WorldWideScience

Sample records for protein promotes post-transcriptional

  1. Rift Valley fever virus NSs protein promotes post-transcriptional downregulation of protein kinase PKR and inhibits eIF2alpha phosphorylation.

    Science.gov (United States)

    Ikegami, Tetsuro; Narayanan, Krishna; Won, Sungyong; Kamitani, Wataru; Peters, C J; Makino, Shinji

    2009-02-01

    Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) is a negative-stranded RNA virus with a tripartite genome. RVFV is transmitted by mosquitoes and causes fever and severe hemorrhagic illness among humans, and fever and high rates of abortions in livestock. A nonstructural RVFV NSs protein inhibits the transcription of host mRNAs, including interferon-beta mRNA, and is a major virulence factor. The present study explored a novel function of the RVFV NSs protein by testing the replication of RVFV lacking the NSs gene in the presence of actinomycin D (ActD) or alpha-amanitin, both of which served as a surrogate of the host mRNA synthesis suppression function of the NSs. In the presence of the host-transcriptional inhibitors, the replication of RVFV lacking the NSs protein, but not that carrying NSs, induced double-stranded RNA-dependent protein kinase (PKR)-mediated eukaryotic initiation factor (eIF)2alpha phosphorylation, leading to the suppression of host and viral protein translation. RVFV NSs promoted post-transcriptional downregulation of PKR early in the course of the infection and suppressed the phosphorylated eIF2alpha accumulation. These data suggested that a combination of RVFV replication and NSs-induced host transcriptional suppression induces PKR-mediated eIF2alpha phosphorylation, while the NSs facilitates efficient viral translation by downregulating PKR and inhibiting PKR-mediated eIF2alpha phosphorylation. Thus, the two distinct functions of the NSs, i.e., the suppression of host transcription, including that of type I interferon mRNAs, and the downregulation of PKR, work together to prevent host innate antiviral functions, allowing efficient replication and survival of RVFV in infected mammalian hosts.

  2. Rift Valley fever virus NSs protein promotes post-transcriptional downregulation of protein kinase PKR and inhibits eIF2alpha phosphorylation.

    Directory of Open Access Journals (Sweden)

    Tetsuro Ikegami

    2009-02-01

    Full Text Available Rift Valley fever virus (RVFV (genus Phlebovirus, family Bunyaviridae is a negative-stranded RNA virus with a tripartite genome. RVFV is transmitted by mosquitoes and causes fever and severe hemorrhagic illness among humans, and fever and high rates of abortions in livestock. A nonstructural RVFV NSs protein inhibits the transcription of host mRNAs, including interferon-beta mRNA, and is a major virulence factor. The present study explored a novel function of the RVFV NSs protein by testing the replication of RVFV lacking the NSs gene in the presence of actinomycin D (ActD or alpha-amanitin, both of which served as a surrogate of the host mRNA synthesis suppression function of the NSs. In the presence of the host-transcriptional inhibitors, the replication of RVFV lacking the NSs protein, but not that carrying NSs, induced double-stranded RNA-dependent protein kinase (PKR-mediated eukaryotic initiation factor (eIF2alpha phosphorylation, leading to the suppression of host and viral protein translation. RVFV NSs promoted post-transcriptional downregulation of PKR early in the course of the infection and suppressed the phosphorylated eIF2alpha accumulation. These data suggested that a combination of RVFV replication and NSs-induced host transcriptional suppression induces PKR-mediated eIF2alpha phosphorylation, while the NSs facilitates efficient viral translation by downregulating PKR and inhibiting PKR-mediated eIF2alpha phosphorylation. Thus, the two distinct functions of the NSs, i.e., the suppression of host transcription, including that of type I interferon mRNAs, and the downregulation of PKR, work together to prevent host innate antiviral functions, allowing efficient replication and survival of RVFV in infected mammalian hosts.

  3. DMPD: Post-transcriptional regulation of proinflammatory proteins. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15075353 Post-transcriptional regulation of proinflammatory proteins. Anderson P, P...l) (.csml) Show Post-transcriptional regulation of proinflammatory proteins. PubmedID 15075353 Title Post-tr...anscriptional regulation of proinflammatory proteins. Authors Anderson P, Phillip

  4. RNA-binding proteins involved in post-transcriptional regulation in bacteria

    Directory of Open Access Journals (Sweden)

    Elke eVan Assche

    2015-03-01

    Full Text Available Post-transcriptional regulation is a very important mechanism to control gene expression in changing environments. In the past decade, a lot of interest has been directed towards the role of small RNAs in bacterial post-transcriptional regulation. However, small RNAs are not the only molecules controlling gene expression at this level, RNA-binding proteins play an important role as well. CsrA and Hfq are the two best studied bacterial proteins of this type, but recently, additional proteins involved in post-transcriptional control have been identified. This review focuses on the general working mechanisms of post-transcriptionally active RNA-binding proteins, which include (i adaptation of the susceptibility of mRNAs and sRNAs to RNases, (ii modulating the accessibility of the ribosome binding site of mRNAs, (iii recruiting and assisting in the interaction of mRNAs with other molecules and (iv regulating transcription terminator / antiterminator formation, and gives an overview of both the well-studied and the newly identified proteins that are involved in post-transcriptional regulatory processes. Additionally, the post-transcriptional mechanisms by which the expression or the activity of these proteins is regulated, are described. For many of the newly identified proteins, however, mechanistic questions remain. Most likely, more post-transcriptionally active proteins will be identified in the future.

  5. The STAR protein QKI-7 recruits PAPD4 to regulate post-transcriptional polyadenylation of target mRNAs.

    Science.gov (United States)

    Yamagishi, Ryota; Tsusaka, Takeshi; Mitsunaga, Hiroko; Maehata, Takaharu; Hoshino, Shin-ichi

    2016-04-07

    Emerging evidence has demonstrated that regulating the length of the poly(A) tail on an mRNA is an efficient means of controlling gene expression at the post-transcriptional level. In early development, transcription is silenced and gene expression is primarily regulated by cytoplasmic polyadenylation. In somatic cells, considerable progress has been made toward understanding the mechanisms of negative regulation by deadenylation. However, positive regulation through elongation of the poly(A) tail has not been widely studied due to the difficulty in distinguishing whether any observed increase in length is due to the synthesis of new mRNA, reduced deadenylation or cytoplasmic polyadenylation. Here, we overcame this barrier by developing a method for transcriptional pulse-chase analysis under conditions where deadenylases are suppressed. This strategy was used to show that a member of the Star family of RNA binding proteins, QKI, promotes polyadenylation when tethered to a reporter mRNA. Although multiple RNA binding proteins have been implicated in cytoplasmic polyadenylation during early development, previously only CPEB was known to function in this capacity in somatic cells. Importantly, we show that only the cytoplasmic isoform QKI-7 promotes poly(A) tail extension, and that it does so by recruiting the non-canonical poly(A) polymerase PAPD4 through its unique carboxyl-terminal region. We further show that QKI-7 specifically promotes polyadenylation and translation of three natural target mRNAs (hnRNPA1, p27(kip1)and β-catenin) in a manner that is dependent on the QKI response element. An anti-mitogenic signal that induces cell cycle arrest at G1 phase elicits polyadenylation and translation of p27(kip1)mRNA via QKI and PAPD4. Taken together, our findings provide significant new insight into a general mechanism for positive regulation of gene expression by post-transcriptional polyadenylation in somatic cells. © The Author(s) 2016. Published by Oxford

  6. Dual functions of Rift Valley fever virus NSs protein: inhibition of host mRNA transcription and post-transcriptional downregulation of protein kinase PKR.

    Science.gov (United States)

    Ikegami, Tetsuro; Narayanan, Krishna; Won, Sungyong; Kamitani, Wataru; Peters, C J; Makino, Shinji

    2009-09-01

    Rift Valley fever virus (RVFV), which belongs to the genus Phlebovirus, family Bunyaviridae, is a negative-stranded RNA virus carrying a single-stranded, tripartite RNA genome. RVFV is an important zoonotic pathogen transmitted by mosquitoes and causes large outbreaks among ruminants and humans in Africa and the Arabian Peninsula. Human patients develop an acute febrile illness, followed by a fatal hemorrhagic fever, encephalitis, or ocular diseases. A viral nonstructural protein, NSs, is a major viral virulence factor. Past studies showed that NSs suppresses the transcription of host mRNAs, including interferon-beta mRNAs. Here we demonstrated that the NSs protein induced post-transcriptional downregulation of dsRNA-dependent protein kinase (PKR), to prevent phosphorylation of eIF2alpha and promoted viral translation in infected cells. These two biological activities of the NSs most probably have a synergistic effect in suppressing host innate immune functions and facilitate efficient viral replication in infected mammalian hosts.

  7. Tumor protein D52 expression is post-transcriptionally regulated by T-cell intercellular antigen (TIA) 1 and TIA-related protein via mRNA stability.

    Science.gov (United States)

    Motohashi, Hiromi; Mukudai, Yoshiki; Ito, Chihiro; Kato, Kosuke; Shimane, Toshikazu; Kondo, Seiji; Shirota, Tatsuo

    2017-05-04

    Although tumor protein D52 (TPD52) family proteins were first identified nearly 20 years ago, their molecular regulatory mechanisms remain unclear. Therefore, we investigated the post-transcriptional regulation of TPD52 family genes. An RNA immunoprecipitation (RIP) assay showed the potential binding ability of TPD52 family mRNAs to several RNA-binding proteins, and an RNA degradation assay revealed that TPD52 is subject to more prominent post-transcriptional regulation than are TPD53 and TPD54. We subsequently focused on the 3'-untranslated region (3'-UTR) of TPD52 as a cis -acting element in post-transcriptional gene regulation. Several deletion mutants of the 3'-UTR of TPD52 mRNA were constructed and ligated to the 3'-end of a reporter green fluorescence protein gene. An RNA degradation assay revealed that a minimal cis -acting region, located in the 78-280 region of the 5'-proximal region of the 3'-UTR, stabilized the reporter mRNA. Biotin pull-down and RIP assays revealed specific binding of the region to T-cell intracellular antigen 1 (TIA-1) and TIA-1-related protein (TIAR). Knockdown of TIA-1/TIAR decreased not only the expression, but also the stability of TPD52 mRNA; it also decreased the expression and stability of the reporter gene ligated to the 3'-end of the 78-280 fragment. Stimulation of transforming growth factor-β and epidermal growth factor decreased the binding ability of these factors, resulting in decreased mRNA stability. These results indicate that the 78-280 fragment and TIA-1/TIAR concordantly contribute to mRNA stability as a cis -acting element and trans -acting factor(s), respectively. Thus, we here report the specific interactions between these elements in the post-transcriptional regulation of the TPD52 gene. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  8. Dissecting the expression relationships between RNA-binding proteins and their cognate targets in eukaryotic post-transcriptional regulatory networks

    Science.gov (United States)

    Nishtala, Sneha; Neelamraju, Yaseswini; Janga, Sarath Chandra

    2016-05-01

    RNA-binding proteins (RBPs) are pivotal in orchestrating several steps in the metabolism of RNA in eukaryotes thereby controlling an extensive network of RBP-RNA interactions. Here, we employed CLIP (cross-linking immunoprecipitation)-seq datasets for 60 human RBPs and RIP-ChIP (RNP immunoprecipitation-microarray) data for 69 yeast RBPs to construct a network of genome-wide RBP- target RNA interactions for each RBP. We show in humans that majority (~78%) of the RBPs are strongly associated with their target transcripts at transcript level while ~95% of the studied RBPs were also found to be strongly associated with expression levels of target transcripts when protein expression levels of RBPs were employed. At transcript level, RBP - RNA interaction data for the yeast genome, exhibited a strong association for 63% of the RBPs, confirming the association to be conserved across large phylogenetic distances. Analysis to uncover the features contributing to these associations revealed the number of target transcripts and length of the selected protein-coding transcript of an RBP at the transcript level while intensity of the CLIP signal, number of RNA-Binding domains, location of the binding site on the transcript, to be significant at the protein level. Our analysis will contribute to improved modelling and prediction of post-transcriptional networks.

  9. Post-Transcriptional Regulation Prevents Accumulation of Glutathione Reductase Protein and Activity in the Bundle Sheath Cells of Maize1

    Science.gov (United States)

    Pastori, Gabriela M.; Mullineaux, Philip M.; Foyer, Christine H.

    2000-01-01

    Glutathione reductase (GR; EC 1.6.4.2) activity was assayed in bundle sheath and mesophyll cells of maize (Zea mays L. var H99) from plants grown at 20°C, 18°C, and 15°C. The purity of each fraction was determined by measuring the associated activity of the compartment-specific marker enzymes, Rubisco and phosphoenolpyruvate carboxylase, respectively. GR activity and the abundance of GR protein and mRNA increased in plants grown at 15°C and 18°C compared with those grown at 20°C. In all cases GR activity was found only in mesophyll fractions of the leaves, with no GR activity being detectable in bundle sheath extracts. Immunogold labeling with GR-specific antibodies showed that the GR protein was exclusively localized in the mesophyll cells of leaves at all growth temperatures, whereas GR transcripts (as determined by in situ hybridization techniques) were observed in both cell types. These results indicate that post-transcriptional regulation prevents GR accumulation in the bundle sheath cells of maize leaves. The resulting limitation on the capacity for regeneration of reduced glutathione in this compartment may contribute to the extreme chilling sensitivity of maize leaves. PMID:10712529

  10. Genome-wide mRNA processing in methanogenic archaea reveals post-transcriptional regulation of ribosomal protein synthesis.

    Science.gov (United States)

    Qi, Lei; Yue, Lei; Feng, Deqin; Qi, Fengxia; Li, Jie; Dong, Xiuzhu

    2017-07-07

    Unlike stable RNAs that require processing for maturation, prokaryotic cellular mRNAs generally follow an 'all-or-none' pattern. Herein, we used a 5΄ monophosphate transcript sequencing (5΄P-seq) that specifically captured the 5΄-end of processed transcripts and mapped the genome-wide RNA processing sites (PSSs) in a methanogenic archaeon. Following statistical analysis and stringent filtration, we identified 1429 PSSs, among which 23.5% and 5.4% were located in 5΄ untranslated region (uPSS) and intergenic region (iPSS), respectively. A predominant uridine downstream PSSs served as a processing signature. Remarkably, 5΄P-seq detected overrepresented uPSS and iPSS in the polycistronic operons encoding ribosomal proteins, and the majority upstream and proximal ribosome binding sites, suggesting a regulatory role of processing on translation initiation. The processed transcripts showed increased stability and translation efficiency. Particularly, processing within the tricistronic transcript of rplA-rplJ-rplL enhanced the translation of rplL, which can provide a driving force for the 1:4 stoichiometry of L10 to L12 in the ribosome. Growth-associated mRNA processing intensities were also correlated with the cellular ribosomal protein levels, thereby suggesting that mRNA processing is involved in tuning growth-dependent ribosome synthesis. In conclusion, our findings suggest that mRNA processing-mediated post-transcriptional regulation is a potential mechanism of ribosomal protein synthesis and stoichiometry. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Transient Co-Expression of Post-Transcriptional Gene Silencing Suppressors for Increased in Planta Expression of a Recombinant Anthrax Receptor Fusion Protein

    Directory of Open Access Journals (Sweden)

    Kittipong Rattanaporn

    2011-08-01

    Full Text Available Potential epidemics of infectious diseases and the constant threat of bioterrorism demand rapid, scalable, and cost-efficient manufacturing of therapeutic proteins. Molecular farming of tobacco plants provides an alternative for the recombinant production of therapeutics. We have developed a transient production platform that uses Agrobacterium infiltration of Nicotiana benthamiana plants to express a novel anthrax receptor decoy protein (immunoadhesin, CMG2-Fc. This chimeric fusion protein, designed to protect against the deadly anthrax toxins, is composed of the von Willebrand factor A (VWA domain of human capillary morphogenesis 2 (CMG2, an effective anthrax toxin receptor, and the Fc region of human immunoglobulin G (IgG. We evaluated, in N. benthamiana intact plants and detached leaves, the expression of CMG2-Fc under the control of the constitutive CaMV 35S promoter, and the co-expression of CMG2-Fc with nine different viral suppressors of post-transcriptional gene silencing (PTGS: p1, p10, p19, p21, p24, p25, p38, 2b, and HCPro. Overall, transient CMG2-Fc expression was higher on intact plants than detached leaves. Maximum expression was observed with p1 co-expression at 3.5 days post-infiltration (DPI, with a level of 0.56 g CMG2-Fc per kg of leaf fresh weight and 1.5% of the total soluble protein, a ten-fold increase in expression when compared to absence of suppression. Co-expression with the p25 PTGS suppressor also significantly increased the CMG2-Fc expression level after just 3.5 DPI.

  12. Transient co-expression of post-transcriptional gene silencing suppressors for increased in planta expression of a recombinant anthrax receptor fusion protein.

    Science.gov (United States)

    Arzola, Lucas; Chen, Junxing; Rattanaporn, Kittipong; Maclean, James M; McDonald, Karen A

    2011-01-01

    Potential epidemics of infectious diseases and the constant threat of bioterrorism demand rapid, scalable, and cost-efficient manufacturing of therapeutic proteins. Molecular farming of tobacco plants provides an alternative for the recombinant production of therapeutics. We have developed a transient production platform that uses Agrobacterium infiltration of Nicotiana benthamiana plants to express a novel anthrax receptor decoy protein (immunoadhesin), CMG2-Fc. This chimeric fusion protein, designed to protect against the deadly anthrax toxins, is composed of the von Willebrand factor A (VWA) domain of human capillary morphogenesis 2 (CMG2), an effective anthrax toxin receptor, and the Fc region of human immunoglobulin G (IgG). We evaluated, in N. benthamiana intact plants and detached leaves, the expression of CMG2-Fc under the control of the constitutive CaMV 35S promoter, and the co-expression of CMG2-Fc with nine different viral suppressors of post-transcriptional gene silencing (PTGS): p1, p10, p19, p21, p24, p25, p38, 2b, and HCPro. Overall, transient CMG2-Fc expression was higher on intact plants than detached leaves. Maximum expression was observed with p1 co-expression at 3.5 days post-infiltration (DPI), with a level of 0.56 g CMG2-Fc per kg of leaf fresh weight and 1.5% of the total soluble protein, a ten-fold increase in expression when compared to absence of suppression. Co-expression with the p25 PTGS suppressor also significantly increased the CMG2-Fc expression level after just 3.5 DPI.

  13. The STAR protein QKI-7 recruits PAPD4 to regulate post-transcriptional polyadenylation of target mRNAs

    OpenAIRE

    Yamagishi, Ryota; Tsusaka, Takeshi; Mitsunaga, Hiroko; Maehata, Takaharu; Hoshino, Shin-ichi

    2016-01-01

    Emerging evidence has demonstrated that regulating the length of the poly(A) tail on an mRNA is an efficient means of controlling gene expression at the post-transcriptional level. In early development, transcription is silenced and gene expression is primarily regulated by cytoplasmic polyadenylation. In somatic cells, considerable progress has been made toward understanding the mechanisms of negative regulation by deadenylation. However, positive regulation through elongation of the poly(A)...

  14. BAG3 promotes proliferation of ovarian cancer cells via post-transcriptional regulation of Skp2 expression.

    Science.gov (United States)

    Yan, Jing; Liu, Chuan; Jiang, Jing-Yi; Liu, Hans; Li, Chao; Li, Xin-Yu; Yuan, Ye; Zong, Zhi-Hong; Wang, Hua-Qin

    2017-10-01

    Bcl-2 associated athanogene 3 (BAG3) contains a modular structure, through which BAG3 interacts with a wide range of proteins, thereby affording its capacity to regulate multifaceted biological processes. BAG3 is often highly expressed and functions as a pro-survival factor in many cancers. However, the oncogenic potential of BAG3 remains not fully understood. The cell cycle regulator, S-phase kinase associated protein 2 (Skp2) is increased in various cancers and plays an important role in tumorigenesis. The current study demonstrated that BAG3 promoted proliferation of ovarian cancer cells via upregulation of Skp2. BAG3 stabilized Skp2 mRNA via its 3'-untranslated region (UTR). The current study demonstrated that BAG3 interacted with Skp2 mRNA. In addition, miR-21-5p suppressed Skp2 expression, which was compromised by forced BAG3 expression. These results indicated that at least some oncogenic functions of BAG3 were mediated through posttranscriptional regulation of Skp2 via antagonizing suppressive action of miR-21-5p in ovarian cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The RNA-binding protein Celf1 post-transcriptionally regulates p27Kip1 and Dnase2b to control fiber cell nuclear degradation in lens development.

    Directory of Open Access Journals (Sweden)

    Archana D Siddam

    2018-03-01

    Full Text Available Opacification of the ocular lens, termed cataract, is a common cause of blindness. To become transparent, lens fiber cells undergo degradation of their organelles, including their nuclei, presenting a fundamental question: does signaling/transcription sufficiently explain differentiation of cells progressing toward compromised transcriptional potential? We report that a conserved RNA-binding protein Celf1 post-transcriptionally controls key genes to regulate lens fiber cell differentiation. Celf1-targeted knockout mice and celf1-knockdown zebrafish and Xenopus morphants have severe eye defects/cataract. Celf1 spatiotemporally down-regulates the cyclin-dependent kinase (Cdk inhibitor p27Kip1 by interacting with its 5' UTR and mediating translation inhibition. Celf1 deficiency causes ectopic up-regulation of p21Cip1. Further, Celf1 directly binds to the mRNA of the nuclease Dnase2b to maintain its high levels. Together these events are necessary for Cdk1-mediated lamin A/C phosphorylation to initiate nuclear envelope breakdown and DNA degradation in fiber cells. Moreover, Celf1 controls alternative splicing of the membrane-organization factor beta-spectrin and regulates F-actin-crosslinking factor Actn2 mRNA levels, thereby controlling fiber cell morphology. Thus, we illustrate new Celf1-regulated molecular mechanisms in lens development, suggesting that post-transcriptional regulatory RNA-binding proteins have evolved conserved functions to control vertebrate oculogenesis.

  16. AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals.

    Science.gov (United States)

    Fagard, M; Boutet, S; Morel, J B; Bellini, C; Vaucheret, H

    2000-10-10

    Introduction of transgene DNA may lead to specific degradation of RNAs that are homologous to the transgene transcribed sequence through phenomena named post-transcriptional gene silencing (PTGS) in plants, quelling in fungi, and RNA interference (RNAi) in animals. It was shown previously that PTGS, quelling, and RNAi require a set of related proteins (SGS2, QDE-1, and EGO-1, respectively). Here we report the isolation of Arabidopsis mutants impaired in PTGS which are affected at the Argonaute1 (AGO1) locus. AGO1 is similar to QDE-2 required for quelling and RDE-1 required for RNAi. Sequencing of ago1 mutants revealed one amino acid essential for PTGS that is also present in QDE-2 and RDE-1 in a highly conserved motif. Taken together, these results confirm the hypothesis that these processes derive from a common ancestral mechanism that controls expression of invading nucleic acid molecules at the post-transcriptional level. As opposed to rde-1 and qde-2 mutants, which are viable, ago1 mutants display several developmental abnormalities, including sterility. These results raise the possibility that PTGS, or at least some of its elements, could participate in the regulation of gene expression during development in plants.

  17. The L1TD1 Protein Interactome Reveals the Importance of Post-transcriptional Regulation in Human Pluripotency

    Directory of Open Access Journals (Sweden)

    Maheswara Reddy Emani

    2015-03-01

    Full Text Available The RNA-binding protein L1TD1 is one of the most specific and abundant proteins in pluripotent stem cells and is essential for the maintenance of pluripotency in human cells. Here, we identify the protein interaction network of L1TD1 in human embryonic stem cells (hESCs and provide insights into the interactome network constructed in human pluripotent cells. Our data reveal that L1TD1 has an important role in RNA splicing, translation, protein traffic, and degradation. L1TD1 interacts with multiple stem-cell-specific proteins, many of which are still uncharacterized in the context of development. Further, we show that L1TD1 is a part of the pluripotency interactome network of OCT4, SOX2, and NANOG, bridging nuclear and cytoplasmic regulation and highlighting the importance of RNA biology in pluripotency.

  18. Arabidopsis OR proteins are the major post-transcriptional regulators of phytoene synthase in mediating carotenoid biosynthesis

    Science.gov (United States)

    Carotenoids are indispensable natural pigments to plants and humans. Phytoene synthase (PSY), the rate-limiting enzyme in carotenoid biosynthetic pathway, and ORANGE (OR), a regulator of chromoplast differentiation and enhancer of carotenoid biosynthesis, represent two key proteins that control caro...

  19. Role of a redox-based methylation switch in mRNA life cycle ( pre- & post- transcriptional maturation and protein turnover : Implications in neurological disorders

    Directory of Open Access Journals (Sweden)

    MALAV SUCHIN TRIVEDI

    2012-06-01

    Full Text Available Homeostatic synaptic scaling in response to neuronal stimulus or activation, as well as due to changes in cellular niche, is an important phenomenon for memory consolidation, retrieval, and other similar cognitive functions. Neurological disorders and cognitive disabilities in autism, Rett syndrome, schizophrenia, dementia etc., are strongly correlated to alterations in protein expression (both synaptic and cytoplasmic. This correlation suggests that efficient temporal regulation of synaptic protein expression is important for synaptic plasticity. In addition, equilibrium between mRNA processing, protein translation and protein turnover is a critical sensor/trigger for recording synaptic information, normal cognition and behavior. Thus a regulatory switch, controlling the lifespan, maturation and processing of mRNA, might influence cognition and adaptive behavior. Here, we propose a two part novel hypothesis that methylation might act as this suggested coordinating switch to critically regulate mRNA maturation at 1.The pre-transcription level, by regulating precursor-RNA (pre-RNA processing into mRNA, via other non-coding RNAs and their influence on splicing phenomenon, and 2. the post-transcription level by modulating the regulatory functions of ribonucleoproteins (RNP and RNA binding proteins (RNABP in mRNA translation, dendritic translocation as well as protein synthesis and synaptic turnover. DNA methylation changes are well recognized and highly correlated to gene expression levels as well as, learning and memory; however, RNA methylation changes are recently characterized and yet their functional implications are not established. This review article provides some insight on the intriguing consequences of changes in methylation levels on mRNA life-cycle. We also suggest that, since methylation is under the control of glutathione antioxidant levels, the redox status of neurons might be the central regulatory switch for methylation

  20. The post-transcriptional operon

    DEFF Research Database (Denmark)

    Tenenbaum, Scott A.; Christiansen, Jan; Nielsen, Henrik

    2011-01-01

    model (PTO) is used to describe data from an assortment of methods (e.g. RIP-Chip, CLIP-Chip, miRNA profiling, ribosome profiling) that globally address the functionality of mRNA. Several examples of post-transcriptional operons have been documented in the literature and demonstrate the usefulness...... of the model in identifying new participants in cellular pathways as well as in deepening our understanding of cellular responses....

  1. An sRNA and Cold Shock Protein Homolog-Based Feedforward Loop Post-transcriptionally Controls Cell Cycle Master Regulator CtrA.

    Science.gov (United States)

    Robledo, Marta; Schlüter, Jan-Philip; Loehr, Lars O; Linne, Uwe; Albaum, Stefan P; Jiménez-Zurdo, José I; Becker, Anke

    2018-01-01

    Adjustment of cell cycle progression is crucial for bacterial survival and adaptation under adverse conditions. However, the understanding of modulation of cell cycle control in response to environmental changes is rather incomplete. In α-proteobacteria, the broadly conserved cell cycle master regulator CtrA underlies multiple levels of control, including coupling of cell cycle and cell differentiation. CtrA levels are known to be tightly controlled through diverse transcriptional and post-translational mechanisms. Here, small RNA (sRNA)-mediated post-transcriptional regulation is uncovered as an additional level of CtrA fine-tuning. Computational predictions as well as transcriptome and proteome studies consistently suggested targeting of ctrA and the putative cold shock chaperone cspA5 mRNAs by the trans- encoded sRNA ( trans- sRNA) GspR (formerly SmelC775) in several Sinorhizobium species. GspR strongly accumulated in the stationary growth phase, especially in minimal medium (MM) cultures. Lack of the gspR locus confers a fitness disadvantage in competition with the wild type, while its overproduction hampers cell growth, suggesting that this riboregulator interferes with cell cycle progression. An eGFP-based reporter in vivo assay, involving wild-type and mutant sRNA and mRNA pairs, experimentally confirmed GspR-dependent post-transcriptional down-regulation of ctrA and cspA5 expression, which most likely occurs through base-pairing to the respective mRNA. The energetically favored secondary structure of GspR is predicted to comprise three stem-loop domains, with stem-loop 1 and stem-loop 3 targeting ctrA and cspA5 mRNA, respectively. Moreover, this work reports evidence for post-transcriptional control of ctrA by CspA5. Thus, this regulation and GspR-mediated post-transcriptional repression of ctrA and cspA5 expression constitute a coherent feed-forward loop, which may enhance the negative effect of GspR on CtrA levels. This novel regulatory circuit involving

  2. mTORC1 Balances Cellular Amino Acid Supply with Demand for Protein Synthesis through Post-transcriptional Control of ATF4

    Directory of Open Access Journals (Sweden)

    Yeonwoo Park

    2017-05-01

    Full Text Available The mammalian target of rapamycin complex 1 (mTORC1 is a master regulator of cell growth that is commonly deregulated in human diseases. Here we find that mTORC1 controls a transcriptional program encoding amino acid transporters and metabolic enzymes through a mechanism also used to regulate protein synthesis. Bioinformatic analysis of mTORC1-responsive mRNAs identified a promoter element recognized by activating transcription factor 4 (ATF4, a key effector of the integrated stress response. ATF4 translation is normally induced by the phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α through a mechanism that requires upstream open reading frames (uORFs in the ATF4 5′ UTR. mTORC1 also controls ATF4 translation through uORFs, but independently of changes in eIF2α phosphorylation. mTORC1 instead employs the 4E-binding protein (4E-BP family of translation repressors. These results link mTORC1-regulated demand for protein synthesis with an ATF4-regulated transcriptional program that controls the supply of amino acids to the translation machinery.

  3. Regulation of Adult CNS Axonal Regeneration by the Post-transcriptional Regulator Cpeb1

    Directory of Open Access Journals (Sweden)

    Wilson Pak-Kin Lou

    2018-01-01

    Full Text Available Adult mammalian central nervous system (CNS neurons are unable to regenerate following axonal injury, leading to permanent functional impairments. Yet, the reasons underlying this regeneration failure are not fully understood. Here, we studied the transcriptome and translatome shortly after spinal cord injury. Profiling of the total and ribosome-bound RNA in injured and naïve spinal cords identified a substantial post-transcriptional regulation of gene expression. In particular, transcripts associated with nervous system development were down-regulated in the total RNA fraction while remaining stably loaded onto ribosomes. Interestingly, motif association analysis of post-transcriptionally regulated transcripts identified the cytoplasmic polyadenylation element (CPE as enriched in a subset of these transcripts that was more resistant to injury-induced reduction at the transcriptome level. Modulation of these transcripts by overexpression of the CPE binding protein, Cpeb1, in mouse and Drosophila CNS neurons promoted axonal regeneration following injury. Our study uncovered a global evolutionarily conserved post-transcriptional mechanism enhancing regeneration of injured CNS axons.

  4. Integration of multi-omics data of a genome-reduced bacterium: Prevalence of post-transcriptional regulation and its correlation with protein abundances

    Science.gov (United States)

    Chen, Wei-Hua; van Noort, Vera; Lluch-Senar, Maria; Hennrich, Marco L.; H. Wodke, Judith A.; Yus, Eva; Alibés, Andreu; Roma, Guglielmo; Mende, Daniel R.; Pesavento, Christina; Typas, Athanasios; Gavin, Anne-Claude; Serrano, Luis; Bork, Peer

    2016-01-01

    We developed a comprehensive resource for the genome-reduced bacterium Mycoplasma pneumoniae comprising 1748 consistently generated ‘-omics’ data sets, and used it to quantify the power of antisense non-coding RNAs (ncRNAs), lysine acetylation, and protein phosphorylation in predicting protein abundance (11%, 24% and 8%, respectively). These factors taken together are four times more predictive of the proteome abundance than of mRNA abundance. In bacteria, post-translational modifications (PTMs) and ncRNA transcription were both found to increase with decreasing genomic GC-content and genome size. Thus, the evolutionary forces constraining genome size and GC-content modify the relative contributions of the different regulatory layers to proteome homeostasis, and impact more genomic and genetic features than previously appreciated. Indeed, these scaling principles will enable us to develop more informed approaches when engineering minimal synthetic genomes. PMID:26773059

  5. Post-transcriptional gene silencing of ribosomal protein S6 kinase 1 restores insulin action in leucine-treated skeletal muscle

    DEFF Research Database (Denmark)

    Deshmukh, A; Salehzadeh, F; Metayer-Coustard, S

    2009-01-01

    Excessive nutrients, especially amino acids, impair insulin action on glucose metabolism in skeletal muscle. We tested the hypothesis that the branched-chain amino acid leucine reduces acute insulin action in primary myotubes via a negative feedback mechanism involving ribosomal protein S6 kinase 1...... to excessive leucine. In conclusion, S6K1 plays an important role in the regulation of insulin action on glucose metabolism in skeletal muscle....

  6. Human T-cell leukemia virus type 2 post-transcriptional control protein p28 is required for viral infectivity and persistence in vivo.

    Science.gov (United States)

    Yamamoto, Brenda; Li, Min; Kesic, Matthew; Younis, Ihab; Lairmore, Michael D; Green, Patrick L

    2008-05-12

    Human T-cell leukemia virus (HTLV) type 1 and type 2 are related but distinct pathogenic complex retroviruses. HTLV-1 is associated with adult T-cell leukemia and a variety of immune-mediated disorders including the chronic neurological disease termed HTLV-1-associated myelopathy/tropical spastic paraparesis. In contrast, HTLV-2 displays distinct biological differences and is much less pathogenic, with only a few reported cases of leukemia and neurological disease associated with infection. In addition to the structural and enzymatic proteins, HTLV encodes regulatory (Tax and Rex) and accessory proteins. Tax and Rex positively regulate virus production and are critical for efficient viral replication and pathogenesis. Using an over-expression system approach, we recently reported that the accessory gene product of the HTLV-1 and HTLV-2 open reading frame (ORF) II (p30 and p28, respectively) acts as a negative regulator of both Tax and Rex by binding to and retaining their mRNA in the nucleus, leading to reduced protein expression and virion production. Further characterization revealed that p28 was distinct from p30 in that it was devoid of major transcriptional modulating activity, suggesting potentially divergent functions that may be responsible for the distinct pathobiologies of HTLV-1 and HTLV-2. In this study, we investigated the functional significance of p28 in HTLV-2 infection, proliferation, and immortaliztion of primary T-cells in culture, and viral survival in an infectious rabbit animal model. An HTLV-2 p28 knockout virus (HTLV-2Deltap28) was generated and evaluated. Infectivity and immortalization capacity of HTLV-2Deltap28 in vitro was indistinguishable from wild type HTLV-2. In contrast, we showed that viral replication was severely attenuated in rabbits inoculated with HTLV-2Deltap28 and the mutant virus failed to establish persistent infection. We provide direct evidence that p28 is dispensable for viral replication and cellular immortalization of

  7. Human T-cell leukemia virus type 2 post-transcriptional control protein p28 is required for viral infectivity and persistence in vivo

    Directory of Open Access Journals (Sweden)

    Kesic Matthew

    2008-05-01

    Full Text Available Abstract Background Human T-cell leukemia virus (HTLV type 1 and type 2 are related but distinct pathogenic complex retroviruses. HTLV-1 is associated with adult T-cell leukemia and a variety of immune-mediated disorders including the chronic neurological disease termed HTLV-1-associated myelopathy/tropical spastic paraparesis. In contrast, HTLV-2 displays distinct biological differences and is much less pathogenic, with only a few reported cases of leukemia and neurological disease associated with infection. In addition to the structural and enzymatic proteins, HTLV encodes regulatory (Tax and Rex and accessory proteins. Tax and Rex positively regulate virus production and are critical for efficient viral replication and pathogenesis. Using an over-expression system approach, we recently reported that the accessory gene product of the HTLV-1 and HTLV-2 open reading frame (ORF II (p30 and p28, respectively acts as a negative regulator of both Tax and Rex by binding to and retaining their mRNA in the nucleus, leading to reduced protein expression and virion production. Further characterization revealed that p28 was distinct from p30 in that it was devoid of major transcriptional modulating activity, suggesting potentially divergent functions that may be responsible for the distinct pathobiologies of HTLV-1 and HTLV-2. Results In this study, we investigated the functional significance of p28 in HTLV-2 infection, proliferation, and immortaliztion of primary T-cells in culture, and viral survival in an infectious rabbit animal model. An HTLV-2 p28 knockout virus (HTLV-2Δp28 was generated and evaluated. Infectivity and immortalization capacity of HTLV-2Δp28 in vitro was indistinguishable from wild type HTLV-2. In contrast, we showed that viral replication was severely attenuated in rabbits inoculated with HTLV-2Δp28 and the mutant virus failed to establish persistent infection. Conclusion We provide direct evidence that p28 is dispensable for

  8. Quick change: post-transcriptional regulation in Pseudomonas.

    Science.gov (United States)

    Grenga, Lucia; Little, Richard H; Malone, Jacob G

    2017-08-01

    Pseudomonas species have evolved dynamic and intricate regulatory networks to fine-tune gene expression, with complex regulation occurring at every stage in the processing of genetic information. This approach enables Pseudomonas to generate precise individual responses to the environment in order to improve their fitness and resource economy. The weak correlations we observe between RNA and protein abundance highlight the significant regulatory contribution of a series of intersecting post-transcriptional pathways, influencing mRNA stability, translational activity and ribosome function, to Pseudomonas environmental responses. This review examines our current understanding of three major post-transcriptional regulatory systems in Pseudomonas spp.; Gac/Rsm, Hfq and RimK, and presents an overview of new research frontiers, emerging genome-wide methodologies, and their potential for the study of global regulatory responses in Pseudomonas. © FEMS 2017.

  9. The architecture of mammalian ribosomal protein promoters

    Directory of Open Access Journals (Sweden)

    Perry Robert P

    2005-02-01

    Full Text Available Abstract Background Mammalian ribosomes contain 79 different proteins encoded by widely scattered single copy genes. Coordinate expression of these genes at transcriptional and post-transcriptional levels is required to ensure a roughly equimolar accumulation of ribosomal proteins. To date, detailed studies of only a very few ribosomal protein (rp promoters have been made. To elucidate the general features of rp promoter architecture, I made a detailed sequence comparison of the promoter regions of the entire set of orthologous human and mouse rp genes. Results A striking evolutionarily conserved feature of most rp genes is the separation by an intron of the sequences involved in transcriptional and translational regulation from the sequences with protein encoding function. Another conserved feature is the polypyrimidine initiator, which conforms to the consensus (Y2C+1TY(T2(Y3. At least 60 % of the rp promoters contain a largely conserved TATA box or A/T-rich motif, which should theoretically have TBP-binding capability. A remarkably high proportion of the promoters contain conserved binding sites for transcription factors that were previously implicated in rp gene expression, namely upstream GABP and Sp1 sites and downstream YY1 sites. Over 80 % of human and mouse rp genes contain a transposable element residue within 900 bp of 5' flanking sequence; very little sequence identity between human and mouse orthologues was evident more than 200 bp upstream of the transcriptional start point. Conclusions This analysis has provided some valuable insights into the general architecture of mammalian rp promoters and has identified parameters that might coordinately regulate the transcriptional activity of certain subsets of rp genes.

  10. Post-transcriptional regulation of gene expression in Yersinia species

    Directory of Open Access Journals (Sweden)

    Chelsea A Schiano

    2012-11-01

    Full Text Available Proper regulation of gene expression is required by bacterial pathogens to respond to continually changing environmental conditions and the host response during the infectious process. While transcriptional regulation is perhaps the most well understood form of controlling gene expression, recent studies have demonstrated the importance of post-transcriptional mechanisms of gene regulation that allow for more refined management of the bacterial response to host conditions. Yersinia species of bacteria are known to use various forms of post-transcriptional regulation for control of many virulence-associated genes. These include regulation by cis- and trans-acting small non-coding RNAs, RNA-binding proteins, RNases, and thermoswitches. The effects of these and other regulatory mechanisms on Yersinia physiology can be profound and have been shown to influence type III secretion, motility, biofilm formation, host cell invasion, intracellular survival and replication, and more. In this review, we will discuss these and other post-transcriptional mechanisms and their influence on virulence gene regulation, with a particular emphasis on how these processes influence the virulence of Yersinia in the host.

  11. Post-transcriptional trafficking and regulation of neuronal gene expression.

    Science.gov (United States)

    Goldie, Belinda J; Cairns, Murray J

    2012-02-01

    Intracellular messenger RNA (mRNA) traffic and translation must be highly regulated, both temporally and spatially, within eukaryotic cells to support the complex functional partitioning. This capacity is essential in neurons because it provides a mechanism for rapid input-restricted activity-dependent protein synthesis in individual dendritic spines. While this feature is thought to be important for synaptic plasticity, the structures and mechanisms that support this capability are largely unknown. Certainly specialized RNA binding proteins and binding elements in the 3' untranslated region (UTR) of translationally regulated mRNA are important, but the subtlety and complexity of this system suggests that an intermediate "specificity" component is also involved. Small non-coding microRNA (miRNA) are essential for CNS development and may fulfill this role by acting as the guide strand for mediating complex patterns of post-transcriptional regulation. In this review we examine post-synaptic gene regulation, mRNA trafficking and the emerging role of post-transcriptional gene silencing in synaptic plasticity.

  12. Evolution of RLSB, a nuclear-encoded S1 domain RNA binding protein associated with post-transcriptional regulation of plastid-encoded rbcL mRNA in vascular plants.

    Science.gov (United States)

    Yerramsetty, Pradeep; Stata, Matt; Siford, Rebecca; Sage, Tammy L; Sage, Rowan F; Wong, Gane Ka-Shu; Albert, Victor A; Berry, James O

    2016-06-29

    RLSB, an S-1 domain RNA binding protein of Arabidopsis, selectively binds rbcL mRNA and co-localizes with Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) within chloroplasts of C3 and C4 plants. Previous studies using both Arabidopsis (C3) and maize (C4) suggest RLSB homologs are post-transcriptional regulators of plastid-encoded rbcL mRNA. While RLSB accumulates in all Arabidopsis leaf chlorenchyma cells, in C4 leaves RLSB-like proteins accumulate only within Rubisco-containing bundle sheath chloroplasts of Kranz-type species, and only within central compartment chloroplasts in the single cell C4 plant Bienertia. Our recent evidence implicates this mRNA binding protein as a primary determinant of rbcL expression, cellular localization/compartmentalization, and photosynthetic function in all multicellular green plants. This study addresses the hypothesis that RLSB is a highly conserved Rubisco regulatory factor that occurs in the chloroplasts all higher plants. Phylogenetic analysis has identified RLSB orthologs and paralogs in all major plant groups, from ancient liverworts to recent angiosperms. RLSB homologs were also identified in algae of the division Charophyta, a lineage closely related to land plants. RLSB-like sequences were not identified in any other algae, suggesting that it may be specific to the evolutionary line leading to land plants. The RLSB family occurs in single copy across most angiosperms, although a few species with two copies were identified, seemingly randomly distributed throughout the various taxa, although perhaps correlating in some cases with known ancient whole genome duplications. Monocots of the order Poales (Poaceae and Cyperaceae) were found to contain two copies, designated here as RLSB-a and RLSB-b, with only RLSB-a implicated in the regulation of rbcL across the maize developmental gradient. Analysis of microsynteny in angiosperms revealed high levels of conservation across eudicot species and for both paralogs in

  13. Nitrite reductase expression is regulated at the post-transcriptional level by the nitrogen source in Nicotiana plumbaginifolia and Arabidopsis thaliana.

    Science.gov (United States)

    Crété, P; Caboche, M; Meyer, C

    1997-04-01

    Higher plant nitrite reductase (NiR) is a monomeric chloroplastic protein catalysing the reduction of nitrite, the product of nitrate reduction, to ammonium. The expression of this enzyme is controlled at the transcriptional level by light and by the nitrogen source. In order to study the post-transcriptional regulation of NiR, Nicotiana plumbaginifolia and Arabidopsis thaliana were transformed with a chimaeric NiR construct containing the tobacco leaf NiR1 coding sequence driven by the CaMV 35S RNA promoter. Transformed plants did not show any phenotypic difference when compared with the wild-type, although they overexpressed NiR activity in the leaves. When these plants were grown in vitro on media containing either nitrate or ammonium as sole nitrogen source, NiR mRNA derived from transgene expression was constitutively expressed, whereas NiR activity and protein level were strongly reduced on ammonium-containing medium. These results suggest that, together with transcriptional control, post-transcriptional regulation by the nitrogen source is operating on NiR expression. This post-transcriptional regulation of tobacco leaf NiR1 expression was observed not only in the closely related species N. plumbaginifolia but also in the more distant species A. thaliana.

  14. Post-transcriptional bursting in genes regulated by small RNA molecules

    Science.gov (United States)

    Rodrigo, Guillermo

    2018-03-01

    Gene expression programs in living cells are highly dynamic due to spatiotemporal molecular signaling and inherent biochemical stochasticity. Here we study a mechanism based on molecule-to-molecule variability at the RNA level for the generation of bursts of protein production, which can lead to heterogeneity in a cell population. We develop a mathematical framework to show numerically and analytically that genes regulated post transcriptionally by small RNA molecules can exhibit such bursts due to different states of translation activity (on or off), mostly revealed in a regime of few molecules. We exploit this framework to compare transcriptional and post-transcriptional bursting and also to illustrate how to tune the resulting protein distribution with additional post-transcriptional regulations. Moreover, because RNA-RNA interactions are predictable with an energy model, we define the kinetic constants of on-off switching as functions of the two characteristic free-energy differences of the system, activation and formation, with a nonequilibrium scheme. Overall, post-transcriptional bursting represents a distinctive principle linking gene regulation to gene expression noise, which highlights the importance of the RNA layer beyond the simple information transfer paradigm and significantly contributes to the understanding of the intracellular processes from a first-principles perspective.

  15. Transcriptional and post-transcriptional regulation of nucleotide excision repair genes in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Lefkofsky, Hailey B. [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Veloso, Artur [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Bioinformatics Program, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI (United States); Ljungman, Mats, E-mail: ljungman@umich.edu [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI (United States)

    2015-06-15

    Nucleotide excision repair (NER) removes DNA helix-distorting lesions induced by UV light and various chemotherapeutic agents such as cisplatin. These lesions efficiently block the elongation of transcription and need to be rapidly removed by transcription-coupled NER (TC-NER) to avoid the induction of apoptosis. Twenty-nine genes have been classified to code for proteins participating in nucleotide excision repair (NER) in human cells. Here we explored the transcriptional and post-transcriptional regulation of these NER genes across 13 human cell lines using Bru-seq and BruChase-seq, respectively. Many NER genes are relatively large in size and therefore will be easily inactivated by UV-induced transcription-blocking lesions. Furthermore, many of these genes produce transcripts that are rather unstable. Thus, these genes are expected to rapidly lose expression leading to a diminished function of NER. One such gene is ERCC6 that codes for the CSB protein critical for TC-NER. Due to its large gene size and high RNA turnover rate, the ERCC6 gene may act as dosimeter of DNA damage so that at high levels of damage, ERCC6 RNA levels would be diminished leading to the loss of CSB expression, inhibition of TC-NER and the promotion of cell death.

  16. Multiple post-transcriptional regulatory mechanisms in ferritin gene expression

    International Nuclear Information System (INIS)

    Mattia, E.; Den Blaauwen, J.; Van Renswoude, J.; Ashwell, G.

    1989-01-01

    The authors have investigated the mechanisms involved in the regulation of ferritin biosynthesis in K562 human erythroleukemia cells during prolonged exposure to iron. They show that, upon addition of hemin (an efficient iron donor) to the cell culture, the rate of ferritin biosynthesis reaches a maximum after a few hours and then decreases. During a 24-hr incubation with the iron donor the concentrations of total ferritin heavy (H) and light (L) subunit mRNAs rise 2- to 5-fold and 2- to 3-fold, respectively, over the control values, while the amount of the protein increases 10- to 30-fold. The hemin-induced increment in ferritin subunit mRNA is not prevented by deferoxamine, suggesting that it is not directly mediated by chelatable iron. In vitro nuclear transcription analyses performed on nuclei isolated from control cells and cells grown in the presence of hemin indicate that the rates of synthesis of H- and L-subunit mRNAs remain constant. They conclude that iron-induced ferritin biosynthesis is governed by multiple post-transcriptional regulatory mechanisms. They propose that exposure of cells to iron leads to stabilization of ferritin mRNAs, in addition to activation and translation of stored H-and L-subunit mRNAs

  17. Post-transcriptional regulation of ribosome biogenesis in yeast

    Directory of Open Access Journals (Sweden)

    Isabelle C. Kos-Braun

    2017-05-01

    Full Text Available Most microorganisms are exposed to the constantly and often rapidly changing environment. As such they evolved mechanisms to balance their metabolism and energy expenditure with the resources available to them. When resources become scarce or conditions turn out to be unfavourable for growth, cells reduce their metabolism and energy usage to survive. One of the major energy consuming processes in the cell is ribosome biogenesis. Unsurprisingly, cells encountering adverse conditions immediately shut down production of new ribosomes. It is well established that nutrient depletion leads to a rapid repression of transcription of the genes encoding ribosomal proteins, ribosome biogenesis factors as well as ribosomal RNA (rRNA. However, if pre-rRNA processing and ribosome assembly are regulated post-transcriptionally remains largely unclear. We have recently uncovered that the yeast Saccharomyces cerevisiae rapidly switches between two alternative pre-rRNA processing pathways depending on the environmental conditions. Our findings reveal a new level of complexity in the regulation of ribosome biogenesis.

  18. High SINE RNA Expression Correlates with Post-Transcriptional Downregulation of BRCA1

    Directory of Open Access Journals (Sweden)

    Giovanni Bosco

    2013-04-01

    Full Text Available Short Interspersed Nuclear Elements (SINEs are non-autonomous retrotransposons that comprise a large fraction of the human genome. SINEs are demethylated in human disease, but whether SINEs become transcriptionally induced and how the resulting transcripts may affect the expression of protein coding genes is unknown. Here, we show that downregulation of the mRNA of the tumor suppressor gene BRCA1 is associated with increased transcription of SINEs and production of sense and antisense SINE small RNAs. We find that BRCA1 mRNA is post-transcriptionally down-regulated in a Dicer and Drosha dependent manner and that expression of a SINE inverted repeat with sequence identity to a BRCA1 intron is sufficient for downregulation of BRCA1 mRNA. These observations suggest that transcriptional activation of SINEs could contribute to a novel mechanism of RNA mediated post-transcriptional silencing of human genes.

  19. Insights into the post-transcriptional regulation of the mitochondrial electron transport chain.

    Science.gov (United States)

    Sirey, Tamara M; Ponting, Chris P

    2016-10-15

    The regulation of the mitochondrial electron transport chain is central to the control of cellular homeostasis. There are significant gaps in our understanding of how the expression of the mitochondrial and nuclear genome-encoded components of the electron transport chain are co-ordinated, and how the assembly of the protein complexes that constitute the electron transport chain are regulated. Furthermore, the role post-transcriptional gene regulation may play in modulating these processes needs to be clarified. This review summarizes the current knowledge regarding the post-transcriptional gene regulation of the electron transport chain and highlights how noncoding RNAs may contribute significantly both to complex electron transport chain regulatory networks and to mitochondrial dysfunction. © 2016 The Author(s).

  20. Post-transcriptional Mechanisms Contribute Little to Phenotypic Variation in Snake Venoms.

    Science.gov (United States)

    Rokyta, Darin R; Margres, Mark J; Calvin, Kate

    2015-09-09

    Protein expression is a major link in the genotype-phenotype relationship, and processes affecting protein abundances, such as rates of transcription and translation, could contribute to phenotypic evolution if they generate heritable variation. Recent work has suggested that mRNA abundances do not accurately predict final protein abundances, which would imply that post-transcriptional regulatory processes contribute significantly to phenotypes. Post-transcriptional processes also appear to buffer changes in transcriptional patterns as species diverge, suggesting that the transcriptional changes have little or no effect on the phenotypes undergoing study. We tested for concordance between mRNA and protein expression levels in snake venoms by means of mRNA-seq and quantitative mass spectrometry for 11 snakes representing 10 species, six genera, and three families. In contrast to most previous work, we found high correlations between venom gland transcriptomes and venom proteomes for 10 of our 11 comparisons. We tested for protein-level buffering of transcriptional changes during species divergence by comparing the difference between transcript abundance and protein abundance for three pairs of species and one intraspecific pair. We found no evidence for buffering during divergence of our three species pairs but did find evidence for protein-level buffering for our single intraspecific comparison, suggesting that buffering, if present, was a transient phenomenon in venom divergence. Our results demonstrated that post-transcriptional mechanisms did not contribute significantly to phenotypic evolution in venoms and suggest a more prominent and direct role for cis-regulatory evolution in phenotypic variation, particularly for snake venoms. Copyright © 2015 Rokyta et al.

  1. RNAi mediates post-transcriptional repression of gene expression in fission yeast Schizosaccharomyces pombe

    International Nuclear Information System (INIS)

    Smialowska, Agata; Djupedal, Ingela; Wang, Jingwen; Kylsten, Per; Swoboda, Peter; Ekwall, Karl

    2014-01-01

    Highlights: • Protein coding genes accumulate anti-sense sRNAs in fission yeast S. pombe. • RNAi represses protein-coding genes in S. pombe. • RNAi-mediated gene repression is post-transcriptional. - Abstract: RNA interference (RNAi) is a gene silencing mechanism conserved from fungi to mammals. Small interfering RNAs are products and mediators of the RNAi pathway and act as specificity factors in recruiting effector complexes. The Schizosaccharomyces pombe genome encodes one of each of the core RNAi proteins, Dicer, Argonaute and RNA-dependent RNA polymerase (dcr1, ago1, rdp1). Even though the function of RNAi in heterochromatin assembly in S. pombe is established, its role in controlling gene expression is elusive. Here, we report the identification of small RNAs mapped anti-sense to protein coding genes in fission yeast. We demonstrate that these genes are up-regulated at the protein level in RNAi mutants, while their mRNA levels are not significantly changed. We show that the repression by RNAi is not a result of heterochromatin formation. Thus, we conclude that RNAi is involved in post-transcriptional gene silencing in S. pombe

  2. Transcriptional and Post-Transcriptional Mechanisms of the Development of Neocortical Lamination

    Directory of Open Access Journals (Sweden)

    Tatiana Popovitchenko

    2017-11-01

    Full Text Available The neocortex is a laminated brain structure that is the seat of higher cognitive capacity and responses, long-term memory, sensory and emotional functions, and voluntary motor behavior. Proper lamination requires that progenitor cells give rise to a neuron, that the immature neuron can migrate away from its mother cell and past other cells, and finally that the immature neuron can take its place and adopt a mature identity characterized by connectivity and gene expression; thus lamination proceeds through three steps: genesis, migration, and maturation. Each neocortical layer contains pyramidal neurons that share specific morphological and molecular characteristics that stem from their prenatal birth date. Transcription factors are dynamic proteins because of the cohort of downstream factors that they regulate. RNA-binding proteins are no less dynamic, and play important roles in every step of mRNA processing. Indeed, recent screens have uncovered post-transcriptional mechanisms as being integral regulatory mechanisms to neocortical development. Here, we summarize major aspects of neocortical laminar development, emphasizing transcriptional and post-transcriptional mechanisms, with the aim of spurring increased understanding and study of its intricacies.

  3. Post-transcriptional regulation of MRE11 expression in muscle-invasive bladder tumours.

    Science.gov (United States)

    Martin, Rebecca M; Kerr, Martin; Teo, Mark T W; Jevons, Sarah J; Koritzinsky, Marianne; Wouters, Bradly G; Bhattarai, Selina; Kiltie, Anne E

    2014-02-28

    Predictive assays are needed to help optimise treatment in muscle-invasive bladder cancer, where patients can be treated by either cystectomy or radical radiotherapy. Our finding that low tumour MRE11 expression is predictive of poor response to radiotherapy but not cystectomy was recently independently validated. Here we investigated further the mechanism underlying low MRE11 expression seen in poorly-responding patients. MRE11 RNA and protein levels were measured in 88 bladder tumour patient samples, by real-time PCR and immunohistochemistry respectively, and a panel of eight bladder cancer cell lines was screened for MRE11, RAD50 and NBS1 mRNA and protein expression. There was no correlation between bladder tumour MRE11 protein and RNA scores (Spearman's rho 0.064, p=0.65), suggesting MRE11 is controlled post-transcriptionally, a pattern confirmed in eight bladder cancer cell lines. In contrast, NBS1 and RAD50 mRNA and protein levels were correlated (p=0.01 and p=0.03, respectively), suggesting primary regulation at the level of transcription. MRE11 protein levels were correlated with NBS1 and RAD50 mRNA and protein levels, implicating MRN complex formation as an important determinant of MRE11 expression, driven by RAD50 and NBS1 expression. Our findings of the post-transcriptional nature of the control of MRE11 imply that any predictive assays used in patients need to be performed at the protein level rather than the mRNA level.

  4. Regulation of host-pathogen interactions via the post-transcriptional Csr/Rsm system.

    Science.gov (United States)

    Kusmierek, Maria; Dersch, Petra

    2018-02-01

    A successful colonization of specific hosts requires a rapid and efficient adaptation of the virulence-relevant gene expression program by bacterial pathogens. An important element in this endeavor is the Csr/Rsm system. This multi-component, post-transcriptional control system forms a central hub within complex regulatory networks and coordinately adjusts virulence properties with metabolic and physiological attributes of the pathogen. A key function is elicited by the RNA-binding protein CsrA/RsmA. CsrA/RsmA interacts with numerous target mRNAs, many of which encode crucial virulence factors, and alters their translation, stability or elongation of transcription. Recent studies highlighted that important colonization factors, toxins, and bacterial secretion systems are under CsrA/RsmA control. CsrA/RsmA deficiency impairs host colonization and attenuates virulence, making this post-transcriptional regulator a suitable drug target. The CsrA/RsmA protein can be inactivated through sequestration by non-coding RNAs, or via binding to specific highly abundant mRNAs and interacting proteins. The wide range of interaction partners and RNA targets, as well as the overarching, interlinked genetic control circuits illustrate the complexity of this regulatory system in the different pathogens. Future work addressing spatio-temporal changes of Csr/Rsm-mediated control during the course of an infection will help us to understand how bacteria reprogram their expression profile to cope with continuous changes experienced in colonized niches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Post-transcriptional regulation of vascular endothelial growth factor: Implications for tumor angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Peter S Yoo; Abby L Mulkeen; Charles H Cha

    2006-01-01

    Vascular endothelial growth factor (VEGF) is a potent secreted mitogen critical for physiologic and tumor angiogenesis. Regulation of VEGF occurs at several levels, including transcription, mRNA stabilization,translation, and differential cellular localization of various isoforms. Recent advances in our understanding of posttranscriptional regulation of VEGF include identification of the stabilizing mRNA binding protein, HuR, and the discovery of internal ribosomal entry sites in the 5'UTR of the VEGF mRNA. Monoclonal anti-VEGF antibody was recently approved for use in humans, but suffers from the need for high systemic doses. RNA interference (RNAi)technology is being used in vitro and in animal models with promising results. Here, we review the literature on post-transcriptional regulation of VEGF and describe recent progress in targeting these mechanisms for therapeutic benefit.

  6. LIN28 phosphorylation by MAPK/ERK couples signaling to the post-transcriptional control of pluripotency

    Science.gov (United States)

    Tsanov, Kaloyan M.; Pearson, Daniel S.; Wu, Zhaoting; Han, Areum; Triboulet, Robinson; Seligson, Marc T.; Powers, John T.; Osborne, Jihan K.; Kane, Susan; Gygi, Steven P.; Gregory, Richard I.; Daley, George Q.

    2016-01-01

    Signaling and post-transcriptional gene control are both critical for the regulation of pluripotency1,2, yet how they are integrated to influence cell identity remains poorly understood. LIN28 (also known as LIN28A), a highly conserved RNA-binding protein (RBP), has emerged as a central post-transcriptional regulator of cell fate through blockade of let-7 microRNA (miRNA) biogenesis and direct modulation of mRNA translation3. Here we show that LIN28 is phosphorylated by MAPK/ERK in pluripotent stem cells (PSCs), which increases its levels via post-translational stabilization. LIN28 phosphorylation had little impact on let-7 but enhanced LIN28’s effect on its direct mRNA targets, revealing a mechanism that uncouples LIN28’s let-7-dependent and independent activities. We have linked this mechanism to the induction of pluripotency by somatic cell reprogramming and the transition from naïve to primed pluripotency. Collectively, our findings indicate that MAPK/ERK directly impacts LIN28, defining an axis that connects signaling, post-transcriptional gene control, and cell fate regulation. PMID:27992407

  7. Caveolin-1-mediated post-transcriptional regulation of inducible nitric oxide synthase in human colon carcinoma cells

    Directory of Open Access Journals (Sweden)

    EMANUELA FELLEY-BOSCO

    2002-01-01

    Full Text Available Reactive oxygen species are now widely recognized as important players contributing both to cell homeostasis and the development of disease. In this respect nitric oxide (NO is no exception. The discussion here will center on regulation of the inducible form of nitric oxide synthase (iNOS for two reasons. First, only iNOS produces micromolar NO concentrations, amounts that are high by comparison with the picomolar to nanomolar concentrations resulting from Ca2+-controlled NO production by endothelial eNOS or neuronal nNOS. Second, iNOS is not constitutively expressed in cells and regulation of this isoenzyme, in contrast to endothelial eNOS or neuronal nNOS, is widely considered to occur at the transcriptional level only. In particular, we were interested in the possibility that caveolin-1, a protein that functions as a tumor suppressor in colon carcinoma cells (Bender et al., 2002; this issue, might regulate iNOS activity. Our results provide evidence for the existence of a post-transcriptional mechanism controlling iNOS protein levels that involves caveolin-1-dependent sequestration of iNOS within a detergent-insoluble compartment. Interestingly, despite the high degree of conservation of the caveolin-1 scaffolding domain binding motif within all NOS enzymes, the interaction detected between caveolin-1 and iNOS in vitro is crucially dependent on presence of a caveolin-1 sequence element immediately adjacent to the scaffolding domain. A model is presented summarizing the salient aspects of these results. These observations are important in the context of tumor biology, since down-regulation of caveolin-1 is predicted to promote uncontrolled iNOS activity, genotoxic damage and thereby facilitate tumor development in humans

  8. The Anopheles gambiae cE5, a tight- and fast-binding thrombin inhibitor with post-transcriptionally regulated salivary-restricted expression

    Czech Academy of Sciences Publication Activity Database

    Ronca, R.; Kotsyfakis, Michalis; Lombardo, F.; Rizzo, C.; Currà, C.; Ponzi, M.; Fiorentino, G.; Ribeiro, J.M.C.; Arcà, B.

    2012-01-01

    Roč. 42, č. 9 (2012), s. 610-620 ISSN 0965-1748 R&D Projects: GA ČR GAP502/12/2409 Institutional research plan: CEZ:AV0Z60220518 Keywords : Anopheles * Salivary protein * Anti-thrombin * Anophelin * Hematophagy * Post-transcriptional regulation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.234, year: 2012

  9. Post-transcription cleavage generates the 3' end of F17R transcripts in vaccinia virus

    International Nuclear Information System (INIS)

    D'Costa, Susan M.; Antczak, James B.; Pickup, David J.; Condit, Richard C.

    2004-01-01

    Most vaccinia virus intermediate and late mRNAs possess 3' ends that are extremely heterogeneous in sequence. However, late mRNAs encoding the cowpox A-type inclusion protein (ATI), the second largest subunit of the RNA polymerase, and the late telomeric transcripts possess homogeneous 3' ends. In the case of the ATI mRNA, it has been shown that the homogeneous 3' end is generated by a post-transcriptional endoribonucleolytic cleavage event. We have determined that the F17R gene also produces homogeneous transcripts generated by a post-transcriptional cleavage event. Mapping of in vivo mRNA shows that the major 3' end of the F17R transcript maps 1262 nt downstream of the F17R translational start site. In vitro transcripts spanning the in vivo 3' end are cleaved in an in vitro reaction using extracts from virus infected cells, and the site of cleavage is the same both in vivo and in vitro. Cleavage is not observed using extract from cells infected in the presence of hydroxyurea; therefore, the cleavage factor is either virus-coded or virus-induced during the post-replicative phase of virus replication. The cis-acting sequence responsible for cleavage is orientation specific and the factor responsible for cleavage activity has biochemical properties similar to the factor required for cleavage of ATI transcripts. Partially purified cleavage factor generates cleavage products of expected size when either the ATI or F17R substrates are used in vitro, strongly suggesting that cleavage of both transcripts is mediated by the same factor

  10. Coordinated Evolution of Transcriptional and Post-Transcriptional Regulation for Mitochondrial Functions in Yeast Strains.

    Directory of Open Access Journals (Sweden)

    Xuepeng Sun

    Full Text Available Evolution of gene regulation has been proposed to play an important role in environmental adaptation. Exploring mechanisms underlying coordinated evolutionary changes at various levels of gene regulation could shed new light on how organism adapt in nature. In this study, we focused on regulatory differences between a laboratory Saccharomyces cerevisiae strain BY4742 and a pathogenic S. cerevisiae strain, YJM789. The two strains diverge in many features, including growth rate, morphology, high temperature tolerance, and pathogenicity. Our RNA-Seq and ribosomal footprint profiling data showed that gene expression differences are pervasive, and genes functioning in mitochondria are mostly divergent between the two strains at both transcriptional and translational levels. Combining functional genomics data from other yeast strains, we further demonstrated that significant divergence of expression for genes functioning in the electron transport chain (ETC was likely caused by differential expression of a transcriptional factor, HAP4, and that post-transcriptional regulation mediated by an RNA-binding protein, PUF3, likely led to expression divergence for genes involved in mitochondrial translation. We also explored mito-nuclear interactions via mitochondrial DNA replacement between strains. Although the two mitochondrial genomes harbor substantial sequence divergence, neither growth nor gene expression were affected by mitochondrial DNA replacement in both fermentative and respiratory growth media, indicating compatible mitochondrial and nuclear genomes between these two strains in the tested conditions. Collectively, we used mitochondrial functions as an example to demonstrate for the first time that evolution at both transcriptional and post-transcriptional levels could lead to coordinated regulatory changes underlying strain specific functional variations.

  11. Resveratrol post-transcriptionally regulates pro-inflammatory gene expression via regulation of KSRP RNA binding activity

    Science.gov (United States)

    Bollmann, Franziska; Art, Julia; Henke, Jenny; Schrick, Katharina; Besche, Verena; Bros, Matthias; Li, Huige; Siuda, Daniel; Handler, Norbert; Bauer, Florian; Erker, Thomas; Behnke, Felix; Mönch, Bettina; Härdle, Lorena; Hoffmann, Markus; Chen, Ching-Yi; Förstermann, Ulrich; Dirsch, Verena M.; Werz, Oliver; Kleinert, Hartmut; Pautz, Andrea

    2014-01-01

    Resveratrol shows beneficial effects in inflammation-based diseases like cancer, cardiovascular and chronic inflammatory diseases. Therefore, the molecular mechanisms of the anti-inflammatory resveratrol effects deserve more attention. In human epithelial DLD-1 and monocytic Mono Mac 6 cells resveratrol decreased the expression of iNOS, IL-8 and TNF-α by reducing mRNA stability without inhibition of the promoter activity. Shown by pharmacological and siRNA-mediated inhibition, the observed effects are SIRT1-independent. Target-fishing and drug responsive target stability experiments showed selective binding of resveratrol to the RNA-binding protein KSRP, a central post-transcriptional regulator of pro-inflammatory gene expression. Knockdown of KSRP expression prevented resveratrol-induced mRNA destabilization in human and murine cells. Resveratrol did not change KSRP expression, but immunoprecipitation experiments indicated that resveratrol reduces the p38 MAPK-related inhibitory KSRP threonine phosphorylation, without blocking p38 MAPK activation or activity. Mutation of the p38 MAPK target site in KSRP blocked the resveratrol effect on pro-inflammatory gene expression. In addition, resveratrol incubation enhanced KSRP-exosome interaction, which is important for mRNA degradation. Finally, resveratrol incubation enhanced its intra-cellular binding to the IL-8, iNOS and TNF-α mRNA. Therefore, modulation of KSRP mRNA binding activity and, thereby, enhancement of mRNA degradation seems to be the common denominator of many anti-inflammatory effects of resveratrol. PMID:25352548

  12. Post-transcriptional regulation of macrophage ABCA1, an early response gene to IFN-γ

    International Nuclear Information System (INIS)

    Alfaro Leon, Martha Leticia; Evans, Glenn F.; Farmen, Mark W.; Zuckerman, Steven H.

    2005-01-01

    Interferon-γ (IFN-γ) down-regulates receptors associated with reverse cholesterol transport including ABCA1. In the present study, the kinetics and mechanism of ABCA1 down-regulation were determined in mouse peritoneal macrophages. IFN-γ decreased ABCA1 mRNA 1 h following IFN-γ addition and was maximally reduced by 3 h. Down-regulation was protein synthesis dependent and involved post-transcriptional processes. ABCA1 message had a T 1/2 of 115 min in actinomycin treated cells that was reduced to a T 1/2 of 37 min by IFN-γ. The decrease in message stability was also associated with a rapid loss of ABCA1 protein, significant 3 h following IFN-γ addition. The kinetics of ABCA1 message and protein decrease was consistent with the early IFN-γ-induced changes in Stat1 phosphorylation and nuclear translocation observed in these cells. Therefore, ABCA1 can be considered as an early response gene to macrophage activation by IFN-γ with down-regulation occurring by message destabilization

  13. Building the Future: Post-transcriptional Regulation of Cell Fate Decisions Prior to the Xenopus Midblastula Transition.

    Science.gov (United States)

    Sheets, Michael D

    2015-01-01

    In all animals, a critical period in early development is when embryonic cells switch from relying solely upon maternally deposited RNAs and proteins to relying upon molecules encoded by the zygotic genome. Xenopus embryos have served as a model for examining this switch, as well as the maternally controlled stages that prepare for it. In Xenopus, the robust activation of zygotic transcription occurs at the 12th cleavage division and is referred to as the midblastula transition (MBT). Prior to MBT, gene expression is regulated by post-transcriptional events including mRNA and protein localization, protein post-translational modification, and mRNA translation. After the MBT, appropriate transcriptional regulation of the zygotic genome becomes critical and predominates. However, it is important to realize that the first key cell fate decisions that have profound impacts on development occur prior to the MBT and these are governed by regulating the expression of maternally deposited regulatory mRNAs and proteins. In this chapter, I will discuss post-transcriptional mechanisms that function during the maternal stages of Xenopus development with an emphasis on mechanisms known to directly modulate cell fate decisions. Emerging approaches and technologies that will help better understand this phase of development will also be discussed. © 2015 Elsevier Inc. All rights reserved.

  14. Promoter activity of polypyrimidine tract-binding protein genes of potato responds to environmental cues.

    Science.gov (United States)

    Butler, Nathaniel M; Hannapel, David J

    2012-12-01

    Polypyrimidine tract-binding (PTB) proteins are RNA-binding proteins that target specific RNAs for post-transcriptional processing by binding cytosine/uracil motifs. PTBs have established functions in a range of RNA processes including splicing, translation, stability and long-distance transport. Six PTB-like genes identified in potato have been grouped into two clades based on homology to other known plant PTBs. StPTB1 and StPTB6 are closely related to a PTB protein discovered in pumpkin, designated CmRBP50, and contain four canonical RNA-recognition motifs. CmRBP50 is expressed in phloem tissues and functions as the core protein of a phloem-mobile RNA/protein complex. Sequence from the potato genome database was used to clone the upstream sequence of these two PTB genes and analyzed to identify conserved cis-elements. The promoter of StPTB6 was enriched for regulatory elements for light and sucrose induction and defense. Upstream sequence of both PTB genes was fused to β-glucuronidase and monitored in transgenic potato lines. In whole plants, the StPTB1 promoter was most active in leaf veins and petioles, whereas StPTB6 was most active in leaf mesophyll. Both genes are active in new tubers and tuber sprouts. StPTB6 expression was induced in stems and stolon sections in response to sucrose and in leaves or petioles in response to light, heat, drought and mechanical wounding. These results show that CmRBP50-like genes of potato exhibit distinct expression patterns and respond to both developmental and environmental cues.

  15. Post-Transcriptional Control of Gene Expression in Mouse Early Embryo Development: A View from the Tip of the Iceberg

    Directory of Open Access Journals (Sweden)

    Claudio Sette

    2011-04-01

    Full Text Available Fertilization is a very complex biological process that requires the perfect cooperation between two highly specialized cells: the male and female gametes. The oocyte provides the physical space where this process takes place, most of the energetic need, and half of the genetic contribution. The spermatozoon mostly contributes the other half of the chromosomes and it is specialized to reach and to penetrate the oocyte. Notably, the mouse oocyte and early embryo are transcriptionally inactive. Hence, they fully depend on the maternal mRNAs and proteins stored during oocyte maturation to drive the onset of development. The new embryo develops autonomously around the four-cell stage, when maternal supplies are exhausted and the zygotic genome is activated in mice. This oocyte-to-embryo transition needs an efficient and tightly regulated translation of the maternally-inherited mRNAs, which likely contributes to embryonic genome activation. Full understanding of post-transcriptional regulation of gene expression in early embryos is crucial to understand the reprogramming of the embryonic genome, it might help driving reprogramming of stem cells in vitro and will likely improve in vitro culturing of mammalian embryos for assisted reproduction. Nevertheless, the knowledge of the mechanism(s underlying this fundamental step in embryogenesis is still scarce, especially if compared to other model organisms. We will review here the current knowledge on the post-transcriptional control of gene expression in mouse early embryos and discuss some of the unanswered questions concerning this fascinating field of biology.

  16. HuB (elavl2 mRNA is restricted to the germ cells by post-transcriptional mechanisms including stabilisation of the message by DAZL.

    Directory of Open Access Journals (Sweden)

    Sophie E Wiszniak

    Full Text Available The ability of germ cells to carry out a gene regulatory program distinct from the surrounding somatic tissue, and their capacity to specify an entire new organism has made them a focus of many studies that seek to understand how specific regulatory mechanisms, particularly post-transcriptional mechanisms, contribute to cell fate. In zebrafish, germ cells are specified through the inheritance of cytoplasmic determinants, termed the germ plasm, which contains a number of maternal mRNAs and proteins. Investigation of several of these messages has revealed that the restricted localisation of these mRNAs to the germ plasm and subsequent germ cells is due to cis-acting sequence elements present in their 3'UTRs. Here we show that a member of the Hu family of RNA-binding proteins, HuB, is maternally provided in the zebrafish embryo and exhibits germ cell specific expression during embryogenesis. Restriction of HuB mRNA to the germ cells is dependent on a number of sequence elements in its 3'UTR, which act to degrade the mRNA in the soma and stabilise it in the germ cells. In addition, we show that the germ cell specific RNA-binding protein DAZL is able to promote HuB mRNA stability and translation in germ cells, and further demonstrate that these activities require a 30 nucleotide element in the 3'UTR. Our study suggests that DAZL specifically binds the HuB 3'UTR and protects the message from degradation and/or enhances HuB translation, leading to the germ cell specific expression of HuB protein.

  17. A hairpin within YAP mRNA 3′UTR functions in regulation at post-transcription level

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yuen; Wang, Yuan; Feng, Jinyan; Feng, Guoxing; Zheng, Minying; Yang, Zhe; Xiao, Zelin; Lu, Zhanping [State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China); Ye, Lihong [State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071 (China); Zhang, Xiaodong, E-mail: zhangxd@nankai.edu.cn [State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China)

    2015-04-03

    The central dogma of gene expression is that DNA is transcribed into messenger RNAs, which in turn serve as the template for protein synthesis. Recently, it has been reported that mRNAs display regulatory roles that rely on their ability to compete for microRNA binding, independent of their protein-coding function. However, the regulatory mechanism of mRNAs remains poorly understood. Here, we report that a hairpin within YAP mRNA 3′untranslated region (3′UTR) functions in regulation at post-transcription level through generating endogenous siRNAs (esiRNAs). Bioinformatics analysis for secondary structure showed that YAP mRNA displayed a hairpin structure (termed standard hairpin, S-hairpin) within its 3′UTR. Surprisingly, we observed that the overexpression of S-hairpin derived from YAP 3′UTR (YAP-sh) increased the luciferase reporter activities of transcriptional factor NF-κB and AP-1 in 293T cells. Moreover, we identified that a fragment from YAP-sh, an esiRNA, was able to target mRNA 3′UTR of NF2 (a member of Hippo-signaling pathway) and YAP mRNA 3′UTR itself in hepatoma cells. Thus, we conclude that the YAP-sh within YAP mRNA 3′UTR may serve as a novel regulatory element, which functions in regulation at post-transcription level. Our finding provides new insights into the mechanism of mRNAs in regulatory function. - Highlights: • An S-hairpin within YAP mRNA 3′UTR possesses regulatory function. • YAP-sh acts as a regulatory element for YAP at post-transcription level. • YAP-sh-3p20, an esiRNA derived from YAP-sh, targets mRNAs of YAP and NF2. • YAP-sh-3p20 depresses the proliferation of HepG2 cells in vitro.

  18. A hairpin within YAP mRNA 3′UTR functions in regulation at post-transcription level

    International Nuclear Information System (INIS)

    Gao, Yuen; Wang, Yuan; Feng, Jinyan; Feng, Guoxing; Zheng, Minying; Yang, Zhe; Xiao, Zelin; Lu, Zhanping; Ye, Lihong; Zhang, Xiaodong

    2015-01-01

    The central dogma of gene expression is that DNA is transcribed into messenger RNAs, which in turn serve as the template for protein synthesis. Recently, it has been reported that mRNAs display regulatory roles that rely on their ability to compete for microRNA binding, independent of their protein-coding function. However, the regulatory mechanism of mRNAs remains poorly understood. Here, we report that a hairpin within YAP mRNA 3′untranslated region (3′UTR) functions in regulation at post-transcription level through generating endogenous siRNAs (esiRNAs). Bioinformatics analysis for secondary structure showed that YAP mRNA displayed a hairpin structure (termed standard hairpin, S-hairpin) within its 3′UTR. Surprisingly, we observed that the overexpression of S-hairpin derived from YAP 3′UTR (YAP-sh) increased the luciferase reporter activities of transcriptional factor NF-κB and AP-1 in 293T cells. Moreover, we identified that a fragment from YAP-sh, an esiRNA, was able to target mRNA 3′UTR of NF2 (a member of Hippo-signaling pathway) and YAP mRNA 3′UTR itself in hepatoma cells. Thus, we conclude that the YAP-sh within YAP mRNA 3′UTR may serve as a novel regulatory element, which functions in regulation at post-transcription level. Our finding provides new insights into the mechanism of mRNAs in regulatory function. - Highlights: • An S-hairpin within YAP mRNA 3′UTR possesses regulatory function. • YAP-sh acts as a regulatory element for YAP at post-transcription level. • YAP-sh-3p20, an esiRNA derived from YAP-sh, targets mRNAs of YAP and NF2. • YAP-sh-3p20 depresses the proliferation of HepG2 cells in vitro

  19. The 5th Symposium on Post-Transcriptional Regulation of Plant Gene Expression (PTRoPGE)

    Energy Technology Data Exchange (ETDEWEB)

    Karen S. Browning; Marie Petrocek; Bonnie Bartel

    2006-06-01

    The 5th Symposium on Post-Transcriptional Regulation of Plant Gene Expression (PTRoPGE) will be held June 8-12, 2005 at the University of Texas at Austin. Exciting new and ongoing discoveries show significant regulation of gene expression occurs after transcription. These post-transcriptional control events in plants range from subtle regulation of transcribed genes and phosphorylation, to the processes of gene regulation through small RNAs. This meeting will focus on the regulatory role of RNA, from transcription, through translation and finally degradation. The cross-disciplinary design of this meeting is necessary to encourage interactions between researchers that have a common interest in post-transcriptional gene expression in plants. By bringing together a diverse group of plant molecular biologist and biochemists at all careers stages from across the world, this meeting will bring about more rapid progress in understanding how plant genomes work and how genes are finely regulated by post-transcriptional processes to ultimately regulate cells.

