency is reached that supplies the tumour cells with properties of self-renewal, resistance, and invasiveness.

  13. Regulation of AMPA Receptor Trafficking by Protein Ubiquitination

    Directory of Open Access Journals (Sweden)

    Jocelyn Widagdo

    2017-10-01

    Full Text Available The molecular mechanisms underlying plastic changes in the strength and connectivity of excitatory synapses have been studied extensively for the past few decades and remain the most attractive cellular models of learning and memory. One of the major mechanisms that regulate synaptic plasticity is the dynamic adjustment of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA-type glutamate receptor content on the neuronal plasma membrane. The expression of surface AMPA receptors (AMPARs is controlled by the delicate balance between the biosynthesis, dendritic transport, exocytosis, endocytosis, recycling and degradation of the receptors. These processes are dynamically regulated by AMPAR interacting proteins as well as by various post-translational modifications that occur on their cytoplasmic domains. In the last few years, protein ubiquitination has emerged as a major regulator of AMPAR intracellular trafficking. Dysregulation of AMPAR ubiquitination has also been implicated in the pathophysiology of Alzheimer’s disease. Here we review recent advances in the field and provide insights into the role of protein ubiquitination in regulating AMPAR membrane trafficking and function. We also discuss how aberrant ubiquitination of AMPARs contributes to the pathogenesis of various neurological disorders, including Alzheimer’s disease, chronic stress and epilepsy.

  14. VE-Cadherin–Mediated Epigenetic Regulation of Endothelial Gene Expression

    Science.gov (United States)

    Morini, Marco F.; Giampietro, Costanza; Corada, Monica; Pisati, Federica; Lavarone, Elisa; Cunha, Sara I.; Conze, Lei L.; O’Reilly, Nicola; Joshi, Dhira; Kjaer, Svend; George, Roger; Nye, Emma; Ma, Anqi; Jin, Jian; Mitter, Richard; Lupia, Michela; Cavallaro, Ugo; Pasini, Diego; Calado, Dinis P.

    2018-01-01

    Rationale: The mechanistic foundation of vascular maturation is still largely unknown. Several human pathologies are characterized by deregulated angiogenesis and unstable blood vessels. Solid tumors, for instance, get their nourishment from newly formed structurally abnormal vessels which present wide and irregular interendothelial junctions. Expression and clustering of the main endothelial-specific adherens junction protein, VEC (vascular endothelial cadherin), upregulate genes with key roles in endothelial differentiation and stability. Objective: We aim at understanding the molecular mechanisms through which VEC triggers the expression of a set of genes involved in endothelial differentiation and vascular stabilization. Methods and Results: We compared a VEC-null cell line with the same line reconstituted with VEC wild-type cDNA. VEC expression and clustering upregulated endothelial-specific genes with key roles in vascular stabilization including claudin-5, vascular endothelial-protein tyrosine phosphatase (VE-PTP), and von Willebrand factor (vWf). Mechanistically, VEC exerts this effect by inhibiting polycomb protein activity on the specific gene promoters. This is achieved by preventing nuclear translocation of FoxO1 (Forkhead box protein O1) and β-catenin, which contribute to PRC2 (polycomb repressive complex-2) binding to promoter regions of claudin-5, VE-PTP, and vWf. VEC/β-catenin complex also sequesters a core subunit of PRC2 (Ezh2 [enhancer of zeste homolog 2]) at the cell membrane, preventing its nuclear translocation. Inhibition of Ezh2/VEC association increases Ezh2 recruitment to claudin-5, VE-PTP, and vWf promoters, causing gene downregulation. RNA sequencing comparison of VEC-null and VEC-positive cells suggested a more general role of VEC in activating endothelial genes and triggering a vascular stability-related gene expression program. In pathological angiogenesis of human ovarian carcinomas, reduced VEC expression paralleled decreased

  15. VE-Cadherin-Mediated Epigenetic Regulation of Endothelial Gene Expression.

    Science.gov (United States)

    Morini, Marco F; Giampietro, Costanza; Corada, Monica; Pisati, Federica; Lavarone, Elisa; Cunha, Sara I; Conze, Lei L; O'Reilly, Nicola; Joshi, Dhira; Kjaer, Svend; George, Roger; Nye, Emma; Ma, Anqi; Jin, Jian; Mitter, Richard; Lupia, Michela; Cavallaro, Ugo; Pasini, Diego; Calado, Dinis P; Dejana, Elisabetta; Taddei, Andrea

    2018-01-19

    The mechanistic foundation of vascular maturation is still largely unknown. Several human pathologies are characterized by deregulated angiogenesis and unstable blood vessels. Solid tumors, for instance, get their nourishment from newly formed structurally abnormal vessels which present wide and irregular interendothelial junctions. Expression and clustering of the main endothelial-specific adherens junction protein, VEC (vascular endothelial cadherin), upregulate genes with key roles in endothelial differentiation and stability. We aim at understanding the molecular mechanisms through which VEC triggers the expression of a set of genes involved in endothelial differentiation and vascular stabilization. We compared a VEC-null cell line with the same line reconstituted with VEC wild-type cDNA. VEC expression and clustering upregulated endothelial-specific genes with key roles in vascular stabilization including claudin-5 , vascular endothelial-protein tyrosine phosphatase ( VE-PTP ), and von Willebrand factor ( vWf ). Mechanistically, VEC exerts this effect by inhibiting polycomb protein activity on the specific gene promoters. This is achieved by preventing nuclear translocation of FoxO1 (Forkhead box protein O1) and β-catenin, which contribute to PRC2 (polycomb repressive complex-2) binding to promoter regions of claudin-5 , VE-PTP , and vWf . VEC/β-catenin complex also sequesters a core subunit of PRC2 (Ezh2 [enhancer of zeste homolog 2]) at the cell membrane, preventing its nuclear translocation. Inhibition of Ezh2/VEC association increases Ezh2 recruitment to claudin-5 , VE-PTP , and vWf promoters, causing gene downregulation. RNA sequencing comparison of VEC-null and VEC-positive cells suggested a more general role of VEC in activating endothelial genes and triggering a vascular stability-related gene expression program. In pathological angiogenesis of human ovarian carcinomas, reduced VEC expression paralleled decreased levels of claudin-5 and VE-PTP. These

  16. Interferon-gamma up-regulates a unique set of proteins in human keratinocytes. Molecular cloning and expression of the cDNA encoding the RGD-sequence-containing protein IGUP I-5111

    DEFF Research Database (Denmark)

    Honoré, B; Leffers, H; Madsen, Peder

    1993-01-01

    AMP (Bt2cAMP), dibutyryl cGMP (Bt2cGMP)] and compounds known to affect keratinocytes [4 beta-phorbol 12-myristate 13-acetate (PMA), retinoic acid, Ca2+, dexamethasone, lipopolysaccharides, foetal calf serum]. Protein IGUP I-5111 was selected for further studies as its level is affected by simian-virus-40......, which migrated with the AMA variant of keratinocyte protein IEF SSP 5111, is novel although it exhibits weak similarity to cytoskeletal proteins. IGUP I-5111 contains the RGD sequence found in many extracellular glycoprotein ligands of the integrin receptor family and it is found at least partially...... in the culture supernatant. Considering the presence of IFN-gamma in psoriatic plaques as well as its putative involvement in the pathophysiology of the disease it was of interest to determine whether the set of proteins was upregulated in these cells. Two-dimensional gel analysis of the protein phenotype of non-cultured...