  20. Health issues of whey proteins: 3. gut health promotion

    NARCIS (Netherlands)

    Gertjan Schaafsma

    2007-01-01

    This paper reviews the potential of whey protein to promote gut health. The high digestibility and specific amino acid composition of whey protein, as present in whey powder, whey protein concentrate and whey protein isolate, explain why ingestion of whey protein will exert this beneficial effect.

  1. Complex and extensive post-transcriptional regulation revealed by integrative proteomic and transcriptomic analysis of metabolite stress response in Clostridium acetobutylicum.

    Science.gov (United States)

    Venkataramanan, Keerthi P; Min, Lie; Hou, Shuyu; Jones, Shawn W; Ralston, Matthew T; Lee, Kelvin H; Papoutsakis, E Terry

    2015-01-01

    Clostridium acetobutylicum is a model organism for both clostridial biology and solvent production. The organism is exposed to its own toxic metabolites butyrate and butanol, which trigger an adaptive stress response. Integrative analysis of proteomic and RNAseq data may provide novel insights into post-transcriptional regulation. The identified iTRAQ-based quantitative stress proteome is made up of 616 proteins with a 15 % genome coverage. The differentially expressed proteome correlated poorly with the corresponding differential RNAseq transcriptome. Up to 31 % of the differentially expressed proteins under stress displayed patterns opposite to those of the transcriptome, thus suggesting significant post-transcriptional regulation. The differential proteome of the translation machinery suggests that cells employ a different subset of ribosomal proteins under stress. Several highly upregulated proteins but with low mRNA levels possessed mRNAs with long 5'UTRs and strong RBS scores, thus supporting the argument that regulatory elements on the long 5'UTRs control their translation. For example, the oxidative stress response rubrerythrin was upregulated only at the protein level up to 40-fold without significant mRNA changes. We also identified many leaderless transcripts, several displaying different transcriptional start sites, thus suggesting mRNA-trimming mechanisms under stress. Downregulation of Rho and partner proteins pointed to changes in transcriptional elongation and termination under stress. The integrative proteomic-transcriptomic analysis demonstrated complex expression patterns of a large fraction of the proteome. Such patterns could not have been detected with one or the other omic analyses. Our analysis proposes the involvement of specific molecular mechanisms of post-transcriptional regulation to explain the observed complex stress response.

  2. Modeling post-transcriptional regulation activity of small non-coding RNAs in Escherichia coli.

    Science.gov (United States)

    Wang, Rui-Sheng; Jin, Guangxu; Zhang, Xiang-Sun; Chen, Luonan

    2009-04-29

    Transcriptional regulation is a fundamental process in biological systems, where transcription factors (TFs) have been revealed to play crucial roles. In recent years, in addition to TFs, an increasing number of non-coding RNAs (ncRNAs) have been shown to mediate post-transcriptional processes and regulate many critical pathways in both prokaryotes and eukaryotes. On the other hand, with more and more high-throughput biological data becoming available, it is possible and imperative to quantitatively study gene regulation in a systematic and detailed manner. Most existing studies for inferring transcriptional regulatory interactions and the activity of TFs ignore the possible post-transcriptional effects of ncRNAs. In this work, we propose a novel framework to infer the activity of regulators including both TFs and ncRNAs by exploring the expression profiles of target genes and (post)transcriptional regulatory relationships. We model the integrated regulatory system by a set of biochemical reactions which lead to a log-bilinear problem. The inference process is achieved by an iterative algorithm, in which two linear programming models are efficiently solved. In contrast to available related studies, the effects of ncRNAs on transcription process are considered in this work, and thus more reasonable and accurate reconstruction can be expected. In addition, the approach is suitable for large-scale problems from the viewpoint of computation. Experiments on two synthesized data sets and a model system of Escherichia coli (E. coli) carbon source transition from glucose to acetate illustrate the effectiveness of our model and algorithm. Our results show that incorporating the post-transcriptional regulation of ncRNAs into system model can mine the hidden effects from the regulation activity of TFs in transcription processes and thus can uncover the biological mechanisms in gene regulation in a more accurate manner. The software for the algorithm in this paper is available

  3. Health issues of whey proteins: 3. Gut health promotion

    NARCIS (Netherlands)

    Schaafsma, G.

    2007-01-01

    This paper reviews the potential of whey protein to promote gut health. The high digestibility and specific amino acid composition of whey protei, as present in whey powder, whey protein concentrate and whey protein isolate, explain why ingestion of whey protein will exert this beneficial effect.

  4. Promoters and proteins from Clostridium thermocellum and uses thereof

    Science.gov (United States)

    Wu, J. H. David; Newcomb, Michael

    2012-11-13

    The present invention relates to an inducible and a high expression nucleic acid promoter isolated from Clostridium thermocellum. These promoters are useful for directing expression of a protein or polypeptide encoded by a nucleic acid molecule operably associated with the nucleic acid promoters. The present invention also relates to nucleic acid constructs including the C. thermocellum promoters, and expression vectors and hosts containing such nucleic acid constructs. The present invention also relates to protein isolated from Clostridium thermocellum, including a repressor protein. The present invention also provides methods of using the isolated promoters and proteins from Clostridium thermocellum, including methods for directing inducible in vitro and in vivo expression of a protein or polypeptide in a host, and methods of producing ethanol from a cellulosic biomass.

  5. Quantitative proteomics unravels that the post-transcriptional regulator Crc modulates the generation of vesicles and secreted virulence determinants of Pseudomonas aeruginosa.

    Science.gov (United States)

    Reales-Calderón, Jose Antonio; Corona, Fernando; Monteoliva, Lucía; Gil, Concha; Martínez, Jose Luis

    2015-09-08

    Recent research indicates that the post-transcriptional regulator Crc modulates susceptibility to antibiotics and virulence in Pseudomonas aeruginosa. Several P. aeruginosa virulence factors are secreted or engulfed in vesicles. To decipher the Crc modulation of P. aeruginosa virulence, we constructed a crc deficient mutant and measure the proteome associated extracellular vesicles and the vesicle-free secretome using iTRAQ. Fifty vesicle-associated proteins were more abundant and 14 less abundant in the crc-defective strain, whereas 37 were more abundant and 17 less abundant in the vesicle-free secretome. Among them, virulence determinants, such as ToxA, protease IV, azurin, chitin-binding protein, PlcB and Hcp1, were less abundant in the crc-defective mutant. Transcriptomic analysis revealed that some of the observed changes were post-transcriptional and, thus, could be attributed to a direct Crc regulatory role; whereas, for other differentially secreted proteins, the regulatory role was likely indirect. We also observed that the crc mutant presented an impaired vesicle-associated secretion of quorum sensing signal molecules and less cytotoxicity than its wild-type strain. Our results offer new insights into the mechanisms by which Crc regulates P. aeruginosa virulence, through the modulation of vesicle formation and secretion of both virulence determinants and quorum sensing signals. This article is part of a Special Issue entitled: HUPO 2014. Published by Elsevier B.V.

  6. Protein Hydrolysates as Promoters of Non-Haem Iron Absorption

    Science.gov (United States)

    Li, Yanan; Jiang, Han; Huang, Guangrong

    2017-01-01

    Iron (Fe) is an essential micronutrient for human growth and health. Organic iron is an excellent iron supplement due to its bioavailability. Both amino acids and peptides improve iron bioavailability and absorption and are therefore valuable components of iron supplements. This review focuses on protein hydrolysates as potential promoters of iron absorption. The ability of protein hydrolysates to chelate iron is thought to be a key attribute for the promotion of iron absorption. Iron-chelatable protein hydrolysates are categorized by their absorption forms: amino acids, di- and tri-peptides and polypeptides. Their structural characteristics, including their size and amino acid sequence, as well as the presence of special amino acids, influence their iron chelation abilities and bioavailabilities. Protein hydrolysates promote iron absorption by keeping iron soluble, reducing ferric iron to ferrous iron, and promoting transport across cell membranes into the gut. We also discuss the use and relative merits of protein hydrolysates as iron supplements. PMID:28617327

  7. Protein Hydrolysates as Promoters of Non-Haem Iron Absorption

    Directory of Open Access Journals (Sweden)

    Yanan Li

    2017-06-01

    Full Text Available Iron (Fe is an essential micronutrient for human growth and health. Organic iron is an excellent iron supplement due to its bioavailability. Both amino acids and peptides improve iron bioavailability and absorption and are therefore valuable components of iron supplements. This review focuses on protein hydrolysates as potential promoters of iron absorption. The ability of protein hydrolysates to chelate iron is thought to be a key attribute for the promotion of iron absorption. Iron-chelatable protein hydrolysates are categorized by their absorption forms: amino acids, di- and tri-peptides and polypeptides. Their structural characteristics, including their size and amino acid sequence, as well as the presence of special amino acids, influence their iron chelation abilities and bioavailabilities. Protein hydrolysates promote iron absorption by keeping iron soluble, reducing ferric iron to ferrous iron, and promoting transport across cell membranes into the gut. We also discuss the use and relative merits of protein hydrolysates as iron supplements.

  8. Transport proteins promoting Escherichia coli pathogenesis

    Science.gov (United States)

    Tang, Fengyi; Saier, Milton H.

    2014-01-01

    Escherichia coli is a genetically diverse species infecting hundreds of millions of people worldwide annually. We examined seven well-characterized E. coli pathogens causing urinary tract infections, gastroenteritis, pyelonephritis and haemorrhagic colitis. Their transport proteins were identified and compared with each other and a non-pathogenic E. coli K12 strain to identify transport proteins related to pathogenesis. Each pathogen possesses a unique set of protein secretion systems for export to the cell surface or for injecting effector proteins into host cells. Pathogens have increased numbers of iron siderophore receptors and ABC iron uptake transporters, but the numbers and types of low-affinity secondary iron carriers were uniform in all strains. The presence of outer membrane iron complex receptors and high-affinity ABC iron uptake systems correlated, suggesting co-evolution. Each pathovar encodes a different set of pore-forming toxins and virulence-related outer membrane proteins lacking in K12. Intracellular pathogens proved to have a characteristically distinctive set of nutrient uptake porters, different from those of extracellular pathogens. The results presented in this report provide information about transport systems relevant to various types of E. coli pathogenesis that can be exploited in future basic and applied studies. PMID:24747185

  9. Transport proteins promoting Escherichia coli pathogenesis.

    Science.gov (United States)

    Tang, Fengyi; Saier, Milton H

    2014-01-01

    Escherichia coli is a genetically diverse species infecting hundreds of millions of people worldwide annually. We examined seven well-characterized E. coli pathogens causing urinary tract infections, gastroenteritis, pyelonephritis and haemorrhagic colitis. Their transport proteins were identified and compared with each other and a non-pathogenic E. coli K12 strain to identify transport proteins related to pathogenesis. Each pathogen possesses a unique set of protein secretion systems for export to the cell surface or for injecting effector proteins into host cells. Pathogens have increased numbers of iron siderophore receptors and ABC iron uptake transporters, but the numbers and types of low-affinity secondary iron carriers were uniform in all strains. The presence of outer membrane iron complex receptors and high-affinity ABC iron uptake systems correlated, suggesting co-evolution. Each pathovar encodes a different set of pore-forming toxins and virulence-related outer membrane proteins lacking in K12. Intracellular pathogens proved to have a characteristically distinctive set of nutrient uptake porters, different from those of extracellular pathogens. The results presented in this report provide information about transport systems relevant to various types of E. coli pathogenesis that can be exploited in future basic and applied studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Pou1f1, the key transcription factor related to somatic growth in tilapia (Orechromis niloticus), is regulated by two independent post-transcriptional regulation mechanisms.

    Science.gov (United States)

    Wang, Dongfang; Qin, Jingkai; Jia, Jirong; Yan, Peipei; Li, Wensheng

    2017-01-29

    This study aims to determine the post-transcriptional regulation mechanism of the transcription factor pou1f1 (pou class 1 homeobox 1), which is the key gene for pituitary development, somatic growth in vertebrates, and transcription of several hormone genes in teleost fish. MicroRNA miR-223-3p was identified as a bona fide target of pou1f; overexpression of miR-223-3p in primary pituitary cells led to the down-regulation of pou1f1 and downstream genes, and inhibition of miR-223-3p led to the up-regulation of pou1f1 in Nile tilapia dispersed primary pituitary cells. An adenylate-uridylate-rich element (AU-Rich element) was found in the 3'UTR of pou1f1 mRNA, and deletion of the AU-Rich element led to slower mRNA decay and therefore more protein output. A potential mutual relationship between miR-223-3p and the AU-rich element was also investigated, and the results demonstrated that with or without the AU-Rich element, miR-223-3p induced the up-regulation of a reporter system under serum starvation conditions, indicating that miR-223-3p and the AU-Rich element function independent of each other. This study is the first to investigate the post-transcriptional mechanism of pou1f1, which revealed that miR-223-3p down-regulated pou1f1 and downstream gene expressions, and the AU-Rich element led to rapid decay of pou1f1 mRNA. MicroRNA miR-223-3p and the AU-Rich element co-regulated the post-transcriptional expression of pou1f1 independently in Nile tilapia, demonstrating that pou1f1 is under the control of a dual post-transcription regulation mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Phosphorus starvation induces post-transcriptional CHS gene silencing in Petunia corolla.

    Science.gov (United States)

    Hosokawa, Munetaka; Yamauchi, Takayoshi; Takahama, Masayoshi; Goto, Mariko; Mikano, Sachiko; Yamaguchi, Yuki; Tanaka, Yoshiyuki; Ohno, Sho; Koeda, Sota; Doi, Motoaki; Yazawa, Susumu

    2013-05-01

    The corolla of Petunia 'Magic Samba' exhibits unstable anthocyanin expression depending on its phosphorus content. Phosphorus deficiency enhanced post-transcriptional gene silencing of chalcone synthase - A in the corolla. Petunia (Petunia hybrida) 'Magic Samba' has unstable red-white bicolored corollas that respond to nutrient deficiency. We grew this cultivar hydroponically using solutions that lacked one or several nutrients to identify the specific nutrient related to anthocyanin expression in corolla. The white area of the corolla widened under phosphorus (P)-deficient conditions. When the P content of the corolla grown under P-deficient conditions dropped to 40 corollas until the plants died. Other elemental deficiencies had no clear effects on anthocyanin suppression in the corolla. After phosphate was resupplied to the P-deficient plants, anthocyanin was restored in the corollas. The expression of chalcone synthase-A (CHS-A) was suppressed in the white area that widened under P-suppressed conditions, whereas the expression of several other genes related to anthocyanin biosynthesis was enhanced more in the white area than in the red area. Reddish leaves and sepals developed under the P-deficient condition, which is a typical P-deficiency symptom. Two genes related to anthocyanin biosynthesis were enhanced in the reddish organs. Small interfering RNA analysis of CHS-A showed that the suppression resulted from post-transcriptional gene silencing (PTGS). Thus, it was hypothesized that the enhancement of anthocyanin biosynthetic gene expression due to P-deficiency triggered PTGS of CHS-A, which resulted in white corolla development.

  12. The cystic-fibrosis-associated ΔF508 mutation confers post-transcriptional destabilization on the C. elegans ABC transporter PGP-3

    Directory of Open Access Journals (Sweden)

    Liping He

    2012-11-01

    Membrane proteins make up ∼30% of the proteome. During the early stages of maturation, this class of proteins can experience localized misfolding in distinct cellular compartments, such as the cytoplasm, endoplasmic reticulum (ER lumen and ER membrane. ER quality control (ERQC mechanisms monitor folding and determine whether a membrane protein is appropriately folded or is misfolded and warrants degradation. ERQC plays crucial roles in human diseases, such as cystic fibrosis, in which deletion of a single amino acid (F508 results in the misfolding and degradation of the cystic fibrosis transmembrane conductance regulator (CFTR Cl– channel. We introduced the ΔF508 mutation into Caenorhabditis elegans PGP-3, a 12-transmembrane ABC transporter with 15% identity to CFTR. When expressed in intestinal epithelial cells, PGP-3wt was stable and efficiently trafficked to the apical plasma membrane through a COPII-dependent mechanism. However, PGP-3ΔF508 was post-transcriptionally destabilized, resulting in reduced total and apical membrane protein levels. Genetic or physiological activation of the osmotic stress response pathway, which causes accumulation of the chemical chaperone glycerol, stabilized PGP-3ΔF508. Efficient degradation of PGP-3ΔF508 required the function of several C. elegans ER-associated degradation (ERAD homologs, suggesting that destabilization occurs through an ERAD-type mechanism. Our studies show that the ΔF508 mutation causes post-transcriptional destabilization and degradation of PGP-3 in C. elegans epithelial cells. This model, combined with the power of C. elegans genetics, provides a new opportunity to genetically dissect metazoan ERQC.

  13. Neural expression and post-transcriptional dosage compensation of the steroid metabolic enzyme 17β-HSD type 4

    Directory of Open Access Journals (Sweden)

    Wise Petra M

    2010-04-01

    Full Text Available Abstract Background Steroids affect many tissues, including the brain. In the zebra finch, the estrogenic steroid estradiol (E2 is especially effective at promoting growth of the neural circuit specialized for song. In this species, only the males sing and they have a much larger and more interconnected song circuit than females. Thus, it was surprising that the gene for 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4, an enzyme that converts E2 to a less potent estrogen, had been mapped to the Z sex chromosome. As a consequence, it was likely that HSD17B4 was differentially expressed in males (ZZ and females (ZW because dosage compensation of Z chromosome genes is incomplete in birds. If a higher abundance of HSD17B4 mRNA in males than females was translated into functional enzyme in the brain, then contrary to expectation, males could produce less E2 in their brains than females. Results Here, we used molecular and biochemical techniques to confirm the HSD17B4 Z chromosome location in the zebra finch and to determine that HSD17B4 mRNA and activity were detectable in the early developing and adult brain. As expected, HSD17B4 mRNA expression levels were higher in males compared to females. This provides further evidence of the incomplete Z chromosome inactivation mechanisms in birds. We detected HSD17B4 mRNA in regions that suggested a role for this enzyme in the early organization and adult function of song nuclei. We did not, however, detect significant sex differences in HSD17B4 activity levels in the adult brain. Conclusions Our results demonstrate that the HSD17B4 gene is expressed and active in the zebra finch brain as an E2 metabolizing enzyme, but that dosage compensation of this Z-linked gene may occur via post-transcriptional mechanisms.

  14. Characterization of a Lactococcus lactis promoter for heterologous protein production

    Directory of Open Access Journals (Sweden)

    Christian E. Ogaugwu

    2018-03-01

    Full Text Available Constitutively active promoter elements for heterologous protein production in Lactococcus lactis are scarce. Here, the promoter of the PTS-IIC gene cluster from L. lactis NZ3900 is described. This promoter was cloned upstream of an enhanced green fluorescent protein, GFPmut3a, and transformed into L. lactis. Transformants produced up to 13.5 μg of GFPmut3a per milliliter of log phase cells. Addition of cellobiose further increased the production of GFPmut3a by up to two-fold when compared to glucose. Analysis of mutations at two specific positions in the PTS-IIC promoter showed that a ‘T’ to ‘G’ mutation within the −35 element resulted in constitutive expression in glucose, while a ‘C’ at nucleotide 7 in the putative cre site enhanced promoter activity in cellobiose. Finally, this PTS-IIC promoter is capable of mediating protein expression in Bacillus subtilis and Escherichia coli Nissle 1917, suggesting the potential for future biotechnological applications of this element and its derivatives.

  15. Mammalian amyloidogenic proteins promote prion nucleation in yeast.

    Science.gov (United States)

    Chandramowlishwaran, Pavithra; Sun, Meng; Casey, Kristin L; Romanyuk, Andrey V; Grizel, Anastasiya V; Sopova, Julia V; Rubel, Aleksandr A; Nussbaum-Krammer, Carmen; Vorberg, Ina M; Chernoff, Yury O

    2018-03-02

    Fibrous cross-β aggregates (amyloids) and their transmissible forms (prions) cause diseases in mammals (including humans) and control heritable traits in yeast. Initial nucleation of a yeast prion by transiently overproduced prion-forming protein or its (typically, QN-rich) prion domain is efficient only in the presence of another aggregated (in most cases, QN-rich) protein. Here, we demonstrate that a fusion of the prion domain of yeast protein Sup35 to some non-QN-rich mammalian proteins, associated with amyloid diseases, promotes nucleation of Sup35 prions in the absence of pre-existing aggregates. In contrast, both a fusion of the Sup35 prion domain to a multimeric non-amyloidogenic protein and the expression of a mammalian amyloidogenic protein that is not fused to the Sup35 prion domain failed to promote prion nucleation, further indicating that physical linkage of a mammalian amyloidogenic protein to the prion domain of a yeast protein is required for the nucleation of a yeast prion. Biochemical and cytological approaches confirmed the nucleation of protein aggregates in the yeast cell. Sequence alterations antagonizing or enhancing amyloidogenicity of human amyloid-β (associated with Alzheimer's disease) and mouse prion protein (associated with prion diseases), respectively, antagonized or enhanced nucleation of a yeast prion by these proteins. The yeast-based prion nucleation assay, developed in our work, can be employed for mutational dissection of amyloidogenic proteins. We anticipate that it will aid in the identification of chemicals that influence initial amyloid nucleation and in searching for new amyloidogenic proteins in a variety of proteomes. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. TALE factors poise promoters for activation by Hox proteins.

    Science.gov (United States)

    Choe, Seong-Kyu; Ladam, Franck; Sagerström, Charles G

    2014-01-27

    Hox proteins form complexes with TALE cofactors from the Pbx and Prep/Meis families to control transcription, but it remains unclear how Hox:TALE complexes function. Examining a Hoxb1b:TALE complex that regulates zebrafish hoxb1a transcription, we find maternally deposited TALE proteins at the hoxb1a promoter already during blastula stages. These TALE factors recruit histone-modifying enzymes to promote an active chromatin profile at the hoxb1a promoter and also recruit RNA polymerase II (RNAPII) and P-TEFb. However, in the presence of TALE factors, RNAPII remains phosphorylated on serine 5 and hoxb1a transcription is inefficient. By gastrula stages, Hoxb1b binds together with TALE factors to the hoxb1a promoter. This triggers P-TEFb-mediated transitioning of RNAPII to the serine 2-phosphorylated form and efficient hoxb1a transcription. We conclude that TALE factors access promoters during early embryogenesis to poise them for activation but that Hox proteins are required to trigger efficient transcription. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Elucidating MicroRNA Regulatory Networks Using Transcriptional, Post-transcriptional, and Histone Modification Measurements

    Directory of Open Access Journals (Sweden)

    Sara J.C. Gosline

    2016-01-01

    Full Text Available MicroRNAs (miRNAs regulate diverse biological processes by repressing mRNAs, but their modest effects on direct targets, together with their participation in larger regulatory networks, make it challenging to delineate miRNA-mediated effects. Here, we describe an approach to characterizing miRNA-regulatory networks by systematically profiling transcriptional, post-transcriptional and epigenetic activity in a pair of isogenic murine fibroblast cell lines with and without Dicer expression. By RNA sequencing (RNA-seq and CLIP (crosslinking followed by immunoprecipitation sequencing (CLIP-seq, we found that most of the changes induced by global miRNA loss occur at the level of transcription. We then introduced a network modeling approach that integrated these data with epigenetic data to identify specific miRNA-regulated transcription factors that explain the impact of miRNA perturbation on gene expression. In total, we demonstrate that combining multiple genome-wide datasets spanning diverse regulatory modes enables accurate delineation of the downstream miRNA-regulated transcriptional network and establishes a model for studying similar networks in other systems.

  18. Harnessing CRISPR/Cas systems for programmable transcriptional and post-transcriptional regulation

    KAUST Repository

    Mahas, Ahmed

    2017-11-29

    Genome editing has enabled broad advances and novel approaches in studies of gene function and structure; now, emerging methods aim to precisely engineer post-transcriptional processes. Developing precise, efficient molecular tools to alter the transcriptome holds great promise for biotechnology and synthetic biology applications. Different approaches have been employed for targeted degradation of RNA species in eukaryotes, but they lack programmability and versatility, thereby limiting their utility for diverse applications. The CRISPR/Cas9 system has been harnessed for genome editing in many eukaryotic species and, using a catalytically inactive Cas9 variant, the CRISPR/dCas9 system has been repurposed for transcriptional regulation. Recent studies have used other CRISPR/Cas systems for targeted RNA degradation and RNA-based manipulations. For example, Cas13a, a Type VI-A endonuclease, has been identified as an RNA-guided RNA ribonuclease and used for manipulation of RNA. Here, we discuss different modalities for targeted RNA interference with an emphasis on the potential applications of CRISPR/Cas systems as programmable transcriptional regulators for broad uses, including functional biology, biotechnology, and synthetic biology applications.

  19. Post-transcriptional control of the mammalian circadian clock: implications for health and disease.

    Science.gov (United States)

    Preußner, Marco; Heyd, Florian

    2016-06-01

    Many aspects of human physiology and behavior display rhythmicity with a period of approximately 24 h. Rhythmic changes are controlled by an endogenous time keeper, the circadian clock, and include sleep-wake cycles, physical and mental performance capability, blood pressure, and body temperature. Consequently, many diseases, such as metabolic, sleep, autoimmune and mental disorders and cancer, are connected to the circadian rhythm. The development of therapies that take circadian biology into account is thus a promising strategy to improve treatments of diverse disorders, ranging from allergic syndromes to cancer. Circadian alteration of body functions and behavior are, at the molecular level, controlled and mediated by widespread changes in gene expression that happen in anticipation of predictably changing requirements during the day. At the core of the molecular clockwork is a well-studied transcription-translation negative feedback loop. However, evidence is emerging that additional post-transcriptional, RNA-based mechanisms are required to maintain proper clock function. Here, we will discuss recent work implicating regulated mRNA stability, translation and alternative splicing in the control of the mammalian circadian clock, and its role in health and disease.

  20. Harnessing CRISPR/Cas systems for programmable transcriptional and post-transcriptional regulation

    KAUST Repository

    Mahas, Ahmed; Neal Stewart, C.; Mahfouz, Magdy M.

    2017-01-01

    Genome editing has enabled broad advances and novel approaches in studies of gene function and structure; now, emerging methods aim to precisely engineer post-transcriptional processes. Developing precise, efficient molecular tools to alter the transcriptome holds great promise for biotechnology and synthetic biology applications. Different approaches have been employed for targeted degradation of RNA species in eukaryotes, but they lack programmability and versatility, thereby limiting their utility for diverse applications. The CRISPR/Cas9 system has been harnessed for genome editing in many eukaryotic species and, using a catalytically inactive Cas9 variant, the CRISPR/dCas9 system has been repurposed for transcriptional regulation. Recent studies have used other CRISPR/Cas systems for targeted RNA degradation and RNA-based manipulations. For example, Cas13a, a Type VI-A endonuclease, has been identified as an RNA-guided RNA ribonuclease and used for manipulation of RNA. Here, we discuss different modalities for targeted RNA interference with an emphasis on the potential applications of CRISPR/Cas systems as programmable transcriptional regulators for broad uses, including functional biology, biotechnology, and synthetic biology applications.

  1. Functional analysis of bipartite begomovirus coat protein promoter sequences

    International Nuclear Information System (INIS)

    Lacatus, Gabriela; Sunter, Garry

    2008-01-01

    We demonstrate that the AL2 gene of Cabbage leaf curl virus (CaLCuV) activates the CP promoter in mesophyll and acts to derepress the promoter in vascular tissue, similar to that observed for Tomato golden mosaic virus (TGMV). Binding studies indicate that sequences mediating repression and activation of the TGMV and CaLCuV CP promoter specifically bind different nuclear factors common to Nicotiana benthamiana, spinach and tomato. However, chromatin immunoprecipitation demonstrates that TGMV AL2 can interact with both sequences independently. Binding of nuclear protein(s) from different crop species to viral sequences conserved in both bipartite and monopartite begomoviruses, including TGMV, CaLCuV, Pepper golden mosaic virus and Tomato yellow leaf curl virus suggests that bipartite begomoviruses bind common host factors to regulate the CP promoter. This is consistent with a model in which AL2 interacts with different components of the cellular transcription machinery that bind viral sequences important for repression and activation of begomovirus CP promoters

  2. Knotted vs. unknotted proteins: evidence of knot-promoting loops.

    Directory of Open Access Journals (Sweden)

    Raffaello Potestio

    Full Text Available Knotted proteins, because of their ability to fold reversibly in the same topologically entangled conformation, are the object of an increasing number of experimental and theoretical studies. The aim of the present investigation is to assess, on the basis of presently available structural data, the extent to which knotted proteins are isolated instances in sequence or structure space, and to use comparative schemes to understand whether specific protein segments can be associated to the occurrence of a knot in the native state. A significant sequence homology is found among a sizeable group of knotted and unknotted proteins. In this family, knotted members occupy a primary sub-branch of the phylogenetic tree and differ from unknotted ones only by additional loop segments. These "knot-promoting" loops, whose virtual bridging eliminates the knot, are found in various types of knotted proteins. Valuable insight into how knots form, or are encoded, in proteins could be obtained by targeting these regions in future computational studies or excision experiments.

  3. The post-transcriptional regulatory system CSR controls the balance of metabolic pools in upper glycolysis of Escherichia coli.

    Science.gov (United States)

    Morin, Manon; Ropers, Delphine; Letisse, Fabien; Laguerre, Sandrine; Portais, Jean-Charles; Cocaign-Bousquet, Muriel; Enjalbert, Brice

    2016-05-01

    Metabolic control in Escherichia coli is a complex process involving multilevel regulatory systems but the involvement of post-transcriptional regulation is uncertain. The post-transcriptional factor CsrA is stated as being the only regulator essential for the use of glycolytic substrates. A dozen enzymes in the central carbon metabolism (CCM) have been reported as potentially controlled by CsrA, but its impact on the CCM functioning has not been demonstrated. Here, a multiscale analysis was performed in a wild-type strain and its isogenic mutant attenuated for CsrA (including growth parameters, gene expression levels, metabolite pools, abundance of enzymes and fluxes). Data integration and regulation analysis showed a coordinated control of the expression of glycolytic enzymes. This also revealed the imbalance of metabolite pools in the csrA mutant upper glycolysis, before the phosphofructokinase PfkA step. This imbalance is associated with a glucose-phosphate stress. Restoring PfkA activity in the csrA mutant strain suppressed this stress and increased the mutant growth rate on glucose. Thus, the carbon storage regulator system is essential for the effective functioning of the upper glycolysis mainly through its control of PfkA. This work demonstrates the pivotal role of post-transcriptional regulation to shape the carbon metabolism. © 2016 John Wiley & Sons Ltd.

  4. Interplay between chaperones and protein disorder promotes the evolution of protein networks.

    Directory of Open Access Journals (Sweden)

    Sebastian Pechmann

    2014-06-01

    Full Text Available Evolution is driven by mutations, which lead to new protein functions but come at a cost to protein stability. Non-conservative substitutions are of interest in this regard because they may most profoundly affect both function and stability. Accordingly, organisms must balance the benefit of accepting advantageous substitutions with the possible cost of deleterious effects on protein folding and stability. We here examine factors that systematically promote non-conservative mutations at the proteome level. Intrinsically disordered regions in proteins play pivotal roles in protein interactions, but many questions regarding their evolution remain unanswered. Similarly, whether and how molecular chaperones, which have been shown to buffer destabilizing mutations in individual proteins, generally provide robustness during proteome evolution remains unclear. To this end, we introduce an evolutionary parameter λ that directly estimates the rate of non-conservative substitutions. Our analysis of λ in Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens sequences reveals how co- and post-translationally acting chaperones differentially promote non-conservative substitutions in their substrates, likely through buffering of their destabilizing effects. We further find that λ serves well to quantify the evolution of intrinsically disordered proteins even though the unstructured, thus generally variable regions in proteins are often flanked by very conserved sequences. Crucially, we show that both intrinsically disordered proteins and highly re-wired proteins in protein interaction networks, which have evolved new interactions and functions, exhibit a higher λ at the expense of enhanced chaperone assistance. Our findings thus highlight an intricate interplay of molecular chaperones and protein disorder in the evolvability of protein networks. Our results illuminate the role of chaperones in enabling protein evolution, and underline the

  5. Maintenance of the marginal-zone B cell compartment specifically requires the RNA-binding protein ZFP36L1.

    Science.gov (United States)

    Newman, Rebecca; Ahlfors, Helena; Saveliev, Alexander; Galloway, Alison; Hodson, Daniel J; Williams, Robert; Besra, Gurdyal S; Cook, Charlotte N; Cunningham, Adam F; Bell, Sarah E; Turner, Martin

    2017-06-01

    RNA-binding proteins of the ZFP36 family are best known for inhibiting the expression of cytokines through binding to AU-rich elements in the 3' untranslated region and promoting mRNA decay. Here we identified an indispensable role for ZFP36L1 as the regulator of a post-transcriptional hub that determined the identity of marginal-zone B cells by promoting their proper localization and survival. ZFP36L1 controlled a gene-expression program related to signaling, cell adhesion and locomotion; it achieved this in part by limiting expression of the transcription factors KLF2 and IRF8, which are known to enforce the follicular B cell phenotype. These mechanisms emphasize the importance of integrating transcriptional and post-transcriptional processes by RNA-binding proteins for maintaining cellular identity among closely related cell types.

  6. Organization and post-transcriptional processing of focal adhesion kinase gene

    Directory of Open Access Journals (Sweden)

    Enslen Hervé

    2006-08-01

    Full Text Available Abstract Background Focal adhesion kinase (FAK is a non-receptor tyrosine kinase critical for processes ranging from embryo development to cancer progression. Although isoforms with specific molecular and functional properties have been characterized in rodents and chicken, the organization of FAK gene throughout phylogeny and its potential to generate multiple isoforms are not well understood. Here, we study the phylogeny of FAK, the organization of its gene, and its post-transcriptional processing in rodents and human. Results A single orthologue of FAK and the related PYK2 was found in non-vertebrate species. Gene duplication probably occurred in deuterostomes after the echinoderma embranchment, leading to the evolution of PYK2 with distinct properties. The amino acid sequence of FAK and PYK2 is conserved in their functional domains but not in their linker regions, with the absence of autophosphorylation site in C. elegans. Comparison of mouse and human FAK genes revealed the existence of multiple combinations of conserved and non-conserved 5'-untranslated exons in FAK transcripts suggesting a complex regulation of their expression. Four alternatively spliced coding exons (13, 14, 16, and 31, previously described in rodents, are highly conserved in vertebrates. Cis-regulatory elements known to regulate alternative splicing were found in conserved alternative exons of FAK or in the flanking introns. In contrast, other reported human variant exons were restricted to Homo sapiens, and, in some cases, other primates. Several of these non-conserved exons may correspond to transposable elements. The inclusion of conserved alternative exons was examined by RT-PCR in mouse and human brain during development. Inclusion of exons 14 and 16 peaked at the end of embryonic life, whereas inclusion of exon 13 increased steadily until adulthood. Study of various tissues showed that inclusion of these exons also occurred, independently from each other, in a

  7. Opposing Post-transcriptional Control of InR by FMRP and LIN-28 Adjusts Stem Cell-Based Tissue Growth

    Directory of Open Access Journals (Sweden)

    Arthur Luhur

    2017-12-01

    Full Text Available Summary: Although the intrinsic mechanisms that control whether stem cells divide symmetrically or asymmetrically underlie tissue growth and homeostasis, they remain poorly defined. We report that the RNA-binding protein fragile X mental retardation protein (FMRP limits the symmetric division, and resulting expansion, of the stem cell population during adaptive intestinal growth in Drosophila. The elevated insulin sensitivity that FMRP-deficient progenitor cells display contributes to their accelerated expansion, which is suppressed by the depletion of insulin-signaling components. This FMRP activity is mediated solely via a second conserved RNA-binding protein, LIN-28, known to boost insulin signaling in stem cells. Via LIN-28, FMRP controls progenitor cell behavior by post-transcriptionally repressing the level of insulin receptor (InR. This study identifies the stem cell-based mechanism by which FMRP controls tissue adaptation, and it raises the possibility that defective adaptive growth underlies the accelerated growth, gastrointestinal, and other symptoms that affect fragile X syndrome patients. : Luhur et al. report that FMRP acts via LIN-28 in progenitor cells to dampen the adaptive expansion of intestinal tissue in the fruit fly, raising the possibility that defective LIN28-mediated adaptive growth underlies some of the symptoms that affect fragile X syndrome patients. Keywords: FMRP, fmr1, LIN-28, insulin receptor, IIS, adaptive growth, tissue resizing, intestinal stem cell, insulin sensitivity

  8. Transcriptional and post-transcriptional regulation of pst2 operon expression in Vibrio cholerae O1.

    Science.gov (United States)

    da C Leite, Daniel M; Barbosa, Livia C; Mantuano, Nathalia; Goulart, Carolina L; Veríssimo da Costa, Giovani C; Bisch, Paulo M; von Krüger, Wanda M A

    2017-07-01

    One of the most abundant proteins in V. cholerae O1 cells grown under inorganic phosphate (Pi) limitation is PstS, the periplasmic Pi-binding component of the high-affinity Pi transport system Pst2 (PstSCAB), encoded in pst2 operon (pstS-pstC2-pstA2-pstB2). Besides its role in Pi uptake, Pst2 has been also associated with V. cholerae virulence. However, the mechanisms regulating pst2 expression and the non-stoichiometric production of the Pst2 components under Pi-limitation are unknown. A computational-experimental approach was used to elucidate the regulatory mechanisms behind pst2 expression in V. cholerae O1. Bioinformatics analysis of pst2 operon nucleotide sequence revealed start codons for pstS and pstC genes distinct from those originally annotated, a regulatory region upstream pstS containing potential PhoB-binding sites and a pstS-pstC intergenic region longer than predicted. Analysis of nucleotide sequence between pstS-pstC revealed inverted repeats able to form stem-loop structures followed by a potential RNAse E-cleavage site. Another putative RNase E recognition site was identified within the pstA-pstB intergenic sequence. In silico predictions of pst2 operon expression regulation were subsequently tested using cells grown under Pi limitation by promoter-lacZ fusion, gel electrophoresis mobility shift assay and quantitative RT-PCR. The experimental and in silico results matched very well and led us to propose a pst2 promoter sequence upstream of pstS gene distinct from the previously annotated. Furthermore, V. cholerae O1 pst2 operon transcription is PhoB-dependent and generates a polycistronic mRNA molecule that is rapidly processed into minor transcripts of distinct stabilities. The most stable was the pstS-encoding mRNA, which correlates with PstS higher levels relative to other Pst2 components in Pi-starved cells. The relatively higher stability of pstS and pstB transcripts seems to rely on the secondary structures at their 3' untranslated regions

  9. A conserved small RNA promotes silencing of the outer membrane protein YbfM

    DEFF Research Database (Denmark)

    Rasmussen, Anders Aamann; Johansen, Jesper; Nielsen, Jesper S

    2009-01-01

    important physiological role of regulatory RNA molecules in Gram-negative bacteria is to modulate the cell surface and/or to prevent accumulation of OMPs in the envelope. Here, we extend the OMP-sRNA network by showing that the expression of the outer membrane protein YbfM is silenced by a conserved sRNA......In the past few years an increasing number of small non-coding RNAs (sRNAs) in enterobacteria have been found to negatively regulate the expression of outer membrane proteins (OMPs) at the post-transcriptional level. These RNAs act under various growth and stress conditions, suggesting that one......, designated MicM (also known as RybC/SroB). The regulation is strictly dependent on the RNA chaperone Hfq, and mutational analysis indicates that MicM sequesters the ribosome binding site of ybfM mRNA by an antisense mechanism. Furthermore, we provide evidence that Hfq strongly enhances the on-rate of duplex...

  10. Multi-protein delivery by nanodiamonds promotes bone formation.

    Science.gov (United States)

    Moore, L; Gatica, M; Kim, H; Osawa, E; Ho, D

    2013-11-01

    Bone morphogenetic proteins (BMPs) are well-studied regulators of cartilage and bone development that have been Food and Drug Administration (FDA)-approved for the promotion of bone formation in certain procedures. BMPs are seeing more use in oral and maxillofacial surgeries because of recent FDA approval of InFUSE(®) for sinus augmentation and localized alveolar ridge augmentation. However, the utility of BMPs in medical and dental applications is limited by the delivery method. Currently, BMPs are delivered to the surgical site by the implantation of bulky collagen sponges. Here we evaluate the potential of detonation nanodiamonds (NDs) as a delivery vehicle for BMP-2 and basic fibroblast growth factor (bFGF). Nanodiamonds are biocompatible, 4- to 5-nm carbon nanoparticles that have previously been used to deliver a wide variety of molecules, including proteins and peptides. We find that both BMP-2 and bFGF are readily loaded onto NDs by physisorption, forming a stable colloidal solution, and are triggered to release in slightly acidic conditions. Simultaneous delivery of BMP-2 and bFGF by ND induces differentiation and proliferation in osteoblast progenitor cells. Overall, we find that NDs provide an effective injectable alternative for the delivery of BMP-2 and bFGF to promote bone formation.

  11. Identification of novel microRNAs in post-transcriptional control of Nrf2 expression and redox homeostasis in neuronal, SH-SY5Y cells.

    Directory of Open Access Journals (Sweden)

    Madhusudhanan Narasimhan

    Full Text Available Nuclear factor-erythroid 2-related factor 2 (Nrf2/NFE2L2, a redox-sensitive transcription factor plays a critical role in adaptation to cellular stress and affords cellular defense by initiating transcription of antioxidative and detoxification genes. While a protein can be regulated at multiple levels, control of Nrf2 has been largely studied at post-translational regulation points by Keap1. Importantly, post-transcriptional/translational based regulation of Nrf2 is less understood and to date there are no reports on such mechanisms in neuronal systems. In this context, studies involving the role of microRNAs (miRs which are normally considered as fine tuning regulators of protein production through translation repression and/or post-transcriptional alterations, are in place. In the current study, based on in-silico analysis followed by immunoblotting and real time analysis, we have identified and validated for the first time that human NFE2L2 could be targeted by miR153/miR27a/miR142-5p/miR144 in neuronal, SH-SY5Y cells. Co-transfection studies with individual miR mimics along with either WT 3' UTR of human Nrf2 or mutated miRNA targeting seed sequence within Nrf2 3' UTR, demonstrated that Nrf2 is a direct regulatory target of these miRs. In addition, ectopic expression of miR153/miR27a/miR142-5p/miR144 affected Nrf2 mRNA abundance and nucleo-cytoplasmic concentration of Nrf2 in a Keap1 independent manner resulting in inefficient transactivating ability of Nrf2. Furthermore, forced expression of miRs diminished GCLC and GSR expression resulting in alteration of Nrf2 dependent redox homeostasis. Finally, bioinformatics based miRNA-disease network analysis (MDN along with extended computational network analysis of Nrf2 associated pathologic processes suggests that if in a particular cellular scenario where any of these miR153/miR27a/miR142-5p/miR144 either individually or as a group is altered, it could affect Nrf2 thus triggering and

  12. Regulation of p53 by reversible post-transcriptional and post-translational mechanisms in liver and skeletal muscle of an anoxia tolerant turtle, Trachemys scripta elegans.

    Science.gov (United States)

    Zhang, Jing; Biggar, Kyle K; Storey, Kenneth B

    2013-01-15

    The red-eared slider turtle (Trachemys scripta elegans) exhibits well-developed natural anoxia tolerance that depends on multiple biochemical adaptations, including anoxia-induced hypometabolism. We hypothesized that signaling by the p53 protein could aid in establishing the hypometabolic state by arresting the cell cycle, protecting against DNA damage as well as altering pathways of energy metabolism. Immunoblotting was used to evaluate the regulation and post-transcriptional modifications of p53 in liver and skeletal muscle of red-eared slider turtles subjected to 5h or 20h of anoxic submergence. Tissue specific regulation of p53 was observed with the liver showing a more rapid activation of p53 in response to anoxia as well as differential expression of seven serine phosphorylation and two lysine acetylation sites when compared with skeletal muscle. Protein expression of MDM2, a major p53 inhibitor, was also examined but did not change during anoxia. Reverse-transcriptase PCR was used to assess transcript levels of selected p53 target genes (14-3-3σ, Gadd45α and Pgm) and one microRNA (miR-34a); results showed down-regulation of Pgm and up-regulation of the other three. These findings show an activation of p53 in response to anoxia exposure and suggest an important role for the p53 stress response pathway in regulating natural anoxia tolerance and hypometabolism in a vertebrate facultative anaerobe. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity

    OpenAIRE

    Wyman, Stacia K.; Knouf, Emily C.; Parkin, Rachael K.; Fritz, Brian R.; Lin, Daniel W.; Dennis, Lucas M.; Krouse, Michael A.; Webster, Philippa J.; Tewari, Muneesh

    2011-01-01

    Modification of microRNA sequences by the 3′ addition of nucleotides to generate so-called “isomiRs” adds to the complexity of miRNA function, with recent reports showing that 3′ modifications can influence miRNA stability and efficiency of target repression. Here, we show that the 3′ modification of miRNAs is a physiological and common post-transcriptional event that shows selectivity for specific miRNAs and is observed across species ranging from C. elegans to human. The modifications resul...

  14. Toscana virus NSs protein promotes degradation of double-stranded RNA-dependent protein kinase.

    Science.gov (United States)

    Kalveram, Birte; Ikegami, Tetsuro

    2013-04-01

    Toscana virus (TOSV), which is transmitted by Phlebotomus spp. sandflies, is a major etiologic agent of aseptic meningitis and encephalitis in the Mediterranean. Like other members of the genus Phlebovirus of the family Bunyaviridae, TOSV encodes a nonstructural protein (NSs) in its small RNA segment. Although the NSs of Rift Valley fever virus (RVFV) has been identified as an important virulence factor, which suppresses host general transcription, inhibits transcription from the beta interferon promoter, and promotes the proteasomal degradation of double-stranded RNA-dependent protein kinase (PKR), little is known about the functions of NSs proteins encoded by less-pathogenic members of this genus. In this study we report that TOSV is able to downregulate PKR with similar efficiency as RVFV, while infection with the other phleboviruses-i.e., Punta Toro virus, sandfly fever Sicilian virus, or Frijoles virus-has no effect on cellular PKR levels. In contrast to RVFV, however, cellular transcription remains unaffected during TOSV infection. TOSV NSs protein promotes the proteasome-dependent downregulation of PKR and is able to interact with kinase-inactive PKR in infected cells.

  15. Constitutive expression of a putative high-affinity nitrate transporter in Nicotiana plumbaginifolia: evidence for post-transcriptional regulation by a reduced nitrogen source.

    Science.gov (United States)

    Fraisier, V; Gojon, A; Tillard, P; Daniel-Vedele, F

    2000-08-01

    The NpNRT2.1 gene encodes a putative inducible component of the high-affinity nitrate (NO3-) uptake system in Nicotiana plumbaginifolia. Here we report functional and physiological analyses of transgenic plants expressing the NpNRT2.1 coding sequence fused to the CaMV 35S or rolD promoters. Irrespective of the level of NO3- supplied, NO3- contents were found to be remarkably similar in wild-type and transgenic plants. Under specific conditions (growth on 10 mM NO3-), the steady-state NpNRT2. 1 mRNA level resulting from the deregulated transgene expression was accompanied by an increase in 15NO3- influx measured in the low concentration range. This demonstrates for the first time that the NRT2.1 sequence codes a limiting element of the inducible high-affinity transport system. Both 15NO3- influx and mRNA levels decreased in the wild type after exposure to ammonium, in agreement with previous results from many species. Surprisingly, however, influx was also markedly decreased in transgenic plants, despite stable levels of transgene expression in independent transformants after ammonium addition. We conclude that the conditions associated with the supply of a reduced nitrogen source such as ammonium, or with the generation of a further downstream metabolite, probably exert a repressive effect on NO3- influx at both transcriptional and post-transcriptional levels.

  16. Maintenance of the marginal zone B cell compartment specifically requires the RNA-binding protein ZFP36L1

    Science.gov (United States)

    Newman, Rebecca; Ahlfors, Helena; Saveliev, Alexander; Galloway, Alison; Hodson, Daniel J; Williams, Robert; Besra, Gurdyal S.; Cook, Charlotte N; Cunningham, Adam F; Bell, Sarah E; Turner, Martin

    2017-01-01

    RNA binding proteins (RBP) of the ZFP36 family are best known for inhibiting the expression of cytokines through binding to AU rich elements in the 3’UTR and promoting mRNA decay. Here we show an indispensible role for ZFP36L1 as the regulator of a post-transcriptional hub that determined the identity of marginal zone (MZ) B cells by promoting their proper localization and survival. ZFP36L1 controlled a gene expression program related to signaling, cell-adhesion and locomotion, in part by limiting the expression of the transcription factors KLF2 and IRF8, which are known to enforce the follicular B cell phenotype. These mechanisms emphasize the importance of integrating transcriptional and post-transcriptional processes by RBP for maintaining cellular identity between closely related cell types. PMID:28394372

  17. Post-Transcriptional Regulation of KLF4 by High-Risk Human Papillomaviruses Is Necessary for the Differentiation-Dependent Viral Life Cycle.

    Directory of Open Access Journals (Sweden)

    Vignesh Kumar Gunasekharan

    2016-07-01

    Full Text Available Human papillomaviruses (HPVs are epithelial tropic viruses that link their productive life cycles to the differentiation of infected host keratinocytes. A subset of the over 200 HPV types, referred to as high-risk, are the causative agents of most anogenital malignancies. HPVs infect cells in the basal layer, but restrict viral genome amplification, late gene expression, and capsid assembly to highly differentiated cells that are active in the cell cycle. In this study, we demonstrate that HPV proteins regulate the expression and activities of a critical cellular transcription factor, KLF4, through post-transcriptional and post-translational mechanisms. Our studies show that KLF4 regulates differentiation as well as cell cycle progression, and binds to sequences in the upstream regulatory region (URR to regulate viral transcription in cooperation with Blimp1. KLF4 levels are increased in HPV-positive cells through a post-transcriptional mechanism involving E7-mediated suppression of cellular miR-145, as well as at the post-translational level by E6-directed inhibition of its sumoylation and phosphorylation. The alterations in KLF4 levels and functions results in activation and suppression of a subset of KLF4 target genes, including TCHHL1, VIM, ACTN1, and POT1, that is distinct from that seen in normal keratinocytes. Knockdown of KLF4 with shRNAs in cells that maintain HPV episomes blocked genome amplification and abolished late gene expression upon differentiation. While KLF4 is indispensable for the proliferation and differentiation of normal keratinocytes, it is necessary only for differentiation-associated functions of HPV-positive keratinocytes. Increases in KLF4 levels alone do not appear to be sufficient to explain the effects on proliferation and differentiation of HPV-positive cells indicating that additional modifications are important. KLF4 has also been shown to be a critical regulator of lytic Epstein Barr virus (EBV replication

  18. Hepatitis B virus nuclear export elements: RNA stem-loop α and β, key parts of the HBV post-transcriptional regulatory element.

    Science.gov (United States)

    Lim, Chun Shen; Brown, Chris M

    2016-09-01

    Many viruses contain RNA elements that modulate splicing and/or promote nuclear export of their RNAs. The RNAs of the major human pathogen, hepatitis B virus (HBV) contain a large (~600 bases) composite cis-acting 'post-transcriptional regulatory element' (PRE). This element promotes expression from these naturally intronless transcripts. Indeed, the related woodchuck hepadnavirus PRE (WPRE) is used to enhance expression in gene therapy and other expression vectors. These PRE are likely to act through a combination of mechanisms, including promotion of RNA nuclear export. Functional components of both the HBV PRE and WPRE are 2 conserved RNA cis-acting stem-loop (SL) structures, SLα and SLβ. They are within the coding regions of polymerase (P) gene, and both P and X genes, respectively. Based on previous studies using mutagenesis and/or nuclear magnetic resonance (NMR), here we propose 2 covariance models for SLα and SLβ. The model for the 30-nucleotide SLα contains a G-bulge and a CNGG(U) apical loop of which the first and the fourth loop residues form a CG pair and the fifth loop residue is bulged out, as observed in the NMR structure. The model for the 23-nucleotide SLβ contains a 7-base-pair stem and a 9-nucleotide loop. Comparison of the models with other RNA structural elements, as well as similarity searches of human transcriptome and viral genomes demonstrate that SLα and SLβ are specific to HBV transcripts. However, they are well conserved among the hepadnaviruses of non-human primates, the woodchuck and ground squirrel.

  19. 17beta-estradiol induced vitellogenesis is inhibited by cortisol at the post-transcriptional level in Arctic char (Salvelinus alpinus

    Directory of Open Access Journals (Sweden)

    Modig Carina

    2004-09-01

    Full Text Available Abstract This study was performed to investigate stress effects on the synthesis of egg yolk precursor, vitellogenin (Vtg in Arctic char (Salvelinus alpinus. In particular the effect of cortisol (F was determined since this stress hormone has been suggested to interfere with vitellogenesis and is upregulated during sexual maturation in teleosts. Arctic char Vtg was purified and polyclonal antibodies were produced in order to develop tools to study regulation of vitellogenesis. The Vtg antibodies were used to develop an enzyme-linked immunosorbent assay. The corresponding Vtg cDNA was cloned from a hepatic cDNA library in order to obtain DNA probes to measure Vtg mRNA expression. Analysis of plasma from juvenile Arctic char, of both sexes, exposed to different steroids showed that production of Vtg was induced in a dose dependent fashion by 17β-estradiol (E2, estrone and estriol. Apart from estrogens a high dose of F also upregulated Vtg. In addition, F, progesterone (P and tamoxifen were tested to determine these compounds ability to modulate E2 induced Vtg synthesis at both the mRNA and protein level. Tamoxifen was found to inhibit E2 induced Vtg mRNA and protein upregulation. P did not alter the Vtg induction while F reduced the Vtg protein levels without affecting the Vtg mRNA levels. Furthermore the inhibition of Vtg protein was found to be dose dependent. Thus, the inhibitory effect of F on Vtg appears to be mediated at the post-transcriptional level.

  20. Post-transcriptional gene expression control by NANOS is up-regulated and functionally important in pRb-deficient cells.

    Science.gov (United States)

    Miles, Wayne O; Korenjak, Michael; Griffiths, Lyra M; Dyer, Michael A; Provero, Paolo; Dyson, Nicholas J

    2014-10-01

    Inactivation of the retinoblastoma tumor suppressor (pRb) is a common oncogenic event that alters the expression of genes important for cell cycle progression, senescence, and apoptosis. However, in many contexts, the properties of pRb-deficient cells are similar to wild-type cells suggesting there may be processes that counterbalance the transcriptional changes associated with pRb inactivation. Therefore, we have looked for sets of evolutionary conserved, functionally related genes that are direct targets of pRb/E2F proteins. We show that the expression of NANOS, a key facilitator of the Pumilio (PUM) post-transcriptional repressor complex, is directly repressed by pRb/E2F in flies and humans. In both species, NANOS expression increases following inactivation of pRb/RBF1 and becomes important for tissue homeostasis. By analyzing datasets from normal retinal tissue and pRb-null retinoblastomas, we find a strong enrichment for putative PUM substrates among genes de-regulated in tumors. These include pro-apoptotic genes that are transcriptionally down-regulated upon pRb loss, and we characterize two such candidates, MAP2K3 and MAP3K1, as direct PUM substrates. Our data suggest that NANOS increases in importance in pRb-deficient cells and helps to maintain homeostasis by repressing the translation of transcripts containing PUM Regulatory Elements (PRE). © 2014 The Authors.

  1. Prion Protein Promotes Kidney Iron Uptake via Its Ferrireductase Activity*

    Science.gov (United States)

    Haldar, Swati; Tripathi, Ajai; Qian, Juan; Beserra, Amber; Suda, Srinivas; McElwee, Matthew; Turner, Jerrold; Hopfer, Ulrich; Singh, Neena

    2015-01-01

    Brain iron-dyshomeostasis is an important cause of neurotoxicity in prion disorders, a group of neurodegenerative conditions associated with the conversion of prion protein (PrPC) from its normal conformation to an aggregated, PrP-scrapie (PrPSc) isoform. Alteration of iron homeostasis is believed to result from impaired function of PrPC in neuronal iron uptake via its ferrireductase activity. However, unequivocal evidence supporting the ferrireductase activity of PrPC is lacking. Kidney provides a relevant model for this evaluation because PrPC is expressed in the kidney, and ∼370 μg of iron are reabsorbed daily from the glomerular filtrate by kidney proximal tubule cells (PT), requiring ferrireductase activity. Here, we report that PrPC promotes the uptake of transferrin (Tf) and non-Tf-bound iron (NTBI) by the kidney in vivo and mainly NTBI by PT cells in vitro. Thus, uptake of 59Fe administered by gastric gavage, intravenously, or intraperitoneally was significantly lower in PrP-knock-out (PrP−/−) mouse kidney relative to PrP+/+ controls. Selective in vivo radiolabeling of plasma NTBI with 59Fe revealed similar results. Expression of exogenous PrPC in immortalized PT cells showed localization on the plasma membrane and intracellular vesicles and increased transepithelial transport of 59Fe-NTBI and to a smaller extent 59Fe-Tf from the apical to the basolateral domain. Notably, the ferrireductase-deficient mutant of PrP (PrPΔ51–89) lacked this activity. Furthermore, excess NTBI and hemin caused aggregation of PrPC to a detergent-insoluble form, limiting iron uptake. Together, these observations suggest that PrPC promotes retrieval of iron from the glomerular filtrate via its ferrireductase activity and modulates kidney iron metabolism. PMID:25572394

  2. Post-transcriptional regulation of ethylene perception and signaling in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Schaller, George Eric [Dartmouth College, Hanover, NH (United States)

    2014-03-19

    The simple gas ethylene functions as an endogenous regulator of plant growth and development, and modulates such energy relevant processes as photosynthesis and biomass accumulation. Ethylene is perceived in the plant Arabidopsis by a five-member family of receptors related to bacterial histidine kinases. Our data support a general model in which the receptors exist as parts of larger protein complexes. Our goals have been to (1) characterize physical interactions among members of the signaling complex; (2) the role of histidine-kinase transphosphorylation in signaling by the complex; and (3) the role of a novel family of proteins that regulate signal output by the receptors.

  3. Post-transcriptional regulation on a global scale: form and function of Csr/Rsm systems.

    Science.gov (United States)

    Romeo, Tony; Vakulskas, Christopher A; Babitzke, Paul

    2013-02-01

    Originally described as a repressor of gene expression in the stationary phase of growth, CsrA (RsmA) regulates primary and secondary metabolic pathways, biofilm formation, motility, virulence circuitry of pathogens, quorum sensing and stress response systems by binding to conserved sequences in its target mRNAs and altering their translation and/or turnover. While the binding of CsrA to RNA is understood at an atomic level, new mechanisms of gene activation and repression by this protein are still emerging. In the γ-proteobacteria, small non-coding RNAs (sRNAs) use molecular mimicry to sequester multiple CsrA dimers away from mRNA. In contrast, the FliW protein of Bacillus subtilis inhibits CsrA activity by binding to this protein, thereby establishing a checkpoint in flagellum morphogenesis. Turnover of CsrB and CsrC sRNAs in Escherichia coli requires a specificity protein of the GGDEF-EAL domain superfamily, CsrD, in addition to the housekeeping nucleases RNase E and PNPase. The Csr system of E. coli contains extensive autoregulatory circuitry, which governs the expression and activity of CsrA. Interaction of the Csr system with transcriptional regulatory networks results in a variety of complex response patterns. This minireview will highlight basic principles and new insights into the workings of these complex eubacterial regulatory systems. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  4. The mitochondrial outer membrane protein MDI promotes local protein synthesis and mtDNA replication.

    Science.gov (United States)

    Zhang, Yi; Chen, Yong; Gucek, Marjan; Xu, Hong

    2016-05-17

    Early embryonic development features rapid nuclear DNA replication cycles, but lacks mtDNA replication. To meet the high-energy demands of embryogenesis, mature oocytes are furnished with vast amounts of mitochondria and mtDNA However, the cellular machinery driving massive mtDNA replication in ovaries remains unknown. Here, we describe a Drosophila AKAP protein, MDI that recruits a translation stimulator, La-related protein (Larp), to the mitochondrial outer membrane in ovaries. The MDI-Larp complex promotes the synthesis of a subset of nuclear-encoded mitochondrial proteins by cytosolic ribosomes on the mitochondrial surface. MDI-Larp's targets include mtDNA replication factors, mitochondrial ribosomal proteins, and electron-transport chain subunits. Lack of MDI abolishes mtDNA replication in ovaries, which leads to mtDNA deficiency in mature eggs. Targeting Larp to the mitochondrial outer membrane independently of MDI restores local protein synthesis and rescues the phenotypes of mdi mutant flies. Our work suggests that a selective translational boost by the MDI-Larp complex on the outer mitochondrial membrane might be essential for mtDNA replication and mitochondrial biogenesis during oogenesis. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  5. Salinity inhibits post transcriptional processing of chloroplast 16S rRNA in shoot cultures of jojoba (Simmondsia chinesis).

    Science.gov (United States)

    Mizrahi-Aviv, Ela; Mills, David; Benzioni, Aliza; Bar-Zvi, Dudy

    2005-03-01

    Chloroplast metabolism is rapidly affected by salt stress. Photosynthesis is one of the first processes known to be affected by salinity. Here, we report that salinity inhibits chloroplast post-transcriptional RNA processing. A differentially expressed 680-bp cDNA, containing the 3' sequence of 16S rRNA, transcribed intergenic spacer, exon 1 and intron of tRNA(Ile), was isolated by differential display reverse transcriptase PCR from salt-grown jojoba (Simmondsia chinesis) shoot cultures. Northern blot analysis indicated that although most rRNA appears to be fully processed, partially processed chloroplast 16S rRNA accumulates in salt-grown cultures. Thus, salinity appears to decrease the processing of the rrn transcript. The possible effect of this decreased processing on physiological processes is, as yet, unknown.

  6. 1,25-Dihydroxyvitamin D3 inhibits cytokine production by human blood monocytes at the post-transcriptional level

    DEFF Research Database (Denmark)

    Müller, K; Haahr, P M; Diamant, M

    1992-01-01

    was not caused by impaired production of mRNA. Taken together, the study demonstrates a vitamin D-induced inhibitory effect of LPS-driven monokine production, which is most likely a vitamin D-receptor mediated phenomenon exerted at a post-transcriptional, presecretory level. Impaired monokine production may...... be of importance in 1,25-(OH)2D3-mediated inhibition of lymphocyte functions in vitro.......1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] inhibits lymphocyte proliferation and production of antibodies and lymphokines such as interleukin (IL)-2 and interferon gamma. These lymphocyte functions are dependent upon cytokines, including IL-1 alpha, IL-1 beta, IL-6 and tumour necrosis factor alpha...

  7. Post-transcriptional gene silencing is involved in resistance of transgenic papayas to Papaya Ringspot Virus

    Czech Academy of Sciences Publication Activity Database

    Ruanjan, P.; Kertbundit, Sunee; Juříček, Miloslav

    2007-01-01

    Roč. 51, č. 3 (2007), s. 517-520 ISSN 0006-3134 Grant - others:BIOTEC, NASDA(TH) BT-B-06-PG-14-4503 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje Keywords : Carica papaya * reverse transcription PCR * COAT PROTEIN GENE Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.259, year: 2007

  8. Post-Transcriptional Regulation by the Csr Global Regulatory System in Escherichia coli

    OpenAIRE

    Suzuki, Kazushi; 鈴木, 一史

    2007-01-01

    In many species of bacteria, the Csr (carbon storage regulator) global regulatory system coordinates the expression of various genes. In Escherichia coli, the central component of this system, CsrA, is a RNA-binding protein. The CsrA is a homodimer and binds to leader segments of target mRNAs, affecting their translation and stability. CsrA activity is regulated by two small non-coding RNAs, CsrB and CsrC. These RNAs contain multiple CsrA-binding sequences and act by sequestering CsrA. In thi...

  9. Promotion of bone morphogenetic protein signaling by tetraspanins and glycosphingolipids.

    Directory of Open Access Journals (Sweden)

    Zhiyu Liu

    2015-05-01

    Full Text Available Bone morphogenetic proteins (BMPs belong to the transforming growth factor β (TGFβ superfamily of secreted molecules. BMPs play essential roles in multiple developmental and homeostatic processes in metazoans. Malfunction of the BMP pathway can cause a variety of diseases in humans, including cancer, skeletal disorders and cardiovascular diseases. Identification of factors that ensure proper spatiotemporal control of BMP signaling is critical for understanding how this pathway is regulated. We have used a unique and sensitive genetic screen to identify the plasma membrane-localized tetraspanin TSP-21 as a key new factor in the C. elegans BMP-like "Sma/Mab" signaling pathway that controls body size and postembryonic M lineage development. We showed that TSP-21 acts in the signal-receiving cells and genetically functions at the ligand-receptor level. We further showed that TSP-21 can associate with itself and with two additional tetraspanins, TSP-12 and TSP-14, which also promote Sma/Mab signaling. TSP-12 and TSP-14 can also associate with SMA-6, the type I receptor of the Sma/Mab pathway. Finally, we found that glycosphingolipids, major components of the tetraspanin-enriched microdomains, are required for Sma/Mab signaling. Our findings suggest that the tetraspanin-enriched membrane microdomains are important for proper BMP signaling. As tetraspanins have emerged as diagnostic and prognostic markers for tumor progression, and TSP-21, TSP-12 and TSP-14 are all conserved in humans, we speculate that abnormal BMP signaling due to altered expression or function of certain tetraspanins may be a contributing factor to cancer development.

  10. Elongation factor P mediates a novel post-transcriptional regulatory pathway critical for bacterial virulence

    DEFF Research Database (Denmark)

    Zou, S Betty; Roy, Hervé; Ibba, Michael

    2012-01-01

    Bacterial pathogens detect and integrate multiple environmental signals to coordinate appropriate changes in gene expression including the selective expression of virulence factors, changes to metabolism and the activation of stress response systems. Mutations that abolish the ability of the path......Bacterial pathogens detect and integrate multiple environmental signals to coordinate appropriate changes in gene expression including the selective expression of virulence factors, changes to metabolism and the activation of stress response systems. Mutations that abolish the ability...... our laboratory and others now suggests that EF-P, previously thought to be essential, instead plays an ancillary role in translation by regulating the synthesis of a relatively limited subset of proteins. Other observations suggest that the eukaryotic homolog of EF-P, eIF5A, may illicit similar...

  11. MicroRNA-20a/b regulates cholesterol efflux through post-transcriptional repression of ATP-binding cassette transporter A1.

    Science.gov (United States)

    Liang, Bin; Wang, Xin; Song, Xiaosu; Bai, Rui; Yang, Huiyu; Yang, Zhiming; Xiao, Chuanshi; Bian, Yunfei

    2017-09-01

    ATP-binding cassette transporter A1 (ABCA1) plays a crucial role in reverse cholesterol transport and exhibits anti-atherosclerosis effects. Some microRNAs (miRs) regulate ABCA1 expression, and recent studies have shown that miR-20a/b might play a critical role in atherosclerotic diseases. Here, we attempted to clarify the potential contribution of miR-20a/b in post-transcriptional regulation of ABCA1, cholesterol efflux, and atherosclerosis. We performed bioinformatics analysis and found that miR-20a/b was highly conserved and directly bound to ABCA1 mRNA with low binding free energy. Luciferase-reporter assay also confirmed that miR-20a/b significantly reduced luciferase activity associated with the ABCA1 3' untranslated region reporter construct. Additionally, miR-20a/b decreased ABCA1 expression, which, in turn, decreased cholesterol efflux and increased cholesterol content in THP-1 and RAW 264.7 macrophage-derived foam cells. In contrast, miR-20a/b inhibitors increased ABCA1 expression and cholesterol efflux, decreased cholesterol content, and inhibited foam-cell formation. Consistent with our in vitro results, miR-20a/b-treated ApoE -/- mice showed decreased ABCA1expression in the liver and reductions of reverse cholesterol transport in vivo. Furthermore, miR-20a/b regulated the formation of nascent high-density lipoprotein and promoted atherosclerotic development, whereas miR-20a/b knockdown attenuated atherosclerotic formation. miR-20 is a new miRNA capable of targeting ABCA1 and regulating ABCA1 expression. Therefore, miR-20 inhibition constitutes a new strategy for ABCA1-based treatment of atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Localizing potentially active post-transcriptional regulations in the Ewing's sarcoma gene regulatory network

    Directory of Open Access Journals (Sweden)

    Delyon Bernard

    2010-11-01

    Full Text Available Abstract Background A wide range of techniques is now available for analyzing regulatory networks. Nonetheless, most of these techniques fail to interpret large-scale transcriptional data at the post-translational level. Results We address the question of using large-scale transcriptomic observation of a system perturbation to analyze a regulatory network which contained several types of interactions - transcriptional and post-translational. Our method consisted of post-processing the outputs of an open-source tool named BioQuali - an automatic constraint-based analysis mimicking biologist's local reasoning on a large scale. The post-processing relied on differences in the behavior of the transcriptional and post-translational levels in the network. As a case study, we analyzed a network representation of the genes and proteins controlled by an oncogene in the context of Ewing's sarcoma. The analysis allowed us to pinpoint active interactions specific to this cancer. We also identified the parts of the network which were incomplete and should be submitted for further investigation. Conclusions The proposed approach is effective for the qualitative analysis of cancer networks. It allows the integrative use of experimental data of various types in order to identify the specific information that should be considered a priority in the initial - and possibly very large - experimental dataset. Iteratively, new dataset can be introduced into the analysis to improve the network representation and make it more specific.

  13. Inhibition of Mef2a Enhances Neovascularization via Post-transcriptional Regulation of 14q32 MicroRNAs miR-329 and miR-494

    Directory of Open Access Journals (Sweden)

    Sabine M.J. Welten

    2017-06-01

    Full Text Available Improving the efficacy of neovascularization is a promising strategy to restore perfusion of ischemic tissues in patients with peripheral arterial disease. The 14q32 microRNA cluster is highly involved in neovascularization. The Mef2a transcription factor has been shown to induce transcription of the microRNAs within this cluster. We inhibited expression of Mef2a using gene-silencing oligonucleotides (GSOs in an in vivo hind limb ischemia model. Treatment with GSO-Mef2a clearly improved blood flow recovery within 3 days (44% recovery versus 25% recovery in control and persisted until 14 days after ischemia induction (80% recovery versus 60% recovery in control. Animals treated with GSO-Mef2a showed increased arteriogenesis and angiogenesis in the relevant muscle tissues. Inhibition of Mef2a decreased expression of 14q32 microRNAs miR-329 (p = 0.026 and miR-494 (trend, p = 0.06, but not of other 14q32 microRNAs, nor of 14q32 microRNA precursors. Because Mef2a did not influence 14q32 microRNA transcription, we hypothesized it functions as an RNA-binding protein that influences processing of 14q32 microRNA miR-329 and miR-494. Mef2A immunoprecipitation followed by RNA isolation and rt/qPCR confirmed direct binding of MEF2A to pri-miR-494, supporting this hypothesis. Our study demonstrates a novel function for Mef2a in post-ischemic neovascularization via post-transcriptional regulation of 14q32 microRNAs miR-329 and miR-494.

  14. Phosphorylation of stress protein pp80 is related to promotion of transformation

    International Nuclear Information System (INIS)

    Smith, B.M.; Gindhart, T.D.; Hirano, K.; Colburn, N.H.

    1986-01-01

    The JB6 mouse epidermal cell system is an in vitro model of late stage promotion, and includes cell lines sensitive (P+) or resistant (P-) to phorbol ester-induced anchorage independent transformation, and transformed (T/sub x/) lines. Certain promoter-induced changes in phosphoproteins, identified by gel electrophoresis, are unique to cells of one phenotype, and occur only with specific promoters. An 80Kd protein is inversely correlated with phenotype: P- cells have a constitutively higher level (p 35 S-methionine. pp80 shares properties with the 80Kd heat stress protein: molecular weight relative abundance, and isoelectric point (4.5). Pharmacological analogs of calcium, the lanthanides, promote transformation of JB6 cells, but have no effect on phosphorylation of the 80Kd protein. If pp80 is on the promotion pathway, it is limited to a specific subset of transformation promoters

  15. Ligand-promoted protein folding by biased kinetic partitioning.

    Science.gov (United States)

    Hingorani, Karan S; Metcalf, Matthew C; Deming, Derrick T; Garman, Scott C; Powers, Evan T; Gierasch, Lila M

    2017-04-01

    Protein folding in cells occurs in the presence of high concentrations of endogenous binding partners, and exogenous binding partners have been exploited as pharmacological chaperones. A combined mathematical modeling and experimental approach shows that a ligand improves the folding of a destabilized protein by biasing the kinetic partitioning between folding and alternative fates (aggregation or degradation). Computationally predicted inhibition of test protein aggregation and degradation as a function of ligand concentration are validated by experiments in two disparate cellular systems.

  16. Bypass of cell cycle arrest induced by transient DNMT1 post-transcriptional silencing triggers aneuploidy in human cells

    Directory of Open Access Journals (Sweden)

    Barra Viviana

    2012-02-01

    Full Text Available Abstract Background Aneuploidy has been acknowledged as a major source of genomic instability in cancer, and it is often considered the result of chromosome segregation errors including those caused by defects in genes controlling the mitotic spindle assembly, centrosome duplication and cell-cycle checkpoints. Aneuploidy and chromosomal instability has been also correlated with epigenetic alteration, however the molecular basis of this correlation is poorly understood. Results To address the functional connection existing between epigenetic changes and aneuploidy, we used RNA-interference to silence the DNMT1 gene, encoding for a highly conserved member of the DNA methyl-transferases. DNMT1 depletion slowed down proliferation of near-diploid human tumor cells (HCT116 and triggered G1 arrest in primary human fibroblasts (IMR90, by inducing p53 stabilization and, in turn, p21waf1 transactivation. Remarkably, p53 increase was not caused by DNA damage and was not observed after p14-ARF post-transcriptional silencing. Interestingly, DNMT1 silenced cells with p53 or p14-ARF depleted did not arrest in G1 but, instead, underwent DNA hypomethylation and became aneuploid. Conclusion Our results suggest that DNMT1 depletion triggers a p14ARF/p53 dependent cell cycle arrest to counteract the aneuploidy induced by changes in DNA methylation.

  17. Prefoldin Promotes Proteasomal Degradation of Cytosolic Proteins with Missense Mutations by Maintaining Substrate Solubility.

    Directory of Open Access Journals (Sweden)

    Sophie A Comyn

    2016-07-01

    Full Text Available Misfolded proteins challenge the ability of cells to maintain protein homeostasis and can accumulate into toxic protein aggregates. As a consequence, cells have adopted a number of protein quality control pathways to prevent protein aggregation, promote protein folding, and target terminally misfolded proteins for degradation. In this study, we employed a thermosensitive allele of the yeast Guk1 guanylate kinase as a model misfolded protein to investigate degradative protein quality control pathways. We performed a flow cytometry based screen to identify factors that promote proteasomal degradation of proteins misfolded as the result of missense mutations. In addition to the E3 ubiquitin ligase Ubr1, we identified the prefoldin chaperone subunit Gim3 as an important quality control factor. Whereas the absence of GIM3 did not impair proteasomal function or the ubiquitination of the model substrate, it led to the accumulation of the poorly soluble model substrate in cellular inclusions that was accompanied by delayed degradation. We found that Gim3 interacted with the Guk1 mutant allele and propose that prefoldin promotes the degradation of the unstable model substrate by maintaining the solubility of the misfolded protein. We also demonstrated that in addition to the Guk1 mutant, prefoldin can stabilize other misfolded cytosolic proteins containing missense mutations.

  18. Promoter analysis of the Chilo iridescent virus DNA polymerase and major capsid protein genes

    International Nuclear Information System (INIS)

    Nalcacioglu, Remziye; Marks, Hendrik; Vlak, Just M.; Demirbag, Zihni; Oers, Monique M. van

    2003-01-01

    The DNA polymerase (DNApol) and major capsid protein (MCP) genes were used as models to study promoter activity in Chilo iridescent virus (CIV). Infection of Bombyx mori SPC-BM-36 cells in the presence of inhibitors of DNA or protein synthesis showed that DNApol, as well as helicase, is an immediate-early gene and confirmed that the major capsid protein (MCP) is a late gene. Transcription of DNApol initiated 35 nt upstream and that of MCP 14 nt upstream of the translational start site. In a luciferase reporter gene assay both promoters were active only when cells were infected with CIV. For DNApol sequences between position -27 and -6, relative to the transcriptional start site, were essential for promoter activity. Furthermore, mutation of a G within the sequence TTGTTTT located just upstream of the DNApol transcription initiation site reduced the promoter activity by 25%. Sequences crucial for MCP promoter activity are located between positions -53 and -29

  19. Methods for promoting wound healing and muscle regeneration with the cell signaling protein nell1

    Energy Technology Data Exchange (ETDEWEB)

    Culiat, Cymbeline T.

    2018-03-20

    The present invention provides methods for promoting wound healing and treating muscle atrophy in a mammal in need. The method comprises administering to the mammal a Nell1 protein or a Nell1 nucleic acid molecule.

  20. Methods for promoting wound healing and muscle regeneration with the cell signaling protein Nell1

    Science.gov (United States)

    Culiat, Cymbeline T [Oak Ridge, TN

    2011-03-22

    The present invention provides methods for promoting wound healing and treating muscle atrophy in a mammal in need. The method comprises administering to the mammal a Nell1 protein or a Nell1 nucleic acid molecule.

  1. Interaction of an IHF-like protein with the Rhizobium etli nifA promoter.

    Science.gov (United States)

    Benhassine, Traki; Fauvart, Maarten; Vanderleyden, Jos; Michiels, Jan

    2007-06-01

    The nifA gene fulfills an essential role in the regulation of nitrogen fixation genes in Rhizobium etli. Transcription analysis of the nifA gene, assessed using promoter deletions, indicated an oxygen-independent expression, threefold higher during symbiosis as compared with free-living conditions. Electrophoretic mobility shift assays using those nifA promoter deletion fragments, which were actively transcribed, demonstrated the specific interaction with R. etli cellular protein(s) resulting in the formation of two DNA-protein complexes. An interacting protein was purified by liquid chromatography on Heparin Sepharose and Mono S columns. The purified 12 kDa R. etli protein cross-reacted with antibodies directed against Escherichia coli integration host factor (IHF). Furthermore, purified E. coli IHF was able to specifically bind to the R. etli nifA promoter region. These results point to an as yet undisclosed function of IHF in the regulation of R. etli nifA expression.

  2. Soy protein isolate inhibits hepatic tumor promotion in mice fed a high-fat liquid diet.

    Science.gov (United States)

    Mercer, Kelly E; Pulliam, Casey F; Pedersen, Kim B; Hennings, Leah; Ronis, Martin Jj

    2017-03-01

    Alcoholic and nonalcoholic fatty liver diseases are risk factors for development of hepatocellular carcinoma, but the underlying mechanisms are poorly understood. On the other hand, ingestion of soy-containing diets may oppose the development of certain cancers. We previously reported that replacing casein with a soy protein isolate reduced tumor promotion in the livers of mice with alcoholic liver disease after feeding a high fat ethanol liquid diet following initiation with diethylnitrosamine. Feeding soy protein isolate inhibited processes that may contribute to tumor promotion including inflammation, sphingolipid signaling, and Wnt/β-catenin signaling. We have extended these studies to characterize liver tumor promotion in a model of nonalcoholic fatty liver disease produced by chronic feeding of high-fat liquid diets in the absence of ethanol. Mice treated with diethylnitrosamine on postnatal day 14 were fed a high-fat liquid diet made with casein or SPI as the sole protein source for 16 weeks in adulthood. Relative to mice fed normal chow, a high fat/casein diet led to increased tumor promotion, hepatocyte proliferation, steatosis, and inflammation. Replacing casein with soy protein isolate counteracted these effects. The high fat diets also resulted in a general increase in transcripts for Wnt/β-catenin pathway components, which may be an important mechanism, whereby hepatic tumorigenesis is promoted. However, soy protein isolate did not block Wnt signaling in this nonalcoholic fatty liver disease model. We conclude that replacing casein with soy protein isolate blocks development of steatosis, inflammation, and tumor promotion in diethylnitrosamine-treated mice fed high fat diets. Impact statement The impact of dietary components on cancer is a topic of great interest for both the general public and the scientific community. Liver cancer is currently the second leading form of cancer deaths worldwide. Our study has addressed the effect of the protein

  3. Optimisation of transgene action at the post-transcriptional level: high quality parthenocarpic fruits in industrial tomatoes

    Directory of Open Access Journals (Sweden)

    Defez Roberto

    2002-01-01

    Full Text Available Abstract Background Genetic engineering of parthenocarpy confers to horticultural plants the ability to produce fruits under environmental conditions that curtail fruit productivity and quality. The DefH9-iaaM transgene, whose predicted action is to confer auxin synthesis specifically in the placenta, ovules and derived tissues, has been shown to confer parthenocarpy to several plant species (tobacco, eggplant, tomato and varieties. Results UC82 tomato plants, a typical cultivar used by the processing industry, transgenic for the DefH9-iaaM gene produce parthenocarpic fruits that are malformed. UC82 plants transgenic for the DefH9-RI-iaaM, a DefH9-iaaM derivative gene modified in its 5'ULR by replacing 53 nucleotides immediately upstream of the AUG initiation codon with an 87 nucleotides-long sequence derived from the rolA intron sequence, produce parthenocarpic fruits of high quality. In an in vitro translation system, the iaaM mRNA, modified in its 5'ULR is translated 3–4 times less efficiently than the original transcript. An optimal expressivity of parthenocarpy correlates with a reduced transgene mRNA steady state level in DefH9-RI-iaaM flower buds in comparison to DefH9-iaaM flower buds. Consistent with the known function of the iaaM gene, flower buds transgenic for the DefH9-RI-iaaM gene contain ten times more IAA than control untransformed flower buds, but five times less than DefH9-iaaM flower buds. Conclusions By using an auxin biosynthesis transgene downregulated at the post-transcriptional level, an optimal expressivity of parthenocarpy has been achieved in a genetic background not suitable for the original transgene. Thus, the method allows the generation of a wider range of expressivity of the desired trait in transgenic plants.