  17. Cell adhesion signaling regulates RANK expression in osteoclast precursors.

    Directory of Open Access Journals (Sweden)

    Ayako Mochizuki

    Full Text Available Cells with monocyte/macrophage lineage expressing receptor activator of NF-κB (RANK differentiate into osteoclasts following stimulation with the RANK ligand (RANKL. Cell adhesion signaling is also required for osteoclast differentiation from precursors. However, details of the mechanism by which cell adhesion signals induce osteoclast differentiation have not been fully elucidated. To investigate the participation of cell adhesion signaling in osteoclast differentiation, mouse bone marrow-derived macrophages (BMMs were used as osteoclast precursors, and cultured on either plastic cell culture dishes (adherent condition or the top surface of semisolid methylcellulose gel loaded in culture tubes (non-adherent condition. BMMs cultured under the adherent condition differentiated into osteoclasts in response to RANKL stimulation. However, under the non-adherent condition, the efficiency of osteoclast differentiation was markedly reduced even in the presence of RANKL. These BMMs retained macrophage characteristics including phagocytic function and gene expression profile. Lipopolysaccharide (LPS and tumor necrosis factor -αTNF-α activated the NF-κB-mediated signaling pathways under both the adherent and non-adherent conditions, while RANKL activated the pathways only under the adherent condition. BMMs highly expressed RANK mRNA and protein under the adherent condition as compared to the non-adherent condition. Also, BMMs transferred from the adherent to non-adherent condition showed downregulated RANK expression within 24 hours. In contrast, transferring those from the non-adherent to adherent condition significantly increased the level of RANK expression. Moreover, interruption of cell adhesion signaling by echistatin, an RGD-containing disintegrin, decreased RANK expression in BMMs, while forced expression of either RANK or TNFR-associated factor 6 (TRAF6 in BMMs induced their differentiation into osteoclasts even under the non

  18. Dissecting specific and global transcriptional regulation of bacterial gene expression

    NARCIS (Netherlands)

    Gerosa, Luca; Kochanowski, Karl; Heinemann, Matthias; Sauer, Uwe

    Gene expression is regulated by specific transcriptional circuits but also by the global expression machinery as a function of growth. Simultaneous specific and global regulation thus constitutes an additional-but often neglected-layer of complexity in gene expression. Here, we develop an

  19. Expression analysis on 14-3-3 proteins in regenerative liver following partial hepatectomy

    OpenAIRE

    Xue, Deming; Xue, Yang; Niu, Zhipeng; Guo, Xueqiang; Xu, Cunshuan

    2017-01-01

    Abstract 14-3-3 proteins play a vital part in the regulation of cell cycle and apoptosis as signaling integration points. During liver regeneration, the quiescent hepatocytes go through hypertrophy and proliferation to restore liver weight. Therefore, we speculated that 14-3-3 proteins regulate the progression of liver regeneration. In this study, we analyzed the expression patterns of 14-3-3 proteins during liver regeneration of rat to provide an insight into the regenerative mechanism using...

  20. Identification of YB-1 as a regulator of PTP1B expression: implications for regulation of insulin and cytokine signaling

    Science.gov (United States)

    Fukada, Toshiyuki; Tonks, Nicholas K.

    2003-01-01

    Changes in expression of PTP1B, the prototypic protein tyrosine phosphatase, have been associated with various human diseases; however, the mechanisms by which PTP1B expression is regulated have not been defined. We have identified an enhancer sequence within the PTP1B promoter which serves as a binding site for the transcription factor Y box-binding protein-1 (YB-1). Overexpression of YB-1 resulted in increased levels of PTP1B. Furthermore, depletion of YB-1 protein, by expression of a specific antisense construct, led to an ∼70% decrease in expression of PTP1B, but no change in the level of its closest relative, TC-PTP. Expression of antisense YB-1 resulted in increased sensitivity to insulin and enhanced signaling through the cytokine receptor gp130, which was suppressed by re-expression of PTP1B. Finally, we observed a correlation between the expression of PTP1B and that of YB-1 in cancer cell lines and an animal model of type II diabetes. Our data reveal an important role for YB-1 as a regulator of PTP1B expression, and further highlight PTP1B as a critical regulator of insulin- and cytokine-mediated signal transduction. PMID:12554649

  1. Myostatin-like proteins regulate synaptic function and neuronal morphology.

    Science.gov (United States)

    Augustin, Hrvoje; McGourty, Kieran; Steinert, Joern R; Cochemé, Helena M; Adcott, Jennifer; Cabecinha, Melissa; Vincent, Alec; Halff, Els F; Kittler, Josef T; Boucrot, Emmanuel; Partridge, Linda

    2017-07-01

    Growth factors of the TGFβ superfamily play key roles in regulating neuronal and muscle function. Myostatin (or GDF8) and GDF11 are potent negative regulators of skeletal muscle mass. However, expression of myostatin and its cognate receptors in other tissues, including brain and peripheral nerves, suggests a potential wider biological role. Here, we show that Myoglianin (MYO), the Drosophila homolog of myostatin and GDF11, regulates not only body weight and muscle size, but also inhibits neuromuscular synapse strength and composition in a Smad2-dependent manner. Both myostatin and GDF11 affected synapse formation in isolated rat cortical neuron cultures, suggesting an effect on synaptogenesis beyond neuromuscular junctions. We also show that MYO acts in vivo to inhibit synaptic transmission between neurons in the escape response neural circuit of adult flies. Thus, these anti-myogenic proteins act as important inhibitors of synapse function and neuronal growth. © 2017. Published by The Company of Biologists Ltd.

  2. EGR-1 regulates Ho-1 expression induced by cigarette smoke

    International Nuclear Information System (INIS)

    Chen, Huaqun; Wang, Lijuan; Gong, Tao; Yu, Yang; Zhu, Chunhua; Li, Fen; Wang, Li; Li, Chaojun

    2010-01-01

    As an anti-oxidant molecule, heme oxygenase-1 (HO-1) has been implicated in the protection of lung injury by cigarette smoke (CS). The mechanisms regulating its expression have not been defined. In this report, the role of early growth response 1 (EGR-1) in the regulation of Ho-1 expression was investigated. In C57BL/6 mice with CS exposure, HO-1 was greatly increased in bronchial epithelial cells and alveolar inflammatory cells. In primary cultured mouse lung fibroblasts and RAW264.7 cells exposed to cigarette smoke water extract (CSE), an increase in HO-1 protein level was detected. In addition, CSE induced HO-1 expression was decreased in Egr-1 deficient mouse embryo fibroblasts (Egr-1 -/- MEFs). Nuclear localization of EGR-1 was examined in mouse lung fibroblasts after exposure to CSE. Luciferase reporter activity assays showed that the enhancer region of the Ho-1 gene containing a proposed EGR-1 binding site was responsible for the induction of HO-1. A higher increase of alveolar mean linear intercept (Lm) was observed in lung tissues, and a larger increase in the number of total cells and monocytes/macrophages from bronchial alveolar lavage fluid was found in CS-exposed mice by loss of function of EGR-1 treatment. In summary, the present data demonstrate that EGR-1 plays a critical role in HO-1 production induced by CS.

  3. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis

    DEFF Research Database (Denmark)

    Müller, H; Bracken, A P; Vernell, R

    2001-01-01

    The retinoblastoma protein (pRB) and its two relatives, p107 and p130, regulate development and cell proliferation in part by inhibiting the activity of E2F-regulated promoters. We have used high-density oligonucleotide arrays to identify genes in which expression changed in response to activation...

  4. Protein trafficking and maturation regulate intramembrane proteolysis.

    Science.gov (United States)

    Morohashi, Yuichi; Tomita, Taisuke

    2013-12-01

    Intramembrane-cleaving proteases (I-CLiPs) are membrane embedded proteolytic enzymes. All substrates identified so far are also membrane proteins, involving a number of critical cellular signaling as well as human diseases. After synthesis and assembly at the endoplasmic reticulum, membrane proteins are exported to the Golgi apparatus and transported to their sites of action. A number of studies have revealed the importance of the intracellular membrane trafficking in i-CLiP-mediated intramembrane proteolysis, not only for limiting the unnecessary encounter between i-CLiPs and their substrate but also for their cleavage site preference. In this review, we will discuss recent advances in our understanding of how each i-CLiP proteolysis is regulated by intracellular vesicle trafficking. This article is part of a Special Issue entitled: Intramembrane Proteases. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Manipulating heat shock protein expression in laboratory animals.

    Science.gov (United States)

    Tolson, J Keith; Roberts, Stephen M

    2005-02-01

    Upregulation of heat shock proteins (Hsps) has been observed to impart resistance to a wide variety of physical and chemical insults. Elucidation of the role of Hsps in cellular defense processes depends, in part, on the ability to manipulate Hsp expression in laboratory animals. Simple methods of inducing whole body hyperthermia, such as warm water immersion or heating pad application, are effective in producing generalized expression of Hsps. Hsps can be upregulated locally with focused direct or indirect heating, such as with ultrasound or with laser or microwave radiation. Increased Hsp expression in response to toxic doses of xenobiotics has been commonly observed. Some pharmacologic agents are capable of altering Hsps more specifically by affecting processes involved in Hsp regulation. Gene manipulation offers the ability to selectively increase or decrease individual Hsps. Knockout mouse strains and Hsp-overexpressing transgenics have been used successfully to examine the role of specific Hsps in protection against hyperthermia, chemical insults, and ischemia-reperfusion injury. Gene therapy approaches also offer the possibility of selective alteration of Hsp expression. Some methods of increasing Hsp expression have application in specialized areas of research, such cold response, myocardial protection from exercise, and responses to stressful or traumatic stimuli. Each method of manipulating Hsp expression in laboratory animals has advantages and disadvantages, and selection of the best method depends upon the experimental objectives (e.g., the alteration in Hsp expression needed, its timing, and its location) and resources available.

  6. Differential expression of proteins and phosphoproteins during larval metamorphosis of the polychaete Capitella sp. I

    Directory of Open Access Journals (Sweden)

    Qian Pei-Yuan

    2011-09-01

    Full Text Available Abstract Background The spontaneous metamorphosis of the polychaete Capitella sp. I larvae into juveniles requires minor morphological changes, including segment formation, body elongation, and loss of cilia. In this study, we investigated changes in the expression patterns of both proteins and phosphoproteins during the transition from larvae to juveniles in this species. We used two-dimensional gel electrophoresis (2-DE followed by multiplex fluorescent staining and MALDI-TOF mass spectrometry analysis to identify the differentially expressed proteins as well as the protein and phosphoprotein profiles of both competent larvae and juveniles. Results Twenty-three differentially expressed proteins were identified in the two developmental stages. Expression patterns of two of those proteins were examined at the protein level by Western blot analysis while seven were further studied at the mRNA level by real-time PCR. Results showed that proteins related to cell division, cell migration, energy storage and oxidative stress were plentifully expressed in the competent larvae; in contrast, proteins involved in oxidative metabolism and transcriptional regulation were abundantly expressed in the juveniles. Conclusion It is likely that these differentially expressed proteins are involved in regulating the larval metamorphosis process and can be used as protein markers for studying molecular mechanisms associated with larval metamorphosis in polychaetes.

  7. Differential expression of proteins and phosphoproteins during larval metamorphosis of the polychaete Capitella sp. I

    KAUST Repository

    Chandramouli, Kondethimmanahalli

    2011-09-03

    Background: The spontaneous metamorphosis of the polychaete Capitella sp. I larvae into juveniles requires minor morphological changes, including segment formation, body elongation, and loss of cilia. In this study, we investigated changes in the expression patterns of both proteins and phosphoproteins during the transition from larvae to juveniles in this species. We used two-dimensional gel electrophoresis (2-DE) followed by multiplex fluorescent staining and MALDI-TOF mass spectrometry analysis to identify the differentially expressed proteins as well as the protein and phosphoprotein profiles of both competent larvae and juveniles.Results: Twenty-three differentially expressed proteins were identified in the two developmental stages. Expression patterns of two of those proteins were examined at the protein level by Western blot analysis while seven were further studied at the mRNA level by real-time PCR. Results showed that proteins related to cell division, cell migration, energy storage and oxidative stress were plentifully expressed in the competent larvae; in contrast, proteins involved in oxidative metabolism and transcriptional regulation were abundantly expressed in the juveniles.Conclusion: It is likely that these differentially expressed proteins are involved in regulating the larval metamorphosis process and can be used as protein markers for studying molecular mechanisms associated with larval metamorphosis in polychaetes. © 2011 Chandramouli et al; licensee BioMed Central Ltd.

  8. Differential expression of proteins and phosphoproteins during larval metamorphosis of the polychaete Capitella sp. I

    KAUST Repository

    Chandramouli, Kondethimmanahalli; Soo, Lisa; Qian, Pei-Yuan

    2011-01-01

    Background: The spontaneous metamorphosis of the polychaete Capitella sp. I larvae into juveniles requires minor morphological changes, including segment formation, body elongation, and loss of cilia. In this study, we investigated changes in the expression patterns of both proteins and phosphoproteins during the transition from larvae to juveniles in this species. We used two-dimensional gel electrophoresis (2-DE) followed by multiplex fluorescent staining and MALDI-TOF mass spectrometry analysis to identify the differentially expressed proteins as well as the protein and phosphoprotein profiles of both competent larvae and juveniles.Results: Twenty-three differentially expressed proteins were identified in the two developmental stages. Expression patterns of two of those proteins were examined at the protein level by Western blot analysis while seven were further studied at the mRNA level by real-time PCR. Results showed that proteins related to cell division, cell migration, energy storage and oxidative stress were plentifully expressed in the competent larvae; in contrast, proteins involved in oxidative metabolism and transcriptional regulation were abundantly expressed in the juveniles.Conclusion: It is likely that these differentially expressed proteins are involved in regulating the larval metamorphosis process and can be used as protein markers for studying molecular mechanisms associated with larval metamorphosis in polychaetes. © 2011 Chandramouli et al; licensee BioMed Central Ltd.