  4. Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity.

    Science.gov (United States)

    Wyman, Stacia K; Knouf, Emily C; Parkin, Rachael K; Fritz, Brian R; Lin, Daniel W; Dennis, Lucas M; Krouse, Michael A; Webster, Philippa J; Tewari, Muneesh

    2011-09-01

    Modification of microRNA sequences by the 3' addition of nucleotides to generate so-called "isomiRs" adds to the complexity of miRNA function, with recent reports showing that 3' modifications can influence miRNA stability and efficiency of target repression. Here, we show that the 3' modification of miRNAs is a physiological and common post-transcriptional event that shows selectivity for specific miRNAs and is observed across species ranging from C. elegans to human. The modifications result predominantly from adenylation and uridylation and are seen across tissue types, disease states, and developmental stages. To quantitatively profile 3' nucleotide additions, we developed and validated a novel assay based on NanoString Technologies' nCounter platform. For certain miRNAs, the frequency of modification was altered by processes such as cell differentiation, indicating that 3' modification is a biologically regulated process. To investigate the mechanism of 3' nucleotide additions, we used RNA interference to screen a panel of eight candidate miRNA nucleotidyl transferases for 3' miRNA modification activity in human cells. Multiple enzymes, including MTPAP, PAPD4, PAPD5, ZCCHC6, ZCCHC11, and TUT1, were found to govern 3' nucleotide addition to miRNAs in a miRNA-specific manner. Three of these enzymes-MTPAP, ZCCHC6, and TUT1-have not previously been known to modify miRNAs. Collectively, our results indicate that 3' modification observed in next-generation small RNA sequencing data is a biologically relevant process, and identify enzymatic mechanisms that may lead to new approaches for modulating miRNA activity in vivo.

  5. Post-transcriptional silencing of flavonol synthase mRNA in tobacco leads to fruits with arrested seed set.

    Directory of Open Access Journals (Sweden)

    Monika Mahajan

    Full Text Available Flavonoids are synthesized by phenylpropanoid pathway. They are known to participate in large number of physiological and biochemical processes in plants. Parthenocarpy and male sterility has earlier been reported by silencing chalcone synthase (CHS encoding gene. Silencing of CHS has blocked the synthesis of most of useful flavonoids including flavan-3-ols and flavonols. Also, these studies could not identify whether parthenocarpy/male sterility were due to lack of flavan-3-ols or flavonols or both. Flavonol synthase (FLS is an important enzyme of flavonoid pathway that catalyzes the formation of flavonols. In this article, we propose a novel strategy towards the generation of seedless or less-seeded fruits by downregulation of flavonol biosynthesis in tobacco (Nicotiana tabacum cv Xanthi through post-transcriptional gene silencing (PTGS of FLS encoding mRNA. The FLS silenced lines were observed for 20-80% reduction in FLS encoding gene expression and 25-93% reduction in flavonol (quercetin content. Interestingly, these FLS silenced tobacco lines also showed reduction in their anthocyanidins content. While the content of flavan-3-ols (catechin, epi-catechin and epi-gallocatechin was found to be increased in FLS silenced lines. The delayed flowering in FLS silenced lines could be due to decrease in level of indole acetic acid (IAA at apical region of their shoots. Furthermore, the pollen germination was hampered and pollens were unable to produce functional pollen tube in FLS silenced tobacco lines. Pods of FLS silenced lines contained significantly less number of seeds. The in vitro and in vivo studies where 1 µM quercetin was supplied to germination media, documented the restoration of normal pollen germination and pollen tube growth. This finding identified the role of flavonols particularly quercetin in pollen germination as well as in the regulation of plant fertility. Results also suggest a novel approach towards generation of seedless

  6. Promoter analysis of the Chilo iridescent virus DNA polymerase and major capsid protein genes

    NARCIS (Netherlands)

    Nalcacioglu, R.; Marks, H.; Vlak, J.M.; Demirbag, Z.; Oers, van M.M.

    2003-01-01

    The DNA polymerase (DNApol) and major capsid protein (MCP) genes were used as models to study promoter activity in Chilo iridescent virus (CIV). Infection of Bombyx mori SPC-BM-36 cells in the presence of inhibitors of DNA or protein synthesis showed that DNApol, as well as helicase, is an

  7. The gga-let-7 family post-transcriptionally regulates TGFBR1 and LIN28B during the differentiation process in early chick development.

    Science.gov (United States)

    Lee, Sang In; Jeon, Mi-Hyang; Kim, Jeom Sun; Jeon, Ik-Soo; Byun, Sung June

    2015-12-01

    Early chick embryogenesis is governed by a complex mechanism involving transcriptional and post-transcriptional regulation, although how post-transcriptional processes influence the balance between pluripotency and differentiation during early chick development have not been previously investigated. Here, we characterized the microRNA (miRNA) signature associated with differentiation in the chick embryo, and found that as expression of the gga-let-7 family increases through early development, expression of their direct targets, TGFBR1 and LIN28B, decreases; indeed, gga-let-7a-5p and gga-let-7b miRNAs directly bind to TGFBR1 and LIN28B transcripts. Our data further indicate that TGFBR1 and LIN28B maintain pluripotency by regulating POUV, NANOG, and CRIPTO. Therefore, gga-let-7 miRNAs act as post-transcriptional regulators of differentiation in blastodermal cells by repressing the expression of the TGFBR1 and LIN28B, which intrinsically controls blastodermal cell differentiation in early chick development. © 2015 Wiley Periodicals, Inc.

  8. Nuclear pore protein NUP88 activates anaphase-promoting complex to promote aneuploidy

    NARCIS (Netherlands)

    Naylor, R.M.; Jeganathan, K.B.; Cao, X.; Deursen, J.M. van

    2016-01-01

    The nuclear pore complex protein NUP88 is frequently elevated in aggressive human cancers and correlates with reduced patient survival; however, it is unclear whether and how NUP88 overexpression drives tumorigenesis. Here, we show that mice overexpressing NUP88 are cancer prone and form intestinal

  9. Protein Kinase C-ε Promotes EMT in Breast Cancer

    Science.gov (United States)

    Jain, Kirti; Basu, Alakananda

    2014-01-01

    Protein kinase C (PKC), a family of serine/threonine kinases, plays critical roles in signal transduction and cell regulation. PKCε, a member of the novel PKC family, is known to be a transforming oncogene and a tumor biomarker for aggressive breast cancers. In this study, we examined the involvement of PKCε in epithelial to mesenchymal transition (EMT), the process that leads the way to metastasis. Overexpression of PKCε was sufficient to induce a mesenchymal phenotype in non-tumorigenic mammary epithelial MCF-10 A cells. This was accompanied by a decrease in the epithelial markers, such as E-cadherin, zonula occludens (ZO)-1, and claudin-1, and an increase in mesenchymal marker vimentin. Transforming growth factor β (TGFβ) induced Snail expression and mesenchymal morphology in MCF-10 A cells, and these effects were partially reversed by the PKCε knockdown. PKCε also mediated cell migration and anoikis resistance, which are hallmarks of EMT. Thus, our study demonstrates that PKCε is an important mediator of EMT in breast cancer. PMID:24701121

  10. Isolation and characterization of an ubiquitin extension protein gene (JcUEP) promoter from Jatropha curcas.

    Science.gov (United States)

    Tao, Yan-Bin; He, Liang-Liang; Niu, Long-Jian; Xu, Zeng-Fu

    2015-04-01

    The JcUEP promoter is active constitutively in the bio-fuel plant Jatropha curcas , and is an alternative to the widely used CaMV35S promoter for driving constitutive overexpression of transgenes in Jatropha. Well-characterized promoters are required for transgenic breeding of Jatropha curcas, a biofuel feedstock with great potential for production of bio-diesel and bio-jet fuel. In this study, an ubiquitin extension protein gene from Jatropha, designated JcUEP, was identified to be ubiquitously expressed. Thus, we isolated a 1.2 kb fragment of the 5' flanking region of JcUEP and evaluated its activity as a constitutive promoter in Arabidopsis and Jatropha using the β-glucuronidase (GUS) reporter gene. As expected, histochemical GUS assay showed that the JcUEP promoter was active in all Arabidopsis and Jatropha tissues tested. We also compared the activity of the JcUEP promoter with that of the cauliflower mosaic virus 35S (CaMV35S) promoter, a well-characterized constitutive promoter conferring strong transgene expression in dicot species, in various tissues of Jatropha. In a fluorometric GUS assay, the two promoters showed similar activities in stems, mature leaves and female flowers; while the CaMV35S promoter was more effective than the JcUEP promoter in other tissues, especially young leaves and inflorescences. In addition, the JcUEP promoter retained its activity under stress conditions in low temperature, high salt, dehydration and exogenous ABA treatments. These results suggest that the plant-derived JcUEP promoter could be an alternative to the CaMV35S promoter for driving constitutive overexpression of transgenes in Jatropha and other plants.

  11. Characterization and functional analyses of the human G protein-coupled receptor kinase 4 gene promoter.

    Science.gov (United States)

    Hasenkamp, Sandra; Telgmann, Ralph; Staessen, Jan A; Hagedorn, Claudia; Dördelmann, Corinna; Bek, Martin; Brand-Herrmann, Stefan-Martin; Brand, Eva

    2008-10-01

    The G protein-coupled receptor kinase 4 is involved in renal sodium handling and blood pressure regulation. Missense variants have already been tested functionally and are associated with hypertension, but no data on promoter analyses are yet available. We scanned 94 hypertensive white subjects for genetic variation and performed promoter reporter gene analyses in HEK293T, COS7, and SaOs-2 cells. Transient transfections with various full lengths and wild-type deletion constructs revealed that 1851 bp of the flanking region and 275 bp of the 5'-untranslated region were sufficient for transcriptional activities and composed a powerful cis-active element in the distal 293 bp. The -1702T and +2T alleles resulted in drastic general reductions of promoter function, whereas an activity increasing effect of +268C was cell type specific. Electrophoretic mobility-shift assay, supershift, and cotransfection analyses of transcription factor binding sites predicted in silico (Alibaba2.1/Transfac7) resulted in allele-specific binding patterns of nuclear proteins and identified the participation of CCAAT/enhancer-binding protein transcription factor family members. The G protein-coupled receptor kinase 4 core promoter resides in the first 1851 bp upstream of its transcription start site. The 4 identified genetic variants within this region exert allele-specific impact on both cell type- and stimulation-dependent transcription and may affect the expression balance of renal G protein-coupled receptor kinase 4.

  12. The inhibition of IGF-1 signaling promotes proteostasis by enhancing protein aggregation and deposition.

    Science.gov (United States)

    Moll, Lorna; Ben-Gedalya, Tziona; Reuveni, Hadas; Cohen, Ehud

    2016-04-01

    The discovery that the alteration of aging by reducing the activity of the insulin/IGF-1 signaling (IIS) cascade protects nematodes and mice from neurodegeneration-linked, toxic protein aggregation (proteotoxicity) raises the prospect that IIS inhibitors bear therapeutic potential to counter neurodegenerative diseases. Recently, we reported that NT219, a highly efficient IGF-1 signaling inhibitor, protects model worms from the aggregation of amyloid β peptide and polyglutamine peptides that are linked to the manifestation of Alzheimer's and Huntington's diseases, respectively. Here, we employed cultured cell systems to investigate whether NT219 promotes protein homeostasis (proteostasis) in mammalian cells and to explore its underlying mechanisms. We found that NT219 enhances the aggregation of misfolded prion protein and promotes its deposition in quality control compartments known as "aggresomes." NT219 also elevates the levels of certain molecular chaperones but, surprisingly, reduces proteasome activity and impairs autophagy. Our findings show that IGF-1 signaling inhibitors in general and NT219 in particular can promote proteostasis in mammalian cells by hyperaggregating hazardous proteins, thereby bearing the potential to postpone the onset and slow the progression of neurodegenerative illnesses in the elderly.-Moll, L., Ben-Gedalya, T., Reuveni, H., Cohen, E. The inhibition of IGF-1 signaling promotes proteostasis by enhancing protein aggregation and deposition. © FASEB.

  13. Centrosomal protein 55 activates NF-?B signalling and promotes pancreatic cancer cells aggressiveness

    OpenAIRE

    Peng, Tao; Zhou, Wei; Guo, Feng; Wu, He-shui; Wang, Chun-you; Wang, Li; Yang, Zhi-yong

    2017-01-01

    Centrosomal protein 55 (CEP55) is a microtubule-bundling protein that participants in cell mitosis. It is overexpressed in several solid tumours and promotes the growth and invasion of cancer cells. However, the role of CEP55 in pancreatic cancer (PANC) remains unclear. Herein, upregulated expression of CEP55 (associated with poor prognosis) was detected in PANC using quantitative real-time reverse transcription PCR, western blotting, and immunohistochemistry. Cell migration, colony formation...

  14. TPA-inducible proteins may account for sensitivity to promotion of transformation

    International Nuclear Information System (INIS)

    Hirano, K.; Smith, B.; Colburn, N.H.

    1986-01-01

    The preneoplastic JB6 mouse epidermal cell system includes cell lines sensitive (P + ) or resistant (P - ) to tumor promoter induced neoplastic transformation. The authors investigated whether a difference in TPA-inducible proteins may explain this differential sensitivity. The synthesis of a 39 Kd cytoplasmic protein (Major Excreted Protein) was TPA-inducible, but to a similar extent in both P + and P - cells. TPA stimulated phosphorylation but not synthesis of the previously described stress protein pp80 in both P + and P - cells from 1 to 5 hr after treatment. Pulse labelling of P + and P - cells with 35 S-methionine revealed a TPA dependent P + specific transient increase in the synthesis of 58Kd protein. Induction was observed at 1 hr, and returned to basal levels by 4 hr and 20 hr, in nuclear and cytoplasmic fractions, respectively. This protein is not phosphorylated in response to TPA treatment. P + cells differ from P - cells in one or more genes that specify sensitivity to promotion of transformation, designated pro genes. Antibodies to three peptides representing the pro-1 open reading frame were used in immunoprecipitation and Western blotting to isolate the pro-1 gene product. A 43 Kd protein was immunologically responsive to the pro-1 peptide antibodies, and showed an increased signal 40 min after TPA treatment. Since the predicted molecular weight of a pro-1 gene product is only 7 Kd, the possibility of a modification of the protein by poly(ADP-ribosylation) or glycosylation is being investigated

  15. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    Science.gov (United States)

    Fauteux, François; Strömvik, Martina V

    2009-01-01

    Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP) gene promoters from three plant families, namely Brassicaceae (mustards), Fabaceae (legumes) and Poaceae (grasses) using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L.) Heynh.), soybean (Glycine max (L.) Merr.) and rice (Oryza sativa L.) respectively. We have identified three conserved motifs (two RY-like and one ACGT-like) in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination of conserved motifs

  16. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    Directory of Open Access Journals (Sweden)

    Fauteux François

    2009-10-01

    Full Text Available Abstract Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP gene promoters from three plant families, namely Brassicaceae (mustards, Fabaceae (legumes and Poaceae (grasses using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L. Heynh., soybean (Glycine max (L. Merr. and rice (Oryza sativa L. respectively. We have identified three conserved motifs (two RY-like and one ACGT-like in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination

  17. Interaction of the anaphase-promoting complex/cyclosome and proteasome protein complexes with multiubiquitin chain-binding proteins

    DEFF Research Database (Denmark)

    Seeger, Michael; Hartmann-Petersen, Rasmus; Wilkinson, Caroline R M

    2003-01-01

    Fission yeast Rhp23 and Pus1 represent two families of multiubiquitin chain-binding proteins that associate with the proteasome. We show that both proteins bind to different regions of the proteasome subunit Mts4. The binding site for Pus1 was mapped to a cluster of repetitive sequences also found...... in the proteasome subunit SpRpn2 and the anaphase-promoting complex/cyclosome (APC/C) subunit Cut4. The putative role of Pus1 as a factor involved in allocation of ubiquitinylated substrates for the proteasome is discussed....

  18. Integrated mRNA and microRNA analysis identifies genes and small miRNA molecules associated with transcriptional and post-transcriptional-level responses to both drought stress and re-watering treatment in tobacco.

    Science.gov (United States)

    Chen, Qiansi; Li, Meng; Zhang, Zhongchun; Tie, Weiwei; Chen, Xia; Jin, Lifeng; Zhai, Niu; Zheng, Qingxia; Zhang, Jianfeng; Wang, Ran; Xu, Guoyun; Zhang, Hui; Liu, Pingping; Zhou, Huina

    2017-01-10

    Drought stress is one of the most severe problem limited agricultural productivity worldwide. It has been reported that plants response to drought-stress by sophisticated mechanisms at both transcriptional and post-transcriptional levels. However, the precise molecular mechanisms governing the responses of tobacco leaves to drought stress and water status are not well understood. To identify genes and miRNAs involved in drought-stress responses in tobacco, we performed both mRNA and small RNA sequencing on tobacco leaf samples from the following three treatments: untreated-control (CL), drought stress (DL), and re-watering (WL). In total, we identified 798 differentially expressed genes (DEGs) between the DL and CL (DL vs. CL) treatments and identified 571 DEGs between the WL and DL (WL vs. DL) treatments. Further analysis revealed 443 overlapping DEGs between the DL vs. CL and WL vs. DL comparisons, and, strikingly, all of these genes exhibited opposing expression trends between these two comparisons, strongly suggesting that these overlapping DEGs are somehow involved in the responses of tobacco leaves to drought stress. Functional annotation analysis showed significant up-regulation of genes annotated to be involved in responses to stimulus and stress, (e.g., late embryogenesis abundant proteins and heat-shock proteins) antioxidant defense (e.g., peroxidases and glutathione S-transferases), down regulation of genes related to the cell cycle pathway, and photosynthesis processes. We also found 69 and 56 transcription factors (TFs) among the DEGs in, respectively, the DL vs. CL and the WL vs. DL comparisons. In addition, small RNA sequencing revealed 63 known microRNAs (miRNA) from 32 families and 368 novel miRNA candidates in tobacco. We also found that five known miRNA families (miR398, miR390, miR162, miR166, and miR168) showed differential regulation under drought conditions. Analysis to identify negative correlations between the differentially expressed mi

  19. Isoforms of elongation factor eEF1A may be differently regulated at post-transcriptional level in breast cancer progression

    Directory of Open Access Journals (Sweden)

    Vislovukh A. A.

    2013-01-01

    Full Text Available Eukaryotic translation elongation factor 1A exists as two 98 % homologous isoforms: eEF1A1 (A1 and eEF1A2 (A2 which are tissue and development specific. Despite high homology in an open reading frame (ORF region, mRNAs coding for eEF1A1 and eEF1A2 are different in their untranslated regions (UTR, suggesting a possibility of their dissimilar post-transcriptional regulation. Aim. To analyze the existence of cis-acting motifs in the UTRs of EEF1A1/A2 mRNAs, to confirm the possibility of post-transcriptional control of eEF1A1 and eEF1A2 expression. Methods. An ensemble of bioinformatic methods was applied to predict regulatory motifs in the UTRs of EEF1A1/A2 mRNAs. Dual-luciferase reporter assay was employed to detect post-transcriptional regulation of eEF1A1/A2 expression. Results. Numerous regulatory motifs in the UTR of EEF1A1/A2 mRNAs were found bioinformatically. The experimental evidence was obtained for the existence of negative regulation of EEF1A1 and positive regulation of EEF1A2 mRNA in the model of breast cancer development. Conclusions. EEF1A1 and EEF1A2 mRNAs contain distinct motifs in the UTRs and are differently regulated in cancer suggesting the possibility of their control by different cellular signals.

  20. Discovery of a super-strong promoter enables efficient production of heterologous proteins in cyanobacteria.

    Science.gov (United States)

    Zhou, Jie; Zhang, Haifeng; Meng, Hengkai; Zhu, Yan; Bao, Guanhui; Zhang, Yanping; Li, Yin; Ma, Yanhe

    2014-03-28

    Cyanobacteria are oxygenic photosynthetic prokaryotes that play important roles in the global carbon cycle. Recently, engineered cyanobacteria capable of producing various small molecules from CO2 have been developed. However, cyanobacteria are seldom considered as factories for producing proteins, mainly because of the lack of efficient strong promoters. Here, we report the discovery and verification of a super-strong promoter P(cpc560), which contains two predicted promoters and 14 predicted transcription factor binding sites (TFBSs). Using P(cpc560), functional proteins were produced at a level of up to 15% of total soluble protein in the cyanobacterium Synechocystis sp. 6803, a level comparable to that produced in Escherichia coli. We demonstrated that the presence of multiple TFBSs in P(cpc560) is crucial for its promoter strength. Genetically transformable cyanobacteria neither have endotoxins nor form inclusion bodies; therefore, P(cpc560) opens the possibility to use cyanobacteria as alternative hosts for producing heterogeneous proteins from CO2 and inorganic nutrients.

  1. Ursodeoxycholic acid reduces protein levels and nucleation-promoting activity in human gallbladder bile

    NARCIS (Netherlands)

    van Erpecum, K. J.; Portincasa, P.; Eckhardt, E.; Go, P. M.; vanBerge-Henegouwen, G. P.; Groen, A. K.

    1996-01-01

    Background & Aims: Ursodeoxycholic acid prevents gallstone formation in selected patients. The aim of this study was to examine whether decreased concentration and nucleation-promoting activity of various proteins contribute to this beneficial effect. Methods: Gallbladder bile of 13 patients with

  2. NSs protein of rift valley fever virus promotes posttranslational downregulation of the TFIIH subunit p62.

    Science.gov (United States)

    Kalveram, Birte; Lihoradova, Olga; Ikegami, Tetsuro

    2011-07-01

    Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus) is an important emerging pathogen of humans and ruminants. Its NSs protein has previously been identified as a major virulence factor that suppresses host defense through three distinct mechanisms: it directly inhibits beta interferon (IFN-β) promoter activity, it promotes the degradation of double-stranded RNA-dependent protein kinase (PKR), and it suppresses host transcription by disrupting the assembly of the basal transcription factor TFIIH through sequestration of its p44 subunit. Here, we report that in addition to PKR, NSs also promotes the degradation of the TFIIH subunit p62. Infection of cells with the RVFV MP-12 vaccine strain reduced p62 protein levels to below the detection limit early in the course of infection. This NSs-mediated downregulation of p62 was posttranslational, as it was unaffected by pharmacological inhibition of transcription or translation and MP-12 infection had no effect on p62 mRNA levels. Treatment of cells with proteasome inhibitors but not inhibition of lysosomal acidification or nuclear export resulted in a stabilization of p62 in the presence of NSs. Furthermore, p62 could be coprecipitated with NSs from lysates of infected cells. These data suggest that the RVFV NSs protein is able to interact with the TFIIH subunit p62 inside infected cells and promotes its degradation, which can occur directly in the nucleus.

  3. Ubiquitin-like protein UBL5 promotes the functional integrity of the Fanconi anemia pathway

    DEFF Research Database (Denmark)

    Oka, Yasuyoshi; Bekker-Jensen, Simon; Mailand, Niels

    2015-01-01

    in promoting the function of the Fanconi anemia (FA) pathway for repair of DNA interstrand crosslinks (ICLs), mediated by a specific interaction with the central FA pathway component FANCI. UBL5-deficient cells display spliceosome-independent reduction of FANCI protein stability, defective FANCI function...

  4. Recombination-stable multimeric green fluorescent protein for characterization of weak promoter outputs in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Rugbjerg, Peter; Knuf, Christoph; Förster, Jochen

    2015-01-01

    a less leaky Cu2+-inducible promoter based on CUP1. The basal expression level of the new promoter was approx. 61% below the wild-type CUP1 promoter, thus expanding the absolute range of Cu2+-based gene control. The stability of 3vGFP towards direct-repeat recombination was assayed in S. cerevisiae......Green fluorescent proteins (GFPs) are widely used for visualization of proteins to track localization and expression dynamics. However, phenotypically important processes can operate at too low expression levels for routine detection, i.e. be overshadowed by autofluorescence noise. While GFP...... functions well in translational fusions, the use of tandem GFPs to amplify fluorescence signals is currently avoided in Saccharomyces cerevisiae and many other microorganisms due to the risk of loop-out by direct-repeat recombination. We increased GFP fluorescence by translationally fusing three different...

  5. Tobacco arabinogalactan protein NtEPc can promote banana (Musa AAA) somatic embryogenesis.

    Science.gov (United States)

    Shu, H; Xu, L; Li, Z; Li, J; Jin, Z; Chang, S

    2014-12-01

    Banana is an important tropical fruit worldwide. Parthenocarpy and female sterility made it impossible to improve banana varieties through common hybridization. Genetic transformation for banana improvement is imperative. But the low rate that banana embryogenic callus was induced made the transformation cannot be performed in many laboratories. Finding ways to promote banana somatic embryogenesis is critical for banana genetic transformation. After tobacco arabinogalactan protein gene NtEPc was transformed into Escherichia coli (DE3), the recombinant protein was purified and filter-sterilized. A series of the sterilized protein was added into tissue culture medium. It was found that the number of banana immature male flowers developing embryogenic calli increased significantly in the presence of NtEPc protein compared with the effect of the control medium. Among the treatments, explants cultured on medium containing 10 mg/l of NtEPc protein had the highest chance to develop embryogenic calli. The percentage of lines that developed embryogenic calli on this medium was about 12.5 %. These demonstrated that NtEPc protein can be used to promote banana embryogenesis. This is the first paper that reported that foreign arabinogalactan protein (AGP) could be used to improve banana somatic embryogenesis.

  6. TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine.

    Directory of Open Access Journals (Sweden)

    Stephanie Jemielity

    2013-03-01

    Full Text Available Human T-cell Immunoglobulin and Mucin-domain containing proteins (TIM1, 3, and 4 specifically bind phosphatidylserine (PS. TIM1 has been proposed to serve as a cellular receptor for hepatitis A virus and Ebola virus and as an entry factor for dengue virus. Here we show that TIM1 promotes infection of retroviruses and virus-like particles (VLPs pseudotyped with a range of viral entry proteins, in particular those from the filovirus, flavivirus, New World arenavirus and alphavirus families. TIM1 also robustly enhanced the infection of replication-competent viruses from the same families, including dengue, Tacaribe, Sindbis and Ross River viruses. All interactions between TIM1 and pseudoviruses or VLPs were PS-mediated, as demonstrated with liposome blocking and TIM1 mutagenesis experiments. In addition, other PS-binding proteins, such as Axl and TIM4, promoted infection similarly to TIM1. Finally, the blocking of PS receptors on macrophages inhibited the entry of Ebola VLPs, suggesting that PS receptors can contribute to infection in physiologically relevant cells. Notably, infection mediated by the entry proteins of Lassa fever virus, influenza A virus and SARS coronavirus was largely unaffected by TIM1 expression. Taken together our data show that TIM1 and related PS-binding proteins promote infection of diverse families of enveloped viruses, and may therefore be useful targets for broad-spectrum antiviral therapies.

  7. Neural regeneration protein is a novel chemoattractive and neuronal survival-promoting factor

    International Nuclear Information System (INIS)

    Gorba, Thorsten; Bradoo, Privahini; Antonic, Ana; Marvin, Keith; Liu, Dong-Xu; Lobie, Peter E.; Reymann, Klaus G.; Gluckman, Peter D.; Sieg, Frank

    2006-01-01

    Neurogenesis and neuronal migration are the prerequisites for the development of the central nervous system. We have identified a novel rodent gene encoding for a neural regeneration protein (NRP) with an activity spectrum similar to the chemokine stromal-derived factor (SDF)-1, but with much greater potency. The Nrp gene is encoded as a forward frameshift to the hypothetical alkylated DNA repair protein AlkB. The predicted protein sequence of NRP contains domains with homology to survival-promoting peptide (SPP) and the trefoil protein TFF-1. The Nrp gene is first expressed in neural stem cells and expression continues in glial lineages. Recombinant NRP and NRP-derived peptides possess biological activities including induction of neural migration and proliferation, promotion of neuronal survival, enhancement of neurite outgrowth and promotion of neuronal differentiation from neural stem cells. NRP exerts its effect on neuronal survival by phosphorylation of the ERK1/2 and Akt kinases, whereas NRP stimulation of neural migration depends solely on p44/42 MAP kinase activity. Taken together, the expression profile of Nrp, the existence in its predicted protein structure of domains with similarities to known neuroprotective and migration-inducing factors and the high potency of NRP-derived synthetic peptides acting in femtomolar concentrations suggest it to be a novel gene of relevance in cellular and developmental neurobiology

  8. The post-transcriptional regulator rsmA/csrA activates T3SS by stabilizing the 5' UTR of hrpG, the master regulator of hrp/hrc genes, in Xanthomonas.

    Directory of Open Access Journals (Sweden)

    Maxuel O Andrade

    2014-02-01

    Full Text Available The RsmA/CsrA family of the post-transcriptional regulators of bacteria is involved in the regulation of many cellular processes, including pathogenesis. In this study, we demonstrated that rsmA not only is required for the full virulence of the phytopathogenic bacterium Xanthomonas citri subsp. citri (XCC but also contributes to triggering the hypersensitive response (HR in non-host plants. Deletion of rsmA resulted in significantly reduced virulence in the host plant sweet orange and a delayed and weakened HR in the non-host plant Nicotiana benthamiana. Microarray, quantitative reverse-transcription PCR, western-blotting, and GUS assays indicated that RsmA regulates the expression of the type 3 secretion system (T3SS at both transcriptional and post-transcriptional levels. The regulation of T3SS by RsmA is a universal phenomenon in T3SS-containing bacteria, but the specific mechanism seems to depend on the interaction between a particular bacterium and its hosts. For Xanthomonads, the mechanism by which RsmA activates T3SS remains unknown. Here, we show that RsmA activates the expression of T3SS-encoding hrp/hrc genes by directly binding to the 5' untranslated region (UTR of hrpG, the master regulator of the hrp/hrc genes in XCC. RsmA stabilizes hrpG mRNA, leading to increased accumulation of HrpG proteins and subsequently, the activation of hrp/hrc genes. The activation of the hrp/hrc genes by RsmA via HrpG was further supported by the observation that ectopic overexpression of hrpG in an rsmA mutant restored its ability to cause disease in host plants and trigger HR in non-host plants. RsmA also stabilizes the transcripts of another T3SS-associated hrpD operon by directly binding to the 5' UTR region. Taken together, these data revealed that RsmA primarily activates T3SS by acting as a positive regulator of hrpG and that this regulation is critical to the pathogenicity of XCC.

  9. Icaritin inhibits the expression of alpha-fetoprotein in hepatitis B virus-infected hepatoma cell lines through post-transcriptional regulation.

    Science.gov (United States)

    Zhang, Chao; Li, Hui; Jiang, Wei; Zhang, Xiaowei; Li, Gang

    2016-12-13

    Although it has showed that icaritin can apparently suppress growth of HCC by reducing the level of AFP, the intrinsic mechanism remains unclear. In this study, we explored the possible mechanism of miRNAs on post-transcriptional regulation of AFP gene, as well as the effects of HBV infection and icaritin in hepatoma cells. The results showed that miR-620, miR-1236 and miR-1270 could bind target sites in the range of 9-18 nt and 131-151 nt downstream of the stop codon in the AFP mRNA 3'-UTR to suppress the expression of AFP. Mutation of these target sites could reverse the effects of these miRNAs. Icaritin (10 μM) might reduce the stability and translational activity of AFP mRNA by increasing the expression levels of these mentioned miRNAs. HBV infection resulted in apparent decreases of these miRNAs and, consequently, increased AFP expression. The results indicated that miR-620, miR-1236 and miR-1270 are critical factors in the post-transcriptional regulation of AFP. Icaritin can counteract the effect of HBV. These findings will contribute to full understanding of the regulatory mechanism of AFP expression in hepatoma cells. And also it revealed a synergistic mechanism of HBV infection and elevation of AFP in the pathogenesis of HCC, as well as the potential clinical significance of icaritin on the therapy of HCC induced by HBV.

  10. Widespread anti-sense transcription in apple is correlated with siRNA production and indicates a large potential for transcriptional and/or post-transcriptional control.

    Science.gov (United States)

    Celton, Jean-Marc; Gaillard, Sylvain; Bruneau, Maryline; Pelletier, Sandra; Aubourg, Sébastien; Martin-Magniette, Marie-Laure; Navarro, Lionel; Laurens, François; Renou, Jean-Pierre

    2014-07-01

    Characterizing the transcriptome of eukaryotic organisms is essential for studying gene regulation and its impact on phenotype. The realization that anti-sense (AS) and noncoding RNA transcription is pervasive in many genomes has emphasized our limited understanding of gene transcription and post-transcriptional regulation. Numerous mechanisms including convergent transcription, anti-correlated expression of sense and AS transcripts, and RNAi remain ill-defined. Here, we have combined microarray analysis and high-throughput sequencing of small RNAs (sRNAs) to unravel the complexity of transcriptional and potential post-transcriptional regulation in eight organs of apple (Malus × domestica). The percentage of AS transcript expression is higher than that identified in annual plants such as rice and Arabidopsis thaliana. Furthermore, we show that a majority of AS transcripts are transcribed beyond 3'UTR regions, and may cover a significant portion of the predicted sense transcripts. Finally we demonstrate at a genome-wide scale that anti-sense transcript expression is correlated with the presence of both short (21-23 nt) and long (> 30 nt) siRNAs, and that the sRNA coverage depth varies with the level of AS transcript expression. Our study provides a new insight on the functional role of anti-sense transcripts at the genome-wide level, and a new basis for the understanding of sRNA biogenesis in plants. © 2014 INRA. New Phytologist © 2014 New Phytologist Trust.

  11. Staphylococcus aureus extracellular adherence protein triggers TNFα release, promoting attachment to endothelial cells via protein A.

    Directory of Open Access Journals (Sweden)

    Andrew M Edwards

    Full Text Available Staphylococcus aureus is a leading cause of bacteraemia, which frequently results in complications such as infective endocarditis, osteomyelitis and exit from the bloodstream to cause metastatic abscesses. Interaction with endothelial cells is critical to these complications and several bacterial proteins have been shown to be involved. The S. aureus extracellular adhesion protein (Eap has many functions, it binds several host glyco-proteins and has both pro- and anti-inflammatory activity. Unfortunately its role in vivo has not been robustly tested to date, due to difficulties in complementing its activity in mutant strains. We previously found Eap to have pro-inflammatory activity, and here show that purified native Eap triggered TNFα release in whole human blood in a dose-dependent manner. This level of TNFα increased adhesion of S. aureus to endothelial cells 4-fold via a mechanism involving protein A on the bacterial surface and gC1qR/p33 on the endothelial cell surface. The contribution this and other Eap activities play in disease severity during bacteraemia was tested by constructing an isogenic set of strains in which the eap gene was inactivated and complemented by inserting an intact copy elsewhere on the bacterial chromosome. Using a murine bacteraemia model we found that Eap expressing strains cause a more severe infection, demonstrating its role in invasive disease.

  12. Integrative Analysis Using Proteome and Transcriptome Data From Yeast to Unravel Regulatory Patterns at Post-Transcriptional Level

    DEFF Research Database (Denmark)

    Olivares Hernandez, Roberto; Usaite, Renata; Nielsen, Jens

    2010-01-01

    In this stud) we combined proteome and transcriptome data from six different published dataset to identify patterns that can provide new insight into the reasons for these deviations By using a categorization method and integrating genome-scale information we found that the relation between protein and mRNA...... is related to the gene function We could further identify that for genes belonging to amino acid biosynthetic pathways there is no translational regulation, meaning that there is generally a good correlation between mRNA and protein levels We also found that there is generally translational control for large...... proteins and there also evidence for a role of conserved motifs m the 3' untranslated regions in the mRNA-protein correlation, probably by controlling the level of mRNA Biotechnol Bioeng 2010,107 865-875...

  13. RNAi mediated acute depletion of Retinoblastoma protein (pRb promotes aneuploidy in human primary cells via micronuclei formation

    Directory of Open Access Journals (Sweden)

    Iovino Flora

    2009-11-01

    Full Text Available Abstract Background Changes in chromosome number or structure as well as supernumerary centrosomes and multipolar mitoses are commonly observed in human tumors. Thus, centrosome amplification and mitotic checkpoint dysfunctions are believed possible causes of chromosomal instability. The Retinoblastoma tumor suppressor (RB participates in the regulation of synchrony between DNA synthesis and centrosome duplication and it is involved in transcription regulation of some mitotic genes. Primary human fibroblasts were transfected transiently with short interfering RNA (siRNA specific for human pRb to investigate the effects of pRb acute loss on chromosomal stability. Results Acutely pRb-depleted fibroblasts showed altered expression of genes necessary for cell cycle progression, centrosome homeostasis, kinetochore and mitotic checkpoint proteins. Despite altered expression of genes involved in the Spindle Assembly Checkpoint (SAC the checkpoint seemed to function properly in pRb-depleted fibroblasts. In particular AURORA-A and PLK1 overexpression suggested that these two genes might have a role in the observed genomic instability. However, when they were post-transcriptionally silenced in pRb-depleted fibroblasts we did not observe reduction in the number of aneuploid cells. This finding suggests that overexpression of these two genes did not contribute to genomic instability triggered by RB acute loss although it affected cell proliferation. Acutely pRb-depleted human fibroblasts showed the presence of micronuclei containing whole chromosomes besides the presence of supernumerary centrosomes and aneuploidy. Conclusion Here we show for the first time that RB acute loss triggers centrosome amplification and aneuploidy in human primary fibroblasts. Altogether, our results suggest that pRb-depleted primary human fibroblasts possess an intact spindle checkpoint and that micronuclei, likely caused by mis-attached kinetochores that in turn trigger

  14. Protein phosphatase 5 promotes hepatocarcinogenesis through interaction with AMP-activated protein kinase.

    Science.gov (United States)

    Chen, Yao-Li; Hung, Man-Hsin; Chu, Pei-Yi; Chao, Tzu-I; Tsai, Ming-Hsien; Chen, Li-Ju; Hsiao, Yung-Jen; Shih, Chih-Ting; Hsieh, Feng-Shu; Chen, Kuen-Feng

    2017-08-15

    The serine-threonine protein phosphatase family members are known as critical regulators of various cellular functions, such as survival and transformation. Growing evidence suggests that pharmacological manipulation of phosphatase activity exhibits therapeutic benefits. Ser/Thr protein phosphatase 5 (PP5) is known to participate in glucocorticoid receptor (GR) and stress-induced signaling cascades that regulate cell growth and apoptosis, and has been shown to be overexpressed in various human malignant diseases. However, the role of PP5 in hepatocellular carcinoma (HCC) and whether PP5 may be a viable therapeutic target for HCC treatment are unknown. Here, by analyzing HCC clinical samples obtained from 215 patients, we found that overexpression of PP5 is tumor specific and associated with worse clinical outcomes. We further characterized the oncogenic properties of PP5 in HCC cells. Importantly, both silencing of PP5 with lentiviral-mediated short hairpin RNA (shRNA) and chemical inhibition of PP5 phosphatase activity using the natural compound cantharidin/norcantharidin markedly suppressed the growth of HCC cells and tumors in vitro and in vivo. Moreover, we identified AMP-activated protein kinase (AMPK) as a novel downstream target of oncogenic PP5 and demonstrated that the antitumor mechanisms underlying PP5 inhibition involve activation of AMPK signaling. Overall, our results establish a pathological function of PP5 in hepatocarcinogenesis via affecting AMPK signaling and suggest that PP5 inhibition is an attractive therapeutic approach for HCC. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Growth hormone-promoted tyrosyl phosphorylation of SHC proteins and SHC association with Grb2

    DEFF Research Database (Denmark)

    VanderKuur, J; Allevato, G; Billestrup, Nils

    1995-01-01

    . To gain insight into pathways coupling GH receptor (GHR) to MAP kinase activation and signaling molecules that might interact with GHR and its associated tyrosine kinase JAK2, we examined whether SHC and Grb2 proteins serve as signaling molecules for GH. Human GH was shown to promote the rapid tyrosyl...... phosphorylation of 66-, 52-, and 46-kDa SHC proteins in 3T3-F442A fibroblasts. GH also promoted binding of GHR and JAK2 to the SH2 domain of 46/52-kDa SHC protein fused to glutathione S-transferase (GST). Constitutively phosphorylated JAK2, from COS-7 cells transiently transfected with murine JAK2 cDNA, bound......-638 and GHR1-638(Y333,338F), GH stimulated phosphorylation of all 3 SHC proteins whereas GH stimulated phosphorylation of only the 66- and 52-kDa SHC proteins in cells expressing GHR1-454. GH had no effect on SHC phosphorylation in cells expressing GHR1-294 or GHR delta P, the latter lacking amino acids 297...

  16. RNA-binding proteins ZFP36L1 and ZFP36L2 promote cell quiescence.

    Science.gov (United States)

    Galloway, Alison; Saveliev, Alexander; Łukasiak, Sebastian; Hodson, Daniel J; Bolland, Daniel; Balmanno, Kathryn; Ahlfors, Helena; Monzón-Casanova, Elisa; Mannurita, Sara Ciullini; Bell, Lewis S; Andrews, Simon; Díaz-Muñoz, Manuel D; Cook, Simon J; Corcoran, Anne; Turner, Martin

    2016-04-22

    Progression through the stages of lymphocyte development requires coordination of the cell cycle. Such coordination ensures genomic integrity while cells somatically rearrange their antigen receptor genes [in a process called variable-diversity-joining (VDJ) recombination] and, upon successful rearrangement, expands the pools of progenitor lymphocytes. Here we show that in developing B lymphocytes, the RNA-binding proteins (RBPs) ZFP36L1 and ZFP36L2 are critical for maintaining quiescence before precursor B cell receptor (pre-BCR) expression and for reestablishing quiescence after pre-BCR-induced expansion. These RBPs suppress an evolutionarily conserved posttranscriptional regulon consisting of messenger RNAs whose protein products cooperatively promote transition into the S phase of the cell cycle. This mechanism promotes VDJ recombination and effective selection of cells expressing immunoglobulin-μ at the pre-BCR checkpoint. Copyright © 2016, American Association for the Advancement of Science.

  17. An essential GT motif in the lamin A promoter mediates activation by CREB-binding protein

    International Nuclear Information System (INIS)

    Janaki Ramaiah, M.; Parnaik, Veena K.

    2006-01-01

    Lamin A is an important component of nuclear architecture in mammalian cells. Mutations in the human lamin A gene lead to highly degenerative disorders that affect specific tissues. In studies directed towards understanding the mode of regulation of the lamin A promoter, we have identified an essential GT motif at -55 position by reporter gene assays and mutational analysis. Binding of this sequence to Sp transcription factors has been observed in electrophoretic mobility shift assays and by chromatin immunoprecipitation studies. Further functional analysis by co-expression of recombinant proteins and ChIP assays has shown an important regulatory role for CREB-binding protein in promoter activation, which is mediated by the GT motif

  18. MCPIP-1, alias Regnase-1 controls epithelial inflammation by post-transcriptional regulation of IL-8 production

    Science.gov (United States)

    Dobosz, E.; Wilamowski, M.; Lech, M.; Bugara, B.; Jura, J.; Potempa, J.; Koziel, J.

    2016-01-01

    Pattern recognition receptors are critical for the detection of invading microorganisms. They activate multiple pathways that lead to the induction of pro-inflammatory responses and pathogen clearance. The intensity and duration of this immune reaction must be tightly controlled spatially and temporally in every tissue by different negative regulators. We hypothesized that monocyte chemoattractant protein-1–induced protein-1 (MCPIP-1) might play a role in maintaining immune homeostasis in the epithelium both under physiological conditions and upon bacterial infection. To this end, we examined the distribution of MCPIP-1 transcript and protein in various tissues. The MCPIP-1 protein level was higher in epithelial cells than in myeloid cells. MCPIP-1 exerted RNase activity towards the IL-8 transcript and the life-span of IL-8 was determined by the presence of the stem-loops/hairpin (SL) structures at the 3′ UTR region of IL-8 mRNA. Moreover, using fully active, purified recombinant MCPIP-1 protein, we elucidated the mechanism by which MCPIP-1 controls the IL-8 mRNA level. In conclusion, we uncovered a novel IL-8–dependent mechanism via which MCPIP-1 maintains epithelial homeostasis. This study reveals for the first time that MCPIP-1 plays a crucial anti-inflammatory role not only in myeloid cells but also in epithelial cells. PMID:27513529

  19. p16(INK4a) promoter methylation and protein expression in breast fibroadenoma and carcinoma.

    Science.gov (United States)

    Di Vinci, Angela; Perdelli, Luisa; Banelli, Barbara; Salvi, Sandra; Casciano, Ida; Gelvi, Ilaria; Allemanni, Giorgio; Margallo, Edoardo; Gatteschi, Beatrice; Romani, Massimo

    2005-04-10

    The potential role of p16(INK4a) methylation in breast cancer is controversial whereas there are no data on fibroadenoma. To assess if inactivation of p16(INK4a) by promoter hypermethylation occurs in this hyperproliferative benign breast lesion or, on the contrary, it is strictly related to the carcinogenic process, we have tested the different histological components of 15 cases of fibroadenoma and the intraductal and infiltrating components of 15 cases of carcinoma and their adjacent non-tumoral epithelium. All samples were obtained by laser-assisted microdissection. The relationship between promoter methylation status, immunohistochemical protein expression and ki67 proliferative activity was evaluated for each lesion. Our data demonstrate that hypermethylation of p16(INK4a) promoter is a common event occurring at similar frequency in all the different histological areas of the benign and malignant breast lesions taken into exam. Conversely, protein p16 expression, although heterogeneously distributed within the section, is considerably higher in breast carcinoma as compared to fibroadenoma in both tumoral and non-tumoral epithelia and stroma. The protein localization was almost exclusively nuclear in fibroadenoma and non-tumoral epithelia whereas, in carcinoma, the staining was both nuclear and cytoplasmic or cytoplasmic alone. Furthermore, in a subset of fibroadenoma with higher proliferative activity, p16 protein expression was substantially decreased as compared to those showing lower proliferation. We did not observe this association in carcinomas. Our data demonstrate that the hypermethylation of the p16(INK4a) promoter is not specifically associated with malignancy and that, on the contrary, the overexpression of p16 and its cytoplasmic sequestration is a feature of breast carcinoma. (c) 2004 Wiley-Liss, Inc.

  20. Control of autogenous activation of Herbaspirillum seropedicae nifA promoter by the IHF protein.

    Science.gov (United States)

    Wassem, Roseli; Pedrosa, Fábio O; Yates, Marshall G; Rego, Fabiane G M; Chubatsu, Leda S; Rigo, Liu U; Souza, Emanuel M

    2002-07-02

    Analysis of the expression of the Herbaspirillum seropedicae nifA promoter in Escherichia coli and Herbaspirillum seropedicae, showed that nifA expression is primarily dependent on NtrC but also required NifA for maximal expression under nitrogen-fixing conditions. Deletion of the IHF (integration host factor)-binding site produced a promoter with two-fold higher activity than the native promoter in the H. seropedicae wild-type strain but not in a nifA strain, indicating that IHF controls NifA auto-activation. IHF is apparently required to prevent overexpression of the NifA protein via auto-activation under nitrogen-fixing conditions in H. seropedicae.

  1. Evaluation of novel inducible promoter/repressor systems for recombinant protein expression in Lactobacillus plantarum.

    Science.gov (United States)

    Heiss, Silvia; Hörmann, Angelika; Tauer, Christopher; Sonnleitner, Margot; Egger, Esther; Grabherr, Reingard; Heinl, Stefan

    2016-03-10

    Engineering lactic acid bacteria (LAB) is of growing importance for food and feed industry as well as for in vivo vaccination or the production of recombinant proteins in food grade organisms. Often, expression of a transgene is only desired at a certain time point or period, e.g. to minimize the metabolic burden for the host cell or to control the expression time span. For this purpose, inducible expression systems are preferred, though cost and availability of the inducing agent must be feasible. We selected the plasmid free strain Lactobacillus plantarum 3NSH for testing and characterization of novel inducible promoters/repressor systems. Their feasibility in recombinant protein production was evaluated. Expression of the reporter protein mCherry was monitored with the BioLector(®) micro-fermentation system. Reporter gene mCherry expression was compared under the control of different promoter/repressor systems: PlacA (an endogenous promoter/repressor system derived from L. plantarum 3NSH), PxylA (a promoter/repressor system derived from Bacillus megaterium DSMZ 319) and PlacSynth (synthetic promoter and codon-optimized repressor gene based on the Escherichia coli lac operon). We observed that PlacA was inducible solely by lactose, but not by non-metabolizable allolactose analoga. PxylA was inducible by xylose, yet showed basal expression under non-induced conditions. Growth on galactose (as compared to exponential growth phase on glucose) reduced basal mCherry expression at non-induced conditions. PlacSynth was inducible with TMG (methyl β-D-thiogalactopyranoside) and IPTG (isopropyl β-D-1-thiogalactopyranoside), but also showed basal expression without inducer. The promoter PlacSynth was used for establishment of a dual plasmid expression system, based on T7 RNA polymerase driven expression in L. plantarum. Comparative Western blot supported BioLector(®) micro-fermentation measurements. Conclusively, overall expression levels were moderate (compared to a

  2. Growth-promoting effect on iron-sulfur proteins on axenic cultures of Entamoeba dispar

    Directory of Open Access Journals (Sweden)

    Khalifa S.A.M.

    2006-03-01

    Full Text Available A growth-promoting factor (GPF that promotes the growth of Entamoeba dispar under axenic culture conditions was found in fractions of mitochondria (Mt, hydrogenosomes (Hg and chloroplasts (Cp obtained from cells of six different protozoan, mammalian and plant species. We were able to extract the GPF from the Cp-rich leaf cells of a plant (spiderwort: Commelina communis L. in an acetone-soluble fraction as a complex of chlorophyll with low molecular weight proteins (molecular weight [MW] approximately 4,600. We also found that on treatment with 0.6 % complexes of 2-mercapthoethanol (2ME, complexes of chlorophyll-a with iron-sulphur (Fe-S proteins (e.g., ferredoxins [Fd] from spinach and Clostridium pasteurianum and noncomplex rubredoxin (Rd from C. pasteurianum have a growth-promoting effect on E. dispar. These findings suggest that E. dispar may lack a sufficient quantity of some essential components of Fe-S proteins, such as Fe-S center.

  3. Ubiquitin-specific protease 11 (USP11) functions as a tumor suppressor through deubiquitinating and stabilizing VGLL4 protein

    Science.gov (United States)

    Zhang, Encheng; Shen, Bing; Mu, Xingyu; Qin, Yan; Zhang, Fang; Liu, Yong; Xiao, Jiantao; Zhang, Pingzhao; Wang, Chenji; Tan, Mingyue; Fan, Yu

    2016-01-01

    VGLL4 is a transcriptional repressor that interacts with transcription factors TEADs and inhibits YAP-induced overgrowth and tumorigenesis. VGLL4 protein was dramatically reduced in various types of human cancers. But how VGLL4 protein is post-transcriptional regulated is poorly understood. In this study, we identify deubiquitinating enzyme USP11 as a novel VGLL4 interactor. We reveal that the USP domain of USP11 and the N-terminal region of VGLL4 are required for mutual binding. USP11 controls VGLL4 protein stability by promoting its deubiquitination. Furthermore, our results show that knockdown of USP11 promotes cell growth, migration, and invasion in a YAP-dependent manner. Together, our results suggest that USP11 may exert its tumor suppressor role by modulating VGLL4/YAP-TEADs regulatory loop. PMID:28042509

  4. Inhibition of post-transcriptional RNA processing by CDK inhibitors and its implication in anti-viral therapy.

    Directory of Open Access Journals (Sweden)

    Jitka Holcakova

    Full Text Available Cyclin-dependent kinases (CDKs are key regulators of the cell cycle and RNA polymerase II mediated transcription. Several pharmacological CDK inhibitors are currently in clinical trials as potential cancer therapeutics and some of them also exhibit antiviral effects. Olomoucine II and roscovitine, purine-based inhibitors of CDKs, were described as effective antiviral agents that inhibit replication of a broad range of wild type human viruses. Olomoucine II and roscovitine show high selectivity for CDK7 and CDK9, with important functions in the regulation of RNA polymerase II transcription. RNA polymerase II is necessary for viral transcription and following replication in cells. We analyzed the effect of inhibition of CDKs by olomoucine II on gene expression from viral promoters and compared its effect to widely-used roscovitine. We found that both roscovitine and olomoucine II blocked the phosphorylation of RNA polymerase II C-terminal domain. However the repression of genes regulated by viral promoters was strongly dependent on gene localization. Both roscovitine and olomoucine II inhibited expression only when the viral promoter was not integrated into chromosomal DNA. In contrast, treatment of cells with genome-integrated viral promoters increased their expression even though there was decreased phosphorylation of the C-terminal domain of RNA polymerase II. To define the mechanism responsible for decreased gene expression after pharmacological CDK inhibitor treatment, the level of mRNA transcription from extrachromosomal DNA was determined. Interestingly, our results showed that inhibition of RNA polymerase II C-terminal domain phosphorylation increased the number of transcribed mRNAs. However, some of these mRNAs were truncated and lacked polyadenylation, which resulted in decreased translation. These results suggest that phosphorylation of RNA polymerase II C-terminal domain is critical for linking transcription and posttrancriptional

  5. Identifying Aspects of the Post-Transcriptional Program Governing the Proteome of the Green Alga Micromonas pusilla

    Energy Technology Data Exchange (ETDEWEB)

    Waltman, Peter H.; Guo, Jian; Reistetter, Emily Nahas; Purvine, Samuel; Ansong, Charles K.; van Baren, Marijke J.; Wong, Chee-Hong; Wei, Chia-Lin; Smith, Richard D.; Callister, Stephen J.; Stuart, Joshua M.; Worden, Alexandra Z.; Mills, Ken

    2016-07-19

    Micromonas is a unicellular green alga that belongs to the prasinophytes, a sister lineage to land plants. This picoeukaryotic (<2 μm diameter) alga is widespread in the marine environment but still not understood at the cellular level. Here, we examine the mRNA and protein level changes that take place over the course of the day-night cycle using mid-exponential nutrient replete cultures of Micromonas pusilla CCMP1545 grown and analyzed in biological triplicate. During the experiment, samples were collected at key transition points during the diel for evaluation using high-throughput LC-MS proteomics. We also sequenced matched mRNA samples from the same time points, using pair-ended directional Illumina RNA-Seq to investigate the dynamics and relationship between the mRNA and protein expression programs of M. pusilla. Similar to a prior study of the marine cyanobacterium Prochlorococcus, we found significant divergence in the mRNA and proteomics expression dynamics in response to the light:dark cycle. Additionally, expressional responses of genes and the proteins they encoded could also be variable within the same metabolic pathway, such as the oxygenic photosynthesis pathway. A regression framework was used to predict protein levels using both mRNA expression and gene-specific sequence-based features. Several features in the genome sequence were found to influence protein abundance including the codon usage and the length of the 3’ UTR. Collectively, our studies provide insights into the regulation of the proteome over a diel as relationships between the transcriptional and translational programs in the widespread marine green alga Micromonas.

  6. Identifying Aspects of the Post-Transcriptional Program Governing the Proteome of the Green Alga Micromonas pusilla.

    Directory of Open Access Journals (Sweden)

    Peter H Waltman

    Full Text Available Micromonas is a unicellular motile alga within the Prasinophyceae, a green algal group that is related to land plants. This picoeukaryote (<2 μm diameter is widespread in the marine environment but is not well understood at the cellular level. Here, we examine shifts in mRNA and protein expression over the course of the day-night cycle using triplicated mid-exponential, nutrient replete cultures of Micromonas pusilla CCMP1545. Samples were collected at key transition points during the diel cycle for evaluation using high-throughput LC-MS proteomics. In conjunction, matched mRNA samples from the same time points were sequenced using pair-ended directional Illumina RNA-Seq to investigate the dynamics and relationship between the mRNA and protein expression programs of M. pusilla. Similar to a prior study of the marine cyanobacterium Prochlorococcus, we found significant divergence in the mRNA and proteomics expression dynamics in response to the light:dark cycle. Additionally, expressional responses of genes and the proteins they encoded could also be variable within the same metabolic pathway, such as we observed in the oxygenic photosynthesis pathway. A regression framework was used to predict protein levels from both mRNA expression and gene-specific sequence-based features. Several features in the genome sequence were found to influence protein abundance including codon usage as well as 3' UTR length and structure. Collectively, our studies provide insights into the regulation of the proteome over a diel cycle as well as the relationships between transcriptional and translational programs in the widespread marine green alga Micromonas.

  7. Ubiquitin-like protein UBL5 promotes the functional integrity of the Fanconi anemia pathway.

    Science.gov (United States)

    Oka, Yasuyoshi; Bekker-Jensen, Simon; Mailand, Niels

    2015-05-12

    Ubiquitin and ubiquitin-like proteins (UBLs) function in a wide array of cellular processes. UBL5 is an atypical UBL that does not form covalent conjugates with cellular proteins and which has a known role in modulating pre-mRNA splicing. Here, we report an unexpected involvement of human UBL5 in promoting the function of the Fanconi anemia (FA) pathway for repair of DNA interstrand crosslinks (ICLs), mediated by a specific interaction with the central FA pathway component FANCI. UBL5-deficient cells display spliceosome-independent reduction of FANCI protein stability, defective FANCI function in response to DNA damage and hypersensitivity to ICLs. By mapping the sequence determinants underlying UBL5-FANCI binding, we generated separation-of-function mutants to demonstrate that key aspects of FA pathway function, including FANCI-FANCD2 heterodimerization, FANCD2 and FANCI monoubiquitylation and maintenance of chromosome stability after ICLs, are compromised when the UBL5-FANCI interaction is selectively inhibited by mutations in either protein. Together, our findings establish UBL5 as a factor that promotes the functionality of the FA DNA repair pathway. © 2015 The Authors.

  8. Identifying and engineering promoters for high level and sustainable therapeutic recombinant protein production in cultured mammalian cells.

    Science.gov (United States)

    Ho, Steven C L; Yang, Yuansheng

    2014-08-01

    Promoters are essential on plasmid vectors to initiate transcription of the transgenes when generating therapeutic recombinant proteins expressing mammalian cell lines. High and sustained levels of gene expression are desired during therapeutic protein production while gene expression is useful for cell engineering. As many finely controlled promoters exhibit cell and product specificity, new promoters need to be identified, optimized and carefully evaluated before use. Suitable promoters can be identified using techniques ranging from simple molecular biology methods to modern high-throughput omics screenings. Promoter engineering is often required after identification to either obtain high and sustained expression or to provide a wider range of gene expression. This review discusses some of the available methods to identify and engineer promoters for therapeutic recombinant protein expression in mammalian cells.

  9. Differential Regulation of Telomerase Reverse Transcriptase Promoter Activation and Protein Degradation by Histone Deacetylase Inhibition.

    Science.gov (United States)

    Qing, Hua; Aono, Jun; Findeisen, Hannes M; Jones, Karrie L; Heywood, Elizabeth B; Bruemmer, Dennis

    2016-06-01

    Telomerase reverse transcriptase (TERT) maintains telomeres and is rate limiting for replicative life span. While most somatic tissues silence TERT transcription resulting in telomere shortening, cells derived from cancer or cardiovascular diseases express TERT and activate telomerase. In the present study, we demonstrate that histone deacetylase (HDAC) inhibition induces TERT transcription and promoter activation. At the protein level in contrast, HDAC inhibition decreases TERT protein abundance through enhanced degradation, which decreases telomerase activity and induces senescence. Finally, we demonstrate that HDAC inhibition decreases TERT expression during vascular remodeling in vivo. These data illustrate a differential regulation of TERT transcription and protein stability by HDAC inhibition and suggest that TERT may constitute an important target for the anti-proliferative efficacy of HDAC inhibitors. © 2015 Wiley Periodicals, Inc.

  10. HyCCAPP as a tool to characterize promoter DNA-protein interactions in Saccharomyces cerevisiae.

    Science.gov (United States)

    Guillen-Ahlers, Hector; Rao, Prahlad K; Levenstein, Mark E; Kennedy-Darling, Julia; Perumalla, Danu S; Jadhav, Avinash Y L; Glenn, Jeremy P; Ludwig-Kubinski, Amy; Drigalenko, Eugene; Montoya, Maria J; Göring, Harald H; Anderson, Corianna D; Scalf, Mark; Gildersleeve, Heidi I S; Cole, Regina; Greene, Alexandra M; Oduro, Akua K; Lazarova, Katarina; Cesnik, Anthony J; Barfknecht, Jared; Cirillo, Lisa A; Gasch, Audrey P; Shortreed, Michael R; Smith, Lloyd M; Olivier, Michael

    2016-06-01

    Currently available methods for interrogating DNA-protein interactions at individual genomic loci have significant limitations, and make it difficult to work with unmodified cells or examine single-copy regions without specific antibodies. In this study, we describe a physiological application of the Hybridization Capture of Chromatin-Associated Proteins for Proteomics (HyCCAPP) methodology we have developed. Both novel and known locus-specific DNA-protein interactions were identified at the ENO2 and GAL1 promoter regions of Saccharomyces cerevisiae, and revealed subgroups of proteins present in significantly different levels at the loci in cells grown on glucose versus galactose as the carbon source. Results were validated using chromatin immunoprecipitation. Overall, our analysis demonstrates that HyCCAPP is an effective and flexible technology that does not require specific antibodies nor prior knowledge of locally occurring DNA-protein interactions and can now be used to identify changes in protein interactions at target regions in the genome in response to physiological challenges. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Tumor promoter induced membrane-bound protein kinase C - its influence on hematogenous metastasis

    International Nuclear Information System (INIS)

    Gopalakrishna, R.; Barsky, S.H.

    1987-01-01

    A correlation between the amount of membrane-bound detergent-extractable protein kinase C activity in various B16 melanoma sublines (F10, F1, BL6) and their lung metastasizing abilities following intravenous injection was found. The F10 subline which exhibits higher metastasizing ability was found to have higher membrane-bound protein kinase C compared to the lower metastasizing subline, F1. Treatment of F1 cells with 100 nM 12-0 tetradecanoylphorbol-13-acetate (TPA) for 1h resulted in 90% decrease in protein kinase C activity in the cytosol with a concommitent increase in membrane-bound activity. These TPA-treated cells when injected intravenously in C57BL/6 mice produced 6-fold increase in pulmonary metastases compared to untreated F1 cells. However, biologically inactive analogues 4 α-phorbol 12,13-didecanoate and phorbol 13-acetate had no effect on either membrane-bound protein kinase C activity or pulmonary metastases. Treating F1 cells with the second-stage tumor promoter, mezerin, resulted in increase in both membrane association of protein kinase C and also lung metastases. Thus, these results strongly suggests that membrane associated protein kinase C activity influences hematogenous metastasis of these melanoma cells

  12. Influence of twisted tape turbulence promoter on fouling reduction in microfiltration of milk proteins

    Directory of Open Access Journals (Sweden)

    Popović Svetlana S.

    2011-01-01

    Full Text Available Membrane filtration has become one of the major technologies in the food industry. It is widely applied in the dairy industry, and it is mostly used for the concentration and fractionation of milk proteins and for the whey processing. Of all pressure driven membrane processes, ultrafiltration is the most widely used. The major disadvantage of pressure driven membrane processes is severe fouling of membrane during filtration particularly when the fluids containing proteins are processed. Fouling with proteins is complex phenomenon because it occurs at the membrane surface as well as in the pores of membrane, and depends on the operating conditions and on the interactions of proteins and membrane material. In order to reduce fouling of the membrane different techniques have been developed, and one of them relies on the changing of the hydrodynamic conditions in the membrane or module. In this study, influence of twisted tape turbulence promoters on the fouling reduction in cross-flow microfiltration of skim milk was investigated. Twisted tapes with tree characteristic ratios of helix element length to the tape diameter (aspect ratio were studied. It was shown that twisted tapes with different aspect ratios reduce fouling of membrane by a factor of three or more. The presence of twisted tape induces changes in the flow patterns from straight to helicoidally thus producing turbulence flow at the lower cross-flow rates. Turbulence intensification prevents accumulation of proteins at membrane surface enabling reduction in reversible fouling what results in the reduction of overall membrane fouling. The best performance was achieved using a twisted tape with the lowest aspect ratio of 1.0. This promoter reduces fouling seven times at low transmembrane pressure and low cross-flow velocity. The twisted tape with aspect ratio 1.0 induces the most intensive turbulence, the longest helicoidal flow path, and appearance of vortices near the membrane surfaces

  13. Combination of the Endogenous lhcsr1 Promoter and Codon Usage Optimization Boosts Protein Expression in the Moss Physcomitrella patens

    Directory of Open Access Journals (Sweden)

    Manuel Hiss

    2017-10-01

    Full Text Available The moss Physcomitrella patens is used both as an evo-devo model and biotechnological production system for metabolites and pharmaceuticals. Strong in vivo expression of genes of interest is important for production of recombinant proteins, e.g., selectable markers, fluorescent proteins, or enzymes. In this regard, the choice of the promoter sequence as well as codon usage optimization are two important inside factors to consider in order to obtain optimum protein accumulation level. To reliably quantify fluorescence, we transfected protoplasts with promoter:GFP fusion constructs and measured fluorescence intensity of living protoplasts in a plate reader system. We used the red fluorescent protein mCherry under 2x 35S promoter control as second reporter to normalize for different transfection efficiencies. We derived a novel endogenous promoter and compared deletion variants with exogenous promoters. We used different codon-adapted green fluorescent protein (GFP genes to evaluate the influence of promoter choice and codon optimization on protein accumulation in P. patens, and show that the promoter of the gene of P. patens chlorophyll a/b binding protein lhcsr1 drives expression of GFP in protoplasts significantly (more than twofold better than the commonly used 2x 35S promoter or the rice actin1 promoter. We identified a shortened 677 bp version of the lhcsr1 promoter that retains full activity in protoplasts. The codon optimized GFP yields significantly (more than twofold stronger fluorescence signals and thus demonstrates that adjusting codon usage in P. patens can increase expression strength. In combination, new promotor and codon optimized GFP conveyed sixfold increased fluorescence signal.

  14. Up-regulation of thromboxane A2 receptor expression by lipid soluble smoking particles through post-transcriptional mechanisms

    DEFF Research Database (Denmark)

    Zhang, Wei; Zhang, Yaping; Edvinsson, Lars

    2008-01-01

    Atherosclerosis is a key factor in vascular disease, and cigarette smoking is a well-known risk factor that may induce an inflammatory response and enhance plaque formation in arteries. Thromboxane (Tx) is one key inflammatory mediator involved in the pathogenesis of cardiovascular disease....... The present study was designed to test if lipid soluble smoking particles (DSP) enhance TxA(2) receptor (TP) expression in rat mesenteric arteries, and if intracellular mitogen-activated protein kinase (MAPK) pathways play a role. Organ culture of rat mesenteric arteries in the presence of DSP (0.2 microl...

  15. Transcriptional and post-transcriptional upregulation of p27 mediates growth inhibition of isorhapontigenin (ISO) on human bladder cancer cells.

    Science.gov (United States)

    Jiang, Guosong; Huang, Chao; Li, Jingxia; Huang, Haishan; Wang, Jingjing; Li, Yawei; Xie, Fei; Jin, Honglei; Zhu, Junlan; Huang, Chuanshu

    2018-03-08

    There are few approved drugs available for the treatment of muscle-invasive bladder cancer (MIBC). Recently, we have demonstrated that isorhapontigenin (ISO), a new derivative isolated from the Chinese herb Gnetum cleistostachyum, effectively induces cell-cycle arrest at the G0/G1 phase and inhibits anchorage-independent cell growth through the miR-137/Sp1/cyclin D1 axis in human MIBC cells. Herein, we found that treatment of bladder cancer (BC) cells with ISO resulted in a significant upregulation of p27, which was also observed in ISO-treated mouse BCs that were induced by N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN). Importantly, knockdown of p27 caused a decline in the ISO-induced G0-G1 growth arrest and reversed ISO suppression of anchorage-independent growth in BC cells. Mechanistic studies revealed that ISO promoted p27 expression at mRNA transcription level through increasing direct binding of forkhead box class O1 (FOXO1) to its promoter, while knockdown of FOXO1 attenuated ISO inhibition of BC cell growth. On the other hand, ISO upregulated the 3'-untranslated region (3'-UTR) activity of p27, which was accompanied by a reduction of miR-182 expression. In line with these observations, ectopic expression of miR-182 significantly blocked p27 3'-UTR activity, whereas mutation of the miR-182-binding site at p27 mRNA 3'-UTR effectively reversed this inhibition. Accordingly, ectopic expression of miR-182 also attenuated ISO upregulation of p27 expression and impaired ISO inhibition of BC cell growth. Our results not only provide novel insight into understanding of the underlying mechanism related to regulation of MIBC cell growth but also identify new roles and mechanisms underlying ISO inhibition of BC cell growth.

  16. The Effect of Salts in Promoting Specific and Competitive Interactions between Zinc Finger Proteins and Metals

    Science.gov (United States)

    Li, Gongyu; Yuan, Siming; Zheng, Shihui; Chen, Yuting; Zheng, Zhen; Liu, Yangzhong; Huang, Guangming

    2017-12-01

    Specific protein-metal interactions (PMIs) fulfill essential functions in cells and organic bodies, and activation of these functions in vivo are mostly modulated by the complex environmental factors, including pH value, small biomolecules, and salts. Specifically, the role of salts in promoting specific PMIs and their competition among various metals has remained untapped mainly due to the difficulty to distinguish nonspecific PMIs from specific PMIs by classic spectroscopic techniques. Herein, we report Hofmeister salts differentially promote the specific PMIs by combining nanoelectrospray ionization mass spectrometry and spectroscopic techniques (fluorescence measurement and circular dichroism). Furthermore, to explore the influence of salts in competitive binding between metalloproteins and various metals, we designed a series of competitive experiments and applied to a well-defined model system, the competitive binding of zinc (II) and arsenic (III) to holo-promyelocytic leukemia protein (PML). These experiments not only provided new insights at the molecular scale as complementary to previous NMR and spectroscopic results, but also deduced the relative binding ability between zinc finger proteins and metals at the molecular scale, which avoids the mass spectrometric titration-based determination of binding constants that is frequently affected and often degraded by variable solution conditions including salt contents. [Figure not available: see fulltext.

  17. Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling.

    Science.gov (United States)

    Kandasamy, Saveetha; Loganathan, Karthiba; Muthuraj, Raveendran; Duraisamy, Saravanakumar; Seetharaman, Suresh; Thiruvengadam, Raguchander; Ponnusamy, Balasubramanian; Ramasamy, Samiyappan

    2009-12-24

    Plant Growth Promoting Rhizobacteria (PGPR), Pseudomonas fluorescens strain KH-1 was found to exhibit plant growth promotional activity in rice under both in-vitro and in-vivo conditions. But the mechanism underlying such promotional activity of P. fluorescens is not yet understood clearly. In this study, efforts were made to elucidate the molecular responses of rice plants to P. fluorescens treatment through protein profiling. Two-dimensional polyacrylamide gel electrophoresis strategy was adopted to identify the PGPR responsive proteins and the differentially expressed proteins were analyzed by mass spectrometry. Priming of P. fluorescens, 23 different proteins found to be differentially expressed in rice leaf sheaths and MS analysis revealed the differential expression of some important proteins namely putative p23 co-chaperone, Thioredoxin h- rice, Ribulose-bisphosphate carboxylase large chain precursor, Nucleotide diPhosphate kinase, Proteosome sub unit protein and putative glutathione S-transferase protein. Functional analyses of the differential proteins were reported to be directly or indirectly involved in growth promotion in plants. Thus, this study confirms the primary role of PGPR strain KH-1 in rice plant growth promotion.

  18. Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling

    Directory of Open Access Journals (Sweden)

    Thiruvengadam Raguchander

    2009-12-01

    Full Text Available Abstract Background Plant Growth Promoting Rhizobacteria (PGPR, Pseudomonas fluorescens strain KH-1 was found to exhibit plant growth promotional activity in rice under both in-vitro and in-vivo conditions. But the mechanism underlying such promotional activity of P. fluorescens is not yet understood clearly. In this study, efforts were made to elucidate the molecular responses of rice plants to P. fluorescens treatment through protein profiling. Two-dimensional polyacrylamide gel electrophoresis strategy was adopted to identify the PGPR responsive proteins and the differentially expressed proteins were analyzed by mass spectrometry. Results Priming of P. fluorescens, 23 different proteins found to be differentially expressed in rice leaf sheaths and MS analysis revealed the differential expression of some important proteins namely putative p23 co-chaperone, Thioredoxin h- rice, Ribulose-bisphosphate carboxylase large chain precursor, Nucleotide diPhosphate kinase, Proteosome sub unit protein and putative glutathione S-transferase protein. Conclusion Functional analyses of the differential proteins were reported to be directly or indirectly involved in growth promotion in plants. Thus, this study confirms the primary role of PGPR strain KH-1 in rice plant growth promotion.

  19. Functional promoter variant in zinc finger protein 202 predicts severe atherosclerosis and ischemic heart disease

    DEFF Research Database (Denmark)

    Frikke-Schmidt, R.; Nordestgaard, Børge; Grande, Peer

    2008-01-01

    Objectives This study was designed to test the hypotheses that single nucleotide polymorphisms ( SNPs), in zinc finger protein 202 ( ZNF202), predict severe atherosclerosis and ischemic heart disease ( IHD). Background ZNF202 is a transcriptional repressor controlling promoter elements in genes...... involved in vascular maintenance and lipid metabolism. Methods We first determined genotype association for 9 ZNF202 SNPs with severe atherosclerosis ( ankle brachial index >0.7 vs. ...,998 controls. Finally, we determined whether g. -660A>G altered transcriptional activity of the ZNF202 promoter in vitro. Results Cross-sectionally, ZNF202 g. -660 GG versus AA homozygosity predicted an odds ratio for severe atherosclerosis of 2.01 ( 95% confidence interval [CI]: 1.34 to 3.01). Prospectively...

  20. Promoter Analysis Reveals Globally Differential Regulation of Human Long Non-Coding RNA and Protein-Coding Genes

    KAUST Repository

    Alam, Tanvir; Medvedeva, Yulia A.; Jia, Hui; Brown, James B.; Lipovich, Leonard; Bajic, Vladimir B.

    2014-01-01

    raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted

  1. Effect of Porphyromonas gingivalis infection on post-transcriptional regulation of the low-density lipoprotein receptor in mice

    Directory of Open Access Journals (Sweden)

    Miyazawa Haruna

    2012-09-01

    Full Text Available Abstract Background Periodontal disease is suggested to increase the risk of atherothrombotic disease by inducing dyslipidemia. Recently, we demonstrated that proprotein convertase subtilisin/kexin type 9 (PCSK9, which is known to play a critical role in the regulation of circulating low-density lipoprotein (LDL cholesterol levels, is elevated in periodontitis patients. However, the underlying mechanisms of elevation of PCSK9 in periodontitis patients are largely unknown. Here, we explored whether Porphyromonas gingivalis, a representative periodontopathic bacterium, -induced inflammatory response regulates serum PCSK9 and cholesterol levels using animal models. Methods We infected C57BL/6 mice intraperitoneally with Porphyromonas gingivalis, a representative strain of periodontopathic bacteria, and evaluated serum PCSK9 levels and the serum lipid profile. PCSK9 and LDL receptor (LDLR gene and protein expression, as well as liver X receptors (Lxrs, inducible degrader of the LDLR (Idol, and sterol regulatory element binding transcription factor (Srebf2 gene expression, were examined in the liver. Results P. gingivalis infection induced a significant elevation of serum PCSK9 levels and a concomitant elevation of total and LDL cholesterol compared with sham-infected mice. The LDL cholesterol levels were significantly correlated with PCSK9 levels. Expression of the Pcsk9, Ldlr, and Srebf2 genes was upregulated in the livers of the P. gingivalis-infected mice compared with the sham-infected mice. Although Pcsk9 gene expression is known to be positively regulated by sterol regulatory element binding protein (SREBP2 (human homologue of Srebf2, whereas Srebf2 is negatively regulated by cholesterol, the elevated expression of Srebf2 found in the infected mice is thought to be mediated by P. gingivalis infection. Conclusions P. gingivalis infection upregulates PCSK9 production via upregulation of Srebf2, independent of cholesterol levels. Further studies

  2. GADD34 Function in Protein Trafficking Promotes Adaptation to Hyperosmotic Stress in Human Corneal Cells

    Directory of Open Access Journals (Sweden)

    Dawid Krokowski

    2017-12-01

    Full Text Available Summary: GADD34, a stress-induced regulatory subunit of the phosphatase PP1, is known to function in hyperosmotic stress through its well-known role in the integrated stress response (ISR pathway. Adaptation to hyperosmotic stress is important for the health of corneal epithelial cells exposed to changes in extracellular osmolarity, with maladaptation leading to dry eye syndrome. This adaptation includes induction of SNAT2, an endoplasmic reticulum (ER-Golgi-processed protein, which helps to reverse the stress-induced loss of cell volume and promote homeostasis through amino acid uptake. Here, we show that GADD34 promotes the processing of proteins synthesized on the ER during hyperosmotic stress independent of its action in the ISR. We show that GADD34/PP1 phosphatase activity reverses hyperosmotic-stress-induced Golgi fragmentation and is important for cis- to trans-Golgi trafficking of SNAT2, thereby promoting SNAT2 plasma membrane localization and function. These results suggest that GADD34 is a protective molecule for ocular diseases such as dry eye syndrome. : Here, Krokowski et al. show that GADD34/PP1 protects the microtubule network, prevents Golgi fragmentation, and preserves protein trafficking independent of its action in the integrated stress response (ISR. In osmoadaptation, GADD34 facilitates trans-Golgi-mediated processing of the endoplasmic reticulum (ER-synthesized amino acid transporter SNAT2, which in turn increases amino acid uptake. Keywords: SNAT2, GADD34, hyperosmotic stress, amino acid transport, Golgi fragmentation, ISR

  3. Translationally controlled tumor protein supplemented chitosan modified glass ionomer cement promotes osteoblast proliferation and function

    International Nuclear Information System (INIS)

    Sangsuwan, Jiraporn; Wanichpakorn, Supreya; Kedjarune-Leggat, Ureporn

    2015-01-01

    The objective of this study was to evaluate the effect of translationally controlled tumor protein (TCTP) supplemented in a novel glass ionomer cement (BIO-GIC) on normal human osteoblasts (NHost cells). BIO-GIC was a glass ionomer cement (GIC) modified by adding chitosan and albumin to promote the release of TCTP. NHost cells were seeded on specimens of GIC, GIC + TCTP, BIO-GIC and BIO-GIC + TCTP. Cell proliferation was determined by BrdU assay. It was found that BIO-GIC + TCTP had significantly higher proliferation of cells than other specimens. Bone morphogenetic protein-2 (BMP-2) and osteopontin (OPN) gene expressions assessed by quantitative real time PCR and alkaline phosphatase (ALP) activity were used to determine cell differentiation. Bone cell function was investigated by calcium deposition using alizarin assay. Both BMP-2 and OPN gene expressions of cells cultured on specimens with added TCTP increased gradually up-regulation after day 1 and reached the highest on day 3 then down-regulation on day 7. The ALP activity of cells cultured on BIO-GIC + TCTP for 7 days and calcium content after 14 days were significantly higher than other groups. BIO-GIC + TCTP can promote osteoblast cells proliferation, differentiation and function. - Highlights: • Developed a new GIC by supplementing TCTP in BIO-GIC (GIC with chitosan and albumin) • BIO-GIC + TCTP released a higher amount of TCTP than GIC + TCTP. • BIO-GIC + TCTP promoted cell proliferation higher than other specimens and control. • BIO-GIC + TCTP promoted osteoblasts differentiation and function

  4. Translationally controlled tumor protein supplemented chitosan modified glass ionomer cement promotes osteoblast proliferation and function

    Energy Technology Data Exchange (ETDEWEB)

    Sangsuwan, Jiraporn [Department of Molecular Biology and Bioinformatics, Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Wanichpakorn, Supreya; Kedjarune-Leggat, Ureporn [Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand)

    2015-09-01

    The objective of this study was to evaluate the effect of translationally controlled tumor protein (TCTP) supplemented in a novel glass ionomer cement (BIO-GIC) on normal human osteoblasts (NHost cells). BIO-GIC was a glass ionomer cement (GIC) modified by adding chitosan and albumin to promote the release of TCTP. NHost cells were seeded on specimens of GIC, GIC + TCTP, BIO-GIC and BIO-GIC + TCTP. Cell proliferation was determined by BrdU assay. It was found that BIO-GIC + TCTP had significantly higher proliferation of cells than other specimens. Bone morphogenetic protein-2 (BMP-2) and osteopontin (OPN) gene expressions assessed by quantitative real time PCR and alkaline phosphatase (ALP) activity were used to determine cell differentiation. Bone cell function was investigated by calcium deposition using alizarin assay. Both BMP-2 and OPN gene expressions of cells cultured on specimens with added TCTP increased gradually up-regulation after day 1 and reached the highest on day 3 then down-regulation on day 7. The ALP activity of cells cultured on BIO-GIC + TCTP for 7 days and calcium content after 14 days were significantly higher than other groups. BIO-GIC + TCTP can promote osteoblast cells proliferation, differentiation and function. - Highlights: • Developed a new GIC by supplementing TCTP in BIO-GIC (GIC with chitosan and albumin) • BIO-GIC + TCTP released a higher amount of TCTP than GIC + TCTP. • BIO-GIC + TCTP promoted cell proliferation higher than other specimens and control. • BIO-GIC + TCTP promoted osteoblasts differentiation and function.