  9. Regulation of human protein S gene (PROS1) transcription

    NARCIS (Netherlands)

    Wolf, Cornelia de

    2006-01-01

    This thesis describes the investigation of the transcriptional regulation of the gene for anticoagulant plasma Protein S, PROS1. Protein S is a cofactor for Protein C in the Protein C anticoagulant pathway. The coagulation cascade is negatively regulated by this pathway through inactivation of

  10. Differentially expressed genes in iron-induced prion protein conversion

    International Nuclear Information System (INIS)

    Kim, Minsun; Kim, Eun-hee; Choi, Bo-Ran; Woo, Hee-Jong

    2016-01-01

    The conversion of the cellular prion protein (PrP C ) to the protease-resistant isoform is the key event in chronic neurodegenerative diseases, including transmissible spongiform encephalopathies (TSEs). Increased iron in prion-related disease has been observed due to the prion protein-ferritin complex. Additionally, the accumulation and conversion of recombinant PrP (rPrP) is specifically derived from Fe(III) but not Fe(II). Fe(III)-mediated PK-resistant PrP (PrP res ) conversion occurs within a complex cellular environment rather than via direct contact between rPrP and Fe(III). In this study, differentially expressed genes correlated with prion degeneration by Fe(III) were identified using Affymetrix microarrays. Following Fe(III) treatment, 97 genes were differentially expressed, including 85 upregulated genes and 12 downregulated genes (≥1.5-fold change in expression). However, Fe(II) treatment produced moderate alterations in gene expression without inducing dramatic alterations in gene expression profiles. Moreover, functional grouping of identified genes indicated that the differentially regulated genes were highly associated with cell growth, cell maintenance, and intra- and extracellular transport. These findings showed that Fe(III) may influence the expression of genes involved in PrP folding by redox mechanisms. The identification of genes with altered expression patterns in neural cells may provide insights into PrP conversion mechanisms during the development and progression of prion-related diseases. - Highlights: • Differential genes correlated with prion degeneration by Fe(III) were identified. • Genes were identified in cell proliferation and intra- and extracellular transport. • In PrP degeneration, redox related genes were suggested. • Cbr2, Rsad2, Slc40a1, Amph and Mvd were expressed significantly.

  11. Exploiting translational coupling for the selection of cells producing toxic recombinant proteins from expression vectors.

    Science.gov (United States)

    Tagliavia, Marcello; Cuttitta, Angela

    2016-01-01

    High rates of plasmid instability are associated with the use of some expression vectors in Escherichia coli, resulting in the loss of recombinant protein expression. This is due to sequence alterations in vector promoter elements caused by the background expression of the cloned gene, which leads to the selection of fast-growing, plasmid-containing cells that do not express the target protein. This phenomenon, which is worsened when expressing toxic proteins, results in preparations containing very little or no recombinant protein, or even in clone loss; however, no methods to prevent loss of recombinant protein expression are currently available. We have exploited the phenomenon of translational coupling, a mechanism of prokaryotic gene expression regulation, in order to select cells containing plasmids still able to express recombinant proteins. Here we designed an expression vector in which the cloned gene and selection marker are co-expressed. Our approach allowed for the selection of the recombinant protein-expressing cells and proved effective even for clones encoding toxic proteins.

  12. Regulation of gene expression in mammalian cells following ionizing radiation

    International Nuclear Information System (INIS)

    Boothman, D.A.; Lee, S.W

    1991-01-01

    Mammalian cells use a variety of mechanisms to control the expression of new gene transcrips elicited in response to ionizing radiation. Damage-induced proteins have been found which contain DNA binding sites located within the promoter regions of SV40 and human thymidine kinase genes. DNA binding proteins as well as proteins which bind to specific DNA lesions (e.g., XIP bp 175 binds specifically to X-ray-damaged DNA) may play a role in the initial recognition of DNA damage and may initiate DNA repair processes, along with new transcription. Mammalian gene expression after DNA damage is also regulated via the stabilization of preexisting mRNA transcripts. Stabilized mRNA transcripts are translated into protein products not previously present in the cell due to undefined posttranscriptional modifications. Thus far, the only example of mRNA stabilization following X-irradiation is the immediate induction of tissue-type plasminogen activator. Mammalian cells synthesize new mRNA transcripts indirect response to DNA damage. Using cDNA cloning, Northern RNA blotting and nuclear run-on techniques, the levels of a variety of known and previously unknown genes dramatically increase following X-irradiation. These genes/proteins now include; a) DNA binding transcripts factors, such as the UV-responsive element binding factors, ionizing radiation-induced DNA-binding proteins, and XIP bP 175; b) proto-oncogenes, such as c-fos, c-jun, and c-myc; c) several growth-related genes, (e.g., the gadd genes, protein kinase C, IL-1, and thymidine kinase); and d) a variety of other genes, including proteases, tumor necrosis factor-alpha, and DT diaphorase. Mammalian cells respond to X-irradiation by eliciting a very complex series of events resulting in the appearance of new genes and proteins. These gene products may affect DNA repair, adaptive responses, apoptosis, SOS-type mutagenic response, and/or carcinogenesis. (J.P.N.)

  13. Sperm protein 17 is expressed in the sperm fibrous sheath

    Directory of Open Access Journals (Sweden)

    Albani Elena

    2009-07-01

    Full Text Available Abstract Background Sperm protein 17 (Sp17 is a highly conserved mammalian protein characterized in rabbit, mouse, monkey, baboon, macaque, human testis and spermatozoa. mRNA encoding Sp17 has been detected in a range of murine and human somatic tissues. It was also recognized in two myeloma cell lines and in neoplastic cells from patients with multiple myeloma and ovarian carcinoma. These data all indicate that Sp17 is widely distributed in humans, expressed not only in germinal cells and in a variety of somatic tissues, but also in neoplastic cells of unrelated origin. Methods Sp17 expression was analyzed by immunocytochemistry and transmission electron microscopy on spermatozoa. Results Here, we demonstrate the ultrastructural localization of human Sp17 throughout the spermatozoa flagellar fibrous sheath, and its presence in spermatozoa during in vitro states from their ejaculation to the oocyte fertilization. Conclusion These findings suggest a possible role of Sp17 in regulating sperm maturation, capacitation, acrosomal reaction and interactions with the oocyte zona pellucida during the fertilization process. Further, the high degree of sequence conservation throughout its N-terminal half, and the presence of an A-kinase anchoring protein (AKAP-binding motif within this region, suggest that Sp17 might play a regulatory role in a protein kinase A-independent AKAP complex in both germinal and somatic cells.

  14. Dietary methionine level affects growth performance and hepatic gene expression of GH-IGF system and protein turnover regulators in rainbow trout (Oncorhynchus mykiss) fed plant protein-based diets

    DEFF Research Database (Denmark)

    Rolland, Marine; Dalsgaard, Anne Johanne Tang; Holm, Jorgen

    2015-01-01

    The effects of dietary level of methionine were investigated in juvenile rainbow trout (Oncorhynchus mykiss) fed five plant-based diets containing increasing content of crystalline methionine (Met), in a six week growth trial. Changes in the hepatic expression of genes related to i...