  5. Exogenous fatty acid binding protein 4 promotes human prostate cancer cell progression.

    Science.gov (United States)

    Uehara, Hisanori; Takahashi, Tetsuyuki; Oha, Mina; Ogawa, Hirohisa; Izumi, Keisuke

    2014-12-01

    Epidemiologic studies have found that obesity is associated with malignant grade and mortality in prostate cancer. Several adipokines have been implicated as putative mediating factors between obesity and prostate cancer. Fatty acid binding protein 4 (FABP4), a member of the cytoplasmic fatty acid binding protein multigene family, was recently identified as a novel adipokine. Although FABP4 is released from adipocytes and mean circulating concentrations of FABP4 are linked with obesity, effects of exogenous FABP4 on prostate cancer progression are unclear. In this study, we examined the effects of exogenous FABP4 on human prostate cancer cell progression. FABP4 treatment promoted serum-induced prostate cancer cell invasion in vitro. Furthermore, oleic acid promoted prostate cancer cell invasion only if FABP4 was present in the medium. These promoting effects were reduced by FABP4 inhibitor, which inhibits FABP4 binding to fatty acids. Immunostaining for FABP4 showed that exogenous FABP4 was taken up into DU145 cells in three-dimensional culture. In mice, treatment with FABP4 inhibitor reduced the subcutaneous growth and lung metastasis of prostate cancer cells. Immunohistochemical analysis showed that the number of apoptotic cells, positive for cleaved caspase-3 and cleaved PARP, was increased in subcutaneous tumors of FABP4 inhibitor-treated mice, as compared with control mice. These results suggest that exogenous FABP4 might promote human prostate cancer cell progression by binding with fatty acids. Additionally, exogenous FABP4 activated the PI3K/Akt pathway, independently of binding to fatty acids. Thus, FABP4 might be a key molecule to understand the mechanisms underlying the obesity-prostate cancer progression link. © 2014 UICC.

  6. Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia.

    Science.gov (United States)

    Roth Flach, Rachel J; Danai, Laura V; DiStefano, Marina T; Kelly, Mark; Menendez, Lorena Garcia; Jurczyk, Agata; Sharma, Rohit B; Jung, Dae Young; Kim, Jong Hun; Kim, Jason K; Bortell, Rita; Alonso, Laura C; Czech, Michael P

    2016-07-29

    Previous studies revealed a paradox whereby mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) acted as a negative regulator of insulin sensitivity in chronically obese mice, yet systemic deletion of Map4k4 did not improve glucose tolerance. Here, we report markedly reduced glucose-responsive plasma insulin and C-peptide levels in whole body Map4k4-depleted mice (M4K4 iKO) as well as an impaired first phase of insulin secretion from islets derived from M4K4 iKO mice ex vivo After long-term high fat diet (HFD), M4K4 iKO mice pancreata also displayed reduced β cell mass, fewer proliferating β cells and reduced islet-specific gene mRNA expression compared with controls, although insulin content was normal. Interestingly, the reduced plasma insulin in M4K4 iKO mice exposed to chronic (16 weeks) HFD was not observed in response to acute HFD challenge or short term treatment with the insulin receptor antagonist S961. Furthermore, the improved insulin sensitivity in obese M4K4 iKO mice was abrogated by high exogenous insulin over the course of a euglycemic clamp study, indicating that hypoinsulinemia promotes insulin sensitivity in chronically obese M4K4 iKO mice. These results demonstrate that protein kinase Map4k4 drives obesity-induced hyperinsulinemia and insulin resistance in part by promoting insulin secretion from β cells in mice. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. A liver stress-endocrine nexus promotes metabolic integrity during dietary protein dilution

    DEFF Research Database (Denmark)

    Maida, Adriano; Zota, Annika; Sjøberg, Kim Anker

    2016-01-01

    of impaired glucose homeostasis independently of obesity and food intake. DPD-mediated metabolic inefficiency and improvement of glucose homeostasis were independent of uncoupling protein 1 (UCP1), but required expression of liver-derived fibroblast growth factor 21 (FGF21) in both lean and obese mice. FGF21...... expression and secretion as well as the associated metabolic remodeling induced by DPD also required induction of liver-integrated stress response-driven nuclear protein 1 (NUPR1). Insufficiency of select nonessential amino acids (NEAAs) was necessary and adequate for NUPR1 and subsequent FGF21 induction...... and secretion in hepatocytes in vitro and in vivo. Taken together, these data indicate that DPD promotes improved glucose homeostasis through an NEAA insufficiency-induced liver NUPR1/FGF21 axis....

  8. Wnt Signalling Promotes Actin Dynamics during Axon Remodelling through the Actin-Binding Protein Eps8.

    Directory of Open Access Journals (Sweden)

    Eleanna Stamatakou

    Full Text Available Upon arrival at their synaptic targets, axons slow down their growth and extensively remodel before the assembly of presynaptic boutons. Wnt proteins are target-derived secreted factors that promote axonal remodelling and synaptic assembly. In the developing spinal cord, Wnts secreted by motor neurons promote axonal remodelling of NT-3 responsive dorsal root ganglia neurons. Axon remodelling induced by Wnts is characterised by growth cone pausing and enlargement, processes that depend on the re-organisation of microtubules. However, the contribution of the actin cytoskeleton has remained unexplored. Here, we demonstrate that Wnt3a regulates the actin cytoskeleton by rapidly inducing F-actin accumulation in growth cones from rodent DRG neurons through the scaffold protein Dishevelled-1 (Dvl1 and the serine-threonine kinase Gsk3β. Importantly, these changes in actin cytoskeleton occurs before enlargement of the growth cones is evident. Time-lapse imaging shows that Wnt3a increases lamellar protrusion and filopodia velocity. In addition, pharmacological inhibition of actin assembly demonstrates that Wnt3a increases actin dynamics. Through a yeast-two hybrid screen, we identified the actin-binding protein Eps8 as a direct interactor of Dvl1, a scaffold protein crucial for the Wnt signalling pathway. Gain of function of Eps8 mimics Wnt-mediated axon remodelling, whereas Eps8 silencing blocks the axon remodelling activity of Wnt3a. Importantly, blockade of the Dvl1-Eps8 interaction completely abolishes Wnt3a-mediated axonal remodelling. These findings demonstrate a novel role for Wnt-Dvl1 signalling through Eps8 in the regulation of axonal remodeling.

  9. Translatome profiling in dormant and nondormant sunflower (Helianthus annuus) seeds highlights post-transcriptional regulation of germination.

    Science.gov (United States)

    Layat, Elodie; Leymarie, Juliette; El-Maarouf-Bouteau, Hayat; Caius, José; Langlade, Nicolas; Bailly, Christophe

    2014-12-01

    Seed dormancy, which blocks germination in apparently favourable conditions, is a key regulatory control point of plant population establishment. As germination requires de novo translation, its regulation by dormancy is likely to be related to the association of individual transcripts to polysomes. Here, the polysome-associated mRNAs, that is, the translatome, were fractionated and characterized with microarrays in dormant and nondormant sunflower (Helianthus annuus) embryos during their imbibition at 10°C, a temperature preventing germination of dormant embryos. Profiling of mRNAs in polysomal complexes revealed that the translatome differs between germinating and nongerminating embryos. Association of transcripts with polysomes reached a maximum after 15 h of imbibition; at this time-point 194 polysome-associated transcripts were specifically found in nondormant embryos and 47 in dormant embryos only. The proteins corresponding to the polysomal mRNAs in nondormant embryos appeared to be very pertinent for germination and were involved mainly in transport, regulation of transcription or cell wall modifications. This work demonstrates that seed germination results from a timely regulated and selective recruitment of mRNAs to polysomes, thus opening novel fields of investigation for the understanding of this developmental process. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  10. The Csr/Rsm system of Yersinia and related pathogens: a post-transcriptional strategy for managing virulence.

    Science.gov (United States)

    Heroven, Ann Kathrin; Böhme, Katja; Dersch, Petra

    2012-04-01

    This review emphasizes the function and regulation of the Csr regulatory system in the human enteropathogen Yersinia pseudotuberculosis and compares its features with the homologous Csr/Rsm systems of related pathogens. The Csr/Rsm systems of eubacteria form a complex regulatory network in which redundant non-translated Csr/Rsm-RNAs bind the RNA-binding protein CsrA/RsmA, thereby preventing its interaction with mRNA targets. The Csr system is controlled by the BarA/UvrY-type of two-component sensor-regulator systems. Apart from that, common or pathogen-specific regulators control the abundance of the Csr components. The coordinate control of virulence factors and infection-linked physiological traits by the Csr/Rsm systems helps the pathogens to adapt individually to rapidly changing conditions to which they are exposed during the different stages of an infection. As Csr/Rsm function is relevant for full virulence, it represents a target suitable for antimicrobial drug development.

  11. Characterization and identification of microRNA core promoters in four model species.

    Directory of Open Access Journals (Sweden)

    Xuefeng Zhou

    2007-03-01

    Full Text Available MicroRNAs are short, noncoding RNAs that play important roles in post-transcriptional gene regulation. Although many functions of microRNAs in plants and animals have been revealed in recent years, the transcriptional mechanism of microRNA genes is not well-understood. To elucidate the transcriptional regulation of microRNA genes, we study and characterize, in a genome scale, the promoters of intergenic microRNA genes in Caenorhabditis elegans, Homo sapiens, Arabidopsis thaliana, and Oryza sativa. We show that most known microRNA genes in these four species have the same type of promoters as protein-coding genes have. To further characterize the promoters of microRNA genes, we developed a novel promoter prediction method, called common query voting (CoVote, which is more effective than available promoter prediction methods. Using this new method, we identify putative core promoters of most known microRNA genes in the four model species. Moreover, we characterize the promoters of microRNA genes in these four species. We discover many significant, characteristic sequence motifs in these core promoters, several of which match or resemble the known cis-acting elements for transcription initiation. Among these motifs, some are conserved across different species while some are specific to microRNA genes of individual species.

  12. Nitrite promotes protein carbonylation and Strecker aldehyde formation in experimental fermented sausages: are both events connected?

    Science.gov (United States)

    Villaverde, A; Ventanas, J; Estévez, M

    2014-12-01

    The role played by curing agents (nitrite, ascorbate) on protein oxidation and Strecker aldehyde formation is studied. To fulfill this objective, increasing concentrations of nitrite (0, 75 and 150ppm) and ascorbate (0, 250 and 500ppm) were added to sausages subjected to a 54day drying process. The concurrence of intense proteolysis, protein carbonylation and formation of Strecker aldehydes during processing of sausages suggests that α-aminoadipic semialdehyde (AAS) and γ-glutamic semialdehyde (GGS) may be implicated in the formation of Strecker aldehydes. The fact that nitrite (150ppm, ingoing amount) significantly promoted the formation of protein carbonyls at early stages of processing and the subsequent formation of Strecker aldehydes provides strength to this hypothesis. Ascorbate (125 and 250ppm) controlled the overall extent of protein carbonylation in sausages without declining the formation of Strecker aldehydes. These results may contribute to understanding the chemistry fundamentals of the positive influence of nitrite on the flavor and overall acceptability of cured muscle foods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. The membrane protein LasM Promotes the Culturability of Legionella pneumophila in Water

    Directory of Open Access Journals (Sweden)

    Laam Li

    2016-09-01

    Full Text Available The water-borne pathogen Legionella pneumophila (Lp strongly expresses the lpg1659 gene in water. This gene encodes a hypothetical protein predicted to be a membrane protein using in silico analysis. While no conserved domains were identified in Lpg1659, similar proteins are found in many Legionella species and other aquatic bacteria. RT-qPCR showed that lpg1659 is positively regulated by the alternative sigma factor RpoS, which is essential for Lp to survive in water. These observations suggest an important role of this novel protein in the survival of Lp in water. Deletion of lpg1659 did not affect cell morphology, membrane integrity or tolerance to high temperature. Moreover, lpg1659 was dispensable for growth of Lp in rich medium, and during infection of the amoeba Acanthamoeba castellanii and of THP-1 human macrophages. However, deletion of lpg1659 resulted in an early loss of culturability in water, while over-expression of this gene promoted the culturability of Lp. Therefore, these results suggest that lpg1659 is required for Lp to maintain culturability, and possibly long-term survival, in water. Since the loss of culturability observed in the absence of Lpg1659 was complemented by the addition of trace metals into water, this membrane protein is likely a transporter for acquiring essential trace metal for maintaining culturability in water and potentially in other metal-deprived conditions. Given its role in the survival of Lp in water, Lpg1659 was named LasM for Legionella aquatic survival membrane protein.

  14. Highly active promoters and native secretion signals for protein production during extremely low growth rates in Aspergillus niger.

    Science.gov (United States)

    Wanka, Franziska; Arentshorst, Mark; Cairns, Timothy C; Jørgensen, Thomas; Ram, Arthur F J; Meyer, Vera

    2016-08-20

    The filamentous ascomycete Aspergillus niger is used in many industrial processes for the production of enzymes and organic acids by batch and fed-batch cultivation. An alternative technique is continuous cultivation, which promises improved yield and optimized pipeline efficiency. In this work, we have used perfusion (retentostat) cultivation to validate two promoters that are suitable for A. niger continuous cultivation of industrially relevant products. Firstly, promoters of genes encoding either an antifungal protein (Panafp) or putative hydrophobin (PhfbD) were confirmed as active throughout retentostat culture by assessing mRNA and protein levels using a luciferase (mluc) reporter system. This demonstrated the anafp promoter mediates a high but temporally variable expression profile, whereas the hfbD promoter mediates a semi-constant, moderate-to-high protein expression during retentostat culture. In order to assess whether these promoters were suitable to produce heterologous proteins during retentostat cultivation, the secreted antifungal protein (AFP) from Aspergillus giganteus, which has many potential biotechnological applications, was expressed in A. niger during retentostat cultivation. Additionally, this assay was used to concomitantly validate that native secretion signals encoded in anafp and hfbD genes can be harnessed for secretion of heterologous proteins. Afp mRNA and protein abundance were comparable to luciferase measurements throughout retentostat cultivation, validating the use of Panafp and PhfbD for perfusion cultivation. Finally, a gene encoding the highly commercially relevant thermal hysteresis protein (THP) was expressed in this system, which did not yield detectable protein. Both hfbD and anafp promoters are suitable for production of useful products in A. niger during perfusion cultivation. These findings provide a platform for further optimisations for high production of heterologous proteins with industrial relevance.

  15. GW182-Free microRNA Silencing Complex Controls Post-transcriptional Gene Expression during Caenorhabditis elegans Embryogenesis.

    Directory of Open Access Journals (Sweden)

    Guillaume Jannot

    2016-12-01

    Full Text Available MicroRNAs and Argonaute form the microRNA induced silencing complex or miRISC that recruits GW182, causing mRNA degradation and/or translational repression. Despite the clear conservation and molecular significance, it is unknown if miRISC-GW182 interaction is essential for gene silencing during animal development. Using Caenorhabditis elegans to explore this question, we examined the relationship and effect on gene silencing between the GW182 orthologs, AIN-1 and AIN-2, and the microRNA-specific Argonaute, ALG-1. Homology modeling based on human Argonaute structures indicated that ALG-1 possesses conserved Tryptophan-binding Pockets required for GW182 binding. We show in vitro and in vivo that their mutations severely altered the association with AIN-1 and AIN-2. ALG-1 tryptophan-binding pockets mutant animals retained microRNA-binding and processing ability, but were deficient in reporter silencing activity. Interestingly, the ALG-1 tryptophan-binding pockets mutant phenocopied the loss of alg-1 in worms during larval stages, yet was sufficient to rescue embryonic lethality, indicating the dispensability of AINs association with the miRISC at this developmental stage. The dispensability of AINs in miRNA regulation is further demonstrated by the capacity of ALG-1 tryptophan-binding pockets mutant to regulate a target of the embryonic mir-35 microRNA family. Thus, our results demonstrate that the microRNA pathway can act independently of GW182 proteins during C. elegans embryogenesis.

  16. HCV core protein promotes hepatocyte proliferation and chemoresistance by inhibiting NR4A1

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Yongsheng, E-mail: yongshengtanwhu@126.com; Li, Yan, E-mail: liyansd2@163.com

    2015-10-23

    This study investigated the effect of HCV core protein on the proliferation of hepatocytes and hepatocellular carcinoma cells (HCC), the influence of HCV core protein on HCC apoptosis induced by the chemotherapeutic agent cisplatin, and the mechanism through which HCV core protein acts as a potential oncoprotein in HCV-related HCC by measuring the levels of NR4A1 and Runt-related transcription factor 3 (RUNX3), which are associated with tumor suppression and chemotherapy resistance. In the present study, PcDNA3.1-core and RUNX3 siRNA were transfected into LO2 and HepG2 cells using Lipofectamine 2000. LO2-core, HepG2-core, LO2-RUNX3 {sup low} and control cells were treated with different concentrations of cisplatin for 72 h, and cell proliferation and apoptosis were assayed using the CellTiter 96{sup ®}Aqueous Non-Radioactive Cell Proliferation Assay Kit. Western blot and real time PCR analyses were used to detect NR4A1, RUNX3, smad7, Cyclin D1 and BAX. Confocal microscopy was used to determine the levels of NR4A1 in HepG2 and HepG2-core cells. The growth rate of HepG2-core cells was considerably greater than that of HepG2 cells. HCV core protein increased the expression of cyclin D1 and decreased the expressions of NR4A1 and RUNX3. In LO2 – RUNX3 {sup low}, the rate of cell proliferation and the level of cisplatin resistance were the same as in the LO2 -core. These results suggest that HCV core protein decreases the sensitivity of hepatocytes to cisplatin by inhibiting the expression of NR4A1 and promoting the expression of smad7, which negatively regulates the TGF-β pathway. This effect results in down regulation of RUNX3, a target of the TGF-β pathway. Taken together, these findings indicate that in hepatocytes, HCV core protein increases drug resistance and inhibits cell apoptosis by inhibiting the expressions of NR4A1 and RUNX3. - Highlights: • HCV core protein inhibits HepG2 cell sensitivity to cisplatin. • Core expression in HepG2 decreases

  17. HCV core protein promotes hepatocyte proliferation and chemoresistance by inhibiting NR4A1

    International Nuclear Information System (INIS)

    Tan, Yongsheng; Li, Yan

    2015-01-01

    This study investigated the effect of HCV core protein on the proliferation of hepatocytes and hepatocellular carcinoma cells (HCC), the influence of HCV core protein on HCC apoptosis induced by the chemotherapeutic agent cisplatin, and the mechanism through which HCV core protein acts as a potential oncoprotein in HCV-related HCC by measuring the levels of NR4A1 and Runt-related transcription factor 3 (RUNX3), which are associated with tumor suppression and chemotherapy resistance. In the present study, PcDNA3.1-core and RUNX3 siRNA were transfected into LO2 and HepG2 cells using Lipofectamine 2000. LO2-core, HepG2-core, LO2-RUNX3 "l"o"w and control cells were treated with different concentrations of cisplatin for 72 h, and cell proliferation and apoptosis were assayed using the CellTiter 96"®Aqueous Non-Radioactive Cell Proliferation Assay Kit. Western blot and real time PCR analyses were used to detect NR4A1, RUNX3, smad7, Cyclin D1 and BAX. Confocal microscopy was used to determine the levels of NR4A1 in HepG2 and HepG2-core cells. The growth rate of HepG2-core cells was considerably greater than that of HepG2 cells. HCV core protein increased the expression of cyclin D1 and decreased the expressions of NR4A1 and RUNX3. In LO2 – RUNX3 "l"o"w, the rate of cell proliferation and the level of cisplatin resistance were the same as in the LO2 -core. These results suggest that HCV core protein decreases the sensitivity of hepatocytes to cisplatin by inhibiting the expression of NR4A1 and promoting the expression of smad7, which negatively regulates the TGF-β pathway. This effect results in down regulation of RUNX3, a target of the TGF-β pathway. Taken together, these findings indicate that in hepatocytes, HCV core protein increases drug resistance and inhibits cell apoptosis by inhibiting the expressions of NR4A1 and RUNX3. - Highlights: • HCV core protein inhibits HepG2 cell sensitivity to cisplatin. • Core expression in HepG2 decreases expression of NR4A1

  18. Centrobin-centrosomal protein 4.1-associated protein (CPAP) interaction promotes CPAP localization to the centrioles during centriole duplication.

    Science.gov (United States)

    Gudi, Radhika; Zou, Chaozhong; Dhar, Jayeeta; Gao, Qingshen; Vasu, Chenthamarakshan

    2014-05-30

    Centriole duplication is the process by which two new daughter centrioles are generated from the proximal end of preexisting mother centrioles. Accurate centriole duplication is important for many cellular and physiological events, including cell division and ciliogenesis. Centrosomal protein 4.1-associated protein (CPAP), centrosomal protein of 152 kDa (CEP152), and centrobin are known to be essential for centriole duplication. However, the precise mechanism by which they contribute to centriole duplication is not known. In this study, we show that centrobin interacts with CEP152 and CPAP, and the centrobin-CPAP interaction is critical for centriole duplication. Although depletion of centrobin from cells did not have an effect on the centriolar levels of CEP152, it caused the disappearance of CPAP from both the preexisting and newly formed centrioles. Moreover, exogenous expression of the CPAP-binding fragment of centrobin also caused the disappearance of CPAP from both the preexisting and newly synthesized centrioles, possibly in a dominant negative manner, thereby inhibiting centriole duplication and the PLK4 overexpression-mediated centrosome amplification. Interestingly, exogenous overexpression of CPAP in the centrobin-depleted cells did not restore CPAP localization to the centrioles. However, restoration of centrobin expression in the centrobin-depleted cells led to the reappearance of centriolar CPAP. Hence, we conclude that centrobin-CPAP interaction is critical for the recruitment of CPAP to procentrioles to promote the elongation of daughter centrioles and for the persistence of CPAP on preexisting mother centrioles. Our study indicates that regulation of CPAP levels on the centrioles by centrobin is critical for preserving the normal size, shape, and number of centrioles in the cell. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Centrobin-Centrosomal Protein 4.1-associated Protein (CPAP) Interaction Promotes CPAP Localization to the Centrioles during Centriole Duplication*

    Science.gov (United States)

    Gudi, Radhika; Zou, Chaozhong; Dhar, Jayeeta; Gao, Qingshen; Vasu, Chenthamarakshan

    2014-01-01

    Centriole duplication is the process by which two new daughter centrioles are generated from the proximal end of preexisting mother centrioles. Accurate centriole duplication is important for many cellular and physiological events, including cell division and ciliogenesis. Centrosomal protein 4.1-associated protein (CPAP), centrosomal protein of 152 kDa (CEP152), and centrobin are known to be essential for centriole duplication. However, the precise mechanism by which they contribute to centriole duplication is not known. In this study, we show that centrobin interacts with CEP152 and CPAP, and the centrobin-CPAP interaction is critical for centriole duplication. Although depletion of centrobin from cells did not have an effect on the centriolar levels of CEP152, it caused the disappearance of CPAP from both the preexisting and newly formed centrioles. Moreover, exogenous expression of the CPAP-binding fragment of centrobin also caused the disappearance of CPAP from both the preexisting and newly synthesized centrioles, possibly in a dominant negative manner, thereby inhibiting centriole duplication and the PLK4 overexpression-mediated centrosome amplification. Interestingly, exogenous overexpression of CPAP in the centrobin-depleted cells did not restore CPAP localization to the centrioles. However, restoration of centrobin expression in the centrobin-depleted cells led to the reappearance of centriolar CPAP. Hence, we conclude that centrobin-CPAP interaction is critical for the recruitment of CPAP to procentrioles to promote the elongation of daughter centrioles and for the persistence of CPAP on preexisting mother centrioles. Our study indicates that regulation of CPAP levels on the centrioles by centrobin is critical for preserving the normal size, shape, and number of centrioles in the cell. PMID:24700465

  20. LINGO-1 promotes lysosomal degradation of amyloid-β protein precursor

    Directory of Open Access Journals (Sweden)

    Rian de Laat

    2015-03-01

    Full Text Available Sequential proteolytic cleavages of amyloid-β protein precursor (AβPP by β-secretase and γ-secretase generate amyloid β (Aβ peptides, which are thought to contribute to Alzheimer's disease (AD. Much of this processing occurs in endosomes following endocytosis of AβPP from the plasma membrane. However, this pathogenic mode of processing AβPP may occur in competition with lysosomal degradation of AβPP, a common fate of membrane proteins trafficking through the endosomal system. Following up on published reports that LINGO-1 binds and promotes the amyloidogenic processing of AβPP we have examined the consequences of LINGO-1/AβPP interactions. We report that LINGO-1 and its paralogs, LINGO-2 and LINGO-3, decrease processing of AβPP in the amyloidogenic pathway by promoting lysosomal degradation of AβPP. We also report that LINGO-1 levels are reduced in AD brain, representing a possible pathogenic mechanism stimulating the generation of Aβ peptides in AD.

  1. Transcriptional factor DLX3 promotes the gene expression of enamel matrix proteins during amelogenesis.

    Science.gov (United States)

    Zhang, Zhichun; Tian, Hua; Lv, Ping; Wang, Weiping; Jia, Zhuqing; Wang, Sainan; Zhou, Chunyan; Gao, Xuejun

    2015-01-01

    Mutation of distal-less homeobox 3 (DLX3) is responsible for human tricho-dento-osseous syndrome (TDO) with amelogenesis imperfecta, indicating a crucial role of DLX3 in amelogenesis. However, the expression pattern of DLX3 and its specific function in amelogenesis remain largely unknown. The aim of this study was to investigate the effects of DLX3 on enamel matrix protein (EMP) genes. By immunohistochemistry assays of mouse tooth germs, stronger immunostaining of DLX3 protein was identified in ameloblasts in the secretory stage than in the pre-secretory and maturation stages, and the same pattern was found for Dlx3 mRNA using Realtime PCR. In a mouse ameloblast cell lineage, forced expression of DLX3 up-regulated the expression of the EMP genes Amelx, Enam, Klk4, and Odam, whereas knockdown of DLX3 down-regulated these four EMP genes. Further, bioinformatics, chromatin immunoprecipitation, and luciferase assays revealed that DLX3 transactivated Enam, Amelx, and Odam through direct binding to their enhancer regions. Particularly, over-expression of mutant-DLX3 (c.571_574delGGGG, responsible for TDO) inhibited the activation function of DLX3 on expression levels and promoter activities of the Enam, Amelx, and Odam genes. Together, our data show that DLX3 promotes the expression of the EMP genes Amelx, Enam, Klk4, and Odam in amelogenesis, while mutant-DLX3 disrupts this regulatory function, thus providing insights into the molecular mechanisms underlying the enamel defects of TDO disease.

  2. Tailoring Escherichia coli for the L-rhamnose PBAD promoter-based production of membrane and secretory proteins

    NARCIS (Netherlands)

    Hjelm, Anna; Karyolaimos, Alexandros; Zhang, Zhe; Rujas, Edurne; Vikström, David; Slotboom, Dirk Jan; de Gier, Jan-Willem

    Membrane and secretory protein production in Escherichia coli requires precisely controlled production rates to avoid the deleterious saturation of their biogenesis pathways. Based on this requirement, the E. coli L-rhamnose PBAD promoter (PrhaBAD) is often used for membrane and secretory protein

  3. Direct inhibition of TNF-α promoter activity by Fanconi anemia protein FANCD2.

    Directory of Open Access Journals (Sweden)

    Nobuko Matsushita

    Full Text Available Fanconi anemia (FA, an inherited disease, is associated with progressive bone marrow failure, predisposition to cancer, and genomic instability. Genes corresponding to 15 identified FA complementation groups have been cloned, and each gene product functions in the response to DNA damage induced by cross-linking agents and/or in protection against genome instability. Interestingly, overproduction of inflammatory cytokines such as tumor necrosis factor alpha (TNF-α and aberrant activation of NF-κB-dependent transcriptional activity have been observed in FA cells. Here we demonstrated that FANCD2 protein inhibits NF-κB activity in its monoubiquitination-dependent manner. Furthermore, we detected a specific association between FANCD2 and an NF-κB consensus element in the TNF-α promoter by electrophoretic mobility shift assays (EMSA and chromatin immunoprecipitation (ChIP assay. Therefore, we propose FANCD2 deficiency promotes transcriptional activity of the TNF-α promoter and induces overproduction of TNF-which then sustains prolonged inflammatory responses. These results also suggest that artificial modulation of TNFα production could be a promising therapeutic approach to FA.

  4. A synthetic arabinose-inducible promoter confers high levels of recombinant protein expression in hyperthermophilic archaeon Sulfolobus islandicus

    DEFF Research Database (Denmark)

    Peng, Nan; Deng, Ling; Mei, Yuxia

    2012-01-01

    Despite major progresses in genetic studies of hyperthermophilic archaea, recombinant protein production in these organisms always suffers from low yields and a robust expression system is still in great demand. Here we report a versatile vector that confers high levels of protein expression...... to remove the peptide tags from expressed recombinant proteins. While pEXA employed an araS promoter for protein expression, pSeSD utilized P(araS-SD), an araS derivative promoter carrying an engineered ribosome-binding site (RBS; a Shine-Dalgarno [SD] sequence). We found that P(araS-SD) directed high...... levels of target gene expression. More strikingly, N-terminal amino acid sequencing of recombinant proteins unraveled that the protein synthesized from pEXA-N-lacS lacked the designed 6×His tag and that translation initiation did not start at the ATG codon of the fusion gene. Instead, it started...

  5. Characteristic differences between the promoters of intron-containing and intronless ribosomal protein genes in yeast

    Directory of Open Access Journals (Sweden)

    Vingron Martin

    2008-10-01

    Full Text Available Abstract Background More than two thirds of the highly expressed ribosomal protein (RP genes in Saccharomyces cerevisiae contain introns, which is in sharp contrast to the genome-wide five percent intron-containing genes. It is well established that introns carry regulatory sequences and that the transcription of RP genes is extensively and coordinately regulated. Here we test the hypotheses that introns are innately associated with heavily transcribed genes and that introns of RP genes contribute regulatory TF binding sequences. Moreover, we investigate whether promoter features are significantly different between intron-containing and intronless RP genes. Results We find that directly measured transcription rates tend to be lower for intron-containing compared to intronless RP genes. We do not observe any specifically enriched sequence motifs in the introns of RP genes other than those of the branch point and the two splice sites. Comparing the promoters of intron-containing and intronless RP genes, we detect differences in number and position of Rap1-binding and IFHL motifs. Moreover, the analysis of the length distribution and the folding free energies suggest that, at least in a sub-population of RP genes, the 5' untranslated sequences are optimized for regulatory function. Conclusion Our results argue against the direct involvement of introns in the regulation of transcription of highly expressed genes. Moreover, systematic differences in motif distributions suggest that RP transcription factors may act differently on intron-containing and intronless gene promoters. Thus, our findings contribute to the decoding of the RP promoter architecture and may fuel the discussion on the evolution of introns.

  6. Saturated fatty acid palmitate negatively regulates autophagy by promoting ATG5 protein degradation in meniscus cells.

    Science.gov (United States)

    Mallik, Aritra; Yammani, Raghunatha R

    2018-07-20

    Obesity and associated metabolic factors are major risk factors for the development of osteoarthritis. Previously, we have shown that the free fatty acid palmitate induces endoplasmic reticulum (ER) stress and induces apoptosis in meniscus cells. However, the molecular mechanisms involved in these effects are not clearly understood. In our current study, we found that palmitate inhibits autophagy by modulating the protein levels of autophagy-related genes-5 (ATG5) that is associated with decreased lipidation of LC3 and increased activation of cleaved caspase 3. Pretreatment of meniscus cells with 4-phenyl butyric acid, a small molecule chemical chaperone that alleviates ER stress, or with MG-132, a proteasome inhibitor, restored normal levels of ATG5 and autophagosome formation, and decreased expression of cleaved caspase 3. Thus, our data suggest that palmitate downregulates autophagy in meniscus cells by degrading ATG5 protein via ER-associated protein degradation, and thus promotes apoptosis. This is the first study to demonstrate that palmitate-induced endoplasmic reticulum stress negatively regulates autophagy. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  7. P-body proteins regulate transcriptional rewiring to promote DNA replication stress resistance.

    Science.gov (United States)

    Loll-Krippleber, Raphael; Brown, Grant W

    2017-09-15

    mRNA-processing (P-) bodies are cytoplasmic granules that form in eukaryotic cells in response to numerous stresses to serve as sites of degradation and storage of mRNAs. Functional P-bodies are critical for the DNA replication stress response in yeast, yet the repertoire of P-body targets and the mechanisms by which P-bodies promote replication stress resistance are unknown. In this study we identify the complete complement of mRNA targets of P-bodies during replication stress induced by hydroxyurea treatment. The key P-body protein Lsm1 controls the abundance of HHT1, ACF4, ARL3, TMA16, RRS1 and YOX1 mRNAs to prevent their toxic accumulation during replication stress. Accumulation of YOX1 mRNA causes aberrant downregulation of a network of genes critical for DNA replication stress resistance and leads to toxic acetaldehyde accumulation. Our data reveal the scope and the targets of regulation by P-body proteins during the DNA replication stress response.P-bodies form in response to stress and act as sites of mRNA storage and degradation. Here the authors identify the mRNA targets of P-bodies during DNA replication stress, and show that P-body proteins act to prevent toxic accumulation of these target transcripts.

  8. A secreted Salmonella protein induces a proinflammatory response in epithelial cells, which promotes neutrophil migration.

    Science.gov (United States)

    Lee, C A; Silva, M; Siber, A M; Kelly, A J; Galyov, E; McCormick, B A

    2000-10-24

    In response to Salmonella typhimurium, the intestinal epithelium generates an intense inflammatory response consisting largely of polymorphonuclear leukocytes (neutrophils, PMN) migrating toward and ultimately across the epithelial monolayer into the intestinal lumen. It has been shown that bacterial-epithelial cell interactions elicit the production of inflammatory regulators that promote transepithelial PMN migration. Although S. typhimurium can enter intestinal epithelial cells, bacterial internalization is not required for the signaling mechanisms that induce PMN movement. Here, we sought to determine which S. typhimurium factors and intestinal epithelial signaling pathways elicit the production of PMN chemoattractants by enterocytes. Our results suggest that S. typhimurium activates a protein kinase C-dependent signal transduction pathway that orchestrates transepithelial PMN movement. We show that the type III effector protein, SipA, is not only necessary but is sufficient to induce this proinflammatory response in epithelial cells. Our results force us to reconsider the long-held view that Salmonella effector proteins must be directly delivered into host cells from bacterial cells.

  9. Armadillo Repeat Containing 8α Binds to HRS and Promotes HRS Interaction with Ubiquitinated Proteins

    Science.gov (United States)

    Tomaru, Koji; Ueda, Atsuhisa; Suzuki, Takeyuki; Kobayashi, Nobuaki; Yang, Jun; Yamamoto, Masaki; Takeno, Mitsuhiro; Kaneko, Takeshi; Ishigatsubo, Yoshiaki

    2010-01-01

    Recently, we reported that a complex with an essential role in the degradation of Fructose-1,6-bisphosphatase in yeast is well conserved in mammalian cells; we named this mammalian complex C-terminal to the Lissencephaly type-1-like homology (CTLH) complex. Although the function of the CTLH complex remains unclear, here we used yeast two-hybrid screening to isolate Hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) as a protein binding to a key component of CTLH complex, Armadillo repeat containing 8 (ARMc8) α. The association was confirmed by a yeast two-hybrid assay and a co-immunoprecipitation assay. The proline-rich domain of HRS was essential for the association. As demonstrated through immunofluorescence microscopy, ARMc8α co-localized with HRS. ARMc8α promoted the interaction of HRS with various ubiquitinated proteins through the ubiquitin-interacting motif. These findings suggest that HRS mediates protein endosomal trafficking partly through its interaction with ARMc8α. PMID:20224683

  10. Invited review: Whey proteins as antioxidants and promoters of cellular antioxidant pathways.

    Science.gov (United States)

    Corrochano, Alberto R; Buckin, Vitaly; Kelly, Phil M; Giblin, Linda

    2018-03-28

    Oxidative stress contributes to cell injury and aggravates several chronic diseases. Dietary antioxidants help the body to fight against free radicals and, therefore, avoid or reduce oxidative stress. Recently, proteins from milk whey liquid have been described as antioxidants. This review summarizes the evidence that whey products exhibit radical scavenging activity and reducing power. It examines the processing and treatment attempts to increase the antioxidant bioactivity and identifies 1 enzyme, subtilisin, which consistently produces the most potent whey fractions. The review compares whey from different milk sources and puts whey proteins in the context of other known food antioxidants. However, for efficacy, the antioxidant activity of whey proteins must not only survive processing, but also upper gut transit and arrival in the bloodstream, if whey products are to promote antioxidant levels in target organs. Studies reveal that direct cell exposure to whey samples increases intracellular antioxidants such as glutathione. However, the physiological relevance of these in vitro assays is questionable, and evidence is conflicting from dietary intervention trials, with both rats and humans, that whey products can boost cellular antioxidant biomarkers. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. A protocatechuate biosensor for Pseudomonas putida KT2440 via promoter and protein evolution

    Directory of Open Access Journals (Sweden)

    Ramesh K. Jha

    2018-06-01

    Full Text Available Robust fluorescence-based biosensors are emerging as critical tools for high-throughput strain improvement in synthetic biology. Many biosensors are developed in model organisms where sophisticated synthetic biology tools are also well established. However, industrial biochemical production often employs microbes with phenotypes that are advantageous for a target process, and biosensors may fail to directly transition outside the host in which they are developed. In particular, losses in sensitivity and dynamic range of sensing often occur, limiting the application of a biosensor across hosts. Here we demonstrate the optimization of an Escherichia coli-based biosensor in a robust microbial strain for the catabolism of aromatic compounds, Pseudomonas putida KT2440, through a generalizable approach of modulating interactions at the protein-DNA interface in the promoter and the protein-protein dimer interface. The high-throughput biosensor optimization approach demonstrated here is readily applicable towards other allosteric regulators. Keywords: Whole cell biosensor, Aromatic catabolism, Transcription factor, PcaU, Shikimate

  12. A conserved RNA structural element within the hepatitis B virus post-transcriptional regulatory element enhance nuclear export of intronless transcripts and repress the splicing mechanism.

    Science.gov (United States)

    Visootsat, Akasit; Payungporn, Sunchai; T-Thienprasert, Nattanan P

    2015-12-01

    Hepatitis B virus (HBV) infection is a primary cause of hepatocellular carcinoma and liver cirrhosis worldwide. To develop novel antiviral drugs, a better understanding of HBV gene expression regulation is vital. One important aspect is to understand how HBV hijacks the cellular machinery to export unspliced RNA from the nucleus. The HBV post-transcriptional regulatory element (HBV PRE) has been proposed to be the HBV RNA nuclear export element. However, the function remains controversial, and the core element is unclear. This study, therefore, aimed to identify functional regulatory elements within the HBV PRE and investigate their functions. Using bioinformatics programs based on sequence conservation and conserved RNA secondary structures, three regulatory elements were predicted, namely PRE 1151-1410, PRE 1520-1620 and PRE 1650-1684. PRE 1151-1410 significantly increased intronless and unspliced luciferase activity in both HepG2 and COS-7 cells. Likewise, PRE 1151-1410 significantly elevated intronless and unspliced HBV surface transcripts in liver cancer cells. Moreover, motif analysis predicted that PRE 1151-1410 contains several regulatory motifs. This study reported the roles of PRE 1151-1410 in intronless transcript nuclear export and the splicing mechanism. Additionally, these results provide knowledge in the field of HBV RNA regulation. Moreover, PRE 1151-1410 may be used to enhance the expression of other mRNAs in intronless reporter plasmids.

  13. The nuclear protein Artemis promotes AMPK activation by stabilizing the LKB1–AMPK complex

    International Nuclear Information System (INIS)

    Nakagawa, Koji; Uehata, Yasuko; Natsuizaka, Mitsuteru; Kohara, Toshihisa; Darmanin, Stephanie; Asaka, Masahiro; Takeda, Hiroshi; Kobayashi, Masanobu

    2012-01-01

    Highlights: ► The nuclear protein Artemis physically interacts with AMPKα2. ► Artemis co-localizes with AMPKα2 in the nucleus. ► Artemis promotes phosphorylation and activation of AMPK. ► The interaction between AMPKα2 and LKB1 is stabilized by Artemis. -- Abstract: AMP-activated protein kinase (AMPK) is a hetero-trimeric Ser/Thr kinase composed of a catalytic α subunit and regulatory β and γ subunits; it functions as an energy sensor that controls cellular energy homeostasis. In response to an increased cellular AMP/ATP ratio, AMPK is activated by phosphorylation at Thr172 in the α-subunit by upstream AMPK kinases (AMPKKs), including tumor suppressor liver kinase B1 (LKB1). To elucidate more precise molecular mechanisms of AMPK activation, we performed yeast two-hybrid screening and isolated the complementary DNA (cDNA) encoding the nuclear protein Artemis/DNA cross-link repair 1C (DCLRE1C) as an AMPKα2-binding protein. Artemis was found to co-immunoprecipitate with AMPKα2, and the co-localization of Artemis with AMPKα2 in the nucleus was confirmed by immunofluorescence staining in U2OS cells. Moreover, over-expression of Artemis enhanced the phosphorylation of AMPKα2 and the AMPK substrate acetyl-CoA carboxylase (ACC). Conversely, RNAi-mediated knockdown of Artemis reduced AMPK and ACC phosphorylation. In addition, Artemis markedly increased the physical association between AMPKα2 and LKB1. Taken together, these results suggest that Artemis functions as a positive regulator of AMPK signaling by stabilizing the LKB1–AMPK complex.

  14. The nuclear protein Artemis promotes AMPK activation by stabilizing the LKB1-AMPK complex

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Koji, E-mail: k_nakagawa@pharm.hokudai.ac.jp [Department of Pathophysiology and Therapeutics, Division of Pharmascience, Faculty of Pharmaceutical Sciences, Hokkaido University, N12 W6, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan); Uehata, Yasuko; Natsuizaka, Mitsuteru; Kohara, Toshihisa; Darmanin, Stephanie [Department of Gastroenterology and Hematology, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Asaka, Masahiro [Department of Gastroenterology and Hematology, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Department of Cancer Preventive Medicine, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Takeda, Hiroshi [Department of Pathophysiology and Therapeutics, Division of Pharmascience, Faculty of Pharmaceutical Sciences, Hokkaido University, N12 W6, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan); Department of Gastroenterology and Hematology, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Kobayashi, Masanobu [Department of Cancer Preventive Medicine, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); School of Nursing and Social Services, Health Sciences University of Hokkaido, Ishikari-Toubetsu, Hokkaido 061-0293 (Japan)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer The nuclear protein Artemis physically interacts with AMPK{alpha}2. Black-Right-Pointing-Pointer Artemis co-localizes with AMPK{alpha}2 in the nucleus. Black-Right-Pointing-Pointer Artemis promotes phosphorylation and activation of AMPK. Black-Right-Pointing-Pointer The interaction between AMPK{alpha}2 and LKB1 is stabilized by Artemis. -- Abstract: AMP-activated protein kinase (AMPK) is a hetero-trimeric Ser/Thr kinase composed of a catalytic {alpha} subunit and regulatory {beta} and {gamma} subunits; it functions as an energy sensor that controls cellular energy homeostasis. In response to an increased cellular AMP/ATP ratio, AMPK is activated by phosphorylation at Thr172 in the {alpha}-subunit by upstream AMPK kinases (AMPKKs), including tumor suppressor liver kinase B1 (LKB1). To elucidate more precise molecular mechanisms of AMPK activation, we performed yeast two-hybrid screening and isolated the complementary DNA (cDNA) encoding the nuclear protein Artemis/DNA cross-link repair 1C (DCLRE1C) as an AMPK{alpha}2-binding protein. Artemis was found to co-immunoprecipitate with AMPK{alpha}2, and the co-localization of Artemis with AMPK{alpha}2 in the nucleus was confirmed by immunofluorescence staining in U2OS cells. Moreover, over-expression of Artemis enhanced the phosphorylation of AMPK{alpha}2 and the AMPK substrate acetyl-CoA carboxylase (ACC). Conversely, RNAi-mediated knockdown of Artemis reduced AMPK and ACC phosphorylation. In addition, Artemis markedly increased the physical association between AMPK{alpha}2 and LKB1. Taken together, these results suggest that Artemis functions as a positive regulator of AMPK signaling by stabilizing the LKB1-AMPK complex.

  15. The Murine Factor H-Related Protein FHR-B Promotes Complement Activation

    Directory of Open Access Journals (Sweden)

    Marcell Cserhalmi

    2017-09-01

    Full Text Available Factor H-related (FHR proteins consist of varying number of complement control protein domains that display various degrees of sequence identity to respective domains of the alternative pathway complement inhibitor factor H (FH. While such FHR proteins are described in several species, only human FHRs were functionally investigated. Their biological role is still poorly understood and in part controversial. Recent studies on some of the human FHRs strongly suggest a role for FHRs in enhancing complement activation via competing with FH for binding to certain ligands and surfaces. The aim of the current study was the functional characterization of a murine FHR, FHR-B. To this end, FHR-B was expressed in recombinant form. Recombinant FHR-B bound to human C3b and was able to compete with human FH for C3b binding. FHR-B supported the assembly of functionally active C3bBb alternative pathway C3 convertase via its interaction with C3b. This activity was confirmed by demonstrating C3 activation in murine serum. In addition, FHR-B bound to murine pentraxin 3 (PTX3, and this interaction resulted in murine C3 fragment deposition due to enhanced complement activation in mouse serum. FHR-B also induced C3 deposition on C-reactive protein, the extracellular matrix (ECM extract Matrigel, and endothelial cell-derived ECM when exposed to mouse serum. Moreover, mouse C3 deposition was strongly enhanced on necrotic Jurkat T cells and the mouse B cell line A20 by FHR-B. FHR-B also induced lysis of sheep erythrocytes when incubated in mouse serum with FHR-B added in excess. Altogether, these data demonstrate that, similar to human FHR-1 and FHR-5, mouse FHR-B modulates complement activity by promoting complement activation via interaction with C3b and via competition with murine FH.

  16. Molecular Characterization of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL Gene Family in Betula luminifera

    Directory of Open Access Journals (Sweden)

    Xiu-Yun Li

    2018-05-01

    Full Text Available As a major family of plant-specific transcription factors, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL genes play vital regulatory roles in plant growth, development and stress responses. In this study, 18 SPL genes were identified and cloned from Betula luminifera. Two zinc finger-like structures and a nuclear location signal (NLS segments were existed in the SBP domains of all BlSPLs. Phylogenetic analysis showed that these genes were clustered into nine groups (group I-IX. The intron/exon structure and motif composition were highly conserved within the same group. 12 of the 18 BlSPLs were experimentally verified as the targets of miR156, and two cleavage sites were detected in these miR156-targeted BlSPL genes. Many putative cis-elements, associated with light, stresses and phytohormones response, were identified in the promoter regions of BlSPLs, suggesting that BlSPL genes are probably involved in important physiological processes and developmental events. Tissue-specific expression analysis showed that miR156-targeted BlSPLs exhibited a more differential expression pattern, while most miR156-nontargeted BlSPLs tended to be constitutively expressed, suggesting the distinct roles of miR156-targeted and nontargeted BlSPLs in development and growth of B. luminifera. Further expression analysis revealed that miR156-targeted BlSPLs were dramatically up-regulated with age, whereas mature BlmiR156 level was apparently declined with age, indicating that miR156/SPL module plays important roles in vegetative phase change of B. luminifera. Moreover, yeast two-hybrid assay indicated that several miR156-targeted and nontargeted BlSPLs could interact with two DELLA proteins (BlRGA and BlRGL, which suggests that certain BlSPLs take part in the GA regulated processes through protein interaction with DELLA proteins. All these results provide an important basis for further exploring the biological functions of BlSPLs in B. luminifera.

  17. Efficient expression of green fluorescent protein (GFP) mediated by a chimeric promoter in Chlamydomonas reinhardtii

    Science.gov (United States)

    Wu, Jinxia; Hu, Zhangli; Wang, Chaogang; Li, Shuangfei; Lei, Anping

    2008-08-01

    To improve the expression efficiency of exogenous genes in Chlamydomonas reinhardtii, a high efficient expression vector was constructed. Green fluorescent protein (GFP) was expressed in C. reinhardtii under the control of promoters: RBCS2 and HSP70A-RBCS2. Efficiency of transformation and expression were compared between two transgenic algae: RBCS2 mediated strain Tran-I and HSP70A-RBCS2 mediated strain Tran-II. Results show that HSP70A-RBCS2 could improve greatly the transformation efficiency by approximately eightfold of RBCS2, and the expression efficiency of GFP in Tran-II was at least double of that in Tran-I. In addition, a threefold increase of GFP in Tran-II was induced by heat shock at 40°C. All of the results demonstrated that HSP70A-RBCS2 was more efficient than RBCS2 in expressing exogenous gene in C. reinhardtii.

  18. Yes-Associated Protein (YAP) Promotes the Nuclear Import of p73

    International Nuclear Information System (INIS)

    Zhang Heng; Wu Shengnan

    2011-01-01

    p73 has been identified as a structural and functional homolog of the tumor suppressor p53. However, mechanisms that regulate the localization of p73 have not been fully clarified. The Yes-associated protein (YAP) is a transcriptional coactivator. As a transcriptional coactivator, YAP needs to bind transcription factors to stimulate gene expression. p73 is a reported YAP target transcription factors and YAP has been shown to positively regulate p73 in promoting apoptosis. Previous studies show that p73 interacts with YAP through its PPPY motif, and increases p73 transactivation of apoptotic genes. In this study, we focused on YAP's regulation of the localization of p73. After transient transfection into Rat pheochromocytoma (PC12) cells and Human embryonic kidney 293T cells with GFP-YAP and/or YFP-p73, and incubated for 24 hours expression. p73 was fused to YFP to allow the examination of its subcellular localization. When expressed alone, YFP-p73 was distributed throughout the cell. When coexpressed with YAP, nuclear accumulation of YFP-p73 became evident. We quantitated the effect of YAP on the redistribution of YFP-p73 by counting cells with nuclear-only YFP signal. We found that YAP can influence the subcellular distribution of p73. Altogether, coexpression with YAP affected the subcellular distribution of the p73 protein. Our studies attribute a central role to YAP in regulating p73 accumulation and YAP, at least in part, might promote the nuclear import of p73.

  19. A Single Amino Acid Substitution in an ORANGE Protein Promotes Carotenoid Overaccumulation in Arabidopsis1[OPEN

    Science.gov (United States)

    Yuan, Hui; Owsiany, Katherine; Sheeja, T.E.; Zhou, Xiangjun; Rodriguez, Caroline; Li, Yongxi; Welsch, Ralf; Chayut, Noam; Yang, Yong; Thannhauser, Theodore W.; Parthasarathy, Mandayam V.; Xu, Qiang; Deng, Xiuxin; Fei, Zhangjun; Schaffer, Ari; Katzir, Nurit; Burger, Joseph; Tadmor, Yaakov; Li, Li

    2015-01-01

    Carotenoids are crucial for plant growth and human health. The finding of ORANGE (OR) protein as a pivotal regulator of carotenogenesis offers a unique opportunity to comprehensively understand the regulatory mechanisms of carotenoid accumulation and develop crops with enhanced nutritional quality. Here, we demonstrated that alteration of a single amino acid in a wild-type OR greatly enhanced its ability to promote carotenoid accumulation. Whereas overexpression of OR from Arabidopsis (Arabidopsis thaliana; AtOR) or from the agronomically important crop sorghum (Sorghum bicolor; SbOR) increased carotenoid levels up to 2-fold, expression of AtORHis (R90H) or SbORHis (R104H) variants dramatically enhanced carotenoid accumulation by up to 7-fold in the Arabidopsis calli. Moreover, we found that AtORAla (R90A) functioned similarly to AtORHis to promote carotenoid overproduction. Neither AtOR nor AtORHis greatly affected carotenogenic gene expression. AtORHis exhibited similar interactions with phytoene synthase (PSY) as AtOR in posttranscriptionally regulating PSY protein abundance. AtORHis triggered biogenesis of membranous chromoplasts in the Arabidopsis calli, which shared structures similar to chromoplasts found in the curd of the orange cauliflower (Brassica oleracea) mutant. By contrast, AtOR did not cause plastid-type changes in comparison with the controls, but produced plastids containing larger and electron-dense plastoglobuli. The unique ability of AtORHis in mediating chromoplast biogenesis is responsible for its induced carotenoid overproduction. Our study demonstrates ORHis/Ala as powerful tools for carotenoid enrichment in plants, and provides insights into the mechanisms underlying ORHis-regulated carotenoid accumulation. PMID:26224804

  20. Transcriptional factor DLX3 promotes the gene expression of enamel matrix proteins during amelogenesis.

    Directory of Open Access Journals (Sweden)

    Zhichun Zhang

    Full Text Available Mutation of distal-less homeobox 3 (DLX3 is responsible for human tricho-dento-osseous syndrome (TDO with amelogenesis imperfecta, indicating a crucial role of DLX3 in amelogenesis. However, the expression pattern of DLX3 and its specific function in amelogenesis remain largely unknown. The aim of this study was to investigate the effects of DLX3 on enamel matrix protein (EMP genes. By immunohistochemistry assays of mouse tooth germs, stronger immunostaining of DLX3 protein was identified in ameloblasts in the secretory stage than in the pre-secretory and maturation stages, and the same pattern was found for Dlx3 mRNA using Realtime PCR. In a mouse ameloblast cell lineage, forced expression of DLX3 up-regulated the expression of the EMP genes Amelx, Enam, Klk4, and Odam, whereas knockdown of DLX3 down-regulated these four EMP genes. Further, bioinformatics, chromatin immunoprecipitation, and luciferase assays revealed that DLX3 transactivated Enam, Amelx, and Odam through direct binding to their enhancer regions. Particularly, over-expression of mutant-DLX3 (c.571_574delGGGG, responsible for TDO inhibited the activation function of DLX3 on expression levels and promoter activities of the Enam, Amelx, and Odam genes. Together, our data show that DLX3 promotes the expression of the EMP genes Amelx, Enam, Klk4, and Odam in amelogenesis, while mutant-DLX3 disrupts this regulatory function, thus providing insights into the molecular mechanisms underlying the enamel defects of TDO disease.

  1. Free fatty acid palmitate activates unfolded protein response pathway and promotes apoptosis in meniscus cells.

    Science.gov (United States)

    Haywood, J; Yammani, R R

    2016-05-01

    Obesity is the major risk factor for the development of osteoarthritis (OA); however, the mechanisms involved are not clearly understood. Obesity is associated with increased production of adipokine and elevated levels of circulating free fatty acids (FFA). A recent study has shown that saturated fatty acid palmitate induced pro-inflammatory and pro-apoptotic pathways in chondrocytes. Meniscus has been shown to be more susceptible than articular cartilage to catabolic stimuli. Thus, the aim of this study was to determine the effect of FFA (specifically, palmitate) on meniscus cells. Cultured primary porcine meniscus cells were stimulated with 500 μM FFA (palmitate and oleate) for 24 h to induce endoplasmic reticulum (ER) stress. After treatment, cell lysates were prepared and immunoblotted for C/EBP homologous protein (CHOP). To determine the activation of unfolded protein response (UPR) signaling, cell lysates were probed for cJun n-terminal kinase (JNK), cleaved caspase -3 and Xbp-1s, an alternative mRNA splicing product generated due to Ire1α activation. Treatment of isolated primary meniscus cells with palmitate but not oleate induced expression of CHOP and Xbp-1s. Palmitate treatment of meniscus cells also activated JNK and increased expression of caspase-3, thus promoting apoptosis in meniscus cells. Palmitate induces ER stress and promotes apoptotic pathways in meniscus cells. This is the first study to establish ER stress as a key metabolic mechanistic link between obesity and OA, in addition to (or operating with) biomechanical factors. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  2. Secreted Frizzled related protein-4 (sFRP4) promotes epidermal differentiation and apoptosis

    International Nuclear Information System (INIS)

    Maganga, Richard; Giles, Natalie; Adcroft, Katharine; Unni, Ambili; Keeney, Diane; Wood, Fiona; Fear, Mark; Dharmarajan, Arunasalam

    2008-01-01

    The skin provides vital protection from infection and dehydration. Maintenance of the skin is through a constant program of proliferation, differentiation and apoptosis of epidermal cells, whereby proliferating cells in the basal layer differentiating to form the keratinized, anucleated stratum corneum. The WNT signalling pathway is known to be important in the skin. WNT signalling has been shown to be important both in epidermal development and in the maintenance and cycling of hair follicles and epidermal stem cells. However, the precise role for this pathway in epidermal differentiation remains unknown. We investigated the role of the WNT signalling inhibitor sFRP4 in epidermal differentiation. sFRP4 is expressed in both normal skin and keratinocytes in culture. Expression of sFRP4 mRNA and protein increases with keratinocyte differentiation and apoptosis, whilst exposure of keratinocytes to exogenous sFRP4 promotes apoptosis and expression of the terminal differentiation marker Involucrin. These data suggest sFRP4 promotes epidermal differentiation.

  3. Synthetic Promoters and Transcription Factors for Heterologous Protein Expression in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Fabian Machens

    2017-10-01

    Full Text Available Orthogonal systems for heterologous protein expression as well as for the engineering of synthetic gene regulatory circuits in hosts like Saccharomyces cerevisiae depend on synthetic transcription factors (synTFs and corresponding cis-regulatory binding sites. We have constructed and characterized a set of synTFs based on either transcription activator-like effectors or CRISPR/Cas9, and corresponding small synthetic promoters (synPs with minimal sequence identity to the host’s endogenous promoters. The resulting collection of functional synTF/synP pairs confers very low background expression under uninduced conditions, while expression output upon induction of the various synTFs covers a wide range and reaches induction factors of up to 400. The broad spectrum of expression strengths that is achieved will be useful for various experimental setups, e.g., the transcriptional balancing of expression levels within heterologous pathways or the construction of artificial regulatory networks. Furthermore, our analyses reveal simple rules that enable the tuning of synTF expression output, thereby allowing easy modification of a given synTF/synP pair. This will make it easier for researchers to construct tailored transcriptional control systems.

  4. CDH1 promoter hypermethylation and E-cadherin protein expression in infiltrating breast cancer

    DEFF Research Database (Denmark)

    Caldeira, José Roberto F; Prando, Erika C; Quevedo, Francisco C

    2006-01-01

    prognosis, and metastasis. Differential CpG island methylation in the promoter region of the CDH1 gene might be an alternative way for the loss of expression and function of E-cadherin, leading to loss of tissue integrity, an essential step in tumor progression. METHODS: The aim of our study was to assess...... not statistically significant, the levels of E-cadherin expression tended to diminish with the CDH1 promoter region methylation. In the group of 71 ductal cancinomas, most of the cases of showing CDH1 hypermethylation also presented reduced levels of expression of ER and PgR proteins, and a possible association......BACKGROUND: The E-cadherin gene (CDH1) maps, at chromosome 16q22.1, a region often associated with loss of heterozygosity (LOH) in human breast cancer. LOH at this site is thought to lead to loss of function of this tumor suppressor gene and was correlated with decreased disease-free survival, poor...

  5. The yeast cell fusion protein Prm1p requires covalent dimerization to promote membrane fusion.

    Directory of Open Access Journals (Sweden)

    Alex Engel

    2010-05-01

    Full Text Available Prm1p is a multipass membrane protein that promotes plasma membrane fusion during yeast mating. The mechanism by which Prm1p and other putative regulators of developmentally controlled cell-cell fusion events facilitate membrane fusion has remained largely elusive. Here, we report that Prm1p forms covalently linked homodimers. Covalent Prm1p dimer formation occurs via intermolecular disulfide bonds of two cysteines, Cys-120 and Cys-545. PRM1 mutants in which these cysteines have been substituted are fusion defective. These PRM1 mutants are normally expressed, retain homotypic interaction and can traffic to the fusion zone. Because prm1-C120S and prm1-C545S mutants can form covalent dimers when coexpressed with wild-type PRM1, an intermolecular C120-C545 disulfide linkage is inferred. Cys-120 is adjacent to a highly conserved hydrophobic domain. Mutation of a charged residue within this hydrophobic domain abrogates formation of covalent dimers, trafficking to the fusion zone, and fusion-promoting activity. The importance of intermolecular disulfide bonding informs models regarding the mechanism of Prm1-mediated cell-cell fusion.

  6. Acupuncture promotes mTOR-independent autophagic clearance of aggregation-prone proteins in mouse brain.

    Science.gov (United States)

    Tian, Tian; Sun, Yanhong; Wu, Huangan; Pei, Jian; Zhang, Jing; Zhang, Yi; Wang, Lu; Li, Bin; Wang, Lihua; Shi, Jiye; Hu, Jun; Fan, Chunhai

    2016-01-21

    Acupuncture has historically been practiced to treat medical disorders by mechanically stimulating specific acupoints with fine needles. Despite its well-documented efficacy, its biological basis remains largely elusive. In this study, we found that mechanical stimulation at the acupoint of Yanglingquan (GB34) promoted the autophagic clearance of α-synuclein (α-syn), a well known aggregation-prone protein closely related to Parkinson's disease (PD), in the substantia nigra par compacta (SNpc) of the brain in a PD mouse model. We found the protein clearance arose from the activation of the autophagy-lysosome pathway (ALP) in a mammalian target of rapamycin (mTOR)-independent approach. Further, we observed the recovery in the activity of dopaminergic neurons in SNpc, and improvement in the motor function at the behavior level of PD mice. Whereas acupuncture and rapamycin, a chemical mTOR inhibitor, show comparable α-syn clearance and therapeutic effects in the PD mouse model, the latter adopts a distinctly different, mTOR-dependent, autophagy induction process. Due to this fundamental difference, acupuncture may circumvent adverse effects of the rapamycin treatment. The newly discovered connection between acupuncture and autophagy not only provides a new route to understanding the molecular mechanism of acupuncture but also sheds new light on cost-effective and safe therapy of neurodegenerative diseases.

  7. Bone morphogenetic protein-7 promotes chondrogenesis in human amniotic epithelial cells.

    Science.gov (United States)

    Zhou, Junjie; Yu, Guangrong; Cao, Chengfu; Pang, Jinhui; Chen, Xianqi

    2011-06-01

    Bone morphogenetic proteins (BMPs) play important roles at multiple stages of chondrogenesis. This study was undertaken to investigate the potential role of bone morphogenetic protein-7 (BMP-7) in the differentiation of chondrocytes using tissue engineering techniques. The impact of BMP-7 on human amniotic epithelial cells (hAECs) was tested. The hAECs were treated either with recombinant human BMP-7 cDNA or with transforming growth factor beta 1 (TGF-β1) as a positive control for three weeks in vitro. Cartilaginous differentiation and proliferation were assayed by quantitative RT-PCR, histology, and in situ hybridization. Our results were such that hAECs treated with either BMP-7 or TGF-β1 expressed cartilage markers (aggrecan, Sox9, CEP-68, and type II and X collagens) within three weeks. Compared with a control vector, BMP-7 induced a decrease in type I collagen expression, while the transcription of the cartilage-specific type II collagen remained stable. In induction experiments, BMP-7 transgenic hAECs exhibited the largest amount of matrix synthesis. In conclusion, these data indicate that BMP-7 plays an important role in inducing the production of cartilage by hAECs in vitro. Cartilage differentiation and matrix maturation can be promoted by BMPs in a cartilage engineering paradigm. These properties make BMPs promising tools in the engineering of cartilaginous joint bio-prostheses and as candidate biological agents or genes for cartilage stabilisation.

  8. The Zn Finger protein Iguana impacts Hedgehog signaling by promoting ciliogenesis

    Science.gov (United States)

    Glazer, Andrew; Wilkinson, Alex; Backer, Chelsea B.; Lapan, Sylvain; Gutzman, Jennifer H.; Cheeseman, Iain M.; Reddien, Peter W.

    2009-01-01

    Hedgehog signaling is critical for metazoan development and requires cilia for pathway activity. The gene iguana was discovered in zebrafish as required for Hedgehog signaling, and encodes a novel Zn finger protein. Planarians are flatworms with robust regenerative capacities and that utilize epidermal cilia for locomotion. RNA interference of Smed-iguana in the planarian S. mediterranea caused cilia loss and failure to regenerate new cilia, but did not cause defects similar to those observed in hedgehog(RNAi) animals. Smed-iguana gene expression was also similar in pattern to the expression of multiple other ciliogenesis genes, but was not required for expression of these ciliogenesis genes. iguana-defective zebrafish had too few motile cilia in pronephric ducts and in Kupffer's vesicle. Kupffer's vesicle promotes left-right asymmetry and iguana mutant embryos had left-right asymmetry defects. Finally, human Iguana proteins (dZIP1 and dZIP1L) localize to the basal bodies of primary cilia and, together, are required for primary cilia formation. Our results indicate that a critical and broadly conserved function for Iguana is in ciliogenesis and that this function has come to be required for Hedgehog signaling in vertebrates. PMID:19852954

  9. Inhibition of SNW1 association with spliceosomal proteins promotes apoptosis in breast cancer cells

    International Nuclear Information System (INIS)

    Sato, Naoki; Maeda, Masao; Sugiyama, Mai; Ito, Satoko; Hyodo, Toshinori; Masuda, Akio; Tsunoda, Nobuyuki; Kokuryo, Toshio; Hamaguchi, Michinari; Nagino, Masato; Senga, Takeshi

    2015-01-01

    RNA splicing is a fundamental process for protein synthesis. Recent studies have reported that drugs that inhibit splicing have cytotoxic effects on various tumor cell lines. In this report, we demonstrate that depletion of SNW1, a component of the spliceosome, induces apoptosis in breast cancer cells. Proteomics and biochemical analyses revealed that SNW1 directly associates with other spliceosome components, including EFTUD2 (Snu114) and SNRNP200 (Brr2). The SKIP region of SNW1 interacted with the N-terminus of EFTUD2 as well as two independent regions in the C-terminus of SNRNP200. Similar to SNW1 depletion, knockdown of EFTUD2 increased the numbers of apoptotic cells. Furthermore, we demonstrate that exogenous expression of either the SKIP region of SNW1 or the N-terminus region of EFTUD2 significantly promoted cellular apoptosis. Our results suggest that the inhibition of SNW1 or its associating proteins may be a novel therapeutic strategy for cancer treatment

  10. Epithelial membrane protein-2 promotes endometrial tumor formation through activation of FAK and Src.

    Directory of Open Access Journals (Sweden)

    Maoyong Fu

    Full Text Available Endometrial cancer is the most common gynecologic malignancy diagnosed among women in developed countries. One recent biomarker strongly associated with disease progression and survival is epithelial membrane protein-2 (EMP2, a tetraspan protein known to associate with and modify surface expression of certain integrin isoforms. In this study, we show using a xenograft model system that EMP2 expression is necessary for efficient endometrial tumor formation, and we have started to characterize the mechanism by which EMP2 contributes to this malignant phenotype. In endometrial cancer cells, the focal adhesion kinase (FAK/Src pathway appears to regulate migration as measured through wound healing assays. Manipulation of EMP2 levels in endometrial cancer cells regulates the phosphorylation of FAK and Src, and promotes their distribution into lipid raft domains. Notably, cells with low levels of EMP2 fail to migrate and poorly form tumors in vivo. These findings reveal the pivotal role of EMP2 in endometrial cancer carcinogenesis, and suggest that the association of elevated EMP2 levels with endometrial cancer prognosis may be causally linked to its effect on integrin-mediated signaling.

  11. Protein arginine methyltransferase 5 regulates multiple signaling pathways to promote lung cancer cell proliferation

    International Nuclear Information System (INIS)

    Sheng, Xiumei; Wang, Zhengxin

    2016-01-01

    Protein arginine methyltransferase 5 (PRMT5) catalyzes the formation of symmetrical dimethylation of arginine residues in proteins. WD repeat domain 77 (WDR77), also known as p44, MEP50, or WD45, forms a stoichiometric complex with PRMT5. The PRMT5/p44 complex is required for cellular proliferation of lung and prostate epithelial cells during earlier stages of development and is re-activated during prostate and lung tumorigenesis. The molecular mechanisms by which PRMT5 and p44 promote cellular proliferation are unknown. Expression of PRMT5 and p44 in lung and prostate cancer cells was silenced and their target genes were identified. The regulation of target genes was validated in various cancer cells during lung development and tumorigenesis. Altered expression of target genes was achieved by ectopic cDNA expression and shRNA-mediated silencing. PRMT5 and p44 regulate expression of a specific set of genes encoding growth and anti-growth factors, including receptor tyrosine kinases and antiproliferative proteins. Genes whose expression was suppressed by PRMT5 and p44 encoded anti-growth factors and inhibited cell growth when ectopically expressed. In contrast, genes whose expression was enhanced by PRMT5 and p44 encoded growth factors and increased cell growth when expressed. Altered expression of target genes is associated with re-activation of PRMT5 and p44 during lung tumorigenesis. Our data provide the molecular basis by which PRMT5 and p44 regulate cell growth and lay a foundation for further investigation of their role in lung tumor initiation. The online version of this article (doi:10.1186/s12885-016-2632-3) contains supplementary material, which is available to authorized users

  12. Serine-rich repeat proteins and pili promote Streptococcus agalactiae colonization of the vaginal tract.

    Science.gov (United States)

    Sheen, Tamsin R; Jimenez, Alyssa; Wang, Nai-Yu; Banerjee, Anirban; van Sorge, Nina M; Doran, Kelly S

    2011-12-01

    Streptococcus agalactiae (group B streptococcus [GBS]) is a Gram-positive bacterium found in the female rectovaginal tract and is capable of producing severe disease in susceptible hosts, including newborns and pregnant women. The vaginal tract is considered a major reservoir for GBS, and maternal vaginal colonization poses a significant risk to the newborn; however, little is known about the specific bacterial factors that promote GBS colonization and persistence in the female reproductive tract. We have developed in vitro models of GBS interaction with the human female cervicovaginal tract using human vaginal and cervical epithelial cell lines. Analysis of isogenic mutant GBS strains deficient in cell surface organelles such as pili and serine-rich repeat (Srr) proteins shows that these factors contribute to host cell attachment. As Srr proteins are heavily glycosylated, we confirmed that carbohydrate moieties contribute to the effective interaction of Srr-1 with vaginal epithelial cells. Antibody inhibition assays identified keratin 4 as a possible host receptor for Srr-1. Our findings were further substantiated in an in vivo mouse model of GBS vaginal colonization, where mice inoculated with an Srr-1-deficient mutant exhibited decreased GBS vaginal persistence compared to those inoculated with the wild-type (WT) parental strain. Furthermore, competition experiments in mice showed that WT GBS exhibited a significant survival advantage over the ΔpilA or Δsrr-1 mutant in the vaginal tract. Our results suggest that these GBS surface proteins contribute to vaginal colonization and may offer new insights into the mechanisms of vaginal niche establishment.

  13. Serine-Rich Repeat Proteins and Pili Promote Streptococcus agalactiae Colonization of the Vaginal Tract ▿

    Science.gov (United States)

    Sheen, Tamsin R.; Jimenez, Alyssa; Wang, Nai-Yu; Banerjee, Anirban; van Sorge, Nina M.; Doran, Kelly S.

    2011-01-01

    Streptococcus agalactiae (group B streptococcus [GBS]) is a Gram-positive bacterium found in the female rectovaginal tract and is capable of producing severe disease in susceptible hosts, including newborns and pregnant women. The vaginal tract is considered a major reservoir for GBS, and maternal vaginal colonization poses a significant risk to the newborn; however, little is known about the specific bacterial factors that promote GBS colonization and persistence in the female reproductive tract. We have developed in vitro models of GBS interaction with the human female cervicovaginal tract using human vaginal and cervical epithelial cell lines. Analysis of isogenic mutant GBS strains deficient in cell surface organelles such as pili and serine-rich repeat (Srr) proteins shows that these factors contribute to host cell attachment. As Srr proteins are heavily glycosylated, we confirmed that carbohydrate moieties contribute to the effective interaction of Srr-1 with vaginal epithelial cells. Antibody inhibition assays identified keratin 4 as a possible host receptor for Srr-1. Our findings were further substantiated in an in vivo mouse model of GBS vaginal colonization, where mice inoculated with an Srr-1-deficient mutant exhibited decreased GBS vaginal persistence compared to those inoculated with the wild-type (WT) parental strain. Furthermore, competition experiments in mice showed that WT GBS exhibited a significant survival advantage over the ΔpilA or Δsrr-1 mutant in the vaginal tract. Our results suggest that these GBS surface proteins contribute to vaginal colonization and may offer new insights into the mechanisms of vaginal niche establishment. PMID:21984789

  14. The double bromodomain protein Brd2 promotes B cell expansion and mitogenesis.

    Science.gov (United States)

    Belkina, Anna C; Blanton, Wanda P; Nikolajczyk, Barbara S; Denis, Gerald V

    2014-03-01

    Bromodomain-containing transcriptional regulators represent new epigenetic targets in different hematologic malignancies. However, bromodomain-mediated mechanisms that couple histone acetylation to transcription in lymphopoiesis and govern mature lymphocyte mitogenesis are poorly understood. Brd2, a transcriptional coregulator that contains dual bromodomains and an extraterminal domain (the BET family), couples chromatin to cell-cycle progression. We reported previously the first functional characterization of a BET protein as an effector of mammalian mitogenic signal transduction: Eμ-Brd2 Tg mice develop "activated B cell" diffuse large B cell lymphoma. No other animal models exist for genetic or lentiviral expression of BET proteins, hampering testing of novel anti-BET anticancer drugs, such as JQ1. We transduced HSCs with Brd2 lentivirus and reconstituted recipient mice to test the hypothesis that Brd2 regulates hematopoiesis in BM and mitogenesis in the periphery. Forced expression of Brd2 provides an expansion advantage to the donor-derived B cell compartment in BM and increases mature B cell mitogenic responsiveness in vitro. Brd2 binds the cyclin A promoter in B cells, shown by ChIP, and increases cyclin A mRNA and protein levels, and S-phase progression in vitro in mitogen-stimulated primary B cells, but not T cells, reinforcing results from Eμ-Brd2 mice. The small molecule BET inhibitor JQ1 reduces B cell mitogenesis, consistent with the interpretation that BET inhibitors are antiproliferative. Brd2-specific knockdown experiments show that Brd2 is also required for hematopoiesis. We conclude that Brd2 plays a critical, independent role in regulation of mitogenic response genes, particularly cyclin A, in B cells.

  15. Hepatitis B X-interacting protein promotes cisplatin resistance and regulates CD147 via Sp1 in ovarian cancer.

    Science.gov (United States)

    Zou, Wei; Ma, Xiangdong; Yang, Hong; Hua, Wei; Chen, Biliang; Cai, Guoqing

    2017-03-01

    Ovarian cancer is the highest mortality rate of all female reproductive malignancies. Drug resistance is a major cause of treatment failure in malignant tumors. Hepatitis B X-interacting protein acts as an oncoprotein, regulates cell proliferation, and migration in breast cancer. We aimed to investigate the effects and mechanisms of hepatitis B X-interacting protein on resistance to cisplatin in human ovarian cancer cell lines. The mRNA and protein levels of hepatitis B X-interacting protein were detected using RT-PCR and Western blotting in cisplatin-resistant and cisplatin-sensitive tissues, cisplatin-resistant cell lines A2780/CP and SKOV3/CP, and cisplatin-sensitive cell lines A2780 and SKOV3. Cell viability and apoptosis were measured to evaluate cellular sensitivity to cisplatin in A2780/CP cells. Luciferase reporter gene assay was used to determine the relationship between hepatitis B X-interacting protein and CD147. The in vivo function of hepatitis B X-interacting protein on tumor burden was assessed in cisplatin-resistant xenograft models. The results showed that hepatitis B X-interacting protein was highly expressed in ovarian cancer of cisplatin-resistant tissues and cells. Notably, knockdown of hepatitis B X-interacting protein significantly reduced cell viability in A2780/CP compared with cisplatin treatment alone. Hepatitis B X-interacting protein and cisplatin cooperated to induce apoptosis and increase the expression of c-caspase 3 as well as the Bax/Bcl-2 ratio. We confirmed that hepatitis B X-interacting protein up-regulated CD147 at the protein expression and transcriptional levels. Moreover, we found that hepatitis B X-interacting protein was able to activate the CD147 promoter through Sp1. In vivo, depletion of hepatitis B X-interacting protein decreased the tumor volume and weight induced by cisplatin. Taken together, these results indicate that hepatitis B X-interacting protein promotes cisplatin resistance and regulated CD147 via Sp1 in

  16. A single cysteine post-translational oxidation suffices to compromise globular proteins kinetic stability and promote amyloid formation

    Directory of Open Access Journals (Sweden)

    Patrizia Marinelli

    2018-04-01

    Full Text Available Oxidatively modified forms of proteins accumulate during aging. Oxidized protein conformers might act as intermediates in the formation of amyloids in age-related disorders. However, it is not known whether this amyloidogenic conversion requires an extensive protein oxidative damage or it can be promoted just by a discrete, localized post-translational modification of certain residues. Here, we demonstrate that the irreversible oxidation of a single free Cys suffices to severely perturb the folding energy landscape of a stable globular protein, compromise its kinetic stability, and lead to the formation of amyloids under physiological conditions. Experiments and simulations converge to indicate that this specific oxidation-promoted protein aggregation requires only local unfolding. Indeed, a large scale analysis indicates that many cellular proteins are at risk of undergoing this kind of deleterious transition; explaining how oxidative stress can impact cell proteostasis and subsequently lead to the onset of pathological states. Keywords: Protein oxidation, Protein misfolding, Protein aggregation, Oxidative stress, Post-translational modification

  17. The Polycistronic miR166k-166h Positively Regulates Rice Immunity via Post-transcriptional Control of EIN2

    Directory of Open Access Journals (Sweden)

    Raquel Salvador-Guirao

    2018-03-01

    Full Text Available MicroRNAs (miRNAs are small RNAs acting as regulators of gene expression at the post-transcriptional level. In plants, most miRNAs are generated from independent transcriptional units, and only a few polycistronic miRNAs have been described. miR166 is a conserved miRNA in plants targeting the HD-ZIP III transcription factor genes. Here, we show that a polycistronic miRNA comprising two miR166 family members, miR166k and miR166h, functions as a positive regulator of rice immunity. Rice plants with activated MIR166k-166h expression showed enhanced resistance to infection by the fungal pathogens Magnaporthe oryzae and Fusarium fujikuroi, the causal agents of the rice blast and bakanae disease, respectively. Disease resistance in rice plants with activated MIR166k-166h expression was associated with a stronger expression of defense responses during pathogen infection. Stronger induction of MIR166k-166h expression occurred in resistant but not susceptible rice cultivars. Notably, the ethylene-insensitive 2 (EIN2 gene was identified as a novel target gene for miR166k. The regulatory role of the miR166h-166k polycistron on the newly identified target gene results from the activity of the miR166k-5p specie generated from the miR166k-166h precursor. Collectively, our findings support a role for miR166k-5p in rice immunity by controlling EIN2 expression. Because rice blast is one of the most destructive diseases of cultivated rice worldwide, unraveling miR166k-166h-mediated mechanisms underlying blast resistance could ultimately help in designing appropriate strategies for rice protection.

  18. IN-MACA-MCC: Integrated Multiple Attractor Cellular Automata with Modified Clonal Classifier for Human Protein Coding and Promoter Prediction

    Directory of Open Access Journals (Sweden)

    Kiran Sree Pokkuluri

    2014-01-01

    Full Text Available Protein coding and promoter region predictions are very important challenges of bioinformatics (Attwood and Teresa, 2000. The identification of these regions plays a crucial role in understanding the genes. Many novel computational and mathematical methods are introduced as well as existing methods that are getting refined for predicting both of the regions separately; still there is a scope for improvement. We propose a classifier that is built with MACA (multiple attractor cellular automata and MCC (modified clonal classifier to predict both regions with a single classifier. The proposed classifier is trained and tested with Fickett and Tung (1992 datasets for protein coding region prediction for DNA sequences of lengths 54, 108, and 162. This classifier is trained and tested with MMCRI datasets for protein coding region prediction for DNA sequences of lengths 252 and 354. The proposed classifier is trained and tested with promoter sequences from DBTSS (Yamashita et al., 2006 dataset and nonpromoters from EID (Saxonov et al., 2000 and UTRdb (Pesole et al., 2002 datasets. The proposed model can predict both regions with an average accuracy of 90.5% for promoter and 89.6% for protein coding region predictions. The specificity and sensitivity values of promoter and protein coding region predictions are 0.89 and 0.92, respectively.

  19. Mediator, TATA-binding Protein, and RNA Polymerase II Contribute to Low Histone Occupancy at Active Gene Promoters in Yeast*

    Science.gov (United States)

    Ansari, Suraiya A.; Paul, Emily; Sommer, Sebastian; Lieleg, Corinna; He, Qiye; Daly, Alexandre Z.; Rode, Kara A.; Barber, Wesley T.; Ellis, Laura C.; LaPorta, Erika; Orzechowski, Amanda M.; Taylor, Emily; Reeb, Tanner; Wong, Jason; Korber, Philipp; Morse, Randall H.

    2014-01-01

    Transcription by RNA polymerase II (Pol II) in eukaryotes requires the Mediator complex, and often involves chromatin remodeling and histone eviction at active promoters. Here we address the role of Mediator in recruitment of the Swi/Snf chromatin remodeling complex and its role, along with components of the preinitiation complex (PIC), in histone eviction at inducible and constitutively active promoters in the budding yeast Saccharomyces cerevisiae. We show that recruitment of the Swi/Snf chromatin remodeling complex to the induced CHA1 promoter, as well as its association with several constitutively active promoters, depends on the Mediator complex but is independent of Mediator at the induced MET2 and MET6 genes. Although transcriptional activation and histone eviction at CHA1 depends on Swi/Snf, Swi/Snf recruitment is not sufficient for histone eviction at the induced CHA1 promoter. Loss of Swi/Snf activity does not affect histone occupancy of several constitutively active promoters; in contrast, higher histone occupancy is seen at these promoters in Mediator and PIC component mutants. We propose that an initial activator-dependent, nucleosome remodeling step allows PIC components to outcompete histones for occupancy of promoter sequences. We also observe reduced promoter association of Mediator and TATA-binding protein in a Pol II (rpb1-1) mutant, indicating mutually cooperative binding of these components of the transcription machinery and indicating that it is the PIC as a whole whose binding results in stable histone eviction. PMID:24727477

  20. Herpesviral ICP0 Protein Promotes Two Waves of Heterochromatin Removal on an Early Viral Promoter during Lytic Infection

    Directory of Open Access Journals (Sweden)

    Jennifer S. Lee

    2016-01-01

    Full Text Available Herpesviruses must contend with host cell epigenetic silencing responses acting on their genomes upon entry into the host cell nucleus. In this study, we confirmed that unchromatinized herpes simplex virus 1 (HSV-1 genomes enter primary human foreskin fibroblasts and are rapidly subjected to assembly of nucleosomes and association with repressive heterochromatin modifications such as histone 3 (H3 lysine 9-trimethylation (H3K9me3 and lysine 27-trimethylation (H3K27me3 during the first 1 to 2 h postinfection. Kinetic analysis of the modulation of nucleosomes and heterochromatin modifications over the course of lytic infection demonstrates a progressive removal that coincided with initiation of viral gene expression. We obtained evidence for three phases of heterochromatin removal from an early gene promoter: an initial removal of histones and heterochromatin not dependent on ICP0, a second ICP0-dependent round of removal of H3K9me3 that is independent of viral DNA synthesis, and a third phase of H3K27me3 removal that is dependent on ICP0 and viral DNA synthesis. The presence of ICP0 in transfected cells is also sufficient to promote removal of histones and H3K9me3 modifications of cotransfected genes. Overall, these results show that ICP0 promotes histone removal, a reduction of H3K9me3 modifications, and a later indirect reduction of H3K27me3 modifications following viral early gene expression and DNA synthesis. Therefore, HSV ICP0 promotes the reversal of host epigenetic silencing mechanisms by several mechanisms.

  1. Light response and potential interacting proteins of a grape flavonoid 3'-hydroxylase gene promoter.

    Science.gov (United States)

    Sun, Run-Ze; Pan, Qiu-Hong; Duan, Chang-Qing; Wang, Jun

    2015-12-01

    Flavonoid 3'-hydroxylase (F3'H), a member of cytochrome P450 protein family, introduces B-ring hydroxyl group in the 3' position of the flavonoid. In this study, the cDNA sequence of a F3'H gene (VviF3'H), which contains an open reading frame of 1530 bp encoding a polypeptide of 509 amino acids, was cloned and characterized from Vitis vinifera L. cv. Cabernet Sauvignon. VviF3'H showed high homology to known F3'H genes, especially F3'Hs from the V. vinifera reference genome (Pinot Noir) and lotus. Expression profiling analysis using real-time PCR revealed that VviF3'H was ubiquitously expressed in all tested tissues including berries, leaves, flowers, roots, stems and tendrils, suggesting its important physiological role in plant growth and development. Moreover, the transcript level of VviF3'H gene in grape berries was relatively higher at early developmental stages and gradually decreased during véraison, and then increased in the mature phase. In addition, the promoter of VviF3'H was isolated by using TAIL-PCR. Yeast one-hybrid screening of the Cabernet Sauvignon cDNA library and subsequent in vivo/vitro validations revealed the interaction between VviF3'H promoter and several transcription factors, including members of HD-Zip, NAC, MYB and EIN families. A transcriptional regulation mechanism of VviF3'H expression is proposed for the first time. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  2. Protein kinase C (PKC) isoforms in cancer, tumor promotion and tumor suppression.

    Science.gov (United States)

    Isakov, Noah

    2018-02-01

    The AGC family of serine/threonine kinases (PKA, PKG, PKC) includes more than 60 members that are critical regulators of numerous cellular functions, including cell cycle and differentiation, morphogenesis, and cell survival and death. Mutation and/or dysregulation of AGC kinases can lead to malignant cell transformation and contribute to the pathogenesis of many human diseases. Members of one subgroup of AGC kinases, the protein kinase C (PKC), have been singled out as critical players in carcinogenesis, following their identification as the intracellular receptors of phorbol esters, which exhibit tumor-promoting activities. This observation attracted the attention of researchers worldwide and led to intense investigations on the role of PKC in cell transformation and the potential use of PKC as therapeutic drug targets in cancer diseases. Studies demonstrated that many cancers had altered expression and/or mutation of specific PKC genes. However, the causal relationships between the changes in PKC gene expression and/or mutation and the direct cause of cancer remain elusive. Independent studies in normal cells demonstrated that activation of PKC is essential for the induction of cell activation and proliferation, differentiation, motility, and survival. Based on these observations and the general assumption that PKC isoforms play a positive role in cell transformation and/or cancer progression, many PKC inhibitors have entered clinical trials but the numerous attempts to target PKC in cancer has so far yielded only very limited success. More recent studies demonstrated that PKC function as tumor suppressors, and suggested that future clinical efforts should focus on restoring, rather than inhibiting, PKC activity. The present manuscript provides some historical perspectives on the tumor promoting function of PKC, reviewing some of the observations linking PKC to cancer progression, and discusses the role of PKC in the pathogenesis of cancer diseases and its

  3. Mycobacterium tuberculosis UvrD1 and UvrA proteins suppress DNA strand exchange promoted by cognate and noncognate RecA proteins.

    Science.gov (United States)

    Singh, Pawan; Patil, K Neelakanteshwar; Khanduja, Jasbeer Singh; Kumar, P Sanjay; Williams, Alan; Rossi, Franca; Rizzi, Menico; Davis, Elaine O; Muniyappa, K

    2010-06-15

    DNA helicases are present in all kingdoms of life and play crucial roles in processes of DNA metabolism such as replication, repair, recombination, and transcription. To date, however, the role of DNA helicases during homologous recombination in mycobacteria remains unknown. In this study, we show that Mycobacterium tuberculosis UvrD1 more efficiently inhibited the strand exchange promoted by its cognate RecA, compared to noncognate Mycobacterium smegmatis or Escherichia coli RecA proteins. The M. tuberculosis UvrD1(Q276R) mutant lacking the helicase and ATPase activities was able to block strand exchange promoted by mycobacterial RecA proteins but not of E. coli RecA. We observed that M. tuberculosis UvrA by itself has no discernible effect on strand exchange promoted by E. coli RecA but impedes the reaction catalyzed by the mycobacterial RecA proteins. Our data also show that M. tuberculosis UvrA and UvrD1 can act together to inhibit strand exchange promoted by mycobacterial RecA proteins. Taken together, these findings raise the possibility that UvrD1 and UvrA might act together in vivo to counter the deleterious effects of RecA nucleoprotein filaments and/or facilitate the dissolution of recombination intermediates. Finally, we provide direct experimental evidence for a physical interaction between M. tuberculosis UvrD1 and RecA on one hand and RecA and UvrA on the other hand. These observations are consistent with a molecular mechanism, whereby M. tuberculosis UvrA and UvrD1, acting together, block DNA strand exchange promoted by cognate and noncognate RecA proteins.

  4. PKCα promotes generation of reactive oxygen species via DUOX2 in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Wang, Jiajun; Shao, Miaomiao; Liu, Min; Peng, Peike; Li, Lili; Wu, Weicheng; Wang, Lan; Duan, Fangfang; Zhang, Mingming; Song, Shushu; Jia, Dongwei; Ruan, Yuanyuan; Gu, Jianxin

    2015-01-01

    Hepatocellular carcinoma (HCC) remains the second leading cause of cancer-related death worldwide, and elevated rates of reactive oxygen species (ROS) have long been considered as a hallmark of almost all types of cancer including HCC. Protein kinase C alpha (PKCα), a serine/threonine kinase among conventional PKC family, is recognized as a major player in signal transduction and tumor progression. Overexpression of PKCα is commonly observed in human HCC and associated with its poor prognosis. However, how PKCα is involved in hepatocellular carcinogenesis remains not fully understood. In this study, we found that among the members of conventional PKC family, PKCα, but not PKCβI or βII, promoted ROS production in HCC cells. PKCα stimulated generation of ROS by up-regulating DUOX2 at post-transcriptional level. Depletion of DUOX2 abrogated PKCα-induced activation of AKT/MAPK pathways as well as cell proliferation, migration and invasion in HCC cells. Moreover, the expression of DUOX2 and PKCα was well positively correlated in both HCC cell lines and patient samples. Collectively, our findings demonstrate that PKCα plays a critical role in HCC development by inducing DUOX2 expression and ROS generation, and propose a strategy to target PKCα/DUOX2 as a potential adjuvant therapy for HCC treatment. - Highlights: • PKCα promotes the generation of ROS in hepatocellular carcinoma. • PKCα induces ROS production by up-regulating DUOX2 at post-transcriptional level. • DUOX2 is required for PKCα-induced AKT/MAPK activation and tumor progression in HCC. • The expression of PKCα is positively correlated with DUOX2 in HCC

  5. PKCα promotes generation of reactive oxygen species via DUOX2 in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiajun; Shao, Miaomiao; Liu, Min; Peng, Peike; Li, Lili; Wu, Weicheng; Wang, Lan [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 200032 Shanghai (China); Duan, Fangfang [Institute of Biomedical Science, Fudan University, Shanghai (China); Zhang, Mingming; Song, Shushu [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 200032 Shanghai (China); Jia, Dongwei, E-mail: jiadongwei@fudan.edu.cn [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 200032 Shanghai (China); Ruan, Yuanyuan, E-mail: yuanyuanruan@fudan.edu.cn [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 200032 Shanghai (China); Gu, Jianxin [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 200032 Shanghai (China); Institute of Biomedical Science, Fudan University, Shanghai (China)

    2015-08-07

    Hepatocellular carcinoma (HCC) remains the second leading cause of cancer-related death worldwide, and elevated rates of reactive oxygen species (ROS) have long been considered as a hallmark of almost all types of cancer including HCC. Protein kinase C alpha (PKCα), a serine/threonine kinase among conventional PKC family, is recognized as a major player in signal transduction and tumor progression. Overexpression of PKCα is commonly observed in human HCC and associated with its poor prognosis. However, how PKCα is involved in hepatocellular carcinogenesis remains not fully understood. In this study, we found that among the members of conventional PKC family, PKCα, but not PKCβI or βII, promoted ROS production in HCC cells. PKCα stimulated generation of ROS by up-regulating DUOX2 at post-transcriptional level. Depletion of DUOX2 abrogated PKCα-induced activation of AKT/MAPK pathways as well as cell proliferation, migration and invasion in HCC cells. Moreover, the expression of DUOX2 and PKCα was well positively correlated in both HCC cell lines and patient samples. Collectively, our findings demonstrate that PKCα plays a critical role in HCC development by inducing DUOX2 expression and ROS generation, and propose a strategy to target PKCα/DUOX2 as a potential adjuvant therapy for HCC treatment. - Highlights: • PKCα promotes the generation of ROS in hepatocellular carcinoma. • PKCα induces ROS production by up-regulating DUOX2 at post-transcriptional level. • DUOX2 is required for PKCα-induced AKT/MAPK activation and tumor progression in HCC. • The expression of PKCα is positively correlated with DUOX2 in HCC.

  6. The potency of STAT (signal transducers and activators of transcription) 3 protein as growth promoter for chicken

    Science.gov (United States)

    Ma'ruf, Anwar; Iswati, Sri; Hidajati, Nove; Damayanti, Ratna

    2017-09-01

    The long-term objective of this study was to produce STAT synthetic protein in chicken during growth period resulting from the increase of growth hormone (GH) as growth promoter. This study used ten male chicken Lohman from PT. Multibreeder Indonesia. The chicken were kept within batteried cage, with a capacity of one chicken in each cage. The chickens were fed twice a day, at 6 a.m. and 6 p.m. with the amount of feed 10% less than standard. On day 21 the chicken were slaughtered to obtain the samples, i.e., adipose, liver and muscles for the following examinations (1) isolation of STAT-3 signaling protein from adipose, liver and muscles of the chicken, (2) analysis of STAT-3 signaling protein using SDS-PAGE method, and (3) identification of STAT-3 signaling protein using Western blot method by means of protein detection using electrophoresis with polyacrylamide gels. Results of examination on protein in hepatic, muscle and adipose of chickens in growth period revealed that STAT protein was positively present in those tissues. This finding was followed-up with SDS-PAGE examination, from which we found the presence of protein band between the markers of 116 kDa and 14.4 kDa. The protein band was supposedly the STAT-3 protein. To prove that protein band formed was the STAT-3, Western blot examination was conducted using rabbit polyclonal antibody STAT-3. The result showed the formation of the protein band, indicating the presence of reaction between antigen (STAT-3 protein) and STAT-3 protein antibody. In conclusion, STAT-3 protein is present in hepatic, muscular, and adipose tissues, with molecular weight of 59.4 kDa.

  7. Anti-Restriction Protein, KlcAHS, Promotes Dissemination of Carbapenem Resistance

    Directory of Open Access Journals (Sweden)

    Xiaofei Jiang

    2017-05-01

    Full Text Available Carbapenemase-producing Klebsiella pneumoniae (KPC has emerged and spread throughout the world. A retrospective analysis was performed on carbapenem-resistant K. pneumoniae isolated at our teaching hospital during the period 2009–2010, when the initial outbreak occurred. To determine the mechanism(s that underlies the increased infectivity exhibited by KPC, Multilocus Sequence Typing (MLST was conducted. A series of plasmids was also extracted, sequenced and analyzed. Concurrently, the complete sequences of blaKPC−2-harboring plasmids deposited in GenBank were summarized and aligned. The blaKPC−2 and KlcAHS genes in the carbapenem-resistant K. pneumoniae isolates were examined. E. coli strains, carrying different Type I Restriction and Modification (RM systems, were selected to study the interaction between RM systems, anti-RM systems and horizontal gene transfer (HGT. The ST11 clone predominated among 102 carbapenem-resistant K. pneumoniae isolates, all harbored the blaKPC−2 gene; 98% contained the KlcAHS gene. KlcAHS was one of the core genes in the backbone region of most blaKPC−2 carrying plasmids. Type I RM systems in the host bacteria reduced the rate of pHS10842 plasmid transformation by 30- to 40-fold. Presence of the anti-restriction protein, KlcAHS, on the other hand, increased transformation efficiency by 3- to 6-fold. These results indicate that RM systems can significantly restrict HGT. In contrast, KlcAHS can disrupt the RM systems and promote HGT by transformation. These findings suggest that the anti-restriction protein, KlcAHS, represents a novel mechanism that facilitates the increased transfer of blaKPC-2 and KlcAHS-carrying plasmids among K. pneumoniae strains.

  8. An Alphavirus E2 Membrane-Proximal Domain Promotes Envelope Protein Lateral Interactions and Virus Budding

    Directory of Open Access Journals (Sweden)

    Emily A. Byrd

    2017-11-01

    Full Text Available Alphaviruses are members of a group of small enveloped RNA viruses that includes important human pathogens such as Chikungunya virus and the equine encephalitis viruses. The virus membrane is covered by a lattice composed of 80 spikes, each a trimer of heterodimers of the E2 and E1 transmembrane proteins. During virus endocytic entry, the E1 glycoprotein mediates the low-pH-dependent fusion of the virus membrane with the endosome membrane, thus initiating virus infection. While much is known about E1 structural rearrangements during membrane fusion, it is unclear how the E1/E2 dimer dissociates, a step required for the fusion reaction. A recent Alphavirus cryo-electron microscopy reconstruction revealed a previously unidentified D subdomain in the E2 ectodomain, close to the virus membrane. A loop within this region, here referred to as the D-loop, contains two highly conserved histidines, H348 and H352, which were hypothesized to play a role in dimer dissociation. We generated Semliki Forest virus mutants containing the single and double alanine substitutions H348A, H352A, and H348/352A. The three D-loop mutations caused a reduction in virus growth ranging from 1.6 to 2 log but did not significantly affect structural protein biosynthesis or transport, dimer stability, virus fusion, or specific infectivity. Instead, growth reduction was due to inhibition of a late stage of virus assembly at the plasma membrane. The virus particles that are produced show reduced thermostability compared to the wild type. We propose the E2 D-loop as a key region in establishing the E1-E2 contacts that drive glycoprotein lattice formation and promote Alphavirus budding from the plasma membrane.

  9. Adipocyte differentiation-related protein promotes lipid accumulation in goat mammary epithelial cells.

    Science.gov (United States)

    Shi, H B; Yu, K; Luo, J; Li, J; Tian, H B; Zhu, J J; Sun, Y T; Yao, D W; Xu, H F; Shi, H P; Loor, J J

    2015-10-01

    Milk fat originates from the secretion of cytosolic lipid droplets (CLD) synthesized within mammary epithelial cells. Adipocyte differentiation-related protein (ADRP; gene symbol PLIN2) is a CLD-binding protein that is crucial for synthesis of mature CLD. Our hypothesis was that ADRP regulates CLD production and metabolism in goat mammary epithelial cells (GMEC) and thus plays a role in determining milk fat content. To understand the role of ADRP in ruminant milk fat metabolism, ADRP (PLIN2) was overexpressed or knocked down in GMEC using an adenovirus system. Immunocytochemical staining revealed that ADRP localized to the surface of CLD. Supplementation with oleic acid (OA) enhanced its colocalization with CLD surface and enhanced lipid accumulation. Overexpression of ADRP increased lipid accumulation and the concentration of triacylglycerol in GMEC. In contrast, morphological examination revealed that knockdown of ADRP decreased lipid accumulation even when OA was supplemented. This response was confirmed by the reduction in mass of cellular TG when ADRP was knocked down. The fact that knockdown of ADRP did not completely eliminate lipid accumulation at a morphological level in GMEC without OA suggests that some other compensatory factors may also aid in the process of CLD formation. The ADRP reversed the decrease of CLD accumulation induced by adipose triglyceride lipase. This is highly suggestive of ADRP promoting triacylglycerol stability within CLD by preventing access to adipose triglyceride lipase. Collectively, these data provide direct in vitro evidence that ADRP plays a key role in CLD formation and stability in GMEC. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. G Protein-Coupled Receptor 87 (GPR87 Promotes Cell Proliferation in Human Bladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xia Zhang

    2015-10-01

    Full Text Available G protein-coupled receptor 87 (GPR87 is a newly deorphanized member of the cell surface molecule G protein-coupled receptor family. GPR signaling was shown to play a role in promotion of cell growth and survival, metastasis, and drug resistance. The overexpression of GPR87 has also been reported in many malignant tumors including bladder cancer. The aim of the present study is to examine the effect of silencing GPR87 expression with a replication-deficient recombinant adenoviral vector expressing short hairpin RNA targeting GPR87 (Ad-shGPR87 and to explore the underlying molecular mechanisms in bladder cancer cells. Six GPR87-expressing human bladder cancer cells, HT1197, HT1376, J82, RT112, TCCSUP and UMUC3, were used. Infection with Ad-shGPR87 effectively downregulated the GPR87 expression, and significantly reduced the percentage of viable cells in 4 of 6 cell lines as detected by an MTT assay. Significant inhibition on cell proliferation with Ad-shGPR87 was observed in the wild-type p53 bladder cancer cell lines (HT1197, RT112, TCCSUP and UMUC3, but not in the mutant p53 cells (HT1376 and J82. As represented by a wild-type p53 RT112 cell, Ad-shGPR87 infection significantly enhanced p53 and p21 expression and caused caspase-dependent apoptosis. Furthermore, the treatment with Ad-shGPR87 exerted a significant antitumor effect against the GPR87-expressing RT112 xenografts. GPR87 appeared to be a promising target for gene therapy, and Ad-shGPR87 had strong antitumor effects, specifically anti-proliferative and pro-apoptotic effects, against GPR87-expressing human bladder cancer cells.

  11. Adipocyte spliced form of X-box-binding protein 1 promotes adiponectin multimerization and systemic glucose homeostasis

    NARCIS (Netherlands)

    Sha, H.; Yang, L.; Liu, M.; Xia, S.; Liu, Y.; Liu, F.; Kersten, A.H.; Qi, L.

    2014-01-01

    The physiological role of the spliced form of X-box–binding protein 1 (XBP1s), a key transcription factor of the endoplasmic reticulum (ER) stress response, in adipose tissue remains largely unknown. In this study, we show that overexpression of XBP1s promotes adiponectin multimerization in

  12. NSs Protein of Rift Valley Fever Virus Promotes Posttranslational Downregulation of the TFIIH Subunit p62▿

    Science.gov (United States)

    Kalveram, Birte; Lihoradova, Olga; Ikegami, Tetsuro

    2011-01-01

    Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus) is an important emerging pathogen of humans and ruminants. Its NSs protein has previously been identified as a major virulence factor that suppresses host defense through three distinct mechanisms: it directly inhibits beta interferon (IFN-β) promoter activity, it promotes the degradation of double-stranded RNA-dependent protein kinase (PKR), and it suppresses host transcription by disrupting the assembly of the basal transcription factor TFIIH through sequestration of its p44 subunit. Here, we report that in addition to PKR, NSs also promotes the degradation of the TFIIH subunit p62. Infection of cells with the RVFV MP-12 vaccine strain reduced p62 protein levels to below the detection limit early in the course of infection. This NSs-mediated downregulation of p62 was posttranslational, as it was unaffected by pharmacological inhibition of transcription or translation and MP-12 infection had no effect on p62 mRNA levels. Treatment of cells with proteasome inhibitors but not inhibition of lysosomal acidification or nuclear export resulted in a stabilization of p62 in the presence of NSs. Furthermore, p62 could be coprecipitated with NSs from lysates of infected cells. These data suggest that the RVFV NSs protein is able to interact with the TFIIH subunit p62 inside infected cells and promotes its degradation, which can occur directly in the nucleus. PMID:21543505

  13. High-level extracellular protein production in Bacillus subtilis using an optimized dual-promoter expression system.

    Science.gov (United States)

    Zhang, Kang; Su, Lingqia; Duan, Xuguo; Liu, Lina; Wu, Jing

    2017-02-20

    We recently constructed a Bacillus subtilis strain (CCTCC M 2016536) from which we had deleted the srfC, spoIIAC, nprE, aprE and amyE genes. This strain is capable of robust recombinant protein production and amenable to high-cell-density fermentation. Because the promoter is among the factors that influence the production of target proteins, optimization of the initial promoter, P amyQ from Bacillus amyloliquefaciens, should improve protein expression using this strain. This study was undertaken to develop a new, high-level expression system in B. subtilis CCTCC M 2016536. Using the enzyme β-cyclodextrin glycosyltransferase (β-CGTase) as a reporter protein and B. subtilis CCTCC M 2016536 as the host, nine plasmids equipped with single promoters were screened using shake-flask cultivation. The plasmid containing the P amyQ' promoter produced the greatest extracellular β-CGTase activity; 24.1 U/mL. Subsequently, six plasmids equipped with dual promoters were constructed and evaluated using this same method. The plasmid containing the dual promoter P HpaII -P amyQ' produced the highest extracellular β-CGTase activity (30.5 U/mL) and was relatively glucose repressed. The dual promoter P HpaII -P amyQ' also mediated substantial extracellular pullulanase (90.7 U/mL) and α-CGTase expression (9.5 U/mL) during shake-flask cultivation, demonstrating the general applicability of this system. Finally, the production of β-CGTase using the dual-promoter P HpaII -P amyQ' system was investigated in a 3-L fermenter. Extracellular expression of β-CGTase reached 571.2 U/mL (2.5 mg/mL), demonstrating the potential of this system for use in industrial applications. The dual-promoter P HpaII -P amyQ' system was found to support superior expression of extracellular proteins in B. subtilis CCTCC M 2016536. This system appears generally applicable and is amenable to scale-up.

  14. The novel protein C9orf116 promotes rat liver cell line BRL-3A proliferation.

    Directory of Open Access Journals (Sweden)

    Chunyan Zhang

    Full Text Available Our previous study has proved that the chromosome 9 open reading frame 116 (C9orf116 (NM_001106564.1 was significantly up-regulated in the proliferation phase of liver regeneration. To study its possible physiological function, we analyzed the effect of C9orf116 on BRL-3A cells via over-expression and interference technique. MTT results showed that the cell viability of the interference group was significantly lower than the control group at 48h after transfection (P<0.05, whereas it was significantly higher in the over-expression group (P<0.05. The flow cytometry results showed that C9orf116 knockdown or over-expression had little effect on BRL-3A cell apoptosis. However, the number of cells in division phase (G2/M was significantly reduced in the interference group (P<0.05, but significantly increased in the over-expression group (P<0.01. Furthermore, the expressions of cell proliferation-related genes CCNA2, CCND1 and MYC both at mRNA and protein levels were down-regulated in the interference group and up-regulated in the over-expression group. Therefore, we concluded that C9orf116 may promote cell proliferation by modulating cell cycle transition and the expression of key genes CCNA2, CCND1 and MYC in BRL-3A cells.

  15. Functional evolution in the plant SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL gene family

    Directory of Open Access Journals (Sweden)

    Jill Christine Preston

    2013-04-01

    Full Text Available The SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL family of transcription factors is functionally diverse, controlling a number of fundamental aspects of plant growth and development, including vegetative phase change, flowering time, branching, and leaf initiation rate. In natural plant populations, variation in flowering time and shoot architecture have major consequences for fitness. Likewise, in crop species, variation in branching and developmental rate impact biomass and yield. Thus, studies aimed at dissecting how the various functions are partitioned among different SPL genes in diverse plant lineages are key to providing insight into the genetic basis of local adaptation and have already garnered attention by crop breeders. Here we use phylogenetic reconstruction to reveal nine major SPL gene lineages, each of which is described in terms of function and diversification. To assess evidence for ancestral and derived functions within each SPL gene lineage, we use ancestral character state reconstructions. Our analyses suggest an emerging pattern of sub-functionalization, neo-functionalization, and possible convergent evolution following both ancient and recent gene duplication. Based on these analyses we suggest future avenues of research that may prove fruitful for elucidating the importance of SPL gene evolution in plant growth and development.

  16. Berberine promotes glucose consumption independently of AMP-activated protein kinase activation.

    Directory of Open Access Journals (Sweden)

    Miao Xu

    Full Text Available Berberine is a plant alkaloid with anti-diabetic action. Activation of AMP-activated protein kinase (AMPK pathway has been proposed as mechanism for berberine's action. This study aimed to examine whether AMPK activation was necessary for berberine's glucose-lowering effect. We found that in HepG2 hepatocytes and C2C12 myotubes, berberine significantly increased glucose consumption and lactate release in a dose-dependent manner. AMPK and acetyl coenzyme A synthetase (ACC phosphorylation were stimulated by 20 µmol/L berberine. Nevertheless, berberine was still effective on stimulating glucose utilization and lactate production, when the AMPK activation was blocked by (1 inhibition of AMPK activity by Compound C, (2 suppression of AMPKα expression by siRNA, and (3 blockade of AMPK pathway by adenoviruses containing dominant-negative forms of AMPKα1/α2. To test the effect of berberine on oxygen consumption, extracellular flux analysis was performed in Seahorse XF24 analyzer. The activity of respiratory chain complex I was almost fully blocked in C2C12 myotubes by berberine. Metformin, as a positive control, showed similar effects as berberine. These results suggest that berberine and metformin promote glucose metabolism by stimulating glycolysis, which probably results from inhibition of mitochondrial respiratory chain complex I, independent of AMPK activation.

  17. Zinc finger protein 598 inhibits cell survival by promoting UV-induced apoptosis.

    Science.gov (United States)

    Yang, Qiaohong; Gupta, Romi

    2018-01-19

    UV is one of the major causes of DNA damage induced apoptosis. However, cancer cells adopt alternative mechanisms to evade UV-induced apoptosis. To identify factors that protect cancer cells from UV-induced apoptosis, we performed a genome wide short-hairpin RNA (shRNA) screen, which identified Zinc finger protein 598 (ZNF598) as a key regulator of UV-induced apoptosis. Here, we show that UV irradiation transcriptionally upregulates ZNF598 expression. Additionally, ZNF598 knockdown in cancer cells inhibited UV-induced apoptosis. In our study, we observe that ELK1 mRNA level as well as phosphorylated ELK1 levels was up regulated upon UV irradiation, which was necessary for UV irradiation induced upregulation of ZNF598. Cells expressing ELK1 shRNA were also resistant to UV-induced apoptosis, and phenocopy ZNF598 knockdown. Upon further investigation, we found that ZNF598 knockdown inhibits UV-induced apoptotic gene expression, which matches with decrease in percentage of annexin V positive cell. Similarly, ectopic expression of ZNF598 promoted apoptotic gene expression and also increased annexin V positive cells. Collectively, these results demonstrate that ZNF598 is a UV irradiation regulated gene and its loss results in resistance to UV-induced apoptosis.

  18. The human nuclear poly(a-binding protein promotes RNA hyperadenylation and decay.

    Directory of Open Access Journals (Sweden)

    Stefan M Bresson

    Full Text Available Control of nuclear RNA stability is essential for proper gene expression, but the mechanisms governing RNA degradation in mammalian nuclei are poorly defined. In this study, we uncover a mammalian RNA decay pathway that depends on the nuclear poly(A-binding protein (PABPN1, the poly(A polymerases (PAPs, PAPα and PAPγ, and the exosome subunits RRP6 and DIS3. Using a targeted knockdown approach and nuclear RNA reporters, we show that PABPN1 and PAPα, redundantly with PAPγ, generate hyperadenylated decay substrates that are recognized by the exosome and degraded. Poly(A tail extension appears to be necessary for decay, as cordycepin treatment or point mutations in the PAP-stimulating domain of PABPN1 leads to the accumulation of stable transcripts with shorter poly(A tails than controls. Mechanistically, these data suggest that PABPN1-dependent promotion of PAP activity can stimulate nuclear RNA decay. Importantly, efficiently exported RNAs are unaffected by this decay pathway, supporting an mRNA quality control function for this pathway. Finally, analyses of both bulk poly(A tails and specific endogenous transcripts reveals that a subset of nuclear RNAs are hyperadenylated in a PABPN1-dependent fashion, and this hyperadenylation can be either uncoupled or coupled with decay. Our results highlight a complex relationship between PABPN1, PAPα/γ, and nuclear RNA decay, and we suggest that these activities may play broader roles in the regulation of human gene expression.

  19. Screening a yeast promoter library leads to the isolation of the RP29/L32 and SNR17B/RPL37A divergent promoters and the discovery of a gene encoding ribosomal protein L37.

    Science.gov (United States)

    Santangelo, G M; Tornow, J; McLaughlin, C S; Moldave, K

    1991-08-30

    Two promoters (A7 and A23), isolated at random from the Saccharomyces cerevisiae genome by virtue of their capacity to activate transcription, are identical to known intergenic bidirectional promoters. Sequence analysis of the genomic DNA adjacent to the A7 promoter identified a split gene encoding ribosomal (r) protein L37, which is homologous to the tRNA-binding r-proteins, L35a (from human and rat) and L32 (from frogs).

  20. Isolation of a novel promoter for efficient protein expression by Aspergillus oryzae in solid-state culture.

    Science.gov (United States)

    Bando, Hiroki; Hisada, Hiromoto; Ishida, Hiroki; Hata, Yoji; Katakura, Yoshio; Kondo, Akihiko

    2011-11-01

    A novel promoter from a hemolysin-like protein encoding the gene, hlyA, was characterized for protein overexpression in Aspergillus oryzae grown in solid-state culture. Using endo-1,4-β-glucanase from A. oryzae (CelA) as the reporter, promoter activity was found to be higher than that of the α-amylase (amyA) and manganese superoxide dismutase (sodM) genes not only in wheat bran solid-state culture but also in liquid culture. Expression of the A. oryzae endoglucanase CelB and two heterologous endoglucanases (TrEglI and TrEglIII from Trichoderma reesei) under the control of the hlyA promoter were also found to be stronger than under the control of the amyA promoter in A. oryzae grown in wheat bran solid-state culture, suggesting that the hlyA promoter may be useful for the overproduction of other proteins as well. In wheat bran solid-state culture, the productivity of the hlyA promoter in terms of protein produced was high when the cultivation temperature was 30°C or 37°C, when the water content was 0.6 or 0.8 ml/g wheat bran, and from 48 to 72 h after inoculation. Because A. oryzae sporulated actively under these conditions and because hemolysin has been reported to play a role in fungal fruiting body formation, high-level expression of hlyA may be related to sporulation.

  1. A diverse host thrombospondin-type-1 repeat protein repertoire promotes symbiont colonization during establishment of cnidarian-dinoflagellate symbiosis.

    Science.gov (United States)

    Neubauer, Emilie-Fleur; Poole, Angela Z; Neubauer, Philipp; Detournay, Olivier; Tan, Kenneth; Davy, Simon K; Weis, Virginia M

    2017-05-08

    The mutualistic endosymbiosis between cnidarians and dinoflagellates is mediated by complex inter-partner signaling events, where the host cnidarian innate immune system plays a crucial role in recognition and regulation of symbionts. To date, little is known about the diversity of thrombospondin-type-1 repeat (TSR) domain proteins in basal metazoans or their potential role in regulation of cnidarian-dinoflagellate mutualisms. We reveal a large and diverse repertoire of TSR proteins in seven anthozoan species, and show that in the model sea anemone Aiptasia pallida the TSR domain promotes colonization of the host by the symbiotic dinoflagellate Symbiodinium minutum . Blocking TSR domains led to decreased colonization success, while adding exogenous TSRs resulted in a 'super colonization'. Furthermore, gene expression of TSR proteins was highest at early time-points during symbiosis establishment. Our work characterizes the diversity of cnidarian TSR proteins and provides evidence that these proteins play an important role in the establishment of cnidarian-dinoflagellate symbiosis.

  2. Promoter Analysis Reveals Globally Differential Regulation of Human Long Non-Coding RNA and Protein-Coding Genes

    KAUST Repository

    Alam, Tanvir

    2014-10-02

    Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptional regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.

  3. Regulation of the activity of the promoter of RNA-induced silencing, C3PO.

    Science.gov (United States)

    Sahu, Shriya; Williams, Leo; Perez, Alberto; Philip, Finly; Caso, Giuseppe; Zurawsky, Walter; Scarlata, Suzanne

    2017-09-01

    RNA-induced silencing is a process which allows cells to regulate the synthesis of specific proteins. RNA silencing is promoted by the protein C3PO (component 3 of RISC). We have previously found that phospholipase Cβ, which increases intracellular calcium levels in response to specific G protein signals, inhibits C3PO activity towards certain genes. Understanding the parameters that control C3PO activity and which genes are impacted by G protein activation would help predict which genes are more vulnerable to downregulation. Here, using a library of 10 18 oligonucleotides, we show that C3PO binds oligonucleotides with structural specificity but little sequence specificity. Alternately, C3PO hydrolyzes oligonucleotides with a rate that is sensitive to substrate stability. Importantly, we find that oligonucleotides with higher Tm values are inhibited by bound PLCβ. This finding is supported by microarray analysis in cells over-expressing PLCβ1. Taken together, this study allows predictions of the genes whose post-transcriptional regulation is responsive to the G protein/phospholipase Cβ/calcium signaling pathway. © 2017 The Protein Society.

  4. An Even Distribution of Protein Intake Daily Promotes Protein Adequacy but Does Not Influence Nutritional Status in Institutionalized Elderly

    NARCIS (Netherlands)

    Tieland, Michael; Beelen, Janne; Laan, Anna C.M.; Poon, Shirley; Groot, de Lisette C.P.G.M.; Seeman, Ego; Wang, Xiaofang; Iuliano, Sandra

    2018-01-01

    Objective: Although it has been established that sufficient protein is required to maintain good nutritional status and support healthy aging, it is not clear if the pattern of protein consumption may also influence nutritional status, especially in institutionalized elderly who are at risk of

  5. Epigenetic repression of regulator of G-protein signaling 2 promotes androgen-independent prostate cancer cell growth.

    Science.gov (United States)

    Wolff, Dennis W; Xie, Yan; Deng, Caishu; Gatalica, Zoran; Yang, Mingjie; Wang, Bo; Wang, Jincheng; Lin, Ming-Fong; Abel, Peter W; Tu, Yaping

    2012-04-01

    G-protein-coupled receptor (GPCR)-stimulated androgen-independent activation of androgen receptor (AR) contributes to acquisition of a hormone-refractory phenotype by prostate cancer. We previously reported that regulator of G-protein signaling (RGS) 2, an inhibitor of GPCRs, inhibits androgen-independent AR activation (Cao et al., Oncogene 2006;25:3719-34). Here, we show reduced RGS2 protein expression in human prostate cancer specimens compared to adjacent normal or hyperplastic tissue. Methylation-specific PCR analysis and bisulfite sequencing indicated that methylation of the CpG island in the RGS2 gene promoter correlated with RGS2 downregulation in prostate cancer. In vitro methylation of this promoter suppressed reporter gene expression in transient transfection studies, whereas reversal of this promoter methylation with 5-aza-2'-deoxycytidine (5-Aza-dC) induced RGS2 reexpression in androgen-independent prostate cancer cells and inhibited their growth under androgen-deficient conditions. Interestingly, the inhibitory effect of 5-Aza-dC was significantly reduced by an RGS2-targeted short hairpin RNA, indicating that reexpressed RGS2 contributed to this growth inhibition. Restoration of RGS2 levels by ectopic expression in androgen-independent prostate cancer cells suppressed growth of xenografts in castrated mice. Thus, RGS2 promoter hypermethylation represses its expression and unmasks a latent pathway for AR transactivation in prostate cancer cells. Targeting this reversible process may provide a new strategy for suppressing prostate cancer progression by reestablishing its androgen sensitivity. Copyright © 2011 UICC.

  6. Promoting resuscitation of viable but nonculturable cells of Vibrio harveyi by a resuscitation-promoting factor-like protein YeaZ.

    Science.gov (United States)

    Li, Y; Chen, J; Zhao, M; Yang, Z; Yue, L; Zhang, X

    2017-02-01

    To demonstrate the resuscitation-promoting activities of recombinant YeaZ from Vibrio harveyi SF-1. The gene of resuscitation-promoting factor YeaZ was cloned from genomic DNA of V. harveyi SF-1. The gene was expressed in Escherichia coli, and the expressed protein was purified by Ni 2+ -affinity chromatography. A yeaZ mutant was constructed by using the suicide plasmid pNQ705 with homologous recombination. Disruption of yeaZ did not affect cell growth significantly in 2216 E broth at 28°C. The wild-type and mutant viable but nonculturable (VBNC) cells could be resuscitated by temperature upshift method. In addition, the recombinant YeaZ increased the culturable counts from 1·27 × 10 4  CFU per ml and 1·99 × 10 4 CFU per ml to 2·88 × 10 5  CFU per ml and 4·59 × 10 5 CFU per ml, respectively. After the VBNC cells of wild-type and mutant cells were maintained at 4°C for 120 days, no resuscitation was obtained by temperature upshift method, but addition of the recombinant YeaZ promoted the resuscitation of the wild-type and mutant cells, with the culturable cell counts of 1·13 × 10 3 and 1·44 × 10 3 CFU per ml, respectively. Disruption of yeaZ decreased the virulence of V. harveyi in zebrafish. The lethal dose 50% of the yeaZ null mutant was more than 10-fold higher than that of the wild-type cells. The recombinant YeaZ could efficiently promote resuscitation of the wild-type and mutant cells of V. harveyi from VBNC to culturable state. The protein also promoted resuscitation of the VBNC wild-type and mutant cells, which were maintained at 4°C for 120 days and not recovered by temperature upshift method. Disruption of yeaZ decreased the virulence of V. harveyi in zebrafish. Here, we show clear evidence of a resuscitation-promoting factor YeaZ of V. harveyi and the roles in resuscitation of the VBNC cells and its pathogenicity. © 2016 The Society for Applied Microbiology.

  7. The CytR repressor antagonizes cyclic AMP-cyclic AMP receptor protein activation of the deoCp2 promoter of Escherichia coli K-12

    DEFF Research Database (Denmark)

    Søgaard-Andersen, L; Martinussen, J; Møllegaard, N E

    1990-01-01

    We have investigated the regulation of the Escherichia coli deoCp2 promoter by the CytR repressor and the cyclic AMP (cAMP) receptor protein (CRP) complexed to cAMP. Promoter regions controlled by these two proteins characteristically contain tandem cAMP-CRP binding sites. Here we show that (i) Cyt...

  8. Phorbol ester tumor promoter induced the synthesis of two major cytoplasmic proteins: identity with two proteins induced under heat-shocked and glucose-starved conditions

    International Nuclear Information System (INIS)

    Zhang, H.; Chen, K.Y.; Liu, A.Y.C.

    1987-01-01

    The regulation of specific protein synthesis by the phorbol ester tumor promoter, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), was evaluated using the L-8 and C-2 myoblast and the 3T3-L1 fibroblast cell cultures. TPA increased, by 2-4 fold, the synthesis rates of two cytoplasmic proteins with apparent molecular weights of 89,000 and 74,000 as determined by SDS-polyacrylamide gel electrophoresis and autoradiography. The concentration of TPA and the time of incubation needed to elicit this induction was determined to be 10 μg/ml and 20 hrs, respectively. Increasing the concentration of TPA to 100, 200, and 500 ng/ml did not result in a greater magnitude of induction. The possibility that these two TPA-induced proteins may be identical to proteins with similar molecular weights induced under heat-shocked or glucose-starved conditions was evaluated by 1-D and 2-D gel electrophoresis and autoradiography. Results provided evidence that the TPA-induced 89,000- and 74,000-dalton proteins were identical to hsp 89 and hsp 74, 2 out of a set of 8-9 proteins induced under heat shocked conditions. Furthermore, they are identical to two of the set of glucose-regulated proteins induced under a glucose-starved condition

  9. StAR Protein Stability in Y1 and Kin-8 Mouse Adrenocortical Cells.

    Science.gov (United States)

    Clark, Barbara J; Hudson, Elizabeth A

    2015-03-04

    The steroidogenic acute regulatory protein (STAR) protein expression is required for cholesterol transport into mitochondria to initiate steroidogenesis in the adrenal and gonads. STAR is synthesized as a 37 kDa precursor protein which is targeted to the mitochondria and imported and processed to an intra-mitochondrial 30 kDa protein. Tropic hormone stimulation of the cAMP-dependent protein kinase A (PKA) signaling pathway is the major contributor to the transcriptional and post-transcriptional regulation of STAR synthesis. Many studies have focused on the mechanisms of cAMP-PKA mediated control of STAR synthesis while there are few reports on STAR degradation pathways. The objective of this study was to determine the effect of cAMP-PKA-dependent signaling on STAR protein stability. We have used the cAMP-PKA responsive Y1 mouse adrenocortical cells and the PKA-deficient Kin-8 cells to measure STAR phosphorylation and protein half-life. Western blot analysis and standard radiolabeled pulse-chase experiments were used to determine STAR phosphorylation status and protein half-life, respectively. Our data demonstrate that PKA-dependent STAR phosphorylation does not contribute to 30 kDa STAR protein stability in the mitochondria. We further show that inhibition of the 26S proteasome does not block precursor STAR phosphorylation or steroid production in Y1 cells. These data suggest STAR can maintain function and promote steroidogenesis under conditions of proteasome inhibition.

  10. Mediator, TATA-binding protein, and RNA polymerase II contribute to low histone occupancy at active gene promoters in yeast.

    Science.gov (United States)

    Ansari, Suraiya A; Paul, Emily; Sommer, Sebastian; Lieleg, Corinna; He, Qiye; Daly, Alexandre Z; Rode, Kara A; Barber, Wesley T; Ellis, Laura C; LaPorta, Erika; Orzechowski, Amanda M; Taylor, Emily; Reeb, Tanner; Wong, Jason; Korber, Philipp; Morse, Randall H

    2014-05-23

    Transcription by RNA polymerase II (Pol II) in eukaryotes requires the Mediator complex, and often involves chromatin remodeling and histone eviction at active promoters. Here we address the role of Mediator in recruitment of the Swi/Snf chromatin remodeling complex and its role, along with components of the preinitiation complex (PIC), in histone eviction at inducible and constitutively active promoters in the budding yeast Saccharomyces cerevisiae. We show that recruitment of the Swi/Snf chromatin remodeling complex to the induced CHA1 promoter, as well as its association with several constitutively active promoters, depends on the Mediator complex but is independent of Mediator at the induced MET2 and MET6 genes. Although transcriptional activation and histone eviction at CHA1 depends on Swi/Snf, Swi/Snf recruitment is not sufficient for histone eviction at the induced CHA1 promoter. Loss of Swi/Snf activity does not affect histone occupancy of several constitutively active promoters; in contrast, higher histone occupancy is seen at these promoters in Mediator and PIC component mutants. We propose that an initial activator-dependent, nucleosome remodeling step allows PIC components to outcompete histones for occupancy of promoter sequences. We also observe reduced promoter association of Mediator and TATA-binding protein in a Pol II (rpb1-1) mutant, indicating mutually cooperative binding of these components of the transcription machinery and indicating that it is the PIC as a whole whose binding results in stable histone eviction. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Potassium Bicarbonate Attenuates the Urinary Nitrogen Excretion That Accompanies an Increase in Dietary Protein and May Promote Calcium Absorption

    Science.gov (United States)

    Ceglia, Lisa; Harris, Susan S.; Abrams, Steven A.; Rasmussen, Helen M.; Dallal, Gerard E.; Dawson-Hughes, Bess

    2009-01-01

    Context: Protein is an essential component of muscle and bone. However, the acidic byproducts of protein metabolism may have a negative impact on the musculoskeletal system, particularly in older individuals with declining renal function. Objective: We sought to determine whether adding an alkaline salt, potassium bicarbonate (KHCO3), allows protein to have a more favorable net impact on intermediary indices of muscle and bone conservation than it does in the usual acidic environment. Design: We conducted a 41-d randomized, placebo-controlled, double-blind study of KHCO3 or placebo with a 16-d phase-in and two successive 10-d metabolic diets containing low (0.5 g/kg) or high (1.5 g/kg) protein in random order with a 5-d washout between diets. Setting: The study was conducted in a metabolic research unit. Participants: Nineteen healthy subjects ages 54–82 yr participated. Intervention: KHCO3 (up to 90 mmol/d) or placebo was administered for 41 d. Main Outcome Measures: We measured 24-h urinary nitrogen excretion, IGF-I, 24-h urinary calcium excretion, and fractional calcium absorption. Results: KHCO3 reduced the rise in urinary nitrogen excretion that accompanied an increase in protein intake (P = 0.015) and was associated with higher IGF-I levels on the low-protein diet (P = 0.027) with a similar trend on the high-protein diet (P = 0.050). KHCO3 was also associated with higher fractional calcium absorption on the low-protein diet (P = 0.041) with a similar trend on the high-protein diet (P = 0.064). Conclusions: In older adults, KHCO3 attenuates the protein-induced rise in urinary nitrogen excretion, and this may be mediated by IGF-I. KHCO3 may also promote calcium absorption independent of the dietary protein content. PMID:19050051

  12. Quantitative proteomic analysis reveals effects of epidermal growth factor receptor (EGFR) on invasion-promoting proteins secreted by glioblastoma cells.

    Science.gov (United States)

    Sangar, Vineet; Funk, Cory C; Kusebauch, Ulrike; Campbell, David S; Moritz, Robert L; Price, Nathan D

    2014-10-01

    Glioblastoma multiforme is a highly invasive and aggressive brain tumor with an invariably poor prognosis. The overexpression of epidermal growth factor receptor (EGFR) is a primary influencer of invasion and proliferation in tumor cells and the constitutively active EGFRvIII mutant, found in 30-65% of Glioblastoma multiforme, confers more aggressive invasion. To better understand how EGFR contributes to tumor aggressiveness, we investigated the effect of EGFR on the secreted levels of 65 rationally selected proteins involved in invasion. We employed selected reaction monitoring targeted mass spectrometry using stable isotope labeled internal peptide standards to quantity proteins in the secretome from five GBM (U87) isogenic cell lines in which EGFR, EGFRvIII, and/or PTEN were expressed. Our results show that cell lines with EGFR overexpression and constitutive EGFRvIII expression differ remarkably in the expression profiles for both secreted and intracellular signaling proteins, and alterations in EGFR signaling result in reproducible changes in concentrations of secreted proteins. Furthermore, the EGFRvIII-expressing mutant cell line secretes the majority of the selected invasion-promoting proteins at higher levels than other cell lines tested. Additionally, the intracellular and extracellular protein measurements indicate elevated oxidative stress in the EGFRvIII-expressing cell line. In conclusion, the results of our study demonstrate that EGFR signaling has a significant effect on the levels of secreted invasion-promoting proteins, likely contributing to the aggressiveness of Glioblastoma multiforme. Further characterization of these proteins may provide candidates for new therapeutic strategies and targets as well as biomarkers for this aggressive disease. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. The Puf family of RNA-binding proteins in plants: phylogeny, structural modeling, activity and subcellular localization

    Directory of Open Access Journals (Sweden)

    Tam Michael WC

    2010-03-01

    Full Text Available Abstract Background Puf proteins have important roles in controlling gene expression at the post-transcriptional level by promoting RNA decay and repressing translation. The Pumilio homology domain (PUM-HD is a conserved region within Puf proteins that binds to RNA with sequence specificity. Although Puf proteins have been well characterized in animal and fungal systems, little is known about the structural and functional characteristics of Puf-like proteins in plants. Results The Arabidopsis and rice genomes code for 26 and 19 Puf-like proteins, respectively, each possessing eight or fewer Puf repeats in their PUM-HD. Key amino acids in the PUM-HD of several of these proteins are conserved with those of animal and fungal homologs, whereas other plant Puf proteins demonstrate extensive variability in these amino acids. Three-dimensional modeling revealed that the predicted structure of this domain in plant Puf proteins provides a suitable surface for binding RNA. Electrophoretic gel mobility shift experiments showed that the Arabidopsis AtPum2 PUM-HD binds with high affinity to BoxB of the Drosophila Nanos Response Element I (NRE1 RNA, whereas a point mutation in the core of the NRE1 resulted in a significant reduction in binding affinity. Transient expression of several of the Arabidopsis Puf proteins as fluorescent protein fusions revealed a dynamic, punctate cytoplasmic pattern of localization for most of these proteins. The presence of predicted nuclear export signals and accumulation of AtPuf proteins in the nucleus after treatment of cells with leptomycin B demonstrated that shuttling of these proteins between the cytosol and nucleus is common among these proteins. In addition to the cytoplasmically enriched AtPum proteins, two AtPum proteins showed nuclear targeting with enrichment in the nucleolus. Conclusions The Puf family of RNA-binding proteins in plants consists of a greater number of members than any other model species studied to

  14. Nuclear proteins interacting with the promoter region of the human granulocyte/macrophage colony-stimulating factor gene

    International Nuclear Information System (INIS)

    Shannon, M.F.; Gamble, J.R.; Vadas, M.A.

    1988-01-01

    The gene for human granulocyte/macrophage colony-stimulating factor (GM-CSF) is expressed in a tissue-specific as well as an activation-dependent manner. The interaction of nuclear proteins with the promoter region of the GM-CSF gene that is likely to be responsible for this pattern of GM-CSF expression was investigated. The authors show that nuclear proteins interact with DNA fragments from the GM-CSF promoter in a cell-specific manner. A region spanning two cytokine-specific sequences, cytokine 1 (CK-1, 5', GAGATTCCAC 3') and cytokine 2 (CK-2, 5' TCAGGTA 3') bound two nuclear proteins from GM-CSF-expressing cells in gel retardation assays. NF-GMb was inducible with phorbol 12-myristate 13-acetate and accompanied induction of GM-CSF message. NF-GMb was absent in cell lines not producing GM-CSF, some of which had other distinct binding proteins. NF-GMa and NF-GMb eluted from a heparin-Sepharose column at 0.3 and 0.6 M KCl, respectively. They hypothesize that the sequences CK-1 and CK-2 bind specific proteins and regulate GM-CSF transcription

  15. Combination of existing and alternative technologies to promote oilseeds and pulses proteins in food applications

    Directory of Open Access Journals (Sweden)

    Chéreau Denis

    2016-07-01

    Full Text Available The continuous world population growth induces a total protein demand increase based mainly on plant sources. To meet these global nutritional challenges, existing and innovative dry and wet fractionation processes will have to be combined to better valorise plant protein fraction from pulses and oilseeds. The worldwide success of soy protein isolates originate from the intrinsic qualities of soybean proteins but also from a continuous R&D effort since mid-twenty century. Therefore, the soy protein development model can be applied to protein isolates from diverse pulses and oilseeds meals as rapeseed which has already been recognised as novel food protein in Europe. To boost the delivery of plant proteins, agrofood-industries and academics must pool their respective expertise. Innovative and issue solving R&D projects have to be launched to better valorise pulses and oilseed proteins by (i creating oil extraction processes which preserve native proteins structure; (ii developing novel protein extraction processes from lab up to industrial pilot scale; (iii producing plant protein isolates having comparable foaming, emulsifying or gelling functionality than animal; and (iv generating hydrolysed proteins with high digestibility adapted to human nutrition. It is also essential to initiate research programs to innovate in wet and dry fractionations of plants or to design in vitro models to evaluate proteins digestibility and allergenicity. The increased awareness regarding plant protein valorisation resulted in the creation by agro-industries and academics of the open platform IMPROVE which propose a combination of competencies and equipment to boost market uptake of Plant Based Proteins.

  16. Combination of existing and alternative technologies to promote oilseeds and pulses proteins in food applications

    OpenAIRE

    Chéreau Denis; Videcoq Pauline; Ruffieux Cécile; Pichon Lisa; Motte Jean-Charles; Belaid Saliha; Ventureira Jorge; Lopez Michel

    2016-01-01

    The continuous world population growth induces a total protein demand increase based mainly on plant sources. To meet these global nutritional challenges, existing and innovative dry and wet fractionation processes will have to be combined to better valorise plant protein fraction from pulses and oilseeds. The worldwide success of soy protein isolates originate from the intrinsic qualities of soybean proteins but also from a con...

  17. An Even Distribution of Protein Intake Daily Promotes Protein Adequacy but Does Not Influence Nutritional Status in Institutionalized Elderly.

    Science.gov (United States)

    Tieland, Michael; Beelen, Janne; Laan, Anna C M; Poon, Shirley; de Groot, Lisette C P G M; Seeman, Ego; Wang, Xiaofang; Iuliano, Sandra

    2018-01-01

    Although it has been established that sufficient protein is required to maintain good nutritional status and support healthy aging, it is not clear if the pattern of protein consumption may also influence nutritional status, especially in institutionalized elderly who are at risk of malnutrition. Therefore, we aim to determine the association between protein intake distribution and nutritional status in institutionalized elderly people. Cross-sectional study among 481 institutionalized older adults. Dietary data from 481 ambulant elderly people (68.8% female, mean age 87.5 ± 6.3 years) residing in 52 aged-care facilities in Victoria, Australia, were assessed over 2 days using plate waste analysis. Nutritional status was determined using the Mini-Nutritional Assessment tool and serum (n = 208) analyzed for albumin, hemoglobin, and IGF-1. Protein intake distribution was classified as: spread (even distribution across 3 meals, n = 65), pulse (most protein consumed in one meal, n = 72) or intermediate (n = 344). Regression analysis was used to investigate associations. Mean protein intakes were higher in the spread (60.5 ± 2.0 g/d) than intermediate group (56.0 ± 0.8 g/d, P = .037), and tended to be higher than those in the pulse group (55.9 ± 1.9 g/d, P = .097). Residents with an even distribution of protein intake achieved a higher level of the recommended daily intake for protein (96.2 ± 30.0%) than the intermediate (86.3 ± 26.2%, P = .008) and pulse (87.4 ± 30.5%, P = .06) groups, and also achieved a greater level of their estimated energy requirements (intermediate; P = .039, pulse; P = .001). Nutritional status (Mini-Nutritional Assessment score) did not differ between groups (pulse; 20.5 ± 4.5, intermediate; 21.0 ± 2.5, spread; 20.5 ± 3.5), nor did any other indices of nutritional status. Meeting protein requirements is required before protein distribution may influence nutritional status in institutionalized

  18. Targets of DNA-binding proteins in bacterial promoter regions present enhanced probabilities for spontaneous thermal openings

    International Nuclear Information System (INIS)

    Apostolaki, Angeliki; Kalosakas, George

    2011-01-01

    We mapped promoter regions of double-stranded DNA with respect to the probabilities of appearance of relatively large bubble openings exclusively due to thermal fluctuations at physiological temperatures. We analyzed five well-studied promoter regions of procaryotic type and found a spatial correlation between the binding sites of transcription factors and the position of peaks in the probability pattern of large thermal openings. Other distinct peaks of the calculated patterns correlate with potential binding sites of DNA-binding proteins. These results suggest that a DNA molecule would more frequently expose the bases that participate in contacts with proteins, which would probably enhance the probability of the latter to reach their targets. It also stands for using this method as a means to analyze DNA sequences based on their intrinsic thermal properties

  19. Pea proteins oral supplementation promotes muscle thickness gains during resistance training: a double-blind, randomized, Placebo-controlled clinical trial vs. Whey protein.

    Science.gov (United States)

    Babault, Nicolas; Païzis, Christos; Deley, Gaëlle; Guérin-Deremaux, Laetitia; Saniez, Marie-Hélène; Lefranc-Millot, Catherine; Allaert, François A

    2015-01-01

    The effects of protein supplementation on muscle thickness and strength seem largely dependent on its composition. The current study aimed at comparing the impact of an oral supplementation with vegetable Pea protein (NUTRALYS®) vs. Whey protein and Placebo on biceps brachii muscle thickness and strength after a 12-week resistance training program. One hundred and sixty one males, aged 18 to 35 years were enrolled in the study and underwent 12 weeks of resistance training on upper limb muscles. According to randomization, they were included in the Pea protein (n = 53), Whey protein (n = 54) or Placebo (n = 54) group. All had to take 25 g of the proteins or placebo twice a day during the 12-week training period. Tests were performed on biceps muscles at inclusion (D0), mid (D42) and post training (D84). Muscle thickness was evaluated using ultrasonography, and strength was measured on an isokinetic dynamometer. Results showed a significant time effect for biceps brachii muscle thickness (P Pea, Whey and Placebo, respectively; P Pea group as compared to Placebo whereas there was no difference between Whey and the two other conditions. Muscle strength also increased with time with no statistical difference between groups. In addition to an appropriate training, the supplementation with pea protein promoted a greater increase of muscle thickness as compared to Placebo and especially for people starting or returning to a muscular strengthening. Since no difference was obtained between the two protein groups, vegetable pea proteins could be used as an alternative to Whey-based dietary products. The present trial has been registered at ClinicalTrials.gov (NCT02128516).

  20. An Aphid Effector Targets Trafficking Protein VPS52 in a Host-Specific Manner to Promote Virulence1[OPEN

    Science.gov (United States)

    2017-01-01

    Plant- and animal-feeding insects secrete saliva inside their hosts, containing effectors, which may promote nutrient release and suppress immunity. Although for plant pathogenic microbes it is well established that effectors target host proteins to modulate host cell processes and promote disease, the host cell targets of herbivorous insects remain elusive. Here, we show that the existing plant pathogenic microbe effector paradigm can be extended to herbivorous insects in that effector-target interactions inside host cells modify critical host processes to promote plant susceptibility. We showed that the effector Mp1 from Myzus persicae associates with the host Vacuolar Protein Sorting Associated Protein52 (VPS52). Using natural variants, we provide a strong link between effector virulence activity and association with VPS52, and show that the association is highly specific to M. persicae-host interactions. Also, coexpression of Mp1, but not Mp1-like variants, specifically with host VPS52s resulted in effector relocalization to vesicle-like structures that associate with prevacuolar compartments. We show that high VPS52 levels negatively impact virulence, and that aphids are able to reduce VPS52 levels during infestation, indicating that VPS52 is an important virulence target. Our work is an important step forward in understanding, at the molecular level, how a major agricultural pest promotes susceptibility during infestation of crop plants. We give evidence that an herbivorous insect employs effectors that interact with host proteins as part of an effective virulence strategy, and that these effectors likely function in a species-specific manner. PMID:28100451

  1. An Aphid Effector Targets Trafficking Protein VPS52 in a Host-Specific Manner to Promote Virulence.

    Science.gov (United States)

    Rodriguez, Patricia A; Escudero-Martinez, Carmen; Bos, Jorunn I B

    2017-03-01

    Plant- and animal-feeding insects secrete saliva inside their hosts, containing effectors, which may promote nutrient release and suppress immunity. Although for plant pathogenic microbes it is well established that effectors target host proteins to modulate host cell processes and promote disease, the host cell targets of herbivorous insects remain elusive. Here, we show that the existing plant pathogenic microbe effector paradigm can be extended to herbivorous insects in that effector-target interactions inside host cells modify critical host processes to promote plant susceptibility. We showed that the effector Mp1 from Myzus persicae associates with the host Vacuolar Protein Sorting Associated Protein52 (VPS52). Using natural variants, we provide a strong link between effector virulence activity and association with VPS52, and show that the association is highly specific to M persicae -host interactions. Also, coexpression of Mp1, but not Mp1-like variants, specifically with host VPS52s resulted in effector relocalization to vesicle-like structures that associate with prevacuolar compartments. We show that high VPS52 levels negatively impact virulence, and that aphids are able to reduce VPS52 levels during infestation, indicating that VPS52 is an important virulence target. Our work is an important step forward in understanding, at the molecular level, how a major agricultural pest promotes susceptibility during infestation of crop plants. We give evidence that an herbivorous insect employs effectors that interact with host proteins as part of an effective virulence strategy, and that these effectors likely function in a species-specific manner. © 2017 American Society of Plant Biologists. All Rights Reserved.

  2. Enhanced expression of membrane proteins in E. coli with a PBAD promoter mutant: synergies with chaperone pathway engineering strategies

    Directory of Open Access Journals (Sweden)

    Nannenga Brent L

    2011-12-01

    Full Text Available Abstract Background Membrane proteins (MPs populate 20-30% of genomes sequenced to date and hold potential as therapeutic targets as well as for practical applications in bionanotechnology. However, MP toxicity and low yields in normally robust expression hosts such as E. coli has curtailed progress in our understanding of their structure and function. Results Using the seven transmembrane segments H. turkmenica deltarhodopsin (HtdR as a reporter, we isolated a spontaneous mutant in the arabinose-inducible PBAD promoter leading to improved cell growth and a twofold increase in the recovery of active HtdR at 37°C. A single transversion in a conserved region of the cyclic AMP receptor protein binding site caused the phenotype by reducing htdR transcript levels by 65%. When the mutant promoter was used in conjunction with a host lacking the molecular chaperone Trigger Factor (Δtig cells, toxicity was further suppressed and the amount of correctly folded HtdR was 4-fold that present in the membranes of control cells. More importantly, while improved growth barely compensated for the reduction in transcription rates when another polytopic membrane protein (N. pharonis sensory rhodopsin II was expressed under control of the mutant promoter in wild type cells, a 4-fold increase in productivity could be achieved in a Δtig host. Conclusions Our system, which combines a downregulated version of the tightly repressed PBAD promoter with a TF-deficient host may prove a valuable alternative to T7-based expression for the production of membrane proteins that have so far remained elusive targets.

  3. Unique nonstructural proteins of Pneumonia Virus of Mice (PVM) promote degradation of interferon (IFN) pathway components and IFN-stimulated gene proteins.

    Science.gov (United States)

    Dhar, Jayeeta; Barik, Sailen

    2016-12-01

    Pneumonia Virus of Mice (PVM) is the only virus that shares the Pneumovirus genus of the Paramyxoviridae family with Respiratory Syncytial Virus (RSV). A deadly mouse pathogen, PVM has the potential to serve as a robust animal model of RSV infection, since human RSV does not fully replicate the human pathology in mice. Like RSV, PVM also encodes two nonstructural proteins that have been implicated to suppress the IFN pathway, but surprisingly, they exhibit no sequence similarity with their RSV equivalents. The molecular mechanism of PVM NS function, therefore, remains unknown. Here, we show that recombinant PVM NS proteins degrade the mouse counterparts of the IFN pathway components. Proteasomal degradation appears to be mediated by ubiquitination promoted by PVM NS proteins. Interestingly, NS proteins of PVM lowered the levels of several ISG (IFN-stimulated gene) proteins as well. These results provide a molecular foundation for the mechanisms by which PVM efficiently subverts the IFN response of the murine cell. They also reveal that in spite of their high sequence dissimilarity, the two pneumoviral NS proteins are functionally and mechanistically similar.

  4. Promoter polymorphisms in two overlapping 6p25 genes implicate mitochondrial proteins in cognitive deficit in schizophrenia.

    LENUS (Irish Health Repository)

    Jablensky, A

    2011-10-04

    In a previous study, we detected a 6p25-p24 region linked to schizophrenia in families with high composite cognitive deficit (CD) scores, a quantitative trait integrating multiple cognitive measures. Association mapping of a 10 Mb interval identified a 260 kb region with a cluster of single-nucleotide polymorphisms (SNPs) significantly associated with CD scores and memory performance. The region contains two colocalising genes, LYRM4 and FARS2, both encoding mitochondrial proteins. The two tagging SNPs with strongest evidence of association were located around the overlapping putative promoters, with rs2224391 predicted to alter a transcription factor binding site (TFBS). Sequencing the promoter region identified 22 SNPs, many predicted to affect TFBSs, in a tight linkage disequilibrium block. Luciferase reporter assays confirmed promoter activity in the predicted promoter region, and demonstrated marked downregulation of expression in the LYRM4 direction under the haplotype comprising the minor alleles of promoter SNPs, which however is not driven by rs2224391. Experimental evidence from LYRM4 expression in lymphoblasts, gel-shift assays and modelling of DNA breathing dynamics pointed to two adjacent promoter SNPs, rs7752203-rs4141761, as the functional variants affecting expression. Their C-G alleles were associated with higher transcriptional activity and preferential binding of nuclear proteins, whereas the G-A combination had opposite effects and was associated with poor memory and high CD scores. LYRM4 is a eukaryote-specific component of the mitochondrial biogenesis of Fe-S clusters, essential cofactors in multiple processes, including oxidative phosphorylation. LYRM4 downregulation may be one of the mechanisms involved in inefficient oxidative phosphorylation and oxidative stress, increasingly recognised as contributors to schizophrenia pathogenesis.Molecular Psychiatry advance online publication, 4 October 2011; doi:10.1038\\/mp.2011.129.

  5. The LIKE system, a novel protein expression toolbox for Bacillus subtilis based on the liaI promoter

    Science.gov (United States)

    2012-01-01

    Background Bacillus subtilis is a very important Gram-positive model organism of high biotechnological relevance, which is widely used as a host for the production of both secreted and cytoplasmic proteins. We developed a novel and efficient expression system, based on the liaI promoter (PliaI) from B. subtilis, which is under control of the LiaRS antibiotic-inducible two-component system. In the absence of a stimulus, this promoter is kept tightly inactive. Upon induction by cell wall antibiotics, it shows an over 100-fold increase in activity within 10 min. Results Based on these traits of PliaI, we developed a novel LiaRS-controlled gene expression system for B. subtilis (the “LIKE" system). Two expression vectors, the integrative pLIKE-int and the replicative pLIKE-rep, were constructed. To enhance the performance of the PliaI-derived system, site-directed mutagenesis was employed to optimize the ribosome binding site and alter its spacing to the initiation codon used for the translational fusion. The impact of these genetic modifications on protein production yield was measured using GFP as a model protein. Moreover, a number of tailored B. subtilis expression strains containing different markerless chromosomal deletions of the liaIH region were constructed to circumvent undesired protein production, enhance the positive autoregulation of the LiaRS system and thereby increase target gene expression strength from the PliaI promoter. Conclusions The LIKE protein expression system is a novel protein expression system, which offers a number of advantages over existing systems. Its major advantages are (i) a tightly switched-off promoter during exponential growth in the absence of a stimulus, (ii) a concentration-dependent activation of PliaI in the presence of suitable inducers, (iii) a very fast but transient response with a very high dynamic range of over 100-fold (up to 1,000-fold) induction, (iv) a choice from a range of well-defined, commercially available

  6. HuR represses Wnt/β-catenin-mediated transcriptional activity by promoting cytoplasmic localization of β-catenin

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Inae; Hur, Jung; Jeong, Sunjoo, E-mail: sjsj@dankook.ac.kr

    2015-01-30

    Highlights: • Wnt signaling as well as β-catenin overexpression enhance HuR cytoplasmic export. • HuR overexpression promotes cytoplasmic localization of β-catenin from the perinuclear fraction. • Wnt/β-catenin-mediated transcriptional activity is repressesed by HuR. - Abstract: β-Catenin is the key transcriptional activator of canonical Wnt signaling in the nucleus; thus, nuclear accumulation of β-catenin is a critical step for expressing target genes. β-Catenin accumulates in the nucleus of cancer cells where it activates oncogenic target genes. Hu antigen R (HuR) is a RNA binding protein that regulates multiple post-transcriptional processes including RNA stability. Thus, cytoplasmic HuR protein may be involved in tumorigenesis by stabilizing oncogenic transcripts, but the molecular mechanism remains unclear. Here, we observed that Wnt/β-catenin signaling induced export of the HuR protein, whereas HuR overexpression promoted accumulation of the β-catenin protein in the cytoplasm. Thus, Wnt/β-catenin-mediated transcriptional activity in the nucleus was reduced by overexpressing HuR. These results suggest novel and uncharacterized cytoplasmic β-catenin functions related to HuR-mediated RNA metabolism in cancer cells.

  7. HuR represses Wnt/β-catenin-mediated transcriptional activity by promoting cytoplasmic localization of β-catenin

    International Nuclear Information System (INIS)

    Kim, Inae; Hur, Jung; Jeong, Sunjoo

    2015-01-01

    Highlights: • Wnt signaling as well as β-catenin overexpression enhance HuR cytoplasmic export. • HuR overexpression promotes cytoplasmic localization of β-catenin from the perinuclear fraction. • Wnt/β-catenin-mediated transcriptional activity is repressesed by HuR. - Abstract: β-Catenin is the key transcriptional activator of canonical Wnt signaling in the nucleus; thus, nuclear accumulation of β-catenin is a critical step for expressing target genes. β-Catenin accumulates in the nucleus of cancer cells where it activates oncogenic target genes. Hu antigen R (HuR) is a RNA binding protein that regulates multiple post-transcriptional processes including RNA stability. Thus, cytoplasmic HuR protein may be involved in tumorigenesis by stabilizing oncogenic transcripts, but the molecular mechanism remains unclear. Here, we observed that Wnt/β-catenin signaling induced export of the HuR protein, whereas HuR overexpression promoted accumulation of the β-catenin protein in the cytoplasm. Thus, Wnt/β-catenin-mediated transcriptional activity in the nucleus was reduced by overexpressing HuR. These results suggest novel and uncharacterized cytoplasmic β-catenin functions related to HuR-mediated RNA metabolism in cancer cells

  8. Myostatin promotes distinct responses on protein metabolism of skeletal and cardiac muscle fibers of rodents.

    Science.gov (United States)

    Manfredi, L H; Paula-Gomes, S; Zanon, N M; Kettelhut, I C

    2017-10-19

    Myostatin is a novel negative regulator of skeletal muscle mass. Myostatin expression is also found in heart in a much less extent, but it can be upregulated in pathological conditions, such as heart failure. Myostatin may be involved in inhibiting protein synthesis and/or increasing protein degradation in skeletal and cardiac muscles. Herein, we used cell cultures and isolated muscles from rats to determine protein degradation and synthesis. Muscles incubated with myostatin exhibited an increase in proteolysis with an increase of Atrogin-1, MuRF1 and LC3 genes. Extensor digitorum longus muscles and C2C12 myotubes exhibited a reduction in protein turnover. Cardiomyocytes showed an increase in proteolysis by activating autophagy and the ubiquitin proteasome system, and a decrease in protein synthesis by decreasing P70S6K. The effect of myostatin on protein metabolism is related to fiber type composition, which may be associated to the extent of atrophy mediated effect of myostatin on muscle.

  9. A novel firmicute protein family related to the actinobacterial resuscitation-promoting factors by non-orthologous domain displacement

    Directory of Open Access Journals (Sweden)

    Finan Christopher L

    2005-03-01

    Full Text Available Abstract Background In Micrococcus luteus growth and resuscitation from starvation-induced dormancy is controlled by the production of a secreted growth factor. This autocrine resuscitation-promoting factor (Rpf is the founder member of a family of proteins found throughout and confined to the actinobacteria (high G + C Gram-positive bacteria. The aim of this work was to search for and characterise a cognate gene family in the firmicutes (low G + C Gram-positive bacteria and obtain information about how they may control bacterial growth and resuscitation. Results In silico analysis of the accessory domains of the Rpf proteins permitted their classification into several subfamilies. The RpfB subfamily is related to a group of firmicute proteins of unknown function, represented by YabE of Bacillus subtilis. The actinobacterial RpfB and firmicute YabE proteins have very similar domain structures and genomic contexts, except that in YabE, the actinobacterial Rpf domain is replaced by another domain, which we have called Sps. Although totally unrelated in both sequence and secondary structure, the Rpf and Sps domains fulfil the same function. We propose that these proteins have undergone "non-orthologous domain displacement", a phenomenon akin to "non-orthologous gene displacement" that has been described previously. Proteins containing the Sps domain are widely distributed throughout the firmicutes and they too fall into a number of distinct subfamilies. Comparative analysis of the accessory domains in the Rpf and Sps proteins, together with their weak similarity to lytic transglycosylases, provide clear evidence that they are muralytic enzymes. Conclusions The results indicate that the firmicute Sps proteins and the actinobacterial Rpf proteins are cognate and that they control bacterial culturability via enzymatic modification of the bacterial cell envelope.

  10. Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms

    DEFF Research Database (Denmark)

    Rohde, Mikkel; Daugaard, Mads; Jensen, Mette Hartvig

    2005-01-01

    Whereas the stress-inducible heat-shock protein 70 (Hsp70) has gained plenty of attention as a putative target for tumor therapy, little is known about the role of other Hsp70 proteins in cancer. Here we present the first thorough analysis of the expression and function of the cytosolic Hsp70...... proteins in human cancer cells and identify Hsp70-2, a protein essential for spermatogenesis, as an important regulator of cancer cell growth. Targeted knock-down of the individual family members by RNA interference revealed that both Hsp70 and Hsp70-2 were required for cancer cell growth, whereas...