  15. Connecting protein and mRNA burst distributions for stochastic models of gene expression

    International Nuclear Information System (INIS)

    Elgart, Vlad; Jia, Tao; Fenley, Andrew T; Kulkarni, Rahul

    2011-01-01

    The intrinsic stochasticity of gene expression can lead to large variability in protein levels for genetically identical cells. Such variability in protein levels can arise from infrequent synthesis of mRNAs which in turn give rise to bursts of protein expression. Protein expression occurring in bursts has indeed been observed experimentally and recent studies have also found evidence for transcriptional bursting, i.e. production of mRNAs in bursts. Given that there are distinct experimental techniques for quantifying the noise at different stages of gene expression, it is of interest to derive analytical results connecting experimental observations at different levels. In this work, we consider stochastic models of gene expression for which mRNA and protein production occurs in independent bursts. For such models, we derive analytical expressions connecting protein and mRNA burst distributions which show how the functional form of the mRNA burst distribution can be inferred from the protein burst distribution. Additionally, if gene expression is repressed such that observed protein bursts arise only from single mRNAs, we show how observations of protein burst distributions (repressed and unrepressed) can be used to completely determine the mRNA burst distribution. Assuming independent contributions from individual bursts, we derive analytical expressions connecting means and variances for burst and steady-state protein distributions. Finally, we validate our general analytical results by considering a specific reaction scheme involving regulation of protein bursts by small RNAs. For a range of parameters, we derive analytical expressions for regulated protein distributions that are validated using stochastic simulations. The analytical results obtained in this work can thus serve as useful inputs for a broad range of studies focusing on stochasticity in gene expression

  16. A gene expression system offering multiple levels of regulation: the Dual Drug Control (DDC) system.

    Science.gov (United States)

    Sudomoina, Marina; Latypova, Ekaterina; Favorova, Olga O; Golemis, Erica A; Serebriiskii, Ilya G

    2004-04-29

    Whether for cell culture studies of protein function, construction of mouse models to enable in vivo analysis of disease epidemiology, or ultimately gene therapy of human diseases, a critical enabling step is the ability to achieve finely controlled regulation of gene expression. Previous efforts to achieve this goal have explored inducible drug regulation of gene expression, and construction of synthetic promoters based on two-hybrid paradigms, among others. In this report, we describe the combination of dimerizer-regulated two-hybrid and tetracycline regulatory elements in an ordered cascade, placing expression of endpoint reporters under the control of two distinct drugs. In this Dual Drug Control (DDC) system, a first plasmid expresses fusion proteins to DBD and AD, which interact only in the presence of a small molecule dimerizer; a second plasmid encodes a cassette transcriptionally responsive to the first DBD, directing expression of the Tet-OFF protein; and a third plasmid encodes a reporter gene transcriptionally responsive to binding by Tet-OFF. We evaluate the dynamic range and specificity of this system in comparison to other available systems. This study demonstrates the feasibility of combining two discrete drug-regulated expression systems in a temporally sequential cascade, without loss of dynamic range of signal induction. The efficient layering of control levels allowed by this combination of elements provides the potential for the generation of complex control circuitry that may advance ability to regulate gene expression in vivo.

  17. A gene expression system offering multiple levels of regulation: the Dual Drug Control (DDC system

    Directory of Open Access Journals (Sweden)

    Golemis Erica A

    2004-04-01

    Full Text Available Abstract Background Whether for cell culture studies of protein function, construction of mouse models to enable in vivo analysis of disease epidemiology, or ultimately gene therapy of human diseases, a critical enabling step is the ability to achieve finely controlled regulation of gene expression. Previous efforts to achieve this goal have explored inducible drug regulation of gene expression, and construction of synthetic promoters based on two-hybrid paradigms, among others. Results In this report, we describe the combination of dimerizer-regulated two-hybrid and tetracycline regulatory elements in an ordered cascade, placing expression of endpoint reporters under the control of two distinct drugs. In this Dual Drug Control (DDC system, a first plasmid expresses fusion proteins to DBD and AD, which interact only in the presence of a small molecule dimerizer; a second plasmid encodes a cassette transcriptionally responsive to the first DBD, directing expression of the Tet-OFF protein; and a third plasmid encodes a reporter gene transcriptionally responsive to binding by Tet-OFF. We evaluate the dynamic range and specificity of this system in comparison to other available systems. Conclusion This study demonstrates the feasibility of combining two discrete drug-regulated expression systems in a temporally sequential cascade, without loss of dynamic range of signal induction. The efficient layering of control levels allowed by this combination of elements provides the potential for the generation of complex control circuitry that may advance ability to regulate gene expression in vivo.

  18. Multiple upstream modules regulate zebrafish myf5 expression

    Directory of Open Access Journals (Sweden)

    Weng Chih-Wei

    2007-01-01

    Full Text Available Abstract Background Myf5 is one member of the basic helix-loop-helix family of transcription factors, and it functions as a myogenic factor that is important for the specification and differentiation of muscle cells. The expression of myf5 is somite- and stage-dependent during embryogenesis through a delicate regulation. However, this complex regulatory mechanism of myf5 is not clearly understood. Results We isolated a 156-kb bacterial artificial chromosome clone that includes an upstream 80-kb region and a downstream 70-kb region of zebrafish myf5 and generated a transgenic line carrying this 156-kb segment fused to a green fluorescent protein (GFP reporter gene. We find strong GFP expression in the most rostral somite and in the presomitic mesoderm during segmentation stages, similar to endogenous myf5 expression. Later, the GFP signals persist in caudal somites near the tail bud but are down-regulated in the older, rostral somites. During the pharyngula period, we detect GFP signals in pectoral fin buds, dorsal rostral myotomes, hypaxial myotomes, and inferior oblique and superior oblique muscles, a pattern that also corresponds well with endogenous myf5 transcripts. To characterize the specific upstream cis-elements that regulate this complex and dynamic expression pattern, we also generated several transgenic lines that harbor various lengths within the upstream 80-kb segment. We find that (1 the -80 kb/-9977 segment contains a fin and cranial muscle element and a notochord repressor; (2 the -9977/-6213 segment contains a strong repressive element that does not include the notochord-specific repressor; (3 the -6212/-2938 segment contains tissue-specific elements for bone and spinal cord; (4 the -2937/-291 segment contains an eye enhancer, and the -2937/-2457 segment is required for notochord and myocyte expression; and (5 the -290/-1 segment is responsible for basal transcription in somites and the presomitic mesoderm. Conclusion We suggest

  19. Leucocyte protein Trojan, a possible regulator of apoptosis.

    Science.gov (United States)

    Petrov, Petar; Syrjänen, Riikka; Uchida, Tatsuya; Vainio, Olli

    2017-02-01

    Trojan is a leucocyte-specific protein, cloned from chicken embryonic thymocyte cDNA library. The molecule is a type I transmembrane protein with an extracellular CCP domain, followed by two FN3 domains. Its cytoplasmic tail is predicted to possess a MAPK docking and a PKA phosphorylation sites. Trojan has been proposed to have an anti-apoptotic role based on its differential expression on developing thymocyte subpopulations. Using a chicken cell line, our in vitro studies showed that upon apoptosis induction, Trojan expression rises dramatically on the surface of surviving cells and gradually decreases towards its normal levels as cells recover. When sorted based on their expression levels of Trojan, cells with high expression appeared less susceptible to apoptotic induction than those bearing no or low levels of Trojan on their surface. The mechanism by which the molecule exerts its function is yet to be discovered. We found that cells overexpressing Trojan from a cDNA plasmid show elevated steady-state levels of intracellular calcium, suggesting the molecule is able to transmit cytoplasmic signals. The mechanistic nature of Trojan-induced signalling is a target of future investigation. In this article, we conducted a series of experiments that suggest Trojan as an anti-apoptotic regulator. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  20. Engineering of kinase-based protein interacting devices: active expression of tyrosine kinase domains

    KAUST Repository

    Diaz Galicia, Miriam Escarlet

    2018-05-01

    Protein-protein interactions modulate cellular processes in health and disease. However, tracing weak or rare associations or dissociations of proteins is not a trivial task. Kinases are often regulated through interaction partners and, at the same time, themselves regulate cellular interaction networks. The use of kinase domains for creating a synthetic sensor device that reads low concentration protein-protein interactions and amplifies them to a higher concentration interaction which is then translated into a FRET (Fluorescence Resonance Energy Transfer) signal is here proposed. To this end, DNA constructs for interaction amplification (split kinases), positive controls (intact kinase domains), scaffolding proteins and phosphopeptide - SH2-domain modules for the reading of kinase activity were assembled and expression protocols for fusion proteins containing Lyn, Src, and Fak kinase domains in bacterial and in cell-free systems were optimized. Also, two non-overlapping methods for measuring the kinase activity of these proteins were stablished and, finally, a protein-fragment complementation assay with the split-kinase constructs was tested. In conclusion, it has been demonstrated that features such as codon optimization, vector design and expression conditions have an impact on the expression yield and activity of kinase-based proteins. Furthermore, it has been found that the defined PURE cell-free system is insufficient for the active expression of catalytic kinase domains. In contrast, the bacterial co-expression with phosphatases produced active kinase fusion proteins for two out of the three tested Tyrosine kinase domains.

  1. The nuclear IκB family of proteins controls gene regulation and immune homeostasis.

    Science.gov (United States)

    MaruYama, Takashi

    2015-10-01

    The inhibitory IκB family of proteins is subdivided into two groups based on protein localization in the cytoplasm or in the nucleus. These proteins interact with NF-κB, a major transcription factor regulating the expression of many inflammatory cytokines, by modulating its transcriptional activity. However, nuclear IκB family proteins not only interact with NF-κB to change its transcriptional activity, but they also bind to chromatin and control gene expression. This review provides an overview of nuclear IκB family proteins and their role in immune homeostasis. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships

    Science.gov (United States)

    Zeke, András; Misheva, Mariya

    2016-01-01

    SUMMARY The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states. PMID:27466283

  3. Synergistic Effect of Auto-Activation and Small RNA Regulation on Gene Expression

    Science.gov (United States)

    Xiong, Li-Ping; Ma, Yu-Qiang; Tang, Lei-Han

    2010-09-01

    Auto-activation and small ribonucleic acid (RNA)-mediated regulation are two important mechanisms in controlling gene expression. We study the synergistic effect of these two regulations on gene expression. It is found that under this combinatorial regulation, gene expression exhibits bistable behaviors at the transition regime, while each of these two regulations, if working solely, only leads to monostability. Within the stochastic framework, the base pairing strength between sRNA and mRNA plays an important role in controlling the transition time between on and off states. The noise strength of protein number in the off state approaches 1 and is smaller than that in the on state. The noise strength also depends on which parameters, the feedback strength or the synthesis rate of small RNA, are tuned in switching the gene expression on and off. Our findings may provide a new insight into gene-regulation mechanism and can be applied in synthetic biology.

  4. Synergistic Effect of Auto-Activation and Small RNA Regulation on Gene Expression

    International Nuclear Information System (INIS)

    Li-Ping, Xiong; Yu-Qiang, Ma; Lei-Han, Tang

    2010-01-01

    Auto-activation and small ribonucleic acid (RNA)-mediated regulation are two important mechanisms in controlling gene expression. We study the synergistic effect of these two regulations on gene expression. It is found that under this combinatorial regulation, gene expression exhibits bistable behaviors at the transition regime, while each of these two regulations, if working solely, only leads to monostability. Within the stochastic framework, the base pairing strength between sRNA and mRNA plays an important role in controlling the transition time between on and off states. The noise strength of protein number in the off state approaches 1 and is smaller than that in the on state. The noise strength also depends on which parameters, the feedback strength or the synthesis rate of small RNA, are tuned in switching the gene expression on and off. Our findings may provide a new insight into gene-regulation mechanism and can be applied in synthetic biology

  5. Basal and β-Adrenergic Cardiomyocytes Contractility Dysfunction Induced by Dietary Protein Restriction is Associated with Downregulation of SERCA2a Expression and Disturbance of Endoplasmic Reticulum Ca2+ Regulation in Rats

    Directory of Open Access Journals (Sweden)

    Arlete R. Penitente

    2014-07-01

    Full Text Available Background: The mechanisms responsible for the cardiac dysfunction associated with dietary protein restriction (PR are poorly understood. Thus, this study was designed to evaluate the effects of PR on calcium kinetics, basal and β-adrenergic contractility in murine ventricular cardiomyocytes. Methods: After breastfeeding male Fisher rats were distributed into a control group (CG, n = 20 and a protein-restricted group (PRG, n = 20, receiving isocaloric diets for 35 days containing 15% and 6% protein, respectively. Biometric and hemodynamic variables were measured. After euthanasia left ventricles (LV were collected for histopathological evaluation, SERCA2a expression, cardiomyocytes contractility and Ca2+sparks analysis. Results: PRG animals showed reduced general growth, increased heart rate and arterial pressure. These animals presented extracellular matrix expansion and disorganization, cardiomyocytes hypotrophy, reduced amplitudes of shortening and maximum velocity of contraction and relaxation at baseline and after β-adrenergic stimulation. Reduced SERCA2a expression as well as higher frequency and lower amplitude of Ca2+sparks were observed in PRG cardiomyocytes. Conclusion: The observations reveal that protein restriction induces marked myocardial morphofunctional damage. The pathological changes of cardiomyocyte mechanics suggest the potential involvement of the β-adrenergic system, which is possibly associated with changes in SERCA2a expression and disturbances in Ca2+ intracellular kinetics.

  6. The effect of HCV Core protein on the expression of miR-150

    Directory of Open Access Journals (Sweden)

    Sayad Khanizadeh

    2016-09-01

    Full Text Available Background : Hepatitis C virus (HCV is considered as one of the major pathogenic agents of chronic liver diseases. Previous studies have shown that HCV proteins can interaction with gene regulatory networks such as microRNAs. The aim of this study was to investigate the effect of HCV core protein on the expression of miR-150 in a cell culture model. Materials and Methods: Plasmids expressing full HCV core protein was transfected into Huh7 cell lines while a GFP expressing plasmid employed as negative control. Subsequently, total RNA extracted and Real-Time PCR performed to measure the expression level of miR-150 expression. Moreover, trypan blue exclusion assay was performed to investigate the effect of core protein on cell viability. Results: The gene expression analysis of miR-150 in Huh7 cells showed that endogenous HCV core protein could significantly down regulation of miR-150 when compared to GFP control plasmid and normal cells (P<0.01. Beside, core protein induced no significant proliferative or cytotoxic effects on hepatic cells as determined by trypan blue exclusion assay (P<0.05. Conclusion: Our study suggests that HCV core protein can led to down regulation of miR-150 expression. This data revealed that HCV protein interactions with cell regulatory machinery may contribute to pathogenesis of chronic liver diseases.

  7. Mechanical stimulation increases proliferation, differentiation and protein expression in culture

    DEFF Research Database (Denmark)

    Grossi, Alberto; Yadav, Kavita; Lawson, Moira Ann

    2007-01-01

    Myogenesis is a complex sequence of events, including the irreversible transition from the proliferation-competent myoblast stage into fused, multinucleated myotubes. Myogenic differentiation is regulated by positive and negative signals from surrounding tissues. Stimulation due to stretch- or load...... to elucidate also the signaling pathway by which this mechanical stimulation can causes an increase in protein expression. When mechanically stimulated via laminin receptors on cell surface, C(2)C(12) cells showed an increase in cell proliferation and differentiation. Populations undergoing mechanical...... stimulation through laminin receptors show an increase in expression of Myo-D, myogenin and an increase in ERK1/2 phosphorylation. Cells stimulated via fibronectin receptors show no significant increases in fusion competence. We conclude that load induced signalling through integrin containing laminin...