  11. Receptor protein tyrosine phosphatase alpha enhances rheumatoid synovial fibroblast signaling and promotes arthritis in mice

    NARCIS (Netherlands)

    Stanford, Stephanie M; Svensson, Mattias N D; Sacchetti, Cristiano; Pilo, Caila A; Wu, Dennis J; Kiosses, William B; Hellvard, Annelie; Bergum, Brith; Aleman Muench, German R; Elly, Christian; Liu, Yun-Cai; den Hertog, Jeroen; Elson, Ari; Sap, Jan; Mydel, Piotr; Boyle, David L; Corr, Maripat; Firestein, Gary S; Bottini, Nunzio

    2016-01-01

    OBJECTIVE: During rheumatoid arthritis (RA), fibroblast-like synoviocytes (FLS) critically promote disease pathogenesis by aggressively invading the joint extracellular matrix. The focal adhesion kinase (FAK) signaling pathway is emerging as a contributor to RA FLS anomalous behavior. The receptor

  12. Ran GTPase protein promotes human pancreatic cancer proliferation by deregulating the expression of Survivin and cell cycle proteins

    International Nuclear Information System (INIS)

    Deng, Lin; Lu, Yuanyuan; Zhao, Xiaodi; Sun, Yi; Shi, Yongquan; Fan, Hongwei; Liu, Changhao; Zhou, Jinfeng; Nie, Yongzhan; Wu, Kaichun; Fan, Daiming; Guo, Xuegang

    2013-01-01

    Highlights: •Overexpression of Ran in pancreatic cancer was correlated with histological grade. •Downregulation of Ran could induce cell apoptosis and inhibit cell proliferation. •The effects were mediated by cell cycle proteins, Survivin and cleaved Caspase-3. -- Abstract: Ran, a member of the Ras GTPase family, has important roles in nucleocytoplasmic transport. Herein, we detected Ran expression in pancreatic cancer and explored its potential role on tumour progression. Overexpressed Ran in pancreatic cancer tissues was found highly correlated with the histological grade. Downregulation of Ran led to significant suppression of cell proliferation, cell cycle arrest at the G1/S phase and induction of apoptosis. In vivo studies also validated that result. Further studies revealed that those effects were at least partly mediated by the downregulation of Cyclin A, Cyclin D1, Cyclin E, CDK2, CDK4, phospho-Rb and Survivin proteins and up regulation of cleaved Caspase-3

  13. Smad3 induces atrogin-1, inhibits mTOR and protein synthesis, and promotes muscle atrophy in vivo.

    Science.gov (United States)

    Goodman, Craig A; McNally, Rachel M; Hoffmann, F Michael; Hornberger, Troy A

    2013-11-01

    Myostatin, a member of the TGF superfamily, is sufficient to induce skeletal muscle atrophy. Myostatin-induced atrophy is associated with increases in E3-ligase atrogin-1 expression and protein degradation and decreases in Akt/mechanistic target of rapamycin (mTOR) signaling and protein synthesis. Myostatin signaling activates the transcription factor Smad3 (Small Mothers Against Decapentaplegic), which has been shown to be necessary for myostatin-induced atrogin-1 expression and atrophy; however, it is not known whether Smad3 is sufficient to induce these events or whether Smad3 simply plays a permissive role. Thus, the aim of this study was to address these questions with an in vivo model. To accomplish this goal, in vivo transfection of plasmid DNA was used to create transient transgenic mouse skeletal muscles, and our results show for the first time that Smad3 expression is sufficient to stimulate atrogin-1 promoter activity, inhibit Akt/mTOR signaling and protein synthesis, and induce muscle fiber atrophy. Moreover, we propose that Akt/mTOR signaling is inhibited by a Smad3-induced decrease in microRNA-29 (miR-29) expression and a subsequent increase in the translation of phosphatase and tensin homolog (PTEN) mRNA. Smad3 is also sufficient to inhibit peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) promoter activity and to increase FoxO (Forkhead Box Protein, Subclass O)-mediated signaling and the promoter activity of plasminogen activator inhibitor 1 (PAI-1). Combined, this study provides the first evidence that Smad3 is sufficient to regulate many of the events associated with myostatin-induced atrophy and therefore suggests that Smad3 signaling may be a viable target for therapies aimed at preventing myostatin-induced muscle atrophy.

  14. Electrostatics promotes molecular crowding and selects the aggregation pathway in fibril-forming protein solutions

    International Nuclear Information System (INIS)

    Raccosta, S.; Martorana, V.; Manno, M.; Blanco, M.; Roberts, C.J.

    2016-01-01

    The role of intermolecular interaction in fibril-forming protein solutions and its relation with molecular conformation are crucial aspects for the control and inhibition of amyloid structures. Here, we study the fibril formation and the protein-protein interactions for two proteins at acidic ph, lysozyme and α-chymotrypsinogen. By using light scattering experiments and the Kirkwood-Buff integral approach, we show how concentration fluctuations are damped even at moderate protein concentrations by the dominant long-ranged electrostatic repulsion, which determines an effective crowded environment. In denaturing conditions, electrostatic repulsion keeps the monomeric solution in a thermodynamically metastable state, which is escaped through kinetically populated conformational sub-states. This explains how electrostatics acts as a gatekeeper in selecting a specific aggregation pathway.

  15. Whey protein and essential amino acids promote the reduction of adipose tissue and increased muscle protein synthesis during caloric restriction-induced weight loss in elderly, obese individuals

    Directory of Open Access Journals (Sweden)

    Coker Robert H

    2012-12-01

    Full Text Available Abstract Background Excess adipose tissue and sarcopenia presents a multifaceted clinical challenge that promotes morbidity and mortality in the obese, elderly population. Unfortunately, the mortality risks of muscle loss may outweigh the potential benefits of weight loss in the elderly. We have previously demonstrated the effectiveness of whey protein and essential amino acids towards the preservation of lean tissue, even under the conditions of strict bedrest in the elderly. Methods In the context of caloric restriction-based weight loss, we hypothesized that a similar formulation given as a meal replacement (EAAMR would foster the retention of lean tissue through an increase in the skeletal muscle fractional synthesis rate (FSR. We also proposed that EAAMR would promote the preferential loss of adipose tissue through the increased energy cost of skeletal muscle FSR. We recruited and randomized 12 elderly individuals to an 8 week, caloric restriction diet utilizing equivalent caloric meal replacements (800 kcal/day: 1 EAAMR or a 2 competitive meal replacement (CMR in conjunction with 400 kcal of solid food that totaled 1200 kcal/day designed to induce 7% weight loss. Combined with weekly measurements of total body weight and body composition, we also measured the acute change in the skeletal muscle FSR to EAAMR and CMR. Results By design, both groups lost ~7% of total body weight. While EAAMR did not promote a significant preservation of lean tissue, the reduction in adipose tissue was greater in EAAMR compared to CMR. Interestingly, these results corresponded to an increase in the acute skeletal muscle protein FSR. Conclusion The provision of EAAMR during caloric restriction-induced weight loss promotes the preferential reduction of adipose tissue and the modest loss of lean tissue in the elderly population.

  16. Ectodomain shedding of Limbic System-Associated Membrane Protein (LSAMP) by ADAM Metallopeptidases promotes neurite outgrowth in DRG neurons.

    Science.gov (United States)

    Sanz, Ricardo L; Ferraro, Gino B; Girouard, Marie-Pier; Fournier, Alyson E

    2017-08-11

    IgLONs are members of the immunoglobulin superfamily of cell adhesion proteins implicated in the process of neuronal outgrowth, cell adhesion and subdomain target recognition. IgLONs form homophilic and heterophilic complexes on the cell surface that repress or promote growth depending on the neuronal population, the developmental stage and surface repertoire of IgLON family members. In the present study, we identified a metalloproteinase-dependent mechanism necessary to promote growth in embryonic dorsal root ganglion cells (DRGs). Treatment of embryonic DRG neurons with pan-metalloproteinase inhibitors, tissue inhibitor of metalloproteinase-3, or an inhibitor of ADAM Metallopeptidase Domain 10 (ADAM10) reduces outgrowth from DRG neurons indicating that metalloproteinase activity is important for outgrowth. The IgLON family members Neurotrimin (NTM) and Limbic System-Associated Membrane Protein (LSAMP) were identified as ADAM10 substrates that are shed from the cell surface of DRG neurons. Overexpression of LSAMP and NTM suppresses outgrowth from DRG neurons. Furthermore, LSAMP loss of function decreases the outgrowth sensitivity to an ADAM10 inhibitor. Together our findings support a role for ADAM-dependent shedding of cell surface LSAMP in promoting outgrowth from DRG neurons.

  17. Hypermethylation of the GATA binding protein 4 (GATA4) promoter in Chinese pediatric acute myeloid leukemia

    International Nuclear Information System (INIS)

    Tao, Yan-Fang; Fang, Fang; Hu, Shao-Yan; Lu, Jun; Cao, Lan; Zhao, Wen-Li; Xiao, Pei-Fang; Li, Zhi-Heng; Wang, Na-Na; Xu, Li-Xiao; Du, Xiao-Juan; Sun, Li-Chao; Li, Yan-Hong; Li, Yi-Ping; Xu, Yun-Yun; Ni, Jian; Wang, Jian; Feng, Xing; Pan, Jian

    2015-01-01

    Acute myeloid leukemia (AML) is the second-most common form of leukemia in children. Aberrant DNA methylation patterns are a characteristic feature of AML. GATA4 has been suggested to be a tumor suppressor gene regulated by promoter hypermethylation in various types of human cancers although the expression and promoter methylation of GATA4 in pediatric AML is still unclear. Transcriptional expression levels of GATA4 were evaluated by semi-quantitative and real-time PCR. Methylation status was investigated by methylation-specific PCR (MSP) and bisulfate genomic sequencing (BGS). The prognostic significance of GATA4 expression and promoter methylation was assessed in 105 cases of Chinese pediatric acute myeloid leukemia patients with clinical follow-up records. MSP and BGS analysis showed that the GATA4 gene promoter is hypermethylated in AML cells, such as the HL-60 and MV4-11 human myeloid leukemia cell lines. 5-Aza treatment significantly upregulated GATA4 expression in HL-60 and MV4-11 cells. Aberrant methylation of GATA4 was observed in 15.0 % (3/20) of the normal bone marrow control samples compared to 56.2 % (59/105) of the pediatric AML samples. GATA4 transcript levels were significantly decreased in AML patients (33.06 ± 70.94; P = 0.011) compared to normal bone marrow/idiopathic thrombocytopenic purpura controls (116.76 ± 105.39). GATA4 promoter methylation was correlated with patient leukocyte counts (WBC, white blood cells) (P = 0.035) and minimal residual disease MRD (P = 0.031). Kaplan-Meier survival analysis revealed significantly shorter overall survival time in patients with GATA4 promoter methylation (P = 0.014). Epigenetic inactivation of GATA4 by promoter hypermethylation was observed in both AML cell lines and pediatric AML samples; our study implicates GATA4 as a putative tumor suppressor gene in pediatric AML. In addition, our findings imply that GATA4 promoter methylation is correlated with WBC and MRD. Kaplan-Meier survival analysis

  18. Bovine binder-of-sperm protein BSP1 promotes protrusion and nanotube formation from liposomes

    International Nuclear Information System (INIS)

    Lafleur, Michel; Courtemanche, Lesley; Karlsson, Goeran; Edwards, Katarina; Schwartz, Jean-Louis; Manjunath, Puttaswamy

    2010-01-01

    Research highlights: → Binder-of-sperm protein 1 (BSP1) modifies the morphology of lipidic vesicles inducing bead necklace-like and thread-like structures. → In the presence of multilamellar liposomes, BSP1 leads to the formation of long nanotubes. → The insertion of BSP1 in the external lipid leaflet of membranes induces local changes in bilayer curvature. -- Abstract: Binder-of-sperm (BSP) proteins interact with sperm membranes and are proposed to extract selectively phosphatidylcholine and cholesterol from these. This change in lipid composition is a key step in sperm capacitation. The present work demonstrates that the interactions between the protein BSP1 and model membranes composed with phosphatidylcholine lead to drastic changes in the morphology of the lipidic self-assemblies. Using cryo-electron microscopy and fluorescence microscopy, we show that, in the presence of the protein, the lipid vesicles elongate, and form bead necklace-like structures that evolve toward small vesicles or thread-like structures. In the presence of multilamellar vesicles, where a large reservoir of lipid is available, the presence of BSP proteins lead to the formation of long nanotubes. Long spiral-like threads, associated with lipid/protein complexes, are also observed. The local curvature of lipid membranes induced by the BSP proteins may be involved in lipid domain formation and the extraction of some lipids during the sperm maturation process.

  19. Positive selection and propeptide repeats promote rapid interspecific divergence of a gastropod sperm protein.

    Science.gov (United States)

    Hellberg, M E; Moy, G W; Vacquier, V D

    2000-03-01

    Male-specific proteins have increasingly been reported as targets of positive selection and are of special interest because of the role they may play in the evolution of reproductive isolation. We report the rapid interspecific divergence of cDNA encoding a major acrosomal protein of unknown function (TMAP) of sperm from five species of teguline gastropods. A mitochondrial DNA clock (calibrated by congeneric species divided by the Isthmus of Panama) estimates that these five species diverged 2-10 MYA. Inferred amino acid sequences reveal a propeptide that has diverged rapidly between species. The mature protein has diverged faster still due to high nonsynonymous substitution rates (> 25 nonsynonymous substitutions per site per 10(9) years). cDNA encoding the mature protein (89-100 residues) shows evidence of positive selection (Dn/Ds > 1) for 4 of 10 pairwise species comparisons. cDNA and predicted secondary-structure comparisons suggest that TMAP is neither orthologous nor paralogous to abalone lysin, and thus marks a second, phylogenetically independent, protein subject to strong positive selection in free-spawning marine gastropods. In addition, an internal repeat in one species (Tegula aureotincta) produces a duplicated cleavage site which results in two alternatively processed mature proteins differing by nine amino acid residues. Such alternative processing may provide a mechanism for introducing novel amino acid sequence variation at the amino-termini of proteins. Highly divergent TMAP N-termini from two other tegulines (Tegula regina and Norrisia norrisii) may have originated by such a mechanism.

  20. Nat1 promotes translation of specific proteins that induce differentiation of mouse embryonic stem cells.

    Science.gov (United States)

    Sugiyama, Hayami; Takahashi, Kazutoshi; Yamamoto, Takuya; Iwasaki, Mio; Narita, Megumi; Nakamura, Masahiro; Rand, Tim A; Nakagawa, Masato; Watanabe, Akira; Yamanaka, Shinya

    2017-01-10

    Novel APOBEC1 target 1 (Nat1) (also known as "p97," "Dap5," and "Eif4g2") is a ubiquitously expressed cytoplasmic protein that is homologous to the C-terminal two thirds of eukaryotic translation initiation factor 4G (Eif4g1). We previously showed that Nat1-null mouse embryonic stem cells (mES cells) are resistant to differentiation. In the current study, we found that NAT1 and eIF4G1 share many binding proteins, such as the eukaryotic translation initiation factors eIF3 and eIF4A and ribosomal proteins. However, NAT1 did not bind to eIF4E or poly(A)-binding proteins, which are critical for cap-dependent translation initiation. In contrast, compared with eIF4G1, NAT1 preferentially interacted with eIF2, fragile X mental retardation proteins (FMR), and related proteins and especially with members of the proline-rich and coiled-coil-containing protein 2 (PRRC2) family. We also found that Nat1-null mES cells possess a transcriptional profile similar, although not identical, to the ground state, which is established in wild-type mES cells when treated with inhibitors of the ERK and glycogen synthase kinase 3 (GSK3) signaling pathways. In Nat1-null mES cells, the ERK pathway is suppressed even without inhibitors. Ribosome profiling revealed that translation of mitogen-activated protein kinase kinase kinase 3 (Map3k3) and son of sevenless homolog 1 (Sos1) is suppressed in the absence of Nat1 Forced expression of Map3k3 induced differentiation of Nat1-null mES cells. These data collectively show that Nat1 is involved in the translation of proteins that are required for cell differentiation.

  1. Penta- and octa-bromodiphenyl ethers promote proinflammatory protein expression in human bronchial epithelial cells in vitro.

    Science.gov (United States)

    Koike, Eiko; Yanagisawa, Rie; Takigami, Hidetaka; Takano, Hirohisa

    2014-03-01

    Polybrominated diphenyl ethers (PBDEs) are widely used as flame retardants in consumer products. Humans can be exposed to PBDEs mainly through the inhalation of air or dust. Thus, PBDEs can affect respiratory and immune systems. In the present study, we investigated whether PBDEs stimulate bronchial epithelial cells. We examined commercial penta-BDE (DE-71), octa-BDE (DE-79), and deca-BDE (DE-83R). Human bronchial epithelial cells (BEAS-2B) were exposed to each PBDE for 24h. Subsequently, the expression of intercellular adhesion molecule-1 (ICAM-1) and proinflammatory cytokines were investigated. DE-71 and DE-79, but not DE-83R, significantly increased the expression of ICAM-1, interleukin-6 (IL-6), and IL-8 in BEAS-2B. Because these remarkable effects were observed with DE-71, we further investigated the underlying intracellular mechanisms. DE-71 promoted epidermal growth factor receptor (EGFR) phosphorylation. Inhibitors of EGFR-selective tyrosine kinase and p38 mitogen-activated protein kinase effectively blocked the increase of IL-6 and IL-8. Furthermore, antagonists of thyroid hormone receptor and aryl hydrocarbon receptor significantly suppressed the increase in IL-6 and/or IL-8 production. In conclusion, penta- and octa-BDE, but not deca-BDE, might promote the expression of proinflammatory proteins in bronchial epithelial cells possibly by activating protein kinases and/or stimulating nuclear receptors related to subsequent activation of transcriptional factors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. The Assembly-Activating Protein Promotes Stability and Interactions between AAV’s Viral Proteins to Nucleate Capsid Assembly

    Directory of Open Access Journals (Sweden)

    Anna C. Maurer

    2018-05-01

    Full Text Available Summary: The adeno-associated virus (AAV vector is a preferred delivery platform for in vivo gene therapy. Natural and engineered variations of the AAV capsid affect a plurality of phenotypes relevant to gene therapy, including vector production and host tropism. Fundamental to these aspects is the mechanism of AAV capsid assembly. Here, the role of the viral co-factor assembly-activating protein (AAP was evaluated in 12 naturally occurring AAVs and 9 putative ancestral capsid intermediates. The results demonstrate increased capsid protein stability and VP-VP interactions in the presence of AAP. The capsid’s dependence on AAP can be partly overcome by strengthening interactions between monomers within the assembly, as illustrated by the transfer of a minimal motif defined by a phenotype-to-phylogeny mapping method. These findings suggest that the emergence of AAP within the Dependovirus genus relaxes structural constraints on AAV assembly in favor of increasing the degrees of freedom for the capsid to evolve. : Maurer et al. describe a phenotype-to-phylogeny mapping strategy correlating phenotypic variation in AAVs to a reconstructed phylogeny, revealing capsid structure-function relationships relevant to that phenotype. Dependence on the viral co-factor AAP for capsid assembly is examined, and capsid functional motifs, in addition to mechanistic roles of AAP, are elucidated. Keywords: AAV, AAP, adeno-associated virus, capsid assembly, manufacturing, capsid, vector engineering, structure-function, gene therapy

  3. Lactic acid induces aberrant amyloid precursor protein processing by promoting its interaction with endoplasmic reticulum chaperone proteins.

    Directory of Open Access Journals (Sweden)

    Yiwen Xiang

    Full Text Available BACKGROUND: Lactic acid, a natural by-product of glycolysis, is produced at excess levels in response to impaired mitochondrial function, high-energy demand, and low oxygen availability. The enzyme involved in the production of β-amyloid peptide (Aβ of Alzheimer's disease, BACE1, functions optimally at lower pH, which led us to investigate a potential role of lactic acid in the processing of amyloid precursor protein (APP. METHODOLOGY/PRINCIPAL FINDINGS: Lactic acid increased levels of Aβ40 and 42, as measured by ELISA, in culture medium of human neuroblastoma cells (SH-SY5Y, whereas it decreased APP metabolites, such as sAPPα. In cell lysates, APP levels were increased and APP was found to interact with ER-chaperones in a perinuclear region, as determined by co-immunoprecipitation and fluorescence microscopy studies. Lactic acid had only a very modest effect on cellular pH, did increase the levels of ER chaperones Grp78 and Grp94 and led to APP aggregate formation reminiscent of aggresomes. CONCLUSIONS/SIGNIFICANCE: These findings suggest that sustained elevations in lactic acid levels could be a risk factor in amyloidogenesis related to Alzheimer's disease through enhanced APP interaction with ER chaperone proteins and aberrant APP processing leading to increased generation of amyloid peptides and APP aggregates.

  4. Mycobacterial RNA isolation optimized for non-coding RNA: high fidelity isolation of 5S rRNA from Mycobacterium bovis BCG reveals novel post-transcriptional processing and a complete spectrum of modified ribonucleosides.

    Science.gov (United States)

    Hia, Fabian; Chionh, Yok Hian; Pang, Yan Ling Joy; DeMott, Michael S; McBee, Megan E; Dedon, Peter C

    2015-03-11

    A major challenge in the study of mycobacterial RNA biology is the lack of a comprehensive RNA isolation method that overcomes the unusual cell wall to faithfully yield the full spectrum of non-coding RNA (ncRNA) species. Here, we describe a simple and robust procedure optimized for the isolation of total ncRNA, including 5S, 16S and 23S ribosomal RNA (rRNA) and tRNA, from mycobacteria, using Mycobacterium bovis BCG to illustrate the method. Based on a combination of mechanical disruption and liquid and solid-phase technologies, the method produces all major species of ncRNA in high yield and with high integrity, enabling direct chemical and sequence analysis of the ncRNA species. The reproducibility of the method with BCG was evident in bioanalyzer electrophoretic analysis of isolated RNA, which revealed quantitatively significant differences in the ncRNA profiles of exponentially growing and non-replicating hypoxic bacilli. The method also overcame an historical inconsistency in 5S rRNA isolation, with direct sequencing revealing a novel post-transcriptional processing of 5S rRNA to its functional form and with chemical analysis revealing seven post-transcriptional ribonucleoside modifications in the 5S rRNA. This optimized RNA isolation procedure thus provides a means to more rigorously explore the biology of ncRNA species in mycobacteria. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. 3-(3-amino-3-carboxypropyl)-5,6-Dihydrouridine is one of two novel post-transcriptional modifications in tRNALys(UUU) from Trypanosoma brucei

    DEFF Research Database (Denmark)

    Krog, Jesper Schak; Español, Yaiza; Giessing, Anders M B

    2011-01-01

    tRNA is the most heavily modified of all RNA types, with typically 10-20% of the residues being post-transcriptionally altered. Unravelling the modification pattern of a tRNA is a challenging task; there are 92 currently known tRNA modifications [1], many of which are chemically similar. Furtherm......tRNA is the most heavily modified of all RNA types, with typically 10-20% of the residues being post-transcriptionally altered. Unravelling the modification pattern of a tRNA is a challenging task; there are 92 currently known tRNA modifications [1], many of which are chemically similar...... of the unmodified tRNA revealed the modified residues. The modifications were further characterized at the nucleoside level by chromatographic retention time and fragmentation pattern upon higher-order tandem MS. Phylogenetic comparison with modifications in tRNA(Lys) from other organisms was used through......: a minor fraction with the previously described 2-methylthio-N(6) -threonylcarbamoyl-modification, and a major fraction with A37 being modified by a 294.0-Da moiety. The latter product is the largest adenosine modification reported so far, and we discuss its nature and origin....

  6. An amplified promoter system for targeted expression of calcium indicator proteins in the cerebellar cortex

    Directory of Open Access Journals (Sweden)

    Bernd eKuhn

    2012-07-01

    Full Text Available Recording of identified neuronal network activity using genetically encoded calcium indicators (GECIs requires labeling that is cell type-specific and bright enough for the detection of functional signals. However, specificity and strong expression are often not achievable using the same promoter. Here we present a combinatorial approach for targeted expression and single-cell-level quantification in which a weak promoter is used to drive trans-amplification under a strong general promoter. We demonstrated this approach using recombinant adeno-associated viruses (rAAVs to deliver the sequence of the GECI D3cpv in the mouse cerebellar cortex. Direct expression under the human synapsin promoter (hSYN led to high levels of expression (50-100 µM in five interneuron types of the cerebellar cortex but not in Purkinje cells (PCs (≤10 μM, yielding sufficient contrast to allow functional signals to be recorded from somata and processes in awake animals using two-photon microscopy. When the hSYN promoter was used to drive expression of the tetracycline transactivator (tTA, a second rAAV containing the bidirectional TET promoter (Ptetbi could drive strong D3cpv expression in PCs (10-300 µM, enough to allow reliable complex spike detection in the dendritic arbor. An amplified approach should be of use in monitoring neural processing in selected cell types and boosting expression of optogenetic probes. Additionally, we overcome cell toxicity associated with rAAV injection and/or local GECI overexpression by combining the virus injection with systemic pre-injection of hyperosmotic D-mannitol, and by this double the time window for functional imaging.

  7. Chaperonins fight aminoglycoside-induced protein misfolding and promote short-term tolerance in Escherichia coli

    DEFF Research Database (Denmark)

    Goltermann, Lise; Good, Liam; Bentin, Thomas

    2013-01-01

    For almost half of a century, we have known that aminoglycoside antibiotics corrupt ribosomes, causing translational misreading, yet it remains unclear whether or not misreading triggers protein misfolding, and possible effects of chaperone action on drug susceptibilities are poorly understood...

  8. Role of protein and amino acids in promoting lean mass accretion with resistance exercise and attenuating lean mass loss during energy deficit in humans.

    Science.gov (United States)

    Churchward-Venne, Tyler A; Murphy, Caoileann H; Longland, Thomas M; Phillips, Stuart M

    2013-08-01

    Amino acids are major nutrient regulators of muscle protein turnover. After protein ingestion, hyperaminoacidemia stimulates increased rates of skeletal muscle protein synthesis, suppresses muscle protein breakdown, and promotes net muscle protein accretion for several hours. These acute observations form the basis for strategized protein intake to promote lean mass accretion, or prevent lean mass loss over the long term. However, factors such as protein dose, protein source, and timing of intake are important in mediating the anabolic effects of amino acids on skeletal muscle and must be considered within the context of evaluating the reported efficacy of long-term studies investigating protein supplementation as part of a dietary strategy to promote lean mass accretion and/or prevent lean mass loss. Current research suggests that dietary protein supplementation can augment resistance exercise-mediated gains in skeletal muscle mass and strength and can preserve skeletal muscle mass during periods of diet-induced energy restriction. Perhaps less appreciated, protein supplementation can augment resistance training-mediated gains in skeletal muscle mass even in individuals habitually consuming 'adequate' (i.e., >0.8 g kg⁻¹ day⁻¹) protein. Additionally, overfeeding energy with moderate to high-protein intake (15-25 % protein or 1.8-3.0 g kg⁻¹ day⁻¹) is associated with lean, but not fat mass accretion, when compared to overfeeding energy with low protein intake (5 % protein or ~0.68 g kg⁻¹ day⁻¹). Amino acids represent primary nutrient regulators of skeletal muscle anabolism, capable of enhancing lean mass accretion with resistance exercise and attenuating the loss of lean mass during periods of energy deficit, although factors such as protein dose, protein source, and timing of intake are likely important in mediating these effects.

  9. Construction and use of a Cupriavidus necator H16 soluble hydrogenase promoter (PSH fusion to gfp (green fluorescent protein

    Directory of Open Access Journals (Sweden)

    Bat-Erdene Jugder

    2016-07-01

    Full Text Available Hydrogenases are metalloenzymes that reversibly catalyse the oxidation or production of molecular hydrogen (H2. Amongst a number of promising candidates for application in the oxidation of H2 is a soluble [Ni–Fe] uptake hydrogenase (SH produced by Cupriavidus necator H16. In the present study, molecular characterisation of the SH operon, responsible for functional SH synthesis, was investigated by developing a green fluorescent protein (GFP reporter system to characterise PSH promoter activity using several gene cloning approaches. A PSH promoter-gfp fusion was successfully constructed and inducible GFP expression driven by the PSH promoter under de-repressing conditions in heterotrophic growth media was demonstrated in the recombinant C. necator H16 cells. Here we report the first successful fluorescent reporter system to study PSH promoter activity in C. necator H16. The fusion construct allowed for the design of a simple screening assay to evaluate PSH activity. Furthermore, the constructed reporter system can serve as a model to develop a rapid fluorescent based reporter for subsequent small-scale process optimisation experiments for SH expression.

  10. Constraints on lateral gene transfer in promoting fimbrial usher protein diversity and function.

    Science.gov (United States)

    Stubenrauch, Christopher J; Dougan, Gordon; Lithgow, Trevor; Heinz, Eva

    2017-11-01

    Fimbriae are long, adhesive structures widespread throughout members of the family Enterobacteriaceae. They are multimeric extrusions, which are moved out of the bacterial cell through an integral outer membrane protein called usher. The complex folding mechanics of the usher protein were recently revealed to be catalysed by the membrane-embedded translocation and assembly module (TAM). Here, we examine the diversity of usher proteins across a wide range of extraintestinal (ExPEC) and enteropathogenic (EPEC) Escherichia coli , and further focus on a so far undescribed chaperone-usher system, with this usher referred to as UshC. The fimbrial system containing UshC is distributed across a discrete set of EPEC types, including model strains like E2348/67, as well as ExPEC ST131, currently the most prominent multi-drug-resistant uropathogenic E. coli strain worldwide. Deletion of the TAM from a naive strain of E. coli results in a drastic time delay in folding of UshC, which can be observed for a protein from EPEC as well as for two introduced proteins from related organisms, Yersinia and Enterobacter We suggest that this models why the TAM machinery is essential for efficient folding of proteins acquired via lateral gene transfer. © 2017 The Authors.

  11. Myostatin promotes distinct responses on protein metabolism of skeletal and cardiac muscle fibers of rodents

    Directory of Open Access Journals (Sweden)

    L.H. Manfredi

    2017-10-01

    Full Text Available Myostatin is a novel negative regulator of skeletal muscle mass. Myostatin expression is also found in heart in a much less extent, but it can be upregulated in pathological conditions, such as heart failure. Myostatin may be involved in inhibiting protein synthesis and/or increasing protein degradation in skeletal and cardiac muscles. Herein, we used cell cultures and isolated muscles from rats to determine protein degradation and synthesis. Muscles incubated with myostatin exhibited an increase in proteolysis with an increase of Atrogin-1, MuRF1 and LC3 genes. Extensor digitorum longus muscles and C2C12 myotubes exhibited a reduction in protein turnover. Cardiomyocytes showed an increase in proteolysis by activating autophagy and the ubiquitin proteasome system, and a decrease in protein synthesis by decreasing P70S6K. The effect of myostatin on protein metabolism is related to fiber type composition, which may be associated to the extent of atrophy mediated effect of myostatin on muscle.

  12. A secreted Salmonella protein induces a proinflammatory response in epithelial cells, which promotes neutrophil migration

    OpenAIRE

    Lee, Catherine A.; Silva, Milton; Siber, Andrew M.; Kelly, Aaron J.; Galyov, Edouard; McCormick, Beth A.

    2000-01-01

    In response to Salmonella typhimurium, the intestinal epithelium generates an intense inflammatory response consisting largely of polymorphonuclear leukocytes (neutrophils, PMN) migrating toward and ultimately across the epithelial monolayer into the intestinal lumen. It has been shown that bacterial-epithelial cell interactions elicit the production of inflammatory regulators that promote transepithelial PMN migration. Although S. typhimurium can enter intestinal ...

  13. The cancer-promoting gene fatty acid-binding protein 5 (FABP5) is epigenetically regulated during human prostate carcinogenesis.

    Science.gov (United States)

    Kawaguchi, Koichiro; Kinameri, Ayumi; Suzuki, Shunsuke; Senga, Shogo; Ke, Youqiang; Fujii, Hiroshi

    2016-02-15

    FABPs (fatty-acid-binding proteins) are a family of low-molecular-mass intracellular lipid-binding proteins consisting of ten isoforms. FABPs are involved in binding and storing hydrophobic ligands such as long-chain fatty acids, as well as transporting these ligands to the appropriate compartments in the cell. FABP5 is overexpressed in multiple types of tumours. Furthermore, up-regulation of FABP5 is strongly associated with poor survival in triple-negative breast cancer. However, the mechanisms underlying the specific up-regulation of the FABP5 gene in these cancers remain poorly characterized. In the present study, we determined that FABP5 has a typical CpG island around its promoter region. The DNA methylation status of the CpG island in the FABP5 promoter of benign prostate cells (PNT2), prostate cancer cells (PC-3, DU-145, 22Rv1 and LNCaP) and human normal or tumour tissue was assessed by bisulfite sequencing analysis, and then confirmed by COBRA (combined bisulfite restriction analysis) and qAMP (quantitative analysis of DNA methylation using real-time PCR). These results demonstrated that overexpression of FABP5 in prostate cancer cells can be attributed to hypomethylation of the CpG island in its promoter region, along with up-regulation of the direct trans-acting factors Sp1 (specificity protein 1) and c-Myc. Together, these mechanisms result in the transcriptional activation of FABP5 expression during human prostate carcinogenesis. Importantly, silencing of Sp1, c-Myc or FABP5 expression led to a significant decrease in cell proliferation, indicating that up-regulation of FABP5 expression by Sp1 and c-Myc is critical for the proliferation of prostate cancer cells. © 2016 Authors; published by Portland Press Limited.

  14. Protein arginine methyltransferase 5 functions as an epigenetic activator of the androgen receptor to promote prostate cancer cell growth.

    Science.gov (United States)

    Deng, X; Shao, G; Zhang, H-T; Li, C; Zhang, D; Cheng, L; Elzey, B D; Pili, R; Ratliff, T L; Huang, J; Hu, C-D

    2017-03-02

    Protein arginine methyltransferase 5 (PRMT5) is an emerging epigenetic enzyme that mainly represses transcription of target genes via symmetric dimethylation of arginine residues on histones H4R3, H3R8 and H2AR3. Accumulating evidence suggests that PRMT5 may function as an oncogene to drive cancer cell growth by epigenetic inactivation of several tumor suppressors. Here, we provide evidence that PRMT5 promotes prostate cancer cell growth by epigenetically activating transcription of the androgen receptor (AR) in prostate cancer cells. Knockdown of PRMT5 or inhibition of PRMT5 by a specific inhibitor reduces the expression of AR and suppresses the growth of multiple AR-positive, but not AR-negative, prostate cancer cells. Significantly, knockdown of PRMT5 in AR-positive LNCaP cells completely suppresses the growth of xenograft tumors in mice. Molecular analysis reveals that PRMT5 binds to the proximal promoter region of the AR gene and contributes mainly to the enriched symmetric dimethylation of H4R3 in the same region. Mechanistically, PRMT5 is recruited to the AR promoter by its interaction with Sp1, the major transcription factor responsible for AR transcription, and forms a complex with Brg1, an ATP-dependent chromatin remodeler, on the proximal promoter region of the AR gene. Furthermore, PRMT5 expression in prostate cancer tissues is significantly higher than that in benign prostatic hyperplasia tissues, and PRMT5 expression correlates positively with AR expression at both the protein and mRNA levels. Taken together, our results identify PRMT5 as a novel epigenetic activator of AR in prostate cancer. Given that inhibiting AR transcriptional activity or androgen synthesis remains the major mechanism of action for most existing anti-androgen agents, our findings also raise an interesting possibility that targeting PRMT5 may represent a novel approach for prostate cancer treatment by eliminating AR expression.

  15. Phage annealing proteins promote oligonucleotide-directed mutagenesis in Escherichia coli and mouse ES cells

    Directory of Open Access Journals (Sweden)

    Muyrers Joep PP

    2003-01-01

    Full Text Available Abstract Background The phage protein pairs, RecE/RecT from Rac or Redα/Redβ from λ, initiate efficient double strand break repair (DSBR in Escherichia coli that has proven very useful for DNA engineering. These phage pairs initiate DSBR either by annealing or by another mechanism that is not defined. Results Here we report that these proteins also mediate single strand oligonucleotide repair (ssOR at high efficiencies. The ssOR activity, unlike DSBR, does not require a phage exonuclease (RecE or Redα but only requires a phage annealing protein (RecT or Redβ. Notably, the P22 phage annealing protein Erf, which does not mediate the same DSBR reactions, also delivers ssOR activity. By altering aspects of the oligonucleotides, we document length and design parameters that affect ssOR efficiency to show a simple relationship to homologies either side of the repair site. Notably, ssOR shows strand bias. Oligonucleotides that can prime lagging strand replication deliver more ssOR than their leading complements. This suggests a model in which the annealing proteins hybridize the oligonucleotides to single stranded regions near the replication fork. We also show that ssOR is a highly efficient way to engineer BACs and can be detected in a eukaryotic cell upon expression of a phage annealing protein. Conclusion Phage annealing proteins can initiate the recombination of single stranded oligonucleotides into endogenous targets in Escherichia coli at very high efficiencies. This expands the repertoire of useful DNA engineering strategies, shows promise for applications in eukaryotic cells, and has implications for the unanswered questions regarding DSBR mediated by RecE/RecT and Redα/Redβ.

  16. Conformational co-dependence between Plasmodium berghei LCCL proteins promotes complex formation and stability.

    Science.gov (United States)

    Saeed, Sadia; Tremp, Annie Z; Dessens, Johannes T

    2012-10-01

    Malaria parasites express a conserved family of LCCL-lectin adhesive-like domain proteins (LAPs) that have essential functions in sporozoite transmission. In Plasmodium falciparum all six family members are expressed in gametocytes and form a multi-protein complex. Intriguingly, knockout of P. falciparum LCCL proteins adversely affects expression of other family members at protein, but not at mRNA level, a phenomenon termed co-dependent expression. Here, we investigate this in Plasmodium berghei by crossing a PbLAP1 null mutant parasite with a parasite line expressing GFP-tagged PbLAP3 that displays strong fluorescence in gametocytes. Selected and validated double mutants show normal synthesis and subcellular localization of PbLAP3::GFP. However, GFP-based fluorescence is dramatically reduced without PbLAP1 present, indicating that PbLAP1 and PbLAP3 interact. Moreover, absence of PbLAP1 markedly reduces the half-life of PbLAP3, consistent with a scenario of misfolding. These findings unveil a potential mechanism of conformational interdependence that facilitates assembly and stability of the functional LCCL protein complex. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. The metastasis-promoting S100A4 protein confers neuroprotection in brain injury

    DEFF Research Database (Denmark)

    Dmytriyeva, Oksana; Pankratova, Stanislava; Owczarek, Sylwia

    2012-01-01

    and downregulating the neuroprotective protein metallothionein I+II. We identify two neurotrophic motifs in S100A4 and show that these motifs are neuroprotective in animal models of brain trauma. Finally, we find that S100A4 rescues neurons via the Janus kinase/STAT pathway and, partially, the interleukin-10......Identification of novel pro-survival factors in the brain is paramount for developing neuroprotective therapies. The multifunctional S100 family proteins have important roles in many human diseases and are also upregulated by brain injury. However, S100 functions in the nervous system remain...... unclear. Here we show that the S100A4 protein, mostly studied in cancer, is overexpressed in the damaged human and rodent brain and released from stressed astrocytes. Genetic deletion of S100A4 exacerbates neuronal loss after brain trauma or excitotoxicity, increasing oxidative cell damage...

  18. Human recombinant cementum attachment protein (hrPTPLa/CAP) promotes hydroxyapatite crystal formation in vitro and bone healing in vivo.

    Science.gov (United States)

    Montoya, Gonzalo; Arenas, Jesús; Romo, Enrique; Zeichner-David, Margarita; Alvarez, Marco; Narayanan, A Sampath; Velázquez, Ulises; Mercado, Gabriela; Arzate, Higinio

    2014-12-01

    Cementum extracellular matrix is similar to other mineralized tissues; however, this unique tissue contains molecules only present in cementum. A cDNA of these molecules, cementum attachment protein (hrPTPLa/CAP) was cloned and expressed in a prokaryotic system. This molecule is an alternative splicing of protein tyrosine phosphatase-like A (PTPLa). In this study, we wanted to determine the structural and functional characteristics of this protein. Our results indicate that hrPTPLa/CAP contains a 43.2% α-helix, 8.9% β-sheet, 2% β-turn and 45.9% random coil secondary structure. Dynamic light scattering shows that this molecule has a size distribution of 4.8 nm and aggregates as an estimated mass of 137 kDa species. AFM characterization and FE-SEM studies indicate that this protein self-assembles into nanospheres with sizes ranging from 7.0 to 27 nm in diameter. Functional studies demonstrate that hrPTPLa/CAP promotes hydroxyapatite crystal nucleation: EDS analysis revealed that hrPTPLa/CAP-induced crystals had a 1.59 ± 0.06 Ca/P ratio. Further confirmation with MicroRaman spectrometry and TEM confirm the presence of hydroxyapatite. In vivo studies using critical-size defects in rat cranium showed that hrPTPLa/CAP promoted 73% ± 2.19% and 87% ± 1.97% new bone formation at 4 and 8 weeks respectively. Although originally identified in cementum, PTPLa/CAP is very effective at inducing bone repair and healing and therefore this novel molecule has a great potential to be used for mineralized tissue bioengineering and tissue regeneration. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Kosmotropic anions promote conversion of recombinant prion protein into a PrPSc-like misfolded form.

    Directory of Open Access Journals (Sweden)

    Rodrigo Diaz-Espinoza

    Full Text Available Prions are self-propagating proteins involved in transmissible spongiform encephalopaties in mammals. An aberrant conformation with amyloid-like features of a cell surface protein, termed prion protein (PrP, is thought to be the essential component of the infectious particle, though accessory co-factor molecules such as lipids and nucleotides may be involved. The cellular co-factors and environmental conditions implicated in PrP misfolding are not completely understood. To address this issue, several studies have been done inducing misfolding of recombinant PrP (recPrP into classical amyloid structures using partially denaturing conditions. In this work, we report that misfolding of recPrP into PrP(Sc-like aggregates can be induced by simply incubating the protein in the presence of kosmotropic salts at concentrations that are known to retain or increase the stability of the protein. We used a simple experimental reaction (protein, buffer and salts submitted to agitation/incubation cycles at physiological temperature and pH. The formation of protease resistant-recPrP was time and salt-concentration dependent and required the presence of kosmotropic anions such as F(- or SO(4(-2. The molecular weights of the protease resistant recPrP fragments are reminiscent of those found in degradation assays of bona fide PrP(Sc. The aggregates also exhibited PrP(Sc-like ultrastructural features including rod-shape morphology under electron microscope, high beta-sheet content and thioflavin-T positive signal. The formation of recPrP aggregates with PrP(Sc biochemical features under conditions closer to physiological in the absence of organic co-factor molecules provides a simple setup that may prove helpful to understand the molecular mechanism of PrP misfolding.

  20. Specific degradation of the mucus adhesion-promoting protein (MapA) of Lactobacillus reuteri to an antimicrobial peptide.

    Science.gov (United States)

    Bøhle, Liv Anette; Brede, Dag Anders; Diep, Dzung B; Holo, Helge; Nes, Ingolf F

    2010-11-01

    The intestinal flora of mammals contains lactic acid bacteria (LAB) that may provide positive health effects for the host. Such bacteria are referred to as probiotic bacteria. From a pig, we have isolated a Lactobacillus reuteri strain that produces an antimicrobial peptide (AMP). The peptide was purified and characterized, and it was unequivocally shown that the AMP was a well-defined degradation product obtained from the mucus adhesion-promoting protein (MapA); it was therefore termed AP48-MapA. This finding demonstrates how large proteins might inherit unexpected pleiotropic functions by conferring antimicrobial capacities on the producer. The MapA/AP48-MapA system is the first example where a large protein of an intestinal LAB is shown to give rise to such an AMP. It is also of particular interest that the protein that provides this AMP is associated with the binding of the bacterium producing it to the surface/lining of the gut. This finding gives us new perspective on how some probiotic bacteria may successfully compete in this environment and thereby contribute to a healthy microbiota.

  1. Specific Degradation of the Mucus Adhesion-Promoting Protein (MapA) of Lactobacillus reuteri to an Antimicrobial Peptide ▿

    Science.gov (United States)

    Bøhle, Liv Anette; Brede, Dag Anders; Diep, Dzung B.; Holo, Helge; Nes, Ingolf F.

    2010-01-01

    The intestinal flora of mammals contains lactic acid bacteria (LAB) that may provide positive health effects for the host. Such bacteria are referred to as probiotic bacteria. From a pig, we have isolated a Lactobacillus reuteri strain that produces an antimicrobial peptide (AMP). The peptide was purified and characterized, and it was unequivocally shown that the AMP was a well-defined degradation product obtained from the mucus adhesion-promoting protein (MapA); it was therefore termed AP48-MapA. This finding demonstrates how large proteins might inherit unexpected pleiotropic functions by conferring antimicrobial capacities on the producer. The MapA/AP48-MapA system is the first example where a large protein of an intestinal LAB is shown to give rise to such an AMP. It is also of particular interest that the protein that provides this AMP is associated with the binding of the bacterium producing it to the surface/lining of the gut. This finding gives us new perspective on how some probiotic bacteria may successfully compete in this environment and thereby contribute to a healthy microbiota. PMID:20833791

  2. LncRNA NEAT1 promotes autophagy in MPTP-induced Parkinson's disease through stabilizing PINK1 protein.

    Science.gov (United States)

    Yan, Wang; Chen, Zhao-Ying; Chen, Jia-Qi; Chen, Hui-Min

    2018-02-19

    Long non-coding RNA nuclear paraspeckle assembly transcript 1 (lncRNA NEAT1) was found to be closely related to the pathological changes in brain and nervous system. However, the role of NEAT1 and its potential mechanism in Parkinson's disease (PD) largely remain uncharacterized. In this study, PD mouse model was established by intraperitoneal injection of MPTP. The numbers of TH + neurons, NEAT1 expression and the level of PINK1, LC3-II, LC3-I protein were assessed in PD mice. SH-SY5Y cells were treated with MPP + as PD cell model. RNA pull-down assay was used to identify the interaction between NEAT1 and PINK1 in vitro. The endogenous expression of NEAT1 was modified by lentiviral vector carrying interference sequence for NEAT1 in vivo. The numbers of TH + neurons significantly decreased in PD mice compared with the control. The expressions of NEAT1, PINK1 protein and LC3-II/LC3-I level were increased by MPTP in vitro and in vivo. Moreover, NEAT1 positively regulated the protein level of PINK1 through inhibition of PINK1 protein degradation. And NEAT1 mediated the effects of MPP + on SH-SY5Y cells through stabilization of PINK1 protein. The results of in vivo experiments revealed that NEAT1 knockdown could effectively suppress MPTP-induced autophagy in vivo that alleviated dopaminergic neuronal injury. LncRNA NEAT1 promoted the MPTP-induced autophagy in PD through stabilization of PINK1 protein. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Tissue-specific interactions between nuclear proteins and the aminopeptidase N promoter

    DEFF Research Database (Denmark)

    Kärnström, U; Sjöström, H; Norén, O

    1991-01-01

    Aminopeptidase N/CD13 is a metallopeptidase found in many tissues. Aminopeptidase N activity is high in the small intestinal mucosa, moderate in the liver, and low in the spleen. Using DNase I footprinting and electrophoretic mobility shift assays with nuclear extracts from these tissues, three cis...... elements (DF, LF-B1, UF) were identified in the aminopeptidase N promoter. The DF region (-53 to -30) interacts with the ubiquitously expressed transcription factor Sp1. The LF-B1 region (-85 to -58) interacts with the liver transcription factor LF-B1 (HNF-1) which was detected as well in nuclei from small...... intestinal mucosa. The UF region (-112 to -90) interacts with nuclear factors which seem to be expressed differentially in the liver and the small intestine. Transfection of promoter deletions into HepG2 cells showed that the LF-B1 region is necessary for high expression of the aminopeptidase N gene in liver...

  4. Adaptor protein GRB2 promotes Src tyrosine kinase activation and podosomal organization by protein-tyrosine phosphatase ϵ in osteoclasts.

    Science.gov (United States)

    Levy-Apter, Einat; Finkelshtein, Eynat; Vemulapalli, Vidyasiri; Li, Shawn S-C; Bedford, Mark T; Elson, Ari

    2014-12-26

    The non-receptor isoform of protein-tyrosine phosphatase ϵ (cyt-PTPe) supports adhesion of bone-resorbing osteoclasts by activating Src downstream of integrins. Loss of cyt-PTPe reduces Src activity in osteoclasts, reduces resorption of mineralized matrix both in vivo and in cell culture, and induces mild osteopetrosis in young female PTPe KO mice. Activation of Src by cyt-PTPe is dependent upon this phosphatase undergoing phosphorylation at its C-terminal Tyr-638 by partially active Src. To understand how cyt-PTPe activates Src, we screened 73 Src homology 2 (SH2) domains for binding to Tyr(P)-638 of cyt-PTPe. The SH2 domain of GRB2 bound Tyr(P)-638 of cyt-PTPe most prominently, whereas the Src SH2 domain did not bind at all, suggesting that GRB2 may link PTPe with downstream molecules. Further studies indicated that GRB2 is required for activation of Src by cyt-PTPe in osteoclast-like cells (OCLs) in culture. Overexpression of GRB2 in OCLs increased activating phosphorylation of Src at Tyr-416 and of cyt-PTPe at Tyr-638; opposite results were obtained when GRB2 expression was reduced by shRNA or by gene inactivation. Phosphorylation of cyt-PTPe at Tyr-683 and its association with GRB2 are integrin-driven processes in OCLs, and cyt-PTPe undergoes autodephosphorylation at Tyr-683, thus limiting Src activation by integrins. Reduced GRB2 expression also reduced the ability of bone marrow precursors to differentiate into OCLs and reduced the fraction of OCLs in which podosomal adhesion structures assume organization typical of active, resorbing cells. We conclude that GRB2 physically links cyt-PTPe with Src and enables cyt-PTPe to activate Src downstream of activated integrins in OCLs. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. RNA-binding protein PSPC1 promotes the differentiation-dependent nuclear export of adipocyte RNAs

    DEFF Research Database (Denmark)

    Wang, Jiexin; Rajbhandari, Prashant; Damianov, Andrey

    2017-01-01

    A highly orchestrated gene expression program establishes the properties that define mature adipocytes, but the contribution of posttranscriptional factors to the adipocyte phenotype is poorly understood. Here we have shown that the RNA-binding protein PSPC1, a component of the paraspeckle complex...

  6. Identification of evolutionarily invariant sequences in the protein C gene promoter

    NARCIS (Netherlands)

    Spek, C. A.; Bertina, R. M.; Reitsma, P. H.

    1998-01-01

    Recent studies on human protein C gene expression have revealed the presence of three transcription factor binding sites in close proximity to the transcription start site. Binding sites for the liver-enriched hepatocyte nuclear factors 1 and 3 (HNF-1 and HNF-3, respectively) are located immediately

  7. Enzyme-treated asparagus extract promotes expression of heat shock protein and exerts antistress effects.

    Science.gov (United States)

    Ito, Tomohiro; Maeda, Takahiro; Goto, Kazunori; Miura, Takehito; Wakame, Koji; Nishioka, Hiroshi; Sato, Atsuya

    2014-03-01

    A novel enzyme-treated asparagus extract (ETAS) has been developed as a functional material produced from asparagus stem. Studies were conducted to determine the effect of ETAS on heat shock protein 70 (HSP70) expression and alleviation of stress. HeLa cells were treated with ETAS, and HSP70 mRNA and protein levels were measured using a reverse transcription-polymerase chain reaction (RT-PCR) assay and an enzyme-linked immunosorbent assay (ELISA), respectively. ETAS showed significant increases in HSP70 mRNA at more than 0.125 mg/mL and the protein at more than 1.0 mg/mL. The antistress effect was evaluated in a murine sleep-deprivation model. A sleep-deprivation stress load resulted in elevation of blood corticosterone and lipid peroxide concentrations, while supplementation with ETAS at 200 and 1000 mg/kg body weight was associated with significantly reduced levels of both stress markers, which were in the normal range. The HSP70 protein expression level in mice subjected to sleep-deprivation stress and supplemented with ETAS was significantly enhanced in stomach, liver, and kidney, compared to ETAS-untreated mice. A preliminary and small-sized human study was conducted among healthy volunteers consuming up to 150 mg/d of ETAS daily for 7 d. The mRNA expression of HSP70 in peripheral leukocytes was significantly elevated at intakes of 100 or 150 mg/d, compared to their baseline levels. Since HSP70 is known to be a stress-related protein and its induction leads to cytoprotection, the present results suggest that ETAS might exert antistress effects under stressful conditions, resulting from enhancement of HSP70 expression. © 2014 Institute of Food Technologists®

  8. Protein disulfide isomerases in the endoplasmic reticulum promote anchorage-independent growth of breast cancer cells.

    Science.gov (United States)

    Wise, Randi; Duhachek-Muggy, Sara; Qi, Yue; Zolkiewski, Michal; Zolkiewska, Anna

    2016-06-01

    Metastatic breast cancer cells are exposed to stress of detachment from the extracellular matrix (ECM). Cultured breast cancer cells that survive this stress and are capable of anchorage-independent proliferation form mammospheres. The purpose of this study was to explore a link between mammosphere growth, ECM gene expression, and the protein quality control system in the endoplasmic reticulum (ER). We compared the mRNA and protein levels of ER folding factors in SUM159PT and MCF10DCIS.com breast cancer cells grown as mammospheres versus adherent conditions. Publicly available gene expression data for mammospheres formed by primary breast cancer cells and for circulating tumor cells (CTCs) were analyzed to assess the status of ECM/ER folding factor genes in clinically relevant samples. Knock-down of selected protein disulfide isomerase (PDI) family members was performed to examine their roles in SUM159PT mammosphere growth. We found that cells grown as mammospheres had elevated expression of ECM genes and ER folding quality control genes. CTC gene expression data for an index patient indicated that upregulation of ECM and ER folding factor genes occurred at the time of acquired therapy resistance and disease progression. Knock-down of PDI, ERp44, or ERp57, three members of the PDI family with elevated protein levels in mammospheres, in SUM159PT cells partially inhibited the mammosphere growth. Thus, breast cancer cell survival and growth under detachment conditions require enhanced assistance of the ER protein folding machinery. Targeting ER folding factors, in particular members of the PDI family, may improve the therapeutic outcomes in metastatic breast cancer.

  9. E11/Podoplanin Protein Stabilization Through Inhibition of the Proteasome Promotes Osteocyte Differentiation in Murine in Vitro Models.

    Science.gov (United States)

    Staines, Katherine A; Prideaux, Matt; Allen, Steve; Buttle, David J; Pitsillides, Andrew A; Farquharson, Colin

    2016-06-01

    The transmembrane glycoprotein E11 is considered critical in early osteoblast-osteocyte transitions (osteocytogenesis), however its function and regulatory mechanisms are still unknown. Using the late osteoblast MLO-A5 cell line we reveal increased E11 protein/mRNA expression (P < 0.001) concomitant with extensive osteocyte dendrite formation and matrix mineralization (P < 0.001). Transfection with E11 significantly increased mRNA levels (P < 0.001), but immunoblotting failed to detect any correlative increases in E11 protein levels, suggestive of post-translational degradation. We found that exogenous treatment of MLO-A5 and osteocytic IDG-SW3 cells with 10 μM ALLN (calpain and proteasome inhibitor) stabilized E11 protein levels and induced a profound increase in osteocytic dendrite formation (P < 0.001). Treatment with other calpain inhibitors failed to promote similar osteocytogenic changes, suggesting that these effects of ALLN rely upon its proteasome inhibitor actions. Accordingly we found that proteasome-selective inhibitors (MG132/lactacystin/ Bortezomib/Withaferin-A) produced similar dose-dependent increases in E11 protein levels in MLO-A5 and primary osteoblast cells. This proteasomal targeting was confirmed by immunoprecipitation of ubiquitinylated proteins, which included E11, and by increased levels of ubiquitinylated E11 protein upon addition of the proteasome inhibitors MG132/Bortezomib. Activation of RhoA, the small GTPase, was found to be increased concomitant with the peak in E11 levels and its downstream signaling was also observed to promote MLO-A5 cell dendrite formation. Our data indicate that a mechanism reliant upon blockade of proteasome-mediated E11 destabilization contributes to osteocytogenesis and that this may involve downstream targeting of RhoA. This work adds to our mechanistic understanding of the factors regulating bone homeostasis, which may lead to future therapeutic approaches. © 2015 The Authors. Journal of

  10. A novel type of DNA-binding protein interacts with a conserved sequence in an early nodulin ENOD12 promoter

    DEFF Research Database (Denmark)

    Christiansen, H; Hansen, A C; Vijn, I

    1996-01-01

    The pea genes PsENOD12A and PsENOD12B are expressed in the root hairs shortly after infection with the nitrogen-fixing bacterium Rhizobium leguminosarum bv. viciae or after application of purified Nod factors. A 199 bp promoter fragment of the PsENOD12B gene contains sufficient information for Nod...... factor-induced tissue-specific expression. We have isolated a Vicia sativa cDNA encoding a 1641 amino acid protein, ENBP1, that interacts with the 199 bp ENOD12 promoter. Two different DNA-binding domains were identified in ENBP1. A domain containing six AT-hooks interacts specifically with an AT...... of the ENBP1 transcript in cells expressing ENOD12 strongly suggest that ENBP1 is a transcription factor involved in the regulation of ENOD12. Finally, the C-terminal region of ENBP1 shows strong homology to a protein from rat that is specifically expressed in testis tissue. Udgivelsesdato: 1996-Dec...

  11. The Host E3-Ubiquitin Ligase TRIM6 Ubiquitinates the Ebola Virus VP35 Protein and Promotes Virus Replication.

    Science.gov (United States)

    Bharaj, Preeti; Atkins, Colm; Luthra, Priya; Giraldo, Maria Isabel; Dawes, Brian E; Miorin, Lisa; Johnson, Jeffrey R; Krogan, Nevan J; Basler, Christopher F; Freiberg, Alexander N; Rajsbaum, Ricardo

    2017-09-15

    Ebola virus (EBOV), a member of the Filoviridae family, is a highly pathogenic virus that causes severe hemorrhagic fever in humans and is responsible for epidemics throughout sub-Saharan, central, and West Africa. The EBOV genome encodes VP35, an important viral protein involved in virus replication by acting as an essential cofactor of the viral polymerase as well as a potent antagonist of the host antiviral type I interferon (IFN-I) system. By using mass spectrometry analysis and coimmunoprecipitation assays, we show here that VP35 is ubiquitinated on lysine 309 (K309), a residue located on its IFN antagonist domain. We also found that VP35 interacts with TRIM6, a member of the E3-ubiquitin ligase tripartite motif (TRIM) family. We recently reported that TRIM6 promotes the synthesis of unanchored K48-linked polyubiquitin chains, which are not covalently attached to any protein, to induce efficient antiviral IFN-I-mediated responses. Consistent with this notion, VP35 also associated noncovalently with polyubiquitin chains and inhibited TRIM6-mediated IFN-I induction. Intriguingly, we also found that TRIM6 enhances EBOV polymerase activity in a minigenome assay and TRIM6 knockout cells have reduced replication of infectious EBOV, suggesting that VP35 hijacks TRIM6 to promote EBOV replication through ubiquitination. Our work provides evidence that TRIM6 is an important host cellular factor that promotes EBOV replication, and future studies will focus on whether TRIM6 could be targeted for therapeutic intervention against EBOV infection. IMPORTANCE EBOV belongs to a family of highly pathogenic viruses that cause severe hemorrhagic fever in humans and other mammals with high mortality rates (40 to 90%). Because of its high pathogenicity and lack of licensed antivirals and vaccines, EBOV is listed as a tier 1 select-agent risk group 4 pathogen. An important mechanism for the severity of EBOV infection is its suppression of innate immune responses. The EBOV VP35

  12. Paralogous SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes differentially regulate leaf initiation and reproductive phase change in petunia.

    Science.gov (United States)

    Preston, Jill C; Jorgensen, Stacy A; Orozco, Rebecca; Hileman, Lena C

    2016-02-01

    Duplicated petunia clade-VI SPL genes differentially promote the timing of inflorescence and flower development, and leaf initiation rate. The timing of plant reproduction relative to favorable environmental conditions is a critical component of plant fitness, and is often associated with variation in plant architecture and habit. Recent studies have shown that overexpression of the microRNA miR156 in distantly related annual species results in plants with perennial characteristics, including late flowering, weak apical dominance, and abundant leaf production. These phenotypes are largely mediated through the negative regulation of a subset of genes belonging to the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) family of transcription factors. In order to determine how and to what extent paralogous SPL genes have partitioned their roles in plant growth and development, we functionally characterized petunia clade-VI SPL genes under different environmental conditions. Our results demonstrate that PhSBP1and PhSBP2 differentially promote discrete stages of the reproductive transition, and that PhSBP1, and possibly PhCNR, accelerates leaf initiation rate. In contrast to the closest homologs in annual Arabidopsis thaliana and Mimulus guttatus, PhSBP1 and PhSBP2 transcription is not mediated by the gibberellic acid pathway, but is positively correlated with photoperiod and developmental age. The developmental functions of clade-VI SPL genes have, thus, evolved following both gene duplication and speciation within the core eudicots, likely through differential regulation and incomplete sub-functionalization.

  13. HNRNPLL stabilizes mRNAs for DNA replication proteins and promotes cell cycle progression in colorectal cancer cells.

    Science.gov (United States)

    Sakuma, Keiichiro; Sasaki, Eiichi; Kimura, Kenya; Komori, Koji; Shimizu, Yasuhiro; Yatabe, Yasushi; Aoki, Masahiro

    2018-06-05

    HNRNPLL (heterogeneous nuclear ribonucleoprotein L-like), an RNA-binding protein that regulates alternative splicing of pre-mRNAs, has been shown to regulate differentiation of lymphocytes, as well as metastasis of colorectal cancer cells. Here we show that HNRNPLL promotes cell cycle progression and hence proliferation of colorectal cancer cells. Functional annotation analysis of those genes whose expression levels were changed by three-fold or more in RNA sequencing analysis between SW480 cells overexpressing HNRNPLL and those knocked down for HNRNPLL revealed enrichment of DNA replication-related genes by HNRNPLL overexpression. Among 13 genes detected in the DNA replication pathway, PCNA, RFC3, and FEN1 showed reproducible upregulation by HNRNPLL overexpression both at mRNA and protein levels in SW480 and HT29 cells. Importantly, knockdown of any of these genes alone suppressed the proliferation promoting effect induced by HNRNPLL overexpression. RNA-immunoprecipitation assay presented a binding of FLAG-tagged HNRNPLL to mRNA of these genes, and HNRNPLL overexpression significantly suppressed the downregulation of these genes during 12 hours of actinomycin D treatment, suggesting a role of HNRNPLL in mRNA stability. Finally, analysis of a public RNA sequencing dataset of clinical samples suggested a link between overexpression of HNRNPLL and that of PCNA, RFC3, and FEN1. This link was further supported by immunohistochemistry of colorectal cancer clinical samples, whereas expression of CDKN1A, which is known to inhibit the cooperative function of PCNA, RFC3, and FEN1, was negatively associated with HNRNPLL expression. These results indicate that HNRNPLL stabilizes mRNAs encoding regulators of DNA replication and promotes colorectal cancer cell proliferation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Myeloid-Related Protein 14 Promotes Inflammation and Injury in Meningitis

    DEFF Research Database (Denmark)

    Wache, Christina; Klein, Matthias; Andersen, Christian Østergaard

    2015-01-01

    BACKGROUND:  Neutrophilic inflammation often persists for days despite effective antibiotic treatment and contributes to brain damage in bacterial meningitis. We propose here that myeloid-related protein 14 (MRP14), an abundant cytosolic protein in myeloid cells, acts as an endogenous danger signal......, driving inflammation and aggravating tissue injury. METHODS:  The release pattern of MRP14 was analyzed in human and murine cerebrospinal fluid (CSF), as well as in isolated neutrophils. Its functional role was assessed in a mouse meningitis model, using MRP14-deficient mice. RESULTS:  We detected large...... quantities of MRP14 in CSF specimens from patients and mice with pneumococcal meningitis. Immunohistochemical analyses and a cell-depletion approach indicated neutrophils as the major source of MRP14. In a meningitis model, MRP14-deficient mice showed a better resolution of inflammation during antibiotic...

  15. Molecular mechanism by which AMP-activated protein kinase activation promotes glycogen accumulation in muscle

    DEFF Research Database (Denmark)

    Hunter, Roger W; Treebak, Jonas Thue; Wojtaszewski, Jørgen

    2011-01-01

    AND METHODS We recently generated knock-in mice in which wild-type muscle GS was replaced by a mutant (Arg582Ala) that could not be activated by glucose-6-phosphate (G6P), but possessed full catalytic activity and could still be activated normally by dephosphorylation. Muscles from GS knock-in or transgenic......-insensitive GS knock-in mice, although AICAR-stimulated AMPK activation, glucose transport, and total glucose utilization were normal. CONCLUSIONS We provide genetic evidence that AMPK activation promotes muscle glycogen accumulation by allosteric activation of GS through an increase in glucose uptake...

  16. Flavodiiron Proteins Promote Fast and Transient O2 Photoreduction in Chlamydomonas.

    Science.gov (United States)

    Chaux, Frédéric; Burlacot, Adrien; Mekhalfi, Malika; Auroy, Pascaline; Blangy, Stéphanie; Richaud, Pierre; Peltier, Gilles

    2017-07-01

    During oxygenic photosynthesis, the reducing power generated by light energy conversion is mainly used to reduce carbon dioxide. In bacteria and archae, flavodiiron (Flv) proteins catalyze O 2 or NO reduction, thus protecting cells against oxidative or nitrosative stress. These proteins are found in cyanobacteria, mosses, and microalgae, but have been lost in angiosperms. Here, we used chlorophyll fluorescence and oxygen exchange measurement using [ 18 O]-labeled O 2 and a membrane inlet mass spectrometer to characterize Chlamydomonas reinhardtii flvB insertion mutants devoid of both FlvB and FlvA proteins. We show that Flv proteins are involved in a photo-dependent electron flow to oxygen, which drives most of the photosynthetic electron flow during the induction of photosynthesis. As a consequence, the chlorophyll fluorescence patterns are strongly affected in flvB mutants during a light transient, showing a lower PSII operating yield and a slower nonphotochemical quenching induction. Photoautotrophic growth of flvB mutants was indistinguishable from the wild type under constant light, but severely impaired under fluctuating light due to PSI photo damage. Remarkably, net photosynthesis of flv mutants was higher than in the wild type during the initial hour of a fluctuating light regime, but this advantage vanished under long-term exposure, and turned into PSI photo damage, thus explaining the marked growth retardation observed in these conditions. We conclude that the C. reinhardtii Flv participates in a Mehler-like reduction of O 2 , which drives a large part of the photosynthetic electron flow during a light transient and is thus critical for growth under fluctuating light regimes. © 2017 American Society of Plant Biologists. All Rights Reserved.

  17. Seminal Plasma Proteins as Androgen Receptor Corregulators Promote Prostate Cancer Growth

    Science.gov (United States)

    2016-12-01

    protease activity of PSA [14]. Semenogelins are expressed in other male genital organs, such as the vas def - erens, epididymis, and prostate, as well...expression and secretion in prostate cancer lines stably expressing SgI. Cell extracts (A) or acetone-precipitated proteins in con - ditioned media... con - firmed this by demonstrating the failure to detect SgI signals in the conditioned medium after culturing control LNCaP with endogenous SgI and

  18. Malin decreases glycogen accumulation by promoting the degradation of protein targeting to glycogen (PTG)

    OpenAIRE

    Worby, Carolyn A.; Gentry, Matthew S.; Dixon, Jack E.

    2007-01-01

    Lafora disease (LD) is an autosomal recessive neurodegenerative disease that results in progressive myoclonus epilepsy and death. LD is caused by mutations in either the E3 ubiquitin ligase malin or the dual-specificity phosphatase laforin. A hallmark of LD is the accumulation of insoluble glycogen in the cytoplasm of cells from most tissues. Glycogen metabolism is regulated by phosphorylation of key metabolic enzymes. One regulator of this phosphorylation is protein targeting to glycogen (PT...

  19. GLP-1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy.

    Directory of Open Access Journals (Sweden)

    Shvetank Sharma

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is a known outcome of hepatosteatosis. Free fatty acids (FFA induce the unfolded protein response (UPR or endoplasmic reticulum (ER stress that may induce apoptosis. Recent data indicate ER stress to be a major player in the progression of fatty liver to more aggressive lesions. Autophagy on the other hand has been demonstrated to be protective against ER stress-induced cell death. We hypothesized that exendin-4 (GLP-1 analog treatment of fat loaded hepatocytes can reduce steatosis by autophagy which leads to reduced ER stress-related hepatocyte apoptosis.Primary human hepatocytes were loaded with saturated, cis- and trans-unsaturated fatty acids (palmitic, oleic and elaidic acid respectively. Steatosis, induced with all three fatty acids, was significantly resolved after exendin-4 treatment. Exendin-4 sustained levels of GRP78 expression in fat-loaded cells when compared to untreated fat-loaded cells alone. In contrast, CHOP (C/EBP homologous protein; the penultimate protein that leads to ER stress-related cell death was significantly decreased by exendin-4 in hepatocytes loaded with fatty acids. Finally, exendin-4 in fat loaded hepatocytes clearly promoted gene products associated with macroautophagy as measured by enhanced production of both Beclin-1 and LC3B-II, markers for autophagy; and visualized by transmission electron microscopy (TEM. Similar observations were made in mouse liver lysates after mice were fed with high fat high fructose diet and treated with a long acting GLP-1 receptor agonist, liraglutide.GLP-1 proteins appear to protect hepatocytes from fatty acid-related death by prohibition of a dysfunctional ER stress response; and reduce fatty acid accumulation, by activation of both macro-and chaperone-mediated autophagy. These findings provide a novel role for GLP-1 proteins in halting the progression of more aggressive lesions from underlying steatosis in humans afflicted with NAFLD.

  20. Anti-citrullinated protein antibodies promote apoptosis of mature human Saos-2 osteoblasts via cell-surface binding to citrullinated heat shock protein 60.

    Science.gov (United States)

    Lu, Ming-Chi; Yu, Chia-Li; Yu, Hui-Chun; Huang, Hsien-Bin; Koo, Malcolm; Lai, Ning-Sheng

    2016-01-01

    We hypothesized that anti-citrullinated protein antibodies (ACPAs) react with osteoblast surface citrullinated proteins and affect cell function, leading to joint damage in patients with rheumatoid arthritis (RA). First, we purified ACPAs by cyclic citrullinated peptide (CCP)-conjugated affinity column chromatography. The cognate antigens of ACPAs on Saos-2 cells, a sarcoma osteogenic cell line generated from human osteoblasts, were probed by ACPAs, and the reactive bands were analyzed using proteomic analyses. We found that ACPAs bind to Saos-2 cell membrane, and several protein candidates, including HSP60, were identified. We then cloned and purified recombinant heat shock protein 60 (HSP60) and citrullinated HSP60 (citHSP60) and investigated the effect of ACPAs on Saos-2 cell. We confirmed that HSP60 obtained from Saos-2 cell membrane were citrullinated and reacted with ACPAs, which induces Saos-2 cells apoptosis via binding to surface-expressed citHSP60 through Toll-like receptor 4 signaling. ACPAs promoted interleukin (IL)-6 and IL-8 expression in Saos-2 cells. Finally, sera from patients with RA and healthy controls were examined for their titers of anti-HSP60 and anti-citHSP60 antibodies using an enzyme-linked immunosorbent assay. The radiographic change in patients with RA was evaluated using the Genant-modified Sharp scoring system. Patients with RA showed higher sera titers of anti-citHSP60, but not anti-HSP60, antibodies when compared with controls. In addition, the anti-citHSP60 level was positively associated with increased joint damage in patients with RA. In conclusion, Saos-2 cell apoptosis was mediated by ACPAs via binding to cell surface-expressed citHSP60 and the titer of anti-citHSP60 in patients with RA positively associated with joint damage. Copyright © 2015 Elsevier GmbH. All rights reserved.

  1. Microfilament regulatory protein MENA increases activity of RhoA and promotes metastasis of hepatocellular carcinoma.

    Science.gov (United States)

    Lin, Ling; Yang, Xiao-Mei; Li, Jun; Zhang, Yan-Li; Qin, Wenxin; Zhang, Zhi-Gang

    2014-09-10

    Mammalian enabled (MENA), usually known as a direct regulator of microfilament polymerization and bundling, promotes metastasis in various cancers. Here we focus on the role of MENA in hepatocellular carcinoma (HCC) metastasis and the relevant mechanism from the view of RhoA activity regulation. By HCC tissue microarray analysis, we found that MENA expression was positively associated with satellite lesions (PMENA staining in HCC tissues had significantly higher rates of early recurrence in the intermediate MENA expression group. Knockdown of MENA significantly suppressed HCC cell migration and invasion in vitro, as well as their intrahepatic and distant metastasis in vivo. Knockdown of MENA also decreased filopodia and stress fibers in SMMC-7721 cells. Furthermore, a decrease of RhoA activity was detected by a pull-down assay in SMMC-7721-shMENA cells. The ROCK inhibitor, Y-27632, suppressed migration of both MENA knockdown SMMC-7721 cells and control cells, but diminished their difference. Thus, our findings suggest that MENA promotes HCC cell motility by activating RhoA. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Early Involvement of Death-Associated Protein Kinase Promoter Hypermethylation in the Carcinogenesis of Barrett's Esophageal Adenocarcinoma and Its Association with Clinical Progression

    Directory of Open Access Journals (Sweden)

    Doerthe Kuester

    2007-03-01

    Full Text Available Esophageal Barrett's adenocarcinoma (BA develops through a multistage process, which is associated with the transcriptional silencing of tumor-suppressor genes by promoter CpG island hypermethylation. In this study, we explored the promoter hypermethylation and protein expression of proapoptotic deathassociated protein kinase (DAPK during the multistep Barrett's carcinogenesis cascade. Early BA and paired samples of premalignant lesions of 61 patients were analyzed by methylation-specific polymerase chain reaction and immunohistochemistry. For the association of clinicopathological markers and protein expression, an immunohistochemical tissue microarray analysis of 66 additional BAs of advanced tumor stages was performed. Hypermethylation of DAPK promoter was detected in 20% of normal mucosa, 50% of Barrett's metaplasia, 53% of dysplasia, and 60% of adenocarcinomas, and resulted in a marked decrease in DAPK protein expression (P < .01. The loss of DAPK protein was significantly associated with advanced depth of tumor invasion and advanced tumor stages (P < .001. Moreover, the severity of reflux esophagitis correlated significantly with the hypermethylation rate of the DAPK promoter (P < .003. Thus, we consider DAPK inactivation by promoter hypermethylation as an early event in Barrett's carcinogenesis and suggest that a decreased protein expression of DAPK likely plays a role in the development and progression of BA.

  3. High-level intracellular expression of heterologous proteins in Brevibacillus choshinensis SP3 under the control of a xylose inducible promoter

    Directory of Open Access Journals (Sweden)

    D’Urzo Nunzia

    2013-02-01

    Full Text Available Abstract Background In past years research has focused on the development of alternative Gram positive bacterial expression systems to produce industrially relevant proteins. Brevibacillus choshinensis is an easy to handle non-sporulating bacterium, lacking extracellular proteases, that has been already shown to provide a high level of recombinant protein expression. One major drawback, limiting the applicability of the Brevibacillus expression system, is the absence of expression vectors based on inducible promoters. Here we used the PxylA inducible promoter, commonly employed in other Bacillae expression systems, in Brevibacillus. Results Using GFP, α-amylase and TcdA-GT as model proteins, high level of intracellular protein expression (up to 250 mg/L for the GFP was achieved in Brevibacillus, using the pHis1522 vector carrying the B. megaterium xylose-inducible promoter (PxylA. The GFP expression yields were more than 25 fold higher than those reported for B. megaterium carrying the same vector. All the tested proteins show significant increment in their expression levels (2-10 folds than those obtained using the available plasmids based on the P2 constitutive promoter. Conclusion Combining the components of two different commercially available Gram positive expression systems, such as Brevibacillus (from Takara Bio and B. megaterium (from Mobitec, we demonstrate that vectors based on the B. megaterium PxylA xylose inducible promoter can be successfully used to induce high level of intracellular expression of heterologous proteins in Brevibacillus.

  4. Activation of mitochondrial promoter PH-binding protein in a radio-resistant Chinese hamster cell strain associated with Bcl-2

    International Nuclear Information System (INIS)

    Roychoudhury, Paromita; Ghosh, Utpal; Bhattacharyya, Nitai P.; Chaudhuri, Keya

    2006-01-01

    The cellular response to ionizing radiation is mediated by a complex interaction of number of proteins involving different pathways. Previously, we have shown that up regulation of mitochondrial genes ND1, ND4, and COX1 transcribed from the heavy strand promoter (P H ) has been increased in a radio-resistant cell strain designated as M5 in comparison with the parental Chinese hamster V79 cells. These genes are also up regulated in Chinese hamster V79 cells VB13 that express exogenous human Bcl2. In the present study, the expression of the gene ND6 that is expressed from the light strand promoter (P L ) was found to be similar in both the cell lines, as determined by RT-PCR. To test the possibility that this differential expression of mitochondrial genes under these two promoters was mediated by differences in proteins' affinity to interact with these promoters, we have carried out electrophoretic mobility shift assay (EMSA) using mitochondrial cell extracts from these two cell lines. Our result of these experiments revealed that two different proteins formed complex with the synthetic promoters and higher amount of protein from M5 cell extracts interacted with the P H promoter in comparison to that observed with cell extracts from Chinese hamster V79 cells. The promoter-specific differential binding of proteins was also observed in VB13. These results showed that differential mitochondrial gene expression observed earlier in the radio-resistant M5 cells was due to enhanced interaction proteins with the promoters P H and mediated by the expression of Bcl2

  5. An activated unfolded protein response promotes retinal degeneration and triggers an inflammatory response in the mouse retina.

    Science.gov (United States)

    Rana, T; Shinde, V M; Starr, C R; Kruglov, A A; Boitet, E R; Kotla, P; Zolotukhin, S; Gross, A K; Gorbatyuk, M S

    2014-12-18

    Recent studies on the endoplasmic reticulum stress have shown that the unfolded protein response (UPR) is involved in the pathogenesis of inherited retinal degeneration caused by mutant rhodopsin. However, the main question of whether UPR activation actually triggers retinal degeneration remains to be addressed. Thus, in this study, we created a mouse model for retinal degeneration caused by a persistently activated UPR to assess the physiological and morphological parameters associated with this disease state and to highlight a potential mechanism by which the UPR can promote retinal degeneration. We performed an intraocular injection in C57BL6 mice with a known unfolded protein response (UPR) inducer, tunicamycin (Tn) and examined animals by electroretinography (ERG), spectral domain optical coherence tomography (SD-OCT) and histological analyses. We detected a significant loss of photoreceptor function (over 60%) and retinal structure (35%) 30 days post treatment. Analysis of retinal protein extracts demonstrated a significant upregulation of inflammatory markers including interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1) and IBA1. Similarly, we detected a strong inflammatory response in mice expressing either Ter349Glu or T17M rhodopsin (RHO). These mutant rhodopsin species induce severe retinal degeneration and T17M rhodopsin elicits UPR activation when expressed in mice. RNA and protein analysis revealed a significant upregulation of pro- and anti-inflammatory markers such as IL-1β, IL-6, p65 nuclear factor kappa B (NF-kB) and MCP-1, as well as activation of F4/80 and IBA1 microglial markers in both the retinas expressing mutant rhodopsins. We then assessed if the Tn-induced inflammatory marker IL-1β was capable of inducing retinal degeneration by injecting C57BL6 mice with a recombinant IL-1β. We observed ~19% reduction in ERG a-wave amplitudes and a 29% loss of photoreceptor cells compared with

  6. Can Hypocaloric, High-Protein Nutrition Support Be Used in Complicated Bariatric Patients to Promote Weight Loss?

    Science.gov (United States)

    Beebe, Mara Lee; Crowley, Nina

    2015-08-01

    Bariatric surgery, an effective treatment for morbid obesity, may result in complications that require nutrition support. Common goals for nutrition support in post-bariatric surgery patients include nutrition repletion, avoiding overfeeding, preserving lean body mass, and promoting wound healing. It is often questioned if continued weight loss can be part of the nutrition goals and if weight loss is safe for patients who become critically ill following bariatric surgery. Recent clinical practice guidelines from both the American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) and Society of Critical Care Medicine (SCCM) have recommended the use of hypocaloric, high-protein nutrition support in both critically and non-critically ill obese patients. Hypocaloric feedings of 50%-70% of estimated energy requirements based on predictive equations or obesity. Two small studies in complicated post-bariatric surgery patients requiring nutrition support have shown that the strategy of hypocaloric, high-protein feedings can result in positive outcomes, including positive nitrogen balance, wound healing, weight loss, and successful transition to oral diets. Additional research, including large, randomized studies, is still needed to validate these findings. However, based on a review of available clinical practice guidelines, predictive equations, indirect calorimetry, case studies, and systematic reviews, hypocaloric, high-protein nutrition support appears to at least be equal to eucaloric feedings and may be a useful tool for clinicians to achieve continued weight loss in complicated bariatric surgery patients requiring nutrition support. © 2015 American Society for Parenteral and Enteral Nutrition.

  7. Cellular Protein WDR11 Interacts with Specific Herpes Simplex Virus Proteins at the trans-Golgi Network To Promote Virus Replication

    Science.gov (United States)

    Taylor, Kathryne E.

    2015-01-01

    ABSTRACT It has recently been proposed that the herpes simplex virus (HSV) protein ICP0 has cytoplasmic roles in blocking antiviral signaling and in promoting viral replication in addition to its well-known proteasome-dependent functions in the nucleus. However, the mechanisms through which it produces these effects remain unclear. While investigating this further, we identified a novel cytoplasmic interaction between ICP0 and the poorly characterized cellular protein WDR11. During an HSV infection, WDR11 undergoes a dramatic change in localization at late times in the viral replication cycle, moving from defined perinuclear structures to a dispersed cytoplasmic distribution. While this relocation was not observed during infection with viruses other than HSV-1 and correlated with efficient HSV-1 replication, the redistribution was found to occur independently of ICP0 expression, instead requiring viral late gene expression. We demonstrate for the first time that WDR11 is localized to the trans-Golgi network (TGN), where it interacts specifically with some, but not all, HSV virion components, in addition to ICP0. Knockdown of WDR11 in cultured human cells resulted in a modest but consistent decrease in yields of both wild-type and ICP0-null viruses, in the supernatant and cell-associated fractions, without affecting viral gene expression. Although further study is required, we propose that WDR11 participates in viral assembly and/or secondary envelopment. IMPORTANCE While the TGN has been proposed to be the major site of HSV-1 secondary envelopment, this process is incompletely understood, and in particular, the role of cellular TGN components in this pathway is unknown. Additionally, little is known about the cellular functions of WDR11, although the disruption of this protein has been implicated in multiple human diseases. Therefore, our finding that WDR11 is a TGN-resident protein that interacts with specific viral proteins to enhance viral yields improves both

  8. ISL1 protein transduction promotes cardiomyocyte differentiation from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Hananeh Fonoudi

    Full Text Available BACKGROUND: Human embryonic stem cells (hESCs have the potential to provide an unlimited source of cardiomyocytes, which are invaluable resources for drug or toxicology screening, medical research, and cell therapy. Currently a number of obstacles exist such as the insufficient efficiency of differentiation protocols, which should be overcome before hESC-derived cardiomyocytes can be used for clinical applications. Although the differentiation efficiency can be improved by the genetic manipulation of hESCs to over-express cardiac-specific transcription factors, these differentiated cells are not safe enough to be applied in cell therapy. Protein transduction has been demonstrated as an alternative approach for increasing the efficiency of hESCs differentiation toward cardiomyocytes. METHODS: We present an efficient protocol for the differentiation of hESCs in suspension by direct introduction of a LIM homeodomain transcription factor, Islet1 (ISL1 recombinant protein into the cells. RESULTS: We found that the highest beating clusters were derived by continuous treatment of hESCs with 40 µg/ml recombinant ISL1 protein during days 1-8 after the initiation of differentiation. The treatment resulted in up to a 3-fold increase in the number of beating areas. In addition, the number of cells that expressed cardiac specific markers (cTnT, CONNEXIN 43, ACTININ, and GATA4 doubled. This protocol was also reproducible for another hESC line. CONCLUSIONS: This study has presented a new, efficient, and reproducible procedure for cardiomyocytes differentiation. Our results will pave the way for scaled up and controlled differentiation of hESCs to be used for biomedical applications in a bioreactor culture system.

  9. Hepatitis B virus X promotes hepatocellular carcinoma development via nuclear protein 1 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Bak, Yesol; Shin, Hye-jun; Bak, In seon [Disease Model Research Laboratory, Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon (Korea, Republic of); Yoon, Do-young [Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul (Korea, Republic of); Yu, Dae-Yeul, E-mail: dyyu10@kribb.re.kr [Disease Model Research Laboratory, Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon (Korea, Republic of)

    2015-10-30

    Hepatocellular carcinoma (HCC) is one of the most common malignancies and chronic hepatitis B virus (HBV) infection is a major risk factor for HCC. Hepatitis B virus X (HBx) protein relates to trigger oncogenesis. HBx has oncogenic properties with a hyperproliferative response to HCC. Nuclear protein 1 (NUPR1) is a stress-response protein, frequently upregulated in several cancers. Recent data revealed that NUPR1 is involved in tumor progression, but its function in HCC is not revealed yet. Here we report HBx can induce NUPR1 in patients, mice, and HCC cell lines. In an HBx transgenic mouse model, we found that HBx overexpression upregulates NUPR1 expression consistently with tumor progression. Further, in cultured HBV positive cells, HBx knockdown induces downregulation of NUPR1. Smad4 is a representative transcription factor, regulated by HBx, and we showed that HBx upregulates NUPR1 by Smad4 dependent way. We found that NUPR1 can inhibit cell death and induce vasculogenic mimicry in HCC cell lines. Moreover, NUPR1 silencing in HepG2-HBx showed reduced cell motility. These results suggest that HBx can modulate NUPR1 expression through the Smad4 pathway and NUPR1 has a role in hepatocellular carcinoma progression. - Highlights: • NUPR1 is overexpressed in HBx transgenic mouse and HCC patients. • NUPR1 inactivation hampers the HBx induced growth, VM formation, and migration of HepG2 cells in vitro. • NUPR1 has a role for survival of HCC and mechanistically NUPR1 is activated by HBx-Smad4 axis.

  10. Cholesterol Promotes Protein Binding by Affecting Membrane Electrostatics and Solvation Properties.

    Science.gov (United States)

    Doktorova, Milka; Heberle, Frederick A; Kingston, Richard L; Khelashvili, George; Cuendet, Michel A; Wen, Yi; Katsaras, John; Feigenson, Gerald W; Vogt, Volker M; Dick, Robert A

    2017-11-07

    Binding of the retroviral structural protein Gag to the cellular plasma membrane is mediated by the protein's matrix (MA) domain. Prominent among MA-PM interactions is electrostatic attraction between the positively charged MA domain and the negatively charged plasma membrane inner leaflet. Previously, we reported that membrane association of HIV-1 Gag, as well as purified Rous sarcoma virus (RSV) MA and Gag, depends strongly on the presence of acidic lipids and is enhanced by cholesterol (Chol). The mechanism underlying this enhancement was unclear. Here, using a broad set of in vitro and in silico techniques we addressed molecular mechanisms of association between RSV MA and model membranes, and investigated how Chol enhances this association. In neutron scattering experiments with liposomes in the presence or absence of Chol, MA preferentially interacted with preexisting POPS-rich clusters formed by nonideal lipid mixing, binding peripherally to the lipid headgroups with minimal perturbation to the bilayer structure. Molecular dynamics simulations showed a stronger MA-bilayer interaction in the presence of Chol, and a large Chol-driven increase in lipid packing and membrane surface charge density. Although in vitro MA-liposome association is influenced by disparate variables, including ionic strength and concentrations of Chol and charged lipids, continuum electrostatic theory revealed an underlying dependence on membrane surface potential. Together, these results conclusively show that Chol affects RSV MA-membrane association by making the electrostatic potential at the membrane surface more negative, while decreasing the penalty for lipid headgroup desolvation. The presented approach can be applied to other viral and nonviral proteins. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. A Herpesviral Immediate Early Protein Promotes Transcription Elongation of Viral Transcripts.

    Science.gov (United States)

    Fox, Hannah L; Dembowski, Jill A; DeLuca, Neal A

    2017-06-13

    Herpes simplex virus 1 (HSV-1) genes are transcribed by cellular RNA polymerase II (RNA Pol II). While four viral immediate early proteins (ICP4, ICP0, ICP27, and ICP22) function in some capacity in viral transcription, the mechanism by which ICP22 functions remains unclear. We observed that the FACT complex (comprised of SSRP1 and Spt16) was relocalized in infected cells as a function of ICP22. ICP22 was also required for the association of FACT and the transcription elongation factors SPT5 and SPT6 with viral genomes. We further demonstrated that the FACT complex interacts with ICP22 throughout infection. We therefore hypothesized that ICP22 recruits cellular transcription elongation factors to viral genomes for efficient transcription elongation of viral genes. We reevaluated the phenotype of an ICP22 mutant virus by determining the abundance of all viral mRNAs throughout infection by transcriptome sequencing (RNA-seq). The accumulation of almost all viral mRNAs late in infection was reduced compared to the wild type, regardless of kinetic class. Using chromatin immunoprecipitation sequencing (ChIP-seq), we mapped the location of RNA Pol II on viral genes and found that RNA Pol II levels on the bodies of viral genes were reduced in the ICP22 mutant compared to wild-type virus. In contrast, the association of RNA Pol II with transcription start sites in the mutant was not reduced. Taken together, our results indicate that ICP22 plays a role in recruiting elongation factors like the FACT complex to the HSV-1 genome to allow for efficient viral transcription elongation late in viral infection and ultimately infectious virion production. IMPORTANCE HSV-1 interacts with many cellular proteins throughout productive infection. Here, we demonstrate the interaction of a viral protein, ICP22, with a subset of cellular proteins known to be involved in transcription elongation. We determined that ICP22 is required to recruit the FACT complex and other transcription

  12. Hepatitis C Virus core+1/ARF Protein Modulates the Cyclin D1/pRb Pathway and Promotes Carcinogenesis.

    Science.gov (United States)

    Moustafa, Savvina; Karakasiliotis, Ioannis; Mavromara, Penelope

    2018-05-01

    Viruses often encompass overlapping reading frames and unconventional translation mechanisms in order to maximize the output from a minimum genome and to orchestrate their timely gene expression. Hepatitis C virus (HCV) possesses such an unconventional open reading frame (ORF) within the core-coding region, encoding an additional protein, initially designated ARFP, F, or core+1. Two predominant isoforms of core+1/ARFP have been reported, core+1/L, initiating from codon 26, and core+1/S, initiating from codons 85/87 of the polyprotein coding region. The biological significance of core+1/ARFP expression remains elusive. The aim of the present study was to gain insight into the functional and pathological properties of core+1/ARFP through its interaction with the host cell, combining in vitro and in vivo approaches. Our data provide strong evidence that the core+1/ARFP of HCV-1a stimulates cell proliferation in Huh7-based cell lines expressing either core+1/S or core+1/L isoforms and in transgenic liver disease mouse models expressing core+1/S protein in a liver-specific manner. Both isoforms of core+1/ARFP increase the levels of cyclin D1 and phosphorylated Rb, thus promoting the cell cycle. In addition, core+1/S was found to enhance liver regeneration and oncogenesis in transgenic mice. The induction of the cell cycle together with increased mRNA levels of cell proliferation-related oncogenes in cells expressing the core+1/ARFP proteins argue for an oncogenic potential of these proteins and an important role in HCV-associated pathogenesis. IMPORTANCE This study sheds light on the biological importance of a unique HCV protein. We show here that core+1/ARFP of HCV-1a interacts with the host machinery, leading to acceleration of the cell cycle and enhancement of liver carcinogenesis. This pathological mechanism(s) may complement the action of other viral proteins with oncogenic properties, leading to the development of hepatocellular carcinoma. In addition, given that

  13. Interaction of Fibrinogen and Muramidase-released Protein Promotes the Development of Streptococcus suis Meningitis

    Directory of Open Access Journals (Sweden)

    Junping eWang

    2015-09-01

    Full Text Available Muramidase-released protein (MRP is as an important virulence marker of Streptococcus suis (S. suis serotype 2. Our previous works have shown that MRP can bind human fibrinogen (hFg; however, the function of this interaction in S.suis meningitis is not known. In this study, we found that the deletion of mrp significantly impairs the hFg-mediated adherence and traversal ability of S. suis across human cerebral microvascular endothelial cells (hCMEC/D3. Measurement of the permeability to Lucifer yellow in vitro and Evans blue extravasation in vivo show that the MRP-hFg interaction significantly increases the permeability of the blood-brain barrier (BBB. In the mouse meningitis model, wild type S. suis caused higher bacterial loads in the brain and more severe histopathological signs of meningitis than the mrp mutant at day 3 post-infection. Western blot analysis and immunofluorescence observations reveal that the MRP-hFg interaction can destroy the cell adherens junction protein p120-catenin of hCMEC/D3. These results indicate that the MRP-hFg interaction is important in the development of S. suis meningitis.

  14. Influenza A Virus NS1 Protein Promotes Efficient Nuclear Export of Unspliced Viral M1 mRNA.

    Science.gov (United States)

    Pereira, Carina F; Read, Eliot K C; Wise, Helen M; Amorim, Maria J; Digard, Paul

    2017-08-01

    Influenza A virus mRNAs are transcribed by the viral RNA-dependent RNA polymerase in the cell nucleus before being exported to the cytoplasm for translation. Segment 7 produces two major transcripts: an unspliced mRNA that encodes the M1 matrix protein and a spliced transcript that encodes the M2 ion channel. Export of both mRNAs is dependent on the cellular NXF1/TAP pathway, but it is unclear how they are recruited to the export machinery or how the intron-containing but unspliced M1 mRNA bypasses the normal quality-control checkpoints. Using fluorescent in situ hybridization to monitor segment 7 mRNA localization, we found that cytoplasmic accumulation of unspliced M1 mRNA was inefficient in the absence of NS1, both in the context of segment 7 RNPs reconstituted by plasmid transfection and in mutant virus-infected cells. This effect was independent of any major effect on steady-state levels of segment 7 mRNA or splicing but corresponded to a ∼5-fold reduction in the accumulation of M1. A similar defect in intronless hemagglutinin (HA) mRNA nuclear export was seen with an NS1 mutant virus. Efficient export of M1 mRNA required both an intact NS1 RNA-binding domain and effector domain. Furthermore, while wild-type NS1 interacted with cellular NXF1 and also increased the interaction of segment 7 mRNA with NXF1, mutant NS1 polypeptides unable to promote mRNA export did neither. Thus, we propose that NS1 facilitates late viral gene expression by acting as an adaptor between viral mRNAs and the cellular nuclear export machinery to promote their nuclear export. IMPORTANCE Influenza A virus is a major pathogen of a wide variety of mammalian and avian species that threatens public health and food security. A fuller understanding of the virus life cycle is important to aid control strategies. The virus has a small genome that encodes relatively few proteins that are often multifunctional. Here, we characterize a new function for the NS1 protein, showing that, as well as

  15. GCK-MODY diabetes as a protein misfolding disease: the mutation R275C promotes protein misfolding, self-association and cellular degradation.

    Science.gov (United States)

    Negahdar, Maria; Aukrust, Ingvild; Molnes, Janne; Solheim, Marie H; Johansson, Bente B; Sagen, Jørn V; Dahl-Jørgensen, Knut; Kulkarni, Rohit N; Søvik, Oddmund; Flatmark, Torgeir; Njølstad, Pål R; Bjørkhaug, Lise

    2014-01-25

    GCK-MODY, dominantly inherited mild hyperglycemia, is associated with more than 600 mutations in the glucokinase gene. Different molecular mechanisms have been shown to explain GCK-MODY. Here, we report a Pakistani family harboring the glucokinase mutation c.823C>T (p.R275C). The recombinant and in cellulo expressed mutant pancreatic enzyme revealed slightly increased enzyme activity (kcat) and normal affinity for α-D-glucose, and resistance to limited proteolysis by trypsin comparable with wild-type. When stably expressed in HEK293 cells and MIN6 β-cells (at different levels), the mutant protein appeared misfolded and unstable with a propensity to form dimers and aggregates. Its degradation rate was increased, involving the lysosomal and proteasomal quality control systems. On mutation, a hydrogen bond between the R275 side-chain and the carbonyl oxygen of D267 is broken, destabilizing the F260-L271 loop structure and the protein. This promotes the formation of dimers/aggregates and suggests that an increased cellular degradation is the molecular mechanism by which R275C causes GCK-MODY. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Vitellogenin in the honey bee brain: Atypical localization of a reproductive protein that promotes longevity.

    Science.gov (United States)

    Münch, Daniel; Ihle, Kate E; Salmela, Heli; Amdam, Gro V

    2015-11-01

    In comparative gerontology, highly social insects such as honey bees (Apis mellifera) receive much attention due to very different and flexible aging patterns among closely related siblings. While experimental strategies that manipulate socio-environmental factors suggest a causative link between aging and social signals and behaviors, the molecular underpinnings of this linkage are less well understood. Here we study the atypical localization of the egg-yolk protein vitellogenin (Vg) in the brain of the honey bee. Vg is known to influence honey bee social regulation and aging rate. Our findings suggest that Vg immunoreactivity in the brain is specifically localized within the class of non-neuronal glial cells. We discuss how these results can help explain the socially-dependent aging rate of honey bees. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The stress protein BAG3 stabilizes Mcl-1 protein and promotes survival of cancer cells and resistance to antagonist ABT-737.

    Science.gov (United States)

    Boiani, Mariana; Daniel, Cristina; Liu, Xueyuan; Hogarty, Michael D; Marnett, Lawrence J

    2013-03-08

    Members of the Bcl-2 family of proteins are important inhibitors of apoptosis in human cancer and are targets for novel anticancer agents such as the Bcl-2 antagonists, ABT-263 (Navitoclax), and its analog ABT-737. Unlike Bcl-2, Mcl-1 is not antagonized by ABT-263 or ABT-737 and is considered to be a major factor in resistance. Also, Mcl-1 exhibits differential regulation when compared with other Bcl-2 family members and is a target for anticancer drug discovery. Here, we demonstrate that BAG3, an Hsp70 co-chaperone, protects Mcl-1 from proteasomal degradation, thereby promoting its antiapoptotic activity. Using neuroblastoma cell lines, with a defined Bcl-2 family dependence, we found that BAG3 expression correlated with Mcl-1 dependence and ABT-737 resistance. RNA silencing of BAG3 led to a marked reduction in Mcl-1 protein levels and overcame ABT-737 resistance in Mcl-1-dependent cells. In ABT-737-resistant cells, Mcl-1 co-immunoprecipitated with BAG3, and loss of Mcl-1 after BAG3 silencing was prevented by proteasome inhibition. BAG3 and Mcl-1 were co-expressed in a panel of diverse cancer cell lines resistant to ABT-737. Silencing BAG3 reduced Mcl-1 protein levels and overcame ABT-737 resistance in several of the cell lines, including triple-negative breast cancer (MDA-MB231) and androgen receptor-negative prostate cancer (PC3) cells. These studies identify BAG3-mediated Mcl-1 stabilization as a potential target for cancer drug discovery.

  18. The Stress Protein BAG3 Stabilizes Mcl-1 Protein and Promotes Survival of Cancer Cells and Resistance to Antagonist ABT-737*

    Science.gov (United States)

    Boiani, Mariana; Daniel, Cristina; Liu, Xueyuan; Hogarty, Michael D.; Marnett, Lawrence J.

    2013-01-01

    Members of the Bcl-2 family of proteins are important inhibitors of apoptosis in human cancer and are targets for novel anticancer agents such as the Bcl-2 antagonists, ABT-263 (Navitoclax), and its analog ABT-737. Unlike Bcl-2, Mcl-1 is not antagonized by ABT-263 or ABT-737 and is considered to be a major factor in resistance. Also, Mcl-1 exhibits differential regulation when compared with other Bcl-2 family members and is a target for anticancer drug discovery. Here, we demonstrate that BAG3, an Hsp70 co-chaperone, protects Mcl-1 from proteasomal degradation, thereby promoting its antiapoptotic activity. Using neuroblastoma cell lines, with a defined Bcl-2 family dependence, we found that BAG3 expression correlated with Mcl-1 dependence and ABT-737 resistance. RNA silencing of BAG3 led to a marked reduction in Mcl-1 protein levels and overcame ABT-737 resistance in Mcl-1-dependent cells. In ABT-737-resistant cells, Mcl-1 co-immunoprecipitated with BAG3, and loss of Mcl-1 after BAG3 silencing was prevented by proteasome inhibition. BAG3 and Mcl-1 were co-expressed in a panel of diverse cancer cell lines resistant to ABT-737. Silencing BAG3 reduced Mcl-1 protein levels and overcame ABT-737 resistance in several of the cell lines, including triple-negative breast cancer (MDA-MB231) and androgen receptor-negative prostate cancer (PC3) cells. These studies identify BAG3-mediated Mcl-1 stabilization as a potential target for cancer drug discovery. PMID:23341456

  19. Sequence analysis of the Epstein-Barr virus (EBV) latent membrane protein-1 gene and promoter region

    DEFF Research Database (Denmark)

    Sandvej, Kristian; Gratama, J W; Munch, M

    1997-01-01

    Sequence variations in the Epstein-Barr virus (EBV) encoded latent membrane protein-1 (LMP-1) gene have been described in a Chinese nasopharyngeal carcinoma-derived isolate (CAO), and in viral isolates from various EBV-associated tumors. It has been suggested that these genetic changes, which...... include loss of a Xho I restriction site (position 169425) and a C-terminal 30-base pair (bp) deletion (position 168287-168256), define EBV genotypes associated with increased tumorigenicity or with disease among particular geographic populations. To determine the frequency of LMP-1 variations in European...... wild-type virus isolates, we sequenced the LMP-1 promoter and gene in EBV from lymphoblastoid cell lines from healthy carriers and patients without EBV-associated disease. Sequence changes were often present, and defined at least four main groups of viral isolates, which we designate Groups A through D...

  20. A C-reactive protein promoter polymorphism is associated with type 2 diabetes mellitus in Pima Indians

    DEFF Research Database (Denmark)

    Wolford, Johanna K; Gruber, Jonathan D; Ossowski, Victoria M

    2003-01-01

    of diabetes, independent of adiposity. Because CRP is located on 1q21, we considered it a potential positional candidate gene for T2DM. We therefore evaluated CRP and the nearby serum amyloid P-component, APCS, which is structurally similar to CRP, as candidate diabetes susceptibility genes. Approximately 10......Linkage analysis has identified a susceptibility locus for type 2 diabetes mellitus (T2DM) on chromosome 1q21-q23 in several populations. Results from recent prospective studies indicate that increased levels of C-reactive protein (CRP), a marker of immune system activation, are predictive...... disequilibrium clusters. We genotyped representative SNPs in approximately 1300 Pima samples and found a single variant in the CRP promoter (SNP 133552) that was associated with T2DM (P=0.014), as well as a common haplotype (CGCG) that was associated with both T2DM (P=0.029) and corrected insulin response...

  1. Isolation and Identification of Post-Transcriptional Gene Silencing-Related Micro-RNAs by Functionalized Silicon Nanowire Field-effect Transistor

    Science.gov (United States)

    Chen, Kuan-I.; Pan, Chien-Yuan; Li, Keng-Hui; Huang, Ying-Chih; Lu, Chia-Wei; Tang, Chuan-Yi; Su, Ya-Wen; Tseng, Ling-Wei; Tseng, Kun-Chang; Lin, Chi-Yun; Chen, Chii-Dong; Lin, Shih-Shun; Chen, Yit-Tsong

    2015-11-01

    Many transcribed RNAs are non-coding RNAs, including microRNAs (miRNAs), which bind to complementary sequences on messenger RNAs to regulate the translation efficacy. Therefore, identifying the miRNAs expressed in cells/organisms aids in understanding genetic control in cells/organisms. In this report, we determined the binding of oligonucleotides to a receptor-modified silicon nanowire field-effect transistor (SiNW-FET) by monitoring the changes in conductance of the SiNW-FET. We first modified a SiNW-FET with a DNA probe to directly and selectively detect the complementary miRNA in cell lysates. This SiNW-FET device has 7-fold higher sensitivity than reverse transcription-quantitative polymerase chain reaction in detecting the corresponding miRNA. Next, we anchored viral p19 proteins, which bind the double-strand small RNAs (ds-sRNAs), on the SiNW-FET. By perfusing the device with synthesized ds-sRNAs of different pairing statuses, the dissociation constants revealed that the nucleotides at the 3‧-overhangs and pairings at the terminus are important for the interactions. After perfusing the total RNA mixture extracted from Nicotiana benthamiana across the device, this device could enrich the ds-sRNAs for sequence analysis. Finally, this bionanoelectronic SiNW-FET, which is able to isolate and identify the interacting protein-RNA, adds an additional tool in genomic technology for the future study of direct biomolecular interactions.

  2. Adenoviral protein V promotes a process of viral assembly through nucleophosmin 1

    Energy Technology Data Exchange (ETDEWEB)

    Ugai, Hideyo; Dobbins, George C.; Wang, Minghui [Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology, and Surgery, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Le, Long P. [Massachusetts General Hospital, Pathology Service, 55 Fruit St.-GRJ 249, Boston, MA 02114 (United States); Matthews, David A. [School of Cellular and Molecular Medicine, Medical Sciences Building, University of Bristol, Bristol BS8 1TD (United Kingdom); Curiel, David T., E-mail: dcuriel@radonc.wustl.edu [Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology, and Surgery, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); The Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States)

    2012-10-25

    Adenoviral infection induces nucleoplasmic redistribution of a nucleolar nucleophosmin 1/NPM1/B23.1. NPM1 is preferentially localized in the nucleoli of normal cells, whereas it is also present at the nuclear matrix in cancer cells. However, the biological roles of NPM1 during infection are unknown. Here, by analyzing a pV-deletion mutant, Ad5-dV/TSB, we demonstrate that pV promotes the NPM1 translocation from the nucleoli to the nucleoplasm in normal cells, and the NPM1 translocation is correlated with adenoviral replication. Lack of pV causes a dramatic reduction of adenoviral replication in normal cells, but not cancer cells, and Ad5-dV/TSB was defective in viral assembly in normal cells. NPM1 knockdown inhibits adenoviral replication, suggesting an involvement of NPM1 in adenoviral biology. Further, we show that NPM1 interacts with empty adenovirus particles which are an intermediate during virion maturation by immunoelectron microscopy. Collectively, these data implicate that pV participates in a process of viral assembly through NPM1.

  3. Keratinocyte-derived laminin-332 protein promotes melanin synthesis via regulation of tyrosine uptake.

    Science.gov (United States)

    Chung, Heesung; Jung, Hyejung; Lee, Jung-Hyun; Oh, Hye Yun; Kim, Ok Bin; Han, Inn-Oc; Oh, Eok-Soo

    2014-08-01

    Melanocytes, which produce the pigment melanin, are known to be closely regulated by neighboring keratinocytes. However, how keratinocytes regulate melanin production is unclear. Here we report that melanin production in melanoma cells (B16F10 and MNT-1) was increased markedly on a keratinocyte-derived extracellular matrix compared with a melanoma cell-derived extracellular matrix. siRNA-mediated reduction of keratinocyte-derived laminin-332 expression decreased melanin synthesis in melanoma cells, and laminin-332, but not fibronectin, enhanced melanin content and α-melanocyte-stimulating hormone-regulated melanin production in melanoma cells. Similar effects were observed in human melanocytes. Interestingly, however, laminin-332 did not affect the expression or activity of tyrosinase. Instead, laminin-332 promoted the uptake of extracellular tyrosine and, subsequently, increased intracellular levels of tyrosine in both melanocytes and melanoma cells. Taken together, these data strongly suggest that keratinocyte-derived laminin-332 contributes to melanin production by regulating tyrosine uptake. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Dietary medium-chain triglycerides promote oral allergic sensitization and orally induced anaphylaxis to peanut protein in mice

    Science.gov (United States)

    Li, Jianing; Wang, Yu; Tang, Lihua; de Villiers, Willem JS; Cohen, Donald; Woodward, Jerold; Finkelman, Fred D; Eckhardt, Erik RM

    2012-01-01

    BACKGROUND The prevalence of peanut allergies is rising. Peanuts and many other allergen sources contain significant amounts of triglycerides, which affect absorption of antigens but have unknown effects on sensitization and anaphylaxis. We recently reported that dietary medium-chain triglycerides (MCT), which bypass mesenteric lymph and directly enter portal blood, reduce intestinal antigen absorption into blood compared to long-chain triglycerides (LCT), which stimulate mesenteric lymph flow and are absorbed in chylomicrons via mesenteric lymph. OBJECTIVE Test how dietary MCT affect food allergy. METHODS C3H/HeJ mice were fed peanut butter protein in MCT, LCT (peanut oil), or LCT plus an inhibitor of chylomicron formation (Pluronic L81; “PL81”). Peanut-specific antibodies in plasma, responses of the mice to antigen challenges, and intestinal epithelial cytokine expression were subsequently measured. RESULTS MCT suppressed antigen absorption into blood, but stimulated absorption into Peyer's patches. A single gavage of peanut protein with MCT as well as prolonged feeding in MCT-based diets caused spontaneous allergic sensitization. MCT-sensitized mice experienced IgG-dependent anaphylaxis upon systemic challenge and IgE-dependent anaphylaxis upon oral challenge. MCT feeding stimulated jejunal-epithelial TSLP, IL-25 and IL-33 expression compared to LCT, and promoted Th2 cytokine responses in splenocytes. Moreover, oral challenges of sensitized mice with antigen in MCT significantly aggravated anaphylaxis compared to challenges with LCT. Importantly, effects of MCT could be mimicked by adding PL81 to LCT, and in vitro assays indicated that chylomicrons prevent basophil activation. CONCLUSION Dietary MCT promote allergic sensitization and anaphylaxis by affecting antigen absorption and availability and by stimulating Th2 responses. PMID:23182172

  5. Breast Regression Protein-39/Chitinase 3-Like 1 Promotes Renal Fibrosis after Kidney Injury via Activation of Myofibroblasts.

    Science.gov (United States)

    Montgomery, Tinika A; Xu, Leyuan; Mason, Sherene; Chinnadurai, Amirtha; Lee, Chun Geun; Elias, Jack A; Cantley, Lloyd G

    2017-11-01

    The normal response to kidney injury includes a robust inflammatory infiltrate of PMNs and macrophages. We previously showed that the small secreted protein breast regression protein-39 (BRP-39), also known as chitinase 3-like 1 (CHI3L1) and encoded by the Chi3l1 gene, is expressed at high levels by macrophages during the early stages of kidney repair and promotes tubular cell survival via IL-13 receptor α 2 (IL13R α 2)-mediated signaling. Here, we investigated the role of BRP-39 in profibrotic responses after AKI. In wild-type mice, failure to resolve tubular injury after unilateral ischemia-reperfusion injury (U-IRI) led to sustained low-level Chi3l1 mRNA expression by renal cells and promoted macrophage persistence and severe interstitial fibrosis. Analysis of macrophages isolated from wild-type kidneys 14 days after U-IRI revealed high-level expression of the profibrotic BRP-39 receptor Ptgdr2 / Crth2 and expression of the profibrotic markers Lgals3 , Pdgfb , Egf , and Tgfb In comparison, injured kidneys from mice lacking BRP-39 had significantly fewer macrophages, reduced expression of profibrotic growth factors, and decreased accumulation of extracellular matrix. BRP-39 depletion did not affect myofibroblast accumulation but did attenuate myofibroblast expression of Col1a1 , Col3a1 , and Fn1 Together, these results identify BRP-39 as an important activator of macrophage-myofibroblast crosstalk and profibrotic signaling in the setting of maladaptive kidney repair. Copyright © 2017 by the American Society of Nephrology.

  6. Synaptogyrin-2 Promotes Replication of a Novel Tick-borne Bunyavirus through Interacting with Viral Nonstructural Protein NSs.

    Science.gov (United States)

    Sun, Qiyu; Qi, Xian; Zhang, Yan; Wu, Xiaodong; Liang, Mifang; Li, Chuan; Li, Dexin; Cardona, Carol J; Xing, Zheng

    2016-07-29

    Synaptogyrin-2 is a non-neuronal member of the synaptogyrin family involved in synaptic vesicle biogenesis and trafficking. Little is known about the function of synaptogyrin-2. Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease characterized by high fever, thrombocytopenia, and leukocytopenia with high mortality, caused by a novel tick-borne phlebovirus in the family Bunyaviridae. Our previous studies have shown that the viral nonstructural protein NSs forms inclusion bodies (IBs) that are involved in viral immune evasion, as well as viral RNA replication. In this study, we sought to elucidate the mechanism by which NSs formed the IBs, a lipid droplet-based structure confirmed by NSs co-localization with perilipin A and adipose differentiation-related protein (ADRP). Through a high throughput screening, we identified synaptogyrin-2 to be highly up-regulated in response to SFTS bunyavirus (SFTSV) infection and to be a promoter of viral replication. We demonstrated that synaptogyrin-2 interacted with NSs and was translocated into the IBs, which were reconstructed from lipid droplets into large structures in infection. Viral RNA replication decreased, and infectious virus titers were lowered significantly when synaptogyrin-2 was silenced in specific shRNA-expressing cells, which correlated with the reduced number of the large IBs restructured from regular lipid droplets. We hypothesize that synaptogyrin-2 is essential to promoting the formation of the IBs to become virus factories for viral RNA replication through its interaction with NSs. These findings unveil the function of synaptogyrin-2 as an enhancer in viral infection. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Synaptogyrin-2 Promotes Replication of a Novel Tick-borne Bunyavirus through Interacting with Viral Nonstructural Protein NSs*

    Science.gov (United States)

    Sun, Qiyu; Qi, Xian; Zhang, Yan; Wu, Xiaodong; Liang, Mifang; Li, Chuan; Li, Dexin; Cardona, Carol J.; Xing, Zheng

    2016-01-01

    Synaptogyrin-2 is a non-neuronal member of the synaptogyrin family involved in synaptic vesicle biogenesis and trafficking. Little is known about the function of synaptogyrin-2. Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease characterized by high fever, thrombocytopenia, and leukocytopenia with high mortality, caused by a novel tick-borne phlebovirus in the family Bunyaviridae. Our previous studies have shown that the viral nonstructural protein NSs forms inclusion bodies (IBs) that are involved in viral immune evasion, as well as viral RNA replication. In this study, we sought to elucidate the mechanism by which NSs formed the IBs, a lipid droplet-based structure confirmed by NSs co-localization with perilipin A and adipose differentiation-related protein (ADRP). Through a high throughput screening, we identified synaptogyrin-2 to be highly up-regulated in response to SFTS bunyavirus (SFTSV) infection and to be a promoter of viral replication. We demonstrated that synaptogyrin-2 interacted with NSs and was translocated into the IBs, which were reconstructed from lipid droplets into large structures in infection. Viral RNA replication decreased, and infectious virus titers were lowered significantly when synaptogyrin-2 was silenced in specific shRNA-expressing cells, which correlated with the reduced number of the large IBs restructured from regular lipid droplets. We hypothesize that synaptogyrin-2 is essential to promoting the formation of the IBs to become virus factories for viral RNA replication through its interaction with NSs. These findings unveil the function of synaptogyrin-2 as an enhancer in viral infection. PMID:27226560

  8. Studies of the structure and function of Mms6, a bacterial protein that promotes the formation of magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijun [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Here we report structural and functional studies of Mms6, a biomineralization protein that can promote the formation in vitro of magnetic nanoparticles with sizes and morphologies similar to the magnetites synthesized by magnetotactic bacteria. We found the binding pattern of Mms6 to ferric ion to be two-phase and multivalent. We quantatively determined that Mms6 binds one Fe3+ with a very high affinity (Kd = 1016 M). The second phase of iron binding is multivalent and cooperative with respect to iron with a Kd in the μM range and a stoichiometry of about 20 ferric ion per protein molecule. We found that Mms6 exists in large particles of two sizes, one consisting of 20-40 monomeric units and the other of 200 units. From proteolytic digestion, ultracentrifugation and liposome fusion studies, we found that Mms6 forms a large micellar quaternary structure with the N-terminal domain self-assembling into a uniformly sized micelle and the C-terminal domain on the surface. The two-phase iron-binding pattern may be relevant to iron crystal formation. We propose that the first high affinity phase may stabilize a new conformation of the C-terminal domain that allows interaction with other C-terminal domains leading to a structural change in the multimeric protein complex that enables the second low affinity iron binding phase to organize iron and initiate crystal formation. We also observed a dimeric apparent molecular mass of the Mms6 C-terminal peptide (C21Mms6). We speculate that the C-terminal domain may form higher order quaternary arrangements on the surface of the micelle or when anchored to a membrane by the N-terminal domain. The change in fluorescence quenching in the N-terminal domain with iron binding suggests a structural integrity between the C- and N-terminal domains. The slow change in trp fluorescence as a function of time after adding iron suggests a very slow conformational change in the protein that involves

  9. Deficiency of thioredoxin binding protein-2 (TBP-2 enhances TGF-β signaling and promotes epithelial to mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    So Masaki

    Full Text Available Transforming growth factor beta (TGF-β has critical roles in regulating cell growth, differentiation, apoptosis, invasion and epithelial-mesenchymal transition (EMT of various cancer cells. TGF-β-induced EMT is an important step during carcinoma progression to invasion state. Thioredoxin binding protein-2 (TBP-2, also called Txnip or VDUP1 is downregulated in various types of human cancer, and its deficiency results in the earlier onset of cancer. However, it remains unclear how TBP-2 suppresses the invasion and metastasis of cancer.In this study, we demonstrated that TBP-2 deficiency increases the transcriptional activity in response to TGF-β and also enhances TGF-β-induced Smad2 phosphorylation levels. Knockdown of TBP-2 augmented the TGF-β-responsive expression of Snail and Slug, transcriptional factors related to TGF-β-mediated induction of EMT, and promoted TGF-β-induced spindle-like morphology consistent with the depletion of E-Cadherin in A549 cells.Our results indicate that TBP-2 deficiency enhances TGF-β signaling and promotes TGF-β-induced EMT. The control of TGF-β-induced EMT is critical for the inhibition of the invasion and metastasis. Thus TBP-2, as a novel regulatory molecule of TGF-β signaling, is likely to be a prognostic indicator or a potential therapeutic target for preventing tumor progression.

  10. Developmental Functions of miR156-Regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) Genes in Arabidopsis thaliana.

    Science.gov (United States)

    Xu, Mingli; Hu, Tieqiang; Zhao, Jianfei; Park, Mee-Yeon; Earley, Keith W; Wu, Gang; Yang, Li; Poethig, R Scott

    2016-08-01

    Correct developmental timing is essential for plant fitness and reproductive success. Two important transitions in shoot development-the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition-are mediated by a group of genes targeted by miR156, SQUAMOSA PROMOTER BINDING PROTEIN (SBP) genes. To determine the developmental functions of these genes in Arabidopsis thaliana, we characterized their expression patterns, and their gain-of-function and loss-of-function phenotypes. Our results reveal that SBP-LIKE (SPL) genes in Arabidopsis can be divided into three functionally distinct groups: 1) SPL2, SPL9, SPL10, SPL11, SPL13 and SPL15 contribute to both the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition, with SPL9, SP13 and SPL15 being more important for these processes than SPL2, SPL10 and SPL11; 2) SPL3, SPL4 and SPL5 do not play a major role in vegetative phase change or floral induction, but promote the floral meristem identity transition; 3) SPL6 does not have a major function in shoot morphogenesis, but may be important for certain physiological processes. We also found that miR156-regulated SPL genes repress adventitious root development, providing an explanation for the observation that the capacity for adventitious root production declines as the shoot ages. miR156 is expressed at very high levels in young seedlings, and declines in abundance as the shoot develops. It completely blocks the expression of its SPL targets in the first two leaves of the rosette, and represses these genes to different degrees at later stages of development, primarily by promoting their translational repression. These results provide a framework for future studies of this multifunctional family of transcription factors, and offer new insights into the role of miR156 in Arabidopsis development.

  11. Stromal Adipocyte Enhancer-binding Protein (AEBP1) Promotes Mammary Epithelial Cell Hyperplasia via Proinflammatory and Hedgehog Signaling*

    Science.gov (United States)

    Holloway, Ryan W.; Bogachev, Oleg; Bharadwaj, Alamelu G.; McCluskey, Greg D.; Majdalawieh, Amin F.; Zhang, Lei; Ro, Hyo-Sung

    2012-01-01

    Disruption of mammary stromal-epithelial communication leads to aberrant mammary gland development and induces mammary tumorigenesis. Macrophages have been implicated in carcinogenesis primarily by creating an inflammatory microenvironment, which promotes growth of the adjacent epithelial cells. Adipocyte enhancer-binding protein 1 (AEBP1), a novel proinflammatory mediator, promotes macrophage inflammatory responsiveness by inducing NF-κB activity, which has been implicated in tumor cell growth and survival by aberrant sonic hedgehog (Shh) expression. Here, we show that stromal macrophage AEBP1 overexpression results in precocious alveologenesis in the virgin AEBP1 transgenic (AEBP1TG) mice, and the onset of ductal hyperplasia was accelerated in AEBP1TG mice fed a high fat diet, which induces endogenous AEBP1 expression. Transplantation of AEBP1TG bone marrow cells into non-transgenic (AEBP1NT) mice resulted in alveolar hyperplasia with up-regulation of NF-κB activity and TNFα expression as displayed in the AEBP1TG mammary macrophages and epithelium. Shh expression was induced in AEBP1TG macrophages and RAW264.7 macrophages overexpressing AEBP1. The Shh target genes Gli1 and Bmi1 expression was induced in the AEBP1TG mammary epithelium and HC11 mammary epithelial cells co-cultured with AEBP1TG peritoneal macrophages. The conditioned AEBP1TG macrophage culture media promoted NF-κB activity and survival signal, Akt activation, in HC11 cells, whereas such effects were abolished by TNFα neutralizing antibody treatment. Furthermore, HC11 cells displayed enhanced proliferation in response to AEBP1TG macrophages and their conditioned media. Our findings highlight the role of AEBP1 in the signaling pathways regulating the cross-talk between mammary epithelium and stroma that could predispose the mammary tissue to tumorigenesis. PMID:22995915

  12. Stromal adipocyte enhancer-binding protein (AEBP1) promotes mammary epithelial cell hyperplasia via proinflammatory and hedgehog signaling.

    Science.gov (United States)

    Holloway, Ryan W; Bogachev, Oleg; Bharadwaj, Alamelu G; McCluskey, Greg D; Majdalawieh, Amin F; Zhang, Lei; Ro, Hyo-Sung

    2012-11-09

    Disruption of mammary stromal-epithelial communication leads to aberrant mammary gland development and induces mammary tumorigenesis. Macrophages have been implicated in carcinogenesis primarily by creating an inflammatory microenvironment, which promotes growth of the adjacent epithelial cells. Adipocyte enhancer-binding protein 1 (AEBP1), a novel proinflammatory mediator, promotes macrophage inflammatory responsiveness by inducing NF-κB activity, which has been implicated in tumor cell growth and survival by aberrant sonic hedgehog (Shh) expression. Here, we show that stromal macrophage AEBP1 overexpression results in precocious alveologenesis in the virgin AEBP1 transgenic (AEBP1(TG)) mice, and the onset of ductal hyperplasia was accelerated in AEBP1(TG) mice fed a high fat diet, which induces endogenous AEBP1 expression. Transplantation of AEBP1(TG) bone marrow cells into non-transgenic (AEBP1(NT)) mice resulted in alveolar hyperplasia with up-regulation of NF-κB activity and TNFα expression as displayed in the AEBP1(TG) mammary macrophages and epithelium. Shh expression was induced in AEBP1(TG) macrophages and RAW264.7 macrophages overexpressing AEBP1. The Shh target genes Gli1 and Bmi1 expression was induced in the AEBP1(TG) mammary epithelium and HC11 mammary epithelial cells co-cultured with AEBP1(TG) peritoneal macrophages. The conditioned AEBP1(TG) macrophage culture media promoted NF-κB activity and survival signal, Akt activation, in HC11 cells, whereas such effects were abolished by TNFα neutralizing antibody treatment. Furthermore, HC11 cells displayed enhanced proliferation in response to AEBP1(TG) macrophages and their conditioned media. Our findings highlight the role of AEBP1 in the signaling pathways regulating the cross-talk between mammary epithelium and stroma that could predispose the mammary tissue to tumorigenesis.

  13. Neural protein gamma-synuclein interacting with androgen receptor promotes human prostate cancer progression

    International Nuclear Information System (INIS)

    Chen, Junyi; Jiao, Li; Xu, Chuanliang; Yu, Yongwei; Zhang, Zhensheng; Chang, Zheng; Deng, Zhen; Sun, Yinghao

    2012-01-01

    Gamma-synuclein (SNCG) has previously been demonstrated to be significantly correlated with metastatic malignancies; however, in-depth investigation of SNCG in prostate cancer is still lacking. In the present study, we evaluated the role of SNCG in prostate cancer progression and explored the underlying mechanisms. First, alteration of SNCG expression in LNCaP cell line to test the ability of SNCG on cellular properties in vitro and vivo whenever exposing with androgen or not. Subsequently, the Dual-luciferase reporter assays were performed to evaluate whether the role of SNCG in LNCaP is through AR signaling. Last, the association between SNCG and prostate cancer progression was assessed immunohistochemically using a series of human prostate tissues. Silencing SNCG by siRNA in LNCaP cells contributes to the inhibition of cellular proliferation, the induction of cell-cycle arrest at the G1 phase, the suppression of cellular migration and invasion in vitro, as well as the decrease of tumor growth in vivo with the notable exception of castrated mice. Subsequently, mechanistic studies indicated that SNCG is a novel androgen receptor (AR) coactivator. It interacts with AR and promotes prostate cancer cellular growth and proliferation by activating AR transcription in an androgen-dependent manner. Finally, immunohistochemical analysis revealed that SNCG was almost undetectable in benign or androgen-independent tissues prostate lesions. The high expression of SNCG is correlated with peripheral and lymph node invasion. Our data suggest that SNCG may serve as a biomarker for predicting human prostate cancer progression and metastasis. It also may become as a novel target for biomedical therapy in advanced prostate cancer

  14. MicroRNA-212 post-transcriptionally regulates oocyte-specific basic-helix-loop-helix transcription factor, factor in the germline alpha (FIGLA, during bovine early embryogenesis.

    Directory of Open Access Journals (Sweden)

    Swamy K Tripurani

    Full Text Available Factor in the germline alpha (FIGLA is an oocyte-specific basic helix-loop-helix transcription factor essential for primordial follicle formation and expression of many genes required for folliculogenesis, fertilization and early embryonic survival. Here we report the characterization of bovine FIGLA gene and its regulation during early embryogenesis. Bovine FIGLA mRNA expression is restricted to gonads and is detected in fetal ovaries harvested as early as 90 days of gestation. FIGLA mRNA and protein are abundant in germinal vesicle and metaphase II stage oocytes, as well as in embryos from pronuclear to eight-cell stage but barely detectable at morula and blastocyst stages, suggesting that FIGLA might be a maternal effect gene. Recent studies in zebrafish and mice have highlighted the importance of non-coding small RNAs (microRNAs as key regulatory molecules targeting maternal mRNAs for degradation during embryonic development. We hypothesized that FIGLA, as a maternal transcript, is regulated by microRNAs during early embryogenesis. Computational predictions identified a potential microRNA recognition element (MRE for miR-212 in the 3' UTR of the bovine FIGLA mRNA. Bovine miR-212 is expressed in oocytes and tends to increase in four-cell and eight-cell stage embryos followed by a decline at morula and blastocyst stages. Transient transfection and reporter assays revealed that miR-212 represses the expression of FIGLA in a MRE dependent manner. In addition, ectopic expression of miR-212 mimic in bovine early embryos dramatically reduced the expression of FIGLA protein. Collectively, our results demonstrate that FIGLA is temporally regulated during bovine early embryogenesis and miR-212 is an important negative regulator of FIGLA during the maternal to zygotic transition in bovine embryos.

  15. The promotion of osseointegration of titanium surfaces by coating with silk protein sericin.

    Science.gov (United States)

    Nayak, Sunita; Dey, Tuli; Naskar, Deboki; Kundu, Subhas C

    2013-04-01

    A promising strategy to influence the osseointegration process around orthopaedic titanium implants is the immobilization of bioactive molecules. This recruits appropriate interaction between the surface and the tissue by directing cells adhesion, proliferation, differentiation and active matrix remodelling. In this study, we aimed to investigate the functionalization of metallic implant titanium with silk protein sericin. Titanium surface was immobilized with non-mulberry Antheraea mylitta sericin using glutaraldehyde as crosslinker. To analyse combinatorial effects the sericin immobilized titanium was further conjugated with integrin binding peptide sequence Arg-Gly-Asp (RGD) using ethyl (dimethylaminopropyl) carbodiimide and N-hydroxysulfosuccinimide as coupling agents. The surface of sericin immobilized titanium was characterized biophysically. Osteoblast-like cells were cultured on sericin and sericin/RGD functionalized titanium and found to be more viable than those on pristine titanium. The enhanced adhesion, proliferation, and differentiation of osteoblast cells were observed. RT-PCR analysis showed that mRNA expressions of bone sialoprotein, osteocalcin and alkaline phosphatase were upregulated in osteoblast cells cultured on sericin and sericin/RGD immobilized titanium substrates. Additionally, no significant amount of pro-inflammatory cytokines TNF-α, IL-1β and nitric oxide production were recorded when macrophages cells and osteoblast-macrophages co culture cells were grown on sericin immobilized titanium. The findings demonstrate that the sericin immobilized titanium surfaces are potentially useful bioactive coated materials for titanium-based medical implants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Melatonin Promotes Apoptosis of Oxaliplatin-resistant Colorectal Cancer Cells Through Inhibition of Cellular Prion Protein.

    Science.gov (United States)

    Lee, Jun Hee; Yoon, Yeo Min; Han, Yong-Seok; Yun, Chul Won; Lee, Sang Hun

    2018-04-01

    Drug resistance restricts the efficacy of chemotherapy in colorectal cancer. However, the detailed molecular mechanism of drug resistance in colorectal cancer cells remains unclear. The level of cellular prion protein (PrP C ) in oxaliplatin-resistant colorectal cancer (SNU-C5/Oxal-R) cells was assessed. PrP C level in SNU-C5/Oxal-R cells was significantly increased compared to that in wild-type (SNU-C5) cells. Superoxide dismutase and catalase activities were higher in SNU-C5/Oxal-R cells than in SNU-C5 cells. Treatment of SNU-C5/Oxal-R cells with oxaliplatin and melatonin reduced PrP C expression, while suppressing antioxidant enzyme activity and increasing superoxide anion generation. In SNU-C5/Oxal-R cells, endoplasmic reticulum stress and apoptosis were significantly increased following co-treatment with oxaliplatin and melatonin compared to treatment with oxaliplatin alone. Co-treatment with oxaliplatin and melatonin increased endoplasmic reticulum stress in and apoptosis of SNU-C5/Oxal-R cells through inhibition of PrP C , suggesting that PrP C could be a key molecule in oxaliplatin resistance of colorectal cancer cells. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  17. Cholesterol activates the G-protein coupled receptor Smoothened to promote Hedgehog signaling

    Science.gov (United States)

    Luchetti, Giovanni; Sircar, Ria; Kong, Jennifer H; Nachtergaele, Sigrid; Sagner, Andreas; Byrne, Eamon FX; Covey, Douglas F; Siebold, Christian; Rohatgi, Rajat

    2016-01-01

    Cholesterol is necessary for the function of many G-protein coupled receptors (GPCRs). We find that cholesterol is not just necessary but also sufficient to activate signaling by the Hedgehog (Hh) pathway, a prominent cell-cell communication system in development. Cholesterol influences Hh signaling by directly activating Smoothened (SMO), an orphan GPCR that transmits the Hh signal across the membrane in all animals. Unlike many GPCRs, which are regulated by cholesterol through their heptahelical transmembrane domains, SMO is activated by cholesterol through its extracellular cysteine-rich domain (CRD). Residues shown to mediate cholesterol binding to the CRD in a recent structural analysis also dictate SMO activation, both in response to cholesterol and to native Hh ligands. Our results show that cholesterol can initiate signaling from the cell surface by engaging the extracellular domain of a GPCR and suggest that SMO activity may be regulated by local changes in cholesterol abundance or accessibility. DOI: http://dx.doi.org/10.7554/eLife.20304.001 PMID:27705744

  18. Group B streptococcal serine-rich repeat proteins promote interaction with fibrinogen and vaginal colonization.

    Science.gov (United States)

    Wang, Nai-Yu; Patras, Kathryn A; Seo, Ho Seong; Cavaco, Courtney K; Rösler, Berenice; Neely, Melody N; Sullam, Paul M; Doran, Kelly S

    2014-09-15

    Group B streptococcus (GBS) can cause severe disease in susceptible hosts, including newborns, pregnant women, and the elderly. GBS serine-rich repeat (Srr) surface glycoproteins are important adhesins/invasins in multiple host tissues, including the vagina. However, exact molecular mechanisms contributing to their importance in colonization are unknown. We have recently determined that Srr proteins contain a fibrinogen-binding region (BR) and hypothesize that Srr-mediated fibrinogen binding may contribute to GBS cervicovaginal colonization. In this study, we observed that fibrinogen enhanced wild-type GBS attachment to cervical and vaginal epithelium, and that this was dependent on Srr1. Moreover, purified Srr1-BR peptide bound directly to host cells, and peptide administration in vivo reduced GBS recovery from the vaginal tract. Furthermore, a GBS mutant strain lacking only the Srr1 "latching" domain exhibited decreased adherence in vitro and decreased persistence in a mouse model of GBS vaginal colonization, suggesting the importance of Srr-fibrinogen interactions in the female reproductive tract. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Protein Kinase B (Akt) Promotes Pathological Angiogenesis in Murine Model of Oxygen-Induced Retinopathy

    International Nuclear Information System (INIS)

    Wang, Peng; Tian, Xiao-Feng; Rong, Jun-Bo; Liu, Dan; Yi, Guo-Guo; Tan, Qian

    2011-01-01

    Akt, or protein kinase B, is an important signaling molecule that modulates many cellular processes such as cell growth, survival, and metabolism. However, the vivo roles and effectors of Akt in retinal angiogenesis are not explicitly clear. We therefore detected the expression of Akt using Western blotting or RT-PCR technologies in an animal model of oxygen-induced retinopathy, and investigated the effects of recombinant Akt on inhibiting vessels loss and Akt inhibitor on suppressing experimental retinal neovascularization in this model. We showed that in the hyperoxic phase of oxygen-induced retinopathy, the expression of Akt was greatly suppressed. In the hypoxic phase, the expression of Akt was increased dramatically. No significant differences were found in normoxic groups. Compared with control groups, administration of the recombinant Akt in the first phase of retinopathy markedly reduced capillary-free areas, while the administration of the Akt inhibitor in the second phase of retinopathy significantly decreased retinal neovascularization but capillary-free areas. These results indicate that Akt play a critical role in the pathological process (vessels loss and neovascularization) of mouse model of oxygen-induced retinopathy, which may provide a valubale therapeutic tool for ischemic-induced retinal diseases

  20. Doxorubicin hinders DNA condensation promoted by the protein bovine serum albumin (BSA).

    Science.gov (United States)

    Lima, C H M; de Paula, H M C; da Silva, L H M; Rocha, M S

    2017-12-01

    In this work, we have studied the interaction between the anticancer drug doxorubicin (doxo) and condensed DNA, using optical tweezers. To perform this task, we use the protein bovine serum albumin (BSA) in the working buffer to mimic two key conditions present in the real intracellular environment: the condensed state of the DNA and the abundant presence of charged macromolecules in the surrounding medium. In particular, we have found that, when doxo is previously intercalated in disperse DNA, the drug hinders the DNA condensation process upon the addition of BSA in the buffer. On the other hand, when bare DNA is firstly condensed by BSA, doxo is capable to intercalate and to unfold the DNA condensates at relatively high concentrations. In addition, a specific interaction between BSA and doxo was verified, which significantly changes the chemical equilibrium of the DNA-doxo interaction. Finally, the presence of BSA in the buffer stabilizes the double-helix structure of the DNA-doxo complexes, preventing partial DNA denaturation induced by the stretching forces. © 2017 Wiley Periodicals, Inc.

  1. Ohmyungsamycins promote antimicrobial responses through autophagy activation via AMP-activated protein kinase pathway.

    Science.gov (United States)

    Kim, Tae Sung; Shin, Yern-Hyerk; Lee, Hye-Mi; Kim, Jin Kyung; Choe, Jin Ho; Jang, Ji-Chan; Um, Soohyun; Jin, Hyo Sun; Komatsu, Masaaki; Cha, Guang-Ho; Chae, Han-Jung; Oh, Dong-Chan; Jo, Eun-Kyeong

    2017-06-13

    The induction of host cell autophagy by various autophagy inducers contributes to the antimicrobial host defense against Mycobacterium tuberculosis (Mtb), a major pathogenic strain that causes human tuberculosis. In this study, we present a role for the newly identified cyclic peptides ohmyungsamycins (OMS) A and B in the antimicrobial responses against Mtb infections by activating autophagy in murine bone marrow-derived macrophages (BMDMs). OMS robustly activated autophagy, which was essentially required for the colocalization of LC3 autophagosomes with bacterial phagosomes and antimicrobial responses against Mtb in BMDMs. Using a Drosophila melanogaster-Mycobacterium marinum infection model, we showed that OMS-A-induced autophagy contributed to the increased survival of infected flies and the limitation of bacterial load. We further showed that OMS triggered AMP-activated protein kinase (AMPK) activation, which was required for OMS-mediated phagosome maturation and antimicrobial responses against Mtb. Moreover, treating BMDMs with OMS led to dose-dependent inhibition of macrophage inflammatory responses, which was also dependent on AMPK activation. Collectively, these data show that OMS is a promising candidate for new anti-mycobacterial therapeutics by activating antibacterial autophagy via AMPK-dependent signaling and suppressing excessive inflammation during Mtb infections.

  2. Downregulation of bone morphogenetic protein receptor 2 promotes the development of neuroblastoma

    International Nuclear Information System (INIS)

    Cui, Ximao; Yang, Yili; Jia, Deshui; Jing, Ying; Zhang, Shouhua; Zheng, Shan; Cui, Long; Dong, Rui; Dong, Kuiran

    2017-01-01

    Neuroblastoma (NB) is the most common extracranial solid tumor of childhood. In this study, we examined the expression of bone morphogenetic protein receptor 2 (BMPR2) in primary NB and adjacent non-tumor samples (adrenal gland). BMPR2 expression was significantly downregulated in NB tissues, particularly in high-grade NB, and was inversely related to the expression of the NB differentiation markers ferritin and enolase. The significance of the downregulation was further explored in cultured NB cells. While enforced expression of BMPR2 decreased cell proliferation and colony-forming activity, shRNA-mediated knockdown of BMPR2 led to increased cell growth and clonogenicity. In mice, NB cells harboring BMPR2 shRNA showed significantly increased tumorigenicity compared with control cells. We also performed a retrospective analysis of NB patients and identified a significant positive correlation between tumor BMPR2 expression and overall survival. These findings suggest that BMPR2 may play an important role in the development of NB. - Highlights: • BMPR2 expression was downregulated in primary NB and was more signifcant in high grade NB. • BMPR2 expression was accompanied by the decrease of NB markers ferritin and enolase. • Enforced expression of BMPR2 decreased proliferation and colony formation ability of cultured NB cells. • Knockdown of BMPR2 led to increased cell growth, clonality and tumorigenicity in mice. • Patients with NB expressing higher level of BMPR2 had significant better overall survival than those with low level.

  3. ALDH2(E487K) mutation increases protein turnover and promotes murine hepatocarcinogenesis.

    Science.gov (United States)

    Jin, Shengfang; Chen, Jiang; Chen, Lizao; Histen, Gavin; Lin, Zhizhong; Gross, Stefan; Hixon, Jeffrey; Chen, Yue; Kung, Charles; Chen, Yiwei; Fu, Yufei; Lu, Yuxuan; Lin, Hui; Cai, Xiujun; Yang, Hua; Cairns, Rob A; Dorsch, Marion; Su, Shinsan M; Biller, Scott; Mak, Tak W; Cang, Yong

    2015-07-21

    Mitochondrial aldehyde dehydrogenase 2 (ALDH2) in the liver removes toxic aldehydes including acetaldehyde, an intermediate of ethanol metabolism. Nearly 40% of East Asians inherit an inactive ALDH2*2 variant, which has a lysine-for-glutamate substitution at position 487 (E487K), and show a characteristic alcohol flush reaction after drinking and a higher risk for gastrointestinal cancers. Here we report the characterization of knockin mice in which the ALDH2(E487K) mutation is inserted into the endogenous murine Aldh2 locus. These mutants recapitulate essentially all human phenotypes including impaired clearance of acetaldehyde, increased sensitivity to acute or chronic alcohol-induced toxicity, and reduced ALDH2 expression due to a dominant-negative effect of the mutation. When treated with a chemical carcinogen, these mutants exhibit increased DNA damage response in hepatocytes, pronounced liver injury, and accelerated development of hepatocellular carcinoma (HCC). Importantly, ALDH2 protein levels are also significantly lower in patient HCC than in peritumor or normal liver tissues. Our results reveal that ALDH2 functions as a tumor suppressor by maintaining genomic stability in the liver, and the common human ALDH2 variant would present a significant risk factor for hepatocarcinogenesis. Our study suggests that the ALDH2*2 allele-alcohol interaction may be an even greater human public health hazard than previously appreciated.

  4. A photo-responsive F-box protein FOF2 regulates floral initiation by promoting FLC expression in Arabidopsis.

    Science.gov (United States)

    He, Reqing; Li, Xinmei; Zhong, Ming; Yan, Jindong; Ji, Ronghuan; Li, Xu; Wang, Qin; Wu, Dan; Sun, Mengsi; Tang, Dongying; Lin, Jianzhong; Li, Hongyu; Liu, Bin; Liu, Hongtao; Liu, Xuanming; Zhao, Xiaoying; Lin, Chentao

    2017-09-01

    Floral initiation is regulated by various genetic pathways in response to light, temperature, hormones and developmental status; however, the molecular mechanisms underlying the interactions between different genetic pathways are not fully understood. Here, we show that the photoresponsive gene FOF2 (F-box of flowering 2) negatively regulates flowering. FOF2 encodes a putative F-box protein that interacts specifically with ASK14, and its overexpression results in later flowering under both long-day and short-day photoperiods. Conversely, transgenic plants expressing the F-box domain deletion mutant of FOF2 (FOF2ΔF), or double loss of function mutant of FOF2 and FOL1 (FOF2-LIKE 1) present early flowering phenotypes. The late flowering phenotype of the FOF2 overexpression lines is suppressed by the flc-3 loss-of-function mutation. Furthermore, FOF2 mRNA expression is regulated by autonomous pathway gene FCA, and the repressive effect of FOF2 in flowering can be overcome by vernalization. Interestingly, FOF2 expression is regulated by light. The protein level of FOF2 accumulates in response to light, whereas it is degraded under dark conditions via the 26S proteasome pathway. Our findings suggest a possible mechanistic link between light conditions and the autonomous floral promotion pathway in Arabidopsis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  5. The RNA-binding protein Spo5 promotes meiosis II by regulating cyclin Cdc13 in fission yeast.

    Science.gov (United States)

    Arata, Mayumi; Sato, Masamitsu; Yamashita, Akira; Yamamoto, Masayuki

    2014-03-01

    Meiosis comprises two consecutive nuclear divisions, meiosis I and II. Despite this unique progression through the cell cycle, little is known about the mechanisms controlling the sequential divisions. In this study, we carried out a genetic screen to identify factors that regulate the initiation of meiosis II in the fission yeast Schizosaccharomyces pombe. We identified mutants deficient in meiosis II progression and repeatedly isolated mutants defective in spo5, which encodes an RNA-binding protein. Using fluorescence microscopy to visualize YFP-tagged protein, we found that spo5 mutant cells precociously lost Cdc13, the major B-type cyclin in fission yeast, before meiosis II. Importantly, the defect in meiosis II was rescued by increasing CDK activity. In wild-type cells, cdc13 transcripts increased during meiosis II, but this increase in cdc13 expression was weaker in spo5 mutants. Thus, Spo5 is a novel regulator of meiosis II that controls the level of cdc13 expression and promotes de novo synthesis of Cdc13. We previously reported that inhibition of Cdc13 degradation is necessary to initiate meiosis II; together with the previous information, the current findings indicate that the dual control of Cdc13 by de novo synthesis and suppression of proteolysis ensures the progression of meiosis II. © 2014 The Authors Genes to Cells © 2014 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  6. Four regulatory elements in the human c-fos promoter mediate transactivation by HTLV-1 Tax protein.

    Science.gov (United States)

    Alexandre, C; Verrier, B

    1991-04-01

    Expression of the human c-fos proto-oncogene is activated in trans by the Tax protein encoded by human T-cell leukemia virus type-1 (HTLV-1). Indeed, we show here that a HeLa clone stably transfected by Tax expresses Fos at a high level. We also show that multiple elements of the human c-fos promoter, i.e. the v-sis conditioned medium inducible element (SIE), the dyad symmetry element (DSE) necessary for growth factor induction, the octanucleotide direct repeat element (DR), and the cyclic AMP response element (CRE) centred at -60, can all mediate Tax transactivation. In the DSE, the 10bp central core that binds the serum response factor (SRF) is, by itself, sufficient to mediate Tax transactivation. Moreover, a CRE-binding protein is involved in Tax activation through the CRE-60 element. Since Fos is a transregulator of cellular genes, our results suggest that the oncoprotein plays a crucial role in T-cell transformation by HTLV-1 in conjunction with other Tax-inducible genes.

  7. JNK Promotes Epithelial Cell Anoikis by Transcriptional and Post-translational Regulation of BH3-Only Proteins

    Directory of Open Access Journals (Sweden)

    Nomeda Girnius

    2017-11-01

    Full Text Available Summary: Developmental morphogenesis, tissue injury, and oncogenic transformation can cause the detachment of epithelial cells. These cells are eliminated by a specialized form of apoptosis (anoikis. While the processes that contribute to this form of cell death have been studied, the underlying mechanisms remain unclear. Here, we tested the role of the cJUN NH2-terminal kinase (JNK signaling pathway using murine models with compound JNK deficiency in mammary and kidney epithelial cells. These studies demonstrated that JNK is required for efficient anoikis in vitro and in vivo. Moreover, JNK-promoted anoikis required pro-apoptotic members of the BCL2 family of proteins. We show that JNK acts through a BAK/BAX-dependent apoptotic pathway by increasing BIM expression and phosphorylating BMF, leading to death of detached epithelial cells. : Developmental morphogenesis, tissue injury, and oncogenic transformation can cause epithelial cell detachment. These cells are eliminated by a specialized form of apoptosis termed anoikis. Girnius and Davis show that anoikis is mediated by the cJUN NH2-terminal kinase (JNK, which increases BIM expression and phosphorylates BMF to engage BAK/BAX-dependent apoptosis. Keywords: apoptosis, anoikis, epithelial cell, mammary gland, JNK, BAX, BAK, BH3-only protein, BIM, BMF

  8. G-protein-coupled receptor 81 promotes a malignant phenotype in breast cancer through angiogenic factor secretion.

    Science.gov (United States)

    Lee, Yu Jin; Shin, Kyeong Jin; Park, Soo-Ah; Park, Kyeong Su; Park, Seorim; Heo, Kyun; Seo, Young-Kyo; Noh, Dong-Young; Ryu, Sung Ho; Suh, Pann-Ghill

    2016-10-25

    G-protein-coupled receptor 81 (GPR81) functions as a receptor for lactate and plays an important role in the regulation of anti-lipolytic effects in adipocytes. However, to data, a role for GPR81 in the tumor microenvironment has not been clearly defined. Here, GPR81 expression in breast cancer patients and several breast cancer cell lines was significantly increased compared with normal mammary tissues and cells. GPR81 knockdown resulted in impaired breast cancer growth and led to apoptosis both in vitro and in vivo. Furthermore, the inhibition of GPR81 signaling suppressed angiogenesis through a phosphoinositide 3-OH kinase (PI3K)/Akt-cAMP response element binding protein (CREB) pathway, which led to decreased production of the pro-angiogenic mediator amphiregulin (AREG). Overall, these findings identify GPR81 as a tumor-promoting receptor in breast cancer progression and suggest a novel mechanism that regulates GPR81-dependent activation of the PI3K/Akt signaling axis in tumor microenvironment.

  9. Indomethacin promotes apoptosis in gastric cancer cells through concomitant degradation of Survivin and Aurora B kinase proteins.

    Science.gov (United States)

    Chiou, Shiun-Kwei; Hoa, Neil; Hodges, Amy; Ge, Lishen; Jadus, Martin R

    2014-09-01

    Regular usage of nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with reduced incidence of a variety of cancers. The molecular mechanisms underlying these chemopreventive effects remain poorly understood. This current investigation showed that in gastric cancer cells: (1) Indomethacin treatment enhanced the degradation of chromosomal passenger proteins, Survivin and Aurora B kinase; (2) Indomethacin treatment down-regulated Aurora B kinase activity in a cell cycle-independent fashion; (3) siRNA knockdown of Survivin level promoted Aurora B kinase protein degradation, and vice versa; (4) ectopic overexpression of Survivin blocked reduction of Aurora B kinase level and activity by indomethacin treatment, and vice versa; (5) siRNA knockdown of Aurora B kinase level and AZD1152 inhibition of its activity induced apoptosis, and overexpression of Aurora B kinase inhibited indomethacin-induced apoptosis; (6) indomethacin treatment reduced Aurora B kinase level, coinciding with reduction of Survivin level and induction of apoptosis, in KATO III and HT-29 cells, and in mouse gastric mucosa. A role for Aurora B kinase function in NSAID-induced apoptosis was not previously explored. Thus this report provides better understanding of the molecular mechanisms underlying the anti-cancer effect of NSAIDs by elucidating a significant role for Aurora B kinase in indomethacin-induced apoptosis.

  10. The Vasa Homolog RDE-12 engages target mRNA and multiple argonaute proteins to promote RNAi in C. elegans.

    Science.gov (United States)

    Shirayama, Masaki; Stanney, William; Gu, Weifeng; Seth, Meetu; Mello, Craig C

    2014-04-14

    Argonaute (AGO) proteins are key nuclease effectors of RNAi. Although purified AGOs can mediate a single round of target RNA cleavage in vitro, accessory factors are required for small interfering RNA (siRNA) loading and to achieve multiple-target turnover. To identify AGO cofactors, we immunoprecipitated the C. elegans AGO WAGO-1, which engages amplified small RNAs during RNAi. These studies identified a robust association between WAGO-1 and a conserved Vasa ATPase-related protein RDE-12. rde-12 mutants are deficient in RNAi, including viral suppression, and fail to produce amplified secondary siRNAs and certain endogenous siRNAs (endo-siRNAs). RDE-12 colocalizes with WAGO-1 in germline P granules and in cytoplasmic and perinuclear foci in somatic cells. These findings and our genetic studies suggest that RDE-12 is first recruited to target mRNA by upstream AGOs (RDE-1 and ERGO-1), where it promotes small RNA amplification and/or WAGO-1 loading. Downstream of these events, RDE-12 forms an RNase-resistant (target mRNA-independent) complex with WAGO-1 and may thus have additional functions in target mRNA surveillance and silencing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Mitogen-activated protein kinase signaling pathways promote low-density lipoprotein receptor-related protein 1-mediated internalization of beta-amyloid protein in primary cortical neurons.

    Science.gov (United States)

    Yang, Wei-Na; Ma, Kai-Ge; Qian, Yi-Hua; Zhang, Jian-Shui; Feng, Gai-Feng; Shi, Li-Li; Zhang, Zhi-Chao; Liu, Zhao-Hui

    2015-07-01

    Mounting evidence suggests that the pathological hallmarks of Alzheimer's disease (AD) are caused by the intraneuronal accumulation of beta-amyloid protein (Aβ). Reuptake of extracellular Aβ is believed to contribute significantly to the intraneuronal Aβ pool in the early stages of AD. Published reports have claimed that the low-density lipoprotein receptor-related protein 1 (LRP1) mediates Aβ1-42 uptake and lysosomal trafficking in GT1-7 neuronal cells and mouse embryonic fibroblast non-neuronal cells. However, there is no direct evidence supporting the role of LRP1 in Aβ internalization in primary neurons. Our recent study indicated that p38 MAPK and ERK1/2 signaling pathways are involved in regulating α7 nicotinic acetylcholine receptor (α7nAChR)-mediated Aβ1-42 uptake in SH-SY5Y cells. This study was designed to explore the regulation of MAPK signaling pathways on LRP1-mediated Aβ internalization in neurons. We found that extracellular Aβ1-42 oligomers could be internalized into endosomes/lysosomes and mitochondria in cortical neurons. Aβ1-42 and LRP1 were also found co-localized in neurons during Aβ1-42 internalization, and they could form Aβ1-42-LRP1 complex. Knockdown of LRP1 expression significantly decreased neuronal Aβ1-42 internalization. Finally, we identified that p38 MAPK and ERK1/2 signaling pathways regulated the internalization of Aβ1-42 via LRP1. Therefore, these results demonstrated that LRP1, p38 MAPK and ERK1/2 mediated the internalization of Aβ1-42 in neurons and provided evidence that blockade of LRP1 or inhibitions of MAPK signaling pathways might be a potential approach to lowering brain Aβ levels and served a potential therapeutic target for AD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Reactive oxygen species promote heat shock protein 90-mediated HBV capsid assembly

    International Nuclear Information System (INIS)

    Kim, Yoon Sik; Seo, Hyun Wook; Jung, Guhung

    2015-01-01

    Hepatitis B virus (HBV) infection induces reactive oxygen species (ROS) production and has been associated with the development of hepatocellular carcinoma (HCC). ROS are also an important factor in HCC because the accumulated ROS leads to abnormal cell proliferation and chromosome mutation. In oxidative stress, heat shock protein 90 (Hsp90) and glutathione (GSH) function as part of the defense mechanism. Hsp90 prevents cellular component from oxidative stress, and GSH acts as antioxidants scavenging ROS in the cell. However, it is not known whether molecules regulated by oxidative stress are involved in HBV capsid assembly. Based on the previous study that Hsp90 facilitates HBV capsid assembly, which is an important step for the packing of viral particles, here, we show that ROS enrich Hsp90-driven HBV capsid formation. In cell-free system, HBV capsid assembly was facilitated by ROS with Hsp90, whereas it was decreased without Hsp90. In addition, GSH inhibited the function of Hsp90 to decrease HBV capsid assembly. Consistent with the result of cell-free system, ROS and buthionine sulfoximine (BS), an inhibitor of GSH synthesis, increased HBV capsid formation in HepG2.2.15 cells. Thus, our study uncovers the interplay between ROS and Hsp90 during HBV capsid assembly. - Highlights: • We examined H 2 O 2 and GSH modulate HBV capsid assembly. • H 2 O 2 facilitates HBV capsid assembly in the presence of Hsp90. • GSH inhibits function of Hsp90 in facilitating HBV capsid assembly. • H 2 O 2 and GSH induce conformation change of Hsp90

  13. A Herpesviral Immediate Early Protein Promotes Transcription Elongation of Viral Transcripts

    Directory of Open Access Journals (Sweden)

    Hannah L. Fox

    2017-06-01

    Full Text Available Herpes simplex virus 1 (HSV-1 genes are transcribed by cellular RNA polymerase II (RNA Pol II. While four viral immediate early proteins (ICP4, ICP0, ICP27, and ICP22 function in some capacity in viral transcription, the mechanism by which ICP22 functions remains unclear. We observed that the FACT complex (comprised of SSRP1 and Spt16 was relocalized in infected cells as a function of ICP22. ICP22 was also required for the association of FACT and the transcription elongation factors SPT5 and SPT6 with viral genomes. We further demonstrated that the FACT complex interacts with ICP22 throughout infection. We therefore hypothesized that ICP22 recruits cellular transcription elongation factors to viral genomes for efficient transcription elongation of viral genes. We reevaluated the phenotype of an ICP22 mutant virus by determining the abundance of all viral mRNAs throughout infection by transcriptome sequencing (RNA-seq. The accumulation of almost all viral mRNAs late in infection was reduced compared to the wild type, regardless of kinetic class. Using chromatin immunoprecipitation sequencing (ChIP-seq, we mapped the location of RNA Pol II on viral genes and found that RNA Pol II levels on the bodies of viral genes were reduced in the ICP22 mutant compared to wild-type virus. In contrast, the association of RNA Pol II with transcription start sites in the mutant was not reduced. Taken together, our results indicate that ICP22 plays a role in recruiting elongation factors like the FACT complex to the HSV-1 genome to allow for efficient viral transcription elongation late in viral infection and ultimately infectious virion production.

  14. Protein Kinase A Activation Promotes Cancer Cell Resistance to Glucose Starvation and Anoikis.

    Directory of Open Access Journals (Sweden)

    Roberta Palorini

    2016-03-01

    Full Text Available Cancer cells often rely on glycolysis to obtain energy and support anabolic growth. Several studies showed that glycolytic cells are susceptible to cell death when subjected to low glucose availability or to lack of glucose. However, some cancer cells, including glycolytic ones, can efficiently acquire higher tolerance to glucose depletion, leading to their survival and aggressiveness. Although increased resistance to glucose starvation has been shown to be a consequence of signaling pathways and compensatory metabolic routes activation, the full repertoire of the underlying molecular alterations remain elusive. Using omics and computational analyses, we found that cyclic adenosine monophosphate-Protein Kinase A (cAMP-PKA axis activation is fundamental for cancer cell resistance to glucose starvation and anoikis. Notably, here we show that such a PKA-dependent survival is mediated by parallel activation of autophagy and glutamine utilization that in concert concur to attenuate the endoplasmic reticulum (ER stress and to sustain cell anabolism. Indeed, the inhibition of PKA-mediated autophagy or glutamine metabolism increased the level of cell death, suggesting that the induction of autophagy and metabolic rewiring by PKA is important for cancer cellular survival under glucose starvation. Importantly, both processes actively participate to cancer cell survival mediated by suspension-activated PKA as well. In addition we identify also a PKA/Src mechanism capable to protect cancer cells from anoikis. Our results reveal for the first time the role of the versatile PKA in cancer cells survival under chronic glucose starvation and anoikis and may be a novel potential target for cancer treatment.

  15. 3-Phosphoinositide-dependent Protein Kinase-1 (PDK1) promotes invasion and activation of matrix metalloproteinases

    International Nuclear Information System (INIS)

    Xie, Zhihui; Yuan, Hongyan; Yin, Yuzhi; Zeng, Xiao; Bai, Renkui; Glazer, Robert I

    2006-01-01

    Metastasis is a major cause of morbidity and mortality in breast cancer with tumor cell invasion playing a crucial role in the metastatic process. PDK1 is a key molecule that couples PI3K to cell proliferation and survival signals in response to growth factor receptor activation, and is oncogenic when expressed in mouse mammary epithelial cells. We now present evidence showing that PDK1-expressing cells exhibit enhanced anchorage-dependent and -independent cell growth and are highly invasive when grown on Matrigel. These properties correlate with induction of MMP-2 activity, increased MT1-MMP expression and a unique gene expression profile. Invasion assays in Matrigel, MMP-2 zymogram analysis, gene microarray analysis and mammary isografts were used to characterize the invasive and proliferative function of cells expressing PDK1. Tissue microarray analysis of human breast cancers was used to measure PDK1 expression in invasive tumors by IHC. Enhanced invasion on Matrigel in PDK1-expressing cells was accompanied by increased MMP-2 activity resulting from stabilization against proteasomal degradation. Increased MMP-2 activity was accompanied by elevated levels of MT1-MMP, which is involved in generating active MMP-2. Gene microarray analysis identified increased expression of the ECM-associated genes decorin and type I procollagen, whose gene products are substrates of MT1-MMP. Mammary fat pad isografts of PDK1-expressing cells produced invasive adenocarcinomas. Tissue microarray analysis of human invasive breast cancer indicated that PDK1pSer241 was strongly expressed in 90% of samples. These results indicate that PDK1 serves as an important effector of mammary epithelial cell growth and invasion in the transformed phenotype. PDK1 mediates its effect in part by MT1-MMP induction, which in turn activates MMP-2 and modulates the ECM proteins decorin and collagen. The presence of increased PDK1 expression in the majority of invasive breast cancers suggests its

  16. Reactive oxygen species promote heat shock protein 90-mediated HBV capsid assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon Sik, E-mail: yumshak@naver.com; Seo, Hyun Wook, E-mail: suruk@naver.com; Jung, Guhung, E-mail: drjung@snu.ac.kr

    2015-02-13

    Hepatitis B virus (HBV) infection induces reactive oxygen species (ROS) production and has been associated with the development of hepatocellular carcinoma (HCC). ROS are also an important factor in HCC because the accumulated ROS leads to abnormal cell proliferation and chromosome mutation. In oxidative stress, heat shock protein 90 (Hsp90) and glutathione (GSH) function as part of the defense mechanism. Hsp90 prevents cellular component from oxidative stress, and GSH acts as antioxidants scavenging ROS in the cell. However, it is not known whether molecules regulated by oxidative stress are involved in HBV capsid assembly. Based on the previous study that Hsp90 facilitates HBV capsid assembly, which is an important step for the packing of viral particles, here, we show that ROS enrich Hsp90-driven HBV capsid formation. In cell-free system, HBV capsid assembly was facilitated by ROS with Hsp90, whereas it was decreased without Hsp90. In addition, GSH inhibited the function of Hsp90 to decrease HBV capsid assembly. Consistent with the result of cell-free system, ROS and buthionine sulfoximine (BS), an inhibitor of GSH synthesis, increased HBV capsid formation in HepG2.2.15 cells. Thus, our study uncovers the interplay between ROS and Hsp90 during HBV capsid assembly. - Highlights: • We examined H{sub 2}O{sub 2} and GSH modulate HBV capsid assembly. • H{sub 2}O{sub 2} facilitates HBV capsid assembly in the presence of Hsp90. • GSH inhibits function of Hsp90 in facilitating HBV capsid assembly. • H{sub 2}O{sub 2} and GSH induce conformation change of Hsp90.