  8. Preschoolers' Emotion Expression and Regulation: Relations with School Adjustment

    Science.gov (United States)

    Herndon, Kristina J.; Bailey, Craig S.; Shewark, Elizabeth A.; Denham, Susanne A.; Bassett, Hideko H.

    2013-01-01

    Children's expression and regulation of emotions are building blocks of their experiences in classrooms. Thus, the authors' primary goal was to investigate whether preschoolers' expression or ability to regulate emotions were associated with teachers' ratings of school adjustment. A secondary goal was to investigate how boys and girls differed…

  9. Expression, purification and spectroscopic characterization of the Regulator complex

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, M.L.C.; Silva, A.L.S.; Camilotti, D.; Silva, C.A.; Sforca, M.L.; Smetana, J.H.C.; Zeri, A.C. [Laboratorio Nacional de Biociencias - LNBIO, Campinas, SP (Brazil); Ospina-Bedoya, M. [Universidad de Antioquia, Medellin (Colombia)

    2012-07-01

    Full text: The mammalian target of rapamycin (mTOR) signaling pathway integrates both intracellular and extracellular signals, serves as a central regulator of cell metabolism in humans and its deregulation is linked to diseases like cancer and diabetes. The small GTPases Rag are mediators of signaling by amino acid (leucine). These GT-Pases are anchored on the surface of the lysosome through an interaction with a complex of three proteins, p18, MP1 and p14, called Ragulator. The p18 protein is responsible for interaction with the lysosomal membrane through its N terminal post translational modification. The objective of this project is to study the interaction of p18 and other components of the Ragulator complex. The p18 protein was expressed in inclusion bodies, which were isolated and solubilized in urea. p18 was renatured with its partners MP1/p14 and this complex, the Ragulator, was subjected to spectroscopic characterization using circular dichroism and dynamic light scattering. (author)

  10. Expression, purification and spectroscopic characterization of the Regulator complex

    International Nuclear Information System (INIS)

    Nogueira, M.L.C.; Silva, A.L.S.; Camilotti, D.; Silva, C.A.; Sforca, M.L.; Smetana, J.H.C.; Zeri, A.C.; Ospina-Bedoya, M.

    2012-01-01

    Full text: The mammalian target of rapamycin (mTOR) signaling pathway integrates both intracellular and extracellular signals, serves as a central regulator of cell metabolism in humans and its deregulation is linked to diseases like cancer and diabetes. The small GTPases Rag are mediators of signaling by amino acid (leucine). These GT-Pases are anchored on the surface of the lysosome through an interaction with a complex of three proteins, p18, MP1 and p14, called Ragulator. The p18 protein is responsible for interaction with the lysosomal membrane through its N terminal post translational modification. The objective of this project is to study the interaction of p18 and other components of the Ragulator complex. The p18 protein was expressed in inclusion bodies, which were isolated and solubilized in urea. p18 was renatured with its partners MP1/p14 and this complex, the Ragulator, was subjected to spectroscopic characterization using circular dichroism and dynamic light scattering. (author)

  11. Precise regulation of gene expression dynamics favors complex promoter architectures.

    Directory of Open Access Journals (Sweden)

    Dirk Müller

    2009-01-01

    Full Text Available Promoters process signals through recruitment of transcription factors and RNA polymerase, and dynamic changes in promoter activity constitute a major noise source in gene expression. However, it is barely understood how complex promoter architectures determine key features of promoter dynamics. Here, we employ prototypical promoters of yeast ribosomal protein genes as well as simplified versions thereof to analyze the relations among promoter design, complexity, and function. These promoters combine the action of a general regulatory factor with that of specific transcription factors, a common motif of many eukaryotic promoters. By comprehensively analyzing stationary and dynamic promoter properties, this model-based approach enables us to pinpoint the structural characteristics underlying the observed behavior. Functional tradeoffs impose constraints on the promoter architecture of ribosomal protein genes. We find that a stable scaffold in the natural design results in low transcriptional noise and strong co-regulation of target genes in the presence of gene silencing. This configuration also exhibits superior shut-off properties, and it can serve as a tunable switch in living cells. Model validation with independent experimental data suggests that the models are sufficiently realistic. When combined, our results offer a mechanistic explanation for why specific factors are associated with low protein noise in vivo. Many of these findings hold for a broad range of model parameters and likely apply to other eukaryotic promoters of similar structure.

  12. Comparative transcriptional and translational analysis of leptospiral outer membrane protein expression in response to temperature.

    Science.gov (United States)

    Lo, Miranda; Cordwell, Stuart J; Bulach, Dieter M; Adler, Ben

    2009-12-08

    Leptospirosis is a global zoonosis affecting millions of people annually. Transcriptional changes in response to temperature were previously investigated using microarrays to identify genes potentially expressed upon host entry. Past studies found that various leptospiral outer membrane proteins are differentially expressed at different temperatures. However, our microarray studies highlighted a divergence between protein abundance and transcript levels for some proteins. Given the abundance of post-transcriptional expression control mechanisms, this finding highlighted the importance of global protein analysis systems. To complement our previous transcription study, we evaluated differences in the proteins of the leptospiral outer membrane fraction in response to temperature upshift. Outer membrane protein-enriched fractions from Leptospira interrogans grown at 30 degrees C or overnight upshift to 37 degrees C were isolated and the relative abundance of each protein was determined by iTRAQ analysis coupled with two-dimensional liquid chromatography and tandem mass spectrometry (2-DLC/MS-MS). We identified 1026 proteins with 99% confidence; 27 and 66 were present at elevated and reduced abundance respectively. Protein abundance changes were compared with transcriptional differences determined from the microarray studies. While there was some correlation between the microarray and iTRAQ data, a subset of genes that showed no differential expression by microarray was found to encode temperature-regulated proteins. This set of genes is of particular interest as it is likely that regulation of their expression occurs post-transcriptionally, providing an opportunity to develop hypotheses about the molecular dynamics of the outer membrane of Leptospira in response to changing environments. This is the first study to compare transcriptional and translational responses to temperature shift in L. interrogans. The results thus provide an insight into the mechanisms used by L

  13. Regulation of Lipid and Glucose Metabolism by Phosphatidylcholine Transfer Protein

    Science.gov (United States)

    Kang, Hye Won; Wei, Jie; Cohen, David E.

    2010-01-01

    Phosphatidylcholine transfer protein (PC-TP, a.k.a. StARD2) binds phosphatidylcholines and catalyzes their intermembrane transfer and exchange in vitro. The structure of PC-TP comprises a hydrophobic pocket and a well-defined head-group binding site, and its gene expression is regulated by peroxisome proliferator activated receptor α. Recent studies have revealed key regulatory roles for PC-TP in lipid and glucose metabolism. Notably, Pctp−/− mice are sensitized to insulin action and exhibit more efficient brown fat-mediated thermogenesis. PC-TP appears to limit access of fatty acids to mitochondria by stimulating the activity of thioesterase superfamily member 2, a newly characterized long-chain fatty acyl-CoA thioesterase. Because PC-TP discriminates among phosphatidylcholines within lipid bilayers, it may function as a sensor that links metabolic regulation to membrane composition. PMID:20338778

  14. Neuronal MHC Class I Expression Is Regulated by Activity Driven Calcium Signaling.

    Directory of Open Access Journals (Sweden)

    Dan Lv

    Full Text Available MHC class I (MHC-I molecules are important components of the immune system. Recently MHC-I have been reported to also play important roles in brain development and synaptic plasticity. In this study, we examine the molecular mechanism(s underlying activity-dependent MHC-I expression using hippocampal neurons. Here we report that neuronal expression level of MHC-I is dynamically regulated during hippocampal development after birth in vivo. Kainic acid (KA treatment significantly increases the expression of MHC-I in cultured hippocampal neurons in vitro, suggesting that MHC-I expression is regulated by neuronal activity. In addition, KA stimulation decreased the expression of pre- and post-synaptic proteins. This down-regulation is prevented by addition of an MHC-I antibody to KA treated neurons. Further studies demonstrate that calcium-dependent protein kinase C (PKC is important in relaying KA simulation activation signals to up-regulated MHC-I expression. This signaling cascade relies on activation of the MAPK pathway, which leads to increased phosphorylation of CREB and NF-κB p65 while also enhancing the expression of IRF-1. Together, these results suggest that expression of MHC-I in hippocampal neurons is driven by Ca2+ regulated activation of the MAPK signaling transduction cascade.

  15. Recombinant Expression Screening of P. aeruginosa Bacterial Inner Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Jeffery Constance J

    2010-11-01

    Full Text Available Abstract Background Transmembrane proteins (TM proteins make up 25% of all proteins and play key roles in many diseases and normal physiological processes. However, much less is known about their structures and molecular mechanisms than for soluble proteins. Problems in expression, solubilization, purification, and crystallization cause bottlenecks in the characterization of TM proteins. This project addressed the need for improved methods for obtaining sufficient amounts of TM proteins for determining their structures and molecular mechanisms. Results Plasmid clones were obtained that encode eighty-seven transmembrane proteins with varying physical characteristics, for example, the number of predicted transmembrane helices, molecular weight, and grand average hydrophobicity (GRAVY. All the target proteins were from P. aeruginosa, a gram negative bacterial opportunistic pathogen that causes serious lung infections in people with cystic fibrosis. The relative expression levels of the transmembrane proteins were measured under several culture growth conditions. The use of E. coli strains, a T7 promoter, and a 6-histidine C-terminal affinity tag resulted in the expression of 61 out of 87 test proteins (70%. In this study, proteins with a higher grand average hydrophobicity and more transmembrane helices were expressed less well than less hydrophobic proteins with fewer transmembrane helices. Conclusions In this study, factors related to overall hydrophobicity and the number of predicted transmembrane helices correlated with the relative expression levels of the target proteins. Identifying physical characteristics that correlate with protein expression might aid in selecting the "low hanging fruit", or proteins that can be expressed to sufficient levels using an E. coli expression system. The use of other expression strategies or host species might be needed for sufficient levels of expression of transmembrane proteins with other physical

  16. Expression and divalent cation binding properties of the novel chemotactic inflammatory protein psoriasin

    DEFF Research Database (Denmark)

    Vorum, H; Madsen, Peder; Rasmussen, H H

    1996-01-01

    Psoriasin is a novel chemotactic inflammatory protein that possesses weak similarity to the S100 family members of Ca(2+)-binding proteins, and that is highly up-regulated in hyperproliferative psoriatic keratinocytes. Here we have used the psoriasin cDNA to express recombinant human (rh) psorias...

  17. Regulation of the autophagy protein LC3 by phosphorylation

    Science.gov (United States)

    Cherra, Salvatore J.; Kulich, Scott M.; Uechi, Guy; Balasubramani, Manimalha; Mountzouris, John; Day, Billy W.

    2010-01-01

    Macroautophagy is a major catabolic pathway that impacts cell survival, differentiation, tumorigenesis, and neurodegeneration. Although bulk degradation sustains carbon sources during starvation, autophagy contributes to shrinkage of differentiated neuronal processes. Identification of autophagy-related genes has spurred rapid advances in understanding the recruitment of microtubule-associated protein 1 light chain 3 (LC3) in autophagy induction, although braking mechanisms remain less understood. Using mass spectrometry, we identified a direct protein kinase A (PKA) phosphorylation site on LC3 that regulates its participation in autophagy. Both metabolic (rapamycin) and pathological (MPP+) inducers of autophagy caused dephosphorylation of endogenous LC3. The pseudophosphorylated LC3 mutant showed reduced recruitment to autophagosomes, whereas the nonphosphorylatable mutant exhibited enhanced puncta formation. Finally, autophagy-dependent neurite shortening induced by expression of a Parkinson disease–associated G2019S mutation in leucine-rich repeat kinase 2 was inhibited by dibutyryl–cyclic adenosine monophosphate, cytoplasmic expression of the PKA catalytic subunit, or the LC3 phosphorylation mimic. These data demonstrate a role for phosphorylation in regulating LC3 activity. PMID:20713600

  18. Gene expression regulation in photomorphogenesis from the perspective of the central dogma.

    Science.gov (United States)

    Wu, Shu-Hsing

    2014-01-01

    Depending on the environment a young seedling encounters, the developmental program following seed germination could be skotomorphogenesis in the dark or photomorphogenesis in the light. Light signals are interpreted by a repertoire of photoreceptors followed by sophisticated gene expression networks, eventually resulting in developmental changes. The expression and functions of photoreceptors and key signaling molecules are highly coordinated and regulated at multiple levels of the central dogma in molecular biology. Light activates gene expression through the actions of positive transcriptional regulators and the relaxation of chromatin by histone acetylation. Small regulatory RNAs help attenuate the expression of light-responsive genes. Alternative splicing, protein phosphorylation/dephosphorylation, the formation of diverse transcriptional complexes, and selective protein degradation all contribute to proteome diversity and change the functions of individual proteins.

  19. Genetic regulation ofmethylation and IL1RL1-a protein levels in asthma

    NARCIS (Netherlands)

    Dijk, F Nicole; Xu, Chengjian; Melén, Erik; Carsin, Anne-Elie; Kumar, Asish; Nolte, Ilja M; Gruzieva, Olena; Pershagen, Goran; Grotenboer, Neomi S; Savenije, Olga E M; Antó, Josep Maria; Lavi, Iris; Dobaño, Carlota; Bousquet, Jean; van der Vlies, Pieter; van der Valk, Ralf J P; de Jongste, Johan C; Nawijn, Martijn C; Guerra, Stefano; Postma, Dirkje S; Koppelman, Gerard H

    2018-01-01

    Interleukin-1 receptor-like 1 (IL1RL1) is an important asthma gene. (Epi)genetic regulation ofIL1RL1protein expression has not been established. We assessed the association betweenIL1RL1single nucleotide polymorphisms (SNPs),IL1RL1methylation and serum IL1RL1-a protein levels, and aimed to identify

  20. USP21 regulates Hippo pathway activity by mediating MARK protein turnover

    DEFF Research Database (Denmark)

    Nguyen, Thanh Hung; Kugler, Jan-Michael; Loya, Anand Chainsukh

    2017-01-01

    observed in cancer and often correlates with worse survival. The activity and stability of Hippo pathway components, including YAP/TAZ, AMOT and LATS1/2, are regulated by ubiquitin-mediated protein degradation. Aberrant expression of ubiquitin ligase complexes that regul