  17. Deletion of G-protein-coupled receptor 55 promotes obesity by reducing physical activity.

    Science.gov (United States)

    Meadows, A; Lee, J H; Wu, C-S; Wei, Q; Pradhan, G; Yafi, M; Lu, H-C; Sun, Y

    2016-03-01

    Cannabinoid receptor 1 (CB1) is the best-characterized cannabinoid receptor, and CB1 antagonists are used in clinical trials to treat obesity. Because of the wide range of CB1 functions, the side effects of CB1 antagonists pose serious concerns. G-protein-coupled receptor 55 (GPR55) is an atypical cannabinoid receptor, and its pharmacology and functions are distinct from CB1. GPR55 regulates neuropathic pain, gut, bone, immune functions and motor coordination. GPR55 is expressed in various brain regions and peripheral tissues. However, the roles of GPR55 in energy and glucose homeostasis are unknown. Here we have investigated the roles of GPR55 in energy balance and insulin sensitivity using GPR55-null mice (GPR55(-/-)). Body composition of the mice was measured by EchoMRI. Food intake, feeding behavior, energy expenditure and physical activity of GPR55(-/-) mice were determined by indirect calorimetry. Muscle function was assessed by forced treadmill running test. Insulin sensitivity was evaluated by glucose and insulin tolerance tests. Adipose inflammation was assessed by flow cytometry analysis of adipose tissue macrophages. The expression of inflammatory markers in adipose tissues and orexigenic/anorexigenic peptides in the hypothalamus was also analyzed by real-time PCR. GPR55(-/-) mice had normal total energy intake and feeding pattern (i.e., no changes in meal size, meal number or feeding frequency). Intriguingly, whereas adult GPR55(-/-) mice only showed a modest increase in overall body weight, they exhibited significantly increased fat mass and insulin resistance. The spontaneous locomotor activity of GPR55(-/-) mice was dramatically decreased, whereas resting metabolic rate and non-shivering thermogenesis were unchanged. Moreover, GPR55(-/-) mice exhibited significantly decreased voluntary physical activity, showing reduced running distance on the running wheels, whereas muscle function appeared to be normal. GPR55 has an important role in energy

  18. Control of mitochondrial pH by uncoupling protein 4 in astrocytes promotes neuronal survival

    KAUST Repository

    Lambert, Hélène Perreten

    2014-09-18

    Brain activity is energetically costly and requires a steady and highly regulated flow of energy equivalents between neural cells. It is believed that a substantial share of cerebral glucose, the major source of energy of the brain, will preferentially be metabolized in astrocytes via aerobic glycolysis. The aim of this study was to evaluate whether uncoupling proteins (UCPs), located in the inner membrane of mitochondria, play a role in setting up the metabolic response pattern of astrocytes. UCPs are believed to mediate the transmembrane transfer of protons, resulting in the uncoupling of oxidative phosphorylation from ATP production. UCPs are therefore potentially important regulators of energy fluxes. The main UCP isoforms expressed in the brain are UCP2, UCP4, and UCP5. We examined in particular the role of UCP4 in neuron-astrocyte metabolic coupling and measured a range of functional metabolic parameters including mitochondrial electrical potential and pH, reactive oxygen species production, NAD/NADH ratio, ATP/ADP ratio, CO2 and lactate production, and oxygen consumption rate. In brief, we found that UCP4 regulates the intramitochondrial pH of astrocytes, which acidifies as a consequence of glutamate uptake, with the main consequence of reducing efficiency of mitochondrial ATP production. The diminished ATP production is effectively compensated by enhancement of glycolysis. This nonoxidative production of energy is not associated with deleterious H2O2 production. We show that astrocytes expressing more UCP4 produced more lactate, which is used as an energy source by neurons, and had the ability to enhance neuronal survival.

  19. Glutamine reduces myocardial cell apoptosis in a rat model of sepsis by promoting expression of heat shock protein 90.

    Science.gov (United States)

    Li, Wanxia; Tao, Shaoyu; Wu, Qinghua; Wu, Tao; Tao, Ran; Fan, Jun

    2017-12-01

    Myocardial cell injury and cardiac myocyte apoptosis are associated with sepsis. Glutamine (Gln) has been reported to repair myocardial cell injury. The aim of this study was to explore the role of Gln on cardiac myocytes in a cecal ligation and puncture (CLP) model of sepsis in Wistar rats. Following induction of sepsis in a CLP rat model, viral encoding heat shock protein 90 (Hsp90) gene and Hsp90dsDNA were designed to express and knockdown Hsp90, respectively. Rat cardiac tissues were examined histologically, and apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling staining. The expression of B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein, Hsp90, p53 upregulated modulator of apoptosis, and p53 was measured by western blotting and real-time polymerase chain reaction. Caspase-3, caspase-8, and caspase-9 were detected by enzyme-linked immunosorbent assay. Rat cardiac myocyte damage induced by CLP was reduced by Gln treatment and Hsp90 overexpression, and these changes were reversed by Hsp90 knockdown. Bcl-2 expression, Bcl-2-associated X protein, p53, p53 upregulated modulator of apoptosis, caspase-8, caspase-9, and caspase-3 activities were significantly upregulated in the CLP model, which were reduced by Gln treatment and Hsp90 overexpression. Gln reduced apoptosis of cardiac myocytes in a rat model of sepsis, by promoting Hsp90 expression. Further studies are needed to determine the possible therapeutic action of Gln in sepsis in human tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Overexpression of Zwint predicts poor prognosis and promotes the proliferation of hepatocellular carcinoma by regulating cell-cycle-related proteins

    Directory of Open Access Journals (Sweden)

    Ying H

    2018-02-01

    Full Text Available Hanning Ying,1,2 Zhiyao Xu,3 Mingming Chen,1,2 Senjun Zhou,1,2 Xiao Liang,1,2 Xiujun Cai1,2 1Department of General Surgery, 2Key Laboratory of Endoscopic Technique Research of Zhejiang Province, 3Central Lab of Biomedical Research Center, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China Introduction: Zwint, a centromere-complex component required for the mitotic spindle checkpoint, has been reported to be overexpressed in different human cancers, but it has not been studied in human hepatocellular carcinoma (HCC.Materials and methods: The role of Zwint in hepatocellular carcinoma cell proliferation capacities was evaluated by using cell counting kit-8 (CCK8, flow cytometry, clone formation and tumor formation assay in nude mice. Western blot analysis and qPCR assay were performed to assess Zwint interacting with cell-cycle-related proteins.Results: We report that ZWINT mRNA and protein expression were upregulated in HCC samples and cell lines. An independent set of 106 HCC-tissue pairs and corresponding noncancerous tissues was evaluated for Zwint expression using immunohistochemistry, and elevated Zwint expression in HCC tissues was significantly correlated with clinicopathological features, such as tumor size and number. Kaplan–Meier survival and Cox regression analysis revealed that high expression of Zwint was correlated with poor overall survival and a greater tendency for tumor recurrence. Ectopic expression of Zwint promoted HCC-cell proliferation, and Zwint expression affected the expression of several cell-cycle proteins, including PCNA, cyclin B1, Cdc25C and CDK1.Conclusion: Our findings suggest that upregulation of Zwint may contribute to the progression of HCC and may be a prognostic biomarker and potential therapeutic target for treating HCC. Keywords: Zwint, hepatocellular carcinoma, HCC, prognosis, cell proliferation, cell cycle

  1. MicroRNA-17-5p post-transcriptionally regulates p21 expression in irradiated betel quid chewing-related oral squamous cell carcinoma cells

    International Nuclear Information System (INIS)

    Wu, S.Y.; HungKuang Univ., Taichung; Lin, K.C.; Chiou, J.F.; Taipei Medical Univ. Hospital, Taipei; Taipei Medical Univ. Hospital, Taipei; Taipei Medical Univ. Hospital, Taipei; Jeng, S.C.; Cheng, W.H.; Chang, C.I.; Lin, W.C.; Wu, L.L.; Lee, H.L.; Chen, R.J.

    2013-01-01

    Background and purpose: Betel nut chewing is associated with oral cavity cancer in Taiwan. OC3 is an oral carcinoma cell line that was established from cells collected from a long-term betel nut chewer who does not smoke. After we found that microRNA-17-5p (miR-17-5p) is induced in OC3 cells, we used this cell line to examine the biological role(s) of this microRNA in response to exposure to ionizing radiation. Materials and methods: A combined SYBR green-based real-time PCR and oligonucleotide ligation assay was used to examine the expression of the miR-17 polycistron in irradiated OC3 cells. The roles of miR-17-5p and p21 were evaluated with specific antisense oligonucleotides (ODN) that were designed and used to inhibit their expression. Expression of the p21 protein was evaluated by Western blotting. The clonogenic assay and annexin V staining were used to evaluate cell survival and apoptosis, respectively. Cells in which miR-17-5p was stably knocked down were used to create ectopic xenografts to evaluate in vivo the role of miR-17-5p. Results: A radiation dose of 5 Gy significantly increased miR-17-5p expression in irradiated OC3 cells. Inhibition of miR-17-5p expression enhanced the radiosensitivity of the OC3 cells. We found that miR-17-5p downregulates radiation-induced p21 expression in OC3 cells and, by using a tumor xenograft model, it was found that p21 plays a critical role in increasing the radiosensitivity of OC3 cells in vitro and in vivo. Conclusion: miR-17-5p is induced in irradiated OC3 cells and it downregulates p21 protein expression, contributing to the radioresistance of OC3 cells. (orig.)

  2. MicroRNA-17-5p post-transcriptionally regulates p21 expression in irradiated betel quid chewing-related oral squamous cell carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, S.Y. [Taipei Medical Univ., Wan Fang Hospital, Taipei (China). Dept. of Radiation-Oncology; HungKuang Univ., Taichung (China). Dept. of Biotechnology; Lin, K.C. [Taipei Medical Univ., Wan Fang Hospital, Taipei (China). Dept. of Oral and Maxillofacial Surgery; Chiou, J.F. [Taipei Medical Univ., Taipei (China). Dept. of Radiology; Taipei Medical Univ. Hospital, Taipei (China). Dept. of Radiation Oncology; Taipei Medical Univ. Hospital, Taipei (China). Dept. of Hospice and Palliative Center; Taipei Medical Univ. Hospital, Taipei (China). Cancer Center; Jeng, S.C. [Taipei Medical Univ. Hospital, Taipei (China). Dept. of Radiation Oncology; Cheng, W.H.; Chang, C.I. [Taipei Medical Univ., Wan Fang Hospital, Taipei (China). Dept. of Hemato-Ongology; Lin, W.C. [Taipei Medical Univ., Wan Fang Hospital, Taipei (China). Div. of Thoracic Surgery; Wu, L.L. [National Taiwan Univ. Hospital, Taipei (China). Dept. of Ophthalmology; Lee, H.L. [Taipei Medical Univ., Wan Fang Hospital, Taipei (China). Dept. of Radiation-Oncology; Chen, R.J. [National Taiwan Univ. Hospital and National Taiwan Univ., Taipei (China). Dept. of Obstetrics and Gynecology

    2013-08-15

    Background and purpose: Betel nut chewing is associated with oral cavity cancer in Taiwan. OC3 is an oral carcinoma cell line that was established from cells collected from a long-term betel nut chewer who does not smoke. After we found that microRNA-17-5p (miR-17-5p) is induced in OC3 cells, we used this cell line to examine the biological role(s) of this microRNA in response to exposure to ionizing radiation. Materials and methods: A combined SYBR green-based real-time PCR and oligonucleotide ligation assay was used to examine the expression of the miR-17 polycistron in irradiated OC3 cells. The roles of miR-17-5p and p21 were evaluated with specific antisense oligonucleotides (ODN) that were designed and used to inhibit their expression. Expression of the p21 protein was evaluated by Western blotting. The clonogenic assay and annexin V staining were used to evaluate cell survival and apoptosis, respectively. Cells in which miR-17-5p was stably knocked down were used to create ectopic xenografts to evaluate in vivo the role of miR-17-5p. Results: A radiation dose of 5 Gy significantly increased miR-17-5p expression in irradiated OC3 cells. Inhibition of miR-17-5p expression enhanced the radiosensitivity of the OC3 cells. We found that miR-17-5p downregulates radiation-induced p21 expression in OC3 cells and, by using a tumor xenograft model, it was found that p21 plays a critical role in increasing the radiosensitivity of OC3 cells in vitro and in vivo. Conclusion: miR-17-5p is induced in irradiated OC3 cells and it downregulates p21 protein expression, contributing to the radioresistance of OC3 cells. (orig.)

  3. Cyclic adenosine 3',5'-monophosphate (cAMP) enhances cAMP-responsive element binding (CREB) protein phosphorylation and phospho-CREB interaction with the mouse steroidogenic acute regulatory protein gene promoter.

    Science.gov (United States)

    Clem, Brian F; Hudson, Elizabeth A; Clark, Barbara J

    2005-03-01

    Steroidogenic acute regulatory protein (StAR) transcription is regulated through cAMP-protein kinase A-dependent mechanisms that involve multiple transcription factors including the cAMP-responsive element binding protein (CREB) family members. Classically, binding of phosphorylated CREB to cis-acting cAMP-responsive elements (5'-TGACGTCA-3') within target gene promoters leads to recruitment of the coactivator CREB binding protein (CBP). Herein we examined the extent of CREB family member phosphorylation on protein-DNA interactions and CBP recruitment with the StAR promoter. Immunoblot analysis revealed that CREB, cAMP-responsive element modulator (CREM), and activating transcription factor (ATF)-1 are expressed in MA-10 mouse Leydig tumor cells, yet only CREB and ATF-1 are phosphorylated. (Bu)2cAMP treatment of MA-10 cells increased CREB phosphorylation approximately 2.3-fold within 30 min but did not change total nuclear CREB expression levels. Using DNA-affinity chromatography, we now show that CREB and ATF-1, but not CREM, interact with the StAR promoter, and this interaction is dependent on the activator protein-1 (AP-1) cis-acting element within the cAMP-responsive region. In addition, (Bu)2cAMP-treatment increased phosphorylated CREB (P-CREB) association with the StAR promoter but did not influence total CREB interaction. In vivo chromatin immunoprecipitation assays demonstrated CREB binding to the StAR proximal promoter is independent of (Bu)2cAMP-treatment, confirming our in vitro analysis. However, (Bu)2cAMP-treatment increased P-CREB and CBP interaction with the StAR promoter, demonstrating for the first time the physical role of P-CREB:DNA interactions in CBP recruitment to the StAR proximal promoter.

  4. Efficient construction of an inverted minimal H1 promoter driven siRNA expression cassette: facilitation of promoter and siRNA sequence exchange.

    Directory of Open Access Journals (Sweden)

    Hoorig Nassanian

    2007-08-01

    Full Text Available RNA interference (RNAi, mediated by small interfering RNA (siRNA, is an effective method used to silence gene expression at the post-transcriptional level. Upon introduction into target cells, siRNAs incorporate into the RNA-induced silencing complex (RISC. The antisense strand of the siRNA duplex then "guides" the RISC to the homologous mRNA, leading to target degradation and gene silencing. In recent years, various vector-based siRNA expression systems have been developed which utilize opposing polymerase III promoters to independently drive expression of the sense and antisense strands of the siRNA duplex from the same template.We show here the use of a ligase chain reaction (LCR to develop a new vector system called pInv-H1 in which a DNA sequence encoding a specific siRNA is placed between two inverted minimal human H1 promoters (approximately 100 bp each. Expression of functional siRNAs from this construct has led to efficient silencing of both reporter and endogenous genes. Furthermore, the inverted H1 promoter-siRNA expression cassette was used to generate a retrovirus vector capable of transducing and silencing expression of the targeted protein by>80% in target cells.The unique design of this construct allows for the efficient exchange of siRNA sequences by the directional cloning of short oligonucleotides via asymmetric restriction sites. This provides a convenient way to test the functionality of different siRNA sequences. Delivery of the siRNA cassette by retroviral transduction suggests that a single copy of the siRNA expression cassette efficiently knocks down gene expression at the protein level. We note that this vector system can potentially be used to generate a random siRNA library. The flexibility of the ligase chain reaction suggests that additional control elements can easily be introduced into this siRNA expression cassette.

  5. IGF-IR promotes prostate cancer growth by stabilizing α5β1 integrin protein levels.

    Directory of Open Access Journals (Sweden)

    Aejaz Sayeed

    Full Text Available Dynamic crosstalk between growth factor receptors, cell adhesion molecules and extracellular matrix is essential for cancer cell migration and invasion. Integrins are transmembrane receptors that bind extracellular matrix proteins and enable cell adhesion and cytoskeletal organization. They also mediate signal transduction to regulate cell proliferation and survival. The type 1 insulin-like growth factor receptor (IGF-IR mediates tumor cell growth, adhesion and inhibition of apoptosis in several types of cancer. We have previously demonstrated that β1 integrins regulate anchorage-independent growth of prostate cancer (PrCa cells by regulating IGF-IR expression and androgen receptor-mediated transcriptional functions. Furthermore, we have recently reported that IGF-IR regulates the expression of β1 integrins in PrCa cells. We have dissected the mechanism through which IGF-IR regulates β1 integrin expression in PrCa. Here we report that IGF-IR is crucial for PrCa cell growth and that β1 integrins contribute to the regulation of proliferation by IGF-IR. We demonstrate that β1 integrin regulation by IGF-IR does not occur at the mRNA level. Exogenous expression of a CD4 - β1 integrin cytoplasmic domain chimera does not interfere with such regulation and fails to stabilize β1 integrin expression in the absence of IGF-IR. This appears to be due to the lack of interaction between the β1 cytoplasmic domain and IGF-IR. We demonstrate that IGF-IR stabilizes the β1 subunit by protecting it from proteasomal degradation. The α5 subunit, one of the binding partners of β1, is also downregulated along with β1 upon IGF-IR knockdown while no change is observed in the expression of the α2, α3, α4, α6 and α7 subunits. Our results reveal a crucial mechanistic role for the α5β1 integrin, downstream of IGF-IR, in regulating cancer growth.

  6. Construction of a ColD cda Promoter-Based SOS-Green Fluorescent Protein Whole-Cell Biosensor with Higher Sensitivity toward Genotoxic Compounds than Constructs Based on recA, umuDC, or sulA Promoters

    DEFF Research Database (Denmark)

    Norman, Anders; Hansen, Lars Hestbjerg; Sørensen, Søren Johannes

    2005-01-01

    Four different green fluorescent protein (GFP)-based whole-cell biosensors were created based on the DNA damage inducible SOS response of Escherichia coli in order to evaluate the sensitivity of individual SOS promoters toward genotoxic substances. Treatment with the known carcinogen N-methyl-N'-......Four different green fluorescent protein (GFP)-based whole-cell biosensors were created based on the DNA damage inducible SOS response of Escherichia coli in order to evaluate the sensitivity of individual SOS promoters toward genotoxic substances. Treatment with the known carcinogen N......-cell biosensor which is not only able to detect minute levels of genotoxins but, due to its use of the green fluorescent protein, also a reporter system which should be applicable in high-throughput screening assays as well as a wide variety of in situ detection studies....

  7. Brucella TIR-like protein TcpB/Btp1 specifically targets the host adaptor protein MAL/TIRAP to promote infection.

    Science.gov (United States)

    Li, Wenna; Ke, Yuehua; Wang, Yufei; Yang, Mingjuan; Gao, Junguang; Zhan, Shaoxia; Xinying, Du; Huang, Liuyu; Li, Wenfeng; Chen, Zeliang; Li, Juan

    2016-08-26

    Brucella spp. are known to avoid host immune recognition and weaken the immune response to infection. Brucella like accomplish this by employing two clever strategies, called the stealth strategy and hijacking strategy. The TIR domain-containing protein (TcpB/Btp1) of Brucella melitensis is thought to be involved in inhibiting host NF-κB activation by binding to adaptors downstream of Toll-like receptors. However, of the five TIR domain-containing adaptors conserved in mammals, whether MyD88 or MAL, even other three adaptors, are specifically targeted by TcpB has not been identified. Here, we confirmed the effect of TcpB on B.melitensis virulence in mice and found that TcpB selectively targets MAL. By using siRNA against MAL, we found that TcpB from B.melitensis is involved in intracellular survival and that MAL affects intracellular replication of B.melitensis. Our results confirm that TcpB specifically targets MAL/TIRAP to disrupt downstream signaling pathways and promote intra-host survival of Brucella spp. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. ATF3, an HTLV-1 bZip factor binding protein, promotes proliferation of adult T-cell leukemia cells

    Directory of Open Access Journals (Sweden)

    Ohshima Koichi

    2011-03-01

    Full Text Available Abstract Background Adult T-cell leukemia (ATL is an aggressive malignancy of CD4+ T-cells caused by human T-cell leukemia virus type 1 (HTLV-1. The HTLV-1 bZIP factor (HBZ gene, which is encoded by the minus strand of the viral genome, is expressed as an antisense transcript in all ATL cases. By using yeast two-hybrid screening, we identified activating transcription factor 3 (ATF3 as an HBZ-interacting protein. ATF3 has been reported to be expressed in ATL cells, but its biological significance is not known. Results Immunoprecipitation analysis confirmed that ATF3 interacts with HBZ. Expression of ATF3 was upregulated in ATL cell lines and fresh ATL cases. Reporter assay revealed that ATF3 could interfere with the HTLV-1 Tax's transactivation of the 5' proviral long terminal repeat (LTR, doing so by affecting the ATF/CRE site, as well as HBZ. Suppressing ATF3 expression inhibited proliferation and strongly reduced the viability of ATL cells. As mechanisms of growth-promoting activity of ATF3, comparative expression profiling of ATF3 knockdown cells identified candidate genes that are critical for the cell cycle and cell death, including cell division cycle 2 (CDC2 and cyclin E2. ATF3 also enhanced p53 transcriptional activity, but this activity was suppressed by HBZ. Conclusions Thus, ATF3 expression has positive and negative effects on the proliferation and survival of ATL cells. HBZ impedes its negative effects, leaving ATF3 to promote proliferation of ATL cells via mechanisms including upregulation of CDC2 and cyclin E2. Both HBZ and ATF3 suppress Tax expression, which enables infected cells to escape the host immune system.

  9. Loss of cellular FLICE-inhibitory protein promotes acute cholestatic liver injury and inflammation from bile duct ligation.

    Science.gov (United States)

    Gehrke, Nadine; Nagel, Michael; Straub, Beate K; Wörns, Marcus A; Schuchmann, Marcus; Galle, Peter R; Schattenberg, Jörn M

    2018-03-01

    Cholestatic liver injury results from impaired bile flow or metabolism and promotes hepatic inflammation and fibrogenesis. Toxic bile acids that accumulate in cholestasis induce apoptosis and contribute to early cholestatic liver injury, which is amplified by accompanying inflammation. The aim of the current study was to evaluate the role of the antiapoptotic caspase 8-homolog cellular FLICE-inhibitory (cFLIP) protein during acute cholestatic liver injury. Transgenic mice exhibiting hepatocyte-specific deletion of cFLIP (cFLIP -/- ) were used for in vivo and in vitro analysis of cholestatic liver injury using bile duct ligation (BDL) and the addition of bile acids ex vivo. Loss of cFLIP in hepatocytes promoted acute cholestatic liver injury early after BDL, which was characterized by a rapid release of proinflammatory and chemotactic cytokines (TNF, IL-6, IL-1β, CCL2, CXCL1, and CXCL2), an increased presence of CD68 + macrophages and an influx of neutrophils in the liver, and resulting apoptotic and necrotic hepatocyte cell death. Mechanistically, liver injury in cFLIP -/- mice was aggravated by reactive oxygen species, and sustained activation of the JNK signaling pathway. In parallel, cytoprotective NF-κB p65, A20, and the MAPK p38 were inhibited. Increased injury in cFLIP -/- mice was accompanied by activation of hepatic stellate cells and profibrogenic regulators. The antagonistic caspase 8-homolog cFLIP is a critical regulator of acute, cholestatic liver injury. NEW & NOTEWORTHY The current paper explores the role of a classical modulator of hepatocellular apoptosis in early, cholestatic liver injury. These include activation of NF-κB and MAPK signaling, production of inflammatory cytokines, and recruitment of neutrophils in response to cholestasis. Because these signaling pathways are currently exploited in clinical trials for the treatment of nonalcoholic steatohepatitis and cirrhosis, the current data will help in the development of novel pharmacological

  10. miR-367 regulation of DOC-2/DAB2 interactive protein promotes proliferation, migration and invasion of osteosarcoma cells.

    Science.gov (United States)

    Cai, Wei; Jiang, Haitao; Yu, Yifan; Xu, Yong; Zuo, Wenshan; Wang, Shouguo; Su, Zhen

    2017-11-01

    Recently, miR-367 is reported to exert either oncogenic or tumor suppressive effects in human malignancies. Recent study reports that miR-367 is up-regulated in OS tissues and cell lines, and abrogates adriamycin-induced apoptosis. The clinical significance of miR-367 and its function in OS need further investigation. In our study, miR-367 expression in OS was markedly elevated compared with corresponding non-tumor tissues. High miR-367 expression was associated with malignant clinical features and poor prognosis of OS patients. In accordance, the levels of miR-367 were dramatically up-regulated in OS cells. Loss of miR-367 expression in Saos-2 cells obviously inhibited the proliferation, migration and invasion of cancer cells in vitro. Meanwhile, miR-367 restoration promoted these malignant behaviors of MG-63 cells. Mechanistically, miR-367 negatively regulated DOC-2/DAB2 interactive protein (DAB2IP) abundance in OS cells. Hereby, DAB2IP was recognized as a direct target gene of miR-367 in OS. DAB2IP mRNA level was down-regulated and inversely correlated with miR-367 expression in OS specimens. DAB2IP overexpression prohibited proliferation, migration and invasion in Saos-2 cells, while DAB2IP knockdown showed promoting effects on proliferation, migration and invasion of MG-63 cells. Furthermore, the role of miR-367 might be mediated by DAB2IP-regulated phosphorylation of ERK and AKT in OS cells. To conclude, miR-367 may function as a biomarker for prediction of prognosis and a target for OS therapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Analysis of polymorphisms in the promoter region and protein levels of interleukin-6 gene among gout patients.

    Science.gov (United States)

    Tsai, P-C; Chen, C-J; Lai, H-M; Chang, S-J

    2008-01-01

    To explore the associations between the polymorphisms and protein levels of interleukin-6 (IL-6) gene and gout disease. A total of 120 male gout patients and 184 healthy controls were enrolled. Each patient was matched with 1-2 gout-free controls by age within three years. Four polymorphisms in the promoter of IL-6 gene, including -597G/A, -572C/G, -373A(m)T(n), and -174G/C, and the IL-6 levels were analyzed. The clinical characteristics and biochemical markers in plasma were measured, including age of gout onset, duration of gout history, tophus number, gout attack frequency, uric acid, total cholesterol, triglycerides and creatinine. The mean IL-6 level for gout patients was 9.80 (+/-11.76 pg/ml) which showed no significant difference from the controls (7.06+/-7.58 pg/ml, p=0.230). When the IL-6 levels were dichotomized according to the median value (5 pg/ml), there were significantly higher proportions of the gout patients (59.66%) than controls (44%) with high IL-6 levels (OR=1.88, 95% CI=1.17-3.02, p=0.008). Unique genotype was found at polymorphisms -174G/C and -597G/A. Neither the polymorphisms -572C/G nor -373A(m)T(n) in the genotype or allele distributions showed a significant association related to clinical characteristics, biochemical markers, IL-6 levels or gout disease (all p>0.05). Those with gout disease have greater proportions of high IL-6 levels in plasma than controls, and there is no significant association between the four polymorphisms in the promoter region of IL-6 gene and gout disease.

  12. Small molecule kaempferol modulates PDX-1 protein expression and subsequently promotes pancreatic β-cell survival and function via CREB

    Science.gov (United States)

    Zhang, Yanling.; Zhen, Wei.; Maechler, Pierre; Liu, Dongmin

    2013-01-01

    Chronic hyperlipidemia causes β-cell apoptosis and dysfunction, thereby contributing to the pathogenesis of T2D. Thus, searching for agents to promote pancreatic β-cell survival and improve its function could be a promising strategy to prevent and treat T2D. We investigated the effects of kaempferol, a small molecule isolated from ginkgo biloba, on apoptosis and function of β-cells and further determined the mechanism underlying its actions. Kaempferol treatment promoted viability, inhibited apoptosis, and reduced caspase-3 activity in INS-1E cells and human islets chronically exposed to palmitate. In addition, kaempferol prevented the lipotoxicity-induced down-regulation of anti-apoptotic proteins Akt and Bcl-2. The cytoprotective effects of kaempferol were associated with improved insulin secretion, synthesis, and PDX-1 expression. Chronic hyperlipidemia significantly diminished cAMP production, PKA activation, and CREB phosphorylation and its regulated transcriptional activity in β-cells, all of which were restored by kaempferol treatment. Disruption of CREB expression by transfection of CREB siRNA in INS-1E cells or adenoviral transfer of dominant-negative forms of CREB in human islets ablated kaempferol protection of β-cell apoptosis and dysfunction caused by palmitate. Incubation of INS-1E cells or human islets with kaempferol for 48 h induced PDX-1 expression. This effect of kaempferol on PDX-1 expression was not shared by a host of structurally related flavonoid compounds. PDX-1 gene knockdown reduced kaempferol–stimulated cAMP generation and CREB activation in INS-1E cells. These findings demonstrate that kaempferol is a novel survivor factor for pancreatic β-cells via up-regulating the PDX-1/cAMP/PKA/CREB signaling cascade. PMID:22819546

  13. The matricellular protein TSP1 promotes human and mouse endothelial cell senescence through CD47 and Nox1.

    Science.gov (United States)

    Meijles, Daniel N; Sahoo, Sanghamitra; Al Ghouleh, Imad; Amaral, Jefferson H; Bienes-Martinez, Raquel; Knupp, Heather E; Attaran, Shireen; Sembrat, John C; Nouraie, Seyed M; Rojas, Mauricio M; Novelli, Enrico M; Gladwin, Mark T; Isenberg, Jeffrey S; Cifuentes-Pagano, Eugenia; Pagano, Patrick J

    2017-10-17

    Senescent cells withdraw from the cell cycle and do not proliferate. The prevalence of senescent compared to normally functioning parenchymal cells increases with age, impairing tissue and organ homeostasis. A contentious principle governing this process has been the redox theory of aging. We linked matricellular protein thrombospondin 1 (TSP1) and its receptor CD47 to the activation of NADPH oxidase 1 (Nox1), but not of the other closely related Nox isoforms, and associated oxidative stress, and to senescence in human cells and aged tissue. In human endothelial cells, TSP1 promoted senescence and attenuated cell cycle progression and proliferation. At the molecular level, TSP1 increased Nox1-dependent generation of reactive oxygen species (ROS), leading to the increased abundance of the transcription factor p53. p53 mediated a DNA damage response that led to senescence through Rb and p21 cip , both of which inhibit cell cycle progression. Nox1 inhibition blocked the ability of TSP1 to increase p53 nuclear localization and p21 cip abundance and its ability to promote senescence. Mice lacking TSP1 showed decreases in ROS production, p21 cip expression, p53 activity, and aging-induced senescence. Conversely, lung tissue from aging humans displayed increases in the abundance of vascular TSP1, Nox1, p53, and p21 cip Finally, genetic ablation or pharmacological blockade of Nox1 in human endothelial cells attenuated TSP1-mediated ROS generation, restored cell cycle progression, and protected against senescence. Together, our results provide insights into the functional interplay between TSP1 and Nox1 in the regulation of endothelial senescence and suggest potential targets for controlling the aging process at the molecular level. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  14. Glycogen synthase kinase 3β promotes liver innate immune activation by restraining AMP-activated protein kinase activation.

    Science.gov (United States)

    Zhou, Haoming; Wang, Han; Ni, Ming; Yue, Shi; Xia, Yongxiang; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W; Lu, Ling; Wang, Xuehao; Zhai, Yuan

    2018-02-13

    patients. Gsk3β promotes innate proinflammatory immune activation by restraining AMPK activation. Glycogen synthase kinase 3β promotes macrophage inflammatory activation by inhibiting the immune regulatory signalling of AMP-activated protein kinase and the induction of small heterodimer partner. Therefore, therapeutic targeting of glycogen synthase kinase 3β enhances innate immune regulation and protects liver from ischaemia and reperfusion injury. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  15. CUB-domain-containing protein 1 overexpression in solid cancers promotes cancer cell growth by activating Src family kinases.

    Science.gov (United States)

    Leroy, C; Shen, Q; Strande, V; Meyer, R; McLaughlin, M E; Lezan, E; Bentires-Alj, M; Voshol, H; Bonenfant, D; Alex Gaither, L

    2015-10-29

    The transmembrane glycoprotein, CUB (complement C1r/C1s, Uegf, Bmp1) domain-containing protein 1 (CDCP1) is overexpressed in several cancer types and is a predictor of poor prognosis for patients on standard of care therapies. Phosphorylation of CDCP1 tyrosine sites is induced upon loss of cell adhesion and is thought to be linked to metastatic potential of tumor cells. Using a tyrosine-phosphoproteomics screening approach, we characterized the phosphorylation state of CDCP1 across a panel of breast cancer cell lines. We focused on two phospho-tyrosine pTyr peptides of CDCP1, containing Tyr707 and Tyr806, which were identified in all six lines, with the human epidermal growth factor 2-positive HCC1954 cells showing a particularly high phosphorylation level. Pharmacological modulation of tyrosine phosphorylation indicated that, the Src family kinases (SFKs) were found to phosphorylate CDCP1 at Tyr707 and Tyr806 and play a critical role in CDCP1 activity. We demonstrated that CDCP1 overexpression in HEK293 cells increases global phosphotyrosine content, promotes anchorage-independent cell growth and activates several SFK members. Conversely, CDCP1 downregulation in multiple solid cancer cell lines decreased both cell growth and SFK activation. Analysis of primary human tumor samples demonstrated a correlation between CDCP1 expression, SFK and protein kinase C (PKC) activity. Taken together, our results suggest that CDCP1 overexpression could be an interesting therapeutic target in multiple solid cancers and a good biomarker to stratify patients who could benefit from an anti-SFK-targeted therapy. Our data also show that multiple tyrosine phosphorylation sites of CDCP1 are important for the functional regulation of SFKs in several tumor types.

  16. Electrostatics and N-glycan-mediated membrane tethering of SCUBE1 is critical for promoting bone morphogenetic protein signalling.

    Science.gov (United States)

    Liao, Wei-Ju; Tsao, Ku-Chi; Yang, Ruey-Bing

    2016-03-01

    SCUBE1 (S1), a secreted and membrane-bound glycoprotein, has a modular protein structure composed of an N-terminal signal peptide sequence followed by nine epidermal growth factor (EGF)-like repeats, a spacer region and three cysteine-rich (CR) motifs with multiple potential N-linked glycosylation sites, and one CUB domain at the C-terminus. Soluble S1 is a biomarker of platelet activation but an active participant of thrombosis via its adhesive EGF-like repeats, whereas its membrane-associated form acts as a bone morphogenetic protein (BMP) co-receptor in promoting BMP signal activity. However, the mechanism responsible for the membrane tethering and the biological importance of N-glycosylation of S1 remain largely unknown. In the present study, molecular mapping analysis identified a polycationic segment (amino acids 501-550) in the spacer region required for its membrane tethering via electrostatic interactions possibly with the anionic heparan sulfate proteoglycans. Furthermore, deglycosylation by peptide N-glycosidase F treatment revealed that N-glycans within the CR motif are essential for membrane recruitment through lectin-mediated surface retention. Injection of mRNA encoding zebrafish wild-type but not N-glycan-deficient scube1 restores the expression of haematopoietic and erythroid markers (scl and gata1) in scube1-knockdown embryos. We describe novel mechanisms in targeting S1 to the plasma membrane and demonstrate that N-glycans are required for S1 functions during primitive haematopoiesis in zebrafish. © 2016 Authors; published by Portland Press Limited.

  17. Growth promotion in pigs by oxytetracycline coincides with down regulation of serum inflammatory parameters and of hibernation-associated protein HP-27

    DEFF Research Database (Denmark)

    Soler, Laura; Miller, Ingrid; Hummel, Karin

    2016-01-01

    to explore the systemic molecular effect of feed supplementation with sub therapeutic levels of oxytetracycline (OTC) by analysis of serum proteome changes. Results showed that OTC promoted growth, coinciding with a significant down regulation of different serum proteins related to inflammation, oxidation...

  18. Receptor-interacting Protein 140 Overexpression Promotes Neuro-2a Neuronal Differentiation by ERK1/2 Signaling

    Directory of Open Access Journals (Sweden)

    Xiao Feng

    2015-01-01

    Full Text Available Background: Abnormal neuronal differentiation plays an important role in central nervous system (CNS development abnormalities such as Down syndrome (DS, a disorder that results directly from overexpression of genes in trisomic cells. Receptor-interacting protein 140 (RIP140 is significantly upregulated in DS brains, suggesting its involvement in DS CNS development abnormalities. However, the role of RIP140 in neuronal differentiation is still not clear. The current study aimed to investigate the effect of RIP140 overexpression on the differentiation of neuro-2a (N2a neuroblastoma cells, in vitro. Methods: Stably RIP140-overexpressing N2a (N2a-RIP140 cells were used as a neurodevelopmental model, and were constructed by lipofection and overexpression validated by real-time polymerase chain reaction and Western blot. Retinoic acid (RA was used to stimulate N2a differentiation. Combining the expression of Tuj1 at the mRNA and protein levels, the percentage of cells baring neurites, and the number of neurites per cell body was semi-quantified to determine the effect of RIP140 on differentiation of N2a cells. Furthermore, western blot and the ERK1/2 inhibitor U0126 were used to identify the specific signaling pathway by which RIP140 induces differentiation of N2a cells. Statistical significance of the differences between groups was determined by one-way analysis of variance followed by the Dunnett test. Results: Compared to untransfected N2a cells RIPl40 expression in N2a-RIP140 cells was remarkably upregulated at both the mRNA and protein levels. N2a-RIP140 cells had a significantly increased percentage of cells baring neurites, and numbers of neurites per cell, as compared to N2a cells, in the absence and presence of RA (P < 0.05. In addition, Tuj1, a neuronal biomarker, was strongly upregulated in N2a-RIP140 cells (P < 0.05 and phosphorylated ERK1/2 (p-ERK1/2 levels in N2a-RIP140 cells were dramatically increased, while differentiation was

  19. Engineering a Biocompatible Scaffold with Either Micrometre or Nanometre Scale Surface Topography for Promoting Protein Adsorption and Cellular Response

    Directory of Open Access Journals (Sweden)

    Xuan Le

    2013-01-01

    Full Text Available Surface topographical features on biomaterials, both at the submicrometre and nanometre scales, are known to influence the physicochemical interactions between biological processes involving proteins and cells. The nanometre-structured surface features tend to resemble the extracellular matrix, the natural environment in which cells live, communicate, and work together. It is believed that by engineering a well-defined nanometre scale surface topography, it should be possible to induce appropriate surface signals that can be used to manipulate cell function in a similar manner to the extracellular matrix. Therefore, there is a need to investigate, understand, and ultimately have the ability to produce tailor-made nanometre scale surface topographies with suitable surface chemistry to promote favourable biological interactions similar to those of the extracellular matrix. Recent advances in nanoscience and nanotechnology have produced many new nanomaterials and numerous manufacturing techniques that have the potential to significantly improve several fields such as biological sensing, cell culture technology, surgical implants, and medical devices. For these fields to progress, there is a definite need to develop a detailed understanding of the interaction between biological systems and fabricated surface structures at both the micrometre and nanometre scales.

  20. RNA-processing proteins regulate Mec1/ATR activation by promoting generation of RPA-coated ssDNA.

    Science.gov (United States)

    Manfrini, Nicola; Trovesi, Camilla; Wery, Maxime; Martina, Marina; Cesena, Daniele; Descrimes, Marc; Morillon, Antonin; d'Adda di Fagagna, Fabrizio; Longhese, Maria Pia

    2015-02-01

    Eukaryotic cells respond to DNA double-strand breaks (DSBs) by activating a checkpoint that depends on the protein kinases Tel1/ATM and Mec1/ATR. Mec1/ATR is activated by RPA-coated single-stranded DNA (ssDNA), which arises upon nucleolytic degradation (resection) of the DSB. Emerging evidences indicate that RNA-processing factors play critical, yet poorly understood, roles in genomic stability. Here, we provide evidence that the Saccharomyces cerevisiae RNA decay factors Xrn1, Rrp6 and Trf4 regulate Mec1/ATR activation by promoting generation of RPA-coated ssDNA. The lack of Xrn1 inhibits ssDNA generation at the DSB by preventing the loading of the MRX complex. By contrast, DSB resection is not affected in the absence of Rrp6 or Trf4, but their lack impairs the recruitment of RPA, and therefore of Mec1, to the DSB. Rrp6 and Trf4 inactivation affects neither Rad51/Rad52 association nor DSB repair by homologous recombination (HR), suggesting that full Mec1 activation requires higher amount of RPA-coated ssDNA than HR-mediated repair. Noteworthy, deep transcriptome analyses do not identify common misregulated gene expression that could explain the observed phenotypes. Our results provide a novel link between RNA processing and genome stability. © 2014 The Authors.

  1. Cromolyn Reduces Levels of the Alzheimer's Disease-Associated Amyloid β-Protein by Promoting Microglial Phagocytosis.

    Science.gov (United States)

    Zhang, Can; Griciuc, Ana; Hudry, Eloise; Wan, Yu; Quinti, Luisa; Ward, Joseph; Forte, Angela M; Shen, Xunuo; Ran, ChongZhao; Elmaleh, David R; Tanzi, Rudolph E

    2018-01-18

    Amyloid-beta protein (Aβ) deposition is a pathological hallmark of Alzheimer's disease (AD). Aβ deposition triggers both pro-neuroinflammatory microglial activation and neurofibrillary tangle formation. Cromolyn sodium is an asthma therapeutic agent previously shown to reduce Aβ levels in transgenic AD mouse brains after one-week of treatment. Here, we further explored these effects as well as the mechanism of action of cromolyn, alone, and in combination with ibuprofen in APP Swedish -expressing Tg2576 mice. Mice were treated for 3 months starting at 5 months of age, when the earliest stages of β-amyloid deposition begin. Cromolyn, alone, or in combination with ibuprofen, almost completely abolished longer insoluble Aβ species, i.e. Aβ40 and Aβ42, but increased insoluble Aβ38 levels. In addition to its anti-aggregation effects on Aβ, cromolyn, alone, or plus ibuprofen, but not ibuprofen alone, increased microglial recruitment to, and phagocytosis of β-amyloid deposits in AD mice. Cromolyn also promoted Aβ42 uptake in microglial cell-based assays. Collectively, our data reveal robust effects of cromolyn, alone, or in combination with ibuprofen, in reducing aggregation-prone Aβ levels and inducing a neuroprotective microglial activation state favoring Aβ phagocytosis versus a pro-neuroinflammatory state. These findings support the use of cromolyn, alone, or with ibuprofen, as a potential AD therapeutic.

  2. Adhesion and degranulation promoting adapter protein (ADAP is a central hub for phosphotyrosine-mediated interactions in T cells.

    Directory of Open Access Journals (Sweden)

    Marc Sylvester

    Full Text Available TCR stimulation leads to an increase in cellular adhesion among other outcomes. The adhesion and degranulation promoting adapter protein (ADAP is known to be rapidly phosphorylated after T cell stimulation and relays the TCR signal to adhesion molecules of the integrin family. While three tyrosine phosphorylation sites have been characterized biochemically, the binding capabilities and associated functions of several other potential phosphotyrosine motifs remain unclear. Here, we utilize in vitro phosphorylation and mass spectrometry to map novel phosphotyrosine sites in the C-terminal part of human ADAP (486-783. Individual tyrosines were then mutated to phenylalanine and their relevance for cellular adhesion and migration was tested experimentally. Functionally important tyrosine residues include two sites within the folded hSH3 domains of ADAP and two at the C-terminus. Furthermore, using a peptide pulldown approach in combination with stable isotope labeling in cell culture (SILAC we identified SLP-76, PLCgamma, PIK3R1, Nck, CRK, Gads, and RasGAP as phospho-dependent binding partners of a central YDDV motif of ADAP. The phosphorylation-dependent interaction between ADAP and Nck was confirmed by yeast two-hybrid analysis, immunoprecipitation and binary pulldown experiments, indicating that ADAP directly links integrins to modulators of the cytoskeleton independent of SLP-76.

  3. The G-protein coupled chemoattractant receptor FPR2 promotes malignant phenotype of human colon cancer cells

    Science.gov (United States)

    Xiang, Yi; Yao, Xiaohong; Chen, Keqiang; Wang, Xiafei; Zhou, Jiamin; Gong, Wanghua; Yoshimura, Teizo; Huang, Jiaqiang; Wang, Rongquan; Wu, Yuzhang; Shi, Guochao; Bian, Xiuwu; Wang, Jiming

    2016-01-01

    The G-protein coupled chemoattractant receptor formylpeptide receptor-2 (FPR2 in human, Fpr2 in mice) is expressed by mouse colon epithelial cells and plays a critical role in mediating mucosal homeostasis and inflammatory responses. However, the biological role of FPR2 in human colon is unclear. Our investigation revealed that a considerable number of human colon cancer cell lines expressed FPR2 and its ligands promoted cell migration and proliferation. Human colon cancer cell lines expressing high levels of FPR2 also formed more rapidly growing tumors in immunocompromised mice as compared with cell lines expressing lower levels of FPR2. Knocking down of FPR2 from colon cancer cell lines highly expressing FPR2 reduced their tumorigenicity. Clinically, FPR2 is more highly expressed in progressive colon cancer, associated with poorer patient prognosis. These results suggest that FPR2 can be high-jacked by colon cancer cells for their growth advantage, thus becoming a potential target for therapeutic development. PMID:27904774

  4. TRAF6 promotes myogenic differentiation via the TAK1/p38 mitogen-activated protein kinase and Akt pathways.

    Directory of Open Access Journals (Sweden)

    Fang Xiao

    Full Text Available p38 mitogen-activated protein kinase (MAPK is an essential kinase involved in myogenic differentiation. Although many substrates of p38 MAPK have been identified, little is known about its upstream activators during myogenic differentiation. TRAF6 is known to function in cytokine signaling during inflammatory responses. However, not much is known about its role in myogenic differentiation and muscle regeneration. We showed here that TRAF6 and its intrinsic ubiquitin E3 ligase activity are required for myogenic differentiation. In mouse myoblasts, knockdown of TRAF6 compromised the p38 MAPK and Akt pathways, while deliberate activation of either pathway rescued the differentiation defect caused by TRAF6 knockdown. TAK1 acted as a key signal transducer downstream of TRAF6 in myogenic differentiation. In vivo, knockdown of TRAF6 in mouse muscles compromised the injury-induced muscle regeneration without impairing macrophage infiltration and myoblast proliferation. Collectively, we demonstrated that TRAF6 promotes myogenic differentiation and muscle regeneration via the TAK1/p38 MAPK and Akt pathways.

  5. Convergence of bone morphogenetic protein and laminin-1 signaling pathways promotes proliferation and colony formation by fetal mouse pancreatic cells

    International Nuclear Information System (INIS)

    Jiang Fangxu; Harrison, Leonard C.

    2005-01-01

    We previously reported that bone morphogenetic proteins (BMPs), members of the transforming growth factor superfamily, together with the basement membrane glycoprotein laminin-1 (Ln-1), promote proliferation of fetal pancreatic cells and formation of colonies containing peripheral insulin-positive cells. Here, we further investigate the cross-talk between BMP and Ln-1 signals. By RT-PCR, receptors for BMP (BMPR) (excepting BMPR-1B) and Ln-1 were expressed in the fetal pancreas between E13.5 and E17.5. Specific blocking antibodies to BMP-4 and -6 and selective BMP antagonists partially inhibited colony formation by fetal pancreas cells. Colony formation induced by BMP-6 and Ln-1 was completely abolished in a dose-dependent manner by blocking Ln-1 binding to its α 6 integrin and α-dystroglycan receptors or by blocking the Ln-1 signaling molecules, phosphatidyl-inositol-3-kinase (P13K) and MAP kinase kinase-1. These results demonstrate a convergence of BMP and Ln-1 signaling through P13K and MAP kinase pathways to induce proliferation and colony formation in E15.5 fetal mouse pancreatic cells

  6. Glucocorticoids facilitate the transcription from the human cytomegalovirus major immediate early promoter in glucocorticoid receptor- and nuclear factor-I-like protein-dependent manner

    International Nuclear Information System (INIS)

    Inoue-Toyoda, Maki; Kato, Kohsuke; Nagata, Kyosuke; Yoshikawa, Hiroyuki

    2015-01-01

    Human cytomegalovirus (HCMV) is a common and usually asymptomatic virus agent in healthy individuals. Initiation of HCMV productive infection depends on expression of the major immediate early (MIE) genes. The transcription of HCMV MIE genes is regulated by a diverse set of transcription factors. It was previously reported that productive HCMV infection is triggered probably by elevation of the plasma hydroxycorticoid level. However, it is poorly understood whether the transcription of MIE genes is directly regulated by glucocorticoid. Here, we found that the dexamethasone (DEX), a synthetic glucocorticoid, facilitates the transcription of HCMV MIE genes through the MIE promoter and enhancer in a glucocorticoid receptor (GR)-dependent manner. By competitive EMSA and reporter assays, we revealed that an NF-I like protein is involved in DEX-mediated transcriptional activation of the MIE promoter. Thus, this study supports a notion that the increased level of hydroxycorticoid in the third trimester of pregnancy reactivates HCMV virus production from the latent state. - Highlights: • DEX facilitates the transcription from the HCMV MIE promoter. • GR is involved in DEX-dependent transcription from the HCMV MIE promoter. • A 17 bp repeat is responsible for the HCMV MIE promoter activation by DEX. • An NF-I-like protein is involved in the HCMV MIE promoter activation by DEX

  7. Increase in Bacterial Colony Formation from a Permafrost Ice Wedge Dosed with a Tomitella biformata Recombinant Resuscitation-Promoting Factor Protein.

    Science.gov (United States)

    Puspita, Indun Dewi; Kitagawa, Wataru; Kamagata, Yoichi; Tanaka, Michiko; Nakatsu, Cindy H

    2015-01-01

    Resuscitation-promoting factor (Rpf) is a protein that has been found in a number of different Actinobacteria species and has been shown to promote the growth of active cells and resuscitate dormant (non-dividing) cells. We previously reported the biological activity of an Rpf protein in Tomitella biformata AHU 1821(T), an Actinobacteria isolated from a permafrost ice wedge. This protein is excreted outside the cell; however, few studies have investigated its contribution in environmental samples to the growth or resuscitation of bacteria other than the original host. Therefore, the aim of the present study was to determine whether Rpf from T. biformata impacted the cultivation of other bacteria from the permafrost ice wedge from which it was originally isolated. All experiments used recombinant Rpf proteins produced using a Rhodococcus erythropolis expression system. Dilutions of melted surface sterilized ice wedge samples mixed with different doses of the purified recombinant Rpf (rRpf) protein indicated that the highest concentration tested, 1250 pM, had a significantly (p permafrost sediments. The results of the present study demonstrated that rRpf not only promoted the growth of T. biformata from which it was isolated, but also enhanced colony formation by another Actinobacteria in an environmental sample.

  8. Factor H binds to the hypervariable region of many Streptococcus pyogenes M proteins but does not promote phagocytosis resistance or acute virulence

    DEFF Research Database (Denmark)

    Gustafsson, Caj Ulrik Mattias; Lannergård, Jonas; Nilsson, Olof Rickard

    2013-01-01

    Many pathogens express a surface protein that binds the human complement regulator factor H (FH), as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against...... represents a distinct ligand-binding domain. The isolated HVRs specifically interacted with FH among all human serum proteins, interacted with the same region in FH and showed species specificity, but exhibited little or no antigenic cross-reactivity. Although these findings suggested that FH recruited...... to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed...

  9. DnaA protein DNA-binding domain binds to Hda protein to promote inter-AAA+ domain interaction involved in regulatory inactivation of DnaA.

    Science.gov (United States)

    Keyamura, Kenji; Katayama, Tsutomu

    2011-08-19

    Chromosomal replication is initiated from the replication origin oriC in Escherichia coli by the active ATP-bound form of DnaA protein. The regulatory inactivation of DnaA (RIDA) system, a complex of the ADP-bound Hda and the DNA-loaded replicase clamp, represses extra initiations by facilitating DnaA-bound ATP hydrolysis, yielding the inactive ADP-bound form of DnaA. However, the mechanisms involved in promoting the DnaA-Hda interaction have not been determined except for the involvement of an interaction between the AAA+ domains of the two. This study revealed that DnaA Leu-422 and Pro-423 residues within DnaA domain IV, including a typical DNA-binding HTH motif, are specifically required for RIDA-dependent ATP hydrolysis in vitro and that these residues support efficient interaction with the DNA-loaded clamp·Hda complex and with Hda in vitro. Consistently, substitutions of these residues caused accumulation of ATP-bound DnaA in vivo and oriC-dependent inhibition of cell growth. Leu-422 plays a more important role in these activities than Pro-423. By contrast, neither of these residues is crucial for DNA replication from oriC, although they are highly conserved in DnaA orthologues. Structural analysis of a DnaA·Hda complex model suggested that these residues make contact with residues in the vicinity of the Hda AAA+ sensor I that participates in formation of a nucleotide-interacting surface. Together, the results show that functional DnaA-Hda interactions require a second interaction site within DnaA domain IV in addition to the AAA+ domain and suggest that these interactions are crucial for the formation of RIDA complexes that are active for DnaA-ATP hydrolysis.

  10. DnaA Protein DNA-binding Domain Binds to Hda Protein to Promote Inter-AAA+ Domain Interaction Involved in Regulatory Inactivation of DnaA*

    Science.gov (United States)

    Keyamura, Kenji; Katayama, Tsutomu

    2011-01-01

    Chromosomal replication is initiated from the replication origin oriC in Escherichia coli by the active ATP-bound form of DnaA protein. The regulatory inactivation of DnaA (RIDA) system, a complex of the ADP-bound Hda and the DNA-loaded replicase clamp, represses extra initiations by facilitating DnaA-bound ATP hydrolysis, yielding the inactive ADP-bound form of DnaA. However, the mechanisms involved in promoting the DnaA-Hda interaction have not been determined except for the involvement of an interaction between the AAA+ domains of the two. This study revealed that DnaA Leu-422 and Pro-423 residues within DnaA domain IV, including a typical DNA-binding HTH motif, are specifically required for RIDA-dependent ATP hydrolysis in vitro and that these residues support efficient interaction with the DNA-loaded clamp·Hda complex and with Hda in vitro. Consistently, substitutions of these residues caused accumulation of ATP-bound DnaA in vivo and oriC-dependent inhibition of cell growth. Leu-422 plays a more important role in these activities than Pro-423. By contrast, neither of these residues is crucial for DNA replication from oriC, although they are highly conserved in DnaA orthologues. Structural analysis of a DnaA·Hda complex model suggested that these residues make contact with residues in the vicinity of the Hda AAA+ sensor I that participates in formation of a nucleotide-interacting surface. Together, the results show that functional DnaA-Hda interactions require a second interaction site within DnaA domain IV in addition to the AAA+ domain and suggest that these interactions are crucial for the formation of RIDA complexes that are active for DnaA-ATP hydrolysis. PMID:21708944

  11. microRNA-146a promotes mycobacterial survival in macrophages through suppressing nitric oxide production.

    Science.gov (United States)

    Li, Miao; Wang, Jinli; Fang, Yimin; Gong, Sitang; Li, Meiyu; Wu, Minhao; Lai, Xiaomin; Zeng, Gucheng; Wang, Yi; Yang, Kun; Huang, Xi

    2016-03-30

    Macrophages play a crucial role in host innate anti-mycobacterial defense, which is tightly regulated by multiple factors, including microRNAs. Our previous study showed that a panel of microRNAs was markedly up-regulated in macrophages upon mycobacterial infection. Here, we investigated the biological function of miR-146a during mycobacterial infection. miR-146a expression was induced both in vitro and in vivo after Mycobacterium bovis BCG infection. The inducible miR-146a could suppress the inducible nitric oxide (NO) synthase (iNOS) expression and NO generation, thus promoting mycobacterial survival in macrophages. Inhibition of endogenous miR-146a increased NO production and mycobacterial clearance. Moreover, miR-146a attenuated the activation of nuclear factor κB and mitogen-activated protein kinases signaling pathways during BCG infection, which in turn repressed iNOS expression. Mechanistically, miR-146a directly targeted tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) at post-transcriptional level. Silencing TRAF6 decreased iNOS expression and NO production in BCG-infected macrophages, while overexpression of TRAF6 reversed miR-146a-mediated inhibition of NO production and clearance of mycobacteria. Therefore, we demonstrated a novel role of miR-146a in the modulation of host defense against mycobacterial infection by repressing NO production via targeting TRAF6, which may provide a promising therapeutic target for tuberculosis.

  12. Development of a keratinocyte-based screening model for antipsoriatic drugs using green fluorescent protein under the control of an endogenous promoter.

    Science.gov (United States)

    Pol, Arno; van Ruissen, Fred; Schalkwijk, Joost

    2002-08-01

    Inflamed epidermis (psoriasis, wound healing, ultraviolet-irradiated skin) harbors keratinocytes that are hyperproliferative and display an abnormal differentiation program. A distinct feature of this so-called regenerative maturation pathway is the expression of proteins such as the cytokeratins CK6, CK16, and CK17 and the antiinflammatory protein SKALP/elafin. These proteins are absent in normal skin but highly induced in lesional psoriatic skin. Expression of these genes can be used as a surrogate marker for psoriasis in drug-screening procedures of large compound libraries. The aim of this study was to develop a keratinocyte cell line that contained a reporter gene under the control of a psoriasis-associated endogenous promoter and demonstrate its use in an assay suitable for screening. We generated a stably transfected keratinocyte cell line that expresses enhanced green fluorescent protein (EGFP), under the control of a 0.8-kb fragment derived from the promoter of the SKALP/elafin gene, which confers high levels of tissue-specific expression at the mRNA level. Induction of the SKALP promoter by tumor necrosis factor-alpha resulted in increased expression levels of the secreted SKALP-EGFP fusion protein as assessed by direct readout of fluorescence and fluorescence polarization in 96-well cell culture plates. The fold stimulation of the reporter gene was comparable to that of the endogenous SKALP gene as assessed by enzyme-linked immunosorbent assay. Although the dynamic range of the screening system is limited, the small standard deviation yields a Z factor of 0.49. This indicates that the assay is suitable as a high-throughput screen, and provides proof of the concept that a secreted EGFP fusion protein under the control of a physiologically relevant endogenous promoter can be used as a fluorescence-based high-throughput screen for differentiation-modifying or antiinflammatory compounds that act via the keratinocyte.

  13. Analysis of the Epstein-Barr virus (EBV) latent membrane protein 1 (LMP-1) gene and promoter in Hodgkin's disease isolates

    DEFF Research Database (Denmark)

    Sandvej, K; Andresen, B S; Zhou, X G

    2000-01-01

    AIMS: To study the distribution of Epstein-Barr virus (EBV) variants containing mutations in the latent membrane protein 1 (LMP-1) oncogene and promoter in EBV associated Hodgkin's disease and infectious mononucleosis compared with previous findings in asymptomatic EBV carriers. METHODS: Sequence...... analysis of the EBV LMP-1 promoter and gene in isolates from Danish patients with Hodgkin's disease (n = 61) and infectious mononucleosis (n = 10). RESULTS: Viruses (previously designated group D) that contain two mutations in the activating transcription factor/cAMP response element (ATF/CRE) in the LMP-1...... promoter, which are known to decrease promoter activity greatly, were significantly less frequent in Hodgkin's disease than in both infectious mononucleosis (p = 0.0081) and asymptomatic EBV carriers (p = 0.0084). In some cases, the LMP-1 gene contained mutations in a recently identified cytotoxic T cell...

  14. PPARγ activates ABCA1 gene transcription but reduces the level of ABCA1 protein in HepG2 cells

    International Nuclear Information System (INIS)

    Mogilenko, Denis A.; Shavva, Vladimir S.; Dizhe, Ella B.; Orlov, Sergey V.; Perevozchikov, Andrej P.

    2010-01-01

    Research highlights: → PPARγ activates ABCA1 gene expression but decreases ABCA1 protein content in human hepatoma cell line HepG2. → Treatment of HepG2 cells with PPARγ agonist GW1929 leads to dissociation of LXRβ from ABCA1-LXRβ complex. → Inhibition of protein kinases MEK1/2 abolishes PPARγ-mediated dissociation of LXRβ from ABCA1/LXRβ complex. → Activation of PPARγ leads to increasing of the level of LXRβ associated with LXRE within ABCA1 gene promoter. -- Abstract: Synthesis of ABCA1 protein in liver is necessary for high-density lipoproteins (HDL) formation in mammals. Nuclear receptor PPARγ is known as activator of ABCA1 expression, but details of PPARγ-mediated regulation of ABCA1 at both transcriptional and post-transcriptional levels in hepatocytes have not still been well elucidated. In this study we have shown, that PPARγ activates ABCA1 gene transcription in human hepatoma cells HepG2 through increasing of LXRβ binding with promoter region of ABCA1 gene. Treatment of HepG2 cells with PPARγ agonist GW1929 leads to dissociation of LXRβ from ABCA1/LXRβ complex and to nuclear translocation of this nuclear receptor resulting in reduction of ABCA1 protein level 24 h after treatment. Inhibition of protein kinases MEK1/2 abolishes PPARγ-mediated dissociation of LXRβ from ABCA1/LXRβ complex, but does not block PPARγ-dependent down-regulation of ABCA1 protein in HepG2 cells. These data suggest that PPARγ may be important for regulation of the level of hepatic ABCA1 protein and indicate the new interplays between PPARγ, LXRβ and MEK1/2 in regulation of ABCA1 mRNA and protein expression.

  15. Development of a gene therapy strategy to target hepatocellular carcinoma based inhibition of protein phosphatase 2A using the α-fetoprotein promoter enhancer and pgk promoter: an in vitro and in vivo study

    International Nuclear Information System (INIS)

    Li, Wei; Tao, Min; Li, Dao-Ming; Chen, Kai; Chen, Zheng; Zong, Yang; Yin, Hong; Xu, Ze-Kuan; Zhu, Yi; Gong, Fei-Ran

    2012-01-01

    Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Current therapies are insufficient, making HCC an intractable disease. Our previous studies confirmed that inhibition of protein phosphatase 2A (PP2A) may provide a promising therapeutic strategy for cancer. Unfortunately, constitutive expression of PP2A in normal tissues limits the application of PP2A inhibition. Thus, a HCC-specific gene delivery system should be developed. The α-fetoprotein (AFP) promoter is commonly used in HCC-specific gene therapy strategies; however, the utility of this approach is limited due to the weak activity of the AFP promoter. It has been shown that linking the AFP enhancer with the promoter of the non-tissue-specific, human housekeeping phosphoglycerate kinase (pgk) gene can generate a strong and HCC-selective promoter. We constructed a HCC-specific gene therapy system to target PP2A using the AFP enhancer/pgk promoter, and evaluated the efficiency and specificity of this system both in vitro and in vivo. AFP enhancer/pgk promoter-driven expression of the dominant negative form of the PP2A catalytic subunit α (DN-PP2Acα) exerted cytotoxic effects against an AFP-positive human hepatoma cell lines (HepG2 and Hep3B), but did not affect AFP-negative human hepatoma cells (SK-HEP-1) or normal human liver cells (L-02). Moreover, AFP enhancer/pgk promoter driven expression of DN-PP2Acα inhibited the growth of AFP-positive HepG2 tumors in nude mice bearing solid tumor xenografts, but did not affect AFP-negative SK-HEP-1 tumors. The novel approach of AFP enhancer/pgk promoter-driven expression of DN-PP2Acα may provide a useful cancer gene therapy strategy to selectively target HCC

  16. Computational Investigations of Post-Transcriptional Regulation

    DEFF Research Database (Denmark)

    Rasmussen, Simon Horskjær

    and miRNA regulation was studied by cross-linking immunoprecipitation (CLIP) and RBP double knockdown experiments. A comprehensive analysis of 107 CLIP datasets of 49 RBPs demonstrated that RBPs modulate miRNA regulation. Results suggest it is mediated by RBP-binding hotspots that likely...... investigated using high-throughput data. Analysis of IMP RIP-seq, iCLIP and RNA-seq datasets identified transcripts associated with cytoplasmic IMP ribonucleoproteins. Many of these transcripts were functionally involved in actin cytoskeletal remodeling. Further analyses of this data permitted estimation...... of a bipartite motif, composed of an AU-rich and a CA-rich domain. In addition, a regulatory motif discovery method was developed and applied to identify motifs using differential expression data and CLIP-data in the above investigations. This thesis increased the understanding of the role of RBPs in mi...

  17. Molecular events in matrix protein metabolism in the aging kidney

    Science.gov (United States)

    Sataranatarajan, Kavithalakshmi; Feliers, Denis; Mariappan, Meenalakshmi M.; Lee, Hak Joo; Lee, Myung Ja; Day, Robert T.; Yalamanchili, Hima Bindu; Choudhury, Goutam G.; Barnes, Jeffrey L.; Van Remmen, Holly; Richardson, Arlan; Kasinath, Balakuntalam S.

    2018-01-01

    Summary We explored molecular events associated with aging-induced matrix changes in the kidney. C57BL6 mice were studied in youth, middle age, and old age. Albuminuria and serum cystatin C level (an index of glomerular filtration) increased with aging. Renal hypertrophy was evident in middle-aged and old mice and was associated with glomerulomegaly and increase in mesangial fraction occupied by extracellular matrix. Content of collagen types I and III and fibronectin was increased with aging; increment in their mRNA varied with the phase of aging. The content of ZEB1 and ZEB2, collagen type I transcription inhibitors, and their binding to the collagen type Iα2 promoter by ChIP assay also showed age-phase-specific changes. Lack of increase in mRNA and data from polysome assay suggested decreased degradation as a potential mechanism for kidney collagen type I accumulation in the middle-aged mice. These changes occurred with increment in TGFβ mRNA and protein and activation of its SMAD3 pathway; SMAD3 binding to the collagen type Iα2 promoter was also increased. TGFβ-regulated microRNAs (miRs) exhibited selective regulation. The renal cortical content of miR-21 and miR-200c, but not miR-192, miR-200a, or miR-200b, was increased with aging. Increased miR-21 and miR-200c contents were associated with reduced expression of their targets, Sprouty-1 and ZEB2, respectively. These data show that aging is associated with complex molecular events in the kidney that are already evident in the middle age and progress to old age. Agephase-specific regulation of matrix protein synthesis occurs and involves matrix protein-specific transcriptional and post-transcriptional mechanisms. PMID:23020145

  18. Facile promoter deletion in Escherichia coli in response to leaky expression of very robust and benign proteins from common expression vectors

    Directory of Open Access Journals (Sweden)

    Kawe Martin

    2009-01-01

    Full Text Available Abstract Background Overexpression of proteins in Escherichia coli is considered routine today, at least when the protein is soluble and not otherwise toxic for the host. We report here that the massive overproduction of even such "benign" proteins can cause surprisingly efficient promoter deletions in the expression plasmid, leading to the growth of only non-producers, when expression is not well repressed in the newly transformed bacterial cell. Because deletion is so facile, it might impact on high-throughput protein production, e.g. for structural genomics, where not every expression parameter will be monitored. Results We studied the high-level expression of several robust non-toxic proteins using a T5 promoter under lac operator control. Full induction leads to no significant growth retardation. We compared expression from almost identical plasmids with or without the lacI gene together in strains expressing different levels of LacI. Any combination without net overexpression of LacI led to an efficient promoter deletion in the plasmid, although the number of growing colonies and even the plasmid size – all antibiotic-resistant non-producers – was almost normal, and thus the problem not immediately recognizable. However, by assuring sufficient repression during the initial establishment phase of the plasmid, deletion was completely prevented. Conclusion The deletions in the insufficiently repressed system are caused entirely by the burden of high-level translation. Since the E. coli Dps protein, known to protect DNA against stress in the stationary phase, is accumulated in the deletion mutants, the mutation may have taken place during a transient stationary phase. The cause of the deletion is thus distinct from the well known interference of high-level transcription with plasmid replication. The deletion can be entirely prevented by overexpressing LacI, a useful precaution even without any signs of stress caused by the protein.

  19. Pharmacological activation of aldehyde dehydrogenase 2 promotes osteoblast differentiation via bone morphogenetic protein-2 and induces bone anabolic effect

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Monika; Pal, Subhashis; China, Shyamsundar Pal; Porwal, Konica [Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow 226031 (India); Dev, Kapil [Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Shrivastava, Richa [Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Raju, Kanumuri Siva Rama; Rashid, Mamunur [Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Trivedi, Arun Kumar; Sanyal, Sabyasachi [Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Wahajuddin, Muhammad [Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Bhaduria, Smrati [Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Maurya, Rakesh [Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Chattopadhyay, Naibedya, E-mail: n_chattopadhyay@cdri.res.in [Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow 226031 (India)

    2017-02-01

    Aldehyde dehydrogenases (ALDHs) are a family of enzymes involved in detoxifying aldehydes. Previously, we reported that an ALDH inhibitor, disulfiram caused bone loss in rats and among ALDHs, osteoblast expressed only ALDH2. Loss-of-function mutation in ALDH2 gene is reported to cause bone loss in humans which suggested its importance in skeletal homeostasis. We thus studied whether activating ALDH2 by N-(1, 3-benzodioxol-5-ylmethyl)-2, 6-dichlorobenzamide (alda-1) had osteogenic effect. We found that alda-1 increased and acetaldehyde decreased the differentiation of rat primary osteoblasts and expressions of ALDH2 and bone morphogenetic protein-2 (BMP-2). Silencing ALDH2 in osteoblasts abolished the alda-1 effects. Further, alda-1 attenuated the acetaldehyde-induced lipid-peroxidation and oxidative stress. BMP-2 is essential for bone regeneration and alda-1 increased its expression in osteoblasts. We then showed that alda-1 (40 mg/kg dose) augmented bone regeneration at the fracture site with concomitant increase in BMP-2 protein compared with control. The osteogenic dose (40 mg/kg) of alda-1 attained a bone marrow concentration that was stimulatory for osteoblast differentiation, suggesting that the tissue concentration of alda-1 matched its pharmacologic effect. In addition, alda-1 promoted modeling-directed bone growth and peak bone mass achievement, and increased bone mass in adult rats which reiterated its osteogenic effect. In osteopenic ovariectomized (OVX) rats, alda-1 reversed trabecular osteopenia with attendant increase in serum osteogenic marker (procollagen type I N-terminal peptide) and decrease in oxidative stress. Alda-1 has no effect on liver and kidney function. We conclude that activating ALDH2 by alda-1 had an osteoanabolic effect involving increased osteoblastic BMP-2 production and decreased OVX-induced oxidative stress. - Highlights: • Alda-1 induced osteoblast differentiation that involved upregulation of ALDH2 and BMP-2 • Alda-1

  20. Identification of the promoter region required for human adiponectin gene transcription: Association with CCAAT/enhancer binding protein-β and tumor necrosis factor-α

    International Nuclear Information System (INIS)

    Kita, Atsushi; Yamasaki, Hironori; Kuwahara, Hironaga; Moriuchi, Akie; Fukushima, Keiko; Kobayashi, Masakazu; Fukushima, Tetsuya; Takahashi, Ryoko; Abiru, Norio; Uotani, Shigeo; Kawasaki, Eiji; Eguchi, Katsumi

    2005-01-01

    Adiponectin, an adipose tissue-specific plasma protein, is involved in insulin sensitizing and has anti-atherosclerotic properties. Plasma levels of adiponectin are decreased in obese individuals and patients with type 2 diabetes with insulin resistance. Tumor necrosis factor-α (TNF-α) decreases the expression of adiponectin in adipocytes. The aims of the present study were: (1) to identify the promoter region responsible for basal transcription of the human adiponectin gene, and (2) to investigate the mechanism by which adiponectin was regulated by TNF-α. The human adiponectin promoter (2.1 kb) was isolated and used for luciferase reporter analysis by transient transfection into 3T3-L1 adipocytes. Deletion analysis demonstrated that the promoter region from -676 to +41 was sufficient for basal transcriptional activity. Mutation analysis of putative response elements for sterol regulatory element binding protein (SREBP) (-431 to -423) and CCAAT/enhancer binding protein (C/EBP) (-230 to -224) showed that both elements were required for basal promoter activity. Adiponectin transcription was increased 3-fold in cells that over-expressed constitutively active C/EBP-β. Electrophoretic mobility shift assay, using nuclear extract from 3T3-L1 cells and the -258 to -199 region as a probe, demonstrated specific DNA-protein binding, which was abolished by TNF-α treatment. The present data indicate that the putative response elements for SREBP and C/EBP are required for human adiponectin promoter activity, and that suppression by TNF-α may, at least in part, be associated with inactivation of C/EBP-β

  1. Transactivation of a cellular promoter by the NS1 protein of the parvovirus minute virus of mice through a putative hormone-responsive element.

    Science.gov (United States)

    Vanacker, J M; Corbau, R; Adelmant, G; Perros, M; Laudet, V; Rommelaere, J

    1996-01-01

    The promoter of the thyroid hormone receptor alpha gene (c-erbA-1) is activated by the nonstructural protein 1 (NS1) of parvovirus minute virus of mice (prototype strain [MVMp]) in ras-transformed FREJ4 cells that are permissive for lytic MVMp replication. This stimulation may be related to the sensitivity of host cells to MVMp, as it does not take place in parental FR3T3 cells, which are resistant to the parvovirus killing effect. The analysis of a series of deletion and point mutants of the c-erbA-1 promoter led to the identification of an upstream region that is necessary for NS1-driven transactivation. This sequence harbors a putative hormone-responsive element and is sufficient to render a minimal promoter NS1 inducible in FREJ4 but not in FR3T3 cells, and it is involved in distinct interactions with proteins from the respective cell lines. The NS1-responsive element of the c-erbA-1 promoter bears no homology with sequences that were previously reported to be necessary for NS1 DNA binding and transactivation. Altogether, our data point to a novel, cell-specific mechanism of promoter activation by NS1. PMID:8642664

  2. Monocyte chemoattractant protein-1 promoter -2518 polymorphism and susceptibility to vasculitis, rheumatoid arthritis, and multiple sclerosis: A meta-analysis.

    Science.gov (United States)

    Lee, Y H; Bae, S-C

    2016-03-20

    The purpose of this study was to examine whether the monocyte chemoattractant protein-1 (MCP-1) promoter -2518 A/G polymorphism (rs1024611) is associated with susceptibility to vasculitis, rheumatoid arthritis (RA), or multiple sclerosis (MS). A meta-analysis was conducted on the association between the MCP-1 -2518 A/G polymorphism and vasculitis, RA, and MS. Fourteen studies from 13 articles, including six on vasculitis, five on RA, and three on MS, consisting of 3,038 patients and 3,545 controls were available for the meta-analysis. The meta-analysis revealed no association between the MCP-1 -2518 G allele and vasculitis (odds ratio [OR] = 0.990, 95% confidence interval [CI] = 0.749-1.309, p = 0.943). Stratification by ethnicity indicated no association between the G allele of the MCP-1 -2518 A/G polymorphism and vasculitis in Asians and Caucasians. Meta-analysis by vasculitis type revealed an association between the GG+GA genotype of the MCP-1 -2518 A/G polymorphism and Behçet's disease (BD; OR = 1.349, 95% CI = 1.013-1.796, p = 0.040). However, sensitivity analysis showed that the association was not statistically significant after removing a study that was conducted in China (OR = 1.030, 95% CI = 0.667-1.590, p = 0.895), which indicated that the association was not statistically robust. The meta-analysis revealed no association between the MCP-1 -2518 G allele and RA (OR = 0.986, 95% CI = 0.890-1.093, p = 0.793) or MS (OR = 1.281, 95% CI = 0.802-2.046, p = 0.301). Our meta-analysis demonstrates that the MCP-1 -2518 A/G polymorphism is not associated with susceptibility to vasculitis, RA, or MS.

  3. Angiopoietin-like protein 3 promotes preservation of stemness during ex vivo expansion of murine hematopoietic stem cells.

    Science.gov (United States)

    Farahbakhshian, Elnaz; Verstegen, Monique M; Visser, Trudi P; Kheradmandkia, Sima; Geerts, Dirk; Arshad, Shazia; Riaz, Noveen; Grosveld, Frank; van Til, Niek P; Meijerink, Jules P P

    2014-01-01

    Allogeneic hematopoietic stem cell (HSC) transplantations from umbilical cord blood or autologous HSCs for gene therapy purposes are hampered by limited number of stem cells. To test the ability to expand HSCs in vitro prior to transplantation, two growth factor cocktails containing stem cell factor, thrombopoietin, fms-related tyrosine kinase-3 ligand (STF) or stem cell factor, thrombopoietin, insulin-like growth factor-2, fibroblast growth factor-1 (STIF) either with or without the addition of angiopoietin-like protein-3 (Angptl3) were used. Culturing HSCs in STF and STIF media for 7 days expanded long-term repopulating stem cells content in vivo by ∼6-fold and ∼10-fold compared to freshly isolated stem cells. Addition of Angptl3 resulted in increased expansion of these populations by ∼17-fold and ∼32-fold, respectively, and was further supported by enforced expression of Angptl3 in HSCs through lentiviral transduction that also promoted HSC expansion. As expansion of highly purified lineage-negative, Sca-1+, c-Kit+ HSCs was less efficient than less pure lineage-negative HSCs, Angptl3 may have a direct effect on HCS but also an indirect effect on accessory cells that support HSC expansion. No evidence for leukemia or toxicity was found during long-term follow up of mice transplanted with ex vivo expanded HSCs or manipulated HSC populations that expressed Angptl3. We conclude that the cytokine combinations used in this study to expand HSCs ex vivo enhances the engraftment in vivo. This has important implications for allogeneic umbilical cord-blood derived HSC transplantations and autologous HSC applications including gene therapy.

  4. Synthetic cold-inducible promoter enhances recombinant protein accumulation during Agrobacterium-mediated transient expression in Nicotiana excelsior at chilling temperatures.

    Science.gov (United States)

    Gerasymenko, I M; Sheludko, Y V

    2017-07-01

    To exploit cold-inducible biochemical processes beneficial for foreign mRNA transcription, translation and storage, as well as protein product stability, during Agrobacterium-mediated transient expression. The efficiency of three different 5'-regulatory sequences to achieve transient expression of the GFP-based reporter gene under chilling conditions (6-8 °C since the 3rd day post inoculation) was compared. We studied the upstream sequences of a cold-inducible Arabidopsis thaliana cor15a gene, the core element of 35S CaMV promoter fused to the TMV omega 5'-UTR, and the synthetic promoter including the 35S core sequence and two binding sites for cold-inducible CBF transcription factors (P_DRE::35S). Cultivation of plants transiently expressing reporter gene under control of the synthetic P_DRE::35S promoter under chilling conditions since the 3rd dpi led to the reliably higher reporter accumulation as compared to the other tested regulatory sequences under chilling or greenhouse conditions. Reporter protein fluorescence under chilling conditions using P_DRE::35S reached 160% as compared to the transient expression in the greenhouse. Period of transient expression considerably extended if plants were cultivated at chilling temperature since the 3rd dpi: reporter protein fluorescence reached its maximum at the 20th dpi and was detected in leaves up to the 65th dpi. The enhanced protein accumulation at low temperature was accompanied by the prolonged period of corresponding mRNA accumulation. Transient expression under chilling conditions using synthetic cold-inducible promoter enhances target protein accumulation and may decrease greenhouse heating expenses.

  5. An SGS3-like protein functions in RNA-directed DNA methylation and transcriptional gene silencing in Arabidopsis

    KAUST Repository

    Zheng, Zhimin

    2010-01-06</